Java Testin
with Selenium

A Comprehensive Syntax Guide for
Automation

Sujay Raghavendra

ApPress’

Java Testing with
Selenium

A Comprehensive Syntax
Guide for Automation

Sujay Raghavendra

Apress’

Java Testing with Selenium: A Comprehensive Syntax Guide for Automation

Sujay Raghavendra
Dharwad, Karnataka, India

ISBN-13 (pbk): 979-8-8688-0290-4 ISBN-13 (electronic): 979-8-8688-0291-1
https://doi.org/10.1007/979-8-8688-0291-1

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Copyeditor: Kim Burton

Cover designed by eStudioCalamar
Cover image by Wirestock on Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0291-1

Forever in my heart, Grandma

Table of Contents

About the AUthOrcccccemmsssmmmmsssmmsnsmsssssssssssssas s ssnnssssnnss Xix
About the Technical REVIEWETcsscesssssnsssssnsssssnsssssnsssssnsssssasssssanss xxi
Acknowledgments.......cccccenmssssssssssnssmmsssssssssssssssssssssssssssssnnnsssssssssnns XXiii
INtroductioncccccunnemmmsssnmmsssnnmsssnsmsssnsmsssnsssssnsssssnnssssnnssssnnnnssnnnnnns XXV
Chapter 1: Introduction to Selenium: Java Automation............ccceevinnes 1
INEFOAUCTION.....c.viecececcr e 1
The Need for Testing AppliCationccocvvvvvniennnnin e 2
What IS SEIENIUM? ... 3
Development and History of SElenium........ccccoevvvrvnennrensenieresessesseseseesessessenes 3
The Genesis and Early Development (2004—2006).........ccccvrereererrerserseresserseraes 4
Expanding Horizons (2006—2011)......cccccecrverveneriensenseesesesses e ssessesseessessensens 5
Maturing and Expanding (2011-2018)ccccceverirvrrrnieriennenseesersesseessessensens 6

The Modern Era of Selenium (2018—Present)......cccvevvevverrerierensersersesesessersenees 6

Why Selenium? Unraveling the Strengths of Selenium in Web Testing............ 7
Selenium ArchiteCIUIE.......ccovveeeerere e 10
Core COMPONENTScccereririirere e r e e e 10
Automation Tool Comparison: Selenium and Alternatives.........ccoccvevverreereriennens 12
Java: Selenium’s Preferred Language.........cocveeerreneresesessenmsensesessesessssssessessssennns 15
U314 S 17

TABLE OF CONTENTS

Chapter 2: Selenium Essentials: Setup and Browser Commands....... 19
Setting up Java on Your Maching..........ccccccevvevnerenescrnsenenesesesesesseses e sesesesenns 20
Step 1: Download the Java Development Kit (JDK)cccccovvevnicnreccrinccnnne 20
Step 2: Install the JDK ...t 21
Step 3: Set Environment Variablesc.ccocoevrrvvninniecnncc e 22
Step 4: Verify the Installation..........cccccovvevrenrncnninrreccrs e 23
Step 5: Update When NECESSArYccccvevrerererrerenseneresessssesesesessesesessesenns 24
Installing EClipSe IDE.........ccoiiiiininesnsinsesess s sse s e s s 24
Step 1: Download ECIIPSEccceeevvviriereresrrre et 24
Step 2: Run the Eclipse Installer.........c.cvvvnninnsnsni s senennens 25
Step 3: Install EClIPSEocvvceverirrcirrc s ss s snens 25
Step 4: Complete the Installation...........ccoovvrvninninvni 25
Step 5: Launch ECHPSEccvcveierccrr e 26
Step 6: Configure Eclipse (0Optional)ccoucvvrienninsniniens s 26
Step 7: Create a Java Project 10 TeSt.......cccvcvcrieniinsns s 26
Selenium INSTAlIALioNcovveereeerrer e ————— 27
Step 1: Download Selenium WebDIVErcccocvvvnininennsincenenesessenennens 27
Step 2: Create a New Java Project in EClIPSE......c.ccccvvvvrennvncenenesinieneniens 29
Step 3: Add Selenium JARS to the Project........cccccvvvvrienernsesssenenenennsenenns 29
Step 4: Verify Installation............ccccorvernnennennnsesssesesesesssesesese e 29
Step 5: Run the Test SCript ... 30
Browser COMMANGS........ccueerrmenerrenerrnesessesesesessssesessessssesessssessssssssssssssesesssssssnns 31
Opening a Selenium WebDriver Using Java Codeccccvvererrrennerierenensensenaens 31
Opening a Web Page Onling or OffliNecccevivrerrerierenensensenessssessessessesessesenaens 34
ONliNE WED PAQES.....cocerrerrererierereresseressessesessessessessssessessesssssssessessesssssssessees 34
OFffling WED PagES.....cccerrererirere s sersere e ssssesse s sassesessessesssssssesnenes 35

TABLE OF CONTENTS

Understanding close and quit COMmMAaNGSscccveereverrersereresessessesessssessenens 35
Cl0SE COMMAN.......ocvicccrirersee s 36
QUIt COMMANGeeerereerre e se s sr e e snesae e s e naesnees 36

Setting UP BrOWSEK SiZE........ccoceeverererireceris st sas e seens 37
Maximizing the Browser Windowccccovvnvnininnnsnnness s sessenns 37
Minimizing the Browser Window.........c.cccvvvnnnininnnsnse s sessessesens 37
Setting a Specific Browser Window Size..........ccccccvvvevrercrnscnnsenenesernsenens 38
Using Full-screen Mode..........cccoeviininennnnsnnse s sese s 38

Setting the Browser Position with Selenium WebDriverccovovrieicreicene. 39

Setting the Size Using CoOrdinates............coovevmrereresmrnsesessesesssesessesesesessssesenns 39

Getting the Browser POSItioNccouevnennncnnnse s 4

Getting the WINAOW SizZecovvvvvrverivnrrrene e ssesessessesnens 4

Navigating Through Web Pages with Selenium WebDFIVErccccvverreverserierens 42
Navigating BacCK.........ccucvverriniinriennsersis s s e s ss s s s 42
Navigating FOrwardccoccvvrrnnnnininsin s 43
Refreshing the Page ... 44

11T 111 T o O 44

Chapter 3: Mouse and Keyboard Actions........c.ccceussmmmsssnsssssssssssnnsssnas 47

LT 10 T4 T L 47

MOUSE ACLIONS.....cceveeerreerreeresese s rs s n s 48
ClICK 1t teeresereeesess s s bbb ne e 48
DOUDIE ClCK.....coerereeerreereneressesesssse s sessesesssse s sessesessesessssesessssessssssssnensnnes 49
L8] 1 A0 S 50
L0 10 o N (o] o S 51
(T (0] 1 R 52
o 11T RS 52
(22 T - RS 53
22 RS 53

TABLE OF CONTENTS

Mouse MOVEMENLS........cccoierrirr s 54
Move 10 EIBMENT..........ccorireir s 54
MOVE DY OFFSEL....ccveireeriererreserrere s se e ss e snesae e s saesaes 55
Offset from EIBMENT ... s 56
Offset from VIEWPOI.......coiv e s s s e sse s ssssessessessesessessesnees 58
Offset from Current Pointer Location............cocovvcnnnnnsnsssnensssscsesesennns 59
Drag and Drop on EIement ... s 60
Drag and Drop by OffSEt.......cccvrerrernnmierierrnersene e ses s sss s ssessesessessesaes 65

Keyboard ACHONS ... s s enea 67
KBY S .ttt e e 67
KBY DOWNN......ooiriciestctr ettt s s 68
KBY UP et e e e e e s 68
T 10 [GO 69
£ T 0] | 70
SCroll 10 EIBMENT ... 70
Scroll by @ GIven AMOUNL.........covecrri e 71
Scroll from an Element by a Given Amountccoovvvecrnvcrnsenenescnnsenens 72
Scroll from an Element with an OffSet..........cocovveeevnrnniencscrrrs e 74
Scroll from an Offset of Origin by Given Amount..........ccccccovvvvnvevrieccrnccnnn 75

SUMIMANY....eie e e s se e se e e re e e e e 76

Chapter 4: Web Elements..........ccccuunnmmmmmmmmmmmmmmmsssssssssssmsssssssssssssssnns 77

What Are Web Element LOCATOIS?.........ccovererenmrnsmsenesesssesessesessesesssesessssessenens 77

Why Are Web Element Locators Important in Web Automation?..........ccccovenene 78

Understanding the DOM........ccccovvrirennnnieness e s sessessessssessessessessssessessens 79
HTML and DOM BaSICSccumrererermsnsssmseressssssssesesssssssssssesssssssssssesssssnsses 80
ATFDULES ... 80
Relationships in the DOM ... enes 82

viii

TABLE OF CONTENTS

[T 10 T 84
1 0T (o] N 84
NAME LOCALON ... 85
LinK Text LOCALONcccviierieree s 85
Partial Link Text LOCAIOrccovvirernnrncnse s 86
Tag Name LOCAIOF..........ccccvvrnineriirin e s 87
Class Name LOCALON.........ccccoerrrmmnmmserisnssssssse s s sssssnans 88
XPath LOCALONScovvieriirieerinessce s 89
LRI 1< T (0] R 96

Locating Multiple Web Elements..........cccccvnninininnnnsnsc s 110
Table for Locators to Locate Multiple Elementscccoovvvvninienncnicnnens 112
Common Challenges for Locating Web Elements.........cccoccevevvncevrcccnnnne. 114
Best Practices to Overcome Challenges.........ccocveeerenernvererienereseressesenenens 115

SUMIMANY....eeeerercreree e s e e e e nre e re e e e e 117

Chapter 5: Navigationscccccccermssssssssssmmmmmsssssssssssssssseesssssssssssssnsnnes 119

HYPEITINKS ... s 120

HYPErlinK DY ID......covceeieerrresiree e s 120

HyPerlink BY TEXE.....cov vt s e s s sn e 121

Hyperlink by Partial Link TeXt........ccccuvrrinininnnninninsessesessessee s ssessessssssessessens 121

Hyperlink by XPath..........cccoiiinininrnsnc s 121

MR HYPEIINK. ... s 122

Return All HYPErliNKScoccovenernnmnenesesssesessesesssse s s sessssessssessnnes 122

Testing HYperlinksS.........ccocvecirernnesnsesese s sesssssssenens 122

Check for a Valid HYperlinKccocerevnrnienennsensense s e sessessessssessesseens 123

Check for BroKEN IMAQES......cccvverrerrerrersrsersersersssessessesssssssessessesssssssessesssssssessenes 125

Data Attributes HYperlinksccccvernnninnnsnsene s 127

SUMIMANY....eieeererere e s e re e e e e nre e re e e e e 127

ix

TABLE OF CONTENTS

Chapter 6: Buttons..........ccccunnsenmmmmssssnnnmssssssnsmsssssssssssssssssesssssnsnsssssnns 129
Standard HTML BULLON..........cccovrneecrerersseese e ses e sensans 130
Asserting Button TYPe........cccvivrcnininn s ssesnens 131
SUDMIE BULLON.......covieececeerer e 131
Asserting Button TYPe........ccocvivrinininn e ssesnens 132
IMAge BULLONc.ececcrece s 133
Asserting Button TYPe........ccocvivrinininn e ssesnens 134
JavaScript BULLON..........ccoe v 134
Disabled BULLON.........ccoveerrerereernse s s 135
Asserting BUtton TYPE.......ccoveeverrererenmrnsesesese s sesss e sessssessssesessesenns 136
T0QQIE BULLON ... 137
Radio BULONS.......ccoiriiicsiriiste s 138
Locating and Selecting with Radio Buttons...........ccccccvvrievvsnvncennsensenienne, 139

BY ID .t 140

L1 10 10T R 140

By INEX VAIUBS ..ottt s 140
Myth of Deselecting Radio BULONScccvcvverevnnensenienn s senenesessesennens 141
Validating Your Choices With ASSErioNS......c.ccocevvvrverieriesensensessesesessesensens 141
Verifying the Selection Stateccccocvvvrinini e 141
CHECKDOXES......civiviueceririsis e 142
Locating and Selecting CheCKDOXES.....c.vvvvrrrerenenserierenesseseseseesessessenes 143

BY ID .ttt 143

L T [I o - S 144

BY NAME ..ot r e s e s 144
Selecting a Checkbox by Visible TeXt.........cccovrerrevnrnieniennnensensesessssessenaenes 144
Selecting a Checkbox by ValUe........c.ccvevvverrnerenensensene s sessesessessssessessees 145
Select All Checkboxes @t ONCeccvveevererernsnssssese s 145
Selecting and Deselecting by INAEX.........cvcvrrrerennrnsersenesensersesessesesessenes 146

TABLE OF CONTENTS

Deselecting a Checkbox by ViSible TEXE.......c.ccvverrernrenserserenensersesessssessensens 146
Deselecting a CheckboX by ValUE...........cccevevververevensenseneresessessessessssessensens 147
Deselect All Checkboxes at ONCeccvrmienmsernnsnssssesessssse e 147
Validating a Checkbox with ASSEITIONS........cccvveverrerverierienensersersessssessessensens 148
ASSErting SEIECLION........cccvvererertrrerre e nnens 148
Asserting DesSelection..........ccvveveririnie s 148
Asserting EIement TYPEcvcvveviniiniersie s se e sses e ssessessens 149
SBIECILIST. ...cvcuecerrrrsce s s 149
Locating and Interacting with SelectList.........ccccoovvvrrirrennsnsnserenensenienns 150
Locate and Select by ViSible TEXT.......cccvrevvrnrerrernnenserseressssessessesessessesseses 151
Locate and Select by VaIUEB........cocvvevvevrerereesenrerers s s ssssessessesessessessesnes 151
Locate and Select bY INGEX.......ccvvvvrrrrerieresenserene s s s e se e ssesessessesees 151
Retrieving All Available Oplions........cccvvrevnsnieniennsessese e ssssesessens 151
LT |0)0 R 152
Deselecting Options in SEIECLLISt........cccvrvvrververiernsenserere e seesesennens 152
Simulating Deselect by Selecting a Default Optioncccvcevvverievnsersenaene 152
Validating SelectList Options and Selectionsccccveerreverrerserieresessensenaens 153
Assert the Selected OpPtioN.........ccccvvererernrrierrers e ssessens 153
Assert EIeMent TYPE ..o s s 153
LU T=] e 1 154
Selecting and Deselecting Options with MultiSelectList...........ccceeerrvvvrnenne. 155
Selecting Multiple OplionS.......ccovcevrecrccr e 156
Deselecting Oplions.......c.ccovcrcrininnsn e 156
Validating Multiple Selections and Deselections............ccccevvrerrencrencenen 156
Asserting Multiple Selections:..........cccovvvrerrecrnrenre e 157
Asserting Deselections.......c..covvvrinnnnnsne s 157

TABLE OF CONTENTS

Asserting Element Type for MultiSelectListcccvvvreriennnnieriernsensensennens 157
Testing Considerationsc.ccoevvvvvrerierennsersesess e ssesessessessens 158
31111117 O 161
Chapter 7: iframes and TeXthOXeScuccurrsssnsmsssnsesssnsssssnsssssnnssssnnsss 163
1772 1L 163
SWitching t0 an iframe.......c.ccccoveeereserr s 165
SWItCh USING D ...ttt 166
SWiItCh USING NaME......cccrererirrere s s ss e snens 166
Switch UsiNg INAEX VAUcccvverierererrereresessessesessesessessessessssessessesssssssessessens 166
Hierarchy in SWitching iframes........cccccorerrninnie s 168
Navigating an iframe in @ Hierarchy..........cccoveernenresnnscnneser e 169
Switch as an EIementccoveirenmnnnesnesesesesssesese s sessesenns 171
Frames With WaILScccoverininernsessessnsse s s se s s 172
TEXEDOXES ... 173
SiNGIE LiNe TEXIDOX ..eveoervereererierserersesessersessesssssssessessessssessessesssssssessesssssssensessens 174
MURITING TEXIDOX ...cveeeeesesee e 175
Locating the MURIINg.........cocrrecrcrr s 176
INSEIHING VAIUES ...t st r e n e e 176
Retrieving a Value from a Multiline TextboX.......c.ccocvvnvriniinnnnicnienenseniennens 177
SUMIMANY....eeeerercreree s s e se s e e e re e e e e 177
Chapter 8: ASSErtioNScuvmsssussssssssssmsssmsssssssmsmsssssssssasssasssssssssnses 179
What Are ASSEITIONS?ceeerrererrnesesesesese s e sss s s e sesessssesessssssssnens 180
The Need fOr ASSEItIONS........ccueerreresinesese s se s snssenens 180
Hard ASSErtions (ASSEITS)ucueerrereresererreserrnsesrse s srs s s e s sessessssenens 181
Soft ASSErtions (VErify)ccoueervrererenernsesenesesese s s e s asessnnes 183
Hard vS. SOft......cccuiciiirncnirs s 185

xii

TABLE OF CONTENTS

Assert Methods in SEleniuM..........cccovrinnnnr e 187
Handling Assertion Failures ..o s 191
What Happens When an Assertion Fails?ccoccvvevnnscvncnensscrnenene 191
Handling Assertion Failures Gracefully...........ccovvevrenrncenniennesernsesenenens 191
Logging and Reporting Assertion Failures..........cccocvevvriennsnsniennsenseniennn, 192
CUSTOM ASSEITIONScveeeerecerree e 192

Creating Custom Assertion Methods for Specific Application Requirements.... 193

Example: Custom Assertion for Checking Data Validityc.ccorenserennnens 194
Extending Assertion Functionality...........cccccvrvvennnenninnennesnesensse s 195
Example: Extending Assertion Functionality in TeStNG............cccccviniererennns 195
Common Pitfalls and Mistakes in Selenium ASSertions..........c.couveeesereressnannes 197
Common Mistakes When Using ASSErtionsc.ccovvvverevnnensenseseesessensenas 197
Avoiding False Positives and False Negatives...........cccvvevvrrverierenensensennens 199
Best Practices for Using Assertions in SEleniumccccveevievenrenierienessensensenns 200
When 10 USe ASSEIIONS.........ccorinmrinernsinse s s 200
Keeping Assertions Simple and SPECIfiC........cccvrervrerrerrerinsensensersesessersensens 201
Using Meaningful Error MeSSages........ccuvrerimrvennenneninnsensessessessesssessesenss 201
Organizing Assertions Within TeSt Cases.......cccvverrerrrerierenessensessersesessessenses 202
31111117 OO 202
Chapter 9: EXCEPIONS.....cccisemrrssmmrmsssnsmsssnsssssnsesssnsesssnsssssnsssssnnssssnnssss 205
What Is an Exception in Selenium?.........cccovvninininnncnncnsss s 205
TYPES Of EXCEPLIONScocevvecreircire et 206
Common Exceptions in SElenium...........ccocucvvvennenennse s sessenes 206
ConNection EXCEPLION.......ccovccvvereresernsessse e sn e e 206
Element Interaction EXCEPLIONS........ccccvrveeernsernesens s sesessenens 207

xiii

TABLE OF CONTENTS

State-hased EXCEPLIONS.......ccvervvrrerierierrrserrere e s s se s s s s e e ssesne s 208
Timeout and Delay EXCEPLIONScccvveererininnin s ssesses e ssessenns 209
NaVIgation ISSUESccvceeveririirsin s s 210
Selector and Search ISSUES ... 210
JavaScript Execution EXCEPLIONS.......ccvcevvververerenensensene e sessesessessssessesae s 211
SESSION EXCEPLIONS....civevteierierererer s s e se s e ss s e s sse e s s saessssessesaeees 212
Driver Configuration and Capability EXCEPLiONSccccvvereverrerierenensersenaens 212
Input and Argument EXCeplions.........cccvvvverininnn e 212
Alert and Pop-up EXCEPLIONScvcvvrvernirrirsrn s 213
Screenshot EXCEPLION........ccvcvereverserieriesrssessesse e ssssesse s ssesessessessessssessesaees 213
Movement and Action EXCeplionccccvvrcninvnnninienses e 213
Browser Capability and Support EXCEptioncocvvvvrrerenensensenenessensensens 214
Attribute and Property EXCEPLION.........cccveririninne i ssensenns 215
Cookie Handling EXCEPLIONc.ccvevevvevierevreserserese s sese e s e sse e sessesessesnes 215
Window Handling EXCEPLiONSccccvvrvevenininsn s sesses e s ssessenns 216
Element State EXCEPLIONS......ccccveveverrviererenrerere s sesse s seesessessessessssessesaens 216
Server and Response EXCEPLIONSccvcvvvverrrerenensensesessssessessessessssessesaees 218
Other EXCEPLIONScccvvereererrerere e sesserse s ssssese e e sessessessesssssssessesassessessesnes 218
Handling Exceptions in SEIENIUM...........cccecrriernenene e 219
Why Exception Handling Is Essential in Selenium WebDriver...........c.......... 219
Handling EXCEPLIONSccovveeereerierererenere s snens 220
Element Not Found Using try-CatCh...........ccovenreenrsnrnccrrcrerese s 220
Timeout Exception Using try-catch-finally...........ccocoovrrnsnnnennesernsesensesensnens 221
Stale Element Exception Using try-catch-finally with throwccccecvvennne. 222
Handling Various Exceptions Using Multiple catch BIOCkS...........cccveevvrerieraene 223
Handling Custom EXCEPLIONSccvcerreverreriererissenseressssessessessessssessessessssessessees 224

Xiv

TABLE OF CONTENTS

Best Practices to Handle EXCEPLiONS.........cccccvveririenienneniensensee e seses e ssessensens 225
11T 1117 S 227
Chapter 10: Wait Strategies in Selenium Test Automation............... 229
Need fOr WaLS. ..o s 230
Dynamic Content Loading.........ccoouererrererenernseresesesesesessesesese s sessesessenens 230
Network Latency and Performance Variationsccccceveenrencrnscnenienens 230
SYNCHFONIZALION........coeieeeeerec e e 230
Reducing FIAKINESSc.ccocoererereerererereree s s sesnenens 230
Uncertain User INPUL..........ccoovrrnnnnnnsrnn e 231

L UL 3 1 SRR 231
IMPLCIE WAILS ... 231
EXPICIT WaLS.....cecererectcercere st s et se e se e sae e sas e sne s 233
Commonly Used ExpectedConditions in the Java Class..........c.ceeevvererenrenseraenns 235
FIUBNE WAILS ...t 248
Key Features of @ Fluent Wait ..o 251
Selecting the Right Wait..........c.ccccorvnrnnnncnns s e 251
IMPLCIE WAtceeeveeerece e s 251
(0 o 1= R 252
FIUBNE WAL ... s 253
Comparative Analysis of Implicit, Explicit, and Fluent Waits...........cccccovveennnne. 255
Best Practices to Use Waits in Selenium Test Automation.............cceecvvevrernnne. 256
SUMMANY....ceiieeresesesese e se e e s e se e nensenenns 259
Chapter 11: Page Object Model (POM)........ccccusssemnnmssssnnnssssssnnnnssssnnns 261
The Conventional APProachcccoveeenerernsesnsesenesess s s ssssesens 262
WHAL IS POM? ...t 263

TABLE OF CONTENTS

DecodiNg DOM........cccovvererrriereresesessese e s e sse e sae e sessesaesassessessessssessessens 263
Java FileS iN POM ... 266
Complete Analysis and Description of Creating a POMccoevivververiennen 266
Differences between Traditional and POM..........c.ccocooenennnnnnnnsscsesensnnnnnes 268
POM BESt PraCtiCesScovurummrmsererssssssmsesssssssssssesessssssssssesessssssssssssesssssnsas 269
FACLOry PAQcvererirircrer sttt 272
Setting Up Page Factory..........ccovvvreercsnnse s sens 272
SumMmarizing the SEtUP ... 276
Steps to Implement Page Factory ... 277
When to Use Page Factory ..o s sessessessens 277
Differences Between POM and Page Factory.........ccccccvinvinnnncncnnsenicnnens 278
Best Practices for Implementing Page Factorycccccvvvvnininennccnicnnens 279
Limitations of POM and Page Factory..........coovronresnnscnnenerese e 280
Limitations of POM ... 280
Limitations of Page Factory..........ccccovverrrneresereserneseseseses e 281
When and Which One to Use: POM vs. Page Factoryc.cccovvenernncnenscnennnnens 281
When 10 USE POM ... e sesse s 282
When 10 Use Page Factorycccoovernsennenesssesssssesssesssse s sessssesessesenns 282
Making the DECISIONcuceeerererrierinesrne e 283
SUMMAIY.c.eeitestrerere et e s s s r e e s e s saese e e e e e aesa e e s e s aesae e e e nannnees 283

Chapter 12: TeStNGccccmmemrrrrmsmsmssssssssssnsmsssssssssssssssssssssssssssssssssnes 289

Understanding Frameworks in Depth ..o 286
JUNIE OVEIVIBW ... e 286
Exploring the Features of JUNt........c.cocooreorncnniesrese e 286
Transitioning to TestNG: Elevating Beyond JUnit..........ccccccvvvenmrenernscrensesennens 287
TESING FEAUIES......ceeereeeerreerre et 287

TABLE OF CONTENTS

Comparative Analysis: JUNit vS. TESINGccccvverrererenserseriersssensersesessssensessens 288
TestNG in Selenium WebDriver: A Synergistic Combination..............ccceccvrenne 290
Setting Up TestNG: A Step-by-Step GUIdecccverenrrnini s 291
Step 1: Installing TeSING in IDES.........ccceererreerercrereereere s 291
Step 2: Creating @ New Java Projectcooocvveeverenerescsnsesesesesese s 292
Step 3: Incorporating TestNG into the Project..........cccovevnecrrenerescrnccen 292
Step 4: Confirming Your TestNG Setup.......ccccvcrivnnncnininsn s 294
TestNG Annotations and AttribULES.........cceeerecrnsesnese s 294
@Test: The Core 0f TESINGc.ccceeererernierrneserese e 295
@Test with Other ANNOtations...........ccoriiiinnn s 298
@BeforeSuite and @AFLEISUILEccovererererininscsre s 298
@BeforeTeSt/@AMEITESLccccererrrre s 299
@BeforeClass/@AFLErCIaSSovrrieermrererrsssssse s 299
@BeforeMethod/@AfterMethod ... 300
TestNG Test Case with Selenium...........cococvvnnnnnnsnnn s 301
HTML Snippet EXamPIE.......cccvvrrernnerierieresesseresessssessessessesessessessessssessessens 301
Writing TESING TESt CASEccrveerrrcrirecerecrirerese st se s sessesesnenens 301
TESING ASSEITIONScovreeereeereec e 304
Parameterized Testing in TEStNG..........ccccvrvrernrmrmnesesrese s 307
Implementing Parameterized Testing in TeStNGccccoovervvernrcrerienenennes 307
Advanced TestNG Configuration and Parallel Executionc.ccocveeevnierenenens 309
Utilizing testng.xml for Test EXeCution...........cccecvvvevnnennnenesnsesessesesenennnnes 310
Enabling Parallel Execution in teStng.Xmlc.cccovrvvrncenniennnsesnsesenenens 310
Implementing Parallel Execution: A Practical Example........cccocvvvverierensenieraens 311
Best Practices for Using TestNG with Selenium.........ccccvvvieriernrnreriennsensenenns 312
310111117 S 315
1T - 317

xvii

About the Author

Sujay Raghavendra is a distinguished

expert in machine learning and software
testing, with a strong background in Python
programming. With a deep passion for both
disciplines, Sujay Raghavendra has dedicated
his career to exploring the intersection

of these fields and delivering innovative

solutions.

Recognizing the critical role of testing in software development, he
expanded his expertise to include automated testing using Selenium
with Python. With his books Python Testing with Selenium: Learn to
Implement Different Testing Techniques Using the Selenium WebDriver
and Beginner’s Guide to Streamlit with Python: Build Web-Based Data and
Machine Learning Applications, Sujay shares his extensive knowledge and
practical insights into leveraging Selenium’s capabilities with Python for
efficient and reliable testing. The book provides a comprehensive guide for
professionals looking to master automated testing techniques, harnessing
the power of Python and Selenium to ensure the quality and functionality
of web applications.

Sujay’s expertise in machine learning and software testing allows him
to bring a unique perspective to automated testing. He explores ways
to integrate machine learning concepts into testing practices, enabling
readers to discover innovative approaches to test analysis, anomaly
detection, and intelligent test execution.

Xix

ABOUT THE AUTHOR

With a solid foundation in programming, Sujay leverages his expertise
to provide readers with practical examples, best practices, and coding
techniques specific to Python and Selenium. His clear explanations and
step-by-step guidance make it easy for readers to implement effective
testing strategies and optimize their automation workflows.

Beyond writing, Sujay actively contributes to the testing community
through workshops, speaking engagements, and mentorship programs. He
strives to empower professionals with the knowledge and skills needed to
excel in automated testing, ensuring the delivery of high-quality software
products. Through his work, Sujay continues bridging the gap between
machine learning, software testing, and programming, inspiring others
to embrace the synergy of these disciplines and drive advancements in
automated testing.

About the Technical Reviewer

Dolkun Tursun Tarim is a senior quality
assurance manager, principal software
developer, and the founder of Selenium
Master LLC. Tarim has more than 12 years

of progressive experience managing quality
assurance test automation teams and projects
and developing robust and scalable U, API,
and database automation frameworks with
Java/.NET/Python Selenium WebDriver,
RestAssured, and database libraries. He has

technical expertise in Cypress and Playwright
automation framework implementations in the CI/CD Pipeline. He
mastered technical expertise in software accessibility, contract, and
performance testing. He has worked on various automated functional and
performance testing projects utilizing commercial and open source test
automation applications and framework APIs. In his free time, he teaches
full-stack software development engineer in test (SDET) courses online
and assists with testing automation projects.

Acknowledgments

I extend my heartfelt gratitude to my dear mother, Indumati Raghavendra,
and elder brother, Sumedbh, for their steadfast love, guidance, and
support. Their unwavering belief in me has been a source of strength

and inspiration throughout my journey. My elder brother’s wisdom,
mentorship, and encouragement have significantly shaped my path and
aspirations. Together with my mother’s endless love and nurturing care,
they have been my pillars of strength, guiding me through life’s ups and
downs. I am truly blessed to have such remarkable individuals in my life,
and I am forever grateful for their unwavering presence and support.
Thank you, Mom and elder brother, for everything you have done for me.

xxiii

Introduction

Welcome to Java Testing with Selenium, a comprehensive guide designed
to help you master automated testing of web applications using Java

and Selenium WebDriver. This book is a journey through the intricacies

of Selenium WebDriver, exploring its capabilities for web testing and
leveraging the power of Java to create robust and efficient automation
scripts.

Who Is This Book For?

This book is ideal for software developers, quality assurance professionals,
and anyone interested in learning about automated testing with Selenium
WebDriver using Java. Whether you are a beginner looking to get started
with automated testing or an experienced tester seeking to enhance your
skills, this book offers valuable insights and practical techniques to excel in
web application testing.

Structure of the Book

Java Testing with Selenium is structured into twelve chapters, each
focusing on different aspects of automated testing with Selenium
WebDriver and Java. Here’s a brief overview of what you can expect from
each chapter:

e Chapter 1 introduces Selenium, its various tools and
versions, and the architecture of Selenium WebDriver.
You learn the advantages of using Selenium for web

INTRODUCTION

XxXVi

application testing and learn how to integrate Selenium
with Python for automation.

Chapter 2 dives into the essentials of Selenium testing
by learning how to install Java and Selenium, set up
browser drivers, execute basic browser commands, and
run a Python test case using Selenium.

Chapter 3 explores the capabilities of Selenium
WebDriver for performing mouse and keyboard
actions. Learn about action chains, mouse actions like
click and drag, keyboard actions including sending
keys, and more.

Chapter 4 explains the fundamental concepts of web
elements and locators in Selenium WebDriver. Master
various types of web locators and techniques for
locating multiple web elements.

Chapter 5 teaches techniques for testing hyperlinks on
web pages, including locating hyperlinks by different
attributes, checking for valid hyperlinks, and handling
broken images within hyperlinks.

Chapter 6 shows how to interact with different types
of buttons in Selenium, including image, radio,
checkboxes, select lists, and multiple select lists.

Chapter 7 explores the concepts of frames and
textboxes in Selenium WebDriver. Learn techniques for
switching to iframes and interacting with single-line

and multiline textboxes.

Chapter 8 explains the importance of assertions in test
automation and how to implement them effectively in
Selenium using hard and soft assertions.

INTRODUCTION

e Chapter 9 describes handling exceptions in Selenium
WebDiriver, including common exceptions and
strategies for effective exception handling.

o Chapter 10 delves into the concept of waits in Selenium
WebDriver, including implicit and explicit waits,
commonly used ExpectedConditions, and fluent waits.

o Chapter 11 explores the page object model (POM) and
Page Factory patterns in Selenium, their advantages,
implementation, and differences.

o Chapter 12 introduces TestNG, a powerful testing
framework for Java, and explains how to integrate
it with Selenium for creating robust and scalable
automation test suites.

Java Testing with Selenium equips you with the knowledge and skills
necessary to excel in the automated testing of web applications using
Java and Selenium WebDriver. Each chapter provides a comprehensive
discussion of topics, practical examples, and hands-on exercises to
reinforce learning. Whether you're a novice or an experienced tester, this
book is your ultimate guide to mastering Selenium WebDriver testing with
Java. Let’s embark on this journey together and unlock the full potential of
automated testing!

XxXVii

CHAPTER 1

Introduction to
Selenium: Java
Automation

Introduction

This exploration of the dynamic landscape of web application testing
delves into the indispensable role of Selenium. This open source
automation tool has fundamentally transformed the approach to ensuring
software quality and reliability. The journey begins with acknowledging
the critical need for application testing, a practice integral to identifying
and addressing potential issues before they affect the end-user experience.
A comprehensive overview introduces Selenium, highlighting its
development, history, and the key reasons behind its widespread adoption
in the web testing domain.

As you navigate through the intricacies of Selenium, the focus extends
to its robust architecture—a foundation that enables the seamless
integration and execution of complex testing scenarios. This architectural
insight provides a backdrop for understanding how Selenium distinguishes
itself from other tools in the market, offering unparalleled flexibility and
compatibility across various platforms and browsers.

© The Editor(s) (if applicable) and The Author(s), 1
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_1

https://doi.org/10.1007/979-8-8688-0291-1_1

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Central to the narrative is the affinity between Selenium and Java, the
preferred programming language that amplifies Selenium’s capabilities.
Java’s object-oriented nature, wide adoption, and platform independence
make it an ideal companion for Selenium, enhancing your ability to
develop sophisticated and scalable test scripts.

This introductory chapter sets the stage for a deeper dive into the
functionalities, benefits, and strategic advantages of using Selenium in
conjunction with Java. The aim is to illuminate the synergies between
these powerful tools, showcasing why they remain at the forefront of web
application testing practices.

The Need for Testing Application

The need for testing applications emerged as software development
evolved and became an integral part of modern businesses. The
recognition of this need can be traced back to the following key factors.

o Quality assurance: Testing helps identify defects and
bugs in the application, allowing developers to fix them
before the software is released to users. It improves the
overall quality of the software.

» Functionality verification: Testing verifies that the
application functions as intended, ensuring it meets

user expectations and business requirements.

o Regression testing: As software evolves with new
features and updates, testing ensures that existing
functionality remains intact and unaffected by changes.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

o User satisfaction: Quality assurance through testing
leads to a better user experience, which is crucial for
user satisfaction and retention.

o Costreduction: Early detection and correction
of defects reduce the cost of fixing issues after the
software is in production.

What Is Selenium?

Selenium is a powerful and widely used open source framework for
automating web browsers. It plays a crucial role in testing web applications
by simulating user interactions with web elements. The core purpose of
Selenium is to automate web application testing across various browsers
and platforms, ensuring that web applications function correctly and
efficiently.

Development and History of Selenium

This topic traces the remarkable development journey of Selenium, a
tool that revolutionized the domain of web application testing. From its
inception as a simple browser automation tool to its current status as

a comprehensive test automation suite, Selenium’s evolution mirrors
the advancements and challenges in web technology over the past two
decades.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

The Genesis and Early Development (2004-2006)
The Birth of Selenium

The story of Selenium begins in 2004 with Jason
Huggins, a software engineer at ThoughtWorks,
who developed Selenium as an internal tool to
address the need for automated testing of web
applications. The initial release, Selenium Core, was
a groundbreaking JavaScript-based testing system.

The name Selenium was chosen as a joke to a
competitor named Mercury because selenium is a

known antidote for mercury poisoning.

Selenium Remote Control (RC)

In 2005, Paul Hammant, another ThoughtWorks
engineer, introduced Selenium RC to overcome the
same-origin policy limitations inherent in Selenium
Core. This development marked a significant step
forward, allowing users to write test scripts in
various programming languages.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Expanding Horizons (2006-2011)

Selenium IDE

In 2006, Shinya Kasatani of Japan contributed
Selenium IDE, a Firefox extension, to the Selenium
suite. It offered an easy-to-use interface for
recording and playing back tests, making test
automation more accessible to beginners.

The Introduction of WebDriver

In 2008, Simon Stewart developed WebDriver, a tool
designed to address the limitations of Selenium

RC. WebDriver’s direct interaction with web
browsers and its cohesive API marked a substantial
improvement over its predecessors.

Selenium 2.0: A Major Milestone

The release of Selenium 2.0 in 2011 was a landmark
event in Selenium’s history. This version unified
Selenium RC and WebDiriver, offering a robust and
streamlined framework for web application testing.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Maturing and Expanding (2011-2018)
The Advent of Selenium 3.0

In 2016, Selenium 3.0 represented a major leap
forward, deprecating the original Selenium Core
and replacing it with WebDriver. This version
focused on modern web standards and enhanced
browser support.

Growth of the Selenium Ecosystem

During this period, the Selenium community saw
substantial growth. The tool’s integration with other
testing frameworks and CI systems underscored its
adaptability and wide-ranging applicability.

The Modern Era of Selenium (2018-Present)

Selenium 4.0: The Future Realized

Announced in 2018 and released in 2021,
Selenium 4.0 brought many new features and
improvements. Adopting the W3C WebDriver
standard, enhancements to Selenium Grid, new
functionalities like relative locators, and improved
window management exemplified the ongoing
innovation in Selenium.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

The historical evolution of Selenium is not just a chronicle of a
testing tool; it is a narrative of how open source communities can drive
innovation in response to evolving technological landscapes. This chapter
highlights Selenium’s past achievements and sets the stage for its future
developments in the ever-changing world of web application testing. As
you journey through this book, the insights gained from Selenium’s history
provide a solid foundation for understanding its current capabilities and
applications.

Why Selenium? Unraveling the Strengths
of Selenium in Web Testing

Let’s discuss the core question: Why Selenium? As you navigate the diverse
landscape of web testing tools, understanding the unique strengths

and capabilities of Selenium helps you appreciate why it has become a
preferred choice for many professionals in web application automation
testing.

Open Source Advantage

Accessibility and community support:
Selenium’s open source nature is one of its most
compelling features. This aspect makes Selenium
freely available to all users and fosters a vibrant
community. The benefit of community support is
multifold, including a wealth of shared knowledge,
rapid bug fixes, and frequent updates.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Language and Framework Flexibility

Adaptable to various programming languages:
Unlike some testing tools that are limited to specific
programming languages, Selenium supports a
variety of languages, including Java, C#, Python,
Ruby, and JavaScript. This flexibility allows teams to
choose a language that aligns with their skills and
project requirements.

Integration with various frameworks: Selenium’s
ability to integrate with numerous testing
frameworks (like TestNG and JUnit for Java,

NUnit for C#, and others) enhances its utility.

This integration capability enables seamless
incorporation into various development workflows.

Cross-Browser and Cross-Platform Testing

Wide range of browser support: A critical aspect
of web testing is ensuring compatibility across
different browsers. Selenium excels in this area by
supporting all major browsers like Chrome, Firefox,
Safari, Internet Explorer, and Edge.

Consistency across platforms: The need to ensure
consistent application performance across different
operating systems is well catered to by Selenium. It
runs on Windows, Linux, and macOS, providing a

comprehensive testing solution.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Advanced Capabilities for Complex Test Scenarios

Handling modern web applications: Selenium
can handle dynamic and complex web applications.
With advanced features like handling AJAX and
dynamic page elements, it can automate testing for
a wide range of web applications.

Community and Continuous Evolution

Ever-growing Selenium community: The Selenium
project benefits from one of the most active and
engaged communities in software testing. This
community is a valuable resource for learning,
sharing, and troubleshooting.

Ongoing development and updates: Selenium
continuously evolves, with regular updates and
enhancements that reflect the latest trends and
demands in web development and testing.

Selenium is a versatile, robust, user-friendly tool for automating
web application testing. Its ability to adapt to various programming
environments, support for cross-browser testing, and its open source
model with strong community backing make it an optimal choice for
organizations and individuals alike. Whether dealing with simple or
complex testing scenarios, Selenium provides the tools and capabilities
necessary to ensure the quality and performance of web applications.
As you explore Selenium’s functionalities in upcoming chapters, these
strengths form the foundation for understanding its role in the modern
web testing landscape.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Selenium Architecture

Explaining the architecture of Selenium, especially with the inclusion

of a block diagram, requires a comprehensive understanding of how its
various components interact within the framework. Here’s a detailed
explanation, followed by a description of a block diagram that illustrates
the architecture.

Core Components

Selenium client libraries/language bindings:
These are APIs provided by Selenium for various
programming languages like Java, Python, C#,
and Ruby. They enable writing test scripts in these
languages.

JSON Wire Protocol over HTTP: Selenium
commands from the test scripts are converted into
JSON format and sent over HTTP to the browser
drivers.

Browser drivers: Each browser (Chrome, Firefox,
Safari, etc.) has a specific driver that receives

the commands. These drivers interpret the
commands and execute them on the respective
browsers. Table 1-1 lists various browsers and
their corresponding Selenium WebDriver drivers
for Java.

10

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Table 1-1. Selenium WebDrivers

Browser Selenium Driver Latest Version
Google Chrome ChromeDriver 96.0.4664.115
Microsoft Edge ~ Microsoft Edge WebDriver 122.0.2351.0
Firefox GeckoDriver (Mozilla Firefox) 0.34.0

Internet Explorer Internet Explorer (IEDriverServer) 4.2.0
Safari SafariDrvier 17.2.1

The version numbers and download links are
subject to change.

Browsers: The actual environment where the test
scripts are executed. Each browser responds to the
driver’s instructions.

Selenium Grid: Depicted as an optional entity
connected to the client libraries. It branches out

into multiple nodes, each capable of running a set of
browser drivers and browsers for parallel execution.

The connecting lines illustrate the flow of commands from the client
libraries through the JSON Wire Protocol to the browser drivers and
the browsers. The dashed lines toward Selenium Grid show its role in
distributing tests for parallel execution across different environments.
Figure 1-1 provides a clear visualization of how each component in
Selenium’s architecture interacts to facilitate web application testing.

11

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Client Libraries JSON Wire Browser Drivers
(Java, Python, Protocol (ChromebDriver,
etc.) GeckoDriver, etc.)
Selenium Grid Browsers
——— (Chrome, Firefox,
etc.)

Figure 1-1. Block diagram representing Selenium architecture

This block diagram would present a clear visual representation
of how the Selenium components interact with each other. The client
libraries are the starting point where test scripts are written. The JSON
Wire Protocol sends commands to the appropriate browser drivers. These
drivers then communicate with the browsers to execute the tests. When
integrated with Selenium Grid, this architecture supports a distributed
testing environment, facilitating parallel execution of tests across different
browsers and systems.

Automation Tool Comparison: Selenium
and Alternatives

Table 1-2 compares automation tools for Selenium and its alternatives. It
shows why Selenium often stands out as the preferred choice compared to
other automation tools.

