
Computational Intelligence Methods and Applications

Christian Blum

Construct,
Merge, Solve
& Adapt
A Hybrid Metaheuristic
for Combinatorial Optimization

Computational Intelligence Methods
and Applications
Founding Editors
Sanghamitra Bandyopadhyay
Ujjwal Maulik
Patrick Siarry

Series Editor

Patrick Siarry, LiSSi, E.A. 3956, Université Paris-Est Créteil, Vitry-sur-Seine,
France

The monographs and textbooks in this series explain methods developed in compu-
tational intelligence (including evolutionary computing, neural networks, and fuzzy
systems), soft computing, statistics, and artificial intelligence, and their applications
in domains such as heuristics and optimization; bioinformatics, computational
biology, and biomedical engineering; image and signal processing, VLSI, and
embedded system design; network design; process engineering; social networking;
and data mining.

Christian Blum

Construct, Merge, Solve
& Adapt
A Hybrid Metaheuristic for Combinatorial
Optimization

Christian Blum
IIIA-CSIC
Bellaterra, Spain

ISSN 2510-1765 ISSN 2510-1773 (electronic)
Computational Intelligence Methods and Applications
ISBN 978-3-031-60102-6 ISBN 978-3-031-60103-3 (eBook)
https://doi.org/10.1007/978-3-031-60103-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3

This book is lovingly dedicated to my mother,
Maria Blum (1949–2020), whose unwavering
emotional support and belief in me have
empowered me to confront life’s challenges
with optimism and resilience.

Preface

The work on CMSA started in 2015 during my years as an Ikerbasque Research
Fellow at the University of the Basque Country in San Sebastian. It originated
from the observation that large neighborhood search (LNS) algorithms based
on the partial destruction of an incumbent solution at each iteration sometimes
underperform in the context of optimization problems in which solutions contain
rather few solution components. (As an example, think about a multi-dimensional
knapsack problem instance with very tight resource constraints.) Our intention, in
the context of the Ph.D. thesis of Pedro Pinacho Davidson, was then to develop
an alternative hybrid algorithm that would work well in those cases in which LNS
showed problems. In the meanwhile, two other Ph.D. students from my group at
the IIIA-CSIC in Bellaterra (Barcelona), Mehmet Anıl Akbay and Jaume Reixach,
have been working on different aspects of CMSA. Moreover, the initial paper on
CMSA (published under the title “Construct, merge, solve & adapt: A new general
algorithm for combinatorial optimization”, which was published in 2016 in the
journal Computers and Operations Research, has received 106 citations (Google
Scholar, February 2024). Moreover, to date, CMSA has been applied to 20 different
combinatorial optimization problems.

I am also happy to say that our work on CMSA has received two awards
in recent years. The first one was the best paper award at the ECOM track of
the GECCO 2016 conference for a paper on the application of CMSA to the
multi-dimensional knapsack problem. The second award was the one for The Best
Methodological Contribution in Operations Research jointly given by the Spanish
Society of Statistics and Operations Research (SEIO) and the BBVA Foundation in
2021.

This book aims to give an account of the current state of the research efforts
on CMSA. After shortly introducing the general line of research and the tools to
be used in the book, the first chapter provides a didactical introduction to standard
CMSA in the context of the minimum dominating set problem. In addition, the C++
program code used for part of the experiments presented in this chapter is offered
in Appendix A. The following four chapters are dedicated to important CMSA
variants (ADAPT_CMSA and LEARN_CMSA), respectively, to important topics for

vii

viii Preface

the practical application of CMSA: the use of set-covering-based ILP models for
sub-instance solving, and the application of CMSA to optimization problems that
are naturally modeled by non-binary ILPs. Finally, the last chapter outlines research
lines that have not yet received much attention. Moreover, several avenues for
current and future work are described. I believe that this book will be useful and
inspiring for everyone who plans to apply CMSA to a specific optimization problem.

I am very grateful to the following people. The main idea of LEARN_CMSA

presented in Chap. 3 of this book was contributed by Pedro Pinacho Davidson, who
was my Ph.D. student at the University of the Basque Country, and who is nowadays
an associate professor at the Universidad de Concepción, Chile. Moreover, Pedro
prepared the initial implementation of LEARN_CMSA for the FFMS problem. The
idea of ADAPT_CMSA presented in Chap. 2 was developed together with Mehmet
Anıl Akbay, who was my Ph.D. student at the time of preparing this book. The same
holds for the use of set-covering-based ILP models for sub-instance solving in the
context of the EVRP-TW-SPD problem in Chap. 4. Mehmet provided the CMSA
implementation for the EVRP-TW-SPD problem. Moreover, some of the text in this
chapter was written based on his original texts. I am also grateful to Camilo Chacón
Sartori, one of my latest Ph.D. students, who implemented the web application
STNWeb for the generation of the nice and informative STN graphics presented
in this book. Last but not least, thanks to Guillem Rodríguez, Jaume Reixach, and
Camilo Chacón for proofreading (parts of) the book. Many thanks to all of you!

To end, promising research remains to be done in the context of the CMSA
algorithm. Together with the optimization group at the IIIA-CSIC in Bellaterra
(Barcelona), I will take on this endeavor during the coming years. We certainly
hope that other research groups on metaheuristics and their hybrids will join this
effort in the quest for increasingly efficient CMSA variants.

Sant Esteve Sesrovires, Spain Christian Blum
February 2024

Acknowledgments

During the time of writing this book, the author was supported as principal investi-
gator of the following three grants funded by MCIN/AEI/10.13039/501100011033:
PID2019-104156GB-I00, PID2022-136787NB-I00, and TED2021-129319B-I00.
Moreover, the author would like to acknowledge the support of the Spanish National
Research Council (CSIC) of which the author is a Senior Research Scientist.

ix

Contents

1 Introduction to CMSA . 1
1.1 Introduction to Optimization . 1

1.1.1 Examples of Continuous Optimization Problems 4
1.1.2 Examples of Combinatorial Optimization Problems 5
1.1.3 Modelling an Optimization Problem. 6
1.1.4 Basic Optimization Techniques . 8
1.1.5 Hybrid Optimization Techniques . 10

1.2 Tools Used in This Book . 11
1.2.1 irace: A Tool for Parameter Tuning . 12
1.2.2 STNWeb: A Tool for the Graphical Comparison of

Algorithms . 13
1.2.3 scmamp: A Tool for the Statistical Comparison

of Algorithms . 16
1.3 CMSA: Construct, Merge, Solve & Adapt. 17

1.3.1 Standard CMSA . 18
1.4 Application to Minimum Dominating Set . 20

1.4.1 An Intuitive Way of Defining the Solution Components. 21
1.4.2 A Generic Way of Defining the Solution Components 24
1.4.3 Experimental Evaluation . 25

1.5 Algorithmic Proposals Related to CMSA. 34
References . 36

2 Self-adaptive CMSA . 41
2.1 Introduction . 41
2.2 Self-adaptive CMSA: General Description . 43
2.3 Application to the MPIDS Problem . 44

2.3.1 Generic Definition of the Solution Components 45
2.3.2 Constructing Solutions to the MPIDS Problem 46
2.3.3 Sub-instance Solving . 48
2.3.4 Experimental Evaluation . 48

xi

xii Contents

2.4 Application to the FFMS Problem . 59
2.4.1 Augmented Objective Function . 61
2.4.2 Intuitive Definition of the Solution Components 62
2.4.3 Constructing Solutions to the FFMS Problem. 62
2.4.4 Sub-instance Solving . 63
2.4.5 Experimental Evaluation . 64

2.5 Conclusions . 67
References . 69

3 Adding Learning to CMSA . 71
3.1 Introduction . 71
3.2 The Bacterial Algorithm . 72
3.3 The LEARN_CMSA Algorithm: A General Description. 75
3.4 Application to the MDS Problem . 76

3.4.1 Generating the Initial Population . 77
3.4.2 Implementation of Conjugation . 77
3.4.3 Implementation of Regeneration . 78
3.4.4 Experimental Evaluation . 79

3.5 Application to the FFMS Problem . 86
3.5.1 Generating the Initial Population . 86
3.5.2 Implementation of Conjugation . 87
3.5.3 Implementation of Regeneration . 87
3.5.4 Experimental Evaluation . 87

3.6 Conclusions and Possible Research Directions . 93
References . 93

4 Replacing Hard Mathematical Models with Set Covering
Formulations . 95
4.1 Introduction . 95
4.2 Application to Variable-Sized Bin Packing . 96

4.2.1 Short Literature Review Concerning the VSBP Problem 97
4.2.2 Set-Covering Based ILP Model of the VSBP Problem 98
4.2.3 Application of Standard CMSA to the VBSP Problem 98
4.2.4 Application of Set-Covering Based CMSA to the

VSBP Problem . 101
4.2.5 Experimental Evaluation . 102

4.3 Application to an Electric Vehicle Routing Problem 115
4.3.1 Short Literature Review Concerning the EVRP-TW-SPD. . . . 119
4.3.2 Set-Covering Based ILP Model of the EVRP-TW-SPD 119
4.3.3 Application of ADAPT_CMSA to the EVRP-TW-SPD. 120
4.3.4 The ADAPT_CMSA Algorithm . 120
4.3.5 The ADAPT_CMSA_SETCOV Algorithm . 126
4.3.6 Experimental Evaluation . 126

4.4 Conclusions and Future Research Directions . 138
References . 139

Contents xiii

5 Application of CMSA in the Presence of Non-binary Variables 141
5.1 Introduction . 141
5.2 The Bounded Knapsack Problem with Conflicts . 142

5.2.1 Converting the BKPWC ILP to a Binary Program 143
5.3 Application of CMSA to the BKPWC . 145

5.3.1 Probabilistic Solution Construction . 145
5.3.2 Sub-instance Solving . 146

5.4 Experimental Evaluation. 147
5.4.1 Problem Instances . 147
5.4.2 Parameter Tuning . 148
5.4.3 Results . 149

5.5 Conclusions and Further Research Directions . 154
References . 155

6 Additional Research Lines Concerning CMSA . 157
6.1 A Problem-Agnostic CMSA for Binary Problems . 157

6.1.1 Application of CMSA_GEN . 158
6.1.2 Experimental Evaluation . 160
6.1.3 Discussion . 163

6.2 Applying a Metaheuristic in the CMSA Framework 163
6.2.1 The Weighted Independent Domination (WID) Problem 164
6.2.2 A Greedy Heuristic for the WID Problem . 166
6.2.3 A PBIG Metaheuristic for the WID Problem. 167
6.2.4 Using PBIG for Solving Sub-instances in CMSA 169
6.2.5 Experimental Evaluation . 169
6.2.6 Discussion . 173

6.3 Relation Between CMSA and LNS . 173
6.3.1 Destruction-Based LNS . 173
6.3.2 Empirical Comparative Study . 174

6.4 Future Work on CMSA . 177
References . 178

A C++ Program Code: CMSA Applied to the MDS Problem 181

Index . 191

Acronyms

ACO Ant Colony Optimization
AI Artificial Intelligence
BA Bacterial Algorithm
BIP Binary Integer Programming
BKPWC Bounded Knapsack Problem With Conflicts
CD Critical Difference
CMSA Construct, Merge, Solve & Adapt
CP Constraint Programming
DNA Deoxyribonucleic Acid
EA Evolutionary Algorithm
EV Electric Vehicle
EVRP Electric Vehicle Routing
EVRP-TW-SPD Electric Vehicle Routing Problem with Time Windows and

Simultaneous Pickups and Deliveries
FFMS Far From Most String
IG Iterated Greedy
ILP Integer Linear Programming
KP Knapsack Problem
LNS Large Neighborhood Search
LP Linear Programming
MaxSAT Maximum Satisfiability Problem
ML Machine Learning
MCSP Minimum Common String Partition
MDKP Multi-Dimensional Knapsack Problem
MDS Minimum Dominating Set
MPIDS Minimum Positive Influence Dominating Set
OR Operations Research
PBIG Population-Based Iterated Greedy
PSO Particle Swarm Optimization
RFLCS Repetition-Free Longest Common Subsequence
SA Simulated Annealing

xv

xvi Acronyms

SPD Simultaneous Pickup and Delivery
STN Search Trajectory Network
TS Tabu Search
TSP Travelling Salesman Problem
TW Time Window
VNS Variable Neighborhood Search
VSBP Variable-Sized Bin Packing
WID Weighted Independent Domination

Chapter 1
Introduction to CMSA

Abstract Construct, Merge, Solve & Adapt (CMSA) is an award-winning, hybrid
algorithm for solving hard combinatorial optimization problems. The main idea
consists in the iterated application of an exact approach—such as, for example, an
integer linear programming (ILP) solver—to sub-instances of the original problem
instances to be solved. These sub-instances are extended at each iteration by adding
solution components from a set of valid solutions that are obtained either by
probabilistic solution construction or by any other means. In this first chapter, we
will give an introduction to CMSA including related work and the application of
basic CMSA variants to a well-known combinatorial optimization problem known
as the Minimum Dominating Set (MDS) problem in undirected graphs. In addition,
we will describe all the tools that are used for the experimental evaluation of the
algorithms presented in this book. This includes the parameter tuning software
called irace, an R-based tool for the statistical comparison of multiple algorithms
called scmamp, and a web-based tool for the graphical comparison of multiple
algorithms called STNWeb.

1.1 Introduction to Optimization

Optimization refers to the process of finding a best solution or outcome from a
set of possible choices, generally to maximize or minimize a particular objective
or criterion. It is a fundamental concept in various fields, including mathematics,
engineering, economics, computer science, and more. In fact, in our increasingly
technological world, the need for solving hard optimization problems has been
growing constantly over the last decades. Optimization problems are prevalent
in numerous practical applications across different fields. Examples are to be
found, among others, in the following major fields. For each one, we provide an
exemplifying reference.

1. Supply Chain Optimization [29]: Companies aim to optimize their supply
chains by determining the most efficient way to source, produce, and deliver

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1
https://doi.org/10.1007/978-3-031-60103-3_1

2 1 Introduction to CMSA

goods while minimizing costs and maintaining inventory levels to meet cus-
tomer demand.

2. Portfolio Optimization [53]: In the realm of finance, investors aim to optimize
their investment portfolios by selecting the most suitable mix of assets to
maximize returns while effectively mitigating risks. This entails the pursuit of
an ideal asset allocation.

3. Production Scheduling [84]: Manufacturers want to optimize production
schedules to minimize production costs, reduce lead times, and meet customer
demand reliably. This requires determining the optimal allocation of resources
and scheduling production runs.

4. Transportation Routing [101]: In logistics and transportation, companies aim
to derive optimal routes and delivery schedules for delivery vehicles, ships,
or airplanes to minimize fuel costs, reduce travel times, and increase delivery
efficiency. Increasingly complex optimization problems must be solved in so-
called electric vehicle routing problems.

5. Project Management [61]: Project managers seek to optimize project sched-
ules and resource allocation to complete projects on time and within budget.
Critical path analysis and resource leveling are techniques used, for example,
for the optimization of project schedules.

6. Network Design [82]: Companies and service providers need to optimize the
design and layout of their networks—such as, for example, telecommunica-
tions networks, computer networks, or transportation networks—to maximize
efficiency and minimize costs.

7. Inventory Management [96]: Retailers and manufacturers optimize inventory
levels to balance the costs of holding excess inventory against potentially
lost sales due to the lack of stock. This is often achieved through so-called
Economic Order Quantity (EOQ) and Just-In-Time (JIT) inventory systems.

8. Energy Management [75]: Organizations and companies aim to optimize
energy consumption in buildings and manufacturing processes to reduce energy
costs and minimize environmental impact. This involves scheduling equipment
and systems to operate at their most energy-efficient levels.

9. Agricultural Planning [24]: Farmers and agricultural organizations optimize
crop planting, irrigation, and harvesting schedules to maximize yield, minimize
resource usage, and adapt to changing weather conditions.

10. Sensor Placement [65]: In environmental monitoring, for example, optimizing
the placement of sensors or surveillance cameras to maximize coverage and
minimize costs is crucial.

11. Drug Design [58]: In the field of drug development, several optimization
problems arise, often with the goal of identifying and developing effective and
safe pharmaceutical compounds. Some of these optimization problems concern
(1) compound screening, (2) optimizing the molecular structure of a compound
to improve its potency, selectivity, and safety, and (3) clinical trial design.

12. Staff Rostering and Resource Allocation [42]: The optimal assignment of
personnel to shifts and the need for an allocation of resources arises in a wide
range of organizations and industries. Hospitals and healthcare facilities, for

1.1 Introduction to Optimization 3

example, must optimize staff scheduling, operating room allocation, and patient
appointment scheduling to improve patient care and reduce costs.

13. Traffic Management [10]: Cities use optimization to manage traffic flow,
for example, through optimizing traffic signal timings, leading to reduced
congestion and improved traffic efficiency.

Obviously, these are just examples, and optimization is used in many more fields and
scenarios to improve decision-making, resource allocation, and overall efficiency.
Moreover, optimization is an essential factor in many fields of research. In fact,
without efficient optimization techniques, many fields of research would not be able
to advance at the same speed as they are doing today.

Modelling an Optimization Problem

In order to solve an optimization problem, it must first be modeled in a mathemat-
ical, respectively technical, way. Key elements of an optimization problem model
include the following ones.

1. Objective Function: A model consists of at least one objective function that
quantifies the goal or criterion to be optimized. Such a function may represent
a quantity to be maximized (e.g., profit, efficiency, performance) or minimized
(e.g., cost, error, time). In the presence of exactly one objective function, we
talk about single-objective optimization, while several—usually conflicting—
objective functions characterize a multi-objective problem.

2. Decision Variables: Optimization problems involve decision variables together
with their domains. Each candidate solution to a problem is characterized by a
different setting (value assignment) of the decision variables.

3. Constraints: They define which candidate solutions (value-assignments of the
decision variables) correspond to feasible solutions, in contrast to infeasible
solutions. Constraints can be equality constraints (e.g., fixed budget) or inequality
constraints (e.g., resource availability).

4. Optimization Objective: As already mentioned in the context of describing
the concept of an objective function (see above), objective functions might be
maximized or minimized. This is called the optimization objective.

Often the goal of optimization is to find an optimal solution, which is a feasible
solution with an objective function value better or equal to the objective function
value of all other feasible solutions. Instead, the goal of optimization might simply
be to find a good enough solution in a reasonable computation time.

Optimization problems come in various forms and can be categorized into
different types based on their characteristics, constraints, and objectives. In general,
we distinguish between continuous (or numerical) optimization problems [77]
and discrete (or combinatorial) optimization problems [80]. Hereby, continuous
optimization problems refer to models in which decision variables have continuous

4 1 Introduction to CMSA

(real-valued) domains that may be bounded or unbounded. In discrete, respec-
tively combinatorial, optimization problems, the decision variables are restricted
to domains of discrete values. In the following, we provide two examples for each
of these problem categories.

1.1.1 Examples of Continuous Optimization Problems

Examples of continuous (or numerical) optimization problems are analytical prob-
lems such as the minimization of the Rastrigin function which is plotted in Fig. 1.1
in two dimensions. The formula of this function (in two dimensions) is as follows:

.f (x1, x2) = 20 +
2∑

i=1

(x2
i − 10 · cos(2 · π · xi)) , (1.1)

with .x1, x2 ∈ [−5.12, 5.12]. A more practical example of a continuous optimization
problem with real-world relevance is the parameter estimation in nonlinear
models problem. This problem frequently arises in various fields, including science,
engineering, economics, and biology, where researchers or analysts need to estimate
the parameters of a complex—generally nonlinear—model to fit observed data.
Figure 1.2 shows a graphical illustration.

Given the observed data, a model must be chosen. Subsequently, the optimization
problem consists of determining the optimal values of the model’s parameters in
order to best fit the data. The objective is to minimize the difference between
the model’s predictions and the observed data, typically expressed as the sum of
squared residuals (least squares). The decision variables correspond to the model’s
parameters that need to be estimated. Constraints are based on parameter value
restrictions (e.g., bounds or relationships between parameters).

Fig. 1.1 Rastrigin function
in two dimensions

1.1 Introduction to Optimization 5

Fig. 1.2 Example of
parameter estimation in
nonlinear models

Fig. 1.3 Example of a TSP
problem instance with five
cities

1.1.2 Examples of Combinatorial Optimization Problems

One of the most emblematic combinatorial optimization problems is the so-called
traveling salesman problem (TSP). This problem owes its name to the objective
of the problem. A traveling salesman must pass through a number of cities exactly
once, before returning to the city in which the journey started. The optimization
objective is to minimize the traveled distance. This can be modeled by means of
a completely connected graph in which the nodes represent the cities that must be
visited, and weights on the edges correspond to the distances between the cities.
Each feasible solution corresponds to a Hamiltonian cycle of this graph. Hereby,
a Hamiltonian cycle is a cyclic route that contains each vertex exactly once. A
graphical illustration is given in Fig. 1.3.

Another well-known combinatorial optimization problem is the so-called knap-
sack problem (KP). Given is a set of items, whereby each item has a profit and, for
example, a weight. Given is also a knapsack with an upper limit for the total weight
of the objects it can carry. The objective of the problem is to select a set of items
such that they fit into the knapsack—that is, their weights may sum to at most the

6 1 Introduction to CMSA

Fig. 1.4 Example of a small
knapsack problem instance

15kg

2€

4€

2€

1€

10€ 4kg

1kg

1kg

12k
g

2kg

weight limit of the knapsack—and the sum of the profits of the selected items is
maximized. A graphical illustration is provided in Fig. 1.4.

1.1.3 Modelling an Optimization Problem

As mentioned before, to solve an optimization problem employing an optimization
technique—that is, an algorithm—it must first be modeled in a way depending on
its characteristics; see [33, 55, 81]. The two continuous optimization examples from
Sect. 1.1.1 are modeled as global optimization problems with non-linear objective
functions. In the case of a linear objective function, linear constraints, and a
convex search space, a continuous optimization problem can be modeled as a linear
programming (LP) problem and then be solved by LP techniques from Operations
Research (OR). In contrast, the two combinatorial optimization problems outlined in
Sect. 1.1.2 can be modeled as integer linear programming (ILP) problems, that is, in
terms of models that are characterized by linear objective functions and constraints,
and decision variables with discrete domains. Note that most optimization problems
treated in this book are of this type. However, the general idea of CMSA is also
applicable to solving optimization problems modeled in other ways.

For demonstration purposes, we provide two different ILP models of the TSP.
Given is a set N of n cities, that is, .N = {1, . . . , n}. Moreover, let . A = {(i, j) |
i, j ∈ N, i /= j} be the complete set of arcs connecting any ordered pair of cities.
Finally, let .cij > 0 be the distance for traveling from city i to city j . For modeling
this problem, first, the following set of binary decision variables is introduced: . {xij ∈
{0, 1} | i, j ∈ N, i /= j}, that is, for each arc .(i, j) we introduce a binary decision
variable . xij . Hereby, in case . xij = 1, arc .(i, j) forms part of the solution.

1.1 Introduction to Optimization 7

. min
∑

(i,j)∈A

cij xij . (1.2)

subject to
∑

j∈N,j /=i
xij = 1 ∀ i ∈ N . (1.3)

∑

j∈N,j /=i
xji = 1 ∀ i ∈ N . (1.4)

∑

i,j∈S,i /=j
xij ≤ |S| − 1 ∀ S ⊂ N with 2 ≤ |S| ≤ n − 1

(1.5)

xij ∈ {0, 1} ∀ (i, j) ∈ A

The objective function (1.2) to be minimized sums the distances of all used
arcs. Furthermore, constraints (1.3) and constraints (1.4) ensure that each city is
visited exactly once, respectively, is left exactly once. Finally, the so-called subtour
elimination constraints (1.5) make sure that the finally selected arcs form exactly
one cyclic tour (in contrast to several shorter ones).

In order to show that an optimization problem can potentially be modeled in
different ways, we additionally provide a second, alternative ILP model for the TSP.

. min
∑

(i,j)∈A

cij xij . (1.6)

subject to y1,1 = 1 . (1.7)

n∑

k=1

yik = 1 i = 1, . . . , n. (1.8)

n∑

i=1

yik = 1 k = 1, . . . , n. (1.9)

∑

(i,j)∈A
xij = n . (1.10)

yi,k−1 + yjk − xij ≤ 1 ∀ (i, j) ∈ A, k ≥ 2. (1.11)

yin + y1,1 − xi1 ≤ 1 ∀ (i, 1) ∈ A (1.12)

yik ∈ {0, 1} i, k = 1, . . . , n

xij ∈ {0, 1} ∀ (i, j) ∈ A

This alternative model works on the basis of two sets of binary decision variables.
In addition to variables .xij for all .(i, j) ∈ A, this model also features a binary
variable .yik for all .i, k = 1, . . . , n. If .yik = 1, this means that city i is the k-

8 1 Introduction to CMSA

th visited city on the tour of the traveling salesman. Thus, the model prevents the
generation of subtours by building a permutation of all cities in the following way.
First, constraints (1.8) ensure that each city is assigned to exactly one position of the
permutation, while constraints (1.9) require that there is exactly one city assigned to
each position of the permutation. Without loss of generality, fixing .y1,1 to 1, causes
the permutation to start with city 1 on position 1.1 Furthermore, constraint (1.10)
requires to choose exactly n arcs for the tour, while constraints (1.11) ensure that
the arc variable . xij is set to 1, if both variables .yi,k−1 and .yjk are set to 1. In other
words, if cities i and j are placed on consecutive positions of the permutation, then
arc .(i, j) must form part of the tour. Finally, note that constraints (1.12) only cover
the special case of position 1 of the permutation being the successor of position n.

•> Types of Optimization Problems Considered in This Book

As mentioned above, in this book we consider problems that can be modeled
in terms of ILPs. Put differently, we deal with the solution of problems that can
be modeled on the basis of a set of discrete decision variables. Moreover, the
considered optimization problems can be modeled by means of a linear objective
function and linear constraints. However, note that this does not exclude that the
algorithmic ideas presented in this book can also be applied to other types of
optimization problems.

1.1.4 Basic Optimization Techniques

After modeling the optimization problem under consideration in a convenient way,
an optimization technique is required to solve the problem. Exact and approximate
methods for optimization are two broad categories of techniques used to find
optimal—or simply good-enough—solutions to optimization problems. These two
categories comprise techniques of different characteristics that are suited to different
types of problems and objectives. Their key features can be summarized as follows.

Exact methods guarantee to find an optimal solution in finite time. This is the case
if an optimal solution exists, and if given enough time and resources. These methods
are usually deterministic. They systematically explore the solution/search space to
find an optimal solution. Exact methods are practical for small to moderately-sized
optimization problems, where the search space is not too large. Examples of exact
methods include linear programming, integer programming, dynamic programming,
branch and bound, and branch and cut, just to name a few [11, 103].

1 Note, in this context, that instead of .y11 we use here the notation .y1,1 in order to avoid a
misunderstanding.

1.1 Introduction to Optimization 9

•> Knowledge Required from Readers on Exact Techniques

In this book, we assume that readers generally know about the existence and the
high-level functioning of exact techniques. However, we do not expect a reader to
be an expert on exact techniques. Neither do we expect that a reader is able to design
and program exact techniques. This level of difficulty will be relegated completely
to the use of black-box ILP solvers. For the experiments presented in this book, we
make use of CPLEX2 , a commercial software product offered by IBM, which is free
for academic purposes.

Despite the advantages of exact methods as outlined above, they are not always
the best choice for solving the optimization problem at hand. First, the problem
instances to be solved might be too large to be handled by the exact method. Second,
the required computation time and/or the required amount of resources—for exam-
ple, in terms of computer memory—might be excessive. Therefore, research has also
focused on so-called approximate methods, which are typically of a heuristic and/or
stochastic nature. They generally do not guarantee finding an optimal solution but
aim to find a good enough solution within a reasonable time frame. In other words,
approximate methods are often much faster than exact methods, making them
suitable for large and complex optimization problems. At the same time, they require
fewer computational resources and are, therefore, often more practical for real-
world, large-scale problems. Examples of approximate methods range from simple,
deterministic greedy heuristics [72] to more sophisticated metaheuristics [20, 48]
including, for example, evolutionary algorithms [23], simulated annealing [62],
particle swarm optimization [30, 59], and variable neighborhood search [74].

Greedy heuristics—also referred to as greedy algorithms—build a solution from
scratch by making a sequence of deterministic choices. They are called “greedy”
because, at each step of the solution construction process, they make a locally
optimal choice with the hope that this will lead to a good solution overall. They
are generally easy to implement and computationally efficient, but they generally
do not provide any guarantees on the quality of the generated solutions.

Metaheuristics are more sophisticated approximate algorithms. They are
designed to efficiently search through large search spaces and find high-quality
solutions, although they may not guarantee anything about the quality of the
solutions found. Some common metaheuristics3 for combinatorial optimization
include the following ones:

• Evolutionary Algorithms (EAs) [23]: These algorithms are inspired by the
process of natural evolution. At each iteration, they maintain a population of

2 https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio.
3 Note that the order in which metaheuristics are described here has no meaning.

https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio

10 1 Introduction to CMSA

potential solutions and apply genetic operators such as mutation, crossover, and
selection to evolve and improve the solutions over multiple iterations.

• Simulated Annealing (SA) [62]: SA is inspired by the annealing process in
metallurgy. It starts with an initial solution and iteratively explores neighboring
solutions. Worse solutions are accepted with a probability that is decreasing over
time, allowing the algorithm to escape from local optima, that is, sub-optimal
solutions surrounded by worse solutions.

• Tabu Search (TS) [51]: TS maintains a list of “tabu” or forbidden moves (the
so-called tabu list) to avoid revisiting previously explored solutions. It explores
the neighborhood of the current solution while avoiding moves forbidden by the
tabu list.

• Ant Colony Optimization (ACO) [38]: ACO is inspired by the foraging
behavior of ants. It uses a population of artificial ants to explore the solution
space. Ants deposit pheromones on paths they traverse, and the pheromone levels
guide the search process.

• Particle Swarm Optimization (PSO) [30, 59]: PSO is inspired by the social
behavior of birds and fish. It maintains a population of particles that move
through the search space. Particles adjust their positions based on their own
experience and the experience of their neighbors.

