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Using Stereographic Projection to Solve Triangles

One might wonder why we are discussing stereographic projection at
all, since it seems to share little with spherical trigonometry beyond
the use of the sphere. But projections have been at the heart of geom-
etry and trigonometry for many centuries. Another kind of projective
technique—the analemma—may have developed in ancient Greece as a
means to reduce spherical problems to the plane before spherical trigo-
nometry came along. In a nutshell, the analemma involved cutting the
sphere along the plane of some great circle, rotating relevant arcs onto
this plane, and performing plane geometry and trigonometry on the re-
sulting diagram. For stereographic projection in particular, at least two
major contacts with trigonometry impacted the textbooks: first in the
17th through 19th centuries, and again in 1945—a mere ten years before
spherical trigonometry vanished from the curriculum.

Many European textbooks solved spherical triangles much as we
have in chapters 5 and 6, using Napier’s Rules, the Law of Cosines, and
the various analogies. However, several texts approached triangles in a
way that today feels rather odd, if not downright misguided. The idea
was to use the given information about the triangle to draw its stereo-
graphic projection on a piece of paper. Once the projected triangle was
drawn, the missing elements of the triangle could be computed by mea-
suring the dimensions of the projected triangle and performing some
simple calculations to convert the measurements back to arcs on the
spherical triangle. The use of physical measurement in a mathemati-
cal process might seem foreign to us, but this approach stood beside
the conventional methods with most authors feeling no need for com-
ment. Our favorite author Benjamin Martin, in his Young Trigonom-
eters Compleat Guide, could not let the method pass without a remark
in his typical style:

This way is (generally speaking) more artful than useful; not but that to a

person well versed in spherics, it is of particular use and service; for this
method dispels all ambiguity, and errors, which attend the solution by most
other methods; and by a little use, is very practicable and easy. So that if the
ingenuity, certainty, ease, and expeditiousness, of any method, be sufficient
to recommend it, this cannot fail of acceptance with all those who have the

least genius and taste for this science.
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Tropic of Cancer

Equator

Figure 8.3. Stereographic projection. The labels refer to the projections of the equator
and the Tropics onto the plane.

of the celestial sphere southward only as far as the Tropic of Capricorn
(see figure 8.1). Stereographic projection distorts areas dramatically; if
the sphere to be projected is the Earth’s surface, Antarctica would be an
infinitely vast land mass surrounding the rest of the planet. Incidentally,
this is just how many members of the Flat Earth Society consider Ant-
arctica to situate itself in real life.

Why, then, is this projection better than any other? There are two
reasons: firstly, all circles on the sphere transform to circles on the plane
(apart from circles passing through the South Pole, which transform to

lines). This fact gave instrument makers a huge advantage; they could
engrave circles easily enough with compasses, but would have struggled
to produce other curves accurately. The earliest text we have on stereo-
graphic projection, Ptolemy’s Planisphere, oddly uses but does not prove
the circle-preserving property; perhaps it was common knowledge at
the time. Ptolemy does go into detail on how to use stereographic pro-
jection to solve problems involving rising times, which suggests that the
astrolabe may have existed already. The second reason for the superior-
ity of stereographic projection is that it preserves angles, which makes
it a conformal map. This property has clear astronomical advantages;
it also gives the projection unique properties in the mathematical field

of complex analysis and several scientific disciplines, including geology
and crystallography. Both the angle-preserving and circle-preserving

properties are demonstrated in the exercises.
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N

Figure 8.5. Vertical cross-section

D F
"’ of figure 8.4.
S

theorem in the exercises. {NCA is the complement of the inclina-
tion between the two great circles, so

CA’ = tan3(90° — angle of inclination).

Since we already know that the projected circle passes through E

and G, we have located three points on this circle, which is enough
to determine its position.

Our next task is to locate the projection of a pole of great circle
AG. Although it would be easy enough to add the pole to figure
8.4 and simply connect it with §, it was preferred that construc-
tions remained on the primitive circle, to avoid having to draw in

three dimensions. The portion of the projected circle that is within

the primitive circle is EA'G (figure 8.6). Now imagine rotating the
primitive circle out of the page, holding DCF in place but bringing E
upward so it is directly above C. Some of the points no longer refer
to the same thing; for instance, G is now the point of projection

S, at the South Pole. But all points on the line of measures DCA'F
remain the same.

Now that we have rotated our circle, we can draw a line from the
point of projection, now at G, through A’ to reconstruct A. But we

know our pole a is 90° removed from A along this circle, so we
trace out a 90° arc to locate a. Finally, connect a with G to deter-

mine the position of the projected pole a’. Since a’ is on the line
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Figure 8.4. Projecting a great circle.

The modern student reading Martin’s text might despair of having “the
least genius and taste for this science,” since Martin makes a number of

assumptions that, while perhaps acceptable to a young trigonometer in
1736, are almost certain to perplex us. We shall follow Martin through

his first triangle solution, filling in a number of gaps as we go.

A couple of preliminary definitions are needed before we begin. Sup-
pose that we wish to project great circle AG onto the plane (figure 8.4).
The intersection DEFG of the plane and the sphere is called the primitive
circle. Connect antipodal points E and G where our great circle crosses
the primitive circle; diameter DF perpendicular to this line is called the
line of measures. As we shall see, this line plays a pivotal role. Recall from
chapter 2 that AF is equal to the angle of inclination between the two
great circles, and since S is the point of sight for our projection, A pro-
jects to A’. (In historical texts, often no distinction is made between the

original point and the projected point, which can make for entertaining
reading.)

—->Supposing that we know the angle of inclination, how do we
know where to draw A? Consider figure 8.5, a view of the vertical
cross-section of figure 8.4 through the center of the sphere, parallel

to the page. Then CA"/CS = tan £LCSA". But CS =1, and because of a
theorem from Euclid’s Elements (111.20) that everyone once knew

but few people today remember, LCSA’ = ; ANCA. We'll prove this
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Stereographic Projection

Astronomers needed to compute and observe long before the computer
and the telescope. Before time-saving devices like logarithms and slide
rules rescued astronomers from hours of drudgery, calculations were
done by hand and were simply part of the job description. In fact, the
word “computer” referred originally to a person, not a machine. But
even in ancient times there were still tools that could aid the weary
scientist by generating at least approximate solutions to astronomical
problems. We have already seen the armillary sphere, a model of the
celestial sphere that rotates in the same way the heavens do. By position-
ing the armillary sphere to match the conditions of the problem, an as-
tronomer could read the desired quantity on an angular scale engraved
on the frame of the instrument.

However, it is not easy to carry around a three-dimensional repre-
sentation of the universe, and so the astrolabe was born (plate 9). As an
Arab author once described it, an astrolabe is what you get if a camel
steps on your armillary sphere, making it easier to store. We shall see
that it would require a camel with considerable mathematical knowl-
edge and physical dexterity to step on the sphere in just the right way,
but this colorful description is a decent first approximation to the truth.
The oldest astrolabes that still exist today are Islamic, from around AD
900 onwards; a number also survive from early modern Europe. The
first technical manual composed in the English language was for the
astrolabe, written by none other than Geoffrey Chaucer. Usually made
of brass, the astrolabe became a highly sought instrument not just for its
utility, but also as an object with artistic merit. In fact, some of the more
elaborate astrolabes were likely on display much more often than they
were used.

There are two main parts to the astrolabe, corresponding to two sets
of circles in the sky. The first component, the latitude plate (figure 8.1),
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13. A regular octahedron is inscribed in a cube so that the corners of the

octahedron are at the centers of the faces of the cube: show that the vol-

ume of the cube is six times that of the octahedron. [Todhunter/Leathem
1907, 217]
14. Derive precise expressions (that is, containing no decimal approxima-

tions) for the volumes of the regular polyhedra in terms of their side
lengths a. [Hann 1849, 65-67]
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Figure 8.2. Some important curves on the rete of an astrolabe.

other. It would be a significant bonus if the projection were to render

the transformed curves so that an instrument maker could construct
the device easily.
Several different projections of the sphere were attempted, but by

far the most common (in fact, the only type preserved in surviving in-

struments) was stereographic projection. Imagine a transparent celestial
globe, with all points and curves of interest drawn onto it (figure 8.3).
We construct a horizontal plane cutting through the sphere at the ce-
lestial equator, and we place a light source at the South Pole. Curves on
the southern hemisphere, such as the Tropic of Capricorn, cast shadows
on the part of the plane outside the equator. For curves on the northern
hemisphere such as the Tropic of Cancer, imagine shadows being cast
backwards (from the curves on the sphere’s surface downward to the
South Pole); the shadows land on the part of the plane within the equa-
tor. Points near the North Pole end up near the center of the equator,
while points near the South Pole land very far away. The result is a pro-
jection that maps the entire sphere, minus the South Pole, onto the en-
tire plane through the equator. Of course, in practice we cannot build an
infinitely large plane, so most astrolabes extended their representations
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Figure 8.1. Some of the important curves on the latitude plate of an astrolabe.

resides inside a circular frame (the mater), and contains all celestial ob-
jects that do not move with respect to time: the horizon, the zenith, the
North Pole, the celestial equator, and various other curves. Now, some
of these objects do change their positions with respect to the observer’s
latitude, so some astrolabes came with removable latitude plates to allow
them to function at different locations. The second component, the rete

(figure 8.2), contains all the objects that move with the daily rotation of
the celestial sphere, such as the ecliptic and the stars. The pointers that
give the astrolabe its exotic appearance, and the rete its less common

name of spider, indicate the locations of the brightest stars. By attach-
ing the rete to the latitude plate through a pinhole at the North Pole,
the astronomer could set in motion the daily rotation of the heavens by
turning the rete. Solving astronomical problems becomes relatively sim-
ple: position the rete appropriately and read the desired quantity off the
plate, using the appropriate scales and rulers attached to the astrolabe.
Now, one cannot hope that the camel will step on the armillary
sphere in just the right manner to preserve the relative positions of
celestial objects. We need a projection of the celestial sphere onto a flat
surface so that objects stay in their proper places with respect to each
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E+ E, + E, + E_=180°, and hence that the sum of the areas of these
triangles is equal to half the area of the sphere. [Moritz 1913, 50]

. Problem 4 would have been easier if we had had a formula for the area of
a triangle in terms of its sides, rather than in terms of its angles. Fortu-
nately there is such a formula, named after Simon Lhuilier (1750-1840),
who among other achievements corrected Euler’s solution to the Konigs-
berg bridge problem and worked on Euler’s polyhedral formula and its
exceptions. We shall derive Lhuilier’s formula in stages.

(a) Deduce the following identity from Delambre’s first analogy:

cos;(C—%)—cosiC  cosi(a—b)—cosic
cos!(C—£)+cos!C cosi(a—b)+cosic

(b) Use the cosine sum-to-product formulas from plane trigonometry, i.e.,

cos(x + y)cos(x -y )’

cosxt cosy = izsin > Jsin\ 2
S

to derive
taniEtan;(C — E) = tan3;(s —a)tan;(s—b),

where s is the half perimeter of the triangle.
(c) Apply the process of (a) and (b) to Delambre’s third analogy, instead
of the first. Combine your results to obtain Lhuilier’s formula:

1 1 | |
tanistani(s —a)tan}(s—b)tanj(s—c).

We may now calculate E directly from the side lengths, and from this find
the area using Girard’s Theorem. [Todhunter/Leathem 1907, 101-102]

. (a) If a and b are the radii of the spheres inscribed in and described about
a regular tetrahedron, show that b= 3a.

(b) If a is the radius of a sphere inscribed in a regular tetrahedron, and R
the radius of the sphere that touches (i.e., is tangent to) the edges, show
that R® = 34’. [Todhunter/Leathem 1907, 216]

. In any convex polyhedron (regular or irregular), prove that the number
of faces having an odd number of sides is even, and that the number of
vertices having an odd number of edges is odd. [Casey 1889, 131]

. If a dodecahedron and an icosahedron were each described about a given
sphere, the sphere described about these polyhedra will be the same.
[Todhunter/Leathen 1907, 216]
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Exercises

1. (a) Find the area of a spherical triangle whose angles are 63°, 84.35°, and
79°, if the radius of the sphere is 10 inches.
(b) The sides of a spherical triangle are 6.47 in., 8.39 in., and 9.43 in. If
the radius of the sphere is 25 in., find the area of the triangle. [Granville
1908, 230]
. Verify that a spherical equilateral triangle with 60° angles has no area,
and that the largest possible triangle is a hemisphere.
. The state of Colorado is close to a spherical rectangle, ranging from 37° N
to 41° N latitude and from 102.05° W to 109.05° W. Find Colorado’s area.
(There are two reasons why Colorado is not quite a spherical rectangle.
Firstly, its northern and southern boundaries are actually circles of lati-
tude rather than great circle arcs, i.e., they bend slightly to the left as you
walk eastward along them. Secondly, surveying errors led to some small
irregularities in the legal borders.)
. The Bermuda triangle is a region of the Atlantic Ocean traditionally
formed by vertices at Puerto Rico (18.5° N, 66° W), Bermuda (32.3°N,
64.9° W), and the southern tip of Florida (25° N, 80.5° W). It holds a repu-

tation, deserved or not, for being the location of an inordinate number of
disappearances of ships and planes. The Earth’s radius is 3960 miles. As-
suming it is a sphere, how many square miles does the Bermuda triangle

enclose? (Hint: Join all three vertices to the North Pole.)

. The area of an isosceles right-angled spherical triangle is . of the surface

of the sphere: calculate the hypotenuse. [Todhunter/Leathem 1907, 107)

. Prove that in a right-angled spherical triangle tan E = tan;atan;b.
[Casey 1889, 90]

. Prove the following analogy from Breitschneider:

sin;Ecos;(A—E)  sinjssinj(s—a)

sin}A cos;a ’
where s is the half perimeter of the triangle. [Casey 1889, 47] (Enterpris-
ing readers may look up a hint and Breitschneider's other seven analogies
on page 47 of Casey’s book, available online, all derivable from Delambre's
analogies.)

. IfE, E,, E,, and E. denote the half spherical excesses of a spheri-
cal triangle and its three colunar triangles respectively, show that
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Figure 7.12. Determining the radius of a sphere inscribed within a regular polyhedron.

r=cos{AOC = cosZE'.

But from the second of the identities in the first column of Napier’s
Rules,

cosZE' = cot{AC’E’ cotLC’'AE’.

Now, imagine dropping perpendiculars from C to every side of the

face were considering, not just AB. We end up with 2m identical
angles around C’, each equal to £AC’E’. So LAC'E'=360"/2m =

180°/m. Similarly, if we imagine arcs drawn from A to the centers

of each of the faces containing A as a vertex, we end up with 2n
identical angles around A, each equal to £C’AE’. But LC’AE’=

360°/2n =180°/n. We are left with the pleasingly compact relation

r = cot(l—SOO)cot( 1§Q—).—)

m n

The values of r for the regular polyhedra are tabulated in figure 7.13.
Notice that the symmetry of our formula with respect to m and n implies
that the inscribed spheres for the octahedron and cube, and likewise for
the dodecahedron and icosahedron, are identical. This relation is one
aspect of the duality of these respective pairs of polyhedra. Another,
more commonly expressed aspect of this same duality was discussed in
chapter 2: within a regular polyhedron if you connect the central points
C of each face, you generate a smaller copy of its dual polyhedron inside.

Kepler ordered his planets and polyhedra, from inside to out, as fol-
lows: Mercury-icosahedron-Venus-octahedron-Earth-dodecahedron-
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Figure 7.14. Determining the inclination between two faces of a regular polyhedron.

right triangle AC’E". From the second identity in column II of Na-
pier’s Rules,

cosLC’'AE’ = sin£AC’E’ cos CE.

But if we consider (as before) the same sorts of constructions drawn
on all faces with a vertex at A, we see that LC'AE"=360°/2n =
180°/n. And considering arcs drawn from C’ to every vertex and

the midpoint of every edge of the visible face, we see that {AC'E"=
360°/2m = 180°/m. Finally C'E’ = 4COE; but £OCE is right, so
C’E’=90° — i/2. Putting all these results into our Napier’s Rule for-
mula above, we get

cos 180 _ sin 180 cos(90° — i/2).
n m
A bit of algebraic cleanup provides a pleasing formula for the incli-

nation between two faces:

cos(180°/n)
T
2 sin(180°/m)

The various angles of inclination are tabulated in figure 7.13. The fact

that the octahedron’s angle of 109.471° is the same as the “tetrahedral”
bond angle at the center of several molecules, including methane, is no

coincidence. We leave it to the interested reader to discover why.
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r i a Volume

Tetrahedron 1/3 70.529° 1.633 0.5132
(12.3%)

Cube J3/3=0.5774 90" ¥ =1.155 15397
(36.8%)

Octahedron J3/3=0.5774 109.471° f2=1414 1.3333
(31.8%)

Dodecahedron (w =0.7947 116.565° 2.7852
645— 5 (66.5%)

Icosahedron o) M =0.7947 138.190° 2.5362
64545 (60.5%)

Figure 7.13. The dimensions of regular polyhedra inscribed within the unit sphere.

Mars-tetrahedron-Jupiter-cube-Saturn. From our modern point of view
we can see that the large gap caused by the tetrahedron’s relatively small
value of r nicely fills the space in the solar system occupied by the aster-
oids between Mars and Jupiter. In fact, if we allow for a small fudge in
the gap between Mercury and Venus, the differences between Kepler’s
polyhedral distances and the planetary distances based on Copernicus’s
data were on average only about 3%. Given the observational accuracy
of this era, that is an impressive match.

Let’s follow in Euclid’s footsteps in the Elements and consider the di-
mensions of regular polyhedra inscribed in a unit sphere. In particular,
what are the lengths a of the edges? It turns out that first we must con-
sider a related question: what is the angular inclination i/ between two

faces of a regular polyhedron?

—>In figure 7.14 one face of the polyhedron is drawn as a pen-
tagon (although, as before, a square or a triangle are also possible).

The adjoining face below edge AB (not drawn) has DE on its sur-
face. C is the center of the face above AB, and we drop CE per-
pendicularly onto AB. Segment DE is the result of doing the same

thing to the face below AB. So, the inclination between the two
faces is i = LCED, and £4CEO = i/2.

As before, the spherical trigonometry arises by “popping” AACE
outwards onto the circumscribed sphere, producing the spherical
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Canceling 360° brings us to our goal:

V—E+F=2->

The Regular Polyhedra

Having Euler’s polyhedral formula in our possession brings us very
close to yet another of the most famous theorems in mathematics: that
the five regular polyhedra in figure 7.4 are the only regular polyhedra.
This fact has been known since ancient Greece; it is demonstrated by
Euclid (in a manner entirely different from what we shall see here) as
the culmination of the thirteenth and last book of the Elements. Euclid’s
masterpiece is not a mere logically-ordered listing of theorems; it is ar-
ranged to cultivate a sense of suspense. We saw in the previous chapter
that Euclid builds Book I to a climax in the Pythagorean Theorem and
its converse. He maintains a similar sense of drama with his last three
books on solid geometry. As he goes into the home stretch, Euclid shows
how to construct each of the five regular polyhedra embedded within a
sphere, and gives their dimensions. Finally, just after the last numbered
proposition, he concludes with a flourish: there can be no regular poly-
hedra other than the five he has just constructed.

The regular polyhedra are sometimes called the Platonic solids, re-
ferring to their appearance in Plato’s dialogue, Timaeus. In this cosmo-
logical work Plato identifies each of the regular polyhedra with one of
the Greek elements: fire with the tetrahedron, air with the octahedron,
water with the icosahedron, earth with the cube, and the celestial firma-
ment with the dodecahedron. Euclid’s proof, then, demonstrated that
the analogy between the cosmological elements and the polyhedra was
perfect.

Of course Euclid did not have access to V — E + F =2, but we do. Its
use makes the path to the conclusion that there are only five regular
polyhedra quite short.

—>Let m be the number of sides in a face of a regular polyhedron,
and let n be the number of faces that meet at each vertex. Then the

number of edges E is equal to mF/2, since each edge is the side of
two faces; and E is also equal to nV/2, since each edge touches two
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Figure 7.10. Legendre’s projection of a polyhedron outward onto the surface of a
sphere, in this case a cube. The projected cube is the entire sphere; only the projections
of the edges and vertices facing forward are visible.

Legendre begins in a manner similar to the proof we just saw, by project-
ing the polyhedron—but not onto a flat surface, rather outwards onto an
enclosing sphere (figure 7.10). Imagine a point source of light within the
polyhedron, with each vertex casting its shadow on the sphere. Connect
the “shadowed” vertices on the surface of the sphere with great circle

arcs; we now have a spherical polyhedron.

—->Assuming that the sphere has a unit radius, its surface area is 4.
But we can find the surface area another way, by adding together

the areas of each face of the spherical polyhedron. We happen to
have a formula for these areas. In our notation,

Tz

180 [(Sum of polygon’s angles) — (n—2) - 180°] = 4.

Cleaning up a bit and expanding out the sum produces

(Sum of all angles) — D_n -180° + 2F - 180° = 720".

But the angles encompass each of the vertices, so the sum of the
angles is just V -360°. And since every edge is counted as part of

exactly two polygons, >° n=2E. So

V -360° — 2E - 180° + 2F - 180° = 720°".
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vertices. From V — E+ F =2 and E=mF/2=nV/2, a little algebra
gets us to

_ 4m
2(m+n)—mn’

The denominator of this expression must be positive, so 2(m + n)
> mn, or (dividing through by 2mn) ~+ > . But both m and n
must be greater than 2. A bit of plugging and chugging quickly re-
veals that the only possible pairs m, n that satisfy the inequality are
3,3 (tetrahedron); 3,4 (octahedron); 4,3 (cube); 3,5 (icosahedron);
and 5,3 (dodecahedron).=»>

The mysticism associated with the regular polyhedra didn't stop
with the Greeks. Consider late 16th-century astronomer Johannes Kep-
ler, known today as one of the fathers of modern science for having
demonstrated that the planets travel around the Sun in ellipses rather
than in combinations of circles. None of the 17th-century natural phi-
losophers really fit the impassive, objective lab-coated image that we
conjure when we think of scientists today. Kepler was a deeply commit-
ted Christian, and he believed that harmonies were encoded in God'’s
mathematically-inspired creation of the universe. He took the word
“harmony” both figuratively and literally: in his Harmonices mundi
(Harmony of the World) he tried to find resonances between musical
chords and astronomical ratios. His earlier astronomical work, Mys-
terium cosmographicum (Cosmic Mystery), brought to light a peculiar
relation between the five regular polyhedra and the six then-known
planets. If we nest the five regular polyhedra within spheres, one inside
of the other, in just the right order, the ratios of their distances from the
center mirror (more or less) the ratios of the distances of the planets
from the Sun. Kepler’s cosmology, illustrated in the famous drawing
of figure 7.11, cannot work beyond the planets visible to the naked eye
(for one, there are no more regular polyhedra left to nest), but of course
he was not to know that. Uranus would be discovered by Sir William
Herschel almost two centuries later.

It doesn’t sound easy to work out the dimensions of planetary orbits
by calculating the sizes of polyhedra nested in spheres. But by now, it
should come as no surprise that spherical trigonometry is the key to a
manageable solution. Imagine a regular polyhedron enclosed within a
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->We are now ready to determine a, the length of a side of a regular
polyhedron inscribed in a unit sphere. We can reuse figure 7.14.

Consider AACE; we notice that

CE = cot{ACE = cot180°.
AE

m

But AE=a/2, so CE="%cot'®-. On the other hand, from ACEO

m

we have

r = CE tan £ACEO = CE tani/2.

Combining these two results gives us r = cot'’ tan}. But we al-

m

ready know that r=cot**cot® Setting these two equations

m

equal to each other and solving for a brings us home:

a= 2cot180 coti.-é
n pi

Once again, the side lengths a are tabulated in figure 7.13.

We find irresistible one last excursion into the geometry of the regu-
lar polyhedra. Exactly what proportion of the volume of the unit sphere
do the various regular polyhedra occupy?

—~>This problem turns out to be relatively simple. Connect the cen-
ter of the sphere to each of the vertices of the polyhedron. This
splits the polyhedron into F pyramids with the faces as bases. The
volume of each pyramid is ;j(area of base)(height). The height of
the pyramid is just the radius r of the inscribed sphere. The area of
the base, i.e., a face of the polyhedron, may be found by joining the
face’s central point to each of the vertices. We leave it as an exercise

to show that the area of the base is “*cot'*®. By combining this

m

information, we arrive at

mFra® 180°

Volume = ——cot—— 2>
12 m

Divide by ;7 (the volume of the unit sphere), and we have the pro-
portion of the sphere filled by the polyhedron. The tabulations in figure
7.13 reveal a surprising fact: although the icosahedron appears to adhere
most closely to its circumscribed sphere, the dodecahedron actually fills
about 10% more of the sphere’s volume. Sometimes, appearances can be

deceiving.
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Figure 7.4. The five regular polyhedra—tetrahedron, octahedron, icosahedron, cube,

£

dodecahedron.

Figure 7.5. Two non-regular polyhedra—the square pyramid and the cuboctahedron.

today in calculus, such as functions and exponentials, was formulated
by Euler. His accomplishments are incredibly varied: from geometry
and number theory to calculus and differential equations, and onward
to astronomy, optics, and navigation, including spherical trigonometry.
There is scarcely an area of 18th-century mathematics that Euler did not
affect deeply. During his life he wrote an average of almost three pages
of published mathematics per day—not including the huge volume of
work that was released after his death. The onset of blindness in his later
life did not slow him down; he simply continued to dictate his math-
ematics, fully formed, to his assistants.

In 1750 Euler wrote to his colleague Christian Goldbach about the
relation V — E + F = 2. Eventually he produced an argument that this
equation must hold for any convex polyhedron, but his reasoning did not
meet the mettle of a full-scale proof. Today, there are at least 19 different

proofs. Perhaps the most common approach uses graph theory, an area
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Figure 7.3. Decomposing a spherical
polygon into triangles.

= _fJ;_O[(SUm of polygon’s angles) + 360° — n - 180°]

= L[ (Sum of polygon’s angles) — (n — 2)-180°].
180 polyg g

Since the angles of a planar polygon sum to (n — 2) - 180°, it makes sense
to refer to the square-bracketed quantity as the spherical excess of the

polygon.

Euler’s Polyhedral Formula

Here our subject takes a surprising turn, apparently away from spheres
altogether. Consider any convex polyhedron, that is, a solid consisting
of polygons as faces and having no inward “dents.” Five such polyhe-
dra can be constructed using identical regular polygons for each face:
using triangles, we get the tetrahedron, octahedron, and icosahedron;
using squares, the cube; and using pentagons, the dodecahedron (fig-
ure 7.4). These are known as the regular polyhedra. But there are plenty
other polyhedra that are not regular, such as the square pyramid and the
cuboctahedron in figure 7.5. Pick any of these shapes, say, the cubocta-
hedron. It has V =12 vertices, E = 24 edges, and F = 14 faces (six squares
and eight triangles). So V — E + F = 2. Try this for the other polyhedra
shown here, or indeed any convex polyhedron whatever, and you will
alwaysgetV —E+ F=2.

This curious fact is known today as Euler’s polyhedral formula,
named after the dominant 18th century mathematician Leonhard Euler

(1707-1783). Much of the notation and form of the algebra that we use
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Areas, Angles, and Polyhedra

The first goal of trigonometry—to solve any triangle given some infor-
mation about its sides and angles—has been accomplished, so it is at this
point that most textbooks stop. This is a pity, because while the straight-
forward practical work has been completed, a wealth of mathematical
pleasures that might have spurred a lot of curiosity lies just around the
corner. Fortunately we are not bound by early 20th-century mathemat-
ics curricula, so we shall press onward and taste some of these delights.

We begin with a seemingly practical problem that we have so far
carefully ignored: to find the area of a spherical triangle or polygon. In
fact, the applications of finding areas on the sphere are somewhat lim-
ited. Hardly anyone has ever needed to calculate areas of tracts of land
or ocean so vast that the curvature of the Earth needed to be accounted
for. And in astronomy, predicting the positions of the Sun, Moon, and
planets does not rely on knowledge of areas of sections of the sky. So his-
torically, scientists simply didn’t care. However, there is a mathematical
motive: an exploration of areas leads quickly, and rather unexpectedly,
to a tour of some of the greatest geometrical theorems ever discovered.
So for this chapter we shall depart from our usual physical contexts and
take a journey for the sake of pure geometric pleasure.

Recall from chapter 2 that it is possible to form a spherical polygon
with only two sides. A lune is the part of a sphere captured between two
great semicircles joined at their ends (figure 7.1), named because of its
resemblance to a crescent moon. Its area is easy to find, since the ratio
of the angle 6 between the two great circles to 360° is equal to the ratio
of the area of the lune to the surface area of the sphere. In the standard
unit sphere the surface area is 47r’ = 47, so

area of lune _ _6
4 360°
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(c) The result of (b) should look familiar. Exploit this; then apply the

cosine half-angle formula to the numerator again. This will give you

Delambre’s third analogy.
. (a) Show that cota sinb=cosb cosC + cotAsinC.

(b) Use the above result (with the variables rearranged appropriately) in
conjunction with AAVP and ACVP in the derivation of Delambre’s first

analogy (figure 6.6) to demonstrate Napier's second analogy.
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Figure 7.2. Proving Girard's Theorem.

2AABC + (AABC+AA'BC+ AABC+ AABC').

By symmetry we can replace AA'BC with AAB'C’; then the four

triangles grouped in parentheses will form the hemisphere at the
front of figure 7.2, with area 27. But the areas of the three lunes,
considered separately, may be found using the area formula we de-

rived a few moments ago. So

2AABC + 27 = ;’—O(A+B+C),

which simplifies to
AABC = (A +B+C—1807).>

In other words, the area of a spherical triangle is proportional to the
amount by which the sum of its angles exceeds 180°. This spherical ex-
cess, which we call 2E in anticipation of events to come in the next chap-
ter, thus plays a meaningful role here, and its significance will continue
to grow.

We can extend this result to find the area of any convex spherical
polygon. Choose any point in the polygon’ interior (figure 7.3) and con-
nect it with each vertex, thereby breaking the polygon into triangles. Let
n be the number of sides, and add up the areas of the triangles:

Area = %[(Sum of triangles’ angles) — n-180°]
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Figure 7.1. Finding the area of a lune.

Thus, measuring 6 in degrees,

0
area of lune = 22,

90

The formula for the area of a spherical triangle is named after Al-
bert Girard (1595-1632), a French mathematician whose Protestant faith
likely forced him to flee his home country and settle in the Netherlands.
He appears to have struggled to make a living there, with no patron
and eleven children. Whether or not this difficult circumstance led to
his early death is left to the reader to speculate. Girard lived at a time
when the symbols we use today for algebra were in the process of being

»

formulated. He was one of the first to use the abbreviations “sin,” “tan,
and “sec,” and in his Invention nouvelle en lalgebre (1629) he invented
the 3{ notation for cube roots. Surprisingly, his theorem on the areas
of spherical triangles is found not in his Trigonométrie (1626), but in the
Invention nouvelle. He was not happy with his own demonstration; a full
proof written by Bonaventura Cavalieri would eventually appear three
years later.

