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Preface 

The work on CMSA started in 2015 during my years as an Ikerbasque Research 
Fellow at the University of the Basque Country in San Sebastian. It originated 
from the observation that large neighborhood search (LNS) algorithms based 
on the partial destruction of an incumbent solution at each iteration sometimes 
underperform in the context of optimization problems in which solutions contain 
rather few solution components. (As an example, think about a multi-dimensional 
knapsack problem instance with very tight resource constraints.) Our intention, in 
the context of the Ph.D. thesis of Pedro Pinacho Davidson, was then to develop 
an alternative hybrid algorithm that would work well in those cases in which LNS 
showed problems. In the meanwhile, two other Ph.D. students from my group at 
the IIIA-CSIC in Bellaterra (Barcelona), Mehmet Anıl Akbay and Jaume Reixach, 
have been working on different aspects of CMSA. Moreover, the initial paper on 
CMSA (published under the title “Construct, merge, solve & adapt: A new general 
algorithm for combinatorial optimization”, which was published in 2016 in the 
journal Computers and Operations Research, has received 106 citations (Google 
Scholar, February 2024). Moreover, to date, CMSA has been applied to 20 different 
combinatorial optimization problems. 

I am also happy to say that our work on CMSA has received two awards 
in recent years. The first one was the best paper award at the ECOM track of 
the GECCO 2016 conference for a paper on the application of CMSA to the 
multi-dimensional knapsack problem. The second award was the one for The Best 
Methodological Contribution in Operations Research jointly given by the Spanish 
Society of Statistics and Operations Research (SEIO) and the BBVA Foundation in 
2021. 

This book aims to give an account of the current state of the research efforts 
on CMSA. After shortly introducing the general line of research and the tools to 
be used in the book, the first chapter provides a didactical introduction to standard 
CMSA in the context of the minimum dominating set problem. In addition, the C++ 
program code used for part of the experiments presented in this chapter is offered 
in Appendix A. The following four chapters are dedicated to important CMSA 
variants (ADAPT_CMSA and LEARN_CMSA), respectively, to important topics for
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the practical application of CMSA: the use of set-covering-based ILP models for 
sub-instance solving, and the application of CMSA to optimization problems that 
are naturally modeled by non-binary ILPs. Finally, the last chapter outlines research 
lines that have not yet received much attention. Moreover, several avenues for 
current and future work are described. I believe that this book will be useful and 
inspiring for everyone who plans to apply CMSA to a specific optimization problem. 

I am very grateful to the following people. The main idea of LEARN_CMSA 

presented in Chap. 3 of this book was contributed by Pedro Pinacho Davidson, who 
was my Ph.D. student at the University of the Basque Country, and who is nowadays 
an associate professor at the Universidad de Concepción, Chile. Moreover, Pedro 
prepared the initial implementation of LEARN_CMSA for the FFMS problem. The 
idea of ADAPT_CMSA presented in Chap. 2 was developed together with Mehmet 
Anıl Akbay, who was my Ph.D. student at the time of preparing this book. The same 
holds for the use of set-covering-based ILP models for sub-instance solving in the 
context of the EVRP-TW-SPD problem in Chap. 4. Mehmet provided the CMSA 
implementation for the EVRP-TW-SPD problem. Moreover, some of the text in this 
chapter was written based on his original texts. I am also grateful to Camilo Chacón 
Sartori, one of my latest Ph.D. students, who implemented the web application 
STNWeb for the generation of the nice and informative STN graphics presented 
in this book. Last but not least, thanks to Guillem Rodríguez, Jaume Reixach, and 
Camilo Chacón for proofreading (parts of) the book. Many thanks to all of you! 

To end, promising research remains to be done in the context of the CMSA 
algorithm. Together with the optimization group at the IIIA-CSIC in Bellaterra 
(Barcelona), I will take on this endeavor during the coming years. We certainly 
hope that other research groups on metaheuristics and their hybrids will join this 
effort in the quest for increasingly efficient CMSA variants. 

Sant Esteve Sesrovires, Spain Christian Blum 
February 2024 
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Chapter 1 
Introduction to CMSA 

Abstract Construct, Merge, Solve & Adapt (CMSA) is an award-winning, hybrid 
algorithm for solving hard combinatorial optimization problems. The main idea 
consists in the iterated application of an exact approach—such as, for example, an 
integer linear programming (ILP) solver—to sub-instances of the original problem 
instances to be solved. These sub-instances are extended at each iteration by adding 
solution components from a set of valid solutions that are obtained either by 
probabilistic solution construction or by any other means. In this first chapter, we 
will give an introduction to CMSA including related work and the application of 
basic CMSA variants to a well-known combinatorial optimization problem known 
as the Minimum Dominating Set (MDS) problem in undirected graphs. In addition, 
we will describe all the tools that are used for the experimental evaluation of the 
algorithms presented in this book. This includes the parameter tuning software 
called irace, an R-based tool for the statistical comparison of multiple algorithms 
called scmamp, and a web-based tool for the graphical comparison of multiple 
algorithms called STNWeb. 

1.1 Introduction to Optimization 

Optimization refers to the process of finding a best solution or outcome from a 
set of possible choices, generally to maximize or minimize a particular objective 
or criterion. It is a fundamental concept in various fields, including mathematics, 
engineering, economics, computer science, and more. In fact, in our increasingly 
technological world, the need for solving hard optimization problems has been 
growing constantly over the last decades. Optimization problems are prevalent 
in numerous practical applications across different fields. Examples are to be 
found, among others, in the following major fields. For each one, we provide an 
exemplifying reference. 

1. Supply Chain Optimization [29]: Companies aim to optimize their supply 
chains by determining the most efficient way to source, produce, and deliver 
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goods while minimizing costs and maintaining inventory levels to meet cus-
tomer demand. 

2. Portfolio Optimization [53]: In the realm of finance, investors aim to optimize 
their investment portfolios by selecting the most suitable mix of assets to 
maximize returns while effectively mitigating risks. This entails the pursuit of 
an ideal asset allocation. 

3. Production Scheduling [84]: Manufacturers want to optimize production 
schedules to minimize production costs, reduce lead times, and meet customer 
demand reliably. This requires determining the optimal allocation of resources 
and scheduling production runs. 

4. Transportation Routing [101]: In logistics and transportation, companies aim 
to derive optimal routes and delivery schedules for delivery vehicles, ships, 
or airplanes to minimize fuel costs, reduce travel times, and increase delivery 
efficiency. Increasingly complex optimization problems must be solved in so-
called electric vehicle routing problems. 

5. Project Management [61]: Project managers seek to optimize project sched-
ules and resource allocation to complete projects on time and within budget. 
Critical path analysis and resource leveling are techniques used, for example, 
for the optimization of project schedules. 

6. Network Design [82]: Companies and service providers need to optimize the 
design and layout of their networks—such as, for example, telecommunica-
tions networks, computer networks, or transportation networks—to maximize 
efficiency and minimize costs. 

7. Inventory Management [96]: Retailers and manufacturers optimize inventory 
levels to balance the costs of holding excess inventory against potentially 
lost sales due to the lack of stock. This is often achieved through so-called 
Economic Order Quantity (EOQ) and Just-In-Time (JIT) inventory systems. 

8. Energy Management [75]: Organizations and companies aim to optimize 
energy consumption in buildings and manufacturing processes to reduce energy 
costs and minimize environmental impact. This involves scheduling equipment 
and systems to operate at their most energy-efficient levels. 

9. Agricultural Planning [24]: Farmers and agricultural organizations optimize 
crop planting, irrigation, and harvesting schedules to maximize yield, minimize 
resource usage, and adapt to changing weather conditions. 

10. Sensor Placement [65]: In environmental monitoring, for example, optimizing 
the placement of sensors or surveillance cameras to maximize coverage and 
minimize costs is crucial. 

11. Drug Design [58]: In the field of drug development, several optimization 
problems arise, often with the goal of identifying and developing effective and 
safe pharmaceutical compounds. Some of these optimization problems concern 
(1) compound screening, (2) optimizing the molecular structure of a compound 
to improve its potency, selectivity, and safety, and (3) clinical trial design. 

12. Staff Rostering and Resource Allocation [42]: The optimal assignment of 
personnel to shifts and the need for an allocation of resources arises in a wide 
range of organizations and industries. Hospitals and healthcare facilities, for
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example, must optimize staff scheduling, operating room allocation, and patient 
appointment scheduling to improve patient care and reduce costs. 

13. Traffic Management [10]: Cities use optimization to manage traffic flow, 
for example, through optimizing traffic signal timings, leading to reduced 
congestion and improved traffic efficiency. 

Obviously, these are just examples, and optimization is used in many more fields and 
scenarios to improve decision-making, resource allocation, and overall efficiency. 
Moreover, optimization is an essential factor in many fields of research. In fact, 
without efficient optimization techniques, many fields of research would not be able 
to advance at the same speed as they are doing today. 

Modelling an Optimization Problem 

In order to solve an optimization problem, it must first be modeled in a mathemat-
ical, respectively technical, way. Key elements of an optimization problem model 
include the following ones. 

1. Objective Function: A model consists of at least one objective function that 
quantifies the goal or criterion to be optimized. Such a function may represent 
a quantity to be maximized (e.g., profit, efficiency, performance) or minimized 
(e.g., cost, error, time). In the presence of exactly one objective function, we 
talk about single-objective optimization, while several—usually conflicting— 
objective functions characterize a multi-objective problem. 

2. Decision Variables: Optimization problems involve decision variables together 
with their domains. Each candidate solution to a problem is characterized by a 
different setting (value assignment) of the decision variables. 

3. Constraints: They define which candidate solutions (value-assignments of the 
decision variables) correspond to feasible solutions, in contrast to infeasible 
solutions. Constraints can be equality constraints (e.g., fixed budget) or inequality 
constraints (e.g., resource availability). 

4. Optimization Objective: As already mentioned in the context of describing 
the concept of an objective function (see above), objective functions might be 
maximized or minimized. This is called the optimization objective. 

Often the goal of optimization is to find an optimal solution, which is a feasible 
solution with an objective function value better or equal to the objective function 
value of all other feasible solutions. Instead, the goal of optimization might simply 
be to find a good enough solution in a reasonable computation time. 

Optimization problems come in various forms and can be categorized into 
different types based on their characteristics, constraints, and objectives. In general, 
we distinguish between continuous (or numerical) optimization problems [77] 
and discrete (or combinatorial) optimization problems [80]. Hereby, continuous 
optimization problems refer to models in which decision variables have continuous
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(real-valued) domains that may be bounded or unbounded. In discrete, respec-
tively combinatorial, optimization problems, the decision variables are restricted 
to domains of discrete values. In the following, we provide two examples for each 
of these problem categories. 

1.1.1 Examples of Continuous Optimization Problems 

Examples of continuous (or numerical) optimization problems are analytical prob-
lems such as the minimization of the Rastrigin function which is plotted in Fig. 1.1 
in two dimensions. The formula of this function (in two dimensions) is as follows: 

.f (x1, x2) = 20 +
2∑

i=1

(x2
i − 10 · cos(2 · π · xi)) , (1.1) 

with .x1, x2 ∈ [−5.12, 5.12]. A more practical example of a continuous optimization 
problem with real-world relevance is the parameter estimation in nonlinear 
models problem. This problem frequently arises in various fields, including science, 
engineering, economics, and biology, where researchers or analysts need to estimate 
the parameters of a complex—generally nonlinear—model to fit observed data. 
Figure 1.2 shows a graphical illustration. 

Given the observed data, a model must be chosen. Subsequently, the optimization 
problem consists of determining the optimal values of the model’s parameters in 
order to best fit the data. The objective is to minimize the difference between 
the model’s predictions and the observed data, typically expressed as the sum of 
squared residuals (least squares). The decision variables correspond to the model’s 
parameters that need to be estimated. Constraints are based on parameter value 
restrictions (e.g., bounds or relationships between parameters). 

Fig. 1.1 Rastrigin function 
in two dimensions
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Fig. 1.2 Example of 
parameter estimation in 
nonlinear models 

Fig. 1.3 Example of a TSP 
problem instance with five 
cities 

1.1.2 Examples of Combinatorial Optimization Problems 

One of the most emblematic combinatorial optimization problems is the so-called 
traveling salesman problem (TSP). This problem owes its name to the objective 
of the problem. A traveling salesman must pass through a number of cities exactly 
once, before returning to the city in which the journey started. The optimization 
objective is to minimize the traveled distance. This can be modeled by means of 
a completely connected graph in which the nodes represent the cities that must be 
visited, and weights on the edges correspond to the distances between the cities. 
Each feasible solution corresponds to a Hamiltonian cycle of this graph. Hereby, 
a Hamiltonian cycle is a cyclic route that contains each vertex exactly once. A 
graphical illustration is given in Fig. 1.3. 

Another well-known combinatorial optimization problem is the so-called knap-
sack problem (KP). Given is a set of items, whereby each item has a profit and, for 
example, a weight. Given is also a knapsack with an upper limit for the total weight 
of the objects it can carry. The objective of the problem is to select a set of items 
such that they fit into the knapsack—that is, their weights may sum to at most the
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Fig. 1.4 Example of a small 
knapsack problem instance 
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weight limit of the knapsack—and the sum of the profits of the selected items is 
maximized. A graphical illustration is provided in Fig. 1.4. 

1.1.3 Modelling an Optimization Problem 

As mentioned before, to solve an optimization problem employing an optimization 
technique—that is, an algorithm—it must first be modeled in a way depending on 
its characteristics; see [33, 55, 81]. The two continuous optimization examples from 
Sect. 1.1.1 are modeled as global optimization problems with non-linear objective 
functions. In the case of a linear objective function, linear constraints, and a 
convex search space, a continuous optimization problem can be modeled as a linear 
programming (LP) problem and then be solved by LP techniques from Operations 
Research (OR). In contrast, the two combinatorial optimization problems outlined in 
Sect. 1.1.2 can be modeled as integer linear programming (ILP) problems, that is, in 
terms of models that are characterized by linear objective functions and constraints, 
and decision variables with discrete domains. Note that most optimization problems 
treated in this book are of this type. However, the general idea of CMSA is also 
applicable to solving optimization problems modeled in other ways. 

For demonstration purposes, we provide two different ILP models of the TSP. 
Given is a set N of n cities, that is, .N = {1, . . . , n}. Moreover, let . A = {(i, j) |
i, j ∈ N, i /= j} be the complete set of arcs connecting any ordered pair of cities. 
Finally, let .cij > 0 be the distance for traveling from city i to city j . For modeling 
this problem, first, the following set of binary decision variables is introduced: . {xij ∈
{0, 1} | i, j ∈ N, i /= j}, that is, for each arc .(i, j) we introduce a binary decision 
variable . xij . Hereby, in case . xij = 1, arc .(i, j) forms part of the solution.
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. min
∑

(i,j)∈A

cij xij . (1.2) 

subject to
∑

j∈N,j /=i 
xij = 1 ∀ i ∈ N . (1.3)

∑

j∈N,j /=i 
xji  = 1 ∀ i ∈ N . (1.4)

∑

i,j∈S,i /=j 
xij ≤ |S| −  1 ∀ S ⊂ N with 2 ≤ |S| ≤  n − 1 

(1.5) 

xij ∈ {0, 1} ∀  (i, j) ∈ A 

The objective function (1.2) to be minimized sums the distances of all used 
arcs. Furthermore, constraints (1.3) and constraints (1.4) ensure that each city is 
visited exactly once, respectively, is left exactly once. Finally, the so-called subtour 
elimination constraints (1.5) make sure that the finally selected arcs form exactly 
one cyclic tour (in contrast to several shorter ones). 

In order to show that an optimization problem can potentially be modeled in 
different ways, we additionally provide a second, alternative ILP model for the TSP. 

. min
∑

(i,j)∈A

cij xij . (1.6) 

subject to y1,1 = 1 . (1.7) 

n∑

k=1 

yik = 1 i = 1, . . . , n. (1.8) 

n∑

i=1 

yik = 1 k = 1, . . . , n. (1.9)

∑

(i,j)∈A 
xij = n . (1.10) 

yi,k−1 + yjk  − xij ≤ 1 ∀ (i, j) ∈ A, k ≥ 2. (1.11) 

yin + y1,1 − xi1 ≤ 1 ∀ (i, 1) ∈ A (1.12) 

yik ∈ {0, 1} i, k = 1, . . . , n  

xij ∈ {0, 1} ∀  (i, j) ∈ A 

This alternative model works on the basis of two sets of binary decision variables. 
In addition to variables .xij for all .(i, j) ∈ A, this model also features a binary 
variable .yik for all .i, k = 1, . . . , n. If .yik = 1, this means that city i is the k-
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th visited city on the tour of the traveling salesman. Thus, the model prevents the 
generation of subtours by building a permutation of all cities in the following way. 
First, constraints (1.8) ensure that each city is assigned to exactly one position of the 
permutation, while constraints (1.9) require that there is exactly one city assigned to 
each position of the permutation. Without loss of generality, fixing .y1,1 to 1, causes 
the permutation to start with city 1 on position 1.1 Furthermore, constraint (1.10) 
requires to choose exactly n arcs for the tour, while constraints (1.11) ensure that 
the arc variable . xij is set to 1, if both variables .yi,k−1 and .yjk are set to 1. In other 
words, if cities i and j are placed on consecutive positions of the permutation, then 
arc .(i, j) must form part of the tour. Finally, note that constraints (1.12) only cover 
the special case of position 1 of the permutation being the successor of position n.

•> Types of Optimization Problems Considered in This Book 

As mentioned above, in this book we consider problems that can be modeled 
in terms of ILPs. Put differently, we deal with the solution of problems that can 
be modeled on the basis of a set of discrete decision variables. Moreover, the 
considered optimization problems can be modeled by means of a linear objective 
function and linear constraints. However, note that this does not exclude that the 
algorithmic ideas presented in this book can also be applied to other types of 
optimization problems. 

1.1.4 Basic Optimization Techniques 

After modeling the optimization problem under consideration in a convenient way, 
an optimization technique is required to solve the problem. Exact and approximate 
methods for optimization are two broad categories of techniques used to find 
optimal—or simply good-enough—solutions to optimization problems. These two 
categories comprise techniques of different characteristics that are suited to different 
types of problems and objectives. Their key features can be summarized as follows. 

Exact methods guarantee to find an optimal solution in finite time. This is the case 
if an optimal solution exists, and if given enough time and resources. These methods 
are usually deterministic. They systematically explore the solution/search space to 
find an optimal solution. Exact methods are practical for small to moderately-sized 
optimization problems, where the search space is not too large. Examples of exact 
methods include linear programming, integer programming, dynamic programming, 
branch and bound, and branch and cut, just to name a few [11, 103].

1 Note, in this context, that instead of .y11 we use here the notation .y1,1 in order to avoid a 
misunderstanding. 
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•> Knowledge Required from Readers on Exact Techniques 

In this book, we assume that readers generally know about the existence and the 
high-level functioning of exact techniques. However, we do not expect a reader to 
be an expert on exact techniques. Neither do we expect that a reader is able to design 
and program exact techniques. This level of difficulty will be relegated completely 
to the use of black-box ILP solvers. For the experiments presented in this book, we 
make use of CPLEX2 , a commercial software product offered by IBM, which is free 
for academic purposes. 

Despite the advantages of exact methods as outlined above, they are not always 
the best choice for solving the optimization problem at hand. First, the problem 
instances to be solved might be too large to be handled by the exact method. Second, 
the required computation time and/or the required amount of resources—for exam-
ple, in terms of computer memory—might be excessive. Therefore, research has also 
focused on so-called approximate methods, which are typically of a heuristic and/or 
stochastic nature. They generally do not guarantee finding an optimal solution but 
aim to find a good enough solution within a reasonable time frame. In other words, 
approximate methods are often much faster than exact methods, making them 
suitable for large and complex optimization problems. At the same time, they require 
fewer computational resources and are, therefore, often more practical for real-
world, large-scale problems. Examples of approximate methods range from simple, 
deterministic greedy heuristics [72] to more sophisticated metaheuristics [20, 48] 
including, for example, evolutionary algorithms [23], simulated annealing [62], 
particle swarm optimization [30, 59], and variable neighborhood search [74]. 

Greedy heuristics—also referred to as greedy algorithms—build a solution from 
scratch by making a sequence of deterministic choices. They are called “greedy” 
because, at each step of the solution construction process, they make a locally 
optimal choice with the hope that this will lead to a good solution overall. They 
are generally easy to implement and computationally efficient, but they generally 
do not provide any guarantees on the quality of the generated solutions. 

Metaheuristics are more sophisticated approximate algorithms. They are 
designed to efficiently search through large search spaces and find high-quality 
solutions, although they may not guarantee anything about the quality of the 
solutions found. Some common metaheuristics3 for combinatorial optimization 
include the following ones:

• Evolutionary Algorithms (EAs) [23]: These algorithms are inspired by the 
process of natural evolution. At each iteration, they maintain a population of

2 https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio. 
3 Note that the order in which metaheuristics are described here has no meaning. 
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potential solutions and apply genetic operators such as mutation, crossover, and 
selection to evolve and improve the solutions over multiple iterations.

• Simulated Annealing (SA) [62]: SA is inspired by the annealing process in 
metallurgy. It starts with an initial solution and iteratively explores neighboring 
solutions. Worse solutions are accepted with a probability that is decreasing over 
time, allowing the algorithm to escape from local optima, that is, sub-optimal 
solutions surrounded by worse solutions.

• Tabu Search (TS) [51]: TS maintains a list of “tabu” or forbidden moves (the 
so-called tabu list) to avoid revisiting previously explored solutions. It explores 
the neighborhood of the current solution while avoiding moves forbidden by the 
tabu list.

• Ant Colony Optimization (ACO) [38]: ACO is inspired by the foraging 
behavior of ants. It uses a population of artificial ants to explore the solution 
space. Ants deposit pheromones on paths they traverse, and the pheromone levels 
guide the search process.

• Particle Swarm Optimization (PSO) [30, 59]: PSO is inspired by the social 
behavior of birds and fish. It maintains a population of particles that move 
through the search space. Particles adjust their positions based on their own 
experience and the experience of their neighbors.

• Variable Neighborhood Search (VNS) [74]: VNS explores the solution space 
by changing the neighborhood structure in which it searches. The standard 
version of VNS tends to start with local neighborhoods. Moreover, the algorithm 
tends to move to more disruptive neighborhoods in case nothing better can be 
found in more local neighborhoods. 

In summary, we could say that optimization techniques can vary widely, rang-
ing from simple trial-and-error approaches to more sophisticated mathematical 
methods. The choice of method depends on the characteristics of the considered 
optimization problem, its complexity, the available computational resources, and 
the available time budget. 

1.1.5 Hybrid Optimization Techniques 

Extensive research efforts have been devoted to addressing combinatorial optimiza-
tion problems over the past decades, both in Operations Research (OR) and Artificial 
Intelligence (AI). Consequently, both researchers and practitioners now possess a 
diverse toolbox of techniques, encompassing both exact and approximate methods, 
to tackle optimization problems of this nature. However, when confronted with 
the task of solving large-scale instances of complex combinatorial optimization 
problems, even metaheuristic techniques can become disoriented within the vast 
search spaces that characterize such scenarios. It has become increasingly evident 
that a practical approach lies in harnessing the complementary strengths of both
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exact and heuristic methods, particularly when addressing large-scale problem 
instances. 

The field of hybrid metaheuristics for combinatorial optimization [19, 97] has 
become increasingly popular in recent years due to the ability of such approaches to 
combine the strengths of different ways of solving optimization problems within a 
single algorithm.4 Algorithms known as large neighborhood search (LNS) [86] and 
very large-scale neighborhood search [1] are probably among the most well-known 
techniques from this field. Another related branch of work is the one on ejection 
chain approaches [50]. In principle, there are many ways of generating so-called 
large neighborhoods for a given problem. However, many LNS approaches are 
based on the principle of ruin-and-recreate [95], also sometimes found as destroy-
and-recreate or destroy-and-rebuild. At each iteration, first, the incumbent solution 
is partially destroyed. Then, either an exact technique or any other appropriate 
technique is applied to find—among all solutions that include the produced partial 
solution—a solution that improves the incumbent solution. Generally, a time limit 
is imposed on this step. Many examples of this type of LNS can be found in the 
literature, including [34, 43, 94], just to name a few. The large neighborhoods 
generated in this context are known as destruction-based large neighborhoods. 

Apart from methods based on partial solution destruction, there are alternative 
ways of defining large neighborhoods that are used in algorithms such as local 
branching [45], the corridor method [26], and POPMUSIC [63]. In the latter 
approach (POPMUSIC), at each iteration, a large neighborhood is generated as 
follows. The incumbent solution is first split into parts. A so-called seed-part is 
then chosen and extended by adding other parts that are close to the seed-part in 
order to form a sub-problem. This step depends on some distance measure between 
solution parts. Finally, the generated sub-problem is solved by an approximate or an 
exact solution approach. This process is repeated until the incumbent solution does 
not contain a sub-problem that can be improved. 

1.2 Tools Used in This Book 

First of all, note that all approaches described in this book were implemented in 
C++ [56] and compiled with one of the latest Gnu compilers.5 Moreover, as ILP 
solver we used CPLEX version 22.1,6 if not otherwise stated. Apart from these 
fundamental tools for the research described in this book, we made use of the 
following three tools, which are described in the following.

4 These algorithms are also often labelled as matheuristics [22]. 
5 https://gcc.gnu.org/. 
6 https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio. 
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1.2.1 irace: A Tool for Parameter Tuning 

One of the challenges in conducting experimental evaluations of stochastic opti-
mization algorithms is the issue of parameter tuning. This task involves configuring 
the algorithm’s parameters to optimal values, ensuring its peak performance on the 
designated set of benchmark instances. The literature offers several scientific tools 
for this purpose, including SMAC3 [68], ParamILS [57] and HyperBand [67]. 

In this book, we make use of irace [70],7 one of the parameter tuning 
tools most used for tuning the parameters of optimization algorithms. irace is 
particularly useful when working with algorithms that have multiple parameters 
and where finding the right combination of parameter settings can significantly 
impact their performance. The irace tool automates this process. Key features 
and functionalities of irace include the following ones: 

1. Iterative Racing: irace uses an iterative racing mechanism to evaluate differ-
ent combinations of algorithm parameters. It systematically explores numerous 
parameter settings, ranking them based on the algorithm’s performance on a 
predefined set of benchmark instances. 

2. Parallelization: irace is designed to work in parallel, which can significantly 
speed up the parameter tuning process. It distributes the evaluation of parameter 
configurations across the available processors or machines, making it suitable 
for high-performance computing environments. For the application in this book, 
we used irace on a high-performance computing cluster of machines equipped 
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB 
of RAM. 

3. Generality: Even though irace is programmed in R,8 it can be used for 
different algorithms, that is, it is not limited to a specific algorithm, domain, or 
programming language. It only requires an executable of the algorithm whose 
parameters are to be tuned. Users can apply it to optimize a wide range of 
algorithms and techniques, including machine learning models, optimization 
algorithms, and more. 

4. Scalability: irace is scalable, making it suitable for both small-scale and 
large-scale optimization tasks. It adapts to the available computational resources 
and allows users to balance the trade-off between the quality of results and the 
computational effort required. 

5. Robustness: irace is robust in handling noisy or stochastic algorithms. It can 
efficiently deal with algorithms that produce variable results due to randomness 
or external factors. 

In summary, irace is a powerful tool for researchers and practitioners who 
need to find well-working parameter settings for their algorithms efficiently and

7 https://mlopez-ibanez.github.io/irace/. 
8 https://www.r-project.org/. 
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effectively. It can save a significant amount of time and computational resources 
by automating the parameter-tuning process and helping users discover the best 
configuration for their specific tasks.

•> Use of irace in This Book 

In this book, we will employ irace to generate the optimal parameter values for 
all algorithms considered in the presented computational evaluations. This approach 
is essential to guarantee that the comparative analyses presented are both fair and 
informative. 

1.2.2 STNWeb: A Tool for the Graphical Comparison of 
Algorithms 

A picture is worth a thousand words. 

Arthur Brisbane, 1911 

Visual representations of complex concepts may significantly enhance our ability 
to grasp digital information more effectively. This principle extends across various 
domains within Computer Science and AI. Remarkably, the research commu-
nity in combinatorial optimization has yet to achieve significant progress in the 
development of visual aids, despite the growing demand for innovative tools that 
facilitate the comparison of optimization algorithms. Over the past few decades, 
the conventional approach to comparing optimization algorithms has centered 
around gathering numerical data from runs of different algorithms. This data is 
subsequently analyzed using conventional tools, such as tables and classical data 
charts (e.g., line plots, bar plots, and scatter plots). It has also become customary 
to complement this form of algorithm comparison with statistical analyses of the 
collected data. In recent years, an increasing number of researchers have recognized 
the importance of incorporating supplementary graphical tools to gain a more 
profound understanding of the behavior of optimization algorithms, particularly 
metaheuristics [20, 48]. 

As previously mentioned, the research community dedicated to optimization 
algorithms has not shown a high level of productivity in the development of visual 
tools. Nonetheless, there have been several attempts to visualize the behavior of 
optimization algorithms, as evidenced in various studies, including [31, 71, 73, 87]. 
These approaches typically employ dimensionality reduction techniques to project 
complex search spaces into two or three dimensions, enabling a basic tracking of 
the search progress. The currently best tool for this purpose was introduced only
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Fig. 1.5 Example of an 
STNWeb graphic 

recently in [28]. This tool—labeled STNWeb9 —is a web application based on the 
concept of so-called Search Trajectory Networks (STNs) [78]. STNs are graph struc-
tures with nodes and directed edges for visualizing the search process of iterative 
optimization algorithms and aiding in the analysis of their progress. Notably, STNs 
offer a means to represent multiple trajectories of various optimization algorithms 
applied to the same problem instance in a graphical format. 

Figure 1.5 illustrates a straightforward example of an STNWeb graphic. This 
visual representation compares the performance of two distinct algorithms when 
applied to an instance of the well-known and challenging multi-dimensional 
knapsack problem. The graphic showcases the trajectories resulting from ten 
separate runs of each algorithm on this problem instance. Each vertex within this 
visualization represents a solution to the problem instance. Nevertheless, it is worth 
noting that this may not always hold true, as explained further below. The graphic 
employs various visual elements to convey information effectively. The colors, 
shapes, and sizes of the vertices have specific meanings, which are elucidated as 
follows:

• Distinct algorithms’ trajectories are presented using different colors, as denoted 
in the legend of each STNWeb graphic. For instance, in Fig. 1.5, the 10 
trajectories generated by the CMSA algorithm are depicted in blue, while those 
generated by the LNS algorithm are represented in green.10 

9 STNWeb is freely accessible to anyone interested and can be accessed at this URL: https://www. 
stn-analytics.com/. 
10 In this context it is not important to know the nature of these algorithms.

https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/
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• The initial points of the trajectories are marked with yellow squares. It is 
interesting to observe, for example, that in Fig. 1.5, the 10 runs of the CMSA 
algorithm commence from distinct initial solutions, whereas the 10 runs of the 
LNS algorithm all originate from the same initial solution.

• Trajectory endpoints are represented in two ways: dark grey triangles and red 
dots. Dark grey triangles signify endpoints that do not correspond to the best-
found solution across all algorithm runs, while red dots indicate endpoints that 
correspond to best-found solutions.

• Pale grey dots represent solutions that are shared across trajectories of at least 
two distinct algorithms.

• Lastly, the size of a vertex or dot conveys the count of algorithm trajectories 
passing through it: the larger the vertex, the greater the number of traversing 
algorithm trajectories. 

As mentioned above, the STNWeb graphic of Fig. 1.5 offers a comparative 
analysis of two different algorithms applied ten times to the same problem instance. 
Notably, it reveals the presence of an attraction area within the search space, 
particularly for the CMSA algorithm. Out of the ten CMSA trajectories, five are 
notably drawn toward the region marked by the presence of large, pale grey dots. 
Interestingly, although many trajectories traverse this area, none of them stops in 
one of the two solutions represented by those dots, underscoring that these solutions 
are not the best ones within that region. In contrast, the LNS algorithm exhibits 
less inclination toward this specific area in the search space, with only one of 
its trajectories passing through it. This aspect of trajectory behavior is a facet 
often overlooked in contemporary optimization research. Nevertheless, it can prove 
invaluable for gaining insights into why an algorithm performs exceptionally well 
or, conversely, why it faces challenges in delivering good results. 

Note that—either due to many or long algorithm trajectories, or to specific 
problem instance characteristics—STN graphics in which dots are solutions may 
sometimes appear cluttered and hard to interpret. For this reason, STNWeb comes 
with so-called search space partitioning techniques that divide the search space 
into chunks containing closely related solutions. In STN graphics after search space 
partitioning, dots are those chunks of the search space containing at least one of the 
solutions from the considered set of algorithm trajectories.

•> Use of STNWeb in This Book 

In this book, we will make use of the STNWeb tool for generating graphics that 
will help us understand the behavioral differences of different algorithms.



16 1 Introduction to CMSA
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Fig. 1.6 Example of a critical difference (CD) plot generated with the scmamp package 

1.2.3 scmamp: A Tool for the Statistical Comparison 
of Algorithms 

In addition to the graphical STNWeb tool described in the previous section, 
algorithms are also compared on the basis of numerical results. In order to do 
this on a scientific basis we make use of statistical comparison, which involves 
employing statistical methods to assess and differentiate the performance of various 
optimization techniques. Such a statistical comparison aims to determine whether 
observed differences in the outcomes are statistically significant or merely due to 
chance. The goal is to provide a robust and objective basis for selecting the most 
effective optimization approach in a given context. 

For this purpose, we make use of the R package scmamp [25].11 Several 
works (see, for example, [35, 46, 47]) have outlined a fundamental classification of 
general machine learning scenarios and the corresponding statistical tests suitable 
for each scenario. The scmamp package implements the recommendations from 
these works and aims specifically for a comparative analysis of multiple algorithms 
across multiple problem instances. The package also provides functions for the 
generation of so-called critical difference (CD) plots based on the results of the 
statistical comparisons performed. An example of such a CD plot in which seven 
different algorithms are compared over a range of problem instances is shown in 
Fig. 1.6. Vertical whiskers indicate the average ranking of the algorithms over the 
considered set of problem instances. Algorithm CMSA_restr, for example, is the 
best-ranked algorithm, while algorithm Greedy is the one with the lowest average 
rank. Moreover, if two algorithm whiskers are joined by a bold horizontal bar, it 
suggests that the difference in their performance is not statistically significant. In 
the example shown in Fig. 1.6, no statistical difference is detected, for example, 
concerning the performance of algorithms BA and CPLEX. Conversely, if two 
algorithm whiskers are not joined by a bold horizontal bar, their performance is 
considered significantly different.

11 https://github.com/b0rxa/scmamp. 

https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
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In essence, CD plots help researchers and practitioners make informed decisions 
about the relative performance of multiple algorithms across a set of problem 
instances. They provide a clear visual representation of which algorithms are 
statistically different in terms of their performance and which are not, aiding in 
the selection of the most suitable algorithm for a specific set of problem instances.

•> Use of scmamp in This Book 

scmamp is used in all experimental evaluations of this book for the generation of 
CD plots in order to convey statistical information about the relative performance of 
the compared algorithms. 

1.3 CMSA: Construct, Merge, Solve & Adapt 

As mentioned at the beginning of this book, CMSA (Construct, Merge, Solve & 
Adapt) is an algorithmic idea for solving hard combinatorial optimization problems. 
The algorithm was first presented in a seminal paper in [18] in which it was applied 
to the minimum covering arborescence problem and to the minimum common string 
partition problem. The currently existing applications of CMSA are summarized in 
Table 1.1.

•> Awards for Work on CMSA 

Work on CMSA has received two awards in recent years. The first one was the best 
paper award at the ECOM track of the GECCO 2016 conference for a paper on 
the application of CMSA to the multi-dimensional knapsack problem [17].12 The 
second award was the one for The Best Methodological Contribution in Operations 
Research jointly given by the Spanish Society of Statistics and Operations Research 
(SEIO) and the BBVA Foundation in 2021.13 

Initially, the idea for the development of CMSA originated from an observation 
of a possible weakness of an older hybrid technique known as large neighborhood 
search (LNS); see also Sect. 1.1.5. More specifically, in the case of (1) problems— 
respectively, problem instances—that are characterized by large sets of solution 
components and (2) solutions that consist of comparatively few solution compo-
nents, we noticed that partial-destruction-based LNS sometimes easily gets stuck in 
local minima. Therefore, the motivation was to generate a hybrid approach in which 
this would not happen.

12 GECCO 2016 Awards Webpage. Accessed on 17/11/2023. 
13 SEIO-FBBVA 2021 Award Webpage. Accessed on 17/11/2023. 
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Table 1.1 Currently existing applications of (variants of) CMSA 

Optimization problem Publication Year 

Minimum common string partition [12, 16, 18] 2016, 2020, 2021 

Minimum covering arborescence [18] 2016 

Repetition-free longest common subsequence [13, 14] 2016, 2018 

Multi-dimensional knapsack [16, 17, 69] 2016, 2017, 2021 

Maximising the net present value of project schedules [98] 2019 

Binary optimization [15] 2019 

Minimum capacitated dominating set [83] 2019 

Routing cooperative air-ground robots with fuel constraints [8] 2019 

Maximum happy vertices problem [49, 66, 100] 2019, 2022 

Score-constrained packing [54] 2020 

Refueling and maintenance planning of nuclear power plants [39] 2021 

Test data generation in software product lines [44] 2021 

Bus driver scheduling [90] 2022 

Minimum positive influence dominating set [4] 2022 

Unit disk cover [5] 2022 

Electric vehicle routing [2, 3] 2022, 2023 

Multi-way multi-dimensional number partitioning [37] 2023 

Closest String [79] 2023 

Maximum disjoint dominating set [88, 89] 2023, 2024 

Rooted max tree coverage [104] 2024 

1.3.1 Standard CMSA 

We start our introduction to CMSA by describing a standard algorithm variant, 
which is henceforth simply called CMSA. However, before doing so, the general 
idea of CMSA is briefly described. At each iteration, CMSA first generates several 
(generally valid) solutions to the tackled problem instance in a probabilistic way. 
Next, the components of these solutions are added to an initially empty sub-instance 
. C'. This sub-instance is then passed to an exact solver (if convenient, this can be an 
ILP solver) which delivers the best solution found in a limited time. Based on this 
solution, the incumbent sub-instance is adapted. In particular, based on an aging 
mechanism, seemingly useless solution components are removed from . C' in order 
not to slow down the solver in the next algorithm iteration. 

The first action that needs to be taken for applying CMSA to a combinatorial 
optimization problem is defining the set C of solution components, that is, those 
components of which solutions to the considered problem are composed. Later we 
will provide specific examples for such a definition. For the moment, however, let 
.C = {c1, . . . , cn} be a generic set of solution components. Moreover, any valid 
solution .S ∈ S to the considered optimization problem—where . S is the set of all 
valid solutions—can be expressed as a subset of C, that is, .S ⊆ C for all .S ∈ S.
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Algorithm 1.1: Pseudo-code of standard CMSA 
1: input 1: Complete set of solution components C 
2: input 2: values for CMSA parameters na, agemax, and tILP 
3: Sbsf := ∅ 
4: C' := ∅ 
5: age[c] := 0 for all c ∈ C 
6: while CPU time limit not reached do 
7: for i := 1, . . . , na do 
8: S := ProbabilisticSolutionConstruction(C) 
9: if f  (S) < f  (Sbsf) then Sbsf := S endif 

10: for all c ∈ S and c /∈ C' do 
11: age[c] :=  0 
12: C' := C' ∪ {c} 
13: end for 
14: end for 
15: SILP := SolveSubinstance(C', tILP) 
16: if f (SILP) < f  (Sbsf) then Sbsf := SILP end if 
17: Adapt(C', SILP, agemax) 
18: end while 
19: output: Sbsf 

Finally, let .f : S ⍿→ N
+ for the following discussion be the objective function to be 

minimized, and let .f (∅) := ∞. 
Algorithm 1.1 provides the pseudo-code of the standard version of CMSA. The 

algorithm starts by initializing both the best-so-far solution .Sbsf and the sub-instance 
. C', which is always a subset of C, to the empty set. Furthermore, the so-called age 
values of all solution components are initialized to zero, that is, .age[c] := 0 for all 
.c ∈ C. The main loop of CMSA consists of four actions. 

1. First, in the construct step of CMSA, a number of . na valid solutions to the 
considered problem are probabilistically generated (see line 8 of Algorithm 1.1). 

2. Second, in the merge step of CMSA, the current sub-instance . C' is updated with 
the solution components found in these . na solutions (see lines 10–13). That is, 
those solution components that (1) are found in at least one of the . na constructed 
solutions and (2) do currently not form part of . C', are added to . C' and their age 
value is set to zero. 

3. Third, in the solve step of CMSA, an ILP solver is applied in order to find the best 
possible solution that only contains components from sub-instance . C', within a 
time limit of .tILP CPU seconds (see line 15). 