• Variable Neighborhood Search (VNS) [74]: VNS explores the solution space
by changing the neighborhood structure in which it searches. The standard
version of VNS tends to start with local neighborhoods. Moreover, the algorithm
tends to move to more disruptive neighborhoods in case nothing better can be
found in more local neighborhoods.

In summary, we could say that optimization techniques can vary widely, rang-
ing from simple trial-and-error approaches to more sophisticated mathematical
methods. The choice of method depends on the characteristics of the considered
optimization problem, its complexity, the available computational resources, and
the available time budget.

1.1.5 Hybrid Optimization Techniques

Extensive research efforts have been devoted to addressing combinatorial optimiza-
tion problems over the past decades, both in Operations Research (OR) and Artificial
Intelligence (AI). Consequently, both researchers and practitioners now possess a
diverse toolbox of techniques, encompassing both exact and approximate methods,
to tackle optimization problems of this nature. However, when confronted with
the task of solving large-scale instances of complex combinatorial optimization
problems, even metaheuristic techniques can become disoriented within the vast
search spaces that characterize such scenarios. It has become increasingly evident
that a practical approach lies in harnessing the complementary strengths of both

1.2 Tools Used in This Book 11

exact and heuristic methods, particularly when addressing large-scale problem
instances.

The field of hybrid metaheuristics for combinatorial optimization [19, 97] has
become increasingly popular in recent years due to the ability of such approaches to
combine the strengths of different ways of solving optimization problems within a
single algorithm.4 Algorithms known as large neighborhood search (LNS) [86] and
very large-scale neighborhood search [1] are probably among the most well-known
techniques from this field. Another related branch of work is the one on ejection
chain approaches [50]. In principle, there are many ways of generating so-called
large neighborhoods for a given problem. However, many LNS approaches are
based on the principle of ruin-and-recreate [95], also sometimes found as destroy-
and-recreate or destroy-and-rebuild. At each iteration, first, the incumbent solution
is partially destroyed. Then, either an exact technique or any other appropriate
technique is applied to find—among all solutions that include the produced partial
solution—a solution that improves the incumbent solution. Generally, a time limit
is imposed on this step. Many examples of this type of LNS can be found in the
literature, including [34, 43, 94], just to name a few. The large neighborhoods
generated in this context are known as destruction-based large neighborhoods.

Apart from methods based on partial solution destruction, there are alternative
ways of defining large neighborhoods that are used in algorithms such as local
branching [45], the corridor method [26], and POPMUSIC [63]. In the latter
approach (POPMUSIC), at each iteration, a large neighborhood is generated as
follows. The incumbent solution is first split into parts. A so-called seed-part is
then chosen and extended by adding other parts that are close to the seed-part in
order to form a sub-problem. This step depends on some distance measure between
solution parts. Finally, the generated sub-problem is solved by an approximate or an
exact solution approach. This process is repeated until the incumbent solution does
not contain a sub-problem that can be improved.

1.2 Tools Used in This Book

First of all, note that all approaches described in this book were implemented in
C++ [56] and compiled with one of the latest Gnu compilers.5 Moreover, as ILP
solver we used CPLEX version 22.1,6 if not otherwise stated. Apart from these
fundamental tools for the research described in this book, we made use of the
following three tools, which are described in the following.

4 These algorithms are also often labelled as matheuristics [22].
5 https://gcc.gnu.org/.
6 https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio.

https://gcc.gnu.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio

12 1 Introduction to CMSA

1.2.1 irace: A Tool for Parameter Tuning

One of the challenges in conducting experimental evaluations of stochastic opti-
mization algorithms is the issue of parameter tuning. This task involves configuring
the algorithm’s parameters to optimal values, ensuring its peak performance on the
designated set of benchmark instances. The literature offers several scientific tools
for this purpose, including SMAC3 [68], ParamILS [57] and HyperBand [67].

In this book, we make use of irace [70],7 one of the parameter tuning
tools most used for tuning the parameters of optimization algorithms. irace is
particularly useful when working with algorithms that have multiple parameters
and where finding the right combination of parameter settings can significantly
impact their performance. The irace tool automates this process. Key features
and functionalities of irace include the following ones:

1. Iterative Racing: irace uses an iterative racing mechanism to evaluate differ-
ent combinations of algorithm parameters. It systematically explores numerous
parameter settings, ranking them based on the algorithm’s performance on a
predefined set of benchmark instances.

2. Parallelization: irace is designed to work in parallel, which can significantly
speed up the parameter tuning process. It distributes the evaluation of parameter
configurations across the available processors or machines, making it suitable
for high-performance computing environments. For the application in this book,
we used irace on a high-performance computing cluster of machines equipped
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB
of RAM.

3. Generality: Even though irace is programmed in R,8 it can be used for
different algorithms, that is, it is not limited to a specific algorithm, domain, or
programming language. It only requires an executable of the algorithm whose
parameters are to be tuned. Users can apply it to optimize a wide range of
algorithms and techniques, including machine learning models, optimization
algorithms, and more.

4. Scalability: irace is scalable, making it suitable for both small-scale and
large-scale optimization tasks. It adapts to the available computational resources
and allows users to balance the trade-off between the quality of results and the
computational effort required.

5. Robustness: irace is robust in handling noisy or stochastic algorithms. It can
efficiently deal with algorithms that produce variable results due to randomness
or external factors.

In summary, irace is a powerful tool for researchers and practitioners who
need to find well-working parameter settings for their algorithms efficiently and

7 https://mlopez-ibanez.github.io/irace/.
8 https://www.r-project.org/.

https://mlopez-ibanez.github.io/irace/
https://mlopez-ibanez.github.io/irace/
https://mlopez-ibanez.github.io/irace/
https://mlopez-ibanez.github.io/irace/
https://mlopez-ibanez.github.io/irace/
https://mlopez-ibanez.github.io/irace/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/

1.2 Tools Used in This Book 13

effectively. It can save a significant amount of time and computational resources
by automating the parameter-tuning process and helping users discover the best
configuration for their specific tasks.

•> Use of irace in This Book

In this book, we will employ irace to generate the optimal parameter values for
all algorithms considered in the presented computational evaluations. This approach
is essential to guarantee that the comparative analyses presented are both fair and
informative.

1.2.2 STNWeb: A Tool for the Graphical Comparison of
Algorithms

A picture is worth a thousand words.

Arthur Brisbane, 1911

Visual representations of complex concepts may significantly enhance our ability
to grasp digital information more effectively. This principle extends across various
domains within Computer Science and AI. Remarkably, the research commu-
nity in combinatorial optimization has yet to achieve significant progress in the
development of visual aids, despite the growing demand for innovative tools that
facilitate the comparison of optimization algorithms. Over the past few decades,
the conventional approach to comparing optimization algorithms has centered
around gathering numerical data from runs of different algorithms. This data is
subsequently analyzed using conventional tools, such as tables and classical data
charts (e.g., line plots, bar plots, and scatter plots). It has also become customary
to complement this form of algorithm comparison with statistical analyses of the
collected data. In recent years, an increasing number of researchers have recognized
the importance of incorporating supplementary graphical tools to gain a more
profound understanding of the behavior of optimization algorithms, particularly
metaheuristics [20, 48].

As previously mentioned, the research community dedicated to optimization
algorithms has not shown a high level of productivity in the development of visual
tools. Nonetheless, there have been several attempts to visualize the behavior of
optimization algorithms, as evidenced in various studies, including [31, 71, 73, 87].
These approaches typically employ dimensionality reduction techniques to project
complex search spaces into two or three dimensions, enabling a basic tracking of
the search progress. The currently best tool for this purpose was introduced only

14 1 Introduction to CMSA

Fig. 1.5 Example of an
STNWeb graphic

recently in [28]. This tool—labeled STNWeb9 —is a web application based on the
concept of so-called Search Trajectory Networks (STNs) [78]. STNs are graph struc-
tures with nodes and directed edges for visualizing the search process of iterative
optimization algorithms and aiding in the analysis of their progress. Notably, STNs
offer a means to represent multiple trajectories of various optimization algorithms
applied to the same problem instance in a graphical format.

Figure 1.5 illustrates a straightforward example of an STNWeb graphic. This
visual representation compares the performance of two distinct algorithms when
applied to an instance of the well-known and challenging multi-dimensional
knapsack problem. The graphic showcases the trajectories resulting from ten
separate runs of each algorithm on this problem instance. Each vertex within this
visualization represents a solution to the problem instance. Nevertheless, it is worth
noting that this may not always hold true, as explained further below. The graphic
employs various visual elements to convey information effectively. The colors,
shapes, and sizes of the vertices have specific meanings, which are elucidated as
follows:

• Distinct algorithms’ trajectories are presented using different colors, as denoted
in the legend of each STNWeb graphic. For instance, in Fig. 1.5, the 10
trajectories generated by the CMSA algorithm are depicted in blue, while those
generated by the LNS algorithm are represented in green.10

9 STNWeb is freely accessible to anyone interested and can be accessed at this URL: https://www.
stn-analytics.com/.
10 In this context it is not important to know the nature of these algorithms.

https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/
https://www.stn-analytics.com/

1.2 Tools Used in This Book 15

• The initial points of the trajectories are marked with yellow squares. It is
interesting to observe, for example, that in Fig. 1.5, the 10 runs of the CMSA
algorithm commence from distinct initial solutions, whereas the 10 runs of the
LNS algorithm all originate from the same initial solution.

• Trajectory endpoints are represented in two ways: dark grey triangles and red
dots. Dark grey triangles signify endpoints that do not correspond to the best-
found solution across all algorithm runs, while red dots indicate endpoints that
correspond to best-found solutions.

• Pale grey dots represent solutions that are shared across trajectories of at least
two distinct algorithms.

• Lastly, the size of a vertex or dot conveys the count of algorithm trajectories
passing through it: the larger the vertex, the greater the number of traversing
algorithm trajectories.

As mentioned above, the STNWeb graphic of Fig. 1.5 offers a comparative
analysis of two different algorithms applied ten times to the same problem instance.
Notably, it reveals the presence of an attraction area within the search space,
particularly for the CMSA algorithm. Out of the ten CMSA trajectories, five are
notably drawn toward the region marked by the presence of large, pale grey dots.
Interestingly, although many trajectories traverse this area, none of them stops in
one of the two solutions represented by those dots, underscoring that these solutions
are not the best ones within that region. In contrast, the LNS algorithm exhibits
less inclination toward this specific area in the search space, with only one of
its trajectories passing through it. This aspect of trajectory behavior is a facet
often overlooked in contemporary optimization research. Nevertheless, it can prove
invaluable for gaining insights into why an algorithm performs exceptionally well
or, conversely, why it faces challenges in delivering good results.

Note that—either due to many or long algorithm trajectories, or to specific
problem instance characteristics—STN graphics in which dots are solutions may
sometimes appear cluttered and hard to interpret. For this reason, STNWeb comes
with so-called search space partitioning techniques that divide the search space
into chunks containing closely related solutions. In STN graphics after search space
partitioning, dots are those chunks of the search space containing at least one of the
solutions from the considered set of algorithm trajectories.

•> Use of STNWeb in This Book

In this book, we will make use of the STNWeb tool for generating graphics that
will help us understand the behavioral differences of different algorithms.

16 1 Introduction to CMSA

2 3 4 5 6 7

CMSA_restr

CbMSA

CMSA

Adapt_CMSA

BA

CPLEX

Greedy

Fig. 1.6 Example of a critical difference (CD) plot generated with the scmamp package

1.2.3 scmamp: A Tool for the Statistical Comparison
of Algorithms

In addition to the graphical STNWeb tool described in the previous section,
algorithms are also compared on the basis of numerical results. In order to do
this on a scientific basis we make use of statistical comparison, which involves
employing statistical methods to assess and differentiate the performance of various
optimization techniques. Such a statistical comparison aims to determine whether
observed differences in the outcomes are statistically significant or merely due to
chance. The goal is to provide a robust and objective basis for selecting the most
effective optimization approach in a given context.

For this purpose, we make use of the R package scmamp [25].11 Several
works (see, for example, [35, 46, 47]) have outlined a fundamental classification of
general machine learning scenarios and the corresponding statistical tests suitable
for each scenario. The scmamp package implements the recommendations from
these works and aims specifically for a comparative analysis of multiple algorithms
across multiple problem instances. The package also provides functions for the
generation of so-called critical difference (CD) plots based on the results of the
statistical comparisons performed. An example of such a CD plot in which seven
different algorithms are compared over a range of problem instances is shown in
Fig. 1.6. Vertical whiskers indicate the average ranking of the algorithms over the
considered set of problem instances. Algorithm CMSA_restr, for example, is the
best-ranked algorithm, while algorithm Greedy is the one with the lowest average
rank. Moreover, if two algorithm whiskers are joined by a bold horizontal bar, it
suggests that the difference in their performance is not statistically significant. In
the example shown in Fig. 1.6, no statistical difference is detected, for example,
concerning the performance of algorithms BA and CPLEX. Conversely, if two
algorithm whiskers are not joined by a bold horizontal bar, their performance is
considered significantly different.

11 https://github.com/b0rxa/scmamp.

https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp
https://github.com/b0rxa/scmamp

1.3 CMSA: Construct, Merge, Solve & Adapt 17

In essence, CD plots help researchers and practitioners make informed decisions
about the relative performance of multiple algorithms across a set of problem
instances. They provide a clear visual representation of which algorithms are
statistically different in terms of their performance and which are not, aiding in
the selection of the most suitable algorithm for a specific set of problem instances.

•> Use of scmamp in This Book

scmamp is used in all experimental evaluations of this book for the generation of
CD plots in order to convey statistical information about the relative performance of
the compared algorithms.

1.3 CMSA: Construct, Merge, Solve & Adapt

As mentioned at the beginning of this book, CMSA (Construct, Merge, Solve &
Adapt) is an algorithmic idea for solving hard combinatorial optimization problems.
The algorithm was first presented in a seminal paper in [18] in which it was applied
to the minimum covering arborescence problem and to the minimum common string
partition problem. The currently existing applications of CMSA are summarized in
Table 1.1.

•> Awards for Work on CMSA

Work on CMSA has received two awards in recent years. The first one was the best
paper award at the ECOM track of the GECCO 2016 conference for a paper on
the application of CMSA to the multi-dimensional knapsack problem [17].12 The
second award was the one for The Best Methodological Contribution in Operations
Research jointly given by the Spanish Society of Statistics and Operations Research
(SEIO) and the BBVA Foundation in 2021.13

Initially, the idea for the development of CMSA originated from an observation
of a possible weakness of an older hybrid technique known as large neighborhood
search (LNS); see also Sect. 1.1.5. More specifically, in the case of (1) problems—
respectively, problem instances—that are characterized by large sets of solution
components and (2) solutions that consist of comparatively few solution compo-
nents, we noticed that partial-destruction-based LNS sometimes easily gets stuck in
local minima. Therefore, the motivation was to generate a hybrid approach in which
this would not happen.

12 GECCO 2016 Awards Webpage. Accessed on 17/11/2023.
13 SEIO-FBBVA 2021 Award Webpage. Accessed on 17/11/2023.

 11068 38734 a 11068 38734 a

https://www.seio.es/home/

 4963 40068
a 4963 40068 a

 -1088 57047 a -1088 57047
a

 -1088 58376 a -1088 58376 a

18 1 Introduction to CMSA

Table 1.1 Currently existing applications of (variants of) CMSA

Optimization problem Publication Year

Minimum common string partition [12, 16, 18] 2016, 2020, 2021

Minimum covering arborescence [18] 2016

Repetition-free longest common subsequence [13, 14] 2016, 2018

Multi-dimensional knapsack [16, 17, 69] 2016, 2017, 2021

Maximising the net present value of project schedules [98] 2019

Binary optimization [15] 2019

Minimum capacitated dominating set [83] 2019

Routing cooperative air-ground robots with fuel constraints [8] 2019

Maximum happy vertices problem [49, 66, 100] 2019, 2022

Score-constrained packing [54] 2020

Refueling and maintenance planning of nuclear power plants [39] 2021

Test data generation in software product lines [44] 2021

Bus driver scheduling [90] 2022

Minimum positive influence dominating set [4] 2022

Unit disk cover [5] 2022

Electric vehicle routing [2, 3] 2022, 2023

Multi-way multi-dimensional number partitioning [37] 2023

Closest String [79] 2023

Maximum disjoint dominating set [88, 89] 2023, 2024

Rooted max tree coverage [104] 2024

1.3.1 Standard CMSA

We start our introduction to CMSA by describing a standard algorithm variant,
which is henceforth simply called CMSA. However, before doing so, the general
idea of CMSA is briefly described. At each iteration, CMSA first generates several
(generally valid) solutions to the tackled problem instance in a probabilistic way.
Next, the components of these solutions are added to an initially empty sub-instance
. C'. This sub-instance is then passed to an exact solver (if convenient, this can be an
ILP solver) which delivers the best solution found in a limited time. Based on this
solution, the incumbent sub-instance is adapted. In particular, based on an aging
mechanism, seemingly useless solution components are removed from . C' in order
not to slow down the solver in the next algorithm iteration.

The first action that needs to be taken for applying CMSA to a combinatorial
optimization problem is defining the set C of solution components, that is, those
components of which solutions to the considered problem are composed. Later we
will provide specific examples for such a definition. For the moment, however, let
.C = {c1, . . . , cn} be a generic set of solution components. Moreover, any valid
solution .S ∈ S to the considered optimization problem—where . S is the set of all
valid solutions—can be expressed as a subset of C, that is, .S ⊆ C for all .S ∈ S.

1.3 CMSA: Construct, Merge, Solve & Adapt 19

Algorithm 1.1: Pseudo-code of standard CMSA
1: input 1: Complete set of solution components C
2: input 2: values for CMSA parameters na, agemax, and tILP
3: Sbsf := ∅
4: C' := ∅
5: age[c] := 0 for all c ∈ C
6: while CPU time limit not reached do
7: for i := 1, . . . , na do
8: S := ProbabilisticSolutionConstruction(C)
9: if f (S) < f (Sbsf) then Sbsf := S endif

10: for all c ∈ S and c /∈ C' do
11: age[c] := 0
12: C' := C' ∪ {c}
13: end for
14: end for
15: SILP := SolveSubinstance(C', tILP)
16: if f (SILP) < f (Sbsf) then Sbsf := SILP end if
17: Adapt(C', SILP, agemax)
18: end while
19: output: Sbsf

Finally, let .f : S ⍿→ N
+ for the following discussion be the objective function to be

minimized, and let .f (∅) := ∞.
Algorithm 1.1 provides the pseudo-code of the standard version of CMSA. The

algorithm starts by initializing both the best-so-far solution .Sbsf and the sub-instance
. C', which is always a subset of C, to the empty set. Furthermore, the so-called age
values of all solution components are initialized to zero, that is, .age[c] := 0 for all
.c ∈ C. The main loop of CMSA consists of four actions.

1. First, in the construct step of CMSA, a number of . na valid solutions to the
considered problem are probabilistically generated (see line 8 of Algorithm 1.1).

2. Second, in the merge step of CMSA, the current sub-instance . C' is updated with
the solution components found in these . na solutions (see lines 10–13). That is,
those solution components that (1) are found in at least one of the . na constructed
solutions and (2) do currently not form part of . C', are added to . C' and their age
value is set to zero.

3. Third, in the solve step of CMSA, an ILP solver is applied in order to find the best
possible solution that only contains components from sub-instance . C', within a
time limit of .tILP CPU seconds (see line 15).

4. Fourth, in the adapt step of CMSA, sub-instance . C' is adapted based on the
solution .SILP returned by the ILP solver; see function Adapt(. C', .SILP, . agemax) in
line 17. In particular, in this function, sub-instance . C' is adapted in the following
way. First, the age values of all components in .C' \ SILP are incremented by one.
Second, the age values of all components in .SILP are set to zero. The final action
in the adapt step consists of removing all those components from . C' whose age
value has reached the maximum allowed age (.agemax). This is done in order to

20 1 Introduction to CMSA

prevent components that never appear in .SILP from slowing down the ILP solver
in subsequent CMSA iterations. Note that the age value .age[c] of a solution
component .c ∈ C, at any time, indicates the number of consecutive CMSA
iterations for which c has formed part of sub-instance . C' without having been
included in the ILP-solution to the sub-instance . C'.

These four steps are iterated until a given CPU time limit is reached. The output of
the algorithm is .Sbsf, the best solution found during the whole process.

Note that the construct step and the solve step of such a CMSA algorithm are
problem-dependent. In particular, for the construct step of the algorithm, generally,
a greedy heuristic for the tackled problem is used in a randomized way, and the solve
step depends on the availability of an ILP model for the tackled problem. Moreover,
the way in which an ILP model is exactly generated based on sub-instance . C' leaves
room for variation. In contrast, the merge step and the adapt step are problem-
independent.

1.4 Application to Minimum Dominating Set

In the following, we show how standard CMSA can be applied to the so-called
Minimum Dominating Set problem. In particular, we will show two different ways
of defining the set of solutions components, which results in slightly different ways
of generating the ILP models corresponding to the sub-instances at each algorithm
iteration.

•> Requirements for the Application of CMSA

In order to apply the standard CMSA algorithm from the previous section (see
Sect. 1.3.1) to any combinatorial optimization problem, we need to define two
algorithm components:

1. A probabilistic way of generating valid solutions
2. An ILP model of the tackled problem

The Minimum Dominating Set (MDS) problem is a well-known combinatorial
optimization problem in Computer Science. Given an undirected graph .G = (V ,E),
where .V = {v1, . . . , vn} is the set of n vertices and E is the set of edges, the goal
of the problem is to find a smallest dominating set .D∗ ⊆ V . Hereby, a set .D ⊆ V is
called a dominating set of G if and only if for every vertex .v ∈ V it holds that

1. . v ∈ D, or
2. .∃ v' ∈ D such that .(v, v') ∈ E.

1.4 Application to Minimum Dominating Set 21

(a) (b) (c)

Fig. 1.7 An undirected graph with three different MDS solutions. (b) and (c) show alternative
optimal solutions. (a) Sub-optimal solution. (b) An optimal solution. (c) Another optimal solution

In other words, a subset of the vertices of graph G is called a dominating set of G
if every vertex of G is either in the set or adjacent to at least one vertex from the
set; see Fig. 1.7 for an example. In this context, note that the set of neighbors of
v in G is denoted by .N(v), that is, .N(v) := {v' ∈ V | (v, v') ∈ E}. Moreover,
.N [v] := N(v) ∪ {v} is called the closed neighborhood of v.

The standard ILP model for the MDS problem makes use of a binary variable . xi

for each vertex .vi ∈ V . The model can be stated as follows.

. min
∑

vi∈V

xi . (1.13)

subject to
∑

vj ∈N(vi)
xj + xi ≥ 1 ∀ vi ∈ V (1.14)

xi ∈ {0, 1} ∀ vi ∈ V

The constraints (1.14) make sure that any valid solution either contains a node . vi ∈
V or at least one of its neighbors.

Finally, note that the MDS problem is known to be NP-hard, meaning that there
is no known polynomial-time algorithm to solve it for arbitrary graphs unless . P =
NP . As a result, research often focuses on finding efficient algorithms for special
cases or developing heuristic algorithms.

1.4.1 An Intuitive Way of Defining the Solution Components

•> Programming Code Availability of This Application

Note that the C++ program code for this way of applying standard CMSA to the
MDS problem is included in Appendix A of this book.

The first important step for the development of any CMSA algorithm is the
definition of the set of solution components (C). In the case of the MDS problem,

22 1 Introduction to CMSA

Algorithm 1.2: MDS solution construction
1: input: a graph G = (V , E)
2: s := ∅
3: V := {vi ∈ V | N [vi | s] /= ∅}
4: while V /= ∅ do
5: vj := ChooseFrom(V)
6: s := s ∪ {vj }
7: V := {vi ∈ V | N [vi | s] /= ∅}
8: end while
9: output: a valid solution s

there is an intuitive way of doing so. Hereby, set C simply contains a component
ci for each vertex vi ∈ V . Therefore, for the following discussion, remember that
vi and ci both refer to vertex vi of the input graph G. The standard CMSA for
the MDS problem based on the intuitive set of solution components is henceforth
labeled CMSA_INT.

1.4.1.1 Constructing Solutions to the MDS Problem

In the following, we say that, if a vertex . vi is added to a solution s under
construction, then . vi covers itself and all its neighbors, that is, it covers . vi

(itself) and all .vj ∈ N(vi). Moreover, assuming that s is a partial solution under
construction, we denote by .N [vi | s] ⊆ N[vi] the set of uncovered vertices (with
respect to s) from the closed neighborhood .N [vi] of .vi ∈ V .

The solution construction mechanism is shown in Algorithm 1.2. It starts with
an empty solution .s = ∅. For each construction step, .V ⊆ V is defined as
the set of vertices that can cover at least one of the vertices not covered yet by
s. At each construction step, exactly one vertex is chosen from . V in function
ChooseFrom.(V). This works as follows. First, a random number r is sampled
uniformly at random from .[0, 1]. In case .r ≤ drate, .vj ∈ V is chosen such that

.vj := max
vi∈V

{∣∣N [vi | s]∣∣} (1.15)

Otherwise—that is, in case .r > drate—a number of .min{lsize, |V |} vertices from . V
is pre-selected and placed into a candidate set .L ⊆ V such that

.
∣∣N [vi | s]∣∣ ≥ ∣∣N [vk | s]∣∣ for all vi ∈ L, vk ∈ V \ L (1.16)

A vertex .vj ∈ L is then chosen uniformly at random. Finally, note that each solution
s, after finalizing its construction, is converted into a corresponding solution S that
contains for each .vi ∈ s the corresponding solution component . ci .

1.4 Application to Minimum Dominating Set 23

1.4.1.2 Solving Sub-instances of the MDS Problem

Next, we will describe how to use the ILP model of the MDS problem to solve a
sub-instance . C' within CMSA_INT. In this context, remember that—in any CMSA
algorithm—a sub-instance . C' contains those solution components that may appear
in valid solutions to . C'.

In order to solve a sub-instance . C' by means of the application of an ILP solver
in function SolveSubinstance(. C', . tILP) of Algorithm 1.1, the MDS ILP model is
extended in CMSA_INT by adding the following set of constraints:

.xi = 0 for all ci ∈ C \ C' (1.17)

In this way, only solution components (resp. vertices) that form part of the sub-
instance . C' may be selected to appear in solutions.

Note that the function SolveSubinstance(. C', . tILP)—see line 15 of Algo-
rithm 1.1—returns the ILP solver solution in terms of a set .SILP of solution
components. Moreover, the application of the ILP solver is subject to a time limit
of .tILP CPU seconds, which means that the solution .SILP returned by the function
SolveSubinstance(. C', . tILP) is not necessarily an optimal solution to the sub-
instance . C'.

•> ILP Solver Dependent Settings Considered in This Book

Please be aware that while a commercial ILP solver like CPLEX (utilized
throughout this book) can be used with its default parameter settings, this may not
always yield the best results. Therefore, we explore the following options to possibly
enhance performance beyond the default settings:

1. Heuristic emphasis: CPLEX offers a parameter to balance between the speed
of proving optimality and the speed to improve the best-found solution during
execution. As proving optimality is not a priority in CMSA algorithms, we
consider a parameter .cplexemphasis ∈ {true,false}, where . cplexemphasis =
false refers to the default setting of CPLEX and . cplexemphasis = true
indicates a setting of the emphasis parameter to a value of five (highest heuristic
emphasis value).

2. Warm start: When started in default mode, an ILP solver initially does not
know any valid solution to the tackled problem. In some cases, providing the
ILP solver with an initial valid solution can speed up the solving process. In
the context of CPLEX, this is called a warm start. We consider a parameter
.cplexwarmstart ∈ {true,false}, where .cplexwarmstart = false does not
provide an initial solution to CPLEX, whereas .cplexwarmstart = true provides
the best-so-far solution .Sbsf to CPLEX as initial solution.

3. Aborting a CPLEX call: Even with an increased value for the heuristic empha-
sis, CPLEX spends computation time on bound computations that eventually lead
to proving optimality. In some applications, a lot of computation time might be
spent on these efforts. In fact, in our experience, it is sometimes beneficial to

24 1 Introduction to CMSA

abort CPLEX when the first solution is found that improves over the best-so-far
solution .Sbsf. This CPLEX behavior is invoked in the applications of this book
with a parameter .cplexabort ∈ {true,false}.

This completes the description of the application of standard CMSA based on
the intuitive set of solution components to the MDS problem.

1.4.2 A Generic Way of Defining the Solution Components

Depending on the optimization problem to be solved, sometimes, there might be no
intuitive way of defining the set of solution components. However, a generic way of
doing so works as follows. For this purpose, we assume to have a binary ILP model
for the tackled problem at hand.14 The set C of generic solution components will
contain for each binary variable . xi two solution components:

1. Component . c0
i : corresponding to .xi = 0.

2. Component . c1
i : corresponding to .xi = 1.

In case a solution s to the problem is characterized by .xi = 0, the corresponding
CMSA-solution S contains component . c0

i . Similarly, if .xi = 1 in a solution s, then
S contains component . c1

i . In the case of the MDS problem, for example, the generic
set of solution components C is defined as follows:

.C := {c0
1, . . . , c

0
n, c

1
1, . . . , c

1
n} where n := |V | (1.18)

For example, the solution in Fig. 1.7a at page 21a in CMSA format would contain
the following set of solution components: .{c1

1, c
0
2, c

0
3, c

0
4, c

1
5, c

1
6}. Henceforth the

standard CMSA algorithm for the MDS based on the generic set of solution
components is labeled CMSA_GEN.

1.4.2.1 Solution Construction

For constructing solutions in CMSA_GEN we use exactly the same way as described
in the context of CMSA_INT in Sect. 1.4.1.1. In other words, function Probabilis-
ticSolutionConstruction(C) first generates a solution s which consists of a set of
vertices. The only difference to the procedure described in Sect. 1.4.1.1 consists in
the conversion of s into a solution S of CMSA_GEN. In particular, for each .vi ∈ V

14 Note that any integer ILP can be transformed into a binary ILP (BIP). This is well known in OR
and will be demonstrated employing an example in Chap. 5.