12

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Table 1-2. Automation Tool Comparison

Feature/Tool Selenium QTP/UFT TestComplete Cucumber Katalon

(Micro (SmartBear) Studio
Focus)
Type Open source Commercial Commercial ~ Open source Freemium
Language Java, C#, VBScript JavaScript, Ruby, Java, Groovy,
Support Python, Ruby, Python, JavaScript, Java
JS VBScript, others
C++Script,
C#Script
Browser All major Limited Most major Limited All major
Compatibility browsers browsers (through browsers
integrations)
Cross- Windows, Windows Windows, Cross- Windows,
Platform mac0S, macOS, Linux platform (via macQS,
Testing Linux integrations) Linux
Ease of Use Moderate User- User-friendly Requires User-
(requires friendly with a record understanding friendly
programming (less and replay of BDD with
skills) technical ~ feature record
knowledge and
required) replay
feature
Mobile Possible with Yes Yes Possible Yes, with
Testing Appium (through built-in

integrations) support

(continued)

13

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Table 1-2. (continued)

Feature/Tool Selenium QTP/UFT TestGomplete Cucumber Katalon

(Micro (SmartBear) Studio
Focus)
APl Testing Limited, Yes, with Yes, with Limited, Yes, with
requires additional additional requires built-in

integrations components components integrations support

Cl/CD Extensive Moderate Extensive Extensive Extensive
Integration
Community Extensive Moderate ~ Moderate Extensive Moderate
Support
Test Yes, with Built-in and Built-in and Yes, with Built-in
Management third-party with third- with third- third-party and with
Integration tools party tools party tools tools third-
party
tools
Cost Free High Moderate to Free (for open Free
High source) with paid
options

Table 1-2 shows that Selenium stands out primarily due to its open
source nature, extensive browser compatibility, and support for multiple
programming languages. Its adaptability to various platforms (Windows,
macOS, Linux) and extensive CI/CD integration capabilities make it highly
versatile. Although it requires programming skills, its wide community
support, and capability to integrate with third-party tools for enhanced
functionality make it a preferred choice, especially for testing automation
projects needing a robust testing framework.

14

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Java: Selenium’s Preferred Language

Java holds a distinguished position as the preferred language for Selenium
for several reasons, making it a top choice for developers and testers in
automated web testing. The synergy between Java and Selenium is driven
by various factors that enhance their effectiveness. Here’s a detailed
explanation of why Java is often considered Selenium’s language of choice.

Widespread popularity and adoption/large

user base: Java is one of the most widely used
programming languages. This widespread adoption
means a large community of developers and testers
are familiar with Java, facilitating easier collaboration
and knowledge sharing in Selenium projects.

Object-oriented programming (OOP)/reusability
and maintainability: Java’s object-oriented nature
aligns well with Selenium’s architecture. The
principles of OOP, like encapsulation, inheritance,
and polymorphism, enable the creation of reusable
and maintainable test scripts, which is crucial in test
automation.

Robust standard libraries/rich set of APIs: Java
provides a comprehensive set of standard libraries,
which can benefit Selenium automation scripting.
These libraries offer functionalities for handling
file systems, databases, networking, and more,
enhancing the capabilities of Selenium tests.

Cross-platform compatibility/platform
independence: Java’s platform independence
is a significant advantage. Test scripts written in
Java can be executed across different operating

15

CHAPTER 1

16

INTRODUCTION TO SELENIUM: JAVA AUTOMATION

systems without modification, aligning with
Selenium’s cross-browser and cross-platform testing
capabilities.

Strong community and ecosystem/extensive
resources and support: The robust Java community
offers extensive support, including forums, tutorials,
and documentation. This makes troubleshooting
and learning easier for those working with Selenium
and Java.

Integration with other tools/compatibility with
testing frameworks: Java integrates well with
popular testing frameworks like JUnit and TestNG,
commonly used in Selenium for organizing tests,
generating reports, and managing test cases

and suites.

Mature development tools/advanced IDEs: Java

is supported by powerful integrated development
environments (IDEs) like Eclipse and IntelliJ

IDEA. These IDEs offer advanced coding,
debugging, and testing features, which are beneficial
for developing and maintaining Selenium test
scripts.

Stability and reliability/proven track record:

Java has a long history of stability and reliability

in various domains. This stability is crucial in test
automation, where consistent and reliable execution
of test scripts is key.

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Strong ecosystem for automation/rich libraries
and frameworks: Java’s ecosystem includes
numerous libraries and frameworks that can
enhance and simplify Selenium automation.
These tools can significantly reduce the effort and
complexity of writing and maintaining test scripts.

The combination of Java’s object-oriented features, widespread use,
robust library support, platform independence, and strong ecosystem
makes it an ideal language for Selenium. It aligns with the technical
requirements of Selenium-based automation and provides a stable and
scalable environment for developing sophisticated and efficient test
automation suites.

Summary

This chapter focused on Selenium’s role in automated web application
testing, detailing its necessity for developing high-quality software. It
examined the origins and evolution of Selenium, highlighting how it has
become a crucial tool in the testing field.

The analysis included a look at Selenium’s architecture, showcasing
its ability to efficiently conduct complex tests across various platforms and
browsers. This exploration emphasized Selenium’s flexibility, open source
nature, and broad support for different programming languages, which
sets it apart from other testing tools.

A key part of the discussion was the synergy between Selenium and
Java. You learned that Java’s object-oriented features and widespread
use enhance Selenium’s test script development, making it the preferred
programming language for Selenium users. This combination optimizes
test processes and utilizes Java’s strengths to improve Selenium’s
functionality.

17

CHAPTER 1 INTRODUCTION TO SELENIUM: JAVA AUTOMATION

Comparing Selenium with other testing tools identified its unique
advantages: adaptability, community support, and integration with other
software tools. These insights help you understand Selenium'’s superior
position in the testing tool spectrum.

Overall, this chapter provided a concise overview of Selenium’s
significant impact on web application testing, its architectural strengths,
the benefits of its integration with Java, and how it compares favorably with
competing tools. This knowledge sets a foundation for applying Selenium
more effectively in software testing scenarios.

18

CHAPTER 2

Selenium Essentials:
Setup and Browser
Commands

This chapter embarks on a technical expedition to set up and master the
integration of Java, Eclipse IDE, and Selenium WebDriver—essential tools
in the arsenal of modern automated testing. Your focus is to configure
arobust development environment that enables you to harness the full
potential of browser automation for testing web applications.

You begin by installing Java, setting the stage with a powerful
programming language that underpins your test scripts. Next, you delve
into the Eclipse IDE, optimizing your workspace for seamless development
and testing synergy. The final setup of your installation involves integrating
Selenium WebDriver, unlocking your ability to programmatically control
web browsers and emulate user interactions with unparalleled precision.

This chapter explores the strategic manipulation of browser windows,
tailoring their size and position to mimic various user environments. This
capability is crucial for assessing responsive web designs and ensuring
compatibility across different devices. You tackle the challenges of loading
web pages, emphasizing the significance of secure connections via HTTP
and HTTPS protocols, and explore Selenium WebDriver’s navigation

© The Editor(s) (if applicable) and The Author(s), 19
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_2

https://doi.org/10.1007/979-8-8688-0291-1_2

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

commands for replicating complex user journeys. This chapter is designed
to elevate your technical proficiency and equip you with the knowledge to
implement comprehensive automated testing strategies.

Setting up Java on Your Machine

Setting up Java on your machine involves a series of steps, including
downloading the Java Development Kit (JDK), installing it, and configuring
environment variables. Let’s go through each step.

Step 1: Download the Java Development
Kit (JDK)

1. Visit the official Oracle website. Navigate to the
Oracle JDK download page (https.//www.oracle.
com/java/technologies/downloads/#javai11). This
site provides the most current version of the JDK.

2. Select the appropriate JDK version. Choose
the JDK version that best suits your test project’s
requirements. While the latest version is generally
recommended for most users, specific projects may

necessitate a particular version.

3. Choose the operating system. Select and click the
download link corresponding to your operating
system, whether it's Windows, macOS, or Linux.

4. Accept the license agreement. Accept the Oracle
Technology Network License Agreement for Oracle
Java SE.

20

http://www.oracle.com/java/technologies/downloads/#java11
http://www.oracle.com/java/technologies/downloads/#java11

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

5. Download the file. Click the download link for the
executable file, be it .exe for Windows, .dmg for
macOS§, or .tar.gz for Linux.

Step 2: Install the JDK

1. Run the installer.

¢ Windows: Double-click the downloaded .exe file
and follow the installation instructions together.
You can choose the directory where you wish to
install the JDK.

e macOS (manual installation): Open the .dmg file
and follow the instructions, which typically involve
dragging the JDK into your Applications folder.

o macOS (using Homebrew): Instead of manually
downloading and installing the JDK, use
Homebrew, a package manager that simplifies the
process. Open Terminal and execute the following

command.

brew install openjdk

After installation, Homebrew may prompt you
to link the JDK. The command will likely look
something like the following.

sudo 1n -sfn /usr/local/opt/openjdk/libexec/
openjdk.jdk /Library/Java/JavaVirtualMachines/
openjdk. jdk

This step ensures that the JDK is properly
recognized across your macOS system.

21

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

o Linux: Extract the .tar.gz file in your desired
location through a graphical file manager or via the
command line with tax -xzf [filename]. This
unpacks the JDK into your chosen directory.

2. Follow the installation steps. You can usually
stick to the default settings throughout the
installation unless you have specific preferences or
requirements.

Step 3: Set Environment Variables

In Windows, do the following.

1. Open System Properties by right-clicking This PC,
selecting Properties, and then Advanced System
Settings.

2. Click the Environment Variables button.

3. In System Variables, click New to create a new
JAVA_HOME variable and set its value to your JDK
installation path (e.g., C:\Program Files\Java\
jdk-11).

4. Find the Path variable in System Variables and click
Edit to add a new entry with #JAVA_HOME%\bin.

In macOS and Linux, do the following.

1. Open Terminal and use vi or vim to edit your shell
profile file, such as .bash_profile, .bashrc, or
«zshxc, found in your home directory. To open
the file, type vi ~/.bashrc or vim ~/.bashxc (or
substitute with the appropriate file for your shell).

22

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

2. add aline to export the JAVA_HOME variable, such
as export JAVA_HOME=/usr/1lib/jvm/jdk-11.

3. Add the Java bin directory to your PATH variable
with export PATH=$JAVA_HOME/bin:$PATH. This
step ensures that the Java binaries are accessible
from the command line.

4. Save the file and exit vi or vim. If you're using vi,
you can save and exit by typing ¢wq and pressing
Enter. For those using vim, the command to save
and exit is the same, :wq.

5. Save the file and reload your profile, for example,
by running source ~/.bashrc or the appropriate
command for the shell profile file you edited.

Step 4: Verify the Installation

1. Open acommand-line interface.
e Windows: Open Command Prompt.
e macOS/Linux: Open Terminal.

2. Check the Java version.

a. Type java -version and press Enter. This should display
the installed Java version, confirming that Java is successfully
installed and the path is set correctly on your machine.

b. Type javac -version to ensure that the Java compiler is
installed and operational.

23

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Step 5: Update When Necessary

Regularly check for updates to the JDK to ensure you have the latest
security fixes and performance improvements.

After following these steps, you will have set up a fully functional Java
development environment on your machine. This setup is crucial for
developing Java applications and serves as a prerequisite for running and
writing Selenium automation scripts.

Installing Eclipse IDE

Once you've installed Java, the next step is to install Eclipse IDE. The
following steps explain how to do it.

Step 1: Download Eclipse

1. Open your web browser and go to the Eclipse official
website (www.eclipse.org/downloads/).

2. Click the Download button for the Install your
favorite desktop IDE packages, which takes you to
the next page for download, or you can choose the
packages according to the requirement by clicking
the Download Packages link.

3. Download the latest available version, which is ideal
for Java development.

24

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Step 2: Run the Eclipse Installer

1. Locate the downloaded file (usually in the
Downloads folder).

2. Run the installer.
¢ In Windows, it’s an .exe file.
¢ InmacOS§, it’s a.dmgfile.

e InLinux, it’s typically a .tar.gz file.

Step 3: Install Eclipse
1. When the installer opens, select Eclipse IDE for Java

Developers.

2. The installer prompts you to choose an installation
folder. You can stick with the default or choose
another location where you'd like Eclipse installed.

3. Click Install to proceed.

Step 4: Complete the Installation

Wait for the installation to complete. This might take a few minutes.

25

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS
Step 5: Launch Eclipse

1. Once Eclipse is installed, you can launch it directly
from the installer or via the shortcut created in your
chosen directory or desktop.

2. Upon the first launch, Eclipse asks you to select a
workspace directory. This is where all your projects
are stored.

Step 6: Configure Eclipse (Optional)

After Eclipse starts, you might want to configure it according to your
preferences. This can include setting up code styles, fonts, and colors or
installing additional plugins through the Eclipse Marketplace.

Step 7: Create a Java Project to Test

Let’s create a new Java project to ensure everything is set up correctly.
1. Go to File » New » Java Project.

2. Ifyou can enter a project name and set up a
project, your Eclipse installation is ready for Java
development.

Note Maven is the preferred tool in professional IT environments,
especially in testing automation, due to its project management
and build automation capabilities. Apache Maven setup, including
its installation and environment configuration, is discussed in
Chapter 12.

26

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

And that’s it! You've successfully installed Eclipse IDE on your
machine, ready to start working on Java projects. The steps might vary
slightly based on the operating system, but the overall process remains
largely the same.

Selenium Installation

After successfully installing Java and Eclipse IDE, you must install
Selenium WebDriver before moving to your automation testing projects.
The following steps ensure smooth installation of Selenium WebDriver
with Eclipse IDE.

Step 1: Download Selenium WebDriver

1. Open your web browser and navigate to the
Selenium official website (https://www.selenium.
dev/downloads/).

2. Scroll to the Selenium Client & WebDriver Language
Bindings section and download the Selenium
WebDriver Java client. The download is a ZIP file
containing Selenium Java libraries and drivers.

Table 2-1 lists WebDrivers and where to download each.

27

https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Table 2-1. WebDrivers

WebDriver Browser Download URL
Supported

ChromeDriver Google Chrome https://sites.google.com/chromium.org/
driver/

GeckoDriver Mozilla Firefox https://github.com/mozilla/
geckodriver/releases

EdgeDriver ~ Microsoft Edge https://developer.microsoft.com/en-us/
microsoft-edge/tools/webdriver/

SafariDriver ~ Apple Safari ~ https://developer.apple.com/
documentation/webkit/testing with_
webdriver in_safari

OperaDriver ~ Opera https://github.com/operasoftware/
operachromiumdriver/releases
IEDriverServer Internet https://www.selenium.dev/downloads/
Explorer

Note Internet Explorer support is being phased out in favor of Edge,
and IEDriverServer is listed under the Previous Releases section on
the Selenium downloads page.

This table covers the most popular web browsers. Each WebDriver
allows Selenium to interact with the respective browser, enabling
automated testing. The Safari WebDriver comes pre-installed with the
browser, but you may need to enable it for automation.

28

https://sites.google.com/chromium.org/driver/
https://sites.google.com/chromium.org/driver/
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.apple.com/documentation/webkit/testing_with_webdriver_in_safari
https://developer.apple.com/documentation/webkit/testing_with_webdriver_in_safari
https://developer.apple.com/documentation/webkit/testing_with_webdriver_in_safari
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases
https://www.selenium.dev/downloads/

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS
Step 2: Create a New Java Project in Eclipse

1. InEclipse, go to File > New > Java Project.

2. Name your project, for example,
SeleniumTestProject, and click Finish.

Step 3: Add Selenium JARs to the Project

1. Extract the downloaded ZIP file to a folder on your

computer.

2. In Eclipse, right-click your project
(SeleniumTestProject) in Project Explorer and
select Properties.

3. Inthe Properties window, navigate to Java Build
Path on the left.

4. Inthe Libraries tab, click Add Extexrnal JARs....

5. Navigate to the folder where you extracted Selenium
WebDriver and select all JAR files in the client-
combined-x.x.x.jar and the 1ibs folder.

6. Click Open and then Apply and Close.

Step 4: Verify Installation

Let’s create a simple test script to verify that Selenium WebDriver was
installed correctly.

1. Right-click the src folder of your project, go to
New » Class, name it (e.g., SeleniumTest), and
click Finish.

29

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

2. Inthe newly created class file, write a simple
Selenium WebDriver test. Here’s an example script
that opens Google in a web browser.

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;

public class SeleniumTest {
public static void main(String[] args) {
// Set the path of the Chrome driver executable
System.setProperty("webdriver.chrome.driver"”,
"path/to/chromedriver");

// Initialize a Chrome driver instance
WebDriver driver = new ChromeDriver();

// Open Google in the browser
driver.get("https://www.google.com");

// Close the browser
driver.quit();

}

In the preceding script, replace “path/to/
chromedriver” with the path to your machine’s
ChromeDriver executable.

Step 5: Run the Test Script

To run the script, right-click it in Eclipse and choose Run As » Java
Application.

If everything is set up correctly, this script should open a Google web
page in the Chrome browser and then close it.

30

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

You've successfully added Selenium WebDriver to your Eclipse project
and are ready to write automated tests! Remember to download the
specific WebDriver for the browser you intend to use (ChromeDriver for
Google Chrome, GeckoDriver for Firefox, etc.) from the Selenium website.

Browser Commands

Opening a browser using Selenium WebDriver is a foundational step

in automating web application testing. Selenium WebDriver provides

an interface for interacting with web browsers, allowing you to control

a browser session programmatically. This includes opening a browser,

navigating web pages, and executing various user actions. The following

guide and Java code snippet demonstrate how to open a web browser

(Google Chrome, Firefox, and Microsoft Edge) using Selenium WebDriver.
To begin, ensure that you have the following prerequisites installed

and set up on your machine.

e Java Development Kit (JDK)
e Selenium WebDriver library

e Browser-specific WebDriver executables
(ChromeDriver for Google Chrome, GeckoDriver for
Firefox, and EdgeDriver for Microsoft Edge)

Opening a Selenium WebDriver Using
Java Code

The following Java program demonstrates how to open web browsers using
Selenium WebDriver. This example presupposes that Selenium WebDriver
is integrated into your project and that you have the respective WebDriver
executables ready.

31

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

import org.openqa.selenium.WebDriver;

// Uncomment the import for the browser you are going to use
import org.openqa.selenium.chrome.ChromeDriver;

// import org.openqa.selenium.firefox.FirefoxDriver;

// import org.openqa.selenium.edge.EdgeDriver;

public class OpenBrowserExample {

public static void main(String[] args) {

// Uncomment one of the following sections to use the
corresponding WebDriver and browser.

// For Google Chrome:
System.setProperty("webdriver.chrome.driver”, "path/to/
chromedriver");
WebDriver driver = new ChromeDriver();
driver.get("https://www.google.com");
System.out.println("Google Chrome launched
successfully.");
driver.quit(); // Close the browser

// For Firefox:

// System.setProperty("webdriver.gecko.driver”, "path/
to/geckodriver");

// WebDriver driver = new FirefoxDriver();

// driver.get("https://www.google.com");

// System.out.println("Firefox launched successfully.");

// driver.quit(); // Close the browser

// For Microsoft Edge:

WebDriver firefoxDriver = new FirefoxDriver();
firefoxDriver.get("https://www.google.com");
System.out.println("Firefox launched successfully.");

32

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

// Open Microsoft Edge

// System.setProperty("webdriver.edge.driver”, "path/
to/edgedriver");

// WebDriver driver = new EdgeDriver();

// driver.get("https://www.google.com");

// System.out.println("Microsoft Edge launched
successfully.");

// driver.quit(); // Close the browser

In this program, do the following.

1.

Set the system properties for ChromeDriver,
GeckoDriver, and EdgeDriver to inform Selenium
where to find the browser-specific WebDriver
executables.

Instantiate ChromeDriver, FirefoxDriver, and
EdgeDriver objects, which open Google Chrome,
Firefox, and Microsoft Edge browsers, respectively.
(All browsers are shown comprehensively for
simplicity; you can choose any one.)

Navigate to https://www.google.comin each
browser using the get() method, marking the start of
your test.

Note

Make sure to replace “path/to/chromedriver”, “path/to/

geckodriver”, and “path/to/edgedriver” with the actual paths to
your downloaded WebDriver executables.

33

https://www.google.com

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

This simple yet fundamental program shows how Selenium WebDriver
empowers you to initiate and control browser sessions, laying the
groundwork for more elaborate automated web tests.

Opening a Web Page Online or Offline

When automating web testing with Selenium WebDriver, you often need to
open web pages to verify the application’s behavior under test. Selenium
allows you to open both online and offline web pages seamlessly.

Online Web Pages

To open an online web page, use the get () method with the full URL of the
page you want to visit. This URL can be either HTTP or HTTPS.

driver.get("https://www.apress.com");

The web page uses two protocols as its address.

o HTTP (HyperText Transfer Protocol) is the basic,
unsecured way of accessing web pages. It’s helpful
when testing content that doesn’t involve sensitive user

information.

e« HTTPS (HTTP Secure) is a secure version that uses
SSL/TLS encryption to protect data. Using HTTPS
when testing pages that handle sensitive data is
crucial, ensuring that the communication is encrypted

and secure.

34

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Encountering a mismatch between HTTP and HTTPS during your
testing can lead to security warnings, mixed content being blocked by
browsers, or exposing sensitive data to vulnerabilities. You must ensure
that your web applications use HTTPS where necessary, especially for
pages that transmit sensitive information.

Offline Web Pages

You can also use WebDriver to open local HTML files using the file:///
protocol, allowing you to test web pages offline.

// Opening a local HTML file for testing
driver.get("file:///path/to/your/localfile.html");

This method is particularly useful during the initial stages of UI testing
or in scenarios where internet access is not required. It enables you to test
static web pages or components without needing a web server.

Let’s expand your guide to include the crucial aspects of managing
your browser sessions with the close and quit commands in Selenium
WebDriver. These commands are pivotal because they ensure that you
gracefully conclude your testing sessions without leaving resources
hanging.

Understanding close and quit Commands

After you've initiated and used your browser sessions for testing, it’s
essential to properly terminate these sessions. Selenium WebDriver offers
two commands for this purpose: close and quit.

35

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

close Command

This command closes the current browser window or tab that’s in focus.

chromeDriver.close(); // Closes the current Chrome window
firefoxDriver.close(); // Closes the current Firefox window
edgeDriver.close(); // Closes the current Edge window

When you invoke the close command, the WebDriver closes the
current window or tab that’s actively in focus. If multiple tabs or windows
are open as part of the session initiated by the WebDriver, only the
active one is closed. This command is particularly useful when your test
involves working with multiple tabs or windows, and you must close them
selectively as part of the test flow.

quit Command

This method closes all windows associated with the session and safely
ends the entire WebDriver session.

chromeDriver.quit(); // Quits the Chrome session, closing all
associated windows

firefoxDriver.quit(); // Quits the Firefox session, closing all
associated windows

edgeDriver.quit(); // Quits the Edge session, closing all
associated windows

The quit command is your go-to for cleaning up after completing your
tests. It ensures that all browser windows opened by the WebDriver are
closed and that the WebDriver session is terminated. This is crucial for
releasing the resources and ensuring that no orphaned browser processes
are left running after your tests have concluded.

36

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Setting up Browser Size

Adjusting the browser size is crucial to your automated testing with
Selenium WebDriver. It allows you to simulate how your web application
behaves across different screen sizes, ensuring a consistent user
experience on various devices.

Maximizing the Browser Window

Maximizing the browser window is one of the most common operations
you perform. It ensures that your application is tested under a full-screen
environment, similar to how many users typically view it.

driver.manage().window().maximize();

By maximizing the browser window, you make sure that your tests
cover the layout and functionality of your web application at the maximum
possible viewport provided by the screen. This is particularly useful for
catching Ul issues that might only manifest in a full-screen view.

Minimizing the Browser Window

The minimize() method allows you to minimize the browser window
during a test programmatically. This action mimics a user clicking the
minimize button on their browser window, effectively reducing it to the
taskbar or dock without closing it.

driver.manage().window().minimize();

By invoking minimize(), you're not just testing the visual aspect of
your application but also ensuring that any processes that should run in
the background do so correctly. For example, you might use this method
to verify that audio continues to play or that data continues to load even
when the browser isn’t in focus.

37

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Setting a Specific Browser Window Size

There are instances where you need to test your application at specific
resolutions. This is where setting the browser size to exact dimensions
becomes invaluable, allowing you to emulate various devices.

import org.openga.selenium.Dimension;
// Setting browser size to 1024x768
driver.manage().window().setSize(new Dimension(1024, 768));

Specifying the browser window size helps you test responsive designs
effectively. By mimicking the screen sizes of tablets, phones, or desktops,
you can ensure that your web application adapts correctly to different
resolutions. This capability is crucial in verifying the responsiveness and
fluidity of your application’s UI.

Using Full-screen Mode

Entering full-screen mode is another way we can configure the browser
window. This mode is different from maximizing, as it hides the browser’s
interface elements (like the address bar and tabs), offering a more

immersive view.
driver.manage().window().fullscreen();

Use full-screen mode to simulate scenarios where your application
is viewed in an immersive environment, similar to web applications
that provide video content or games. This allows you to ensure that your
application’s UI and functionality work seamlessly, even in a Chrome-less

environment.

38

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Setting the Browser Position with
Selenium WebDriver

Setting the browser position allows you to move the browser window to a
specified location on the screen.

import org.openga.selenium.Point;

// Moving the browser to the top-left corner of the screen
driver.manage().window().setPosition(new Point(0, 0));

By specifying the Point at which you want your browser window
to be located, you ensure your application is tested in the exact screen
environment you intend. This is particularly useful when you want to
test your application’s behavior at different screen locations or monitor
configurations.

Setting the Size Using Coordinates

To set the browser size using the coordinates, use the combination of
setSize and setPosition methods that allows you to specify the browser
window’s position on the screen using x and y coordinates, as well as its
dimensions using width and height values. It’s particularly useful when
you need to test how your web application behaves in a window of specific
size at a specific location on the screen.

import org.openqa.selenium.Dimension;

import org.openga.selenium.Point;

import org.openga.selenium.WebDriver;

import org.openqa.selenium.firefox.FirefoxDriver;

public class SetBrowserSizeAndPosition {
public static void main(String[] args) {

39

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

// Initialize the WebDriver with Firefox
WebDriver driver = new FirefoxDriver();

// Navigate to the Apress web page
driver.get("https://apress.com");

// Set Window Size and Position using coordinates
driver.manage().window().setPosition(new Point(30,
30)); // Sets the position of the window to x=30, y=30
driver.manage().window().setSize(new Dimension(450,
500)); // Sets the size of the window to 450x500 pixels

System.out.println("Sets Browser Size with
coordinates");

// Close the browser and end the session
driver.quit();

In this example, you first open the Apress web page using a Firefox
WebDriver. Then, you set the window’s position to x=30 and y=30
coordinates on the screen, which moves the browser window to that
specific location. After that, you adjust the window’s size to 450x500 pixels,
ensuring the browser window is as large as you need for your test. This
approach gives you precise control over the testing environment, allowing
you to replicate user conditions accurately and ensure your application’s
layout and functionality are consistent across different scenarios.

By manipulating the browser window’s size and position, you can
effectively test responsive designs, position-dependent features, and the
overall user experience, ensuring your web application is robust and user-

friendly.

40

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Getting the Browser Position

Understanding the current position of the browser window can be useful,
especially when you're running tests that involve screen coordinates or
when you need to verify that the window is positioned as expected in
multi-window or multi-monitor scenarios.

Retrieving the browser position allows you to obtain the current
location of the browser window on the screen.

Point position = driver.manage().window().getPosition();
System.out.println("Browser Position - X: " + position.getX()
+ ", Y: " + position.getY());

By fetching the Point representing the browser’s position, you can
assert the location of the browser window during your tests. This is
particularly useful in scenarios where the positioning of the window could
affect the behavior or visibility of UI elements.

Getting the Window Size

Knowing the current size of the browser window is crucial for responsive
design testing, allowing you to verify that your web application adapts
correctly at various sizes.

Retrieving the browser window’s size helps you understand the current
viewport dimensions your web application is being viewed in.

Dimension size = driver.manage().window().getSize();
System.out.println("Window Size - Width: " + size.getWidth() + ",
Height: " + size.getHeight());

You can confirm whether your application displays as expected for
the given window size with the dimensions obtained. This is invaluable
because it helps ensure that your application’s responsive design behaves
correctly, providing a seamless user experience across all device sizes.

41

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Navigating Through Web Pages
with Selenium WebDriver

Navigating through web pages is a fundamental part of your automated
testing process. Selenium WebDriver offers intuitive commands to
navigate back and forth in your browser’s history, refresh the current
page, and even jump to a new URL within the same browser window. Let’s
explore these navigation commands.

Navigating Back

To simulate pressing the browser’s back button, use WebDriver’s
navigate().back() method. This allows you to test the behavior of your
web application when a user navigates back to the previous page.

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.By;

import org.openqa.selenium.chrome.ChromeDriver;

import org.openga.selenium.WebDriver;

import org.openqa.selenium.WebElement;

public class BackClickExample {

public static void main(String[] args) {

WebDriver driver = new ChromeDriver();
driver.get("https://example.com");
// Perform a click action
WebElement link = driver.findElement(By.id("link-id"));
link.click();
// Navigate back
driver.navigate().back();
driver.quit();

42

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

After navigating to a second page, call navigate().back(), which takes

you back to the first page. This command is essential when testing multi-

page workflows, ensuring that each page maintains its state or performs

the correct actions when a user navigates back.

Navigating Forward

You might want to move forward again in the browser’s history. The

navigate().forward() command simulates the user clicking the forward

button in their browser.

import
import
import
import
import
public

java.util.concurrent.TimeUnit;
org.openga.selenium.By;
org.openqa.selenium.chrome.ChromeDriver;
org.openqa.selenium.WebDriver;
org.openqa.selenium.WebElement;

class ForwardClickExample {

public static void main(String[] args) {

WebDriver driver = new ChromeDriver();
driver.get("https://example.com");

WebElement link = driver.findElement(By.id("link-id"));
link.click();

// Navigate back

driver.navigate().back();

// Navigate forward

driver.navigate().forward();

driver.quit();

This command is particularly useful in testing the full navigation flow

of a user session, ensuring that forward navigation works seamlessly and

the page state is correctly preserved or restored.

43

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

Refreshing the Page

Refreshing or reloading the current page is a common browser action

that you can automate using the navigate().refresh() method. This is
useful for testing how your web application behaves when a user manually
refreshes the page.

// Navigate to a URL
driver.get("https://www.apress.com");

// Perform some actions, then refresh the page
driver.navigate().refresh();

Refreshing the page ensures that your application’s state resets
correctly or that any dynamic content loads as expected. This action is
crucial for testing pages with dynamic or real-time content, verifying that
data updates correctly without manual user intervention.

You can thoroughly test your web application’s navigational flows and
content behavior through these navigation commands, ensuring a smooth
and intuitive user experience. WebDriver’s navigation methods lets
you replicate real-world user interactions, enhancing the reliability and
coverage of your automated tests.

Summary

This chapter journeyed through the foundational steps of configuring a
sophisticated automated testing environment using Java, Eclipse IDE, and
Selenium WebDriver. The exploration began with installing Java, providing
a versatile programming base for your test scripts. It then progressed to
setting up the Eclipse IDE, customizing it to serve as an efficient platform
for your development and testing endeavors.

44

CHAPTER 2 SELENIUM ESSENTIALS: SETUP AND BROWSER COMMANDS

The integration of Selenium WebDriver marked a significant milestone,
granting the ability to automate browser interactions and accurately
simulate user behaviors. You delved into advanced techniques for
manipulating browser windows, adjusting their dimensions and positions
to suit a variety of testing scenarios. This practice proved invaluable for
validating the responsiveness of web applications across multiple devices.

Furthermore, you tackled the intricacies of loading web pages,
paying special attention to the protocols that underpin web security.

The discussion highlighted the importance of HTTPS in safeguarding
data integrity and user privacy. The application of Selenium WebDriver’s
comprehensive navigation commands allowed you to navigate through
web applications with ease, testing the user experience across different
flows and functionalities.

You have enhanced your technical skill set and gained a deeper
understanding of the strategic application of automated testing tools. This
chapter has prepared you to tackle complex testing challenges, ensuring
the applications you develop and test meet the highest quality, security,
and user satisfaction standards.

45

CHAPTER 3

Mouse and Keyboard
Actions

In this chapter, you will delve into the concept of action chains, a powerful
feature for simulating complex user interactions in web applications.
Action chains allow for the automation of multiple steps, integrating
keyboard and mouse inputs simultaneously. This functionality is essential
for thorough testing of web applications. By using action chains, you can
automate a range of keyboard actions, such as key presses and text entry,
as well as mouse actions like clicks and drag-and-drop. Additionally,
action chains support scroll actions, enabling automated scrolling to
specific web elements. These capabilities ensure a comprehensive
approach to testing interactive features and user interactions. This chapter
will introduce you to the basics of creating and executing action chains,
along with methods to manage these sequences effectively.

Action Chains

The term action chain means a set of instructions are carried out sequentially
to enact the user actions in a web application to test their functionality.

Let’s use the Eclipse IDE to write test cases in Java because it is one
of Java’s most widely used IDE. Another reason to use this IDE is that it
installs the Java JRE (Java Runtime Environment), making a smooth setup
to get started.

© The Editor(s) (if applicable) and The Author(s), 47
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_3

https://doi.org/10.1007/979-8-8688-0291-1_3

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Mouse Actions

The mouse does various operations, such as clicking, dragging, moving
from one end to another, and so on. These operations are used to enact the
user movements and test the application’s features in the browser. Let’s
start with the mouse-click functionality.

Click

The click method is one of the most used. You select an element by moving to
its center and clicking it. A click is performed with the left button of the mouse.

Code 3.1:

import java.util.concurrent.TimeUnit;

import org.openqa.selenium.By;

import org.openga.selenium.chrome.ChromeDriver;
import org.openqa.selenium.WebDriver;

import org.openga.selenium.WebElement;

public class Mouse {
public static void main(String[] args) throws Exception {

// Note: Starting with ChromeDriver version 114, there
is no need to download or specify the chromedriver
location

// Creating a new instance for Firefox driver

WebDriver driver = new ChromeDriver();

// Directing to the URL
driver.get("https://www.selenium.dev");

//Timer for page to get downloaded
TimeUnit.SECONDS.sleep(5);

48

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

//Locating Sign in button
WebElement login button=driver.findElement
(By.linkText("Downloads"));

//Clicking on the 'login' button
login_button.click();

}

This example demonstrated a click operation on the Downloads link
available on the selenium.dev web page. The timer is kept to load the page
so that the elements are available to locate and perform a click operation.

Note The click () function is performed by the left mouse button; it
is also known as click and release.

Double Click

A double click means clicking the left mouse button twice. The mouse
pointer first moves to the center of the web element that needs to be
double clicked.

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

public class DoubleClickExample {
public static void main(String[] args) {
WebDriver driver = new ChromeDriver();
driver.get("https://example.com");

49

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

WebElement elementToDoubleClick = driver.
findElement(By.id("element-id"));

Actions actions = new Actions(driver);
actions.doubleClick(elementToDoubleClick).perform();

driver.quit();

This method can trigger events like opening an item, selecting text, or

activating certain controls.

Context Click

The context click function is the action of moving the mouse pointer to the
center of an element and then right-clicking.

import org.openqga.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openga.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

public class ContextClickExample {
public static void main(String[] args) {
WebDriver driver = new ChromeDriver();
driver.get("https://example.com");

WebElement elementToRightClick = driver.findElement
(By.id("element-id"));

50

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Actions actions = new Actions(driver);
actions.contextClick(elementToRightClick).perform();

driver.quit();

Itis commonly used to test functionality related to context menus

available in a web application.

Click and Hold

In the click-and-hold method, you move the mouse pointer to the center

of an element and press it using the left mouse button without releasing it.

Let’s use the preceding example and see if the web page navigates to the

sign-in page or remains on the same page by holding it.

import org.openqa.
import org.openqa.
import org.openqa.
import org.openqa.
import org.openqa.

selenium
selenium
selenium
selenium
selenium

-By;

.WebDriver;
.WebElement;
.chrome.ChromeDriver;
.interactions.Actions;

public class ClickAndHoldExample {
public static void main(String[] args) {
WebDriver driver = new ChromeDriver();

driver.get("https://example.com");

WebElement elementToClickAndHold = driver.
findElement(By.id("element-id"));

Actions actions = new Actions(driver);
actions.clickAndHold(elementToClickAndHold).perform();

51

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

// Additional actions like moving the element can be
performed here

actions.release().perform(); // Don't forget to release
the click

driver.quit();

It is most commonly used in drag-and-drop scenarios where an
element is clicked and not released for a specific time to reach its
destination. You see more of this in later sections.

Perform

The preceding code used the perform() function to execute the
clickAndHold() function. The perform() function enables to carry out all
mouse (except click) and keyboard actions. When more than one action
or any sequence of actions defined needs to be executed, the perform()
function is used.

Actions actions = new Actions(driver);
actions.moveToElement(someElement)

.click()

.perform(); // Executes the click action on the element

Pause

A pause is a delay in actions to be performed. This delay can be used in a
sequence of actions to be performed or on a single action that needs to be
available on a web page.

52

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

import java.time.Duration;
Actions actions = new Actions(driver);
actions.moveToElement(someElement)
.click()
.pause(1000) // Pause for 1000 milliseconds (1 second)
.click(anotherElement)
.perform();

In some cases, the Ul functionality can be tested in automation by
imitating the user actions, making a more realistic scenario.

Release

It is a method to release a mouse action (button) clicked earlier and held
down. One common example is drag-and-drop, where you need to drag an
element from its position to its destination and release it.

import org.openga.selenium.interactions.Actions;
// Other imports...

Actions actions = new Actions(driver);
actions.clickAndHold(someElement) // Click and hold on
an element

.moveToElement(anotherElement) // Move to

another element

.release() // Release the mouse button

.perform(); // Perform the entire action sequence

Reset

This reset action in Selenium is used to reset or clear all the current state of
the actions that are listed in the action builder.

53

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Actions actions = new Actions(driver);
actions.moveToElement(someElement)
.click()
.perform();

actions.reset(); // Reset the actions builder

actions.moveToElement(anotherElement)
.contextClick()
.perform();

Note This function focuses an element on the web page.

As seen in the preceding code snippet, you can build a new sequence
of actions from the start without creating an Action object.

Mouse Movements

Mouse movement refers to the cursor or pointer that moves on the screen
with the help of the mouse. These movements are chained into various

actions in Selenium that are explained next.

Move to Element

This method moves the mouse cursor to the center of the defined web
element, which imitates the hover behavior. It is used in hover-related
cases like drop-down menus or exploring hidden elements when hovering.

from selenium import webdriver
from selenium.webdriver.common.action_chains import
ActionChains

54

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Initialize WebDriver
driver = webdriver.Chrome()

Navigate to website
driver.get("https://example.com")

Locate the element
element_to hover over = driver.find element by id("some-id")

Create ActionChains object
action = ActionChains(driver)

Perform the hover action
action.move to_element(element to hover over).perform()

This method moves the mouse pointer to the center of the web
element. If the web element is not available then it raises an error.

Move by Offset

In Selenium, you can move the mouse pointer by defining the number of
pixels as offset values. The mouse pointer can be at the current position
in the viewport or on a specific web element. The offset values are x and y
coordinates defining the position to move the mouse pointer.

Note Viewport is the display region of the web page that is seen on
the browser window.

import org.openga.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

55

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

public class OffsetExample {
public static void main(String[] args) {

// Initialize the WebDriver
WebDriver driver = new ChromeDriver();

// Navigate to a website
driver.get("https://example.com");

// Create an instance of the Actions class
Actions actions = new Actions(driver);

// Move the mouse 50 pixels to the right and 100 pixels
down from the viewport's top-left corner
actions.moveByOffset(50, 100).perform();

// Optionally, close the browser
driver.quit();

The offset value starts from the upper-left corner of the screen defined
at (x=0, y=0). Remember that there is no default value of the offset and the
offset value is always relative to the current position of the mouse pointer.
Let’s look at the various methods available to move the mouse pointers.

Offset from Element

When this method is used, the mouse pointer moves to the center of

the specified web element. When the mouse pointer is positioned at the
center of the web element, the mouse pointer is moved by the offset values
provided.

56

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

import org.openqa.selenium.By;

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

public class OffsetFromElementExample {
public static void main(String[] args) {

// Initialize the WebDriver
WebDriver driver = new ChromeDriver();

// Navigate to a website
driver.get("https://example.com");

// Locate the desired web element
WebElement targetElement = driver.findElement
(By.id("someElementId"));

// Create an instance of the Actions class
Actions actions = new Actions(driver);

// Move the mouse to the center of the target element

and then move it by the specified offsets
actions.moveToElement(targetElement).moveByOffset
(50, 100).perform();

// Optionally, close the browser
driver.quit();

This code moves the mouse pointer to the center of the defined
web element (i.e., targetElement) and then immediately moves it by the
specified offset values. This combined action is executed by the perform()
function.

57

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Note xOffset -> defines horizontal movement (when the value is
positive mouse pointer moves toward the right, and if negative, it
moves toward the left.)

yOffset -> Vertical movement (positive value defines the down
movement whereas negative value define upward movement.)

Offset from Viewport

The viewport is the visible part of the web page, and the mouse cursor
moves within this viewport. The offset value starts from the upper-left
corner of the screen.

import org.openga.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;
import org.openqa.selenium.interactions.Actions;

public class OffsetExample {
public static void main(String[] args) {

// Initialize the WebDriver
WebDriver driver = new ChromeDriver();

// Navigate to a website
driver.get("https://example.com");

// Create an instance of the Actions class
Actions actions = new Actions(driver);

// Move the mouse 50 pixels to the right and 100 pixels
down from the viewport's top-left corner
actions.moveByOffset(50, 100).perform();

58

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

// Optionally, close the browser
driver.quit();

There are two offset values: x and y. The x offset value depicts
horizontal movement, and the y offset value depicts vertical movement
of the cursor. This example moved the mouse cursor using offset values
starting from the viewport’s top-left corner.

Offset from Current Pointer Location

This method allows you to move the mouse pointer to specified x and y
offset values from its current position. Moving the mouse pointer without
indulging web elements as reference points is reliable.

import org.openqa.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

public class OffsetFromCurrentPointerLocationExample {

// Initialize the WebDriver
WebDriver driver = new ChromeDriver();

// Navigate to a website
driver.get("https://example.com");

// Create an instance of the Actions class
Actions actions = new Actions(driver);

// Define the x and y offsets
int xOffset = 30; // Move 30 pixels to the right from
the current position

59

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

int yOffset = -10; // Move 10 pixels up from the
current position

// Move the mouse by the specified offsets from its
current position
actions.moveByOffset(xOffset, yOffset).perform();

// Optionally, close the browser
driver.quit();

Note If the mouse pointer has not moved by any prior Selenium
command, then the mouse pointer is located upper-left corner of
the viewport. Also, remember the mouse pointer position remains
unchanged when the page is scrolled.

In this example, the mouse pointer moves by 30 pixels from its current
position, considering the x and y offsets. This method can be used when
the mouse pointer’s starting point varies or the movement does not
depend on any web element.

Drag and Drop on Element

This method is used to test the drag-and-drop functionality in a web
application. This action is automated by combining click and hold with
move to element actions discussed earlier. For the drag-and-drop method,
let’s use simple HTML and JavaScript code for implementation.

<!DOCTYPE html>
<html>
<head>

60

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

<style type="text/css">
#drag, #drop {

float: left;

padding: 15px;

margin: 15px;
-moz-user-select: none;

}
#drag {
background-color: #A9A9A9;
height: 50px;
width: 50px;
border-radius: 50%;
cursor: pointer; /* Makes it clear the element is
draggable */
}
#drop {
background-color: #fd8166;
height: 100px;
width: 100px;
border-radius: 50%;
border: 2px dashed #000; /* Visual cue for drop area */
}
</style>

<script type="text/javascript">
function dragStart(event) {

event.dataTransfer.setData("Text", event.target.id);
event.dataTransfer.effectAllowed = 'move';
return true;

61

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

function dragEnter(event) {
event.preventDefault();
return true;

}

function dragOver(event) {
event.preventDefault(); // Necessary for
allowing a drop
return false;

}

function dragDrop(event) {
var src = event.dataTransfer.getData("Text");
var srcElement = document.getElementById(sxc);
event.target.appendChild(srcElement);
srcElement.style.backgroundColor = 'green’;
// Change color upon drop
event.stopPropagation();
return false;
}
</script>
</head>
<body>
<h1>Drag and Drop</h1>
<center>
<div id="drop" ondragenter="return dragEnter(event)"
ondrop="return dragDrop(event)" ondragover="return
dragOver (event)">
Drop here
</div>
<div id="drag" draggable="true" ondragstart="return
dragStart(event)">
<p>Drag</p>

62

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

</div>
</center>
</body>
</html>

Figure 3-1 shows two circles; one is larger than the other. You can
drag the smaller circle using an element and drop into the larger circle or
drop zone. To distinguish when the circle is dropped into a larger one, the
background color of the smaller circle changes color, which is mentioned
in the JavaScript dragDrop function.