4. Fourth, in the adapt step of CMSA, sub-instance . C' is adapted based on the 
solution .SILP returned by the ILP solver; see function Adapt(. C', .SILP, . agemax) in  
line 17. In particular, in this function, sub-instance . C' is adapted in the following 
way. First, the age values of all components in .C' \ SILP are incremented by one. 
Second, the age values of all components in .SILP are set to zero. The final action 
in the adapt step consists of removing all those components from . C' whose age 
value has reached the maximum allowed age (.agemax). This is done in order to
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prevent components that never appear in .SILP from slowing down the ILP solver 
in subsequent CMSA iterations. Note that the age value .age[c] of a solution 
component .c ∈ C, at any time, indicates the number of consecutive CMSA 
iterations for which c has formed part of sub-instance . C' without having been 
included in the ILP-solution to the sub-instance . C'. 

These four steps are iterated until a given CPU time limit is reached. The output of 
the algorithm is .Sbsf, the best solution found during the whole process. 

Note that the construct step and the solve step of such a CMSA algorithm are 
problem-dependent. In particular, for the construct step of the algorithm, generally, 
a greedy heuristic for the tackled problem is used in a randomized way, and the solve 
step depends on the availability of an ILP model for the tackled problem. Moreover, 
the way in which an ILP model is exactly generated based on sub-instance . C' leaves 
room for variation. In contrast, the merge step and the adapt step are problem-
independent. 

1.4 Application to Minimum Dominating Set 

In the following, we show how standard CMSA can be applied to the so-called 
Minimum Dominating Set problem. In particular, we will show two different ways 
of defining the set of solutions components, which results in slightly different ways 
of generating the ILP models corresponding to the sub-instances at each algorithm 
iteration.

•> Requirements for the Application of CMSA 

In order to apply the standard CMSA algorithm from the previous section (see 
Sect. 1.3.1) to any combinatorial optimization problem, we need to define two 
algorithm components: 

1. A probabilistic way of generating valid solutions 
2. An ILP model of the tackled problem 

The Minimum Dominating Set (MDS) problem is a well-known combinatorial 
optimization problem in Computer Science. Given an undirected graph .G = (V ,E), 
where .V = {v1, . . . , vn} is the set of n vertices and E is the set of edges, the goal 
of the problem is to find a smallest dominating set .D∗ ⊆ V . Hereby, a set .D ⊆ V is 
called a dominating set of G if and only if for every vertex .v ∈ V it holds that 

1. . v ∈ D, or  
2. .∃ v' ∈ D such that .(v, v') ∈ E.
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(a) (b) (c) 

Fig. 1.7 An undirected graph with three different MDS solutions. (b) and (c) show alternative 
optimal solutions. (a) Sub-optimal solution. (b) An optimal solution. (c) Another optimal solution 

In other words, a subset of the vertices of graph G is called a dominating set of G 
if every vertex of G is either in the set or adjacent to at least one vertex from the 
set; see Fig. 1.7 for an example. In this context, note that the set of neighbors of 
v in G is denoted by .N(v), that is, .N(v) := {v' ∈ V | (v, v') ∈ E}. Moreover, 
.N [v] := N(v) ∪ {v} is called the closed neighborhood of v. 

The standard ILP model for the MDS problem makes use of a binary variable . xi

for each vertex .vi ∈ V . The model can be stated as follows. 

. min
∑

vi∈V

xi . (1.13) 

subject to
∑

vj ∈N(vi) 
xj + xi ≥ 1 ∀ vi ∈ V (1.14) 

xi ∈ {0, 1} ∀  vi ∈ V 

The constraints (1.14) make sure that any valid solution either contains a node . vi ∈
V or at least one of its neighbors. 

Finally, note that the MDS problem is known to be NP-hard, meaning that there 
is no known polynomial-time algorithm to solve it for arbitrary graphs unless . P =
NP . As a result, research often focuses on finding efficient algorithms for special 
cases or developing heuristic algorithms. 

1.4.1 An Intuitive Way of Defining the Solution Components

•> Programming Code Availability of This Application 

Note that the C++ program code for this way of applying standard CMSA to the 
MDS problem is included in Appendix A of this book. 

The first important step for the development of any CMSA algorithm is the 
definition of the set of solution components (C). In the case of the MDS problem,
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Algorithm 1.2: MDS solution construction 
1: input: a graph  G = (V , E) 
2: s := ∅ 
3: V := {vi ∈ V | N [vi | s] /= ∅}  
4: while V /= ∅ do 
5: vj := ChooseFrom(V )  
6: s := s ∪ {vj } 
7: V := {vi ∈ V | N [vi | s] /= ∅}  
8: end while 
9: output: a valid solution s 

there is an intuitive way of doing so. Hereby, set C simply contains a component 
ci for each vertex vi ∈ V . Therefore, for the following discussion, remember that 
vi and ci both refer to vertex vi of the input graph G. The standard CMSA for 
the MDS problem based on the intuitive set of solution components is henceforth 
labeled CMSA_INT. 

1.4.1.1 Constructing Solutions to the MDS Problem 

In the following, we say that, if a vertex . vi is added to a solution s under 
construction, then . vi covers itself and all its neighbors, that is, it covers . vi

(itself) and all .vj ∈ N(vi). Moreover, assuming that s is a partial solution under 
construction, we denote by .N [vi | s] ⊆ N[vi] the set of uncovered vertices (with 
respect to s) from the closed neighborhood .N [vi] of .vi ∈ V . 

The solution construction mechanism is shown in Algorithm 1.2. It starts with 
an empty solution .s = ∅. For each construction step, .V ⊆ V is defined as 
the set of vertices that can cover at least one of the vertices not covered yet by 
s. At each construction step, exactly one vertex is chosen from . V in function 
ChooseFrom.(V ). This works as follows. First, a random number r is sampled 
uniformly at random from .[0, 1]. In case .r ≤ drate, .vj ∈ V is chosen such that 

.vj := max
vi∈V

{∣∣N [vi | s]∣∣} (1.15) 

Otherwise—that is, in case .r > drate—a number of .min{lsize, |V |} vertices from . V
is pre-selected and placed into a candidate set .L ⊆ V such that 

.
∣∣N [vi | s]∣∣ ≥ ∣∣N [vk | s]∣∣ for all vi ∈ L, vk ∈ V \ L (1.16) 

A vertex .vj ∈ L is then chosen uniformly at random. Finally, note that each solution 
s, after finalizing its construction, is converted into a corresponding solution S that 
contains for each .vi ∈ s the corresponding solution component . ci .
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1.4.1.2 Solving Sub-instances of the MDS Problem 

Next, we will describe how to use the ILP model of the MDS problem to solve a 
sub-instance . C' within CMSA_INT. In this context, remember that—in any CMSA 
algorithm—a sub-instance . C' contains those solution components that may appear 
in valid solutions to . C'. 

In order to solve a sub-instance . C' by means of the application of an ILP solver 
in function SolveSubinstance(. C', . tILP) of Algorithm 1.1, the MDS ILP model is 
extended in CMSA_INT by adding the following set of constraints: 

.xi = 0 for all ci ∈ C \ C' (1.17) 

In this way, only solution components (resp. vertices) that form part of the sub-
instance . C' may be selected to appear in solutions. 

Note that the function SolveSubinstance(. C', . tILP)—see line 15 of Algo-
rithm 1.1—returns the ILP solver solution in terms of a set .SILP of solution 
components. Moreover, the application of the ILP solver is subject to a time limit 
of .tILP CPU seconds, which means that the solution .SILP returned by the function 
SolveSubinstance(. C', . tILP) is not necessarily an optimal solution to the sub-
instance . C'.

•> ILP Solver Dependent Settings Considered in This Book 

Please be aware that while a commercial ILP solver like CPLEX (utilized 
throughout this book) can be used with its default parameter settings, this may not 
always yield the best results. Therefore, we explore the following options to possibly 
enhance performance beyond the default settings: 

1. Heuristic emphasis: CPLEX offers a parameter to balance between the speed 
of proving optimality and the speed to improve the best-found solution during 
execution. As proving optimality is not a priority in CMSA algorithms, we 
consider a parameter .cplexemphasis ∈ {true,false}, where . cplexemphasis =
false refers to the default setting of CPLEX and . cplexemphasis = true
indicates a setting of the emphasis parameter to a value of five (highest heuristic 
emphasis value). 

2. Warm start: When started in default mode, an ILP solver initially does not 
know any valid solution to the tackled problem. In some cases, providing the 
ILP solver with an initial valid solution can speed up the solving process. In 
the context of CPLEX, this is called a warm start. We consider a parameter 
.cplexwarmstart ∈ {true,false}, where .cplexwarmstart = false does not 
provide an initial solution to CPLEX, whereas .cplexwarmstart = true provides 
the best-so-far solution .Sbsf to CPLEX as initial solution. 

3. Aborting a CPLEX call: Even with an increased value for the heuristic empha-
sis, CPLEX spends computation time on bound computations that eventually lead 
to proving optimality. In some applications, a lot of computation time might be 
spent on these efforts. In fact, in our experience, it is sometimes beneficial to
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abort CPLEX when the first solution is found that improves over the best-so-far 
solution .Sbsf. This CPLEX behavior is invoked in the applications of this book 
with a parameter .cplexabort ∈ {true,false}. 

This completes the description of the application of standard CMSA based on 
the intuitive set of solution components to the MDS problem. 

1.4.2 A Generic Way of Defining the Solution Components 

Depending on the optimization problem to be solved, sometimes, there might be no 
intuitive way of defining the set of solution components. However, a generic way of 
doing so works as follows. For this purpose, we assume to have a binary ILP model 
for the tackled problem at hand.14 The set C of generic solution components will 
contain for each binary variable . xi two solution components: 

1. Component . c0
i : corresponding to .xi = 0. 

2. Component . c1
i : corresponding to .xi = 1. 

In case a solution s to the problem is characterized by .xi = 0, the corresponding 
CMSA-solution S contains component . c0

i . Similarly, if .xi = 1 in a solution s, then 
S contains component . c1

i . In the case of the MDS problem, for example, the generic 
set of solution components C is defined as follows: 

.C := {c0
1, . . . , c

0
n, c

1
1, . . . , c

1
n} where n := |V | (1.18) 

For example, the solution in Fig. 1.7a at page 21a in CMSA format would contain 
the following set of solution components: .{c1

1, c
0
2, c

0
3, c

0
4, c

1
5, c

1
6}. Henceforth the 

standard CMSA algorithm for the MDS based on the generic set of solution 
components is labeled CMSA_GEN. 

1.4.2.1 Solution Construction 

For constructing solutions in CMSA_GEN we use exactly the same way as described 
in the context of CMSA_INT in Sect. 1.4.1.1. In other words, function Probabilis-
ticSolutionConstruction(C) first generates a solution s which consists of a set of 
vertices. The only difference to the procedure described in Sect. 1.4.1.1 consists in 
the conversion of s into a solution S of CMSA_GEN. In particular, for each .vi ∈ V

14 Note that any integer ILP can be transformed into a binary ILP (BIP). This is well known in OR 
and will be demonstrated employing an example in Chap. 5. 
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that forms part of s, solution component . c1
i is added to S, and for each .vi ∈ V which 

does not form part of s, solution component . c0
i is added to S. 

1.4.2.2 Sub-instance Solving 

A sub-instance . C' in CMSA_GEN is solved by adding the following additional 
constraints to the MDS ILP model (for .i = 1, . . . , |V |) and solving it with CPLEX: 

.xi = 0 if c0
i ∈ C' and c1

i /∈ C'
. (1.19) 

xi = 1 if  c0 
i /∈ C' and c1 

i ∈ C' (1.20) 

In other words, if . C' only contains the solution component . c0
i corresponding to 

.xi = 0, then the value of . xi is fixed to zero. Similarly, if . C' only contains the 
solution component . c1

i corresponding to .xi = 1, then the value of . xi is fixed to one. 
Otherwise, if . C' contains both solution components . c0

i and . c1
i then variable . xi is left 

free, which means that . vi might, or not, be included in a solution to the sub-instance. 
In this context, note that the way of generating the ILP model corresponding to 

. C' in CMSA_GEN is potentially more restrictive than in CMSA_INT, at least in the 
case of our application to the MDS problem. This can easily be seen as follows. 
Let us assume that both algorithm variants are in the first iteration (that is, . C' is 
empty), .na = 2 (that is, two solutions are generated per iteration), and the generated 
solutions are the ones from Fig. 1.7b and c on page 21. Therefore, in CMSA_INT, 
after solution construction it holds that .C' = {c2, c3, c4}. In the case of CMSA_GEN, 
it holds that .C' = {c0

1, c
0
2, c

1
2, c

0
3, c

1
3, c

1
4, c

0
5, c

0
6}. This means that the ILP model 

corresponding to . C' in CMSA_INT is obtained by adding constraints .xi = 0 (. i ∈
{1, 5, 6}) to the MDS ILP model. In contrast, the ILP model corresponding to . C'
in CMSA_GEN is obtained by also adding constraints .xi = 0 (.i ∈ {1, 5, 6}), but 
additionally constraint .x4 = 1 is added. This means that . v4 must be part of a valid 
solution to the sub-instance in CMSA_GEN. 

1.4.3 Experimental Evaluation 

The following algorithms are included in the experimental evaluation presented in 
this section: 

1. GREEDY: A greedy heuristic obtained by executing the heuristic from Algo-
rithm 1.2 on page 22 in a deterministic way. 

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance with 
the default parameter values of CPLEX. 

3. CMSA_INT: The standard CMSA algorithm, based on the intuitive way of 
defining the set of solution components.
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4. CMSA_GEN: The standard CMSA algorithm, based on the generic way of 
defining the set of solution components. 

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX) and within 
the CMSA variants—in sequential mode. For conducting the experiments we used 
the IIIA-CSIC in-house high-performance computing cluster of machines equipped 
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of 
RAM. 

1.4.3.1 MDS Benchmark Sets 

In order to have a controlled experimentation environment, we decided to produce 
benchmark sets consisting of graphs of varying sizes and densities, making use of 
the following three network models: 

1. Erdös-Rényi graphs: The Erdös-Rényi model [40] is a random graph model 
named after mathematicians Paul Erdös and Alfréd Rényi. This model is one 
of the earliest and simplest models for generating random graphs. The earliest 
version was introduced in 1959 and is characterized by two parameters: the 
number of nodes (n) and the probability of an edge existing between any pair 
of nodes (p). 

2. Watts-Strogatz graphs: The Watts-Strogatz model is a mathematical model for 
generating small-world networks, which are networks characterized by a small 
average shortest path length between vertices while still exhibiting a high level 
of local clustering. This model was proposed by Duncan J. Watts and Steven 
Strogatz in 1998 [102]. 

3. Barabási-Albert graphs: The Barabási-Albert model is a preferential attach-
ment model for generating scale-free networks. It was introduced by Albert-
László Barabási and Réka Albert in 1999 [9]. The key feature of the Barabási-
Albert model is its ability to generate networks with a scale-free degree 
distribution, meaning that the distribution of node degrees follows a power-law, 
where a small number of nodes have a very high degree while the majority have 
lower degrees. 

In particular, we generated 30 graphs with each of the three models, and for each 
combination of .|V | ∈ {500, 1000, 1500, 2000} and four different graph densities. 
Note that the graph density is controlled in Erdös-Rényi graphs by the edge 
probability (p), in Watts-Strogatz graphs by a parameter k, and in Barabási-Albert 
graphs by a parameter m. In total, this benchmark set consists of 480 graphs from 
each of the three network models. For the generation of all these graphs we used the 
implementations of the three graph models from the igraph library.15 

15 https://igraph.org/.
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1.4.3.2 Parameter Tuning 

As mentioned already in Sect. 1.2.1, the  irace tool was used for tuning the 
parameters of CMSA_INT and CMSA_GEN. The following is a list of parameters 
that were considered for parameter tuning:

• . na: The number of solution constructions per CMSA iteration.
• .agemax: The maximum age solution components may reach before being 

removed from the sub-instance . C'.
• .drate: The determinism rate for solution construction (see Sect. 1.4.1.1).
• .lsize: The candidate set size for solution construction (see Sect. 1.4.1.1).
• . tILP: The CPU time limit (in seconds) for the application of CPLEX for solving 

a sub-instance . C'.
• .cplexemphasis: Use of heuristic emphasis in CPLEX.
• .cplexwarmstart: Use of warm start in CPLEX.
• .cplexabort: Aborting CPLEX whenever then best-so-far solution .SILP is improved. 

Both CMSA variants were tuned exactly once for the entire benchmark set. As 
tuning instances, additional problem instances were generated. More specifically, 
for each combination of .|V | and graph density, exactly one tuning instance was 
generated by each of the three network models. This makes a total of 24 tuning 
instances. As computation time limit, 150 CPU seconds was used for all graphs with 
.|V | = 500, 300 CPU seconds for all graphs with .|V | = 1000, 450 CPU seconds for 
all graphs with .|V | = 1500, and 600 CPU seconds for all graphs with .|V | = 2000. 
Finally, irace was given a budget of 3000 algorithm runs. 

The tuning results for both CMSA_INT and CMSA_GEN are shown in Table 1.2. 
In general, the preferred parameter settings of the two CMSA variants are rather 
similar. The number of solution constructions is rather low and the maximum age 
limit is rather low. This means that, in the context of the MDS problem, sub-
instances should not be too large. This is because probably CPLEX is running into 
problems with larger sub-instances, which is also indicated by a rather high CPU 
time limit for CPLEX for solving sub-instances. The differences in the parameter 
setting for the two CMSA variants is to be found in the setting of .drate, where 
CMSA_GEN seems to require less determinism than CMSA_INT. Another difference 
is shown in the use of CPLEX abort. While CMSA_INT does not make use of the 
abort mechanism, CMSA_GEN does make use of it. 

Table 1.2 Parameters, 
domains and tuning results 
for the MDS problem 

Parameter Domain CMSA_INT CMSA_GEN 

.na .{1, . . . , 50} 4 1 

.agemax .{1, . . . , 10} 3 7 

.drate .[0.0, 0.99] 0.29 0.04 

.lsize .{3, . . . , 50} 35 37 

.tILP .{1, . . . , 20} 13 15 

.cplexemphasis .{true,false} true true 

.cplexwarmstart .{true,false} false false 

.cplexabort .{true,false} false true



28 1 Introduction to CMSA

1.4.3.3 Results 

All four algorithmic techniques (GREEDY, CPLEX, CMSA_INT and CMSA_GEN) 
were applied exactly once to each of the problem instances from the benchmark 
set. The computation time limit for CPLEX, CMSA_INT and CMSA_GEN was the 
same as the one used for tuning (see previous section). The results are shown in the 
form of box plots in Figs. 1.8, 1.9, and 1.10. Note that there is exactly one graphic 

Fig. 1.8 Results for Erdös-Rényi graphs
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Fig. 1.9 Results for Watts-Strogatz graphs 

for each network model (Erdös-Rényi, Watts-Strogatz, and Barabási-Albert). Each 
of these graphics contains a .4 × 4 grid of box plots. Hereby, the rows present the 
results (from top to bottom) for graphs of increasing size, and the columns (from 
left to right) present the results for graphs of increasing density. 

To be able to support the analysis of the results with claims about the statistical 
significance, so-called CD plots are provided separately for the graphs of each of the 
three network models in Figs. 1.11, 1.12, and 1.13; see Sect. 1.2.3 on page 16 for a
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Fig. 1.10 Results for Barabási-Albert graphs 

general description of CD plots. Each of the CD plot figures contains five graphics. 
The first one (topmost) of these graphics provides statistical information over the 
complete set of graphs (concerning the respective network model). The remaining 
four CD plot graphics convey statistical information concerning all graphs of a 
certain density.
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(d) 

1 2 3 4 

(e) 

Fig. 1.11 Critical Difference (CD) plots concerning Erdös-Rényi graphs. (a) All graphs. (b) 
Density .p = 0.00624144. (c) Density .p = 0.00416381. (d) Density .p = 0.0103881. (e) Density  
. p = 0.020705

1 2 3 4 

(a) 
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1 2 3 4 

(c) 
1 2 3 4 

(d) 

1 2 3 4 

(e) 

Fig. 1.12 Critical Difference (CD) plots concerning Watts-Strogatz graphs. (a) All graphs. (b) 
Density . k = 2. (c) Density . k = 3. (d) Density . k = 5. (e) Density .k = 10
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(c) 
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(d) 

1 2 3 4 

(e) 

Fig. 1.13 Critical Difference (CD) plots concerning Barabási-Albert graphs. (a) All graphs. (b) 
Density . m = 2. (c) Density . m = 3. (d) Density . m = 5. (e) Density .m = 10

•> Main Observations Concerning the MDS Results 

1. First, and most importantly, both CMSA variants generally outperform both 
GREEDY and CPLEX. 

2. The comparison with CPLEX shows exactly the pattern that one would expect 
from the comparison of a hybrid technique with an exact technique: in the 
context of small and/or sparse graphs, for which CPLEX performs strongly, the 
performance of the two CMSA variants is comparable to the one of CPLEX. 
With growing graph size and/or density, however, both CMSA variants clearly 
start to outperform CPLEX. Note that CPLEX even performs worse than GREEDY 

in the case of the largest and densest Erdös-Rényi (Fig. 1.8) and Watts-Strogatz 
(Fig. 1.9) graphs. 

3. Concerning the comparison between the two CMSA variants (CMSA_INT vs. 
CMSA_GEN) we can observe that, even though the performance of both is rather 
similar, CMSA_GEN outperforms CMSA_INT in the context of Erdös-Rényi and 
Watts-Strogatz graphs, whereas the opposite is the case for the Baragási-Albert 
graphs. Moreover, this claim has statistical significance in the case of the Watts-
Strogatz graphs (in favor of CMSA_GEN) and in the case of the Barabási-Albert 
graphs (in favor of CMSA_INT). Nevertheless, when looking at the differences 
between the algorithm performances shown by the box plots, we can see that
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these differences are rather small, with the exception of the largest and densest 
Watts-Strogatz graphs. 

4. For what concerns the differences in algorithm performance depending on the 
graph models used to generate the problem instances, it can clearly be said that 
(at least for the algorithms studied here) the MDS is much easier to solve in 
Barabási-Albert graphs (resembling scale-free networks) than in Erdös-Rényi 
(random graphs) and Watts-Strogatz graphs (small-world networks). 

Finally, we also present some STNWeb graphics that show the different behavior 
of CMSA_INT and CMSA_GEN in Fig. 1.14; see Sect. 1.2.2 on page 13 for a 
description of this type of graphic. Figure 1.14a shows the STN consisting of 10 
runs of CMSA_INT and CMSA_GEN for the first Erdös-Rényi graph with 2000 
vertices and the lowest density, a case for which the box plots in Fig. 1.8 show that 
CMSA_GEN outperforms CMSA_INT. This STNWeb graphic shows that two of the 
CSMA_GEN runs obtain the overall best solution found. Moreover, it shows that the 
trajectories of CMSA_GEN are generally longer than those of CMSA_INT. This can 
be explained by the fact that CMSA_GEN only generates one new solution at each 
iteration, which leads to a small step-size when moving through the search space. 
Moreover, it makes use of the abort functionality for stopping CPLEX whenever a 
better solution than the currently best-so-far solution .SILP is obtained. This leads to 
the fact that the start of the algorithm trajectories of CMSA_GEN are of much worse 
quality than those of CMSA_INT, which in turn leads to longer search trajectories. 
Curiously, the 20 search trajectories do not show any overlaps. Therefore, we 
also produced the same STN after search space partitioning, which is obtained 
after clustering similar solutions and coarsening in this way the search space. The 
corresponding STNWeb graphic is shown in Fig. 1.14b. In particular, it can be seen 
that most CMSA_GEN search trajectories are attracted by the same area of the search 
space, marked by the two large red dots. Moreover, it can also be seen that those 
CMSA_INT runs that are attracted by this area of the search space, stop in inferior 
solutions shortly before reaching the best solutions of that area (see the large gray 
triangles in the south-west direction of the large red dots). 

The graphics in Fig. 1.14c and d show the same for the first Watts-Strogatz graph 
with 1000 nodes and the highest density. In this case, the box plots of Fig. 1.9 
show that CMSA_INT generally outperforms CMSA_GEN. And in fact, the STNWeb 
graphic after search space partitioning (Fig. 1.14d) shows that CMSA_INT runs 
rather quickly end up in one of two best-found solutions, whereas some of the 
CMSA_GEN trajectories end in the large gray triangle to the left of the smaller red 
dot, while other CMSA_GEN trajectories do not seem to be attracted by that area of 
the search space.
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Fig. 1.14 STNWeb graphics. (a) and (b) show 10 runs of CMSA_INT and CMSA_GEN for the first 
Erdös-Rényi graph with 2000 vertices and the lowest density. While (a) shows the complete STN, 
(b) shows the same STN after partitioning. (c) and (d) show the same for the first Watts-Strogatz 
graph with 1000 nodes and the highest density 

1.5 Algorithmic Proposals Related to CMSA 

The core concept of CMSA closely aligns with that found in numerous LNS 
variants.16 Both CMSA and various LNS variants operate on the principle of 
iteratively applying an exact technique to reduced problem instances, that is, sub-
instances derived from the original problem instances. However, the manner in 
which CMSA generates these sub-instances differs from the conventional approach 
in LNS. In CMSA, there is no imposition of a predefined partial solution when

16 See Sect. 1.1.5 for a discussion on LNS. Moreover, see Sect. 6.3.2 in Chap. 6 of this book for a 
comparison between CMSA and LNS. 
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utilizing the exact technique. Instead, CMSA narrows down the viable options for 
constructing a feasible solution and makes use of the exact technique for finding (if 
possible) the optimal solution that can be generated from this refined set of choices. 

Concepts related to CMSA are explored in the works of Applegate et al. [7] and 
Cook and Seymour [32], who addressed the classical traveling salesman problem 
(TSP) as follows. Initially, in a preliminary phase, they employ a metaheuristic to 
generate a collection of high-quality TSP solutions. Subsequently, these solutions 
are merged to create a reduced problem instance, which is then solved by an exact 
solver. Similar approaches are known from the field of set covering and vehicle 
routing problems. In [27], for example, Cavaliere et al. tackle the Capacitated 
Vehicle Routing Problem (CVRP) by, first, applying a local search approach in 
order to create a pool of good routes; second, the pool of routes is refined by the 
application of column generation; and lastly, an exact approach is used to solve the 
CVRP only allowing routes from the generated pool of routes. This is done in an 
iterative way. 

Another example of related work concerns the so-called generate-and-solve (GS) 
framework that was originally presented in [76]. This framework is a two-phase 
approach which works as follows: 

1. Generation phase: In the first phase, a set of candidate solutions is generated. 
This process often involves using heuristics, metaheuristics, or other optimization 
methods to explore the solution space and find feasible and possibly high-quality 
solutions. In other words, techniques such as genetic algorithms, simulated 
annealing, or particle swarm optimization may be used to explore the solution 
space efficiently and discover diverse solutions. 

2. Solving phase: The solutions generated in the first phase are typically used 
to create a reduced or modified version of the original problem instance. This 
reduction might involve simplifying the problem by fixing certain variables or 
constraints based on the generated solutions. The reduced problem instance 
is then solved optimally using an exact optimization method. Exact solvers 
guarantee to find the globally optimal solution within the reduced problem space. 

Recent applications of this framework include the ones in [36, 85, 92]. 
Another prominent example of related work concerns kernel search [6], which 

is a heuristic framework based on the identification of a restricted set of promising 
solution components (called the kernel) and on the exact solution of sub-instances 
by ILP solvers. Applications include [52, 64, 93]. 

The concept of solution merging in evolutionary algorithms (EAs) typically 
involves combining information from multiple candidate solutions to generate new 
solutions. EAs, which are optimization techniques inspired by natural selection 
and genetics, often employ mechanisms to create diverse and potentially improved 
solutions over successive iterations. Solution merging is one such mechanism 
that aims to exploit the strengths of different candidate solutions. By merging 
information from different solutions, the evolutionary algorithm seeks to explore 
a broader space of potential solutions, facilitating the discovery of novel and high-
quality solutions to the optimization problem. The specific mechanisms for solution
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merging can vary based on the algorithm and the nature of the optimization problem 
being addressed. In fact, both heuristic and exact techniques are used in the context 
of solution merging. Applications of solution merging include [21, 41, 91]. 

A last related line of work that we would like to mention here is merge 
search (MS) [60]. Just like CMSA, MS generates at each iteration a sub-instance 
to the original problem instance and tries to solve this sub-instance by means 
of an exact solver. The primary distinction between CMSA and MS lies in the 
way in which sub-instances are generated. CMSA primarily aims at pinpointing 
a substantial set of variables with fixed values in high-quality solutions. The 
optimization focus then shifts to the remaining set of variables. In contrast, MS seeks 
aggregations of variables, specifically groups with consistent (identical) values 
across good solutions. However, the exact values within these groups remain subject 
to optimization. One of the most recent applications of MS can be found in [99]. 
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Chapter 2 
Self-adaptive CMSA 

Abstract While the standard CMSA algorithm has proven its utility across a 
range of different combinatorial optimization problems, certain applications have 
highlighted its susceptibility to variations in parameter settings. In order to deal 
with this issue, an innovative self-adaptive variant of the CMSA algorithm, termed 
ADAPT_CMSA, was developed and will be presented in this chapter. The primary 
objective is to mitigate the parameter sensitivity that might occur in the standard 
CMSA variant. The merits of this novel CMSA variant are substantiated through its 
application to the Minimum Positive Influence Dominating Set (MPIDS) problem 
and to the Far From Most String (FFMS) problem. Notably, ADAPT_CMSA distin-
guishes itself from standard CMSA by not presenting the need for a computationally 
intensive parameter tuning process across subsets within the considered set of 
problem instances. 

2.1 Introduction 

The research community on metaheuristics [16] acknowledges a prevalent issue 
related to an algorithm’s high sensitivity to variations in parameter values. In 
this context, a metaheuristic algorithm is deemed parameter sensitive when two 
conditions are met: (1) the algorithm’s performance for particular instances or 
instance groups significantly relies on specific parameter values, and (2) the 
necessary parameter values differ notably across distinct instances or instance 
groups. The research community views excessive sensitivity to parameter settings 
as an unfavorable aspect. 

A noticeable susceptibility to parameter values has also been observed in certain 
applications of CMSA as documented in the literature. An illustrative case is the 
initial application of standard CMSA to the Minimum Positive Influence Dominat-
ing Set (MPIDS) problem [1], an NP-hard combinatorial optimization problem. In 
response to this issue, a self-adaptive variant of CMSA named ADAPT_CMSA was 
proposed in [4]. The primary objective during the development of ADAPT_CMSA 

was to obtain a CMSA variant that exhibits reduced sensitivity to parameter values. 
To validate its effectiveness, in this chapter, we present the initial application of 
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and Applications, https://doi.org/10.1007/978-3-031-60103-3_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2


42 2 Self-adaptive CMSA

Algorithm 2.1: Pseudo-code of self-adaptive CMSA: ADAPT_CMSA 

1: input 1: Complete set of solution components C 
2: input 2: Values for ADAPT_CMSA parameters tprop, tILP 
3: input 3: Values for solution construction parameters αLB, αUB, αred 
4: Sbsf := GenerateGreedySolution(C) 
5: na := 1; αbsf := αUB; C' := Sbsf 

6: while CPU time limit not reached do 
7: for i := 1, . . . , na do 
8: S := ProbabilisticSolutionConstruction(C, Sbsf, αbsf) 
9: C' := C' ∪ S 
10: end for 
11: (SILP, tsolve) := SolveSubinstance(C', tILP) {This function returns two objects: (1) the 

obtained solution (SILP), (2) the required computation time (tsolve)} 
12: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if 
13: if f (SILP) < f  (Sbsf) then 
14: Sbsf := SILP 

15: na := 1 
16: else 
17: if f (SILP) > f  (Sbsf) then 
18: if na = 1 then αbsf := min{αbsf + αred 10 , α

UB} else na = 1 end if 
19: else 
20: na := na + 1 
21: end if 
22: end if 
23: C' := Sbsf 

24: end while 
25: output: Sbsf 

CMSA to the MPIDS problem. In addition, we describe its application to a second 
NP-hard combinatorial optimization problem known as the Far From Most String 
(FFMS) problem. 

The results obtained will demonstrate multiple advantages of ADAPT_CMSA 

over the standard CMSA. Firstly, ADAPT_CMSA eliminates the need for fine-tuning 
specific parameters for subsets within the designated benchmark set. Following 
a single round of parameter tuning, ADAPT_CMSA performs effectively across 
the entire benchmark set, encompassing instances of diverse sizes. Secondly, in 
the realm of large-scale problem instances, ADAPT_CMSA distinctly outperforms 
standard CMSA. Even with specialized tuning efforts, standard CMSA cannot 
match the competitive performance achieved by ADAPT_CMSA in handling such 
large-scale problem instances. 

Note that ADAPT_CMSA has already been used in [2–4, 8].
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2.2 Self-adaptive CMSA: General Description 

The pseudo-code for ADAPT_CMSA is outlined in Algorithm 2.1. A prominent 
distinction from the standard CMSA—see Algorithm 1.1 on page 19—is the 
absence of age values. ADAPT_CMSA operates with a fixed maximum age of one, 
meaning that after each iteration, all solution components, except those forming 
part of the best-so-far solution . Sbsf, are purged from the sub-instance . C' (refer to 
line 23). This is done because ADAPT_CMSA disposes of an alternative way of 
regulating the size of the sub-instances. Another variation is evident in function 
ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf), responsible for the probabilistic 
generation of solutions in each algorithm iteration (see line 8). Notably, this function 
takes as input, in addition to the set of all possible solution components (C), the 
current best-so-far solution . Sbsf, and a parameter .αbsf (where .0 ≤ αbsf < 1). This 
parameter influences the construction of new solutions, biasing them towards the 
best-so-far solution . Sbsf. Specifically, a higher value of .αbsf results in a greater 
similarity of the solutions generated inProbabilisticSolutionConstruction(C, . Sbsf, 
. αbsf) to . Sbsf. 

The dynamic adjustment of the .αbsf value is a self-adaptive feature in 
ADAPT_CMSA. Initially, ADAPT_CMSA requires as input lower and upper bounds, 
.αLB and .αUB respectively, for the .αbsf value. Additionally, the step size, . αred, for  
reducing .αbsf must be provided as input. The algorithm commences by setting 
.αbsf to its maximum value, .αUB (see line 5).1 If the resulting ILP can be solved 
within a computation time .tsolve that is below a fraction .tprop of the maximally 
allowed computation time . tILP, the  .αbsf value is decreased by .αred (see line 12). 
The rationale behind this adjustment lies in the following reasoning: when the ILP 
is easily solvable, it indicates a relatively small search space due to a low number 
of free variables. To increase the freedom in the ILP by introducing more free 
variables, the solutions generated in ProbabilisticSolutionConstruction(C, . Sbsf, 
. αbsf) should exhibit greater dissimilarity to . Sbsf. This goal is achieved by reducing 
the .αbsf value. 

The second self-adaptive aspect managed by ADAPT_CMSA pertains to the 
number of solution constructions per iteration (. na), outlined in lines 13–22. Initially, 
the algorithm sets . na to 1 (see line 5). Additionally, if the solution of the reduced 
ILP (.SILP) improves upon the best-so-far solution . Sbsf, . na is reset to one (see 
line 15). Conversely, if the .SILP solution is strictly inferior to . Sbsf, it indicates that 
the corresponding sub-instance was too large (resp. difficult) for the ILP solver to 
complete the solving-process within . tILP seconds. In this scenario, if .na = 1, the . αbsf
value is marginally increased (by . 

αred
10 ); otherwise, . na is reset to one. In the event that 

.f (SILP) = f (Sbsf), . na is incremented by one (see line 20). This adjustment is made 
because the sub-instance did not yield a superior solution to . Sbsf, while still being

1 This implies that solutions generated in this manner will exhibit greater similarity to . Sbsf

compared to lower values of . αbsf. 
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solved to optimality within the allotted computation time of .tILP seconds, indicating 
that the sub-instance’s size should be expanded. 

2.3 Application to the MPIDS Problem 

In this section, the application of ADAPT_CMSA to the MPIDS problem will 
be presented. This problem has some relevance in the realm of social networks. 
Picture a scenario where the vertices and edges within such a social network 
symbolize individuals (persons) and their respective relationships/interactions. 
Generally, information disseminated within social networks holds the potential 
to exert a substantial impact, be it positive or negative, on segments of society. 
The social norms theory indicates that individuals’ behavior can be influenced 
by the perception of others’ thoughts and actions [9]. Consequently, leveraging 
relationships among people in social networks can be advantageous for attaining 
economic and/or societal benefits. In this context, the objective of the MPIDS 
problem is to identify a small subset of influential individuals (or key individuals) 
to accelerate the dissemination of positive influence in a social network [11, 12]. 
The MPIDS problem also finds alternative applications in e-learning software [18], 
online business [14], as well as issues related to drinking, smoking, and other 
substance-related concerns [17]. 

Here is a technical description of the MPIDS problem: Consider an undirected 
graph .G = (V ,E) with .|V | = n vertices containing neither loops nor parallel 
edges.2 A subset .s ⊆ V is considered a valid solution if it satisfies the following 
condition: for each vertex .v ∈ V , at least half of its neighbors must be part of s. It  
is important to note that if G is connected, any valid solution s also is a dominating 
set of G.3 The goal of the MPIDS problem is to identify a valid solution . s∗ ⊆ V

with the minimum possible size. In other words, for any valid solution .s ⊆ V , the  
objective function value is defined as .f (s) := |s|. It is worth mentioning that the 
solution .s := V is a trivial one for the problem. An example of the MPIDS problem 
is provided in Fig. 2.1. 

Regarding complexity, it is important to highlight that the MPIDS problem falls 
into the category of NP-hard problems. Several algorithmic methods have been 
proposed in the literature to address the MPIDS problem, with the current leading 
approach being a method based on local search as detailed in [15]. However, it 
is crucial to emphasize that the primary focus of this chapter is to showcase the 
merits of ADAPT_CMSA in comparison to standard CMSA, rather than engaging in 
a comparison with the current state-of-the-art methods.

2 Loops (also known as self-loops or self-edges) in undirected graphs are edges .(v, v) from a node 
v to itself. 
3 See Sect. 1.4 of Chap. 1 for the definition of a dominating set. 
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Fig. 2.1 An undirected graph 
on 20 vertices. The optimal 
MPIDS solution contains the 
vertices marked in blue color 

A well-known ILP model for the MPIDS problem from the related literature 
is based on a binary variable . xi for each vertex .vi ∈ V . This ILP model can be 
expressed as follows. 

.min
n∑

i=1

xi . (2.1) 

subject to
∑

vj ∈N(vi) 
xj ≥

⌈
deg(vi) 

2

⌉
∀ vi ∈ V (2.2) 

xi ∈ {0, 1} 

In this context, .N(vi) represents the neighborhood of vertex . vi in the input graph G. 
Additionally, .deg(vi) stands for the degree of vertex . vi , with .deg(vi) := |N(vi)|. 
Equation (2.2) imposes a requirement on any valid solution, ensuring that it includes 
at least half of the neighbors of each vertex .vi ∈ V . 

2.3.1 Generic Definition of the Solution Components 

As in Sect. 1.4.1 on page 21 we will define the set C of solution components for the 
application of standard CMSA_GEN and ADAPT_CMSA in a generic way. 

In other words, we introduce two solution components, namely . c0i and . c1i , for  
each binary variable . xi where i ranges from 1 to the total number of vertices . |V |. 
Specifically, . c0i corresponds to .xi = 0, and . c1i corresponds to .xi = 1. The  set  
.C = {c01, . . . , c0n, c11, . . . , c1n} encompasses the entire set of 2n solution components.
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Algorithm 2.2: Solution construction procedure for the MPIDS problem 
1: CMSA input: solution construction parameters .drate, . lsize
2: ADAPT_CMSA input: solution construction parameter . αbsf
3: .s := spar {.spar ⊂ V is obtained from a pre-processing procedure} 
4: while s is not a valid solution do 
5: Let .U ⊆ V be the set of uncovered vertices 
6: . v := argmin{deg(v') | v' ∈ U}
7: while .|N(v) ∩ s| <

⌈
deg(v)

2

⌉
do 

8: .v̂ := ChooseFrom(.N(v) \ s) 
9: . s := s ∪ {v̂}
10: end while 
11: end while 
12: output: valid solution s 

A candidate solution S constitutes a subset of C with a cardinality of .|S| = n. 
Additionally, S includes precisely one of the two components, . c0i or . c1i , for each i 
within the range of 1 to . |V |. Finally, a candidate solution S attains the status of a 
valid solution if it satisfies the constraints of the considered optimization problem. 