1.4 Application to Minimum Dominating Set 25

that forms part of s, solution component . c1
i is added to S, and for each .vi ∈ V which

does not form part of s, solution component . c0
i is added to S.

1.4.2.2 Sub-instance Solving

A sub-instance . C' in CMSA_GEN is solved by adding the following additional
constraints to the MDS ILP model (for .i = 1, . . . , |V |) and solving it with CPLEX:

.xi = 0 if c0
i ∈ C' and c1

i /∈ C'
. (1.19)

xi = 1 if c0
i /∈ C' and c1

i ∈ C' (1.20)

In other words, if . C' only contains the solution component . c0
i corresponding to

.xi = 0, then the value of . xi is fixed to zero. Similarly, if . C' only contains the
solution component . c1

i corresponding to .xi = 1, then the value of . xi is fixed to one.
Otherwise, if . C' contains both solution components . c0

i and . c1
i then variable . xi is left

free, which means that . vi might, or not, be included in a solution to the sub-instance.
In this context, note that the way of generating the ILP model corresponding to

. C' in CMSA_GEN is potentially more restrictive than in CMSA_INT, at least in the
case of our application to the MDS problem. This can easily be seen as follows.
Let us assume that both algorithm variants are in the first iteration (that is, . C' is
empty), .na = 2 (that is, two solutions are generated per iteration), and the generated
solutions are the ones from Fig. 1.7b and c on page 21. Therefore, in CMSA_INT,
after solution construction it holds that .C' = {c2, c3, c4}. In the case of CMSA_GEN,
it holds that .C' = {c0

1, c
0
2, c

1
2, c

0
3, c

1
3, c

1
4, c

0
5, c

0
6}. This means that the ILP model

corresponding to . C' in CMSA_INT is obtained by adding constraints .xi = 0 (. i ∈
{1, 5, 6}) to the MDS ILP model. In contrast, the ILP model corresponding to . C'
in CMSA_GEN is obtained by also adding constraints .xi = 0 (.i ∈ {1, 5, 6}), but
additionally constraint .x4 = 1 is added. This means that . v4 must be part of a valid
solution to the sub-instance in CMSA_GEN.

1.4.3 Experimental Evaluation

The following algorithms are included in the experimental evaluation presented in
this section:

1. GREEDY: A greedy heuristic obtained by executing the heuristic from Algo-
rithm 1.2 on page 22 in a deterministic way.

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance with
the default parameter values of CPLEX.

3. CMSA_INT: The standard CMSA algorithm, based on the intuitive way of
defining the set of solution components.

26 1 Introduction to CMSA

4. CMSA_GEN: The standard CMSA algorithm, based on the generic way of
defining the set of solution components.

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX) and within
the CMSA variants—in sequential mode. For conducting the experiments we used
the IIIA-CSIC in-house high-performance computing cluster of machines equipped
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of
RAM.

1.4.3.1 MDS Benchmark Sets

In order to have a controlled experimentation environment, we decided to produce
benchmark sets consisting of graphs of varying sizes and densities, making use of
the following three network models:

1. Erdös-Rényi graphs: The Erdös-Rényi model [40] is a random graph model
named after mathematicians Paul Erdös and Alfréd Rényi. This model is one
of the earliest and simplest models for generating random graphs. The earliest
version was introduced in 1959 and is characterized by two parameters: the
number of nodes (n) and the probability of an edge existing between any pair
of nodes (p).

2. Watts-Strogatz graphs: The Watts-Strogatz model is a mathematical model for
generating small-world networks, which are networks characterized by a small
average shortest path length between vertices while still exhibiting a high level
of local clustering. This model was proposed by Duncan J. Watts and Steven
Strogatz in 1998 [102].

3. Barabási-Albert graphs: The Barabási-Albert model is a preferential attach-
ment model for generating scale-free networks. It was introduced by Albert-
László Barabási and Réka Albert in 1999 [9]. The key feature of the Barabási-
Albert model is its ability to generate networks with a scale-free degree
distribution, meaning that the distribution of node degrees follows a power-law,
where a small number of nodes have a very high degree while the majority have
lower degrees.

In particular, we generated 30 graphs with each of the three models, and for each
combination of .|V | ∈ {500, 1000, 1500, 2000} and four different graph densities.
Note that the graph density is controlled in Erdös-Rényi graphs by the edge
probability (p), in Watts-Strogatz graphs by a parameter k, and in Barabási-Albert
graphs by a parameter m. In total, this benchmark set consists of 480 graphs from
each of the three network models. For the generation of all these graphs we used the
implementations of the three graph models from the igraph library.15

15 https://igraph.org/.

 -1088 58376 a -1088 58376
a

1.4 Application to Minimum Dominating Set 27

1.4.3.2 Parameter Tuning

As mentioned already in Sect. 1.2.1, the irace tool was used for tuning the
parameters of CMSA_INT and CMSA_GEN. The following is a list of parameters
that were considered for parameter tuning:

• . na: The number of solution constructions per CMSA iteration.
• .agemax: The maximum age solution components may reach before being

removed from the sub-instance . C'.
• .drate: The determinism rate for solution construction (see Sect. 1.4.1.1).
• .lsize: The candidate set size for solution construction (see Sect. 1.4.1.1).
• . tILP: The CPU time limit (in seconds) for the application of CPLEX for solving

a sub-instance . C'.
• .cplexemphasis: Use of heuristic emphasis in CPLEX.
• .cplexwarmstart: Use of warm start in CPLEX.
• .cplexabort: Aborting CPLEX whenever then best-so-far solution .SILP is improved.

Both CMSA variants were tuned exactly once for the entire benchmark set. As
tuning instances, additional problem instances were generated. More specifically,
for each combination of .|V | and graph density, exactly one tuning instance was
generated by each of the three network models. This makes a total of 24 tuning
instances. As computation time limit, 150 CPU seconds was used for all graphs with
.|V | = 500, 300 CPU seconds for all graphs with .|V | = 1000, 450 CPU seconds for
all graphs with .|V | = 1500, and 600 CPU seconds for all graphs with .|V | = 2000.
Finally, irace was given a budget of 3000 algorithm runs.

The tuning results for both CMSA_INT and CMSA_GEN are shown in Table 1.2.
In general, the preferred parameter settings of the two CMSA variants are rather
similar. The number of solution constructions is rather low and the maximum age
limit is rather low. This means that, in the context of the MDS problem, sub-
instances should not be too large. This is because probably CPLEX is running into
problems with larger sub-instances, which is also indicated by a rather high CPU
time limit for CPLEX for solving sub-instances. The differences in the parameter
setting for the two CMSA variants is to be found in the setting of .drate, where
CMSA_GEN seems to require less determinism than CMSA_INT. Another difference
is shown in the use of CPLEX abort. While CMSA_INT does not make use of the
abort mechanism, CMSA_GEN does make use of it.

Table 1.2 Parameters,
domains and tuning results
for the MDS problem

Parameter Domain CMSA_INT CMSA_GEN

.na .{1, . . . , 50} 4 1

.agemax .{1, . . . , 10} 3 7

.drate .[0.0, 0.99] 0.29 0.04

.lsize .{3, . . . , 50} 35 37

.tILP .{1, . . . , 20} 13 15

.cplexemphasis .{true,false} true true

.cplexwarmstart .{true,false} false false

.cplexabort .{true,false} false true

28 1 Introduction to CMSA

1.4.3.3 Results

All four algorithmic techniques (GREEDY, CPLEX, CMSA_INT and CMSA_GEN)
were applied exactly once to each of the problem instances from the benchmark
set. The computation time limit for CPLEX, CMSA_INT and CMSA_GEN was the
same as the one used for tuning (see previous section). The results are shown in the
form of box plots in Figs. 1.8, 1.9, and 1.10. Note that there is exactly one graphic

Fig. 1.8 Results for Erdös-Rényi graphs

1.4 Application to Minimum Dominating Set 29

Fig. 1.9 Results for Watts-Strogatz graphs

for each network model (Erdös-Rényi, Watts-Strogatz, and Barabási-Albert). Each
of these graphics contains a .4 × 4 grid of box plots. Hereby, the rows present the
results (from top to bottom) for graphs of increasing size, and the columns (from
left to right) present the results for graphs of increasing density.

To be able to support the analysis of the results with claims about the statistical
significance, so-called CD plots are provided separately for the graphs of each of the
three network models in Figs. 1.11, 1.12, and 1.13; see Sect. 1.2.3 on page 16 for a

30 1 Introduction to CMSA

Fig. 1.10 Results for Barabási-Albert graphs

general description of CD plots. Each of the CD plot figures contains five graphics.
The first one (topmost) of these graphics provides statistical information over the
complete set of graphs (concerning the respective network model). The remaining
four CD plot graphics convey statistical information concerning all graphs of a
certain density.

1.4 Application to Minimum Dominating Set 31

1 2 3 4

(a)
1 2 3 4

(b)

1 2 3 4

(c)
1 2 3 4

(d)

1 2 3 4

(e)

Fig. 1.11 Critical Difference (CD) plots concerning Erdös-Rényi graphs. (a) All graphs. (b)
Density .p = 0.00624144. (c) Density .p = 0.00416381. (d) Density .p = 0.0103881. (e) Density
. p = 0.020705

1 2 3 4

(a)
1 2 3 4

(b)

1 2 3 4

(c)
1 2 3 4

(d)

1 2 3 4

(e)

Fig. 1.12 Critical Difference (CD) plots concerning Watts-Strogatz graphs. (a) All graphs. (b)
Density . k = 2. (c) Density . k = 3. (d) Density . k = 5. (e) Density .k = 10

32 1 Introduction to CMSA

1 2 3 4

(a)
1 2 3 4

(b)

1 2 3 4

(c)
1 2 3 4

(d)

1 2 3 4

(e)

Fig. 1.13 Critical Difference (CD) plots concerning Barabási-Albert graphs. (a) All graphs. (b)
Density . m = 2. (c) Density . m = 3. (d) Density . m = 5. (e) Density .m = 10

•> Main Observations Concerning the MDS Results

1. First, and most importantly, both CMSA variants generally outperform both
GREEDY and CPLEX.

2. The comparison with CPLEX shows exactly the pattern that one would expect
from the comparison of a hybrid technique with an exact technique: in the
context of small and/or sparse graphs, for which CPLEX performs strongly, the
performance of the two CMSA variants is comparable to the one of CPLEX.
With growing graph size and/or density, however, both CMSA variants clearly
start to outperform CPLEX. Note that CPLEX even performs worse than GREEDY

in the case of the largest and densest Erdös-Rényi (Fig. 1.8) and Watts-Strogatz
(Fig. 1.9) graphs.

3. Concerning the comparison between the two CMSA variants (CMSA_INT vs.
CMSA_GEN) we can observe that, even though the performance of both is rather
similar, CMSA_GEN outperforms CMSA_INT in the context of Erdös-Rényi and
Watts-Strogatz graphs, whereas the opposite is the case for the Baragási-Albert
graphs. Moreover, this claim has statistical significance in the case of the Watts-
Strogatz graphs (in favor of CMSA_GEN) and in the case of the Barabási-Albert
graphs (in favor of CMSA_INT). Nevertheless, when looking at the differences
between the algorithm performances shown by the box plots, we can see that

1.4 Application to Minimum Dominating Set 33

these differences are rather small, with the exception of the largest and densest
Watts-Strogatz graphs.

4. For what concerns the differences in algorithm performance depending on the
graph models used to generate the problem instances, it can clearly be said that
(at least for the algorithms studied here) the MDS is much easier to solve in
Barabási-Albert graphs (resembling scale-free networks) than in Erdös-Rényi
(random graphs) and Watts-Strogatz graphs (small-world networks).

Finally, we also present some STNWeb graphics that show the different behavior
of CMSA_INT and CMSA_GEN in Fig. 1.14; see Sect. 1.2.2 on page 13 for a
description of this type of graphic. Figure 1.14a shows the STN consisting of 10
runs of CMSA_INT and CMSA_GEN for the first Erdös-Rényi graph with 2000
vertices and the lowest density, a case for which the box plots in Fig. 1.8 show that
CMSA_GEN outperforms CMSA_INT. This STNWeb graphic shows that two of the
CSMA_GEN runs obtain the overall best solution found. Moreover, it shows that the
trajectories of CMSA_GEN are generally longer than those of CMSA_INT. This can
be explained by the fact that CMSA_GEN only generates one new solution at each
iteration, which leads to a small step-size when moving through the search space.
Moreover, it makes use of the abort functionality for stopping CPLEX whenever a
better solution than the currently best-so-far solution .SILP is obtained. This leads to
the fact that the start of the algorithm trajectories of CMSA_GEN are of much worse
quality than those of CMSA_INT, which in turn leads to longer search trajectories.
Curiously, the 20 search trajectories do not show any overlaps. Therefore, we
also produced the same STN after search space partitioning, which is obtained
after clustering similar solutions and coarsening in this way the search space. The
corresponding STNWeb graphic is shown in Fig. 1.14b. In particular, it can be seen
that most CMSA_GEN search trajectories are attracted by the same area of the search
space, marked by the two large red dots. Moreover, it can also be seen that those
CMSA_INT runs that are attracted by this area of the search space, stop in inferior
solutions shortly before reaching the best solutions of that area (see the large gray
triangles in the south-west direction of the large red dots).

The graphics in Fig. 1.14c and d show the same for the first Watts-Strogatz graph
with 1000 nodes and the highest density. In this case, the box plots of Fig. 1.9
show that CMSA_INT generally outperforms CMSA_GEN. And in fact, the STNWeb
graphic after search space partitioning (Fig. 1.14d) shows that CMSA_INT runs
rather quickly end up in one of two best-found solutions, whereas some of the
CMSA_GEN trajectories end in the large gray triangle to the left of the smaller red
dot, while other CMSA_GEN trajectories do not seem to be attracted by that area of
the search space.

34 1 Introduction to CMSA

Fig. 1.14 STNWeb graphics. (a) and (b) show 10 runs of CMSA_INT and CMSA_GEN for the first
Erdös-Rényi graph with 2000 vertices and the lowest density. While (a) shows the complete STN,
(b) shows the same STN after partitioning. (c) and (d) show the same for the first Watts-Strogatz
graph with 1000 nodes and the highest density

1.5 Algorithmic Proposals Related to CMSA

The core concept of CMSA closely aligns with that found in numerous LNS
variants.16 Both CMSA and various LNS variants operate on the principle of
iteratively applying an exact technique to reduced problem instances, that is, sub-
instances derived from the original problem instances. However, the manner in
which CMSA generates these sub-instances differs from the conventional approach
in LNS. In CMSA, there is no imposition of a predefined partial solution when

16 See Sect. 1.1.5 for a discussion on LNS. Moreover, see Sect. 6.3.2 in Chap. 6 of this book for a
comparison between CMSA and LNS.

1.5 Algorithmic Proposals Related to CMSA 35

utilizing the exact technique. Instead, CMSA narrows down the viable options for
constructing a feasible solution and makes use of the exact technique for finding (if
possible) the optimal solution that can be generated from this refined set of choices.

Concepts related to CMSA are explored in the works of Applegate et al. [7] and
Cook and Seymour [32], who addressed the classical traveling salesman problem
(TSP) as follows. Initially, in a preliminary phase, they employ a metaheuristic to
generate a collection of high-quality TSP solutions. Subsequently, these solutions
are merged to create a reduced problem instance, which is then solved by an exact
solver. Similar approaches are known from the field of set covering and vehicle
routing problems. In [27], for example, Cavaliere et al. tackle the Capacitated
Vehicle Routing Problem (CVRP) by, first, applying a local search approach in
order to create a pool of good routes; second, the pool of routes is refined by the
application of column generation; and lastly, an exact approach is used to solve the
CVRP only allowing routes from the generated pool of routes. This is done in an
iterative way.

Another example of related work concerns the so-called generate-and-solve (GS)
framework that was originally presented in [76]. This framework is a two-phase
approach which works as follows:

1. Generation phase: In the first phase, a set of candidate solutions is generated.
This process often involves using heuristics, metaheuristics, or other optimization
methods to explore the solution space and find feasible and possibly high-quality
solutions. In other words, techniques such as genetic algorithms, simulated
annealing, or particle swarm optimization may be used to explore the solution
space efficiently and discover diverse solutions.

2. Solving phase: The solutions generated in the first phase are typically used
to create a reduced or modified version of the original problem instance. This
reduction might involve simplifying the problem by fixing certain variables or
constraints based on the generated solutions. The reduced problem instance
is then solved optimally using an exact optimization method. Exact solvers
guarantee to find the globally optimal solution within the reduced problem space.

Recent applications of this framework include the ones in [36, 85, 92].
Another prominent example of related work concerns kernel search [6], which

is a heuristic framework based on the identification of a restricted set of promising
solution components (called the kernel) and on the exact solution of sub-instances
by ILP solvers. Applications include [52, 64, 93].

The concept of solution merging in evolutionary algorithms (EAs) typically
involves combining information from multiple candidate solutions to generate new
solutions. EAs, which are optimization techniques inspired by natural selection
and genetics, often employ mechanisms to create diverse and potentially improved
solutions over successive iterations. Solution merging is one such mechanism
that aims to exploit the strengths of different candidate solutions. By merging
information from different solutions, the evolutionary algorithm seeks to explore
a broader space of potential solutions, facilitating the discovery of novel and high-
quality solutions to the optimization problem. The specific mechanisms for solution

36 1 Introduction to CMSA

merging can vary based on the algorithm and the nature of the optimization problem
being addressed. In fact, both heuristic and exact techniques are used in the context
of solution merging. Applications of solution merging include [21, 41, 91].

A last related line of work that we would like to mention here is merge
search (MS) [60]. Just like CMSA, MS generates at each iteration a sub-instance
to the original problem instance and tries to solve this sub-instance by means
of an exact solver. The primary distinction between CMSA and MS lies in the
way in which sub-instances are generated. CMSA primarily aims at pinpointing
a substantial set of variables with fixed values in high-quality solutions. The
optimization focus then shifts to the remaining set of variables. In contrast, MS seeks
aggregations of variables, specifically groups with consistent (identical) values
across good solutions. However, the exact values within these groups remain subject
to optimization. One of the most recent applications of MS can be found in [99].

References

1. Ahuja, R.K., Orlin, J.B., Sharma, D.: Very large-scale neighborhood search. International
Transactions in Operational Research 7(4–5), 301–317 (2000)

2. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of CMSA to the electric vehicle routing
problem with time windows, simultaneous pickup and deliveries, and partial vehicle charging.
In: Metaheuristics International Conference, pp. 1–16. Springer (2022)

3. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of Adapt-CMSA to the two-echelon
electric vehicle routing problem with simultaneous pickup and deliveries. In: European
Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar),
pp. 16–33. Springer (2023)

4. Akbay, M.A., López Serrano, A., Blum, C.: A self-adaptive variant of CMSA: application
to the minimum positive influence dominating set problem. International Journal of
Computational Intelligence Systems 15(1), 44 (2022)

5. Alves Viana, L.G.: Uma meta-heurística híbrida para o problema de cobertura de discos
ponderados. Bachelor’s thesis, Universidade Federal de Alagoas, Instituto de Computação,
Maceió, Brazil (2022)

6. Angelelli, E., Mansini, R., Speranza, M.G.: Kernel search: A general heuristic for the multi-
dimensional knapsack problem. Computers & Operations Research 37(11), 2017–2026
(2010)

7. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the TSP. Tech. rep.,
Forschungsinstitut für Diskrete Mathematik, University of Bonn, Germany (1999)

8. Arora, D., Maini, P., Pinacho-Davidson, P., Blum, C.: Route planning for cooperative air-
ground robots with fuel constraints: an approach based on CMSA. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 207–214 (2019)

9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

10. Barceló, J.: Models, Traffic Models, Simulation, and Traffic Simulation, pp. 1–62. Springer
New York, New York, NY (2010)

11. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
12. Blum, C.: Minimum common string partition: on solving large-scale problem instances.

International Transactions in Operational Research 27(1), 91–111 (2020)

References 37

13. Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application to the repetition-free
longest common subsequence problem. In: Evolutionary Computation in Combinatorial
Optimization: 16th European Conference, EvoCOP 2016, Porto, Portugal, March 30–April
1, 2016, Proceedings 16, pp. 46–57. Springer (2016)

14. Blum, C., Blesa, M.J.: A comprehensive comparison of metaheuristics for the repetition-free
longest common subsequence problem. Journal of Heuristics 24(3), 551–579 (2018)

15. Blum, C., Gambini Santos, H.: Generic CP-supported CMSA for binary integer linear
programs. In: Hybrid Metaheuristics: 11th International Workshop, HM 2019, Concepción,
Chile, January 16–18, 2019, Proceedings 11, pp. 1–15. Springer (2019)

16. Blum, C., Ochoa, G.: A comparative analysis of two matheuristics by means of merged local
optima networks. European Journal of Operational Research 290(1), 36–56 (2021)

17. Blum, C., Pereira, J.: Extension of the CMSA algorithm: an LP-based way for reducing sub-
instances. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
pp. 285–292 (2016)

18. Blum, C., Pinacho, P., López-Ibáñez, M., Lozano, J.A.: Construct, merge, solve & adapt: a
new general algorithm for combinatorial optimization. Computers & Operations Research
68, 75–88 (2016)

19. Blum, C., Raidl, G.R.: Hybrid Metaheuristics – Powerful Tools for Optimization. Springer
(2016)

20. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys 35(3), 268–308 (2003)

21. Borisovsky, P., Dolgui, A., Eremeev, A.: Genetic algorithms for a supply management
problem: MIP-recombination vs greedy decoder. European Journal of Operational Research
195(3), 770–779 (2009)

22. Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A.: Matheuristics: Optimization,
simulation and control. In: M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels,
A. Schaerf (eds.) Proceedings of HM 2009 – 6th International Workshop on Hybrid
Metaheuristics, Lecture Notes in Computer Science, vol. 5818, pp. 171–177. Springer Berlin
Heidelberg (2009)

23. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press (1996)

24. Caicedo Solano, N.E., García Llinás, G.A., Montoya-Torres, J.R.: Towards the integration
of lean principles and optimization for agricultural production systems: a conceptual review
proposition. Journal of the Science of Food and Agriculture 100(2), 453–464 (2020)

25. Calvo, B., Santafé, G.: scmamp: Statistical comparison of multiple algorithms in multiple
problems. The R Journal 8(1) (2016)

26. Caserta, M., Voß, S.: A corridor method based hybrid algorithm for redundancy allocation.
Journal of Heuristics 22(4), 405–429 (2016)

27. Cavaliere, F., Bendotti, E., Fischetti, M.: An integrated local-search/set-partitioning refine-
ment heuristic for the capacitated vehicle routing problem. Mathematical Programming
Computation 14(4), 749–779 (2022)

28. Chacón Sartori, C., Blum, C., Ochoa, G.: STNWeb: a new visualization tool for analyzing
optimization algorithms. Software Impacts 17, 100558 (2023)

29. Chopra, S., Meindl, P.: Supply Chain Management. Strategy, Planning & Operation, pp. 265–
275. Gabler, Wiesbaden (2007)

30. Clerc, M.: Particle Swarm Optimization. ISTE Ltd (2006)
31. Collins, T.D.: Applying software visualization technology to support the use of evolutionary

algorithms. Journal of Visual Languages & Computing 14(2), 123–150 (2003)
32. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS Journal on

Computing 15(3), 233–248 (2003)
33. Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities.

Activity Analysis of Production and Allocation 13, 339–347 (1951)
34. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for

the pollution-routing problem. European Journal of Operational Research 223(2), 346–359
(2012)

38 1 Introduction to CMSA

35. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of
Machine Learning Research 7, 1–30 (2006)

36. Dias Saraiva, R., Nepomuceno, N., Rogério Pinheiro, P.: A two-phase approach for single
container loading with weakly heterogeneous boxes. Algorithms 12, 67 (2019)

37. Djukanović, M., Kartelj, A., Blum, C.: Self-adaptive CMSA for solving the multidimensional
multi-way number partitioning problem. Expert Systems with Applications p. 120762 (2023)

38. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
39. Dupin, N., Talbi, E.G.: Matheuristics to optimize refueling and maintenance planning of

nuclear power plants. Journal of Heuristics 27(1–2), 63–105 (2021)
40. Erdös, P., Rényi, A.: On random graphs I. Publ. math. debrecen 6(290–297), 18 (1959)
41. Eremeev, A.V., Kovalenko, Y.V.: A memetic algorithm with optimal recombination for the

asymmetric travelling salesman problem. Memetic Computing 12(1), 23–36 (2020)
42. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review

of applications, methods and models. European Journal of Operational Research 153(1), 3–27
(2004)

43. Eskandarpour, M., Dejax, P., Péton, O.: A large neighborhood search heuristic for supply
chain network design. Computers & Operations Research 80, 23–37 (2017)

44. Ferrer, J., Chicano, F., Ortega-Toro, J.A.: CMSA algorithm for solving the prioritized pairwise
test data generation problem in software product lines. Journal of Heuristics 27, 229–249
(2021)

45. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1), 23–47 (2003)
46. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple

comparisons in the design of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)

47. Garcia, S., Herrera, F.: An extension on “statistical comparisons of classifiers over multiple
data sets” for all pairwise comparisons. Journal of Machine Learning Research 9(12) (2008)

48. Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics, 3rd edn. Springer Publishing
Company, Incorporated (2019)

49. Ghirardi, M., Salassa, F.: A simple and effective algorithm for the maximum happy vertices
problem. Top 30(1), 181–193 (2022)

50. Glover, F.: Ejection chains, reference structures and alternating path methods for traveling
salesman problems. Discrete Applied Mathematics 65(1–3), 223–253 (1996)

51. Glover, F., Laguna, M.: Tabu Search. Springer Science+Business Media. LLC (1997)
52. Guastaroba, G., Speranza, M.G.: Kernel search: An application to the index tracking problem.

European Journal of Operational Research 217(1), 54–68 (2012)
53. Harvey, C.R., Liechty, J.C., Liechty, M.W., Müller, P.: Portfolio selection with higher

moments. Quantitative Finance 10(5), 469–485 (2010)
54. Hawa, A.: Exact and evolutionary algorithms for the score-constrained packing problem.

Ph.D. thesis, Cardiff University (2020)
55. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 11th edn. McGraw-Hill

Education (2018)
56. Horton, I., Vn Weert, P.: Beginning C++17: From Novice to Professional. Apress (2018)
57. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm

configuration framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)
58. Katsila, T., Spyroulias, G.A., Patrinos, G.P., Matsoukas, M.T.: Computational approaches in

target identification and drug discovery. Computational and Structural Biotechnology Journal
14, 177–184 (2016)

59. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 –
International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

60. Kenny, A., Li, X., Ernst, A.T.: A merge search algorithm and its application to the constrained
pit problem in mining. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 316–323 (2018)

61. Kerzner, H.: Project management: a systems approach to planning, scheduling, and control-
ling. John Wiley & Sons (2017)

References 39

62. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

63. Lalla-Ruiz, E., Voß, S.: POPMUSIC as a matheuristic for the berth allocation problem. Annals
of Mathematics and Artificial Intelligence 76(1–2), 173–189 (2016)

64. Lamanna, L., Mansini, R., Zanotti, R.: A two-phase kernel search variant for the multidimen-
sional multiple-choice knapsack problem. European Journal of Operational Research 297(1),
53–65 (2022)

65. Lee, S.Y., Lee, I.B., Yeo, U.H., Kim, R.W., Kim, J.G.: Optimal sensor placement for
monitoring and controlling greenhouse internal environments. Biosystems Engineering 188,
190–206 (2019)

66. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: An analysis of the maximum happy
vertices problem. Computers & Operations Research 103, 265–276 (2019)

67. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel
bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research 18(1), 6765–6816 (2017)

68. Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C.,
Ruhkopf, T., Sass, R., Hutter, F.: SMAC3: a versatile bayesian optimization package for
hyperparameter optimization. The Journal of Machine Learning Research 23(1), 2475–2483
(2022)

69. Lizárraga, E., Blesa, M.J., Blum, C.: Construct, merge, solve and adapt versus large
neighborhood search for solving the multi-dimensional knapsack problem: Which one works
better when? In: Evolutionary Computation in Combinatorial Optimization: 17th European
Conference, EvoCOP 2017, Amsterdam, The Netherlands, April 19–21, 2017, Proceedings
17, pp. 60–74. Springer (2017)

70. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace pack-
age: Iterated racing for automatic algorithm configuration. Operations Research Perspectives
3, 43–58 (2016)

71. Lorenzo, A.D., Medvet, E., Tušar, T., Bartoli, A.: An analysis of dimensionality reduction
techniques for visualizing evolution. In: Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM (2019)

72. Martí, R., Pardalos, P.M., Resende, M.G.: Handbook of Heuristics. Springer Publishing
Company, Incorporated (2018)

73. Michalak, K.: Low-dimensional Euclidean embedding for visualization of search spaces in
combinatorial optimization. IEEE Transactions on Evolutionary Computation 23(2), 232–
246 (2019)

74. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations
Research 24(11), 1097–1100 (1997)

75. Najjar, M., Figueiredo, K., Hammad, A.W., Haddad, A.: Integrated optimization with building
information modeling and life cycle assessment for generating energy efficient buildings.
Applied Energy 250, 1366–1382 (2019)

76. Nepomuceno, N., Pinheiro, P., Coelho, A.L.: Tackling the container loading problem: a hybrid
approach based on integer linear programming and genetic algorithms. In: Evolutionary
Computation in Combinatorial Optimization: 7th European Conference, EvoCOP 2007,
Valencia, Spain, April 11-13, 2007. Proceedings, pp. 154–165. Springer (2007)

77. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer (2006)

78. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: A tool for analysing and
visualising the behaviour of metaheuristics. Applied Soft Computing 109, 107492 (2021)

79. de Oliveira, E.B., da Silva Batista, M., Pinheiro, R.G.S.: Uma abordagem híbrida CMSA para
o problema da cadeia de caracteres mais próxima. In: Proceedings of the Simpósio Brasileiro
de Pesquisa Operacional, vol. 55 (2023)

80. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.
Dover Publications (1998)

81. Pardalos, P.M., Resende, M.G.: Handbook of Applied Optimization. Oxford University Press
(2002)

40 1 Introduction to CMSA

82. Piliouras, T.C.: Network design: management and technical perspectives. CRC press (2004)
83. Pinacho-Davidson, P., Bouamama, S., Blum, C.: Application of CMSA to the minimum

capacitated dominating set problem. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 321–328 (2019)

84. Pinedo, M.L.: Scheduling, vol. 29. Springer (2012)
85. Pinheiro, P.R., Coelho, A.L.V., Aguiar, A.B., Sobreira Neto, A.d.M.: Towards aid by generate

and solve methodology: application in the problem of coverage and connectivity in wireless
sensor networks. International Journal of Distributed Sensor Networks 8(10), 790459 (2012)

86. Pisinger, D., Røpke, S.: Large Neighborhood Search. In: M. Gendreau, J.Y. Potvin (eds.)
Handbook of Metaheuristics, International Series in Operations Research & Management
Science, vol. 146, pp. 399–419. Springer US (2010)

87. Pohlheim, H.: Multidimensional scaling for evolutionary algorithms – visualization of the
path through search space and solution space using Sammon mapping. Artificial Life 12,
203–209 (2006)

88. Rosati, R.M., Bouamama, S., Blum, C.: Construct, merge, solve and adapt applied to the
maximum disjoint dominating sets problem. In: L. Di Gaspero, P. Festa, A. Nakib, M. Pavone
(eds.) Metaheuristics, pp. 306–321. Springer International Publishing, Cham (2023)

89. Rosati, R.M., Bouamama, S., Blum, C.: Multi-constructor CMSA for the maximum disjoint
dominating sets problem. Computers & Operations Research 161, 106450 (2024)

90. Rosati, R.M., Kletzander, L., Blum, C., Musliu, N., Schaerf, A.: Construct, merge, solve
and adapt applied to a bus driver scheduling problem with complex break constraints. In:
International Conference of the Italian Association for Artificial Intelligence, pp. 254–267.
Springer (2022)

91. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing 19(4), 534–541 (2007)

92. Sá Santos, J.V., Nepomuceno, N.: Computational performance evaluation of column gen-
eration and generate-and-solve techniques for the one-dimensional cutting stock problem.
Algorithms 15(11), 394 (2022)

93. Santos-Peñate, D.R., Campos-Rodríguez, C.M., Moreno-Pérez, J.A.: A kernel search
matheuristic to solve the discrete leader-follower location problem. Networks and Spatial
Economics 51, 1–26 (2019)

94. Schmid, V.: Hybrid large neighborhood search for the bus rapid transit route design problem.
European Journal of Operational Research 238(2), 427–437 (2014)

95. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization
results using the ruin and recreate principle. Journal of Computational Physics 159(2), 139–
171 (2000)

96. Silver, E.A., Pyke, D.F., Peterson, R.: Inventory management and production planning and
scheduling, vol. 3. Wiley New York (1998)

97. Talbi, E. (ed.): Hybrid Metaheuristics, Studies in Computational Intelligence, vol. 434.
Springer (2013)

98. Thiruvady, D., Blum, C., Ernst, A.T.: Maximising the net present value of project schedules
using CMSA and parallel ACO. In: Hybrid Metaheuristics: 11th International Workshop, HM
2019, Concepción, Chile, January 16–18, 2019, Proceedings 11, pp. 16–30. Springer (2019)

99. Thiruvady, D., Blum, C., Ernst, A.T.: Solution merging in matheuristics for resource
constrained job scheduling. Algorithms 13(10), 256 (2020)

100. Thiruvady, D., Lewis, R.: Recombinative approaches for the maximum happy vertices
problem. Swarm and Evolutionary Computation 75, 101188 (2022)

101. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM (2001)
102. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature

393(6684), 440–442 (1998)
103. Winston, W.L.: Operations Research: Applications and Algorithms. Thomson Learning, Inc.