Drag and Drop

Figure 3-1. Drag and drop before execution

In this example, a click-and-hold action is performed on the source
element, which is a functionality of the left mouse button. Holding the
same, you move the element to the target location. When you reach
your target location, you release the source element. The following code
performs a drag-and-drop action for the HTML seen earlier.

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqga.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.interactions.Actions;

63

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

public class DragAndDropCircleExample {
public static void main(String[] args) {

// Initialize the WebDriver
WebDriver driver = new ChromeDriver();

// Navigate to the location of the HTML file
driver.get("URL_of the drag and drop html created");
// Replace with the actual path to your HTML file

// Locate the source (circle) and target elements

WebElement sourceElement = driver.findElement
(By.id("drag"));
WebElement targetElement = driver.findElement

(By.id("drop"));

// Create an instance of the Actions class
Actions actions = new Actions(driver);

// Perform the drag-and-drop action
actions.dragAndDrop(sourceElement, targetElement).
perform();

// Optionally, close the browser
driver.quit();

After executing the drag-and-drop method, the circle dragged into the
drop zone turns green, as seen in Figure 3-2.

64

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Drag and Drop

Figure 3-2. Drag and drop after execution

The background of the smaller circle turns green when the circle is
dropped. Next, let’s look at how to drag and drop using pixel values (offset
values).

Note You can also use click-and-hold with move-to-element
actions to perform drag-and-drop operations.

Drag and Drop by Offset

The drag and drop by offset method is similar to the preceding method.
The only difference is that you move the source element with offset values
(i.e., x and y values rather than defining the target element).

import org.openqa.selenium.By;
import org.openga.selenium.WebDriver;
import org.openqga.selenium.WebElement;

65

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

import org.openqa.selenium.Point;
import org.openga.selenium.chrome.ChromeDriver;
import org.openga.selenium.interactions.Actions;

public class DragAndDropByOffsetExample {
public static void main(String[] args) {

WebDriver driver = new ChromeDriver();

// Open the web page with the drag and drop elements
driver.get("URL_of your drag and _drop page");

// Locate the elements to be dragged and the target
WebElement sourceElement = driver.findElement
(By.id("drag"));

WebElement targetElement = driver.findElement

(By.id("drop"));

// Get the location of source and target elements
Point sourcelocation = sourceElement.getlLocation();
Point targetlLocation = targetElement.getlLocation();

// Calculate offset (consider the size of the element
if needed)

int xOffset = targetlocation.getX() -

sourcelocation.getX();

int yOffset = targetLocation.getY() -

sourcelocation.getY();

// Create an instance of Actions class
Actions actions = new Actions(driver);

// Perform drag and drop by calculated offset
actions.dragAndDropBy(sourceElement, xOffset, yOffset).
perform();

66

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

// Close the browser
driver.quit();

This code calculates the offset values based on the positions of the
source and target elements and then executes the drag-and-drop action
for the HTML created. The next section looks at keyboard actions.

Keyboard Actions

In Selenium WebDriver, keyboard actions automate key press and release.
It can be a combination of one or more such key events where the web
application’s functionality is tested. Let’s discuss various keyboard actions

used to interact with web applications.

Keys

The keys are provided with a set of constant values in the form of Unicode
representing special and non-printable keys on the keyboard. These
constant values allow you to automate key presses. The keys with their
Unicode’s are given in Table 3-1.

67

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Table 3-1. Basic and Unicode Keys

Basic Keys Unicode Basic Keys Unicode
NULL \uEO0O ENTER \uE007
CANCEL \uE001 Shift \uE008
HELP \uE002 CONTROL \uE009
BACK_SPACE \uE003 LEFT \uE012
TAB \uE004 uP \uE013
CLEAR \uE005 RIGHT \uE014
RETURN \uEO06 DOWN \uE015
Key Down

The keyDown method imitates key press in keyboard action. The key

press means pressing a key without releasing it. When you want letters

to be uppercased or when you want to use special characters, hold the

Shift key. To select multiple elements by holding the Ctrl key, you use the

keyDown method.

Key Up

The keyUp method releases a key pressed before and performs other

keyboard actions afterward. It is primarily used with the keyDown method

imitating a complete key press and release action.

68

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Send Keys

When you want to enter text into a web element (e.g., passwords, text
areas, and search boxes), use the sendKeys method. You can chain
multiple actions with this method. An example of typing letters in
uppercase letters is shown in the following code.

The key remains in the pressed state until you end the chain action or
use the keyUp method discussed next.

public class Mouse {
public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver"," path/
to/geckodriver");

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://google.com/");

Actions actions = new Actions(driver);

// Locate the element with ID "query" and simulate
pressing and holding the Shift key while
typing "abc"
actions.moveToElement(driver.findElement(By.name("q")))
.keyDown (Keys . SHIFT)
.sendKeys("java selenium book sujay")
.keyUp(Keys.SHIFT)
.perform();

69

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

This example code used the keyDown and keyUp methods with
sendKeys, simulating text entered in the Google search box in uppercase.

Scroll

When referring to operations, you can use the mouse’s actions apart from
clicks by the mouse’s scroll wheel. In Selenium WebDriver, you can scroll
the web page up or down. Selenium WebDriver does not natively support
scroll actions like mouse and keyboard actions. Next, let’s discuss actions
that are used to stimulate scrolling actions.

Scroll to Element

When dealing with elements that are present outside of the viewport,

you use the scrollToElement method. The Action class in Selenium does
not automatically scroll the target element into the viewport like more
conventional methods, such as click() or sendKeys(), do. As a result, before
performing actions on an element using the Actions class, you frequently
need to make sure that it is visible.

import org.openqa.selenium.WebDriver;

import org.openga.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.By;

import org.openqa.selenium.JavascriptExecutor;
import org.openqga.selenium.WebElement;

public class Mouse {
public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver", "path/to/
geckodriver");

70

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://1link.springer.com/");

WebElement elementToScrollTo = driver.findElement(By.
linkText("Biomedicine"));

Actions actions = new Actions(driver);
actions.moveToElement(elementToScrollTo).perform();

// Using JavascriptExecutor

JavascriptExecutor js = (JavascriptExecutor) driver;
js.executeScript("arguments[0].scrollIntoView(false);",
elementToScrollTo);

To execute the scroll action, use the JavascriptExecutor library in

Selenium. As seen in the example, the scrollintoView method brings the

target element into the view in the viewport, and scrollintoView(false)

ensures that the bottom of the target element aligns with the bottom of the

Scroll by a Given Amount

scrollByAmount is one of the most common scrolling methods used to

scroll vertically or horizontally, defined by the number of pixels. The

delta x and delta y values specify to scroll horizontally and vertically

respectively. This method is useful when you want to scroll web

applications by a specified amount rather than an element.

71

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver","path/to/
geckodriver");

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://selenium.dev/");

// Define the amount to scroll horizontally and
vertically

int deltaX = 50; // 50 pixels to the right

int deltaY = 100; // 100 pixels downward

// Create an Actions sequence to scroll by the
fixed amount
new Actions(driver)
.scrollByAmount(deltaX, deltaY)
.perform();

This example scrolls by 50 pixels to the right and 100 pixels down. This
operation can be helpful when testing lazy-loading items, infinite scrolling
capabilities, or any other functionality that is activated after a particular

amount of scrolling.

Scroll from an Element by a Given Amount

In this method, you first bring the defined web element into view
before scrolling away from it by a predetermined number of pixels both
horizontally (delta x) and vertically (delta y), respectively. This action

72

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

is used when you want to test web elements or functionalities that are
present immediately to the side or below a specified reference element.

public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver","path/to/
geckodriver");

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://link.springer.com/");

// Locate the origination element
WebElement originationElement = driver.findElement(By.
linkText("books"));

// Define the scroll origin at the center of the element
WheelInput.ScrollOrigin scrollOrigin = WheelInput.
ScrollOrigin.fromElement(originationElement);
WheelInput.ScrollOrigin scrollOrigin = WheelInput.
ScrollOrigin.fromElement(originationElement, 0, 100);

// Create an Actions sequence to scroll from the defined
origin by 500 pixels downward
new Actions(driver)
.scrollFromOrigin(scrollOrigin, 0, 500)
.perform();

The example defined the element available in the viewport and then
scrolled using the scrolllntoView method with the number of pixels. Next,
let’s look at scrolling an element with an offset.

73

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Scroll from an Element with an Offset

This method allows you to scroll web applications from a specific position
determined by an offset from the center of a defined web element with an
offset action. It is useful when you want to scroll to a particular location
corresponding to an element rather than the element itself.

public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver", "path/to/
geckodriver");

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://link.springer.com/");

// Locate the origination element
WebElement originationElement = driver.findElement(By.
linkText("books"));

// Define the scroll origin as a point 100 pixels above
the center of the footer

WheelInput.ScrollOrigin scrollOrigin = WheelInput.

ScrollOrigin.fromElement(originationElement, 0, 100);

// Create an Actions sequence to scroll from the
defined origin by 500 pixels downward
new Actions(driver)
.scrollFromOrigin(scrollOrigin, 0, 500)
.perform();

74

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

In this example, a scrolling action is performed from the defined web
element with the number of pixels. Next, let’s look at scrolling actions that
can be performed using Selenium.

Scroll from an Offset of Origin by Given Amount

Using this method, you can scroll from a certain position defined by an
offset from the upper-left corner of the current viewport. This can be used
in cases where you want to scroll to a specific position on the screen rather

than in relation to a web element.

public static void main(String[] args) {
//Set system properties
System.setProperty("webdriver.firefox.driver", "path/to/
geckodriver");

// Creating a new instance for Firefox driver
WebDriver driver = new FirefoxDriver();

// Directing to the URL
driver.get("https://link.springer.com/");

// Define the scroll origin as a point 100 pixels right and 200

pixels down from the upper-left corner of the viewport
WheelInput.ScrollOrigin scrollOrigin = WheelInput.
ScrollOrigin.fromvViewport(100, 200);

// Create an Actions sequence to scroll from the defined origin
by 500 pixels downward
new Actions(driver)
.scrollFromOrigin(scrollOrigin, 0, 500)
.perform();

75

CHAPTER 3 MOUSE AND KEYBOARD ACTIONS

Summary

This chapter discussed action chains for stimulating complex user
interactions incorporating several steps or using a keyboard and mouse
simultaneously. The action chains enable you to automate testing the
functionality of the web applications.

With Action chains, you can perform a variety of keyboard actions
like key presses, text entry, and key combinations. They also allow mouse
actions like clicks, double clicks, right clicks, drag and drop, and mouse
movements over elements. These actions are useful for testing interactive
functionalities such as web elements, hover states and drag-and-drop.

Action chains also facilitate scroll actions, enabling automated
scrolling to specific web elements or by predetermined offsets. This is a
crucial feature for testing web elements that are not available immediately
on a page. The chain of actions is carried out by executing with the
perform() method, enabling a comprehensive approach for stimulating
real-world scenarios of user interactions in testing a web application.

The chapter also discussed methods like reset(), release(), and pause().

76

CHAPTER 4

Web Elements

This chapter explores the essential concept of web element locators in
Selenium WebDriver, a fundamental aspect of web automation. Starting
with an introduction to locators and why they are indispensable in
Selenium, you set the foundation for understanding their role in effective
automation. You then delve into the Document Object Model (DOM),
which is essential for comprehending how Selenium interacts with web
elements.

A detailed examination of the eight primary types of locators in
Selenium follows, including their practical applications, syntax, and
scenarios. From simple ID and class name locators to complex XPath and
CSS selectors, each type is discussed to provide a thorough understanding
of their usage.

Finally, you address common challenges encountered with locators
and share best practices for overcoming these issues, aiming to enhance
the reliability and efficiency of your automation scripts. This chapter is
designed to equip you with the knowledge and expertise needed to master
the use of locators in Selenium WebDriver.

What Are Web Element Locators?

Web element locators are fundamental tools used in web automation
and testing to identify and interact with elements on a web page. These
elements can include buttons, text fields, checkboxes, drop-down menus,

© The Editor(s) (if applicable) and The Author(s), 77
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_4

https://doi.org/10.1007/979-8-8688-0291-1_4

CHAPTER 4 WEB ELEMENTS

links, and more. Locators pinpoint these elements within the DOM of
a web page, allowing automated scripts or tests to perform actions like
clicking, typing, or extracting information from them.

Web element locators ensure that web application functionality and
the user interface work as intended. They are widely used in various
testing scenarios, including functional testing, regression testing, and
compatibility testing, to verify that web applications behave correctly and
consistently across different browsers and platforms.

Why Are Web Element Locators Important
in Web Automation?

Web automation involves automated interaction with web applications;
automating these interactions would be nearly impossible without reliable
locators. The following points describe why web element locators are
essential.

e Automation precision: Web element locators enable
precise identification of elements on a web page,
ensuring that automated tests or scripts can interact
with the intended elements accurately.

e Cross-browser compatibility: Different web browsers
render web pages differently. Web element locators
help ensure that automated tests work consistently
across multiple browsers by adapting to their unique
rendering.

o Maintainability: Effective use of locators leads to more
maintainable automation scripts. When elements
change, or the web application evolves, well-designed
locators can be updated more easily, reducing
maintenance overhead.

78

CHAPTER 4 WEB ELEMENTS

o Reusability: Web element locators can be reused
across different test cases or scenarios, making
automation scripts more efficient and reducing
redundancy.

o Scalability: As web applications grow and evolve,
automation can help manage extensive testing efforts.
Web element locators are essential for scaling test
automation to cover various functionalities.

o Efficiency: Automation significantly speeds up testing
processes, allowing for rapid feedback and quicker
releases of web applications.

Understanding how to use different types of locators effectively and
efficiently is a foundational skill for anyone involved in web automation
and testing. It ensures the reliability and effectiveness of automated tests
and contributes to the overall quality of web applications.

Understanding the DOM

The Document Object Model, or DOM for short, is a structured
representation of a web page’s content. It’s like a blueprint that browsers
use to interpret and render web pages. In this context, the DOM plays a
vital role because web element locators rely on it to locate and interact
with elements on a web page.

Imagine a web page as a tree structure. Each element within the web
page, such as headings, paragraphs, images, and buttons, is represented
as anode in this tree. The DOM organizes these nodes hierarchically, with
the HTML document as the root node.

79

CHAPTER 4 WEB ELEMENTS

HTML and DOM Basics

HTML (HyperText Markup Language) is the standard language to create
and structure web applications on the World Wide Web. HTML has
various web elements, each represented by tags that thus define a web
page. Understanding HTML is essential when working with web element
locators and automation because web elements are defined within the
HTML structure of a web page.

HTML Web Elements

HTML web elements are the building blocks of any web page. They are
enclosed in HTML tags, which consist of an opening tag, content, and a
closing tag (< >). The following is a basic example.

<p>This is a paragraph element.</p>

This example has the following.
e «p>isthe opening tag.
o </p>is the closing tag.
o This is a paragraph element. is the content.

Web elements can vary in complexity as they are used for various
purposes. Common web elements include headings, paragraphs, links,
images, and forms. Each web element has specific attributes and may
contain other nested elements.

Attributes

Attributes provide additional information about HTML elements and are
included within the opening tag. Attributes consist of a name and a value,
separated by an equal sign. The following is an example using the src
attribute for an image element.

80

CHAPTER 4 WEB ELEMENTS

In the example provided, you have the following attributes.
e srcisthe attribute name.
o 1image.jpg is the attribute value.
o altis another attribute name.
e A beautiful image is its attribute value.

Attributes can influence the behavior and appearance of elements,
making them essential for web element locators and automation. For
instance, the id and name attributes can be locators to uniquely identify

elements.

Overview of the DOM Tree Structure

You need to understand the key concepts in DOM and their definitions
before moving to the relationship between them. Let’s start with nodes, the
initial and primary concept in the DOM structure.

Nodes represent individual elements, attributes, and text content
within the DOM tree. Common types of nodes include the following.

e Root node: Represents the entire document (document
object).

o Element nodes: Represent HTML tags and form the
structure of the HTML document.

o Attribute nodes: Associated with element nodes and
provide additional information about elements (though
in the DOM AP], attributes are typically accessed as
properties of element objects).

¢ Text nodes: Contain the actual text within elements
and are always leaf nodes (they do not have
child nodes).

81

CHAPTER 4 WEB ELEMENTS

Understanding the DOM structure and how to effectively locate

elements within it is crucial for web automation testing, enabling testers to

create test cases.

Relationships in the DOM

Elements in the DOM can have a parent-child relationship, sibling

relationship, or both. This hierarchical structure allows you to navigate and

manipulate the document efficiently.

82

Parent-child relationship: This relationship describes
elements nested within other elements. For instance,
ifyou have a <div> element with a <p> element inside it,
the <div> is considered the parent and the <p> is the child.

Sibling relationship: Siblings are elements on the same
level or share the same parent. For example, if two <div>
elements are placed one after the other within the same
parent element, they are considered siblings.

<!DOCTYPE html>
<html>
<head>
<title>Our Document</title>
</head>
<body>
<div id="content">
<h1>Welcome to Our Page</h1>
<p>This is a paragraph in our document.</p>
Visit Example
</div>
</body>
</html>

CHAPTER 4 WEB ELEMENTS

The following describes the elements in this HTML.

o The <htmly element is the root element, with <head>
and <body> as its children.

o <title) element is the child of <heady.

e Inside <body>, <div> is a child element, which further
contains <hl>, <p>, and <a> as its children.

¢« The <a> element has an attribute href with the value
https://example.com.

Figure 4-1 is a flowchart that diagrams the structure and relationships
described in the example.

Figure 4-1. DOM structure

Figure 4-1 illustrates how each element in the HTML document is
connected, showcasing the parent-child and sibling relationships. Starting
from the <htmly root element, you can see how elements are nested within
each other, leading down to the individual <h1y, <p», and <a» elements
within the <divy element. The <a» elements href attribute is also depicted,
demonstrating how attributes provide additional information about an
element.

83

CHAPTER 4 WEB ELEMENTS

Locators

Let’s explore various Selenium WebDriver locators, including ID, name,
XPath, CSS selectors, link text, partial link text, tag name, and class name.
These locators provide different methods for identifying and interacting
with web elements. Each locator type has a description, Java syntax, and
an HTML code example.

ID Locator

The ID locator in Selenium is used to find an element by its unique ID. It’s
one of the most efficient ways to locate elements, as IDs are supposed to be
unique within an HTML document.

Java Syntax
WebElement element = driver.findElement(By.id("elementId"));

This syntax tells Selenium to find an element with the specified ID
attribute. The By.id method is fast and reliable due to the uniqueness of
the ID attribute in HTML.

HTML Code Example
<button id="submitBtn">Submit</button>

This example has a button element with a unique ID submitBtn. You
can use this ID to directly locate the button.

Java Code to Locate Web Elements

WebElement submitButton = driver.findElement(By.
id("submitBtn"));

The code uses the By.id method to find the button with the ID
submitBtn. This approach is straightforward and effective due to the ID’s
uniqueness.

84

CHAPTER 4 WEB ELEMENTS

Name Locator

The name locator is used to find an element by its name attribute. It is
useful when the name attribute is available and can conveniently locate
elements, especially in forms.

Java Syntax

WebElement element = driver.findElement(By.
name("elementName"));

This command finds elements whose name attribute matches the
provided value. It's a commonly used method, especially in forms.

HTML Code Example
<input type="text" name="username">

Here, an input field for a username with the name attribute set to
“username”. This attribute can be used to locate the input field.

Java Code to Locate Web Elements

WebElement usernameInput = driver.findElement(By.
name("username"));

The code locates the input field by searching for an element with the
“username” name attribute. This method is particularly useful in scenarios
like forms where the name attribute is commonly used.

Link Text Locator

The link text locator finds a link element by its exact visible text. It’s
particularly useful for links where the text is distinct and known.

85

CHAPTER 4 WEB ELEMENTS

Java Syntax

WebElement element = driver.findElement(By.linkText("Exact Link
Text"));

This syntax locates link (¢a») elements based on their exact text
content. It’s ideal for scenarios where you need to interact with text-
specific links.

HTML Code Example
Login

The example contains a link with the text “Login”. This text, being
distinct and exact, can be used to locate the link.

Java Code to Locate Web Elements

WebElement loginlLink = driver.findElement(By.
linkText("Login"));

The code finds the link element that exactly matches the text. This
approach is straightforward and efficient for locating text-based links.

Partial Link Text Locator

The partial link text locator allows you to find a link element based on a
substring of its visible text. This is helpful when the exact text of the link is
either unknown or too long.

Java Syntax

WebElement element = driver.findElement(By.
partiallinkText("Part of Link Text"));

This command finds link elements that contain the specified substring
in their text. It offers more flexibility compared to the exact link text locator.

86

CHAPTER 4 WEB ELEMENTS

HTML Code Example
Learn more about you

In this case, the link text is longer. If you only remember a part of it, like
“about you’, you can still locate the link.

Java Code to Locate Web Elements

WebElement aboutlLink = driver.findElement(By.
partiallinkText("about you"));

This code finds any link that includes the text “about you” in its
visible text. It’s a versatile approach for links with long or partially
remembered texts.

Tag Name Locator

The tag name locator is used to find elements by their tag names. It’s useful
for identifying elements when class, name, or ID is not available.
Java Syntax

List<WebElement> elements = driver.findElements(By.
tagName("tagName"));

This syntax finds all elements of a specified tag. Since multiple
elements can share the same tag, it returns a list of elements.

HTML Code Example

List Item 1</1i>
List Item 2</1i>

Here, you have several list items (<11i>). If you want to interact with all
list items, you can use their tag name for location.

87

CHAPTER 4 WEB ELEMENTS

Java Code to Locate Web Elements

List<WebElement> listItems = driver.findElements(By.
tagName("1i"));

The code retrieves all elements with the <1i> tag. It’s effective for
scenarios where you need to interact with or assess multiple elements of
the same type.

Class Name Locator

The class name locator is used to find elements by their class attribute. It’s
a common way to locate elements when they share a styling class.

Java Syntax

WebElement element = driver.findElement(By.
className("className"));

This syntax locates elements based on the value of their class
attribute. It’s helpful when elements are categorized or styled using
specific classes.

HTML Code Example
<div class="error-message">Error occurred</div>

In this example, an error message is styled with an error-message class.
This class can identify and interact with the error message element.

Java Code to Locate Web Elements

WebElement errorMessage = driver.findElement(By.
className("error-message"));

The code locates the <div> element using its error-message class.
This method is particularly useful when dealing with elements styled or
grouped by a common class.

88

CHAPTER 4 WEB ELEMENTS

Each locator in Selenium WebDriver serves a specific purpose
and provides a different method for locating elements in a web page.
Understanding and effectively using these locators is crucial for creating
reliable and efficient web automation scripts.

XPath Locators
Absolute XPath

Absolute XPath starts from the root node and navigates down the
document hierarchy, specifying each element in the path. It begins with

a single slash / and provides a direct way to access any element in the
DOM. However, it’s fragile because any change in the document’s structure
can invalidate the path.

Java Syntax

WebElement element = driver.findElement(By.xpath("/html/body/
div/p"));

This syntax uses Selenium’s findElement method with By.xpath,
where the XPath expression defines a direct path from the root (html) to
the desired element.

HTML Code Example

<html>
<body>
<div>
<p>Paragraph text</p>
</div>
</body>
</html>

89

CHAPTER 4 WEB ELEMENTS

In this example, the <p» element is nested inside a <divy, which is
inside the body of the document. You use absolute XPath to precisely
locate this paragraph element.

Java Code to Locate Web Elements

WebElement paragraph = driver.findElement(By.xpath("/html/
body/div/p"));

The Java code navigates from the root of the HTML document down to
the specific ¢<p» element. This approach is very specific and relies on the
exact structure of the HTML document.

Relative XPath

Relative XPath provides a more flexible approach to locating elements. It
starts with a double slash //, indicating that the element can be anywhere
in the document. This method is less prone to breaking with changes in
the document structure.

Java Syntax

WebElement element = driver.findElement(By.xpath("//tag
[@attribute="value']"));

The // indicates that Selenium should search for the element at any
location within the HTML document that matches the tag and attribute

criteria.
HTML Code Example
<div>
<button id="submit">Submit</button>
</div>

Here, you have a button with an id attribute. The button is within a
div, but its exact position in the document is irrelevant for locating it using
relative XPath.

90

CHAPTER 4 WEB ELEMENTS

Java Code to Locate Web Elements

WebElement submitButton = driver.findElement(By.xpath
("//button[@id="submit']"));

This line of Java code tells Selenium to find any button element in the
document with an id of “submit” This method is more resilient to DOM
changes than absolute XPath.

Attribute-Based XPath

Attribute-based XPath locates elements based on their attributes. It’s
highly useful when elements have unique attributes that can be used for
identification, like id, name, or custom attributes.

Java Syntax

WebElement element = driver.findElement(By.xpath("//tag
[@attribute="value']"));

This XPath expression searches for an element with a specific tag and
a given attribute value. It's a precise way to locate elements with unique or
distinct attributes.

HTML Code Example
<input type="text" name="username">

Suppose you want to locate an input field for username entry. This
input field has a distinctive name attribute that you can target.

Java Code to Locate Web Elements

WebElement usernameField = driver.findElement(By.xpath
("//input[@name="username']"));

91

CHAPTER 4 WEB ELEMENTS

This code locates the input field based on its name attribute. Using
//input[@name="username'], you direct Selenium to find any input
element with a “username” name attribute, regardless of its position in
the DOM.

Positional Filters in XPath

XPath positional filters allow you to select elements based on their position
within their parent element. This is useful when the position of the
element, rather than its attributes or tag, is the defining characteristic.

Java Syntax

WebElement element = driver.findElement(By.xpath("(//parent/
child)[position]"));

This syntax locates a child element based on its position within
its parent. The position is specified in square brackets and is 1-based,
meaning the counting starts at 1.

HTML Code Example

Item 1</1i>
Item 2</1i>
Item 3</1i>

You might be interested in selecting the second list item on this list.
The items are identical in tags and attributes, so you use their position to
distinguish them.

Java Code to Locate Web Elements

WebElement secondItem = driver.findElement(By.xpath("(//ul/1i)
[2]"));

92

CHAPTER 4 WEB ELEMENTS

The code locates the second <1i> element within the unordered list.
The XPath expression (//ul/1i)[2] directs Selenium to select the second
1i element, demonstrating how positional filters can target elements
based on their order in the DOM.

XPath with Logical Operators

XPath logical operators like and, or, and not allow for combining multiple
conditions in a single XPath expression. This enhances the ability to locate
elements that meet complex criteria.

Using and Operator

The and operator in XPath combines multiple conditions that must all be
true for an element to be selected. It is particularly useful when locating an
element that meets several distinct criteria.

Java Syntax

WebElement element = driver.findElement(By.xpath("//tag
[@attributel="valuel' and @attribute2="value2']"));

This XPath syntax targets elements that satisfy all specified conditions.
This example finds elements with a specific tag with attr1 with valuel
and attr2 with value2.

HTML Code Example

<input type="email" name="userEmail" required>
<input type="text" name="userName">

Suppose you need to locate an input element specifically for email
addresses. This element is not only of type ‘email’ but also has a required
attribute.

93

CHAPTER 4 WEB ELEMENTS

Java Code to Locate Web Elements

WebElement emaillnput = driver.findElement(By.xpath("//input
[@type="email' and @required]"));

The code snippet finds an input element that is both of type email
and possesses the required attribute. It demonstrates how using the
and operator in XPath can pinpoint elements that fulfill multiple specific
criteria.

Using or Operator

The or operator allows you to select elements that satisfy at least one of
multiple specified conditions. It’s useful when there are several possible
criteria for identifying an element.

Java Syntax

WebElement element = driver.findElement(By.xpath("//tag
[@attr="valuel' or @attr='value2']"));

This syntax selects elements that meet any one of the provided
conditions. The or operator broadens the selection scope by accepting
elements that match either condition.

HTML Code Example

<button id="confirm">Confirm</button>
<button id="proceed">Proceed</button>

You might want to locate a button with either the ID “confirm” or
“proceed” Both buttons perform similar actions but have different identifiers.

Java Code to Locate Web Elements

WebElement actionButton = driver.findElement(By.xpath
("//button[@id="confirm' or @id="proceed']"));

94

CHAPTER 4 WEB ELEMENTS

This line of code finds a button element with either an id of 'confirm’ or
"'proceed'. This example illustrates the flexibility of the or operator in XPath,
allowing for the selection of elements based on alternative conditions.

Using the not Operator

The not operator is used to exclude elements that meet a certain
condition. It’s particularly useful for selecting elements that do not possess
a specific attribute or attribute value.

Java Syntax

WebElement element = driver.findElement(By.xpath("//tag[not
(@attribute="value')]"));

This syntax finds elements where a specific condition is false. The not
operator is used to select elements that do not have a certain attribute or
attribute value.

HTML Code Example

<input type="checkbox" checked>
<input type="checkbox">

In a group of checkboxes, you might want to select only those that
are not checked. The not operator enables you to target these unchecked
boxes specifically.

Java Code to Locate Web Elements

WebElement uncheckedCheckbox = driver.findElement(By.xpath
("//input[@type="checkbox' and not(@checked)]"));

The code locates checkboxes that are not checked. By using
not (@checked), it excludes any elements that have the checked attribute.
This example shows how the not operator can effectively filter out
elements that do not meet a specific condition.

95

CHAPTER 4 WEB ELEMENTS

In summary, XPath logical operators are powerful tools in Selenium
WebDiriver for creating flexible and precise element locators. They allow
for combining multiple conditions, broadening or narrowing the element
selection as needed, enabling more targeted and effective web automation
scripts.

CSS Selectors

CSS (cascading style sheets) are primarily used on a web page written in
HTML or XML, defining how web elements are displayed and covering
aspects like layout, colors, fonts, and so on. The CSS applies styles to one
or a group of web elements. You use CSS selector to identify and select
these elements on a web page. The CSS selectors try to match the parts of
the content in the web document to the styles defined by the CSS.

CSS selectors have various forms, allowing developers to target
elements with precision. Here are some of the primary types of selectors
and how they are used in Selenium.

Types of CSS Selectors and Their Use Cases

CSS selectors are how styles are applied to elements within an HTML
document. They enable the selection of elements to apply styling rules
defined in CSS. These selectors range from simple, targeting single
and complex elements, allowing you to select elements based on their
relationships or states.

Let’s explore the categories of selectors, including basic selectors,
combinators, attribute selectors, pseudo-classes, and pseudo-elements,
and delve into their specific types.

Basic Selectors

Basic selectors are the simplest, directly targeting elements based on their
type, class, or ID.

96

CHAPTER 4 WEB ELEMENTS

Type Selector

This method locates the elements based on their tag name. It is commonly
used to select all web elements of a specific type.

Java Syntax
By.cssSelector("tagName")

The By.cssSelector method in Selenium WebDriver finds elements
based on CSS selectors. When passing a tag name to this method, it locates
all elements of the specified type within the HTML document.

HTML Code Example
<p>This is a paragraph.</p>

This example targets <p> elements in the HTML document. You can
locate all paragraphs using the type selector to apply specific styles or
interactions.

Java Code to Locate Web Elements
WebElement paragraph = driver.findElement(By.cssSelector("p"));

This line of Java code uses Selenium WebDriver to locate the first
paragraph element on the web page. It uses the findElement method
with a CSS selector that specifies the tag name p, thus targeting paragraph
elements.

Class Selector

Selects elements based on the class attribute, making it possible to style
all elements that share the same class.

Java Syntax

By.cssSelector(".className")

97

CHAPTER 4 WEB ELEMENTS

The dot () prefix in the CSS selector indicates that you are targeting
elements by their class name. This syntax is used with the By.cssSelector
method in Selenium to find elements with the specified class attribute.

HTML Code Example
<div class="alert">Warning!</div>

Here, you aim to select elements with the class alert. The class
selector allows you to target and style all elements with class="alert",
which can be useful for highlighting warnings or important information
on a page.

Java Code to Locate Web Elements

WebElement alertMessage = driver.findElement(By.cssSelector
(".alert"));

In this snippet, the findElement method locates the first element with
the class alert using the .alert CSS selector. It allows you to interact with
or apply specific operations to elements identified by this class.

ID Selector

This method uses the element’s ID attribute for selection, ideal for
targeting a unique element within the page.

Java Syntax

By.cssSelector("#idValue")

The hash # prefix specifies that you are using an ID selector. This
is used with By.cssSelector in Selenium to locate an element with a
specific ID.

HTML Code Example

<button id="submitBtn">Submit</button>

98

CHAPTER 4 WEB ELEMENTS

This example includes a button element with an ID of submitBtn.
The ID selector is perfect for locating this unique element, allowing you to
interact with or style it.

Java Code to Locate Web Elements

WebElement submitButton = driver.findElement(By.
cssSelector ("#submitBtn"));

Here, the findElement method finds the button with the ID submitBtn.
This method precisely locates the element, enabling actions such as clicks
or data retrieval specific to this button.

Universal Selector

Locates all elements within the HTML document. It’s a powerful selector
for applying broad styles or actions across all page elements.

Java Syntax
By.cssSelector ("*"

The asterisk * is used in CSS to select all elements in the document.
While its direct use in Selenium WebDriver might be less common due to
its broad scope, it's mentioned here for completeness.

This selector is often used in CSS for global resets but is generally
avoided in Selenium due to performance considerations and the
specificity required for web automation tasks.

Combinators

Combinators are selectors that establish relationships between elements,
allowing for selecting elements based on their hierarchical relationship.

99

CHAPTER 4 WEB ELEMENTS

Descendant Selector (Space)

It locates an element that is a descendant of another specified element,
regardless of the depth of nesting.

Java Syntax
By.cssSelector("ancestor descendant”)

This syntax uses a space to separate two selectors, targeting elements
that are descendants of a specified ancestor. It’s useful for locating nested

elements within a particular parent.

HTML Code Example

<div class="container">
<p>A paragraph inside a container.</p>
</div>

You can locate the <p> element inside a <div> with the class
container. The descendant selector allows you to select the paragraph by
specifying its relationship with its ancestor.

Java Code to Locate Web Elements

WebElement paragraphInsideContainer = driver.findElement
(By.cssSelector(".container p"));

This code snippet finds a paragraph (<p>) that is a descendant of a
div with the class container. It demonstrates how to use the descendant
combinator to navigate nested structures.

Child Selector (>)

Locates elements that are direct children of a specified element, providing
more precise control than the descendant selector.

100

CHAPTER 4 WEB ELEMENTS

Java Syntax
By.cssSelector("parent > child")

The > combinator is used between two selectors to target elements that
are direct children of a specified parent, providing a more precise selection
than the descendant selector.

HTML Code Example

List Item 1</1i>
List Item 2</1i>

You use the child combinator to specifically target elements that
are direct children of . This ensures you only select list items directly
within the unordered list, not nested lists.

Java Code to Locate Web Elements

List<WebElement> listItems = driver.findElements(By.
cssSelector("ul > 1i"));

This code finds all <1i> elements that are direct children of an .It’s
particularly useful for situations where precise control over the hierarchy
is needed.

Adjacent Sibling Selector (+)

Locates an element immediately preceded by a specified sibling, useful for
styling elements based on their order.

Java Syntax
By.cssSelector("previousElement + nextElement")

This selector targets an element immediately following another
specified element, using the + combinator for direct adjacency.

101

CHAPTER 4 WEB ELEMENTS

HTML Code Example

<h2>Title</h2>
<p>First paragraph following the title.</p>

To select the <p> that directly follows an <h2>, the adjacent sibling
selector is ideal. It targets the first paragraph right after the specified heading.

Java Code to Locate Web Elements

WebElement firstParagraphAfterTitle = driver.findElement(By.
cssSelector("h2 + p"));

This code snippet locates the first paragraph (<p>) that directly follows
an <h2> element, demonstrating how to use the adjacent sibling selector
for precise element targeting based on sibling relationships.

General Sibling Selector (~)

It finds all siblings of a specified element with the same parent, allowing
broad sibling selection.

Java Syntax
By.cssSelector("sibling ~ sibling")

The ~ combinator is used to select elements that are siblings of a
specified element and follow it in the document.

HTML Code Example

<h2>Title</h2>
<p>Paragraph 1.</p>
<p>Paragraph 2, also following the title.</p>

Using the general sibling selector, you can target both <p> elements
that follow the <h2>, regardless of their immediate adjacency.

102

CHAPTER 4 WEB ELEMENTS

Java Code to Locate Web Elements

List<WebElement> paragraphsAfterTitle = driver.findElements(By.
cssSelector("h2 ~ p"));

This code finds all <p> elements that are siblings of and follow an <h2>
element. It’s useful for selecting multiple related elements for actions or
validations.

Combinators and selectors in CSS offer powerful ways to target elements
within a web page. When used with Selenium WebDriver in Java, they
provide precise control over which elements to interact with, enhancing the
capability to automate web testing and interactions effectively.

Attribute Selectors

Attribute selectors provide a powerful way to select elements based on
their attributes and values, offering various matching options.
Presence

This selector targets elements based on the mere presence of a specified
attribute, regardless of the attribute’s value.

Java Syntax
By.cssSelector("[attribute]")

The syntax [attribute] is used to find elements that have the
specified attribute, irrespective of the value of this attribute. It's a way to
broadly select elements that share a common attribute.

HTML Code Example

<input type="text" required>
<input type="password">

103

CHAPTER 4 WEB ELEMENTS

This example can target input elements marked as required using the
presence selector. It allows you to identify all elements that the user must
fill out.

Java Code to Locate Web Elements

List<WebElement> requiredInputs = driver.findElements(By.cssSel
ector("input[required]"));

This code snippet locates all <input> elements with the required
attribute. It showcases using the presence attribute selector to focus on
elements essential for form validation.

Exact Value

It finds elements with an attribute that matches a specific value exactly.
Java Syntax

By.cssSelector("[attribute="value']")

The syntax [attribute="value'] selects elements where the
attribute’s exact value matches the specified value, allowing for precise
targeting based on attribute values.

HTML Code Example

<button type="submit">Submit</button>
<button type="button">Cancel</button>

The exact value selector is ideal to differentiate between the submit
and cancel buttons based on their type attribute.

Java Code to Locate Web Elements

WebElement submitButton = driver.findElement(By.cssSelector
("button[type="submit']"));

104

CHAPTER 4 WEB ELEMENTS

This line of Java code specifically locates the submit button by matching
the type attribute exactly with the value “submit”. It demonstrates how to
use the exact value selector for targeting elements with specific roles or

functions.

Partial Match Types
Contains (*=)

This method selects elements whose attribute value contains a specified
substring.

Java Syntax
By.cssSelector("[attribute*="value']")

The syntax [attribute*="value'] is used to find elements where the
attribute value includes the specified substring, which is useful for broad
matching.

HTML Code Example
User Profile

You use the contains selector to select links containing the substring /
profile/ in their href attribute.

Java Code to Locate Web Elements

WebElement profilelLink = driver.findElement(By.cssSelector
"alhref*="/profile/']1"));

This snippet finds anchor elements (<a>) whose href attribute
includes /profile/, highlighting the utility of the contains selector for
targeting elements based on partial attribute values.

105

CHAPTER 4 WEB ELEMENTS

Begins with (*=)

Targets elements with an attribute value that begins with a specified substring.
Java Syntax

By.cssSelector("[attribute”="value']")

The syntax [attribute”®="value'] selects elements whose attribute
value starts with the specified substring, enabling targeting based on the
beginning of attribute values.

HTML Code Example
Dashboard

To focus on links that begin with “https://example.com/dashboard” in
their href, the begins with selector is used.

Java Code to Locate Web Elements

WebElement dashboardlLink = driver.findElement
(By.cssSelector("a[href*="https://example.com/dashboard']"));

This code locates <a> elements whose href attribute starts with “https://
example.com/dashboard’, demonstrating the begins with selector’s ability to
pinpoint elements based on the initial portion of their attribute values.

Ends with ($=)
Selects elements whose attribute value ends with a specified substring.
Java Syntax

By.cssSelector("[attribute$="value']")

The syntax [attribute$="value’] is employed to find elements where the
attribute value concludes with the specified substring, facilitating targeting
based on the end of attribute values.

106

CHAPTER 4 WEB ELEMENTS

HTML Code Example

You use the ends with selector to select images ending with .png in
their src attribute.

Java Code to Locate Web Elements

List<WebElement> pngImages = driver.findElements
(By.cssSelector("img[src$=".png']1"));

This snippet locates elements whose src attribute ends with
.png, showcasing the ends with the selector’s capability to focus on
elements by the terminal portion of their attribute values.

Specificity

The specificity selector [attribute|="value"] targets elements whose
attribute value is exactly equal to a specified “value” or those whose
attribute value begins with “value” followed immediately by a hyphen.
This selector is particularly useful for matching elements based on
language codes or attributes that utilize a hyphenated naming convention.

Java Syntax
By.cssSelector("[attribute|="value']")

In this syntax, the |= operator is used within the attribute selector
to target elements where the attribute matches a specific full value or
a value prefix ending with a hyphen. It enables precise targeting based
on attribute values that conform to a standardized format, often used in
internationalization (e.g., language codes like “en-us”).

107

CHAPTER 4 WEB ELEMENTS

HTML Code Example
<html lang="en-us">
<head>
<title>Example Page</title>
</head>
<body>

<p lang="en">English Content</p>
<p lang="en-us">American English Content</p>
<p lang="en-gb">British English Content</p>
</body>
</html>

In this example, paragraph elements are differentiated by language
codes, such as “en” for English, “en-us” for American English, and “en-gb”
for British English. Using the specificity attribute selector, you can target
elements specifically for American English (“en-us”) or broadly for any
English variant, starting with “en-" followed by a hyphen.

Java Code to Locate Web Elements

List<WebElement> americanEnglishContent = driver.
findElements(By.cssSelector("p[lang|="en-us']"));
WebElement generalEnglishContent = driver.findElement
(By.cssSelector("p[lang|="en']"));

The first line of Java code uses Selenium WebDriver to locate all <p>
elements where the lang attribute is exactly “en-us” or starts with “en-"
followed by any character sequence, effectively targeting American English
content. The second line demonstrates how to target elements designated
for general English content by matching the lang attribute exactly with
“en” or starting with “en-" followed by a hyphen, although in practical use,
the exact match “en” would not follow the hyphen rule and is more about
demonstrating the syntax flexibility. This approach showcases the utility

108

CHAPTER 4 WEB ELEMENTS

of the specificity selector in distinguishing between elements based on
nuanced attribute value patterns, particularly useful in scenarios requiring
fine-grained selection based on language or other hyphenated codes.

Pseudo-Classes for Locating Elements
Locating the First Child Element

The sfirst-child pseudo-class locates the first child element within a
parent. Suppose you have the following list of social media links.

HTML Code Example

<ul id="social-media-links">
Facebook</1i>
Twitter</1i>
Instagram</1i>

Three social media lists are embedded in the tag in the code.
To locate the first element on the list, use the following Java code.

Java Code to Locate Element

WebElement firstSociallink = driver.findElement(By.
cssSelector("#social-media-1links 1i:first-child"));

This line of code locates the first <1i» element within the #social-
media-links list, effectively targeting the “Facebook” link. It demonstrates
using the first-child pseudo-class for selecting specific child elements.

Locating the Last Child Element

The :1last-child pseudo-class targets the last child element within a
parent. Using the same list, locate the Instagram link.