2.3.2 Constructing Solutions to the MPIDS Problem 

First of all, note that—as in the case of the MDS problem in Sect. 1.4.1.1 on 
page 22—a valid MPIDS solution is constructed in terms of a set of vertices. 
Afterwards, it is converted into the corresponding set of solution components. 
Valid MPIDS solutions must be constructed in the following three algorithmic 
functions: 

1. Function ProbabilisticSolutionConstruction(C) of standard CMSA_GEN; see  
line 8 of Algorithm 1.1 on page 19. 

2. Function GenerateGreedySolution(C) of ADAPT_CMSA; see line 4 of Algo-
rithm 2.1 on page 42. 

3. Function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf) of ADAPT_CMSA; 
see line 8 of Algorithm 2.1 on page 42. 

All three functions utilize the solution construction mechanism from the greedy 
procedure outlined in [7]. However, the first and third functions mentioned above 
employ this greedy procedure in a probabilistic manner. It is worth noting that 
the method of introducing probabilistic elements into this greedy procedure differs 
between these two functions. For the ensuing discussion, a vertex .v ∈ V is deemed 
covered concerning a (partial) solution s if and only if at least half of its neighbors 
are included in s. Conversely, if this condition is not met, v is said to be uncovered. 

The construction mechanism employed is outlined in Algorithm 2.2. Initially, 
each solution s undergoing construction is initialized with a set .spar ⊂ V comprising
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nodes that must provenly form part of any optimal solution, as indicated in line 3. 
It is important to note that .spar is generated by the application of a pre-processing 
procedure as detailed in [7]. 

During each step of the solution construction process, the following is done. 
Firstly, the set U of all vertices not yet covered by the vertices in the (partial) 
solution s is identified; see line 5. Subsequently, a node .v ∈ U is chosen such 
that .deg(v) ≤ deg(v') holds for all .v' ∈ U (line 6). Next, nodes from .N(v) \ s are 

incrementally added to s while .|N(v) ∩ s| <
⌈

deg(v)
2

⌉
, as illustrated in lines 7-10. 

Here, the function ChooseFrom(.N(v) \ s) is responsible for selecting exactly one 
vertex from .N(v) \ s in each iteration of the while loop. 

•> Implementation of ChooseFrom(.N(v) \ s) in CMSA_GEN 

First, a candidate list L is initialized, containing all vertices .v' ∈ N(v) \ s. Each 
vertex . v' within L is evaluated by its cover degree .covdeg(v

'), denoting the number 
of uncovered adjacent vertices to . v'. It is noteworthy that the vertices in L are 
arranged in descending order based on their cover degree values. Subsequently, a 
uniform random number r is generated within the interval .[0, 1]. If .r ≤ drate (where 
.drate is the determinism rate), the vertex with the highest cover degree is chosen and 
incorporated into s. Conversely, if r exceeds .drate, a vertex is randomly selected from 
the restricted candidate list, which comprises the initial .lsize vertices of L. Here, . lsize
denotes the size of the restricted candidate list, and all vertices within it have an 
equal probability of .

1
lsize

for selection. 

•> Implementation of ChooseFrom(.N(v) \ s) in ADAPT_CMSA 

First, for each vertex .vi ∈ N(v) \ s where .ci ∈ Sbsf, a value  

.q(vi) := (covdeg(vi) + 1) · αbsf (2.3) 

is assigned, while for all other vertices .vj ∈ N(v) \ s, the assigned value is 

.q(vj ) := (covdeg(vj ) + 1) · (1 − αbsf) . (2.4) 

Subsequently, a vertex . ̂v is selected from .N(v) \ s based on the following 
probabilities: 

.p(v') := q(v')∑
v''∈N(v)\s q(v'')

∀ v' ∈ N(v) \ s (2.5) 

Note that the bias towards the best-so-far solution .Sbsf is determined by the 
parameter .αbsf ∈ [0, 1]. A higher value of .αbsf strengthens this bias. It is important 
to note that such bias is absent in the standard CMSA.
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Finally, note that—after the construction of a solution s—this solution is 
transformed into a corresponding solution S containing solution component . c1i for 
each .vi ∈ s, and solution component . c0i for each .vi ∈ V \ s. 

2.3.3 Sub-instance Solving 

A sub-instance . C' is solved in function SolveSubinstance(. C', . tILP) of Algo-
rithm 1.1 (see page 19) and of Algorithm 2.1 (see page 42) in exactly the same 
way. In particular, the following additional constraints are added to the MPIDS ILP 
model (for .i = 1, . . . , |V |) and the resulting model is solved by CPLEX: 

.xi = 0 if c0i ∈ C' and c1i /∈ C'
. (2.6) 

xi = 1 if  c0 i /∈ C' and c1 i ∈ C' (2.7) 

In other words, if . C' only contains the solution component . c0i corresponding to 
.xi = 0, then the value of . xi is fixed to zero. Similarly, if . C' only contains the 
solution component . c1i corresponding to .xi = 1, then the value of . xi is fixed to 
one. Otherwise, if . C' contains both solution components . c0i and . c1i then variable 
. xi is left free, which means that . vi might, or not, be included in a solution to 
the sub-instance. Note that this way of solving sub-instances is exactly the same 
as outlined in the context of CMSA_GEN for the MDS problem in Sect. 1.4.2.2 
on page 25. The only difference between CMSA_GEN and ADAPT_CMSA is that 
function SolveSubinstance(. C', . tILP)—in the case of ADAPT_CMSA—returns also 
the solving time .tsolve in addition to the CPLEX solution .SILP. 

2.3.4 Experimental Evaluation 

The experimental evaluation in this section encompasses the following algorithms: 

1. GREEDY: The heuristic obtained by the execution of the algorithm presented in 
Algorithm 2.2 on page 46 in a deterministic manner. 

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance, 
utilizing the default parameter values of CPLEX. 

3. CMSA_GEN: The standard CMSA algorithm, making use of the generic approach 
to defining the set of solution components. 

4. ADAPT_CMSA: The self-adaptive CMSA approach from this chapter. 

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX) and within 
the CMSA variants—in sequential mode. For conducting the experiments we used 
the IIIA-CSIC in-house high-performance computing cluster of machines equipped 
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of 
RAM.
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2.3.4.1 MPIDS Benchmark Sets 

As the MPIDS problem was defined in the context of applications in social net-
works, we used the igraph library4 for generating input graphs with the Barabási-
Albert model. This is because the Barabási-Albert model generates scale-free net-
works which are often used to simulate social networks. In particular, we generated 
30 graphs for each combination of . |V | ∈ {1000, 5000, 10,000, 50,000, 100,000}
and three different graph densities as controlled by a parameter m in the Barabási-
Albert model. In total, this benchmark set consists of 450 graphs, ranging from 
rather small graphs with 1000 nodes to large-scale graphs of .100,000 vertices and 
up to .2,000,000 edges. 

2.3.4.2 Parameter Tuning 

As in the case of the MDS problem in Sect. 1.4.3.2, the  irace tool was used for 
tuning the parameters of the considered CMSA variants. The list of parameters of 
the CMSA_GEN variant is the same as the one already outlined in Sect. 1.4.3.2. In  
contrast, ADAPT_CMSA does not make use of parameters . na and .agemax because 
. na is handled in a self-adaptive way in ADAPT_CMSA, while .agemax is fixed to 
one. Moreover, ADAPT_CMSA does not utilize parameters .drate and . lsize, because 
the way of making the solution construction probabilistic is different from the one 
in CMSA_GEN. Finally, ADAPT_CMSA does not use CPLEX-parameter .cplexabort, 
because the information about the CPLEX computation time is important for the 
self-adaptive mechanism.5 Therefore, CPLEX is never aborted before either the 
sub-instance is solved to optimality, or the maximum computation time of . tILP
CPU seconds is reached. Instead, ADAPT_CMSA makes use of the following list 
of additional parameters: 

• . αLB: The lower bound for . αbsf, which determines the bias of the best-so-far 
solution .Sbsf on the solution construction process. 

• .αUB: The upper bound for . αbsf. 
• . αred: The amount by which the value of .αbsf is reduced if necessary (see line 12 

of Algorithm 2.1 on page 42). 
• .tprop: The parameter used for deciding if .αbsf is to be reduced at each iteration 

(again, see line 12 of Algorithm 2.1 on page 42). 

In the first attempt, both CMSA variants were tuned exactly once for the entire 
benchmark set. As tuning instances, additional problem instances were generated. 
More specifically, for each combination of . |V | and graph density, exactly one tuning

4 https://igraph.org/. 
5 Remember that a description of the CPLEX parameters possibly used within CMSA is provided 
on page 23. 
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Table 2.1 Parameters, domains, and tuning results for the MPIDS problem 

Parameter Domain CMSA_GEN ADAPT_CMSA 

.na .{1, . . . , 50} 44 n.a. 

.agemax .{1, . . . , 10} 3 n.a. 

.drate .[0.0, 0.99] 0.99 n.a. 

.lsize .{3, . . . , 50} 8 n.a. 

.tILP .{1, . . . , 50} 41 13 

.cplexemphasis .{true,false} true true 

.cplexwarmstart .{true,false} false false 

.cplexabort .{true,false} true n.a. 

.αLB .[0.6, 0.99] n.a. 0.91 

.αUB .[0.6, 0.99] n.a. 0.97 

.αred .[0.01, 0.1] n.a. 0.02 

.tprop .[0.1, 0.8] n.a. 0.41 

instance was generated, resulting in 15 tuning instances. As computation time limit 
we used 600 CPU seconds for all problem instances. 

The tuning results for both CMSA_GEN and ADAPT_CMSA are shown 
in Table 2.1. They give already several indications for possible problems of 
CMSA_GEN. The determinism rate (.drate), for example, is very high. Moreover, 
the CPU time limit for CPLEX (. tILP) is rather high too. Both settings might indicate 
that CMSA_GEN is having problems solving sub-instances for larger problem 
instances. Regarding the parameter settings of ADAPT_CMSA, a rather high bias 
for constructing solutions in the vicinity of the best-so-far solution .Sbsf can be 
observed. 

2.3.4.3 First Results 

All four algorithmic techniques (GREEDY, CPLEX, CMSA_GEN and ADAPT_CMSA) 
were applied exactly once to each of the problem instances from the benchmark 
set. The computation time limit for CPLEX, CMSA_GEN, and ADAPT_CMSA was 
the same as the one used for tuning (600 CPU seconds per run). The results 
are shown in the form of box plots in Figs. 2.2 (smaller instances with . |V | ∈
{1000, 5000, 10,000} and 2.3 (larger instances with .|V | ∈ {50,000, 100,000}). 
Each of these graphics contains a grid of box plots. Rows in the grid present the 
results (from top to bottom) for graphs of increasing size, and grid columns (from 
left to right) present the results for graphs of increasing density. 

To facilitate the analysis of the results along with assertions regarding statistical 
significance, we include CD plots presented in Fig. 2.4. For a comprehensive 
explanation of CD plots, please refer to Sect. 1.2.3 on page 16. Figure 2.4 comprises 
six CD plots. The first one (Fig. 2.4a) presents statistical details for the entire set of
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Fig. 2.2 MPIDS results for graphs with |V | ∈ {1000, 5000, 10,000} based on a single parameter 
tuning application per algorithm



52 2 Self-adaptive CMSA

Fig. 2.3 MPIDS results for graphs with |V | ∈ {50,000, 100,000} based on single parameter 
tuning application per algorithm 

graphs, while the subsequent five CD plots provide statistical insights specific to 
graphs of particular sizes. 

•> Main Observations Concerning the MPIDS Results 

1. CPLEX is only able to compete with the CMSA variants in the context of the 
denser ones of the small problem instances (.|V | ∈ {1000, 5000}). In fact, for 
problem instances with .10,000 vertices of medium and high density, CPLEX 

starts to fail. For the large problem instances, CPLEX is only able to generate 
the trivial solutions (containing all vertices of a graph) within the allotted 
computation time.
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2. For graphs with .|V | ∈ {1000, 5000, 10,000}, CMSA_GEN works well, but— 
apart from the denser graphs with .|V | = 1000—CMSA_GEN is already slightly 
inferior to ADAPT_CMSA. However, for graphs with . |V | ∈ {50,000, 100,000}
CMSA_GEN fails. This can be seen by the fact that it is only slightly better than 
GREEDY. This indicates that the sub-instances generated within CMSA_GEN 

cannot be solved anymore by CPLEX for graphs of that size. 
3. In contrast to CMSA_GEN, ADAPT_CMSA works very well for problem instances 

over the whole benchmark set. 
4. The CD plots from Fig. 2.4 confirm that ADAPT_CMSA outperforms all other 

approaches with statistical significance. 

Additionally, we plotted STNWeb graphics of the obtained results; see Sect. 1.2.2 
on page 13 for a description of the STNWeb tool and the type of graphics that are 
produced. Figure 2.5 shows the STN (complete vs. partitioned) for the first problem 
instance with 10,000 vertices and .m = 5 (sparsest graphs). The complete STN 
(Fig. 2.5a) shows that the ADAPT_CMSA search trajectories are much longer. This 
is for two reasons. First, the algorithm does smaller steps in the search space (due to 
a lower CPU time limit for CPLEX in comparison to CMSA_GEN). Second, starting 
from solutions of a similar quality as CMSA_GEN, the algorithm produces clearly 
better final results. The partitioned STN (Fig. 2.5b) indicates a specific property of 

1 2 3 4 

(a) 

1 2 3 4 

(b) 
1 2 3 4 

(c) 

1 2 3 4 

(d) 
1 2 3 4 

(e) 

1 2 3 4 

(f) 

Fig. 2.4 Critical Difference (CD) plots concerning the MPIDS results. (a) All graphs. (b) . |V | =
1000. (c) .|V | = 5000. (d) .|V | = 10,000. (e) .|V | = 50,000. (f) .|V | = 100,000
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Fig. 2.5 STNWeb graphics. (a) and (b) show 10 runs of CMSA_GEN and ADAPT_CMSA for the 
first problem instance with 10,000 vertices and .m = 5 (sparse). While (a) shows the complete 
STN, (b) shows the same STN after partitioning 

the MPIDS problem. Observe that trajectory overlaps are only found at the start of 
algorithm trajectories, both concerning trajectories of different algorithms (see the 
two larger grey dots) and between trajectories of the same algorithm (see the large 
pink dot). This indicates that different good solutions to an MPIDS instance might 
have quite different structures. In order to confirm this, the following experiment 
was made. The scatter plots in Fig. 2.6 show for each pair of same-quality solutions 
from the search trajectories of CMSA_GEN and ADAPT_CMSA their difference (in 
terms of the number of vertices that are different in both solutions). Especially with 
growing instance size (starting from the second row of scatter plots) these graphics 
nicely confirm what was indicated already by the STNWeb graphics from Fig. 2.5. 
The better a pair of same-quality solutions is, the larger their difference. 

2.3.4.4 Results with a Specialized Parameter Tuning 

In a second experiment, the aim is to study the change of performance both of 
CMSA_GEN and ADAPT_CMSA (if any) when specifically tuned for each of the 
five considered graph sizes. The parameter values obtained with irace from these 
specialized tuning runs are provided in Table 2.2. 

Again, the results are provided in terms of box plots (see Figs. 2.7 and 2.8) and 
the corresponding CD plots (see Fig. 2.9). Note that in these graphics, the results 
of both CMSA_GEN and ADAPT_CMSA obtained with the two available parameter 
settings (single tuning vs. specialized tuning) are compared. For this purpose the 
algorithms, when using the specialized parameter setting, are called CMSA_GEN_T 
and ADAPT_CMSA_T.
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Fig. 2.6 Differences betweenMPIDS solutions of the same quality. The x-axes of all plots indicate 
the solution quality (that is, the objective function values), while the y-axes show the differences 
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Fig. 2.7 MPIDS results for graphs with .|V | ∈ {1000, 5000, 10,000} based on instance-subset-
specific parameter tuning
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Fig. 2.8 MPIDS results for graphs with .|V | ∈ {50,000, 100,000} based on instance-subset-
specific parameter tuning 

•> Main Observations Concerning Single Tuning vs. Specialized Tuning 

1. ADAPT_CMSA_T still outperforms CMSA_GEN_T with statistical significance. 
2. The most important observation is that the results of CMSA_GEN can be signif-

icantly improved by specialized tuning up to a graph size of 50,000 vertices. In 
contrast, the results of ADAPT_CMSA are not significantly improved by special-
ized tuning. This indicates that the self-adaptive mechanism of ADAPT_CMSA 

works in an excellent way. This results not only in an excellent performance in 
the context of large-scale problem instances of problems such as the MPIDS, but 
it also results in potentially much less parameter tuning efforts in comparison to 
CMSA_GEN. 

3. The results of CMSA_GEN_T for graphs of size .|V | = 100,000 indicate the 
continuing disability of the algorithm to produce sub-instances of a size and 
nature that can be solved by CPLEX.
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Fig. 2.9 Critical Difference (CD) plots concerning the MPIDS results after specialized parameter 
tuning. (a) All graphs. (b) .|V | = 1000. (c) .|V | = 5000. (d) .|V | = 10,000. (e) .|V | = 50,000. (f) 
. |V | = 100,000

2.4 Application to the FFMS Problem 

As a second application of ADAPT_CMSA, we introduce its use in addressing the 
far from most string (FFMS) problem [13], a combinatorial optimization problem 
that falls under the category of NP-hard problems. This problem is part of the 
sequence consensus problems family, where the goal is to find a consensus sequence 
for a finite set of sequences, representing them in the best way possible. Sequence 
consensus problems often involve various and sometimes conflicting objectives. In 
the context of the FFMS problem, the objective is to identify a new sequence that 
significantly differs from the majority of the given input sequences (refer to the 
technical description below). The FFMS problem finds applications in diverse fields, 
such as molecular biology, where its use extends to creating diagnostic probes for 
bacterial infections or identifying potential drug targets. 

A specific instance of the FFMS problem is represented as .(Ω, t), where . Ω =
{s1, . . . , sn} forms a set of n input strings over a finite alphabet . Σ. Each input string 
. si in . Ω has a length of m, denoted as .|si | = m for all .si ∈ Ω. Additionally, a fixed 
threshold value is provided, with .0 < t < m. In the subsequent discussion, the j -th 
character of a string . si is referred to as .si[j ]. The  Hamming distance between two 
equal-length strings .si /= sj ∈ Ω, denoted as .dH (si, sj ), represents the count of 
positions where corresponding characters in the two strings differ. In other words: 

.dH (si, sj ) = ∣∣{k ∈ {1, . . . , m} | si[k] /= sj [k]}∣∣ (2.8)
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Any string s with a length of m over alphabet . Σ is considered a feasible solution 
to the FFMS problem. The objective function value .forig(s) for any such string s is 
defined as follows: 

.forig(s) := |{si ∈ Ω | dH (s, si) ≥ t}| (2.9) 

This implies that the objective function value for a solution or string s is determined 
by the count of input strings whose Hamming distance with s is greater than or 
equal to the specified threshold value t . Over the past two decades, a range of 
different algorithmic approaches have been presented in the related literature for 
addressing the FFMS problem. Presently, the negative learning ACO approach 
proposed in [6] and the memetic algorithm introduced in [10] are considered state-
of-the-art methods for tackling the FFMS problem. 

•> Example of the FFMS Problem 

Given is the following problem instance: 

• Number of input strings: . n = 3
• Length of the input strings: . m = 4
• Alphabet: .Σ = {0, 1} (that is, the alphabet size is 2) 
• Threshold value: . t = 3
• Instance data (input strings): .s1 = 0101, .s2 = 0111, . s3 = 0011

In the following we will analyze two possible solutions: 

1. A first valid solution: . s = 1100

• Hamming distances: 

– . dH(s = 1100, s1= 0101) = 2
– . dH(s = 1100, s2= 0111) = 3
– . dH(s = 1100, s3= 0011) = 4

• Objective function value: . forig(s) = 2

2. A second valid solution: .s∗ = 1000 (optimal solution) 

• Hamming distances: 

– . dH(s∗= 1000, s1= 0101) = 3
– . dH(s∗= 1000, s2= 0111) = 4
– . dH(s∗= 1000, s3= 0011) = 3

• Objective function value: . forig(s) = 3

The FFMS problem can be modeled in terms of an ILP model, as originally 
described and introduced in [5]. This model makes use of two sets of binary
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variables. The first set contains a variable .xj,a for each combination of a position 
.j = 1, . . . , m of a possible solution and a character .a ∈ Σ. The second one contains 
a binary variable . yi for each input string .si ∈ Ω (.i = 1, . . . , n). The ILP model can 
then be stated as follows. 

.max
n∑

i=1

yi . (2.10) 

subject to
∑

a∈Σ

xj,a = 1 j = 1, . . . , m. (2.11) 

m∑

j=1 

xj,si [j ] ≤ m − t · yi i = 1, . . . , n (2.12) 

xj,a, yi ∈ {0, 1} 

Note that constraints (2.11) ensure that exactly one character from . Σ is chosen 
for each position j of a solution string. Moreover, constraints (2.12) ensure that a 
variable . yi can only have value one if and only if the Hamming distance between 
input string .si ∈ Ω and a solution string (as defined by the setting of the variables 
. xj,a) is greater or equal than the threshold value t . 

2.4.1 Augmented Objective Function 

The FFMS problem poses a significant challenge not only for exact techniques 
but also for metaheuristics. One of the main difficulties arises from the limited 
range of distinct objective function values. Specifically, for an instance with n input 
strings, the set of possible objective function values is constrained to .{0, . . . , n}. 
This characteristic leads to wide plateaus in the search space of an FFMS problem 
instance. Consequently, similar solutions often share identical objective function 
values. For a metaheuristic, this implies that the search space provides minimal (or 
no) guidance on how to progress and explore during the search process. Conse-
quently, metaheuristics frequently encounter difficulties navigating these plateaus. 
In consideration of these challenges, [6] conducted experiments incorporating four 
augmented objective functions in addition to the original objective function. In 
this chapter, we will adopt the augmented objective function from [5], which we 
will refer to as .faug(). This function is a lexicographic objective function, with the 
primary criterion being the original objective function. The second criterion makes 
use of the following function: 

.h(s) :=
∑

{si∈Ω|dH (s,si )≥t}
dH (s, si) + max

{si∈Ω|dH (s,si )<t}
{dH (s, si)} (2.13)
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In simpler terms, .h(s) computes the sum of Hamming distances between s and 
the input strings .si ∈ Ω with a Hamming distance of at least t . It also takes into 
account the maximum Hamming distance between s and the input strings . si ∈ Ω

with a Hamming distance less than t . The original objective function and . h() are 
then combined using a lexicographic approach. 

.
faug(s) > faug(s

') iffforig(s) > forig(s
') or

(forig(s) = forig(s
') and h(s) > h(s')) (2.14) 

The rationale behind .h() can be explained as follows: a higher value of . h(s)

indicates a lower probability that minor alterations to s will lead to a decrease in 
the original objective function. 

2.4.2 Intuitive Definition of the Solution Components 

In the case of the application of different CMSA variants to the FFMS problem, we 
decided for the following intuitive definition of the set C of solution components: 
each combination of a position j in the solution string (where .j = 1, . . . , m) 
and a letter .a ∈ Σ is a solution component . cj,a . That is, . C := {cj,a | j =
1, . . . , m and a ∈ Σ}. Any feasible solution S is a subset of C such that for each 
position .j = 1, . . . , m, S contains exactly one of the solution components from 
.Cj := {cj,a | a ∈ Σ}. Similarly, the sub-instance . C' is always a subset of C. Note  
that, in the following, .faug(S) := faug(s), where s is the solution string which 
is derived in a well-defined way from the solution components contained in S. 
Moreover, let .faug(∅) := 0. 

2.4.3 Constructing Solutions to the FFMS Problem 

A solution s with a length of m (represented as a string) is generated by selecting 
one character from the alphabet . Σ for each position .j = 1, . . . , m. This selection 
is based on greedy information, for which we employ the frequency values of the 
letters at each position of the input strings. Specifically, the frequency value .fj,a for 
a letter .a ∈ Σ at a position .1 ≤ j ≤ m is computed as follows: 

.fj,a := |{si ∈ Ω | si[j ] = a}|
n

(2.15) 

A letter is then chosen for each .j = 1, . . . , m based on these frequency values. How 
this is done exactly, depends on the specific solution construction function and will 
be explained in the following.
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In function GenerateGreedySolution(C) of ADAPT_CMSA (see line 4 of 
Algorithm 2.1 on page 42) for each position j a deterministic choice of the letter 
with the lowest frequency value is made. Ties are broken randomly. 

In contrast, in function ProbabilisticSolutionConstruction(C) of our standard 
CMSA_INT (see line 8 of Algorithm 1.1 on page 19), first, a value .r ∈ [0, 1] is 
drawn uniformly at random for each position .j = 1, . . . , m. If  .r ≤ drate—where 
.0 ≤ drate < 1 is the determinism rate already known from other applications in 
this book—the letter with the lowest frequency value is chosen in a deterministic 
way. Otherwise, a letter is chosen randomly (roulette wheel selection) based on 
probabilities that are proportional to the inverse of the letter frequencies. 

Finally, function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf) of  
ADAPT_CMSA (see line 8 of Algorithm 2.1 on page 42) chooses for each position 
.j = 1, . . . , m a letter as follows. First, the following values are defined: 

.qj,a

⎧
⎪⎨

⎪⎩

αbsf
fj,a

if cj,a ∈ Sbsf

(1−αbsf)
fj,a

otherwise
(2.16) 

Subsequently, a letter is chosen for position j by roulette wheel selection based on 
the following probabilities: 

.p(a) := qj,a∑
b∈Σ qj,b

∀ a ∈ Σ (2.17) 

All three functions, after finishing the construction of a solution in terms of a 
string (s), transform this solution into a solution S containing for each position j the 
corresponding solution component. This solution S is then returned to the respective 
CMSA algorithm. 

2.4.4 Sub-instance Solving 

The way of solving sub-instances . C' in the case of the FFMS problem is exactly 
the same as the one described in Sect. 1.4.2.2 on page 25 in the context of the MDS 
problem. Therefore, for solving a sub-instance . C' by means of the application of 
CPLEX in function SolveSubinstance(. C', . tILP) of Algorithm 1.1 (page 19) and of 
Algorithm 2.1 (page 42), the FFMS ILP model is extended by adding the following 
set of constraints: 

.xj,a = 0 for all cj,a ∈ C \ C' (2.18) 

In this way, only solution components (resp. letter-position assignments) that form 
part of the sub-instance . C' may be selected in order to appear in solutions. Finally,
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remember that function SolveSubinstance(. C', . tILP) returns the CPLEX solution 
in terms of a set .SILP of solution components. Moreover, the application of CPLEX 
is subject to a time limit of .tILP CPU seconds, which means that the solution . SILP

returned by the function SolveSubinstance(. C', . tILP) is not necessarily an optimal 
solution to the sub-instance . C'. 

2.4.5 Experimental Evaluation 

The experimental evaluation for the FFMS problem encompasses the following 
algorithms: 

1. GREEDY: The heuristic obtained by the execution of the algorithm presented in 
Sect. 2.4.3 (previous section) in a deterministic way. 

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance, 
utilizing the default parameter values of CPLEX. 

3. CMSA_INT: The standard CMSA algorithm, making use of the intuitive approach 
to defining the set of solution components. 

4. ADAPT_CMSA: The self-adaptive CMSA approach from this chapter. 

As before, CPLEX 22.1 is used—both in standalone mode (CPLEX) and within the 
CMSA variants—in one-threaded mode. For conducting the experiments we used 
the IIIA-CSIC in-house high-performance computing cluster of machines equipped 
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of 
RAM. 

2.4.5.1 FFMS Benchmark Set 

For each combination of .n ∈ {100, 200, 300, 400} (number of input strings) and 
.m ∈ {100, 500, 1000} (length of the input strings) exactly 30 problem instances 
were generated uniformly at random over .Σ = {A,C, T ,G}. This alphabet of size 
four was chosen due to the applications of the FFMS in bio-informatics. Moreover, 
thresholds .t = 0.8m and .t = 0.85m will be considered for solving all these 
instances. However, as threshold .t = 0.8m proved to be more difficult for our 
algorithms, the result section below will only show the results obtained for this 
threshold. In total, the generated benchmark set contains 360 problem instances. 

2.4.5.2 Parameter Tuning 

Both CMSA_INT and ADAPT_CMSA were tuned with the parameter tuning tool 
irace; see Sect. 1.2.1 on page 12 for a description of irace. For this purpose, an 
additional tuning instance was generated for each combination of n and m, which 
makes a total of 12 tuning instances, considered both for thresholds .t = 0.8m and 
.t = 0.85m. The budget of irace—that is, the number of algorithm runs allowed
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Table 2.3 Parameters, domains, and tuning results for the FFMS problem 

Parameter Domain CMSA_INT ADAPT_CMSA 

na {1, . . . , 50} 27 n.a. 

agemax {1, . . . , 10} 9 n.a. 

drate [0.0, 0.99] 0.81 n.a. 

tILP {1, . . . , 50} 30 1 

cplexemphasis {true,false} true true 

cplexwarmstart {true,false} true false 

cplexabort {true,false} false n.a. 

αLB [0.6, 0.99] n.a. 0.64 

αUB [0.6, 0.99] n.a. 0.99 

αred [0.01, 0.1] n.a. 0.1 

tprop [0.1, 0.8] n.a. 0.42 

for tuning—was set to 3000, and the computation time limit for the algorithms was 
set to 600 CPU seconds per problem instance. The tuning results are presented in 
Table 2.3. The most striking difference between CMSA_INT and ADAPT_CMSA is 
the computation time limit for CPLEX. While CMSA_INT uses a limit of 30 seconds 
(without enabling the abort feature), ADAPT_CMSA uses a limit of 1 second. 

2.4.5.3 Results 

The results are shown by means of box plots in Fig. 2.10. They show that 
ADAPT_CMSA outperforms CMSA_INT especially in the context of short input 
strings, that is, for instances with .m = 100 and also (to a lesser extent) 
with .m = 500. On the contrary, CMSA_INT seems to have an advantage over 
ADAPT_CMSA in the context of longer input strings (.m = 1000). These findings 
are also confirmed by the CD plots provided in Fig. 2.11. In fact, they show 
that overall ADAPT_CMSA outperforms CMSA_GEN with statistical significance 
on this benchmark set. However, Fig. 2.11d shows that CMSA_GEN outperforms 
ADAPT_CMSA with statistical significance on the subset of benchmark instances 
with .m = 1000. 

As in the case of the MPIDS problem (see Sect. 2.3.4.3), we plotted STNWeb 
graphics of the obtained results; see Sect. 1.2.2 on page 13 for a description of 
the STNWeb tool and the type of graphics that are produced. Figure 2.12 shows 
the STN (complete vs. partitioned) for the first problem instance with . n = 100
input strings and an input string length of .m = 1000 (longest). The complete STN 
(Fig. 2.12a) shows that the ADAPT_CMSA search trajectories are much longer. This 
is mainly because ADAPT_CMSA does smaller steps than CMSA_INT in the search 
space (due to a lower CPU time limit for CPLEX in comparison to CMSA_INT). 
The partitioned STN (Fig. 2.12b) indicates a property of the FFMS problem that 
we already observed in the case of the MPIDS problem: Trajectory overlaps are 
only found at the start of algorithm trajectories, both concerning trajectories of
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Fig. 2.10 Results for the FFMS problem (threshold .t = 0.8m) 

different algorithms and between trajectories of the same algorithm. This indicates 
that different good solutions to an FFMS instance might have quite different 
structures. This is indeed confirmed by the scatter plots in Fig. 2.13. They show for 
each pair of same-quality solutions from the search trajectories of CMSA_INT and 
ADAPT_CMSA their difference (in terms of the number of solution string positions 
that are different in both solutions). More specifically, it can be observed that better 
same-quality solution pairs are generally characterized by a larger difference.
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Fig. 2.11 Critical Difference (CD) plots concerning the FFMS results. (a) All problem instances. 
(b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

Fig. 2.12 STNWeb graphics. (a) and  (b) show 10 runs of CMSA_INT and ADAPT_CMSA for the 
first problem instance with .n = 100 and .m = 1000 (few but long input strings). While (a) shows  
the complete STN, (b) shows the same STN after partitioning 

2.5 Conclusions 

In this chapter, it was shown that a self-adaptive variant of CMSA called 
ADAPT_CMSA can be very useful for solving certain combinatorial optimization 
problems. This holds especially for large-scale problem instances where standard 
versions of CMSA might have problems adjusting the parameters such that the 
resulting sub-instances can still be solved by CPLEX within reasonable computation 
times. The increased adaptability of ADAPT_CMSA is achieved by a self-adaptive 
way of changing two parameters during the execution of the algorithm: (1) the 
number of solutions constructed per iteration, and (2) the value of a parameter that
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Fig. 2.13 Differences between FFMS solutions of the same quality. The x-axes of all plots indicate 
the solution quality (that is, the objective function values), while the y-axes show the differences 
between solutions of the same quality from the considered search trajectories
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Fig. 2.14 Differences between MDS solutions of the same quality 

biases the construction of new solutions towards the best-so-far solution. However, 
note that biasing solution constructions towards the best-so-far solution may also 
sometimes result in a disadvantage of ADAPT_CMSA in comparison to standard 
CMSA variants. This is the case for problems in which occasionally larger jumps 
in the search space are necessary in order to escape from basins of attraction of 
sub-optimal solutions. In fact, we also tried to apply ADAPT_CMSA to the MDS 
problem, which was considered in Chap. 1. However, in the case of the MDS 
problem, ADAPT_CMSA resulted consistently worse than both CMSA_GEN and 
CMSA_INT. Remember that in the case of the MDS problem, STNWeb graphics 
showed overlap at the end of algorithm trajectories (see, for example, Fig. 1.14b on  
page 34). This is very much in contrast to what happens in the case of the MPIDS 
and FFMS problems. The difference between the STNWeb graphics also results in 
very different scatter plots regarding the difference between pairs of same-quality 
solutions; see Fig. 2.14. Instead of a growing difference between pairs of same-
quality solutions when solutions become better, the opposite happens in the case 
of the MDS problem. The difference between same-quality solutions decreases. 
In summary, these studies show that no algorithm variant is better for all possible 
problems, which is very much in line with the so-called no free lunch theorems [19]. 
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8. Djukanović, M., Kartelj, A., Blum, C.: Self-adaptive CMSA for solving the multidimensional 
multi-way number partitioning problem. Expert Systems with Applications p. 120762 (2023) 

9. Fournier, A.K., Hall, E., Ricke, P., Storey, B.: Alcohol and the social network: Online social 
networking sites and college students’ perceived drinking norms. Psychology of Popular Media 
Culture 2(2), 86 (2013) 

10. Gallardo, J.E., Cotta, C.: A GRASP-based memetic algorithm with path relinking for the far 
from most string problem. Engineering Applications of Artificial Intelligence 41, 183–194 
(2015) 

11. Günneç, D., Raghavan, S., Zhang, R.: Least-cost influence maximization on social networks. 
INFORMS Journal on Computing 32(2), 289–302 (2020) 

12. Long, C., Wong, R.C.W.: Minimizing seed set for viral marketing. In: 2011 IEEE 11th 
International Conference on Data Mining, pp. 427–436. IEEE Press (2011) 

13. Mousavi, S.R.: A hybridization of constructive beam search with local search for far from 
most strings problem. International Journal of Computer and Information Engineering 4(8), 
1200–1208 (2010) 

14. Rad, A.A., Benyoucef, M.: Towards detecting influential users in social networks. In: 
International Conference on E-Technologies, pp. 227–240. Springer (2011) 

15. Sun, R., Wu, J., Jin, C., Wang, Y., Zhou, W., Yin, M.: An efficient local search algorithm for 
minimum positive influence dominating set problem. Computers & Operations Research 154, 
106197 (2023) 

16. Tatsis, V.A., Parsopoulos, K.E.: Dynamic parameter adaptation in metaheuristics using gradient 
approximation and line search. Applied Soft Computing 74, 368–384 (2019) 

17. Wang, F., Camacho, E., Xu, K.: Positive influence dominating set in online social networks. 
In: International Conference on Combinatorial Optimization and Applications, pp. 313–321. 
Springer (2009) 

18. Wang, G.: Domination problems in social networks. Ph.D. thesis, University of Southern 
Queensland (2014) 

19. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions 
on Evolutionary Computation 1(1), 67–82 (1997)



Chapter 3 
Adding Learning to CMSA 

Abstract CMSA is undeniably an algorithm whose efficacy can, to some extent, 
be attributed to its inherent simplicity. As demonstrated in previous chapters 
of this book, unsophisticated variants of CMSA are capable of yielding highly 
satisfactory results. Nevertheless, such basic CMSA variants can, of course, undergo 
enhancement through the incorporation of supplementary algorithmic components. 
One avenue for refining barebone CMSA variants involves introducing a learning 
component into the solution construction mechanism. This addition enables the 
solution construction mechanism to generate solutions of improving quality over 
time. In this chapter, we will show how this can be done in the context of two 
combinatorial optimization problems that were already used for the illustration 
of other CMSA variants in previous chapters. In particular, applications to the 
Minimum Dominating Set (MDS) problem and the Far From Most String (FFMS) 
problem are presented. 

3.1 Introduction 

One of the possible disadvantages of standard CMSA is the fact that the solution 
construction mechanism generates, at each iteration, solutions from the same 
probability distribution as in all previous iterations. This means that the average 
quality of the solutions generated by the solution construction mechanism will 
remain stationary over time. Therefore, it is reasonable to believe that adding a 
learning mechanism to the solution construction process, causing the construction 
of improving solutions over time, might improve the overall search and optimization 
capability of CMSA. 

In this chapter, we introduce a specific approach for incorporating a learning 
mechanism into standard CMSA, which was detailed in Chap. 1 of this book. 
Specifically, we will elaborate on the integration of CMSA with the so-called 
bacterial algorithm (BA), an evolutionary algorithm where the crossover operator is 
inspired by observed bacterial processes. It is important to note that the choice of the 
bacterial algorithm is just one of many options for introducing learning to CMSA, 
and this application should be regarded as an illustrative example. Generally, BA 
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algorithms draw inspiration from the survival dynamics of bacterial populations 
and their evolution, including the development of resistance to antibiotics. It is 
noteworthy that bacterial populations, upon developing such resistance, become 
impervious to the effects of antibiotics. While this resistance is advantageous 
from the bacteria’s perspective, it poses significant challenges in the medical field. 
Infections caused by antibiotic-resistant microorganisms often defy conventional 
treatment, leading to prolonged illness and an increased risk of mortality. In essence, 
antibiotic resistance represents a form of drug resistance where a microorganism can 
withstand exposure to an antibiotic [5]. 

Recent research has explored the application of bacterial behavior in diverse 
contexts, including its utilization in group formation for designing students’ activi-
ties. The fundamental concept revolves around students collaborating in a group to 
enhance their academic performance [2]. 

The developed CMSA algorithm with learning is labeled LEARN_CMSA. We  
demonstrate the usefulness of LEARN_CMSA in the context of the Minimum 
Dominating Set (MDS) problem which is already known from Chap. 1 of this 
book. Moreover, we show its application to the Far From Most String (FFMS) 
problem known from Chap. 2. However, before presenting these applications, we 
first describe the BA algorithm and LEARN_CMSA in general terms. 

3.2 The Bacterial Algorithm 

The BA algorithm was first described in [2, 6]. In this work, we present a simplifi-
cation of the original algorithm. Before delving into the algorithm description, the 
interested reader should note, however, that we believe that nearly any population-
based metaheuristic could be used for the same purpose. In other words, we do 
not believe that the success of LEARN_CMSA, which will be demonstrated further 
below, is due to specific algorithmic features of the BA algorithm. In contrast, we 
believe that the success of LEARN_CMSA is due to the way it is interleaved with 
CMSA. 

Bacteria, being microorganisms or microscopic life forms, share this classifica-
tion with viruses, algae, fungi, and protozoa. Essentially, bacteria are unicellular 
organisms of minuscule size with the ability to thrive in diverse environments such 
as oceans, terrestrial habitats, outer space, and even within the human intestine. The 
interaction between humans and bacteria is intricate; at times, bacterial behavior 
proves beneficial, even essential, to human well-being, while in other instances, 
it may instigate perilous diseases and health complications. Since the discovery 
of penicillin by Alexander Fleming in 1929 [4], antibiotics have played a crucial 
role in treating diseases caused by bacteria and other microorganisms. However, a 
significant challenge arises when bacteria are frequently exposed to the same type 
of antibiotics, leading to the development of defense mechanisms to counteract 
the antibiotics’ effects. This pivotal survival mechanism for bacteria involves 
communication within the population, functioning as a collaborative mechanism
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that involves the transfer of DNA among bacteria. Consequently, more robust 
bacteria can pass on their traits to weaker ones, enabling them to acquire the ability 
to resist the common adversary: antibiotics. 