(2004)
104. Zhou, J., Zhang, P.: Simple heuristics for the rooted max tree coverage problem. In: W. Wu,

J. Guo (eds.) Combinatorial Optimization and Applications, pp. 252–264. Springer Nature
Switzerland, Cham (2024)

Chapter 2
Self-adaptive CMSA

Abstract While the standard CMSA algorithm has proven its utility across a
range of different combinatorial optimization problems, certain applications have
highlighted its susceptibility to variations in parameter settings. In order to deal
with this issue, an innovative self-adaptive variant of the CMSA algorithm, termed
ADAPT_CMSA, was developed and will be presented in this chapter. The primary
objective is to mitigate the parameter sensitivity that might occur in the standard
CMSA variant. The merits of this novel CMSA variant are substantiated through its
application to the Minimum Positive Influence Dominating Set (MPIDS) problem
and to the Far From Most String (FFMS) problem. Notably, ADAPT_CMSA distin-
guishes itself from standard CMSA by not presenting the need for a computationally
intensive parameter tuning process across subsets within the considered set of
problem instances.

2.1 Introduction

The research community on metaheuristics [16] acknowledges a prevalent issue
related to an algorithm’s high sensitivity to variations in parameter values. In
this context, a metaheuristic algorithm is deemed parameter sensitive when two
conditions are met: (1) the algorithm’s performance for particular instances or
instance groups significantly relies on specific parameter values, and (2) the
necessary parameter values differ notably across distinct instances or instance
groups. The research community views excessive sensitivity to parameter settings
as an unfavorable aspect.

A noticeable susceptibility to parameter values has also been observed in certain
applications of CMSA as documented in the literature. An illustrative case is the
initial application of standard CMSA to the Minimum Positive Influence Dominat-
ing Set (MPIDS) problem [1], an NP-hard combinatorial optimization problem. In
response to this issue, a self-adaptive variant of CMSA named ADAPT_CMSA was
proposed in [4]. The primary objective during the development of ADAPT_CMSA

was to obtain a CMSA variant that exhibits reduced sensitivity to parameter values.
To validate its effectiveness, in this chapter, we present the initial application of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2
https://doi.org/10.1007/978-3-031-60103-3_2

42 2 Self-adaptive CMSA

Algorithm 2.1: Pseudo-code of self-adaptive CMSA: ADAPT_CMSA

1: input 1: Complete set of solution components C
2: input 2: Values for ADAPT_CMSA parameters tprop, tILP
3: input 3: Values for solution construction parameters αLB, αUB, αred
4: Sbsf := GenerateGreedySolution(C)
5: na := 1; αbsf := αUB; C' := Sbsf

6: while CPU time limit not reached do
7: for i := 1, . . . , na do
8: S := ProbabilisticSolutionConstruction(C, Sbsf, αbsf)
9: C' := C' ∪ S
10: end for
11: (SILP, tsolve) := SolveSubinstance(C', tILP) {This function returns two objects: (1) the

obtained solution (SILP), (2) the required computation time (tsolve)}
12: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if
13: if f (SILP) < f (Sbsf) then
14: Sbsf := SILP

15: na := 1
16: else
17: if f (SILP) > f (Sbsf) then
18: if na = 1 then αbsf := min{αbsf + αred 10 , α

UB} else na = 1 end if
19: else
20: na := na + 1
21: end if
22: end if
23: C' := Sbsf

24: end while
25: output: Sbsf

CMSA to the MPIDS problem. In addition, we describe its application to a second
NP-hard combinatorial optimization problem known as the Far From Most String
(FFMS) problem.

The results obtained will demonstrate multiple advantages of ADAPT_CMSA

over the standard CMSA. Firstly, ADAPT_CMSA eliminates the need for fine-tuning
specific parameters for subsets within the designated benchmark set. Following
a single round of parameter tuning, ADAPT_CMSA performs effectively across
the entire benchmark set, encompassing instances of diverse sizes. Secondly, in
the realm of large-scale problem instances, ADAPT_CMSA distinctly outperforms
standard CMSA. Even with specialized tuning efforts, standard CMSA cannot
match the competitive performance achieved by ADAPT_CMSA in handling such
large-scale problem instances.

Note that ADAPT_CMSA has already been used in [2–4, 8].

2.2 Self-adaptive CMSA: General Description 43

2.2 Self-adaptive CMSA: General Description

The pseudo-code for ADAPT_CMSA is outlined in Algorithm 2.1. A prominent
distinction from the standard CMSA—see Algorithm 1.1 on page 19—is the
absence of age values. ADAPT_CMSA operates with a fixed maximum age of one,
meaning that after each iteration, all solution components, except those forming
part of the best-so-far solution . Sbsf, are purged from the sub-instance . C' (refer to
line 23). This is done because ADAPT_CMSA disposes of an alternative way of
regulating the size of the sub-instances. Another variation is evident in function
ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf), responsible for the probabilistic
generation of solutions in each algorithm iteration (see line 8). Notably, this function
takes as input, in addition to the set of all possible solution components (C), the
current best-so-far solution . Sbsf, and a parameter .αbsf (where .0 ≤ αbsf < 1). This
parameter influences the construction of new solutions, biasing them towards the
best-so-far solution . Sbsf. Specifically, a higher value of .αbsf results in a greater
similarity of the solutions generated inProbabilisticSolutionConstruction(C, . Sbsf,
. αbsf) to . Sbsf.

The dynamic adjustment of the .αbsf value is a self-adaptive feature in
ADAPT_CMSA. Initially, ADAPT_CMSA requires as input lower and upper bounds,
.αLB and .αUB respectively, for the .αbsf value. Additionally, the step size, . αred, for
reducing .αbsf must be provided as input. The algorithm commences by setting
.αbsf to its maximum value, .αUB (see line 5).1 If the resulting ILP can be solved
within a computation time .tsolve that is below a fraction .tprop of the maximally
allowed computation time . tILP, the .αbsf value is decreased by .αred (see line 12).
The rationale behind this adjustment lies in the following reasoning: when the ILP
is easily solvable, it indicates a relatively small search space due to a low number
of free variables. To increase the freedom in the ILP by introducing more free
variables, the solutions generated in ProbabilisticSolutionConstruction(C, . Sbsf,
. αbsf) should exhibit greater dissimilarity to . Sbsf. This goal is achieved by reducing
the .αbsf value.

The second self-adaptive aspect managed by ADAPT_CMSA pertains to the
number of solution constructions per iteration (. na), outlined in lines 13–22. Initially,
the algorithm sets . na to 1 (see line 5). Additionally, if the solution of the reduced
ILP (.SILP) improves upon the best-so-far solution . Sbsf, . na is reset to one (see
line 15). Conversely, if the .SILP solution is strictly inferior to . Sbsf, it indicates that
the corresponding sub-instance was too large (resp. difficult) for the ILP solver to
complete the solving-process within . tILP seconds. In this scenario, if .na = 1, the . αbsf
value is marginally increased (by .

αred
10); otherwise, . na is reset to one. In the event that

.f (SILP) = f (Sbsf), . na is incremented by one (see line 20). This adjustment is made
because the sub-instance did not yield a superior solution to . Sbsf, while still being

1 This implies that solutions generated in this manner will exhibit greater similarity to . Sbsf

compared to lower values of . αbsf.

44 2 Self-adaptive CMSA

solved to optimality within the allotted computation time of .tILP seconds, indicating
that the sub-instance’s size should be expanded.

2.3 Application to the MPIDS Problem

In this section, the application of ADAPT_CMSA to the MPIDS problem will
be presented. This problem has some relevance in the realm of social networks.
Picture a scenario where the vertices and edges within such a social network
symbolize individuals (persons) and their respective relationships/interactions.
Generally, information disseminated within social networks holds the potential
to exert a substantial impact, be it positive or negative, on segments of society.
The social norms theory indicates that individuals’ behavior can be influenced
by the perception of others’ thoughts and actions [9]. Consequently, leveraging
relationships among people in social networks can be advantageous for attaining
economic and/or societal benefits. In this context, the objective of the MPIDS
problem is to identify a small subset of influential individuals (or key individuals)
to accelerate the dissemination of positive influence in a social network [11, 12].
The MPIDS problem also finds alternative applications in e-learning software [18],
online business [14], as well as issues related to drinking, smoking, and other
substance-related concerns [17].

Here is a technical description of the MPIDS problem: Consider an undirected
graph .G = (V ,E) with .|V | = n vertices containing neither loops nor parallel
edges.2 A subset .s ⊆ V is considered a valid solution if it satisfies the following
condition: for each vertex .v ∈ V , at least half of its neighbors must be part of s. It
is important to note that if G is connected, any valid solution s also is a dominating
set of G.3 The goal of the MPIDS problem is to identify a valid solution . s∗ ⊆ V

with the minimum possible size. In other words, for any valid solution .s ⊆ V , the
objective function value is defined as .f (s) := |s|. It is worth mentioning that the
solution .s := V is a trivial one for the problem. An example of the MPIDS problem
is provided in Fig. 2.1.

Regarding complexity, it is important to highlight that the MPIDS problem falls
into the category of NP-hard problems. Several algorithmic methods have been
proposed in the literature to address the MPIDS problem, with the current leading
approach being a method based on local search as detailed in [15]. However, it
is crucial to emphasize that the primary focus of this chapter is to showcase the
merits of ADAPT_CMSA in comparison to standard CMSA, rather than engaging in
a comparison with the current state-of-the-art methods.

2 Loops (also known as self-loops or self-edges) in undirected graphs are edges .(v, v) from a node
v to itself.
3 See Sect. 1.4 of Chap. 1 for the definition of a dominating set.

2.3 Application to the MPIDS Problem 45

Fig. 2.1 An undirected graph
on 20 vertices. The optimal
MPIDS solution contains the
vertices marked in blue color

A well-known ILP model for the MPIDS problem from the related literature
is based on a binary variable . xi for each vertex .vi ∈ V . This ILP model can be
expressed as follows.

.min
n∑

i=1

xi . (2.1)

subject to
∑

vj ∈N(vi)
xj ≥

⌈
deg(vi)

2

⌉
∀ vi ∈ V (2.2)

xi ∈ {0, 1}

In this context, .N(vi) represents the neighborhood of vertex . vi in the input graph G.
Additionally, .deg(vi) stands for the degree of vertex . vi , with .deg(vi) := |N(vi)|.
Equation (2.2) imposes a requirement on any valid solution, ensuring that it includes
at least half of the neighbors of each vertex .vi ∈ V .

2.3.1 Generic Definition of the Solution Components

As in Sect. 1.4.1 on page 21 we will define the set C of solution components for the
application of standard CMSA_GEN and ADAPT_CMSA in a generic way.

In other words, we introduce two solution components, namely . c0i and . c1i , for
each binary variable . xi where i ranges from 1 to the total number of vertices . |V |.
Specifically, . c0i corresponds to .xi = 0, and . c1i corresponds to .xi = 1. The set
.C = {c01, . . . , c0n, c11, . . . , c1n} encompasses the entire set of 2n solution components.

46 2 Self-adaptive CMSA

Algorithm 2.2: Solution construction procedure for the MPIDS problem
1: CMSA input: solution construction parameters .drate, . lsize
2: ADAPT_CMSA input: solution construction parameter . αbsf
3: .s := spar {.spar ⊂ V is obtained from a pre-processing procedure}
4: while s is not a valid solution do
5: Let .U ⊆ V be the set of uncovered vertices
6: . v := argmin{deg(v') | v' ∈ U}
7: while .|N(v) ∩ s| <

⌈
deg(v)

2

⌉
do

8: .v̂ := ChooseFrom(.N(v) \ s)
9: . s := s ∪ {v̂}
10: end while
11: end while
12: output: valid solution s

A candidate solution S constitutes a subset of C with a cardinality of .|S| = n.
Additionally, S includes precisely one of the two components, . c0i or . c1i , for each i
within the range of 1 to . |V |. Finally, a candidate solution S attains the status of a
valid solution if it satisfies the constraints of the considered optimization problem.

2.3.2 Constructing Solutions to the MPIDS Problem

First of all, note that—as in the case of the MDS problem in Sect. 1.4.1.1 on
page 22—a valid MPIDS solution is constructed in terms of a set of vertices.
Afterwards, it is converted into the corresponding set of solution components.
Valid MPIDS solutions must be constructed in the following three algorithmic
functions:

1. Function ProbabilisticSolutionConstruction(C) of standard CMSA_GEN; see
line 8 of Algorithm 1.1 on page 19.

2. Function GenerateGreedySolution(C) of ADAPT_CMSA; see line 4 of Algo-
rithm 2.1 on page 42.

3. Function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf) of ADAPT_CMSA;
see line 8 of Algorithm 2.1 on page 42.

All three functions utilize the solution construction mechanism from the greedy
procedure outlined in [7]. However, the first and third functions mentioned above
employ this greedy procedure in a probabilistic manner. It is worth noting that
the method of introducing probabilistic elements into this greedy procedure differs
between these two functions. For the ensuing discussion, a vertex .v ∈ V is deemed
covered concerning a (partial) solution s if and only if at least half of its neighbors
are included in s. Conversely, if this condition is not met, v is said to be uncovered.

The construction mechanism employed is outlined in Algorithm 2.2. Initially,
each solution s undergoing construction is initialized with a set .spar ⊂ V comprising

2.3 Application to the MPIDS Problem 47

nodes that must provenly form part of any optimal solution, as indicated in line 3.
It is important to note that .spar is generated by the application of a pre-processing
procedure as detailed in [7].

During each step of the solution construction process, the following is done.
Firstly, the set U of all vertices not yet covered by the vertices in the (partial)
solution s is identified; see line 5. Subsequently, a node .v ∈ U is chosen such
that .deg(v) ≤ deg(v') holds for all .v' ∈ U (line 6). Next, nodes from .N(v) \ s are

incrementally added to s while .|N(v) ∩ s| <
⌈

deg(v)
2

⌉
, as illustrated in lines 7-10.

Here, the function ChooseFrom(.N(v) \ s) is responsible for selecting exactly one
vertex from .N(v) \ s in each iteration of the while loop.

•> Implementation of ChooseFrom(.N(v) \ s) in CMSA_GEN

First, a candidate list L is initialized, containing all vertices .v' ∈ N(v) \ s. Each
vertex . v' within L is evaluated by its cover degree .covdeg(v

'), denoting the number
of uncovered adjacent vertices to . v'. It is noteworthy that the vertices in L are
arranged in descending order based on their cover degree values. Subsequently, a
uniform random number r is generated within the interval .[0, 1]. If .r ≤ drate (where
.drate is the determinism rate), the vertex with the highest cover degree is chosen and
incorporated into s. Conversely, if r exceeds .drate, a vertex is randomly selected from
the restricted candidate list, which comprises the initial .lsize vertices of L. Here, . lsize
denotes the size of the restricted candidate list, and all vertices within it have an
equal probability of .

1
lsize

for selection.

•> Implementation of ChooseFrom(.N(v) \ s) in ADAPT_CMSA

First, for each vertex .vi ∈ N(v) \ s where .ci ∈ Sbsf, a value

.q(vi) := (covdeg(vi) + 1) · αbsf (2.3)

is assigned, while for all other vertices .vj ∈ N(v) \ s, the assigned value is

.q(vj) := (covdeg(vj) + 1) · (1 − αbsf) . (2.4)

Subsequently, a vertex . ̂v is selected from .N(v) \ s based on the following
probabilities:

.p(v') := q(v')∑
v''∈N(v)\s q(v'')

∀ v' ∈ N(v) \ s (2.5)

Note that the bias towards the best-so-far solution .Sbsf is determined by the
parameter .αbsf ∈ [0, 1]. A higher value of .αbsf strengthens this bias. It is important
to note that such bias is absent in the standard CMSA.

48 2 Self-adaptive CMSA

Finally, note that—after the construction of a solution s—this solution is
transformed into a corresponding solution S containing solution component . c1i for
each .vi ∈ s, and solution component . c0i for each .vi ∈ V \ s.

2.3.3 Sub-instance Solving

A sub-instance . C' is solved in function SolveSubinstance(. C', . tILP) of Algo-
rithm 1.1 (see page 19) and of Algorithm 2.1 (see page 42) in exactly the same
way. In particular, the following additional constraints are added to the MPIDS ILP
model (for .i = 1, . . . , |V |) and the resulting model is solved by CPLEX:

.xi = 0 if c0i ∈ C' and c1i /∈ C'
. (2.6)

xi = 1 if c0 i /∈ C' and c1 i ∈ C' (2.7)

In other words, if . C' only contains the solution component . c0i corresponding to
.xi = 0, then the value of . xi is fixed to zero. Similarly, if . C' only contains the
solution component . c1i corresponding to .xi = 1, then the value of . xi is fixed to
one. Otherwise, if . C' contains both solution components . c0i and . c1i then variable
. xi is left free, which means that . vi might, or not, be included in a solution to
the sub-instance. Note that this way of solving sub-instances is exactly the same
as outlined in the context of CMSA_GEN for the MDS problem in Sect. 1.4.2.2
on page 25. The only difference between CMSA_GEN and ADAPT_CMSA is that
function SolveSubinstance(. C', . tILP)—in the case of ADAPT_CMSA—returns also
the solving time .tsolve in addition to the CPLEX solution .SILP.

2.3.4 Experimental Evaluation

The experimental evaluation in this section encompasses the following algorithms:

1. GREEDY: The heuristic obtained by the execution of the algorithm presented in
Algorithm 2.2 on page 46 in a deterministic manner.

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance,
utilizing the default parameter values of CPLEX.

3. CMSA_GEN: The standard CMSA algorithm, making use of the generic approach
to defining the set of solution components.

4. ADAPT_CMSA: The self-adaptive CMSA approach from this chapter.

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX) and within
the CMSA variants—in sequential mode. For conducting the experiments we used
the IIIA-CSIC in-house high-performance computing cluster of machines equipped
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of
RAM.

2.3 Application to the MPIDS Problem 49

2.3.4.1 MPIDS Benchmark Sets

As the MPIDS problem was defined in the context of applications in social net-
works, we used the igraph library4 for generating input graphs with the Barabási-
Albert model. This is because the Barabási-Albert model generates scale-free net-
works which are often used to simulate social networks. In particular, we generated
30 graphs for each combination of . |V | ∈ {1000, 5000, 10,000, 50,000, 100,000}
and three different graph densities as controlled by a parameter m in the Barabási-
Albert model. In total, this benchmark set consists of 450 graphs, ranging from
rather small graphs with 1000 nodes to large-scale graphs of .100,000 vertices and
up to .2,000,000 edges.

2.3.4.2 Parameter Tuning

As in the case of the MDS problem in Sect. 1.4.3.2, the irace tool was used for
tuning the parameters of the considered CMSA variants. The list of parameters of
the CMSA_GEN variant is the same as the one already outlined in Sect. 1.4.3.2. In
contrast, ADAPT_CMSA does not make use of parameters . na and .agemax because
. na is handled in a self-adaptive way in ADAPT_CMSA, while .agemax is fixed to
one. Moreover, ADAPT_CMSA does not utilize parameters .drate and . lsize, because
the way of making the solution construction probabilistic is different from the one
in CMSA_GEN. Finally, ADAPT_CMSA does not use CPLEX-parameter .cplexabort,
because the information about the CPLEX computation time is important for the
self-adaptive mechanism.5 Therefore, CPLEX is never aborted before either the
sub-instance is solved to optimality, or the maximum computation time of . tILP
CPU seconds is reached. Instead, ADAPT_CMSA makes use of the following list
of additional parameters:

• . αLB: The lower bound for . αbsf, which determines the bias of the best-so-far
solution .Sbsf on the solution construction process.

• .αUB: The upper bound for . αbsf.
• . αred: The amount by which the value of .αbsf is reduced if necessary (see line 12

of Algorithm 2.1 on page 42).
• .tprop: The parameter used for deciding if .αbsf is to be reduced at each iteration

(again, see line 12 of Algorithm 2.1 on page 42).

In the first attempt, both CMSA variants were tuned exactly once for the entire
benchmark set. As tuning instances, additional problem instances were generated.
More specifically, for each combination of . |V | and graph density, exactly one tuning

4 https://igraph.org/.
5 Remember that a description of the CPLEX parameters possibly used within CMSA is provided
on page 23.

 -1446 55940 a -1446 55940
a

50 2 Self-adaptive CMSA

Table 2.1 Parameters, domains, and tuning results for the MPIDS problem

Parameter Domain CMSA_GEN ADAPT_CMSA

.na .{1, . . . , 50} 44 n.a.

.agemax .{1, . . . , 10} 3 n.a.

.drate .[0.0, 0.99] 0.99 n.a.

.lsize .{3, . . . , 50} 8 n.a.

.tILP .{1, . . . , 50} 41 13

.cplexemphasis .{true,false} true true

.cplexwarmstart .{true,false} false false

.cplexabort .{true,false} true n.a.

.αLB .[0.6, 0.99] n.a. 0.91

.αUB .[0.6, 0.99] n.a. 0.97

.αred .[0.01, 0.1] n.a. 0.02

.tprop .[0.1, 0.8] n.a. 0.41

instance was generated, resulting in 15 tuning instances. As computation time limit
we used 600 CPU seconds for all problem instances.

The tuning results for both CMSA_GEN and ADAPT_CMSA are shown
in Table 2.1. They give already several indications for possible problems of
CMSA_GEN. The determinism rate (.drate), for example, is very high. Moreover,
the CPU time limit for CPLEX (. tILP) is rather high too. Both settings might indicate
that CMSA_GEN is having problems solving sub-instances for larger problem
instances. Regarding the parameter settings of ADAPT_CMSA, a rather high bias
for constructing solutions in the vicinity of the best-so-far solution .Sbsf can be
observed.

2.3.4.3 First Results

All four algorithmic techniques (GREEDY, CPLEX, CMSA_GEN and ADAPT_CMSA)
were applied exactly once to each of the problem instances from the benchmark
set. The computation time limit for CPLEX, CMSA_GEN, and ADAPT_CMSA was
the same as the one used for tuning (600 CPU seconds per run). The results
are shown in the form of box plots in Figs. 2.2 (smaller instances with . |V | ∈
{1000, 5000, 10,000} and 2.3 (larger instances with .|V | ∈ {50,000, 100,000}).
Each of these graphics contains a grid of box plots. Rows in the grid present the
results (from top to bottom) for graphs of increasing size, and grid columns (from
left to right) present the results for graphs of increasing density.

To facilitate the analysis of the results along with assertions regarding statistical
significance, we include CD plots presented in Fig. 2.4. For a comprehensive
explanation of CD plots, please refer to Sect. 1.2.3 on page 16. Figure 2.4 comprises
six CD plots. The first one (Fig. 2.4a) presents statistical details for the entire set of

2.3 Application to the MPIDS Problem 51

Fig. 2.2 MPIDS results for graphs with |V | ∈ {1000, 5000, 10,000} based on a single parameter
tuning application per algorithm

52 2 Self-adaptive CMSA

Fig. 2.3 MPIDS results for graphs with |V | ∈ {50,000, 100,000} based on single parameter
tuning application per algorithm

graphs, while the subsequent five CD plots provide statistical insights specific to
graphs of particular sizes.

•> Main Observations Concerning the MPIDS Results

1. CPLEX is only able to compete with the CMSA variants in the context of the
denser ones of the small problem instances (.|V | ∈ {1000, 5000}). In fact, for
problem instances with .10,000 vertices of medium and high density, CPLEX

starts to fail. For the large problem instances, CPLEX is only able to generate
the trivial solutions (containing all vertices of a graph) within the allotted
computation time.

2.3 Application to the MPIDS Problem 53

2. For graphs with .|V | ∈ {1000, 5000, 10,000}, CMSA_GEN works well, but—
apart from the denser graphs with .|V | = 1000—CMSA_GEN is already slightly
inferior to ADAPT_CMSA. However, for graphs with . |V | ∈ {50,000, 100,000}
CMSA_GEN fails. This can be seen by the fact that it is only slightly better than
GREEDY. This indicates that the sub-instances generated within CMSA_GEN

cannot be solved anymore by CPLEX for graphs of that size.
3. In contrast to CMSA_GEN, ADAPT_CMSA works very well for problem instances

over the whole benchmark set.
4. The CD plots from Fig. 2.4 confirm that ADAPT_CMSA outperforms all other

approaches with statistical significance.

Additionally, we plotted STNWeb graphics of the obtained results; see Sect. 1.2.2
on page 13 for a description of the STNWeb tool and the type of graphics that are
produced. Figure 2.5 shows the STN (complete vs. partitioned) for the first problem
instance with 10,000 vertices and .m = 5 (sparsest graphs). The complete STN
(Fig. 2.5a) shows that the ADAPT_CMSA search trajectories are much longer. This
is for two reasons. First, the algorithm does smaller steps in the search space (due to
a lower CPU time limit for CPLEX in comparison to CMSA_GEN). Second, starting
from solutions of a similar quality as CMSA_GEN, the algorithm produces clearly
better final results. The partitioned STN (Fig. 2.5b) indicates a specific property of

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)
1 2 3 4

(e)

1 2 3 4

(f)

Fig. 2.4 Critical Difference (CD) plots concerning the MPIDS results. (a) All graphs. (b) . |V | =
1000. (c) .|V | = 5000. (d) .|V | = 10,000. (e) .|V | = 50,000. (f) .|V | = 100,000

54 2 Self-adaptive CMSA

Fig. 2.5 STNWeb graphics. (a) and (b) show 10 runs of CMSA_GEN and ADAPT_CMSA for the
first problem instance with 10,000 vertices and .m = 5 (sparse). While (a) shows the complete
STN, (b) shows the same STN after partitioning

the MPIDS problem. Observe that trajectory overlaps are only found at the start of
algorithm trajectories, both concerning trajectories of different algorithms (see the
two larger grey dots) and between trajectories of the same algorithm (see the large
pink dot). This indicates that different good solutions to an MPIDS instance might
have quite different structures. In order to confirm this, the following experiment
was made. The scatter plots in Fig. 2.6 show for each pair of same-quality solutions
from the search trajectories of CMSA_GEN and ADAPT_CMSA their difference (in
terms of the number of vertices that are different in both solutions). Especially with
growing instance size (starting from the second row of scatter plots) these graphics
nicely confirm what was indicated already by the STNWeb graphics from Fig. 2.5.
The better a pair of same-quality solutions is, the larger their difference.

2.3.4.4 Results with a Specialized Parameter Tuning

In a second experiment, the aim is to study the change of performance both of
CMSA_GEN and ADAPT_CMSA (if any) when specifically tuned for each of the
five considered graph sizes. The parameter values obtained with irace from these
specialized tuning runs are provided in Table 2.2.