109

CHAPTER 4 WEB ELEMENTS

Java Code to Locate Web Elements

WebElement lastSociallink = driver.findElement(By.
cssSelector("#social-media-1links li:last-child"));

This snippet selects the last <1i» element within the #social-media-
links list, focusing on the “Instagram” link. It showcases how the :1ast-
child pseudo-class can be utilized to pinpoint the last element in a group.

Locating the Nth Element

The :nth-child(n) pseudo-class selects the nth child element within its
parent, with counting starting at 1. To select the Twitter link, which is the
second element.

Java Code to Locate Web Elements

WebElement secondSociallink = driver.findElement(By.
cssSelector("#social-media-1links 1i:nth-child(2)"));

This code finds the second <1i» element in the list, locating the Twitter
link. The :nth-child(2) pseudo-class enables the selection of elements
based on their order in a sequence.

Locating Multiple Web Elements

Locating multiple elements in Selenium WebDriver is a common
requirement, especially when dealing with lists of items, tables, or similar
elements. Selenium provides methods to find and interact with multiple
elements simultaneously, enhancing automation scripts’ efficiency. Let’s
explore how to locate multiple elements.

110

CHAPTER 4 WEB ELEMENTS

In Selenium WebDriver, multiple elements are located using
findElements(). This method lists all web elements that match the given
locator criteria. It’s particularly useful when interacting with or evaluating
a collection of similar elements, such as items in a list, rows in a table, or

any set of elements sharing the same tag, class, or other attributes.

Java Syntax

List<WebElement> elements = driver.findElements
(By.someLocator("value"));

The findElements() method uses a locator strategy (like By. id,
By.className, By.tagName, etc.). Instead of returning the first match (like
findElement()), it returns List<WebElement>, which contains all elements
that match the locator.

Suppose you have a web page with a list of products.

HTML Code Example

<ul class="products">
Product 1</1i>
Product 2</1i>
Product 3</1i>

In this example, the web page contains a list of products. Each product
is listed within an <11i> tag. If you want to interact with all these product list
items, locate them as a group.

Java Code to Locate Multiple Web Elements

List<WebElement> products = driver.findElements
(By.tagName("1i"));

111

CHAPTER 4 WEB ELEMENTS

The code snippet uses the By.tagName("1i") locator to find all
elements with the <1i> tag. This returns a list of web elements, each
representing a product in the list. You can iterate over this list to perform
actions like clicking each item, reading text, and so forth. The following is
an example to print the text of each product.

for (WebElement product : products) {
System.out.println(product.getText());

This loop iterates through each element in the products list, printing
the text of each product. This approach is useful for scenarios where
actions need to be performed, or information needs to be extracted from a
collection of similar elements.

Locating multiple elements is a fundamental aspect of Selenium
WebDriver, enabling batch operations on groups of elements and
facilitating efficient automation of repetitive tasks. Understanding and
using findElements() effectively allows for more dynamic interaction with
web pages and broadens the scope of automation possibilities.

Table for Locators to Locate Multiple Elements

Table 4-1 describes locators for multiple web elements.

112

CHAPTER 4 WEB ELEMENTS

Table 4-1. Locators for Multiple Web Elements

Locator Syntax Example Description

Type

ID driver.findElements Locates multiple elements with
(By.id("idvalue")) the specified ID.

Class driver.findElements Locates multiple elements with

Name (By.className("className")) the specified class name.

Tag Name driver.findElements Locates multiple elements with

(By.tagName("tagName")) the specified tag name. Useful for
tags like <1i>, <div>, etc.

Name driver.findElements Locates multiple elements with
(By.name("nameValue")) the specified name attribute.

Link Text driver.findElements Locates multiple anchor elements
(By.linkText("Link Text")) with the exact visible text.

Partial driver.findElements Locates multiple anchor elements

Link Text ~ (By.partiallinkText("Partial containing the specified substring
Link Text")) in their visible text.

CSS driver.findElements Locates multiple elements using
Selector (By.cssSelector (CSS selectors. Allows for complex
("cssSelector")) and specific queries.

XPath driver.findElements(By. Locates multiple elements using

xpath("xpathExpression™)) XPath expressions. Offers high
flexibility and precision.

113

http://by.name

CHAPTER 4 WEB ELEMENTS

In conclusion, locating multiple elements is a key aspect of Selenium
WebDriver’s functionality, allowing for effectively handling groups of
similar elements. By understanding and utilizing these different locator
strategies, you can enhance your web automation script efficiency, which
enables you to perform comprehensive actions and analyses on web pages.

Common Challenges for Locating Web Elements

Locating web elements is a fundamental aspect of automation testing
with Selenium Java. However, you often encounter various challenges that
can impede the process. Understanding these challenges is crucial for
developing effective and reliable automation scripts.

o Dynamic element identifiers: Web elements with
dynamically changing IDs or classes pose a significant
challenge. Each time you load the page, these elements
might have different identifiers.

o iframes and shadow DOMs: Web elements within
iframes or shadow DOMs are not directly accessible
from the main page’s DOM. This encapsulation
requires special handling in Selenium.

¢ Asynchronous content loading: Modern web
applications frequently load content asynchronously
(e.g., Ajax). Elements loaded this way might not be
immediately available when you first access the page.

o Hidden or invisible elements: Elements present in the
DOM but not visible on the page can’t be interacted
with using standard methods.

o Similar elements with ambiguous locators: Pages
with multiple elements sharing similar attributes can
make it difficult to uniquely identify a specific element.

114

CHAPTER 4 WEB ELEMENTS

Best Practices to Overcome Challenges

Certain best practices can be adopted to effectively overcome these

challenges in Selenium Java.

Handle dynamic element identifiers. You can use
locators that are less likely to change, such as XPath or
CSS selectors based on the structural position or other
stable attributes like name, title, or custom attributes.
Employing strategies like locating a parent or sibling
element with a stable identifier and then traversing to
the desired element.

Deal with iframes and shadow DOMs. For iframes
you can use driver.switchTo().frame() to switch the
context to the iFrame before locating elements within
it. If available, use JavaScript to access Shadow DOM
elements or leverage Selenium’s built-in capabilities.

Managing asynchronous content loading.
Implementing explicit waits (WebDriverWait with
ExpectedConditions) to wait for specific conditions
(like element visibility) before proceeding. You can
avoid implicit waits as they can lead to longer wait

times for all elements.

Handling hidden or invisible elements. When

an interaction is required, you can use JavaScript
execution through Selenium (JavascriptExecutor) to
interact with these elements. If visibility is expected,
use explicit waits to wait for the element to become
visible.

115

CHAPTER 4 WEB ELEMENTS

» Differentiating similar elements with ambiguous
locators. Creating more specific locators using XPath
or CSS selectors that consider the unique context of
each element. If available, you can utilize the index
to distinguish between similar elements. However,
it’s important to exercise caution when using index
numbers in XPath; their use is highly discouraged
because the index can change if the element hierarchy
(content) changes, potentially leading to unreliable

element selection and interaction.

e Addressing test case mismatches. Some of the best
measures to address test case mismatch are as follows.

o Regularly review and update test cases to ensure
they reflect the current state and behavior of the
web application.

o Perform thorough manual testing to understand
web elements' actual behavior and states.

o Ensure that test cases are flexible enough to handle

minor, expected variations in element properties.

e Incorporate checks within your test scripts to
validate that the conditions assumed in the test
cases match the state of the web elements at
runtime.

By employing these best practices, you can significantly enhance your
ability to locate web elements reliably in Selenium Java, regardless of the
complexities or dynamic nature of the web pages you are automating.
These strategies help you to build more robust and maintainable
automated tests or web scraping scripts.

116

CHAPTER 4 WEB ELEMENTS

Summary

This chapter delved into the essential concepts of web element locators
within the context of Selenium WebDriver, a pivotal tool in web
automation. Locators are the cornerstone for identifying and interacting
with elements on a web page, making their understanding and effective
use a prerequisite for any successful web automation, testing, or scraping
endeavor.

You began by exploring the fundamental question: What are locators,
and why are they necessary? This discussion lays the groundwork
for understanding the importance of locators in interacting with web
elements, especially considering the diverse and dynamic nature of
modern web pages.

Following this, you explored the Document Object Model (DOM),
discussing its basic concepts and the relationships between various
elements within the DOM. This understanding is crucial as locators
operate within the context of the DOM, traversing its structure to pinpoint
elements.

The chapter comprehensively explains eight types of locators used in
Selenium WebDriver. Each locator type—from ID and class name to more
complex XPath and CSS selector locators—is discussed. You have seen
the insights into their syntax, usage, and scenarios where they are most
effectively employed, accompanied by practical HTML examples and Java
code snippets for a well-rounded understanding.

Finally, the chapter addresses common challenges faced when using
locators. It discussed best practices for overcoming these challenges and
ensuring robust, reliable, and maintainable web automation scripts. This
section aims to equip readers with the knowledge to tackle common
pitfalls and optimize their locator strategies.

You now understand locator strategies, their applications, and best
practices in Selenium WebDriver, laying a strong foundation for successful
web automation projects.

117

CHAPTER 5

Navigations

This chapter explores how to work with hyperlinks using Selenium
WebDriver with Java. Hyperlinks are the clickable elements that take you
from one page to another, acting like bridges in your online journey.

They are vital to understand in testing as they are crucial in moving around
websites.

In web applications, navigation is also referred to as a link or URL
(Uniform Resource Locator) that references data such as documents,
videos, images, and so on or helps the migration between pages or within
the page. This chapter describes various ways to locate and work with
hyperlinks, exploring use locators like ID, text, partial link, and XPath
to locate hyperlinks. You learn how to list hyperlinks on a web page and
check whether they work as expected.

The chapter looks at how to check images on a web page to ensure they
are not broken and display as intended. It explains data attributes used to
store extra information and how to interact with them.

This chapter guides you through the practical knowledge and skills
needed to navigate web pages, ensuring your automated tests are strong
and effective. Your learning is supported through examples and use
cases so that you can apply them in real-world scenarios using Selenium
WebDriver and Java.

© The Editor(s) (if applicable) and The Author(s), 119
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_5

https://doi.org/10.1007/979-8-8688-0291-1_5

CHAPTER 5 NAVIGATIONS

Hyperlinks

Hyperlinks are web elements that help users navigate a web page or move
to a completely different site. This navigation web element is embedded in
anchor tags <a> in HTML, representing a medium to traverse through the
World Wide Web or data that can be streamed or downloaded.

Hyperlinks are primarily associated with menus, buttons, images, and
documents styled with CSS and JavaScript. Hyperlinks are also called links.
The following is the syntax for creating a link.

link_text

Consider the following HTML snippet to locate links in the upcoming
content.

<div class="container">Selenium

Java

Python

CSharp
</div>

Hyperlink by ID

You can locate hyperlinks using an ID in an anchor tag. Web applications
are now available in multiple languages, and ID is the best way to locate a
hyperlink that has not changed.

WebElement linkJava = driver.findElement(By.id("java"));

Using the ID attribute to locate hyperlinks ensures that the correct
element is targeted even when other attributes like name or class are
duplicated or dynamic.

120

CHAPTER 5 NAVIGATIONS

Hyperlink by Text

It is very helpful to locate a hyperlink by its visible text when the text is
static and distinct. This method is language-dependent and may not
be suitable for multilingual websites unless the test is also adapted for
different languages.

WebElement linkPython = driver.findElement(By.linkText
("Python”));

Once the hyperlink is located using its visible text, you can perform
various interactions, such as clicking or link verification can be performed
by Selenium WebDeriver.

Hyperlink by Partial Link Text

When you don’t know the full text or only a subset of the text is stable

and consistent, you can use partially visible text to locate hyperlinks. This
method is suitable for dealing with length or dynamic link texts where only
a portion remains constant.

WebElement linkPartial = driver.findElement(By.partiallinkText
("Shar"));

Hyperlink by XPath

It is a more flexible way to locate hyperlinks, especially when you cannot
locate links using simpler locator strategies or dealing with complex DOM
structures.

WebElement linkCSharp = driver.findElement(By.xpath
("//a[@id="csharp']"));

121

CHAPTER 5 NAVIGATIONS

nth Hyperlink

You can use the nth hyperlink method when dealing with a list of similar
or identical hyperlinks where direct attributes may not be available or
useful. This approach is index-based and may not be effective when there
are changes in the order or number of hyperlinks; hence, it requires careful
management and validation of the index used to locate the hyperlink.

WebElement nthlLink = driver.findElements
(By.tagName("a")).get(1);

Return All Hyperlinks

When you want to retrieve all hyperlinks available in an application to
perform validations or interact with multiple links in a sequence, with this
method, you get a list of all hyperlinks that may be iterated over to carry
out various operations or validations on each hyperlink.

List<WebElement> alllLinks = driver.findElements
(By.tagName("a"));

Testing Hyperlinks

Hyperlinks are the primary source for navigation and accessing various
resources and information. Testing hyperlinks is important for various

reasons.

e Accurate navigation: The test ensures the users are
directed to the correct destination. Accurate navigation
is the linchpin of user experience, guiding users through
intended pathways and enabling access to relevant
content and features without misdirection or error.

122

CHAPTER 5 NAVIGATIONS

Link integrity: Identifying and rectifying broken or
invalid links is crucial to maintaining the integrity of
hyperlinks.

Download link testing: The hyperlinks related to
data that initiate the download of files for the user
must ensure that to access correct action and provide
indented files.

Resource accessibility: Links must be tested to know
whether they direct to the intended resources, ensuring

users correct content access.

Security: Testing lets you know if any links can expose
users to security threats.

Check for a Valid Hyperlink

You can check whether a hyperlink is valid by retrieving the URL using

the href attribute and validating its format. You can send a request to

check the response for its accessibility. The requests are HTTP sent to

the URL, whereas a status code is returned in response. This ensures that

the hyperlink is not only correctly formatted but also that it leads to the

intended destination.

import
import
import
import

import
import

org.openqa.selenium.WebDriver;
org.openqa.selenium.WebElement;
org.openqa.selenium.chrome.ChromeDriver;
org.openga.selenium.By;

java.net.HttpURLConnection;
java.net.URL;

123

CHAPTER 5 NAVIGATIONS

public class ValidateHyperlink {

indicate the status of the request sent (see Table 5-1). They are divided into

public static void main(String[] args) throws Exception {
WebDriver driver = new ChromeDriver();
driver.get("your website url");

WebElement link = driver.findElement(By.id("java"));
String href = link.getAttribute("href");

HttpURLConnection connection = (HttpURLConnection) new
URL(href).openConnection();
connection.setRequestMethod("HEAD");

int responseCode = connection.getResponseCode();

if (responseCode == 200) {
System.out.println("Valid Hyperlink");

} else {
System.out.println("Invalid Hyperlink");

}

driver.quit();

HTTP status codes are three-digit numbers returned by servers to

five classes based on the first digit.

124

Table 5-1. HTTP Status Codes

CHAPTER 5 NAVIGATIONS

Range Description Example Codes

XX The request was received and the 100 Continue, 101
(Informational) process is continuing. Switching Protocols
2xx (Successful) The request was successfully 200 OK, 201 Created

3xx (Redirection)

4xx (Client
Errors)

5xx (server
Errors)

received, understood, and accepted.

Further action needs to be taken to
complete the request.

The request contains bad syntax or
cannot be fulfilled by the server.

The server failed to fulfill a valid
request.

300 Multiple Choices,
301 Moved Permanently

400 Bad Request, 404
Not found

500 Internal Server Error,
502 Bad Gateway

Check for Broken Images

You must locate images usually nested within the anchor tag and validate

the src attribute when testing images. To ensure the image is loaded

correctly, you must send an HTTP request to the image URL and then

check the response. If the status code is 200, it indicates that the image is

accessible and loads correctly, similar to the validation of the link seen in

the preceding case. You can use the 404 status code indicating the image

is broken. By using this method, you ensure that images within hyperlinks

are displayed correctly and do not lead to broken image icons, preserving

the visual integrity of the web page.

import org.openqa.selenium.WebDriver;
import org.openga.selenium.WebElement;

import org.openqa.

import org.openqa.selenium.By;

selenium.chrome.ChromeDriver;

125

CHAPTER 5 NAVIGATIONS

import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Llist;

public class ValidateImages {
public static void main(String[] args) throws Exception {
System.setProperty("webdriver.chrome.driver”, "path/to/
chromedriver");
WebDriver driver = new ChromeDriver();
driver.get("your website url");

List<WebElement> images = driver.findElements(By.
tagName("img"));

for (WebElement img : images) {
String src = img.getAttribute("src");

HttpURLConnection connection = (HttpURLConnection)
new URL(src).openConnection();
connection.setRequestMethod("HEAD");

int responseCode = connection.getResponseCode();

if (responseCode == 200) {
System.out.println(src + " - Image is valid");

} else if (responseCode == 404) {
System.out.println(src + " - Image is broken");

} else {
System.out.println(src +

- Image status is
+ responseCode);

}

driver.quit();

126

CHAPTER 5 NAVIGATIONS

Data Attributes Hyperlinks

When dealing with dynamic or similar standard attributes, you need to
locate hyperlinks using custom data attributes allowing a flexible and
custom approach. These custom data attributes provide a stable and
unique way to locate hyperlinks for various interactions and validations,
ensuring that you target the correct hyperlink in the test conducted.

WebElement datalink = driver.findElement
(By.cssSelector("a[data-info="pythonLink']"));

Summary

This chapter explored the complex world of hyperlinks in your testing
using Selenium WebDriver and Java. You learned various strategies for
identifying and interacting with hyperlinks, utilizing different locators.

The chapter investigated image validation, ensuring that images on
a web page are not broken and displayed correctly. Furthermore, you
explored the concept of data attributes in hyperlinks, understanding
their role in storing additional information, and learned how to interact
with them.

The chapter equips you with practical knowledge and skills through
clear examples and use cases, ensuring that the strategies discussed are
applicable in real-world testing scenarios. This foundational knowledge
is crucial for navigating web pages and ensuring that automated tests are
robust and effective.

127

CHAPTER 6

Buttons

This chapter explores a wide array of interactive elements commonly
encountered in web interfaces, such as buttons, radio buttons, checkboxes,
and drop-down lists. Each element offers unique functionalities and user
interactions, making it imperative for testers to understand and effectively
automate their behavior.

Your journey begins with buttons—how users interact with web pages.
You'll explore various types: standard, submit, image, JavaScript, disabled,
and toggle buttons. Each type introduces its own set of functionalities and
complexities. Next, you'll focus on radio buttons and checkboxes, which
are essential for single and multiple option selections. Understanding
how to interact with and validate these elements accurately is crucial for
form-based testing. Then, you'll explore the SelectList and MultiSelectList
elements, which are critical for user selection in drop-down formats.
Learning to interact with and validate single and multiple options in these
lists is key for testing comprehensive form-related features.

Throughout this chapter, your aim is not just to interact with these
elements but also to confirm their types and validate the outcomes of
your interactions. It outlines key considerations to consider when testing
buttons using Selenium. These points serve as a guide to help you create
thorough, effective test cases and ensure your application’s buttons are
reliable and user-friendly. This ensures your tests are precise, reliable, and
reflect real-world user experiences.

© The Editor(s) (if applicable) and The Author(s), 129
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_6

https://doi.org/10.1007/979-8-8688-0291-1_6

CHAPTER6 BUTTONS

As you move from one element to the next, the chapter is designed
to provide a smooth transition, ensuring you understand how each
component fits into the broader context of web application testing.

Standard HTML Button

The standard HTML button is a fundamental element for user interaction
on web pages and is typically created using the <button> tag in HTML. It’s
versatile and often used for triggering scripts or as a simple clickable
element.

<button type="button" id="standardButton" style="width:100px;
height:50px;">Click Here!</button>

Figure 6-1 represents a standard rectangular button, often with a
default style that can be customized with CSS.

Standard Button

Click Herel

Figure 6-1. Standard HTML button

In Selenium, you can interact with standard buttons using the click()
method after locating them with selectors like By.id, By.className, or
By.cssSelector.

WebElement standardButton = driver.findElement
(By.id("standardButton"));

standardButton.click(); // Interaction
Assert.assertTrue(standardButton.isDisplayed(), "The standard
button is not visible."); // Post-interaction validation

130

CHAPTER6 BUTTONS

You locate this button by its ID and perform a click action. After the
interaction, you might validate its visibility or any other page changes it
triggers.

Asserting Button Type

After you interact with the standard button, confirming its type reassures
you that your actions were performed on the correct element.

// Type validation
Assert.assertEquals("button", standardButton.
getAttribute("type"), "Not a standard button.");

The simplicity of the standard HTML button serves as a baseline
for understanding more complex buttons like the submit button, which
introduces the additional layer of form submission.

Submit Button

A submit button is specifically designed to submit a form to a server.
It’s created using the <input> element with the type attribute set to
submit (<input type=“submit”>). When clicked, it sends the form data to

the server.

<form action="/submitDestination">

<input type="submit" id="submitButton" value="Submit"
style="width:100px; height:50px;">
</form>

Figure 6-2 shows the submit button, similar to standard buttons but
often labeled with Submit or other action-oriented text.

131

CHAPTER 6 BUTTONS
Submit Button

Submit

Figure 6-2. Standard HTML button

Similar to standard buttons, you can interact with submit buttons
using the click() method in Selenium. Ensure the form data is correctly
filled out before clicking the submit button, as it triggers form validation
and submission.

WebElement submitButton = driver.findElement(By.
id("submitButton™"));

submitButton.click(); // Interaction
Assert.assertTrue(driver.getCurrentUrl().
contains("destinationURL"), "Form was not submitted.");
// Post-interaction validation

Clicking a submit button often leads to a page change or form
submission, requiring you to validate that the intended action occurred.

Note Usually found in forms and used to submit form data and
defined with <input type="“submit”>.

Asserting Button Type

Verifying the submit button’s type is crucial to ensure it’s correctly
configured to submit user data.

// Type validation
Assert.assertEquals("submit", submitButton.
getAttribute("type"), "Not a submit button.");

132

CHAPTER6 BUTTONS

As you understand the functional role of submit buttons, you
encounter image buttons, which add an aesthetic dimension to your
interactions.

Image Button

An image button uses an image as a clickable area and is created using
the <input> element with the type attribute set to “image” (<input
type="“image” src="“path/to/image.jpg”>). It can serve as a submit button
and a visually appealing clickable element.

<form action="/imageClickDestination">

<input type="image" id="imageButton" src="buttonImage.jpg"
alt="Submit" style="width:100px; height:50px;">
</form>

The button appears as the image provided in the src attribute, offering
avisual cue for interaction that can be seen in Figure 6-3.

Image Button

\&/
Figure 6-3. Image as a button

You can interact with image buttons like standard or submit buttons.
The click() method is used after locating the element. Ensure you consider
the image loading time and visibility during interactions.

WebElement imageButton = driver.findElement(By.id("imageButton"));
imageButton.click(); // Interaction

// Additional validation depending on expected outcome
Assert.assertTrue(imageButton.isDisplayed(), "The image button
did not function as expected."); // Post-interaction validation

133

CHAPTER6 BUTTONS

Note A button with an image, typically created with <input
type="“image”>.

Asserting Button Type

You can confirm an image button’s type by asserting the type value image
essential to ensure it’s intended to be interacted with visually.

// Type validation
Assert.assertEquals("image"”, imageButton.getAttribute("type"),
"Not an image button.");

From the visual cues of image buttons, you delve into the more
dynamic and script-driven nature of JavaScript buttons.

JavaScript Button

A JavaScript button doesn’t necessarily refer to a specific type of button
element but to any clickable element that triggers JavaScript code. It could
be a standard button, a link, or div with an onclick event.

<button id="jsButton" onclick="alert('JavaScript Executed!")
style="width:100px; height:50px;">Click Here!</button>

When you perform a click action on the button shown in Figure 6-4,
the JavaScript is triggered and pops up an alert box.

JavaScript Button

Click Here!

Figure 6-4. Button triggering JavaScript

134

CHAPTER6 BUTTONS

Interacting with these involves not just a click but handling the
dynamic elements they might invoke, such as pop-ups or changes in the
DOM, leading you into more complex wait and validation scenarios.

WebElement jsButton = driver.findElement(By.id("jsButton™));
jsButton.click(); // Interaction

new WebDriverWait(driver, 10).until(ExpectedConditions.
alertIsPresent()); // Handling dynamic behavior
driver.switchTo().alert().accept(); // Accepting the alert
Assert.assertTrue(jsButton.isDisplayed(), "The JavaScript
button did not execute as expected."); // Post-interaction
validation

When interacting with JavaScript buttons, ensure the JavaScript code
has loaded and is ready to execute. Use the click() method as usual, and
consider implementing waits to handle any asynchronous operations that
the JavaScript might perform.

Note JavaScript buttons do not have a specific type; confirming
their functionality or existence post-interaction ensures they perform
the expected script.

Disabled Button

Disabled buttons are unique as they’'re meant to be non-interactive.

It's often grayed out and is set using the disabled attribute (<button
disabled>). They're essential for scenarios where certain conditions must
be met before an action can be taken.

<button type="button" id="disabledButton" disabled
style="width:100px; height:50px;">Disabled</button>

135

CHAPTER6 BUTTONS

A disabled button usually appears grayed-out or faded, as seen in
Figure 6-5, indicating its non-interactive state.

Disabled Button

Figure 6-5. Disabled button

You should first check if the button is disabled using the isEnabled()
method. This can be part of your test validation to ensure buttons are
enabled or disabled as expected under certain conditions.

WebElement disabledButton = driver.findElement(By.id
("disabledButton"));
Assert.assertFalse(disabledButton.isEnabled(), "The button
should be disabled but is enabled.");

Here, your interaction is more about verification than action; you
check if the button is disabled when it should be, reflecting the preventive
aspect of testing.

Asserting Button Type

Ensuring a button is correctly marked as disabled helps maintain the user
interface’s integrity.

Assert.assertEquals("button"”, disabledButton.getAttribute
("type"), "Not a standard button or incorrect type.");
// Type validation

From the passivity of disabled buttons, you transition to toggle buttons,
which offer an active and changeable user experience.

136

CHAPTER6 BUTTONS

Toggle Button

Toggle buttons are interactive elements that switch between two states,
such as on/off, with each click, offering a dynamic user experience.

<button id="toggleButton" onclick="this.innerHTML = this.
innerHTML == 'On' ? 'Off' : 'On'" style="width:100px;
height:50px;">0n</button>

It may appear as a standard button but often includes visual cues
indicating its toggle state, like On/Off labels or color changes as shown in
Figure 6-6.

Toggle Button Toggle Button

On Off
Figure 6-6. Toggle button displaying On and Off

You can interact with toggle buttons using the click() method. You may
also want to verify the button’s state before and after the click to ensure it’s
performing the toggle action correctly. This can be done by checking the
button’s attributes or associated text.

WebElement toggleButton = driver.findElement
(By.id("toggleButton"));

String initialState = toggleButton.getText();
toggleButton.click(); // Interaction

String finalState = toggleButton.getText();
Assert.assertNotEquals(initialState, finalState, "The toggle
button state did not change."); // Validation

137

CHAPTER6 BUTTONS

You click the toggle button and then validate that its state has indeed
toggled from its previous state. These require a check before or after the
click to ensure the state has changed as expected, introducing a cyclical
pattern to your interaction and validation process. In some cases, you need
to check each state’s effect when clicked.

Toggle buttons do not have a unique type, so you can validate them by
their function to toggle between the two states on/off, as intended during
user interactions.

Radio Buttons

Radio buttons are fundamental elements in web forms, ensuring users
make a singular, clear choice. Each set of radio buttons is grouped by
a shared name attribute, allowing only one button in the group to be
selected at a time. This exclusivity is vital in scenarios like surveys or
settings requiring a definite answer.

The following is HTML code for a set of radio buttons asking users
about their preferred genre of music.

<!DOCTYPE html>

<html>

<head>

<h2>Music Preference Survey</h2>

</head>

<body>

<form>

<input type="radio" id="rock" name="music" value="rock">
<label for="rock">Rock</label>

<input type="radio" id="jazz" name="music" value="jazz">
<label for="jazz"»>Jazz</label>

138

CHAPTER6 BUTTONS

<input type="radio" id="classical" name="music"
value="classical">
<label for="classical">Classical</label>
</form>
</body>
</html>

In this structure, each radio button is marked with a unique ID, making
them easily identifiable. The label tags enhance user accessibility and
provide a larger clickable area.

Next, take a look at Figure 6-7.

Music Preference Survey Music Preference Survey
Rock ® Rock

Jazz Jazz
Classical Classical

Figure 6-7. Displaying radio buttons unchecked and checked

Figure 6-7 shows the default unchecked and checked radio buttons
when a click operation is performed. It demonstrates whether a radio
button is selected, and if selected, which option, ensuring you develop test
scenarios accordingly.

Note A black dot in a radio button shows that the button has been
selected.

Locating and Selecting with Radio Buttons

Locating elements is a cornerstone of Selenium testing. Let’s discuss
how to locate and interact with the radio buttons that are provided in
the HTML.

139

CHAPTER6 BUTTONS

By ID

This method is precise and efficient, especially when each radio button has
aunique ID.

WebElement rockRadio = driver.findElement(By.id("rock"));
rockRadio.click(); // Selecting the 'Rock' radio button

Using Label

Locating by label is particularly useful when the ID is dynamic or part of a
complex structure.

WebElement jazzRadiolLabel = driver.findElement(By.xpath
("//1abel[text()="Jazz']"));

jazzRadiolabel.click(); // Clicking the label also selects the
associated radio button

By Index Values

You can use index value when interacting with a radio button based on its
position in a group.

List<WebElement> musicRadios = driver.findElements(By.
name("music"));

WebElement classicalRadio = musicRadios.get(2); // Index 2 for
the third element, which is 'Classical’
classicalRadio.click(); // Selecting the 'Classical'

radio button

140

CHAPTER6 BUTTONS

Myth of Deselecting Radio Buttons

You can’t directly deselect a radio button. Once selected, a radio button
remains active until another button in the group is chosen. This behavior
underscores the importance of always providing a default or neutral option
in forms.

Validating Your Choices with Assertions
Validating / Confirming Element Type

Before interacting with what you assume is a radio button, let’s make sure

itis one.

Assert.assertEquals("radio", rockRadio.getAttribute("type"),
"The element is not a radio button.");

This assertion checks the element’s type attribute and compares it to
the string radio, ensuring that you're dealing with a radio button or not.

Verifying the Selection State

After selecting, confirming that the radio button reflects the correct state is
vital, so you verify the state using the assertion method.

rockRadio.click(); // Clicking the 'Rock' radio button
Assert.assertTrue(rockRadio.isSelected(), "The radio button is
not selected as expected.");

This assertion checks if the Rock radio button is selected. If it’s not, the
test fails, indicating a potential issue with the selection process.

141

CHAPTER6 BUTTONS

Checkboxes

Checkboxes are a staple in web forms, allowing you to make multiple
selections. They're versatile, providing various choices, unlike radio
buttons, which limit users to a single selection. Understanding checkbox
interactions is vital for any tester to ensure forms capture user inputs
accurately.

Consider an HTML form asking users about their hobbies. This
example serves as your testing ground.

<!DOCTYPE html>

<html>

<head>

<h2>Hobbies Selection</h2>

</head>

<body>

<form>

<input type="checkbox" id="music" name="hobby"
value="Music">
<label for="music">Music</label>

<input type="checkbox" id="travel" name="hobby"
value="Travel">
<label for="travel">Travel</label>

<input type="checkbox" id="books" name="hobby"
value="Books">
<label for="books">Books</label>
</form>
</body>
</html>

142

CHAPTER6 BUTTONS

Each checkbox is uniquely identified by its ID, and the label provides
a human-readable text. Let’s look at how to locate and interact with these
checkboxes.

Figure 6-8 shows three checkboxes. The top image shows that none
of the checkboxes are checked or selected. In the bottom image, two
checkboxes are selected among the three. Figure 6-8 helps you understand
that more than one checkbox can be selected, which is not the case with
radio buttons.

Hobbies Selection Hobbies Selection

O Music Music
O Travel Travel
) Books Books

Figure 6-8. Displaying checkboxes unchecked and checked

Note Selection and checked are referred to interchangeably.

Locating and Selecting Checkboxes

A checkbox is selected by clicking the located element, similar to the
radio buttons discussed earlier. With radio buttons, only one selection is
allowed, while you can select more than one choice in checkboxes. You
need to first locate the element and then make the selection accordingly.

By ID

You begin by identifying and interacting with checkboxes using their
unique IDs. This step is foundational, leading you naturally into the
exploration of more complex locating strategies.

WebElement musicCheckbox = driver.findElement(By.id("music"));
musicCheckbox.click(); // Selecting the 'Music' checkbox

143

CHAPTER6 BUTTONS

Using Label

This method locates checkboxes by their labels, a strategy that reflects
how users might interact with the form. This approach sets the stage for
understanding the importance of user-centric testing.

WebElement travelCheckboxLabel = driver.findElement(By.
xpath("//1label[text()="Travel']"));
travelCheckboxLabel.click(); // Clicking the label selects the
associated checkbox

By Name

When you want to interact with a group of checkboxes, a scenario that
introduces you to handling multiple elements and paves the way for more
advanced interactions, you can use the following Java snippet to find all
checkboxes by their name attribute:

List<WebElement> hobbiesCheckboxes = driver.findElements
(By.name("hobby"));

Selecting a Checkbox by Visible Text

Selecting based on the visible text ensures that the test reflects how a user
might interact with the form.

for (WebElement checkbox : hobbiesCheckboxes) {
if (checkbox.getAttribute("value").
equalsIgnoreCase("Travel")) {
if (!checkbox.isSelected()) {
checkbox.click();

144

CHAPTER6 BUTTONS

break;

Selecting a Checkbox by Value

Sometimes, you might want to select a checkbox based on its value
attribute, an effective way when the visible text isn’t reliable.

for (WebElement checkbox : hobbiesCheckboxes) {
if ("Travel".equals(checkbox.getAttribute("value"))) {
checkbox.click();
break;

Select All Checkboxes at Once

Sometimes, your test cases require you to select all available checkboxes.
This action isn’t just about ensuring every box is checked; it’s about
validating the application’s response to multiple selections. By iterating
over each checkbox and selecting them, you're simulating a common user
interaction, ensuring your test is as realistic as possible.

for (WebElement checkbox : hobbiesCheckboxes) {
if (!checkbox.isSelected()) {
checkbox.click();

145

CHAPTER6 BUTTONS

Selecting and Deselecting by Index

When you want to select or deselect based on the position in the list.

// Selecting by index
if (!'hobbiesCheckboxes.get(0).isSelected()) { // 0 for the
first checkbox
hobbiesCheckboxes.get(0).click();
}
// Deselecting by index
if (hobbiesCheckboxes.get(1).isSelected()) { // 1 for the
second checkbox
hobbiesCheckboxes.get(1).click();

Deselecting a Checkbox by Visible Text

This method brings you back to a user-centric perspective. By deselecting
a checkbox based on its visible text, you align your actions closely with
how a user interacts with the form. It’s a reminder that your testing
strategies should always consider the user’s viewpoint.

for (WebElement checkbox : hobbiesCheckboxes) {
if (checkbox.getAttribute("value").
equalsIgnoreCase("Music") 88 checkbox.isSelected()) {
checkbox.click();
break;

146

CHAPTER6 BUTTONS

Deselecting a Checkbox by Value

To deselect a checkbox based on its value, iterate through it, match the

value, and click if selected.

for (WebElement checkbox : hobbiesCheckboxes) {
if ("Books".equals(checkbox.getAttribute("value")) 8&
checkbox.isSelected()) {
checkbox.click(); // Deselects the 'Books' CheckBox if
it’s selected
break;

Deselect All Checkboxes at Once

When you need to ensure that all checkboxes are cleared before
proceeding. This action represents a common user behavior of resetting
their choices.

for (WebElement checkbox : hobbiesCheckboxes) {
if (checkbox.isSelected()) {
checkbox.click();

Note The methods you use to locate checkboxes for selection can
also be applied for deselection. The same strategies hold for selecting
and deselecting checkboxes, whether by ID, visible text, or value.

147

CHAPTER6 BUTTONS

Validating a Checkbox with Assertions

Asserting the selection and deselection of checkboxes isn’t a mere
formality; it’s a critical step ensuring your tests’ accuracy and reliability.
Through assertions, you confirm that your interactions lead to the
expected outcomes, reflecting the importance of thorough validation in
automated testing.

Asserting Selection

When you assert that a checkbox is selected, you're not simply checking a
box but confirming that your previous actions have successfully changed
the application’s state. This assertion is vital to your testing process,
ensuring the application behaves as expected when a user selects.

Assert.assertTrue(musicCheckbox.isSelected(), "The CheckBox
should be selected but is not.");

Asserting Deselection

Similar to the selection assertion, when you assert that a checkbox

is deselected, you verify that your action to remove a selection has
been effective. This step is crucial for tests that involve changing or
reconsidering choices, reflecting user interactions’ dynamic and often
unpredictable nature.

Assert.assertFalse(travelCheckbox.isSelected(), "The CheckBox
should be deselected but is not.");

148

CHAPTER6 BUTTONS

Asserting Element Type

Verify that the elements you're interacting with are indeed checkboxes.
This step ensures your tests are accurate and interact with the correct web
elements.

Assert.assertEquals("checkbox", musicCheckbox.
getAttribute("type"), "The element is not a CheckBox.");

SelectList

SelectList is an interactive web element allowing only one selection from
a drop-down list at a time. As you explore this fundamental component,
you’ll understand its importance in user interfaces and how it shapes your
approach to automated testing.

Before interacting with a SelectList element, you should become
familiar with the HTML structure, laying the foundation for your
subsequent actions.

The following is an HTML code example.

<!DOCTYPE html>
<html>
<head>
<title>Country Selection</title>
</head>
<body>
<h2>Select Your Country</h2>
<form>
<label for="country">Choose a country:</label>
<select id="country" name="country">
<option value="india">India</option>
<option value="usa">United States</option>
<option value="canada">Canada</option>

149

CHAPTER6 BUTTONS

<option value="uk">United Kingdom</option>
<option value="australia">Australia</option>
</select>
</form>
</body>
</html>

With the SelectList element identified in your HTML, you're set to
move on to locating and interacting with this element.

Figure 6-9 shows the SelectList element with the default country
selected. Multiple options are available but only one value, similar to the
radio button, can be selected.

Select Your Country

Choose a country: | India v

Figure 6-9. SelectList

The SelectList element is a drop-down menu with a list of options to
select by clicking any of the options. Figure 6-10 shows the drop-down list
containing country names to be selected.

Select Your Country
Choose a country: | United States v

India

United States
Canada

United Kingdom
Australia

Figure 6-10. SelectList

Locating and Interacting with SelectList

Interacting with a SelectList element lets you focus on seamlessly locating
and selecting options. This step is crucial because it forms how you'll
interact with and validate your selections later.

150

CHAPTER6 BUTTONS

Locate and Select by Visible Text

Your first method involves finding and selecting options as they appear
to the user. This intuitive approach helps you ensure your tests align with
real-world user interactions.

Select countrySelectlList = new Select(driver.findElement(By.
id("country")));
countrySelectList.selectByVisibleText("United Kingdom");

Locate and Select by Value

Next, you explore how to select based on the options’ underlying value, a
particularly useful method when the visible text might change.

countrySelectList.selectByValue("india");

Locate and Select by Index

Finally, you look at selecting by index, which relies on the position
of options within the SelectList element. This approach leads you to
understand how to retrieve and work with all available options.

countrySelectList.selectByIndex(3); // This will select "United
Kingdom"

Retrieving All Available Options

Building on your knowledge of locating and selecting, you now focus on
retrieving all options within the SelectList element. This understanding is
crucial for comprehensive testing and ensuring all expected choices are
present.

151

CHAPTER6 BUTTONS

Get All Options

By obtaining all options, you can verify the contents of your SelectList

element and ensure it meets the application’s requirements.

List<WebElement> allOptions = countrySelectlList.getOptions();

for(WebElement option : allOptions) {
System.out.println(option.getText()); // Prints the text of
each option

Having familiarized ourselves with all available options, you're now in
a good position to delve deeper into more advanced interactions, such as
simulating the deselection of options in a SelectList.

Deselecting Options in SelectList

In a SelectList element, deselecting isn’t inherently possible as it always
requires one option to be selected. However, if one is available, you might
simulate a deselection by selecting a default or neutral option.

Simulating Deselect by Selecting

a Default Option

If your SelectList element includes a default or neutral option, selecting
it can effectively simulate a deselection. This approach is particularly

relevant as you prepare to validate your selections and ensure your tests
accurately reflect user behavior.

countrySelectlList.selectByValue("default"); // Assuming
"default' is a neutral option

152

CHAPTER6 BUTTONS

Validating SelectList Options and Selections

Building on your ability to interact with and understand the SelectList
element’s contents, you now focus on validating your selections. This step
is critical for ensuring your tests are robust, and the application behaves as
expected.

Assert the Selected Option

After selecting an option, you must verify that your intended choice is
indeed selected. This validation confirms your previous actions and
ensures the application’s response aligns with user expectations.

WebElement selectedOption = countrySelectlist.
getFirstSelectedOption();

Assert.assertEquals("United Kingdom", selectedOption.getText(),
"The expected option is not selected.");

Assert Element Type

In a SelectList element, you must first locate the web element and then
check for select tags as they are initiated using this tag in HTML. The check
can be done by using assertion.

Assert.assertEquals("select", countrySelectElement.
getTagName(), "The element is not a SelectlList.");

153

CHAPTER6 BUTTONS

MultiSelectList

MultiSelectList is an essential web element that allows multiple selections,
unlike SelectList, where only one option can be chosen. It’s often used in
web forms to capture all applicable user preferences or data points.

Let’s consider an HTML form where users can select multiple
programming languages they’re proficient in.

<!DOCTYPE html>
<html>
<head>
<title>Language Proficiency</title>
</head>
<body>
<h2>Select Programming Languages</h2>
<form>
<label for="languages">Languages:</label>
<select id="languages" name="languages" multiple>
<option value="java">Java</option>
<option value="python">Python</option>
<option value="javascript">JavaScript</option>
<option value="csharp">Ci#</option>
</select>
</form>
</body>
</html>

In this example, the multiple attribute in the <select> tag signifies
that it’s a MultiSelectList element, allowing more than one option to be
selected.

154

CHAPTER6 BUTTONS

Next, let’s look at Figure 6-11.

Select Programming Languages

Figure 6-11. MultiSelectList before selection

Figure 6-11 displays a MultiSelectList element containing a list of
programming languages that can be seen. You must perform a click
operation to select among the four available options.

Figure 6-12 shows two options, Java and Python, selected in the
MultiSelectList element. You can even select all the available options to
differentiate between selected and unselected; you have selected two
options. As a user, to select more than one option, you need to use the Ctrl
button and select the desired one in Windows, and for macOS, you need to

use the Command button while selecting options.
Select Programming Languages
dava B
Pithen

[JavaScript
Languages: [C#

Figure 6-12. MultiSelectList after selection

Selecting and Deselecting Options
with MultiSelectList

A MultiSelectList element lets you select and deselect multiple options.
Let’s discuss how to interact with them using Selenium.

155

CHAPTER6 BUTTONS

Selecting Multiple Options

The Select class interacts with a SelectList element and selects multiple
options by visible text, value, or index.

Select languagesSelectlList = new Select(driver.findElement(By.
id("languages")));
languagesSelectlList.selectByVisibleText("Java");
languagesSelectList.selectByValue("python");
languagesSelectlList.selectByIndex(2); // 0-based index, selects
"JavaScript"

Deselecting Options

Unlike SelectList, MultiSelectList allows individual options to be
deselected. The following code mentions each.

// Deselecting options
languagesSelectList.deselectByVisibleText("Java");
languagesSelectlList.deselectByValue("python");
languagesSelectList.deselectByIndex(2); // Deselects
"JavaScript"

Validating Multiple Selections and Deselections

In a MultiSelectList element, it’s crucial to assert both the selections and
deselections to ensure the application captures user inputs accurately.

156

CHAPTER6 BUTTONS

Asserting Multiple Selections:

After selecting options, you need to confirm that they are indeed selected.