->Girard’s idea is simple: extend all three sides of the given
triangle into great circles and consider the triangles and lunes that
result. In figure 7.2 the original triangle is AABC, and the ' sym-
bols represent antipodal points. The triangle may be extended in
three different ways to form lunes (colunar triangles): extend the
sides departing from A all the way to the antipodal point A’, form-
ing ABA'C; or extend the sides from B; or extend the sides from C.
If we add these three lunes together, we get
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odd number of edges. Imagine that the ideal path exists; if so, the citizen
would both enter and depart each node (other than the start and finish)
some number of times; therefore only the start and finish may have an
odd number of departing edges. But all four nodes in our graph have an
odd number of departing edges; therefore, the ideal path cannot exist.
Euler’s argument was something like this, although it would be more
than a century before diagrams such as figure 7.7 were drawn.

The proof of V — E + F = 2 using graph theory works as follows. Re-
move one face of the polyhedron, and stretch out the edges to produce
a graph on a flat surface (so that the edges of the missing face form
the outer boundary). For instance, in figure 7.8(a) we have removed the
square base of the pyramid. Since one face has been removed, we must
show that V — E + F =1 for this graph. For each face that is not a tri-
angle, add an edge to the graph by joining two non-adjacent vertices;
continue doing this until only triangles remain. Each time we add an
edge, E and F increase by one, leaving V — E + F unchanged. (In our
case each face is already a triangle, so we do not have to perform this
procedure.) Now choose a triangle on the outer boundary of the graph.
If only one of the triangle’s edges is on the boundary, then remove that

edge (figure 7.8(b)). Then E decreases by one and F decreases by one,
leaving V — E + F unchanged. If two of the triangle’s edges are on the
boundary, remove them and their shared vertex (figure 7.8(c)). This ac-

tion decreases E by two, V by one, and F by one, again leavingV — E+ F
unchanged. Repeat these steps until all that remains is a single triangle.

For that triangle, V — E+ F =3 — 3+ 1=1, and the theorem is proved.
Oddly, however, the first rigorous proof of Euler’s polyhedral for-
mula came from an entirely different and seemingly unrelated corner

(o)) ()

Figure 7.8. Decomposing the square pyramid to show thatV — E+ F =2,






index-12_1.png
PREFACE e Xi

Within these pages you will find what might have been expected in
Little Folks Spherical Trigonometry, but also plenty of room for math-
ematical brain surgery. The experience of wrestling with mathematics
(provided that it meets with at least occasional success) can be one of
the world’s greatest pleasures. At the difficult moments the reader may at
least be consoled that I have not speculated on the nature of the “cubular
trigonometry” that tortures the school boy residents in David Foster

Wallace’s Infinite Jest.

How to Read This Book

Although this is not a coffee table book, I hope that it has enough visual
interest for some simply to thumb through it and enjoy the figures from
old textbooks, the photographs of historical teaching aids, and other im-
ages. Many readers will want to follow some of the mathematics and
science between the pictures. It is not necessary for the casual reader to
understand every detail. Proofs may be skipped over and most applica-
tions omitted without losing the general flow of ideas. The key is to enjoy
the journey. To this end, arrows have been inserted in the margins, like
this 2, to let the reader know when it is safe to leap across a particularly
challenging chasm and pick up again on the other side.

I presume that the reader who ventures into the mathematics is con-
versant with the basics of plane trigonometry. The most important as-
sumptions made here are knowledge of the geometric meanings of sine,
cosine, and tangent; the basic identities; the laws of sines and cosines;
and some of the simplest symmetries of the graphs of trigonometric
functions. If anything else comes up, you will be warned.

The exercises at the end of each chapter may be slaved over with great
care, read casually for their interest, or skipped completely. Many of
them are taken from historical textbooks, and the accompanying dia-
grams copied here, so that readers may appreciate the style and depth of
previous generations’ mathematical experiences. It's sobering to realize
that high school students were expected to solve these problems. There

are a few that would cause ulcers for undergraduate students or even

college professors, as I've discovered myself. (The exercises have been
altered in one minor way. The texts usually give angles in degrees, min-
utes, and seconds; but with modern calculators this can be tedious, so
angles have been converted to decimal form.)
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briefly in chapter 5 for maligning Napier’s Rules. Delambre likely would
prefer to be remembered for his contributions to celestial mechanics, his
work on determining the length of the meter, and his books on the his-
tory of astronomy. But his discovery and publication of the analogies in
1807 in the long-running French astronomical journal Connaissance des
Temps (oddly the volume was dated 1809, leading to some of the confu-
sion) grant him a measure of additional fame by crossing the finish line

only months before his unwitting rivals.

->Delambre’s analogies are usually demonstrated disappoint-
ingly through algebraic manipulation of various known identities.
It is not easy to approach them geometrically, but at least one text-
book (Isaac Todhunter’s classic) gives it a go. The argument, based
on Delambre’s original demonstration, begins with AABC in figure
6.6. We begin by bisecting AB at M and drawing a perpendicular
upward Next bisect £BCP to form CV. Drop arcs perpendlcular
to CP and CB, defining P and Q respectively. Finally, join AV and
BV. We show first that AAVP and ABVQ are equal, by matching
three elements of the triangles. They both contain a right angle;

since MV is perpendicular to AB we know that AV = BV; finally,
since £BCP was bisected by CV we know that PV = QV. So the

two triangles are equal.

This fact allows us to label the angles at A and B as we have done
in the diagram. The angles at the base of the original triangle are
AA=y+x and £B=y— x; a little algebra yields x =(A — B)/2
and y =(A + B)/2. We are in a similar algebraic situation with re-
spect to sides a and b of the original triangle: a = BQ+CQ and

b=AP - CP but BQ AP (since trlangles AVP and BVQ are
equal) and CQ Cb, so BQ =(a+ b)/2 and CQ = (a — b)/2. Turn-
ing to the angles at the top of the diagram, we know that LAVB =
APVQ since both are composed of £AVQ and equal angles. Cut-
ting these angles in half, we have LAVM = LPVC.

* As my students gleetully pointed out, there is an error in the argument here. The two triangles are
asserted to be equal by side-side-angle equivalence, but side-side-angle is the ambiguous case. The
fact that the angle is right seems to allow the argument to escape unscathed from the ambiguity, but
this turns out not to be quite true on the sphere. I leave it to my eagle-eyed students and readers to
explore the flaw and discover how to patch it.
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care, a navigator might compute a distance that would leave us hun-
dreds of miles short of our destination!

The mathematical face of this ambiguity appears immediately when
we use the Law of Sines to find £A: sin A =sina sin B/sinb = 0.9985, so
A =86.84" or 180° — 86.84°=93.16". We can tell from our diagram that
we want the smaller angle 86.84°, but if the ambiguity had passed with-
out notice, we might have run out of fuel at X, with no land in sight.

We now know a, b, A, and B; but finding ¢ and C proves surprisingly
awkward. The Law of Sines doesn’t help since there is no way to apply it
without leaving two unknowns in the equation. It is possible to use the
Law of Cosines (rearranging the letters in the diagram appropriately),
but only by changing sinc¢ into y1— cos’c, eventually requiring us to
solve a quadratic equation for cosc. A cleaner approach would be nice.
Fortunately, there are several possibilities.

Delambre’s and Napier’s Analogies

It's surprisingly common, and rather eerie, when mathematical discov-
eries are made almost simultaneously by two or more people working
on their own. The invention of calculus by Isaac Newton and Gottfried
Wilhelm Leibniz is the most famous episode of this kind, followed by
the birth of non-Euclidean geometry in the works of Janos Bolyai, Nico-
lai Lobachevsky, and Carl Friedrich Gauss in the early 19th century.
Bolyai’s father wrote to Gauss of his son’s breakthrough, only to receive
the disheartening reply from an impressed Gauss that he had done it all
already, but had not bothered to publish it.

This incident was not the first of Gauss’s experiences with simulta-
neous discovery. The theorems we are about to describe were known
first as Gausss formulas, appearing in his 1809 Theoria motus corporum
coelestium, a monumental two-volume treatise on the motions of celes-
tial bodies. But this time it was Gauss who had been scooped, by mere
months; and not once, but twice. In the previous year German scientist
Karl Brandon Mollweide had published the same results in Leipzig, and
he in turn referred to their appearance in a book by Antonio Cagnoli.
However, in a rare case when a name actually changed when a prior dis-
covery was verified, the theorems are now known as Delambre’s analo-

gies after the astronomer Jean-Baptiste Joseph Delambre, who came up
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The word “analogy” might seem strange here. We use it in what is
now an obsolete mathematical sense that goes back to the original Greek

meaning of the word: a ratio, or an equality between ratios. Even today,
one might think of a ratio as a comparison, or an “analogy,” between two

quantities.
It has taken some work to secure these identities, apparently for the
purpose of dealing with oblique triangles when a,b, A, and B are known.

But each of these identities refers to all six of the triangle’s elements, and
so can be used only if five elements are known, not four! In fact, in most

textbooks Delambre’s identities are used only as a tool to check the cor-
rectness of completed solutions to triangles. Has our effort gone to waste?
Thankfully not. We are on the verge of another set of analogies,

named after John Napier (although Napier’s friend and successor Henry
Briggs actually contributed two of the four). Several terms appear more

than once in Delambre’s analogies; this suggests that we might combine
the analogies by eliminating the common terms. For instance, the first
and third of Delambre’s analogies both contain cos;c, so if we divide one

by the other, we get

tan;(A+ B)  cos;(a—b)
cotlC  cosl(a+b)

We arrive at three other identities in a similar fashion:

tani(A — B) _ sinj(a—b)
cot;C sin!(a+b)

tan;(a+b) cos;(A — B)

| ———, and
tan;c cos;(A + B)

tan}(a—b) _ sin3(A — B)
tan;c sini(A + B)

Napier’s analogies each contain only five triangle elements, not six. So
for our ambiguous triangle, once we know a, b, A, and B, any one of
these four identities will give us either ¢ or C. For instance, for our Ho-
nolulu to Tokyo trip, we substitute into Napier’s third analogy to get

tan;(68.69° +54.3°) _ cos;(86.84° — 60.5°)
tan}c cos}(86.84°+ 60.5°)

from which we have tan;c =0.5317, and so ¢ = 28", equal to 1680 nau-
tical miles or 1933 statute miles. And if we're really interested, we can
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Figure 6.6. The proof of Delambre’s
first analogy.

We're in the home stretch of the proof. Consider the two right-

angled triangles AAVM and APVC, with equal angles at V. Apply
Geber’s Theorem to both and bring the results together:

sin{VAM cosAM = cos LAVM = sin £PCV cos CP.

Substituting each of the angles for their values from the elements

of the original triangle and rearranging the terms, we finally arrive
at Delambre’s first analogy: >

sin;(A + B) _ cos;(a—b)
cos3C cosic

Admittedly this argument, as clever as it is, is not much of an advertise-
ment for geometric over algebraic proofs. We shall explore an algebraic

derivation in the exercises. Delambre’s other three analogies,

sinj(A— B) _ sinj(a—b)
cos;C sinjc

cos;(A+B) cosi(a+b)

— | , and
sin;C €OS5C

cos3(A—B) _ sinj(a+b)

« 1 L |
sin;C sinjc

may be demonstrated similarly.
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Figure 6.3. Calculating the distance of the
voyage planned by the RMS Titanic.

between the two longitudes, 65.95°. We now apply the Law of Cosines,
letting the C in the formula be the angle at the North Pole, and we find

cos@? = c0s38.22° c0s49.53° + sin38.22°sin49.53° c0s65.95°.

Thus QY = 45.43°, which we multiply by 60 to get 2726 nautical miles,
or (using the 1.15078 conversion factor) 3137 statute miles. The textbook
helpfully points out that the routes actually taken by the White Star Line
varied from 2783 to 2889 nautical miles, so the ships were traveling not
quite along a great circle. If they had, they may have found Newfound-
land and Nova Scotia to be a bit of a barrier.

Next, we turn to triangles where two angles and the side between
them are known. In plane trigonometry this situation does not lend it-
self to the Law of Cosines, which refers to only one angle. The best ap-
proach to these plane triangles is to notice that we can find the third
angle since the angles of a triangle sum to 180°, and then apply the Law
of Sines. Unfortunately, on the sphere we do not have such easy access
to the third angle. However, we do have a tool that we have not used in

some while.

Polar Duality Theorem: The sides of a polar triangle are the supple-
ments of the angles of the original, and the angles of a polar triangle are
the supplements of the sides of the original.

When we first encountered this result, we described it as a “theorem
doubling machine” for its ability to translate statements about sides into
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This gives us AN =9.6°, the difference in longitude between Vancouver
and Edmonton. Now that we have all three angles, we leave it as an ex-
ercise to calculate the two latitudes using the Law of Sines; Vancouver
works out to 49.3°, and Edmonton to 53.6°.

With the Laws of Sines and Cosines at our command, it looks like
we might be able to solve all triangles. In fact, we can go further than is
possible in plane trigonometry: the Law of Cosines for Angles allows us
to solve triangles uniquely when all three angles are known, whereas in
plane trigonometry these triangles can only be known up to similarity.
But there is another skeleton in the closet of plane trigonometry, from
which the sphere provides no escape: if two sides and an angle not en-
closed by these sides are known, there may be more than one triangle

that satisfies the givens. Consider the following navigational problem:

A ship leaves Honolulu (latitude 21.31° N) traveling towards Tokyo (latitude
35.7°N) on a great circle route with a heading of 60.5° west of north. What

will be the length of the voyage, in miles?

From figure 6.5 we see that we are in a side-side-angle situation. Un-
fortunately, there are two endpoints that satisfy the givens. The first is

X, a spot in the middle of the Pacific Ocean. If you extend 3% past X, it
will eventually reach its northmost point, and then start heading slightly
southward, crossing the 35.7° N latitude circle again at Tokyo. Without

(North Pole)

B
(Honotulu)

Figure 6.5. The ambiguous journey from Honolulu to Tokyo.
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statements about angles and vice versa. There is no better time to use it
than now. Apply the Law of Cosines to the polar triangle; we get

cos(180°—C)=cos(180°— A)cos(180° — B)
+sin(180°— A)sin(180° — B) cos(180° —¢),

which simplifies nicely to the Law of Cosines for Angles:
cosC = —cosA cosB + sinAsinB cosc.

This is the tool we need to deal with triangles when two angles and the
side between them are given.

A fanciful illustration of the use of this theorem is the following au-

dacious, but extremely inefficient way of determining the locations of

two cities. Suppose we fly from Vancouver to Edmonton on a great circle
route, measuring the distance we travel as well as the headings at de-

parture and arrival. From this information alone, an application of the
Law of Cosines for Angles gives us the difference in longitude between
the two cities, and the values of both latitudes follow immediately. The

distance from Vancouver to Edmonton (figure 6.4) is VE =507 statute
miles, or 440.9 nautical miles, which corresponds to 7.35°. We leave Van-

couver with a heading 50.7° east of north, and arrive in Edmonton with
a heading 58.22° east of north. Joining our two cities to the North Pole as
before, we have £V =50.7° and £E =121.78°. Apply the Law of Cosines

for Angles, letting ¢ be the journey from Vancouver to Edmonton:

cosN = —cos VcosE + sin VsinE cos VE.

Figure 6.4. The journey from
Vancouver to Edmonton.
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8. From Napier’s third analogy,

cos;(A—B) @g(aw)
cos!(A+B)  tanlc

’

show that in any spherical triangle, one-half the sum of two angles is in the
same quadrant as one-half the sum of the opposite sides, that is, ; (a + b)
and ;(A + B) are in the same quadrant. [Kells/Kern/Bland 1942, 81 # 4]

. We are going to develop an alternate solution to an oblique spherical
triangle in the side-side-angle (SSA) case using right-angled triangles. Say
we are given sides a, b, and the angle A. Drop a perpendicular from C to
a point D on side c. (Note: there are two different possible configurations.
You may just solve the case where the perpendicular falls on the side.)
Solve the right-angled triangles and show how this will give the solution
to the original triangle. [Casey 1889, 60]

Figure E-6.10.

. Develop an alternate proof of the Law of Cosines using figure E-6.10,
where LOEF and £OEG are right angles by construction (but £EFG is
not necessarily a right angle). Hint: Apply the planar Law of Cosines to
triangles OGF and GFE to solve for their common side and combine the
two statements. Simplify the new statement using the Pythagorean theo-
rem on OFE and OEG. Then solve for cos a. [Moritz 1913, 38-39 # 5]

. Derive the Law of Sines algebraically from the Law of Cosines. (Hint:
Solve for cos A in the equation cosa = cosb cosc + sinb sinc cos A, form
sin’ A, and reduce the numerator to a form involving cosines only. Then
show that sin’ A/sin’a is symmetrical in a, b, c.) [Kells/Kern/Bland 1942,

73 # 4]
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calculate the last unknown C using almost any of the identities we've

seen in this chapter.

There is plenty more to spherical trigonometry than we've seen so far,
but this concludes the basic theory needed for solving triangles. In the
remaining three chapters we'll see some special topics and applications.

Exercises

. Solve the following triangles:
(a)a=135°,b=120°, c=45°
(b) A=68.72°, B=104.35", C=47.62°
(c) b=48.62°,c=78.85",C=128.77".
[Brink 1942, 26 # 1 and 4, 43 # 3]

. Find the perimeter of a spherical triangle with angles 69°, 84°, 100°, upon
a sphere whose radius is 10 inches. [Rothrock 1911, 136]

. Find the length of the shortest air route between Cape Town (33.93°S,
18.47° E) and Dakar (14.67° N, 17.42° W). What is the bearing of this
journey as the plane leaves Cape Town?

4. A ship sailing on a great circle from Ceylon to Madagascar crosses the
meridian of 79° east longitude bearing S 50° W. After sailing 2060 nautical
miles farther, it crosses the meridian of 52° east longitude. Find its lati-

tude and the bearing of its course at this point and its latitude at the first
point. [Brink 1942, 41]

. Charles A. Lindbergh flew his plane The Spirit of St. Louis on the great
circle route from New York (40.75° N, 73.97° W) to Paris (48.83°N,
2.33°E). He left New York at 7:52 AM (Eastern Standard Time) on May
20, 1927, and arrived at Paris the next day at 5:24 PM (Eastern Standard
Time). What was his average speed for the flight? [Rosenbach/Whitman/
Moskovitz 1937, 332]

. We are at the southwest corner of an open field. We walk across the field
to the northeast corner, departing with a heading 49° east of north and
traveling exactly one nautical mile to the northeast corner. At the end of
our journey, our heading is now 49.01° east of north. What is our terres-
trial latitude? (Warning: use as many digits of precision as your calculator

allows.)
. Given the latitudes and longitudes of two places on the earth’s surface, show

how to find the shortest distance between them. [Anderegg/Roe 1896, 107]
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12. When the polar duality theorem is applied to one of Delambre's analogies,
another of Delambre’s analogies results. Which pair? What happens if you

apply the polar duality theorem to the other two analogies?
. Napier’s analogies were sometimes used as a method of solving geograph-

ical problems. Suppose that we know the latitudes of Edmonton (53.6° N)
and Vancouver (49.3° N), as well as their difference in longitude (9.6°).
The Law of Cosines is the obvious choice here, but instead use Napier's

analogies to determine the headings of a great circle path between the
cities, and then use some other identity to determine the distance.

. Here we shall construct an algebraic proof of Napier's first analogy. First,

anA __ sinB __ sinA + sin8
sind sinb sind + sinb°

notice from the Law of Sines that 2 Call this ratio m.

(a) Use the Law of Cosines for Angles, twice (once expressed for cos A,

once for cos B) to derive the expression
(cosA + cos B)(1 + cos C) = msinCsin(a + b).

(b) Divide the Law of Sines expression above by your result from (a), to get

sinA+sinB _ sina +sinb 1+cosC
cosA+cosB  sin(a+b) i

(c) Transform each of the terms in your expression from (b) using the
following identities from plane trigonometry:
sinx + siny = 2sin}(x + y)cosi(x—y)
cosx + cosy = 2cosi(x + y)cosi(x— y)
sin2x = 2sinx cosx

1 + cosx = 2cos’(x/2).

(d) Simplify. [Clough-Smith 1978, 76]

. Although it is possible to derive Delambre’s analogies algebraically on
their own, it is easier to derive them algebraically from Napier's analogies.
(a) Square Napier's first analogy; solve for the tangent-squared term, and
add one to both sides. This should leave you with

cos’ 1(a —b)cos’ :C + cos’ i (a + b) sin’ %C

sec’2(A+B) =
cos’ +(a + b) sin’ 5

(b) Apply the cosine half-angle formula cos’ 2 = (1 + cos8) to two of the

terms in the numerator. Then continue to sxmpllfy the numerator, until
you arrive at } (1 + cosa cosb + sina sinb cos C).
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Mathematical subjects come and go. If you glance at a textbook from a
century ago you may recognize some of the contents, but some will be
unfamiliar or even baffling. A high school text in analytic geometry, for

instance, once contained topics like involutes of circles, hypocycloids,
and auxiliary circles of ellipses: topics that most college students today
will never see. But spherical trigonometry may be the most spectacular
example of changing fashions in the 20th-century mathematics class-
room. Born of the need to locate stars and planets in the heavens, for
more than 1500 years it was the big brother to the plane trigonometry
that high school students slog through today. Navigators on the open
seas relied on spherical trigonometry to find their way; lives were lost

when their skills failed them. Its dominance continued through the early

20th century: editions of Euclid’s Elements that were designed for class-

rooms often included appendices devoted to this now-forgotten subject.

During World War II the popularity of spherical trigonometry re-
mained high. Applications in naval and military settings were touted as
motivations, and were given a prominent place in the exercises. Through
the early 1950s textbooks continued to be published, although gradually
spherical trigonometry found itself relegated to the last major section
in a textbook mostly devoted to plane trigonometry. Suddenly, mid-
decade, it disappeared, dropped in a pedagogical tide that was heading
in other directions. Today almost no trigonometry texts even mention
the existence of a spherical counterpart. The only book on the subject
continuously in print (Clough-Smith 1966) is difficult to obtain and
available only from nautical booksellers. This paucity comes strangely
at a time when new applications of spherical trigonometry are being
found. GPS devices have some of its formulas built in. It's amusing to see
bibliographies of research papers in computer graphics and animation
(for use in movies like those made by Pixar) referring to nothing older
than last week, except for that stodgy old spherical trig text.

So if mathematics teachers have long since given up on spherical trig-

onometry, why bring it back? I'm not advocating that everyone should
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Figure 1.6. Al-Birini's determination
of the radius of the Earth.

But we know 6, so the left side of the equation is c0s0.56667°, and the
only unknown on the right side is r. Solving for r, we find that the Earth’s
radius is 6238 km. (There is a delicate matter hidden in this solution,
however: a minute change in the value for 8 results in a large change in
the value of r. One wonders how al-Birani pulled off the accuracy that he
did.) Multiplying by 27, we get a value for the Earth’s circumference of
39,194 km. Its actual value is about 40,000 km. Not bad (in fact, maybe a
little too good) for a process with its share of crude measurements!

Building a Sine Table with Our Bare Hands

There’s a problem in the last step of our procedure. Our goal was to work
without relying on anyone or anything, and at the end we likely relied
on Texas Instruments to tell us the value of c0s0.56667°. This violates
our rules, so to do this properly we must find a way to compute trigono-
metric values without technological assistance. Again we will follow the
ancient and medieval astronomers (adopting a few modern simplifica-
tions). Our mission is to compute a table of sines, since every other trig-
onometric function can be calculated once we have a sine table. So, we
must find the sine of every whole-numbered angle between I’ and 90°.
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Figure 1.5. Al-Biruni’s determination of the height of a mountain.

and elsewhere, is not primarily to represent the historical text faithfully
but rather to clarify the argument, we will simplify the mathematics and

use modern functions and notation.

Birani begins by determining the height of a nearby mountain (near
Nandana, in northern Pakistan). This isn't as easy as it sounds, since the
point at the mountain’s base is buried under tons of rock (figure 1.5). He
builds a square ABGD; since he does not tell us how big it was, we set the
square’s side length equal to 1 meter for the sake of convenience. He then
lines up the square so that the sight line along its bottom, GB, touches
the top of the mountain E. Let H be the perpendicular projection of D
onto the ground, and let T be the intersection of AB with DE. Using our
meter stick we measure GH =5.028 cm and AT =0.01648 cm. Clearly
it's impossible to measure such a short distance with such accuracy; the
fact that Birani was able to get a reasonable value for the Earth's size sug-
gests that his square must have been huge.

Now we use similar triangles. From GE/GD = AD/AT we compute
GE = 6067.96 meters, and from EZ/GE = GH/DG we find the moun-
tain’s height to be EZ = 305.1 meters. Not exactly a colossus, which is
just as well, since our next task is to climb it.

Once we have reached the top of the mountain, we look to the hori-
zon. With good enough instruments we should notice that the horizon
is not precisely horizontal to us, but dips slightly downward (figure 1.6).
Biruni tells us that he measured the value 8 = 34" = 34/60° = 0.56667° for
this angle, which is very small, but likely just within his capacity to mea-
sure. We know that 6 is also £TOZ at the center of the Earth, and that

the radius isr = OT = OZ. Now, since AOTE is a right triangle, we have
oT _ r

g=9r__ r
O = OF ~ r+305.1m
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sin’@ + sin’(90° — 0) = 1,

so we can always find sin (90° — 0) if we know sin6. This fact effectively
cuts our task in half . . . but half of a huge task is still daunting.

For readers in a hurry, this arrow means that the mathematics
contained here may be bypassed without losing the thread of the
story.

->Our next value, sin 36°, does not come from the memorized
unit circle. Ptolemy finds it using Euclid’s construction of a regular
pentagon; we will use the same shape, but a slightly different path.
Consider the “star” configuration in figure 1.8. Let’s assume that
the sides of the regular pentagon have length 1. Since the shape in-
scribed in the circle is a regular pentagon, £Bin AABC is108°. (To
see this, note that a pentagon can be partitioned into three trian-
gles, so the sum of the five equal pentagon anglesis 3 X 180° = 540°.)
But by symmetry the other two angles in this triangle are equal

to each other, so a = f=36". This means that our goal, sin 36°, is
BF. By symmetry, LABD = 36°, which leaves y =108°, d = 72°, and

C

NV

2a\

Figure 1.8. The derivation of sin 36°.
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If an angle that we come across in our astronomical explorations isn’t a
whole number, we’ll just trust that we can interpolate within our table.

The first person whose trigonometric table comes down to us today
was the 2nd-century AD Alexandrian scientist Claudius Ptolemy. His
astronomical masterpiece, the Mathematical Collection, contains a re-
markable collection of models for the motions of the heavenly bodies. It
is known today mostly for being wrong—it places the Earth at the center
of the universe. But it was one of the most successful scientific theories
of all time, dominating astronomy for a millennium and a half under its
Arabic title Kitab al-majisti (“The Great Book™), the Almagest.

The first of the Almagest’s 13 books contains a description of how one
can build a trigonometric table with one’s bare hands. (Ptolemy actually
used another function called the chord, but the chord is so similar to
the sine that we won’t distort much by sticking with the sine.) Several
sine values, the ones we remember from memorizing the unit circle in
high school, may be found immediately. Figure 1.7 shows how to find
sin30° and sin45°. For sin30° we notice that the triangle obtained by

reflecting the original triangle about the horizontal axis is equilateral,
which makes sin 30° = 0.5. For sin 45°, note that the horizontal and verti-

cal sides of the key triangle are equal; applying Pythagoras gives us the
result sin45° = y1/2=0.7071.
We now have two of the 90 values we need for our sine table; if we

count sin90° =1, we have three. There is a long way to go. But the Py-
thagorean Theorem tells us that

Figure 1.7. The sines of 30° and 45°.
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>~ Figure 1.9. The proof of the sine
addition law.

Perhaps for the first time in our mathematics education, we have
a reason to believe the sine addition law. That is valuable in itself, but
more important is the use to which we will put it. Just as Ptolemy did, we
may use this theorem to calculate the sine of the sum of two angles for
which we already know the sines. For instance, from sin 30° and sin 45°
we can calculate sin 75°, or by substituting sin36° for both a and 3, we
have sin 72°.

A similar process (explored in the exercises) allows us to derive the
formula for the sine of the difference between two angles,

sin(a — ) = sinacosf — cosasinf.

So we can, for instance, use our values for sin72° and sin75° to find
sin 3°. And from this step, using the sine addition law repeatedly, we can
find the sines of all multiples of 3°. But now Ptolemy reaches an impasse.

Even with an extra theorem—the sine half-angle identity (sina/2=
J(1=cosa)/2, explored in the exercises)—he is unable to find the sine
of any whole-numbered angle that is not a multiple of 3!

The problem of passing from sin 3° to sin 1°, an example of the famous
Greek conundrum of trisecting the angle with ruler and compass, trou-
bled many astronomers after Ptolemy. In fact, getting an accurate value
for sin 1° was more important than finding a value for 7. After all, while
7 comes up every once in a while when predicting the movements of the
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£=72". So ABCD is isosceles, and AABD is similar to AABC. This
allows us to determine length y = BD, since

TAC AD+1 y+41

BD(_Y)_ AB_ ]

AB\ 1.

By cross multiplication y°+ y=1, and this quadratic equation

surprisingly produces y =0.61803, the golden ratio! From here it’s
downbhill to sin36°. We know that DF = AC—AD=(1+ y)—y

=0.19098, and so from Pythagoras, BF =sin36° = 0.58779.->

We now have the sines of 30°, 36°, 45°, 54° (by Pythagoras), 60°, and
90°. It’s time to accelerate things a bit. Can we come up with a systematic

tool that iinds more than one sine value at a time? The sine addition law
is just the ticket, and Ptolemy demonstrates an equivalent to it next.

Theorem: If a, 8 < 90°, then sin (e + ) = sina cosf + cosa sinf.

The condition in this theorem isn't really necessary, but we won’t
bother generalizing. (Another way of saying this is that we leave that

task to the reader.) And of course, in the process of discovery we never
know the result in advance. So we'll proceed as if the above had never
been written and simply seek a formula for sin(a + f), following the

proof that was included in most trigonometry textbooks in the first half
of the 20th century.

—~>Proof: In figure 1.9, since OD =1, the quantity we're after is

GD =sin(a + B). It is conveniently broken into two parts, GF and
FD. Now from AOCD we know that OC = cosf and CD =sinp.
So, in AOCE we now know the hypotenuse. Thus sina = EC/cosp,

so EC=sinacosf. Since EC = FG, were halfway there: we've
found one of the two line segments comprising GD.

We can find FD by noticing first that AOCE is similar to ADCF.

This statement is true because £ FCO = a, so £FCD =90° — a, and
the two triangles share two angles, so they must share the third. So
AFDC=a ... and we already know the hypotenuse CD of ADCF.

So cosa = FD/sinf3, which gives FD = cosasinf, and finally we
have sin(a + ) =sina cosf + cosasinf. QED>
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cosc = cosacosb + sinasinb cosC.