Again, the results are provided in terms of box plots (see Figs. 2.7 and 2.8) and
the corresponding CD plots (see Fig. 2.9). Note that in these graphics, the results
of both CMSA_GEN and ADAPT_CMSA obtained with the two available parameter
settings (single tuning vs. specialized tuning) are compared. For this purpose the
algorithms, when using the specialized parameter setting, are called CMSA_GEN_T
and ADAPT_CMSA_T.

2.3 Application to the MPIDS Problem 55

|V| = 100000

m = 5

|V| = 100000

m = 10

|V| = 100000

m = 20

|V| = 50000

m = 5

|V| = 50000

m = 10

|V| = 50000

m = 20

|V| = 10000

m = 5

|V| = 10000

m = 10

|V| = 10000

m = 20

|V| = 5000

m = 5

|V| = 5000

m = 10

|V| = 5000

m = 20

|V| = 1000

m = 5

|V| = 1000

m = 10

|V| = 1000

m = 20

40000 41000 42000 38500 39500 37000 38000

20000 20500 21000 19250 19750 20250 18400 18800

4000 4100 4200 3800 3900 4000 3600 3700 3800

2000 2050 2100 2150 1900 1950 2000 1800 1840 1880 1920

410 430 450 400 450 500 350 400 450 500
0

50

100

150

200

0

100

200

300

0

200

400

600

0

1000

2000

3000

0

2000

4000

6000

0

50

100

150

0

100

200

300

0

200

400

600

0

1000

2000

3000

0

2000

4000

6000

0

25

50

75

0

100

200

300

0

200

400

600

0

1000

2000

3000

0

2000

4000

6000

Solution Quality

D
iff

er
en

ce

0

2000

4000

6000
Difference

Fig. 2.6 Differences betweenMPIDS solutions of the same quality. The x-axes of all plots indicate
the solution quality (that is, the objective function values), while the y-axes show the differences
between solutions of the same quality from the considered search trajectories

56 2 Self-adaptive CMSA

Ta
bl
e
2.
2

Sp
ec
ia
liz
ed
 tu

ni
ng
 r
es
ul
ts
 f
or
 th

e
M
PI
D
S
pr
ob
le
m

C
M
S
A
_G

E
N

A
D
A
P
T
_C

M
S
A

Pa
ra
m
et
er

|V |= 1000

|V |= 5000

|V |= 10,000

|V |= 50,000

|V |= 100,000

|V |= 1000

|V |= 5000

|V |=10,000

|V |= 50,000

|V |= 100,000

n
a

9
37

2
2

18
n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

a
g
e
m
ax

3
1

7
3

8
n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

d
ra
te

0.
42

0.
8

0.
91

0.
98

0.
99

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

l s
iz
e

32
23

20
7

40
n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

t I
L
P

32
47

49
10

2
9

21
12

30
4

cp
le
x e

m
ph
as
is

t
r
u
e

t
r
u
e

t
r
u
e

t
r
u
e

f
a
l
s
e

f
a
l
s
e

t
r
u
e

t
r
u
e

f
a
l
s
e

t
r
u
e

cp
le
x w

ar
m
st
ar
t

f
a
l
s
e

t
r
u
e

f
a
l
s
e

f
a
l
s
e

f
a
l
s
e

t
r
u
e

t
r
u
e

t
r
u
e

t
r
u
e

f
a
l
s
e

cp
le
x a

bo
rt

t
r
u
e

f
a
l
s
e

t
r
u
e

t
r
u
e

t
r
u
e

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

α
L
B

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

0.
62

0.
69

0.
93

0.
87

0.
8

α
U
B

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

0.
81

0.
86

0.
99

0.
94

0.
92

α
re
d

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

0.
07

0.
02

0.
03

0.
09

0.
03

t p
ro
p

n.
a.

n.
a.

n.
a.

n.
a.

n.
a.

0.
55

0.
27

0.
32

0.
42

0.
4

2.3 Application to the MPIDS Problem 57

Fig. 2.7 MPIDS results for graphs with .|V | ∈ {1000, 5000, 10,000} based on instance-subset-
specific parameter tuning

58 2 Self-adaptive CMSA

Fig. 2.8 MPIDS results for graphs with .|V | ∈ {50,000, 100,000} based on instance-subset-
specific parameter tuning

•> Main Observations Concerning Single Tuning vs. Specialized Tuning

1. ADAPT_CMSA_T still outperforms CMSA_GEN_T with statistical significance.
2. The most important observation is that the results of CMSA_GEN can be signif-

icantly improved by specialized tuning up to a graph size of 50,000 vertices. In
contrast, the results of ADAPT_CMSA are not significantly improved by special-
ized tuning. This indicates that the self-adaptive mechanism of ADAPT_CMSA

works in an excellent way. This results not only in an excellent performance in
the context of large-scale problem instances of problems such as the MPIDS, but
it also results in potentially much less parameter tuning efforts in comparison to
CMSA_GEN.

3. The results of CMSA_GEN_T for graphs of size .|V | = 100,000 indicate the
continuing disability of the algorithm to produce sub-instances of a size and
nature that can be solved by CPLEX.

2.4 Application to the FFMS Problem 59

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)
1 2 3 4

(e)

1 2 3 4

(f)

Fig. 2.9 Critical Difference (CD) plots concerning the MPIDS results after specialized parameter
tuning. (a) All graphs. (b) .|V | = 1000. (c) .|V | = 5000. (d) .|V | = 10,000. (e) .|V | = 50,000. (f)
. |V | = 100,000

2.4 Application to the FFMS Problem

As a second application of ADAPT_CMSA, we introduce its use in addressing the
far from most string (FFMS) problem [13], a combinatorial optimization problem
that falls under the category of NP-hard problems. This problem is part of the
sequence consensus problems family, where the goal is to find a consensus sequence
for a finite set of sequences, representing them in the best way possible. Sequence
consensus problems often involve various and sometimes conflicting objectives. In
the context of the FFMS problem, the objective is to identify a new sequence that
significantly differs from the majority of the given input sequences (refer to the
technical description below). The FFMS problem finds applications in diverse fields,
such as molecular biology, where its use extends to creating diagnostic probes for
bacterial infections or identifying potential drug targets.

A specific instance of the FFMS problem is represented as .(Ω, t), where . Ω =
{s1, . . . , sn} forms a set of n input strings over a finite alphabet . Σ. Each input string
. si in . Ω has a length of m, denoted as .|si | = m for all .si ∈ Ω. Additionally, a fixed
threshold value is provided, with .0 < t < m. In the subsequent discussion, the j -th
character of a string . si is referred to as .si[j]. The Hamming distance between two
equal-length strings .si /= sj ∈ Ω, denoted as .dH (si, sj), represents the count of
positions where corresponding characters in the two strings differ. In other words:

.dH (si, sj) = ∣∣{k ∈ {1, . . . , m} | si[k] /= sj [k]}∣∣ (2.8)

60 2 Self-adaptive CMSA

Any string s with a length of m over alphabet . Σ is considered a feasible solution
to the FFMS problem. The objective function value .forig(s) for any such string s is
defined as follows:

.forig(s) := |{si ∈ Ω | dH (s, si) ≥ t}| (2.9)

This implies that the objective function value for a solution or string s is determined
by the count of input strings whose Hamming distance with s is greater than or
equal to the specified threshold value t . Over the past two decades, a range of
different algorithmic approaches have been presented in the related literature for
addressing the FFMS problem. Presently, the negative learning ACO approach
proposed in [6] and the memetic algorithm introduced in [10] are considered state-
of-the-art methods for tackling the FFMS problem.

•> Example of the FFMS Problem

Given is the following problem instance:

• Number of input strings: . n = 3
• Length of the input strings: . m = 4
• Alphabet: .Σ = {0, 1} (that is, the alphabet size is 2)
• Threshold value: . t = 3
• Instance data (input strings): .s1 = 0101, .s2 = 0111, . s3 = 0011

In the following we will analyze two possible solutions:

1. A first valid solution: . s = 1100

• Hamming distances:

– . dH(s = 1100, s1= 0101) = 2
– . dH(s = 1100, s2= 0111) = 3
– . dH(s = 1100, s3= 0011) = 4

• Objective function value: . forig(s) = 2

2. A second valid solution: .s∗ = 1000 (optimal solution)

• Hamming distances:

– . dH(s∗= 1000, s1= 0101) = 3
– . dH(s∗= 1000, s2= 0111) = 4
– . dH(s∗= 1000, s3= 0011) = 3

• Objective function value: . forig(s) = 3

The FFMS problem can be modeled in terms of an ILP model, as originally
described and introduced in [5]. This model makes use of two sets of binary

2.4 Application to the FFMS Problem 61

variables. The first set contains a variable .xj,a for each combination of a position
.j = 1, . . . , m of a possible solution and a character .a ∈ Σ. The second one contains
a binary variable . yi for each input string .si ∈ Ω (.i = 1, . . . , n). The ILP model can
then be stated as follows.

.max
n∑

i=1

yi . (2.10)

subject to
∑

a∈Σ

xj,a = 1 j = 1, . . . , m. (2.11)

m∑

j=1

xj,si [j] ≤ m − t · yi i = 1, . . . , n (2.12)

xj,a, yi ∈ {0, 1}

Note that constraints (2.11) ensure that exactly one character from . Σ is chosen
for each position j of a solution string. Moreover, constraints (2.12) ensure that a
variable . yi can only have value one if and only if the Hamming distance between
input string .si ∈ Ω and a solution string (as defined by the setting of the variables
. xj,a) is greater or equal than the threshold value t .

2.4.1 Augmented Objective Function

The FFMS problem poses a significant challenge not only for exact techniques
but also for metaheuristics. One of the main difficulties arises from the limited
range of distinct objective function values. Specifically, for an instance with n input
strings, the set of possible objective function values is constrained to .{0, . . . , n}.
This characteristic leads to wide plateaus in the search space of an FFMS problem
instance. Consequently, similar solutions often share identical objective function
values. For a metaheuristic, this implies that the search space provides minimal (or
no) guidance on how to progress and explore during the search process. Conse-
quently, metaheuristics frequently encounter difficulties navigating these plateaus.
In consideration of these challenges, [6] conducted experiments incorporating four
augmented objective functions in addition to the original objective function. In
this chapter, we will adopt the augmented objective function from [5], which we
will refer to as .faug(). This function is a lexicographic objective function, with the
primary criterion being the original objective function. The second criterion makes
use of the following function:

.h(s) :=
∑

{si∈Ω|dH (s,si)≥t}
dH (s, si) + max

{si∈Ω|dH (s,si)<t}
{dH (s, si)} (2.13)

62 2 Self-adaptive CMSA

In simpler terms, .h(s) computes the sum of Hamming distances between s and
the input strings .si ∈ Ω with a Hamming distance of at least t . It also takes into
account the maximum Hamming distance between s and the input strings . si ∈ Ω

with a Hamming distance less than t . The original objective function and . h() are
then combined using a lexicographic approach.

.
faug(s) > faug(s

') iffforig(s) > forig(s
') or

(forig(s) = forig(s
') and h(s) > h(s')) (2.14)

The rationale behind .h() can be explained as follows: a higher value of . h(s)

indicates a lower probability that minor alterations to s will lead to a decrease in
the original objective function.

2.4.2 Intuitive Definition of the Solution Components

In the case of the application of different CMSA variants to the FFMS problem, we
decided for the following intuitive definition of the set C of solution components:
each combination of a position j in the solution string (where .j = 1, . . . , m)
and a letter .a ∈ Σ is a solution component . cj,a . That is, . C := {cj,a | j =
1, . . . , m and a ∈ Σ}. Any feasible solution S is a subset of C such that for each
position .j = 1, . . . , m, S contains exactly one of the solution components from
.Cj := {cj,a | a ∈ Σ}. Similarly, the sub-instance . C' is always a subset of C. Note
that, in the following, .faug(S) := faug(s), where s is the solution string which
is derived in a well-defined way from the solution components contained in S.
Moreover, let .faug(∅) := 0.

2.4.3 Constructing Solutions to the FFMS Problem

A solution s with a length of m (represented as a string) is generated by selecting
one character from the alphabet . Σ for each position .j = 1, . . . , m. This selection
is based on greedy information, for which we employ the frequency values of the
letters at each position of the input strings. Specifically, the frequency value .fj,a for
a letter .a ∈ Σ at a position .1 ≤ j ≤ m is computed as follows:

.fj,a := |{si ∈ Ω | si[j] = a}|
n

(2.15)

A letter is then chosen for each .j = 1, . . . , m based on these frequency values. How
this is done exactly, depends on the specific solution construction function and will
be explained in the following.

2.4 Application to the FFMS Problem 63

In function GenerateGreedySolution(C) of ADAPT_CMSA (see line 4 of
Algorithm 2.1 on page 42) for each position j a deterministic choice of the letter
with the lowest frequency value is made. Ties are broken randomly.

In contrast, in function ProbabilisticSolutionConstruction(C) of our standard
CMSA_INT (see line 8 of Algorithm 1.1 on page 19), first, a value .r ∈ [0, 1] is
drawn uniformly at random for each position .j = 1, . . . , m. If .r ≤ drate—where
.0 ≤ drate < 1 is the determinism rate already known from other applications in
this book—the letter with the lowest frequency value is chosen in a deterministic
way. Otherwise, a letter is chosen randomly (roulette wheel selection) based on
probabilities that are proportional to the inverse of the letter frequencies.

Finally, function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf) of
ADAPT_CMSA (see line 8 of Algorithm 2.1 on page 42) chooses for each position
.j = 1, . . . , m a letter as follows. First, the following values are defined:

.qj,a

⎧
⎪⎨

⎪⎩

αbsf
fj,a

if cj,a ∈ Sbsf

(1−αbsf)
fj,a

otherwise
(2.16)

Subsequently, a letter is chosen for position j by roulette wheel selection based on
the following probabilities:

.p(a) := qj,a∑
b∈Σ qj,b

∀ a ∈ Σ (2.17)

All three functions, after finishing the construction of a solution in terms of a
string (s), transform this solution into a solution S containing for each position j the
corresponding solution component. This solution S is then returned to the respective
CMSA algorithm.

2.4.4 Sub-instance Solving

The way of solving sub-instances . C' in the case of the FFMS problem is exactly
the same as the one described in Sect. 1.4.2.2 on page 25 in the context of the MDS
problem. Therefore, for solving a sub-instance . C' by means of the application of
CPLEX in function SolveSubinstance(. C', . tILP) of Algorithm 1.1 (page 19) and of
Algorithm 2.1 (page 42), the FFMS ILP model is extended by adding the following
set of constraints:

.xj,a = 0 for all cj,a ∈ C \ C' (2.18)

In this way, only solution components (resp. letter-position assignments) that form
part of the sub-instance . C' may be selected in order to appear in solutions. Finally,

64 2 Self-adaptive CMSA

remember that function SolveSubinstance(. C', . tILP) returns the CPLEX solution
in terms of a set .SILP of solution components. Moreover, the application of CPLEX
is subject to a time limit of .tILP CPU seconds, which means that the solution . SILP

returned by the function SolveSubinstance(. C', . tILP) is not necessarily an optimal
solution to the sub-instance . C'.

2.4.5 Experimental Evaluation

The experimental evaluation for the FFMS problem encompasses the following
algorithms:

1. GREEDY: The heuristic obtained by the execution of the algorithm presented in
Sect. 2.4.3 (previous section) in a deterministic way.

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance,
utilizing the default parameter values of CPLEX.

3. CMSA_INT: The standard CMSA algorithm, making use of the intuitive approach
to defining the set of solution components.

4. ADAPT_CMSA: The self-adaptive CMSA approach from this chapter.

As before, CPLEX 22.1 is used—both in standalone mode (CPLEX) and within the
CMSA variants—in one-threaded mode. For conducting the experiments we used
the IIIA-CSIC in-house high-performance computing cluster of machines equipped
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of
RAM.

2.4.5.1 FFMS Benchmark Set

For each combination of .n ∈ {100, 200, 300, 400} (number of input strings) and
.m ∈ {100, 500, 1000} (length of the input strings) exactly 30 problem instances
were generated uniformly at random over .Σ = {A,C, T ,G}. This alphabet of size
four was chosen due to the applications of the FFMS in bio-informatics. Moreover,
thresholds .t = 0.8m and .t = 0.85m will be considered for solving all these
instances. However, as threshold .t = 0.8m proved to be more difficult for our
algorithms, the result section below will only show the results obtained for this
threshold. In total, the generated benchmark set contains 360 problem instances.

2.4.5.2 Parameter Tuning

Both CMSA_INT and ADAPT_CMSA were tuned with the parameter tuning tool
irace; see Sect. 1.2.1 on page 12 for a description of irace. For this purpose, an
additional tuning instance was generated for each combination of n and m, which
makes a total of 12 tuning instances, considered both for thresholds .t = 0.8m and
.t = 0.85m. The budget of irace—that is, the number of algorithm runs allowed

2.4 Application to the FFMS Problem 65

Table 2.3 Parameters, domains, and tuning results for the FFMS problem

Parameter Domain CMSA_INT ADAPT_CMSA

na {1, . . . , 50} 27 n.a.

agemax {1, . . . , 10} 9 n.a.

drate [0.0, 0.99] 0.81 n.a.

tILP {1, . . . , 50} 30 1

cplexemphasis {true,false} true true

cplexwarmstart {true,false} true false

cplexabort {true,false} false n.a.

αLB [0.6, 0.99] n.a. 0.64

αUB [0.6, 0.99] n.a. 0.99

αred [0.01, 0.1] n.a. 0.1

tprop [0.1, 0.8] n.a. 0.42

for tuning—was set to 3000, and the computation time limit for the algorithms was
set to 600 CPU seconds per problem instance. The tuning results are presented in
Table 2.3. The most striking difference between CMSA_INT and ADAPT_CMSA is
the computation time limit for CPLEX. While CMSA_INT uses a limit of 30 seconds
(without enabling the abort feature), ADAPT_CMSA uses a limit of 1 second.

2.4.5.3 Results

The results are shown by means of box plots in Fig. 2.10. They show that
ADAPT_CMSA outperforms CMSA_INT especially in the context of short input
strings, that is, for instances with .m = 100 and also (to a lesser extent)
with .m = 500. On the contrary, CMSA_INT seems to have an advantage over
ADAPT_CMSA in the context of longer input strings (.m = 1000). These findings
are also confirmed by the CD plots provided in Fig. 2.11. In fact, they show
that overall ADAPT_CMSA outperforms CMSA_GEN with statistical significance
on this benchmark set. However, Fig. 2.11d shows that CMSA_GEN outperforms
ADAPT_CMSA with statistical significance on the subset of benchmark instances
with .m = 1000.

As in the case of the MPIDS problem (see Sect. 2.3.4.3), we plotted STNWeb
graphics of the obtained results; see Sect. 1.2.2 on page 13 for a description of
the STNWeb tool and the type of graphics that are produced. Figure 2.12 shows
the STN (complete vs. partitioned) for the first problem instance with . n = 100
input strings and an input string length of .m = 1000 (longest). The complete STN
(Fig. 2.12a) shows that the ADAPT_CMSA search trajectories are much longer. This
is mainly because ADAPT_CMSA does smaller steps than CMSA_INT in the search
space (due to a lower CPU time limit for CPLEX in comparison to CMSA_INT).
The partitioned STN (Fig. 2.12b) indicates a property of the FFMS problem that
we already observed in the case of the MPIDS problem: Trajectory overlaps are
only found at the start of algorithm trajectories, both concerning trajectories of

66 2 Self-adaptive CMSA

Fig. 2.10 Results for the FFMS problem (threshold .t = 0.8m)

different algorithms and between trajectories of the same algorithm. This indicates
that different good solutions to an FFMS instance might have quite different
structures. This is indeed confirmed by the scatter plots in Fig. 2.13. They show for
each pair of same-quality solutions from the search trajectories of CMSA_INT and
ADAPT_CMSA their difference (in terms of the number of solution string positions
that are different in both solutions). More specifically, it can be observed that better
same-quality solution pairs are generally characterized by a larger difference.

2.5 Conclusions 67

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)

Fig. 2.11 Critical Difference (CD) plots concerning the FFMS results. (a) All problem instances.
(b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

Fig. 2.12 STNWeb graphics. (a) and (b) show 10 runs of CMSA_INT and ADAPT_CMSA for the
first problem instance with .n = 100 and .m = 1000 (few but long input strings). While (a) shows
the complete STN, (b) shows the same STN after partitioning

2.5 Conclusions

In this chapter, it was shown that a self-adaptive variant of CMSA called
ADAPT_CMSA can be very useful for solving certain combinatorial optimization
problems. This holds especially for large-scale problem instances where standard
versions of CMSA might have problems adjusting the parameters such that the
resulting sub-instances can still be solved by CPLEX within reasonable computation
times. The increased adaptability of ADAPT_CMSA is achieved by a self-adaptive
way of changing two parameters during the execution of the algorithm: (1) the
number of solutions constructed per iteration, and (2) the value of a parameter that

68 2 Self-adaptive CMSA

n = 400

m = 100

n = 400

m = 500

n = 400

m = 1000

n = 300

m = 100

n = 300

m = 500

n = 300

m = 1000

n = 200

m = 100

n = 200

m = 500

n = 200

m = 1000

n = 100

m = 100

n = 100

m = 500

n = 100

m = 1000

1.4e+08 1.6e+08 5.0e+07 7.5e+07 1.0e+08 4e+07 8e+07

1.0e+08 1.2e+08 5.0e+07 7.5e+07 1.0e+08 5e+07

9.0e+07 1.1e+08 7e+07 8e+07 9e+07 4e+07 8e+07

5e+07 6e+07 7e+07 7e+07 8e+07 72500000 77500000

200

220

240

260

100

200

300

100

200

300

100

200

300

50

75

100

125

40

80

120

160

40

80

120

160

0

50

100

150

10

15

20

25

5

10

15

20

25

10

15

20

25

0

10

20

Solution Quality

D
iff

er
en

ce

0

100

200

300

Difference

Fig. 2.13 Differences between FFMS solutions of the same quality. The x-axes of all plots indicate
the solution quality (that is, the objective function values), while the y-axes show the differences
between solutions of the same quality from the considered search trajectories

References 69

|V| = 2000

k = 2

|V| = 2000

k = 3

|V| = 2000

k = 5

|V| = 2000

k = 10

440 480 520 560 360 390 240 260 280 150 155 160 165

90

100

110

120

130

140

120

140

160

180

200

150

200

250

50

100

150

200

250

Solution Quality

D
iff

er
en

ce

100

150

200

250

Difference

Fig. 2.14 Differences between MDS solutions of the same quality

biases the construction of new solutions towards the best-so-far solution. However,
note that biasing solution constructions towards the best-so-far solution may also
sometimes result in a disadvantage of ADAPT_CMSA in comparison to standard
CMSA variants. This is the case for problems in which occasionally larger jumps
in the search space are necessary in order to escape from basins of attraction of
sub-optimal solutions. In fact, we also tried to apply ADAPT_CMSA to the MDS
problem, which was considered in Chap. 1. However, in the case of the MDS
problem, ADAPT_CMSA resulted consistently worse than both CMSA_GEN and
CMSA_INT. Remember that in the case of the MDS problem, STNWeb graphics
showed overlap at the end of algorithm trajectories (see, for example, Fig. 1.14b on
page 34). This is very much in contrast to what happens in the case of the MPIDS
and FFMS problems. The difference between the STNWeb graphics also results in
very different scatter plots regarding the difference between pairs of same-quality
solutions; see Fig. 2.14. Instead of a growing difference between pairs of same-
quality solutions when solutions become better, the opposite happens in the case
of the MDS problem. The difference between same-quality solutions decreases.
In summary, these studies show that no algorithm variant is better for all possible
problems, which is very much in line with the so-called no free lunch theorems [19].

References

1. Akbay, M.A., Blum, C.: Application of CMSA to the minimum positive influence dominating
set problem. In: Artificial Intelligence Research and Development, pp. 17–26. IOS Press,
Amsterdam, Netherlands (2021)

2. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of CMSA to the electric vehicle routing
problem with time windows, simultaneous pickup and deliveries, and partial vehicle charging.
In: Metaheuristics International Conference, pp. 1–16. Springer (2022)

3. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of Adapt-CMSA to the two-echelon
electric vehicle routing problem with simultaneous pickup and deliveries. In: European
Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar),
pp. 16–33. Springer (2023)

70 2 Self-adaptive CMSA

4. Akbay, M.A., López Serrano, A., Blum, C.: A self-adaptive variant of CMSA: application to the
minimum positive influence dominating set problem. International Journal of Computational
Intelligence Systems 15(1), 44 (2022)

5. Blum, C., Festa, P.: A hybrid ant colony optimization algorithm for the far from most
string problem. In: Proceedings of EvoCOP 2014 – European Conference on Evolutionary
Computation in Combinatorial Optimization, pp. 1–12. Springer (2014)

6. Blum, C., Pinacho-Davidson, P.: Application of negative learning ant colony optimization
to the far from most string problem. In: Proceedings of EvoCOP – European Conference
on Evolutionary Computation in Combinatorial Optimization, no. 13987 in Lecture Notes in
Computer Science, pp. 82–97. Springer (2023)

7. Bouamama, S., Blum, C.: An improved greedy heuristic for the minimum positive influence
dominating set problem in social networks. Algorithms 14(3), 79 (2021)

8. Djukanović, M., Kartelj, A., Blum, C.: Self-adaptive CMSA for solving the multidimensional
multi-way number partitioning problem. Expert Systems with Applications p. 120762 (2023)

9. Fournier, A.K., Hall, E., Ricke, P., Storey, B.: Alcohol and the social network: Online social
networking sites and college students’ perceived drinking norms. Psychology of Popular Media
Culture 2(2), 86 (2013)

10. Gallardo, J.E., Cotta, C.: A GRASP-based memetic algorithm with path relinking for the far
from most string problem. Engineering Applications of Artificial Intelligence 41, 183–194
(2015)

11. Günneç, D., Raghavan, S., Zhang, R.: Least-cost influence maximization on social networks.
INFORMS Journal on Computing 32(2), 289–302 (2020)

12. Long, C., Wong, R.C.W.: Minimizing seed set for viral marketing. In: 2011 IEEE 11th
International Conference on Data Mining, pp. 427–436. IEEE Press (2011)

13. Mousavi, S.R.: A hybridization of constructive beam search with local search for far from
most strings problem. International Journal of Computer and Information Engineering 4(8),
1200–1208 (2010)

14. Rad, A.A., Benyoucef, M.: Towards detecting influential users in social networks. In:
International Conference on E-Technologies, pp. 227–240. Springer (2011)

15. Sun, R., Wu, J., Jin, C., Wang, Y., Zhou, W., Yin, M.: An efficient local search algorithm for
minimum positive influence dominating set problem. Computers & Operations Research 154,
106197 (2023)

16. Tatsis, V.A., Parsopoulos, K.E.: Dynamic parameter adaptation in metaheuristics using gradient
approximation and line search. Applied Soft Computing 74, 368–384 (2019)

17. Wang, F., Camacho, E., Xu, K.: Positive influence dominating set in online social networks.
In: International Conference on Combinatorial Optimization and Applications, pp. 313–321.
Springer (2009)

18. Wang, G.: Domination problems in social networks. Ph.D. thesis, University of Southern
Queensland (2014)

19. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

Chapter 3
Adding Learning to CMSA

Abstract CMSA is undeniably an algorithm whose efficacy can, to some extent,
be attributed to its inherent simplicity. As demonstrated in previous chapters
of this book, unsophisticated variants of CMSA are capable of yielding highly
satisfactory results. Nevertheless, such basic CMSA variants can, of course, undergo
enhancement through the incorporation of supplementary algorithmic components.
One avenue for refining barebone CMSA variants involves introducing a learning
component into the solution construction mechanism. This addition enables the
solution construction mechanism to generate solutions of improving quality over
time. In this chapter, we will show how this can be done in the context of two
combinatorial optimization problems that were already used for the illustration
of other CMSA variants in previous chapters. In particular, applications to the
Minimum Dominating Set (MDS) problem and the Far From Most String (FFMS)
problem are presented.

3.1 Introduction

One of the possible disadvantages of standard CMSA is the fact that the solution
construction mechanism generates, at each iteration, solutions from the same
probability distribution as in all previous iterations. This means that the average
quality of the solutions generated by the solution construction mechanism will
remain stationary over time. Therefore, it is reasonable to believe that adding a
learning mechanism to the solution construction process, causing the construction
of improving solutions over time, might improve the overall search and optimization
capability of CMSA.

In this chapter, we introduce a specific approach for incorporating a learning
mechanism into standard CMSA, which was detailed in Chap. 1 of this book.
Specifically, we will elaborate on the integration of CMSA with the so-called
bacterial algorithm (BA), an evolutionary algorithm where the crossover operator is
inspired by observed bacterial processes. It is important to note that the choice of the
bacterial algorithm is just one of many options for introducing learning to CMSA,
and this application should be regarded as an illustrative example. Generally, BA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_3

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3
https://doi.org/10.1007/978-3-031-60103-3_3

72 3 Adding Learning to CMSA

algorithms draw inspiration from the survival dynamics of bacterial populations
and their evolution, including the development of resistance to antibiotics. It is
noteworthy that bacterial populations, upon developing such resistance, become
impervious to the effects of antibiotics. While this resistance is advantageous
from the bacteria’s perspective, it poses significant challenges in the medical field.
Infections caused by antibiotic-resistant microorganisms often defy conventional
treatment, leading to prolonged illness and an increased risk of mortality. In essence,
antibiotic resistance represents a form of drug resistance where a microorganism can
withstand exposure to an antibiotic [5].

Recent research has explored the application of bacterial behavior in diverse
contexts, including its utilization in group formation for designing students’ activi-
ties. The fundamental concept revolves around students collaborating in a group to
enhance their academic performance [2].

The developed CMSA algorithm with learning is labeled LEARN_CMSA. We
demonstrate the usefulness of LEARN_CMSA in the context of the Minimum
Dominating Set (MDS) problem which is already known from Chap. 1 of this
book. Moreover, we show its application to the Far From Most String (FFMS)
problem known from Chap. 2. However, before presenting these applications, we
first describe the BA algorithm and LEARN_CMSA in general terms.