A significant distinction between higher organisms and bacteria lies in the 
mechanism of genetic reproduction and recombination. Notably, populations of 
superior organisms exhibit genetic variability through a vertical process—offspring 
are generated as part of a new generation through sexual interaction between 
parents. In contrast, genetic diversity within bacteria populations can occur through 
a horizontal process, wherein genetic material is exchanged among individuals 
without necessitating the creation of a new individual. Consequently, within the 
bacterial context, it is more fitting to refer to donors and receptors rather than parents 
and offspring. In bacteria, reproduction is achieved through cell division, a process 
of replication resulting in a new bacterial generation containing identical genetic 
material. This process may be susceptible to errors during replication or influenced 
by external factors, such as mutagens, potentially impacting the outcome. 

As previously discussed, the emergence of antibiotic resistance poses a signifi-
cant concern for human health. Conversely, for bacteria, this development signifies 
an evolutionary enhancement that augments their ability to survive. Viewing this 
bacterial behavior from an optimization perspective reveals it as a valuable source 
of inspiration, as exemplified in [2, 6]. This is especially true for the process of 
horizontal transfer of DNA material, wherein genetic material is shared among 
fellow bacteria belonging to the same generation. 

The pseudo-code of our variant of the bacterial algorithm (BA) is provided in 
Algorithm 3.1. The algorithm takes as input values for the following five parameters 
(see line 1): 

1. .psize: population size. 
2. .prheur: rate of initial solutions generated by a probabilistic heuristic 
3. .drate: determinism rate used by the probabilistic heuristic. 
4. .prcon: the mutation probability during the conjugation phase. 
5. .prreg: the mutation probability during the regeneration phase. 

At the onset of the algorithm, the best-so-far solution (. Sbsf) is initialized as 
the empty set. Subsequently, the initial population of solutions, comprising 
.psize solutions, is generated using the function GenerateInitialPopula-
tion.(psize, prheur, drate). In this process, a solution is created with a probability 
of .prheur through a randomized heuristic, which is problem-specific. Otherwise, 
the solution is generated uniformly at random. Note that each solution corresponds 
to a bacterium. However, in an attempt to describe the algorithm in metaphor-free 
language, we will not use the term bacterium from here on. 

The initial step in each iteration involves determining the iteration-best solution 
.Sib from the current population (refer to line 5), facilitating the update of the 
best-so-far solution if indicated (line 6). Following that, the two principal proce-
dures of the BA—conjugation and regeneration—are performed. Both procedures 
commence similarly (refer to lines 7 and 8 for conjugation, and lines 11 and 12 
for regeneration). Specifically, the current population P undergoes division into
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Algorithm 3.1: Pseudo-code of the bacterial algorithm (BA) 
1: input: parameter values for psize, prheur, drate, prcon, prreg 

2: Sbsf := ∅ 
3: P := GenerateInitialPopulation(psize, prheur, drate) 
4: while CPU time limit not reached do 
5: Sib := argmin{f (S)  | S ∈ P } 
6: if f (Sib) < f  (Sbsf) then Sbsf := Sib 

CONJUGATION PHASE 
7: Atblevel := DetermineSeparationLevel(P ) 
8: (Pdonor, Preceptor) := Classification(Atblevel, P ) 
9: Preceptor := Conjugation(Pdonor, Preceptor, prcon) 
10: P := Pdonor ∪ Preceptor 

REGENERATION PHASE 
11: Atblevel := DetermineSeparationLevel(P ) 
12: (Pdonor, Preceptor) := Classification(Atblevel, P ) 
13: Preceptor := Regeneration(Pdonor, prreg) 
14: P := Pdonor ∪ Preceptor 
15: end while 
16: output: Sbsf 

two segments: donor solutions (.Pdonor) and receptor solutions (.Preceptor). This 
division is initiated by determining a separator level (.Atblevel) through the function 
DetermineSeparatorLevel(P ). 

Two pairs of solutions, denoted as .(Si, Sj ) and .(Sk, Sl), are randomly selected 
from the current population P . Subsequently, the superior solution from each pair 
is determined. Let .S1 := argmin{f (Si), f (Sj )} and .S2 := argmin{f (Sk), f (Sl)}. 
Additionally, designate .Smax as the solution with the lower quality between . S1 and 
. S2, i.e., .Smax := argmax{f (S1), f (S2)}. Accordingly, .Atblevel is defined as .f (Smax). 
This employs a cost-effective approach to select a solution with a fitness value close 
to the median of the population.1 Subsequently, .Atblevel is employed to partition the 
current population into two sub-populations: .Pdonor, consisting of donor solutions, 
and .Preceptor, comprising recipient solutions. In particular, solutions in . Preceptor
exhibit an objective function value worse than .Atblevel, while donor solutions have 
an objective function value better or equal to .Atblevel. 

•> The Conjugation Phase 

In the conjugation phase of BA, all receptor solutions from .Preceptor receive 
a random piece of genetic material from some randomly chosen donor solution 
from .Pdonor. As in nature, this operation may suffer a corruption in the genetic 
transcription (mutation). Thus, mutation is applied with a mutation probability of 
.prcon.

1 Note that our description of this process assumes a minimization problem to be considered for 
optimization. In the context of a maximization problem, obvious adjustments must be made. 
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Algorithm 3.2: Pseudo-code of LEARN_CMSA 

1: input 1: complete set of solution components C 
2: input 2: values for CMSA parameters na, agemax, and  tILP 
3: input 3: values for BA parameters psize, prheur, drate, prcon, prreg 
4: input 4: values for CMSA/BA interplay parameters biter, rinject 
5: Sbsf := ∅ 
6: C' := ∅ 
7: age[c] :=  0 for  all  c ∈ C 
8: P := GenerateInitialPopulation(psize, prheur, drate) 
9: while CPU time limit not reached do 
10: P := Execute_BA_Algorithm(P , biter, psize, prheur, drate, prcon, prreg) 
11: T := Extract_From(P, na) 
12: for all S ∈ T do 
13: for all c ∈ S and c /∈ C' do 
14: age[c] :=  0 
15: C' := C' ∪ {c} 
16: end for 
17: end for 
18: SILP := SolveSubinstance(C', tILP) 
19: if f (SILP) < f  (Sbsf) then Sbsf := SILP end if 
20: Adapt(C', SILP, agemax) 
21: P := InjectSolverSolution(P, Sbsf, rinject) 
22: end while 
23: output: Sbsf 

•> The Regeneration Phase 

In the regeneration phase of BA, after classifying the members of the current 
population into donors .Pdonor and receptors .Preceptor, all solutions from .Preceptor are 
exchanged with clones of randomly chosen donor solutions after applying mutation 
with probability .prreg. 

These steps are iterated until a computation time limit is reached. Upon 
termination, the best-so-far solution .Sbsf is yielded as the output. 

3.3 The LEARN_CMSA Algorithm: A General Description 

The pseudo-code of LEARN_CMSA is provided in Algorithm 3.2. Note that this 
pseudo-code is an extension of the one of standard CMSA presented in Algo-
rithm 1.1 on page 19. Alongside the previously specified CMSA and BA parameters, 
it requires input for the following two parameters that govern the interaction 
between CMSA and BA:
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1. . biter: number of BA iterations executed in function Execute_BA_Algorithm(P , 
. biter, .psize, .prheur, .drate, .prcon, .prreg) at each CMSA iteration; see line 10. 

2. .rinject: the rate of injection of the solution returned by the ILP solver (. Sbsf) into  
the current BA population in function InjectSolverSolution(P , . Sbsf, .rinject); see 
line 21. 

•> Differences Between LEARN_CMSA and Standard CMSA 

1. After the initialization of the CMSA parameters in lines 5–7, the initial popu-
lation P of the BA algorithm is generated in line 8. This is done as previously 
explained in Sect. 3.2. 

2. At the onset of every CMSA iteration, the function Execute_BA_Algorithm(P , 
. biter, .psize, .prheur, .drate, .prcon, .prreg) carries out .biter iterations of the BA 
algorithm, following the same methodology described in Sect. 3.2. The output 
of this function is the current population P of the BA algorithm. 

3. Rather than employing a probabilistic, constructive heuristic for pro-
ducing new solutions at each iteration, LEARN_CMSA utilizes function 
.Extract_From(P, na) (refer to line 11) to extract . na solutions from the current 
BA population P , which are then stored in set T . Specifically, T comprises the 
best solution from P in addition to .na − 1 randomly selected donor solutions 
from P . It is worth noting that, for this purpose, the separator level (.Atblevel) 
is determined, and the population P is partitioned into donors and receptors, as 
described in Sect. 3.2. 

4. As a last step of every LEARN_CMSA iteration, the solution .Sbsf is employed to 
substitute .⎿rinject · |Preceptor|⏌ randomly chosen receptor solutions within P . This  
action is executed through the InjectSolverSolution(P , . Sbsf, .rinject) function, 
located at line 21. 

In this hybridization approach of CMSA and BA, both memory mechanisms— 
the sub-instance . C' of CMSA and the population P of BA—mutually influence each 
other. Specifically, a set of donor solutions from P is incorporated into . C' during 
each iteration, and CMSA influences BA by introducing .Sbsf into the BA population 
P . 

3.4 Application to the MDS Problem 

The first application of LEARN_CMSA that will be presented is the one to the 
Minimum Domination Set (MDS) problem which was already introduced in 
Sect. 1.4 on page 20. Concerning the complete set C of solution components 
for the LEARN_CMSA approach, we decided for the intuitive approach in which 
C contains a solution component . ci for each vertex .vi ∈ V of the input graph
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.G = (V ,E). Moreover, solving sub-instances in function SolveSubinstance(. C', 

. tILP)—see line 18 of Algorithm 3.2—works exactly in the same way as described in 
Sect. 1.4.2.2 on page 25. In the following, the remaining algorithmic components of 
BA and LEARN_CMSA will be outlined. 

3.4.1 Generating the Initial Population 

Function GenerateInitialPopulation.(psize, prheur, drate)—see line 4 of Algo-
rithm 3.1, respectively line 8 of Algorithm 3.2—generates the initial population 
of BA and of the BA-part of LEARN_CMSA. In particular, this function generates 
.psize solutions in the following way. The generation of each solution works as 
follows: 

1. A number .r ∈ [0, 1] is drawn uniformly at random. In case .r ≤ prheur, the  
solution is generated by the randomized heuristic described in Sect. 1.4.1.1 
on page 22. This randomized heuristic requires values for parameters . drate
(determinism rate) and .lsize (candidate list size). In an attempt to reduce the 
number of parameters to be tuned, in Sect. 3.4.4.2 we will only consider .drate, 
which is the more important parameter among these two. In contrast, .lsize is set 
to a fixed value of 10 both for BA and LEARN_CMSA. 

2. In case r , the random number drawn uniformly at random in the first step, is 
greater than .prheur, a solution is randomly constructed in the following way. First, 
all nodes of the graph are sorted randomly. Subsequently, the resulting ordered 
list of nodes is traversed sequentially, adding a node to the solution if it covers at 
least one node which is still uncovered so far. This process stops once all nodes 
of the graph are covered. 

3.4.2 Implementation of Conjugation 

Remember that in the conjugation phase of BA, each receptor solution . Sr ∈ Preceptor
receives a piece of genetic material from a randomly chosen donor solution from 
.Pdonor. Moreover, mutation is applied to the result with a mutation probability 
.prcon. Subsequently, we will explain how this step is implemented in the case of 
the application to the MDS problem. 

Given a receptor solution . Sr and a randomly chosen donor solution . Sd , first, they 
are transformed into solutions . sr and . sd containing the corresponding nodes of the 
input graph. Then, a set . Ṽ is defined containing the union of the sets of nodes present 
in . sr and . sd . Each .v ∈ Ṽ is assigned a value 

.δv := |N [v]| + rv , (3.1)
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where .N [v] is the closed neighborhood of v in G, that is, .N [v] := N(v) ∪ {v}, 
and . rv is a random value chosen from the normal distribution .N(0, σ 2

pert), that is, 
a normal distribution with zero as mean and .σpert as standard deviation. Note that 
.σpert is an important parameter of both BA and LEARN_CMSA which will be tuned 
in Sect. 3.4.4.2. Next, all nodes from . Ṽ are ordered according to decreasing .δv-
values. Finally, a new solution .scon is generated by sequentially traversing this list 
and adding each node that covers at least one of the nodes of the input graph that 
are still uncovered. The process stops once the whole graph is covered. 

•> Application of Mutation 

Finally, mutation is applied to the new solution .scon as follows. First, let . Ṽ be 
defined as the set of nodes of input graph G which are not in . scon. Then, for each 
node v of .scon it is decided with a probability .prcon if it is removed from .scon and 
added to . Ṽ . This results in a partial solution . sp

con. Then, each .v ∈ Ṽ is assigned a 
value 

.γv := ∣
∣
{

v' ∈ N [v] | v' still uncovered by s
p
con

}∣
∣ + rv . (3.2) 

In other words, . γv is the sum of the number of still uncovered neighbors of v 
(concerning the partial solution . sp

con) and . rv , which is—as above—a random value 
chosen from the normal distribution .N(0, σ 2

pert). Next, all nodes from . Ṽ are ordered 
according to decreasing .γv-values. A mutated solution .smut is then generated by 
sequentially traversing this list and adding each node that covers at least one of the 
nodes of the input graph that are still uncovered. The process stops once the whole 
graph is covered. The corresponding CMSA-solution .Smut then replaces the receptor 
solution . Sr in population P . 

3.4.3 Implementation of Regeneration 

Remember that, after the conjugation phase (see lines 7–10 of Algorithm 3.1 on 
page 74), the resulting population P is again divided into donor solutions . Pdonor
and receptor solutions .Preceptor. In the regeneration phase, each receptor solution 
.Sr ∈ Preceptor is replaced in the following way. First, a donor solution .Sd ∈ Pdonor is 
chosen uniformly at random. Next, a clone . Sc

d of . Sd is produced. After that, mutation 
is applied to . Sc

d in the same way as described above in the conjugation phase. The 
only difference is that .prreg, instead of .prcon, is now used as the probability to 
reduce . Sc

d .
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3.4.4 Experimental Evaluation 

The experimental evaluation of BA and LEARN_CMSA for the MDS problem 
encompasses the following algorithms: 

1. CPLEX: Application of CPLEX 22.1 to each considered problem instance, 
utilizing the default parameter values of CPLEX. 

2. CMSA_INT: The standard CMSA algorithm, making use of the intuitive approach 
to defining the set of solution components. This algorithm was described in 
Sect. 1.4 on page 20. 

3. BA: The pure bacterial algorithm from this section. 
4. LEARN_CMSA: The CMSA approach extended with a learning mechanism 

(based on the bacterial algorithm) presented in this section. 

As before, CPLEX 22.1 is used—both in standalone mode (CPLEX) and within 
LEARN_CMSA—in one-threaded mode. For conducting the experiments we used 
the IIIA-CSIC in-house high-performance computing cluster of machines equipped 
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of 
RAM. 

3.4.4.1 Benchmark Instances 

The same benchmark instances as those already introduced in Chap. 1 of this book 
were used for the experimental evaluation, that is, 480 Erdös-Rényi graphs, 480 
Watts-Strogatz graphs, and 480 Barabási-Albert graphs. In particular, for each of the 
three considered graph models, this benchmark set consists of 30 graphs for each 
combination of .|V | ∈ {500, 1000, 1500, 2000} and four different graph densities. 
Remember that the graph density is controlled in Erdös-Rényi graphs by the edge 
probability (p), in Watts-Strogatz graphs by a parameter k, and in Barabási-Albert 
graphs by a parameter m. 

3.4.4.2 Algorithm Tuning 

Both BA and LEARN_CMSA underwent parameter tuning with the irace tool, 
which was already used in all other experimental evaluations presented in this book. 
The interested reader may find a description of irace in Sect. 1.2.1 on page 12. In  
particular, irace was applied with a budget of 3000 algorithm runs exactly once 
for the tuning of each of the two algorithms. The same tuning instances were used 
for this purpose as the ones described in Sect. 1.4.3.2 on page 27. Moreover, the 
same CPU time limits were used as those described in Sect. 1.4.3.2, that is, 150 
CPU seconds was used for all graphs with .|V | = 500, 300 CPU seconds for all 
graphs with .|V | = 1000, 450 CPU seconds for all graphs with .|V | = 1500 and 600 
CPU seconds for all graphs with .|V | = 2000.
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Table 3.1 Parameters, domains, and tuning results for the MDS problem 

Parameter Domain CMSA_INT BA LEARN_CMSA 

.na .{1, . . . , 50} 4 n.a. 30 

.agemax .{1, . . . , 10} 3 n.a. 2 

.drate .[0.0, 0.99] 0.29 0.8 0.65 

.lsize .{3, . . . , 50} 35 n.a. 15 

.tILP .{1, . . . , 20} 13 n.a. 4 

.cplexemphasis .{true,false} true n.a. true 

.cplexwarmstart .{true,false} false n.a. false 

.cplexabort .{true,false} false n.a. false 

.psize .{10, . . . , 1000} n.a. 21 207 

.prheur .[0.0, 1.0] n.a. 0.43 0.43 

.prcon .[0.0, 0.5] n.a. 0.44 0.06 

.prreg .[0.0, 0.5] n.a. 0.02 0.1 

.σpert .[1.0, 10.0] n.a. 1.09 3.26 

.rinject .[0.01, 0.99] n.a. n.a. 0.12 

.biter .{1, . . . , 100} n.a. n.a. 7 

Table 3.1 shows both the parameters involved in the different algorithms together 
with their domains, and the tuning results. Note that the tuning results of CMSA_INT 

are also provided in this table. They were copied from Table 1.2 on page 27. The  
first eight parameters in this table are the usual CMSA-related parameters.2 The 
next five parameters are specific to BA, and the BA-related parts of LEARN_CMSA. 
Hereby, note that the four parameters are generic ones, while the fifth one (.σpert) is  
specific to our application to the MDS problem. Finally, the last two parameters in 
the table determine the interplay between BA and CMSA in LEARN_CMSA. 

The following parameter settings are noteworthy. First, the number of solu-
tions that are fed into the sub-instance at each iteration (. na) is much higher 
in LEARN_CMSA than in CMSA_INT. In addition to this, the CPU time limit 
for CPLEX (for solving sub-instances) is much lower. This indicates that sub-
instances in LEARN_CMSA are built based on better solutions than in CMSA_INT. 
Otherwise, sub-instances in LEARN_CMSA would be too  large to be solved by  
CPLEX within four CPU seconds. Another noteworthy difference concerns the 
setting of the population size of BA in comparison to the one in LEARN_CMSA. 
While BA makes use of a small population size of 21 individuals, the BA-part in 
LEARN_CMSA requires a significantly larger population size of 207 individuals. 
This might be due to the need for maintaining a certain diversity in the BA 
population of LEARN_CMSA to be able to feed the sub-instance with both high-
quality solutions but also diverse ones.

2 Remember that a description of the CPLEX parameters .cplexemphasis, .cplexwarmstart, and . cplexabort
that are used within CMSA_INT and LEARN_CMSA is provided on page 23. 
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Fig. 3.1 LEARN_CMSA results for Erdös-Rényi graphs 

3.4.4.3 Results 

All four algorithmic techniques (CPLEX, CMSA_INT, BA and LEARN_CMSA) were  
applied exactly once to each of the problem instances from the benchmark set. The 
computation time limit for CMSA_INT, BA and LEARN_CMSA was the same as 
the one used for tuning (see previous section). The results are shown in the form 
of box plots in Fig. 3.1 concerning Erdös-Rényi graphs and in Fig. 3.2 concerning
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Fig. 3.2 LEARN_CMSA results for Watts-Strogatz graphs 

Watts-Strogatz graphs. Results for Barabási-Albert graphs are not shown because 
no significant difference between CMSA_INT and LEARN_CMSA could be detected. 
Both graphics contain a .4 × 4 grid of box plots, where the rows present the results 
(from top to bottom) for graphs of increasing size, and the columns (from left to 
right) present the results for graphs of increasing density. 

To support the result analysis with claims regarding statistical significance, 
separate CD plots are presented for the graphs of each of the two network models in 
Figs. 3.3 and 3.4. Refer to Sect. 1.2.3 on page 16 for a comprehensive explanation
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Fig. 3.3 Critical difference (CD) plots concerning Erdös-Rényi graphs. (a) All graphs. (b) Density 
.p = 0.00624144. (c) Density .p = 0.00416381. (d) Density  .p = 0.0103881. (e) Density  . p =
0.020705
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Fig. 3.4 Critical difference (CD) plots concerning Watts-Strogatz graphs. (a) All graphs. (b) 
Density .k = 2. (c) Density .k = 3. (d) Density .k = 5. (e) Density .k = 10
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of CD plots. Each CD plot figure comprises five graphics. The first one at the top 
provides statistical information across the entire set of graphs for the respective 
network model. The remaining four CD plot graphics offer statistical insights into 
all graphs of a specific density. 

•> Main Observations Concerning the MDS Results 

1. As a stand-alone algorithm, BA is clearly inferior to both CMSA variants. 
Especially in the context of sparse problem instances (left-most columns in 
both box plot figures), BA is not able to compete with the other algorithms. 
However, its relative performance is improving with growing graph density. It 
even outperforms CPLEX for the densest graphs of both types. 

2. Even though BA is inferior as a stand-alone approach, its learning mechanism 
clearly adds value to LEARN_CMSA. While LEARN_CMSA is only slightly 
better than CMSA_INT in the context of Erdös-Rényi graphs, LEARN_CMSA 

outperforms CMSA_INT with statistical significance for Watts-Strogatz graphs. 
3. In the context of Erdös-Rényi graphs, the advantage of LEARN_CMSA over 

CMSA_INT increases with decreasing graph density. This is different for Watts-
Strogatz graphs, where LEARN_CMSA exhibits a more consistent superiority 
over CMSA_INT over the whole range of tested graph densities. 

As in all other experimental evaluations described in this book, STN graphics 
were produced to further analyze the results; see Sect. 1.2.2 on page 13 for a 
description of the STNWeb tool that was used to produce these graphics. Figure 3.5a 
shows STN graphics (in addition to graphics providing information about the 
evolution of the algorithms over time) for two problem instances. In particular, the 
graphics in Fig. 3.5a, c and e deal with the first Watts-Strogatz graph with . n = 1500
nodes and a rather high density (.k = 5), while the remaining graphics in Fig. 3.5 
(right column of graphics) refer to the first Erdös-Rényi graph with .n = 1000 nodes 
and a lower density determined by the edge probability .p = 0.00614144. While 
the two complete STN graphics actually look rather similar (see Fig. 3.5a and b), 
the STN graphics after search space partitioning reveal the following differences. In 
the case of the Watts-Strogatz graph (left column of graphics), it can be observed 
that after overlaps in the search trajectories rather at the beginning of the search 
process, the trajectories of CMSA_INT seem to move to a common attractor in the 
search space, while the ones of LEARN_CMSA, which is the best algorithm for this 
problem instance, seem to be able to identify solutions of very good quality with 
a different structure. Also for the BA trajectories, there does not seem to exist a 
common attractor. The fact of not finding overlaps between BA trajectories and 
trajectories of the CMSA variants after the initial stages of the search process is 
also partially explained by the graphic in Fig. 3.5e, which shows that—after the 
initial stages of the search process, that is, a few seconds in terms of computation
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Fig. 3.5 STN graphics and algorithm evolution concerning the MDS problem. (a, b) Complete 
STN. (c, d) STN (after partitioning). (e, f) Algorithm evolution
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time—the CMSA trajectories quickly advance to solutions of a quality which is 
never reached by any BA trajectory. 

On the other side, the trajectories of both CMSA variants are clearly attracted 
by the same area of the search space in the case of the Erdös-Rényi graph; see the 
right column of graphics in Fig. 3.5. In fact, even though only two LEARN_CMSA 

trajectories can find solutions with the best quality (see Fig. 3.5b) there are 
CMSA_INT trajectories that end up in very similar solutions; see, for example, the 
CMSA_INT trajectories which pass through red dots in the STN graphic after search 
space partitioning; see Fig. 3.5d. 

3.5 Application to the FFMS Problem 

The second application of LEARN_CMSA presented in the following is the one to the 
Far From Most String (FFMS) problem which was already introduced in Sect. 2.4 
starting on page 59. Concerning the complete set C of solution components for the 
LEARN_CMSA approach, we decided also here for the following intuitive definition 
(already introduced in Sect. 2.4.2 on page 62): each combination of a position j in 
a solution string (where .j = 1, . . . , m) and a letter .a ∈ Σ is a solution component 
. cj,a . That is, .C := {cj,a | j = 1, . . . , m and a ∈ Σ}. Any feasible solution S is 
a subset of C such that for each position .j = 1, . . . , m, S contains exactly one of 
the solution components from .Cj := {cj,a | a ∈ Σ}. Note that, given a feasible 
solution S, a solution s in string form can be derived in a well-defined way by 
placing character a at position j of s for each solution component .cj,a ∈ S. The  
same holds the other way around. 

Moreover, solving sub-instances in function SolveSubinstance(. C', . tILP)—see 
line 18 of Algorithm 3.2—works exactly in the same way as described in Sect. 2.4.4 
on page 63. In the following, the remaining algorithmic components of BA and 
LEARN_CMSA will be outlined. 

3.5.1 Generating the Initial Population 

Function GenerateInitialPopulation.(psize, prheur, drate)—see line 3 of Algo-
rithm 3.1, respectively line 8 of Algorithm 3.2—is responsible for creating the 
initial population of BA and the BA-part of LEARN_CMSA. Specifically, this 
function produces .psize solutions in the following manner. The generation process 
for each solution is outlined as follows: 

1. A number .r ∈ [0, 1] is drawn uniformly at random. In case .r ≤ prheur, 
the solution is generated by the randomized heuristic described in Sect. 2.4.3 
on page 62. This randomized heuristic requires a value for parameter . drate
(determinism rate), which will be determined by parameter tuning.
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2. In case r , the random number drawn uniformly at random in the first step, is 
greater than .prheur, a solution is randomly constructed by choosing for each of 
the m positions a letter from . Σ with uniform probability. 

3.5.2 Implementation of Conjugation 

Recall that during the conjugation phase of BA, each receptor solution . Sr ∈ Preceptor
acquires a genetic fragment from a randomly selected donor solution in .Pdonor. 
Additionally, mutation is applied to the outcome with a mutation probability denoted 
as .prcon. Below, we will elaborate on the implementation of this step in the context 
of the application to the FFMS problem. 

Given a receptor solution . Sr and a randomly chosen donor solution . Sd , first,  
both are converted into their corresponding string forms . sr and . sd , and the receptor 
solution . sr is cloned, resulting in a cloned receptor solution . sc

r . Then, two indexes i 
and k are chosen uniformly at random such that .1 ≤ i < k ≤ m. Subsequently, for 
each l from i to k—that is, for all .l ∈ {i, i +1, . . . , k−1, k}—the following is done: 
mutation is applied with a probability .prcon by placing a random character from . Σ
at position l of . sc

r . Otherwise, the new letter at position l of solution . sc
r is the letter 

at position l of the donor solution . sd , that is, .sc
r [l] := sd [l]. Afterwards, the new 

solution . sc
r is transformed into the corresponding set . Sc

r of solution components. 
Moreover, . Sc

r replaces the original receptor solution . Sr in the population P . 

3.5.3 Implementation of Regeneration 

Keep in mind that following the conjugation phase (refer to lines 7–10 of Algo-
rithm 3.1 on page 74), the resultant population P is once again partitioned into 
donor solutions .Pdonor and receptor solutions .Preceptor. In the regeneration phase, 
each receptor solution .Sr ∈ Preceptor is substituted in population P as follows. First, 
a donor solution .Sd ∈ Pdonor is chosen uniformly at random. Next, a clone . Sc

d of 
. Sd is produced and transformed into its corresponding string form . sc

d . After that, 
mutation is applied to each position l of . sc

d with probability .prreg, that is, with 
probability .prreg the letter at position l of . sc

d is replaced with a random letter from 
. Σ. After that, . sc

d is transformed back to a corresponding solution . Sc
d in the form of 

solution components. Finally, . Sc
d replaces . Sd in population P . 

3.5.4 Experimental Evaluation 

The experimental evaluation of BA and LEARN_CMSA for the FFMS problem 
considers the following list of approaches:
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1. CMSA_INT: Standard CMSA using the intuitive approach for the definition of the 
set of solution components. This algorithm was described in Sect. 1.4 on page 20. 

2. ADAPT_CMSA: The adaptive variant of CMSA whose application to the FFMS 
problem was described in Sect. 2.4 of this book. Note that ADAPT_CMSA 

replaces the standalone application of CPLEX for this experimental evaluation. 
In Sect. 2.4 the superiority of ADAPT_CMSA over the standalone application of 
CPLEX in the context of the FFMS problem was shown. 

3. BA: The pure bacterial algorithm from this section. 
4. LEARN_CMSA: The CMSA approach extended with a learning mechanism 

(based on the bacterial algorithm) presented in this section. 

As in all cases showcased in this book, CPLEX 22.1 is used in one-threaded mode 
in all considered CMSA variants. The experiments were conducted on the already 
described IIIA-CSIC in-house high-performance computing cluster, consisting of 
machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz 
and at least 32 GB of RAM. 

3.5.4.1 Benchmark Instances 

For the experiments, we used the same benchmark instances as those already used 
for the experimental evaluation of ADAPT_CMSA in Sect. 2.4 of Chap. 2. These 
benchmark instances were described in Sect. 2.4.5.1 on page 64. The only difference 
is that, in addition to considering threshold .t = 0.8m, all 360 problem instances are 
also solved with a threshold of .t = 0.85m. This threshold has also been used in the 
related literature; see, for example, [3]. 

3.5.4.2 Parameter Tuning 

Both BA and LEARN_CMSA underwent parameter tuning using the irace tool, 
which has been employed in all other experimental evaluations detailed in this book. 
The interested reader may find a description of irace in Sect. 1.2.1 on page 12. 
In particular, irace was applied with a budget of 3000 algorithm runs exactly 
once for the tuning of each of the two algorithms. The same tuning instances were 
used for this purpose as the ones described in Sect. 2.4.5.2 on page 64. Shortly, we 
have 12 tuning instances, all considered both for threshold .t = 0.8m and .t = 0.85m. 
Moreover, the computation time limit for the algorithms was set to 600 CPU seconds 
per problem instance. 

Table 3.2 presents the parameters and their respective domains for the various 
algorithms, along with the tuning results. Please be aware that the tuning outcomes 
for CMSA_INT and ADAPT_CMSA can also be found in this table. These results 
have been extracted from Table 2.3 on page 65. The initial seven parameters in 
this table pertain to standard CMSA. The subsequent four parameters are exclusive 
to BA, also covering the BA-related aspects of LEARN_CMSA. Lastly, the last
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Table 3.2 Parameters, domains, and tuning results for the FFMS problem 

Parameter Domain CMSA_INT BA LEARN_CMSA ADAPT_CMSA 

.na .{1, . . . , 50} 27 n.a. 32 n.a. 

.agemax .{1, . . . , 10} 9 n.a. 5 n.a. 

.drate .[0.0, 0.99] 0.81 0.85 0.49 n.a. 

.tILP .{1, . . . , 20} 30 n.a. 48 1 

.cplexemphasis .{true,false} true n.a. true true 

.cplexwarmstart .{true,false} true n.a. true true 

.cplexabort .{true,false} false n.a. false n.a. 

.αLB .[0.6, 0.99] n.a. n.a. n.a. 0.64 

.αUB .[0.6, 0.99] n.a. n.a. n.a. 0.99 

.αred .[0.01, 0.1] n.a. n.a. n.a. 0.1 

.tprop .[0.1, 0.8] n.a. n.a. n.a. 0.42 

.psize .{10, . . . , 1000} n.a. 581 219 n.a. 

.prheur .[0.0, 1.0] n.a. 0.21 0.99 n.a. 

.prcon .[0.0, 0.5] n.a. 0.0 0.14 n.a. 

.prreg .[0.0, 0.5] n.a. 0.01 0.14 n.a. 

.rinject .[0.01, 0.99] n.a. n.a. 0.29 n.a. 

.biter .{1, . . . , 100} n.a. n.a. 39 n.a. 

two parameters in the table dictate the interaction between BA and CMSA within 
LEARN_CMSA. 

As in the case of the parameter tuning results for the MDS problem presented in 
Sect. 3.4.4.2, the number of solutions fed into the sub-instance at each iteration 
(. na) is higher in LEARN_CMSA than in CMSA_INT. This indicates that sub-
instances in LEARN_CMSA are built based on better solutions than in CMSA_INT. 
However, there are also noteworthy differences to the parameter settings of BA and 
LEARN_CMSA in the context of the MDS problem. A striking difference is that 
BA requires a rather large population size for the FFMS problem (.psize = 581), 
while the opposite was the case for the MDS problem. On the other side, the size 
of the BA population within LEARN_CMSA is nearly the same in both applications 
(207 individuals in the case of the MDS problem vs. 219 individuals for the FFMS 
problem). 

3.5.4.3 Results 

The results are shown employing box plots in Fig. 3.6 (concerning threshold . t =
0.8m) and in Fig. 3.7 (concerning threshold .t = 0.85). To summarize the results 
and to provide a statistical basis for the comparison, corresponding CD plots are 
shown in Fig. 3.8 (concerning threshold .t = 0.8m) and in Fig. 3.9 (concerning 
threshold .t = 0.85m). Remember that a general description of the nature of CD 
plots and the information they provide was given in Sect. 1.2.3 in Chap. 1 of this 
book.
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Fig. 3.6 LEARN_CMSA results for the FFMS problem, .t = 0.8m
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Fig. 3.7 LEARN_CMSA results for the FFMS problem, .t = 0.85m
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Fig. 3.8 Critical difference (CD) plots concerning FFMS instances with .t = 0.8m. (a) All  
instances. (b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

1 2 3 4 

(a) 

1 2 3 4 

(b) 
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(d) 

Fig. 3.9 Critical difference (CD) plots concerning FFMS instances with .t = 0.85m. (a) All  
instances. (b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

•> Main Observations Concerning the FFMS Results 

• Both for thresholds .t = 0.8m and .t = 0.85m, LEARN_CMSA outperforms all 
other competitors with statistical significance; see Figs. 3.8a and 3.9a. In particu-
lar, LEARN_CMSA outperforms both competing CMSA variants: CMSA_INT and 
ADAPT_CMSA. Moreover, it outperforms the pure bacterial algorithm (BA). 

• The relative performance of LEARN_CMSA is better in the context of threshold 
.t = 0.8m, where the algorithm can outperform the other approaches with 
statistical significance even for all three subsets of problem instances of different 
input string length (see Fig. 3.8b–d). In contrast to this, CMSA_INT and 
ADAPT_CMSA perform better than LEARN_CMSA for problem instances with 
threshold .t = 0.85m and a short input string length of .m = 100 (see Fig. 3.9b).
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• Even though BA clearly is the worst-performing algorithm in this comparison, its 
learning component is again—as in the case of the MDS problem—a powerful 
addition to the standard CMSA algorithm (CMSA_INT). 

3.6 Conclusions and Possible Research Directions 

Adding a learning component to the solution construction process of CMSA 
certainly has a very high potential, as shown by the two example applications 
presented in this chapter. However, there is also a wide range of options for 
designing such learning components and their interaction with CMSA. The negative 
aspect of the specific algorithm showcased in this chapter is the dependence on a 
rather high number of parameters. Moreover, in the proposed approach both CMSA 
and the learning component (that is, bacterial algorithm) maintain their identity, 
resulting in a rather low level of integration. In particular, they communicate by 
mutually feeding their best solutions into the memory mechanism of the other 
approach. Given the current success of using machine learning (ML) techniques 
to improve optimization algorithms (see, for example, [1, 7]) it might be possible 
to design a machine learning component well-integrated into CMSA supporting the 
goal of shifting the construction of feasible solutions to better parts of the search 
space over time. 
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Chapter 4 
Replacing Hard Mathematical Models 
with Set Covering Formulations 

Abstract Many packing, routing, and knapsack problems can be expressed both 
in terms of standard assignment-type integer linear programming models and 
in terms of set-covering-based models. Black-box solvers such as CPLEX and 
Gurobi find it generally very hard to solve assignment-type mathematical models 
of these problems. Therefore, the Operations Research community has developed 
specific exact and heuristic techniques that exploit set-covering-based models. In 
this chapter, it is shown that integer linear programming models based on set 
covering can also be very useful for their use within CMSA. In particular, this is 
shown by applications of CMSA to the Variable-Sized Bin Packing (VSBP) problem 
and to the Electric Vehicle Routing Problem with Time Windows and Simultaneous 
Pickups and Deliveries (EVRP-TW-SPD). In both applications, CMSA based on a 
set covering model significantly outperforms CMSA when using an assignment-
type model. Moreover, state-of-the-art results are obtained for both considered 
optimization problems. 

4.1 Introduction 

In this chapter, we focus on employing CMSA for combinatorial optimization 
problems that involve partitioning a finite set of items into distinct subsets. This cat-
egory encompasses various significant problems, including bin packing problems, 
multiple knapsack problems, assembly line balancing, and vehicle routing problems, 
among others. Traditional black-box solvers like CPLEX and Gurobi often face 
considerable challenges in solving standard assignment-type ILP models for these 
problems. Consequently, the Operations Research community has devised special-
ized exact techniques based on set covering models to address these challenges. 
Set covering models prove particularly beneficial in the realm of column generation 
methods, as illustrated in works such as [4, 8, 19]. In addition, the transformation 
of vehicle routing and packing problems to set covering problems has also been 
exploited in the context of heuristic methods; see, for example, [5, 15, 17]. 
This chapter will demonstrate the effectiveness of such models within CMSA 
algorithms, especially in the context of solving sub-instances. In particular, this 
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will be done for two different optimization problems. The first problem, called the 
Variable-Sized Bin Packing (VSBP) problem is from the bin packing field, while 
the second one—called Electric Vehicle Routing Problem with Time Windows 
and Simultaneous Pickups and Deliveries (EVRP-TW-SPD)—is from the field of 
electric vehicle routing. The substitution of standard assignment-type ILP models 
with set covering formulations often leads to highly efficient techniques. Notably, 
these set-covering-based CMSA techniques, unlike column generation methods, are 
relatively straightforward to implement. 

In fact, in the context of both considered problems, our best-performing CMSA 
variants achieve state-of-the-art results. In the case of the VSBP problem, new best-
known solutions are found in 68 out of 150 cases. Furthermore, in the context of the 
EVRP-TW-SPD problem, no other heuristic optimization method has been proposed 
so far. 

4.2 Application to Variable-Sized Bin Packing 

The Variable-Sized Bin Packing (VSBP) problem can be formally characterized as 
follows: Given is a set .Sitems = {1, . . . , n} comprising n items, each denoted as 
.i ∈ Sitems with a positive weight . wi , and a set .B = {1, . . . , m} consisting of m 
bin types. Each bin type .k ∈ B is defined by a positive capacity . Wk and a cost . Ck . 
Without loss of generality, it is assumed that the capacities satisfy .W1 < . . . < Wm. 
The objective of the VSBP problem is to efficiently pack the n items into bins, with 
the aim of minimizing the total cost of the utilized bins. Importantly, there are no 
restrictions on how many times a bin type may be employed. The VSBP problem 
can be mathematically modeled as an assignment-type ILP, as detailed in [11]. This 
model, henceforth denoted by .ILPVSBP

std , can be stated as follows. 

.min
n∑

j=1

m∑

k=1

Ck · yjk. (4.1) 

subject to 
n∑

j=1 

xij = 1 for  i = 1, . . . , n. (4.2) 

m∑

k=1 

yjk  ≤ 1 for  j = 1, . . . , n. (4.3) 

n∑

i=1 

wi · xij ≤ 
m∑

k=1 

Wk · yjk  for j = 1, . . . , n (4.4) 

xij ∈ {0, 1} for i, j = 1, . . . , n  

yjk  ∈ {0, 1} for j = 1, . . . , n  and k = 1, . . . , m
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(a) Three items 

Bin type 1 

Bin type 2 

Bin type 3 

Capacity 

Capacity 

Capacity 

(b) Three bin types 

(c) A  valid solution with cost 4 + 5 = 9 (d) Optimal solution with cost 3 + 5 = 8 

Fig. 4.1 Illustrating an instance with .n = 3 items and .m = 3 distinct bin types: The weights of 
the items are presented in (a), while the capacities and costs of the bin types are outlined in (b). In 
(c), a valid solution is depicted, wherein item 3 is allocated to a bin of type 2 (incurring a cost of 
4), while items 1 and 2 are assigned to a bin of type 3 (with a cost of 5). Consequently, the solution 
in (c) attains a value of .4 + 5 = 9. Alternatively, (d) showcases the optimal solution, where item 
1 is assigned to a bin of type 1 (incurring a cost of 3), and items 2 and 3 are allocated to a bin of 
type 3 (with a cost of 5). Thus, the cost of the optimal solution is . 3 + 5 = 8

This ILP model employs two sets of binary variables. When . xij is set to 1, it signifies 
that item i is placed in bin j . Similarly, a setting of .yjk = 1 indicates that bin 
j is assigned bin type k. It is worth noting that the number of used bins can be 
effectively limited to n, which represents the number of items. Constraints (4.2) 
ensure that each item is assigned to precisely one bin, while constraints (4.3) 
enforce that each utilized bin is associated with exactly one bin type. Additionally, 
constraints (4.4) guarantee the adherence to bin capacities. Importantly, the VSBP 
problem is classified as NP-hard due to its nature as a generalization of the one-
dimensional bin packing problem. For an illustrative instance of a small VSBP 
problem, refer to Fig. 4.1. 