Just as with the planar Law, our theorem takes the form of a generaliza-
tion of the Pythagorean Theorem (the spherical version this time). Even
the latter term of the sum is reminiscent of the corresponding term in
the planar Law, if not identical.

Having been warned once already about bold statements regarding
ownership of theorems, the reader may be wary about asking who dis-
covered this gem. This caution is well placed. Several medieval scientists
solved astronomical problems in a way that appears to be a direct ap-
plication of the Law of Cosines, if only the astronomical content were
to be stripped away. The earliest of this group is 9th-century Muslim
scholar al-Khwarizmi, whose name is the origin of the word “algorithm”
and one of whose books gave us the word “algebra.” Also among the big
names of Law of Cosines fame are al-Battani (AD 900), known to Star
Trek fans as the namesake of Kathryn Janeway's first deep space posting,
and the great 15th-century Indian astronomer Nilakantha. But none of
these luminaries took the step of posing the theorem independently of
the astronomy. They didn’t need to; they had already solved the prob-
lems they were interested in.

Using the Law of Cosines

Since the Law of Cosines refers to all three sides and one angle of a
triangle, it is especially useful in dealing with astronomical and geo-
graphical problems, which tend to emphasize distances over angles. In
their chapters on the Law of Cosines, most textbooks pose problems
requiring the reader to compute distances on the Earth’s surface, often
on common sea routes. One textbook (Wheeler 1895, 38-39) asks stu-
dents to find the distance traveled by steamers of the White Star Line
from Queenstown, Ireland (now Cobh, latitude 51.78° N, longitude
8.18° W), to Sandy Hook, New York Harbor (latitude 40.47° N, longi-
tude 74.13° W). This is the route taken by the RMS Titanic on its fateful
maiden voyage in 1912.

The key to the problem is to join both New York (Y in figure 6.3) and
Queenstown (Q) to the North Pole (N). Then YN =90°— 40.47° = 49.53°
and QN =90°—51.78° = 38.22°, while the angle at N is the difference
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extending Ptolemy’s method to generate more accuracy.) From this
point we can fill in the rest of our table, just by applying the sine addi-
tion and subtraction laws to sin 1° and the sines of the multiples of 3°.

Ptolemy does not tell us what he thought of being forced into the sor-
did world of approximation to find sin1°. But we do know that at least
two later scientists objected strenuously to bringing numerical methods
into the pure, unsullied world of geometry. The 12th-century Iranian Ibn
Yahya al-Maghribi al-Samaw’al was so aggrieved by it that he included
Ptolemy in his Exposure of the Errors of the Astronomers, and actually
constructed his own sine table with 480° in a circle rather than 360°.
Giordano Bruno, the 16th-century theologian and philosopher who was
eventually burned at the stake (although not for this reason), felt that
the entire discipline of trigonometry was undermined and proclaimed,
“Away with the useless tables of sines!”

As odious as approximation was to these two scientists, the methods
we have just seen were the mathematical basis of all trigonometric ta-
bles through the 16th century. The most prodigious set of trigonometric
tables in early Europe, the Opus palatinum, was composed by Georg
Rheticus, who had been the leading early champion of Nicolas Coper-
nicus’s Sun-centered universe. Rheticus died in 1574 before his work
was completed, but the tables were completed and published in 1596 by
Lucius Valentin Otho. The 700 large pages comprising the second half
of Rheticus and Otho’s massive volume contain tables of all six trigono-
metric functions to ten decimal places for every 10" of arc (figure 1.11).
In modified form, they were the dominant trigonometric tables used by
scientists until they were replaced, finally, in 1915. But the methods Rhe-
ticus used to generate these tables were at heart no different from those
of Claudius Ptolemy, one and a half millennia before.

This is not to say that better methods had not been considered. Only
150 years before Rheticus but in a different culture, the Persian as-

tronomer Jamshid al-Kashi had considered the sin I’ problem in a very
different way. Al-Kashi was a natural for this attack: he was a master cal-

culator, and his fame rests partly on computing 7 to the equivalent of 14
decimal places—twice as many as any of his predecessors. He didn't stop
there. His first attempt on sin 1° was an extension of Ptolemy’s method,

but later he took an entirely different tack. It begins with a consideration
of the sine triple-angle formula,
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2

¢ =a’ +b’ — 2ax,
which is what we wanted to prove.>

Turning next to the spherical Law of Cosines, we'll use a diagram

equivalent to Euclid’s (figure 6.2), and we’ll try the same idea as before:
apply Pythagoras to both the left and the right triangles.

—->This time Pythagoras looks a bit different:
cosb = coshcosx and cosc = coshcos(a— x).

Solving both expressions for cosh and setting them equal to each

other has the advantage of removing the reference to the undesir-
able h:

cosb COSC

cosx cos{a—x)

From here we solve for cos ¢, apply the cosine subtraction law, and
let the algebra run its course:

cosc cosx = cosb(cosa cosx + sina sin x)

cosc = cosacosb + sina cosb tanx.

To get rid of the tan x term we apply identity four in the first col-
umn of the Napier’s Rules theorems. This takes us directly to the
spherical Law of Cosines:=>

—

D
X

Figure 6.2. Proving the spherical Law of Cosines.
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Figure 1.10.sin 3° < 3sin 1°.

stars and planets, sine values appear all the time. So the entire edifice of

predictive astronomy relied mathematically on this one, geometrically
unattainable, value.

Since Ptolemy was unable to use geometry, he turned to approxima-
tion. If you consider the sines of 1° and 3° (drawn, not to scale, in figure
1.10), it’s clear that sin 3° is greater than sin I°, but it's not three times as
big. Due to the gradual leveling off of the circle as one works upward
from its rightmost point, the sine increases at a slower and slower rate as
the angle increases. Said more generally:

sina

Theorem: If 8 < a <90°, then <>

B sinf

Now, using the half-angle formula we can follow in Ptolemy’s foot-
steps and calculate from sin 3° the values of sin3° and sin;°. These num-

bers are the key, for now we can apply our new theorem to get bounds
on sin 1°: first, substitute @ =1° and B = 2°; this produces & > 21, which
simplifies to sin1°<;-sin°=0.01745279. Next, substitute a = >° and
B =1% this gives the lower bound sin1°>$-sin3°=0.01745130. Com-

bine the results, and we get
0.01745130 < sinl® < 0.01745279.

If we hope for our table to be accurate to five decimal places, then we

have our sought-after value: 0.01745. (If we need more precision, then
we have a problem, although medieval astronomers did find ways of
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rectangle contained by one of the sides about the acute angle, namely that
on which the perpendicular falls, and the straight line cut off within by the

perpendicular towards the acute angle.

This is a perfect moment to reflect on the wonderful advance in clarity
that modern mathematical symbolism has brought to us. As anachro-

nistic as it is to restate the theorem in modern terms, we proceed boldly:

In AABC with an acute angle at C and a perpendicular dropped from A onto
BC (defining D), c*=a’ +b* —2AD - BC.

But BC =a and AD =bcosC, so what Euclid is “really” saying is: ¢’ =

a’ +b° — 2ab cos C. Our transition from Euclid to modern mathematics
has led us to the startling conclusion that Euclid had the Law of Co-
sines in his possession, more than a century before Hipparchus invented

trigonometry!
Is this reasonable? It depends on what you mean by the “Law of Co-

sines” Euclid certainly knew the geometric fact and found a rather nice
proof of it that we shall see in a moment. But he did not have the need or
capacity to use the theorem as high school students do today to calcu-

late the values of sides and angles in triangles. Medieval trigonometers
used the Law of Cosines in essentially the same way that we do, but they

quoted Euclid in a way that would have been completely novel to the
man himself.

> At the risk of even more anachronism, let’s paraphrase Euclid’s

proof. Let x =CD, which we remember is equal to bcosC. Then
Euclid asserts

a’ + x° = 2ax + (a—x)},

which we may verify with a little algebra, as long as we close our
ears to the historians’ howls of protest. (Euclid himself appealed to
a previous geometric theorem at this point.) We add DA? to both

sides:
a + x>+ DA’ = 2ax + (a— x)* + DA’.
Apply the Pythagorean Theorem to both sides; we get
a+b’=2ax+ ¢,

Finally, a bit of rearrangement takes us to
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fill-in-the-blank. The answer, however, turns out to be anything but
straightforward. As a historian of mathematics, my first instinct in an-
swering many questions is to turn to Euclid. As a compendium of much
of the mathematics up to its composition in the 3rd century BC, the
Elements is an amazingly rich source of answers to historical questions,
even (paradoxically) for subjects that came along later like trigonom-
etry. This time, Euclid again comes through.

The Pythagorean Theorem (Proposition 47) and its converse (Proposi-
tion 48) are the climax of the Elements’ opening book. The much shorter

Book II is also the most controversial. Its theorems, which appear to be
statements about squares and rectangles, may be translated directly into
various algebraic statements, such as (a +b)’=a’+ 2ab+b’. For this

reason, some of Euclid’s readers have referred to Book II as “geomet-
ric algebra” Historians of mathematics bridle at this interpretation; it

imposes a modern layer of understanding on the book that the ancient
Greeks could not possibly have intended. If you want to treat the Ele-
ments as a textbook of modern mathematics, then “geometric algebra” is

fine. But if you want to treat it as a historical record, thinking of Book 11
as modern algebra is a serious distortion.

With this caution in mind, we turn to two of the last three theorems
of Book II. Proposition 12 deals with obtuse-angled triangles; we will
examine Proposition 13, which handles acute-angled triangles. Euclid

asserts the following (figure 6.1):

In acute-angled triangles the square on the side subtending the acute angle
is less than the squares on the sides containing the acute angle by twice the

X D

Figure 6.1. Euclid’s proof of the Law of Cosines.
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Heavenly Mathematics

We're not ancient anymore. The birth and development of modern sci-
ence have brought us to a point where we know much more about how
the universe works. Not only do we know more; we also have reasons to
believe what we know. We no longer take statements on faith. Experi-
ments and logical arguments support us in our inferences and prevent
us from straying into falsehood.

But how true is this, really? Do we really know, for instance, why the
trajectory of a projectile is a parabola? In fact, anyone who has seen a
soccer goalkeeper kick a ball downfield is aware that the ball’s path is
anything but symmetric. And yet, students accept their physics teachers’
pronouncements about parabolas at face value—on authority. We trust
our teachers to tell us the truth, just as we imagine medieval church-
goers accepting with blind faith the word of their priests. If we thought
about it a little, we might recognize that air resistance is the culprit in the
ball’s divergence from a parabolic path. But do we know even this? Has
anyone ever seen a soccer ball kicked in a vacuum?

It's impossible to live in our society (or any other) without taking
some body of knowledge on authority. No one has the energy, or capac-
ity, to check everything. We accept that the earth is a sphere (well, most
of us anyway), without really knowing why. Only in one discipline—
mathematics—is the “why” question asked at every stage, with the ex-
pectation of a clear and indisputable answer. Now, this is not the case in
a lot of mathematics training in high school these days. Very few text-
books ask why sin(a + ) =sina cosf + cosasinf. But this is the fault
of modern textbooks and pedagogy, not of the subject itself. There is an
explanation for this equation, and we’ll see it in this chapter.

The goal of this chapter is twofold. Firstly, we will revisit topics in
plane trigonometry in order to prepare for our passage to the sphere.
But our second purpose takes precedence: to explore and learn without
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taking anything on faith that we cannot ascertain with our own eyes
and minds. This is how mathematics works, and by necessity it was how
ancient scientists worked. They had no one to build on. Our mission is
as follows:

Accepting nothing but the evidence of our senses and simple measure-
ments we can take ourselves, determine the distance to the Moon.

Turning our eyes upward on a cloudless night, within a few hours
we come to realize a couple of simple facts. The sky is a dome, perhaps
the top half of a sphere, and we are at its center. (Don't forget, in this
exercise we are not to accept the word of dissenting teachers and scien-
tists!) The points of light on this hemisphere revolve in perfect circles
around Polaris, the North Star, at a rate of one complete revolution

per day (see plate 1). By the disappearance of constellations below the

horizon and their reappearance hours later, we may infer that the sky
is an entire sphere (the celestial sphere), of which we can see only half
at any one time.

But this observation does not narrow the possibilities regarding the
shape of the Earth. Any planet that is sufiiciently large with respect to its
inhabitants will appear to be flat from their vantage point, discounting
minor irregularities such as mountains and canyons. The most natural
hypothesis is that the Earth is a flat surface (figure 1.1); it is also possible
(although harder to imagine at first) that the Earth is a sphere or some
other solid. How are we to choose?

Many of us have heard in school stories of those who believed in the
flat Earth, perhaps even seen images from past sailors’ nightmares: a ship
sailing off an infinite waterfall at the edge of the Earth’s disc. These often
accompany tales of Christopher Columbus heroically attempting to con-
vince the conservative Spanish court that the Earth is a sphere rather than
a disc, making it possible to sail westward from Portugal to India. When
I was a child, my teacher told me how a young Columbus, coincidentally
about my age, discovered the curvature of the Earth. While watching a
ship sail away from shore, Columbus noticed that its hull would be the

first part to disappear, and eventually just before it vanished altogether,
the only part left visible was the top of its mast (figure 1.2).

* You don't need to wait until nightfall. Several computer simulations of the night sky are available,

including the free open source, multi-platform Stellarium (www.stellarium.org). The snapshots of
the night sky in this book are generated using this program.
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I confess to a geometric, rather than algebraic, inclination. Although
algebraic proofs can be powerful, often their mechanics force me to
accept theorems without really understanding in my gut why they are
true. There are some cases where geometry is a stretch or the algebra is
unavoidable, but generally we shall prefer the beautiful over the merely
effective. As Thomas Keith said in the introduction of his 1826 text,

Should any person attempt to teach the elementary principles of the science
by the assistance of algebraical characters, and algebraical formulae alone,
without the aid of Geometry, he would most assuredly deceive both himself
and his pupils.

In an effort to represent faithfully the intuitive flow of an argument,

sometimes | will state a theorem as the conclusion of an exploration,
rather than announcing the punch line in its full glory at the outset and
then proving it. Finally, to readers who notice that theorems sometimes
are not stated or proved in full generality, and hope for more precision:
this book is intended to introduce readers to the joy of spherical trigo-

)

nometry. If you wish to see “i”s dotted and “t”s crossed, a list of over 40
textbooks is given in appendix B.

Mathematics teachers may wish to use some of this material in their
classes. The core of the book is chapters 1, 2, 5, and 6, although chapter
1 can stand on its own. Chapters 3 and 4 provide an interesting histori-
cal contrast to the modern theory, but may be skipped if the instruc-
tor wishes a briefer journey; my own course covers chapters 1 through
6. The remaining chapters evolved from student projects. I can vouch
personally that the first six chapters work well in a class setting with an
enthusiastic group. Participation and engagement are important, espe-
cially in small groups. Even strong students sometimes are not familiar
with deductive reasoning. Be prepared to spend time explaining the ba-
sics, such as similar triangles, and have students explain their reasoning

to their groups or to the entire class.

What Else to Have with You

I've done my best to make the book self-contained. Sometimes, how-
ever, visualizing properties of great circles on spheres is easier if one can

work on an actual sphere. If available, the following tools are helpful:
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historical overtones and a few subtly placed messages that I'm sure you
will recognize. Take it for what it is, and enjoy.
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Siméon de Laplace praised them two centuries after Napier's death by
saying: “by shortening the labours, [logarithms] doubled the life of the

astronomer.’

Symmetries Codified: The “Pentagramma mirificum”

Before we move on to oblique triangles, we will profit by revisiting some
startling symmetries in our set of ten identities. Here is the list again:

I I1
sin b =tanacotA sina =sin Asinc¢
cosc =cotAcotB cosA =sinBcosa
sina = cotBtanb cosB=cosbsin A
cosA =tanbcotc sin b = sinc¢sin B
cosB=cotctana cosc =cosacosb.

Closer inspection reveals some patterns. The identities in the left col-
umn are all of the form “co/sine equals co/tangent times co/tangent,’
while those on the right consist entirely of co/sines. But there is much
more going on, and readers who wish to test themselves may want to
cover up the following paragraph (or turn to the same list of identities
given several pages back) and hunt for themselves.

Notice that the variables reading downward in any vertical column
follow the sequence a, A, B,b,c¢ (starting at different places in the se-
quence). The trigonometric functions in the formulas also follow a pat-
tern. In fact, the entire table can be recalled using a pair of simple rules
named after Napier, in conjunction with the following diagram.
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This appendix contains a list of sources for readers interested in spe-

cific topics. For historical inquiries consult my The Mathematics of the
Heavens and the Earth: The Early History of Trigonometry (Princeton

University Press, 2009), which provides a scholarly background to most
of the topics in this book.

Chapter 1. Heavenly Mathematics

Aaboe, Asger. Episodes from the Early History of Mathematics, Washington:
Mathematical Association of America, 1963.
Chapter 4 is a thorough account of Ptolemy's instructions in the Almagest
for building a table of chords.

Berggren, J. L. Episodes in the Mathematics of Medieval Islam, New York:
Springer-Verlag, 1986.
A wonderful source of many topics in Islamic mathematics and science.

See pp. 141-143 for a description of al-Birini's measurement of the cir-
cumference of the Earth.

Kennedy, E. S. A Commentary upon Biranis Kitab Tahdid al-Amakin, Beirut:
American University of Beirut, 1973.

A scholarly commentary on al-Birini's classic geographical text, and
the first modern description of al-Birini's measurement of the Earth's

circumference.
Russell, Jeffrey Burton. Inventing the Flat Earth: Columbus and Modern Histo-
rians, New York: Praeger, 1991.

A narrative of the birth and continuing survival of the myth of the flat Earth.
Van Brummelen, Glen. “Jamshid al-Kashi: calculating genius,” Mathematics in

School 27 (4) (1998), 40-44.
A popular description of al-Kashi's methods of calculating both ;r and sin1°.

Chapter 2. Exploring the Sphere

Artmann, Benno. Euclid— The Creation of Mathematics, Springer, 1999.
A careful yet clear mathematical commentary of the contents of the most

important mathematics book ever written. Chapters 4 and 5 are relevant
to the parallel postulate. Of course one should have available the Elements

itself (see the further readings for chapter 7).
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Figure 5.11. A novel method of presenting the identities of Napier's Rules, in Oliver
Byrne's A Short Practical Treatise on Spherical Trigonometry (London: A. . Valpy,
1835). The symbols linking various parts of the formulas together are triple-branched
equal signs. Image courtesy www.archive.org.

come from an almost identical medal designed about fifty years earlier
by John Sellar (plate 7). Figure 5.11 shows another scheme devised to
represent the symmetries in Napier’s Rules from an early 19th-century
textbook employing triple-branched equal signs, apparently without
much success. The author, Oliver Byrne, later became famous for his
unique edition of Euclid’s Elements, where points, angles, and line seg-
ments were represented not with letters or symbols, but visually as they

appear in the diagram, printed in bright colors (plate 8). Modern aids to

memory were just as colorful, if not quite as creative. The 1940s “Trig-

Easy” (plate 6), for instance, was a cardboard device with an inner ring

that could be rotated to reveal identities through a window.
The inordinate degree of symmetry in these formulas is deeply mys-

terious and invites question, but due to the superficial manner in which
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Two technical but accessible articles on the work and disproportionate
influence in Europe of the Spanish Muslim astronomer who lends his name

to “Geber's” Theorem.

Martin, Benjamin. The Young Trigonometer’s Compleat Guide, vol. 2 on spheri-
cal trigonometry, London: ]. Noon, 1736.
This beautiful textbook is already mentioned in Appendix B, but deserves

another mention here for its engaging style and beautiful itlustrations,
several of which appear in this book. It is available at Google Books, as well

as a paperback reprint from the University of Michigan Library.

Napier, John. A Description of the Admirable Table of Logarithmes, London:
Nicholas Okes, 1616.
One of the original works on logarithms, translated into English by math-

ematician Edward Wright. If one can get past the 400-year-old language,
this book is a charming read and contains several trigonometric gems,
including the pentagramma mirificum. Available in Early English Books

Online, a database accessible through many university libraries.
Silverberg, Joel. “Napier’s rules of circular parts,” Proceedings of the Canadian

Society for History and Philosophy of Mathematics 33rd Annual Meeting,

2008, pp. 160-174; and “Nathaniel Torporley and his Diclides Coelomet-
ricae (1602)—a preliminary investigation,” Proceedings of the Canadian
Society for History and Philosophy of Mathematics 34th Annual Meeting,
2009, pp. 143-154.

The first of this pair of articles describes how Napier came to terms with

the pentagramma mirificum. The second examines the peculiar Nathan-
iel Torporley and his mathematics. Augustus DeMorgan gives credit to

Torporley for discovering Napier's Rules 12 years before Napier did, while
criticizing his book for being “the greatest burlesque on mnemonics we
ever saw.’

Chapter 6. The Modern Approach: Oblique Triangles

Alder, Ken. The Measure of All Things, New York: The Free Press, 2002.
An epic adventure story of the quest of Jean Baptiste Joseph Delambre

and Pierre-Fran¢ois-André Méchain to determine the length of the meter
by finding the distance from the North Pole to the equator through Paris.

Their method, which did not entirely succeed, relied on measuring a large
number of spherical triangles on the Earth’ surface in France and Spain.

Todhunter, Isaac. “Note on the history of certain formulae in spherical trigo-
nometry, Philosophical Magazine (4) 45, 98-100.

This short article resolved the priority dispute over “Gauss’s formulas”
between claimants Gauss, Mollweide, and Delambre, and was responsible

for their eventual renaming to “Delambre’s analogies.”
Van Brummelen, Glen. “Filling in the short blanks: musings on bringing the

historiography of mathematics to the classroom,” British Society for History
of Mathematics Bulletin 25 (2010), 2-9.
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Al-Birini, Aba 'I-Rayhan Muhammad ibn Ahmad. Kitab Magalid “ilm al-
Hay'a. La Trigonométrie Sphérique chez les Arabes de 'Est a la Fin du Xe

Siécle, tr. Marie-Thérése Debarnot, Damascus: Institut Francais de Damas,
1985.

An edition and translation into French of al-Birini's Keys to Astronomy,
containing his exposition of the new spherical trigonometry and the prior-

ity disputes that it provoked.
Debarnot, Marie-Thérese. “Trigonometry,” in Encyclopedia of the History of

Arabic Science, ed. Roshdi Rashed and Régis Morelon, London/New York:

Routledge, 1996, pp. 495-538.

A survey of trigonometry in the Muslim world, including a discussion of
the controversy over the developments in spherical trigonometry at the

turn of the 11th century AD.
Kennedy, E. S. A Commentary upon Birunis Kitab Tahdid al-Amakin, Ameri-
can University of Beirut, 1973.

A detailed description of al-Biruni’s classic work in mathematical geogra-
phy, including his four methods for determining the gibla. Birin's text is

translated to English in The Determination of Positions for the Correction of

Distances between Cities, tr. Jamil Ali, American University of Beirut, 1967.

King, David A. “Al-KhalilT's qibla table,” Journal of Near Eastern Studies 34
(1975), 81-122.

This scholarly study of al-Khalili's monumental work contains a complete
recomputation of the entire table.

King, David A. “The earliest Istamic mathematical methods and tables for
finding the direction of Mecca,” Zeitschrift fiir Geschichte der Arabisch-

Islamischen Wissenschaften 3 (1986), 82-149.
A thorough survey of a wide variety of methods for determining the qibla,
both approximate and exact.

Sengupta, Prabodh Chandra. Greek and Hindu methods in spherical astron-
omy, Journal of the Department of Letters, Calcutta University 21 (1931),

paper 4, 1-25.
A spirited defense of the originality of Indian methods in spherical
astronomy.

Chapter 5. The Modern Approach: Right-Angled Triangles

Gladstone-Miller, Lynne. John Napier: Logarithm John, National Museums of

Scotland, 2006.
This slim volume provides background and context for the life and work

of the man who changed computation in his day almost as dramatically as

computers have done for our generation.

Lorch, Richard. “The astronomy of Jabir ibn Aflah” and “Jabir ibn Aflah and
the establishment of trigonometry in the West,” both reprinted in Richard

Lorch, Arabic Mathematical Sciences: Instruments, Texts, Transmission,
Aldershot, UK / Brookfield, VT: Variorum, 1995.
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* Moritz, Robert E. A Textbook on Spherical Trigonometry, New York:
Wiley, 1913.

Mubhly, H. T.; and Saslaw, S. S. Plane and Spherical Trigonometry
Prepared for the Department of Mathematics, United States Naval
Academy, Annapolis: US Naval Academy, 1946.

Nielsen, Kaj L.; and Vanlonkhuyzen, John H. Plane and Spherical
Trigonometry, New York: Barnes and Noble, 1944.

* Peirce, Benjamin. An Elementary Treatise on Spherical Trigonometry,
first part, Boston: James Munroe, 1836.

* Phillips, Andrew W,; and Strong, Wendell M. Elements of Trigonom-
etry, Plane and Spherical, New York: American Book Company,
1898.

Rosenbach, Joseph B.; Whitman, Edwin A.; and Moskovitz, David.
Plane and Spherical Trigonometry, Boston: Ginn, 1937.

Rothrock, David A. Elements of Plane and Spherical Trigonometry, New
York: Macmillan, 1910.

Seymour, F. Eugene; and Smith, Paul James. Plane and Spherical Trigo-
nometry, New York: Macmillan, 1948.

* Simpson, Thomas. Trigonometry, Plane and Spherical, Philadelphia:
Kimber and Conrad, 1810.

Sperry, Pauline. Short Course in Spherical Trigonometry, Richmond,
VA: Johnson, 1928.

% Stanley, Anthony D. An Elementary Treatise of Spherical Geometry
and Trigonometry, revised edition, New Haven: Durrie and Peck,
1854.

* Todhunter, Isaac; and Leathem, ). G. Spherical Trigonometry for
the Use of Colleges and Schools, London: Macmillan, 1901. This
classic text is available online, but only in the original (1859) edi-
tion by Todhunter alone. The revisions are substantial. The book
remained in print for almost a century until 1949.

Welchons, A. M.; and Krickenberger, W. R. Trigonometry with Tables,
Boston: Ginn, 1954.

* Wentworth, G. A. Plane and Spherical Trigonometry, Boston: Ginn,
1894.

* Wheeler, H. Plane and Spherical Trigonometry, Boston: Ginn, 1895.

* Wilson, Henry. Trigonometry Improvd, and Projection of the Sphere
Made Easy, London: ]. Senex and W. Taylor, 1720.
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textbook. So if a sphere or planetarium software is available, the reader
is encouraged to bring it out now.

Introducing the Celestial Sphere

We've already seen the most obvious feature of the celestial sphere,
namely its daily rotation around us. Given the sphere’s unfathomably
large size, rendering the Earth as an infinitesimal pin prick at its center,
one can only imagine how quickly it is actually moving. (Of course the
rotation effect is caused by our motion rather than the sphere’s; we are
simply continuing our “ancient eyes” thought experiment.) This rota-
tion has a North Pole very close to the star Polaris, and also a celestial
equator that rises from the east point of the horizon and sets in the west.
Both the celestial North Pole and the celestial equator may be thought
of as projections outward from Earth’s North Pole and equator. Watch-
ing the stars’ rotation over the course of a night gives us ample evidence
for three features of celestial motion that came to be associated with
Aristotle:

o« all objects move in circles;
« they travel at constant speeds on those circles;

o the Earth is at the center of the celestial sphere.

Let’s look more closely at the brightest and most important of all ob-
jects, the Sun. At first glance it appears to follow the same rules as all
the other stars: it behaves as if it were attached to the celestial sphere,
and moves accordingly. But if we watch it carefully over the course of
several days (without looking directly at it!), we notice that it is not fixed
in place: its position with respect to the background stars drifts a little
every day. One might wonder how this drift can be observed, since the
Sun is so bright that it is impossible to see any of the stars nearby. One
way is to wait until sunset, and observe the point on the horizon pre-
cisely opposite the Sun. With a good enough star globe or chart we can
determine the Sun’s position and over several days plot its course as it
wanders through the fixed stars.

Imagine that a year has passed with startlingly good weather, so that

we have been able to mark the Sun’s position every day. In this time
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Oblique Triangles

So far spherical trigonometry hasn’t looked much like the plane theory
we learned in high school. However, the parallels often lie just below the
surface. For instance, cosc = cosa cosb doesn’t resemble the Pythago-
rean Theorem ¢’ = a’ + b, but the latter is just the planar special case of
the former. The similarities also apply at the larger scale of the develop-
ment of the theory. Plane trigonometry begins with a study of right-
angled triangles, and when we turn to oblique triangles, we piggyback
our analysis on what we have learned already about right-angled tri-
angles (usually by breaking the oblique triangle into two right triangles).
We shall do the same on the sphere. Our goal in this chapter mirrors the
goal of plane trigonometry on oblique triangles: to solve triangles, that
is, given values for certain sides and angles, to find values for the other
sides and angles. We begin with a brief exploration of the fundamental
theorem of planar oblique triangles, and its extension to the sphere.
Most students encounter two important theorems about planar
oblique triangles: the Law of Sines, which we saw in chapter 4 in both its

planar and spherical incarnations; and its more powerful sibling the Law
of Cosines, which we shall find profitable to revisit for a few moments:

c=a'+ b’ — 2abcosC.

Written in this way, we see that this statement is an extension of the

Pythagorean Theorem applied to oblique triangles. Before extending the
Law of Cosines to the sphere we should understand why the planar ver-
sion is true; and since the beginning, this connection to Pythagoras has
been the proof’s starting point.

But when was the beginning for the Law of Cosines? I've been asked
this question before, and it sounds like the answer should be a simple
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Figure 2.3. The equatorial coordinate system.

system, like the system of latitudes and longitudes on the Earth’s surface.
On the Earth, the equator is featureless; none of its points stand out as
special. So longitudes are measured with respect to an arbitrarily chosen
point, namely the point on the equator due south of the observatory
at Greenwich, England, the working home of many famous historical
scientists and astronomers. The celestial equator, on the other hand, has
two special points: namely, the two places where it is crossed by the
ecliptic. So we gratefully choose the spring equinox Y as our zero point.

Once this choice has been made, we may set coordinates to positions
on the celestial sphere just as we do with longitude and latitude on the
Earth. Take any star and drop it perpendicularly downward (or upward)
along the sphere’s surface to the equator (figure 2.3). Its right ascension a

is the distance along the equator from Y to the base of the perpendicu-
lar (heading first in the direction where the ecliptic is north of the equa-
tor); its declination O is the length of the perpendicular itself (considered

to be negative if the star is below the equator). For instance, Algol’s posi-
tion is @ = 47.04°, 0 = +40.96".

Since the celestial equator is intrinsic to the daily rotation of the heav-
ens, this equatorial coordinate system is the most commonly used. But
on other occasions it is useful to begin with another base circle. For
studying the planets, which always stay within a few degrees of the eclip-
tic, a system of coordinates based on the ecliptic is favored. The ecliptic
longitude and latitude A and B (figure 2.4) are defined in the same way
as were a and 9, again starting from Y’ but this time moving along
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(a) sinb=sinBsinc

(b) cos B = cosbsin A (Geber's Theorem)

(c) cosc = cotAcotB.