3.2 The Bacterial Algorithm

The BA algorithm was first described in [2, 6]. In this work, we present a simplifi-
cation of the original algorithm. Before delving into the algorithm description, the
interested reader should note, however, that we believe that nearly any population-
based metaheuristic could be used for the same purpose. In other words, we do
not believe that the success of LEARN_CMSA, which will be demonstrated further
below, is due to specific algorithmic features of the BA algorithm. In contrast, we
believe that the success of LEARN_CMSA is due to the way it is interleaved with
CMSA.

Bacteria, being microorganisms or microscopic life forms, share this classifica-
tion with viruses, algae, fungi, and protozoa. Essentially, bacteria are unicellular
organisms of minuscule size with the ability to thrive in diverse environments such
as oceans, terrestrial habitats, outer space, and even within the human intestine. The
interaction between humans and bacteria is intricate; at times, bacterial behavior
proves beneficial, even essential, to human well-being, while in other instances,
it may instigate perilous diseases and health complications. Since the discovery
of penicillin by Alexander Fleming in 1929 [4], antibiotics have played a crucial
role in treating diseases caused by bacteria and other microorganisms. However, a
significant challenge arises when bacteria are frequently exposed to the same type
of antibiotics, leading to the development of defense mechanisms to counteract
the antibiotics’ effects. This pivotal survival mechanism for bacteria involves
communication within the population, functioning as a collaborative mechanism

3.2 The Bacterial Algorithm 73

that involves the transfer of DNA among bacteria. Consequently, more robust
bacteria can pass on their traits to weaker ones, enabling them to acquire the ability
to resist the common adversary: antibiotics.

A significant distinction between higher organisms and bacteria lies in the
mechanism of genetic reproduction and recombination. Notably, populations of
superior organisms exhibit genetic variability through a vertical process—offspring
are generated as part of a new generation through sexual interaction between
parents. In contrast, genetic diversity within bacteria populations can occur through
a horizontal process, wherein genetic material is exchanged among individuals
without necessitating the creation of a new individual. Consequently, within the
bacterial context, it is more fitting to refer to donors and receptors rather than parents
and offspring. In bacteria, reproduction is achieved through cell division, a process
of replication resulting in a new bacterial generation containing identical genetic
material. This process may be susceptible to errors during replication or influenced
by external factors, such as mutagens, potentially impacting the outcome.

As previously discussed, the emergence of antibiotic resistance poses a signifi-
cant concern for human health. Conversely, for bacteria, this development signifies
an evolutionary enhancement that augments their ability to survive. Viewing this
bacterial behavior from an optimization perspective reveals it as a valuable source
of inspiration, as exemplified in [2, 6]. This is especially true for the process of
horizontal transfer of DNA material, wherein genetic material is shared among
fellow bacteria belonging to the same generation.

The pseudo-code of our variant of the bacterial algorithm (BA) is provided in
Algorithm 3.1. The algorithm takes as input values for the following five parameters
(see line 1):

1. .psize: population size.
2. .prheur: rate of initial solutions generated by a probabilistic heuristic
3. .drate: determinism rate used by the probabilistic heuristic.
4. .prcon: the mutation probability during the conjugation phase.
5. .prreg: the mutation probability during the regeneration phase.

At the onset of the algorithm, the best-so-far solution (. Sbsf) is initialized as
the empty set. Subsequently, the initial population of solutions, comprising
.psize solutions, is generated using the function GenerateInitialPopula-
tion.(psize, prheur, drate). In this process, a solution is created with a probability
of .prheur through a randomized heuristic, which is problem-specific. Otherwise,
the solution is generated uniformly at random. Note that each solution corresponds
to a bacterium. However, in an attempt to describe the algorithm in metaphor-free
language, we will not use the term bacterium from here on.

The initial step in each iteration involves determining the iteration-best solution
.Sib from the current population (refer to line 5), facilitating the update of the
best-so-far solution if indicated (line 6). Following that, the two principal proce-
dures of the BA—conjugation and regeneration—are performed. Both procedures
commence similarly (refer to lines 7 and 8 for conjugation, and lines 11 and 12
for regeneration). Specifically, the current population P undergoes division into

74 3 Adding Learning to CMSA

Algorithm 3.1: Pseudo-code of the bacterial algorithm (BA)
1: input: parameter values for psize, prheur, drate, prcon, prreg

2: Sbsf := ∅
3: P := GenerateInitialPopulation(psize, prheur, drate)
4: while CPU time limit not reached do
5: Sib := argmin{f (S) | S ∈ P }
6: if f (Sib) < f (Sbsf) then Sbsf := Sib

CONJUGATION PHASE
7: Atblevel := DetermineSeparationLevel(P)
8: (Pdonor, Preceptor) := Classification(Atblevel, P)
9: Preceptor := Conjugation(Pdonor, Preceptor, prcon)
10: P := Pdonor ∪ Preceptor

REGENERATION PHASE
11: Atblevel := DetermineSeparationLevel(P)
12: (Pdonor, Preceptor) := Classification(Atblevel, P)
13: Preceptor := Regeneration(Pdonor, prreg)
14: P := Pdonor ∪ Preceptor
15: end while
16: output: Sbsf

two segments: donor solutions (.Pdonor) and receptor solutions (.Preceptor). This
division is initiated by determining a separator level (.Atblevel) through the function
DetermineSeparatorLevel(P).

Two pairs of solutions, denoted as .(Si, Sj) and .(Sk, Sl), are randomly selected
from the current population P . Subsequently, the superior solution from each pair
is determined. Let .S1 := argmin{f (Si), f (Sj)} and .S2 := argmin{f (Sk), f (Sl)}.
Additionally, designate .Smax as the solution with the lower quality between . S1 and
. S2, i.e., .Smax := argmax{f (S1), f (S2)}. Accordingly, .Atblevel is defined as .f (Smax).
This employs a cost-effective approach to select a solution with a fitness value close
to the median of the population.1 Subsequently, .Atblevel is employed to partition the
current population into two sub-populations: .Pdonor, consisting of donor solutions,
and .Preceptor, comprising recipient solutions. In particular, solutions in . Preceptor
exhibit an objective function value worse than .Atblevel, while donor solutions have
an objective function value better or equal to .Atblevel.

•> The Conjugation Phase

In the conjugation phase of BA, all receptor solutions from .Preceptor receive
a random piece of genetic material from some randomly chosen donor solution
from .Pdonor. As in nature, this operation may suffer a corruption in the genetic
transcription (mutation). Thus, mutation is applied with a mutation probability of
.prcon.

1 Note that our description of this process assumes a minimization problem to be considered for
optimization. In the context of a maximization problem, obvious adjustments must be made.

3.3 The LEARN_CMSA Algorithm: A General Description 75

Algorithm 3.2: Pseudo-code of LEARN_CMSA

1: input 1: complete set of solution components C
2: input 2: values for CMSA parameters na, agemax, and tILP
3: input 3: values for BA parameters psize, prheur, drate, prcon, prreg
4: input 4: values for CMSA/BA interplay parameters biter, rinject
5: Sbsf := ∅
6: C' := ∅
7: age[c] := 0 for all c ∈ C
8: P := GenerateInitialPopulation(psize, prheur, drate)
9: while CPU time limit not reached do
10: P := Execute_BA_Algorithm(P , biter, psize, prheur, drate, prcon, prreg)
11: T := Extract_From(P, na)
12: for all S ∈ T do
13: for all c ∈ S and c /∈ C' do
14: age[c] := 0
15: C' := C' ∪ {c}
16: end for
17: end for
18: SILP := SolveSubinstance(C', tILP)
19: if f (SILP) < f (Sbsf) then Sbsf := SILP end if
20: Adapt(C', SILP, agemax)
21: P := InjectSolverSolution(P, Sbsf, rinject)
22: end while
23: output: Sbsf

•> The Regeneration Phase

In the regeneration phase of BA, after classifying the members of the current
population into donors .Pdonor and receptors .Preceptor, all solutions from .Preceptor are
exchanged with clones of randomly chosen donor solutions after applying mutation
with probability .prreg.

These steps are iterated until a computation time limit is reached. Upon
termination, the best-so-far solution .Sbsf is yielded as the output.

3.3 The LEARN_CMSA Algorithm: A General Description

The pseudo-code of LEARN_CMSA is provided in Algorithm 3.2. Note that this
pseudo-code is an extension of the one of standard CMSA presented in Algo-
rithm 1.1 on page 19. Alongside the previously specified CMSA and BA parameters,
it requires input for the following two parameters that govern the interaction
between CMSA and BA:

76 3 Adding Learning to CMSA

1. . biter: number of BA iterations executed in function Execute_BA_Algorithm(P ,
. biter, .psize, .prheur, .drate, .prcon, .prreg) at each CMSA iteration; see line 10.

2. .rinject: the rate of injection of the solution returned by the ILP solver (. Sbsf) into
the current BA population in function InjectSolverSolution(P , . Sbsf, .rinject); see
line 21.

•> Differences Between LEARN_CMSA and Standard CMSA

1. After the initialization of the CMSA parameters in lines 5–7, the initial popu-
lation P of the BA algorithm is generated in line 8. This is done as previously
explained in Sect. 3.2.

2. At the onset of every CMSA iteration, the function Execute_BA_Algorithm(P ,
. biter, .psize, .prheur, .drate, .prcon, .prreg) carries out .biter iterations of the BA
algorithm, following the same methodology described in Sect. 3.2. The output
of this function is the current population P of the BA algorithm.

3. Rather than employing a probabilistic, constructive heuristic for pro-
ducing new solutions at each iteration, LEARN_CMSA utilizes function
.Extract_From(P, na) (refer to line 11) to extract . na solutions from the current
BA population P , which are then stored in set T . Specifically, T comprises the
best solution from P in addition to .na − 1 randomly selected donor solutions
from P . It is worth noting that, for this purpose, the separator level (.Atblevel)
is determined, and the population P is partitioned into donors and receptors, as
described in Sect. 3.2.

4. As a last step of every LEARN_CMSA iteration, the solution .Sbsf is employed to
substitute .⎿rinject · |Preceptor|⏌ randomly chosen receptor solutions within P . This
action is executed through the InjectSolverSolution(P , . Sbsf, .rinject) function,
located at line 21.

In this hybridization approach of CMSA and BA, both memory mechanisms—
the sub-instance . C' of CMSA and the population P of BA—mutually influence each
other. Specifically, a set of donor solutions from P is incorporated into . C' during
each iteration, and CMSA influences BA by introducing .Sbsf into the BA population
P .

3.4 Application to the MDS Problem

The first application of LEARN_CMSA that will be presented is the one to the
Minimum Domination Set (MDS) problem which was already introduced in
Sect. 1.4 on page 20. Concerning the complete set C of solution components
for the LEARN_CMSA approach, we decided for the intuitive approach in which
C contains a solution component . ci for each vertex .vi ∈ V of the input graph

3.4 Application to the MDS Problem 77

.G = (V ,E). Moreover, solving sub-instances in function SolveSubinstance(. C',

. tILP)—see line 18 of Algorithm 3.2—works exactly in the same way as described in
Sect. 1.4.2.2 on page 25. In the following, the remaining algorithmic components of
BA and LEARN_CMSA will be outlined.

3.4.1 Generating the Initial Population

Function GenerateInitialPopulation.(psize, prheur, drate)—see line 4 of Algo-
rithm 3.1, respectively line 8 of Algorithm 3.2—generates the initial population
of BA and of the BA-part of LEARN_CMSA. In particular, this function generates
.psize solutions in the following way. The generation of each solution works as
follows:

1. A number .r ∈ [0, 1] is drawn uniformly at random. In case .r ≤ prheur, the
solution is generated by the randomized heuristic described in Sect. 1.4.1.1
on page 22. This randomized heuristic requires values for parameters . drate
(determinism rate) and .lsize (candidate list size). In an attempt to reduce the
number of parameters to be tuned, in Sect. 3.4.4.2 we will only consider .drate,
which is the more important parameter among these two. In contrast, .lsize is set
to a fixed value of 10 both for BA and LEARN_CMSA.

2. In case r , the random number drawn uniformly at random in the first step, is
greater than .prheur, a solution is randomly constructed in the following way. First,
all nodes of the graph are sorted randomly. Subsequently, the resulting ordered
list of nodes is traversed sequentially, adding a node to the solution if it covers at
least one node which is still uncovered so far. This process stops once all nodes
of the graph are covered.

3.4.2 Implementation of Conjugation

Remember that in the conjugation phase of BA, each receptor solution . Sr ∈ Preceptor
receives a piece of genetic material from a randomly chosen donor solution from
.Pdonor. Moreover, mutation is applied to the result with a mutation probability
.prcon. Subsequently, we will explain how this step is implemented in the case of
the application to the MDS problem.

Given a receptor solution . Sr and a randomly chosen donor solution . Sd , first, they
are transformed into solutions . sr and . sd containing the corresponding nodes of the
input graph. Then, a set . Ṽ is defined containing the union of the sets of nodes present
in . sr and . sd . Each .v ∈ Ṽ is assigned a value

.δv := |N [v]| + rv , (3.1)

78 3 Adding Learning to CMSA

where .N [v] is the closed neighborhood of v in G, that is, .N [v] := N(v) ∪ {v},
and . rv is a random value chosen from the normal distribution .N(0, σ 2

pert), that is,
a normal distribution with zero as mean and .σpert as standard deviation. Note that
.σpert is an important parameter of both BA and LEARN_CMSA which will be tuned
in Sect. 3.4.4.2. Next, all nodes from . Ṽ are ordered according to decreasing .δv-
values. Finally, a new solution .scon is generated by sequentially traversing this list
and adding each node that covers at least one of the nodes of the input graph that
are still uncovered. The process stops once the whole graph is covered.

•> Application of Mutation

Finally, mutation is applied to the new solution .scon as follows. First, let . Ṽ be
defined as the set of nodes of input graph G which are not in . scon. Then, for each
node v of .scon it is decided with a probability .prcon if it is removed from .scon and
added to . Ṽ . This results in a partial solution . sp

con. Then, each .v ∈ Ṽ is assigned a
value

.γv := ∣
∣
{

v' ∈ N [v] | v' still uncovered by s
p
con

}∣
∣ + rv . (3.2)

In other words, . γv is the sum of the number of still uncovered neighbors of v
(concerning the partial solution . sp

con) and . rv , which is—as above—a random value
chosen from the normal distribution .N(0, σ 2

pert). Next, all nodes from . Ṽ are ordered
according to decreasing .γv-values. A mutated solution .smut is then generated by
sequentially traversing this list and adding each node that covers at least one of the
nodes of the input graph that are still uncovered. The process stops once the whole
graph is covered. The corresponding CMSA-solution .Smut then replaces the receptor
solution . Sr in population P .

3.4.3 Implementation of Regeneration

Remember that, after the conjugation phase (see lines 7–10 of Algorithm 3.1 on
page 74), the resulting population P is again divided into donor solutions . Pdonor
and receptor solutions .Preceptor. In the regeneration phase, each receptor solution
.Sr ∈ Preceptor is replaced in the following way. First, a donor solution .Sd ∈ Pdonor is
chosen uniformly at random. Next, a clone . Sc

d of . Sd is produced. After that, mutation
is applied to . Sc

d in the same way as described above in the conjugation phase. The
only difference is that .prreg, instead of .prcon, is now used as the probability to
reduce . Sc

d .

3.4 Application to the MDS Problem 79

3.4.4 Experimental Evaluation

The experimental evaluation of BA and LEARN_CMSA for the MDS problem
encompasses the following algorithms:

1. CPLEX: Application of CPLEX 22.1 to each considered problem instance,
utilizing the default parameter values of CPLEX.

2. CMSA_INT: The standard CMSA algorithm, making use of the intuitive approach
to defining the set of solution components. This algorithm was described in
Sect. 1.4 on page 20.

3. BA: The pure bacterial algorithm from this section.
4. LEARN_CMSA: The CMSA approach extended with a learning mechanism

(based on the bacterial algorithm) presented in this section.

As before, CPLEX 22.1 is used—both in standalone mode (CPLEX) and within
LEARN_CMSA—in one-threaded mode. For conducting the experiments we used
the IIIA-CSIC in-house high-performance computing cluster of machines equipped
with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of
RAM.

3.4.4.1 Benchmark Instances

The same benchmark instances as those already introduced in Chap. 1 of this book
were used for the experimental evaluation, that is, 480 Erdös-Rényi graphs, 480
Watts-Strogatz graphs, and 480 Barabási-Albert graphs. In particular, for each of the
three considered graph models, this benchmark set consists of 30 graphs for each
combination of .|V | ∈ {500, 1000, 1500, 2000} and four different graph densities.
Remember that the graph density is controlled in Erdös-Rényi graphs by the edge
probability (p), in Watts-Strogatz graphs by a parameter k, and in Barabási-Albert
graphs by a parameter m.

3.4.4.2 Algorithm Tuning

Both BA and LEARN_CMSA underwent parameter tuning with the irace tool,
which was already used in all other experimental evaluations presented in this book.
The interested reader may find a description of irace in Sect. 1.2.1 on page 12. In
particular, irace was applied with a budget of 3000 algorithm runs exactly once
for the tuning of each of the two algorithms. The same tuning instances were used
for this purpose as the ones described in Sect. 1.4.3.2 on page 27. Moreover, the
same CPU time limits were used as those described in Sect. 1.4.3.2, that is, 150
CPU seconds was used for all graphs with .|V | = 500, 300 CPU seconds for all
graphs with .|V | = 1000, 450 CPU seconds for all graphs with .|V | = 1500 and 600
CPU seconds for all graphs with .|V | = 2000.

80 3 Adding Learning to CMSA

Table 3.1 Parameters, domains, and tuning results for the MDS problem

Parameter Domain CMSA_INT BA LEARN_CMSA

.na .{1, . . . , 50} 4 n.a. 30

.agemax .{1, . . . , 10} 3 n.a. 2

.drate .[0.0, 0.99] 0.29 0.8 0.65

.lsize .{3, . . . , 50} 35 n.a. 15

.tILP .{1, . . . , 20} 13 n.a. 4

.cplexemphasis .{true,false} true n.a. true

.cplexwarmstart .{true,false} false n.a. false

.cplexabort .{true,false} false n.a. false

.psize .{10, . . . , 1000} n.a. 21 207

.prheur .[0.0, 1.0] n.a. 0.43 0.43

.prcon .[0.0, 0.5] n.a. 0.44 0.06

.prreg .[0.0, 0.5] n.a. 0.02 0.1

.σpert .[1.0, 10.0] n.a. 1.09 3.26

.rinject .[0.01, 0.99] n.a. n.a. 0.12

.biter .{1, . . . , 100} n.a. n.a. 7

Table 3.1 shows both the parameters involved in the different algorithms together
with their domains, and the tuning results. Note that the tuning results of CMSA_INT

are also provided in this table. They were copied from Table 1.2 on page 27. The
first eight parameters in this table are the usual CMSA-related parameters.2 The
next five parameters are specific to BA, and the BA-related parts of LEARN_CMSA.
Hereby, note that the four parameters are generic ones, while the fifth one (.σpert) is
specific to our application to the MDS problem. Finally, the last two parameters in
the table determine the interplay between BA and CMSA in LEARN_CMSA.

The following parameter settings are noteworthy. First, the number of solu-
tions that are fed into the sub-instance at each iteration (. na) is much higher
in LEARN_CMSA than in CMSA_INT. In addition to this, the CPU time limit
for CPLEX (for solving sub-instances) is much lower. This indicates that sub-
instances in LEARN_CMSA are built based on better solutions than in CMSA_INT.
Otherwise, sub-instances in LEARN_CMSA would be too large to be solved by
CPLEX within four CPU seconds. Another noteworthy difference concerns the
setting of the population size of BA in comparison to the one in LEARN_CMSA.
While BA makes use of a small population size of 21 individuals, the BA-part in
LEARN_CMSA requires a significantly larger population size of 207 individuals.
This might be due to the need for maintaining a certain diversity in the BA
population of LEARN_CMSA to be able to feed the sub-instance with both high-
quality solutions but also diverse ones.

2 Remember that a description of the CPLEX parameters .cplexemphasis, .cplexwarmstart, and . cplexabort
that are used within CMSA_INT and LEARN_CMSA is provided on page 23.

3.4 Application to the MDS Problem 81

Fig. 3.1 LEARN_CMSA results for Erdös-Rényi graphs

3.4.4.3 Results

All four algorithmic techniques (CPLEX, CMSA_INT, BA and LEARN_CMSA) were
applied exactly once to each of the problem instances from the benchmark set. The
computation time limit for CMSA_INT, BA and LEARN_CMSA was the same as
the one used for tuning (see previous section). The results are shown in the form
of box plots in Fig. 3.1 concerning Erdös-Rényi graphs and in Fig. 3.2 concerning

82 3 Adding Learning to CMSA

Fig. 3.2 LEARN_CMSA results for Watts-Strogatz graphs

Watts-Strogatz graphs. Results for Barabási-Albert graphs are not shown because
no significant difference between CMSA_INT and LEARN_CMSA could be detected.
Both graphics contain a .4 × 4 grid of box plots, where the rows present the results
(from top to bottom) for graphs of increasing size, and the columns (from left to
right) present the results for graphs of increasing density.

To support the result analysis with claims regarding statistical significance,
separate CD plots are presented for the graphs of each of the two network models in
Figs. 3.3 and 3.4. Refer to Sect. 1.2.3 on page 16 for a comprehensive explanation

3.4 Application to the MDS Problem 83

1 2 3 4

(a)
1 2 3 4

(b)

1 2 3 4

(c)
1 2 3 4

(d)

1 2 3 4

(e)

Fig. 3.3 Critical difference (CD) plots concerning Erdös-Rényi graphs. (a) All graphs. (b) Density
.p = 0.00624144. (c) Density .p = 0.00416381. (d) Density .p = 0.0103881. (e) Density . p =
0.020705

1 2 3 4

(a)
1 2 3 4

(b)

1 2 3 4

(c)
1 2 3 4

(d)

1 2 3 4

(e)

Fig. 3.4 Critical difference (CD) plots concerning Watts-Strogatz graphs. (a) All graphs. (b)
Density .k = 2. (c) Density .k = 3. (d) Density .k = 5. (e) Density .k = 10

84 3 Adding Learning to CMSA

of CD plots. Each CD plot figure comprises five graphics. The first one at the top
provides statistical information across the entire set of graphs for the respective
network model. The remaining four CD plot graphics offer statistical insights into
all graphs of a specific density.

•> Main Observations Concerning the MDS Results

1. As a stand-alone algorithm, BA is clearly inferior to both CMSA variants.
Especially in the context of sparse problem instances (left-most columns in
both box plot figures), BA is not able to compete with the other algorithms.
However, its relative performance is improving with growing graph density. It
even outperforms CPLEX for the densest graphs of both types.

2. Even though BA is inferior as a stand-alone approach, its learning mechanism
clearly adds value to LEARN_CMSA. While LEARN_CMSA is only slightly
better than CMSA_INT in the context of Erdös-Rényi graphs, LEARN_CMSA

outperforms CMSA_INT with statistical significance for Watts-Strogatz graphs.
3. In the context of Erdös-Rényi graphs, the advantage of LEARN_CMSA over

CMSA_INT increases with decreasing graph density. This is different for Watts-
Strogatz graphs, where LEARN_CMSA exhibits a more consistent superiority
over CMSA_INT over the whole range of tested graph densities.

As in all other experimental evaluations described in this book, STN graphics
were produced to further analyze the results; see Sect. 1.2.2 on page 13 for a
description of the STNWeb tool that was used to produce these graphics. Figure 3.5a
shows STN graphics (in addition to graphics providing information about the
evolution of the algorithms over time) for two problem instances. In particular, the
graphics in Fig. 3.5a, c and e deal with the first Watts-Strogatz graph with . n = 1500
nodes and a rather high density (.k = 5), while the remaining graphics in Fig. 3.5
(right column of graphics) refer to the first Erdös-Rényi graph with .n = 1000 nodes
and a lower density determined by the edge probability .p = 0.00614144. While
the two complete STN graphics actually look rather similar (see Fig. 3.5a and b),
the STN graphics after search space partitioning reveal the following differences. In
the case of the Watts-Strogatz graph (left column of graphics), it can be observed
that after overlaps in the search trajectories rather at the beginning of the search
process, the trajectories of CMSA_INT seem to move to a common attractor in the
search space, while the ones of LEARN_CMSA, which is the best algorithm for this
problem instance, seem to be able to identify solutions of very good quality with
a different structure. Also for the BA trajectories, there does not seem to exist a
common attractor. The fact of not finding overlaps between BA trajectories and
trajectories of the CMSA variants after the initial stages of the search process is
also partially explained by the graphic in Fig. 3.5e, which shows that—after the
initial stages of the search process, that is, a few seconds in terms of computation

3.4 Application to the MDS Problem 85

(a) (b)

(c) (d)

200

250

300

350

0 100 200 300 400

Time

S
ol

ut
io

n
Q

ua
lit

y

Algorithm

BA

CMSA_INT

LEARN_CMSA

(e)

180

190

200

210

0 100 200

Time

S
ol

ut
io

n
Q

ua
lit

y

Algorithm

(f)

BA

CMSA_INT

LEARN_CMSA

Fig. 3.5 STN graphics and algorithm evolution concerning the MDS problem. (a, b) Complete
STN. (c, d) STN (after partitioning). (e, f) Algorithm evolution

86 3 Adding Learning to CMSA

time—the CMSA trajectories quickly advance to solutions of a quality which is
never reached by any BA trajectory.

On the other side, the trajectories of both CMSA variants are clearly attracted
by the same area of the search space in the case of the Erdös-Rényi graph; see the
right column of graphics in Fig. 3.5. In fact, even though only two LEARN_CMSA

trajectories can find solutions with the best quality (see Fig. 3.5b) there are
CMSA_INT trajectories that end up in very similar solutions; see, for example, the
CMSA_INT trajectories which pass through red dots in the STN graphic after search
space partitioning; see Fig. 3.5d.

3.5 Application to the FFMS Problem

The second application of LEARN_CMSA presented in the following is the one to the
Far From Most String (FFMS) problem which was already introduced in Sect. 2.4
starting on page 59. Concerning the complete set C of solution components for the
LEARN_CMSA approach, we decided also here for the following intuitive definition
(already introduced in Sect. 2.4.2 on page 62): each combination of a position j in
a solution string (where .j = 1, . . . , m) and a letter .a ∈ Σ is a solution component
. cj,a . That is, .C := {cj,a | j = 1, . . . , m and a ∈ Σ}. Any feasible solution S is
a subset of C such that for each position .j = 1, . . . , m, S contains exactly one of
the solution components from .Cj := {cj,a | a ∈ Σ}. Note that, given a feasible
solution S, a solution s in string form can be derived in a well-defined way by
placing character a at position j of s for each solution component .cj,a ∈ S. The
same holds the other way around.

Moreover, solving sub-instances in function SolveSubinstance(. C', . tILP)—see
line 18 of Algorithm 3.2—works exactly in the same way as described in Sect. 2.4.4
on page 63. In the following, the remaining algorithmic components of BA and
LEARN_CMSA will be outlined.

3.5.1 Generating the Initial Population

Function GenerateInitialPopulation.(psize, prheur, drate)—see line 3 of Algo-
rithm 3.1, respectively line 8 of Algorithm 3.2—is responsible for creating the
initial population of BA and the BA-part of LEARN_CMSA. Specifically, this
function produces .psize solutions in the following manner. The generation process
for each solution is outlined as follows:

1. A number .r ∈ [0, 1] is drawn uniformly at random. In case .r ≤ prheur,
the solution is generated by the randomized heuristic described in Sect. 2.4.3
on page 62. This randomized heuristic requires a value for parameter . drate
(determinism rate), which will be determined by parameter tuning.

3.5 Application to the FFMS Problem 87

2. In case r , the random number drawn uniformly at random in the first step, is
greater than .prheur, a solution is randomly constructed by choosing for each of
the m positions a letter from . Σ with uniform probability.

3.5.2 Implementation of Conjugation

Recall that during the conjugation phase of BA, each receptor solution . Sr ∈ Preceptor
acquires a genetic fragment from a randomly selected donor solution in .Pdonor.
Additionally, mutation is applied to the outcome with a mutation probability denoted
as .prcon. Below, we will elaborate on the implementation of this step in the context
of the application to the FFMS problem.

Given a receptor solution . Sr and a randomly chosen donor solution . Sd , first,
both are converted into their corresponding string forms . sr and . sd , and the receptor
solution . sr is cloned, resulting in a cloned receptor solution . sc

r . Then, two indexes i
and k are chosen uniformly at random such that .1 ≤ i < k ≤ m. Subsequently, for
each l from i to k—that is, for all .l ∈ {i, i +1, . . . , k−1, k}—the following is done:
mutation is applied with a probability .prcon by placing a random character from . Σ
at position l of . sc

r . Otherwise, the new letter at position l of solution . sc
r is the letter

at position l of the donor solution . sd , that is, .sc
r [l] := sd [l]. Afterwards, the new

solution . sc
r is transformed into the corresponding set . Sc

r of solution components.
Moreover, . Sc

r replaces the original receptor solution . Sr in the population P .

3.5.3 Implementation of Regeneration

Keep in mind that following the conjugation phase (refer to lines 7–10 of Algo-
rithm 3.1 on page 74), the resultant population P is once again partitioned into
donor solutions .Pdonor and receptor solutions .Preceptor. In the regeneration phase,
each receptor solution .Sr ∈ Preceptor is substituted in population P as follows. First,
a donor solution .Sd ∈ Pdonor is chosen uniformly at random. Next, a clone . Sc

d of
. Sd is produced and transformed into its corresponding string form . sc

d . After that,
mutation is applied to each position l of . sc

d with probability .prreg, that is, with
probability .prreg the letter at position l of . sc

d is replaced with a random letter from
. Σ. After that, . sc

d is transformed back to a corresponding solution . Sc
d in the form of

solution components. Finally, . Sc
d replaces . Sd in population P .