4.2.1 Short Literature Review Concerning the VSBP Problem 

This short review is directed toward the original version of the VSBP problem, 
where, as previously indicated, the number of available bins per bin type is 
unlimited. Lower bounds and heuristic methods for a more generalized version 
of the VSBP problem, featuring explicit limits on the number of bins per bin 
type, were derived in [7]. Haouari and Serairi [11] introduced a variety of greedy
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heuristics and a genetic algorithm for the VSBP problem. Additionally, [12] 
proposed a sophisticated variable neighborhood search (VNS) algorithm, and the 
results reported in their work have remained uncontested so far. Instead of improving 
those results, subsequent research efforts have shifted towards exploring the VSBP 
problem with additional constraints. Recent papers include the VSBP problem with 
time windows [10] and the VSBP problem with conflicts [9]. 

4.2.2 Set-Covering Based ILP Model of the VSBP Problem 

An alternative ILP model based on set-covering for the VSBP problem can be 
formulated as follows. Consider . B as the set comprising all potential bins with an 
assigned set of items. The weight . wb of a bin .b ∈ B is defined as the total weight 
of the items assigned to that specific bin. Furthermore, the cost . cb of a bin . b ∈ B
is determined by the cost of the lowest-cost bin type capable of accommodating all 
items assigned to bin b. Lastly, let .Bi ⊂ B represent the set of bins containing item 
i. Given these definitions, the set-covering-based ILP model for the VSBP problem, 
hereinafter referred to as .ILPVSBP

setcov, can be expressed as follows. 

.min
∑

b∈B
cb · xb. (4.5) 

subject to
∑

b∈Bi 

xb ≥ 1 for  i = 1, . . . , n (4.6) 

xb ∈ {0, 1} for all b ∈ B 

It is worth noting that an exact correspondence between .ILPVSBP
std and . ILPVSBPsetcov

could be achieved by substituting the “. ≥” symbol in constraints (4.6) with the 
equality symbol (“. =”). However, any optimal solution derived with the “. ≥” symbol 
can readily be transformed into an optimal solution of the model with the “. =” 
symbol by eliminating duplicate items from all bins except one. Additionally, as 
per [4], the linear programming relaxation of the model using the “. ≥” symbol 
is numerically more stable and, consequently, easier to solve. This enhances the 
feasibility of solving the ILP using solvers such as CPLEX or Gurobi. 

4.2.3 Application of Standard CMSA to the VBSP Problem 

First, we applied the standard CMSA from Sect. 1.3.1 on page 18 to the VSBP 
problem. As we will use the generic variant of defining the solution components 
(see below), this algorithm will henceforth be called CMSA_GEN. As ILP model 
for solving sub-instances, CMSA_GEN uses the one from Sect. 4.2, that is, model
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.ILPVSBP
std . Concerning the set C of solution components, for each binary variable 

of the ILP model exactly two solution components are introduced: one component 
that corresponds to setting the variable to zero, and another component that 
refers to setting the variable to one. In the case of model .ILPVSBP

std , this means 
that C consists of solution components .cx0

ij and .cx1
ij for all binary variables 

. xij (.i, j,= 1, . . . , n), and of solution components .cy0
jk and .cy1

jk for all binary 

variables .yjk (.j = 1, . . . , n; .k = 1, . . . , m). Hereby, . cx0
ij , for example, cor-

responds to .xij = 0, while .cx1
ij corresponds to .xij = 1. Moreover, . C =

{cx0
11, . . . , cx

0
nn, cx

1
11, . . . , cx

1
nn, cy

0
11, . . . , cy

0
nm, cy1

11, . . . , cy
1
nm} is the complete 

set of .2n2 + 2nm solution components. Any valid solution S is a subset of C with 
.|S| = n2 + nm because, for each binary variable, a solution S contains exactly one 
of the two corresponding solution components. 

4.2.3.1 Probabilistic Construction of VSBP Solutions 

For the following discussion, a bin .b ⊆ {1, . . . , n} is a set of items. Moreover, a bin 
b is always characterized by three well-defined measures: 

1. .bload: The load of a bin b is the sum of the weights of the items it contains, 
expressed as .bload := ∑

i∈b wi . 
2. .btype: The type of a bin b is identified as the lowest-cost bin type capable of 

accommodating the load of the bin. This is formally defined as .btype := k such 
that .Ck < Cr for all .r ∈ {1, . . . , m} with .Wr ≥ bload. 

3. .bcost: The cost of a bin is equivalent to the cost of its type, specified as . bcost :=
Cbtype . 

4. .bratio: The ratio between the cost and the load of a bin is expressed as . bratio :=
bcost
bload

. 

In addition, let .maxload be defined as the maximum capacity of all bin types, that 
is, .maxload := max{Wj | j = 1, . . . , m}. For the probabilistic construction of a 
solution, the following simple procedure is applied; see also Algorithm 4.1. First, 
the n items are randomly ordered; see line 3. Then, the set of bins (B) is initialized 
by placing the first item from the list in a new bin, whose load, type, cost, and ratio 
are determined as defined above. Then, in the pre-determined order, the remaining 
items are placed into bins. In particular, in probability, among all options to place 
an item, the one resulting in a bin with a lower ratio is preferred over the others. 
The placement of an item into a bin is done in function ChooseOption(O, .drate, 
. lsize) (see line 16), where O is the current set of options. The working of this 
function is as follows. First, a number z is chosen uniformly at random from .[0, 1]. 
In case .z ≤ drate, the chosen option is the one with the lowest ratio. Otherwise, 
the .min{|O|, lsize} options with the lowest ratios are pre-selected from O, and the 
chosen option is randomly determined among those. When all items are placed 
into bins, the set of bins is sorted by bin ratio (from small to large); see function
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Algorithm 4.1: Probabilistic construction of a valid VSBP solution 
1: input: values for solution construction parameters drate, lsize 
2: Let (i1, . . . , in) be a randomly ordered list of all n items 
3: b := {i1} 
4: B := {b} 
5: for l := 2, . . . , n  do 
6: i := il 
7: O := ∅ 
8: for b ∈ B do 
9: if bload + wi ≤ maxload then 
10: be := b ∪ {i} 
11: O := O ∪ {be} 
12: end if 
13: end for 
14: if O is non-empty then 
15: be := ChooseOption(O, drate, lsize) 
16: B := B \ {b} ∪ {be} 
17: else 
18: b := {i} 
19: B := B ∪ {b} 
20: end if 
21: end for 
22: Sort(B) 
23: S := ExtractSolutionComponents(B) 
24: output: S 

Sort(B) in line 22 of Algorithm 4.1. As a tie-breaking criterion, we utilized the 
smallest item index of a bin (preferring smaller ones). Finally, the constructed 
solution is transformed into the corresponding set S of solution components in 
functionExtractSolutionComponents(B); line 23. In the case of the set of solution 
components outlined above, this works as follows. If the first bin (after sorting B) 
is of type k, then .cy1

1k is added to S. Moreover, all .cy0
1r (with .r /= k ∈ {1, . . . , m}) 

are added to S. The same is done for all other bins in B. Similarly, for each item i 
in the first bin (after sorting B), component .cx1

i1 is added to S. Moreover, all . cx0
ir

(with .r = 2, . . . , n) are added to S. The same is done for the items of all other bins 
from B. 

4.2.3.2 Sub-instance Generation and Solving 

During the solve stage of CMSA_GEN, first, a reduced problem instance is generated 
on the basis of . C'. This is accomplished by introducing the following constraints to 
the .ILPVSBPstd model for all .i = 1, . . . , n, before employing an ILP solver: 

1. For all .i, j = 1, . . . , n: 

• If .cx0
ij ∈ C' and .cx1

ij /∈ C': add constraint .xij = 0 to . ILPVSBPstd

• If .cx0
ij /∈ C' and .cx1

ij ∈ C': add constraint .xij = 1 to .ILPVSBPstd
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2. For all .j = 1, . . . , n and .k = 1, . . . , m: 

• If .cy0
jk ∈ C' and .cy1

jk /∈ C': add constraint .yjk = 0 to . ILPVSBP
std

• If .cy0
jk /∈ C' and .cy1

jk ∈ C': add constraint .yjk = 1 to . ILPVSBP
std

To clarify, if a sub-instance . C' exclusively contains one of the two solution 
components associated with a variable, the variable’s value can be fixed accordingly. 
This implies that as more constraints of this nature are incorporated into the original 
ILP model, the search space for the ILP solver to navigate in solving the sub-
instance becomes progressively reduced. 

4.2.4 Application of Set-Covering Based CMSA to the VSBP 
Problem 

In addition to applying CMSA_GEN to the VSBP problem, we also apply a CMSA 
variant that makes use of the set-covering model .ILPVSBP

setcov from Sect. 4.2.2 for 
solving sub-instances. This CMSA variant is henceforth labeled CMSA_SETCOV. 

•> Solution Components of CMSA_SETCOV 

The entire set of solution components C comprises a component . cb for each valid 
bin b in . B (refer to Sect. 4.2.2). Formally, this can be expressed as . C := {cb | b ∈
B}. Any subset .S ⊂ C, wherein each item .i ∈ {1, . . . , n} appears in precisely one 
bin b such that .cb ∈ S, constitutes a valid solution for the addressed VSBP problem 
instance. 

The probabilistic construction of solutions in CMSA_SETCOV works exactly 
in the same way as outlined in Sect. 4.2.3.1. The only difference lies in the 
implementation of function ExtractSolutionComponents(B) that assembles the 
solution components corresponding to a set of bins B. Here, this function simply 
adds for each .b ∈ B the corresponding solution component . cb to S. 

•> Sub-instance Solving in CMSA_SETCOV 

The ILP model solved in the solve step of this CMSA variant is obtained by 
exchanging . B in model .ILPVSBPsetcov by . C

', that is, by replacing the set of all possible 
valid bins with the set of those bins that form part of the current sub-instance . C'. 
The solution S obtained from the ILP solver after .tILP CPU seconds is then checked 
for duplicate occurrences of items. If this happens, duplicate items are randomly 
removed from the bins in S until each item appears exactly once in the bins of S.
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4.2.5 Experimental Evaluation 

The experiments were conducted on the IIIA-CSIC in-house cluster, already 
described in Sect. 1.2.1 on page 12, which consists of machines equipped with 
Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of 
RAM. For solving the corresponding sub-instances in both variants of CMSA, we 
employed CPLEX version 22.1 in single-threaded mode. 

4.2.5.1 VSBP Problem Instances 

In the utilized set of benchmark instances (from [12]), each instance has . m = 7
bin types. The corresponding bin capacities are defined as .W1 = 70, .W2 = 100, 
.W3 = 130, .W4 = 160, .W5 = 190, .W6 = 220, and .W7 = 250. Additionally, item 
weights are randomly selected from the range .[1, 250]. Notably, this benchmark 
set comprises three distinct classes of instances. Specifically, class B1 features a 
linear bin cost function .Ci = Wi (.i = 1, . . . , 7), class B2 is characterized by a 
concave cost function .Ci = ⎾10√Wi⏋ (.i = 1, . . . , 7), and class B3 exhibits a 
convex cost function .Ci = ⎾0.1Wi

3/2⏋ (.i = 1, . . . , 7). For each combination of 
.n ∈ {100, 200, 500, 1000, 2000} (number of items) and bin cost function class, 
there are 10 problem instances, resulting in a total of 150 problem instances. It is 
important to note that optimal solutions for these instances are unknown. 

4.2.5.2 Parameter Tuning 

Both CMSA_GEN and CMSA_SETCOV require effective parameter values to work 
at their best. Specifically, the same eight parameters presented in the left-most 
column of Table 4.1 must be fine-tuned for both algorithms. The value domains 
for these parameters are outlined in the second column of the same table. The 
parameter tuning process was executed using the irace tool [14], which is 
described in Sect. 1.2.1 on page 12. Each variant of the algorithm underwent 
tuning independently for each instance class, with a budget of .2000 algorithm 
runs. Additionally, each run was constrained to 150 CPU seconds, in accordance 
with [12]. The resulting parameter values, as presented in Table 4.1, were utilized 
for the final experiments. The following parameter settings deserve some attention. 
First, observe that the computation time allotted to CPLEX for solving sub-instances 
in CMSA_GEN is very low for instances of classes B1 and B2. This suggests 
that sub-instance solving is not very useful when using the original ILP model.
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Table 4.1 Parameter settings for CMSA_GEN and CMSA_SETCOV concerning the three classes 
of VSBP problem instances 

Class B1 Class B2 Class B3 

Parameter Domain C
M
S
A
_G

E
N
 

C
M
S
A
_S

E
T
C
O
V
 

C
M
S
A
_G

E
N
 

C
M
S
A
_S

E
T
C
O
V
 

C
M
S
A
_G

E
N
 

C
M
S
A
_S

E
T
C
O
V
 

tILP (0.3, 30.0) 0.48 15.21 0.36 23.12 7.02 28.07 

lsize [1, 10] 1 10 1 5 1 8 

drate (0.0, 0.99) 0.59 0.7 0.96 0.64 0.89 0.97 

na [2, 50] 50 13 46 50 50 46 

agemax [1, 10] 8 3 3 1 3 1 

cplexemphasis {true,false} false false true false false false 

cplexwarmstart {true,false} false false false true true false 

cplexabort {true,false} true false true false true false 

Moreover, the abort feature (CPLEX) is not used by CMSA_SETCOV, even though 
the computation time assigned for each application of CPLEX is rather high (see 
settings of parameter . tILP). This suggests that sub-instances are quickly solved to 
optimality in CMSA_SETCOV. 

4.2.5.3 Numerical Results 

Tables 4.2 (instances of class B1), 4.3 (instances of class B2), and 4.4 (instances of 
class B3) present the best-known solutions from the literature (extracted from [12]), 
alongside the results obtained using CMSA_GEN and CMSA_SETCOV. The first two 
columns in these tables denote the number of items (n) and the instance number 
(#), respectively. Each table row corresponds to a specific problem instance, and the 
results of the three algorithms are provided in terms of the best solution identified 
across 10 runs, the average of the best solutions from these 10 runs, and the average 
times at which these solutions were discovered within the 150 CPU seconds time 
limit per run. Note that results are indicated in bold font if they correspond to 
the value of best-known solutions. Moreover, a gray background means that the 
corresponding best-known solution was improved.
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Table 4.2 Results for the 50 instances of class B1 (linear cost function) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

100 1 12,700 12,760 12,776.0 44.82 12,700 12,700.0 0.12 

2 12,140 12,210 12,232.0 44.11 12,140 12,140.0 4.06 

3 13,620 13,670 13,686.0 49.34 13,620 13,620.0 0.11 

4 12,550 12,620 12,632.0 74.98 12,550 12,550.0 0.09 

5 10,630 10,690 10,706.0 66.26 10,630 10,630.0 0.59 

6 11,130 11,190 11,207.0 67.30 11,130 11,130.0 12.89 

7 13,020 13,080 13,086.0 64.28 13,020 13,020.0 0.06 

8 12,180 12,260 12,269.0 63.62 12,170 12,170.0 6.25 

9 11,090 11,180 11,187.0 41.38 11,090 11,090.0 1.09 

10 12,800 12,870 12,879.0 57.16 12,800 12,800.0 0.11 

200 1 25,430 25,640 25,659.0 76.60 25,430 25,430.0 1.12 

2 26,300 26,400 26,439.0 70.39 26,300 26,300.0 0.08 

3 27,770 27,770 27,790.0 58.89 27,770 27,770.0 0.03 

4 24,300 24,490 24,507.0 70.86 24,290 24,290.0 5.88 

5 25,820 25,940 25,968.0 59.44 25,820 25,820.0 0.03 

6 23,820 23,980 24,007.0 60.76 23,810 23,810.0 1.05 

7 28,590 28,600 28,624.0 55.83 28,590 28,590.0 0.03 

8 25,900 26,040 26,067.0 83.77 25,900 25,900.0 0.21 

9 24,890 25,070 25,098.0 48.45 24,890 24,890.0 0.22 

10 25,760 25,850 25,868.0 79.21 25,760 25,760.0 0.05 

500 1 61,770 62,350 62,424.0 95.47 61,750 61,758.0 20.56 

2 62,090 62,560 62,628.0 59.03 62,070 62,070.0 11.65 

3 66,770 67,320 67,371.0 60.61 66,760 66,763.0 31.65 

4 63,970 64,360 64,410.0 75.02 63,970 63,970.0 2.32 

5 62,150 62,670 62,698.0 80.46 62,150 62,150.0 0.44 

6 61,130 61,670 61,702.0 51.70 61,090 61,090.0 24.31 

7 63,340 63,930 63,991.0 64.20 63,320 63,320.0 2.14 

8 63,250 63,760 63,809.0 97.81 63,210 63,210.0 4.72 

9 61,170 61,740 61,777.0 78.08 61,120 61,120.0 36.41 

10 62,000 62,540 62,562.0 69.21 61,990 61,990.0 12.14 

1000 1 126,610 127,620 127,674.0 73.63 126,490 126,496.0 52.58 

2 123,250 124,370 124,466.0 69.56 123,120 123,120.0 13.62 

3 123,070 124,320 124,390.0 54.98 123,020 123,029.0 36.97 

4 127,370 128,510 128,570.0 66.89 127,360 127,360.0 24.74 

5 127,710 128,990 129,036.0 74.28 127,660 127,660.0 23.94 

6 125,580 126,640 126,766.0 52.26 125,520 125,522.0 56.93 

7 128,260 129,290 129,380.0 62.90 128,260 128,260.0 1.49 

8 130,410 131,450 131,513.0 65.99 130,410 130,410.0 5.11 

9 125,680 126,910 126,970.0 68.94 125,630 125,635.0 28.76 

10 129,400 130,380 130,480.0 62.26 129,380 129,380.0 7.77 

(continued)
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Table 4.2 (continued) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

2000 1 254,330 256,380 256,455.0 59.79 254,290 254,290.0 44.52 

2 257,370 259,590 259,723.0 73.83 257,330 257,330.0 47.29 

3 251,880 254,100 254,180.0 80.85 251,770 251,770.0 57.39 

4 248,520 250,610 250,653.0 68.64 248,470 248,470.0 26.36 

5 245,110 247,810 247,905.0 46.48 245,060 245,066.0 88.49 

6 250,930 253,500 253,571.0 69.33 250,870 250,878.0 40.58 

7 258,700 261,140 261,198.0 53.64 258,680 258,690.0 62.45 

8 256,950 259,330 259,412.0 49.21 256,970 256,978.0 71.54 

9 258,480 260,720 260,866.0 56.24 258,450 258,458.0 66.39 

10 255,750 257,670 257,802.0 71.50 255,750 255,750.0 6.92 

•> Main Observations Concerning the VSBP Problem Results 

• First, CMSA_SETCOV clearly outperforms CMSA_GEN. Only in two out of 
150 cases, CMSA_GEN is able to find a solution of the same quality as the 
one found by CMSA_SETCOV. Moreover, while CMSA_SETCOV finds the best-
known solutions for the small problem instances with .n ∈ {100, 200} items, it 
clearly outperforms the current state of the art in the context of larger problem 
instances (especially for .n ∈ {1000, 2000}) as indicated by the number of new 
best-known solutions. 

• For 68 out of 150 problem instances, CMSA_SETCOV successfully discovers 
new best-known solutions. Specifically, it identifies 27 new best-known solutions 
for the 50 B1 instances, 26 new solutions for the 50 B2 instances, and 15 new 
solutions for the 50 B3 instances. 

• Only in 7 out of 150 cases, the best solution found by CMSA_SETCOV is slightly 
worse than the best-known solution. 

In order to test the statistical relevance of these results, so-called CD plots were 
produced; see Sect. 1.2.3 on page 16 for a description of CD plots. Note that, in 
the context of these plots, we added the results of the VNS approach from [12] and 
of the GA approach from [7]. The plot from Fig. 4.2a shows that—from a global 
point of view—CMSA_SETCOV outperforms all other algorithms with statistical 
significance. When considering the instances from the three classes separately, 
no statistically significant difference between CMSA_SETCOV and VNS can be 
detected in the context of the B3 class (see Fig. 4.2d).
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Table 4.3 Results for the 50 instances of class B2 (concave cost function) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

100 1 8890 8920 8923.9 63.88 8890 8890.0 0.04 

2 7832 7864 7870.9 72.02 7832 7832.0 2.53 

3 8516 8516 8545.1 97.94 8516 8516.0 0.04 

4 8591 8611 8619.5 78.30 8591 8591.0 0.02 

5 8474 8496 8502.0 68.44 8474 8474.0 0.28 

6 7538 7571 7578.0 53.49 7538 7538.0 3.59 

7 7876 7890 7898.0 47.32 7876 7876.0 0.03 

8 8116 8148 8158.9 58.86 8116 8116.0 0.70 

9 8392 8409 8414.9 77.77 8392 8392.0 0.43 

10 9127 9137 9139.0 53.29 9127 9127.0 0.03 

200 1 17,307 17,445 17,453.1 80.09 17,307 17,307.0 4.53 

2 16,391 16,533 16,562.1 84.47 16,391 16,394.3 62.26 

3 16,637 16,687 16,708.7 63.75 16,629 16,629.8 38.82 

4 15,864 15,925 15,953.5 77.29 15,864 15,864.0 0.30 

5 17,699 17,729 17,735.5 84.51 17,699 17,699.0 0.04 

6 15,457 15,541 15,572.4 73.06 15,457 15,457.0 3.03 

7 16,203 16,329 16,343.8 85.28 16,203 16,203.0 0.08 

8 15,353 15,490 15,503.7 82.03 15,353 15,353.0 2.49 

9 15,860 16,062 16,072.4 78.29 15,860 15,860.0 0.11 

10 15,292 15,437 15,447.9 81.29 15,292 15,292.0 0.14 

500 1 39,307 39,555 39,609.4 81.73 39,305 39,305.6 46.36 

2 40,767 41,027 41,085.9 74.65 40,765 40,765.0 9.64 

3 39,963 40,273 40,312.7 79.02 39,963 39,963.0 2.19 

4 38,945 39,391 39,439.8 76.98 38,934 38,934.7 32.24 

5 39,785 40,122 40,166.6 81.12 39,775 39,775.0 1.70 

6 43,096 43,213 43,288.1 99.02 43,096 43,096.0 10.50 

7 41,307 41,541 41,574.1 78.85 41,306 41,306.0 7.00 

8 39,756 40,049 40,080.4 70.89 39,738 39,741.4 49.30 

9 40,166 40,424 40,480.0 73.82 40,154 40,154.0 26.21 

10 41,046 41,324 41,352.8 63.15 41,046 41,046.0 0.28 

1000 1 81,458 81,899 81,988.2 90.45 81,447 81,447.0 0.82 

2 78,523 79,309 79,380.2 65.58 78,515 78,518.5 100.57 

3 81,544 82,216 82,319.7 65.93 81,525 81,528.5 101.22 

4 80,265 80,813 80,920.6 65.70 80,255 80,259.4 48.64 

5 81,076 81,795 81,844.5 83.11 81,066 81,070.0 55.43 

6 81,333 81,879 82,000.9 89.12 81,343 81,348.0 44.53 

7 81,200 81,555 81,715.0 90.93 81,199 81,199.0 2.76 

8 80,899 81,658 81,747.2 106.88 80,849 80,856.2 28.34 

9 78,381 79,037 79,160.4 67.42 78,365 78,374.5 106.69 

10 84,535 84,853 84,931.2 56.74 84,503 84,504.8 71.25 

(continued)
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Table 4.3 (continued) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

2000 1 160,446 161,725 161,903.4 92.55 160,287 160,290.5 107.32 

2 162,193 163,211 163,370.1 62.43 162,193 162,197.0 46.56 

3 161,879 163,086 163,230.0 91.45 161,857 161,861.3 93.70 

4 161,128 161,945 162,080.0 62.24 161,064 161,064.7 46.03 

5 164,625 165,530 165,647.8 74.98 164,605 164,612.9 95.17 

6 159,107 160,338 160,419.9 70.71 159,096 159,096.0 40.79 

7 162,445 163,422 163,544.7 88.91 162,391 162,391.0 12.01 

8 159,878 161,171 161,238.5 81.00 159,869 159,878.2 47.41 

9 161,694 162,638 162,748.0 72.75 161,683 161,683.0 45.61 

10 153,403 154,768 154,908.7 71.44 153,266 153,267.0 57.66 

4.2.5.4 Performance Difference Between the Two VSBP ILP Models 

Finally, we aim to show why CMSA_SETCOV outperforms CMSA_GEN so clearly. 
For this purpose, we generate sub-instances of different sizes, translate them both 
into models .ILPVSBPstd and .ILPVSBP

setcov, and solve them with CPLEX. In particular, 
we generated sub-instances by probabilistically constructing . na ∈ {2, 5, 10, 20, 50}
solutions and by merging their solution components. This was done for the first 
B1 instance with .n ∈ {100, 200, 500, 1000, 2000} items. Figures 4.3, 4.4, 4.5, 4.6, 
and 4.7 show radar charts that present the obtained results in the five different cases. 
Each radar chart provides four different measures, averaged over 10 runs: 

1. The number of variables in the models of the sub-instances (top). 
2. The relative MIP gap after the termination of CPLEX (right). 
3. The computation time required by CPLEX (bottom). 
4. The absolute improvement when comparing the result of solving the sub-instance 

with the best individual solution that was used to generate the sub-instance. 

It is important to mention that the time limit for CPLEX was consistently set 
to 20 CPU seconds for solving these sub-instances. Within this context, a model 
is considered promising when there is a substantial improvement (left), and the 
number of variables (top), the relative MIP gap (right), and the required time 
(bottom) are all low. The presented radar plots affirm that this holds true for the 
.ILPVSBP

setcov model, while conversely, the situation is reversed for the .ILPVSBP
std model. 

It is evident that this trend becomes more accentuated as the size of the problem 
instances increases.
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Table 4.4 Results for the 50 instances of class B3 (convex cost function) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

100 1 19,364 19,393 19,414.8 79.77 19,364 19,364.0 0.02 

2 19,000 19,016 19,025.1 32.03 19,000 19,000.0 0.03 

3 18,272 18,280 18,298.5 41.17 18,272 18,272.0 0.01 

4 19,016 19,029 19,054.3 48.91 19,016 19,016.0 0.02 

5 16,612 16,648 16,653.2 71.84 16,612 16,612.0 0.04 

6 18,632 18,649 18,662.9 60.51 18,632 18,632.0 0.06 

7 18,682 18,708 18,726.0 92.06 18,682 18,682.0 0.04 

8 19,517 19,520 19,540.0 78.12 19,517 19,517.0 0.02 

9 17,950 17,968 17,983.9 92.37 17,950 17,950.0 0.03 

10 17,127 17,135 17,150.3 59.36 17,127 17,127.0 0.02 

200 1 35,423 35,600 35,636.6 56.79 35,423 35,423.0 0.79 

2 36,362 36,638 36,699.6 70.19 36,362 36,362.0 6.80 

3 33,390 33,620 33,648.2 81.67 33,390 33,390.0 0.30 

4 34,327 34,529 34,572.1 76.59 34,327 34,327.0 0.13 

5 38,055 38,231 38,265.5 76.52 38,055 38,055.0 0.09 

6 35,009 35,194 35,228.9 42.86 35,009 35,009.0 0.10 

7 38,175 38,313 38,353.4 69.01 38,175 38,175.0 0.47 

8 36,003 36,154 36,180.4 80.27 36,003 36,003.0 0.09 

9 32,700 32,883 32,922.5 61.19 32,700 32,700.0 1.75 

10 36,998 37,124 37,236.7 57.45 36,998 36,998.0 0.18 

500 1 94,768 95,293 95,363.9 114.88 94,768 94,768.0 1.11 

2 97,983 98,455 98,506.4 71.85 97,983 97,983.0 0.84 

3 95,832 96,365 96,537.1 90.70 95,832 95,832.0 1.22 

4 91,068 91,598 91,723.3 96.05 91,068 91,068.0 0.45 

5 87,676 88,479 88,509.7 85.86 87,676 87,676.0 0.63 

6 83,124 83,926 84,065.9 63.61 83,124 83,124.0 21.24 

7 90,407 91,061 91,124.8 32.83 90,407 90,407.0 0.97 

8 87,059 87,844 87,883.4 57.71 87,059 87,059.0 7.37 

9 87,398 88,012 88,148.4 105.40 87,398 87,398.0 2.50 

10 90,541 91,097 91,226.8 86.41 90,543 90,543.0 23.88 

1000 1 176,950 178,524 178,603.4 64.64 176,953 176,955.3 98.43 

2 180,993 182,387 182,477.0 73.19 180,989 180,990.6 73.80 

3 182,758 184,448 184,540.3 52.71 182,754 182,754.6 58.44 

4 180,859 182,523 182,593.6 71.58 180,857 180,859.3 58.48 

5 179,158 180,722 180,766.4 98.23 179,154 179,154.8 61.79 

6 188,838 190,405 190,462.0 74.14 188,839 188,840.2 34.81 

7 178,185 179,873 179,929.9 69.07 178,183 178,189.7 89.80 

8 177,461 179,120 179,188.0 88.13 177,459 177,459.0 14.70 

9 181,005 182,688 182,735.9 67.75 181,001 181,007.7 69.93 

10 176,902 178,608 178,668.8 90.00 176,902 176,917.2 49.65 

(continued)
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Table 4.4 (continued) 

Best CMSA_GEN CMSA_SETCOV 

n # known Best Avg Avg. time Best Avg Avg. time 

2000 1 356,244 360,181 360,299.1 68.42 356,235 356,236.6 85.25 

2 369,839 373,372 373,580.8 57.24 369,811 369,831.7 68.47 

3 364,550 368,194 368,358.8 80.45 364,527 364,562.3 72.10 

4 356,984 360,844 360,947.8 88.17 356,958 356,969.8 102.76 

5 365,557 369,038 369,166.6 79.64 365,564 365,576.4 106.84 

6 365,142 368,915 369,041.4 78.61 365,116 365,120.8 56.37 

7 360,824 364,687 364,771.3 67.67 360,816 360,838.2 90.21 

8 371,799 375,086 375,321.6 64.33 371,779 371,798.6 96.17 

9 355,723 359,485 359,606.1 73.22 355,726 355,745.3 104.49 

10 357,058 361,201 361,305.5 75.07 357,036 357,040.1 68.10 

1 2 3 4 
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GA 

(b) 
1 2 3 4 
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1 2 3 4 
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Fig. 4.2 Critical difference (CD) plots showing the statistical significance of the VSBP problem 
results. (a) All 150 problem instances. (b) 50 B1 instances. (c) 50 B2 instances. (d) 50 B3 instances 

4.2.5.5 STNWeb Graphics Concerning the VSBP Results 

As in the case of all previous experimental evaluations presented in this book, 
we plotted STNWeb graphics of the obtained VSBP results; see Sect. 1.2.2 on 
page 13 for a description of the STNWeb tool and the type of graphics that are 
produced. Figure 4.8 shows the typical case of the first problem instance with 500 
items from the B1 class. The complete STN in Fig. 4.8a indicates that all 10 runs 
of CMSA_GEN reach solutions of the same quality, the best ones found between 
CMSA_GEN and CMSA_SETCOV. However, all 10 solutions are different to each 
other. The STN after search space partitioning (see Fig. 4.8b) shows that all of 
these best solutions are very much related to each other. Observe that they all can 
be found in the same area of the search space. We assume that good solutions of 
the same quality often have only small differences with each other. The STN after
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Fig. 4.3 Radar charts concerning the comparison of the two ILP models applied to a VSBP 
problem instance (B1 class) with 100 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions
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Fig. 4.4 Radar charts concerning the comparison of the two ILP models applied to a VSBP 
problem instance (B1 class) with 200 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions
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Fig. 4.5 Radar charts concerning the comparison of the two ILP models applied to a VSBP 
problem instance (B1 class) with 500 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions
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Fig. 4.6 Radar charts concerning the comparison of the two ILP models applied to a VSBP 
problem instance (B1 class) with 1000 items. (a) Two solution constructions. (b) Five solution 
constructions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution con-
structions
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Fig. 4.7 Radar charts concerning the comparison of the two ILP models applied to a VSBP 
problem instance (B1 class) with 2000 items. (a) Two solution constructions. (b) Five solution 
constructions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution con-
structions
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Fig. 4.8 STNWeb graphics. (a) and  (b) show 10 runs of CMSA_GEN and CMSA_SETCOV for the 
first problem instance with 500 items from the B1 class. While (a) shows the complete STN, (b) 
shows the same STN after partitioning 

search space partitioning also shows that at the beginning of the search trajectories 
of CMSA_GEN and CMSA_SETCOV there are overlaps. However, the trajectories of 
CMSA_GEN simply stop much earlier than the ones of CMSA_SETCOV, because the 
algorithm is not able to find any better solutions within the given CPU time. 

4.3 Application to an Electric Vehicle Routing Problem 

As mentioned earlier, another extensive category of problems where standard 
ILP models can be substituted with set-covering-based ILP models is vehicle 
routing. In recent years, due to increasing environmental concerns, numerous 
researchers have directed their attention to vehicle routing problems (VRPs) that 
involve electric vehicles, commonly known as electric vehicle routing problems 
(EVRPs). In this section, we aim to provide a second example showcasing the 
advantages of employing set-covering-based ILP models within CMSA algorithms. 
Specifically, we explore the Electric Vehicle Routing Problem with Time Windows 
and Simultaneous Pickups and Deliveries (EVRP-TW-SPD). We will apply an 
enhanced ADAPT_CMSA algorithm (see also Sect. 2.1 on page 42) in two variants: 
The first one uses a standard assignment-type ILP model for solving sub-instances, 
while the second one makes use of a set-covering formulation of the problem. 

The standard assignment-type ILP model for the EVRP-TW-SPD builds upon the 
model designed for the EVRP-TW-PR problem, as proposed in [13]. Notably, the 
EVRP-TW-PR model is itself a modified version of the model proposed earlier for 
the EVRP-TW problem in [22]. In the case of the EVRP-TW-SPD, we extend these 
models further to incorporate SPD constraints. When addressing SPD constraints
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within the context of vehicle routing problems, it is crucial to recognize that each 
customer’s demand may encompass two distinct requirements: (1) delivering goods 
to the demand point, referred to as the “delivery demand”, and (2) collecting goods 
from the demand point, termed the “pickup demand”. Fulfilling both demands 
concurrently is essential when a vehicle visits a particular customer. 

To align with the conventions established in the existing literature, we adhere 
to their notation. Specifically, the EVRP-TW-SPD problem entails a set of n 
customers, denoted as .V = {1, . . . , n}, and a set of charging stations designated 
as F . To accommodate multiple visits to any charging station, we introduce a set 
. F

'
that encompasses multiple instances of each charging station from F . The depot 

is represented by nodes 0 and .n + 1, where node 0 serves as the starting point and 
node .n + 1 will function as the endpoint for each route. It is essential to note that 
both 0 and .n + 1 refer to the same, single depot. The set .V

' = V ∪ F
'
contains 

all customers and dummy charging stations, with the subscripts 0, .n + 1, or both 
indicating the inclusion of the respective instances of the depot. Utilizing these 
notations, we define the following sets: 

1. . F
'
0 := F

' ∪ {0}
2. . V

'
0 := V

' ∪ {0}
3. . V

'
n+1 := V

' ∪ {n + 1}
4. . V

'
0,n+1 := V

' ∪ {0} ∪ {n + 1}
In accordance with established sets and notations, the EVRP-TW-SPD is defined 
on a complete, directed graph .G(V

'
0,n+1, A). Set . A = {(i, j)|i, j ∈ V

'
0,n+1, i /=

j} contains all possible arcs. Each arc .(i, j) is characterized by a corresponding 
distance . dij and travel time . tij . The energy consumed per unit distance traveled by 
an electric vehicle (EV) is represented by a constant h. A fleet of electric vehicles, all 
possessing identical loading capacity .EVcap and battery capacity .Bcap, is stationed 
at a depot to meet the simultaneous delivery demand .qi > 0 and pickup demand 
.pi > 0 of each .i ∈ V . Each vertex .i ∈ V

'
0,n+1 is permitted to be visited only 

within a designated time window .[ei, li], indicating the earliest and latest possible 
visiting times. Additionally, each customer .i ∈ V has a service time . si , representing 
the duration an electric vehicle spends at a customer location. When an EV visits a 
charging station, its battery undergoes charging at a constant rate of .g > 0. 

The ILP model for the problem incorporates the following decision variables. 
The binary variable . xij is assigned a value of 1 if the arc . aij is part of a vehicle’s 
route and 0 otherwise. The initiation time of service for each customer visited by 
the electric vehicle is stored by the decision variable . τi . Additionally, to keep tabs 
on the state of charge of the battery upon arrival and departure at each vertex . i ∈
V

'
0,n+1, the decision variables . yi and . Yi are utilized, respectively. Furthermore, the 

variables . uij and . vij represent the remaining cargo to be delivered to the customers 
along the route and the amount of cargo already collected (picked up) at previously 
visited customers, respectively. The technical description of the ILP model, denoted 
as .ILPEVRP

std , is as follows.



4.3 Application to an Electric Vehicle Routing Problem 117

.min
∑

i∈V
'
0 ,j∈V

'
n+1

dij xij +
∑

j∈V
'
n+1

Mx0j . (4.7) 

subj. to
∑

j∈V
'
n+1,i /=j 

xij = 1 ∀i ∈ V . (4.8)

∑

j∈V
'
n+1,i /=j 

xij ≤ 1 ∀i ∈ F
'
. (4.9)

∑

i∈V
'
0 ,i /=j 

xij −
∑

i∈V
'
n+1,i /=j 

xji  = 0 ∀j ∈ V
'
. (4.10) 

τi + (tij + si)xij − l0(1 − xij ) ≤ τj ∀i ∈ V0, j  ∈ V
'
n+1, i /= j . 

(4.11) 

τi + tij xij + g(Yi − yi) − (l0 + gBcap)(1 − xij ) ≤ τj 

∀i ∈ F
'
, j  ∈ V

'
n+1, i /= j . 

(4.12) 

ej ≤ τj ≤ lj ∀j ∈ V
'
0,n+1. (4.13) 

0 ≤ u0j ≤ EVcap ∀j ∈ V
'
n+1. (4.14) 

v0j = 0 ∀j ∈ V
'
n+1. (4.15)

∑

i∈V
'
0 ,i /=j 

uij −
∑

i∈V
'
n+1,i /=j 

uji  = qj ∀j ∈ V
'
. (4.16)

∑

i∈V
'
n+1,i /=j 

vji  −
∑

i∈V
'
0 ,i /=j 

vij = pj ∀j ∈ V
'
. (4.17) 

uij + vij ≤ EVcapxij ∀i ∈ V
'
0, j  ∈ V

'
n+1, i /= j . (4.18) 

0 ≤ yj ≤ yi − (hdij )xij + Bcap(1 − xij ) ∀i ∈ V,∀j ∈ V
'
n+1, i /= j . 

(4.19) 

0 ≤ yj ≤ Yi − (hdij )xij + Bcap(1 − xij ) ∀i ∈ F
'
0, ∀j ∈ V

'
n+1, i /= j . 

(4.20) 

yi ≤ Yi ≤ Bcap ∀i ∈ F
'
0. (4.21) 

xij ∈ 0, 1 ∀i ∈ V
'
0, j  ∈ V

'
n+1, i /= j (4.22)
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The distance-based objective function, originally proposed in [13], is extended 
to give priority to solutions employing fewer vehicles, even if the total distance 
traveled in such solutions surpasses that of other solutions. This extension involves 
introducing an additional cost parameter .M > 0 per utilized vehicle. It is important 
to note that the number of vehicles used in a solution corresponds to the variables on 
outgoing arcs of the depot (0) with a value of 1. In this context, the objective function 
(4.7) aims to minimize the total travel and vehicle costs. Constraints (4.8) ensure that 
each customer is visited by an electric vehicle, while constraints (4.9) allow vehicles 
to visit a charging station when necessary. Constraints (4.10) ensure that each 
vehicle visiting a particular node must also depart from the corresponding node. The 
arrival and departure times are calculated using constraints (4.11) and (4.12), which 
take into account service and battery charging times. Constraints (4.13) permit 
vehicles to visit each node within the corresponding time windows while preventing 
sub-tours. Constraints (4.14)–(4.18) ensure simultaneous fulfillment of delivery and 
pickup demands for customers. Finally, constraints (4.19)–(4.21) are associated with 
the battery state of charge. For an illustrative instance along with a solution, refer to 
Fig. 4.9. 