. Pick some value of the celestial longitude 4, and calculate the equatorial
coordinates of that point on the ecliptic in the following two ways. Use a
stopwatch to time how long each process takes.

(a) Use your calculator to evaluate co/sines and their inverses, storing

the results to five decimal places of accuracy. Perform the multiplication
by hand.

(b) Use the logarithmic versions of the conversion formulas. Use your
calculator to evaluate logarithms, co/sines, and their inverses. Store each
result to five places and perform the additions/subtractions by hand.

. The mouth of the Amazon River and the city of Quito, Ecuador are situ-
ated on the equator approximately 28°30" apart. The port of Charleston,
South Carolina is directly north of Quito by approximately 32°48’. Find to
the nearest ten nautical miles the distance of the port of Charleston to the
mouth of the Amazon. [Seymour/Smith 1948, 175]

. Mintaka, one of the stars in Orion’s Belt, is very close to the celestial

equator. Suppose that it is exactly on the equator, with @ =5"32" = 83".

At 7:30 PM Eastern time on Feb. 3, 2009, the Moon was at coordinates

a=3"55"=58.75" 0=+24°55". Calculate the distance from Mintaka
to the Moon. If you have access to Stellarium or some other planetarium

software, check visually whether your result makes sense.
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declination triangles, 65
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we have witnessed the Sun make a complete circuit around the celestial
sphere. This path is called the ecliptic, the circle on the armillary sphere
(see figure 2.1) that is tilted with respect to the others. This tilt is called
the obliquity of the ecliptic €; its value in ancient times was about 23.7°
and is now about 23.44°. From a modern point of view, the obliquity
is equal to the tilt of the Earth’s rotational axis. It is likely no coinci-
dence that the Sun travels almost exactly 1° per day on the ecliptic. The
ancient Babylonians were the first to divide the ecliptic into 360 parts.
Since they had used the base 60 (sexagesimal) number system, 360 parts
would have been a convenient choice: it is a multiple of 60, and it is close
to the number of days in a year.

Just like any other pair of great circles on a sphere, the celestial equa-
tor and the ecliptic intersect twice. When the Sun is at one of the inter-
section points, day and night are of equal length, so these two points are
called equinoxes. The point that the Sun crosses in March is the spring
equinox, labelled Y’ (see figure 2.2; this is the astrological sign for the
nearby constellation Aries); the other is the autumnal equinox. When
the Sun is above the equator in the summer, days are longer than nights.
The days are longest when the Sun reaches its most northerly point on
the ecliptic 90° removed from the equinoxes, the summer solstice.

Now, we'e interested in the movements of stars and planets on the
sphere’s surface; so we need to be able to say where, for instance, the star
Algol happens to be at the moment. This means setting up a coordinate

North Pole e

ff’lbr/c

Summer
solstice

Figure 2.2. The ecliptic and celestial equator.
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broke new ground (as far as we know) when he examined the Sun’s motion
more carefully. We already know that the Sun travels along the ecliptic. It

appears to move at constant speed, as Aristotle would have expected. But
if you measure the length of time it takes the Sun to travel from the spring
equinox to the autumn equinox, you get about 186 days, which leaves only
about 179 days for the other half of the Sun’s orbit. So on average, the Sun
travels more slowly between March and September than over the other
six months of the year. The difference isn’'t much, but it doesn’t take much
to cause a crisis: any change in speed violates the laws of celestial motion.
One of the laws had to go. The law that Hipparchus chose to break
might seem surprising at first. He could not set the Sun in motion along
a course other than a circle, nor could he slow it down and speed it up;
he did not have the mathematics to cope with such modifications. So,
he moved the Earth away from the center of the Sun’s orbit. He knew
that spring was 94% days long, and that summer was 92' days. (Today,
two millennia later, the numbers have changed; summer has become the
longest season for those in the northern hemisphere.) By moving the
Earth away from the center of the orbit circle in a direction away from
the Sun’s position in the spring, he effectively prolonged the season: the
arc of spring increases from 90° of the Sun’s orbit to the arc indicated by

the dotted lines in figure 2.5. The Sun still travels at a constant speed, but
it takes more time in the spring because it has further to travel.

92%: days

Autumnal
Equinox

Figure 2.5. Hipparchus’s solar model.
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Figure 2.4. Celestial coordinate systems.

the ecliptic rather than the equator. In this system, a planet’s latitude
p always remains small. Of course, this does not apply to stars; Algol’s
ecliptic position is A =56.87°, f =22.43".

Finally, for actually locating objects in the heavens, it's most helpful
to have a coordinate system that works from the horizon circle, rather
than the equator or the ecliptic. The azimuth (figure 2.4) functions like

a longitude; it is measured along the horizon eastward from the north

point. The altitude is measured upward from the horizon. Clearly, being
able to convert between these three coordinate systems would be a vital
skill for any astronomer to have. Unfortunately, while the ecliptic and
equatorial systems remain fixed with respect to each other, the horizon
does not, so there is no single pair of horizontal coordinates for Algol.
After all, it does move over the course of the night.

Now let’s set the celestial sphere in motion through the day, preferably
with a simulation such as planetarium software, a celestial globe, or an
armillary sphere. As the sphere carries some stars above the horizon in
the east and other stars below the horizon in the west, the ecliptic’s posi-
tion changes continuously. But the equator does not change its position;
it simply rotates into itself at a rate of 360° per day, or 15° per hour. This
stately motion makes the equator the universe’s clock. The right ascen-
sion « is measured along the equator, so it is usually given not in degrees,
but in units of time. For Algol, then, @ =47.04" - ( 1"/15°) = 3"08"™.

The 2nd century BC scientist Hipparchus of Rhodes knew all these
heavenly motions; in fact, so did the Babylonians before him. However, he
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U

Figure 5.12. The pentagramma mirificum.

the equator of pole B, would also be identical. The last arc of the

pentagram, CAXU, requires a short argument: CV and UV rise
perpendicularly from it and meet at V, which implies that V is a
pole of CAXU. We have arrived at a powerful conclusion: if we
had started with ABVS (or any other of the five corner triangles)
rather than AABC, we would have ended up with exactly the same

diagram.

This symmetry gives much information. For starters, two adjacent

segments of any of the arcs in the figure sum to 90°, just as the seg-
ments in RABS do. This allows us to fill in quickly the lengths of all
the segments in the figure, except those on RXWT and SVWU—
and they’re not far behind. Consider AW drawn through the
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Legendre, Adrien-Marie. Eléments de Géométrie.
The original book containing the spherical trigonometric proof of Euler’s

polyhedral formula is available in several editions at Google Books. The
edition at the following link contains the proof in Proposition 30 of Book

VII, and contains a number of consequences not contained in the original

edition, http://books.google.com/books?id=-ucoAAAAcAA]&dq=legendre
%20elements%20de%20geometrie&pg=PA246#v=onepage&q&f=true.

Chapter 8. Stereographic Projection

Benjamin Martin’s The Young Trigonometers Compleat Guide, men-
tioned above in the further readings for chapter 5, is the basis for the
solutions of triangles based on stereographic projection described in
the first half of this chapter. The method is also covered thoroughly in
Thomas Keith’s An Introduction to the Theory and Practice of Plane and
Spherical Trigonometry, Longman, Rees, Orme, Brown, and Green, 1826
(available at Google Books and in a paperback reprint).

Donnay, ]. D. H. Spherical Trigonometry after the Cesaro Method, New York:
Interscience Publishers, 1945.

Thanks to Google Books and print on demand, Donnay's slim, magical vol-
ume is again available after half a century, reprinted by Church Press in 2007.

Chapter 9. Navigating by the Stars

Tables in the Nautical Almanac are used in this chapter to aid in the pro-
cess of locating a ship at sea. The Almanac is readily available, and used
copies from past years are an inexpensive alternative if you just want to

practice the techniques in this chapter. At the time of writing, an online

equivalent to the Nautical Almanac was available at http://www.historical

atlas.com/lunars/nadata_v5.html. Nautical charts are available online at
http://openseamap.org. Finally, worked examples of celestial navigation
may be found at http://www.efalk.org/Navigation/index.html.

Blewitt, Mary. Celestial Navigation for Yachtsmen, revised edition. Camden,
Maine: International Marine, 1994.

This slim, clearly written volume is a standard source for the concepts of
celestial navigation, and gives examples of the use of nautical tables.

Cotter, Charles. A History of Nautical Astronomy. New York: Elsevier, 1968.
This technical account of navigation goes into depth on methods of measur-

ing time, the use of instruments to measure altitude, and the use of tables, as
well as the mathematical astronomy required to find one’s position at sea.
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Figure 2.6. A cross-section of a sphere.

on where D is either. Therefore CD’ cannot change as we move D
around the cross-section, and so neither does CD. We conclude:»>

Theorem: Every cross-section of the sphere by a plane is a circle.

So circles occupy a special place in spherical geometry, which is no
great shock. But great circles are particularly special, since they take
the role of straight lines. Hence the shortest distance between any two
points, a “line segment,” is actually an arc of a great circle. Defining what
we mean by “angle” also requires a little thought, although not much.
When two great circles cross, one might think of the angle between
them as the angle between the two cross-section planes that define the

great circles; or more intuitively, as the angle between the tangent lines
to the great circles at the intersection point.

Lunes and Triangles on the Sphere

If great circles take the place of straight lines in spherical geometry, then
great circle arcs must take the place of line segments. One might wonder,
then, what sorts of shapes (like triangles, rectangles, pentagons and so
forth) may be formed on a sphere’s surface using great circle arcs as their
sides. Here we reach our first truly curious fact about spherical geom-
etry: it is possible to build a spherical polygon with only two sides. This
shape, called a lune, is constructed by joining two great semicircles at

their ends (figure 2.7). One might prefer the name “orange peel.” But the
illuminated part of the Moon is also a lune, so the name is well chosen.
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Napier’s Rules were portrayed in the textbooks, they met with disdain
from many mathematicians and astronomers. Renowned scholars pub-
licly sneered at Napier’s Rules as mere mnemonic devices to aid those
incapable of memorizing the identities themselves. Augustus DeMorgan
asserted that they “only create confusion instead of assisting the mem-
ory,” and Florian Cajori dismissed them as merely “the happiest exam-
ple of artificial memory that is known.” An early 19th-century textbook

writer responded fairly:

An eminent French Astronomer [probably Delambre] has however avowed,
that it has always been less irksome for him to retain the theorems them-
selves, than to call to mind, and apply, Napier's rules. . .. It may, neverthe-
less, be doubted, whether a person who, from constant practice, cannot fail
to have the theorems themselves fixed in his memory, be a fair judge of the

value of the rules, which, to him at least, must necessarily be useless. [Cress-
well 1816, 257-258]

We can blame the textbook authors for the harsh reactions. An explana-
tion for the symmetries had been known for centuries; in fact, it had
been reported already in Napier’s miraculous 1614 announcement of
logarithms, Mirifici logarithmorum canonis descriptio. Over the years,
presumably in misguided attempts to simplify the presentation, this
wonderful piece of mathematics was often omitted and gradually for-
gotten. It appears in only a couple of modern textbooks (Todhunter 1859
and Moritz 1913).

Consider any right triangle ABC (see figure 5.12). Extend all three sides
as shown, and draw two new arcs SVWU and RXWT with poles A and B
respectively. The resulting figure is the “pentagramma mirificum™ a pen-

tagon in the middle that happens to be self-polar, and five triangles com-
prising the “points” of the pentagram. The outer corners of all four of the

new triangles are places where a great circle drawn from some pole inter-
sects the corresponding equator, so all five outer corners are right angles.

->But there is much more to discover. For instance, we know
that AS =90° since it connects pole A with equator SVWU, so
SB =& =90°— c; similarly RA =¢. Now consider what would have

happened if we had begun the construction of the pentagram with
ABVS rather than AABC. The two arcs departing from S would be

——

the same as they are now, as would the hypotenuse CBVT. RXWT,
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The full story of my struggle to identify the author of the Law of Cosines,
and the difficulties that can arise in telling the history of mathematics to a
broader audience.

Chapter 7. Areas, Angles, and Polyhedra

Although most textbooks end with the material covered in chapter 6

(and possibly Girard’s Theorem), three books delve into polyhedra:
Hann 1849, Casey 1889, and Todhunter/Leathem 1907 (not the original

Todhunter text). Some of the demonstrations in chapter 7 are adapted
from the treatments in these books. All three volumes are sophisticated

and reward careful study.

Polking, John C. “The Geometry of the Sphere,” available at http://math.rice

.edu/~pcmi/sphere/.
This web site describes a number of implications of Girard’s Theorem and

gives a proof of Euler’s polyhedral formula in the spirit of Legendre.
Malkevitch, Joseph. “Euler’s polyhedral formula” and “Euler’s polyhedral
formula part II,” AMS Featured Columns for Dec. 2004 and Jan. 2005,

available at http://www.ams.org/samplings/feature-column/fcarc-eulers
-formula and http://www.ams.org/samplings/feature-column/fcarc-eulers

-formulaii.
This pair of articles describes some of the derivations and surprising

implications of Euler’s polyhedral formula, especially in graph theory. No
spherical trigonometry, but worth the read nevertheless.

Eppstein, David. “19 proofs of Euler’s polyhedral formula’, available at The Ge-
ometry Junkyard, http://www.ics.uci.edu/~eppstein/junkyard/euler/all. html.

A compilation of various approaches to Euler’s formula. Proof 9 is essen-
tially Delambres.

Richeson, David S. Euler's Gem: The Polyhedron Formula and the Birth of
Topology, Princeton University Press, 2008.
This book on Euler’s polyhedral formula and the birth of topology contains

a chapter on Kepler's polyhedral universe, and another on Legendre’s proof
of Euler’s polyhedral formula.

Euclid. Elements, New York: Dover, 1956 (in three volumes) and Santa Fe:
Green Lion Press, 2002 (in one volume).

When learning about the regular polyhedra and their dimensions, why not
go to the source? The last propositions of Book XIII deal with each of the

five regular polyhedra, and the closing remarks demonstrate that there can
be no others.

Martens, Rhonda. Kepler’s Philosophy and the New Astronomy, Princeton
University Press, 2000.

This book interweaves Kepler's philosophical and religious ideas with his
astronomical work, dealing with his scientific conclusions in some depth.
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But how far should Hipparchus move the Sun from the center? This
question was why he invented the chord function (which, later in India,
morphed into the sine), and thereby founded the science of trigonom-
etry. Once he had converted the season day lengths to degrees, a couple
of chord lengths and elementary geometry were all he needed to find the
Earth’s distance from the center. It was the determination of this quan-
tity, the eccentricity of the Sun’s orbit, that may have been the world’s
first trigonometric problem. The reader is invited to solve it in the first
exercise at the end of this chapter.

Spherical Geometry

Now that we have two working physical manifestations of the sphere
(the Earth and the heavens), let’s turn our attention instead to questions
of geometry. Clearly there are no straight lines on the sphere’s surface,
at least in the conventional meaning of the phrase. But if you walk along
the Earth’s surface, you certainly can imagine traveling along a “straight”
line. Of course, if you were to be able to continue indefinitely, your path
would loop around the Earth and form a circle. Now, not all circles on
the sphere are “straight line” paths. For instance, if you were to walk
counterclockwise along a circle of radius 1 meter around the North Pole,
you would clearly be turning to your left as you circled the pole.

The straight line paths are the great circles; they can be formed by cut-
ting the sphere with a plane that passes through the sphere’s center. For
instance, in the armillary sphere in figure 2.1 the plane of the celestial
equator cuts through the center, but the planes of the Tropics of Cancer
and Capricorn above and below the equator do not. Thus, if you were to
walk eastward along the Tropic of Cancer, you would be slowly turning
ever so slightly to your left. Nevertheless the Tropics are circles, even if
they’re not great. This raises a question: is it possible to cut a sphere with
a plane somehow, and get a cross-section that is not a perfect circle?

—~>Theansweris “no” Consider the cross-section in figure 2.6. Let
D be any point on the cross-section, and let OC be the perpendicu-
lar line dropped from O onto the intersecting plane. Then £OCD
is right, and the Pythagorean Theorem applies: OD* = OC* + CD".
But OD is constant regardless of D’s position on the cross-section,
since it is the radius of the sphere; and clearly OC doesn’t depend
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. Generate the three identities that involve both A and B (cosc =

cotA cot B, cos A = cosasin B, cos B=cos bsin A) by combining some

of the other seven identities algebraically.

. Demonstrate Geber's Theorem (cos A = cos a sin B) geometrically using
figures 5.3 and 5.4.

. From the given data, solve each of the following right spherical triangles.
[Brink 1942, 15]

(a) A=72.72°¢=109.8°

(b) a=51.45" b=78.73"

(c) a=63.48", B=280.57°

(d) a=69.72°, c=78.42°

(e) A=524",B=122.27"

. (a) If the sides of an equilateral spherical triangle are 63°, what are the
angles? [Crawley 1914, 49] (Hint: divide the triangle into two right
triangles.)

(b) Prove that in an equilateral spherical triangle, 2sin3 = sec$. [Casey
1889, 37]

. (a) Is there a right spherical triangle in which b= 30" and B=100"?
Explain. [Seymour/Smith 1948, 175]

(b) Show that no isosceles right spherical triangle can have its hypotenuse
greater than 90° nor its acute angle less than 45°. [Moritz 1913, 63]

. (a) From the relation cos ¢ = cosa cos b show that if a right spherical tri-
angle has only one right angle, the three sides are either all acute, or one
is acute and two obtuse. [Moritz 1913, 20]

(b) Prove that a side and the hypotenuse of a right spherical triangle are
of the same or opposite quadrants accordingly as the angle included be-
tween them is less than or greater than 90°. [Muhly/Saslaw 1950, 150]

. A quadrantal triangle has one of its sides (not one of its angles) equal to 90°.
(a) In general, how might the identities of Napier’s Rules be used to solve
quadrantal triangles?

(b) Solve the triangle A =69°; C=78"; ¢=90".

(c) Explain why a spherical triangle with three right angles must have all
three sides equal to 90° as well.

. Prove the following relations for the right triangle ABC: [Moritz 1913, 20]
(a) sinAsin2b=sincsin2B

(b) sinA cosc=cosacosB

(c) sin’a + sin’ b — sin*c =sin’asin’b.

. Determine the planar equivalents of the following identities:
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Abu al-Rayhan al-Biruni. See al-Birani, Abu Brown, B. M, 145, 151
al-Rayhén Bruno, Giordano, 13
Abu 'I-Wafa’, 19, 52, 62-63; Almagest, 62-64, Bulletin de lAcademie Royale de Belgique, 139
71,183 Buyids, 52
Abu Mahmud al-Khujandi, 59 Byrne, Oliver: A Short Practical Treatise on
Abu Nasr Mangir ibn ‘Ali ibn “Iraq. See Man- Spherical Trigonometry, 88
sur ibn ‘Ali ibn ‘Iraq, Abu Nasr
Abu Sahl al-Kuhi, 51-55, 61-62, 183 Cagnoli, Antonio, 102
‘Adud al-Daula, 52 Cagnoli’s formula, 150
Algol, 25-27 Cajori, Florian, 89
altitude, 27, 155 Cardano, Gerolamo, 14
American Mathematical Monthly, 146 Casey, John, 171
analemma, 133 Cavalieri, Bonaventura, 111
analytic geometry, vii celestial equator, 24
Andrew, James, 160 celestial sphere, 2, 23-29
AP, 154 Cesaro, Ernesto, 139
apogee, 39 Cesaro, Giuseppe, 139-146
Apolionius, 52 Chaucer, Geoffrey, 129
Aratus, 42 chord, 8, 29, 43, 65, 182
Archimedes, 52, 75 circumpolar stars, 40
Aristarchus, 20 Columbus, Christopher, 2-5, 182
Aristotle, 4, 24, 28 colunar triangle, 111-112
armillary sphere, 23-24, 27, 29, 31, 129, 183 conformal map, 132
ascensional difference, 54 Connaissance des Temps, 103
assumed position, 154 Copernicus, Nicolas, 13, 78, 123
astrolabe, 129-132, 183; latitude plate of, 129; cosecant, 62
mater of, 130; rete (or spider) of, 130 cosine: inverse, 81
astronomical triangle, 155-156 cosine addition law, 19, 167
Autolycus of Pitane: On a Moving Sphere, 44 cosine subtraction law, 19, 97, 167
azimuth, 27, 155 cosine sum-to-product formulas, 127
azimuth line, 162 cosine-haversine method. See Saint Hilaire,
method of
al-Battani, 98 cotangent, 62
Betelgeuse, 32 Cotter, Charles, 172
al-Biruni, Abu al-Rayhan, 59; Book on the Craig, H. V., 146
Determination of Coordinates of Cities, 5-7, Cresswell, Daniel, 89
16, 68-72, 182, 184; Keys to Astronomy, 59, cube, 113-114
62, 184 cuboctahedron, 113-114
Bolyai, Janos, 102
Braver, Seth, 172 al-Daula, ‘Adud, 52
Breitschneider'’s analogies, 126 Davis's method. See Saint Hilaire, method of
bridges of Konisberg, 115-116, 127 dead reckoning, 151, 161, 170
Briggs, Henry, 105 declination, 26
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pentagon. Since (by symmetry) W is a pole of RABS, ARAW = 90°,
so LUAW = A. But since A is a pole of SVWU, UW = LUAW = A.

From here (and applying the same argument on the other side of the
pentagon), the values of all the remaining arcs in figure 5.12 may be

determined.

Now all that is left to identify are the angles of the four new trian-
gles. Wisa pole of RABS, so ARWS = RABS =c + 2¢ =180 —c. But
ARWS and £XWU sum to 180°, so LXWU = c. Symmetry allows us

to fill in the remaining angles, and figure 5.12 is now completed.>

How does this relate to Napier’s Rules? Choose any arc or angle on
any of the triangles, and examine the corresponding arcs/angles as you
work your way clockwise through the other triangles around the penta-
gram. One of these two cycles will appear:

a,A,B,b,¢ or a,A,B,b,c.

(The second cycle is just the barred version of the first.) These cycles
are identical to the patterns we saw earlier in the identities themselves.
Looking more closely, we see that the bars, interpreted as “co-s,” also

match the pattern in the identities.

So, the pentagram’s unique symmetry allows us to generate five iden-
tities for the price of one. For instance, pick the first identity in column
I1, sina =sin Asin¢, and apply it to the next triangle in clockwise order
from the original. We replace a with A (the bar changing the sine to a
cosine), A with B, and ¢ with a. The result, cos A =sin B cosa, is the sec-
ond identity in the column. Repeat the process on successive triangles
in clockwise order, and we get all of column II.

The same pattern works with the left column. Starting with sinb =
tana cotA, each time we move one triangle clockwise on the pentagram
we generate the next identity in the column. Thus our diagram explains
all the astonishing symmetries we've seen. It is surely entitled to bear the
name “pentagramma mirificum.”

Exercises

1. Using figure 5.2, derive the identities sinb=tanacot A, cos A =tanbcotc,

and cos ¢ = cosacos b, in the same manner as we derived sina = sin A sinc.
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Sobel, Dava. Longitude. New York: Penguin, 1995.

This popular account of John Harrison’s quest to solve the problem of find-

ing one’s longitude at sea, and to win the Longitude Prize, was converted
into an A&E miniseries with the same name.

Van Brummelen, Glen. “Clear sailing through trigonometry,” in Dick Jardine
and Amy Shell-Gellasch, eds., Mathematical Time Capsules: Historical

Modules for the Mathematics Classroom, Washington, DC: Mathematical
Association of America, 2011, pp. 63-71.

A description of the Venetian tables of marteloio, the first trigonometric
method to find one’s position at sea.

Vanvaerenbergh, Michel, and Ifland, Peter. Line of Position Navigation:
Sumner and Saint-Hilaire, the Two Pillars of Modern Celestial Navigation,
Bloomington, IN: Unlimited Publishing, 2003.

This book contains about 30 pages describing Sumner and Saint Hilaire's

discoveries, and reprints of substantial parts of Sumner’s book and Saint
Hilaire's papers on celestial navigation.
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Also in the nineteenth century, spherical trigonometry became sub-
sumed into a more general trigonometry that included non-Euclidean
spaces. Although this did not affect the classroom and we have chosen to
skip over it here, the interested reader will find the theory both powerful

and fascinating. Seth Braver’s Lobachevski Illuminated is an extensively
annotated translation of one of the earliest works in this area.

The reader may wish to explore extensions of spherical trigonometry

in astronomy and navigation; in the literature of those subjects you will
find many variants to the procedures shown here and even entirely new

approaches. In astronomy, consider W. M. Smart’s Textbook on Spherical
Astronomy or Simon Newcomb’s Compendium of Spherical Astronomy;
in navigation, consult Charles Cotter’s History of Nautical Astronomy. If
you care to linger a while in these dusty old textbooks, you will find that
the playground of spherical trigonometry contains many more forgot-
ten delights.
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Figure 5.3. Continuing the derivations.

E D D
o F G o E O F G
Figure 5.4. The three planes of figure 5.3.

before. Next, use the similar triangles of figure 5.4 to convert the

new ratios into trigonometric functions of other known angles.
For instance:

OF _ OF OE _ EF EH _ EF EH
=Z—==-.2% = =25. 20 = =2 .20 = cotAcotB.
OS¢ =0D~ OE'OD  EG DE  DE EG  °"Ac8”
Two more identities, related to each other by flipping A and a with
B and b, may be proved with the same diagram (although we leave the

geometric fun to the exercises):

cosA = cosasinB and cosB = cosbsin A.

These results are known as Geber’s Theorem, after the early 12th cen-
tury Spanish Arabic astronomer Jabir ibn Aflah. His most well-known
work, Correction of the Almagest, was such a fierce attack that Coper-
nicus later called him an “egregious calumniator of Ptolemy.” Jabir was
not an outstanding scientist, but he happened to be in the right place at
the right time for his work to find its way into the hands of influential
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What is the difference between local time and Greenwich time? Multiply
by 15 to get the ships longitude. Plot the resulting ship’s position on the
map and call it point A.
(d) The above calculations are based on a latitude of 51°, which is 37’ less
than Sumner's best estimate. Repeat the calculations of (b) and (c), this
time for a latitude of 52°. Plot the new position as point B.
(e) Draw a line through A and B. Drawn correctly, the line should pass
through or very close to Small’s Light. Since the Sun's altitude is the same
at both A and B, it will also be the same at every point on the line joining
A and B. (To be precise, A and B both lie on the line of position, a very
large—but not great—circle containing all the points on the Earth's sur-
face where the Sun’s altitude is 12°10°.) In what direction is the azimuth of
the Sun with respect to this line?

Sumner reasoned correctly that whatever his true latitude was, he
had to be somewhere on the line of position. Since (luckily) the line
passes through Small's Light, Sumner simply sailed in the direction of
his line. He soon encountered Small’s Light, passed safely through St.
George's Channel, and changed the history of navigation. [thanks to Joel
Silverberg]

Where to Go from Here

Our tour through the world of spherical trigonometry has ended, but

there are countless journeys that may be taken from here. Todhunter
and Leathem’s 1907 textbook and Casey’s 1889 treatise are particularly
rich sources for further exploration of mathematical topics:

« the properties of small circles (not necessarily small in stature,

but not great circles) on their own, or inscribed in and circumscribed
around spherical triangles;

 a duality between theorems on small circles and on great circles;

o Hart’s Circle, a spherical analog to the nine point circle in plane
geometry;

o approximate formulas and the use of calculus to determine varia-
tions in quantities when certain other quantities are varied (useful in

geodesy and other practical applications).
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Figure A.l1. Calculating the Sun’s longitude given the time of year.

sometimes added when they should have subtracted, or vice versa. We

could solve this bifurcation problem by letting g be negative when the
Sun is on the right, but negative quantities were many centuries in Ptol-

emy'’s future.
Let t be the number of days since the spring equinox. Then, since a,

increases at a constant rate and is equal to zero at the spring equinox,

360°

220 — 65.429".
365, days

a =1

Now we need a formula for the solar equation. Extend & C so that a
perpendicular dropped from the earth E touches ©C at X. Then
CX =ecosa, and EX =esina,. Thus, in AGEX we know the side EX
opposite to g, as well as the side X =1+ CX adjacent to q. So

esina

X l4ecosa,

(Ptolemy’s method here was slightly more complicated; with his limited
trigonometric table he was unable to perform the equivalent of an in-
verse tangent.) To find the position of the Sun, calculate a from the value
of a_ and g, and add 65.429° to account for the longitude of the apogee.

The following table gives the approximate longitude of the Sun for

every day of the calendar year. It does not agree perfectly with modern
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discover something much more interesting. The Maclaurin series ex-
pansion for the cosine is

x2 oxt Xt
cosx=1—=—4+=——="—4 ..

2! 4! 6!

If x is very small, then we may approximate cos x by just 1 — x*/2, since
the other terms will be vanishingly small by comparison. Substituting

this approximation into cosc = cosacos b three times, we have

1—C—'=(1—‘£)(1—E).
2 2 2

Expanding and simplifying takes us to

c2=a2+b2+ab-,
2
but the last term is infinitesimal compared to the others. So when we let
a,b,c—0,cosc = cosacosb becomes none other than the Pythagorean
Theorem; or put another way, ¢’ =a’ + b’ is simply the planar special

case of our new spherical Pythagorean Theorem.

Applying our Knowledge to the Sky and Sea

It is time to put our new streamlined identities to the test. We begin

with the problem we have already seen twice now in Greece and Islam,
namely, converting ecliptic to equatorial coordinates. In figure 5.5 it is a
day in late May, and the Sun has traveled 4 = 60° along the ecliptic since

it passed Y” roughly two months ago, at the spring equinox. Our goal is
to find the right ascension & and the declination 0.

v

Figure 5.5. Converting between celestial coordinate systems again.
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Ptolemy’s Almagest contains many detailed mathematical models used
to compute the location of any celestial object at any time. The model for
the Sun, borrowed from Hipparchus, is the simplest: set the Sun in mo-
tion on a circle, called the ecliptic, with the Earth near its center. During
spring and summer the Sun appears to travel more slowly than in fall and
winter. We saw in chapter 2 how Hipparchus handled this: he put the Sun
in motion at a constant speed, but moved the Earth away from the center
of the circle in the direction of the Sun’s location in fall and winter. So,
as the Sun moves along the ecliptic approaching and receding from us, it
remains at the same speed but appears to speed up and slow down.
Ecliptic coordinates are the natural choice for working with the Sun’s
position in the celestial sphere: since the Sun is on the ecliptic its latitude

B is always zero, and we need only find its distance 4 from the spring
equinox. We have a few parameters at our disposal. Since the radius of

the circle cannot be measured, we assert that it is equal to one very large

unit—the predecessor to today’s astronomical unit. (Actually, since he
was working in a base 60 number system, Ptolemy used 60 units; we will
avoid this trivial complication.) In chapter 2 we calculated the eccentric-
ity of the Sun’s orbit, e = 0.041367 units; and found that the Sun’s apogee
is located at A = 65.429°. We are now ready to begin.