3.5.4 Experimental Evaluation

The experimental evaluation of BA and LEARN_CMSA for the FFMS problem
considers the following list of approaches:

88 3 Adding Learning to CMSA

1. CMSA_INT: Standard CMSA using the intuitive approach for the definition of the
set of solution components. This algorithm was described in Sect. 1.4 on page 20.

2. ADAPT_CMSA: The adaptive variant of CMSA whose application to the FFMS
problem was described in Sect. 2.4 of this book. Note that ADAPT_CMSA

replaces the standalone application of CPLEX for this experimental evaluation.
In Sect. 2.4 the superiority of ADAPT_CMSA over the standalone application of
CPLEX in the context of the FFMS problem was shown.

3. BA: The pure bacterial algorithm from this section.
4. LEARN_CMSA: The CMSA approach extended with a learning mechanism

(based on the bacterial algorithm) presented in this section.

As in all cases showcased in this book, CPLEX 22.1 is used in one-threaded mode
in all considered CMSA variants. The experiments were conducted on the already
described IIIA-CSIC in-house high-performance computing cluster, consisting of
machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz
and at least 32 GB of RAM.

3.5.4.1 Benchmark Instances

For the experiments, we used the same benchmark instances as those already used
for the experimental evaluation of ADAPT_CMSA in Sect. 2.4 of Chap. 2. These
benchmark instances were described in Sect. 2.4.5.1 on page 64. The only difference
is that, in addition to considering threshold .t = 0.8m, all 360 problem instances are
also solved with a threshold of .t = 0.85m. This threshold has also been used in the
related literature; see, for example, [3].

3.5.4.2 Parameter Tuning

Both BA and LEARN_CMSA underwent parameter tuning using the irace tool,
which has been employed in all other experimental evaluations detailed in this book.
The interested reader may find a description of irace in Sect. 1.2.1 on page 12.
In particular, irace was applied with a budget of 3000 algorithm runs exactly
once for the tuning of each of the two algorithms. The same tuning instances were
used for this purpose as the ones described in Sect. 2.4.5.2 on page 64. Shortly, we
have 12 tuning instances, all considered both for threshold .t = 0.8m and .t = 0.85m.
Moreover, the computation time limit for the algorithms was set to 600 CPU seconds
per problem instance.

Table 3.2 presents the parameters and their respective domains for the various
algorithms, along with the tuning results. Please be aware that the tuning outcomes
for CMSA_INT and ADAPT_CMSA can also be found in this table. These results
have been extracted from Table 2.3 on page 65. The initial seven parameters in
this table pertain to standard CMSA. The subsequent four parameters are exclusive
to BA, also covering the BA-related aspects of LEARN_CMSA. Lastly, the last

3.5 Application to the FFMS Problem 89

Table 3.2 Parameters, domains, and tuning results for the FFMS problem

Parameter Domain CMSA_INT BA LEARN_CMSA ADAPT_CMSA

.na .{1, . . . , 50} 27 n.a. 32 n.a.

.agemax .{1, . . . , 10} 9 n.a. 5 n.a.

.drate .[0.0, 0.99] 0.81 0.85 0.49 n.a.

.tILP .{1, . . . , 20} 30 n.a. 48 1

.cplexemphasis .{true,false} true n.a. true true

.cplexwarmstart .{true,false} true n.a. true true

.cplexabort .{true,false} false n.a. false n.a.

.αLB .[0.6, 0.99] n.a. n.a. n.a. 0.64

.αUB .[0.6, 0.99] n.a. n.a. n.a. 0.99

.αred .[0.01, 0.1] n.a. n.a. n.a. 0.1

.tprop .[0.1, 0.8] n.a. n.a. n.a. 0.42

.psize .{10, . . . , 1000} n.a. 581 219 n.a.

.prheur .[0.0, 1.0] n.a. 0.21 0.99 n.a.

.prcon .[0.0, 0.5] n.a. 0.0 0.14 n.a.

.prreg .[0.0, 0.5] n.a. 0.01 0.14 n.a.

.rinject .[0.01, 0.99] n.a. n.a. 0.29 n.a.

.biter .{1, . . . , 100} n.a. n.a. 39 n.a.

two parameters in the table dictate the interaction between BA and CMSA within
LEARN_CMSA.

As in the case of the parameter tuning results for the MDS problem presented in
Sect. 3.4.4.2, the number of solutions fed into the sub-instance at each iteration
(. na) is higher in LEARN_CMSA than in CMSA_INT. This indicates that sub-
instances in LEARN_CMSA are built based on better solutions than in CMSA_INT.
However, there are also noteworthy differences to the parameter settings of BA and
LEARN_CMSA in the context of the MDS problem. A striking difference is that
BA requires a rather large population size for the FFMS problem (.psize = 581),
while the opposite was the case for the MDS problem. On the other side, the size
of the BA population within LEARN_CMSA is nearly the same in both applications
(207 individuals in the case of the MDS problem vs. 219 individuals for the FFMS
problem).

3.5.4.3 Results

The results are shown employing box plots in Fig. 3.6 (concerning threshold . t =
0.8m) and in Fig. 3.7 (concerning threshold .t = 0.85). To summarize the results
and to provide a statistical basis for the comparison, corresponding CD plots are
shown in Fig. 3.8 (concerning threshold .t = 0.8m) and in Fig. 3.9 (concerning
threshold .t = 0.85m). Remember that a general description of the nature of CD
plots and the information they provide was given in Sect. 1.2.3 in Chap. 1 of this
book.

90 3 Adding Learning to CMSA

Fig. 3.6 LEARN_CMSA results for the FFMS problem, .t = 0.8m

3.5 Application to the FFMS Problem 91

Fig. 3.7 LEARN_CMSA results for the FFMS problem, .t = 0.85m

92 3 Adding Learning to CMSA

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)

Fig. 3.8 Critical difference (CD) plots concerning FFMS instances with .t = 0.8m. (a) All
instances. (b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)

Fig. 3.9 Critical difference (CD) plots concerning FFMS instances with .t = 0.85m. (a) All
instances. (b) Instances with .m = 100. (c) Instances with .m = 500. (d) Instances with . m = 1000

•> Main Observations Concerning the FFMS Results

• Both for thresholds .t = 0.8m and .t = 0.85m, LEARN_CMSA outperforms all
other competitors with statistical significance; see Figs. 3.8a and 3.9a. In particu-
lar, LEARN_CMSA outperforms both competing CMSA variants: CMSA_INT and
ADAPT_CMSA. Moreover, it outperforms the pure bacterial algorithm (BA).

• The relative performance of LEARN_CMSA is better in the context of threshold
.t = 0.8m, where the algorithm can outperform the other approaches with
statistical significance even for all three subsets of problem instances of different
input string length (see Fig. 3.8b–d). In contrast to this, CMSA_INT and
ADAPT_CMSA perform better than LEARN_CMSA for problem instances with
threshold .t = 0.85m and a short input string length of .m = 100 (see Fig. 3.9b).

References 93

• Even though BA clearly is the worst-performing algorithm in this comparison, its
learning component is again—as in the case of the MDS problem—a powerful
addition to the standard CMSA algorithm (CMSA_INT).

3.6 Conclusions and Possible Research Directions

Adding a learning component to the solution construction process of CMSA
certainly has a very high potential, as shown by the two example applications
presented in this chapter. However, there is also a wide range of options for
designing such learning components and their interaction with CMSA. The negative
aspect of the specific algorithm showcased in this chapter is the dependence on a
rather high number of parameters. Moreover, in the proposed approach both CMSA
and the learning component (that is, bacterial algorithm) maintain their identity,
resulting in a rather low level of integration. In particular, they communicate by
mutually feeding their best solutions into the memory mechanism of the other
approach. Given the current success of using machine learning (ML) techniques
to improve optimization algorithms (see, for example, [1, 7]) it might be possible
to design a machine learning component well-integrated into CMSA supporting the
goal of shifting the construction of feasible solutions to better parts of the search
space over time.

References

1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research 290(2), 405–421
(2021)

2. Contreras A., R., Hernández P., V., Pinacho-Davidson, P., Pinninghoff J., M.A.: A bacteria-based
metaheuristic as a tool for group formation. In: International Work-Conference on the Interplay
Between Natural and Artificial Computation, pp. 443–451. Springer (2022)

3. Ferone, D., Festa, P., Resende, M.G.: Hybridizations of GRASP with path relinking for the far
from most string problem. International Transactions in Operational Research 23(3), 481–506
(2016)

4. Fleming, A.: On the antibacterial action of cultures of a penicillium, with special reference to
their use in the isolation of B. influenzae. British Journal of Experimental Pathology 10(3), 226
(1929)

5. Odonkor, S.T., Addo, K.K.: Bacteria resistance to antibiotics: Recent trends and challenges.
International Journal of Biological & Medical Research 2(4), 1204–1210 (2011)

6. Pinninghoff J., M.A., Orellana M., J., Contreras A., R.: Bacterial resistance algorithm. an
application to CVRP. In: From Bioinspired Systems and Biomedical Applications to Machine
Learning: 8th International Work-Conference on the Interplay Between Natural and Artificial
Computation, IWINAC 2019, Almería, Spain, June 3–7, 2019, Proceedings, Part II 8, pp. 204–
211. Springer (2019)

7. Weiner, J., Ernst, A.T., Li, X., Sun, Y.: Ranking constraint relaxations for mixed integer
programs using a machine learning approach. EURO Journal on Computational Optimization
11, 100061 (2023)

Chapter 4
Replacing Hard Mathematical Models
with Set Covering Formulations

Abstract Many packing, routing, and knapsack problems can be expressed both
in terms of standard assignment-type integer linear programming models and
in terms of set-covering-based models. Black-box solvers such as CPLEX and
Gurobi find it generally very hard to solve assignment-type mathematical models
of these problems. Therefore, the Operations Research community has developed
specific exact and heuristic techniques that exploit set-covering-based models. In
this chapter, it is shown that integer linear programming models based on set
covering can also be very useful for their use within CMSA. In particular, this is
shown by applications of CMSA to the Variable-Sized Bin Packing (VSBP) problem
and to the Electric Vehicle Routing Problem with Time Windows and Simultaneous
Pickups and Deliveries (EVRP-TW-SPD). In both applications, CMSA based on a
set covering model significantly outperforms CMSA when using an assignment-
type model. Moreover, state-of-the-art results are obtained for both considered
optimization problems.

4.1 Introduction

In this chapter, we focus on employing CMSA for combinatorial optimization
problems that involve partitioning a finite set of items into distinct subsets. This cat-
egory encompasses various significant problems, including bin packing problems,
multiple knapsack problems, assembly line balancing, and vehicle routing problems,
among others. Traditional black-box solvers like CPLEX and Gurobi often face
considerable challenges in solving standard assignment-type ILP models for these
problems. Consequently, the Operations Research community has devised special-
ized exact techniques based on set covering models to address these challenges.
Set covering models prove particularly beneficial in the realm of column generation
methods, as illustrated in works such as [4, 8, 19]. In addition, the transformation
of vehicle routing and packing problems to set covering problems has also been
exploited in the context of heuristic methods; see, for example, [5, 15, 17].
This chapter will demonstrate the effectiveness of such models within CMSA
algorithms, especially in the context of solving sub-instances. In particular, this

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4
https://doi.org/10.1007/978-3-031-60103-3_4

96 4 Replacing Hard Mathematical Models with Set Covering Formulations

will be done for two different optimization problems. The first problem, called the
Variable-Sized Bin Packing (VSBP) problem is from the bin packing field, while
the second one—called Electric Vehicle Routing Problem with Time Windows
and Simultaneous Pickups and Deliveries (EVRP-TW-SPD)—is from the field of
electric vehicle routing. The substitution of standard assignment-type ILP models
with set covering formulations often leads to highly efficient techniques. Notably,
these set-covering-based CMSA techniques, unlike column generation methods, are
relatively straightforward to implement.

In fact, in the context of both considered problems, our best-performing CMSA
variants achieve state-of-the-art results. In the case of the VSBP problem, new best-
known solutions are found in 68 out of 150 cases. Furthermore, in the context of the
EVRP-TW-SPD problem, no other heuristic optimization method has been proposed
so far.

4.2 Application to Variable-Sized Bin Packing

The Variable-Sized Bin Packing (VSBP) problem can be formally characterized as
follows: Given is a set .Sitems = {1, . . . , n} comprising n items, each denoted as
.i ∈ Sitems with a positive weight . wi , and a set .B = {1, . . . , m} consisting of m
bin types. Each bin type .k ∈ B is defined by a positive capacity . Wk and a cost . Ck .
Without loss of generality, it is assumed that the capacities satisfy .W1 < . . . < Wm.
The objective of the VSBP problem is to efficiently pack the n items into bins, with
the aim of minimizing the total cost of the utilized bins. Importantly, there are no
restrictions on how many times a bin type may be employed. The VSBP problem
can be mathematically modeled as an assignment-type ILP, as detailed in [11]. This
model, henceforth denoted by .ILPVSBP

std , can be stated as follows.

.min
n∑

j=1

m∑

k=1

Ck · yjk. (4.1)

subject to
n∑

j=1

xij = 1 for i = 1, . . . , n. (4.2)

m∑

k=1

yjk ≤ 1 for j = 1, . . . , n. (4.3)

n∑

i=1

wi · xij ≤
m∑

k=1

Wk · yjk for j = 1, . . . , n (4.4)

xij ∈ {0, 1} for i, j = 1, . . . , n

yjk ∈ {0, 1} for j = 1, . . . , n and k = 1, . . . , m

4.2 Application to Variable-Sized Bin Packing 97

(a) Three items

Bin type 1

Bin type 2

Bin type 3

Capacity

Capacity

Capacity

(b) Three bin types

(c) A valid solution with cost 4 + 5 = 9 (d) Optimal solution with cost 3 + 5 = 8

Fig. 4.1 Illustrating an instance with .n = 3 items and .m = 3 distinct bin types: The weights of
the items are presented in (a), while the capacities and costs of the bin types are outlined in (b). In
(c), a valid solution is depicted, wherein item 3 is allocated to a bin of type 2 (incurring a cost of
4), while items 1 and 2 are assigned to a bin of type 3 (with a cost of 5). Consequently, the solution
in (c) attains a value of .4 + 5 = 9. Alternatively, (d) showcases the optimal solution, where item
1 is assigned to a bin of type 1 (incurring a cost of 3), and items 2 and 3 are allocated to a bin of
type 3 (with a cost of 5). Thus, the cost of the optimal solution is . 3 + 5 = 8

This ILP model employs two sets of binary variables. When . xij is set to 1, it signifies
that item i is placed in bin j . Similarly, a setting of .yjk = 1 indicates that bin
j is assigned bin type k. It is worth noting that the number of used bins can be
effectively limited to n, which represents the number of items. Constraints (4.2)
ensure that each item is assigned to precisely one bin, while constraints (4.3)
enforce that each utilized bin is associated with exactly one bin type. Additionally,
constraints (4.4) guarantee the adherence to bin capacities. Importantly, the VSBP
problem is classified as NP-hard due to its nature as a generalization of the one-
dimensional bin packing problem. For an illustrative instance of a small VSBP
problem, refer to Fig. 4.1.

4.2.1 Short Literature Review Concerning the VSBP Problem

This short review is directed toward the original version of the VSBP problem,
where, as previously indicated, the number of available bins per bin type is
unlimited. Lower bounds and heuristic methods for a more generalized version
of the VSBP problem, featuring explicit limits on the number of bins per bin
type, were derived in [7]. Haouari and Serairi [11] introduced a variety of greedy

98 4 Replacing Hard Mathematical Models with Set Covering Formulations

heuristics and a genetic algorithm for the VSBP problem. Additionally, [12]
proposed a sophisticated variable neighborhood search (VNS) algorithm, and the
results reported in their work have remained uncontested so far. Instead of improving
those results, subsequent research efforts have shifted towards exploring the VSBP
problem with additional constraints. Recent papers include the VSBP problem with
time windows [10] and the VSBP problem with conflicts [9].

4.2.2 Set-Covering Based ILP Model of the VSBP Problem

An alternative ILP model based on set-covering for the VSBP problem can be
formulated as follows. Consider . B as the set comprising all potential bins with an
assigned set of items. The weight . wb of a bin .b ∈ B is defined as the total weight
of the items assigned to that specific bin. Furthermore, the cost . cb of a bin . b ∈ B
is determined by the cost of the lowest-cost bin type capable of accommodating all
items assigned to bin b. Lastly, let .Bi ⊂ B represent the set of bins containing item
i. Given these definitions, the set-covering-based ILP model for the VSBP problem,
hereinafter referred to as .ILPVSBP

setcov, can be expressed as follows.

.min
∑

b∈B
cb · xb. (4.5)

subject to
∑

b∈Bi

xb ≥ 1 for i = 1, . . . , n (4.6)

xb ∈ {0, 1} for all b ∈ B

It is worth noting that an exact correspondence between .ILPVSBP
std and . ILPVSBPsetcov

could be achieved by substituting the “. ≥” symbol in constraints (4.6) with the
equality symbol (“. =”). However, any optimal solution derived with the “. ≥” symbol
can readily be transformed into an optimal solution of the model with the “. =”
symbol by eliminating duplicate items from all bins except one. Additionally, as
per [4], the linear programming relaxation of the model using the “. ≥” symbol
is numerically more stable and, consequently, easier to solve. This enhances the
feasibility of solving the ILP using solvers such as CPLEX or Gurobi.

4.2.3 Application of Standard CMSA to the VBSP Problem

First, we applied the standard CMSA from Sect. 1.3.1 on page 18 to the VSBP
problem. As we will use the generic variant of defining the solution components
(see below), this algorithm will henceforth be called CMSA_GEN. As ILP model
for solving sub-instances, CMSA_GEN uses the one from Sect. 4.2, that is, model

4.2 Application to Variable-Sized Bin Packing 99

.ILPVSBP
std . Concerning the set C of solution components, for each binary variable

of the ILP model exactly two solution components are introduced: one component
that corresponds to setting the variable to zero, and another component that
refers to setting the variable to one. In the case of model .ILPVSBP

std , this means
that C consists of solution components .cx0

ij and .cx1
ij for all binary variables

. xij (.i, j,= 1, . . . , n), and of solution components .cy0
jk and .cy1

jk for all binary

variables .yjk (.j = 1, . . . , n; .k = 1, . . . , m). Hereby, . cx0
ij , for example, cor-

responds to .xij = 0, while .cx1
ij corresponds to .xij = 1. Moreover, . C =

{cx0
11, . . . , cx

0
nn, cx

1
11, . . . , cx

1
nn, cy

0
11, . . . , cy

0
nm, cy1

11, . . . , cy
1
nm} is the complete

set of .2n2 + 2nm solution components. Any valid solution S is a subset of C with
.|S| = n2 + nm because, for each binary variable, a solution S contains exactly one
of the two corresponding solution components.

4.2.3.1 Probabilistic Construction of VSBP Solutions

For the following discussion, a bin .b ⊆ {1, . . . , n} is a set of items. Moreover, a bin
b is always characterized by three well-defined measures:

1. .bload: The load of a bin b is the sum of the weights of the items it contains,
expressed as .bload := ∑

i∈b wi .
2. .btype: The type of a bin b is identified as the lowest-cost bin type capable of

accommodating the load of the bin. This is formally defined as .btype := k such
that .Ck < Cr for all .r ∈ {1, . . . , m} with .Wr ≥ bload.

3. .bcost: The cost of a bin is equivalent to the cost of its type, specified as . bcost :=
Cbtype .

4. .bratio: The ratio between the cost and the load of a bin is expressed as . bratio :=
bcost
bload

.

In addition, let .maxload be defined as the maximum capacity of all bin types, that
is, .maxload := max{Wj | j = 1, . . . , m}. For the probabilistic construction of a
solution, the following simple procedure is applied; see also Algorithm 4.1. First,
the n items are randomly ordered; see line 3. Then, the set of bins (B) is initialized
by placing the first item from the list in a new bin, whose load, type, cost, and ratio
are determined as defined above. Then, in the pre-determined order, the remaining
items are placed into bins. In particular, in probability, among all options to place
an item, the one resulting in a bin with a lower ratio is preferred over the others.
The placement of an item into a bin is done in function ChooseOption(O, .drate,
. lsize) (see line 16), where O is the current set of options. The working of this
function is as follows. First, a number z is chosen uniformly at random from .[0, 1].
In case .z ≤ drate, the chosen option is the one with the lowest ratio. Otherwise,
the .min{|O|, lsize} options with the lowest ratios are pre-selected from O, and the
chosen option is randomly determined among those. When all items are placed
into bins, the set of bins is sorted by bin ratio (from small to large); see function

100 4 Replacing Hard Mathematical Models with Set Covering Formulations

Algorithm 4.1: Probabilistic construction of a valid VSBP solution
1: input: values for solution construction parameters drate, lsize
2: Let (i1, . . . , in) be a randomly ordered list of all n items
3: b := {i1}
4: B := {b}
5: for l := 2, . . . , n do
6: i := il
7: O := ∅
8: for b ∈ B do
9: if bload + wi ≤ maxload then
10: be := b ∪ {i}
11: O := O ∪ {be}
12: end if
13: end for
14: if O is non-empty then
15: be := ChooseOption(O, drate, lsize)
16: B := B \ {b} ∪ {be}
17: else
18: b := {i}
19: B := B ∪ {b}
20: end if
21: end for
22: Sort(B)
23: S := ExtractSolutionComponents(B)
24: output: S

Sort(B) in line 22 of Algorithm 4.1. As a tie-breaking criterion, we utilized the
smallest item index of a bin (preferring smaller ones). Finally, the constructed
solution is transformed into the corresponding set S of solution components in
functionExtractSolutionComponents(B); line 23. In the case of the set of solution
components outlined above, this works as follows. If the first bin (after sorting B)
is of type k, then .cy1

1k is added to S. Moreover, all .cy0
1r (with .r /= k ∈ {1, . . . , m})

are added to S. The same is done for all other bins in B. Similarly, for each item i
in the first bin (after sorting B), component .cx1

i1 is added to S. Moreover, all . cx0
ir

(with .r = 2, . . . , n) are added to S. The same is done for the items of all other bins
from B.

4.2.3.2 Sub-instance Generation and Solving

During the solve stage of CMSA_GEN, first, a reduced problem instance is generated
on the basis of . C'. This is accomplished by introducing the following constraints to
the .ILPVSBPstd model for all .i = 1, . . . , n, before employing an ILP solver:

1. For all .i, j = 1, . . . , n:

• If .cx0
ij ∈ C' and .cx1

ij /∈ C': add constraint .xij = 0 to . ILPVSBPstd

• If .cx0
ij /∈ C' and .cx1

ij ∈ C': add constraint .xij = 1 to .ILPVSBPstd

4.2 Application to Variable-Sized Bin Packing 101

2. For all .j = 1, . . . , n and .k = 1, . . . , m:

• If .cy0
jk ∈ C' and .cy1

jk /∈ C': add constraint .yjk = 0 to . ILPVSBP
std

• If .cy0
jk /∈ C' and .cy1

jk ∈ C': add constraint .yjk = 1 to . ILPVSBP
std

To clarify, if a sub-instance . C' exclusively contains one of the two solution
components associated with a variable, the variable’s value can be fixed accordingly.
This implies that as more constraints of this nature are incorporated into the original
ILP model, the search space for the ILP solver to navigate in solving the sub-
instance becomes progressively reduced.

4.2.4 Application of Set-Covering Based CMSA to the VSBP
Problem

In addition to applying CMSA_GEN to the VSBP problem, we also apply a CMSA
variant that makes use of the set-covering model .ILPVSBP

setcov from Sect. 4.2.2 for
solving sub-instances. This CMSA variant is henceforth labeled CMSA_SETCOV.

•> Solution Components of CMSA_SETCOV

The entire set of solution components C comprises a component . cb for each valid
bin b in . B (refer to Sect. 4.2.2). Formally, this can be expressed as . C := {cb | b ∈
B}. Any subset .S ⊂ C, wherein each item .i ∈ {1, . . . , n} appears in precisely one
bin b such that .cb ∈ S, constitutes a valid solution for the addressed VSBP problem
instance.

The probabilistic construction of solutions in CMSA_SETCOV works exactly
in the same way as outlined in Sect. 4.2.3.1. The only difference lies in the
implementation of function ExtractSolutionComponents(B) that assembles the
solution components corresponding to a set of bins B. Here, this function simply
adds for each .b ∈ B the corresponding solution component . cb to S.

•> Sub-instance Solving in CMSA_SETCOV

The ILP model solved in the solve step of this CMSA variant is obtained by
exchanging . B in model .ILPVSBPsetcov by . C

', that is, by replacing the set of all possible
valid bins with the set of those bins that form part of the current sub-instance . C'.
The solution S obtained from the ILP solver after .tILP CPU seconds is then checked
for duplicate occurrences of items. If this happens, duplicate items are randomly
removed from the bins in S until each item appears exactly once in the bins of S.

102 4 Replacing Hard Mathematical Models with Set Covering Formulations

4.2.5 Experimental Evaluation

The experiments were conducted on the IIIA-CSIC in-house cluster, already
described in Sect. 1.2.1 on page 12, which consists of machines equipped with
Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of
RAM. For solving the corresponding sub-instances in both variants of CMSA, we
employed CPLEX version 22.1 in single-threaded mode.

4.2.5.1 VSBP Problem Instances

In the utilized set of benchmark instances (from [12]), each instance has . m = 7
bin types. The corresponding bin capacities are defined as .W1 = 70, .W2 = 100,
.W3 = 130, .W4 = 160, .W5 = 190, .W6 = 220, and .W7 = 250. Additionally, item
weights are randomly selected from the range .[1, 250]. Notably, this benchmark
set comprises three distinct classes of instances. Specifically, class B1 features a
linear bin cost function .Ci = Wi (.i = 1, . . . , 7), class B2 is characterized by a
concave cost function .Ci = ⎾10√Wi⏋ (.i = 1, . . . , 7), and class B3 exhibits a
convex cost function .Ci = ⎾0.1Wi

3/2⏋ (.i = 1, . . . , 7). For each combination of
.n ∈ {100, 200, 500, 1000, 2000} (number of items) and bin cost function class,
there are 10 problem instances, resulting in a total of 150 problem instances. It is
important to note that optimal solutions for these instances are unknown.

4.2.5.2 Parameter Tuning

Both CMSA_GEN and CMSA_SETCOV require effective parameter values to work
at their best. Specifically, the same eight parameters presented in the left-most
column of Table 4.1 must be fine-tuned for both algorithms. The value domains
for these parameters are outlined in the second column of the same table. The
parameter tuning process was executed using the irace tool [14], which is
described in Sect. 1.2.1 on page 12. Each variant of the algorithm underwent
tuning independently for each instance class, with a budget of .2000 algorithm
runs. Additionally, each run was constrained to 150 CPU seconds, in accordance
with [12]. The resulting parameter values, as presented in Table 4.1, were utilized
for the final experiments. The following parameter settings deserve some attention.
First, observe that the computation time allotted to CPLEX for solving sub-instances
in CMSA_GEN is very low for instances of classes B1 and B2. This suggests
that sub-instance solving is not very useful when using the original ILP model.

4.2 Application to Variable-Sized Bin Packing 103

Table 4.1 Parameter settings for CMSA_GEN and CMSA_SETCOV concerning the three classes
of VSBP problem instances

Class B1 Class B2 Class B3

Parameter Domain C
M
S
A
_G

E
N

C
M
S
A
_S

E
T
C
O
V

C
M
S
A
_G

E
N

C
M
S
A
_S

E
T
C
O
V

C
M
S
A
_G

E
N

C
M
S
A
_S

E
T
C
O
V

tILP (0.3, 30.0) 0.48 15.21 0.36 23.12 7.02 28.07

lsize [1, 10] 1 10 1 5 1 8

drate (0.0, 0.99) 0.59 0.7 0.96 0.64 0.89 0.97

na [2, 50] 50 13 46 50 50 46

agemax [1, 10] 8 3 3 1 3 1

cplexemphasis {true,false} false false true false false false

cplexwarmstart {true,false} false false false true true false

cplexabort {true,false} true false true false true false

Moreover, the abort feature (CPLEX) is not used by CMSA_SETCOV, even though
the computation time assigned for each application of CPLEX is rather high (see
settings of parameter . tILP). This suggests that sub-instances are quickly solved to
optimality in CMSA_SETCOV.

4.2.5.3 Numerical Results

Tables 4.2 (instances of class B1), 4.3 (instances of class B2), and 4.4 (instances of
class B3) present the best-known solutions from the literature (extracted from [12]),
alongside the results obtained using CMSA_GEN and CMSA_SETCOV. The first two
columns in these tables denote the number of items (n) and the instance number
(#), respectively. Each table row corresponds to a specific problem instance, and the
results of the three algorithms are provided in terms of the best solution identified
across 10 runs, the average of the best solutions from these 10 runs, and the average
times at which these solutions were discovered within the 150 CPU seconds time
limit per run. Note that results are indicated in bold font if they correspond to
the value of best-known solutions. Moreover, a gray background means that the
corresponding best-known solution was improved.