Fig. 4.9 Visualization of an (a) EVRP instance and (b) its solution: Figure (a) displays a map 
featuring the positions of a depot, five customers, and three charging stations, represented by 
Cartesian coordinates. The fully connected graph, denoted by gray dashed lines, contains a 
connection between every pair of nodes. Figure (b) depicts a valid solution for the specified 
instance on the same map. It consists of two separate tours as shown by arrows of distinct colors. 
Both routes commence and conclude at the depot, traversing different customers and charging 
stations along the way
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4.3.1 Short Literature Review Concerning the EVRP-TW-SPD 

Addressing increasing environmental concerns and the ensuing demand for alter-
native fuel sources in logistics, recent research has concentrated on formulating 
routing strategies that optimize the transportation of goods while accounting for 
the limited driving range and en-route charging requirements associated with 
EVs. These challenges are commonly denoted as EVRPs, or more broadly, Green 
Vehicle Routing Problems. Comprehensive surveys of recent research on EVRPs are 
available in [3, 16]. Given that our primary focus is on the methodology for solving 
specific types of problems rather than particular problem variants, we recommend 
interested readers consult these survey papers for more in-depth references. Instead, 
we highlight the distinctions between the EVRP-TW-SPD and existing problems 
in the literature. Beyond incorporating time window constraints, our problem also 
addresses simultaneous pickup and delivery (SPD) constraints related to customer 
deliveries, a consideration commonly linked to reverse logistics. Despite the crucial 
role of reverse logistics in advancing sustainability, the number of publications 
exploring variants of the EVRP-SPD remains limited. To date, only [24] have  
explored SPD constraints within the realm of EVRPs. Notably, in conventional 
EVRP models, the assumption is that EV batteries are fully charged upon visiting a 
charging station. In contrast, the problem considered here embraces a more realistic 
scenario by allowing for partial recharging. 

4.3.2 Set-Covering Based ILP Model of the EVRP-TW-SPD 

Typically, assignment-type ILP models like the one outlined for the EVRP-TW-SPD 
face challenges in generating effective lower bounds, as noted in prior studies such 
as [2]. Furthermore, experiments detailed in [1] revealed the difficulty of CPLEX 
in identifying feasible solutions for the corresponding model within reasonable 
execution times, even when dealing with small-sized sub-instances of the original 
problem instances. 

Similar to the approach outlined for the VSBP problem in Sect. 4.2.2 on page 98, 
the EVRP-TW-SPD can be expressed through a set-covering-based ILP as follows. 
Let . T represent the set of all possible (and feasible) tours, where a tour is defined 
as the journey of a single vehicle leaving from and returning to the depot. Each tour 
.Tr ∈ T is assessed based on the total distance traveled . dr , which is the sum of 
distances for all arcs along the tour. Lastly, let .Ti ⊂ T be the set of tours that cater 
to customer .i ∈ V . With these definitions, the set-covering-based ILP model for the 
EVRP-TW-SPD, hereafter referred to as .ILPEVRPsetcov, can be formulated as follows. 

.min
∑

Tr∈T
drxr + M

∑

Tr∈T
xr . (4.23)
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subject to
∑

Tr∈Ti 

xr ≥ 1 ∀ i ∈ V (4.24) 

xr ∈ {0, 1} ∀  Tr ∈ T 

The objective function aims to minimize the overall travel and vehicle costs, while 
constraints (4.24) guarantee that each customer is visited at least once. It is worth 
noting that the set-covering-based formulation is typically employed as a post-
optimization method in the VRP literature, as seen in [20]. In contrast, our findings 
demonstrate that CMSA serves as a viable algorithmic framework for iteratively 
applying both heuristics and exact components. 

4.3.3 Application of ADAPT_CMSA to the EVRP-TW-SPD 

Similar to the approach taken for the VSBP problem, we initially develop a 
version of CMSA based on the assignment-type ILP model—specifically, model 
.ILPEVRP

std —for the EVRP-TW-SPD. However, in contrast to the VSBP problem, 
where CMSA_GEN was used as CMSA variant, in the case of the EVRP-TW-
SPD we use ADAPT_CMSA. Within the context of ADAPT_CMSA, the complete 
set C of solution components includes a component . cij for each arc . aij from 
.A = {(i, j)|i, j ∈ V

'
0,n+1, i /= j}. Consider the following illustration: The vector . I

encompasses all the node indexes for a small-scale problem instance featuring three 
charging stations and five customers, with nodes indexed as 0 and 6 representing the 
depot. 

. I = ( 0,
︸︷︷︸
depot

1, 2, 3, 4, 5,
︸ ︷︷ ︸

customers

6,
︸︷︷︸
depot

7, 8, 9
︸ ︷︷ ︸

charging stations

)

Now, let us examine a solution comprising two tours, . T1 and . T2, where .T1 =<0-
9-1-4-6. > and .T2 =<0-2-8-3-7-5-6. >. In the context of ADAPT_CMSA, this solution 
is expressed as .S = {c0,9, c9,1, c1,4, c4,6, c0,2, c2,8, c8,3, c3,7, c7,5, c5,6}. In other 
words, a solution S in ADAPT_CMSA is maintained in terms of the list of solution 
components that represent the arcs utilized in any of the tours within S. 

4.3.4 The ADAPT_CMSA Algorithm 

The pseudo-code outlined in Algorithm 4.2 is shared between ADAPT_CMSA 

and ADAPT_CMSA_SETCOV. Although the pseudo-code for ADAPT_CMSA was 
previously presented in Algorithm 2.1 on page 42, we now provide the spe-
cific pseudo-code for our implementation targeting the EVRP-TW-SPD. This is
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Algorithm 4.2: Pseudo-code of ADAPT_CMSA for the EVRP-TW-SPD 
1: input 1: Complete set of solution components C 
2: input 1: Values for ADAPT_CMSA parameters tprop, tILP, ninit, ninc 

3: input 2: Values for solution construction parameters αLB, αUB, αred, linit size, l
inc 
size 

4: Sbsf := GenerateGreedySolution(C) 
5: αbsf := αUB, C' := Sbsf 

6: Initialize(na, lsize) 
7: while CPU time limit not reached do 
8: for i := 1, . . . , na do 
9: S := ProbabilisticSolutionConstruction(C, Sbsf, αbsf, lsize) 
10: LocalSearch1(S) 
11: C' := C' ∪ S 
12: end for 
13: (SILP, tsolve) := SolveSubinstance(C', tILP) {This function returns two objects: (1) the 

obtained solution (SILP), (2) the required computation time (tsolve)} 
14: LocalSearch2(SILP) 
15: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if 
16: if f (SILP) < f  (Sbsf) then 
17: Sbsf := SILP 

18: Initialize(na, lsize) 
19: else 
20: if f (SILP) > f  (Sbsf) then 
21: if na = ninit then αbsf := min{αbsf + αred 10 , α

UB} else Initialize(na, lsize) end if 
22: else 
23: Increment(na, lsize) 
24: end if 
25: end if 
26: C' := Sbsf 

27: end while 
28: output: Sbsf 

necessary because, in addition to problem-specific local search procedures, we 
have introduced a generalization to ADAPT_CMSA. The changes in Algorithm 4.2 
compared to Algorithm 2.1 are highlighted in blue and will be elaborated upon 
in detail in the following. However, for gaining a general understanding of the 
ADAPT_CMSA algorithm we recommend reading Sect. 2.2 of Chap. 2 starting on 
page 43 before proceeding in this section. 

Recall that in ADAPT_CMSA, the number of solution constructions per iteration 
(. na) was dynamically adjusted as follows: Initially, at the algorithm’s start, . na was 
initialized to 1. Additionally, whenever the solver solution (.SILP) proved strictly 
superior to the best-so-far solution (. Sbsf), . na was re-initialized to 1. Furthermore, 
when the quality of .SILP equaled the quality of . Sbsf, . na was increased by one. In 
Algorithm 4.2, this process is generalized by introducing an initial value .ninit for . na
and an increment value .ninc for . na, both being tunable parameters of the algorithm. 
Alongside . na, another parameter (. lsize), used to adjust the level of greediness for 
solution construction, is introduced. This parameter, which is called the candidate 
list size, undergoes a self-adaptive treatment identical to . na. In other words, this
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parameter is (re)initiated or incremented under the same conditions as . na. In order 
to do so, Algorithm 4.2 employs two additional tunable parameters: .linitsize and . l

inc
size. 

The generalizations described in this paragraph can be observed (in blue color) in 
lines 6, 18, 21, and 23 of Algorithm 4.2. 

The second modification from the original ADAPT_CMSA version in Chap. 2 
involves the incorporation of problem-specific local search procedures. Specifically, 
following the construction of a solution S through the function call in line 9 of Algo-
rithm 4.2, a local search procedure is invoked (refer to function LocalSearch1. (S)

in line 10), during which each tour of S undergoes a dedicated local search 
process. Common intra-route operators such as relocation, swap, and two_opt are 
sequentially applied for this purpose. Additionally, a best-improvement strategy 
is adopted within the context of the applied operators. The relocation operator 
systematically extracts each node from its current position within a route and 
relocates it to an alternative position within the same route. Conversely, the swap 
operator involves interchanging the positions of a pair of selected nodes within the 
same route. Finally, the two_opt neighborhood explores all feasible combinations 
of selecting two non-adjacent nodes in the same route and then reverses the 
arrangement of the nodes situated between the chosen pair of nodes. 

The second local search procedure is employed to enhance the solver solution 
.SILP in each iteration; refer to the function LocalSearch2.(SILP) in line 14 of the 
algorithm. Specifically, this local search procedure leverages inter-tour neighbor-
hoods such as exchange (1,1) and shift (1,0). The  exchange (1,1) neighborhood 
explores all possible two-customer swaps not within the same tour, while the 
shift (1,0) neighborhood assesses each option for removing a customer from its 
current tour and placing it at any feasible location in other tours. Similar to 
LocalSearch1. (S), the operators employed by LocalSearch2.(S) adhere to the 
best-improvement search strategy. 

4.3.4.1 Constructing Solutions to the EVRP-TW-SPD 

Solutions must be constructed in ADAPT_CMSA and ADAPT_CMSA_SETCOV 

deterministically at the start of the algorithm—function GenerateGreedySolu-
tion(C) in line 4 of Algorithm 4.2—and probabilistically at each algorithm iteration, 
see function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf, . lsize) in line 9 of  
the algorithm. While at the start of the algorithm, a so-called insertion heuristic is 
invoked to produce an initial, feasible solution, probabilistic solution constructions 
during algorithm iterations make either use of the insertion algorithm or a version of 
the Clarke & Wright (C&W) savings algorithm [6] adapted to the EVRP-TW-SPD. 
The choice between these two methods is done uniformly at random. Both heuristics 
exclusively generate feasible solutions. In the following, both solution construction 
techniques are described.
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Probabilistic C&W Savings Algorithm In line with the original C&W approach, 
our algorithm variant commences by creating a set of direct routes, labeled as 
.R = {(0 − i − (n + 1)) | i ∈ V }. Subsequently, the algorithm initializes a 
savings list L comprising pairs of nodes .(i, j), with i and j representing customers 
and charging stations. The savings value . σij for each pair is calculated using the 
following equation: 

.σij := d0i + d0j − λdij + μ|d0i − d0j | (4.25) 

In this context, . λ and . μ serve as the so-called route shape and asymmetry scaling 
parameters, respectively. The route shape parameter . λ emphasizes the selection of 
nodes based on their distance from each other [23], while the parameter . μ scales the 
asymmetry between nodes i and j [18]. Effective values for these parameters are 
determined through a parameter tuning process outlined in Sect. 4.3.6.2. It is crucial 
to note that L exclusively contains pairs of nodes .(i, j) that meet the following two 
criteria: 

1. Nodes i and j belong to different tours. 
2. Both i and j are adjacent to the depot in the tour to which they belong. 

Furthermore, the construction of a solution is not solely influenced by the savings 
values of node pairs .(i, j) but also by whether or not arc . aij appears in the current 
best-so-far solution . Sbsf. For this purpose, an additional value, . qij , is computed for 
each entry .(i, j) ∈ L: 

.qij :=
{

(σij + 1) · αbsf if cij ∈ Sbsf

(σij + 1) · (1 − αbsf) otherwise
(4.26) 

The algorithm executes the subsequent series of steps until the savings list L 
becomes empty. 

1. Following the computation of . qij for all entries in L, the list is arranged in 
non-increasing order based on the . qij values. Subsequently, a reduced list . Lr

is generated, comprising the initial .lsize elements from L, where .lsize is a tunable 
parameter of the algorithm. 

2. Next, an entry .(i, j) is selected from . Lr based on the following probabilities: 

.p(ij) := qij∑
(i',j ')∈Lr

qi'j '
∀ (i, j) ∈ Lr (4.27) 

It is important to observe that the probability of choosing arcs that are part of 
the best-so-far solution .Sbsf increases with an increasing value of . αbsf, where 
.0 ≤ αLB ≤ αbsf ≤ αUB ≤ 1.
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3. Subsequently, the tours associated with nodes i and j are merged. The merging 
process falls into one of the following four potential cases, depending on the 
direct connection of nodes i and j to the depot: 

(Case 1) • .T1 : {0 − i − · · · − n + 1}, . T2 : {0 − j − · · · − n + 1}
• Merging: Reverse . T1, .rev(T1), and concatenate with . T2
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 2) • .T1 : {0 − i − · · · − n + 1}, . T2 : {0 − · · · − j − n + 1}
• Merging: Reverse both . T1 and . T2, .rev(T1), .rev(T2), and concatenate 
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 3) • .T1 : {0 − · · · − i − n + 1}, . T2 : {0 − j − · · · − n + 1}
• Merging: Concatenate . T1 and . T2
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 4) • .T1 : {0 − · · · − i − n + 1}, . T2 : {0 − · · · − j − n + 1}
• Merging: Reverse . T2, .rev(T2), and concatenate with . T1
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

Depending on the positions of nodes i and j within the tour, it may be necessary 
to reverse one or both of the selected tours to establish a direct connection from 
i to j . In such instances, the reversed version of tour . T1 is denoted as .rev(T1). 
Subsequently, the feasibility of the combined tour . Tm is assessed with regard to 
vehicle loading capacity and time windows. If the resulting route violates vehicle 
capacity and/or time window constraints, it is considered infeasible and excluded 
from the savings list. A new candidate is then chosen using the previously 
outlined procedure. If the merged tour is infeasible due to battery constraints, 
a charging station is introduced into the tour. Determining the optimal location 
for the charging station involves identifying the first node in the tour where the 
electric vehicle arrives with a negative battery level. Subsequently, a charging 
station is inserted between this node and the preceding one. After determining 
the insertion position, the charging station that minimally increases the overall 
tour distance is selected and placed accordingly. If the tour remains infeasible, 
the same procedure is applied to the preceding arcs. In cases where infeasibility 
persists despite attempts to insert charging stations, the merged tour is discarded, 
and the associated nodes are removed from the savings list. The next candidate 
pair of nodes is then selected from the savings list, following the aforementioned 
procedure. This tour merging process is iteratively executed until the savings 
list is depleted. Once the merging phase concludes, some of the initially added 
charging stations may become unnecessary. Consequently, redundant charging 
stations are identified and subsequently removed from the constructed tours. 

4. Finally, the savings list L is updated as described above. 

In the final step, the ultimate set of tours undergoes a transformation into its 
corresponding set of solution components. 

Probabilistic Insertion Algorithm Our second constructive heuristic works by 
sequentially incorporating customers into available tours until all customers have 
been visited. The initial customer to be included in the tour is selected based on
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either the distance from the depot or the latest feasible visiting time. Specifically, 
the initial tour is formed by inserting the customer with the greatest distance from 
the depot or the earliest deadline. Following this, we generate a cost list L containing 
all potential insertion points for each unvisited customer along with their associated 
costs. The cost of inserting a customer at a specific point is determined using 
the following equation, which calculates the cost .costj ik of inserting customer i 
between nodes j and k. 

.costj ik = dji + dik − djk (4.28) 

Subsequently, a .qjik value is calculated for each entry .(j, i, k) ∈ L as follows: 

. qjik :=

⎧
⎪⎪⎨

⎪⎪⎩

(costj ik + 1) · (1 − αbsf)(1 − αbsf) if cji ∈ Sbsf and cik ∈ Sbsf

(costj ik + 1) · αbsf if cji /∈ Sbsf and cik /∈ Sbsf

(costj ik + 1) · αbsf(1 − αbsf) otherwise

(4.29) 

Following that, the choice of an entry .(j, i, k) from L is executed based on 
the probabilities computed using Eq. (4.29). If the vehicle’s capacity allows, the 
customer is incorporated into the appropriate location within the tour. Moreover, if 
the insertion proves to be infeasible due to battery constraints, a charging station is 
introduced into the tour using the method outlined in the C&W savings algorithm. 
In instances where inserting a customer leads to the vehicle surpassing its load or 
battery capacity (even after charging station insertion), or results in a time window 
violation, a new tour is initiated, encompassing only the specific customer. 

After inserting all of the customers and a complete solution is derived, the 
obtained set of tours is transformed into the corresponding set S of solution 
components. 

4.3.4.2 Sub-instance Solving 

The incumbent sub-instance . C' is solved at each iteration of ADAPT_CMSA 

by first generating a corresponding ILP model based on model .ILPEVRP
std and 

then solving the model with a CPU time limit of .tILP seconds with CPLEX in 
functionSolveSubinstance(. C', . tILP). In order to generate this model, the following 
constraints are added to .ILPEVRPstd : 

. xij = 0 for all cij ∈ C \ C' (4.30) 

Put differently, if an arc . aij has not been employed in any of the solutions that were 
merged into . C', the utilization of this arc is prohibited by setting the value of . xij to 
zero.
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4.3.5 The ADAPT_CMSA_SETCOV Algorithm 

The ILP model for solving sub-instances in ADAPT_CMSA_SETCOV is model 
.ILPEVRP

setcov from Sect. 4.3.2 on page 119. Remember that the complete set of solution 
components C, in the case of ADAPT_CMSA_SETCOV, consists of a component . cr

for each valid tour .Tr ∈ T (see Sect. 4.3.2), that is, .C := {cr | Tr ∈ T }. Any subset 
.S ⊂ C such that each customer .i ∈ V is served by exactly one tour of S is a valid 
solution to the EVRP-TW-SPD problem instance. 

The probabilistic solution construction process in ADAPT_CMSA_SETCOV oper-
ates in an identical manner as in ADAPT_CMSA. The distinction lies in the fact that 
the solutions generated comprise solution components that directly correspond to 
tours, as opposed to arcs as observed in the case of ADAPT_CMSA. 

Another distinction lies in the utilization of the ILP model for solving sub-
instances, as previously mentioned. Specifically, when dealing with a sub-instance 
. C', the corresponding ILP model is derived by substituting every occurrence 
of . T in .ILPEVRPsetcov with . C'. This implies that the model exclusively considers 
tours present in sub-instance . C' as eligible tours. Following each execution of 
CPLEX, once the solver solution .SILP is attained, a check for duplicate customer 
occurrences is conducted before returning the solution to the main algorithmic 
level of ADAPT_CMSA_SETCOV. All redundant customers are identified, and 
subsequently, the advantage of removing each redundant customer—directly tied to 
the distance between the respective customer and its adjacent nodes—is calculated. 
Following this, redundant customers are systematically eliminated, starting with the 
one offering the greatest benefit, until each customer is allocated to a single tour 
exclusively. 

4.3.6 Experimental Evaluation 

The experiments were carried out on the same high-performance computing cluster 
used for all preceding experiments in this book, namely, the in-house computing 
cluster of the IIIA-CSIC. The cluster is equipped with machines featuring Intel® 

Xeon® 5670 CPUs, each possessing 12 cores clocked at 2.933 GHz and a minimum 
of 32 GB of RAM. Additionally, the application to sub-instances in both CMSA 
variants employed CPLEX version 20.1 in single-threaded mode. Furthermore, the 
ILP models representing complete problem instances were tackled using CPLEX 
version 20.1 in standalone mode. 

4.3.6.1 Problem Instances for the EVRP-SPD-TW 

A benchmark set of problem instances was generated on the basis of the EVRP-TW 
instances introduced in [22]. The resulting dataset comprises a total of 92 instances,
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categorized into 36 small-sized instances and 56 large-sized instances. Small-sized 
instances involve 5, 10, and 15 customers, while large-sized instances consist of 100 
customers and 21 charging stations. These instances are classified into three distinct 
groups based on the spatial distribution of customer locations: clustered instances 
(indicated by the prefix “c” in the instance name), randomly distributed instances 
(prefix “r”), and instances with a hybrid of random and clustered distributions 
(prefix “rc”). Each group further encompasses two sub-classes (type1 and type2) 
that differentiate instances based on factors such as time windows, vehicle load, and 
battery capacity. 

Initially, it was necessary to segregate the delivery demand into pickup and deliv-
ery demands because each customer in the original instances had only one demand 
information. To derive delivery and pickup demands from the original demand, we 
employed the method outlined in [21]. This approach involves calculating a ratio 
.ρi = min{ xi

yi
,

yi

xi
} for each customer .i ∈ V , where .(xi, yi) represents the Cartesian 

coordinates of customer i. Subsequently, the delivery demand . qi was determined by 
multiplying the original demand . δi by . ρi , while the pickup demand . pi was obtained 
by subtracting . qi from . δi . 

4.3.6.2 Parameter Tuning 

Similar to the approach taken for the VSBP problem, we utilized the scientific tuning 
software irace [14] to determine effective parameter values for ADAPT_CMSA and 
ADAPT_CMSA_SETCOV; see Sect. 1.2.1 on page 12 for a description. The tuning 
process involved six instances: r107, r205, rc101, rc104, rc105, and rc205. 
The budget allocated for irace—indicating the maximum number of algorithm runs 
permitted for tuning—was set to 2500, with a fixed time limit of 900 CPU seconds 
per instance. Additionally, the precision of irace was set to two decimal places for 
numerical parameters. Table 4.5 details the parameters, their domains, and the final 

Table 4.5 Parameters, their domains, and the chosen values as determined by irace 

Parameter Domain ADAPT_CMSA ADAPT_CMSA_SETCOV 

tILP {5, 7, 10, 15, 20, 25, 30, 35, 40} 40 20 

αLB [0.6, 0.99] 0.92 0.75 

αUB [0.6, 0.99] 0.98 0.86 

αred [0.01, 0.1] 0.07 0.07 

tprop [0.1, 0.8] 0.17 0.23 

ninit {1, 3, 5, 10, 50, 100, 200, 300, 500} 1 10 

ninc {1, 3, 5, 10, 50, 100, 200, 300, 400} 1 50 

linit size {3, 5, 10, 15, 20, 50, 100, 200} 100 10 

linc size {3, 5, 10, 15, 20, 50, 100, 200} 15 20 

λ [1, 2] 1.99 1.38 

μ [0, 1] 0.23 0.58
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values chosen for the experimentation. In this context, remember that the first group 
of five parameters in this table are the usual ADAPT_CMSA parameters. The second 
group consisting of four parameters are the ones resulting from the generalization 
of ADAPT_CMSA. Finally, the last two parameters are the route shape parameter 
(. λ) and the asymmetric scaling parameter (. μ) from the C&W solution construction 
heuristic. Note also that, due to an already elevated number of algorithm parameters, 
in the case of this experimental evaluation CPLEX was always applied with the 
default parameter setting. 

It is noteworthy that the values obtained for .ninit and .ninc are notably smaller in 
the context of ADAPT_CMSA in comparison to those for ADAPT_CMSA_SETCOV. 
One plausible explanation for this discrepancy is that the ILP model employed 
within ADAPT_CMSA poses an obstacle to the algorithm’s success. It appears 
that the sub-instances need to be kept as small as possible to enable CPLEX 
to generate valid solutions within the constrained time when solving these sub-
instances. This interpretation is corroborated by the values obtained for . tILP. In the  
case of ADAPT_CMSA, the time limit for CPLEX to solve the ILP models in each 
iteration is approximately twice as high. In contrast, the value of the .linitsize parameter 
determined for ADAPT_CMSA is considerably higher than that determined for 
ADAPT_CMSA_SETCOV. A higher .linitsize could be perceived as a diversification 
mechanism, serving as compensation for dealing with small sub-instances. 

4.3.6.3 Results 

This section presents a comprehensive experimental evaluation of the two CMSA 
variants across all instances detailed in Sect. 4.3.6.1. The numerical outcomes for 
small-sized instances can be found in Tables 4.6, 4.7, and 4.8, while results for 
larger-sized instances are displayed in Tables 4.9, 4.10, and 4.11. To gauge the 
algorithms’ effectiveness in handling small instances, we compared ADAPT_CMSA 

and ADAPT_CMSA_SETCOV with the standalone application of CPLEX, denoted 
henceforth as CPLEX. However, given CPLEX’s limitation in handling large 
instances, our comparison for such scenarios is restricted to the two CMSA variants. 
Both CMSA variants were executed with a computation time limit of 150 CPU 
seconds for small instances and 900 CPU seconds for large instances. In contrast, 
CPLEX was granted a computation time limit of 2 hours for small-size instances. 
Each algorithm underwent 10 runs for each problem instance. It is worth noting 
that, to calculate objective function values, we set the cost of each vehicle used in a 
solution to .1000, i.e., .M = 1000.1 

In each result table, the initial column presents the instance names, while the 
columns labeled ‘m’ indicate the number of vehicles employed in the best solution 
discovered by the respective algorithm across 10 runs. For both ADAPT_CMSA 

and ADAPT_CMSA_SETCOV, the ‘best’ columns showcase the objective function

1 Remember that M is the cost given in the ILP models to the use of a vehicle. 
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Table 4.9 Results for large-sized clustered EVRP-TW-SPD instances 

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV 

Name m Best Avg. Time m Best Avg. Time 

c101 12 13,043.40 13,043.42 385.13 12 13,057.80 13,063.54 292.56 

c102 11 12,056.80 12,920.23 560.77 11 12,073.10 12,944.34 468.81 

c103 11 12,004.70 12,026.90 452.13 10 11,134.90 11,917.80 718.09 

c104 10 10,872.80 11,353.78 629.96 10 10,870.70 10,876.49 608.43 

c105 11 12,023.80 12,341.60 562.10 11 12,034.10 12,068.86 582.74 

c106 11 12,013.10 12,438.06 652.00 11 12,025.70 12,059.29 434.80 

c107 11 12,006.40 12,023.97 538.41 11 12,026.70 12,046.38 393.01 

c108 11 11,994.70 12,016.10 579.51 10 11,025.80 11,822.60 556.58 

c109 10 11,042.20 11,885.30 714.89 10 10,941.00 11,180.77 746.17 

c201 4 4629.95 4629.95 37.59 4 4678.37 4703.43 390.96 

c202 4 4629.95 4629.95 273.58 4 4664.26 4706.94 394.84 

c203 4 4632.27 4690.06 740.49 4 4641.45 4734.31 497.60 

c204 4 4633.08 4665.78 801.76 4 4660.64 4737.07 716.94 

c205 4 4629.95 4629.95 76.87 4 4629.95 4629.95 125.43 

c206 4 4629.95 4629.95 213.28 4 4629.95 4629.95 203.04 

c207 4 4629.95 4629.95 255.85 4 4629.95 4635.27 260.34 

c208 4 4629.95 4629.95 284.78 4 4629.95 4629.95 261.72 

average 7.65 8476.64 8657.94 456.42 7.53 8373.78 8552.17 450.12 

values of the best solutions derived from 10 runs. Additionally, the ‘avg.’ columns 
display the average objective function values over the best solutions from each of 
the 10 runs. Furthermore, the ‘time’ columns reveal the average computation times 
of the two CMSA variants to find the best solutions in each run. Lastly, the ‘gap(%)’ 
columns indicate the percentage difference between the optimal solutions attained 
and the best lower bounds achieved by CPLEX. It is essential to note that a gap value 
of zero implies that CPLEX has identified (and proved) an optimal solution. 

•> Main Observations for Small-Sized Problem Instances 

• CPLEX solved 31 problem instances to optimality. For the remaining five problem 
instances (rc201C10, c103C15, r102C15, r202C15, and rc204C15), it 
provided feasible solutions. 

• Both CMSA variants were able to find the optimal solutions computed by CPLEX. 
• In the case of the r202C15 instance, ADAPT_CMSA and ADAPT_CMSA_ 

SETCOV were able to improve over the solution obtained by CPLEX by 0.15% 
and 36.17%, respectively. 

• Furthermore, ADAPT_CMSA and ADAPT_CMSA_SETCOV improved the solu-
tion obtained by CPLEX by 1.51% in the case of the rc204C15 instance.
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Table 4.10 Results for large-sized random EVRP-TW-SPD instances 

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV 

Name m Best Avg. Time m Best Avg. Time 

r101 18 19,633.80 19,939.79 653.66 18 19,640.60 19,661.15 678.64 

r102 17 18,470.80 19,292.16 707.40 16 17,474.10 17,696.35 798.71 

r103 15 16,296.50 17,050.75 711.23 14 15,280.30 15,306.17 639.83 

r104 13 14,141.10 14,255.53 616.85 12 13,084.30 13,111.31 766.15 

r105 15 16,389.20 17,212.83 680.24 14 15,471.30 16,346.10 611.98 

r106 15 16,292.00 16,836.67 701.75 14 15,314.80 15,441.68 746.22 

r107 13 14,168.90 15,016.67 680.99 12 13,140.10 13,669.50 783.82 

r108 12 13,079.80 13,531.30 667.03 11 12,073.70 12,998.17 742.49 

r109 14 15,237.30 15,674.51 759.64 13 14,220.80 14,468.12 744.57 

r110 13 14,170.20 14,905.73 528.09 12 13,114.30 13,544.76 770.70 

r111 12 13,144.20 14,584.19 696.71 12 13,148.80 13,965.98 716.12 

r112 12 13,155.60 14,053.56 471.58 12 13,044.10 13,078.65 850.31 

r201 4 5192.33 5216.92 720.44 4 5276.75 5363.04 187.38 

r202 3 4250.70 5020.88 688.65 3 4193.33 4940.22 876.26 

r203 3 3942.74 4352.52 868.05 3 3985.02 4060.18 822.50 

r204 3 3820.72 3854.31 787.19 3 3793.76 3827.81 876.38 

r205 3 4055.28 4124.64 731.94 3 4065.06 4126.45 360.47 

r206 3 3978.10 4065.05 756.40 3 3991.44 4047.16 784.07 

r207 3 3878.91 3910.07 659.85 3 3881.97 3918.29 878.20 

r208 3 3791.27 3829.39 849.73 3 3732.80 3776.20 895.79 

r209 3 3975.64 4015.90 665.83 3 3933.55 3977.24 765.83 

r210 3 3920.37 3984.78 755.82 3 3926.79 3961.42 740.36 

r211 3 3814.42 3893.38 825.95 3 3824.47 3857.62 799.45 

average 8.83 9947.82 10,374.85 703.70 8.43 9548.35 9788.85 732.01 

• Both CMSA variants demand significantly less computation time compared 
to CPLEX. To elaborate, while CPLEX took an average of 2965.35 seconds 
to identify its best solutions (please note that this information is not pre-
sented in the result tables), ADAPT_CMSA achieved this in 23.04 seconds, and 
ADAPT_CMSA_SETCOV accomplished it in a mere 21.07 seconds. 

In summary, it could be said that the small-sized problem instances are not 
enough of a challenge to show many differences between the two CMSA variants. 
Therefore, we now turn to the analysis of the results concerning large-sized 
problem instances. Note that, in this case, the numerical results from Tables 4.9, 
4.10, and 4.11 are accompanied by critical difference (CD) plots that provide 
information about the statistical significance of the results; see Sect. 1.2.3 on 
page 16 for a general description of CD plots. Note that, apart from the results 
of ADAPT_CMSA and ADAPT_CMSA_SETCOV, these CD plots also consider the 
results of probabilistic versions of the C&W savings heuristic (pC&W) and the 
insertion heuristic (pSI) which were applied in a multi-start fashion with the same
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Table 4.11 Results for large-sized random clustered EVRP-TW-SPD instances 

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV 

Name m Best Avg. Time m Best Avg. Time 

rc101 16 17,667.70 18,513.67 718.11 16 17,696.20 17,741.63 629.24 

rc102 16 17,576.80 17,909.78 558.28 15 16,558.20 16,628.46 601.70 

rc103 14 15,366.90 16,245.06 764.45 13 14,358.20 14,999.16 691.74 

rc104 13 14,270.50 14,315.17 637.05 12 13,222.50 13,261.65 698.43 

rc105 15 16,500.90 16,933.42 652.30 14 15,470.70 15,820.90 639.84 

rc106 14 15,432.50 16,069.05 632.16 13 14,448.30 15,249.17 578.17 

rc107 13 14,313.40 14,437.31 769.62 12 13,276.50 13,386.51 738.62 

rc108 12 13,226.00 13,891.71 620.56 12 13,184.70 13,214.50 717.49 

rc201 4 5504.77 5819.06 703.93 4 5617.75 5786.48 322.85 

rc202 4 5324.64 5442.41 593.36 4 5436.63 5541.80 196.92 

rc203 4 5109.88 5177.69 644.21 4 5086.44 5159.15 757.20 

rc204 3 4036.49 4525.03 745.44 3 3962.88 4252.28 899.13 

rc205 4 5260.14 5338.50 607.45 4 5285.41 5375.54 314.93 

rc206 4 5234.55 5289.90 670.19 4 5210.57 5275.72 562.86 

rc207 3 4150.60 4930.81 694.79 3 4197.81 4650.01 864.38 

rc208 3 3977.50 4046.09 762.57 3 3920.17 4002.79 750.41 

average 8.88 10,184.58 10,555.29 673.40 8.50 9808.31 10,021.61 622.74 

computation time limits as the CMSA variants. Their numerical results are not given 
in the Tables, first, for space reasons, and second, because they were much worse 
than those of the CMSA variants. 

•> Main Observations Concerning Large-Sized Problem Instances 

• First, the CD plot from Fig. 4.10a shows that, overall, ADAPT_CMSA_SETCOV 

outperforms ADAPT_CMSA with statistical significance. 
• This claim also holds true for the random and the random-clustered instances; 

see the CD plots in Fig. 4.10c and d. 
• However, from the results presented in Table 4.9, it seems difficult to come to a 

definite conclusion for clustered-type instances. ADAPT_CMSA_SETCOV seems 
to provide a slightly better performance both in terms of best and average results. 
Nevertheless, Fig. 4.10 shows no significant difference between the performance 
of ADAPT_CMSA_SETCOV and ADAPT_CMSA on clustered instances. 

• It can also be observed that the performance of ADAPT_CMSA_SETCOV 

decreases in the context of instances with a long scheduling horizon (c2* 
r2* and rc2*); see Fig. 4.10f. Solutions for those instances include fewer 
routes and hence more customers per route when compared to the solutions for 
the instances with short scheduling horizons (c1* r1* and rc1*). 

• Finally, both CMSA variants significantly outperform the probabilistic multi-
start versions of the construction heuristics (pC&W and pSI) in all cases.
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1 2 3 4 

(a) All problem instances 

1 2 3 4 

(b) Clustered instances 
1 2 3 4 

(c) Random instances 

1 2 3 4 

(d) Random-clustered instances 
1 2 3 4 

1 2 3 4 

Fig. 4.10 Critical Difference (CD) plots concerning the results for large-sized EVRP-TW-SPD 
instances. The results in (a) consider all instances together, while the remaining plots display the 
results for instance subsets 

In summary, both variants of Adapt-CMSA show a very satisfactory per-
formance both in the context of small and large problem instances. Moreover, 
ADAPT_CMSA_SETCOV shows superiority over ADAPT_CMSA, particularly in the 
context of random and random-clustered instances. 

4.3.6.4 Performance Difference Between the Two EVRP-TW-SPD ILP 
Models 

Finally, akin to the VSBP problem case, we aim to demonstrate the reasons for the 
superior performance of ADAPT_CMSA_SETCOV over ADAPT_CMSA. To illustrate 
this, we once again create sub-instances of varying sizes, convert them into models 
.ILPEVRP

std and .ILPEVRP
setcov, and subsequently solve them using CPLEX. 

Specifically, we created 10 sub-instances through a probabilistic process involv-
ing the construction of 100, resp. 500, solutions for a small problem instance and 50, 
resp. 100, solutions for a large problem instance. In particular, instance r202C15 
was used for representing a small problem instance (with 15 customers), while 
c101 with 100 customers was used for representing a large problem instance. 
In Fig. 4.11, radar charts illustrate the results obtained in these four scenarios.
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Fig. 4.11 Radar charts concerning the comparison of the two ILP models for the EVRP-TW-SPD 
problem applied to a small problem instance with 15 customers (see (a) and  (b)), and to a large 
problem instance with 100 customers (see (c) and  (d)). (a) Instance r202C15 (15 customers), 
100 solutions. (b) Instance r202C15 (15 customers), 500 solutions. (c) Instance c101 (100 
customers), 50 solutions. (d) Instance c101 (100 customers), 100 solutions 

Remember that each radar plot shows four measures, averaged over the 10 sub-
instances: 

1. The number of variables in the ILP models of the sub-instances (top). 
2. The relative MIP gap after CPLEX termination (right). 
3. The computation time required by CPLEX (bottom). 
4. The absolute improvement when comparing the result of solving the sub-instance 

with the best individual solution used to generate it. 

It is important to note that the time limit for CPLEX was consistently set to 20 CPU 
seconds in all cases. 

A promising ILP model would be expected to exhibit a substantial improvement 
with low values for the number of variables, the relative MIP gap, and the required 
time. The radar charts concerning the large problem instance (see Fig. 4.11c and
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d) indicate that this is the case for model .ILPEVRPsetcov, while the opposite is actually 
the case for model .ILPEVRP

std . Especially the case of the small problem instance 
considering the lower number of solution constructions (see Fig. 4.11a) indicates 
that sub-instances must not be too small. Otherwise, there might not be many 
improvements to be found in the context of model .ILPEVRP

setcov. 

4.3.6.5 STNWeb Graphics Concerning the EVRP-TW-SPD Results 

Additionally, STNWeb graphics were produced for some examples of the obtained 
EVRP-TW-SPD results; see Sect. 1.2.2 on page 13 for a description of the STNWeb 
tool and the type of graphics that are produced. Figure 4.12 shows two typical cases. 

Fig. 4.12 STNWeb graphics. (a) and  (b) show 10 runs of ADAPT_CMSA and 
ADAPT_CMSA_SETCOV for the random-clustered instance rc106, while (c) and  (d) correspond 
to the clustered instance c201. While  (a) and  (c) depict the complete STNs, (b) and  (d) show the 
same STNs after search space partitioning
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The first one, consisting of the complete STN in Fig. 4.12a and the STN after search 
space partitioning in Fig. 4.12b, shows the case of a random-clustered instance 
(rc106) for  which ADAPT_CMSA_SETCOV works better than ADAPT_CMSA. 
While the complete STN does not show any trajectory overlaps, the STN after search 
space partitioning clearly shows that the ADAPT_CMSA_SETCOV trajectories end 
up in the same area of the search space, while the ADAPT_CMSA trajectories have 
some overlaps with the ADAPT_CMSA_SETCOV trajectories, especially in early, 
resp. intermediate stages, of the search process. However, they simply stop earlier, 
before reaching the area with the best solutions. 

The second example shows the complete STN (Fig. 4.12c) and the STN after 
search space partitioning (Fig. 4.12d) of a clustered instance (c201), for which 
ADAPT_CMSA works better than ADAPT_CMSA_SETCOV. The complete STN 
shows that all ADAPT_CMSA trajectories converge to the same best-found (and 
possibly optimal) solution. The STN after search space partitioning shows that 
ADAPT_CMSA is actually attracted by the same area of the search space. However, 
the algorithm is not able to find the very best solutions in that area. 

4.4 Conclusions and Future Research Directions 

In this chapter, we have explored the application of various CMSA variants to tackle 
two NP-hard combinatorial optimization problems. The first one was the Variable-
Sized Bin Packing problem, followed by the Electric Vehicle Routing Problem with 
Time Windows and Simultaneous Pickup and Delivery. Both optimization problems 
share a common characteristic: They can be formulated using an assignment-type 
integer linear program as well as a set-covering-based integer linear program. Both 
models were employed in identical CMSA algorithms for solving sub-instances at 
each iteration. 

The results unequivocally demonstrate the superior performance of CMSA vari-
ants utilizing set-covering-based models over those employing standard assignment-
type models. From our perspective, CMSA algorithms prove to be an ideal algorith-
mic framework for leveraging set-covering-based models in solving optimization 
problems of this nature. This preference arises because CMSA algorithms are less 
intricate and more straightforward to implement compared, for example, to column-
generation approaches. Furthermore, CMSA algorithms possess the capability to 
explore search spaces, distinguishing them from simpler heuristic methods found in 
the literature designed to take profit from set-covering-based models. 