In figure A.1the apogee A is at the top of the circle, so the spring equi-
nox Y’ is 65.429° clockwise to the right. Since the Sun travels at a con-
stant speed, its mean anomaly a,, increases at a constant rate. The word
“anomaly,” which actually means an irregularity in motion, had many
different uses in ancient astronomy; here it is used to represent a motion
with no irregularities at all. We are after the true anomaly a, which is the
Sun’s position as seen from the Earth E. We find it by calculating angle g,
the solar equation. We leave it to the reader to show thata =a, — g when
the Sun is on the left side of the diagram, and a=a,, + q when it is on
the right side. It is unfortunate that we have two different formulas for

different sides of the diagram. In practice this led to errors: astronomers
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astronomers in late medieval Europe, thereby cementing his place in
history.

We have finally arrived at the ten fundamental identities of a right-
angled spherical triangle:

| II
sinb = tanacotA sina = sinAsinc¢
cosc = cotAcotB COosA = sinBcosa

sina = cotBtanb cosB = cosbsin A
cosA = tanbcotc sinb = sincsin B

cosB = cotctana cosc cosacosb.

Applying the Locality Principle

We have noted before that when spherical triangles become smaller and
smaller (i.e., a, b, and ¢ approach zero), their curvature diminishes and
they become almost planar. So if we take a statement about spherical
triangles and allow a, b, ¢ — 0, we should arrive at a related statement
about plane triangles. Consider these examples:

Spherical Formula Planar Equivalent

sina . a
— SinA = -
sin ¢ C

sinA =

tanb
tan ¢

COSA = COSA =

tana
sinb

b
c
a
L

tanA = tanA =

These inferences all hold because for small angles the ratios of sines
and tangents approach the ratios of the angles themselves. We get simi-
lar equivalences for most of the other identities. For instance, cos A =
sin B cosa becomes the planar statement cos A =sin B; and since for
a planar triangle B=90°— A, this statement is correct—if not very
enlightening.

One theorem requires a bit more digging to find its planar equivalent,
but the extra effort is worth it. If we take cosc = cosacosb and let a, b,
c—0, it’'s unclear at first how anything can result other than the bor-
ing 1 X 1=1. However, we may use a tool from introductory calculus to
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Figure 1.12. Fixed point iteration
to find sin 1°.

choice is x, = }sin3°=0.017445319. Plug it into the right side of

our equation and we get 0.017452397, corresponding to the verti-
cal distance from x, to A on the graph. We treat this new value as
our next guess x,. On the graph, this means that we must convert

the height x,A into an x-coordinate. We can take this step by mov-

ing horizontally from A to B, where we know that y = x; then we

move down to x,.->

From here we simply repeat the process as many times as desired.
Plugging x, into the right side of the equation yields x, = 0.017452406;

another iteration yields an identical value for x,, to nine decimal places.
So already we have nine decimal places for sin 1°, with an easy method
at hand to generate as much accuracy as any numerical stickler may

demand. Al-Kashi stopped at the equivalent of 16 decimal places. This
technique, today called fixed point iteration, is not guaranteed to work

with every equation of this sort, but fortunately it works extremely ef-
ficiently in our case. And from our value of sin 1°, we may now fill in the
rest of the sine table, with as much precision as we have patience.

The Distance to the Moon

The computational energy required to construct a sine table using the
above methods is hardly a trivial matter; we caution the reader not to
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D

Figure 1.14. Finding the distance to
the Moon.

observable with the naked eye. Actually, the parallax is much smaller

than that.)
Although our method is simpler than Ptolemy’s, the idea is the same.

We assume that for one observer, E in figure 1.14, the Moon is directly

overhead; so, its altitude is 90°. For a second observer, 300 km away at
B, the Moons altitude is @ =87.201°. Now, without telephones it would
be difficult to make sure that the two observations take place at the
same moment. One way around this is to observe during a lunar eclipse,

which takes place simultaneously for all Earthly observers.

—~These are all the observations we need. Since the value we found
earlier for the Earth’s radius is 6238 km, we know that angle f is
300/(27 - 6238) of a circle, or 2.7555°. Next we work our way up
the figure. Using AABC we find that BC = ABtanf =300.23 km,
and that r/(r + CE) = cosf, from which we find CE=7.2209 km.
Next, using ABCF, we calculate CF = BCsina = 299.87 km. The
most important observation follows: since the three angles at C
add up to 180°, we know that ADCF=a + =89.957". Now we
can use ACDF to find CD = CF/c0s89.957° = 395,160 km. Add to
this the inconsequential 7 km that is CE, and our value for the

Moon’s distance is 395,167 km. (The correct distance is around
384,400 km).»>
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alternative to leafing through an original paper volume in your own
hands. Many are available on eBay, ironically for close to their original
prices.

* Anderegg, Frederick; and Roe, Edward Drake. Trigonometry for
Schools and Colleges, Boston: Ginn, 1896.

* Bell, Herbert. A Course in the Solution of Spherical Triangles for the
Mathematical Laboratory, London: G. Bell & Sons, 1915.

* Bonnycastle, John. A Treatise on Plane and Spherical Trigonometry,
3rd edition, London: Cadell and Davies, 1818.

Brenke, W. C. Spherical Trigonometry with Tables, New York: The
Dryden Press, 1943.

Brink, Raymond M. Spherical Trigonometry, New York: Appleton-
Century-Crofts, 1942.

* Brown, Stimson. Trigonometry and Stereographic Projections, Balti-
more: The Lord Baltimore Press, 1913.

* Byrne, Oliver. A Short Practical Treatise on Spherical Trigonometry,
London: A. ]. Valpy, 1835.

* Casey, John. A Treatise on Spherical Trigonometry and its Applica-
tion to Geodesy and Astronomy with Numerous Examples, Dublin:
Hodges, Figgis, & Co., 1889.

* Chauvenet, William. A Treatise on Plane and Spherical Trigonometry,
9th edition, Philadelphia: Lippincott: 1883.






index-33_1.png
16 o ClarTER]

try this at home without a lot of free time. Now that we know how to
do it, we shall assume that the reader has put in the required years of
drudgery, and lying before us is a complete set of trigonometric tables,
ready to be used for our astronomy. We have taken a long diversion to
determine the single cosine value that al-Birani needed to complete his
determination of the circumterence of the Earth, but the good news is
that the diversion is needed only once. We may now press on, assured
that whenever we need a trigopnometric value, we may simply look it up.

It is one thing to calculate the size of the Earth, but another task en-
tirely to venture beyond the Earth’s surface to find the distance to the
Moon. In fact this feat has been accomplished frequently; Ptolemy him-
self came to an accurate value already in the 2nd century AD. We men-
tion only in passing that he also calculated the distance to the Sun, and
came up with a value about 19 times too small. His method was sound,
even if his result was not.

The key is parallax: the fact that two observers, in different places,
will see the same object in different positions with respect to a distant
background. In the case of the Moon the distances are vast, but the prin-
ciple still applies. Figure 1.13 shows the Moon in the night sky at the

same moment from two different locations; the change in its position

within the constellation Scorpius is clear. 'This is the sort of observation
that Ptolemy used. (In his calculation of the Sun’s distance, the error

was his assumption that the Sun’s parallax was just on the edge of being

Figure 1.13a and 1.13b. 'lhe Moon as seen from Vancouver, Canada in (a) and from
London. England in (b) on April 30, 2010. In Vancouver the Moon is on the middle ot
the three claws of Scorpius, in London it is on the upper claw.
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4. The cosine addition and subtraction laws Figure E-1.5.

are cos(a £ f8) = cosa cosf Fsinasinp.
Demonstrate them from the same
diagrams we used to derive the sine
addition and subtraction laws.

. (a) Derive a formula for sin{ given
the values of sina and cosa,
using figure E-1.5. (There are
different forms of the
half-angle formula; the
most common is
sina/2=/{1=cos@)/2. o
This demonstration will start geometrically, but will require some
algebra.)
(b) There is an easier way to arrive at this formula algebraically. First,
using the cosine addition law, derive cos 2 =1— 2sin’a. Then, from this
result, derive the sine half-angle identity in (a). [courtesy of Raymond N.
Greenwell]

. (@) Use the sine and cosine addition and subtraction laws to prove the
sine triple-angle formula, sin (30) =3sinf — 4sin’0.
(b) Perform al-Kashi's iteration procedure to get a value of sin1° to as
many decimal places as your technology permits. If you have a computer
algebra system, set its precision to a large number of digits, say, 100. How
many extra decimal places of accuracy do you get with each iteration?

(c) Use fixed point iteration to attempt to solve the equation x = 2x". The

solution is x = 1/2. Try several different values of x,. What is it about

the function y = 2x’ that prevents fixed point iteration from working in
this case?
. We have seen that Ptolemy effectively used the following inequality to

estimate sin1”;
3sin3° <sin1°<3sini’

Medieval Muslim astronomers used sines of arcs that were closer to 1°
than Ptolemy’s :° and 3°, yet were still geometrically accessible. Any sine
of the form (3m/2")" is computable using the methods in this chapter.

(a) In the late 10th century AD, Abi 'l-Wafa’ used the equivalent of sin3;"’
Eo
n

and sin3; . How does the magnitude of error in Abi '1-Wafa’'s approxima-

tion compare with Ptolemy’s?
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Just for fun, let’s see what we can determine from this result about
the dimensions of the solar system. If we were to shrink the universe so

that the Earth is the size of a soccer ball, its radius would be about 11 cm.
Since we know that the Moon’s distance is 395,167 km and the Earth’s
radius is 6238 km, the Moon’s distance in our soccer ball universe is
11-395,167/6238 = 695 cm, or about 7 meters—about half the distance
across a typical classroom. The Moon would be about the size of a ten-

nis ball, with a radius of 3 cm. Let’s step for a moment beyond what
the ancients were capable of observing. In this scale, the Sun's diameter
would be about 24 m, about the height of an eight-story building, and
would be about 2.6 km away. The nearest star, Proxima Centauri, would
have a diameter of only 3.5 m, about one story high. It would be about
700,000 km away, almost twice the actual distance from the Earth to the
Moon. Our galaxy consists almost entirely of empty space.

We have completed our mission to find the distance to the Moon
using only simple measurements. At the same time we've refreshed our
plane trigonometry and become accustomed to the “prove it to me” atti-
tude that mathematics requires. With these experiences under our belts,
it is time to turn to the sphere.

Exercises

. Using only a basic pocket calculator (no scientific Figure E-1.2.
calculators, although you may take square roots), ‘
determine the value of sin 3° in the most eflicient way .
that you can. Include in your work the computation
of any sine values you need along the way.

. The sine subtraction law is
sin(a — B)=sina cosf — cosasinf.

(a) Derive this result by replacing
B with —f in the addition law.
(b) Now attempt the more 0“4
interesting task: prove it geometrically using figure E-1.2.
3. (a) Show by construction that 2sin A > sin2A.
(b) Given two angles A and B (A + B being less than 90°), show that
sin(A + B) <sinA +sinB.
[Wentworth 1894, p. 8]
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A (North Pole)

Figure 5.7. A navigation problem.

C
(Halifax)

Our ship would begin heading due east, but its direction would alter
gradually southwards (figure 5.7). The triangle to consider is the one
that joins both the ship’s departure point and destination with the North
Pole. Then b= AC =90° — 44.67° = 45.33". If we recall that one nautical
mile (1.1508 miles, or 1.852 km) is equal to one minute of arc on a great
circle, we know also thata = BC =1000"=16.67".

We begin by finding the ship’s final latitude, the complement of AB.
Since we already know two sides, the spherical Pythagorean Theorem
gives us the third:

¢ = AB = cos ™' (cos45.33° - c0s 16.67°) = 47.66".

So the latitude is 90° — 47.66° = 42.34°". Turning to the ship’s longitude:
in figure 5.7, we see that £A at the North Pole is the difference in lon-
gitude between the departure point and the destination. We find A
using cosA = tanbcotc; the result is 22.81°. So the ship’s longitude is
63.58° W — 22.81° W = 40.77° W, placing it in the middle of the ocean
well on its way from Halifax to the Azores.

We find the ship’s direction of travel at B by calculating £B and recall-
ing that AB runs north-south. This time we use cos B= cosbsin A and
arrive at B=74.18". Thus the ship is traveling 74.18° east of south.

Napier and the Birth of Logarithms

If you tried to solve either of the two problems above on your own, you
likely made two discoveries: firstly, with ten identities at our disposal
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positions because the longitude of the apogee has changed since Ptolemy’s
time, but it has the pedagogical advantage of having come directly from

our calculations. We chose the most common date for the spring equinox,
March 20. Keen readers will notice a slight break in the pattern between

March 19 and 20; this is because we are assuming a non-leap year, and so
there is a % day gap after March 19, the last day of the table. A better table
would include a full four-year cycle between consecutive leap years.

Avid readers who attempt to recompute this table should be alert to
one catch. When the Sun is at the spring equinox, this implies that a,

rather than a_, is equal to 360° — 65.429°. This should make your task a
little more interesting.
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(b) There's no reason to stop at 32nds of a degree. The 14th-century En-

6_30
64

66°

and sing; . How does

glish astronomer Richard of Wallingford used sin

his magnitude of error compare with the results of the other two?

(c) Richard goes on to use sinZ2° and sinZ°

. Before calculating the ap-
proximation, use your results from (a) and (b) to predict the magnitude
of error that you should expect. Then do the approximation, to see if you
were correct.

. (a) How high above the earth must one be in order to see a point located
on the surface 50 miles away?

[Rothrock 1911, p. 29]

(b) Prove in general that for small elevations the distance of the “visible
horizon” varies as the square root of the observer's elevation.

[Crawley 1914, p. 18]

. (a) Aristarchus (3rd century BC) estimated the ratio of the Earth-Sun
distance to the Earth-Moon distance by observing that when the Moon is
half full, the angle from the Earth to the Moon to the Sun must be a right
angle. He measured the angular displacement of the Moon from the Sun,
seen from the Earth, in this configuration to be 29/30 of a right angle. Use
this measurement to estimate the ratio of the Earth-Sun distance to the
Earth-Moon distance.

(b) Look up the values for the distance from the Earth to the Moon

and to the Sun, and calculate the actual ratio between the two. Give
possible reasons why Aristarchus’s estimate was so far off. [courtesy of
Raymond N. Greenwell]

. (a) Eratosthenes (3rd century BC) estimated the circumference of the Earth
by observing that at the summer solstice, the sun was directly overhead in
Syene, Egypt (now called Aswan). In the town of Alexandria, Egypt, which
(he estimated) was 5000 stadia further north and (he believed) on the same
meridian of longitude, the Sun was 1/50 of a complete circle to the south.
He estimated the Sun to be sufficiently far away that the lines from the
observers in each of the two cities to the Sun were roughly parallel, so that

the angle between them represented 1/50 of the angle around the entire

Earth. It is not completely clear how long Eratosthenes’s stadion was, but a
common value given for 5000 stadia is 800 km. Based on this, estimate the
circumference of the Earth. Compare with the actual value.

(b) Look up the latitude and longitude of Alexandria and Aswan. Are
they on the same meridian of longitude? Look up the distance between

them. Is it close to the value of 800 km given in part (a)? Also look up
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There are several possible paths. The easiest first step is to apply the first
identity of column II in our table, which gives immediately the familiar

sind = sinAsine.

Substituting our numeric values, we get d=sin"'(sin60°-sin23.44°) =
+20.15°. Next apply the first identity in column I; we arrive at

sina = tanod cote.

So a=sin"'(tan20.15° - cot23.44°) =57.81°, or (dividing by 15° per
hour) 3"51”. We have found a much smoother solution to the coordi-
nate conversion problem than either Menelaus or his Muslim successors
were able to come up with.

There is one fly in this ointment, which has been there all along.
Suppose we substitute 4 =130° into our conversion formulas, a day in

early August. Then d =17.74°, about what we expected; but from sina =
0.8668 we might too quickly conclude that @ = 60.09°, corresponding
to a day in late May. But there are two values of ¢ between 0 and 180°
whose sine in 0.8668, the other being 180°— 60.09°=119.91° (see fig-
ure 5.6). So we must be careful when applying inverse sines. It's better
to avoid the problem altogether if possible by preferring formulas that
require only inverse cosines, because the cosine function is one-to-one
between 0° and 180°.

For our next application we turn away from the sky, and toward the
sea. Consider this problem from an old textbook (Brink 1942, 17):

A ship leaves Halifax (position, 44.67° N, 63.58° W), starting due east and

continuing on the great circle. Find its position and direction after it has
sailed 1000 nautical miles.

Figure 5.6. The inverse sine problem. If sin « = 0.8668, then «« might be either 60.09°
or 119.91°.
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Figure E-1.14.

be found, and the distance PM from the Moon to the Earth is equal to
CM —r, where r is the radius of the Earth. Find the distance PM.

[Muhly/Saslaw 1946, p. 64]
(Hint: (i) Draw O,0,, and find its length using the Law of Cosines.

(ii) Determine the angles of AO,0O,M, and use the Law of Sines to find the
length of O, M. (iii) Use the Law of Cosines on AO,CM to find CM.)
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there are often many paths to the solution, and part of the challenge lies
simply in recalling all the identities. More on this later. Secondly, the
arithmetic frequently requires that we multiply and divide messy trigo-
nometric quantities. While this doesn’t bother us too much in the age
of Microsoft, it was a major annoyance to astronomers in the early 17th
century, including our friend John Napier.

If science had existed as a profession back then, Napier might have
spurned it for engineering. His mathematical dalliances and devices
were concocted not for their own sakes, but with a specific practical goal
in mind. His second most famous invention, Napier’s “rods” or “bones,’
was a set of strips of wood or metal engraved with numbers and mark-
ings that allowed users to multiply numbers quickly. As we have just
seen, this device might have found immediate use in astronomy and
seafaring. But if the numbers to be multiplied contain five or more deci-
mal places, Napier’s bones become cumbersome.

Napier’s breakthrough in his efforts to bypass the tedium of multi-
plication was the simple observation that products of powers of 10 may
be found by adding the exponents: for instance, 10°-10*=10". Faced
with a time-consuming multiplication problem such as we encounter in
spherical astronomy, we might save time by rewriting the multiplicands
as powers of 10, adding the powers, and calculating 10 to the power of
the sum. This process might strike modern readers as awkward, but as
long as we can move easily back and forth between raw numbers and
their representations as powers of 10, this approach can reduce pencil-
and-paper work by an order of magnitude. Adding long numbers to-
gether is much easier than multiplying them.

Thus was born the logarithm: the function that converts any number
x into the power to which 10 must be raised to get x. (Napier’s logarithms
actually took a slightly different form, but the modern form arose very
quickly after Napier’s death.) If one has at hand a table of logarithms (see
figure 5.8), ugly multiplications are a thing of the past. For instance, in
our calculation of the declination of the Sun, we avoid multiplication as

follows:

log(sin0) = log(sind) + log(sin¢).

The form of this equation explains why many logarithm tables (includ-
ing Napiers) did not display pure logarithms, but rather logarithms

of sines. Solving the problem then reduces to looking up and adding
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hav h. = hav (¢ — d) + cos¢ cosd hav t.>

In our case, the formula gives us h.=16°46.3" for Venus (compared to
h,=16°25.1), and h.=29°06.9" for Spica (compared to h,=28°14.1).
Of course, the reader following along with one of those rare calcula-
tors lacking a haversine button may feel free to use the Law of Cosines
instead.

Now that we know all three sides and one angle of our astronomical
triangle, getting the azimuth Z is just a matter of applying the Law of

Sines:

sinh sinod

sint  sinZ’
The ambiguity that arises from needing to evaluate an arc sine is of
no importance here; we have been looking at the star, and we know in
what quadrant it lies. So for Venus, from sinZ = 0.98214 we deduce that
Z =79°09.3" west of North; and for Spica, from sinZ = 0.34829 we de-
duce that Z = 20°22.9" west of South.

Now that Z is known, we can imagine moving forward or backward
in that direction on the water’s surface along the azimuth line (figure
9.9). As we move, only Venus’s altitude (not its azimuth) will change;
and if we move forward far enough, we will reach Venus—or rather, we
will reach the place where Venus would land if it fell directly toward the
Earth’s center. This point is called Venus’s geographical position, or GP.
As we move along the azimuth line, Venus’s altitude will increase if we
move toward Venus, or decrease if we walk away.

Assumed
position

Figure 9.9. The line of position.
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our assumed and true positions are essentially parallel; it is the differ-
ence in position on the Earth's surface that causes h, to differ from h,..
Form a right triangle by drawing a tangent to the circle at the AP and
joining it to the line of sight from the Earth’s center to Venus. The angles
in this triangle will be 90°, h_, and h,.. Do the same from the true posi-
tion. The angle at the center of the Earth between the assumed and true

positions will be h, — h. = h,.— h,,. But this angle, measured in minutes

of arc, is equal to the distance on the surface measured in nautical miles!
So to calculate the intercept, we need only determine 60 (h.— h,). In
Venus’s case the intercept is 21.2 nautical miles; for Spica it is 52.8 nauti-
cal miles.

We are now ready to use a plotting chart, a simple version of which is
shown in figure 9.11. Our assumed position is at the center of the circle,
so we may mark 4 =126°45"W, ¢ =47°30'N on the chart as in figure
9.12. Since the two vertical radii are marked off in units of 60, it is con-
venient to assume that the circle has a radius of 60 nautical miles (if
the intercepts had been smaller, we could have used a smaller scale). So

36
0 350 290

061 op1 OL\

Figure 9.11. A simple blank nautical chart.
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We shall use nothing but the Rule of Four Quantities. Starting with
configuration CAPMB we have

smPM sin PB or Sin(90°_‘PM)= 1

sinMA sinBC sin MA sinAA4’

so sin MA = cos¢p,,sin A4, which gives the “modified longitude”
MA = 25.29°. Our second configuration is WMACB, from which

we get

sin WM sin WA or sin(90°—m)_ |

sinMB  sinAC sing,, " sinAC’

so sinAC = sm<p,“/cosMA and we have the “modified latitude”
AC =24.11". Then GA = GC — AC = ¢, —24.11°=947".

With the modified longitude and latitude in hand, we turn our at-
tention to the outer horizon circle for Ghazna, which is where the

qibla resides. It will take two steps. Firstly, from WMASD,

sin(90° — MA) |
sin MD sin(90°— EZ)’

so sin MD = cosMA cos GA, which gives MD = 63.10°. Our final
step applies the Rule of Four Quantities to figure GMDSA:

sin GM s_ln—@ or sm(90 —MD) 1
sin MA sin DS’

so sin DS = sin MA/cos MD. This gives us the qibla, because DS=
70.79° is the number of degrees west of south that we must turn to
face Mecca.>

There is nothing special about Mecca in the above calculations. We
could use the same reasoning to find the direction to any destination. So
scientists now had a means to determine the direction from any place
on the Earth’s surface to any other. Granted, the calculations are not
simple, but once they are automated they work quite smoothly. Never-
theless a small industry arose to generate tables of the qibla for any lo-
cation within the Arabic-speaking world, so that the faithful would be
spared the pain of lengthy trigonometric calculation. The best of these
tables was a set composed by Shams al-Din al-Khalili, an astronomical
timekeeper employed by the Umayyad mosque in Damascus. Its sixteen
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At some point in our journey back and forth along the azimuth line,
Venus’s altitude will match our observed altitude h,=16°25.1" exactly.
This point might be our true position. But we’re not quite sure of Z, and
if we turn 90° to the left or right and take a few steps, Venus will remain
at the same altitude in the sky without changing Z much. In fact, we
could take more than a few steps; we could travel in a giant circle cen-
tered at Venus’s GP, and Venus’s altitude would remain the same. (As
huge as this circle is, it’s not a great circle, so it’s called a small circle.) Of
course, we don'’t expect to need to travel very far to adjust our position,
so we will assume that our true position is somewhere on the straight
line perpendicular to the place on the line of azimuth where Venus’s alti-
tude matches h,,. We then draw the line of position, or LP, at right angles
to the azimuth line, and we know that we are somewhere on that line.

But how far from our AP should we travel to reach the LP?

The intercept, the distance from the AP to the LP, is where our method
derives one of its names, and it is surprisingly easy to find. Figure 9.10
is the cross section of the universe through the center of the Earth that

contains Venus. Since Venus is so far away, the lines of sight from both

True
position

Figure 9.10. Finding the intercept.
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(South)

Figure 4.7. Graphic of al-Birani's determination of the gibla.

seen from above, so G is the zenith directly above Ghazna. The line con-
necting north and south through G, actually a great circle called the
meridian of Ghazna, passes through the north pole P; the outer circle is
Ghazna’s horizon. M is the point on the celestial sphere that an observer
at Mecca would perceive as the zenith. WM connects the west point on

—

the horizon to M, and extends to A on the meridian. PMB is the merid-
ian of Mecca.

—~>Al-Biruni’s geographical coordinates for Ghazna and Mecca
were ¢, = 33.58°, p,, = 21.67", and a longitude difference of Ad=
27.37°. Now ¢, is the altitude NP of the North Pole the north
ernmost segment of Ghazna’s meridian; but both NG and PC are
90°, so GC = ¢, = 33.58°. So the arc from the worshipper’s zenith
perpendicularly down to the equator is the local latitude. This fact
must also apply to the zenith of Mecca, so MB= ¢, =21.67°. Fi-
nally, the difference in longitude is equal to the angle at the North

Pole between the two zeniths, so AMPG = BC =27.37°. Now that

we have transferred all the data onto arcs in the diagram, we are

ready to begin the actual mathematics.
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A USEFUL TABLE TO NAVIGATORS,

SHOWING AT A GLANCE THE MILES TO A DEGREE OF
LONGITUDE AT EACH DEGREE OF LATITUDE.

Lat. Long. Long.
Degree. Miles. Degree. Miles.

L ’ ’

19 | 66-73 47-92
20 | 56-38 47-28
21 | 56-01 46-62
22 | 556-63 45-95
23 | 55-23 45-28
24 | 54-81 44-49
25 | 54:38 43-88
26 | 53-93 43-16
27 | 53-46 42-43
28 | 52-97 41-68
29 | 52-47 40-92
30 | 51-96 40-15
31 | 51-43 39-36
32 | 50-88 38-57
33 | 50-32 37-76
34 | 4974 36-94
35 | 4915 36-11
36 | 48-b4 35-26

O LI N HE=CI =~ o

Figure E-2.9. A table from Bernard's Nautical Star Chart, 1958. Reproduced with the
permission of Brown, Son & Ferguson, Ltd., Scotland.

13. Show that a spherical triangle with two equal sides has two equal angles.

[paraphrased from Stanley 1854, p. 26] (Hint: draw tangents at B and Cin
figure 2.8.)

14. Show that in any spherical triangle, the difference between any angle and
the sum of the other two is less than 180°. [paraphrased from Moritz
1913, p. 12] (Hint: use the polar triangle.)
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(c) The function you needed in (b) was eventually called the “shadow
function.” Which of the six trigonometric functions is it?

. In the previous question there was as yet no sign of €, so we continue. At
high noon on the winter solstice, the Sun will be lower in the sky that it
was at the equinox; on the summer solstice it will be higher.

(a) The difference in the Sun'’ altitude between the equinox and either
solstice is . Why?

(b) At a latitude of 49° N, we measure the winter solstice shadow length
to be 3.1601 meters. Determine the value of €.

. There are certain stars that never set below the horizon, called circum-
polar stars. The Big Dipper is an example; in the middle latitudes of the
northern hemisphere it is visible every night of the year. Likewise, there
are certain stars that are never visible for an observer at a given terres-
trial latitude. How close does a star have to be to the North Pole to be
circumpolar? How close does a star have to be to the South Pole to be not
visible? The answer will depend on your latitude.

. (a) A bear hunter walks one km south, then one km east, then one km
north, and ends up back where he started. What color is the bear?

(b) The puzzle in (a) has a particular location in mind, but there are actu-
ally many locations where this journey is possible. Identify the others,
and say what animal must replace the bear in the story.

. How many miles is 1° of longitude on the equator? At New York City?
[courtesy of Raymond N. Greenwell]

. A nautical mile is equal to one minute of arc, or .°, on the Earth's surface.

This value works out to 1.1508 miles, or 1.852 km. Traveling one degree
of longitude eastward along a circle of some fixed latitude will be less than
sixty times this distance, because a latitude circle is smaller than a great
circle. The table in figure E-2.9, from Bernard’s 1958 Nautical Star Chart
(plate 11), gives a table of this distance in nautical miles as a function of
terrestrial latitude. Determine the formula that was used to compute it.

. Prove that if a spherical triangle has three right angles, then it is its own
polar triangle. [Moritz 1913, p. 12]

. If the restriction on angles being no larger than 180° is dropped, what is
the upper limit on the sum of the angles of a spherical triangle? [courtesy
of Raymond N. Greenwell]

. Show that a spherical polygon with n sides (each 180°) has a sum of
interior angles greater than 180°- n— 360°. [paraphrased from Cresswell
1816, p. 54]
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But the Almagest was not written as a work of history. Although his-
torians have used Ptolemy’s work to make some ingenious inferences
about earlier Greek astronomy, what exactly happened during the period
from Hipparchus to Ptolemy is still a minefield of conjecture. We are
starting to learn more by studying garbage. The ancient Egyptian town
of Oxyrhynchus, about 100 miles up the Nile from Cairo, happened to
locate its rubbish heaps far enough away from the river to avoid the an-
nual flooding. Thousands of discarded scraps of papyrus are still some-
what intact today. It is our good fortune that at least a few Oxyrhynchans
found their astronomical texts not riveting enough to keep, and those
papyri are being reconstructed today.

However, Hipparchus remains a shadowy figure. The question of in-
terest to us here, whether or not Hipparchus applied his study of chord
lengths in a circle beyond his solar and lunar models to the celestial
sphere, is fiercely debated. Clues gathered from the data Hipparchus is
known to have collected and the calculations he made suggest that he
might have done some mathematical work on the sphere. But neither

Ptolemy nor Oxyrhynchus supply a conclusive smoking gun.

Menelaus and His Theorems

We must therefore move more than two centuries ahead, to a figure al-
most as elusive as Hipparchus. We are aware that Menelaus of Alexan-
dria lived in Rome in the late first century AD because Ptolemy tells
us he made some observations there, but that is all we know. All but a

couple of fragments of his writings are lost, except fortunately for the

one that most concerns us. Although Menelaus’s Sphaerica no longer
exists in the original Greek, it found a way to survive in several Arabic
and Latin translations (figure 3.1). “Translation” might be too strong a
word here, because these later authors—not concerned with histori-
cal accuracy—altered the text significantly to make it more useful to
their readers. Their most obvious innovation was the replacement of the
chord function with the sine, which had been introduced to the Mus-
lim world from India. Nevertheless, we do have a clear idea of what the
Sphaerica originally contained.