List<WebElement> selectedOptions = languagesSelectlist.
getAllSelectedOptions();

List<String> selectedValues = selectedOptions.stream().
map(WebElement: :getText).collect(Collectors.toList());
Assert.assertTrue(selectedValues.containsAll(Arrays.
asList("Java", "Python", "JavaScript")), "Not all languages are
selected.");

Asserting Deselections

Similarly, you need to verify that the options you intended to deselect are
no longer selected.

// Assuming you've deselected "Python" earlier
selectedOptions = languagesSelectlList.getAllSelectedOptions();
for (WebElement option : selectedOptions) {
Assert.assertNotEquals("Python", option.getText(),
"Python should be deselected but is still selected.");

Asserting Element Type for MultiSelectList

As with a SelectList element, asserting that the element you're interacting
with is a MultiSelectList element is important. You can check if the
multiple attribute is present and set it to true.

157

CHAPTER6 BUTTONS

WebElement languagesElement = driver.findElement(By.
id("languages"));
Assert.assertTrue(Boolean.parseBoolean(languagesElement.
getAttribute("multiple")), "The element is not a
MultiSelectlList .");

Note A MultiSelectList element is identified by a <select> tag
with multiple attributes in HTML, allowing multiple options to be
selected.

Testing Considerations

When testing buttons in web applications using Selenium, several
considerations ensure that your tests are robust, reliable, and reflective of
user interactions. The following is a structured approach to understanding
these testing considerations.

Button Visibility and Accessibility

o Isthe button visible? Ensure the button is visible
before attempting any interaction. Buttons hidden via
CSS or other means might be present in the DOM but
not clickable.

o Isthe button accessible? Check if the button is
accessible to users, especially considering accessibility
standards. This includes verifying attributes like aria-
labels for screen readers.

158

CHAPTER6 BUTTONS

Button State

o Isthe button enabled or disabled? Verify the button’s
state before interaction. Testing should confirm that the
button becomes enabled or disabled under the correct
circumstances.

o Isthe button in the correct state? For toggle buttons,
ensure the button’s state (on/off, active/inactive)
changes as expected with each interaction.

Button Functionality

e Does the button perform the expected action?
Confirm that clicking the button triggers the expected
outcome, whether submitting a form, navigating to a

new page, or executing a script.

o Is the button’s function consistent across browsers?
Test across different browsers to ensure consistent
functionality, as button behavior can vary.

Button Interaction

¢ How does the button respond to clicks? Check the
response time and any immediate visual feedback (like
a spinner) indicating that the click has been registered
and an action is being processed.

e Are there any special interaction considerations? For
image buttons or buttons with complex designs, ensure
the clickable area is correctly mapped and responsive.

159

CHAPTER6 BUTTONS

Validation Post-Interaction

Does the Ul reflect the expected changes? After
clicking, validate that the UI updates to reflect any
changes. For example, a Submit button might change
to Submitted or update a page section.

Are there any side effects? Confirm there are no
unintended side effects like page errors, unwanted
navigation, or incorrect form submissions.

Security Considerations

Does clicking the button expose security flaws?
Ensure that interactions with the button don’t expose
vulnerabilities like SQL injection, especially for buttons
related to form submissions.

Performance Considerations

Does the button respond quickly? Check the button’s
responsiveness and loading time, particularly for
buttons triggering complex backend operations.

Cross-Platform and Cross-Browser Testing

160

How does the button behave across platforms and
browsers? Validate the button’s functionality and
appearance across different browsers and devices,
considering variations in rendering and performance.

CHAPTER6 BUTTONS

Dynamic and Contextual Behavior

e Does the button’s behavior change based on context?
Some buttons might behave differently depending on
the data entered or selections made elsewhere on the
page. Ensure these dynamic behaviors are correctly
implemented and tested.

Error Handling

¢ How does the button handle errors? Test how the
button behaves in error scenarios like failed form
submissions or unavailable resources. It should
handle errors gracefully and provide appropriate user
feedback.

Summary

This chapter traversed the landscape of interactive web elements crucial
for automated testing in Selenium. From the straightforward interaction
with buttons to the nuanced selections in a MultiSelectList element, a
wide range of elements and interactions have been covered. The journey
through this chapter has not only equipped you with the skills to perform
interactions. It also underscored the importance of validating both the
actions taken and the elements themselves.

A key takeaway from this chapter is the diversity of web elements
and the unique approach each requires for interaction and validation.
Understanding the intricacies of buttons, radio buttons, checkboxes, and
SelectList and MultiSelectList elements are crucial for any tester wanting

161

CHAPTER6 BUTTONS

to create robust and reliable automated tests. Validation, a recurring theme
in this chapter, has been highlighted as crucial for ensuring the accuracy
and reliability of your tests.

Most of this chapter was dedicated to button testing considerations,
where you outlined key points to ensure comprehensive testing. These
considerations included ensuring visibility and accessibility, verifying
button states, confirming functionality, assessing interaction and
performance, and more. By understanding these nuances, you are better
equipped to create tests that are effective, robust, and reflective of real-
world user interactions.

Furthermore, the knowledge acquired here builds upon itself,
providing a structured understanding and skill set that enhances each
section. As this chapter concludes, you should feel empowered to handle
various web elements using Selenium. The technical skills, coupled with a
deep understanding of element behavior and its role in web applications,
greatly enhance the quality and effectiveness of your automated tests.
Whether you are testing a simple user form or a complex interactive
application, the insights and skills gained from this chapter are invaluable
additions to your Selenium toolkit.

162

CHAPTER 7

iframes and Textboxes

In web application testing, the two web elements that consistently require
attention are iframes and textboxes. In iframes, contents are embedded
from one source into another, functioning like a separate window within
aweb page. On the other hand, textboxes are essential input fields,
capturing user data for various purposes.

This chapter starts with iframes and explores the techniques to
locate and interact with them effectively. Once you have a firm grip on
iframes, the focus turns to textboxes, discussing mechanisms for precise
interaction and data retrieval. By the end of this chapter, you should have a
comprehensive understanding of these two crucial web elements and how
to deal with them in automation tasks.

iframes

An iframe is an HTML document embedded within a different HTML
document on a website. The iframe HTML element is often used to add
content from different sources. Particularly, iframe is used to embed

a document within another, isolating the embedded document from
the main page. This isolation helps to keep third-party content from
interfering with the main page’s DOM or JavaScript environment.

You can embed documents like videos (e.g., YouTube videos) and
PDFs. Third-party widgets, and many more. For test automation, knowing
that content inside an iframe exists in a separate document is crucial. This
means that web elements store the web elements.

© The Editor(s) (if applicable) and The Author(s), 163
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_7

https://doi.org/10.1007/979-8-8688-0291-1_7

CHAPTER 7 IFRAMES AND TEXTBOXES

Earlier HTML used frameset tags that were similar to the present
iframe tags, but it split the browser window into various sections with
different URLs. Each of these split windows was called a frame, displaying
different documents. Unlike iframes, frameset tags cannot be placed
anywhere on the page, and their lower flexibility, the use of framesets
declined. However, iframes have remained an integral part of modern web
development.

Let’s test iframes.

<IDOCTYPE html>
<html>
<head>
<title>Iframe Example</title>
</head>
<body>
<p>This is content of the main page.</p>

<!-- Embedding another document using iframe -->
<iframe src="https://www.selenium.dev/" id="iframeo0"
name="selenium_java " width="500" height="300"></iframe>

<p>More content of the main page.</p>
</body>
</html>

This example used https://www.selenium.dev/ embedded in an
iframe page. The height and width have been specified for the iframe. The
src parameter contains the URL of the site that is displayed in the iframe.

Figure 7-1 shows what the HTML looks like on a web page.

164

https://www.selenium.dev/

CHAPTER 7 IFRAMES AND TEXTBOXES

This is content of the main page.

About ~ Downloads Documentation Projects

E Selenium

SeleniumConf Chicago 2023 is a wrap! Watch the Videos

Selenium automates browsers.

More content of the main page.

Figure 7-1. Single iframe displaying Selenium website

The Selenium website is displayed by an iframe, as seen in Figure 7-1.
The iframe seems like a window within a window. In the test case scenario,
itis considered as a separate document. Before interacting with the
contents in the iframe, you need to switch to this window. The upcoming
topics dissect the methods and best practices to make this transition
seamless.

Switching to an iframe

When you want to test a web element or functionality embedded within an
iframe, first, you need to locate and switch to that particular iframe.

165

CHAPTER 7 IFRAMES AND TEXTBOXES

As the web elements embedded in an iframe are not immediately
accessible, you must first locate and switch to that particular iframe to test.
Once you switch to the iframe, you can locate the element in the same way
as discussed in Chapter 4. Let’s explore various techniques in which iframe
can be located.

Switch Using ID

To access the iframe from the web page, use the ID attribute provided. The
following method switches control to the iframe.

driver.switchTo().frame(driver.findElement(By.id("iframe0")));

Once you switch to the iframe, you are confined to its web elements
and carry out operations like locating elements or interacting with them
until you switch back to the main page or another iframe.

Switch Using Name

Similar to the ID attribute, you can switch to iframe from the web page
using name attribute, when available.

// Switch to the iframe using its name
driver.switchTo().frame("selenium java");

Switch Using Index Value

While you can locate and switch to iframes using attributes like ID or
Name, these attributes may not always be available or unique. Using the
iframe’s index makes sense as a method in these cases.

The index represents the position of the iframe beginning with 0 (zero)
in a sequence on a web page. The first iframe can be accessed using index
values as zero, the second as one, and so on. Let’s use the example for

multiple iframes.

166

CHAPTER 7 IFRAMES AND TEXTBOXES

<IDOCTYPE html>
<html>
<head>
<title>Multiple Iframes</title>
</head>
<body>
<p>This is the main page content.</p>

¢l-- First Iframe -->
<iframe src="iframel.html"></iframe>

<!-- Second Iframe -->
<iframe src="iframe2.html"></iframe>

<!-- Third Iframe -->
<iframe src="iframe3.html"></iframe>

<p>End of main page content.</p>
</body>
</html>

The preceding example embedded three iframes in a web page. Let’s
discuss how to interact with these iframes using index values; you can see
no attributes are used.

// Switch to the first iframe using index
driver.switchTo().frame(0);

// Navigate directly to the second iframe by its index
driver.switchTo().frame(1);

// Navigate directly to the third iframe by its index
driver.switchTo().frame(2);

167

CHAPTER 7 IFRAMES AND TEXTBOXES

The switchTo().frame() method with an index value switches to
the iframes starting from zero. If the index value you provided does not
correspond to iframes available on a web page, an NoSuchFrameException
error occurs. Once you switch to any iframe, you need to switch back to
the main page to enter again for a different iframe. This is explained in the
hierarchy structure of iframes next.

Hierarchy in Switching iframes

You have seen multiple iframes and the ways to access them. Let’s look at
multiple iframes that are nested within other iframes. Understanding the
hierarchy in which these iframes are placed is necessary to interact with
web elements, as each level requires a valid declaration of the WebDriver’s
context. The following is the hierarchy of iframe in HTML. Let’s explore
ways to interact with it.

<!DOCTYPE html>
<html>
<head>
<title>Main Document</title>
</head>
<body>
<p>This is the content of the main page.</p>

<!-- First Level Iframe -->

<iframe src="first level.html" id="firstLevelIframe">
<!-- Content of the First Level Iframe -->
<p>This is the content of the first-level iframe.</p>

<!-- Nested Iframe (Second Level) -->
<iframe src="second level.html" id="secondLevelIframe">
<!-- Content of the Second Level Iframe -->

168

CHAPTER 7 IFRAMES AND TEXTBOXES

<p>This is the content of the nested, second-level
iframe.</p>
</iframe>

</iframe>

<p>More content of the main page.</p>
</body>
</html>

The hierarchy is represented as follows.

o The main page or document represents the
topmost level.

e The iframe containing id="firstLevellframe” is at the
first level, representing the hierarchy embedded in the
main document.

¢ A nested iframe within the first-level iframe makes it a

second-level iframe.

Note If an iframe is embedded inside another, it is known as a
nested iframe. There may be more than one level of iframes nested in
one another, and so on.

Navigating an iframe in a Hierarchy

Main document context: In Selenium, when a web
page is getting loaded, the main document or the
topmost layer is set as WebDriver’s default context;
hence, there is no need to switch to the main
document, and you can access your elements in it.

169

CHAPTER 7 IFRAMES AND TEXTBOXES

Accessing to first-level iframe: To locate the first-
level iframe from the main document, you can use
the switchTo() function in Selenium.

driver.switchTo().frame(driver.findElement(By.
id(“firstLevellframe”)));

Accessing second-level/nested iframe: When you
want to access the second-level or nested iframe
that is embedded in the first iframe, you can use the
same switchTo() function.

driver.switchTo().frame(driver.findElement(By.
id(“secondLevellframe”)));

Selenium WebDriver cannot directly access a nested
iframe as it requires sequential navigation through
the iframe levels.

As you have seen, when you need to access the
second iframe, at the start, you need to access the
first iframe and then the second. Now, let’s look at
how to return from nested iframes.

Returning to the first level: When you are in a
nested iframe (i.e., second level, as seen in our case)
and need to return to the first iframe, you can use
driver.switchTo().parentFrame();.

If the iframe you switched to does not have any
parent iframe or the iframe is not nested within

an iframe then this function, used again, switches
back to the main document. So, this parentFrame()
function is commonly used in nested cases.

170

CHAPTER 7 IFRAMES AND TEXTBOXES

Returning to the main document: If you want to
return to the main document from any iframe, you
can use the defaultContent() function along with the
switchTo() function.

driver.switchTo().defaultContent();

You can use this function in any of the nested
layers of iframes when you want to switch back
to the main document. Once you are back to the
main document and want to switch back again to
the iframe then you need to navigate through the
hierarchy as discussed earlier.

Switch as an Element

When you are dealing with dynamic web pages, where iframes do not
render fixed attributes, or their position could change. In such cases,
you need to locate them as a web element, just like any other element on
the page. Once the element is located then you need to switch to it. The
following is simple HTML code for an iframe.

<iframe class="dynamicIframe" src="iframe content.html"></iframe>

Since the iframe is dynamic, you need to locate iframe using the
class name.

// Locate the iframe as a WebElement
WebElement iframeElement = driver.findElement(By.className
("dynamicIframe"));

171

CHAPTER 7 IFRAMES AND TEXTBOXES

Now, after locating the iframe as a web element, you need to switch to
the iframe with switchTo() function.

// Switch to the iframe using the WebElement
driver.switchTo().frame(iframeElement);

This method gives more flexibility and precision, especially in the
modern era of web applications where one can generate, remove, or have

dynamic attributes changing via JavaScript for iframes.

Frames with Waits

When dealing with web elements that may require time to load or become
interactive, which is often needed for web testing, this is particularly
valid for iframes and frames with synchronous content loading abilities.
To ensure strong and reliable tests, it is imperative to wait for iframes to
become available on the web page before switching to them.

Waits can be used in dealing with iframes, ensuring it is loaded and
its content is available, when you want to interact with elements inside an
iframe. Here is the HTML code for it.

<iframe id="dynamicLoadingFrame" src="some_content.
html"></iframe>

Let’s use explicit wait, which is often used in Selenium, wherein a
certain condition should be met before proceeding further.

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openga.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverhait;

// Assuming 'driver' is an instance of WebDriver and is already
initialized

172

CHAPTER 7 IFRAMES AND TEXTBOXES

// Set up the explicit wait with a timeout of 10 seconds
WebDriverWait wait = new WebDriverWait(driver, 10);

// Wait for the iframe to be available and then switch to it
wait.until(ExpectedConditions.frameToBeAvailableAndSwitchToIt(
By.id("dynamicLoadingFrame")));

// Now, you're inside the iframe and can perform operations
/...

// Switch back to the main content after operations
driver.switchTo().defaultContent();

The code uses explicit wait to ensure that WebDriver instance
is made to wait for 10 seconds to make the iframe available on the
page. If the iframe is not available within the timeframe, you get
TimeoutException error.

By using this strategy, you may prevent unexpected loading delays
from causing your tests to fail, increasing their resistance to changes in
network speed, server response time, and other unforeseen circumstances.
Always waiting until the iframe or its components are ready to be used
before interacting with them is a good practice, especially in cases where
content loading may be dynamic or asynchronous.

Textboxes

In many web forms, textboxes are important elements that facilitate user
inputs from simple searches to intricate data entries. Next, let’s look at
various types of textboxes and how to locate them using Selenium.

173

CHAPTER 7 IFRAMES AND TEXTBOXES

Single Line Textbox

An input field, often shown as a single-line textbox with the type attribute
set to text, is used for concise entries. Some examples include usernames,
query searches, and email addresses.

The following is an HTML example.

<h1>Single Line Textbox</h1>
<label for="book">Book Name:</label>
<input type="text" id="book name" name="book_ query">

Figure 7-2 shows what the HTML looks like on a web page.

Single Line Textbox

Book Name:
Figure 7-2. Single-line textbox with Book Name field

You need to locate the textbox on a web page before you can interact with
it. So, from the provided HTML, let’s locate a textbox using the ID attribute.

// Locating Textbox
WebElement bookTextbox = driver.findElement(By.id("nook name"));

Now, you can interact with the textbox as you have located it.

Inserting values: After locating the textbox, you can
insert a value using the keyboard actions discussed
in Chapter 3.

// Inserting Value into Textbox
bookTextbox.sendKeys("Python Testing with Selenium");

You have inserted the value Python Testing with
Selenium into the textbox. Let’s look at how to

retrieve this value.

174

CHAPTER 7 IFRAMES AND TEXTBOXES

Retrieving value: You can also retrieve the value
that has been given in a textbox. This is generally
used to compare the value with the expected one
and if the textbox makes any other behavior.

// Retrieving Value from Textbox
String bookName = bookTextbox.getAttribute("value");

System.out.println("Book name entered: " + bookName);

This provides the output of the book name you
entered in the textbox if that text is present in the
located textbox.

You have now seen how to locate a textbox and interactions like
inserting values into it and validating the text entered using Selenium,
ensuring that a web application accepts and displays the input provided by
the user as it is.

Multiline Textbox

In a multiline textbox, a user can span multiple lines as input that can be a
form of comments, descriptions, or any form of extended text.

You can create a multiline textbox using the <textarea> tagin
HTML. The following code represents a multiline textbox in HTML.

<h1>Multiline Textbox</h1>

<label for="description">Description:</label>
<textarea id="description" name="description" rows="4"
cols="50"></textarea>

175

CHAPTER 7 IFRAMES AND TEXTBOXES

Figure 7-3 shows what the HTML looks like on a web page.
Multiline Textbox

Description:

Y

Figure 7-3. Multiline textbox with Description field

In the HTML code, a description field is provided for the users to
enter their multiline text, which you don’t see in the single-line textbox.
From this HTML code, let’s locate a multiline textbox using its ID attribute
having description as its value.

Locating the Multiline

Let’s locate a multiline textbox and then interact with it by inserting and
retrieving the value entered from it. So, let’s start by locating it by using the
ID attribute.

// Locating Multiline Textbox
WebElement descriptionTextarea = driver.findElement(By.
id("description"));

Inserting Values

Now, once you located the multiline element from the web page, you can
use sendKeys() method to provide input into the multiline textbox.

// Inserting Value into Textbox
descriptionTextarea.sendKeys("This is a sample description
text.\nIt covers multiple lines.");

176

CHAPTER 7 IFRAMES AND TEXTBOXES

The sendKeys() method uses \n\, an escape sequence in Java that
stimulates pressing the Enter key, thus creating a new line in the text area.

Retrieving a Value from a Multiline Textbox

To retrieve the entered text from a multiline textbox, you use the getText()
method. Its value is retrieved to validate or verify in automated testing.

// Retrieving Value from Textbox
String descriptionText = descriptionTextarea.getText();
System.out.println("Description entered: " + descriptionText);

This code snippet returns all the entered text from the multiline
textbox. It is a crucial procedure in testing scenarios like user feedback,
comment sections or any situation where you expect extended text input
by the user.

Summary

This chapter focused on two pivot elements in web automation iframes
and textboxes. It started by handling iframes, which are crucial for
interacting with embedded web content. It explored different strategies
for switching to iframes, such as using ID, name, index, and web element.
This knowledge is necessary as iframes often contain essential elements
that require special attention because of their separate DOM structure.
In addition, you learned the challenges while handling nested iframes,
which emphasized the importance of sequential navigation and discussed
explicit waits that enabled dynamic content loading, thus ensuring the
robustness and reliability of test cases.

The chapter also discussed the nuances of single-line textboxes and
multiline textboxes. Single-line textboxes used for entering fields, like
email addresses or names, were discussed in the context of efficiently

177

CHAPTER 7 IFRAMES AND TEXTBOXES

inserting and retrieving values, a staple in form-based applications. You
learned about multiline textboxes and textareas, delving into their role in
capturing more extensive user inputs like comments or descriptions. You
saw practical examples of interacting with these user inputs in Selenium,
highlighting the importance of precision in entering and validating data for
automated testing.

The chapter covered handling complex web elements to enable you to
create effective and reliable automated tests.

178

CHAPTER 8

Assertions

This chapter explores the fundamental concepts, techniques, and best
practices related to assertions in Selenium. Assertions are trusted tools
for validating the behavior and functionality of web applications during
automated testing.

Starting with an introduction to assertions, you learn what assertions
are and why they hold immense importance in the Selenium testing
framework. You then dive into the two primary types of assertions: hard
and soft.

Next, you explore a range of assert methods provided by Selenium,
which are essential for comparing and verifying expected outcomes
against actual results in your tests. You also delve into handling assertion
failures, where you learn what happens when assertions fail and how to
gracefully manage these failures while ensuring comprehensive logging
and reporting.

Custom assertions are another focus of discussion. You discover
how to create custom assertion methods tailored to specific application
requirements. You explore extending assertion functionality to effectively
meet your unique testing needs.

Finally, you learn the common pitfalls and mistakes made when
working with assertions in Selenium, along with strategies to avoid false
positives and negatives.

© The Editor(s) (if applicable) and The Author(s), 179
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_8

https://doi.org/10.1007/979-8-8688-0291-1_8

CHAPTER 8 ASSERTIONS

Throughout your journey, you emphasize best practices for using
assertions in Selenium, covering when to use them, how to keep them
simple and specific, crafting meaningful error messages, and organizing
assertions within your test cases. These best practices enable you to build
reliable, maintainable, and efficient Selenium test scripts.

What Are Assertions?

Assertions in Selenium are statements or checks that you embed in your
automated test scripts to verify whether certain conditions are met during
the execution of a web application. These conditions can encompass a
wide range of criteria, such as checking if a specific element is present on
a web page, if the text matches your expectations, or if the URL matches a
predefined pattern. Essentially, assertions help you validate whether the
application behaves as expected.

The Need for Assertions

Assertions are not just code statements; they are integral to the efficacy
and reliability of automated tests.

Verification of expected behavior: Assertions

act as quality control mechanisms and standards,
allowing you to ensure that the web application
behaves as intended and conforms to predefined
criteria. It also ensures that new changes or updates
haven’t broken existing features or behavior.

Test automation efficiency: Without assertions,
you would need manual intervention to confirm
whether a test has passed or failed, which defeats

180

CHAPTER 8 ASSERTIONS

the purpose of automation. Assertions automate the
validation process and speed up the feedback loop
in development cycles.

Error detection: Assertions help you detect issues
early in the testing process. If an assertion fails, it
indicates a problem with the application or your
test script, enabling you to promptly pinpoint and
address the issue.

Documentation: Assertions are documentation
within your test scripts, clarifying what
conditions you are testing and what constitutes a
successful test.

Hard Assertions (Asserts)

Hard assertions are stringent checkpoints in your Selenium tests. When
you employ a hard assertion that fails, the test script halts immediately,
and the entire test is marked as failed. Think of them as non-negotiable
conditions that must be met for the test to proceed.

For example, when you use a hard assertion to confirm that a Submit
button is present on a page and it’s not found, the test stops, and you'll
receive a failure message. This is essential for avoiding false positives and
ensuring the reliability of test results

Using Java code, the following illustrates hard assertions (Asserts) in
Selenium. Let’s also create a simple HTML page for this example.

//HTML Code
<!DOCTYPE html>
<html>

<head>

181

CHAPTER 8 ASSERTIONS

<title>Sample Page</title>
</head>
<body>
<h1>Welcome to Selenium Assertions Example</h1>
<p id="textElement">This is a sample paragraph.</p>
<button id="submitButton">Submit</button>
</body>
</html>

Let’s write Java code using Selenium to interact with this HTML page

and perform assertions.

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqga.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.Assert;

public class HardAssertionstExample {
public static void main(String[] args) {
// Set the path to your ChromeDriver executable
System.setProperty("webdriver.chrome.driver"”,
"path/to/chromedriver");

// Create a new instance of ChromeDriver
WebDriver driver = new ChromeDriver();

// Navigate to the HTML page
driver.get("file:///path/to/example.html");

// Find the elements on the page
WebElement textElement = driver.findElement
(By.id("textElement"));

182

CHAPTER 8 ASSERTIONS

WebElement submitButton = driver.findElement(By.
id("submitButton"));

// Perform hard assertions (Asserts)
Assert.assertEquals(textElement.getText(), "This is a
sample paragraph");
Assert.assertTrue(submitButton.isDisplayed());

// Close the browser
driver.quit();

This example used hard assertions (Asserts) to validate two conditions:
the text of a paragraph element and the presence of a Submit button. If
either of these assertions fails, the test stops immediately, and the test is
marked as failed.

Soft Assertions (Verify)

Soft assertions, often called verify, are a more flexible approach to
validation in Selenium. When you use a soft assertion, you are setting
conditions that are important to check but not critical enough to warrant
stopping the test immediately upon failure. With soft assertions, the test
script continues running even if some conditions fail, and it collects
information about all the failures for later analysis.

Think of an example: when you use a soft assertion to validate the
content of multiple elements on a page, and one of them doesn’t match
your expectations, the test won’t stop immediately. Instead, it continues
running, and you can inspect all the failures once the test is complete.
Verify is another word given to soft assertions when testing a web
application.

183

CHAPTER 8 ASSERTIONS

For the preceding HTML code, implement a soft assertion to it and see
the difference in the behavior of the test.

//Java Code

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.asserts.SoftAssert;

public class SoftAssertionsExample {
public static void main(String[] args) {
// Set the path to your ChromeDriver executable
System.setProperty("webdriver.chrome.driver",
"path/to/chromedriver");

// Create a new instance of ChromeDriver
WebDriver driver = new ChromeDriver();

// Navigate to the HTML page
driver.get("file:///path/to/example.html");

// Find the elements on the page

WebElement textElement = driver.findElement
(By.id("textElement"));

WebElement submitButton = driver.findElement
(By.id("submitButton"));

// Initialize SoftAssert
SoftAssert softAssert = new SoftAssert();

184

CHAPTER 8 ASSERTIONS

// Perform soft assertions (Verify)
softAssert.assertEquals(textElement.getText(), "This is
a sample paragraph");
softAssert.assertTrue(submitButton.isDisplayed());

// Continue with test steps
/] ...

// Assert all soft assertions at the end of the test
softAssert.assertAll();

// Close the browser
driver.quit();

This example uses soft assertions (Verify) with TestNG’s SoftAssert
class. Even if one of the assertions fails, the test continues executing, and
all failures are collected. The softAssert.assertAll() statement at the end
of the test marks the test as failed if any soft assertion has failed. This
allows you to collect all failures and continue running the test to gather
comprehensive information about the application’s behavior before

reporting the results.

Hard vs. Soft

Table 8-1 compares hard assertions (Asserts) and soft assertions (Verify).

185

CHAPTER 8 ASSERTIONS

Table 8-1. Represents Differences Between Hard (Asserts) and Soft
(Verify) Assertions

Aspect Hard Assertions (Asserts) Soft Assertions (Verify)

Behavior on Immediately stops test Continues test execution and

Failure execution and marks the entire collects information about all
test as failed. failures.

Use Case Suitable for critical conditions Appropriate for scenarios where
that must be met for the test to comprehensive information about
proceed. multiple conditions or elements is

needed within a single test run.

Handling Typically used for non- Allows assessing various aspects

Multiple negotiable checks where of the application’s behavior

Assertions any deviation from expected before reporting results.
behavior signifies a significant
issue.

Reporting Provides clear and immediate Doesn’t halt the test on failure but

feedback about failures, accumulates information about all
making it easy to identify and failures for later analysis. Requires
address issues promptly. using assertAll() at the end of the

test to mark it as failed if any soft
assertion has failed, providing a
consolidated report of all issues
encountered during the test.

Table 8-1 summarizes the key differences between hard assertions
(Asserts) and soft assertions (Verify) in Selenium, making it easier to
understand their behavior and when to use each type based on testing
requirements.

186

CHAPTER 8 ASSERTIONS

Assert Methods in Selenium

assertEquals(expected, actual): This method

is your go-to for comparing expected and actual
values. It’s invaluable when verifying outcomes like
page titles or text content.

import org.testng.Assert;

public class AssertEqualsExample {
public static void main(String[] args) {
String expected = "Hello, World!";
String actual = "Hello, Selenium!";

// Assert that the expected and actual strings
are equal
Assert.assertEquals(expected, actual);

System.out.println("Test completed.");

}

The assertion will fail in this example because the
expected and actual strings do not match.

assertNotEqual: This method checks if two values
or expressions are not equal. If they are equal, it
throws an AssertionError.

import org.testng.Assert;

public class AssertNotEqualsExample {
public static void main(String[] args) {
int expected = 10;

187

CHAPTER 8 ASSERTIONS

188

int actual = 10;

// Assert that the expected and actual integers
are not equal
Assert.assertNotEquals(expected, actual);

System.out.println("Test completed.");

}

The assertion will fail in this example because the
expected and actual integers are equal.

assertTrue(condition): It is used to verify that a
given condition or expression evaluates to true.
Commonly used to verify elements displayed on
the page or if certain conditions are met in the
application state.

import org.testng.Assert;

public class AssertTrueExample {
public static void main(String[] args) {
boolean condition = false;

// Assert that the condition is true
Assert.assertTrue(condition);

System.out.println("Test completed.");

CHAPTER 8 ASSERTIONS

In this example, the assertion will fail because the
condition is false.

assertFalse(condition): This method is used to
verify that a given condition or expression evaluates
to false. It is instrumental in asserting boolean
conditions, such as the visibility of web elements.

import org.testng.Assert;

public class AssertFalseExample {
public static void main(String[] args) {
boolean condition = true;

// Assert that the condition is false
Assert.assertFalse(condition);

System.out.println("Test completed.");

}

In your example, the assertion will fail because the
condition is true.

assertNull(object): The value or object is used to
verify is null. If the value is not null then it throws

an error.

import org.testng.Assert;

public class AssertNotNullExample {
public static void main(String[] args) {
Object object = null;

189

CHAPTER 8 ASSERTIONS

// Assert that the object is not null
Assert.assertNotNull(object);

System.out.println("Test completed.");

}

The assertion will fail in this example because the
object is not null.

assertNotNull(object): This method is contrary
to the assertNull() function wherein, the value or
object is used to verify whether it is null. If it’s null,
then it throws an AssertionError.

import org.testng.Assert;

public class AssertNullExample {
public static void main(String[] args) {
Object object = new Object();

// Assert that the object is null
Assert.assertNull(object);

System.out.println("Test completed.");

In this example, the assertion will fail because the
object is null.

These assert methods are essential for verifying expected conditions
in your Selenium test scripts and help ensure the correctness of your web
application’s behavior.

190

CHAPTER 8 ASSERTIONS

Handling Assertion Failures

Handling assertion failures is an important aspect of Selenium test
automation. When an assertion fails, the expected condition or value

did not match the actual condition or value, and you need to handle

this gracefully. Properly handling assertion failures ensures that you can
capture information about the failure, log it, and report it effectively. Let’s
explore this.

What Happens When an Assertion Fails?

When an assertion fails in Selenium, an AssertionError exception is
thrown. This exception interrupts the normal flow of your test script, and
the test is marked as failed. If you don’t handle assertion failures, your test
execution may stop abruptly. The following describes what happens when
an assertion fails.

o The test execution is interrupted.

e An AssertionThe assertion library throws an error
exception (e.g., TestNG, JUnit).

o The testis marked as failed.

o Any subsequent test steps or code after the failed
assertion are not executed within the current test case.

Handling Assertion Failures Gracefully

Handling assertion failures gracefully is essential to ensure that your test
automation can continue running and provide valuable insights. The
following describe ways to handle assertion failures gracefully.

191

CHAPTER 8 ASSERTIONS

o Using try-catch: You can use try-catch blocks to
capture and handle assertion failures. Within the catch
block, you can define your custom error-handling
logic, such as logging the failure, taking screenshots, or
performing other recovery actions.

e Recovery actions: Depending on the nature of the
failure, you can take recovery actions. For example, you
might want to refresh the page, navigate to a different
URL, or close and reopen the browser.

Logging and Reporting Assertion Failures

You can integrate logging and reporting functionality to improve the
handling of assertion failures.

o Logging: You can log assertion failures using standard
libraries like Log4j or print error messages to the
console. The logs should include details about which
test case failed, what assertion failed, and why.

o Reporting: Reporting frameworks help organize and
present test results. They can capture assertion failures
and generate detailed reports with test case names,
failure descriptions, timestamps, and screenshots. This
makes it easier to analyze test results and track issues.

Custom Assertions

Creating custom assertionmethods in Selenium allows you to tailor
your assertions to specific application requirements and extend the
functionality of built-in assertion libraries. This can be valuable when
performing complex or domain-specific checks in your automated tests.
Let’s explore custom assertions.

192

CHAPTER 8 ASSERTIONS

Creating Custom Assertion Methods
for Specific Application Requirements

Custom assertion methods are user-defined assertion checks that go

beyond the standard assertion methods provided by testing frameworks

like TestNG or JUnit. The following explains how to create custom

assertions for specific application requirements.

1.

Identify a specific requirement. Begin by
identifying a unique or complex condition for which
your application demands validation. This could
involve the behavior of a custom UI component,
data verification, or specific business logic.

Write the custom assertion method. Create a new
method that encapsulates the logic for validating
the identified requirement. This method should
return a Boolean value to indicate whether the
condition is met.

Use the custom assertion in tests. Seamlessly
incorporate your custom assertion method into
your test scripts wherever necessary. It can be
utilized like any other assertion method your testing
framework provides.

Handle assertion failures. Take care of assertion
failures within your custom assertion method. This
can involve throwing a custom exception, logging
detailed information about the failure, or executing
recovery actions tailored to your application.

193

CHAPTER 8 ASSERTIONS

Example: Custom Assertion for Checking
Data Validity

Suppose you have a specific requirement to verify if a user’s age falls within
a predefined range. The following is a custom assertion method.

public class CustomAssertions {

public static boolean isAgeInRange(int age, int minAge,
int maxAge) {
return age >= minAge && age <= maxAge;

In your test script, you can utilize this custom assertion as follows.
import org.testng.Assert;

public class TestExample {
public static void main(String[] args) {
int userAge = 30;
int minValidAge

18;
60;

int maxValidAge

boolean isAgeValid = CustomAssertions.isAgeInRange
(userAge, minValidAge, maxValidAge);
Assert.assertTrue(isAgeValid, "User's age is not within
the valid range.");

194

CHAPTER 8 ASSERTIONS

Extending Assertion Functionality

Extending assertion functionality allows you to enhance the built-

in assertion methods provided by your testing framework to cater to

additional checks or customize reporting. The following explains how to

extend assertion functionality.

1.

Create custom assertion classes. You develop
custom assertion classes that extend the assertion
classes provided by your testing framework (e.g.,
extending org.testng.Assert in TestNG).

Add new assertion methods. You define new
assertion methods within your custom assertion
classes. These methods should offer additional
checks or reporting capabilities as needed.

Use the custom assertions. You incorporate your
custom assertion methods into your test scripts.
Now, you can utilize the built-in and custom
assertions within your tests.

Handle custom reporting. If your custom
assertions provide extra reporting or logging
features, you ensure that the reporting is
appropriately captured and documented in your test
reports.

Example: Extending Assertion Functionality
in TestNG

Suppose you want to expand TestNG’s assertion functionality to include

custom reporting with timestamps. The following creates a custom

assertion class.

195

CHAPTER 8 ASSERTIONS
import org.testng.Assert;

import java.text.SimpleDateFormat;
import java.util.Date;

public class CustomAssert extends Assert {

public static void assertTrueWithTimestamp(boolean
condition, String message) {
if (!condition) {
String timestamp = new SimpleDateFormat("yyyy-MM-dd
HH:mm:ss").format(new Date());
String errorMessage = "[" + timestamp + "] "

+ message;
fail(errorMessage);

Now, you can use this custom assertion in your TestNG tests.

public class TestExample {
public static void main(String[] args) {
boolean condition = true; // Replace with your
condition
CustomAssert.assertTrueWithTimestamp(condition, "Custom
assertion failed.");

In short, creating custom assertion methods and extending assertion
functionality in Selenium allows you to tailor your tests to meet specific
application requirements, enhance reporting, and perform complex
validations. This flexibility can be particularly valuable when dealing with
unique testing scenarios or domain-specific checks.

196

CHAPTER 8 ASSERTIONS

Common Pitfalls and Mistakes
in Selenium Assertions

Even experienced testers and developers can fall into common pitfalls
and make mistakes when working with assertions in Selenium. These
pitfalls can lead to unreliable test scripts, false positives or negatives, and
difficulty maintaining test suites. The discussion explores some of the most
prevalent pitfalls and mistakes associated with assertions in Selenium,
along with practical solutions to avoid or mitigate them.

By understanding these challenges and adopting best practices,
testers and developers can ensure the effectiveness and robustness of their
Selenium automation efforts.

Common Mistakes When Using Assertions

When writing assertions in Selenium testing, it’s essential to be aware

of common mistakes that can undermine the accuracy and reliability of
your tests. These mistakes range from inadequate waiting strategies to
insufficient error handling. The discussion briefly explores these common
pitfalls to help you avoid them and enhance the effectiveness of your
assertion-based testing in Selenium.

o Inadequate waiting: One common mistake is not
waiting for elements to load before performing
assertions. This can lead to assertions failing due to
elements not being present or ready.

Solution: Use explicit waits or WebDriverWait to
ensure that elements are available before asserting
their properties or content.

197

CHAPTER 8 ASSERTIONS

198

Inadequate logging: Failing to log sufficient
information about assertion failures can make
debugging and issue resolution challenging.

Solution: Include meaningful error messages and
context information in your assertions, logs, or reports
to aid in diagnosing failures.

Using Thread.sleep(): Relying on Thread.sleep() to
wait for elements to load is inefficient and can lead to
slow test execution and unreliable tests.

Solution: Prefer explicit waits or expected conditions
for element synchronization rather than hard-coded
sleep times.

Ignoring exception handling: Failing to handle
exceptions properly when assertions fail can cause test
scripts to terminate prematurely.

Solution: Use try-catch blocks to catch and handle
assertion exceptions gracefully, allowing the test to
continue or perform necessary cleanup.

Overusing assertions: Using too many assertions in
a single test can make the test script complex and less
maintainable.

Solution: Focus on critical assertions that validate the
core functionality of your test cases. Avoid excessive or
redundant assertions.

CHAPTER 8 ASSERTIONS

Avoiding False Positives and False Negatives

In the world of software testing, false positives and false negatives can
lead to confusion and inefficiency. False positives occur when tests report
issues that don’t exist, while false negatives miss real problems. This
overview addresses strategies to avoid false positives and negatives in your
testing efforts, ensuring more accurate and actionable results.

False Positives

False positives occur when assertions fail due to transient issues, such as
slow page loading or network delays, rather than actual defects.

To minimize false positives, use explicit waits with reasonable timeouts
to ensure that elements are fully loaded before performing assertions.
Implement retry mechanisms for flaky tests to reduce the impact of
transient failures.

False Negatives

False negatives happen when assertions pass even though defects exist
in the application or when assertions are not correctly written to validate
critical functionality.

To minimize false negatives, ensure that your assertions are written
accurately and comprehensively to cover all critical test scenarios.
Regularly review and update your assertions as the application evolves.

Baseline Data

Ensure that your test data is consistent and reliable. False positives or
negatives can occur if your test data is inconsistent or incomplete.

Maintain a stable and well-structured test data set. Validate and verify
the test data before executing tests to ensure its correctness.

199

CHAPTER 8 ASSERTIONS

Environment Stability

Ensure the stability of your test environment. Changes in the testing
environment can introduce false positives or negatives.

Monitor and control the test environment to minimize environmental
variations. Document and communicate any environmental changes that
might affect test results.

Effective Reporting

Implement a robust reporting mechanism that captures and distinguishes
between true failures, false positives, and false negatives.

Use reporting frameworks that allow you to classify and report different
types of test outcomes accurately. This helps in identifying and addressing
issues effectively.

Best Practices for Using Assertions
in Selenium

Let’s explore best practices for utilizing assertions in Selenium, including
when and how to use them, crafting meaningful error messages, and
organizing assertions within test cases. Following these practices ensures
that your assertions contribute to the robustness and clarity of your
automated tests.

When to Use Assertions

You should use assertions at critical points in your test cases to verify that
the application behaves as expected. This includes validating the presence
of elements, their attributes, text content, and other critical aspects of
functionality.

200

CHAPTER 8 ASSERTIONS

Best Practice: Use assertions after actions like
clicking buttons, filling out forms, or navigating to
pages. Verify that the expected outcomes match the
actual results.

Keeping Assertions Simple and Specific

Keeping your assertions straightforward and focused on a single validation
task is essential. Complex assertions can be hard to maintain and
troubleshoot.

Best Practice: Break down complex assertions into
multiple simple assertions, each validating a specific
aspect of the page’s state or behavior. This makes it
easier to pinpoint issues when tests fail.

Using Meaningful Error Messages

Meaningful error messages provide valuable insights when assertions fail.
Generic or vague messages make it challenging to diagnose issues.

Best Practice: Craft error messages that clearly
describe what went wrong. Include information
about the expected condition and the actual state of
the application to aid in debugging.

201

CHAPTER 8 ASSERTIONS

Organizing Assertions within Test Cases

Proper organization of assertions within test cases enhances readability
and maintainability. Chaotic or scattered assertions can lead to confusion.

Best Practice: Group related assertions together
within well-structured methods or sections of
your test cases. Use comments or clear naming
conventions to indicate the purpose of each group
of assertions.

Adhering to these best practices ensures that your assertions are
effective, clear, and easy to manage. This, in turn, helps you create reliable
and maintainable Selenium test scripts that accurately validate the
functionality of web applications.

Summary

This chapter took you further into the realm of Selenium assertions,
exploring their significance in web testing automation. You began by
understanding assertions and why they are indispensable tools within the
Selenium framework. It examined hard and soft assertions in validating
test outcomes.

Continuing your exploration, you delved into a comprehensive array
of assert methods provided by Selenium, including assertEqual and
assertTrue, equipping you with powerful tools for comparing and verifying
expected outcomes against actual results.

You also addressed handling assertion failures, gaining insights into
what transpires when assertions fail, and mastering techniques for graceful
error management. You emphasized the importance of comprehensive
logging and reporting for troubleshooting and analysis.

202

CHAPTER 8 ASSERTIONS

Custom assertions emerged as a focal point as you learned how to
create tailored assertion methods to meet the specific requirements of
your applications. You also explored extending assertion functionality to
accommodate unique testing needs effectively.

To ensure that your assertion-based tests are robust and sustainable,
you delved into common pitfalls, mistakes, and strategies to prevent false
positives and negatives. You also discussed best practices for employing
assertions, encompassing when and how to use them, crafting clear and
meaningful error messages, and organizing assertions within test cases.

Throughout this chapter, you have acquired the knowledge and
techniques to harness the full potential of assertions in your Selenium test
automation efforts, resulting in more accurate, efficient, and informative
testing processes.