At least two possible lines for future work might be envisaged. One line 
consists of the consolidation of the findings outlined in this chapter in the context 
of additional combinatorial optimization problems that can be modeled by set-
covering-based models. Another possible line of work consists of the improvement 
of the CMSA algorithms presented in this work. In the context of the VSBP 
problem, for example, only the first solution construction approach that came to 
mind was implemented. Adding additional greedy heuristics for the construction
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step of CMSA could help to generate potentially different bins that, in combination 
with other bins, could help to find even better solutions. In this way, the obtained 
results might be improved in the few cases in which the proposed algorithm is not 
able to compete with the state-of-the-art variable neighborhood search technique 
from the literature. Also in the case of the electric vehicle routing problem, we see 
potential for improvement by adding additional solution construction techniques. 
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Chapter 5 
Application of CMSA in the Presence 
of Non-binary Variables 

Abstract Up to this point, the applications of CMSA discussed in this book, as 
well as those found in the related literature, have focused on addressing combi-
natorial optimization problems that can be expressed through binary integer linear 
programming (ILP) formulations. Such problems represent an ideal scenario for 
CMSA, as sub-instances can be easily defined by fixing specific decision variables 
to certain values or excluding them altogether from the models. However, when 
confronted with a problem expressed through a more general ILP that incorporates 
discrete decision variables with non-binary domains, a notable challenge emerges. 
Unlike constraint programming solvers, for example, ILP solvers cannot handle 
non-contiguous domains, making it impossible to simply eliminate certain values 
from these domains. In this chapter, we present an illustration of CMSA applied 
to a combinatorial optimization problem naturally formulated as a non-binary ILP. 
Specifically, we make use of the Bounded Knapsack Problem with Conflicts. 

5.1 Introduction 

In this book, the following combinatorial optimization problems have been dis-
cussed so far: (1) the Minimum Dominating Set (MDS) problem in Chaps. 1 and 3, 
(2) the Far From Most String (FFMS) problem in Chaps. 2 and 3, (3) the Minimum 
Positive Influence Dominating Set (MPIDS) problem in Chap. 2, (4) the Variable-
Sized Bin Packing (VSBP) problem in Chap. 4 and (5) the Electric Vehicle Routing 
Problem with Time Windows and Simultaneous Pickup and Delivery (EVRP-TW-
SPD) in Chap. 4. All these problems share an important property. They are naturally 
expressed in terms of binary ILPs, that is, ILPs that only consist of discrete decision 
variables with binary domains. Moreover, sub-instances to these problems can 
always be expressed through ILP models in which some decision variables are left 
free, and others are fixed to one of the two values from their domains. Note that 
whenever one value is removed from the domain of a binary decision variable, this 
decision variable can immediately be fixed to the remaining value. In the context 
of applications to problems such as the Multi-Dimensional Knapsack Problem 
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(see [1]) binary decision variables might even be removed from the corresponding 
ILP models. 

Now consider that we would like to apply CMSA to a combinatorial optimization 
problem that is naturally expressed through a non-binary ILP model, that is, an ILP 
model in which (at least some of) the variables have discrete, non-binary domains. 
In this case, we might run into the following problem. 

•> Application of CMSA to Non-binary Problem: Potential Problem 

Imagine that the considered discrete optimization problem includes a decision 
variable . xi with domain .Di := {1, 2, 3}. Moreover, imagine that we apply standard 
CMSA using the generic way of defining the solution components, resulting in a 
complete set C of solution components containing a solution component . cj

i for 
each variable . xi and domain value .j ∈ Di . Further, imagine that we are in the 
first iteration of CMSA and that .na = 2 solutions are constructed. One in which 
.xi = 1, and another one in which .xi = 3. That is, the allowed values for . xi for 
solving the corresponding sub-instance are .{1, 3}. However, this reduced domain is 
non-contiguous, and ILP solvers are not able to handle non-contiguous variable 
domains. 

When dealing with a mixed problem, which includes both binary and non-binary 
variables, one can consider the following differentiation. If the count of non-binary 
variables is relatively small compared to the number of binary variables, it may 
be reasonable to disregard the non-binary variables and rely exclusively on the 
binary decision variables for the functioning of CMSA. However, if the number 
of non-binary variables is substantial, this approach becomes impractical. Under 
such circumstances, one might contemplate the binarization of the ILP, and that is 
precisely the methodology elucidated in this chapter. Specifically, we illustrate the 
implementation of standard CMSA on a combinatorial optimization problem termed 
the Bounded Knapsack Problem with Conflicts (BKPWC). This variant represents 
an extension of the widely recognized Bounded Knapsack Problem (BKP) [9]. 

5.2 The Bounded Knapsack Problem with Conflicts 

The Bounded Knapsack Problem (BKP) was first presented in [9] as an extension 
of the classical 0-1 Knapsack Problem (0-1 KP) [7], and later treated, for example, 
in [5, 6]. Hereby, a knapsack with capacity .Ccap has to be filled with items from a 
finite set of n items. Each item j has a profit . pj and a weight . wj . Moreover, . mj > 0
copies of each item j are maximally available. To obtain a candidate solution, it has 
to be decided how many (of maximally . mj ) copies of each item j are to be placed 
into the knapsack. Note that this last aspect is the extension in comparison to the 
classical 0-1 KP, where each item may, or may not, be placed in the knapsack.
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Finally, a candidate solution is feasible if the sum of the weights of all item copies 
added to the knapsack is maximally .Ccap, which is the capacity of the knapsack. The 
objective function value of a feasible solution is calculated as the sum of the profits 
of all item copies added to the knapsack. 

In this chapter, we consider an extension of the BKP called the BKP with 
Conflicts (BKPWC). This problem variant is inspired by a recent trend in the 
packing literature that concerns the consideration of conflicts between items. Exam-
ples of related problems include the Bin Packing Problem with Conflicts [4], the 
Quadratic Multi-knapsack Problem with Conflicts and Balance Constraints [8], and 
the Variable-Sized Bin Packing Problem with Conflicts and Item Fragmentation [3]. 
In the context of the BKPWC, when two items i and j are in conflict, the knapsack 
may only contain copies of one of the two items. To model item conflicts, we 
introduce a so-called conflict graph .G = (V ,E) where an edge .(i, j) exists in 
E if, and only if, items i and j are in conflict. 

The BKPWC can be modelled as an ILP in the following way. 

.max
n∑

j=1

pj · xj . (5.1) 

subject to 
n∑

j=1 

wj · xj ≤ Ccap. (5.2) 

xj ≤ M · yj ∀ j = 1, . . . , n. (5.3) 

yi + yj ≤ 1 ∀ (i, j) ∈ E (5.4) 

yj ∈ {0, 1} 
xj ∈ {0, . . . , mj } 

Note that two sets of variables are utilized in this model. The integer variables 
.0 ≤ xj ≤ mj indicate the number of copies of each item that are placed into 
the knapsack. Moreover, the binary variables .0 ≤ yj ≤ 1 are so-called indicator 
variables. Constraints (5.3) force a variable . yj to assume value one if at least 
one copy of item j is placed into the knapsack. Hereby, M is constant set to the 
maximum of all .mj -values, that is, .M := max{mj | j = 1, . . . , n}. Finally, 
constraint (5.2) is the capacity constraint, while constraints (5.4) are the conflict 
constraints. 

5.2.1 Converting the BKPWC ILP to a Binary Program 

One of the most popular methods for converting a general ILP into a binary ILP 
is the following one; see also page 60 of [2]. Let . xj be a general discrete variable 
with domain .Dj := {d1, d2, . . . , dk−1, dk} containing k values. Hereby, each value
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.dr ∈ Dj is an integer value, that is, .dr ∈ Z. Without loss of generality, let us 
assume that .d1 ≤ d2 ≤ . . . ≤ dk−1 ≤ dk . Moreover, note that the values in . Dj may 
be non-contiguous, that is, it does not necessarily hold that .dr+1 = dr + 1 for all 
.r ∈ {1, . . . , k − 1}. Then, the discrete variable . xj can be replaced in the given ILP 
by a set of k binary variables .{xj,r | r = 1, . . . , k}. Moreover, each occurrence of 
. xj in the given ILP is replaced by the following sum: 

.

k∑

r=1

dr · xj,r (5.5) 

In addition, the following constraint is added to the ILP: 

.

k∑

r=1

xj,r = 1 (5.6) 

This constraint enforces that the value of exactly one of the binary variables that are 
used to replace the discrete variable . xj is set to 1. 

Making use of these rules, the ILP model of the BKPWC can be converted to the 
following binary ILP: 

.max
n∑

j=1

(
pj ·

mj∑

r=0

xj,r

)
. (5.7) 

subject to 
n∑

j=1

(
wj · 

mj∑

r=0 

xj,r

)
≤ Ccap. (5.8) 

mj∑

r=0 

xj,r ≤ M · yj ∀ j = 1, . . . , n. (5.9) 

yi + yj ≤ 1 ∀ (i, j) ∈ E. (5.10) 

mj∑

r=0 

xj,r = 1 ∀ j = 1, . . . , n (5.11) 

yj ∈ {0, 1} 
xj,r ∈ {0, 1} ∀  j = 1, . . . , n  and r = 0, . . . , mj
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5.3 Application of CMSA to the BKPWC 

Next, the application of standard CMSA from Sect. 1.3.1 of Chap. 1 to the BKPWC 
is described. Our implementation will be based on the intuitively defined set of 
solution components C which consists of a solution component .cj,r for each 
combination of a decision variable . xj with a domain value .r ∈ Dj = {0, . . . , mj }. 
In other words, when a component .cj,r is present in sub-instance . C' this means 
that domain value r for variable . xj is an allowed choice in the ILP model that 
corresponds to sub-instance . C'. In the following, we describe, first, how solutions 
are generated in a probabilistic way at each iteration of CMSA_INT. Second, the way 
of generating the ILP model corresponding to sub-instance . C' is described. 

5.3.1 Probabilistic Solution Construction 

The probabilistic construction of a valid BKPWC solution is pseudo-coded in 
Algorithm 5.1. First, we assume—without loss of generality—that the items are 
ordered such that .

pj

wj
≥ pj+1

wj+1
for all .j = 1, . . . , n−1. The construction of a solution 

consists of deciding, for each item, the number of item copies to be placed into 
the knapsack. After initializing the solution S to the empty set, and the remaining 
capacity (. scap) to the total capacity of the knapsack (.Ccap), the first item to be 
handled is chosen uniformly at random; see line 4 of Algorithm 5.1. After selecting 
the number .l ∈ {0, . . . , mj } of copies of item j to be placed in the knapsack in 
function SelectNumberOfCopies.(j,mj , scap) (explained below) and adding the 
corresponding solution component . cj,l to solution S, set  I is updated by removing 

Algorithm 5.1: BKPWC solution construction 
1: input: the items j = 1, . . . , n  
2: S := ∅, scap := Ccap 
3: I := {1, . . . , n} {Set of all items} 
4: Choose j ∈ I uniformly at random 
5: l := SelectNumberOfCopies(j, mj , scap) 
6: S := S ∪ {cj,l}, scap := scap − l · wj 
7: I := I \ {j} \ {k ∈ {1, . . . , n} | (i, k) ∈ E or wk > scap} 
8: while I /= ∅  do 
9: j := min{i | i ∈ I } 
10: l := SelectNumberOfCopies(j, mj , scap) 
11: S := S ∪ {cj,l}, scap := scap − l · wj 
12: I := I \ {j} \ {k ∈ {1, . . . , n} | (i, k) ∈ E or wk > scap} 
13: end while 
14: for j ∈ {1, . . . , n} s.t. no component cj,∗ ∈ S exists do 
15: S := S ∪ {cj,0} 
16: end for 
17: output: S 
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item j , all items that are in conflict with j , and all items of which not even a single 
copy would fit into the incumbent partial solution; see line 7. Then, at each further 
step of the solution construction procedure, first, the lowest-index item is chosen 
from I . Subsequently, the number of copies of j to be placed in the knapsack is 
selected (line 10), the corresponding solution component is added to S and I is 
updated as described above. This procedure ends as soon as I is empty. Finally, for 
all untreated items j , solution component .cj,0 is added to S, which indicates that S 
does not contain a single copy of these items; see lines 14–16. 

The remaining aspect of the solution construction is the choice of the number of 
copies of selected items in function SelectNumberOfCopies.(j,mj , scap) which is 
executed in lines 5 and 10 of Algorithm 5.1. First, the maximum number of copies 
(.nmax) of  j that would fit into S is determined. More specifically, .nmax is set to 
the largest integer value such that .nmax · wj ≤ scap. Moreover, .nmax is possibly 
further reduced due to the maximum number of available copies of j : . nmax :=
min{nmax,mj }. Then, a value v is sampled from a normal distribution .N(0, σ 2), 
that is, a normal distribution with zero as mean and . σ as standard deviation. In case 
.v < 0, v is multiplied with . −1 in order to obtain a positive value. Finally, l (the 
number of copies of item j to be placed in the knapsack) is defined as follows: 

.l := nmax − ⎿v⏌ , (5.12) 

where .⎿v⏌ refers to the integer part of v. Note that, in this way of selecting l, the  
highest chance is given to the maximum number of copies. Obviously, this chance 
decreases with an increasing value of . σ , which is a parameter of our algorithm. 
This way of selecting l is reasonable as it was shown by studying optimal BKPWC 
solutions, that the number of copies of most of the selected items is actually the 
maximum possible one. 

5.3.2 Sub-instance Solving 

Sub-instance . C' is, at each iteration of CMSA_INT, tackled by solving an ILP model 
on the basis of the binarized ILP model for the BKPWC presented in Sect. 5.2.1. 
In fact, the ILP model corresponding to a sub-instance . C' is obtained from the ILP 
model in Sect. 5.2.1 by simply removing all terms including a variable .xj,r whose 
solution component .cj,r is not found in . C'. This is for the following reasons. If 
a solution component .cj,r does not form part of . C', choosing r copies of item j 
for being placed into the knapsack is not an option. Therefore, variable .xj,r must be 
fixed to zero, which—in the case of this ILP—can be handled by removing all terms 
involving .xj,r from the ILP.
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5.4 Experimental Evaluation 

The following algorithms are included in the experimental evaluation presented in 
this section: 

1. GREEDY: A greedy heuristic obtained by executing the approach from Algo-
rithm 5.1 in a deterministic way by choosing the next item always as the 
lowest-index item not treated yet, and by always selecting the maximum number 
of item copies that fit into the incumbent partial solution. 

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance with 
the default parameter values of CPLEX. The employed ILP model is the natural 
one with integer variables from page 143. 

3. CPLEX_BIN: Application of CPLEX 22.1 to each considered problem instance 
with the default parameter values of CPLEX. The employed ILP model is the 
binarized one exclusively utilizing binary variables from Sect. 5.2.1. 

4. CMSA: The standard CMSA algorithm, based on the intuitive way of defining the 
set of solution components as outlined in this chapter. 

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX and CPLEX_BIN) 
and within CMSA—in single-threaded mode. For conducting the experiments we 
used the IIIA-CSIC in-house high-performance computing cluster of machines 
equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 
32 GB of RAM. 

5.4.1 Problem Instances 

A large set of 1800 problem instances was generated as suggested in [9]. In 
particular, these instances differ in the number of items (.n ∈ {500, 1000, 5000}), 
the knapsack capacity of an instance (.captype ∈ {10, 20, 30, 40, 50}), and in the 
number of conflicts (.conftype ∈ {1, 3, 5, 10}). Note that both .captype and . conftype
refer to percentages. For each combination of these three instance parameters, 30 
problem instances were randomly generated in the following way. 

For each item j , first, a profit . pj is randomly selected from .{1, 2, . . . , 99, 100}. 
Second, a non-correlated weight .wj is chosen from the same range, that is, 
from .{1, 2, . . . , 99, 100}. Next, a maximal number of item copies . mj is selected 
uniformly at random from .{5, 6, 7, 8, 9, 10}. Then, the knapsack capacity of item j 
is fixed as follows: 

.Ccap :=
⎢⎢⎢⎣

(∑n
j=1 mj · wj

)
· captype

100

⎥⎥⎥⎦ (5.13)
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Finally, of all possible conflicts between two items i and j , .conftype% are randomly 
selected and added to the problem instance. 

5.4.2 Parameter Tuning 

As for all other experimental studies described in this book, the irace tool— 
generally described in Sect. 1.2.1 on page 12—was used for tuning the parameters 
of CMSA. The following is the list of parameters considered for parameter tuning: 

• . na: The number of solution constructions per CMSA iteration. 
• .agemax: The maximum age solution components may reach before being 

removed from the sub-instance . C'. 
• . tILP: The CPU time limit (in seconds) for the application of CPLEX for solving 

a sub-instance . C'. 
• .cplexemphasis: Use of heuristic emphasis in CPLEX. 
• .cplexwarmstart: Use of warm start in CPLEX. 
• .cplexabort: Aborting CPLEXwhenever then best-so-far solution .SILP is improved. 
• . σ : The standard deviation of the normal distribution involved in the choice of the 

number of copies of an item to be placed into the knapsack. This parameter was 
described in Sect. 5.3.1. 

CMSA was tuned depending on problem instance size in terms of the number of 
items. In other words, CMSA was tuned for items with 500, 1000, and 5000 items 
separately. As tuning instances, additional problem instances were generated. More 
specifically, for each combination of n, .captype, and .conftype, exactly one tuning 
instance was generated. This makes a total of 20 tuning instances per tuning run. 
As a computation time limit, 100 CPU seconds was used for all instances with . n =
500 items, 250 CPU seconds for all instances with .n = 1000 items, and 600 CPU 
seconds for all instances with .n = 5000 items. Note also that irace was given a 
budget of 2000 algorithm runs for each tuning application. 

The results of the tuning process are provided in Table 5.1, together with 
the parameter domains considered. The following observations are worth to be 
discussed. First, the value of . σ is very low in all cases. This indicates that the chance 
of choosing a number of copies of an item to be placed in the knapsack which 
is different to the maximum possible one should be very low. Another interesting 
observation concerns the number of solution constructions per iteration. While this 
number is rather high for instances with 500 and 1000 items, it drops significantly 
in the case of instances with 5000 items. This happens, most probably, because 
CPLEX reaches its limits when problem instances of that size are considered. As a
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Table 5.1 Parameters, domains and tuning results of CMSA for the BKPCW 

Parameter Domain 500 items 1000 items 5000 items 

.na .{1, . . . , 200} 172 169 14 

.agemax .{1, . . . , 10} 6 1 3 

.tILP .{1, . . . , 20} 5 7 13 

.cplexemphasis .{true,false} false true false 

.cplexwarmstart .{true,false} true true true 

.cplexabort .{true,false} false true false 

.σ .[1, 10] 1.12 1.07 1.59 

final comment, it always seems beneficial to make use of the warm-start feature of 
CPLEX for solving sub-instances. 

5.4.3 Results 

All four algorithmic techniques (GREEDY, CPLEX, CPLEX_BIN and CMSA) were  
applied exactly once to each of the problem instances from the benchmark set. The 
computation time limit for CPLEX, CPLEX_BIN and CMSA was the same as the 
one used for tuning (see previous section). The results are shown in the form of 
box plots in Figs. 5.1, 5.2, and 5.3. Note that there is exactly one graphic for each 
problem instance size. Each of these graphics contains a .4 × 5 grid of box plots. 
Hereby, the rows present the results (from top to bottom) for problem instances 
with an increasing knapsack capacity, and the columns (from left to right) present 
the results for problem instances with an increasing number of conflicts. 

To be able to support the analysis of the results with claims about their statis-
tical significance, CD plots are provided as in all other experimental evaluations 
presented in this book. These plots are provided in Fig. 5.4. In particular, the plot 
in Fig. 5.4a contains statistics for all problem instances together. The next three 
plots (Fig. 5.4b–d) provide information for the problem instances grouped by size 
(number of items). Finally, Fig. 5.4e–h show the results for the benchmark set 
grouped by the number of conflicts.
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Fig. 5.1 BKPWC results for instances with 500 items
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Fig. 5.2 BKPWC results for instances with 1000 items
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Fig. 5.3 BKPWC results for instances with 5000 items
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Fig. 5.4 Critical Difference (CD) plots concerning BKPCW results. (a) All instances. (b) 
Instances with 500 items. (c) Instances with 1000 items. (d) Instances with 5000 items. (e) 
Instances with conftype = 1. (f) Instances with conftype = 3. (g) Instances with conftype = 5. 
(h) Instances with conftype = 10
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•> Main Observations Concerning the BKPWC Results 

1. First, and most importantly, CMSA generally outperforms both CPLEX variants 
(CPLEX and CPLEX_BIN) and GREEDY. 

2. Again—as, for example, in the case of the MDS problem presented in Chap. 1— 
the comparison with the CPLEX variants shows exactly the pattern that one 
would expect from the comparison of a hybrid technique with an exact technique: 
when problem instances are rather easy to be solved with CPLEX, CMSA 

performs on a comparable level. In contrast, when problem instances become 
large and/or difficult to solve, CMSA clearly outperforms both CPLEX variants. 

3. In general, problem instances become more difficult for both CPLEX variants 
with growing size, with growing capacity, and with a growing number of 
conflicts. In fact, for most of the problem instances with 5000 items, both CPLEX 
variants can only find the trivial solution obtained by choosing to place no item 
copies at all into the knapsack.1 

4. The CD plots for sub-groups of the benchmark set allow to make the following 
interesting observation. When grouping by instance size—see Fig. 5.4b–d— 
the performances of the two CPLEX variants are basically indistinguishable. 
However, when grouping the instances with respect to the number of conflicts 
(see Fig. 5.4e–h) it shows that CPLEX_BIN outperforms CPLEX with statistical 
significance for instances with the lowest and the highest number of conflicts, 
while the opposite is the case for instances with the two medium levels of 
conflicts. However, at this moment we do not have any explanation for this 
phenomenon. 

5.5 Conclusions and Further Research Directions 

As this chapter has shown, there is no problem in applying CMSA to general ILPs. 
And in the example case that was studied—that is, the Bounded Knapsack Problem 
With Conflicts—this certainly makes sense. However, note that the transformation 
of an ILP to a binary problem increases both the number of variables and the 
number of constraints. Depending on the problem, respectively the considered 
problem instance, this increase might be significant. Imagine problem instances of 
the studied knapsack problem with a much higher upper bound for the number of 
item copies, for example. Therefore, such a transformation might not always be that 
well-behaved as shown in this chapter. In other words, the algorithm designer has 
to decide from case to case whether a transformation to a binary problem with the

1 This can be seen by the fact that the solutions generated by the CPLEX variants have value zero. 
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subsequent application of CMSA makes sense. Moreover, many practically relevant 
optimization problems can be expressed in terms of mixed ILP models, involving 
both integer and binary variables, possibly in addition to continuous variables. In 
those cases, CMSA might be applied, for example, solely considering the binary 
variables. However, this strongly depends on the number of binary variables in 
comparison to the integer variables. In general, the application of CMSA to mixed 
ILPs might be a promising line for future research. 
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Chapter 6 
Additional Research Lines Concerning 
CMSA 

Abstract The main chapters of this book were devoted to significant research 
endeavors within the CMSA framework. Conversely, this concluding chapter 
provides a brief overview of research directions related to CMSA that have either 
received limited exploration so far or are presently under investigation. Specifically, 
it introduces a general CMSA approach for binary integer linear programming 
models. In this context, CMSA is employed to address integer linear programming 
models without any identification of the modeled problem. Furthermore, the 
chapter discusses a study where a metaheuristic is utilized instead of an integer 
linear programming solver for sub-instance solving. Following an examination that 
elucidates the relationship between large neighborhood search and CMSA, the 
chapter wraps up by underscoring promising avenues for future research. 

6.1 A Problem-Agnostic CMSA for Binary Problems 

One potential drawback of CMSA lies in the necessity for a problem-specific 
approach to probabilistically generate solutions during the solution construction 
step for the optimization problem under consideration. However, sometimes a well-
working heuristic might not be available. Therefore, the authors of [5] attempted to 
develop a problem-agnostic CMSA for the application to general binary ILPs (BIPs) 
that can be expressed in the following way: 

.min{cT x : Ax ≤ b, xj ∈ {0, 1} ∀j = 1, . . . , n} (6.1) 

where A is an .m × n matrix, . b is the right-hand-side vector of size m, . c is a cost 
vector, and . x is the vector of n binary decision variables. Note that m is the number 
of constraints of this BIP. This type of problem is generic enough to model a wide 
range of combinatorial optimization problems, including all optimization problems 
considered in this book. In addition, a myriad of applications are listed, for example, 
in the MIPLIB 2010 and 2017 collections of problem instances [12, 16]. 

For the application of a problem-agnostic CMSA to such a general BIP, the main 
challenge is to find a way for the fast production of (possibly) feasible solutions, 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods 
and Applications, https://doi.org/10.1007/978-3-031-60103-3_6

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6


158 6 Additional Research Lines Concerning CMSA

without knowing the exact nature of the problem and without any knowledge about 
the structure of feasible solutions. In this context, note that the necessity of quickly 
identifying feasible solutions to general ILPs is important also for ILP solvers 
such as CPLEX and Gurobi. Therefore, the research community on mathematical 
programming has put quite some effort into this issue. Over the years, several 
methods have been proposed to try to produce feasible solutions to general ILPs. 
One of the best-known approaches is the so-called feasibility pump [3, 10, 11]. 
However, the authors of [5] decided for a faster mechanism based on linear 
relaxation solving and on a simple constraint programming (CP) tool, as explained 
below. 

6.1.1 Application of CMSA_GEN 

The authors applied an extension of standard CMSA based on the generic way of 
defining the solution components (CMSA_GEN). Remember that this CMSA variant 
was outlined in Sect. 1.4.2 of Chap. 1 of this book. For this CMSA variant applied to 
BIPs, the set C of generic solution components will contain for each binary variable 
. xi two solution components: 

1. Component . c0j : corresponding to .xj = 0. 

2. Component . c1j : corresponding to .xj = 1. 

A solution to the given BIP is any binary vector . s that fulfills the constraints from 
Eq. (6.1). In case a solution . s to the problem is characterized by .si = 0 (which 
means that . xi is set to zero), the corresponding CMSA-solution S (defined as a set 
of solution components) contains component . c0i . Similarly, if .si = 1 in a solution . s, 
then S contains component . c1i . The complete, generic set of solution components C 
is therefore defined as follows: 

.C := {c01, . . . , c0n, c11, . . . , c1n} , (6.2) 

where n is the number of binary variables in the BIP. Note that a feasible CMSA-
solution S contains exactly n solution components: .{c∗

j | j = 1, . . . , n}, that is, one 
component per variable of the BIP. 

As a final technical clarification, it is important to note that, for the rest of this 
section, we extend the objective function of the addressed BIP by considering that 
.f (∅) := ∞. Moreover, in the following, we will use both the vector notation of a 
solution (. s) and the CMSA-based notation of a solution in terms of a set of solution 
components (S) interchangeably. It is also important to remark that the optimization 
goal for the function f is considered to be minimization.
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6.1.1.1 Before the Start of CMSA_GEN 

Before starting with the first CMSA_GEN iteration, the node heuristic of CPLEX is 
used to obtain the first feasible solution. If, in this way, a feasible solution can be 
obtained, it is stored in . sbsf, which is the vector version of the best-so-far CMSA-
solution . Sbsf. Otherwise, .Sbsf is set to . ∅, as usual, and the LP relaxation of the given 
BIP is solved. However, in order not to spend too much computation time on this 
step, a computation time limit of . tLP seconds is applied. After this, the possibly 
optimal solution of the LP relaxation is stored in vector . xLP. 

6.1.1.2 Solution Construction 

Whenever function ProbabilisticSolutionGeneration(C) is called (see line 8 of 
Algorithm 1.1 on page 19 of Chap. 1), the following is done. First, a so-called 
sampling vector .xsamp for sampling new (possibly feasible) solutions by randomized 
rounding is generated. If .Sbsf /= ∅, .xsamp is generated based on the vector-version 
. sbsf of .Sbsf and a so-called determinism rate .0 < drate < 0.5 as follows: 

. x
samp
j =

{
drate if sbsfj = 0

1 − drate if sbsfj = 1

for all .j = 1, . . . , n. In case .Sbsf = ∅, .xsamp is—for all .j = 1, . . . , n—generated 
on the basis of . xLP: 

. x
samp
j =

⎧⎪⎪⎨
⎪⎪⎩

xLP
j if drate ≤ xLP

j ≤ 1 − drate

drate if xLP
j < drate

1 − drate if xLP
j > 1 − drate

After generating .xsamp, a possibly infeasible binary solutions . s is generated from 
.xsamp by randomized rounding. Note that this is done in the order .j = 1, . . . , n. 
Finally, . s is translated in set-form S and returned to CMSA_GEN. 

CP-Support During Solution Construction Optionally, the algorithm proposed 
in [5] makes use of the Constraint Propagation engine cprop that implements ideas 
from [1, 20] for the construction of solutions.1 

The support of CP is utilized in two distinct manners. Firstly, it involves 
processing all constraints, detecting implications derived from the constraint set, and 
preprocessing the problem to maintain the corresponding variables fixed throughout 
the search process. Secondly, it alters the solution construction mechanism as

1 The used CP tool can be obtained at https://github.com/h-g-s/cprop. 
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follows: instead of sequentially deriving values for variables in the order of . j =
1, . . . , n, a random order . π is selected for each solution construction. This means 
that at step j , instead of determining a value for variable . xj , a value for variable 
.xπ(j) is determined. Subsequently, after selecting a value for variable .xπ(j), the  CP  
tool verifies if this assignment yields an infeasible solution. If so, variable . xπ(j)

is fixed to the alternative value. If, once again, the CP tool concludes that this 
configuration cannot result in a feasible solution, the standard solution construction 
progresses as outlined before—that is, without CP support—is utilized to finalize 
the construction of an unfeasible solution. Conversely, if a feasible value can be 
selected for the current variable, CP might suggest potential implications involving 
further (so far unfixed) variables that consequently need to be fixed to certain values. 
All such implications are addressed before handling the next non-fixed variable 
according to . π .2 

6.1.1.3 Extension of the Standard Algorithm 

Instead of utilizing fixed values for parameters .drate and . tILP, the approach outlined 
in [5] proposes the following strategy. Both parameters have an associated lower 
and upper bound. At the initiation of CMSA_GEN, the values for .drate and .tILP are 
initialized to their lower bounds. If an iteration leads to an improvement of the best-
so-far solution, the values of .drate and .tILP revert to their respective lower bounds. 
Conversely, if there is no improvement, the values of .drate and .tILP are incremented 
by a factor determined by subtracting the lower bound from the upper bound and 
dividing the result by . 5.0. In addition, whenever the value of .drate or .tILP surpasses 
its upper bound, it is reset to the lower bound value. According to the authors, this 
methodology draws inspiration from the approach used to manage neighborhood 
size in variable neighborhood search (VNS) algorithms [15]. 

6.1.2 Experimental Evaluation 

Two CMSA variants were tested in [5]. The first one, CMSA_GEN, does not employ 
CP support for solution construction, while the second one—CMSA_GEN_CP— 
does make use of CP. Moreover, CPLEX was applied to all problem instances with 
two settings. CPLEX-OPT makes use of the default settings, while CPLEX-HEUR 

utilizes the highest level of heuristic emphasis. CPLEX 12.7 was employed for 
these experiments in 2019. However, they were already performed on the IIIA-CSIC 
in-house high-performance computing cluster of machines equipped with Intel® 

Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of RAM.

2 Note that, after fixing a value for .xπ(j), the  value of .xπ(j+1) might already be fixed due to one of 
the implications dealt with earlier. 
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Table 6.1 Characteristics of the six BIP instances for which results are shown in Fig. 6.1 

BIP instance name # Cols/Vars  # Rows Opt. Val. MIPLIB status 2019 

air04 8904 823 56137.0 Easy 

opm2-z12-s14 10,800 319,508 . −64291.0 Hard 

protfold 1835 2112 . −31.0 Hard 

rmine14 32,205 268,535 Unknown Open 

t1717 73,885 551 Unknown Open 

rflcs-2048-3n-div-8 5461 7,480,548 Unknown n.a. 

6.1.2.1 Benchmark Instances 

30 problem instances (27 from MIPLIB 2010 and three additional ones from the 
authors’ research) were chosen for the experimentation in [5]. We only show 
graphical results for six of these instances. Their names and characteristics are 
provided in Table 6.1. In particular, after the first table column with the instance 
names, two columns provide the number of columns (corresponding to the number 
of binary variables) and the number of rows, respectively, of the matrix A from 
the BIP model; see Eq. (6.1) on page 157. Next, row number four presents the 
value of an optimal solution (if known), and the last table column shows the 
MIPLIB status in 2019 (ranging from ‘easy’ to ‘open’). Note that the last instance 
(rflcs-2048-3n-div-8) is a difficult instance of the so-called repetition-free 
longest common subsequence (RFLCS) problem from the authors’ research. The 
hardness of this instance is due to a massive amount of constraints. 

6.1.2.2 Results 

Instead of performing a full parameter tuning, the authors of [5] designed four 
different settings, and determined the best setting for each problem instance. We 
refer the interested reader to [5] for more information. 

All four approaches (CMSA_GEN, CMSA_GEN_CP, CPLEX-OPT, and CPLEX-
HEUR) were applied with a computation time limit of 1000 CPU seconds to each 
problem instance. However, as the CMSA variants are stochastic algorithms, they 
are applied 10 times to each instance, while the two CPLEX variants are applied 
exactly once to each instance. A sample of the obtained results is presented for 
the six problem instances from Table 6.1 in Fig. 6.1. It contains for each problem 
instance a graphic that shows the evolution (in terms of the objective function value 
of the best-found solutions) over time. Note that, in the case of the CMSA variants, 
the graphics show the average behavior over 10 runs, together with a confidence 
ribbon.
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Fig. 6.1 Anytime performance of CMSA_GEN, CMSA_GEN_CP, CPLEX-HEUR and CPLEX-OPT 

for six exemplary BIP instances from MIPLIB 2010. The mean performance of the CMSA variants, 
together with the confidence ribbon (based on 10 independent runs) is provided. (a) Instance 
air04. (b) Instance opm2-z12-s14. (c) Instance protfold. (d) Instance rmine14. (e) 
Instance t1717. (f) Instance rflcs-2048-3n-div-8
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•> Observations Concerning the BIP Results 

• For instances categorized as ‘easy’, both CPLEX variants are usually faster 
than the CMSA variants in reaching optimal solutions. An example is shown 
in Fig. 6.1a (instance air04). 

• Often, CPLEX-HEUR obtains better solutions than CPLEX-OPT, which is to 
be expected, because the focus of CPLEX-HEUR is on quickly finding good 
solutions, while the focus of CPLEX-OPT is on proving optimality earlier. 

• For problem instances categorized as ‘hard’ and ‘open’, both CMSA variants 
often show a clear advantage over the two CPLEX versions in the sense that (1) 
good solutions are found much earlier in the search process, and (2) the solutions 
found at the end of a run are generally much better than those found by the 
CPLEX versions. Examples are shown in Fig. 6.1b–d. 

• Concerning a comparison between the two CMSA variants, it can be observed 
that the standard variant (CMSA_GEN) is often faster than the CMSA variant 
with CP support (CMSA_GEN_CP). This is because CP support comes with a 
cost. This is most strikingly seen in the example of Fig. 6.1e. However, on the 
other side, CP support helps to find feasible solutions in the context of moderately 
constrained problems. 

• Finally, one of the disadvantages of both CMSA variants is shown in the context 
of very constrained problems. For such problems, the CMSA variants often do 
not even find a single feasible solution. 

6.1.3 Discussion 

The work on a problem-agnostic CMSA version for BIP problems is certainly 
only a first step along this avenue of research. In particular, the ability of the 
algorithm to quickly find feasible solutions must be improved in the context of 
highly constrained problems. For this purpose, the hybrid biased random key genetic 
algorithm (BRKGA) from [2] might be used, for example. 

6.2 Applying a Metaheuristic in the CMSA Framework 

In [19], the authors presented a variant of CMSA in which the use of an exact solver 
for solving sub-instances was replaced by the use of a metaheuristic. The authors 
were able to show in the context of the so-called weighted independent domination 
(WID) problem that their metaheuristic-based CMSA outperformed the standalone 
application of the metaheuristic. In other words, this paper provided evidence for 
the ability of CMSA to improve approximate techniques such as metaheuristics
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when applied within the CMSA framework. In the following, we shortly describe 
the application from [19] and replicate some of the obtained results. 

6.2.1 The Weighted Independent Domination (WID) Problem 

The WID problem is an NP-hard combinatorial optimization problem first intro-
duced in [7]. For the description of the problem, the following graph-theoretical 
concepts are required, in addition to the ones already used in this book. In particular, 
given an undirected graph .G = (V ,E), an edge .e ∈ E is called incident to a node 
.v ∈ V , in case v is one of the two endpoints of e. Furthermore, the set of edges 
incident to a node .v ∈ V is denoted by .δ(v). Remember from Chap. 1 that a subset 
.D ⊆ V of the nodes is called a dominating set if every node .v ∈ V \ D is adjacent 
to at least one node from D, that is if for every node .v ∈ V \ D there exists at least 
one node .u ∈ D such that .v ∈ N(u). 

•> Independent Sets and Their Relation to Dominating Sets 

• Unlike a dominating set, an independent set .I ⊆ V has the property that no pair 
.v /= v' ∈ I of vertices are connected by an edge in the graph G. 

• Hereby, an independent set .I ⊆ V is labeled as a maximal independent set if the 
addition of any node from .V \ I would result in the loss of the independent set 
property. 

• It is worth noting that every maximal independent set is a dominating set. Con-
sequently, a maximal independent set is commonly referred to as an independent 
dominating set. 

• Vice versa, a subset .D ⊆ V is an independent dominating set if D is a maximal 
independent set. 

Finally, given an independent dominating set .D ∈ V , for all .v ∈ V \D we define 
the D-restricted neighborhood .N(v | D) as .N(v | D) := N(v) ∩ D, that is, the 
neighborhood of v is restricted to all its neighbors that are in D. 

In the WID problem, we are presented with an undirected graph . G = (V ,E)

along with weights assigned to both nodes and edges. To elaborate, for each vertex 
.v ∈ V and each edge .e ∈ E, we are provided with a non-negative integer weight 
.w(v) ≥ 0 and .w(e) ≥ 0, respectively. The objective of the WID problem is to 
identify an independent dominating set D within graph G that minimizes a cost 
function defined as follows: 

.f (D) :=
∑
u∈D

w(u) +
∑

v∈V \D
min{w(v, u) | u ∈ N(v | D)} (6.3)



6.2 Applying a Metaheuristic in the CMSA Framework 165

4 

4 5 
1 

4 

5 

3 

2 2 

2 2 

1 6  

(a) 

4 

4 5 
1 

4 

5 

3 

2 2 

2 2 

1 6  

(b) 

4 

4 5 
1 

4 

5 

3 

2 2 

2 2 

1 6  

(c) 

4 

4 5 
1 

4 

5 

3 

2 2 

2 2 

1 6  

(d) 

Fig. 6.2 (a) shows an undirected graph with node and edge weights. (b) a minimum dominating 
set (weights are irrelevant). (c) a maximum independent set (weights are irrelevant). (d) an optimal 
WID solution. Bold edges contribute to the objective function value which is . 2+1+2+4+1+3 =
13. The first 3 numbers are the node weights and the remaining three numbers are the contributing 
edge weights 

In other words, the objective function value of an independent dominating set D is 
computed by summing the weights of the nodes within D, in addition to the weights 
of the minimum-weight edges linking nodes outside D to nodes inside D. 

As an example consider the graphics in Fig. 6.2. In particular, the graphic 
in Fig. 6.2a shows a simple example graph. The weights assigned to nodes are 
displayed within the nodes themselves, while the weights assigned to edges are 
shown adjacent to the respective edges. Figure 6.2b shows an optimal MDS 
(minimum dominating set) solution of this graph. (Remember that node and edge 
weights are irrelevant for the MDS problem.) However, note that the node-set 
from Fig. 6.2b is not an independent set, because the two nodes of the set are 
connected by an edge of the graph. Figure 6.2c shows an optimal MIS (maximum 
independent set) solution, a problem for which the node and edge weights are again 
irrelevant. Finally, the graphic of Fig. 6.2d shows the optimal WID solution for this 
simple example graph. Those nodes that do not form part of the solution (top left, 
middle right, and bottom left) are linked by means of the minimum-weight edges— 
indicated in bold—to nodes that form part of the solution. 

6.2.1.1 ILP Model of the WID Problem 

The authors of [19] developed three different ILP models for the WID problem. 
Here we only present the computationally best one. But keep in mind that even 
this ILP model, which is the best one out of three different models, cannot be used 
within CMSA for solving sub-instances because it can only be applied to very small 
problem instances. 