It is a remarkable book. It was not the first work of its kind or the

first by that title. However, unless part of the story of trigonometry is
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The Ancient Approach

We tend to think of the growth of mathematical knowledge like that of a
glacier. The boundaries spread outward gradually as new bits of knowl-
edge are added to the existing structure. But a flag planted at a particular
spot will stay there, and the features of its immediate environment stay
essentially unchanged. Other than the accretion of new functions and
identities, the basic theory remains the same. After all, how could trigo-
nometry look any different from how it looks today?

Part of the goal of the next couple of chapters is to refute this charge of
intellectual lifelessness. Spherical trigonometry, one of the oldest math-
ematical subjects, has undergone at least two major transformations—
not at its periphery, but at its foundation. Now, existing theorems didn’t
suddenly become false. Rather, the nature of the fundamental functions
changed, as did the tools used by practitioners to solve problems. This is
a glacier with a couple of depth charges planted in its surface.

Our story begins with Hipparchus of Rhodes, the founder of trigo-
nometry. We have said little about him yet, for the obvious reason that
we know almost nothing about him. His life, like that of most Greek
scientists, is a blank to us. Since he was an astronomer we can use the
observations he made that survive, and the references his successors
made to him, to reconstruct when and where he must have lived. These
sources don't give us much: he was born early in the 2nd century BC in
Bithynia (today, northwest Turkey) and spent the last part of his career
on the island of Rhodes, just south of the southwest tip of Turkey. Even
his written work remains mostly a mystery: all that survives is an astro-
nomical commentary on a poem by Aratus. We have had to reconstruct
most of our knowledge of Hipparchus’s accomplishments through pass-
ing references to them within the works of others. Chief among his an-
cient admirers was Claudius Ptolemy (2nd century AD), who describes
some of Hipparchus’s achievements in the Almagest.
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6. It is early evening on June 22, 2010 and you are somewhere southeast of
the coast of Long Island, NY, hoping to sail toward Rhode Island. Your
chronometer reads June 23, 2010, 1:00 AM GMT, and your assumed
position is ¢ =40°05', A =70°33". A little west of south you spot Antares,
and with your sextant you measure it to be 16°34.0" above the horizon.
Just north of west is Venus, with an altitude of 18°40.1". Use Saint Hilaire's
method to determine your position. (Figure 9.6 contains the appropriate
page from the Nautical Almanac. The solution is ¢ =40°25', A =71°14"))

. Make up your own navigation problem. Do this with astronomical soft-
ware as follows: choose true and assumed positions with values of ¢ and 4
less than one degree apart. In your software, set your location to the true
position, find a time near sunrise or sunset when two objects are visible
with azimuths separated by around 90°, record their altitudes, and note
the time in GMT. Now discard the true position, and proceed with Saint
Hilaire’s method. You may use the online Nautical Almanac if necessary.
When you are finished, compare your fix with the true position.

. Perform the Saint Hilaire calculations in this chapter, but use the Law of
Cosines directly on the astronomical triangle rather than the haversine
formula. Round all trigonometric quantities to three decimal places for
both methods. Assuming that you have a haversine button on your calcu-
lator, which method is faster? Does one give a more accurate result than
the other?

. (Assumes calculus) Find the derivative of the Suns altitude with respect
to local hour angle. Explain from the result why solar observations taken
when the Sun is in the East or West were preferred to when the Sun is in
the South (near noon). [courtesy of Joel Silverberg]

. Sumner’s method: In the late morning of December 17, 1837 Thomas

Hubbard Sumner was approaching St. George's Channel between Ireland
and Wales on his way to Scotland, having departed three weeks earlier
from South Carolina. Unsure of his position since his last fix 600 miles
back and dealing with bad weather conditions, he was fearful of encoun-
tering the dangerous rocks on the southeast tip of Ireland. The critical
checkpoint that Sumner needed to locate was Small’s Light just off the
coast of Wales; if he could sail toward it, he would be able to find safe
passage through the channel (figure E-9.10). Suddenly the clouds parted
momentarily and gave him a brief opportunity to measure the Sun’s
altitude. Spurred by necessity, he had a flash of insight that led to his new

method of navigation, and eventually inspired Saint Hilaire’s method as
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A

Figure 3.2. The plane Menelaus
Theorem.

They described general properties of arcs and demonstrated that certain
arcs were longer than others, but they did not calculate the length of
anything. How could they? Trigonometry had not yet been born. But in

the last of the three books of his Sphaerica, Menelaus changed all that.
We begin with the theorem that is named after Menelaus today, a

statement from plane geometry (in figure 3.2) that we shall extend to the
sphere (figures 3.1 and 3.4, or the leftmost of the old English demonstra-
tion spheres in plate 4). Curiously, Menelaus himself does not prove the

planar statement, so he must have thought his readers already knew it.

AK _AT DL

Menelaus’s Plane Th :In fi 3.2, = :
enelaus’s Plane Theorem: In figure KB TD LB

Proof: Draw DX parallel to TLK; then AXAD ~ AKAT and ADBX ~
ALBK. Therefore

AK _ AK XK _ AT DL

= = : ED
KB XK KB TD LB Q

Menelaus is interested in this theorem only to piggyback from it to a
statement about arcs configured similarly on a sphere. At first blush
though, it seems a bit strange to deal with this peculiar diagram, which
we shall call the Menelaus configuration (the collection of boldface arcs in

figure 3.4). How could such a statement be of much use to astronomers?
In the previous chapter we saw that converting between differ-

ent spherical coordinate systems was the most important task that
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Napier and most of his colleagues science was a hobby; it had not yet de-
veloped into a full-fledged profession. A landholder, Napier was widely
known for his passionate commitment to Protestant causes against the
Catholics. His first major publication, A Plaine Discovery of the Whole
Revelation of Saint John, exhorted the Scottish king to take a firm po-
sition against Pope Clement VIII, whose identity as the Anti-Christ
Napier believed he had demonstrated through calculation. Napier also
followed Archimedes’s lead in applying his scientific efforts to invent
engines of war, to defend both his nation and his faith.

Napier’s interest in the sphere was well-timed; it would not be long
before spherical trigonometry became an indispensable part of finding
one’s way around the open seas as well as among the stars. In his trigo-
nometric work, whether astronomical or purely mathematical, he re-
ferred mostly to right-angled spherical triangles. Working in this way is
not much of a limitation, since it is exactly how we work in plane trigo-
nometry today. Once the theorems for right triangles have been estab-
lished, we move on to consider an oblique triangle simply by dropping a
perpendicular from an appropriate vertex, splitting the oblique triangle
into two right triangles. Napier was fully aware of this possibility; in
fact, as we shall see in chapter 6, one of the achievements for which he is
known today relies on handling oblique triangles in this manner.

Deriving the Basic Identities

The standard naming convention for right-angled triangles is to let C be
the vertex where the right angle resides, and to use lower-case letters for
sides opposite the upper-case angles (see figure 5.2). So ¢ will always be
our hypotenuse. We can convert our side lengths a, b, and ¢ into angles
easily enough: if we join the three vertices to the center O of the sphere,
the angles formed at O will be equal to the triangle’s sides. To generate
new theorems we're going to have to convert £A and 4B from spherical
to plane angles as well, and it’s not quite as obvious how to do that. One
way is to think of £A as the angle between the “floor” plane OAC and the
diagonal face OAB; similarly, £B is the angle between the vertical back

wall OBC and the floor OAC.
Wed like to piggyback on ordinary trigonometry to get some new re-

sults, so we need to express £A and 4B as angles between line segments
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5. The formula derived in the previous exercise may be used to build a
device called the haversine nomogram, capable of solving some spherical
triangles visually. Make a scale as in figure E-9.5.1, where the position of
each tick mark corresponds to the haversine of that angle. (The more tick
marks you can make, the more accurate your result.) Align three of these
scales in a rectangle opened at the top, as in figure E-9.5.2. Imagine that
the triangle has sides a =87°, b=52°, and ¢ =106°". Then a —b =35" and
a + b=139". Draw a diagonal line from 35° on the left scale to 139° on the
right scale. Then draw a horizontal line from the 106° point on the right
scale and move down to the bottom scale when you reach the diagonal
line. The angle at that place, 115°, is the value of C.

(a) Solve the triangle of question 3(b) using a haversine nomogram.

(b) Explain why this method produces the correct answer. (Hint: use the
formula of question 4(b), solved for hav C.)

(c) Devise a method to use a haversine nomogram to find the third side

if two sides and their included angle are given. [Nielsen/Vanlonkhuyzen
1944, 120-121]

0.750 0.933 1.000

—_——
0c 30° 60° 90° 1200 150° 180°

Figure E-9.5.1. The haversine nomogram.

0°
0°c 30° 60° 90° 120°  150°180°

Figure E-9.5.2. Finding an angle in a triangle with three known sides using a haversine
nomogram.
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Figure 3.1. The first page of Book 1l of Edmund Halley's edition of Menelaus’s
Sphaerica. © Burndy Library, MIT. This item is reproduced by permission of The
Huntington Library, San Marino, California.

missing, which is almost a sure bet, the Sphaerica completely reinvented
the mathematical study of the sphere. For several centuries Greek
scholars had investigated the geometry of the sphere. Their interest was

superficially mathematical, but astronomy was always just behind the
curtain. One of the earliest of these scientists was Autolycus of Pitane in
the 4th century BC (On a Moving Sphere); one of the latest was Theo-
dosius of Bithynia (Spherics), writing just after Hipparchus; the most
famous was Euclid himself (Phaenomena). Each of these books shared

one crucial, yet unavoidable shortcoming: they were not quantitative.
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Figure 3.4. Proving Menelaus’s
7z Theorem.

Although we have ave just identified three arcs, they fall into two cat-
egories. For both AZB and DEB, the correspondlng line segment is a
chord within the sphere; but for ADG, the corresponding segment is
partly within the sphere and partly outside it. We will deal with both
situations by imagining the cross-section of the sphere through each
relevant arc. In the first situation (i.e., the first two of our three arcs) the
cross-sections look like figure 3.5. We'll make the letter names generic,
so that the lemma will apply to both cases.

AB sina

L A:Infi 3.5, ,
emma A: In figure BC ™ sinf

Proof: Project A and C perpendicularly onto the vertical diameter. Since
the circle has radius 1, the two dotted line segments have lengths sina

and sinf. The two right triangles are similar, so the ratio holds. QED

Figure 3.5.






index-94_1.png
RIGHT-ANGLED TRIANGLES e 77

Now insert the third line segment into the ratio, as follows, and interpret

the two new ratios as trigonometric expressions:

sina = DE ' DF = sinAsinc.

DF OD

Three other identities may be found by choosing the three other vertices
of ODEF:

sinb = tanacotA
cosA = tanbcotc
cosc = cosacosb.

(The latter identity was known as early as the 10th century to Arabic

scientists al-Nayrizi and al-Khazin.)
Now, since A and B are just two arbitrary vertices there’s no math-

ematical distinction between them; similarly for a and b. (C is different
because it is designated as the location of the right angle.) So we may
switch A with B, and a with b, to generate three new theorems:

sinb = sin Bsinc¢
sina = tanbcotB
cosB = tanacotc.

Flipping the a and b in cosc = cos a cos b doesn’t actually get us anything
new, so for the moment we are stuck with a mere seven theorems.

We're not finished yet. So far, because of the way we've constructed
the diagram, we have not been able to generate any identities that refer
to both A and B. It’s easy, but somehow unsporting, to get such theorems
by combining our seven identities algebraically in various ways. Instead,
we'll stick with geometry.

->We need to add 4B to our diagram, so we adapt the process
that we used to construct £A (figure 5.3). Choose a point G on OA
so that a perpendicular dropped onto OC lands at E; next, drop a

perpendicular from E onto OB, landing at H. Join GH; by the same
reasoning as before, AOHG is right, and £B = LEHG.

Each of the three planes containing O now contains several similar
triangles, drawn separately in figure 5.4. These triangles will un-
lock the new identities. The idea is to start with some trigonomet-
ric ratio, say cosc = OF/OD, and interpose line segments as we did
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Atlantic
Ocean

Figure E-9.10. Sumner’s Method.

well. In this exercise we shall reproduce his discovery as he described it

in 1843.
(a) Sumner’s fundamental formula on the astronomical triangle is equiva-

lent to the Law of Cosines, but it is in a form that makes logarithmic
calculation easier:

verst = 1 — cost = {cos(¢ —0) — sin h}sece secd.

Explain why this formula is easier to use with logarithms, and derive it
from the Law of Cosines.

(b) By dead reckoning Sumner believed his latitude to be somewhere
around ¢ =51°37'N. Decrease this to 51°. From the Almanac we know
the Sun’s declination to be d =—23°23". At the moment when the clouds
parted, Sumner observed the Sun’s altitude to be h =12°10". Use this data
and the formula in (a) to determine the hour angle t. You do not need to
use logarithms.

(c) In time units, you should have found that ¢t =1"43"59*, which repre-

sents the time before local noon. However, Sumner needed to account for
the equation of time, a small effect that accounts for the fact that the Sun
does not quite travel through the celestial sphere at a constant speed. On
the date of Sumner’s observation the equation of time was 3”37°, which
implied that the apparent time had to be adjusted 3”37 earlier. Sumner’s

chronometer told him that the time was 10:47:13 AM in Greenwich.
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astronomers required of mathematics. Consider the Sun traveling along
the ecliptic in figure 3.3. Clearly its ecliptic latitude f is zero; its ecliptic
longitude A4 is determined by the time of year. (To see precisely how
to find 4, see appendix A.) Our goal is to convert a given value of 4 to
the corresponding equatorial coordinates, i.e., the right ascension & and
declination 9. It doesn’t look like Menelaus’s configuration will help us
to solve the right-angled triangle Y’ {3 A. But if one adds the solstitial
colure (the circle on the outside of the figure, through the two solstices
and the North Pole) to the diagram, suddenly a Menelaus configuration
appears— Y’ ABCN% . It’s not the only one in the figure, but it's the one
we'll use.

The diagram Menelaus uses to establish his theorem, figure 3.4 (see
also Edmund Halley’s rendition in figure 3.1), is a challenging exercise
in visualization. H is the center of the sphere. The curves are the great
circle arcs that form the spherical configuration, and the dashed lines
are the planar Menelaus configuration from which we begin. Point K is
inside of the sphere, and T is outside of it. Now, notice that for each of
the three ratios in Menelaus’s planar theorem, the points to which that
ratio refers lie on a single line segment. We wish to “pop” out these three
ratios of line segments to ratios on the corresponding arcs. So AKB will

transform to something in terms of AZB, ADT will transform to some-
thing in terms of ADG, and DLB will transform to something in terms

of DEB.
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Figure 5.2. The right-angled spherical triangle.

rather than between planes. To make this transition, pick any point D on

OB. Drop a perpendicular to E on OC; next, drop another perpendicular
from E to F on OA, forming right triangle DEF inside the sphere. AODE,
ADEF, and AOEF are clearly right triangles. But although AODF looks

right-angled as well, how can we tell for sure?

—~>Pythagoras comes to our rescue. Consider the square of the
hoped-for hypotenuse OD:

OD? = OE’ + ED?
= (OF* 4+ EF?) + (DF’ — EF?) = OF’ + DF’.

So, by the converse of the Pythagorean Theorem, AOFD is a right-
angled triangle as well as the other three faces of tetrahedron
ODEF. Thus DF is perpendicular to OA. So, since FD and FE are
both perpendicular to OA, £ DFE is equal to the angle between the
two planes OAC and OAB, which in turn is equal to £A.>

Applying trigonometry to figure 5.2 produces magical results. From
this diagram alone, we may derive no less than seven formulas relat-
ing elements of the right-angled spherical triangle. The key is to con-

sider the four corners of tetrahedron ODEF. Each vertex is the shared

terminus of three line segments. Pick any vertex and identify a ratio
consisting of two of the three line segments that may be interpreted as a

trigonometric function; for instance, at D,

sing = DE
OD
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Figure 3.7. Proving Menelaus's Theorem B.

Ptolemy’s Almagest sparked his interest in these matters, but his proof of
Theorem B comes from another treatise (On the Sector Figure).

—>Figure 3.7 begins with the same configuration as before. Ex-
tend BA and BD to form two semicircles connecting B to its antip-

odal point X. This action leads us to a new Menelaus configuration
XAZEGD, to which we can apply Theorem A:

snnAZ __sin GZ stE
smAX sin GE stX

But since BZAX is a semicircle, sinAX = sin(180° — ﬁ) = sinﬁ;
likewise, sin DX = sin BD. Substituting and shuffling a bit gives us >

smAB sin BD . sin GE

Menelaus’s Theorem B: —— ——
mnAZ sin DE sin GZ

These two theorems had several names during the medieval period.
The name “Regula sex quantitatem,” or Rule of Six Quantities, explains
itself. In medieval Islam it was called the “Sector” or “Transversal” fig-
ure. The theorem is awkward to remember and use in the form given

above, so we shall express it more simply (figure 3.8).
sing _ sin(c+d) sing
sinb sind  sinh

sin(a+b) _ sin(g+h) _ sin f
sina sing  sin(e+ f)

Disjunction:

Conjunction:
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Figure E-4.9.

(south)

(a) Use the Rule of Four Quantities on figure PGCBF to find EG.
(b) Use the Rule of Four Quantities on figure EFPNH to find PE, and

from it find ME.
(c) Use the Rule of Four Quantities on figure EMFHD to find MD.
(d) Finally, use the spherical Law of Sines on APGM to find £PGM, the

direction of the qibla.
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Figure 9.12. A nautical chart containing the fix for our ship.

we mark the top and bottom vertical lines 60 nautical miles above and
below 47°30’, at ¢ = 48°30" and ¢ = 46°30". The longitude scale, however,
is different. From exercise 9 of chapter 2, recall that the east-west dis-
tance corresponding to one degree of longitude decreases as one moves
north, according to the cosine of the latitude. We can work out this scale
cleverly without a needing a calculator to compute the cosine: mark two
places on the circle 47°30" up and down from the rightmost point of the
circle, and draw a vertical line. Do the same on the left. The three verti-
cal lines will each be 1° apart in longitude.

Earlier we calculated Venus’s azimuth to be 79°09.3" west of North,
so we draw the azimuth line onto our chart. The intercept is 21.2 nauti-
cal miles, so we must move that distance away from the center of the
circle. But in which direction? In this case we must travel away from
(rather than toward) Venus or disaster will ensue. As seen on figure
9.10, if h.> h, then we must move away from Venus, and if h. < h_, we

must move toward it. Navigators remember this rule by memorizing
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Figure 3.6.

For the last cross-section, the segment is partly inside and partly out-
side of the circle (figure 3.6). Since there is only one instance of this

construction in our Menelaus configuration, we have no excuse to make
the letter names generic, other than good mathematical form. However,
that reason is good enough for us; and in any case, we will have the op-
portunity to re-use this lemma in an exercise at the end of the chapter.

Lemma B: In figure 3.6, AC _sina

AB  sinf’

Proof: Project B and C perpendicularly onto the horizontal diameter.
The result follows immediately from the fact that the two right triangles

are similar. QED

Menelaus’s spherical theorem is now upon us. Since every ratio of line

segments in Menelaus’s planar theorem may be replaced by the sines of
the corresponding arcs in figure 3.4, we conclude

Menelaus’s Theorem A: siné\ = siné_(i ~ Sinlf)\.
sinBZ sinGD sinEB

Now if there is a Theorem A, then there must be a Theorem B. Ptolemy
states and uses a second theorem in the Almagest, but he doesn’t prove
it, and as far as we know, neither does Menelaus. It is possible to prove
it directly, but instead we shall follow the footsteps of the 9th-century
scientist, translator, and commentator Thabit ibn Qurra, who arrived

at it by piggybacking on Theorem A. Perhaps Thabit's commentary on
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pages contain almost 3000 entries of the gibla for every degree of lati-
tude and difference in longitude for all Earthly locations that mattered.

The effort involved must have been Herculean.

Exercises

1. Repeat question 1 of chapter 3, but use only the Rule of Four Quantities.

. Repeat question 2 of chapter 3, but use only the Rule of Four Quantities.

. Prove Aba Nasr’s second theorem using Menelaus.

. In our proof of the spherical Law of Sines we assumed that perpendicu-
lars dropped from all three vertices will lie within the triangle rather than
outside of it. Of course, this is not always true. Demonstrate the Law of
Sines for a triangle where one of the perpendiculars lies outside of the
triangle.

. (a) Another important discovery in Abua ’1-Wafa’s Almagest is the Law of
Tangents: in figure 4.1,

sin AB - tan BD

sinAC tan EE‘ .

Prove this identity using Menelaus’s Theorem.

(b) The Law of Tangents is a powerful tool in spherical astronomy. Use
it to derive an identity for the right ascension « of an arc of the ecliptic,
given its declination d and the obliquity of the ecliptic ¢.

. Use figure 4.4 and similar triangles to reconstruct an Indian formula for
the right ascension, sina = sin A cos¢/cosd. (Hint: you will need a second
pair of similar triangles, in addition to the pair ED and COK.)

. Repeat question 4 of chapter 3, on Ptolemy’s determination of the ortive
amplitude, but this time use only the Rule of Four Quantities. (Recall that
the east point E is 90° removed from all points on the meridian, the circle
forming the outer border of the diagram.)

. Repeat question 5 of chapter 3, on finding one’s terrestrial latitude from
the length of the longest day, using only the Rule of Four Quantities.

. In this question we shall work through another of al-Birini's methods
for finding the qibla of Ghazna in The Determination of the Coordinates
of Cities. The diagram (figure E-4.9) is identical to figure 4.7, except that
AMW is omitted, and GFH is drawn from G perpendicular to PM. Recall

that BC = A1=27.37°, GC = ¢, = 33.58°, and MB = ¢,, = 21.67".
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Now the secret may be revealed. The true position in this example,

from which the altitude observations were obtained using astronomical
software, is exactly ¢ =48°15'N, 4 =126°00"W. The true position is so
close to our fix that the thickness of the lines at the intersection of the

two LP’s covers both locations. We have pinpointed our ship to a dis-
tance of less than 1000 feet.

Exercises

1. Finding one's terrestrial latitude is as easy as measuring the altitude of
the North Star, but sailors often used a more accurate method called
the “noon sight” Near local noon in the northern hemisphere, the Sun
crosses the meridian (the great circle through the north and south points
of the horizon and the zenith) in the south, reaching its maximum
altitude. For a number of minutes around noon its altitude is almost
constant. The sailor repeatedly measures the Sun’s altitude near noon, and
considers the noon sight to be the largest measured value.
(a) Use the concepts from chapter 2 to explain how this measurement
determines the local latitude. One quantity from the Nautical Almanac is
needed; which one?
(b) On June 23, 2011, a sailor gets a noon solar altitude of 60°25.1". What
is the local latitude? (Use the Nautical Almanac, paper or online, to get
the quantity you need.)

. Make an hour angle diagram for Mars and Altair using your local lon-
gitude, for June 22, 2010 at 0900 GMT. Use the page from the Nautical
Almanac reproduced in figure 9.6.

. (a) Since the haversine formula is an alternate formulation of the Law of
Cosines, it clearly applies to any triangle, not just the astronomical one.
Express the formula in terms of a general triangle with sides a, b, c and
angles A, B, C.

(b) Solve a=52°, b=39", c = 44° using the haversine formula.

. (a) Show that sina sinb = hav(a + b)— hav(a — b). (Hint: Use the cosine
addition and subtraction formulas.)

(b) Substitute this result into the equation you generated in question 3(a),

to obtain the following formula that involves only haversines:
hav ¢ = hav(a —b) + [hav(a + b) — hav(a — b)] hav C.

[Nielsen/Vanlonkhuyzen 1944, 119]
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The Modern Approach:

Right-Angled Triangles

The word “trigonometry” means “triangle measurement,” which is how
we've thought of the subject for the past several centuries. The term
comes from Bartholomew Pitiscus’s 1600 book Trigonometria (figure
5.1), a variant of the phrase “the science of triangles” that had been used
for a number of decades previously. But considering a triangle on its
own, as millions of high school students do every day in trigonometry
classes, is a relatively recent idea. From what we’ve seen so far of ancient
and medieval trigonometry only the spherical Law of Sines works this
way, and it wasn’t used particularly often. There was simply no need
for alternatives. When you're blessed with a system that works as well
as it did for ancient and medieval scientists, you don't go hunting for
innovations.

As we've seen, the Menelaus configuration was replaced with simpler
figures during the 10th and 11th centuries. Simplifying even further to
just a triangle may seem obvious to us, but it wasn’t at the time. The
tangent was only starting to be recognized as a trigonometric function,
breaking out from its limited role in the theory of sundials and altimetry,
and it hadn’t really been incorporated fully into spherical astronomy.
Unfortunately, the potency of considering the triangle as its own en-
tity only becomes clear once we have in our possession the six-function
wonder that we call trigonometry today.

So, the approach that we find in almost all modern textbooks of
spherical trigonometry is a product of European science. Much of it
was conceived already quite early in the 17th century, long before the
industrial revolution, calculus, or even coordinate geometry. A few of
the formulas we’ll see in this chapter go back to medieval or ancient
astronomers, but much of what we’re about to see was systematized in
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security. Several astronomical approaches were attempted, especially
using distances measured from the center of the Moon to the Sun, a
planet, or some reference star. The navigator could look up these dis-
tances in the Nautical Almanac (first published in 1767) as they would be
seen by an observer at Greenwich, and thereby determine the time of day
at Greenwich. Comparing this result with his local time gave the longi-
tude, simply by multiplying the difference by 360°/24"r = 15. Navigators
were lucky to have the Moon for this purpose; it was the only celestial
object that moved fast enough to achieve the accuracy that was required.

However, the only person who can be said (in a sense) to have won
the Longitude Prize—offered by the British government in 1714 for the
first practical solution—was not a scientist, but a clockmaker. Between
1730 and 1759 John Harrison constructed a series of four chronometers
capable of keeping astonishingly accurate time, even on a ship tossed
by waves. Set the clock to the correct time at Greenwich; when at sea,
simply use the difference between local time and Greenwich time to find
the longitude. The story of Harrison’s tribulations first in building the
instruments, and then in convincing the government of his success (he
was eventually awarded half of the money in 1765 but never officially
won the prize), is so dramatic that it has been turned into a popular
book and an A&E miniseries.

As successful as Harrison’s timepieces were, those made by his com-
petitors were not as reliable as his own inventions; and the best chronom-
eters took months or even years to produce. Through the first half of the
19th century navigators usually preferred the lunar distances method.
However, its use of involved mathematics taxed seamen’s abilities, and
nautical academies were called upon to train them in the delicate op-
erations required to make the method work. Up to the first half of the
20th century, numerical tables were designed more and more cleverly to
remove as much as possible the mathematical burden.

Preparing to Navigate: The Observations

We conclude our voyage through spherical trigonometry by exploring

one of the most common techniques of determining one’s position at
sea, the Method of Saint Hilaire (also known as the intercept, cosine-

haversine, or Davis’s method), which revolutionized navigation in the
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A

B

Figure 2.8. A spherical triangle.

Figure 2.9. Converting between arcs and angles. The two spheres are identical. The
second sphere is viewed from directly above A, so the two semicircles appear to be
straight lines.

the endpoints (forming the arc containing the star Betelgeuse), the joining

arc will have length £ =23.44°. This relation can be seen from figure 2.9.
Let A be the pole of the great circle that, from our point of view, appears as
the edge of the sphere. Then both arcs joining A to the edge are 90° long,

and they intersect the great circle at right angles. Imagine looking down
on the sphere from directly above A, so that the arcs appear as straight line
segments. Then the angle 6 at the center of the diagram will be equal to

the arc 8 on the great circle. We will use this fact frequently.
In the rest of this chapter, we consider the possible dimensions of

spherical triangles.
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well, and there’s an interesting side story here. What made the Elements
so important to the Greeks was that it exemplified how one should think

in mathematics: start with a few simple axioms, and reason from them
step by step until a grand edifice of unshakable theorems is established.

However, there was a problem. To prove many of the interesting propo-
sitions, Euclid was forced to accept this rather ungainly statement with-
out proof:

That, if a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, the two straight lines, if pro-
duced indefinitely, meet on that side on which are the angles less than the

two right angles.

This assertion turns out to be equivalent to either an implication of
Euclid’s Proposition 31, “there is only one line through a given point
that is parallel to another given line,” or Proposition 32, “the angles in
a triangle sum to two right angles.” This latter statement should give us
pause, since we know now that it’s not true for spherical triangles. No
one was ever able to prove the parallel postulate from the other axioms,
and for good reason: it simply cannot be done. Euclid avoided it as long

as he possibly could, until finally he was forced to use it in Proposition

29. Now, it turns out that spherical geometry is one of the non-Euclidean

geometries that is consistent with Euclid’s other axioms, but not with the
parallel postulate. Since Proposition 20 comes before 29, Euclid’'s proof
works on the sphere as well as it does on the plane.

We are now in a position to find an upper bound for the perimeter of
any spherical triangle.

Theorem: The sum of sides in a spherical triangle cannot exceed 360°.

<> Proof: In figure 2.8, join A, B, and C with straight lines,
forming a tetrahedron with O. The nine angles in the tetrahedron,
excluding the angles in face ABC, must add up to 3 X 180° = 540",
since they form three triangles. Now, the sum of the two of those
nine angles that are located at A exceeds £A in the plane tri-
angle ABC (by the same argument that led to the lemma a few
moments ago), and likewise for the pairs of angles at B and C.
Therefore,
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What Is the Smallest and Largest Possible
Perimeter of a Spherical Triangle?

At first glance, each side of a triangle might be as long as 360°. But
almost all authors restrict side lengths to 180° for two reasons: firstly,
one can always replace a triangle with a side greater than 180° with an-
other triangle with a side less than 180°, simply by joining the endpoints
around the other side of the sphere. (One does get bizarre and inter-
esting geometry by ignoring this restriction though; see Todhunter/
Leathem 1901, Chapter 19.) Secondly, many of the theorems we are going
to demonstrate about triangles would be more complicated to express if
we allowed such strange beasts as triangles with sides greater than 180°.
This is the same reason that number theorists exclude 1 from the list of
prime numbers, and if they can redefine a concept so as to make their
lives easier, then so can we.

The sum of sides on a spherical triangle can become as small as we
can draw, so we care only about the maximum perimeter. If a sphere is
available, it’s a good exercise to attempt to draw triangles with as large
a perimeter as possible. You'll soon discover that you can get nowhere
near the obvious upper limit, 3-180° = 540".

We need an intermediate result:

Lemma: The third side of any spherical triangle cannot exceed the sum
of other two.