203

CHAPTER 9

Exceptions

In the rapidly changing environment of web automation with Selenium
WebDriver, even the most experienced test professionals discover
themselves in unfamiliar situations. With ever-changing web elements
or their nature, intermittent network issues and browser-specific quirks
in websites and web applications lead you to many unpredictable test
scenarios. However, meticulous script writing and thorough perpetration
for most situations of the unpredictable nature of live environments
require a greater understanding of one fundamental concept of exception.
As a Selenium test expert, recognizing the distinctions of exceptions is
not only advantageous but also necessary. This chapter offers insights into
the labyrinth of exclusions pertaining to Selenium. Becoming proficient
in exceptions ensures that your automation scripts aren’t just functional
but adaptive, resilient, and robust, transforming potential roadblocks into
mere stepping stones on the path to comprehensive web testing.

What Is an Exception in Selenium?

In any programming language, an exception is an event that occurs

during the execution of a program, disrupting its default flow. Exceptions
primarily represent error conditions or unexpected behaviors that a
program encounters during execution. In relation to Selenium, exceptions
are majorly used to signify challenges faced while locating or interacting
with web elements, browser communication, or performing commands for
automation.

© The Editor(s) (if applicable) and The Author(s), 205
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_9

https://doi.org/10.1007/979-8-8688-0291-1_9

CHAPTER9 EXCEPTIONS

For example, when you want to locate a web element that is not
available on the web page, then the Selenium WebDriver raises the
NoSuchElementException error. This exception helps you understand,
troubleshoot, and potentially the error in your automation script because
it provides specific information regarding the nature of the problem
encountered.

Next, let’s discuss various exceptions in Selenium, each representing
a unique issue or challenge raised during test automation. To develop
robust and reliable Selenium test scripts, you learn about handling these

exceptions, ensuring smooth test execution with more accuracy.

Types of Exceptions

This section discusses various exceptions encountered during the
execution of automated tests. The exceptions are divided into different
categories to simplify the cause of their occurrence.

Common Exceptions in Selenium

Various exceptions occur during different test scenarios. It is difficult to
list them all, but let’s go over the most common cases that tend to occur.
The exceptions have been classified according to their occurrence in test

scenarios.

Connection Exception

When there is unexpected loss or obstruction in the communication
process with WebDriver or browser you get the following exception.

206

CHAPTER 9

ConnectionClosedException is raised when
attempting to interact with WebDriver, but it
is closed.

WebDriver driver = new ChromeDriver();
driver.close();

driver.getTitle(); // This will throw
ConnectionClosedException.

Element Interaction Exceptions

EXCEPTIONS

These exceptions occur when trying to access or interact with respective

web elements available on a web page.

ElementClickInterceptedException is raised when
the target element is hidden or not available at the
time of click action.

WebDriver driver = new ChromeDriver();
driver.get("http://example.com");
driver.findElement(By.id("overlayedButton")).click();
// This will throw ElementClickInterceptedException.

ElementNotInteractableException is thrown
when the web element is not interactable, but an

interaction attempt is made.

driver.findElement(By.id("nonInteractableElement")).
sendKeys("Test"); // This will throw
ElementNotInteractableException.

207

CHAPTER 9

EXCEPTIONS

ElementNotSelectableException occurs when a
web element is not selectable, and you attempt to
do so. Mostly occurs while interacting with buttons,
checkboxes, and so forth. This exception may also
occur when some actions must be carried out,
which results in selecting the button.

driver.findElement(By.xpath("//
unselectableOption™)).click(); // This will throw
ElementNotSelectableException.

State-based Exceptions

These exceptions correspond to the state of web elements or web pages

during the execution of tests.

208

ElementNotVisibleException occurs when an
element is present on a web page but not visible
to perform actions; this exception is raised in such
cases. It can be resolved using wait conditions or
necessary actions to make the element visible.

driver.findElement(By.id("hiddenElement")).click();
// This will throw ElementNotVisibleException.

InvalidElementStateException occurs when an
element is disabled or not in a state to perform
actions specified to it. In such scenarios, the
exception is raised. You can take the form
submission button or date selection in a calendar
as an example, wherein you need to provide the
required information before clicking it.

CHAPTER9 EXCEPTIONS

driver.findElement(By.id("disabledInput")).
sendKeys("Test"); // This will throw
InvalidElementStateException.

StaleElementReferenceException occurs when
aweb element is no longer available in the DOM
as it was deleted or in a stable state. It is one of the
common exceptions raised due to web elements’
dynamic nature. This exception can be handled by
locating web elements using XPaths.

WebElement oldElement = driver.findElement(By.
id("oldElement"));

//DOM changes

oldElement.click(); // This will throw
StaleElementReferenceException.

Timeout and Delay Exceptions

These exceptions are encountered when you use wait functions to locate
or perform actions on web elements.

TimeoutException occurs when an action is not
performed within the specified time frame. The time
value should be set to standard so there is no further
delay in executing the test script.

WebDriverWait wait = new WebDriverWait(driver, 5);
wait.until(ExpectedConditions.
visibilityOfElementLocated(By.id("delayedElement™")));
// This might throw TimeoutException.

209

CHAPTER9 EXCEPTIONS

Navigation Issues

These exceptions are raised during navigation between pages or while

context switching.

NoSuchWindowException occurs when you are
performing actions like switching to a different
window or moving the window’s position, and the
browser position is not correct, or the window is
not available. Selenium WebDriver throws this

exception.

driver.switchTo().window("nonExistentWindowHandle");
// This will throw NoSuchWindowException.

NoAlertPresentException occurs when alert pop-
ups like alert-box, prompt box, and confirmation
box are unavailable and you are trying to access

it. These alert pop-ups are JavaScript-enabled.
Sometimes, alerts require more time to load,
JavaScript is blocked at the browser end, or the pop-
up is unavailable or closed already.

driver.switchTo().alert(); // This will throw
NoAlertPresentException if no alert is present.

Selector and Search Issues

When specified web elements on a web page are not located, you may see
any of the following exceptions.

NoSuchElementException is one of the most
common exceptions when locating a web element

from the web page. It occurs when a specified web

210

CHAPTER9 EXCEPTIONS

element is not on the web page. This exception may
occur for the following reasons: The specified web
element is incorrect or does not match the available
element from the page.

The web locator takes more time to load, hence it is
unavailable at the time of locating it.

As mentioned in Chapter 4, you can locate the web
element using different locator methods and specify
waits, covered in Chapter 10.

driver.findElement(By.id("nonExistentElement"));
// This will throw NoSuchElementException.

InvalidSelectorException is similar to
NoSuchElementException. Here the specified
selector is not valid or changed dynamically.

driver.findElement(By.xpath("///invalidXPath"));
// This will throw InvalidSelectorException.

NoSuchFrameException is because the defined
frame is not found on the web page.

driver.switchTo().frame("nonExistentFrame");
// This will throw NoSuchFrameException.

JavaScript Execution Exceptions

This exception occurs when executing JavaScript code associated with the

((JavascriptExecutor) driver).executeScript("invalidJavaScript(
)"); // This will throw JavascriptException.

211

CHAPTER9 EXCEPTIONS

Session Exceptions

When a session expires or is invalid, Selenium WebDriver gives you
InvalidSessionIdException.

driver.get("http://example.com");

// Suppose session terminates here for some reason
driver.getTitle(); // This will throw
InvalidSessionIdException.

Driver Configuration and Capability Exceptions

This exception is raised when there is misconfiguration or unsupported
features between WebDriver and the target web browser. It is a base class
Selenium WebDriver exception and all other exceptions are included
under this class.

driver.get("httt://invalidUrl"); // This might throw
WebDriverException due to invalid URL format.

Input and Argument Exceptions

These exceptions are related to the input data or arguments you specify to
the WebDriver, including the following.

InvalidArgumentException occurs when you pass

an incorrect argument then this exception is raised.

driver.manage().timeouts().implicitlyWait(-5, TimeUnit.
SECONDS); // This will throw InvalidArgumentException
due to negative time.

212

CHAPTER9 EXCEPTIONS

Alert and Pop-up Exceptions

This exception is related to pop-ups or alerts. During a test execution, an
unexpected pop-up appears, and then UnexpectedAlertPresentException
is thrown.

driver.get("http://example.com");

// Suppose an unexpected alert pops up here
driver.findElement(By.id("someElement")).click(); // This will
throw UnexpectedAlertPresentException if not handled.

Screenshot Exception

This exception occurs when you provide instructions to Selenium
WebDriver to take a screenshot, but it cannot get it.

((TakesScreenshot)driver).getScreenshotAs(OutputType.FILE);
// This might throw ScreenshotException if the screenshot
capture fails.

Movement and Action Exception

This exception is related to mouse movement actions. When the
mouse tries to move away from the boundary, it encounters a
MoveTargetOutOfBoundsException.

Actions actions = new Actions(driver);
actions.moveToElement(someElement, -1, -1).perform(); // This
will throw MoveTargetOutOfBoundsException.

213

CHAPTER9 EXCEPTIONS

Browser Capability and Support Exception

The following are exceptions related to unsupported functionalities or
browser capabilities.

InsecureCertificateException occurs when the site
you are navigating has an insecure certificate, then
this exception is encountered. The certificate that
belongs to TLS (Transport Layer Securtiy) may be
invalid or expired.

driver.get("https://insecure-certificate-website.com");
// This might throw InsecureCertificateException.

ImeNotAvailableException occurs when IME is not
supported, usually due to the absence of OS-level
libraries or components.

driver.manage().ime().activateEngine("IME_ENGINE"); //
This will throw ImeNotAvailableException if IME support
is not available.

ImeActivationFailedException occurs when the
input method engine (IME) fails to activate. It is
generally associated with Japanese, Chinese, or
multibyte characters that serve as input by Selenium
WebDriver. An example of such an input framework
is IBus, which supports Japanese engines like Anthy.

driver.manage().ime().activateEngine("Invalid
IME_ENGINE"); // This will throw
ImeActivationFailedException.

214

CHAPTER9 EXCEPTIONS

Attribute and Property Exception

When you are trying to retrieve attributes or properties of an element
and these attributes are not available, you are shown this exception. The
exception can be avoided by knowing whether an element contains the
attribute you are testing. You can also handle this exception by updating
the changed value from the DOM.

String attributeVal = driver.findElement(By.
id("elementWithoutAttribute")).getAttribute("nonExistentAttribu
te"); // This might throw NoSuchAttributeException.

Cookie Handling Exception

You have listed some exceptions raised while initiating or handling cookies
in a test case.

InvalidCookieDomainException is invoked when
you try to add a cookie for another domain rather
than for the present or current URL.

Cookie cookie = new Cookie("test", "test123", "wrong-
domain.com");

driver.manage().addCookie(cookie); // This will throw
InvalidCookieDomainException.

UnableToSetCookieException occurs when
Selenium WebDriver is unable to set a new cookie.
You get this exception during a test.

Cookie invalidCookie = new Cookie("name", "value",
"invalid-path");
driver.manage().addCookie(invalidCookie); // This will
throw UnableToSetCookieException.

215

CHAPTER9 EXCEPTIONS

Window Handling Exceptions

These exceptions are fetched while switching or operating on a web
browser or tabs.

NoSuchWindowException occurs when you try
browser window movements like switching to a
specified window or moving the window’s position,
and the window is not currently available, then this
exception is invoked by Selenium. It might also
encountered when a window is at the loading state,
and you attempt to perform certain actions.

driver.switchTo().window("nonExistentWindowHandle");
// This will throw NoSuchWindowException.

NoSuchContextException occurs while testing
mobile applications where context switching does
not happen.

driver.context("NonExistentContext"); // This can throw
NoSuchContextException in mobile automation.

Element State Exceptions

Let’s discuss exceptions based on the state of the web element, such as if
they are selectable, visible, or interactable for the actions specified.

ElementNotInteractableException occurs when
you attempt to click or type. But the web element is
not in the interactable state, or it directs to another
element, even if it is available on the DOM.

driver.findElement(By.id("hiddenElement")).click();
// This will throw ElementNotInteractableException.

216

CHAPTER9 EXCEPTIONS

ElementNotSelectableException occurs when

you are dealing with buttons like radio buttons and
checkboxes where the button element is unelectable
or trying to select an unselectable element like div
or span.

driver.findElement(By.id("divElement")).setSelected();
// This can throw ElementNotSelectableException.

ElementNotVisibleException occurs when you try
to perform a certain action on a web element that is
present on the web page but not visible or hidden.
It can also be due to some prerequisite actions

that need to be performed to make the element
visible. You can use wait functions to handle these

exceptions.

driver.findElement(By.id("invisibleElement")).click();
// This will throw ElementNotVisibleException.

InvalidElementStateException occurs when
an element is disabled; for example, a textbox is
disabled, and you try to write in it. In such cases,
the InvalidElementStateException is raised. The
issue relates to the state of the element you are

interacting with.

driver.findElement(By.id("disabledTextBox")).
sendKeys("text"); // This will throw
InvalidElementStateException.

217

CHAPTER9 EXCEPTIONS

Server and Response Exceptions

Let’s discuss a few extensions the server raised in response to the Selenium
WebDriver.

ErrorInResponseException is raised when you

get an error message from the server side. It is

one of the common exceptions observed during
communication with a remote server. The following
are some of the error responses.

e 400 - BadRequest

e 401 - Unauthorized

e 403 - Forbidden

e 405 - MethodNotAllowed

e 409 - Conflict

e 500 - InternalServerError

These errors were discussed in Chapter 5.

ErrorHandler.UnknownServerException occurs
when you don’t have the trace of the error given
by the server, then this exception is raised. It is a
response to all unrecognized server errors.

Other Exceptions

Some other exceptions are not commonly observed during the execution
of the test.

UnexpectedTagNameException occurs when the
specified tag does not belong to a certain tag type associated
with the element then this exception is raised.

218

CHAPTER9 EXCEPTIONS

WebElement checkBox = driver.findElement(By.
id("aDivOrSpanID"));

Select dropdown = new Select(checkBox); // This will
throw UnexpectedTagNameException as Select expects a
select tag.

UnknownMethodException is raised when the
Selenium WebDriver does not recognize the
commands defined in the test script.

Handling Exceptions in Selenium

As discussed, all the exceptions and the reason behind their occurrence,
now let’s dive into ways to handle them. The procedure or process to
continue a test script execution even after an exception is encountered due

to unexpected events or conditions is known as exception handling.

Why Exception Handling Is Essential
in Selenium WebDriver

There are three primary reasons why exception handling is essential in
Selenium WebDriver.

Resilient scripts: Web applications are dynamic. The
web elements in it may take time to load or not load
promptly, services could fail and something worked
yesterday may not work well today. With no proper
handling of exceptions, the smallest glitch can make
a test fail. However, you can avoid test failure by
exception handling that withstands unexpected
scenarios, making test scripts more resilient.

219

CHAPTER9 EXCEPTIONS

Informative feedback: When a script fails
inexplicably, you need detailed log information to
know where and what went wrong in a test script.
Exception handling provides this information that
guides you to directly visit the problem source to
save debugging time.

Conditional execution: You can make decisions

by catching exceptions in a test script. For example,
when a web link is not located, you can switch to
skip it and look for another because the link might
require some prior actions to be executed or the link
has been removed.

Handling Exceptions

When an exception occurs in an automated test script, the default flow of
execution is stopped, resulting in an error. This error may be a runtime or
WebDriver exception. Selenium supports try-catch methods that are used
in Java to handle exceptions.

Element Not Found Using try-catch

In Java, you use try-catch keywords to catch any exceptions that might
occur. This method combines these two keywords, each having its own
block of code. The try block is the starting block containing the code you
expect to raise an exception, whereas the catch block contains the code
executed when an exception occurs.

The following try-catch example expects an exception raised when an
element is not found on a web page.

220

CHAPTER9 EXCEPTIONS

try {
WebElement element = driver.findElement(By.
id("optionalElement"));
element.click();

} catch (NoSuchElementException e) {
System.out.println("Element not found:

+ e.getMessage());

findElement() function throws NoSuchElementException when an
element Is unavailable on a web page. In a try block, you define the code
to locate the element; in a catch block, you define a print statement to
execute when this exception occurs. This method allows the script to run
irrespective of the exception that may be encountered.

Note The code you have written in the try-catch block is also called
protected code.

Itis ideal for optional web elements on a page when their
unavailability does not result in a test failure.

Timeout Exception Using try-catch-finally

It is similar to the try-catch method; the only difference is that there is
one more block of code for the finally keyword. This block is executed
irrespective of the exception occurrence. Let’s look at how a timeout
exception can be defined in the following try-catch-finally block.

try {
WebDriverWait wait = new WebDriverWait(driver, Duration.

ofSeconds(10));

221

CHAPTER9 EXCEPTIONS

wait.until(ExpectedConditions.visibilityOfElementLocated
(By.id("elementId")));

} catch (TimeoutException e) {
System.out.println("Element did not appear within 10

seconds: " + e.getMessage());
} finally {
driver.quit();

The timeout exception is used to wait for an element to become
visible on a web page. When the specified wait time expires, the timeout
exception occurs, which is mentioned in the try block along with the
message in the catch block. The finally block contains the code to close the
WebDriver regardless of whether an exception is raised. This way, you can
handle any exceptions encountered on a web page using try-catch-finally.

Stale Element Exception Using
try-catch-finally with throw

Let’s use try-catch-finally with throw from the Java language to handle a
stale element exception. The exception might occur when a web element
becomes stale due to page reload or dynamic content updates. You can
throw a custom exception using the throw keyword.

try {

WebElement element = driver.findElement(By.
id("dynamicElement"));
element.click();

} catch (StaleElementReferenceException e) {

System.out.println("Stale Element Reference:
+ e.getMessage());

222

CHAPTER9 EXCEPTIONS

throw new RuntimeException("Failed due to stale element
reference.");

} finally {
System.out.println("Cleanup actions if any.");

The structure of try-catch-finally remains the same. The throw
keyword was added to raise a custom exception. It is crucial for testing
in dynamic scenarios wherein web elements in the DOM might change
too often.

Handling Various Exceptions Using Multiple
catch Blocks

When you have various exceptions that might occur while interacting with
aweb page, you need a method to handle such a mechanism. This can

be done by using multiple catch blocks. Each block represents different
exceptions, allowing you to handle them separately. The following code
snippet handles different exceptions.

try {
WebElement element = driver.findElement

(By.id("someElement"));
element.click();

} catch (NoSuchElementException e) {
System.out.println("Element not found:

} catch (StaleElementReferenceException e) {
System.out.println("Stale Element Reference:
+ e.getMessage());

} catch (TimeoutException e) {
System.out.println("Operation timed out:
+ e.getMessage());

+ e.getMessage());

223

CHAPTER9 EXCEPTIONS

} finally {
driver.quit();

This example used multiple exceptions like element not found, stale
element, and a timeout exception written in each catch block separately.
You have also used the finally block when WebDriver is closed, retaining a
clean test environment. This can be used in cases where multiple failures

may occur during testing.

Handling Custom Exceptions

You can customize your exception handling technique according to the
test requirements. The following defines customized exception handling.

try {
// Selenium interactions

} catch (Exception e) {

throw new CustomSeleniumException("Custom message”, e);
} finally {

// Cleanup actions

}

public class CustomSeleniumException extends Exception {
public CustomSeleniumException(String message, Throwable
cause) {
super (message, cause);

This custom exception handling helps encapsulate more information
regarding the error or creating a more standardized way to handle
exceptions for test suites. It can be specifically relevant in large-scale

224

CHAPTER9 EXCEPTIONS

projects or frameworks where you must handle various types of exceptions

consistently. Defining custom exceptions provides more detailed

information about the error, making it simpler to understand and debug.

These examples help you handle different Selenium exceptions in Java

that arise during automated web tests related to various scenarios. Next,

let’s discuss the general best practices to handle exceptions.

Best Practices to Handle Exceptions

The following are some best practices for writing Selenium exceptions.

Display exception information. There are three

methods from which you can get information for the

raised exception.

printStackTrace() prints information like stack
trace, name of exception and its description.

It is primarily used for debugging as it displays
the sequence of call methods that enabled the
exception.

toString() displays the exception name and a brief
description message. Generally used in creating
log information or displaying concise information
about the error.

getMessage() is the detailed information in the
form of a message retrieved about a specific error
encountered.

You can log information by using any of the

methods.

225

CHAPTER 9

226

EXCEPTIONS

Catch the most specific exception possible.
You need to aim to catch specific exceptions to
acknowledge the cause and handle it accordingly.

Include a finally block for resource cleanup. You
can use the finally block code to release resources
like WebDriver, irrespective of the occurrence of any

exception.

Implement custom exceptions for clarity and
consistency. Custom exceptions come in handy
to add context and standardize error handling in
complex test projects.

Handle exceptions gracefully. When a test script
fails, you must ensure that information about the
error is clear and concise =, so that troubleshooting
becomes easy.

Consider the retry mechanism for

transient errors. For elements on a web

page that change frequently, resulting in
StaleElementReferenceException, the retry
mechanism makes test scenarios more resilient in
the new dynamic era.

Avoid exceptions with findElements and waits.
Utilize driver.findElements instead of driver.
findElement to prevent exceptions when elements
are not found, as findElements returns a list.
Combine with explicit waits to ensure elements have
loaded. This approach checks for element presence

CHAPTER9 EXCEPTIONS

by examining if the returned list’s size is at least one,
allowing safe and exception-free interaction:

WebDriverWait wait = new WebDriverWait(driver,
Duration.ofSeconds(10));
boolean isElementPresent = wait.until((WebDriver d) -»
d.findElements(locator).size() »>= 1);
if (isElementPresent) {
// Element is present; actions can be safely
performed.

This technique offers a robust way to verify element
presence without facing NoSuchElementException,
improving script stability.

Summary

In this chapter, there are two important sections: one is exceptions and
their types, second is handling them. The first section discussed what
exceptions are and the causes of their occurrence. It also classified and
listed all the exceptions that may be encountered during the execution of
automated testing.

The second section focused on handling exceptions. It explored
various try-catch blocks using Java to handle single to multiple Selenium
exceptions. By applying these techniques, you ensure that your tests won'’t
fail abruptly upon encountering an error, greatly enhancing the stability
and reliability of your tests. It also discussed best practices for handling
various exceptions.

227

CHAPTER 10

Wait Strategies
in Selenium Test
Automation

In Selenium test automation, managing the timing for web elements to
load and become interactable is a key challenge. Waits are essential for
handling the asynchronous behavior of web applications, ensuring that
elements are ready for interaction before a test proceeds. This chapter
focuses on the different types of waits in Selenium—implicit, explicit, and
fluent—and provides an overview of their applications and best practices.

Waits are crucial in avoiding flaky tests, which result from attempting
to interact with elements that are not yet available. Let’s explore how to
effectively use these waits to ensure robust and reliable automated tests.
The chapter covers the distinct features of each wait type, guiding you
through their appropriate use cases and helping you understand which
wait to choose for specific testing scenarios.

This concise overview is designed to enhance your understanding
of waits in Selenium, ensuring the tools and knowledge to efficiently
handle element synchronization challenges in test automation projects.
Let’s delve into these vital components of Selenium to optimize the
performance and reliability of your automated tests.

© The Editor(s) (if applicable) and The Author(s), 229
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_10

https://doi.org/10.1007/979-8-8688-0291-1_10

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Need for Waits

You need to test the web application and yield accurate results; hence, you
use waits in automation testing. There are significant reasons to have waits
in test scripts.

Dynamic Content Loading

You know that modern web pages often take time to load all the dynamic
elements using JavaScript or Ajax. During this time, a test script tries to
interact with elements that are not yet available, making an exception occur.
To avoid such instances, you use waits to ensure the page is completely loaded
and the corresponding element is available to interact with the test script.

Network Latency and Performance Variations

Network latency and server response time can cause variations in the

time it takes to load a web page. Wait facilitates handling these variation
times by enabling the test script to pause while waiting for web elements to
become available or actions to be performed.

Synchronization

The state of the test script and the web application are synchronized with
the help of waits. This synchronization is crucial for the robustness and
reliability of a test script.

Reducing Flakiness

Test scripts without having proper waits can be flaky as they might pass
sometimes and fail at other times. The use of waits makes a test script
more consistent.

230

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Uncertain User Input

Sometimes, when a user provides an unexpected input, there are instances
where the script cannot interact with the web element until a specific
condition mentioned is met. Using waits ensures the condition specified is
successfully met before interacting with the web element.

Wait Types

In Selenium, waits are an essential feature for handling the asynchronous
behavior of web applications. There are mainly three types of waits:
implicit, explicit, and fluent. Let’s delve into each type in more depth.

Implicit Waits

When using implicit waits, you specify a time frame that makes the
WebDriver wait for an element to be available in the DOM (Document
Object Model) to avoid throwing of NoSuchElementException. This wait is
set to last the entire WebDriver object’s life. The default time for the wait is

zero seconds.

Note DOM is an interface for HTML and XML.

You set a wait time period in the test script so that the defined web
element will be available on the given page. During this time period, the
WebDriver will not proceed to execute further commands and will avoid
throwing an exception. The WebDriver is made to wait for the specified wait
time. If the web element is not available or visible within this time frame, it
raises a NoSuchElementException. When the web element is loaded and
found after the wait time is set, the WebDriver executes future test commands
in the script. The concept of implicit waits is inspired by the Watir tool.

231

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION
The following is an example of implicit wait:

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqga.selenium.WebElement;

import org.openqa.selenium.firefox.FirefoxDriver;
import java.util.concurrent.TimeUnit;

public class SeleniumFirefoxExample {

public static void main(String[] args) {
// Set the property for the Firefox driver
System.setProperty("webdriver.gecko.driver", "path/to/
geckodriver");

// Initialize WebDriver
WebDriver driver = new FirefoxDriver();

// Set implicit wait time
driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS);

// Navigate to a URL

driver.get("http://example.com"); // Replace with
target URL

// Find the element using its ID

WebElement elementToTypeIn = driver.findElement(By.
id("elementId")); // Replace with appropriate locator

// Type something into the input field
elementToTypeIn.sendKeys("Hello, World!");

// Close the browser
driver.quit();

232

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

In this example of implicit wait, you use a 10 seconds time frame to
find/locate the web element by ID. The time frame is determined by the
tester depending on the scenario and the test case needs to be conducted.
You can use a try-catch block to handle exceptions as discussed in the
exception Chapter 9. Within the defined time frame, the WebDriver waits
until the element is located. When the element is located, the provided
text is submitted, and later the browser is closed. If the web element is not
found within the time frame, a NoSuchElementException is raised.

Note An implicit wait is used for web elements that are not
instantly available.

Explicit Waits

As you have seen, implicit waits make the WebDriver wait for a specific
time. The web element is made available on the web page after the
specified time has elapsed. However, implicit waits cannot be used for all
web elements because the time taken to execute the test case is longer.
This leads to the use of explicit wait, which is an improved version of
implicit wait.

The explicit wait defines the ExpectedConditions along with the
WebDriverWait. The WebDriver is made to wait for a specified condition
that must be satisfied within the time frame set. When the condition is met
or the time has elapsed, the test script begins to proceed with subsequent
actions defined in the script.

Note The default poll frequency of explicit wait is 0.5 seconds,
which cannot be altered.

233

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

The major difference between implicit and explicit waits is that the

explicit wait proceeds with code execution when the defined condition is

met and does not wait for the time to complete. The explicit wait provides

more precise control and prevents indefinite waiting time, ensuring

smooth continuation of the test script.

Example code for using explicit wait:

import
import
import
import
import
import

public

org.openqa.selenium.By;
org.openqa.selenium.WebDriver;
org.openqa.selenium.WebElement;
org.openqga.selenium.firefox.FirefoxDriver;
org.openga.selenium.support.ui.ExpectedConditions;
org.openqa.selenium.support.ui.WebDriverhait;

class SeleniumTest {

public static void main(String[] args) {

234

System.setProperty("webdriver.gecko.driver”, "path/to/
geckodriver");

WebDriver driver = new FirefoxDriver();
driver.get("http://example.com”); // Replace with
target URL

WebDriverWait wait = new WebDriverWait(driver, 10);
// 10 seconds wait

WebElement dynamicElement =
wait.until(ExpectedConditions.visibility
OfElementLocated(By.id("dynamicElementId"))); //
Replace with appropriatelocator

dynamicElement.sendKeys("Text to type");

driver.quit();

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

The preceding code defines a condition that waits until the specified
web element is visible on the page. The time to wait is set to 10 seconds.

When you cannot predict the wait times of a web element, you use
explicit wait, hence providing a better way to handle the asynchronous
nature of modern-day web applications. Expected conditions are
important in defining the explicit waits. These are known conditions that
are discussed in the next topic.

Commonly Used ExpectedConditions
in the Java Class

For more effective web element interaction, you can use the
ExpectedConditions class available in Selenium WebDriver for Java,
wherein you have a collection of predefined conditions. The following are
some of the commonly used ExpectedConditions with their description,
cause of failure, and the exception raised.

e elementToBeClickable(By locator) waits for a web
element to be visible and enabled on a page so that you
can perform a click action on it.

Failure: If the web element is not clickable
(interactable).

Exception Raised: ElementNotInteractableException

WebDriverWait wait = new WebDriverWait(driver, 10);
WebElement element = wait.until(ExpectedConditions.
elementToBeClickable(By.id("someId")));
element.click();

¢ elementToBeClickable(WebElement element) waits
for a specific WebElement to be clickable, meaning
both visible and enabled.

235

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

236

Failure: If the WebElement is not clickable within the
time frame.

Exception Raised: ElementNotInteractableException if
the element is not interactable when an attempt to click
is made.

WebElement myElement = driver.findElement
(By.id("clickableElement"));

WebDriverWait wait = new WebDriverWait(driver, 10);
WebElement clickableElement = wait.
until(ExpectedConditions.elementToBeClickable
(myElement));

clickableElement.click();

elementToBeSelected(By locator) waits for an
element to be selected. This is typically used for
buttons such as checkboxes or radio buttons.

Failure: If the button element is not selected or
doesn’t exist.

Exception Raised: Usually results in a
TimeoutException if the elementisn’t selected within
the specified time. There’s no specific exception for the
element not being selected other than timeout.

WebDriverWait wait

new WebDriverWait(driver, 10);
Boolean isSelected = wait.until(ExpectedConditions.
elementToBeSelected(By.id("checkboxId")));

elementToBeSelected(WebElement element) waits
for a specific WebElement to be selected.

Failure: If the web element is not selected.

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Exception Raised: If the WebElement isn’t
valid or not selectable, you might get a
StaleElementReferenceException or TimeoutException.

WebElement checkbox = driver.findElement(By.
id("checkboxId"));

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isSelected = wait.until(ExpectedConditions.
elementToBeSelected(checkbox));

presenceOfElementLocated(By locator) waits for
aweb element to be present in the DOM that is not
necessarily visible. Once the web element is present,
then you can perform future actions associated with it

Failure: When the web element is not present in the
DOM, then an exception is raised.

Exception Raised: NoSuchElementException

WebDriverWait wait

new WebDriverWait(driver, 10);
WebElement element = wait.until(ExpectedConditions.
presenceOfElementLocated(By.id("someId")));

presenceOfAllElementsLocatedBy(By locator) waits
for all available matching web specified by the locator
to be present in the DOM.

Failure: If all the matching web elements are not
present.

Exception Raised: Typically resultsin a
TimeoutException if not all elements are present
within the wait period. There’s no specific exception for
partial presence other than timeout.

237

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

WebDriverWait wait = new WebDriverWait(driver, 10);
List<WebElement> elements = wait.
until(ExpectedConditions.presenceOfAllElementsLocatedBy
(By.className("someClass")));

« visibilityOfElementLocated(By locator) waits for a
web element to be present in the DOM and visible.
Visibility means that the element is not only displayed
but also has a height and width greater than 0.

Failure: If the web element is present but not visible
within the specified time.

Exception: ElementNotVisibleException

WebDriverWait wait

new WebDriverWait(driver, 10);
WebElement element = wait.until(ExpectedConditions.
visibilityOfElementLocated(By.id("someId")));

« visibilityOf(WebElement element) waits for a specific
WebElement to be visible. Visibility means that the
element is not only displayed but also has a height and
width greater than 0.

Failure: If the WebElement is not visible within the
time frame.

Exception Raised: ElementNotVisibleException if an
attempt to interact with the element is made while it is
not visible.

WebElement myElement = driver.findElement(By.
id("visibleElement"));

WebDriverWait wait = new WebDriverWait(driver, 10);
WebElement visibleElement = wait.
until(ExpectedConditions.visibilityOf(myElement));

238

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

visibilityOfAllElementsLocatedBy(By locator) waits
for all web elements specified by the locator to be
visible on the web page.

Failure: If any of the elements are not visible.

Exception Raised: It usually results in a
TimeoutException if not all elements are visible within
the specified time. There’s no specific exception for
partial visibility other than timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
List<WebElement> elements = wait.
until(ExpectedConditions.visibilityOfAllElementsLocated
By (By.className("someClass")));

visibilityOfAllElements(List<WebElement>
elements) waits for all elements in the provided list to
be visible. This is useful when you have already located
the elements and need to ensure they are all visible
before proceeding.

Failure: If not all elements in the list are visible within
the time frame.

Exception Raised: Typically results in a
TimeoutException if not all elements are visible within
the specified time. There’s no specific exception for
partial visibility other than timeout.

List<WebElement> elements = driver.findElements
(By.className("someClass"));

WebDriverWait wait = new WebDriverWait(driver, 10);
List<WebElement> visibleElements = wait.
until(ExpectedConditions.visibilityOfAllElements
(elements));

239

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

240

textToBePresentInElementLocated(By locator,
String text) waits for a specific text to be present in a
particular element.

Failure: If the text is not present in the specified
element.

Exception Raised: This usually results in a
TimeoutException if the text isn't found within the
wait time. There’s no specific exception for the text not
being present other than timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isTextPresent = wait.until(ExpectedConditions.
textToBePresentInElementLocated(By.id("someId"),
"Expected Text"));

textToBePresentInElement(WebElement element,
String text) waits for a specific text to be present in the
provided WebElement.

Failure: If the specified text is not present in the

element within the time frame.

Exception Raised: TimeoutException if the text is not
found within the specified time.

WebElement myElement = driver.findElement(By.
id("textElement"));

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isTextPresent = wait.until(ExpectedConditions.
textToBePresentInElement(myElement, "Expected Text"));

textToBePresentInElementValue(By locator, String
text) waits for a specific text to be present in the value
attribute of an element located by the locator.

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Failure: If the text is not present in the element’s value.

Exception Raised: Typically results in a
TimeoutException if the text isn’t found within the
element’s value in the specified time. There’s no
specific exception for the text not being present other
than timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isTextPresent = wait.until(ExpectedConditions.
textToBePresentInElementValue(By.id("inputId"),
"Expected Value"));

titleIs(String title) waits for the page title to match
exactly with the provided string.

Failure: If the title is different.

Exception Raised: Typically, this results in a
TimeoutException if the title does not match within
the wait period. There’s no specific exception for title
mismatch other than timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isTitle = wait.until(ExpectedConditions.
titleIs("Expected Title"));

titleContains(String title) waits for the page title to
contain a certain text.

Failure: If the title does not contain the specified text.

Exception Raised: Typically resultsin a
TimeoutException if the title does not contain the text
within the specified time. There’s no specific exception
for the title not containing the text other than timeout.

241

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

242

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean doesTitleContain = wait.
until(ExpectedConditions.titleContains("Partial
Title"));

alertIsPresent() checks for an alert box to be present
within a specified time frame set. If it is present, then it

returns an alert element.

Failure: If there’s an attempt to switch to or interact
with an alert that’s not present.

Exception Raised: NoAlertPresentException

WebDriverWait wait = new WebDriverWait(driver, 10);
Alert alert = wait.until(ExpectedConditions.
alertIsPresent());

alert.accept();

frameToBeAvailableAndSwitchToIt(String
frameLocator) waits for the frame to be available and
then switches to it.

Failure: If the frame is not found.

Exception Raised: NoSuchFrameException

WebDriverWait wait = new WebDriverWait(driver, 10);
driver = wait.until(ExpectedConditions.frameToBeAvailab
leAndSwitchToIt("frameName"));

frameToBeAvailableAndSwitchToIt(By locator)
waits for a frame to be available and switches to it. This
variation uses a locator to identify the frame.

Failure: If the frame is not available or not found.

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION
Exception Raised: NoSuchFrameException

WebDriverWait wait = new WebDriverWait(driver, 10);
driver = wait.until(ExpectedConditions.frameToBeAvailab
leAndSwitchToIt(By.id("frameId")));

Continuing with the detailed descriptions of additional
ExpectedConditions in Selenium WebDriver for Java:

frameToBeAvailableAndSwitchTolt(int
frameLocator) waits for a frame at the given index to
be available and switches to it.

Failure: If the frame at the specified index is not
available.

Exception Raised: NoSuchFrameException if the frame
does not exist or is not available.

WebDriverWait wait = new WebDriverWait(driver, 10);
driver = wait.until(ExpectedConditions.
frameToBeAvailableAndSwitchToIt(0)); // index 0 for the
first frame

invisibilityOfElementLocated(By locator) waits for
an element to either be invisible or not present on
the DOM.

Failure: If the element is visible.

Exception Raised: This generally results in a
TimeoutException if the element remains visible.
There’s no specific exception for the element being
visible other than timeout.

243

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isInvisible = wait.until(ExpectedConditions.
invisibilityOfElementLocated(By.id("someId")));

o invisibilityOfElementWithText(By locator, String
text) waits for an element with specific text to be either
invisible or not present in the DOM.

Failure: If the element with the specified text remains
visible within the time frame.

Exception Raised: TimeoutException if the element

remains visible within the specified time.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isInvisible = wait.until(ExpectedConditions.
invisibilityOfElementWithText(By.id("elementWithText"),
"Text To Be Invisible"));

o numberOfElementsToBe(By locator, int number) 16
waits for a certain number of elements to be present in
the DOM.

Failure: If the number of elements does not match the
expected count.

Exception Raised: Usually results in a
TimeoutException if the number of elements doesn’t
match the expected count within the specified time.
There’s no specific exception for a mismatch in count
other than timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean correctNumber = wait.until(ExpectedConditions.
numberOfElementsToBe(By.className("someClass"), 5));

244

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

numberOfElementsToBeMoreThan(By locator, int
number) waits for the number of elements present in
the DOM to be more than a specified number.

Failure: If the number of elements is not more than the
specified count.

Exception Raised: Typically results in a
TimeoutException if the number of elements is not
more than the specified count within the time. There’s
no specific exception for the count not being more than
the specified number other than a timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean moreThanNumber = wait.until(ExpectedConditions.
numberOfElementsToBeMoreThan(By.
className("someClass"), 3));

numberOfElementsToBeLessThan(By locator, int
number) waits for the number of elements present in
the DOM to be less than a specified number.

Failure: If the number of elements is not less than the
specified count.

Exception Raised: Usually results in a
TimeoutException if the number of elements is not less
than the specified count within the time. There’s no
specific exception for the count not being less than the
specified number other than a timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean lessThanNumber = wait.until(ExpectedConditions.
numberOfElementsToBeLessThan(By.
className("someClass"), 10));

245

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

246

attributeToBe(By locator, String attribute, String
value) waits for a specific attribute of an element to
have a specific value.

Failure: If the attribute value does not match the
expected value.

Exception Raised: Typically results in a
TimeoutException if the attribute value doesn’t match
the expected value within the specified time. There’s
no specific exception for the attribute value mismatch
other than a timeout.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean attributeIsCorrect = wait.
until(ExpectedConditions.attributeToBe(By.
id("elementId"), "attributeName", "ExpectedValue"));

attributeToBeNotEmpty(WebElement element,
String attribute) waits for a specific attribute of an
element to be non-empty.

Failure: If the attribute is empty or not present.

Exception Raised: Usually results in a
TimeoutException if the attribute remains empty or not
present within the specified time. There’s no specific
exception for an empty or non-existent attribute other
than timeout.

WebElement myElement = driver.findElement
(By.id("elementId"));

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean attributeNotEmpty = wait.
until(ExpectedConditions.attributeToBeNotEmpty
(myElement, "attributeName"));

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

urlToBe(String url) waits for the URL of the page to be
a specific value.

Failure: If the URL is different from the expected.

Exception Raised: TimeoutException.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isUrl = wait.until(ExpectedConditions.
urlToBe("http://expectedUrl.com"));

urlContains(String fraction) waits for the URL to

contain a specific fraction or substring.

Failure: If the URL never contains the specified
fraction.

Exception Raised: TimeoutException.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean isUrlContains = wait.until(ExpectedConditions.
urlContains("expectedPart"));

urlMatches(String regex) waits for the URL to match a
specific regular expression.

Failure: If the current URL does not match the regular
expression within the time frame.

Exception Raised: TimeoutException if the URL
doesn’t match the regex within the specified time.

WebDriverWait wait = new WebDriverWait(driver, 10);
Boolean urlMatches = wait.until(ExpectedConditions.
urlMatches("regexPatternForURL"));

247

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

o refreshed(ExpectedCondition<T> condition) waits
for a condition to be met after a refresh, often used for
elements that may become stale.

Failure: If the condition is not met after the page or
element refresh.

Exception Raised: TimeoutException if the condition
is not met within the specified time after a refresh.

WebElement myElement = driver.findElement(By.
id("dynamicElement"));

// Perform some action that causes a refresh or update
WebDriverWait wait = new WebDriverWait(driver, 10);
WebElement refreshedElement = wait.
until(ExpectedConditions.refreshed(ExpectedConditions.
visibilityOf(myElement)));

You now have insight into how each ExpectedCondition operates,
what happens when conditions fail, and the exceptions that are typically
raised, along with Java code snippets demonstrating their usage.

Fluent Waits

The fluent wait in Selenium is a type of explicit wait that provides advanced
wait capabilities. It allows you to set the maximum amount of time to wait
for a condition, as well as the frequency with which to check the condition.
Additionally, you can ignore specific types of exceptions while waiting,
which makes it more flexible than the standard WebDriverWait.

Let’s say you want to wait for an element to become visible, but you
expect that it might take some time, and you don’t want to check too
frequently. The following shows how you can set up a fluent wait.

248

import org.openqa.
import org.openqa.
import org.openqa.
import org.openqa.
import org.openqa.
import org.openqa.

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

selenium.By;

selenium.WebDriver;
selenium.WebElement;
selenium.firefox.FirefoxDriver;
selenium.support.ui.FluentWait;
selenium.NoSuchElementException;

import java.time.Duration;

import java.util.function.Function;

public class SeleniumFirefoxFluentWaitExample {

public static

void main(String[] args) {

// Set the property for the Firefox driver
System.setProperty("webdriver.gecko.driver", "path/to
geckodriver");

// Initialize WebDriver
WebDriver driver = new FirefoxDriver();

try {

// Navigate to a URL
driver.get("http://example.com"); // Replace with

your target URL

// Define FluentWait instance
FluentWait<WebDriver> wait = new
FluentWait<WebDriver>(driver)

.withTimeout(Duration.ofSeconds(30))

// Total time to wait
.pollingEvery(Duration.ofSeconds(5))

// Frequency of checking the condition
.ignoring(NoSuchElementException.class)
// Ignore NoSuchElementException

249

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

.withMessage("Element was not found within 30
seconds");

// Usage of FluentWait
WebElement elementToTypeIn = wait.until(new
Function<WebDriver, WebElement>() {
public WebElement apply(WebDriver webDriver) {
return webDriver.findElement(By.
id("elementId")); // Replace with
appropriate locator

}
};

// Type something into the input field
elementToTypeIn.sendKeys("Hello, World!");

} finally {
// Close the browser
driver.quit();

}

In this example, the FluentWait is set to wait up to 30 seconds
for an element to appear, checking every 5 seconds. It ignores
NoSuchElementException, which is thrown by driver.findElement() if
the element is not found on the page. The custom message is included in
the exception thrown if the timeout is exceeded.

This approach is useful when you are dealing with elements that may
have very variable load times or when dealing with a page that has a lot of
dynamic content. By using a fluent wait, you can create a highly customized
waiting strategy that’s adapted to the specific needs of the application.

250

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Key Features of a Fluent Wait

o Customizable polling: You can define the frequency at
which the condition should be checked. This is useful
for reducing the number of checks in scenarios where
the element takes time to load.

¢« Timeout: You can set the maximum time to wait for a
condition.