The ILP model makes use of two sets of binary variables. For each node . v ∈ V

it uses a binary variable . xv . Moreover, for each edge .e ∈ E the model uses a binary
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variable . ze. Hereby, . xv indicates if v is chosen for the solution, while . ze indicates if 
.e ∈ E is selected for connecting a non-chosen node to a chosen one. 

.min
∑
v∈V

xvw(v) +
∑
e∈E

zew(e). (6.4) 

subject to xv + xu ≤ 1 ∀ e = (u, v) ∈ E. (6.5) 

xv +
∑

u∈N(v)  
xu ≥ 1 ∀ v ∈ V . (6.6) 

xv + xu ≥ ze ∀ e = (u, v) ∈ E. (6.7) 

xv +
∑

e∈δ(v) 
ze ≥ 1 ∀ v ∈ V (6.8) 

xv ∈ {0, 1} ∀  v ∈ V 

ze ∈ {0, 1} ∀  e ∈ E 

Constraints (6.5) are the independent set constraints, that is, they make sure that 
adjacent nodes can not both form part of the solution. Furthermore, constraints (6.6) 
represent the dominating set constraints. These constraints guarantee that for every 
node .v ∈ V , either the node itself or at least one of its neighbors is included in 
the solution. Next, constraints (6.7) have the following function. When both . xv and 
. xu—concerning an edge .e = (u, v) ∈ E—are set to zero, the respective constraint 
(6.7) forces variable . ze to take value zero, which means that an edge that connects 
two non-selected nodes can not be chosen for the solution. If, for any edge . e =
(u, v) ∈ E, both . xv and . xu are assigned zero, the associated constraint (6.7) forces 
variable . ze to assume the value zero as well. This indicates that an edge linking two 
unselected nodes cannot be included in the solution. Finally, constraints (6.8) ensure 
that each node .v ∈ V that does not form part of the solution is connected by an edge 
to a node that forms part of the solution. 

6.2.2 A Greedy Heuristic for the WID Problem 

Two different greedy heuristics were developed in [19]. However, here we only 
describe the better one—henceforth simply called GREEDY—which is used within 
the metaheuristic for the WID problem whose description is provided in the next 
section. 

The pseudo-code of GREEDY is given in Algorithm 6.1. In general terms, 
GREEDY commences with an empty partial solution .S = ∅, and iteratively adds 
precisely one node from the remaining graph .G' = (V ', E') (as explained further 
down) to the partial solution S at each construction step. Hereby, S being a partial 
solution means that S is an independent set, but not yet a dominating set. However,
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Algorithm 6.1: Greedy heuristic (GREEDY) for the WID problem 
1: input: a undirected graph G = (V , E) with node and edge weights 
2: S := ∅ 
3: G' := G 
4: while V ' /= ∅  do 
5: v∗ := argmin

{
f aux(S ∪ {v}) | v ∈ V '} {Ties are randomly resolved} 

6: S := S ∪ {v∗} 
7: Remove from G' all nodes from N [v | G'] and their incident edges 
8: end while 
9: output: An independent dominating set S of G 

it can be extended to be a dominating set. At the start of GREEDY, the  remaining 
graph . G' is a copy of G; see line 3. 

For describing how a node from . G' is chosen at each construction step, the 
following notations are required. First, the maximum weight of any edge in E is 
denoted by .wmax. An  auxiliary objective function value .f aux(S) is defined for any 
(partial) solution S as follows. 

.f aux(S) :=
∑
v∈V

c(v | S) , (6.9) 

where .c(v | S) is called the contribution of node v concerning partial solution S. 
These contributions are defined as follows: 

1. If .v ∈ S: . c(v | S) := w(v)

2. If .v /∈ S and .N(v) ∩ S = ∅: . c(v | S) := wmax
3. If .v /∈ S and .N(v) ∩ S /= ∅: . c(v | S) := min{w(e) | e = (v, u), u ∈ S}
Note that in the case of S being a complete solution, it holds that .f (S) = f aux(S). 
GREEDY chooses, at each construction step, the node .v∗ ∈ V ' such that its addition 
to the current partial solution S leads to the least increase of the auxiliary objective 
function value; see line 5 of Algorithm 6.1. 

After adding node .v∗ ∈ V ' to S, all nodes from .N [v∗ | G']—that is, from the 
closed neighborhood of . v∗ in . G'—are removed from . V '. Moreover, all their incident 
edges are removed from . E'. In this way, only those nodes that maintain the property 
of S being an independent set may be added to S in subsequent construction steps. 

6.2.3 A PBIG Metaheuristic for the WID Problem 

Based on the greedy heuristic outlined in the previous section, the authors of [19] 
devised a so-called population-based iterated greedy (PBIG) metaheuristic for 
solving the WID problem. Hereby, a PBIG algorithm is a simple extension of the 
well-known iterated greedy (IG) algorithm [21] towards working with populations 
of solutions.
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Algorithm 6.2: PBIG for the WID problem 
1: input: an input graph G = (E, V ), values for parameters psize, L, U, drate, lsize 
2: P := Generate_Initial_Population(psize, drate, lsize) 
3: while termination condition not satisfied do 
4: Pnew := ∅ 
5: for each candidate solution S ∈ P do 
6: Ŝ := Destroy_Partially(S) 
7: S' := Reconstruct( ̂S, drate, lsize) 
8: Adapt_Destruction_Rate(S, S') 
9: Pnew := Pnew ∪ {S'} 
10: end for 
11: P := Accept(P,Pnew) 
12: end while 
13: output: best solution from P 

The pseudo-code of PBIG is provided in Algorithm 6.2. The algorithm starts by 
generating the initial population of .psize solutions in function Generate_Initial_ 
Population.(psize, drate, lsize). For this purpose, GREEDY is applied .psize times in a 
probabilistic way by using two parameters (.drate ∈ [0, 1] and .lsize ∈ Z

+) in the  
following way. At each construction step of GREEDY, first, a random value . 0 ≤ r ≤
1 is chosen uniformly at random. In case .r ≤ drate, the best node (. v∗, see line 5 of 
Algorithm 6.1) is deterministically chosen. Otherwise—that is, in case .r > drate— 
the best .min{|V '|, lsize} nodes from . V ' are considered and one of them is chosen 
uniformly at random. 

At each iteration of PBIG, the following is done regarding each solution 
S of the incumbent population . P. First,  S is partially destroyed in function 
Destroy_Partially. (S). For this purpose, solution S maintains an individual destruc-
tion rate .destSrate whose value is dynamically updated and may move between a lower 
bound L and an upper bound U , which are parameters of PBIG. That is, the values 
of L and U must be fixed before running .PBIG such that .0 ≤ L ≤ U ≤ 1. To  
partially destroy solution S, .max{3, ⎿destSrate · |S|⏌} randomly chosen vertices from 
S are removed. This results in a partial solution . Ŝ. 

The partial solution . Ŝ obtained by the destruction procedure outlined above is 
then subject to probabilistic reconstruction in function Reconstruct.(Ŝ, drate, lsize), 
resulting in a new complete solution . S' which is stored in set .Pnew. This is done 
by the procedure already used for the probabilistic construction of the solutions 
of the initial population above. Moreover, the individual destruction rate .destS

'
rate is 

initialized to the lower bound L. 
In other words, each solution .S ∈ P gives rise to a new solution . S'. As a last  

step, the individual destruction rate .destSrate of the solution S is updated in function 
Adapt_Destruction_Rate.(S, S') based on . S' as follows: if .f (S') < f (S), . destSrate
is set to the lower bound L. Otherwise, an amount of .destincrate is added to .dest

S
rate. If  

this causes that .destSrate > U , .destSrate is re-initialized to the lower bound L.
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Finally, the last step of each iteration of PBIG consists in the selection of the 
best .psize solutions from .P ∪ Pnew and replacing the solutions in . P with these . psize
solutions. 

The key idea behind any PBIG algorithm is to combine the exploration capabil-
ities of a population-based approach with the exploitation capabilities of a greedy 
heuristic. By maintaining a population of solutions and iteratively improving them 
through partial destruction and probabilistic reconstruction, PBIG aims to efficiently 
explore the search space while focusing on promising regions that contain high-
quality solutions. Overall, PBIG algorithms tend to provide a balance between 
exploration and exploitation, making them effective for solving various combina-
torial optimization problems. The specific implementation details and parameter 
settings may vary depending on the problem being addressed. 

6.2.4 Using PBIG for Solving Sub-instances in CMSA 

In [19], the authors used standard CMSA based on the intuitive way of defining the 
solution components (CMSA_INT) that was introduced in Sect. 1.3.1 of Chap. 1 of 
this book. In particular, for each node .vi ∈ V of the input graph .G = (V ,E) the 
complete set C of solution components contains a solution component . ci . As PBIG 

is used instead of CPLEX for solving sub-instances at each algorithm iteration, the 
resulting approach is henceforth called CMSA_PBIG. 

The probabilistic construction of solutions in CMSA_INT works in the same way 
as explained above for the construction of the solutions of the initial population in 
PBIG. The only difference is that the determinism rate (.drate) and the candidate list 
size (. lsize) are now called .dCMSA

rate and .lCMSA

size to differentiate them from the .drate and . lsize
parameters of PBIG. 

Sub-instances . C' of CMSA_PBIG, which are sets of solution components cor-
responding to nodes of the WID input graph, are solved—as already mentioned 
above—by PBIG. However, note that for solving a sub-instance . C', all actions of 
PBIG are restricted to the selection of nodes corresponding to solution components 
in . C'. Moreover, note that PBIG is applied to each sub-instance without being warm-
started, that is, the best-so-far solution of CMSA_PBIG is not used to influence the 
generation of the initial PBIG iteration. This is because, in preliminary experiments, 
this was shown to be counterproductive. 

6.2.5 Experimental Evaluation 

As the aim of this section is the reproduction of some of the results from [19], 
we only included PBIG and CMSA_PBIG into the comparison. As in all other cases 
presented in this book, the IIIA-CSIC in-house high-performance computing cluster
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Table 6.2 Parameters, 
domains, and tuning results 
for the WID problem 

Parameter Domain PBIG CMSA_PBIG 

.psize .{2, . . . , 200} 184 43 

L .[0.05, 0.95] 0.51 0.38 

U .[0.05, 0.95] 0.79 0.73 

.destincrate .[0.01, 0.1] 0.05 0.1 

.drate .[0.0, 0.99] 0.25 0.04 

.lsize .{3, . . . , 50} 23 15 

.na .{2, . . . , 50} n.a. 40 

.agemax .{1, . . . , 50} n.a. 1 

.dCMSA
rate .[0.0, 0.99] n.a. 0.41 

.lCMSA

size .{3, . . . , 50} n.a. 30 

.tILP .{1, . . . , 50} n.a. 23 

of machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz 
and at least 32 GB of RAM was used for conducting all the experiments. 

6.2.5.1 Problem Instances 

Instead of using the problem instances from the original paper [19], we decided to 
produce random graphs with the Erdös-Rényi model [9], which requires the number 
of nodes (n) and the probability of an edge existing between any pair of nodes 
(p) as input. In particular, we generated 30 graphs for each combination of . |V | ∈
{500, 1000, 1500, 2000} and three different graph densities .p ∈ {0.05, 0.15, 0.25}. 
In total, this benchmark set consists of 360 graphs. As in Chap. 1 in the context of 
the MDS problem, we used the implementation of the Erdös-Rényi model from the 
igraph library for this purpose.3 

6.2.5.2 Parameter Tuning 

As usual in this book, the irace tool was utilized for tuning the parameters of PBIG 

and CMSA_PBIG. Both algorithms were tuned exactly once for the entire benchmark 
set, which is a difference to [19] where parameter tuning was more fine-grained. For 
parameter tuning, additional problem instances were generated. More specifically, 
for each combination of .|V | and graph density, exactly one tuning instance was 
generated. This makes a total of 12 tuning instances. As computation time limit, . |V |
CPU seconds were given, that is, the more nodes a graph has, the longer the allowed 
running time. Finally, irace was given a budget of 3000 algorithm runs. 

Table 6.2 shows both the parameters involved in the two algorithms together 
with their domains, and the tuning results. The first six parameters in this table

3 https://igraph.org/. 
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are the parameters of PBIG. The next five parameters are the usual CMSA-related 
parameters.4 

The following parameter settings are noteworthy. The determinism rate for 
solution construction in the CMSA-part of CMSA_PBIG (as shown by the value of 
parameter .dCMSA

rate ) is very different to the determinism rate for solution reconstruction 
in the PBIG-part of CMSA_PBIG (see the value of parameter .drate). While the 
value is rather high for the construction of solutions that are merged into the sub-
instance of CMSA_PBIG, the value is very low (0.04) for the application of PBIG 

for solving the sub-instance at each iteration. A possible interpretation is that for 
CMSA_PBIG it seems important to equip the sub-instances with seemingly good 
solution components, while the focus of PBIG for solving the sub-instances is clearly 
on exploration. 

6.2.5.3 Results 

Both algorithms (PBIG and CMSA_PBIG) were applied exactly once to each of the 
problem instances from the benchmark set. The computation time limit was the 
same as the one used for tuning (see previous section). The results are shown in 
the form of box plots in Fig. 6.3, which contains a .3 × 4 grid of box plots. Hereby, 
the rows present the results (from top to bottom) for problem instances with an 
increasing graph size (in terms of the number of nodes), and the columns (from 
left to right) present the results for problem instances with an increasing density. 
To be able to support the analysis of the results with claims about their statistical 
significance, a CD plot (see Fig. 6.4) is provided, as in all other experimental 
evaluations presented in this book. In particular, the plot in Fig. 6.4 contains 
statistics over the whole set of problem instances. 

•> Main Observations Concerning the WID Problem Results 

1. First, and most importantly, CMSA_PBIG outperforms PBIG with statistical 
significance. 

2. Second, the box plots in Fig. 6.3 show that the improvement of CMSA_PBIG over 
PBIG can be seen for all graph sizes and densities. 

3. Third, the improvement of CMSA_PBIG over PBIG seems to grow with an 
increasing graph density.

4 Consider that parameter . tILP, which received its name due to being the time limit for the ILP 
solver CPLEX, limits the computation time of PBIG at each iteration of CMSA_PBIG. However,  
for consistency reasons, we did not change the name of this parameter for the present application. 
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Fig. 6.3 Results of CMSA_PBIG and PBIG for the WID problem
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Fig. 6.4 Critical Difference 
(CD) plot concerning the 
WID problem results 

1 2 

6.2.6 Discussion 

Even though in the context of the PBIG metaheuristics for solving the WID problem 
we were able to obtain an improvement when applying PBIG within the CMSA 
framework, this improvement is not something that can be generally expected when 
studying other metaheuristic implementations for other combinatorial optimization 
problems. As an example, note that we tried to apply the BA algorithms from 
Chap. 3 within the CMSA framework, both for the MDS and the FFMS problem. 
However, in both cases, the standalone application of BA obtained better results 
than the application of BA in the CMSA framework. We suspect that, in the case of 
the application of CMSA_PBIG for the WID problem, the CMSA framework might 
help PBIG to escape from the area of attraction of local optima. Escaping from local 
optimal seems less required in the case of BA when applied for the MDS and FFMS 
problems. 

6.3 Relation Between CMSA and LNS 

As a final topic in this concluding chapter, this section will be devoted to shed 
some light on the differences between CMSA and large neighborhood search 
(LNS), which is arguably the most well-known hybrid metaheuristic that has been 
developed so far. In both methods, sub-instances of the tackled problem instances 
are solved at each iteration. However, they differ in the way in which these sub-
instances are obtained. The relation between CMSA and LNS has been studied 
in [6]. Here we provide a short overview of their main findings. 

6.3.1 Destruction-Based LNS 

The authors of [6] compared CMSA with destruction-based LNS, that is, with an 
LNS method that partially destroys the incumbent solution at each iteration, before 
the obtained partial solution is passed to CPLEX (or another exact solver) in order
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to compute the best valid solution that contains that partial solution (within a given 
time limit). For more information on LNS see Sect. 1.1.5 on page 10. 

The pseudocode for a general LNS approach utilizing an ILP solver to solve 
the corresponding sub-instance at each iteration is outlined in Algorithm 6.3. As  
in the case of CMSA, we assume that solutions in this LNS algorithm are subsets 
from a complete set C of solution components. Initially, the starting solution . Sbsf

(also serving as the best-so-far solution) is generated using the function Gener-
ateInitialSolution(C) (refer to line 2). Typically, a greedy heuristic is employed for 
this task. During each iteration, the following steps are executed. Firstly, a copy 
of the best-so-far solution .Sbsf is partially destroyed; this is achieved through the 
function DestroyPartially(.Sbsf, destrate) at line 5, where the extent of destruction is 
determined by a parameter .destrate known as the destruction rate. Various methods 
can be used for the partial destruction of a solution. The most basic approach, 
likely prevalent in many cases, involves random destruction. However, one might 
consider employing heuristically guided methods for partial destruction. Regardless, 
the resulting partial solution . S' is then passed to the ILP solver through the function 
Reconstruct(. S', . tILP) at line 6. This function, besides . S', takes a time limit .tILP as 
input. The ILP solver is directed to only consider solutions containing . S' for this 
operation, effectively constraining the sub-instance to solutions incorporating . S'. 
The function returns .SILP, the best valid solution found within .tILP CPU seconds. 
Given the time constraint, it is important to note that .SILP may not necessarily be an 
optimal solution to the sub-instance. Finally, the better solution between .SILP and 
.Sbsf is selected as the incumbent solution for the next iteration. While this selection 
process may appear stringent, other more probabilistic approaches for choosing 
between .SILP and .Sbsf are conceivable. Nevertheless, the LNS algorithm examined 
in [6] is equipped with a variable destruction rate .L ≤ destrate ≤ U , managed akin 
to the neighborhood size in Variable Neighborhood Search (VNS) algorithms [14]. 
Specifically, if .SILP is better than . Sbsf, .destrate is reverted to the lower bound L. 
Otherwise, .destrate is incremented by .destincrate, another parameter of the algorithm. 
If, post-increment, .destrate surpasses the upper bound U , it is reset to the lower 
bound L. Appropriate selection of L and U values enables the algorithm to escape 
from local minima. 

6.3.2 Empirical Comparative Study 

Given the description of destruction-based LNS above, it is clear that both CMSA 
and LNS solve sub-instances of the tackled problem instances at each iteration. 
The difference between the two approaches is found in the way in which these 
sub-instances are generated and maintained. While CMSA updates an initially 
empty sub-instance by adding those solution components that appear in constructed 
solutions, LNS obtains a new sub-instance at each iteration by the partial destruction 
of a copy of the best-so-far solution. This implies also a difference in the way in 
which sub-instances are solved. In the case of CMSA, as we have seen through
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Algorithm 6.3: Destruction-based large neighborhood search (LNS) 

1: input: solution components (C), values for parameters L, U , destinc rate, tILP 
2: Sbsf := GenerateInitialSolution(C) 
3: destrate := L 
4: while CPU time limit not reached do 
5: S' := DestroyPartially(Sbsf, destrate) 
6: SILP := Reconstruct(S', tILP) 
7: if SILP is better than Sbsf then 
8: Sbsf := SILP 

9: destrate := L 
10: else 
11: destrate := destrate + destinc rate 
12: if destrate > U  then destrate := L 
13: end if 
14: end while 
15: output: Sbsf 

a range of examples in this book, the ILP model of the problem to be solved is 
extended to allow only components from the current sub-instance to be included in 
solutions. In contrast, the ILP model in the case of LNS is extended to enforce the 
presence of the solution components in the incumbent partial solution to be present 
in any valid solution. 

The question asked by the authors of [6] was the following one: is there a type of 
optimization problem for which CMSA generally outperforms LNS, and vice versa? 
They hypothesized that CMSA outperforms LNS when the number of components 
in valid solutions is rather low, and vice versa. To test this hypothesis, CMSA and 
LNS were both implemented for two different problems: (1) the multi-dimensional 
knapsack problem (MDKP) and (2) the minimum common string partition (MCSP) 
problem. 

On the example of the MDKP it is easy to see why this problem was chosen. 
The MDKP, an NP-hard combinatorial optimization problem, has been extensively 
studied and falls under the category of subset selection problems. Additionally, 
it has served as a popular benchmark for testing new algorithmic approaches, as 
evidenced by previous research; see, for example, [8, 17]). The problem is formally 
defined as follows: Given a set C of n items and m different resources, each resource 
(.k = 1, . . . , m) has a specified quantity (referred to as capacity) .capk > 0, and 
each item .ci ∈ C (.i = 1, . . . , n) requires a certain amount (referred to as resource 
consumption) .ri,k ≥ 0 from the k-th resource. Additionally, each item .ci ∈ C is 
associated with a positive profit . pi . A subset .S ⊆ C is considered a feasible solution 
if, for each resource .k = 1, . . . , m, the total consumption over all selected items 
(.
∑

ci∈S ri,k) does not surpass the resource capacity .capk . Furthermore, a feasible 
solution S is deemed non-extensible if it is impossible to add any item . ci ∈ C \ S

to S without compromising its validity as a solution. The primary objective is to
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identify a feasible subset S that maximizes the total profit (.
∑

ci∈S pi). The standard 
ILP formulation for the MDKP is outlined as follows: 

.max
∑
ci∈C

pi · xi . (6.10) 

subject to
∑
ci∈C 

ri,k · xi ≤ capk ∀ k = 1, . . . , m (6.11) 

xi ∈ {0, 1} ∀  ci ∈ C 

Note that this model is based on a binary variable for each item from C. The  
inequalities (6.11) limit the total consumption for each resource and are called 
knapsack constraints. 

•> The MDKP is Parametrizable 

Note that when resource capacities are low, valid MDKP solutions contain few 
items and are, therefore, rather small. On the other side, the larger the resource 
capacities, the larger are valid solutions. In this sense, MDKP instances can be 
generated in a controlled and parameterized way to obtain problem instances from 
the whole range between instances with solutions containing very few items, and 
instances with solutions containing a lot of items. 

The authors of [6] used the methodology described in [8, 13] for the generation 
of MDKP instances. In particular, five different values for n (the number of items) 
were considered: .n ∈ {100, 500, 1000, 5000, 10,000}. Moreover, the number of 
resources (m) was fixed to 30. The tightness of a problem instance is determined 
by the resource capacities. The methodology from [8, 13] allows to determine the 
instance tightness through a parameter . α which may take values between zero 
and one. The lower the value of . α—that is, the tighter the generated problem 
instance—the smaller are the solutions, and vice versa. To generate instances over 
the whole tightness range, values .α ∈ {0.1, 0.2, . . . , 0.8, 0.9} were considered. 
Finally, the resource requirements .ri,j were always chosen uniformly at random 
from .{1, . . . , 1000}. In total, 30 instances were generated for each combination of n 
and . α, and the whole benchmark set consists of .1350 problem instances. 

After tuning both CMSA and LNS for each combination of instance size (n) and 
instance tightness (. α), both algorithms were applied exactly once to each problem 
instance with computation time limits depending on the instance size. Here we show 
only the most interesting results for instances with .n ∈ {5000, 10,000}. Figure 6.5 
shows the percentage improvement of CMSA over LNS for instances with . n = 5000
items (Fig. 6.5a) and instances with .n = 10,000 items (Fig. 6.5b). The x-axis of 
these box plots ranges over the whole instance tightness range, which increases 
from left to right. Each box is obtained from the results for 30 instances. Dots in 
the positive area (grey-shaded) are results for instances for which CMSA produced
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Fig. 6.5 The percentage improvement of CMSA over LNS for instances with increasing resource 
capacity tightness. (a) Instances with .n = 5000. (b) Instances with . n = 10,000

a better result than LNS. Conversely, dots in the negative area represent instances 
for which LNS outperformed CMSA. In particular, note that these box plot graphics 
(empirically) confirm the author’s hypothesis: CMSA works better than LNS for 
MDKP problem instances with rather small solutions. The same was shown in [6] 
in the context of the MCSP problem. 

6.3.2.1 Discussion 

The results from [6] presented above indicate that CMSA and LNS are somehow 
complementary. The question remains why CMSA has this apparent advantage over 
LNS for problems (or problem instances) for which solutions are rather small. The 
following intuition may eventually be validated. When solutions are small, LNS can 
not do large steps in the search space, because it always maintains a part of the 
incumbent solution. Therefore, if LNS starts with an initial solution that is far away 
from high-quality solutions, LNS might not be able to reach these solutions. This 
is because finding a feasible path to high-quality solutions might be rather unlikely 
to be found by LNS. On the other side, CMSA generates at each iteration several 
solutions in a probabilistic way. These solutions may, potentially, be located in any 
part of the search space. They are then merged into the sub-instance, which enables 
CMSA to do larger steps in the search space, even in the context of small solutions. 

6.4 Future Work on CMSA 

At this moment, the author sees at least three promising lines of future work on 
CMSA. The first one concerns an extension of the work done to develop a problem-
agnostic CMSA for binary optimization problems; see Sect. 6.1. To achieve this, 
the way of generating feasible solutions for highly constrained problems must 
be improved. A problem-agnostic CMSA variant that reliably outperforms high-
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performance ILP solvers such as CPLEX and Gurobi would be very valuable as an 
easy-to-use tool for benchmarking new, hand-crafted optimization algorithms for 
specific optimization problems. So far, the ILP solvers themselves are used for this 
purpose. However, they are generally easily beaten in the context of large enough 
(or difficult enough) problem instances. Not disposing of a problem-agnostic CMSA 
requires designing a CMSA for any particular problem by hand.5 Even though this 
might not be difficult in many cases, this sets the bar rather high for the adoption of 
CMSA as a baseline algorithm. 

A second avenue of promising research concerns the one of utilizing state-of-
the-art art exact (or approximate) solvers for specific problems instead of black-box 
ILP solvers for solving sub-instances in CMSA. In [18], the authors showed that 
by applying the currently best MaxSAT solvers within the framework of negative 
learning ant colony optimization they were able to improve over the results of these 
solvers. We imagine that this could also be possible in the context of CMSA. 

The third research line deals with the use of machine learning (ML) techniques 
to add a learning component to the solution construction mechanism of CMSA. 
Remember that, in Chap. 3 of this book, a learning mechanism for CMSA was 
proposed in which solutions to be merged into the incumbent sub-instance were 
generated by a metaheuristic applied in an intertwined way with CMSA. However, 
using ML, there are other options for adding a learning mechanism. Reinforcement 
learning (RL) [22]—in particular, algorithms known from the multi-armed bandit 
problem—might be used for learning to construct good solutions during the runtime 
of CMSA. 

To summarize, promising research remains to be done in the context of 
the CMSA algorithm. The optimization group at the IIIA-CSIC in Bellaterra 
(Barcelona) will take on this endeavor during the coming years. Our hope is 
certainly also that some other research groups on metaheuristics and their hybrids 
will join this effort in the quest for increasingly efficient CMSA variants. 
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Appendix A 
C++ Program Code: CMSA Applied 
to the MDS Problem 

The following program code in C++ is the one of CMSA_INT applied to the 
minimum dominating set (MDS) problem as described in Chap. 1. This program 
code was used for the experimentation. We provide this code as an example for the 
simplicity of CMSA. 

CMSA for the MDS Problem 

/************************************************************ 
cmsa.cpp - description

-------------------
begin : Wed Nov 30 2022 
copyright : (C) 2022 by Christian Blum 
email : christian.blum@iiia.csic.es 

***********************************************************/ 

/************************************************************ 
* This program is free software; you can redistribute it * 
* and/or modify it under the terms of the GNU General * 
* Public License as published by the Free Software * 
* Foundation; either version 2 of the License, or (at * 
* your option) any later version. * 
***********************************************************/ 

using namespace std; 

#include <string.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <iostream> 
#include <fstream> 
#include <sstream> 
#include <cmath> 
#include <vector> 
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#include <list> 
#include <set> 
#include <map> 
#include <iomanip> 
#include <algorithm> 
#include <sstream> 
#include <limits> 
#include <random> 
#include <chrono> 
#include <ilcplex/ilocplex.h> 

ILOSTLBEGIN 

struct Option { 
int vertex; 
double value; 

}; 

struct Solution { 
set<int> vertices; 
int score; 

}; 

// CMSA PARAMETERS 
double computation_time_limit = 1000.0; 
double cplex_time_limit = 10.0; 
double determinism_rate = 0.8; 
int n_of_sols = 10; 
int age_limit = 10; 
int candidate_list_size = 10; 
bool warm_start = false; 
bool heuristic_emphasis = false; 
bool cplex_abort = false; 

// INSTANCE DATA 
int n_of_vertices; 
vector< set<int> > neigh; 
string input_file; 

/* function for making CPLEX abort a run when improving 
over the currently best solution */ 

ILOSOLVECALLBACK2(abortCallback, IloCplex::Aborter&, abo, 
int&, curbest) { 

if (hasIncumbent()) { 
IloNum nv = getIncumbentObjValue(); 
if (curbest > int(nv)) abo.abort(); 

} 
} 

/* function for sorting a vector of options */ 
bool option_compare(const Option& o1, const Option& o2) { 

return (o1.value > o2.value);
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} 

/* function for producing a random integer between 0 
and max - 1 */ 

int produce_random_integer(int max, double& rnum) { 

int num = int(double(max)*rnum); 
if (num == max) num = num - 1; 
return num; 

} 

/* function that returns a random element from a set of int */ 
int get_random_element(const set<int>& s, double& rnum) { 

double r = produce_random_integer(int(s.size()), rnum); 
set<int>::iterator it = s.begin(); 
advance(it, r); 
return *it; 

} 

/* function for reading command line parameter values */ 
void read_parameters(int argc, char **argv) { 

int iarg=1; 
while (iarg < argc) { 

if (strcmp(argv[iarg],"-i")==0) input_file = argv[++iarg 
]; 

else if (strcmp(argv[iarg],"-t")==0) 
computation_time_limit = atof(argv[++iarg]); 

else if (strcmp(argv[iarg],"-cpl_t")==0) 
cplex_time_limit = atof(argv[++iarg]); 

else if (strcmp(argv[iarg],"-drate")==0) 
determinism_rate = atof(argv[++iarg]); 

else if (strcmp(argv[iarg],"-nsols")==0) 
n_of_sols = atoi(argv[++iarg]); 

else if (strcmp(argv[iarg],"-max_age")==0) 
age_limit = atoi(argv[++iarg]); 

else if (strcmp(argv[iarg],"-lsize")==0) 
candidate_list_size = atoi(argv[++iarg]); 

else if (strcmp(argv[iarg],"-warm_start")==0) { 
int val = atoi(argv[++iarg]); 
if (val == 1) warm_start = true; 

} 
else if (strcmp(argv[iarg],"-h_emph")==0) { 

int val = atoi(argv[++iarg]); 
if (val == 1) heuristic_emphasis = true; 

} 
else if (strcmp(argv[iarg],"-cpl_abort")==0) { 

int val = atoi(argv[++iarg]); 
if (val == 1) cplex_abort = true; 

} 
iarg++; 

} 
}
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/* function for solving a sub-instance by calling CPLEX */ 
void run_cplex(Solution& cpl_sol, Solution& best_sol, 

vector<int>& age, double& r_limit) { 

IloEnv env; 
env.setOut(env.getNullStream()); 
env.setWarning(env.getNullStream()); 
cpl_sol.score = std::numeric_limits<int>::max(); 

try { 

IloModel model(env); 

/* for each vertex of the input graph we introduce a 
binary variable */ 

IloNumVarArray x(env, n_of_vertices, 0, 1, ILOINT); 

// preparing warm-start 
IloNumVarArray mipVar(env); 
IloNumArray mipVal(env); 
if (warm_start) { 

for (int i = 0; i < n_of_vertices; ++i) { 
mipVar.add(x[i]); 
if (int((best_sol.vertices).count(i)) > 0) mipVal 

.add(1); 
else mipVal.add(0); 

} 
} 
// end preparing warm-start 

// generating the objective function 
IloExpr obj(env); 
for  (int i = 0; i <  n_of_vertices; ++i) obj += x[i]; 
model.add(IloMinimize(env, obj)); 
obj.end(); 

// generating the constraints 
for  (int i = 0; i <  n_of_vertices; ++i) { 

IloExpr expr(env); 
expr += x[i]; 
for (set<int>::iterator sit = neigh[i].begin(); sit 

!= neigh[i].end(); ++sit) expr += x[*sit]; 
model.add(expr >= 1); 
expr.end(); 

/* the values of those variables whose vertices are 
not in the sub-instance are fixed to zero */ 

if (age[i] == -1){ 
IloExpr expr1(env); 
expr1 += x[i]; 
model.add(expr1 == 0); 
expr1.end(); 

} 
}
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IloCplex cpl(model); 

/* the aborter stops CPLEX once a better solution than 
"best_sol" is found */ 

if (cplex_abort) { 
IloCplex::Aborter abo(env); 
cpl.use(abo); 
cpl.use(abortCallback(env, abo, best_sol.score)); 

} 
if (warm_start) cpl.addMIPStart(mipVar, mipVal); 
cpl.setParam(IloCplex::TiLim, r_limit); 
cpl.setParam(IloCplex::EpGap, 0.0); 
cpl.setParam(IloCplex::EpAGap, 0.0); 
cpl.setParam(IloCplex::Threads, 1); 
if (heuristic_emphasis) cpl.setParam(IloCplex::Param:: 

Emphasis::MIP, 5); 
cpl.setWarning(env.getNullStream()); 

// calling CPLEX to solve the model 
cpl.solve(); 

/* the following is done if CPLEX found at least one 
feasible solution */ 

if (cpl.getStatus() == IloAlgorithm::Optimal 
or cpl.getStatus() == IloAlgorithm::Feasible) { 

cpl_sol.score = 0; 
IloNumArray x_val(env); 
cpl.getValues(x_val, x); 
for (int i = 0; i < n_of_vertices; ++i) { 

// ADAPT-STEP of CMSA 
if (age[i] >= 0) { 

/* increment the age of all vertices in the 
sub-instance */ 

age[i] += 1; 
if (double(x_val[i]) > 0.8) { 

cpl_sol.score += 1; 
/* set the age of all vertices from the 

best CPLEX solution to zero */ 
age[i] = 0; 
(cpl_sol.vertices).insert(i); 

} 
/* remove all vertices whose age has reached 

the age limit from the sub-instance */ 
if (age[i] >= age_limit) { 

age[i] = -1; 
} 

} 
} 

} 
} 
catch (IloException& e) { 

cerr << "Concert exception caught: " << e << endl; 
} 
env.end();
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} 

/* function that probabilistically generates a solution with a 
greedy bias */ 

void generate_solution(Solution& greedy_sol, vector<int>& age, 
default_random_engine& generator, 
uniform_real_distribution<double>& standard_distribution) { 

greedy_sol.score = 0; 
vector<bool> allready_covered(n_of_vertices, false); 
int num_nodes_uncovered = n_of_vertices; 
vector< set<int> > uncovered_neighbors = neigh; 

set<int> candidates; 
for (int i = 0; i < n_of_vertices; ++i) candidates.insert(i); 

while (num_nodes_uncovered > 0) { 
vector<Option> choice; 
double max_val = -1.0; 
set<int> max_vertices; 

/* generate all options for the extension of the current 
partial solution */ 

for (set<int>::iterator cit = candidates.begin(); 
cit != candidates.end(); ++cit) { 

Option opt; 
opt.vertex = *cit; 
opt.value = double(uncovered_neighbors[*cit].size()); 
if (opt.value >= max_val) { 

if (opt.value > max_val) { 
max_val = opt.value; 
max_vertices.clear(); 

} 
max_vertices.insert(*cit); 

} 
choice.push_back(opt); 

} 
sort(choice.begin(), choice.end(), option_compare); 

int chosen_vertex; 
double dec = standard_distribution(generator); 
if (dec > determinism_rate) { 

int max = candidate_list_size; 
if (int(choice.size()) < candidate_list_size) 

max = int(choice.size()); 
double rnum = standard_distribution(generator); 
int pos = produce_random_integer(max, rnum); 
chosen_vertex = choice[pos].vertex; 

} 
else { 

double rnum = standard_distribution(generator); 
chosen_vertex = get_random_element(max_vertices, rnum 

); 
}
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(greedy_sol.vertices).insert(chosen_vertex); 

/* MERGE-STEP of CMSA: if a vertex chosen for the current 
solution does not yet form part of the sub-instance, 
add it to the sub-instance by initializing its age 
value to zero */ 

if (age[chosen_vertex] == -1) { 
age[chosen_vertex] = 0; 

} 

if (not allready_covered[chosen_vertex]) { 
allready_covered[chosen_vertex] = true;
--num_nodes_uncovered; 

} 
greedy_sol.score += 1; 

num_nodes_uncovered -= int(uncovered_neighbors[ 
chosen_vertex].size()); 

set<int> to_cover = uncovered_neighbors[chosen_vertex]; 
for (set<int>::iterator sit = to_cover.begin(); 

sit != to_cover.end(); ++sit) { 
allready_covered[*sit] = true; 
for (set<int>::iterator ssit = neigh[*sit].begin(); 

ssit != neigh[*sit].end(); ssit++) 
uncovered_neighbors[*ssit].erase(*sit); 

} 
uncovered_neighbors[chosen_vertex].clear(); 

for (set<int>::iterator sit = neigh[chosen_vertex].begin 
(); sit != neigh[chosen_vertex].end(); sit++) 
uncovered_neighbors[*sit].erase(chosen_vertex); 

candidates.erase(chosen_vertex); 
set<int> to_delete; 

for (set<int>::iterator cit = candidates.begin(); cit != 
candidates.end(); ++cit) { 
if (int(uncovered_neighbors[*cit].size()) == 0 and 

allready_covered[*cit]) to_delete.insert(*cit); 
} 
for (set<int>::iterator sit = to_delete.begin(); sit != 

to_delete.end(); ++sit) candidates.erase(*sit); 
} 

} 

/********** 
Main function 

**********/ 

int main( int argc, char **argv ) { 

if (argc < 3) { 
cout << "Usage: ./cmsa -i <input_file> ..." << endl; 
exit(1);
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} 
else read_parameters(argc,argv); 

std::cout << std::setprecision(2) << std::fixed; 

// initializes the random number generator 
unsigned seed = std::chrono::system_clock::now(). 

time_since_epoch().count(); 
std::default_random_engine generator(seed); 
std::uniform_real_distribution<double> 

standard_distribution(0.0,1.0); 

ifstream indata; 
indata.open(input_file.c_str()); 
if(!indata) { 

cout << "Error: file could not be opened" << endl; 
} 

// reading the problem instance file 
indata >> n_of_vertices; 
neigh = vector< set<int> >(n_of_vertices); 
int v1, v2; 
while (indata >> v1 >> v2) { 

neigh[v1].insert(v2); 
neigh[v2].insert(v1); 

} 
indata.close(); 

/* "age" is an integer vector that contains the age of all 
vertices. An age of -1 means that the vertex does not form 
part of the sub-instance, while an age of >= 0 means that 
the vertex forms part of the sub-instance. */ 

vector<int> age(n_of_vertices, -1); 

Solution best_sol; 
best_sol.score = std::numeric_limits<int>::max(); 

// the computation time starts now 
clock_t start = clock(); 

// variable ctime stores the current time that has passed 
double ctime = 0.0; 

bool stop = false; 

// main loop of the CMSA algorithm 
while (not stop and (ctime < computation_time_limit)) { 

// CONSTRUCT-STEP of CMSA: generate "n_of_sols" solutions 
for (int na = 0; na < n_of_sols; ++na) { 

Solution greedy_sol; 
generate_solution(greedy_sol, age, generator, 

standard_distribution); 
if (greedy_sol.score < best_sol.score) {
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best_sol = greedy_sol; 
clock_t current = clock(); 
ctime = double(current - start) / CLOCKS_PER_SEC; 
cout << "best " << best_sol.score << "\ttime " << 

ctime << "\tgreedy" << endl; 
} 

} 

/* calculate the time "r_limit" given to CPLEX for the 
next application to the current sub-instance */ 
clock_t current = clock(); 
ctime = double(current - start) / CLOCKS_PER_SEC; 
double r_limit = computation_time_limit - ctime; 
if (r_limit > cplex_time_limit) r_limit = 

cplex_time_limit; 

/* if the remaining computation time is less than 0.1 
seconds, it does not make sense to call CPLEX. 
Variable ’stop’ is set to true and the algorithm stops */ 
if (r_limit < 0.1) stop = true; 
if (not stop) { 

Solution cpl_sol; 
/* SOLVE-STEP of CMSA: apply CPLEX to the current 

sub-instance */ 
run_cplex(cpl_sol, best_sol, age, r_limit); 
if (cpl_sol.score < best_sol.score) { 

best_sol = cpl_sol; 
current = clock(); 
ctime = double(current - start) / CLOCKS_PER_SEC; 
cout << "best " << best_sol.score << "\ttime " << 

ctime << "\tcplex" << endl; 
} 
current = clock(); 
ctime = double(current - start) / CLOCKS_PER_SEC; 

} 
} 

}
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