->We may see why this is true as follows. Examine the angles at O
corresponding to the sides in figure 2.8. Imagine allowing segment
OA to fall onto the plane OBC, leaving O in place but bringing A
downward. Then two of the angles would fit perfectly within the
third. But if we lift A back into its original position, the two angles

at O that rise with it become larger. So their sum must be greater
than £BOC on the plane.>

If you are not happy with the informality of this argument, I can
bring none other than Euclid to my defense. The planar equivalent of

this statement, that the third side of any plane triangle cannot exceed
the sum of the other two sides, is Proposition 20 in the first book of the

Elements. Curiously, Euclid’s proof works for spherical triangles just as
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Figure 9.7. Hour angle diagram for Spica off the coast of Washington state on June 23,
2010 at 5:00 a.m. GMT.

no sums. The lack of logarithms wasn’t the only problem with the Law

of Cosines. If h happens to be small, then cos h changes very slowly with
respect to changes in h. The implication is that computing backward
from cos h to h causes small rounding errors in cos h to be magnified

greatly when h is found.

Necessity, the mother of invention, presses us into action. Historical
navigators had more trigonometric functions available to them than we
have today, and some of them have very nice properties. A few have an
ancient pedigree. In addition to the sine, ancient Indian astronomers
invented the “versed” (short for “reversed”) sine,

vers @ = 1 — cosé.

Its Latin name, sagitta or “arrow,” comes from its geometric definition
(figure 9.8): if the chord of an arc is the string of a bow, the sagitta is the
tip of the arrow.

One might imagine that introducing this function might simplify the
trigonometry only a little, since the versed sine is just 1 minus the cosine.
However, a hidden advantage comes into play with the application of a
well-known identity:
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Figure 9.6. A page from the Nautical Almanac, 2010. © British Crown copyright
and/or database rights. Reproduced by permission of the Controller of Her Majesty’s
Stationery Office and the UK Hydrographic Office (www.ukho.gov.uk).
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Sum of sides = Angles at O
540° — (angles at A + angles at B+ angles at C)

< 540°—(AA+ 4B+ £C)
= 540°—180° = 360°.

QED->

What Are the Smallest and Largest Possible
Sums of Angles in Spherical Triangles?

We'll take a surprising path to answer this question, but we'll start off
with a stroll in the park. Just as we did with side lengths, we can restrict
any angle of a spherical triangle to a maximum of 180°, since if we have
a triangle with a larger angle, we can simply reverse the roles of the “in-
side” and “outside” of the triangle to get an angle less than 180°. Then
we can reach the theoretical maximum of 540° simply by taking three
points along the equator, spaced equally 120° apart, and calling them
the vertices of a triangle. Or, if you're uncomfortable with triangle sides
being collinear, raise all three of the vertices slightly above the equator.
We approach the question of the minimum sum of angles from a side
issue, to catch it by surprise. The great Muslim scientist al-Birani, who
showed us how to find the size of the Earth in chapter 1, had an almost

equally illustrious teacher, Aba Nasr Mansar ibn ‘Ali ibn ‘Iraq, near the

turn of the first millennium. The two men lived in an astonishing time.
Muslim science was exploding, re-inventing itself in a number of ways
and outstripping its Greek heritage in much the same way that the En-
lightenment did in Europe. We shall see in chapter 4 that plane and
spherical trigonometry were affected dramatically. But we are getting
ahead of ourselves.

Abu Nasr Mansar suggested the following construction. In any
spherical triangle ABC, extend side AB (figure 2.10; see figures 2.11 and
2.12 for historical illustrations of the same diagram). Think of it as an
equator, and let C’ be the pole that is on the same side of AB as the origi-
nal triangle is. Repeat this step for the other two sides, defining A" and
B'. Join A’, B, and C’, and we have formed the polar triangle of AABC.

At first glance this construction seems mystifying. The two triangles
have no obvious geometric relation to each other; sometimes they inter-
sectand sometimes they don’t. Sometimes one triangle entirely encloses
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The Method of Saint Hilaire

While we ventured briefly into the world of haversines, we had left our
ship somewhere off the coast of Washington state needing to compute
the altitude h, . of Venus and Spica. We shall follow the method of Saint
Hilaire as it was updated and used in the 20th century. A career officer
in the French navy, Adolphe Laurent Anatole Marcq de Blond de Saint
Hilaire was captain of the School Ship Renomée from 1873 to 1875 when
he published the papers that led to his method. He would eventually rise
to Rear Admiral, and he died in 1889 while serving as Commandant of
Marines in Algeria. His method is inspired by the work of his predeces-
sor Thomas Sumner, which we shall explore in an extended exercise at
the end of this chapter. Saint Hilaire’s “New Navigation” was developed
in the decades following the appearance of his papers. It had become
established, especially in France but soon everywhere else, by the early
20th century. If one is to judge success by popularity, the New Naviga-
tion was the best of all methods; it was the standard procedure until new
technologies gradually replaced all celestial methods of navigation in
the second half of the 20th century.

We have enough information to find h_, since we know three quan-
tities in the astronomical triangle: the local hour angle t =86°13.2,
Venus’s declination 0 =+19°32.4" (from the Nautical Almanac), and at
least a dead reckoning value for the local latitude, ¢ = +47°30". We could
apply the Law of Cosines, but we shall make things easier for the naviga-
tor. With haversine tables in our possession, we can manipulate the Law
of Cosines into a form amenable to their use.

—->We start with

cos h,. = cosd cos@ + sind sing cost.

Applying the formula cos@ =1— 2 hav 8 to cos h,. and cost, we get
the ungainly

1 — 2 hav I;c = cosd cosgp + sind sing — 2sind sing hav t.

But cosd cos@ + sind sin@ = cos(d — p) = cos(p — 0). If we replace
this latter expression with its haversine equivalent and clean up a
bit, we arrive at the haversine formula of navigation:
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Figure 9.8. The versed sine.

. 2
vers@ =1 — cos@ = 2sin” =;

or, altering the definition slightly by dividing by 2,

hav 8 = }(1— cos#) = sin’ g

This half versed sine, or haversine, first tabulated by James Andrew in
1805, eventually became a favorite among seamen. A natural advantage
of the haversine is that its values, the squares of sines, are always posi-
tive. This property means that a navigator never needs to worry whether
the value of the haversine is positive or negative. Even better, since the
haversine rises from 0 to 1 for arguments from 0° to 180°, the function
is invertible in this range. So, taking the inverse of a haversine does not
cause the same problems we saw in previous chapters when taking the
inverse of a sine.

Another feature of the haversine recommends itself to scientists.
Astronomers often work with very small arcs, for instance between
two nearby stars. Imagine using the Law of Cosines on a small tri-
angle. A quantity something like cos(0.01°) might arise; its value is
0.999999984769. If your calculator rounds to seven decimal places, it
will record the cosine as 1. When the inverse cosine is taken, it will an-
nounce that the angular separation is zero! On the other hand, the ha-
versine of 0.01° is 7.615 X 10~"—a very small number, but not one where
the rounding of significant figures will cause a problem.
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Figure 9.3. The altitude and azimuth of a star.

The sun has just set, and Venus is a bright evening star trailing the
Sun in the western sky. Meanwhile, just west of south, Spica is shining
brightly. So their azimuths (the direction of the object along the horizon
measured from the north point; see figure 9.3) differ by about 90°. We
shall see later that this is a great advantage. We check our chronometer
set to Greenwich Mean Time; conveniently, it reads exactly 5:00 AM
on June 23, 2010. Using our handy sextant, we measure the altitudes
of our two celestial bodies; for Venus we get h, =16°25.1" and for Spica
h,=28°14.1". We are a bit fortunate with Venus, because atmospheric
refraction makes it hard to measure accurately when the object’s altitude
is less than 15°. Under good conditions an experienced sextant operator
can measure the altitude to within 0.1 minutes of arc, so we may trust
our observations to the given precision.

Now, since we are very unlikely to be exactly at the AP, our values for
h,, will not quite match the altitudes at the AP; it is these differences that
will allow us to fix the ship’s position. So our next task is to compute the
altitudes h,. of Venus and Spica at the AP, as well as their azimuths Z. In
theory it is possible to observe Z directly. But in practice this can't be
done accurately enough: there is no visible surface feature from which
to measure either at the north point of the horizon or below the star on
the horizon. Z is also an angle on the surface of the celestial sphere at
the zenith, but navigational instruments measure only arcs, not angles
of triangles. So we have no choice but to compute Z.

As navigators not interested in trigonometry for its own sake, we
could calculate h . and Z using nautical tables designed for this purpose.
But as mathematicians, we would like to know what is going on. We

appeal to the astronomical triangle, defined by connecting our star, the
North Pole P, and the zenith Z (figure 9.4). The sides of this fundamen-

tal triangle are all familiar quantities: the complement of our known
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Polar Duality Theorem: The sides of a polar triangle are the supple-
ments of the angles of the original triangle, and the angles of a polar

triangle are the supplements of the sides of the original.

“Proof: In figure 2.10 both D and E (extensions of the sides

of the original triangle to the sides of the polar triangle) are 90° re-
moved from A; therefore LA = DE. Now since C’ is a pole of ABD

and B’ is a pole of ACE, both C'D and B’E are 90°. Therefore
BC'=BE+ C'D— DE=180"— DE =180"— £A.

Similarly for the other sides of the polar triangle; we have now dis-
patched the first half of the theorem. The second half follows im-

mediately from the duality relation: simply apply the result we have
just established to the polar triangle and its polar (i.e., the original

triangle), rather than the original and the polar triangle. QED->

Why is this theorem being championed so strongly? Its remarkable

power lies in the fact that it can be used as a theorem-doubling machine.
From now on, any time we discover something about the sides of a tri-

angle, we shall immediately know something about its angles, and vice
versa. There may not be such a thing as a free lunch, but polar triangles
get us two theorems for the price of one. We shall cash in on this bargain

immediately.

Theorem: The angle sum of a triangle must exceed 180°.

Proof: We know that the sum of the sides of the polar triangle must be
<360°. Since the sides of the polar triangle are the supplements of the

angles of the original,

(180°— A) + (180° — B) + (180° — C) < 360°,

soA+B+C>180°. QED

In this sneaky way, we have accomplished our goal of determining
bounds on the sides and angles of a spherical triangle. The sum of the

sides must lie between 0° and 360°, while the sum of the angles must
lie between 180° and 540°. And now, finally, we have enough spherical

geometry under our belts to tackle some spherical trigonometry.
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Figure 9.5. Hour angle diagram for Venus off the coast of Washington state, 5:00 a.m.
GMT, June 23, 2010.

as 158°33.4". So, measured westward from M, Spica’s local hour angle ¢ is
—126°45"+ 346°15.9'+158°33.4" — 360° = 18°04.3".

A Digression: The Haversine

Now that we know three quantities in our astronomical triangle (9, ¢,
and t), solving for h,. should be a direct application of the Law of Cosines,

cos h = cosd cosyp + sind sing cost.

But at sea in the early 20th century, prior to the advent of the pocket
calculator, the navigator had to rely on numerical tables and hand cal-
culation. We have seen before that logarithms were extremely useful
here—they could convert the multiplication of messy trigonometric
values to the much simpler task of adding them. Unfortunately, the Law
of Cosines does not lend itself to logarithms. Since there is no formula
for the logarithm of the sum of two quantities, the logarithm of the right
side of our equation does not simplify. In practice, often the astronomi-
cal triangle was divided into two right triangles so that Napier’s Rules
could be applied in place of the Law of Cosines. These so-called “short

methods” played well with logarithms since the Napier formulas contain
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R Figure 9.4. The astronomical triangle.

{aquator

horizon

latitude ¢, the complement of the star’s known declination d, and the
complement of the star’s sought altitude h_. Two of the angles are useful
as well: Z is equal to the star’s azimuth, which becomes clear if we extend
both of the sides departing from Z down to the horizon; and the angle
at P is the star’s local hour angle t. (The third angle, called the parallactic
angle, will not concern us here.)

We may find the hour angle with the help of the Nautical Almanac,
which gives us the information needed to construct an hour angle dia-
gram. For Venus (as well as the Sun, Moon, and other planets), con-
sider figure 9.5. Place point M at the top of the circle, representing the
local meridian, and draw a radius connecting M to the center. Next
place Greenwich G on our diagram; since our assumed longitude is
A=126"°45"W, Greenwich’s meridian is 126°45" east of ours. We turn
next to the Nautical Almanac (see figure 9.6); it tells us that the Green-
wich hour angle GHA of Venus at our time is 212°58.2". (For an online

equivalent to the Nautical Almanac, see appendix C.) So we place Venus
212°58.2" counter-clockwise from Greenwich. From the diagram, then,

we see that the local hour angle is t =212°58.2"—126°45" = 86°13.2".

For Spica (or any star) the hour angle process involves an extra step.
In figure 9.7, draw M and G as before. The Nautical Almanac tells us that
the Greenwich hour angle GHA of the vernal equinox Y, the first point

of Aries, is 346°15.9"; so we place Y’ 346°15.9" counter-clockwise from
G. Finally, we must position the star itself on the diagram. The Nautical

Almanac gives Spica’s displacement from Y’ its sidereal hour angle SHA,
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Exercises

1. (a) Following Hipparchus's model in figure 2.5, determine the eccentric-
ity of the solar orbit. You may use modern trigonometric functions, and
assume that the radius of the circle is 1. (Hint: first convert the lengths of
spring and summer—94': days and 92': days—to degree measurement,
using the fact that the year is 365% days long. Then, using both of the
resulting arcs, determine the values of both of the two small angles that
represent the excess of the spring arc over 90°.)

(b) Use the same diagram to determine the arc length from the spring
equinox to the Sun’s apogee (its furthest distance from the Earth). This is
the longitude of the Sun’s apogee.

. Show that the area of a lune with angles 8 is 71r°68/90, where r is the radius

of the sphere.

. The altitude of the North Star above the horizon is equal to the terrestrial
latitude of the observer. Why? Draw a picture to demonstrate.

. In the Almagest, Ptolemy shows how to determine the obliquity of the
ecliptic £. One begins by placing a stick exactly 1 meter long vertically
into the ground (see figure E-2.4). This stick was called a gnomon. On an
equinox, at high noon, measure the length of its shadow.

(a) The arc from the zenith down to the Sun is equal to your terrestrial
latitude. Explain why, with an appropriate picture.

(b) At your location at an equinox at high noon, how long will the
shadow be? (Calculate, don't estimate.)

Summer
solstice

Equinox

Winter
solstice

Gnomon (1 m)

Ground

Figure E-2.4.
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So much for the standard formulas. More derivations may be found
in the exercises, but we cannot resist showing one beautiful new result.

Euler’s Formula: No, not that Euler’s formula, but rather the one that
determines a triangle’s spherical excess from its side lengths:

14+ cosa+cosb+ cosc

E=——"2r—°"" " =
cos 4 cos(al2)cos(b/2)cos(c/2)

To prove it, apply the planar Law of Cosines to the derived triangle:

b C

= cos’ 2 + cos’ 2cos’ £ — 2cos€cosZcosEcosE
2 2 2 2 2 2

Double this expression and solve for the rightmost term; then factor
the rest:

a : :
cos - cos—cos-cosE = cos COs—cos— + sin_sin
2 2 2 2 2 2 2

b ¢ 2+(bC bb)

(cochos£ — sianing),
pi pi pi pi

a_ b ¢ Y b—c_ b+c
2cos=cos—cos—cosE = cos” = + cos cos :
2 2 2 2 2 2

Apply the identities cos’(6/2) = (1 + cos 6)/2 and cosa cosf =
(cos(a + B) + cos(a — f3))/2. Shuffle the terms, and we're done.

The divergent reactions to Donnay’s book in the 1940s American
mathematical community strike a familiar chord today, split between
commitment to the practical payoff of the subject and appreciation for
its intellectual elegance. In the Mathematical Gazette the pragmatic
B. M. Brown took a dim view of Cesaro:

This approach does not commend itself for the purpose of introducing stu-

dents to spherical trigonometry . . . the total amount of preliminary work to
be done more than offsets any subsequent advantage over the normal method.
Spherical trigonometry is a subject whose purpose is largely utilitarian, and
what a student requires above all else is a clear understanding of the meaning
of sides and angles of a spherical triangle, and a knowledge of the sine, cosine,

polar cosine and four parts formulae, together with Napier's rules.
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becomes a statement about a plane triangle. In our case, imagine the
configuration of figure 4.1 shrinking until it is so small that the sides are
almost straight. In radian measure, as x — 0, the value of sin x essentially
becomes x itself. (This, in fact, is why radian measure is so useful. If we
use degree measure, a multiplicative factor of /180 emerges, but since
we are here considering a ratio of sines, this factor cancels out.) So, re-
placing the sines of the arcs in the Rule of Four Quantities with the arcs
themselves, we find that for two nested right triangles, the ratios of the
altitudes to the hypotenuses are equal. It's similar triangles.

Since the Book of the Azimuth is lost, we cannot witness the death of
Menelaus by Aba Nasr’s hand directly. Happily Aba Nasr’s sequel, The
Determination of Spherical Arcs, is still with us, and in it he solves al-
Kihi’s rising times problem using both his new theorems. We shall do
even better here, challenging al-Kuhi as Aba Nasr might have done by
using only the Rule of Four Quantities. For ease of reference we bring
back the diagram from the previous chapter as figure 4.2.

(1) We begin with figure Y& GZM, from which we find 5% =¥, or
sind =sin4sine.

(2) Use figure ECHQM, from which we have 222 = =222 oy sing =

singy |

sino/cos . | .
(3) Use figure NGMQH, which gives I = M r sinMQ =

sin(90°—8) — 1
cosn/cosO.

Figure 4.2. Rising times, this time with the Rule of Four Quantities.
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Figure 4.1. The Rule of Four Quantities and Aba Nasr’s second theorem.

sinf)? _ sinﬁ-l\)

Abii Nasr’s Second Theorem: ——= =
sinEF  sinAB

At first it appears that these theorems are nothing more than corollar-
ies to Menelaus, and in a mathematical sense they are.

Proof of the Rule of Four Quantities: Apply Menelaus’s conjunction
. - sinAD
theorem to figure 4.1; we get —== —= 2=,

But it is not mathematical depth that permitted the Rule of Four
Quantities to take over astronomy; rather, it was its ease of use in new
contexts. By breaking off one of the arms of the Menelaus configuration,
Abu Nasr presented astronomers with a tool that extended their work-
ing lives by decreasing their mathematical labors. A Rule of Four Quan-
tities configuration is just two nested right-angled triangles; to apply it

to a diagram is child’s play compared to the confusing morass of arcs we

find in Menelaus.

The Rule of Four Quantities is also our first example of the principle
of locality. Imagine a spherical triangle shrinking in size until it almost
vanishes. As it gets smaller it begins to resemble a plane triangle; and
when it is very small, it almost becomes one. Therefore any statement
about a spherical triangle, applied to a triangle shrinking to nothingness,
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A

Figure 4.3. Abu 'l-Wafa’'s proof of the spherical Law of Sines.

the equator for pole B; extend the sides of the original triangle
to touch both equators as shown. Then apply the Rule of Four

Quantities to two configurations, both involving CD. Firstly, on
ACZED we get

Si‘j‘ CD _ Sinf-é, or sinCD = sinA - sinb.
sinb  sinAZ

Secondly, on BCTHD we get

sinCD _ sin TH T . .
' = =——=, or sinCD = sinB " sina.
sina sin TB

Combine the two equations and eliminate the shared term sin CD.
A little juggling results in

sina _ sinb
sinA  sinB’
But we could have started the argument equally well with any of

the three vertices, not just C. (This isn’t quite true; in some trian-

gles the perpendicular doesn't fall on the opposite side. We sweep
this difficulty under the carpet by relegating it to the exercises.) If

we had applied it to A, for instance, we would have ended up with
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(4) Finally, use figure NGZM$ to get ::2:23::;;=““;‘F’2, or sinMZ =
cosA/cosO.

Just as before, 8= 1\71?2 - 1\72, and we are done. There is no doubt about

it: the Rule of Four Quantities is much easier to apply, and we get results
much more quickly. Menelaus and al-Kuahi didn't stand a chance.

But there was more to come. The Rule of Four Quantities is related to
a theorem more well known today—the spherical Law of Sines—and this
latter theorem did not slip by Muslim scientists unnoticed. Once again
controversy erupted over who deserved credit for its discovery, between
two disputants we have met before: Aba Nasr and Abu ’l-Wafa’. Al-
Birini reported on the exchange in his aptly-named Keys to Astronomy,
favoring Abi Nasr and frowning on Abu ’l-Wafa’’s moral character—
but since the former was al-Birani’s teacher and Abu ’l-Wafa’ may have
died by the time the Keys was written, one wonders how much we can
trust al-Birani’s claim.

Abi ’l-Wafa’ was not shy about his accomplishments; he named his
masterwork on the subject the Almagest—the “majestic,” the same title
as Ptolemy’s magnum opus. In this case he had at least a little justifica-
tion to the exalted title. The new Almagest is an astonishing book: com-
prehensive and thorough, yet completely new and strikingly elegant.
Among its many innovations, Abu ’l-Wafa’s Almagest introduced the
tangent and the minor trigonometric functions (secant, cosecant, cotan-
gent) into astronomical practice. Until this time the tangent had been
available, but used mostly with gnomonics, the study and construction
of sundials. As can be seen from exercises 4 and 5 of chapter 2, the tan-
gent arises naturally in that context—so naturally in fact that its recipro-
cal, the cotangent, was called the “shadow.”

Although the Law of Sines was more integral to Abii Nasr’s work than
to Abi ’1-Wafa’’s, we have already spent some time with Aba Nasr, so we
shall inspect Abu ’1-Wafa’’s proof in his Almagest. Figure 4.3 shows Abii
’l-Wafa”s diagram. The power of the Law of Sines comes from the fact

that it applies to any triangle, regardless of its configuration; in the case
of our figure it is AABC.

->Choose C to be one of the vertices, so that its perpendicular

projection onto the opposite side AB lands between A and B, at
D. Let EZ be the equator corresponding to pole A, and let HT be






index-82_1.png
THE MEDIEVAL APPROACH ¢ 65

really fair. We can skip over Europe, since until the end of the medi-
eval period much of the work that went on there was based on Islamic
sources. But we cannot safely ignore India. As we saw earlier it was in
India that the sine function was invented, some time after the Greeks
invented the chord and centuries before the birth of Islam. The extent to
which Indian trigonometry was inspired by Greek texts is deeply con-
troversial. Some writers claim that Indian scientists developed their the-
ory entirely on their own, which is a difhcult position to maintain given
the striking similarities in many of the basic concepts and conventions.

But the other extreme, stating that Indian trigonometry is entirely
derivative of Greek methods, is not fair either. This is especially true
in spherical astronomy, where India developed a set of techniques that
differed fundamentally from the Greek system based on Menelaus. Up
to now, once Menelaus has been established, all of our subsequent math-
ematical work occurs on the surface of the sphere. This approach did not
hold in India. In fact, the great Nilakantha once stated that

[tlhe whole of the planetary mathematics is pervaded by two theorems,
namely the so-called Pythagorean Theorem and the Rule of Three (the pro-

portionality of sides in similar triangles).

It’s hard to imagine how either of these tools could play much of a role in
Greek spherical astronomy. So the first word of this chapter’s title is un-

dermined: the Indian approach is genuinely different from the Greek/
Islamic tradition.

For a sample of an Indian approach, let’s reconsider the problem of
finding the equatorial coordinates @ and 0 of the Sun (which we as-
sume has longitude A4 on the ecliptic, figure 4.4). O is the center of the
sphere, and all the labeled points on the interior of the sphere are on the
horizontal plane through the equator. The two right triangles & ED and
COK, called the “kranki-setras” or “declination triangles,” are similar
since they share the angle ¢ between the planes of the equator and the
ecliptic. Therefore

oD _ CK
GE CO

But 3D =sind (to see why, consider the vertical circular segment
ODA%), and similarly ©E =sin4 and CK =sin¢. CO is the radius, so it

is equal to 1, and the standard formula sind = sin4 sin¢ follows. We leave
the determination of @ as an exercise.
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sinb _ sinc
sinB sin(.*

takingly simple -

Combining these two results, we are left with the breath-

sina _ sinb _ sinc

Spherical L f Sines: = = :
pherical Law of Sines sinA sinB sinC

The spherical Law of Sines is also amenable to the principle of local-
ity. If a spherical triangle shrinks downward to a point, just as before the
sines of the side lengths approach the values of side lengths themselves.
(Again, if we are measuring in degrees a multiplicative constant emerges
in each ratio, but again it can be canceled out immediately.) So, reduced
to the plane, the spherical Law of Sines becomes the

Planar Law of Sines: —2>— = b___¢

sinA  sinB sinC’

One would expect the Law of Sines, with its simplicity and complete
generality, to have transformed medieval astronomy even more than did
the Rule of Four Quantities. But science is not always predictable. The
Rule of Four Quantities, with its more complicated and specified dia-
gram, went on to dominate mathematical astronomy while the Law of
Sines languished as a tool used only rarely in special circumstances. This
unlikely defeat was because of the quantities that astronomers wanted to
compute. They cared about arcs: distances between objects, positions of
planets, arcs of rising times, and so on. Angles meant little to them. Of
course an angle can always be converted to an arc by moving 90° along
both legs of the angle, but the whole point of the new theorems was
to avoid drawing extraneous arcs on the diagram. So the Law of Sines
would become a major tool only later, in Renaissance Europe.

Consider, for instance, the rising times problem. In figure 4.2 the Law
of Sines may be applied to Y’ M to give us the fundamental relation
sind = sinAsine. But then what? It is possible to make more progress
with the Law of Sines, but the path forward with the Rule of Four Quan-
tities is a lot more obvious.

Delving Beneath the Surface:
Indian Spherical Astronomy

Up to now we have been assuming that medieval mathematics and as-
tronomy is equal to Islamic mathematics and astronomy, but that isn't
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11. Prove Cagnoli's formula for the spherical excess in terms of the sides and

the semiperimeter:

Jsinssin(s —a)sin(s — b)sin(s — c)

sinE = 2 cos(al2) cos(b/2) cos(c/2)

Hint: See the previous question and consider the derived triangle.
[Donnay 1945, 25]

. Derive the first, third, and fourth of Napier’s analogies using Cesaros
method.

. Derive Delambre’s first and third analogies by applying the technique we
used for finding Delambre's second and fourth analogies, replacing the
triangle of elements with the derived triangle.
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Figure 4.4. The Indian approach to finding declinations of arcs of the ecliptic.

Finding the Direction of Mecca

Until now we have always looked to the heavens for inspiration or con-
text for spherical trigonometry. Ironically, it was a religious concern that
diverted the eyes of trigonometers downward to the Earth. The practice
of Islam requires the faithful to perform five tasks, known as the “Five
Pillars.” Astronomers cannot help much with three of them (profession
of faith, alms, and the hajj—the pilgrimage to Mecca). The other two—
fasting during daylight hours during the month of Ramadan, and the
five daily prayers—require technical assistance if they are to be obeyed
strictly. Consider the monthly fast. The Arabic calendar is lunar, so each
month begins when the lunar crescent reappears from behind the Sun
after New Moon. Miss the crescent on a particular day, and you may
end up violating the fasting requirement unawares. Muslim scientists
worked hard attempting to predict the first appearance of the lunar cres-
cent, with varying degrees of success.

But scientists were really able to justify their incomes with the times
of prayer, which are regulated by the position of the Sun in the sky.
When the moment occurs, worshippers are enjoined to face the Ka‘ba,
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Ghazna

Figure 4.6. The gibla problem.

is not a great circle arc, but rather an arc of a circle of latitude. Thus the
shape in figure 4.6 is not even a triangle.

The earliest solutions to the qibla problem were approximate, even as
crude as assuming that figure 4.6 is actually a planar right-angled trian-
gle. Around AD 900 precise solutions based on spherical trigonometry
(originally, Menelaus’s Theorem) started to appear. As one might expect,
al-Biruni’s classic work of mathematical geography, Determination of the
Coordinates of Cities (from which we took his measure of the circumfer-

ence of the Earth), goes into the matter in some depth. He gives no less
than four precise solutions. Two of them apply constructions that go
beneath the surface of the sphere, and so might be influenced by Indian

methods. The other two probably use the latest spherical trigonometric
methods of al-Biriini’s time, such as the Rule of Four Quantities and the
Law of Sines. We're not quite sure of this assertion because al-Birani
simply states the relations needed to solve the problem, not telling us
precisely what theorems he used to get there.

All four of al-Birini’s methods determine the qibla for the city of
Ghazna, now Ghazniin eastern Afghanistan. In his time Ghazna was one
of the most important cities in the world: the capital of the Ghaznavid
Empire, a Persian dynasty that lasted two centuries and at its peak incor-
porated most of modern-day Iran, Afghanistan, Pakistan, and several
surrounding countries. To give the reader a taste of ancient and medi-
eval diagrams, we have reproduced al-Biruni’s diagram (with a couple of
trivial modifications) in figure 4.7. Although it looks two-dimensional,
appearances are deceiving. Imagine that you are looking directly down
on Ghazna from above the celestial sphere. All the curves on the figure

(even the two straight lines) are great circle arcs on the celestial sphere
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Navigating by the Stars

B. M. Brown’s complaint in the previous chapter against Cesaros re-
markable approach to spherical trigonometry might have been made by
an astronomer or navigator. For the practitioner already in command
of the important theorems and looking ahead to their uses in science,
a pit stop to examine elegant alternative approaches is a restless, impa-
tient exercise. While we may value the charm of beautiful mathematics
on its own, its charm can only be enhanced by witnessing what it can
do in some physical realization. Thus, it seems appropriate to conclude
this book with an account of the life-and-death application that gave the
subject much of its vitality in the past couple of centuries: finding one’s
position on the Earth while in a ship at sea (figure 9.1).

As far as we know, trigonometry was first used for navigation by Ve-
netian merchant ships in the 14th century. Plying their trade through
the Mediterranean and as far away as the Black Sea, Venetians used their
shipping routes to establish themselves as a dominant economic power.
Navigators’ personal notebooks, of which several survive, recorded sev-
eral navigational techniques. One of these—the table of marteloio—was
essentially an application of plane trigonometry. How sailors managed
to pick up this theory remains a mystery, although some suggest that it
was altered from some of the mathematical writings of Fibonacci.

The marteloio is not celestial navigation; there is nothing celestial
about it. It was part of a group of methods known today as “dead” (short
for “deduced”) reckoning, which use information about the ship’s speed,
direction, and time of travel to update from a previously known posi-
tion to the current one. Often dead reckoning was not nearly accurate
enough. During the Age of Exploration, an error of several miles easily
could be the difference between a successful passage and death, either
by sailing past an island containing needed provisions, or by contending
with dangerous rocks off shore.
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1. Show that the stereographic image of an angle on the sphere is the same

angle on the primitive plane. (In figure E-8.1, the angle in question is on

the surface of the sphere at M. MtT and MrR are tangents to the great
circles that form the angle at M; these tangents are drawn to meet the

tangent plane to the sphere through S. Triangle mrt is on the plane of pro-
jection. Prove that {RMT = £rmt. Hint: Notice that TM and TS are both
tangents to the sphere through T, and are therefore equal.) [Brown 1913,

105-106]

Figure E-8.1. Stereographic image of an angle on a sphere.