» Ignoring exceptions: You can specify one or more
exceptions to ignore if they occur while polling for the
condition.

o Custom message: You can provide a custom timeout
message which can be helpful for debugging.

Selecting the Right Wait

The choice between implicit, explicit, and fluent waits depends on the
specific requirements and complexities of the web elements and their
behavior in a test environment. Let’s discuss the workings, usage, setup,
and behavior along with the limitations for each wait to help choose the
best one for the requirements.

Implicit Wait

o How it works: An implicit wait tells WebDriver to
wait for a certain amount of time before throwing a
NoSuchElementException if an element is not found.
This wait is set globally for the lifetime of the WebDriver
instance and is applied to all element searches.

251

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

e When to use it: Use it when you have a relatively small,
fixed delay that you can apply to all element searches in
a test script.

o Setting it up: It is set for the entire duration of the
WebDriver object’s life. Once set, it is applied to all
findElement and findElements calls.

o Behavior: The driver polls the DOM at regular intervals
until the element is found or the timeout is reached.

o Limitations: It cannot be used for more complex
conditions. Also, if set too long, it can cause
unnecessary delays in test execution.

¢ Code example

driver.manage().timeouts().implicitlyWait(10, TimeUnit.
SECONDS) ;

Explicit Wait

o How it works: An explicit wait instructs the WebDriver
to wait for certain conditions (Expected Conditions)
or the maximum time exceeded before throwing an
ElementNotVisibleException. Explicit wait is specific
to a particular element and its condition.

¢ When to use it: Use it when you need to wait for
specific conditions on certain elements, like waiting for
an element to become clickable, visible, or to have a
specific text.

252

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Setting it up: It is set for each particular instance where
itis needed. You can define WebDriverWait along with
the specific condition.

Behavior: The driver waits for the specified condition
before proceeding. If the condition is not met within
the timeout, a TimeoutException is thrown.

Limitations: It requires more boilerplate code
compared to implicit waits and needs to be
implemented for each specific condition and element.

Code example

WebDriverWait wait = new WebDriverWait(driver, 10);

WebElement element = wait.until(ExpectedConditions.
visibilityOfElementLocated(By.id("someId")));

Fluent Wait

How it works: A fluent wait allows for more complex
configurations of wait conditions. You can set the
maximum amount of time to wait for a condition, the
frequency with which to check the condition, and
ignore certain types of exceptions during the wait.

When to use it: It is ideal for more complex scenarios
where you need to customize the polling frequency or
ignore specific types of exceptions during the wait (e.g.,
waiting for Ajax elements).

253

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

254

Setting it up: You can configure a fluent wait by
creating a FluentWait instance, setting the timeout,
polling frequency, and exceptions to ignore.

Behavior: A fluent wait checks the condition at the
specified polling intervals and continue until the
condition is met or the timeout expires. It ignores the
specified exceptions during the polling process.

Limitations: It is more complex to set up and
configure compared to an explicit wait. Might be
overkill for simpler conditions where standard
ExpectedConditions are sufficient.

Code example

FluentWait<WebDriver> wait = new
FluentWait<WebDriver>(driver)

.withTimeout(Duration.ofSeconds(30))
.pollingEvery(Duration.ofSeconds(5))
.ignoring(NoSuchElementException.class);
WebElement element = wait.until(new Function<WebDriver,
WebElement>() {
public WebElement apply(WebDriver driver) {
return driver.findElement(By.id("someId"));

};

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Comparative Analysis of Implicit, Explicit,

and Fluent Waits

Table 10-1 summarizes implicit, explicit, and fluent waits in Selenium.

Table 10-1. Waits Comparison

Criteria Implicit Waits Explicit Waits Fluent Waits
Scope of Global for all Specific to particular Specific, with
Application web elements elements or conditions customizable
polling and
timeout settings
Wait Waits for Waits for specific conditions ~ Waits for custom-
Conditions elements to be (like visibility, clickability) defined conditions
present in the with flexible
DOM checking intervals
Flexibility Less flexible; More flexible; different Most flexible;
same wait time conditions for different customizable
for all elements elements wait conditions,
intervals, and
timeouts
Frequency No control over Fixed frequency as defined in Customizable
of Condition frequency ExpectedConditions frequency for

Checking

Exception No specific

Handling exception
handling
mechanism

Can handle some
exceptions (like
NoSuchElementException)

condition checks

Allows for
detailed exception
handling during
the wait period

(continued)

255

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Table 10-1. (continued)

Criteria Implicit Waits Explicit Waits Fluent Waits
Timeout Fixed timeout Fixed timeout for each Customizable
Configuration for the duration condition maximum timeout
of the WebDriver and polling
frequency
Complexity Simple to More complex than Most complex,
implementand implicit Waits but generally offering granular
use straightforward control over wait
conditions
Use Case Useful for Ideal for dynamic content Best suited for
simple, static where specific conditions are highly dynamic
pages where expected and unpredictable
elements load at web elements
similar times

This table highlights the key differences to help you make an informed
choice about which type of wait to use in Selenium testing scenarios.

Best Practices to Use Waits in Selenium
Test Automation

Using waits effectively is a crucial aspect of Selenium test automation, as it
ensures that the tests are reliable and robust. Here are some best practices

for using waits in Selenium.

256

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Prefer explicit waits over implicit waits. Use explicit
waits (WebDriverWait with ExpectedConditions) as
they are more reliable for complex conditions. They
allow you to wait for specific conditions on specific
elements.

Avoid using fixed sleeps (Thread.sleep()). Fixed
sleeps (Thread.sleep()) cause tests to wait for a
predetermined amount of time, which can be
inefficient and lead to longer test execution times. They
do not account for the actual condition of the elements.

Be mindful of timeout settings. Set realistic timeouts
considering the network speed, application response
time, and overall performance. Avoid setting overly
long timeouts as they can make your test suite slow.

Use a fluent wait for more complex conditions.
When dealing with elements with highly unpredictable
load times, use a fluent wait. It allows customization

of polling frequency and can ignore specific types of

exceptions, making tests more resilient.

Minimize the use of implicit waits. Implicit waits

are set globally and apply to all element searches.
While they are easy to use, they can cause unintended
delays. Use them sparingly and only when you have

a consistently small delay applicable to all element
searches.

Combine waits wisely. Be cautious when combining
different types of waits, as they can lead to
unpredictable wait times or even timeouts. Understand
how different waits work together in your specific
context.

257

CHAPTER 10 WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

* Wait for page load and Ajax calls to complete. Ensure
that the page is fully loaded and any Ajax calls are
completed before interacting with the elements. This
can be achieved through custom ExpectedConditions
or JavaScript execution.

o Use waits for test scalability and maintainability.
Implementing proper waits makes tests more scalable
and maintainable because it reduces flakiness caused
by timing issues.

o Create custom wait conditions when necessary.
Sometimes, the built-in ExpectedConditions might
not fit your needs. In such cases, create custom wait
conditions to handle unique scenarios specific to your
application.

¢ Regularly review and adjust wait strategies. As your
application evolves, so should your wait strategies.
Regularly review and adjust them to suit the current
behavior of the application.

e Document your wait strategy. To ensure that your
approach to waits is well-documented. This helps
in maintaining consistency across the test suite and
makes it easier for new team members to understand

the approach.

By following these best practices, you can create Selenium tests that
are not only accurate in terms of functionality testing but also efficient and
reliable in their execution.

258

CHAPTER 10 ~ WAIT STRATEGIES IN SELENIUM TEST AUTOMATION

Summary

This chapter delved into the importance of correctly handling element
synchronization in web applications. The chapter introduced and
thoroughly explored the three primary types of waits in Selenium—
implicit, explicit, and fluent—each catering to different scenarios in test
automation. An implicit wait, a global setting, is simple but less flexible,
suitable for uniform wait conditions across all element searches. An
explicit wait, in contrast, offers more precision, allowing waits for specific
conditions on particular elements, making it ideal for more complex
synchronization needs. The most advanced, the fluent wait, provides

the highest level of control, including customizable polling intervals and
exception handling, perfect for handling highly dynamic content and Ajax
elements.

This chapter emphasized best practices, such as preferring explicit
over implicit waits for greater accuracy, avoiding fixed sleeps for efficiency,
and setting appropriate timeouts to balance test speed and reliability.
The chapter also offered practical implementation guidance with code
examples, equipping readers with the knowledge to choose and apply the
appropriate wait type effectively. This comprehensive overview aimed
to empower readers with the skills necessary to create stable, reliable,
and efficient automated tests capable of handling the asynchronous and
unpredictable nature of modern web applications.

259

CHAPTER 11

Page Object Model
(POM)

This chapter embarks on an in-depth exploration of various test
automation strategies within the Selenium WebDriver framework. By
dissecting the intricacies of each approach, this chapter equips technical
practitioners with a comprehensive understanding of the methodologies
that drive effective and efficient automated testing.

Let’s begin by examining the conventional method of test automation
in Selenium. This approach, often considered the bedrock of Selenium
testing, involves direct interactions with web elements through explicit
locators and actions. While it serves as a fundamental strategy, its
scalability and maintainability in complex and evolving test environments
are subjects for discussion.

Next, you will explore the Page Object Model (POM), a structural
design pattern that encapsulates the properties and behaviors of web
pages into distinct classes. POM promotes a more modular and object-
oriented approach to crafting test scripts, addressing many challenges
associated with the conventional method, particularly those related to
maintainability and code reuse.

Building upon the POM framework, the chapter introduces Page
Factory, an optimized implementation provided by Selenium’s support
library. With its annotation-driven configuration, Page Factory enhances
POM by offering a more streamlined and intuitive way to initialize web

© The Editor(s) (if applicable) and The Author(s), 261
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_11

https://doi.org/10.1007/979-8-8688-0291-1_11

CHAPTER 11 PAGE OBJECT MODEL (POM)

elements. This section will cover its syntax, usage, practical benefits, and
limitations within various testing scenarios. Through this exploration, you
will gain the knowledge to architect robust, scalable, and maintainable
automated testing solutions.

The Conventional Approach

Traditionally, automated test scripts have been a mix of element locators
(like IDs, XPaths), test data, and action commands (like click, input text) all
rolled into a single script. This approach, while straightforward, becomes
unwieldy and fragile as applications grow complex and test suites expand.
Consider a simple login form in HTML.

<html>
<head><title>Login Page</title></head>
<body>
<form id="loginForm">
<input type="text" id="username" />
<input type="password" id="password" />
<input type="submit" id="loginButton" />
</form>
</body>
</html>

In the traditional approach, tests are written directly in the test script.
Locators and operations on elements are all in the same method. The
following is what a simple login test might look like.

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.chrome.ChromeDriver;
import org.junit.Test;

262

CHAPTER 11 PAGE OBJECT MODEL (POM)

public class TraditionallLoginTest {

@Test

public void testLogin() {
WebDriver driver = new ChromeDriver();
driver.get("http://www.example.com/login");
driver.findElement(By.id("username")).sendKeys("user");
driver.findElement(By.id("password")).
sendKeys ("password");
driver.findElement(By.id("loginButton")).click();
// Assertions and test logic here
driver.quit();

In this example, the test is doing everything: opening the browser,
navigating to the page, finding elements, interacting with them, and then
closing the browser.

What Is POM?

The Page Object Model (POM) is a design pattern that encourages a
modular and maintainable approach to Selenium test scripting. In POM,
web pages are represented as classes, and elements within those pages
are represented as variables on the class. Interactions with these elements
are encapsulated as methods within the class. This abstraction results in a
cleaner, more understandable codebase.

Decoding DOM

The Document Object Model (DOM) represents the structure of a web
page as a tree of objects. Selenium interacts with this DOM to locate
elements and execute actions. Understanding the DOM is critical as

263

CHAPTER 11 PAGE OBJECT MODEL (POM)

it underpins both traditional and POM-based testing approaches (see
Chapter 4). Now, let’s delve into the structured world of POM by creating it
for the HTML provided.

Create a Page Class

At first, you need to create a Java class representing the login page. This
class contains the locators and methods for interactions.

For each page in your application, create a Java class. This class
represents the page and contains locators and methods to interact with its
elements. The file is saved as LoginPage.java.

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;

public class LoginPage {
private WebDriver driver;
private By usernamelLocator = By.id("username");
private By passwordlLocator = By.id("password");
private By loginButtonlLocator = By.id("loginButton");

public LoginPage(WebDriver driver) {
this.driver = driver;

}

public void enterUsername(String username) {
driver.findElement(usernameLocator).sendKeys(username);

}

public void enterPassword(String password) {
driver.findElement(passwordLocator).sendKeys(password);

264

CHAPTER 11 PAGE OBJECT MODEL (POM)

public void clickLogin() {

driver.findElement(loginButtonLocator).click();

LoginPage.java is the representation of the login page and it contains
the following structure.

Locators are variables like usernameLocator to find
elements on the page.

Constructor initializes the WebDriver.

Methods like enterUsername, enterPassword, and
clickLogin interact with the elements.

Create Test Scripts Using Page Objects

Instead of writing test steps directly in the test method, let’s use the

methods from the page object int the LoginTest.java file.

import org.openqa.selenium.WebDriver;

import org.openga.selenium.chrome.ChromeDriver;
import org.junit.Test;

public class LoginTest {
@Test
public void shouldLoginSuccessfully() {

WebDriver driver = new ChromeDriver();
driver.get("http://www.example.com/login");

LoginPage loginPage = new LoginPage(driver);
loginPage.enterUsername("testUser");
loginPage.enterPassword("testPass");
loginPage.clickLogin();

265

CHAPTER 11 PAGE OBJECT MODEL (POM)
// Assertions and further test logic here

driver.quit();

LoginTest.java is the test script that utilizes the LoginPage class. It
navigates to the login page, interacts with it through the page object, and
then performs any necessary assertions or further test logic.

Java Files in POM

The following are the primary Java files in the prior example.

o LoginPage.java: Represents the login page and
contains methods to interact with its elements.

o LoginTest.java: Contains test scripts that use the
LoginPage to perform tests.

In a real-world scenario, you would have a Java file for each page in
your application, and potentially multiple test files organized around the
features or functionalities they cover.

Complete Analysis and Description
of Creating a POM
The following lists the major components to analyze while creating a POM.

e Analyzing web pages: Understand the structure
of each web page in an application. Identify all the
elements you need to interact with during your tests.

266

CHAPTER 11 PAGE OBJECT MODEL (POM)

Designing page classes: For each web page, create
a corresponding Java class (Page Object). This
class should

e Contain locators for each element you need to
interact with

e Provide methods for interactions like clicks, text
entry, getting text, and so on

Initializing WebDriver: Ensure each page object
receives the WebDriver instance to interact with the
browser. This is typically done through the constructor.

Writing methods: Write methods in your page
classes that perform actions on the elements, like
logging in or filling out forms. These methods abstract
the complexity and make your tests easier to read

and write.

Creating test scripts: Write test scripts that use the
methods provided by your page objects. The tests
should be clear and understandable, reflecting the
steps a user might take on your site.

Maintaining and updating: As your application
changes, you'll need to update your page objects and
possibly your tests. The beauty of POM is that updates
are often confined to the page objects, minimizing the
impact on your tests.

267

CHAPTER 11 PAGE OBJECT MODEL (POM)

Differences between Traditional and POM

The following highlights the differences between traditional and POM test
patterns.

e Code organization

o Traditional: Everything is in one place. The script
directly interacts with the web elements.

o POM: Code is organized into classes representing
pages. Each page class contains the elements and
actions related to that page.

¢ Maintenance

o Traditional: Changes in the UI might require
updates in multiple test scripts where the same
element is used.

e POM: Changes due to Ul updates are generally
confined to the page classes. You update the locator
or method in one place, and it’s updated for all tests
using that page object.

e Reusability

o Traditional: Code for interacting with a particular
element is often duplicated across multiple test
scripts.

o POM: The same page object can be reused across
multiple tests, reducing duplication.

o Readability

o Traditional: Tests can become cluttered and hard
to read, especially as they grow in complexity.

268

CHAPTER 11 PAGE OBJECT MODEL (POM)

o POM: Tests read more like high-level descriptions
of what the test is doing, making them easier to
understand.

o Scalability

o Traditional: As the number of tests grows, the
traditional approach becomes harder to manage.

e« POM: POM scales better for larger projects as it’s
easier to manage and update tests.

In conclusion, while the traditional approach might be quicker to set
up for very small or simple projects, POM offers significant advantages
for most testing scenarios, especially as the size and complexity of your
application and test suite grow.

POM Best Practices

When creating page objects in Selenium, adhering to best practices is
crucial for achieving a maintainable, scalable, and robust test suite. Here
are some best practices to consider while implementing POM.

o Use one page and one class.

o Principle: Each page object should represent
a single page or a section of a page. It should
encapsulate all the functionalities and elements of
that specific page.

o Benefit: This ensures high cohesion and makes
page objects easy to navigate and maintain.

269

CHAPTER 11

270

PAGE OBJECT MODEL (POM)

e Use meaningful names.

Principle: Use descriptive and meaningful names
for methods and element locators. Anyone reading
the code should understand the purpose of each
method and what each locator is referring to.

Benefit: Increases readability and maintainability.
It’s easier for you and others to understand and
update the code later.

¢ Use Page Factory.

Principle: Consider using the PageFactory class for
initializing elements. It provides an easier way to
implement POM with annotations.

Benefit: Simplifies the syntax and makes the page
objects more concise.

¢ Hide implementation details.

Principle: Encapsulate the internals of the page
inside the page object. Tests should not be exposed
to the inner workings like locators and browser-
specific code.

Benefit: Tests become cleaner and less brittle to
changes in the UI. Changes in the page structure
only require updates in the page object, not in
the tests.

¢ Don’t mix assertions.

Principle: Avoid putting assertions directly in page
objects. Instead, return values from page object
methods and assert in test methods.

CHAPTER 11 PAGE OBJECT MODEL (POM)

Benefit: Keeps page objects flexible and reusable
across different scenarios. It also keeps the test
logic separate from the navigation logic.

Avoid duplication.

Principle: Don’t repeat yourself. If multiple
methods perform similar actions, consider

abstracting them into a common method.

Benefit: Makes code easier to maintain and update.
Changes in the common functionality need to be

made only once.

Use waits wisely.

Principle: Use explicit waits to handle elements
that take time to load or appear. Avoid using hard-
coded sleeps.

Benefit: Increases the reliability of tests. Tests run
as fast as the application allows and are less likely
to fail due to timing issues.

Keep it simple and focused.

Principle: Each method in the page object should
be responsible for one thing only and should not be
overly complex.

Benefit: Simplifies debugging and maintenance. It’s
easier to pinpoint issues and update functionality.

Refactor page objects regularly.

Principle: Regularly revisit and refactor your page
objects. As an application changes, the page objects
should evolve too.

271

CHAPTER 11 PAGE OBJECT MODEL (POM)

o Benefit: Keeps a test suite up-to-date with the
application. Prevents the accumulation of outdated
code and strategies.

e Document your code.

o Principle: Provide clear and concise
documentation, especially for complex or non-
obvious parts of page objects.

« Benefit: Makes it easier for others (and your future
self) to understand the purpose and workings
of page objects, facilitating easier updates and
maintenance.
Following these best practices ensures that your use of POM in Selenium
is as effective and efficient as possible. Properly implemented, POM can
greatly enhance the maintainability and readability of a test automation suite.

Factory Page

Page Factory is a Selenium support class that allows you to initialize web
elements in a more streamlined way. It uses annotations to identify web
elements and reduces the amount of boilerplate code you need to write.

Page Factory is essentially a way to initialize the elements of page
objects in a cleaner, more concise manner; instead of using driver.
findElement(), you use annotations provided by Page Factory to declare
elements on a page.

Setting Up Page Factory

Page Factory works by using annotations like @FindBy to find and initialize
web elements. When you create an instance of a page class, Page Factory
automatically seeks out the elements on the web page that match the
locators you have defined and assign them to variables.

272

CHAPTER 11 PAGE OBJECT MODEL (POM)

LoginPage.java: Representing the Login Page

To begin with Page Factory, use its core component: the @FindBy
annotation. This annotation is used to define locators for web elements.
Let’s create a Java file named LoginPage.java, representing the login page
of the HTML code provided earlier.

import org.openqa.selenium.WebDriver;

import org.openqga.selenium.WebElement;

import org.openga.selenium.support.FindBy;
import org.openqa.selenium.support.PageFactory;

public class LoginPage {
// Elements defined using @FindBy annotation
@FindBy(id = "username"
private WebElement usernameField;

@FindBy(id = "password")
private WebElement passwordField;

@FindBy(id = "loginButton")
private WebElement loginButton;

// Constructor to initialize the PageFactory
public LoginPage(WebDriver driver) {
PageFactory.initElements(driver, this);

}

// Method to enter username
public void enterUsername(String username) {
usernameField.sendKeys(username);

273

CHAPTER 11 PAGE OBJECT MODEL (POM)

// Method to enter password
public void enterPassword(String password) {
passwordField.sendKeys(password);

}

// Method to click on the login button
public void clickLogin() {
loginButton.click();

LoginPage.java initializes web elements using the @FindBy
annotation. The PageFactory.initElements method binds these elements
to the specified locators when an instance of LoginPage is created.

DashhoardPage.java: Representing
the Dashboard Page

When users log in successfully, a page having dashboard is represented.
You see a similar structure to LoginPage.java with elements and methods
relevant to the dashboard.

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openqa.selenium.support.FindBy;
import org.openga.selenium.support.PageFactory;

public class DashboardPage {
// Elements specific to the dashboard page
@FindBy(id = "logoutButton")
private WebElement logoutButton;

// Constructor to initialize the PageFactory
public DashboardPage(WebDriver driver) {

274

CHAPTER 11 PAGE OBJECT MODEL (POM)

PageFactory.initElements(driver, this);

}

// Method to click on the logout button
public void clickLogout() {
logoutButton.click();

Similar to LoginPage, DashboardPage. java uses @FindBy for
element locators and initializes them with Page Factory. It represents the
dashboard page and provides methods to interact with its elements.

LoginTest.java: Test Script Utilizing Page Objects

This page contains the actual test using the page objects. It initializes the
WebDriver and the page objects and uses the methods in the page objects
to interact with the application.

import org.openqa.selenium.WebDriver;
import org.openga.selenium.chrome.ChromeDriver;
import org.junit.Test;

public class LoginTest {
@Test
public void shouldLoginSuccessfully() {
WebDriver driver = new ChromeDriver();
driver.get("http://www.example.com/login");

// Instantiate LoginPage using Page Factory
LoginPage loginPage = new LoginPage(driver);
loginPage.enterUsername("ourUser");
loginPage.enterPassword("ourPassword");
loginPage.clickLogin();

275

CHAPTER 11 PAGE OBJECT MODEL (POM)

// Instantiate DashboardPage using Page Factory
DashboardPage dashboardPage = new
DashboardPage(driver);

// Perform operations or assertions on the
dashboard page

driver.quit();

In LoginTest. java, you create instances of LoginPage and

DashboardPage. You interact with the web application through the

methods provided by these page objects. This script represents how you'd

typically write a test using the Page Factory setup.

Summarizing the Setup

LoginPage.java and DashboardPage.java act as
templates for the specific pages in a web application,
encapsulating the elements and interactions within

those pages.

LoginTest.java is where you utilize these templates
to interact with an application, entering data, clicking
buttons, and verifying the resulting state.

This structure ensures that test code remains clean, maintainable, and

easy to understand. The Page Factory pattern significantly simplifies the

code by reducing boilerplate and improving readability, allowing you to

focus more on the test logic itself.

276

CHAPTER 11 PAGE OBJECT MODEL (POM)

Steps to Implement Page Factory

The following steps effectively implement the Page Factory design pattern in

Selenium tests, leading to cleaner, more maintainable, and readable test code.

1.

Identify elements. Determine the elements you
need to interact with on web pages.

Create page object classes. For each web page,
create a corresponding Java class. Use the @FindBy
annotation to define your web elements.

Initialize Page Factory. In the constructor of your
page classes, use PageFactory.initElements(driver,
this); to initialize the elements.

Write interaction methods. Provide methods in
page classes for interacting with the elements.

Implement tests. Use page objects in test classes to

perform actions and assertions.

When to Use Page Factory

While Page Factory offers several benefits, it’s not always necessary for

every project. Consider using Page Factory in the following scenarios.

When the project has a large number of elements that
need to be interacted with

When you are looking for a cleaner, more readable way
to represent elements in page objects

When your team is familiar with the Page Factory
pattern and the additional layer of abstraction it
introduces

277

CHAPTER 11 PAGE OBJECT MODEL (POM)

Differences Between POM and Page Factory

Let’s compare the features of POM and Page Factory test designs and
observe how they differ from one other.

o Initialization

e POM: Typically requires manually initializing each
WebElement using driver.findElement().

o Page Factory: Automates WebElement
initialization with the @FindBy annotation.

o Readability

¢ POM: Can become verbose as each element needs
explicit initialization.

o Page Factory: Offers cleaner and more readable
code with annotations.

¢ Element initialization

o POM: Elements are usually initialized when the
page object is instantiated.

o Page Factory: Supports lazy initialization of
elements. They're only fetched when you use them
in your methods.

¢ Maintenance

e POM: Improves maintainability compared to not
using a pattern.

o Page Factory: Improves maintainability compared
to not using a pattern, but can further reduce the
amount of boilerplate code, making maintenance
slightly easier.

278

CHAPTER 11 PAGE OBJECT MODEL (POM)

¢ Performance

¢ POM: Can be more performant as elements are
typically initialized when the class is instantiated.

o Page Factory: Lazy loading can improve
performance in scenarios where not all elements
are used in every test, but there might be a slight

overhead in initializing elements on-the-fly.
e Support and community

e POM: Well-established with lots of community
support and examples.

o Page Factory: Also well-supported, but as it’s an
addition to POM, newcomers might find fewer
direct resources, and understanding it typically
requires a good grasp of POM first.

Best Practices for Implementing Page Factory

After examining the best practices for POM, let’s examine the best
practices for Page Factory.

¢ Use meaningful names. Even with the cleaner
syntax, element variables should have descriptive,

meaningful names.

o Uselazyloading. Page Factory supports lazy loading
of elements. Elements are only located when you use
them in your code, not when the page object is created.
This can improve the performance of your tests.

e Combine with POM principles. Continue to follow
good POM principles, like keeping one class per page
and having methods that represent behaviors.

279

CHAPTER 11 PAGE OBJECT MODEL (POM)

o Keep Selenium versions updated. Ensure you're using
aversion of Selenium that supports Page Factory, as
some newer versions might deprecate or change how
Page Factory works.

Limitations of POM and Page Factory

While POM and Page Factory are powerful design patterns in Selenium
that offer many benefits, like any approach, they have their limitations.

Limitations of POM

¢ Increased initial effort: Setting up POM requires a
considerable initial effort. For small projects or simple
test cases, this overhead might not be justified.

¢ Learning curve: For teams new to POM, there’s a
learning curve. Understanding how to properly abstract
functionality into page objects can take time.

e Maintenance overhead: While POM makes
maintenance easier in the long run, maintaining a large
number of page objects and ensuring they’re up-to-
date with the application’s UI can be challenging.

o Potential for over-engineering: There’s a risk of over-
engineering the test code, making it complex and hard
to understand, especially if the page objects are not
designed well.

280

CHAPTER 11 PAGE OBJECT MODEL (POM)

Limitations of Page Factory

o Complex debugging: With lazy loading, elements
are initialized only when they are used. This can
sometimes make debugging more challenging as
initialization issues might occur at any point in the test.

e Dynamic elements: Page Factory might not be the best
fit for pages with a lot of dynamic content where the
attributes of elements change frequently. The static
nature of @FindBy annotations can make this tricky.

o Dependency on annotations: Page Factory relies heavily
on annotations, which can be less intuitive for those who
prefer working directly with element methods.

o Potential performance overhead: While lazy loading
can improve performance in some scenarios, in others,
the on-the-fly initialization of elements can add overhead,
especially if the same elements are accessed repeatedly.

When and Which One to Use: POM vs.
Page Factory

Deciding between POM and Page Factory depends on several factors
including the size and complexity of the project, the team’s familiarity with
the patterns, and the specific requirements of the application being tested.

281

CHAPTER 11 PAGE OBJECT MODEL (POM)

When to Use POM

o Complex applications: For complex applications
with multiple pages and a lot of functionality, POM
can provide a structured and maintainable way to
organize tests.

o Long-term projects: For long-term projects that evolve
and be maintained over time, POM can make updates
and maintenance more manageable.

o Teams familiar with OOP: For teams with a strong
understanding of object-oriented programming, POM
is a natural fit.

When to Use Page Factory

o Preference for annotation-based configuration: If
your team prefers an annotation-based configuration
and enjoys the syntactic sugar it provides, Page Factory
is a good choice.

¢ Need for readability: If improving the readability
of your test code is a priority, Page Factory’s concise
syntax can be beneficial.

o Projects where lazy loading is advantageous: If you're
working on a project where not all elements are used
in every test, or initialization time is a concern, the lazy
loading of Page Factory can be a performance benefit.

282

CHAPTER 11 PAGE OBJECT MODEL (POM)

Making the Decision

In many cases, teams don’t have to choose exclusively between POM and
Page Factory. They can be used together effectively. Page Factory is, in
many ways, an enhancement of POM, providing a more efficient way to
initialize page objects.

o For larger, more complex projects, or when long-term
maintainability is a priority, starting with POM and
then integrating Page Factory as needed can offer the
best of both worlds.

o For smaller projects or teams just getting started
with test automation, beginning with POM and then
adopting Page Factory as the project grows and the
team becomes more comfortable with the patterns can
be a practical approach.

Ultimately, the choice should be based on the specific needs of the
project and the preferences of the team. Regardless of the choice, the most
important thing is to ensure that the approach promotes maintainability,
readability, and efficiency in your test automation efforts.

Summary

This chapter began by exploring the conventional way of Selenium testing,
where test scripts directly interact with web elements using locators and
actions within the same method. While straightforward, this approach
often leads to code duplication and maintenance challenges as the test
suite grows in complexity.

It then transitioned to the Page Object Model (POM) and Page Factory.
POM enhances maintainability and reusability by encapsulating web page
structures and behaviors within separate classes. Page Factory builds on

283

CHAPTER 11 PAGE OBJECT MODEL (POM)

POM by using annotations to initialize web elements, offering a more
concise and readable way to define and interact with these elements.
Understanding these methodologies equips you with the tools to create
robust, scalable, and maintainable test automation strategies, adaptable to

various project needs.

284

CHAPTER 12

TestNG

This chapter explains how TestNG can significantly enhance your
Selenium testing practices, whether you are just starting in automation
testing or are an experienced professional looking to leverage the synergies
of these powerful tools.

The chapter explores the essentials of TestNG, including its key
features like annotations, assertions, and data-driven testing, and how
they complement Selenium’s functionalities. Through practical examples,
make these concepts accessible to beginners while delving into advanced
features like parallel execution and dependency testing for the more
seasoned testers.

This journey demonstrates how TestNG can strategically enhance
Selenium tests, improving their efficiency, scalability, and maintainability.
You'll encounter real-world scenarios and code examples showing how to
address complex testing challenges effectively.

By the end of this chapter, you will be equipped with the knowledge
to integrate TestNG with Selenium, enhancing both the effectiveness of
your tests and recognizing how crucial it is to adhere to the best standards
in the dynamic field of automated testing with the overall quality of
your automation projects. Let’s dive into this journey, unlocking the full
potential of automated testing with TestNG and Selenium.

© The Editor(s) (if applicable) and The Author(s), 285
under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1_12

https://doi.org/10.1007/979-8-8688-0291-1_12

CHAPTER 12 TESTNG

Understanding Frameworks in Depth

Frameworks in automation testing serve as strategic blueprints. They offer
a predefined way to organize tests, making them reusable and easy to
maintain. Frameworks ensure that your testing practices are not just about
getting the job done but about doing it as efficiently and reliably possible.

JUnit Overview

JUnit, a long-standing staple in the Java testing world, is a framework
primarily designed for unit testing. It’s a tool many have relied on for years,
evolving with the changing dynamics of software development.

As of the latest iteration, JUnit 5, or Jupiter, represents a significant
advancement from its predecessors, introducing more flexibility and
features for modern testing needs.

Exploring the Features of JUnit

JUnit, a foundational framework in Java testing, offers features that have set
the standard in unit testing.

e Annotations are like signposts in your code, guiding
the testing process. For example, @Test indicates a test
method, @BeforeEach sets up conditions in each test,
and @AfterEach tears down conditions in each test.

o Assertions are the checkpoints of tests, allowing you to
validate expected outcomes.

o Testrunners are the engines that drive tests, enabling
the execution of test suites.

286

CHAPTER 12 TESTNG

o Test suites are like containers that hold and manage
multiple related tests.

o Parameterized tests allow you to run the same test
with different parameters, enhancing the test coverage.

Transitioning to TestNG: Elevating
Beyond JUnit

TestNG, short for Test Next Generation, is a modern testing framework that
has become a mainstay in the Java development environment, particularly
for automated testing. It was conceptualized as a response to certain
limitations found in JUnit, another popular testing framework. TestNG is
designed to simplify a broad range of testing needs—from unit testing to
integration and functional testing.

The need for more flexibility and functionality in Java testing
frameworks drove the creation of TestNG. Its design philosophy focuses on
making the testing process more efficient, structured, and comprehensive.
It’s not just an alternative to JUnit but a complete solution that extends
beyond simple unit testing, providing tools and features necessary for
complex testing scenarios.

When this chapter was written, the most recent version of TestNG
offers advanced functionalities compatible with a wide range of
development and testing tools.

TestNG Features

TestNG, evolving from the foundations laid by JUnit, extends these
capabilities with features that cater to more complex testing needs.

287

CHAPTER 12 TESTNG

o Extended annotations: More comprehensive than
JUnit, TestNG provides annotations like @BeforeSuite
and @AfterSuite, allowing you to define broader test
preparation and cleanup activities.

o Parallel execution: This is a game-changer. TestNG
enables simultaneous execution of multiple tests,
significantly reducing test execution time, especially in
large projects.

o Flexible test configuration: Utilizing XML files for
test suite configuration, TestNG offers unparalleled
customization, allowing precise control over which
tests to run and in what order.

o Data-driven testing support: TestNG facilitates
tests with various data sets, making it ideal for
comprehensive testing scenarios.

o Dependency testing: A unique feature where you can
define dependencies between test methods, ensuring a
logical flow and sequence in test execution.

o Enhanced reporting: TestNG generates detailed
reports, giving you deeper insights into test outcomes,
essential for thorough analysis and improvement.

Comparative Analysis: JUnit vs. TestNG

Table 12-1 compares JUnit and TestNG.

288

Table 12-1. JUnit and TestNG

CHAPTER 12 TESTNG

Feature JUnit

TestNG

Explanation

Annotation Standard
Support

Parallel Limited
Execution

Test Basic
Configuration

Data-Driven Basic
Testing support

Dependency Not
Testing supported

Reporting Basic

More extensive

Comprehensive

Highly
customizable with
XML

Inherent support

Fully supported

Comprehensive

TestNG offers a wider range

of annotations, allowing for
broader test case definitions and
management.

TestNG enables parallel test
execution, significantly speeding
up the testing process, which is
especially beneficial for large test
suites.

TestNG’s XML configuration allows
for more complex and precise

test suite creation, offering better
control over test execution.

TestNG provides built-in, more
user-friendly support for data-
driven testing, enabling testing with
multiple data sets easily.

TestNG allows specifying
dependencies between test
methods, which is crucial for
certain test sequences.

TestNG’s reporting is more detailed
and informative, providing better
insights into the test results.

Table 12-1 shows why TestNG is often the preferred choice, particularly

for complex and large-scale testing scenarios, such as those encountered

in Selenium-based web application automation testing.

289

CHAPTER 12 TESTNG

TestNG in Selenium WebDriver:
A Synergistic Combination

Integrating TestNG with Selenium WebDriver transforms your approach to
web application testing. This combination brings structure, efficiency, and
depth to your Selenium tests.

1. Structured and scalable testing: TestNG’s
annotations and XML-based configuration enable
you to create well-organized and scalable Selenium
test suites.

2. Efficient parallel testing: The parallel execution
feature of TestNG is invaluable in reducing the time
required for extensive web application testing.

3. Enhanced data-driven testing: Combined with
Selenium, TestNG’s capabilities allow you to
perform comprehensive data-driven testing,
ensuring extensive coverage and reliability.

4. Superior reporting for better insights: The
detailed reports generated by TestNG offer critical
insights into test executions, crucial for continuous
improvement in your testing strategies.

In mastering automation testing, it’s vital to leverage the strengths
of frameworks like TestNG, especially when combined with powerful
tools like Selenium WebDriver. This integration streamlines your testing
processes and elevates the overall quality and reliability of the software
you develop and test.

290

CHAPTER 12 TESTNG

Setting Up TestNG: A Step-by-Step Guide

Setting up TestNG in your Java development environment is a straightforward
process. This guide assumes you have installed Java and an IDE (Eclipse or
Intelli] IDEA). Let’s walk through the steps to get TestNG up and running.

Step 1: Installing TestNG in IDEs
Eclipse

1. Start Eclipse and enter your preferred workspace.
2. Install the TestNG plugin.

¢ Go to Help » Eclipse Marketplace.

o Search for TestNG.

o Find the TestNG plugin in the search results, click
Install, and initiate installation.

3. Complete installation. After the installation,
Eclipse prompts a restart to complete the integration
process, embedding TestNG into your Eclipse
ecosystem.

IntelliJ IDEA

1. Open Intelli] IDEA and proceed to your project
workspace.

2. Add TestNG plugin.
o Access File > Settings » Plugins.
o Inthe Marketplace tab, search for TestNG.

e Click Install on the TestNG plugin.

291

CHAPTER 12 TESTNG

3. Restart Intelli] IDEA. A restart post-installation is
essential for the plugin to be fully functional within
the IDE.

Step 2: Creating a New Java Project
With TestNG installed in your IDE, the next step is to create a new Java
project.

o In Eclipse: Navigate to File » New » Java Project.

o InIntelliJ IDEA: Choose File » New » Project, and
select Java from the available options.

Step 3: Incorporating TestNG into the Project

The method to add TestNG to your project depends on whether you
use Maven.

For Maven-based Projects

1. Open the pom.xml file. Locate this Maven
configuration file of your Java project.

2. Add TestNG dependency. Insert the following
dependency into your pom.xml.

<dependencies>
<dependency>
<groupId>org.testng</groupld>
<artifactId>testng</artifactId>
<version>7.x.x</version> <!-- Use the latest
version for optimal features -->

292

CHAPTER 12 TESTNG

<scope>test</scope>
</dependency>
</dependencies>

3. Update the project. Save the file and update your
Maven project. Maven automatically downloads and
incorporates TestNG into your project’s classpath.

Note As of December 26, 2023, the most recent version of TestNG
is 7.0.0.

For non-Maven Projects

o In Eclipse: Right-click on the project » Properties
> Java Build Path > Libraries > Add Library >
Select TestNG.

o InIntelliJ IDEA: Navigate to File » Project
Structure > Libraries » Press + » From Maven....
Search for org.testng:testng and include it in the
project.

Note Apache Maven is a powerful project management and
automation tool used primarily for Java projects. It simplifies the build
process, manages project dependencies, and provides a uniform
build system through its project object model (POM).

293

CHAPTER 12 TESTNG

Step 4: Confirming Your TestNG Setup

To ensure that TestNG is correctly set up and operational.

1.

Create a test class. Name it something like
ExampleTest.

Draft a simple test method.
import org.testng.annotations.Test;

public class ExampleTest {
@Test
public void simpleTest() {
System.out.println("TestNG is perfectly
set up!");

}

Execute the test. Run this test method from any of
the IDEs. A successful execution that prints “TestNG
is perfectly set up!” in the console confirms that
TestNG is ready for action.

You have successfully installed TestNG in your IDE and added it to a

Java project. This setup is a fundamental step toward advanced testing

using TestNG'’s features, such as running tests in parallel, grouping tests,

and using TestNG’s assertions and annotations for effective testing.

TestNG Annotations and Attributes

In TestNG, annotations are the signposts that guide the execution of your

test scripts. They are crucial for defining the test structure, specifying test

execution flow, and configuring test behavior. Let’s dive into the details

of TestNG annotations, their attributes, and when and how to use them

effectively in test scripts, emphasizing their practical application.

294

CHAPTER 12 TESTNG

@Test: The Core of TestNG

The @Test annotation is what identifies a method as a TestNG test. It
has several attributes that allow you to control various aspects of the test

method’s behavior. Let’s explore some of its key attributes with examples.

priority defines the order of test method execution.
Lower priority numbers are executed first.

@Test(priority = 1)

public void firstTest() {
// This test will run first due to its higher
priority (lower number)
System.out.println("First test method");

Use priority when the execution order of your test
methods is important.

enabled determines whether the test method is
enabled or disabled. A value of false skips the execution
of the test method.

@Test(enabled = false)

public void disabledTest() {
// This test will not be executed
System.out.println("This test method is
disabled.");

Use the enabled method to disable a test method
without removing the code.

295

CHAPTER 12 TESTNG

296

dependsOnMethods ensures that certain methods are
run before the annotated test method. If the methods it
depends on fail, the annotated method is skipped.

@Test(dependsOnMethods = {"firstTest"})

public void dependentTest() {
// This test runs only after ‘firstTest’ has
successfully completed
System.out.println("Runs after firstTest");

Use the dependsOnMethods function to manage
test dependencies and order, especially when test
outcomes are interdependent.

groups assigns the test method to one or more groups.
It is useful for managing and running subsets of your
entire test suite.

@Test(groups = {"sanity"})

public void sanityTest() {
// Part of the 'sanity' group of tests
System.out.println("Part of sanity tests");

You can use groups for categorizing tests, which is
helpful in larger projects where tests can be grouped
based on features, modules, or test types like sanity,
regression, etc.

CHAPTER 12 TESTNG

o dataProvider specifies a method that provides data to
the test method, enabling data-driven testing.

@Test(dataProvider = "dataMethod")

public void dataDrivenTest(String input) {
// This test will run multiple times with
different inputs
System.out.println("Data driven test with input:
+ input);

}

@DataProvider
public Object[][] dataMethod() {
return new Object[][] {{"data1"}, {"data2"}};

To run a test multiple times with different data sets, let’s
the dataProvider method.

» expectedExceptions indicates that the test method
is expected to throw an exception. If the specified
exception is thrown, the test passes.

@Test(expectedExceptions = ArithmeticException.class)
public void exceptionTest() {
// This test is expected to throw
ArithmeticException
inti=17/o0;

}

Use this method when testing for conditions that are expected to throw

exceptions.

297

CHAPTER 12 TESTNG

@Test with Other Annotations

Combining the @Test annotation with other TestNG annotations is
often used to create a comprehensive and efficient testing workflow. It
allows you to set up pre-conditions and post-conditions and manage test
dependencies.

In practical scenarios, combining @Test with other TestNG annotations
is a common way to set up a comprehensive test environment.

@BeforeSuite and @AfterSuite

These annotations specify methods that run before and after all tests in
a suite. Use them for setup and teardown tasks common to all tests, like
initializing shared resources or cleaning up after all tests are done.

@BeforeSuite

public void globalSetup() {
// Code for global setup
System.out.println("Global setup before any suite is
executed.");

}

@AfterSuite

public void globalTeardown() {
// Code for global teardown
System.out.println("Global teardown after all suites are
executed.");

298

CHAPTER 12 TESTNG

@BeforeTest/@AfterTest

Methods annotated with these run before and after the test methods
inside the <test> tag in the TestNG XML. They're suitable for preparing
and cleaning up conditions common to all tests within a particular
<test> group.

@BeforeTest

public void setupTest() {
// Setup code for a group of tests
System.out.println("Setting up before a group of tests.");

}

@AfterTest

public void teardownTest() {
// Teardown code for a group of tests
System.out.println("Cleaning up after a group of tests.");

@BeforeClass/@AfterClass

These annotations are used to run methods before the first method of
the current class is invoked and after all the test methods of the current
class have been run. Ideal for setup and cleanup activities specific to a
particular class.