2. Show that the stereographic image of a circle that does not pass through
the point of projection is also a circle, as follows. In figure E-8.2(a) QR
is the circle on the sphere, with point Q chosen arbitrarily on the circle.
PQR is a cone tangent to the sphere along the circle. PQ is extended to T,
where it intersects a horizontal line drawn from S. PK is drawn horizon-
tally from P, parallel to ST, and P'Q’ is the stereographic image of PQ.
(a) Figure E-8.2(b) represents the plane containing PKQST. On this dia-
gram, show that PK = PQ.
(b) Show that P'Q’ is always the same length, regardless of the choice of Q
on the original circle. [Brown 1913, 103-104]

. Draw a chord within a circle. Connect the endpoints of that chord to

the center of the circle, forming angle A at the center; then connect the
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Indeed, if the point of the study of mathematics is to generate answers to
problems for engineers and scientists, then the overhead required by the
theorems of stereographic projection is simply extra baggage. Extending
this thought further, even the original proofs are just a burdensome ne-
cessity to get on to the business of solving triangles in examinations and
other practical situations. A cursory inspection of modern trigonometry
textbooks reveals the prevalence of Brown’s point of view today, although
proofs have evolved from burdensome necessities to optional extras.

In the American Mathematical Monthly H. V. Craig was more appre-
ciative, opening with a familiar complaint against pragmatism:

Among the sundry ills of the teaching of elementary mathematics, there are
two which in the reviewer's opinion are serious, widespread, and chronic.
One is the occurrence of rote methods including, of course, emphasis on the
mere acquisition of manipulative techniques. The other is essentially a frame
of mind—a rigid and reactionary orthodoxy that insists on the strict segre-
gation of mathematical concepts into compartments in accordance with well
established custom.

Although Craig’s first charge undermines Brown’s review by objecting
implicitly to a utilitarian view of the subject, Craig was more concerned
with his second complaint. Cesaro’s unorthodox combination of stereo-
graphic projection and spherical trigonometry defies the standard divi-
sion of mathematics into its subdisciplines, and the result is a success:
“the method presented is far superior to the usual procedure.” A student
lucky enough to follow Cesaro’s approach “will not only have a more in-
teresting trip through the subject but he will gain more in mathematical
maturity—and mathematical maturity makes up perhaps a major por-
tion of the profit derived from studying mathematics.” Today’s debates
on the value of mathematics in education—whether it is primarily a tool
for science and commerce, or rather a journey of mental and conceptual

cultivation—have long and deep roots.

Exercises

The first two exercises take the reader through demonstrations of the
two fundamental properties of stereographic projection: angle preserva-

tion and circle preservation.
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Figure E-8.2.

endpoints of the chord to some point on the far side of the circle, forming
angle B at that far point. Show that A = 2B.

4. Solve the right-angled triangle A = 90°, BC =63.2°, and £C = 42.5° using
stereographic projection, according to Martins method.

The following three exercises work toward understanding Benjamin
Martin’s second right triangle construction in pp. 150-152 of The Young
Trigonometer's Compleat Guide, vol. 2.

5. Let C be a point on the edge of the primitive circle. Show how to con-
struct the stereographic projection of a circle with center C and a given
radius.

. Martin’s goal in the second construction is to draw the projection of a
triangle with the same elements as before (right angle at A, £C =56°57,
and BC = 44°52’), but this time at the edge of the primitive circle rather
than at the center. See figure E-8.6, taken from Martin’s text.

(a) First draw primitive circle DFCE and diameters CD and EF. Now, de-
termine how to draw CBGD, the image of the great circle through C and

D drawn at an angle of 56°57' from the primitive circle.

(b) Use the construction of question 5 to draw the image of IBH, a circle

with center C and radius 44°52’. Finally, draw a line through the center
and B, defining A and K.






index-67_1.png
e CHAPTER3

These names were chosen from the arcs in the ratios on the left sides of
the equal signs. In disjunction the two arcs are disjoint, while in con-

junction they overlap.
For readers familiar with graph theory, another way to remember
these theorems (suggested by John Holte) is to rewrite them in the fol-

lowing form:

=1.

sinﬁ sinﬁ sinDB

Strangely, in both cases, reading the arcs in these formulas one ratio at

a time from left to right produces a Hamilton circuit of the Menelaus
diagram—a path that passes through each vertex precisely once (not

counting the midpoints of arcs traversed in one step from top to bottom
or vice versa), and ends where it began.

Example: We revisit the problem of finding the Sun’s equatorial co-
ordinates. Remember that in figure 3.3, we knew 4 from today’s date

(see appendix A); and BC = £ = 23.44", since both B and C are 90° away
from the spring equinox Y. We have already found the Menelaus con-
figuration Y’ABCNZ, constructed by adding the solstitial colure BCN

to the diagram. Our goal is to determine the declination 0 and right
ascension .

There are actually four different ways to apply Menelaus to any given
configuration: we have both disjunction and conjunction, and both

theorems can be applied by assigning the arcs as they appear on the
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calendar. We'll see more of the nature of this upheaval later. For now we
focus on a conservative Islamic scholar who fought against the revolu-
tion by defending the astronomical power of Menelaus. Abii Sahl al-Kuahi
lived in Baghdad during the last few decades of the 10th century. His
journey to higher learning was somewhat unusual; he worked originally
as a juggler of glass bottles in a marketplace. One wonders whether this
might have sparked his later interest in finding the centers of gravity of
various shapes. Eventually he came to be sponsored by the Biiyid kings,
especially ‘Adud al-Daula (“Arm of the State”), who also sponsored the
great astronomer Abu 'l-Wafa’. Al-Kihi was interested mostly in geom-
etry, and his work favored the style of the ancient Greeks, especially Eu-
clid, Archimedes, and Apollonius. Although today he is considered to

be the foremost geometer of the 10th century, he is also remembered for
an unfortunate mistake: trusting too much a geometric analogy that he

had discovered between certain shapes in his work on centers of gravity,
he concluded that = = 3.

Many of the mathematical documents that survive from the medieval
period are straightforward theorems and proofs, with little of the per-
sonal touch. However, one of al-Kihi’s missives, several pages long, has

dramatic flair. He begins:

Some of our colleagues who are well-advanced in this art of ours asked us at
the Royal Palace, in the presence of some honorable members of this art at-
tached to the Noble [i.e., the King’s] Service about finding the rising time of
a known arc of the ecliptic in a town of known latitude . . . And he requested
us to do that for him using [only] our knowledge of the Transversal Figure,
which is in Ptolemy's Almagest, and no other theorem. And he claimed that
he can derive that by a way that is shorter, easier and involves less work than
that of the people who know [only] the Transversal Figure, and that that is
not only because of his acuity in this art, but because of another theorem
not known as “The Transversal” And his support is it alone, nothing else.
And he claimed that he and others were freed by it [the new theorem] from
knowing the Transversal Figure in these operations, or from looking into it.
But it is my opinion that, although his judgment might be allowable for him-

self, it is not so for others. Nevertheless, the problem merits an investigation.

We do not know who the interloper was, although we'll take a guess in
the next chapter. Al-Kuhi, primarily a geometer, was an unlikely figure to

leap to Ptolemy’s and Menelaus’s astronomical defense; we are not sure
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diagram, or according to a mirror image of the diagram. In our case we
use conjunction by rotating figure 3.8 clockwise 90° and applying it to

figure 3.3. We get

sin90° _ sin90° _sind

siné€ sind sin90°

since BN =AN = "Y—’E =90°, or more simply, sind = sin4 -sine. This is
the first time we have seen a formula with this form, but it will appear
again and again. In fact, during medieval times and the Renaissance,
large tables of the function sinz = sinx - sin y were compiled in order to
solve all sorts of problems in spherical astronomy.

We can generate a formula for a that doesn’t involve d: apply dis-

junction, this time rotating the mirror image of figure 3.8 clockwise
90°. We get

sin(90°—a) _ sin90°  sin(90°—4)
sinc sin(90° — ¢) sin /4

’

which we can simplify by recalling that sin(90°— x)=cosx. A little
bookkeeping leaves us with tana = tan4 cose.

Abi Sahl al-Kuahi and the Winds of Change

Menelaus’s Theorem became the standard tool of spherical astronomy
for the next 900 years. Menelaus may have Claudius Ptolemy to thank
for his fame. Ptolemy’s Almagest uses his theorem exclusively to solve all
his spherical astronomical problems, and early medieval writers faith-
fully followed his lead. There are a couple of ironies in this. Firstly, Ptol-
emy doesn’t give credit to Menelaus for this theorem in the Almagest,
referring to him only as an astronomical observer. So it’s possible, that
Menelaus didn’t even discover his own theorem. One point in favor of
this suggestion is that Book III of his Sphaerica begins using the theo-
rem as a foundation on which to prove a number of other results. And
herein lies the second irony: these new results, which we will see in the
next chapter, would eventually unseat his original theorem. In a sense,
Menelaus was the maker of his own undoing.

The revolution in spherical trigonometry came about during the

Islamic Enlightenment around the turn of the first millennium in our
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per hour. As the ecliptic arc Y’ © rose above the horizon, the equatorial
arc that rose was 8 = Y'E. So once we've found 0, we simply divide it by

15 to get the rising time in hours.
Al-Kuhi does not specify exactly how the Menelaus theorems apply;

he simply states the results. We'll be a little more helpful.

Step 1: Apply the conjunction theorem to configuration NGZMY' & as
we did earlier, to get sind =sin4 -sine.

Step 2: Next find what in medieval times was called the ortive or ris-
ing amplitude n= ET, the distance along the horizon between & and
the east point E. This quantity determines where the Sun rises above
the horizon. For this al-Kahi uses another Menelaus configuration,
NHQMEG. Applying conjunction we get

sin90°  _ sin90° siny

sin(90°—¢)  sind  sin90°

or sinn =sind/cos .

Step 3: Return to the Menelaus configuration of the previous step and
apply conjunction again, but this time assign the arcs the other way:

sin90° _ _ sin90°  sin(90°—0)
sinMQ  sin(90° —n) sin90°

’

or sin MQ = cosn/cosO. The significance of MQ is that it is the comple-
ment of n = EM, known to Muslim astronomers as the ascensional dif-
ference or equation of daylight. One may think of it as the difference

between the rising time of the arc for an observer at our location and the
rising time if the observer were at the terrestrial equator, in which case

Y'EM would be a vertical arc.

Step 4: Our final step is a return to configuration NGZMY' & from

Step 1, again applying conjunction but assigning the arcs the other way.
The result is

sin90° _ _ sin90°  sin(90°—9)
sinMZ sin(90°— A1)  sin90°

’

or sin MZ = cosA/coso.
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why he took an interest in this problem. We've noticed before that the
ecliptic’s position in the sky changes as it is carried by the daily rotation
of the celestial sphere. For a given arc of the ecliptic, its rising time is the
length of time it takes between the moment that the top of the arc first
emerges above the horizon to the moment when the entire arc has fully
risen. Since the Sun is on the ecliptic, rising times are connected with
changes in the length of daylight throughout the year; ancient scientists
were also interested in rising times for their astrological significance.
The heart of al-Kahi's defense of Menelaus is extremely brief, as if
he were trying to impress upon his readers the compactness and efh-
ciency of his method. In just four sentences he solves the problem of
rising times, and also knocks off three other important astronomical
problems along the way. In figure 3.9 (also plate 5) the arc in question is
Y' & with longitude 4, which has just finished rising above the horizon.
Some hours earlier (the precise length of time is what we need to find),
Y’ had been on the horizon at the east point E. Since we know where
we are on the Earth’s surface we know the value of ¢, which is both our
terrestrial latitude and the altitude of the North Pole above the horizon
(see chapter 2, exercise 3). Draw NGZ, the equator to Y"’s pole. Since all

the points on this great circle are 90° removed from €Y, we know that
e=GZ.
So we know 4 (from the time of year), ¢, and €. Our goal is to deter-

mine a time interval, but how do we do that geometrically? Recall that
the celestial equator is our astronomical clock, rotating at a rate of 15°

Figure 3.9. Rising times of arcs
of the ecliptic.
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2. Choose a particular date (say, May 20), and a particular latitude (say,
49.3° N). Use Menelaus's Theorem to calculate the following quantities:
(a) the Sun’s declination o
(b) the ortive amplitude »

(c) the equation of daylight n
(d) the rising time 6.

3. In this and the following question, we will demonstrate the conjunction
version of Menelaus's Theorem directly, rather than piggyback on the
disjunction theorem. For our first step, demonstrate the following result

related to the plane Menelaus Theorem (figure 3.2):

AB
LD TK

(Hint: draw a line segment K, parallel to BD.)

4. (Continued from question 3.) To move from the plane to the sphere we
will need a slightly different diagram than before. In figure E-3.4, begin
with the original spherical configuration. Then extend BZ and HA until
they meet at a point X outside of the sphere. Next extend ZE and HG
until they meet at point Y. Finally, join BE and extend to W on the line

connecting X and Y. From this diagram, prove the conjunction version of

Menelaus's Theorem.

Figure E-3.4.

5. (a) In figure 3.3 we applied Menelaus's Theorem in two of the four

possible ways, to get formulas that convert from ecliptic to equatorial
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At this point : al-Kahi is done. Consider ‘Y’Q removing ‘Y’Z 90°
from it leaves ZQ but removing EQ 90° leaves 8 = ‘Y’]: So 8= ZQ =
MQ - MZ.

A question remains: why did al-Kahi feel the need to derive again
a result already found in the Almagest? One possibility suggests itself:
the unnamed modernist arrived with a single new theorem on which
he claimed to base all of spherical astronomy. Menelaus’s Theorem is
really two statements. Al-Kahi's derivation uses only one of them—
conjunction—in order to determine all four astronomical quantities. It
is a marvel of compact mathematics.

One detects a certain smugness in al-Kahi's voice as he summarizes
the implications:

Now, we found by this [small number] of operations all these things [decli-
nation, ortive amplitude, equation of daylight, right ascension] . . . all from
our knowledge of the Transversal Figure, which is in the Almagest, with-
out anything else. Thus we know that to abandon these things which follow
from this Theorem and depend on anything else, and praising one of them
and blaming the other, is impossible until we have investigated the matter
completely, and have realized the superiority of one of them over the other
and the distinction between the two (if there is between them any distinc-
tion at all, as he claims there is).

As confident as al-Kahi may have been in the superiority—or at least
equality—of the ancient methods, there was little time left for them.
Several new theorems were circulating, each with the intent of sweeping
the ancient approach away. The forces of change were at the gate, and

al-Kuhi could not hold them for long.

Exercises

1. (a) Pick a random location 4 (celestial longitude) on the ecliptic, and use
Menelaus’s Theorem to compute values for the equatorial coordinates «
(right ascension) and 9 (declination) of that point. Use £ =23.4".

(b) The equatorial coordinates of the Sun on the ecliptic are
a=126.31°=8.421" and § =19.22°. What day of the year is it? (Hint: use

the table in appendix A.)
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(a) Use one of Menelaus’s Theorems to derive a formula for ¢ in terms of

the ortive amplitude  and half the length of daylight t/2.

(b) Our result from (a) isn’t enough, because typically we don't know the
ortive amplitude. Use the results of question 6 to get ¢ in terms of the

Sun’s declination 0 and t/2.

(c) This result still isn't enough, because typically we don't know the Sun’s

declination either. But we do on the longest day of the year. Take this fact

into account in your final reckoning of the formula.
(d) Confirm that your formula is correct by plugging in the value of

the longest day of the year in Hipparchus's home town of Rhodes (14.5
hours). You should get about 36°.
(e) You might get a negative value for Rhodes’s latitude, even though it is

in the northern hemisphere. What happened?
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coordinates. What formulas do you get if you apply Menelaus's Theorem
the other two ways? Are these formulas useful?

(b) Use astronomical software or appendix A to determine the Sun’s
longitude on your birthday. Use this information to calculate the Sun’s
right ascension and declination on that day, and confirm your result with

astronomical software (if available).
. In this problem we shall follow Ptolemy’s method to determine the ortive

amplitude of the Sun. In figure E-3.6 the Sun is rising, and will continue

to rise in the direction indicated until it reaches a point just below B on

the left edge of the diagram. LANB is equal to t/2, where t is the length
of daylight (converted to degrees using 15° =1"), since that is the amount

—

that NAS rotates as the Sun rises from daybreak to noon.

D Figure E-3.6.

(a) Derive a formula for the ortive amplitude » in terms of 0 and #/2.

(b) At Rhodes, where Hipparchus lived for part of his life, the shortest day
(the winter solstice) is 9.5 hours long. Where will the Sun rise that day?
(Hint: What is the value of the Sun's declination at the winter solstice?)

(c) Ptolemy does not take into account the effect of atmospheric refraction
in the above calculation. Refraction has the effect of making the Sun ap-
pear higher in the sky than it actually is. What effect will this have on our
answer to (b): will the Sun rise closer to the east point, or further away?

. If you decide that staying up late to measure the altitude of the North

Star is not your cup of tea, it is also possible to determine your terrestrial

latitude using the length of the longest day of the year. In figure E-3.6, our
latitude is ¢ = DN.
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The Medieval Approach

Reading al-Kiahi’s statement defending the advantages of Menelaus’s
Theorem in the previous chapter is a bit like eavesdropping on some-
one holding a telephone conversation. We have a rough idea of what
was said, but important parts of the debate are a blank to us. We are
never told the name of the advocate of the new theorem, nor even what
the new theorem was. There is one hint. The traveling theorem sales-
man claimed that his result “freed” him from having to know Menelaus’s
Theorem to solve astronomical problems. This is precisely the word and
meaning that became attached to several related propositions, each of
which claimed to be easier to remember and use than Menelaus.

The new theorems must have been in the air, because they appear
almost simultaneously in several places and in the hands of several
people. One of the claimants to priority of the new discoveries was
Aba Mahmiud al-Khujandi, an astronomer most famous for building a
30-foot-high sextant for solar observations in Rayy, near today’s Tehran.
Just as with modern telescopes, in theory a larger instrument produces
more accurate results. The problem, as al-Biriani later pointed out when
the sextant did not live up to expectations, is that heavy building materi-
als tend to sag under their own weight. It is possible that al-Khujandi’s
proof of his new theorem suffered a similar fate. Other demonstrations
were more elegant and gained a higher billing.

Our second claimant is a familiar face: Abi Nasr Mansir ibn ‘Ali ibn
‘Iraq, al-Birani’s teacher and discoverer of the polar triangle. His origi-
nal work on the subject, the Book of the Azimuth, is preserved only by
a quotation in al-Biruni’s Keys to Astronomy. In it he proposes two new
theorems, both based on the same diagram (figure 4.1):

sinBD _ sinAD

Rule of Four Quantities: —— = =
sinCE sinAE
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the derived triangle shown in figure 8.10; the derivation of its elements
is the subject of an exercise at the end of this chapter. The reader with
a long memory may anticipate the definitions of the last two triangles:
they are the triangle of elements and the derived triangle of AABC’s
polar triangle (also in figure 8.10; s is the half perimeter of AABC).

The reader may be forgiven for some skepticism at this point; we
have gone through a fair amount of geometrical apparatus for a method
advertised as an elegant royal road to spherical trigonometry. But the
wait is over, and the entire subject lies within our grasp. Virtually every
important formula we have seen in this book, and a good many others,
may now be derived by applying some identity of plane trigonometry
to one of the four key triangles. Curiously, the more advanced formulas
follow immediately, while the fundamental formulas often require a bit
of cleanup. A few examples will suffice.

Law of Cosines: Apply the planar Law of Cosines to the triangle of ele-
ments; we get the ungainly result

2 b 2b ac

. 2 . b b . c C
sSin = sm —COS =4 sin” —cos - — ZSIHECOSESIHECOSECOSA.

a _
2 2 2 2 2

But the identities sin’(8/2) = }(1 — cos8) and cos’(8/2) = }(1 + cos#) re-
turn us to references to the sides themselves rather than their halves:

;(1—cosa) = ;(1—cosc)(1—cosb) + ;(1—cosb)(1— cosc)
Sd(1 —cosb)(1 4+ cosb)(1 —cosc)(1+ cosc)cosA.

As ugly as this appears, a bit of tidying up takes us quickly to the familiar

cosa = cosbcosc + sinbsinc cosA.

Law of Sines: Apply the planar Law of Sines to the derived triangle;
we get

cos(a/2) _ sin(b/2)sin(c/2)
sin A sin E '

Multiply both sides of this equation by 2sin(a/2), and we get

sina _ 2sin(a/2)sin(b/2) sm(c/2)
sinA sin E
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Now we must interpret each of the quantities in these ratios. The
first is easy: BC'=a’. To find BC, connect both B and C to A’

and drop a perpendicular from A’ to BC to discover that BC =
2sin(a/2). For SC’, consider right triangle SA’C’, which has SA"=1

and 4S = b/2, from which we have SC' = 1/cos(b/2). Finally, for SB
consider right triangle SAB; we leave to the reader the conclusion
that SB=cos(c/2).»>

Putting everything together gives us the cumbersome expression

4= sin(a/2)
cos(b/2) cos(c/2)

To make things a bit simpler Cesaro multiplies all three sides of his tri-
angle of elements by cos(b/2)cos(c/2). We now have the values displayed
in the triangle at the top left of figure 8.10, a diagram so crucial that it
takes up much of the space on the book’s cover (plate 10).

Cesaro goes on to define three other key triangles. The first, the de-
rived triangle, is obtained by constructing the colunar triangle to AABC
that extends sides BA and BC across to B’s antipodal point. The triangle

of elements corresponding to the angle at A in this colunar triangle is

Triangle of elements Derived triangle

Triangle of elements of polar triangle Derived triangle of polar triangle

cos < sin L cos L sin < sin L sin < cos L cos <
pi pi pi pi pi pi pi pi

Figure 8.10. Cesaros four key triangles.
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Since the right side of this equation is symmetric with respect to a, b,
and ¢, it must also be equal to sin b/sin B and sin ¢/sin C.

The next set of identities is obtained even more easily.
Napier’s Analogies: Apply the planar Law of Tangents, :::Z;g; =2 to
the triangle of elements, setting @ and f8 equal to the two angles at the
bottom of the triangle:

tan;(B—C) _ sin(b/2) cos(c/2) — sin(c/2) cos(b/2)
tané(B +C—2E) sin(b/2)cos(c/2)+ sin(c/2) cos(b/2)

But B+4C—-2E=180°— A, so

tan}(B—C) _ sin;(b—c)
coti A sini(b+c)

which is Napier’s second analogy. The other three of Napier's analogies
may be obtained by applying the same technique to the other three tri-
angles; we'll leave this task to the exercises.

Delambre’s Analogies: Apply the planar Law of Sines to the triangle of
elements:

sin(a/2) _ sin(b/2) cos(c/2) _ sin(c/2) cos(b/2)
sin A sin(B— E) sin(C—E)

Numerators and denominators of equal ratios may be added together

or subtracted without disturbing the ratio. So we may combine the lat-
ter two ratios to take advantage of the resemblance of the terms in the
numerators to the sine sum and difference formulas:

sin(a/2) _ sin; (b + c) B sin}(b—c)
sinA  sin(B— E)+sin(C—E) sin(B— E)—sin(C — E)’

The denominators may now be simplified using sina +sinf=
2" Ha + B) L(a — B), identities mostly forgotten by today’s students:

cos 2 sin 2

sin(a/2) sin3(b+ ¢) B sin3(b—c¢)
2sintAcostA  2cosiAcosi(B—C) 2siniAsini(B—C)

From this step Delambre’s second and fourth analogies follow immedi-
ately. The other two analogies follow by applying the same technique to

the derived triangle.
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of the primitive circle. (The fact that M is already on the edge is a
convenience, and is no obstacle to the argument.) Then, as we saw

above, Mm will measure the length of Ma.>

This example is just the first of a variety of constructions that Martin
and other textbook authors provided to deal with the various cases of
both right and oblique-angled triangles. As “artful” as this subject is,
the solution of spherical triangles by stereographic projection seems to
have vanished quietly some time in the 19th century. Presumably the
mathematical overhead required to understand the procedures was too
much to demand of young students, and the use of physical measure-
ments rendered the method less accurate than the standard formulas. Its

ingenuity, however, is wondrous.

A Crystallographic Breakthrough:
The Cesaro Method

Mathematics often advances in fits and starts with intervening periods
of stability. Some new insight comes along and the field leaps forward,
causing some of the existing ground to be disturbed. Generally, though,
we expect mathematical progress to move forward more or less con-
tinuously. We certainly wouldn’t expect that an efficient and beautiful
approach to a ubiquitous mathematical subject like trigonometry could
possibly remain hidden for centuries. If such a strange event were to
occur, it seems oddly fitting that the magic trap door would be discov-
ered by someone outside of the mathematical profession.

Giuseppe Cesaro (1849-1939) was a crystallographer at the Univer-
sity of Liege in Belgium, the older brother of mathematician Ernesto
Cesaro who achieved fame for his discovery of the method for handling
infinite series known as “Cesaro summability” Presumably Giuseppe
came upon his method through his work in crystallography, which uses
stereographic projection to deal with orientations and inclinations of
faces of crystals. He wrote a pair of articles on the subject in the Bulletin
de IAcademie Royale de Belgique in 1905, but they seem to have attracted
little attention. Very late in life he shared his method with his colleague
J. D. H. Donnay, who taught the method to his students at Johns Hop-

kins and Laval Universities, and eventually preserved it for posterity in
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But we are only half done. Next, from our newly drawn triangle,
we must reconstruct the values of the three missing elements AB,
AC, and 4B on the original triangle. We begin with AB. Draw pole
a of circle EBAG onto the primitive circle, using the construction
we saw earlier. Then extend line aB to the edge of the primitive cir-
cle, defining b in one direction and m in the other. Martin asserts
that bF, which he measures to be 36°15’, is the value of AB on the
sphere (as opposed to the projected AB in the diagram). But why?
Consider the line maBb on the primitive circle. This line (or any
line for that matter) is the projection of some circle on the surface
of the sphere, namely, the one obtained by cutting a plane through
the sphere along this line and through the projection point. This
circle contains a pole of the primitive circle (the projection point)
and a pole a of the great circle containing AB. Thus it is situated
symmetrlcally with respect to both great circles. Hence our new

circle cuts EA and EF at equal angles, making spherical trlangle
EBb isosceles. So EB = Eb, and by subtraction from 90°, AB = bF.

Leg AC is the easiest of our three unknowns to determine. Since

the length of the projected AC is the tangent of half of AC, we sim-
ply measure AC, take the inverse tangent, and double the result.

Martin gets AC =28°30’, correct to the nearest minute. One won-
ders whether he really went through this process or just borrowed
the numbers from calculations, since it seems implausible that he

could get such an accurate value while relying on a length mea-
sured with a ruler.

Our third and last unknown is £B. Draw M, the endpoint of the
diameter perpendicular to HCBI; notice that M is the pole of the
great circle projected as HCBI. Then Mm = 4B=42°34" Again
Martin owes us a justification, but he is not forthcoming. In fact
the explanation is simpler than one might expect. £B is the angle
of inclination between great circles EBAG and HCBI, and the angle
of inclination between two great circles is equal to the distance
between their poles. So we are really after Ma. But B, lying on both
great circles, is 90° removed from both M and ga, so it is a pole
of Ma. And now the whole situation reduces to the situation dis-
cussed two paragraphs before this: to determine Ma, extend lines
from the projected pole B through the endpoints of Ma to the edge
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Figure 8.9. Deriving the side lengths
in the triangle of elements.

Here, finally, we see why in the previous chapter we defined the spheri-
cal excess to be 2E, rather than just E.

We now know the angles in AA'B'C’, which Cesaro calls the triangle
of elements. What about the side lengths? Observing our sphere from
the outside, once again we recognize the configuration of figure 8.5 in

the cross-sections AA'SB'B and AA'SCC of figure 8.9, giving us two of
the three sides right away:

b’ = tanQ and ¢’ = tan <.
2 2

—->Finding a’ is a nice geometrical exercise, which we solve
differently from Donnay. Since AABS is inscribed in a semicircle,

it has a right angle at B. Thus AABS is similar to AB'A’S, since
they share two angles (although we must be careful, since the
similarity does not relate the vertices in the way suggested by the
letter names). Thus SB/SA =SA'/SB’, or SA-SA'=SB-SB’. Like-
wise, on the right side of the figure we arrive at SA-SA"=SC - SC".
SoSB-SB'=SC-SC’ or SB/SC = SC'/SB’, which implies that ASBC
and ASC’B’ are similar since they share an angle at S. Combining
these results, we have
BC _ SC

BC SB’






index-165_1.png
140 ¢ CHAPTERS

a slim volume in 1945 (plate 10), six years after Cesaro’s death. That the
subject as a whole had only a decade of life remaining in the public eye
is a misfortune that consigned Donnay’s book, and Cesaro’s method, to
obscurity.

Cesaro’s idea, like all the great ones, is simple: project an arbitrary
triangle ABC onto a plane using stereographic projection. Apply some
identity from plane trigonometry to the projected triangle, and map the
identity backward to the original spherical triangle ABC. We begin by
placing one of the vertices, say A, at the North Pole. Then the two sides
departing from A will project onto straight lines departing from the
center A’ (figure 8.8), while the third side will project to a circular arc,
forming figure A'B'C’. This figure is not a plane triangle, so we connect
B’ and C’ with a straight line. The angles of the new triangle A'B'C’ may
now be found.

—>In the projection, extend tangent lines to the arc from B’ and
C’, meeting at D. Since stereographic projection preserves angles,
AA’'B'D is equal to 4B on the original triangle, and £A'C’D is equal
to £C. Since the angles of quadrilateral A’'B'DC’ sum to 360°, we have

AB'DC’ = 360° — (angle sum of spherical AABC)
= 360° — (180° + 2E) = 180° — 2E,

recalling that 2E is the triangle’s spherical excess. By symme-
try £C'B'D = 4B'C’'D = E, which leads us to LA’'BC’'=B—E and
ACB=C—-E~>

Figure 8.8. Constructing Cesaro’s
triangle of elements.
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Figure 8.6. Constructing the projected pole of a great circle. The dashed lines indicate
the lines and arc involved in the construction.

of measures, rotating our circle back to its original position at the

primitive circle does not move a’, and we have successfully con-
structed the projected pole.>

We are now ready to follow Benjamin Martin as he poses his first
triangle problem. Interested readers may follow along with Martin by
looking up pages 150 to 152 in volume 2 of The Young Trigonometers
Compleat Guide, available online. Within these pages Martin deals with
two ways of drawing the projected triangle. The first situates one of the
triangle’s vertices at the North Pole in the center of the diagram, while
the second situates the triangle on the periphery of the primitive cir-
cle. We shall describe here only the first case, and leave the second for
the exercises. Our problem is to solve AABC in figure 8.7 with a right

angle at A (Martin does not follow our convention of calling C the right
angle), hypotenuse BC = 44°52’, and £C =56°57".

—>Figure 8.7 is Martin’s original diagram. As before, DEFG is
the primitive circle, DF is the line of measures, and the point of
projection S is assumed to lie underneath the diagram, directly be-
low C. The triangle is situated at the top of the sphere, with vertex
C at the North Pole above the page. The shaded region is our goal,

the projection of AABC onto the primitive circle.
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