@BeforeClass

public void setupClass() {
// Code executed before any method of the class runs
System.out.println("Setup actions before any test method of
this class.");

}
@AfterClass

299

CHAPTER 12 TESTNG

public void teardownClass() {
// Code executed after all methods of the class have run
System.out.println("Cleanup actions after all test methods
of this class.");

@BeforeMethod/@AfterMethod

The annotate methods are used to run them before and after each
test method. They're perfect for preparing and cleaning up the test
environment for every individual test method.

@BeforeMethod

public void setupMethod() {
// Code to run before each test method
System.out.println("Running before each test method.");

}

@AfterMethod

public void teardownMethod() {
// Code to run after each test method
System.out.println("Running after each test method.");

Understanding TestNG annotations and attributes is essential for
writing effective and efficient test cases. These annotations provide a
powerful way to control the flow and behavior of tests, enabling you to
write more organized and reliable automated tests. With this knowledge,
you can write your first TestNG program, implementing these annotations
to create a structured and comprehensive testing framework.

300

CHAPTER 12 TESTNG

TestNG Test Case with Selenium

Let’s create a TestNG test case using Selenium, which demonstrates the
usage of various TestNG annotations. This example assumes that you have
Selenium set up in your Java project along with the TestNG framework.

First, let’s consider a simple HTML snippet and then write a TestNG
test case to interact with and validate elements from this snippet.

HTML Snippet Example

Assuming you have a basic HTML file named example . html with the
following content.

<!DOCTYPE html>
<html>
<head>
<title>Test Page</title>
</head>
<body>
<h1>Welcome to the Test Page</h1>
<button id="testButton">Click Me</button>
</body>
</html>

This HTML features a simple button with an ID testButton.

Writing TestNG Test Case

Let’s write a TestNG test case to load this HTML file in a browser, locate
the button by its ID, and perform an action or validation, ensuring you
have Selenium WebDriver set up in your project to interact with the web
browser.

301

CHAPTER 12 TESTNG

import org.openqa.selenium.By;

import org.openga.selenium.WebDriver;

import org.openqga.selenium.WebElement;

import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.Assert;

import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

public class ExampleHtmlTest {
private WebDriver driver;

@BeforeMethod

public void setUp() {
System.setProperty("webdriver.chrome.driver”, "path/to/
chromedriver");
driver = new ChromeDriver();

}

@Test

public void testButtonPresence() {
// Replace the path with the absolute path to your
example.html
driver.get("file:///path/to/example.html");

// Locate the button by its ID
WebElement testButton = driver.findElement(By.
id("testButton"));

// Validate that the button is displayed
Assert.assertTrue(testButton.isDisplayed(), "Test
button should be displayed");

302

CHAPTER 12 TESTNG

@AfterMethod
public void tearDown() {
driver.quit();

o Setting up WebDriver

Set the system property for the Chrome driver and
initialize it. This opens a Chrome browser window.

o @BeforeMethod - setUp

This method prepares the testing environment before
each test method by initializing the WebDriver.

o @Test - testButtonPresence

The test method loads the local HTML file in the
browser using driver.get(“file:///path/to/example.
html”). Ensure to replace file:///path/to/example.
html with the actual file path on your machine.

Locate the button element using driver.
findElement(By.id(“testButton”)). An assertion is
used to check if the button is displayed on the page
using Assert.assertTrue.

o @AfterMethod - tearDown
This method is executed after each test method and is

responsible for closing the browser window and ending
the WebDriver session.

Finally, run the test by executing as a TestNG test from IDE. Open the
specified HTML file in Chrome, verify the presence of the button, and then
close the browser.

303

CHAPTER 12 TESTNG

This example demonstrates a basic use case of combining TestNG
with Selenium WebDriver to perform automated testing on a simple
HTML page. Such tests are crucial in validating UI elements and their
interactions, forming an integral part of web application testing. You can
expand upon these basics to test more complex scenarios and interactions
as you progress in the automation domain.

TestNG Assertions

TestNG provides a set of assertion methods in the Assert class, which are
crucial for verifying the correctness of test conditions. These assertions
are key in validating the expected and actual results in TestNG tests. Let’s
explore some commonly used assertions: assertEquals, assertTrue,
assertFalse, assertNull, and assertNotNull.

« assertEquals checks whether two values or objects are
equal. This method is one of the most commonly used

assertions.

@Test

public void testEquality() {
String expected = "TestNG";
String actual = "Test" + "NG";
Assert.assertEquals(actual, expected, "Strings are
not equal");

Here, assertEquals compares two strings: expected
and actual. The test fails if they are not equal, and the
provided message (“Strings are not equal”) is displayed.

304

CHAPTER 12

assertTrue verifies that a condition is true. It’s useful
when you want to assert that a certain condition holds.

@Test

public void testCondition() {
boolean condition = 5 > 3;
Assert.assertTrue(condition, "Condition is
not true");

}

In this case, assertTrue checks if the condition (5 > 3)
is true. If not, the test fails with a “Condition is not true”
message.

assertFalse checks that a condition is false. This
method is the opposite of assertTrue.

@Test
public void testFalseCondition() {
boolean condition = 3 > 5;

TESTNG

Assert.assertFalse(condition, "Condition is not

false");
}

Here, assertFalse verifies that the condition (3 > 5)
is false. If the condition is true, the test fails with a
“Condition is not false” message.

assertNull is asserted when an object is null.

@Test
public void testNull() {
Object myObject = null;

Assert.assertNull(myObject, "Object is not null");

305

CHAPTER 12 TESTNG

This method checks that myObject is null. If myObject
is not null, the test fails with an “Object is not null”
message.

o assertNotNull is used when you want to check if an
object is not null.

@Test
public void testNotNull() {
Object myObject = new Object();
Assert.assertNotNull(myObject, "Object is null");
}

This assertion verifies that myObject is not null. If myObject is null, the
test fails with an “Object is null” message.

An earlier chapter explored the capabilities of Selenium in performing
assertions directly within web automation scripts. As you integrate the
TestNG framework with Selenium, it’s important to remember that these
Selenium-based assertions can also serve as effective assertion methods
within your TestNG tests. Selenium, primarily a tool for web interactions,
offers a unique approach to validations directly from the web elements.
Combining this with TestNG’s structured testing approach creates a
comprehensive and robust testing environment.

In essence, while leveraging TestNG for its structured approach to
writing tests, you should not overlook the practicality and directness
of Selenium’s assertions. They complement the TestNG framework,
particularly when direct interaction with web elements is crucial. This
integration enriches test automation capabilities, ensuring a more
thorough and reliable validation process in web application testing
endeavors.

306

CHAPTER 12 TESTNG

Parameterized Testing in TestNG

Parameterized testing is a powerful technique in TestNG that allows the
execution of the same test multiple times with different sets of input data.
This approach is extremely beneficial when you need to test a function
or a piece of code with various inputs, enabling thorough coverage and
validation of different scenarios without writing multiple test methods for
each set of data.

In TestNG, parameterized tests are implemented using the
@DataProvider annotation, which supplies the data for the test, and the
@Test annotation, which consumes the data for execution.

Implementing Parameterized Testing in TestNG

Let’s walk through a simple example to demonstrate parameterized testing
using TestNG in a step-to-step guide.

Step 1: Define a DataProvider

First, define a method with the @DataProvider annotation, which returns a
two-dimensional array of objects. Each row in this array represents a set of
parameters; each column is a parameter value.

import org.testng.annotations.DataProvider;
public class TestParameters {

@DataProvider(name = "loginData")
public Object[][] provideLoginData() {
return new Object[][] {
{ "useri@example.com", "passwordi" },
{ "user2@example.com”, "password2" },

307

CHAPTER 12 TESTNG

{ "user3@example.com", "password3" }

s

In this example, the provideLoginData method generates data
for a hypothetical login test, with each row representing different user
credentials.

Step 2: Create a Test Method Using DataProvider
Let’s write a test method that uses the data provided by the DataProvider.

import org.testng.Assert;
import org.testng.annotations.Test;

public class TestParameters {
// DataProvider method from above

@Test(dataProvider = "loginData")

public void testlogin(String email, String password) {
System.out.println("Attempting login with: " + email +
"/ " + password);
// Imagine a function that attempts login and returns
a boolean
boolean result = attemptlLogin(email, password);
Assert.assertTrue(result, "Login should be
successful");

}

private boolean attemptLogin(String email, String
password) {
// Dummy login logic for illustration

308

CHAPTER 12 TESTNG

return email.contains("@example.com") && password.
startsWith("password");

The DataProvider (provideLoginData) generates a set of user
credentials. The @DataProvider annotation names this set of data as
loginData. The test method (testLogin) receives the parameters (email and
password) from the DataProvider. The @Test annotation is linked to the
DataProvider via its dataProvider attribute. The method contains a dummy
login function and an assertion to validate a successful login. This would
be replaced with actual login logic and validation in real-world scenarios.

Note The @DataProvidex annotation in TestNG and its
dataProvider attribute used within the @Test annotation are two
parts of the same feature but serve different roles in parameterized
testing.

When this test is run, TestNG invokes testLogin three times, once for
each set of credentials provided by the provideLoginData method. This
demonstrates how parameterized tests can efficiently test multiple data
sets with a single piece of test code.

Advanced TestNG Configuration
and Parallel Execution

As TestNG tests grow in complexity and size within IT projects, efficient
management and faster execution of tests become paramount. The
testng.xml configuration file and parallel test execution are powerful

309

CHAPTER 12 TESTNG

features of TestNG that address these needs. This section delves into how
to utilize testng.xml for custom test execution and to enable parallel
testing, enhancing test suite manageability and efficiency.

Utilizing testng.xml for Test Execution

The testng.xml file allows you to define and group test cases, manage test
execution orders, and specify parameters. The following is a basic example
of a testng.xml file that defines a test suite with two test groups.

<IDOCTYPE suite SYSTEM "https://testng.org/testng-1.0.dtd">
<suite name="MyTestSuite">
<test name="RegressionTests">
<classes>
<class name="com.example.tests.RegressionTest"/>
</classes>
</test>
<test name="SmokeTests">
<classes>
<class name="com.example.tests.SmokeTest"/>
</classes>
</test>
</suite>

This configuration allows for the separate execution of regression and
smoke tests, facilitating targeted testing strategies.

Enabling Parallel Execution in testng.xml

Parallel execution can significantly reduce the total runtime of tests. In the
testng.xml file, the parallel attribute and thread-count can run tests,
classes, or methods in parallel based on your project’s requirements. The
following is an example of enabling parallel execution at the method level.

310

CHAPTER 12 TESTNG

<IDOCTYPE suite SYSTEM "https://testng.org/testng-1.0.dtd">
<suite name="MyParallelTestSuite" parallel="methods" thread-
count="5">
<test name="ParallelMethodTests">
<classes>
<class name="com.example.tests.ParallelMethodTest"/>
</classes>
</test>

</suite>

This configuration runs up to five methods in parallel, optimizing
execution time for larger test suites.

Implementing Parallel Execution:
A Practical Example

Consider a scenario where multiple test methods need to run in parallel
within a single class. The following example class could be executed in
parallel as configured in testng.xml.

package com.example.tests;
import org.testng.annotations.Test;
public class ParallelMethodTest {

@Test

public void testMethodOne() {
// Simulate test execution time
Thread.sleep(2000); // Just for demonstration
System.out.println("Test Method One.");

}

311

CHAPTER 12 TESTNG

@Test

public void testMethodTwo() {
Thread.sleep(2000); // Just for demonstration
System.out.println("Test Method Two.");

}
// Additional test methods follow

When executed as a part of the parallel configuration in testng.xml,
these methods run concurrently, assuming system resources allow,
thereby reducing the total execution time.

By strategically utilizing the testng.xml file for test execution and
enabling parallel runs, you can significantly enhance the performance and
scalability of your Selenium automation tests with TestNG. This approach
saves valuable testing time and makes managing large and complex test
suites more manageable. Remember to consider thread safety and shared
resources when designing tests for parallel execution to avoid flaky tests.
Through these advanced configurations, TestNG offers a flexible and
powerful way to optimize automated testing workflows.

Best Practices for Using TestNG
with Selenium

Combining TestNG with Selenium forms a powerful duo for automated
testing. Adhering to certain best practices is crucial to maximize their
effectiveness. These practices streamline your testing process and ensure
maintainability, scalability, and robustness in test suites.

312

CHAPTER 12 TESTNG

Organize tests using TestNG annotations.
Utilizing TestNG annotations like @BeforeSuite,
@BeforeTest, @BeforeClass, @BeforeMethod, and
their corresponding @After annotations to set up
and tear down test environments. This ensures that
each testis run in a clean state.

Use data-driven testing. Leverage TestNG's
@DataProvider for data-driven testing. This
approach allows you to run the same test with
different data sets, enhancing test coverage and
efficiency, as you have seen in parameterized testing.

Prioritize test methods. Use the priority attribute
in the @Test annotation to order your test methods.
This is particularly useful when certain tests need to
be executed before others.

Group your tests. The groups attribute in TestNG
to categorize tests, such as smoke, regression, or
sanity. This enables you to run selected groups

of tests independently and manage them more
effectively.

Maintain independent tests. Design tests to be
independent of each other. Each test should be
able to run on its own without depending on the
outcome of other tests unless necessary.

Assert effectively. Use TestNG’s assert methods
or Selenium asserts judiciously to validate test
outcomes. Clear and precise assertions are key to
determining the success or failure of a test.

313

CHAPTER 12 TESTNG

7. Implement parallel execution. You can use
TestNG'’s parallel execution feature to run multiple
tests simultaneously, thereby reducing the overall

execution time.

8. Handle dependencies carefully. When using
the dependsOnMethods or dependsOnGroups
features, ensure that dependencies are necessary.
Overdependence between tests can lead to
maintenance challenges.

9. Keep tests and data separate. Store test data (URLs,
credentials, etc.) separately from the test scripts,
ideally in external files or data providers. This
promotes easier data management and test updates.

10. Incorporate continuous integration. Integrating
your TestNG and Selenium tests into a CI/CD
pipeline for continuous testing and feedback.

11. Regularly review and refactor. Regularly review
test code for improvements and refactor as
needed to enhance readability, performance, and
maintainability.

12. Document your tests. Maintaining clear
documentation for your test cases and code is
especially helpful for new team members or when
revisiting tests after a long period.

By following these best practices, you can harness the full potential of
TestNG and Selenium in your testing projects, ensuring that automated
tests are not only effective and reliable but also adaptable to the changing
needs of your applications.

314

CHAPTER 12 TESTNG

Summary

This final chapter presented a detailed exploration of integrating TestNG
with Selenium, a combination that elevates automated web testing to
new heights. It began with an overview of TestNG, highlighting its robust
features like parallel execution, flexible configurations, and powerful
annotations. These features complement Selenium’s web automation
capabilities and are crucial for efficient test management.

Key topics included a deep dive into TestNG annotations, essential
for structuring automated tests, and examining TestNG’s assertions for
validating test outcomes. The chapter emphasized the significance of
parameterized testing using TestNG’s @DataProvider, illustrating how
to run the same test with varying data sets—a core aspect of data-driven
testing.

The synergy between TestNG and Selenium was the focal point,
showcasing how their integration enhances the creation of robust,
scalable, and maintainable test suites. Practical examples provided a
hands-on perspective, marrying theory with application. The advanced
TestNG configurations and the pivotal role of parallel execution showcase
how to leverage testng.xml for customized test suites and significantly
reduce execution times by running tests concurrently, optimizing the
efficiency and scalability of Selenium automated testing.

In conclusion, this final chapter served as a comprehensive guide
to harnessing the combined power of TestNG and Selenium, offering
invaluable insights for testers aiming to refine their automated testing
strategies. The best practices discussed herein form a crucial part of this
learning, ensuring that testers are equipped with technical knowledge
and the methodologies to apply these tools effectively in their testing

environments.

315

Index

A

Action chains, 47, 76
@After annotations, 313
@AfterMehod-tearDown, 303
Ajax calls, 258
Annotations, 272, 273, 281, 286,
288, 289, 294, 298-301, 307,
309, 313
Apache Maven, 293
assertEquals method, 187, 304
assertFalse method, 189, 305
AssertionError exception, 191
Assertions, 286
automated tests, 180, 181
baseline data, 199
custom (see Custom assertions)
definition, 180
environment stability, 200
error messages, 201
fails, 191
false negatives, 199
false positives, 199
handle assertion failures,
191, 192
hard, 181-183, 185
logging, 192
methods, 187-190

© The Editor(s) (if applicable) and The Author(s),

mistakes, 197
reporting, 192, 200
simple and specific, 201
soft, 183, 185
test cases, 202
testing, 197, 198
use, 200
assertNotEqual method, 187
assertNotNull method, 306
assertNull method, 189, 305, 306
assertTrue method, 188, 305
Attributes, 80-81, 85, 91, 103, 127,
166, 215, 294
Automated test scripts, 180, 220,
262, 263

B

@BeforeMethod, 303, 313
Browser commands, 31
Browser position, 39, 41, 210
Browser size
coordinates, 39, 40
full-screen mode, 38
maximizing, 37
minimize() method, 37
window size, 38, 41

317

under exclusive license to APress Media, LLC, part of Springer Nature 2024
S. Raghavendra, Java Testing with Selenium, https://doi.org/10.1007/979-8-8688-0291-1

https://doi.org/10.1007/979-8-8688-0291-1

INDEX

C

Cascading style sheets (CSS)
selectors, 77, 84, 96-99, 113,
115,120, 130

Checkboxes

asserting deselection, 148
asserting element

type, 149
asserting selection, 148
by name, 144
deselect all, 147
deselecting value, 147
display, 143
ID, 143
label, 144
locate/select, 143
select all, 145
select/deselect, 146
select value, 145
testing ground, 142
validating assertions, 148
visible text, 144, 146

Class name locator, 88, 89

click() method, 130, 132

close command, 36

ConnectionClosedException, 207

Connection exception, 206

CSS selectors, 96

attribute selectors, 103
begins with (A=), 106
contains (*=), 105
ends with ($=), 106, 107
exact value, 104, 105
presence, 103, 104

318

specificity selector, 107, 109
basic selectors, 96
class selector, 97, 98
ID selector, 98
type selector, 97
universal selector, 99
combinators, 99
adjacent sibling selector (+),
101, 102
child selector (>), 100, 101
descendant selector
(space), 100
general sibling selector (~),
102, 103
pseudo-class, locating elements
first child element, 109
last child element, 109
nth child element, 110
Custom assertions, 179, 192
application requirements, 193
data validity, 194

D

Data-driven testing, 288-290, 297,
313, 315
@DataProvider annotation, 309
Dependency testing, 288
dependsOnGroups
function, 314
dependsOnMethods function,
296, 314
Disabled buttons, 135-136
Documentation, 181, 272, 314

Document Object Model (DOM),
117,231
create page class, 264, 265
create test scripts, 265, 266
difinition, 79
nodes, 81
relationships, 82
structure, 83
driver.findElement(), 250

E

Eclipse IDE
configuration, 26
download, 24
installation, 25
Java project, 26
launching, 26
run, installer, 25
Efficiency, 79, 180, 290, 313
ElementClickIntercepted
Exception, 207
Element interaction
exceptions, 207-208

ElementNotInteractableException,

207,216
ElementNotSelectableException,
208, 217
ElementNotVisibleException,
208, 217
Error detection, 181
ErrorHandler.UnknownServer
Exception, 218
ErrorInResponseException, 218

INDEX

Exceptions

alert/pop-up, 213
attribute/property, 215
browser capacity, 214
connection, 206
customized exception handling,
224,225
element interaction, 207
element state, 216
executing JavaScript, 211
handling cookies, 215
handling window, 216
input/argument, 212
multiple catch blocks, 223, 224
navigation issues, 210
screenshot, 213
selector/search issues, 210
Selenium WebDriver, 219
server response, 218
session, 212
state-based, 208
throw keyword, 222
timeout, 221
timeout/delay, 209
try-catch, 220
try-catch-finally block, 221
writing Selenium, 225, 227

ExpectedConditions class, 258

alertIsPresent(), 242

attributeToBe(By locator, String
attribute, String value), 246

attributeToBeNotEmpty(Web
Element element, String
attribute), 246

319

INDEX

ExpectedConditions class (cont.)
elementToBeClickable(By
locator), 235
elementToBeClickable(Web
Element element), 235
elementToBeSelected(By
locator), 236
elementToBeSelected
(WebElement element), 236
frameToBeAvailableAndSwitch
Tolt(By locator), 242
frameToBeAvailableAndSwitch
Tolt(int frameLocator), 243
frameToBeAvailableAnd
SwitchTolt(String
frameLocator), 242
invisibilityOfElementLocated
(By locator), 243
invisibilityOfElementWith Text(
By locator, String text), 244
numberOfElementsToBe(By
locator, int number) 16, 244
numberOfElementsToBeLessTh
an(By locator, int
number), 245
numberOfElementsToBeMoreT
han(By locator, int
number), 245
presenceOfAllElementsLocated
By(By locator), 237
presenceOfElementLocated(By
locator), 237
refreshed(ExpectedCondition<T>
condition), 248

320

textToBePresentInElement(Web
Element element, String
text), 240
textToBePresentInElement
Located(By locator, String
text), 240
textToBePresentInElementValue
(By locator, String text), 240
titleContains(String title), 241
titleIs(String title), 241
urlContains(String fraction), 247
urlMatches(String regex), 247
urlToBe(String url), 247
visibilityOf(WebElement
element), 238
visibilityOfAllElements(List<Web
Element> elements), 239
visibilityOfAllElementsLocated
By(By locator), 239
visibilityOfElementLocated(By
locator), 238

Explicit waits

ExpectedConditions, 233
vs. implicit waits, 234
precision, 259

time, 235

WebDriver, 233

F, G
False negatives, 199, 200, 203

False positives, 199, 200, 203
@FindBy annotation, 272-274,

277,278

findElements() method, 111, 221
Fixed sleeps (Thread.sleep()), 257
Fluent wait
advanced wait capabilities, 248
highest level of control, 259
key features, 251
NoSuchElementException, 250
setup, 248
time frame, 250
WebDriverWait, 248
Frame, 164, 209, 211, 242
Frameworks, 8, 16, 192, 286, 290

H

Hard assertions, 181-183, 185, 186
Hyperlinks
data attributes, 127
definition, 119, 120
HTTP status codes, 124, 125
ID, 120
images, 125, 126
list, 122
nth, 122
partial link text, 121
testing, 122, 123
text, 121
valid hyperlink, 123, 124
xpath, 121
HyperText Markup
Language (HTML)
definition, 80
elements, 83
web elements, 80

INDEX

ID locator, 84
iframes
accessing first-level, 170
accessing second-level/
nested, 170
hierarchy, 168, 169
ID attribute, 166
index value, 166
locate, 171
main document, 169
name attribute, 166
returning to first-level, 170
returning to main document, 171
Selenium website, 165
switching, 166
testing, 164
uses, 163
waits, 172, 173
web page, 164
Image button, 133-134, 159
ImeActivationFailedException, 214
ImeNotAvailableException, 214
Implicit waits
DOM, 231
global setting, 259
try-catch block, 233
Watir tool, 231
WebDriver, 231
InsecureCertificateException, 214
Integrated development
environments (IDEs), 16,
47,291, 292, 294, 303

321

INDEX

Intelli] IDEA, 16, 291-293
InvalidArgumentException, 212
InvalidCookieDomain

Exception, 215
InvalidElementState

Exception, 208, 217
InvalidSelectorException, 211
isEnabled() method, 136

J

Java, 15

community, 16

ecosystem, 17

IDEs, 16

libraries, 15

OOP, 15

platform independence, 15

stability and reliability, 16

testing frameworks, 16
Java development

environment, 24, 287
Java Development Kit (IDK),
20-22, 24, 31

JavaScript button, 134-135
Java setup

environment variables, 22, 23

JDK

download, 20, 21
installation, 21, 22

updation, 24

verification, 23
JUnit, 286

description, 286

322

features, 286, 287
vs. TestNG, 288, 289

K

Keyboard actions, 67
keyDown method, 68
keys, 67, 68
keyUp method, 68
scroll, 70

element, 74
offset, 75
scrollByAmount
method, 71, 72
scrollToElement
method, 70, 71
web elements, 73
sendKeys method, 69

L

Link text locator, 85-86

Locators, 84,112,113, 117,119,
242, 262, 264, 265

LoginTest.java, 265, 266, 275-276

Maven, 26, 292-293

Mouse actions, 48
click-and-hold method, 51, 52
click method, 48, 49
context click function, 50, 51
double click, 49

pause, 52
perform() function, 52
release, 53
reset, 53, 54
Mouse movement, 54
drag-and-drop
element, 60, 61, 63-65
offset, 65, 67
move to element, 54, 55
offsets, 55, 56
current position, 59, 60
element, 56, 57
viewport, 58, 59
MoveTargetOutOfBounds
Exception, 213
Multiline textbox, 175, 176
insert values, 176
locate, 176
retrieving values, 177
Multiple web elements
best practices, 115, 116
challenges, 114
HTML code, 111
Java code, 112
Java syntax, 111
locating, 110, 112
locators, 112,113
MultiSelectList
after selection, 155
asserting, 157
asserting deselections, 157
asserting element type, 157
before selection, 155
deselecting options, 156

INDEX

HTLM form, 154

select class, 156

validating, 156
myObject, 306

N

Name locator, 85
Navigation commands
navigate().back(), 42
navigate().forward(), 43
navigate().refresh(), 44
Need for waits
dynamic content loading, 230
network latency, 230
performance variations, 230
reducing flakiness, 230
synchronization, 230
uncertain user inputs, 231
Nested iframe, 169, 170, 177
NoAlertPresentException, 210
NoSuchContextException, 216
NoSuchElementException,

210, 211
NoSuchFrameException, 168, 211
NoSuchWindowException,

210, 216

O

Object-oriented

programming (OOP), 15, 282
Offline web pages, 34, 35
Online web pages, 34, 35

323

INDEX

P

Page Factory
applications, 282
dashboard, 274
implement, 279
limitations, 281
login page, 273, 274
page objects, 275
vs. POM, 278, 279
setting up, 272
setup, 276
steps to implement, 277
use, 277
PageFactory.initElements
method, 274
Page Object Model (POM), 261, 263
applications, 282
best practices, 269-272
components, 266, 267
Java files, 266
limitations, 280
vs. traditional, 268, 269
Parallel execution, 288, 314
Parameterized testing
@DataProvider annotation,
307, 308
@DataProvider test method,
308, 309
definition, 307
Parameterized tests, 287
Partial link text locator, 86, 87
Project object model (POM), 293
provideLoginData method, 308, 309

324

Q

quit command, 35, 36

R

Radio buttons, 138-139

deselect, 141

index values, 140

label, 140

locating elements, 139

unique ID, 140

validating, 141

verify the state, 141
Realistic timeout settings, 257
Reusability, 79, 268, 283

S

Scalability, 79, 269, 312
SelectList element
all options, 152
assert, 153
assert element type, 153
default/neutral option, 152
deselecting, 152
HTML code, 149, 150
interact, 150
locate/select by index, 151
locate/select by value, 151
retrieving options, 151
validating
selections, 153
visible text, 151

Selenium, 1
abilities, 9
advantages, 18
architecture
black diagram, 11, 12
core components, 10, 11
webdrivers, 11
assertions, 306
automation tests, 312, 315
automation tool
comparison, 12-14
browsers, 8
capabilities, 9
communities, 9
definition, 3
ecosystem, 6
evolution, 7,9
frameworks, 8
genesis/development, 4
IDE, 5
Java, 15-17
languages, 8
open source, 7
platforms, 8
Remote Control (RC), 4
Selenium 2.0, 5
Selenium 3.0, 6
Selenium 4.0, 6
testing scenarios, 9
web automation capabilities, 315
WebDriver, 5
website, 165
Selenium installation
JARs, 29

INDEX

Java project, 29

test script, 30

verification, 29, 30

WebDriver, 27, 28
Selenium WebDriver

application, 45

browser position, 39

close/quit commands, 35

download, 27

integration, 45

interface, 31

Java code, 31, 33, 34

locators, 117

multiple elements, 111

web pages, 42
Single-line textbox, 174
softAssert.assertAll() statement, 185
Soft assertions, 183, 185
StaleElementReference

Exception, 209

Standard HTML button

assert, 131-134

submit, 131, 132
State-based exceptions, 208-209
Submit button, 105, 131-133,

160, 181

switchTo().frame() method, 168

-

Tag name locator, 87, 88

@Test annotation, 309, 313
dataProvider, 297
dependsOnMethods, 296

325

INDEX

@Test annotation (cont.)
enabled, 295
expectedExceptions, 297
groups, 296
priority, 295
TestNG annotations, 298

Testing applications, 2-3

Testing buttons
cross-platform/cross-

browser, 160
dynamic/contextual
behavior, 161
error handling, 161
function, 159
interaction, 159
performance
considerations, 160
post-interaction, 160
security considerations, 160
state, 159
visibility, 158
Test Next Generation (TestNG)
annotations and attributes,
294, 300
assertion functionality, 195
assertions
assertEquals, 304
assertFalse, 305
assertNotNull, 306
assertNull, 305, 306
assertTrue, 305
best practices, 312-314
@DataProvider, 315
dependency, 292

326

design philosophy, 287
enhancing Selenium tests, 285
features, 287, 288
framework, 306
modern testing
framework, 287
parameterized testing (see
Parameterized testing)
parallel execution
enabling, 310, 311
implementation, 311, 312
Selenium WebDriver
efficient parallel testing, 290
enhanced data-driven
testing, 290
structured and scalable
testing, 290
superior reporting, 290
setting up (see Setting
up TestNG)
simplifying testing needs, 287
test case with Selenium, 301
testng.xml file, 310
writing test case, 301-304

TestNG, setting up

advanced testing, 294
configuration, 294
creating new Java project, 292
incoporating into projects
Maven-based projects,
292,293
non-Maven projects, 293
installing in IDEs
Eclipse, 291

Intelli] IDEA, 291, 292
Test runners, 286
Test suites, 197, 224, 258, 262,
269, 287
@Test annotations
@BeforeClass/@AfterClass, 299
@BeforeMethod/@
AfterMethod, 300
@BeforeSuite and @
AfterSuite, 298
@BeforeTest/ @AfterTest, 299
@Test-testButtonPresence, 303
Textboxes
insert values, 174
multiline, 175, 176
retrieve values, 175
single line, 174
TimeoutException, 209, 236, 237,
239, 241, 243-248, 253
Toggle buttons, 129, 137-138, 159
Try-catch
keywords, 220

uv
UnableToSetCookieException, 215
UnexpectedAlertPresent
Exception, 213
UnexpectedTagName
Exception, 218
Uniform Resource Locator (URL),
28, 34,42, 119, 123, 125,
164, 180, 192, 247, 314
UnknownMethodException, 219

INDEX

W

Waits, 172
asynchronous behavior
handling, 229
best practices, 256-259
comparative analysis, 255
flaky tests, 229
importance (see Need for waits)
Waits selection
explicit wait, 252, 253
fluent wait, 253, 254
implicit wait, 251, 252
Wait types
explicit waits, 233-235
fluent wait, 248-250
implicit
waits, 231-233
Web applications, 3, 9, 35, 37-39,
41, 42, 44, 45, 47, 51, 60, 74,
78,79, 119, 120, 158, 162,
172,180, 219, 276, 290
Web application testing, 2, 3, 5, 9,
17,18, 31, 130, 163, 290, 304
Web automation, 78-79, 82, 96, 99,
114, 306
WebDerverWait class, 233
WebDriver
exception, 212, 220
Web element
locators, 77, 78, 117
Web pages, 79
offline, 35
online, 34, 35

327

INDEX

XY, Z

XPath locators
absolute XPath, 89, 90
attribute-based XPath, 91
logical operators, 93, 96

328

and operator, 93, 94

not operator, 95

or operator, 94, 95
positional filters, 92, 93
relative XPath, 90, 91

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Selenium: Java Automation
	Introduction
	The Need for Testing Application
	What Is Selenium?
	Development and History of Selenium
	The Genesis and Early Development (2004–2006)
	The Birth of Selenium
	Selenium Remote Control (RC)

	Expanding Horizons (2006–2011)
	Selenium IDE
	The Introduction of WebDriver
	Selenium 2.0: A Major Milestone

	Maturing and Expanding (2011–2018)
	The Advent of Selenium 3.0
	Growth of the Selenium Ecosystem

	The Modern Era of Selenium (2018–Present)
	Selenium 4.0: The Future Realized

	Why Selenium? Unraveling the Strengths of Selenium in Web Testing
	Open Source Advantage
	Language and Framework Flexibility
	Cross-Browser and Cross-Platform Testing
	Advanced Capabilities for Complex Test Scenarios
	Community and Continuous Evolution

	Selenium Architecture
	Core Components

	Automation Tool Comparison: Selenium and Alternatives
	Java: Selenium’s Preferred Language
	Summary

	Chapter 2: Selenium Essentials: Setup and Browser Commands
	Setting up Java on Your Machine
	Step 1: Download the Java Development Kit (JDK)
	Step 2: Install the JDK
	Step 3: Set Environment Variables
	Step 4: Verify the Installation
	Step 5: Update When Necessary

	Installing Eclipse IDE
	Step 1: Download Eclipse
	Step 2: Run the Eclipse Installer
	Step 3: Install Eclipse
	Step 4: Complete the Installation
	Step 5: Launch Eclipse
	Step 6: Configure Eclipse (Optional)
	Step 7: Create a Java Project to Test

	Selenium Installation
	Step 1: Download Selenium WebDriver
	Step 2: Create a New Java Project in Eclipse
	Step 3: Add Selenium JARs to the Project
	Step 4: Verify Installation
	Step 5: Run the Test Script

	Browser Commands
	Opening a Selenium WebDriver Using Java Code
	Opening a Web Page Online or Offline
	Online Web Pages
	Offline Web Pages

	Understanding close and quit Commands
	close Command
	quit Command

	Setting up Browser Size
	Maximizing the Browser Window
	Minimizing the Browser Window
	Setting a Specific Browser Window Size
	Using Full-screen Mode

	Setting the Browser Position with Selenium WebDriver
	Setting the Size Using Coordinates
	Getting the Browser Position
	Getting the Window Size
	Navigating Through Web Pages with Selenium WebDriver
	Navigating Back
	Navigating Forward
	Refreshing the Page

	Summary

	Chapter 3: Mouse and Keyboard Actions
	Action Chains
	Mouse Actions
	Click
	Double Click
	Context Click
	Click and Hold
	Perform
	Pause
	Release
	Reset

	Mouse Movements
	Move to Element
	Move by Offset
	Offset from Element
	Offset from Viewport
	Offset from Current Pointer Location
	Drag and Drop on Element
	Drag and Drop by Offset

	Keyboard Actions
	Keys
	Key Down
	Key Up
	Send Keys
	Scroll
	Scroll to Element
	Scroll by a Given Amount
	Scroll from an Element by a Given Amount
	Scroll from an Element with an Offset
	Scroll from an Offset of Origin by Given Amount

	Summary

	Chapter 4: Web Elements
	What Are Web Element Locators?
	Why Are Web Element Locators Important in Web Automation?
	Understanding the DOM
	HTML and DOM Basics
	HTML Web Elements

	Attributes
	Overview of the DOM Tree Structure

	Relationships in the DOM

	Locators
	ID Locator
	Name Locator
	Link Text Locator
	Partial Link Text Locator
	Tag Name Locator
	Class Name Locator
	XPath Locators
	Absolute XPath
	Relative XPath
	Attribute-Based XPath
	Positional Filters in XPath
	XPath with Logical Operators
	Using and Operator
	Using or Operator
	Using the not Operator

	CSS Selectors
	Types of CSS Selectors and Their Use Cases
	Basic Selectors
	Type Selector
	Class Selector
	ID Selector
	Universal Selector

	Combinators
	Descendant Selector (Space)
	Child Selector (>)
	Adjacent Sibling Selector (+)
	General Sibling Selector (~)

	Attribute Selectors
	Presence
	Exact Value
	Partial Match Types
	Contains (*=)
	Begins with (^=)
	Ends with ($=)
	Specificity

	Pseudo-Classes for Locating Elements
	Locating the First Child Element
	Locating the Last Child Element
	Locating the Nth Element

	Locating Multiple Web Elements
	Table for Locators to Locate Multiple Elements
	Common Challenges for Locating Web Elements
	Best Practices to Overcome Challenges

	Summary

	Chapter 5: Navigations
	Hyperlinks
	Hyperlink by ID
	Hyperlink by Text
	Hyperlink by Partial Link Text
	Hyperlink by XPath
	nth Hyperlink
	Return All Hyperlinks
	Testing Hyperlinks
	Check for a Valid Hyperlink
	Check for Broken Images
	Data Attributes Hyperlinks
	Summary

	Chapter 6: Buttons
	Standard HTML Button
	Asserting Button Type
	Submit Button
	Asserting Button Type
	Image Button
	Asserting Button Type

	JavaScript Button
	Disabled Button
	Asserting Button Type

	Toggle Button
	Radio Buttons
	Locating and Selecting with Radio Buttons
	By ID
	Using Label
	By Index Values
	Myth of Deselecting Radio Buttons
	Validating Your Choices with Assertions
	Validating / Confirming Element Type

	Verifying the Selection State

	Checkboxes
	Locating and Selecting Checkboxes
	By ID
	Using Label
	By Name
	Selecting a Checkbox by Visible Text
	Selecting a Checkbox by Value
	Select All Checkboxes at Once
	Selecting and Deselecting by Index
	Deselecting a Checkbox by Visible Text
	Deselecting a Checkbox by Value
	Deselect All Checkboxes at Once
	Validating a Checkbox with Assertions
	Asserting Selection
	Asserting Deselection
	Asserting Element Type
	SelectList
	Locating and Interacting with SelectList
	Locate and Select by Visible Text
	Locate and Select by Value
	Locate and Select by Index
	Retrieving All Available Options
	Get All Options
	Deselecting Options in SelectList
	Simulating Deselect by Selecting a Default Option
	Validating SelectList Options and Selections
	Assert the Selected Option
	Assert Element Type
	MultiSelectList

	Selecting and Deselecting Options with MultiSelectList
	Selecting Multiple Options
	Deselecting Options
	Validating Multiple Selections and Deselections
	Asserting Multiple Selections:
	Asserting Deselections
	Asserting Element Type for MultiSelectList
	Testing Considerations
	Button Visibility and Accessibility
	Button State
	Button Functionality
	Button Interaction
	Validation Post-Interaction
	Security Considerations
	Performance Considerations
	Cross-Platform and Cross-Browser Testing
	Dynamic and Contextual Behavior
	Error Handling

	Summary

	Chapter 7: iframes and Textboxes
	iframes
	Switching to an iframe
	Switch Using ID
	Switch Using Name
	Switch Using Index Value
	Hierarchy in Switching iframes
	Navigating an iframe in a Hierarchy
	Switch as an Element
	Frames with Waits
	Textboxes
	Single Line Textbox
	Multiline Textbox
	Locating the Multiline
	Inserting Values
	Retrieving a Value from a Multiline Textbox

	Summary

	Chapter 8: Assertions
	What Are Assertions?
	The Need for Assertions
	Hard Assertions (Asserts)
	Soft Assertions (Verify)
	Hard vs. Soft
	Assert Methods in Selenium

	Handling Assertion Failures
	What Happens When an Assertion Fails?
	Handling Assertion Failures Gracefully
	Logging and Reporting Assertion Failures

	Custom Assertions
	Creating Custom Assertion Methods for Specific Application Requirements
	Example: Custom Assertion for Checking Data Validity

	Extending Assertion Functionality
	Example: Extending Assertion Functionality in TestNG

	Common Pitfalls and Mistakes in Selenium Assertions
	Common Mistakes When Using Assertions
	Avoiding False Positives and False Negatives
	False Positives
	False Negatives
	Baseline Data
	Environment Stability
	Effective Reporting

	Best Practices for Using Assertions in Selenium
	When to Use Assertions
	Keeping Assertions Simple and Specific
	Using Meaningful Error Messages
	Organizing Assertions within Test Cases

	Summary

	Chapter 9: Exceptions
	What Is an Exception in Selenium?
	Types of Exceptions
	Common Exceptions in Selenium
	Connection Exception
	Element Interaction Exceptions
	State-based Exceptions
	Timeout and Delay Exceptions
	Navigation Issues
	Selector and Search Issues
	JavaScript Execution Exceptions
	Session Exceptions
	Driver Configuration and Capability Exceptions
	Input and Argument Exceptions
	Alert and Pop-up Exceptions
	Screenshot Exception
	Movement and Action Exception
	Browser Capability and Support Exception
	Attribute and Property Exception
	Cookie Handling Exception
	Window Handling Exceptions
	Element State Exceptions
	Server and Response Exceptions
	Other Exceptions

	Handling Exceptions in Selenium
	Why Exception Handling Is Essential in Selenium WebDriver

	Handling Exceptions
	Element Not Found Using try-catch

	Timeout Exception Using try-catch-finally
	Stale Element Exception Using try-catch-finally with throw
	Handling Various Exceptions Using Multiple catch Blocks
	Handling Custom Exceptions
	Best Practices to Handle Exceptions
	Summary

	Chapter 10: Wait Strategies in Selenium Test Automation
	Need for Waits
	Dynamic Content Loading
	Network Latency and Performance Variations
	Synchronization
	Reducing Flakiness
	Uncertain User Input

	Wait Types
	Implicit Waits
	Explicit Waits
	Commonly Used ExpectedConditions in the Java Class
	Fluent Waits
	Key Features of a Fluent Wait
	Selecting the Right Wait
	Implicit Wait
	Explicit Wait
	Fluent Wait
	Comparative Analysis of Implicit, Explicit, and Fluent Waits
	Best Practices to Use Waits in Selenium Test Automation
	Summary

	Chapter 11: Page Object Model (POM)
	The Conventional Approach
	What Is POM?
	Decoding DOM
	Create a Page Class
	Create Test Scripts Using Page Objects

	Java Files in POM
	Complete Analysis and Description of Creating a POM
	Differences between Traditional and POM
	POM Best Practices

	Factory Page
	Setting Up Page Factory
	LoginPage.java: Representing the Login Page
	DashboardPage.java: Representing the Dashboard Page
	LoginTest.java: Test Script Utilizing Page Objects

	Summarizing the Setup
	Steps to Implement Page Factory
	When to Use Page Factory
	Differences Between POM and Page Factory
	Best Practices for Implementing Page Factory

	Limitations of POM and Page Factory
	Limitations of POM
	Limitations of Page Factory

	When and Which One to Use: POM vs. Page Factory
	When to Use POM
	When to Use Page Factory

	Making the Decision
	Summary

	Chapter 12: TestNG
	Understanding Frameworks in Depth
	JUnit Overview
	Exploring the Features of JUnit
	Transitioning to TestNG: Elevating Beyond JUnit
	TestNG Features
	Comparative Analysis: JUnit vs. TestNG
	TestNG in Selenium WebDriver: A Synergistic Combination
	Setting Up TestNG: A Step-by-Step Guide
	Step 1: Installing TestNG in IDEs
	Eclipse
	IntelliJ IDEA

	Step 2: Creating a New Java Project
	Step 3: Incorporating TestNG into the Project
	For Maven-based Projects
	For non-Maven Projects

	Step 4: Confirming Your TestNG Setup

	TestNG Annotations and Attributes
	@Test: The Core of TestNG
	@Test with Other Annotations
	@BeforeSuite and @AfterSuite
	@BeforeTest/@AfterTest
	@BeforeClass/@AfterClass
	@BeforeMethod/@AfterMethod

	TestNG Test Case with Selenium
	HTML Snippet Example

	Writing TestNG Test Case
	TestNG Assertions
	Parameterized Testing in TestNG
	Implementing Parameterized Testing in TestNG
	Step 1: Define a DataProvider
	Step 2: Create a Test Method Using DataProvider

	Advanced TestNG Configuration and Parallel Execution
	Utilizing testng.xml for Test Execution
	Enabling Parallel Execution in testng.xml

	Implementing Parallel Execution: A Practical Example
	Best Practices for Using TestNG with Selenium
	Summary

	Index