104 4 Replacing Hard Mathematical Models with Set Covering Formulations

Table 4.2 Results for the 50 instances of class B1 (linear cost function)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

100 1 12,700 12,760 12,776.0 44.82 12,700 12,700.0 0.12

2 12,140 12,210 12,232.0 44.11 12,140 12,140.0 4.06

3 13,620 13,670 13,686.0 49.34 13,620 13,620.0 0.11

4 12,550 12,620 12,632.0 74.98 12,550 12,550.0 0.09

5 10,630 10,690 10,706.0 66.26 10,630 10,630.0 0.59

6 11,130 11,190 11,207.0 67.30 11,130 11,130.0 12.89

7 13,020 13,080 13,086.0 64.28 13,020 13,020.0 0.06

8 12,180 12,260 12,269.0 63.62 12,170 12,170.0 6.25

9 11,090 11,180 11,187.0 41.38 11,090 11,090.0 1.09

10 12,800 12,870 12,879.0 57.16 12,800 12,800.0 0.11

200 1 25,430 25,640 25,659.0 76.60 25,430 25,430.0 1.12

2 26,300 26,400 26,439.0 70.39 26,300 26,300.0 0.08

3 27,770 27,770 27,790.0 58.89 27,770 27,770.0 0.03

4 24,300 24,490 24,507.0 70.86 24,290 24,290.0 5.88

5 25,820 25,940 25,968.0 59.44 25,820 25,820.0 0.03

6 23,820 23,980 24,007.0 60.76 23,810 23,810.0 1.05

7 28,590 28,600 28,624.0 55.83 28,590 28,590.0 0.03

8 25,900 26,040 26,067.0 83.77 25,900 25,900.0 0.21

9 24,890 25,070 25,098.0 48.45 24,890 24,890.0 0.22

10 25,760 25,850 25,868.0 79.21 25,760 25,760.0 0.05

500 1 61,770 62,350 62,424.0 95.47 61,750 61,758.0 20.56

2 62,090 62,560 62,628.0 59.03 62,070 62,070.0 11.65

3 66,770 67,320 67,371.0 60.61 66,760 66,763.0 31.65

4 63,970 64,360 64,410.0 75.02 63,970 63,970.0 2.32

5 62,150 62,670 62,698.0 80.46 62,150 62,150.0 0.44

6 61,130 61,670 61,702.0 51.70 61,090 61,090.0 24.31

7 63,340 63,930 63,991.0 64.20 63,320 63,320.0 2.14

8 63,250 63,760 63,809.0 97.81 63,210 63,210.0 4.72

9 61,170 61,740 61,777.0 78.08 61,120 61,120.0 36.41

10 62,000 62,540 62,562.0 69.21 61,990 61,990.0 12.14

1000 1 126,610 127,620 127,674.0 73.63 126,490 126,496.0 52.58

2 123,250 124,370 124,466.0 69.56 123,120 123,120.0 13.62

3 123,070 124,320 124,390.0 54.98 123,020 123,029.0 36.97

4 127,370 128,510 128,570.0 66.89 127,360 127,360.0 24.74

5 127,710 128,990 129,036.0 74.28 127,660 127,660.0 23.94

6 125,580 126,640 126,766.0 52.26 125,520 125,522.0 56.93

7 128,260 129,290 129,380.0 62.90 128,260 128,260.0 1.49

8 130,410 131,450 131,513.0 65.99 130,410 130,410.0 5.11

9 125,680 126,910 126,970.0 68.94 125,630 125,635.0 28.76

10 129,400 130,380 130,480.0 62.26 129,380 129,380.0 7.77

(continued)

4.2 Application to Variable-Sized Bin Packing 105

Table 4.2 (continued)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

2000 1 254,330 256,380 256,455.0 59.79 254,290 254,290.0 44.52

2 257,370 259,590 259,723.0 73.83 257,330 257,330.0 47.29

3 251,880 254,100 254,180.0 80.85 251,770 251,770.0 57.39

4 248,520 250,610 250,653.0 68.64 248,470 248,470.0 26.36

5 245,110 247,810 247,905.0 46.48 245,060 245,066.0 88.49

6 250,930 253,500 253,571.0 69.33 250,870 250,878.0 40.58

7 258,700 261,140 261,198.0 53.64 258,680 258,690.0 62.45

8 256,950 259,330 259,412.0 49.21 256,970 256,978.0 71.54

9 258,480 260,720 260,866.0 56.24 258,450 258,458.0 66.39

10 255,750 257,670 257,802.0 71.50 255,750 255,750.0 6.92

•> Main Observations Concerning the VSBP Problem Results

• First, CMSA_SETCOV clearly outperforms CMSA_GEN. Only in two out of
150 cases, CMSA_GEN is able to find a solution of the same quality as the
one found by CMSA_SETCOV. Moreover, while CMSA_SETCOV finds the best-
known solutions for the small problem instances with .n ∈ {100, 200} items, it
clearly outperforms the current state of the art in the context of larger problem
instances (especially for .n ∈ {1000, 2000}) as indicated by the number of new
best-known solutions.

• For 68 out of 150 problem instances, CMSA_SETCOV successfully discovers
new best-known solutions. Specifically, it identifies 27 new best-known solutions
for the 50 B1 instances, 26 new solutions for the 50 B2 instances, and 15 new
solutions for the 50 B3 instances.

• Only in 7 out of 150 cases, the best solution found by CMSA_SETCOV is slightly
worse than the best-known solution.

In order to test the statistical relevance of these results, so-called CD plots were
produced; see Sect. 1.2.3 on page 16 for a description of CD plots. Note that, in
the context of these plots, we added the results of the VNS approach from [12] and
of the GA approach from [7]. The plot from Fig. 4.2a shows that—from a global
point of view—CMSA_SETCOV outperforms all other algorithms with statistical
significance. When considering the instances from the three classes separately,
no statistically significant difference between CMSA_SETCOV and VNS can be
detected in the context of the B3 class (see Fig. 4.2d).

106 4 Replacing Hard Mathematical Models with Set Covering Formulations

Table 4.3 Results for the 50 instances of class B2 (concave cost function)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

100 1 8890 8920 8923.9 63.88 8890 8890.0 0.04

2 7832 7864 7870.9 72.02 7832 7832.0 2.53

3 8516 8516 8545.1 97.94 8516 8516.0 0.04

4 8591 8611 8619.5 78.30 8591 8591.0 0.02

5 8474 8496 8502.0 68.44 8474 8474.0 0.28

6 7538 7571 7578.0 53.49 7538 7538.0 3.59

7 7876 7890 7898.0 47.32 7876 7876.0 0.03

8 8116 8148 8158.9 58.86 8116 8116.0 0.70

9 8392 8409 8414.9 77.77 8392 8392.0 0.43

10 9127 9137 9139.0 53.29 9127 9127.0 0.03

200 1 17,307 17,445 17,453.1 80.09 17,307 17,307.0 4.53

2 16,391 16,533 16,562.1 84.47 16,391 16,394.3 62.26

3 16,637 16,687 16,708.7 63.75 16,629 16,629.8 38.82

4 15,864 15,925 15,953.5 77.29 15,864 15,864.0 0.30

5 17,699 17,729 17,735.5 84.51 17,699 17,699.0 0.04

6 15,457 15,541 15,572.4 73.06 15,457 15,457.0 3.03

7 16,203 16,329 16,343.8 85.28 16,203 16,203.0 0.08

8 15,353 15,490 15,503.7 82.03 15,353 15,353.0 2.49

9 15,860 16,062 16,072.4 78.29 15,860 15,860.0 0.11

10 15,292 15,437 15,447.9 81.29 15,292 15,292.0 0.14

500 1 39,307 39,555 39,609.4 81.73 39,305 39,305.6 46.36

2 40,767 41,027 41,085.9 74.65 40,765 40,765.0 9.64

3 39,963 40,273 40,312.7 79.02 39,963 39,963.0 2.19

4 38,945 39,391 39,439.8 76.98 38,934 38,934.7 32.24

5 39,785 40,122 40,166.6 81.12 39,775 39,775.0 1.70

6 43,096 43,213 43,288.1 99.02 43,096 43,096.0 10.50

7 41,307 41,541 41,574.1 78.85 41,306 41,306.0 7.00

8 39,756 40,049 40,080.4 70.89 39,738 39,741.4 49.30

9 40,166 40,424 40,480.0 73.82 40,154 40,154.0 26.21

10 41,046 41,324 41,352.8 63.15 41,046 41,046.0 0.28

1000 1 81,458 81,899 81,988.2 90.45 81,447 81,447.0 0.82

2 78,523 79,309 79,380.2 65.58 78,515 78,518.5 100.57

3 81,544 82,216 82,319.7 65.93 81,525 81,528.5 101.22

4 80,265 80,813 80,920.6 65.70 80,255 80,259.4 48.64

5 81,076 81,795 81,844.5 83.11 81,066 81,070.0 55.43

6 81,333 81,879 82,000.9 89.12 81,343 81,348.0 44.53

7 81,200 81,555 81,715.0 90.93 81,199 81,199.0 2.76

8 80,899 81,658 81,747.2 106.88 80,849 80,856.2 28.34

9 78,381 79,037 79,160.4 67.42 78,365 78,374.5 106.69

10 84,535 84,853 84,931.2 56.74 84,503 84,504.8 71.25

(continued)

4.2 Application to Variable-Sized Bin Packing 107

Table 4.3 (continued)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

2000 1 160,446 161,725 161,903.4 92.55 160,287 160,290.5 107.32

2 162,193 163,211 163,370.1 62.43 162,193 162,197.0 46.56

3 161,879 163,086 163,230.0 91.45 161,857 161,861.3 93.70

4 161,128 161,945 162,080.0 62.24 161,064 161,064.7 46.03

5 164,625 165,530 165,647.8 74.98 164,605 164,612.9 95.17

6 159,107 160,338 160,419.9 70.71 159,096 159,096.0 40.79

7 162,445 163,422 163,544.7 88.91 162,391 162,391.0 12.01

8 159,878 161,171 161,238.5 81.00 159,869 159,878.2 47.41

9 161,694 162,638 162,748.0 72.75 161,683 161,683.0 45.61

10 153,403 154,768 154,908.7 71.44 153,266 153,267.0 57.66

4.2.5.4 Performance Difference Between the Two VSBP ILP Models

Finally, we aim to show why CMSA_SETCOV outperforms CMSA_GEN so clearly.
For this purpose, we generate sub-instances of different sizes, translate them both
into models .ILPVSBPstd and .ILPVSBP

setcov, and solve them with CPLEX. In particular,
we generated sub-instances by probabilistically constructing . na ∈ {2, 5, 10, 20, 50}
solutions and by merging their solution components. This was done for the first
B1 instance with .n ∈ {100, 200, 500, 1000, 2000} items. Figures 4.3, 4.4, 4.5, 4.6,
and 4.7 show radar charts that present the obtained results in the five different cases.
Each radar chart provides four different measures, averaged over 10 runs:

1. The number of variables in the models of the sub-instances (top).
2. The relative MIP gap after the termination of CPLEX (right).
3. The computation time required by CPLEX (bottom).
4. The absolute improvement when comparing the result of solving the sub-instance

with the best individual solution that was used to generate the sub-instance.

It is important to mention that the time limit for CPLEX was consistently set
to 20 CPU seconds for solving these sub-instances. Within this context, a model
is considered promising when there is a substantial improvement (left), and the
number of variables (top), the relative MIP gap (right), and the required time
(bottom) are all low. The presented radar plots affirm that this holds true for the
.ILPVSBP

setcov model, while conversely, the situation is reversed for the .ILPVSBP
std model.

It is evident that this trend becomes more accentuated as the size of the problem
instances increases.

108 4 Replacing Hard Mathematical Models with Set Covering Formulations

Table 4.4 Results for the 50 instances of class B3 (convex cost function)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

100 1 19,364 19,393 19,414.8 79.77 19,364 19,364.0 0.02

2 19,000 19,016 19,025.1 32.03 19,000 19,000.0 0.03

3 18,272 18,280 18,298.5 41.17 18,272 18,272.0 0.01

4 19,016 19,029 19,054.3 48.91 19,016 19,016.0 0.02

5 16,612 16,648 16,653.2 71.84 16,612 16,612.0 0.04

6 18,632 18,649 18,662.9 60.51 18,632 18,632.0 0.06

7 18,682 18,708 18,726.0 92.06 18,682 18,682.0 0.04

8 19,517 19,520 19,540.0 78.12 19,517 19,517.0 0.02

9 17,950 17,968 17,983.9 92.37 17,950 17,950.0 0.03

10 17,127 17,135 17,150.3 59.36 17,127 17,127.0 0.02

200 1 35,423 35,600 35,636.6 56.79 35,423 35,423.0 0.79

2 36,362 36,638 36,699.6 70.19 36,362 36,362.0 6.80

3 33,390 33,620 33,648.2 81.67 33,390 33,390.0 0.30

4 34,327 34,529 34,572.1 76.59 34,327 34,327.0 0.13

5 38,055 38,231 38,265.5 76.52 38,055 38,055.0 0.09

6 35,009 35,194 35,228.9 42.86 35,009 35,009.0 0.10

7 38,175 38,313 38,353.4 69.01 38,175 38,175.0 0.47

8 36,003 36,154 36,180.4 80.27 36,003 36,003.0 0.09

9 32,700 32,883 32,922.5 61.19 32,700 32,700.0 1.75

10 36,998 37,124 37,236.7 57.45 36,998 36,998.0 0.18

500 1 94,768 95,293 95,363.9 114.88 94,768 94,768.0 1.11

2 97,983 98,455 98,506.4 71.85 97,983 97,983.0 0.84

3 95,832 96,365 96,537.1 90.70 95,832 95,832.0 1.22

4 91,068 91,598 91,723.3 96.05 91,068 91,068.0 0.45

5 87,676 88,479 88,509.7 85.86 87,676 87,676.0 0.63

6 83,124 83,926 84,065.9 63.61 83,124 83,124.0 21.24

7 90,407 91,061 91,124.8 32.83 90,407 90,407.0 0.97

8 87,059 87,844 87,883.4 57.71 87,059 87,059.0 7.37

9 87,398 88,012 88,148.4 105.40 87,398 87,398.0 2.50

10 90,541 91,097 91,226.8 86.41 90,543 90,543.0 23.88

1000 1 176,950 178,524 178,603.4 64.64 176,953 176,955.3 98.43

2 180,993 182,387 182,477.0 73.19 180,989 180,990.6 73.80

3 182,758 184,448 184,540.3 52.71 182,754 182,754.6 58.44

4 180,859 182,523 182,593.6 71.58 180,857 180,859.3 58.48

5 179,158 180,722 180,766.4 98.23 179,154 179,154.8 61.79

6 188,838 190,405 190,462.0 74.14 188,839 188,840.2 34.81

7 178,185 179,873 179,929.9 69.07 178,183 178,189.7 89.80

8 177,461 179,120 179,188.0 88.13 177,459 177,459.0 14.70

9 181,005 182,688 182,735.9 67.75 181,001 181,007.7 69.93

10 176,902 178,608 178,668.8 90.00 176,902 176,917.2 49.65

(continued)

4.2 Application to Variable-Sized Bin Packing 109

Table 4.4 (continued)

Best CMSA_GEN CMSA_SETCOV

n # known Best Avg Avg. time Best Avg Avg. time

2000 1 356,244 360,181 360,299.1 68.42 356,235 356,236.6 85.25

2 369,839 373,372 373,580.8 57.24 369,811 369,831.7 68.47

3 364,550 368,194 368,358.8 80.45 364,527 364,562.3 72.10

4 356,984 360,844 360,947.8 88.17 356,958 356,969.8 102.76

5 365,557 369,038 369,166.6 79.64 365,564 365,576.4 106.84

6 365,142 368,915 369,041.4 78.61 365,116 365,120.8 56.37

7 360,824 364,687 364,771.3 67.67 360,816 360,838.2 90.21

8 371,799 375,086 375,321.6 64.33 371,779 371,798.6 96.17

9 355,723 359,485 359,606.1 73.22 355,726 355,745.3 104.49

10 357,058 361,201 361,305.5 75.07 357,036 357,040.1 68.10

1 2 3 4

VNS

GA

(a)

1 2 3 4

VNS

GA

(b)
1 2 3 4

VNS

GA

(c)

1 2 3 4

VNS

GA

(d)

Fig. 4.2 Critical difference (CD) plots showing the statistical significance of the VSBP problem
results. (a) All 150 problem instances. (b) 50 B1 instances. (c) 50 B2 instances. (d) 50 B3 instances

4.2.5.5 STNWeb Graphics Concerning the VSBP Results

As in the case of all previous experimental evaluations presented in this book,
we plotted STNWeb graphics of the obtained VSBP results; see Sect. 1.2.2 on
page 13 for a description of the STNWeb tool and the type of graphics that are
produced. Figure 4.8 shows the typical case of the first problem instance with 500
items from the B1 class. The complete STN in Fig. 4.8a indicates that all 10 runs
of CMSA_GEN reach solutions of the same quality, the best ones found between
CMSA_GEN and CMSA_SETCOV. However, all 10 solutions are different to each
other. The STN after search space partitioning (see Fig. 4.8b) shows that all of
these best solutions are very much related to each other. Observe that they all can
be found in the same area of the search space. We assume that good solutions of
the same quality often have only small differences with each other. The STN after

110 4 Replacing Hard Mathematical Models with Set Covering Formulations

300

100

20

 100

vars

improve-
ment

time

gap

(a)

600

200

20

 100

vars

improve-
ment

time

gap

(b)

900

200

20

 100

vars

improve-
ment

time

gap

(c)

1500

200

20

 100

vars

improve-
ment

time

gap

(d)

2600

200

20

 100

vars

improve-
ment

time

gap

(e)

Fig. 4.3 Radar charts concerning the comparison of the two ILP models applied to a VSBP
problem instance (B1 class) with 100 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions

4.2 Application to Variable-Sized Bin Packing 111

500

100

20

 100

vars

improve-
ment

time

gap

(a)

1000

300

20

 100

vars

improve-
ment

time

gap

(b)

1900

400

20

 100

vars

improve-
ment

time

gap

(c)

3200

400

20

 100

vars

improve-
ment

time

gap

(d)

5800

400

20

 100

vars

improve-
ment

time

gap

(e)

Fig. 4.4 Radar charts concerning the comparison of the two ILP models applied to a VSBP
problem instance (B1 class) with 200 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions

112 4 Replacing Hard Mathematical Models with Set Covering Formulations

1100

100

20

 100

vars

improve-
ment

time

gap

(a)

2500

700

20

 100

vars

improve-
ment

time

gap

(b)

4700

900

20

 100

vars

improve-
ment

time

gap

(c)

8400

1000

20

 100

vars

improve-
ment

time

gap

(d)

16800

900

20

 100

vars

improve-
ment

time

gap

(e)

Fig. 4.5 Radar charts concerning the comparison of the two ILP models applied to a VSBP
problem instance (B1 class) with 500 items. (a) Two solution constructions. (b) Five solution con-
structions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution constructions

4.2 Application to Variable-Sized Bin Packing 113

2000

100

20

 100

vars

improve-
ment

time

gap

(a)

5000

1200

20

 100

vars

improve-
ment

time

gap

(b)

9500

1500

20

 100

vars

improve-
ment

time

gap

(c)

17500

1600

20

 100

vars

improve-
ment

time

gap

(d)

36700

1600

20

 100

vars

improve-
ment

time

gap

(e)

Fig. 4.6 Radar charts concerning the comparison of the two ILP models applied to a VSBP
problem instance (B1 class) with 1000 items. (a) Two solution constructions. (b) Five solution
constructions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution con-
structions

114 4 Replacing Hard Mathematical Models with Set Covering Formulations

4100

100

20

 100

vars

improve-
ment

time

gap

(a)

10000

2300

20

 100

vars

improve-
ment

time

gap

(b)

19100

2700

20

 100

vars

improve-
ment

time

gap

(c)

35800

2700

20

 100

vars

improve-
ment

time

gap

(d)

76300

2800

20

 100

vars

improve-
ment

time

gap

(e)

Fig. 4.7 Radar charts concerning the comparison of the two ILP models applied to a VSBP
problem instance (B1 class) with 2000 items. (a) Two solution constructions. (b) Five solution
constructions. (c) 10 solution constructions. (d) 20 solution constructions. (e) 50 solution con-
structions

4.3 Application to an Electric Vehicle Routing Problem 115

Fig. 4.8 STNWeb graphics. (a) and (b) show 10 runs of CMSA_GEN and CMSA_SETCOV for the
first problem instance with 500 items from the B1 class. While (a) shows the complete STN, (b)
shows the same STN after partitioning

search space partitioning also shows that at the beginning of the search trajectories
of CMSA_GEN and CMSA_SETCOV there are overlaps. However, the trajectories of
CMSA_GEN simply stop much earlier than the ones of CMSA_SETCOV, because the
algorithm is not able to find any better solutions within the given CPU time.

4.3 Application to an Electric Vehicle Routing Problem

As mentioned earlier, another extensive category of problems where standard
ILP models can be substituted with set-covering-based ILP models is vehicle
routing. In recent years, due to increasing environmental concerns, numerous
researchers have directed their attention to vehicle routing problems (VRPs) that
involve electric vehicles, commonly known as electric vehicle routing problems
(EVRPs). In this section, we aim to provide a second example showcasing the
advantages of employing set-covering-based ILP models within CMSA algorithms.
Specifically, we explore the Electric Vehicle Routing Problem with Time Windows
and Simultaneous Pickups and Deliveries (EVRP-TW-SPD). We will apply an
enhanced ADAPT_CMSA algorithm (see also Sect. 2.1 on page 42) in two variants:
The first one uses a standard assignment-type ILP model for solving sub-instances,
while the second one makes use of a set-covering formulation of the problem.

The standard assignment-type ILP model for the EVRP-TW-SPD builds upon the
model designed for the EVRP-TW-PR problem, as proposed in [13]. Notably, the
EVRP-TW-PR model is itself a modified version of the model proposed earlier for
the EVRP-TW problem in [22]. In the case of the EVRP-TW-SPD, we extend these
models further to incorporate SPD constraints. When addressing SPD constraints

116 4 Replacing Hard Mathematical Models with Set Covering Formulations

within the context of vehicle routing problems, it is crucial to recognize that each
customer’s demand may encompass two distinct requirements: (1) delivering goods
to the demand point, referred to as the “delivery demand”, and (2) collecting goods
from the demand point, termed the “pickup demand”. Fulfilling both demands
concurrently is essential when a vehicle visits a particular customer.

To align with the conventions established in the existing literature, we adhere
to their notation. Specifically, the EVRP-TW-SPD problem entails a set of n
customers, denoted as .V = {1, . . . , n}, and a set of charging stations designated
as F . To accommodate multiple visits to any charging station, we introduce a set
. F

'
that encompasses multiple instances of each charging station from F . The depot

is represented by nodes 0 and .n + 1, where node 0 serves as the starting point and
node .n + 1 will function as the endpoint for each route. It is essential to note that
both 0 and .n + 1 refer to the same, single depot. The set .V

' = V ∪ F
'
contains

all customers and dummy charging stations, with the subscripts 0, .n + 1, or both
indicating the inclusion of the respective instances of the depot. Utilizing these
notations, we define the following sets:

1. . F
'
0 := F

' ∪ {0}
2. . V

'
0 := V

' ∪ {0}
3. . V

'
n+1 := V

' ∪ {n + 1}
4. . V

'
0,n+1 := V

' ∪ {0} ∪ {n + 1}
In accordance with established sets and notations, the EVRP-TW-SPD is defined
on a complete, directed graph .G(V

'
0,n+1, A). Set . A = {(i, j)|i, j ∈ V

'
0,n+1, i /=

j} contains all possible arcs. Each arc .(i, j) is characterized by a corresponding
distance . dij and travel time . tij . The energy consumed per unit distance traveled by
an electric vehicle (EV) is represented by a constant h. A fleet of electric vehicles, all
possessing identical loading capacity .EVcap and battery capacity .Bcap, is stationed
at a depot to meet the simultaneous delivery demand .qi > 0 and pickup demand
.pi > 0 of each .i ∈ V . Each vertex .i ∈ V

'
0,n+1 is permitted to be visited only

within a designated time window .[ei, li], indicating the earliest and latest possible
visiting times. Additionally, each customer .i ∈ V has a service time . si , representing
the duration an electric vehicle spends at a customer location. When an EV visits a
charging station, its battery undergoes charging at a constant rate of .g > 0.

The ILP model for the problem incorporates the following decision variables.
The binary variable . xij is assigned a value of 1 if the arc . aij is part of a vehicle’s
route and 0 otherwise. The initiation time of service for each customer visited by
the electric vehicle is stored by the decision variable . τi . Additionally, to keep tabs
on the state of charge of the battery upon arrival and departure at each vertex . i ∈
V

'
0,n+1, the decision variables . yi and . Yi are utilized, respectively. Furthermore, the

variables . uij and . vij represent the remaining cargo to be delivered to the customers
along the route and the amount of cargo already collected (picked up) at previously
visited customers, respectively. The technical description of the ILP model, denoted
as .ILPEVRP

std , is as follows.

4.3 Application to an Electric Vehicle Routing Problem 117

.min
∑

i∈V
'
0 ,j∈V

'
n+1

dij xij +
∑

j∈V
'
n+1

Mx0j . (4.7)

subj. to
∑

j∈V
'
n+1,i /=j

xij = 1 ∀i ∈ V . (4.8)

∑

j∈V
'
n+1,i /=j

xij ≤ 1 ∀i ∈ F
'
. (4.9)

∑

i∈V
'
0 ,i /=j

xij −
∑

i∈V
'
n+1,i /=j

xji = 0 ∀j ∈ V
'
. (4.10)

τi + (tij + si)xij − l0(1 − xij) ≤ τj ∀i ∈ V0, j ∈ V
'
n+1, i /= j .

(4.11)

τi + tij xij + g(Yi − yi) − (l0 + gBcap)(1 − xij) ≤ τj

∀i ∈ F
'
, j ∈ V

'
n+1, i /= j .

(4.12)

ej ≤ τj ≤ lj ∀j ∈ V
'
0,n+1. (4.13)

0 ≤ u0j ≤ EVcap ∀j ∈ V
'
n+1. (4.14)

v0j = 0 ∀j ∈ V
'
n+1. (4.15)

∑

i∈V
'
0 ,i /=j

uij −
∑

i∈V
'
n+1,i /=j

uji = qj ∀j ∈ V
'
. (4.16)

∑

i∈V
'
n+1,i /=j

vji −
∑

i∈V
'
0 ,i /=j

vij = pj ∀j ∈ V
'
. (4.17)

uij + vij ≤ EVcapxij ∀i ∈ V
'
0, j ∈ V

'
n+1, i /= j . (4.18)

0 ≤ yj ≤ yi − (hdij)xij + Bcap(1 − xij) ∀i ∈ V,∀j ∈ V
'
n+1, i /= j .

(4.19)

0 ≤ yj ≤ Yi − (hdij)xij + Bcap(1 − xij) ∀i ∈ F
'
0, ∀j ∈ V

'
n+1, i /= j .

(4.20)

yi ≤ Yi ≤ Bcap ∀i ∈ F
'
0. (4.21)

xij ∈ 0, 1 ∀i ∈ V
'
0, j ∈ V

'
n+1, i /= j (4.22)

118 4 Replacing Hard Mathematical Models with Set Covering Formulations

The distance-based objective function, originally proposed in [13], is extended
to give priority to solutions employing fewer vehicles, even if the total distance
traveled in such solutions surpasses that of other solutions. This extension involves
introducing an additional cost parameter .M > 0 per utilized vehicle. It is important
to note that the number of vehicles used in a solution corresponds to the variables on
outgoing arcs of the depot (0) with a value of 1. In this context, the objective function
(4.7) aims to minimize the total travel and vehicle costs. Constraints (4.8) ensure that
each customer is visited by an electric vehicle, while constraints (4.9) allow vehicles
to visit a charging station when necessary. Constraints (4.10) ensure that each
vehicle visiting a particular node must also depart from the corresponding node. The
arrival and departure times are calculated using constraints (4.11) and (4.12), which
take into account service and battery charging times. Constraints (4.13) permit
vehicles to visit each node within the corresponding time windows while preventing
sub-tours. Constraints (4.14)–(4.18) ensure simultaneous fulfillment of delivery and
pickup demands for customers. Finally, constraints (4.19)–(4.21) are associated with
the battery state of charge. For an illustrative instance along with a solution, refer to
Fig. 4.9.

Fig. 4.9 Visualization of an (a) EVRP instance and (b) its solution: Figure (a) displays a map
featuring the positions of a depot, five customers, and three charging stations, represented by
Cartesian coordinates. The fully connected graph, denoted by gray dashed lines, contains a
connection between every pair of nodes. Figure (b) depicts a valid solution for the specified
instance on the same map. It consists of two separate tours as shown by arrows of distinct colors.
Both routes commence and conclude at the depot, traversing different customers and charging
stations along the way

4.3 Application to an Electric Vehicle Routing Problem 119

4.3.1 Short Literature Review Concerning the EVRP-TW-SPD

Addressing increasing environmental concerns and the ensuing demand for alter-
native fuel sources in logistics, recent research has concentrated on formulating
routing strategies that optimize the transportation of goods while accounting for
the limited driving range and en-route charging requirements associated with
EVs. These challenges are commonly denoted as EVRPs, or more broadly, Green
Vehicle Routing Problems. Comprehensive surveys of recent research on EVRPs are
available in [3, 16]. Given that our primary focus is on the methodology for solving
specific types of problems rather than particular problem variants, we recommend
interested readers consult these survey papers for more in-depth references. Instead,
we highlight the distinctions between the EVRP-TW-SPD and existing problems
in the literature. Beyond incorporating time window constraints, our problem also
addresses simultaneous pickup and delivery (SPD) constraints related to customer
deliveries, a consideration commonly linked to reverse logistics. Despite the crucial
role of reverse logistics in advancing sustainability, the number of publications
exploring variants of the EVRP-SPD remains limited. To date, only [24] have
explored SPD constraints within the realm of EVRPs. Notably, in conventional
EVRP models, the assumption is that EV batteries are fully charged upon visiting a
charging station. In contrast, the problem considered here embraces a more realistic
scenario by allowing for partial recharging.

4.3.2 Set-Covering Based ILP Model of the EVRP-TW-SPD

Typically, assignment-type ILP models like the one outlined for the EVRP-TW-SPD
face challenges in generating effective lower bounds, as noted in prior studies such
as [2]. Furthermore, experiments detailed in [1] revealed the difficulty of CPLEX
in identifying feasible solutions for the corresponding model within reasonable
execution times, even when dealing with small-sized sub-instances of the original
problem instances.

Similar to the approach outlined for the VSBP problem in Sect. 4.2.2 on page 98,
the EVRP-TW-SPD can be expressed through a set-covering-based ILP as follows.
Let . T represent the set of all possible (and feasible) tours, where a tour is defined
as the journey of a single vehicle leaving from and returning to the depot. Each tour
.Tr ∈ T is assessed based on the total distance traveled . dr , which is the sum of
distances for all arcs along the tour. Lastly, let .Ti ⊂ T be the set of tours that cater
to customer .i ∈ V . With these definitions, the set-covering-based ILP model for the
EVRP-TW-SPD, hereafter referred to as .ILPEVRPsetcov, can be formulated as follows.

.min
∑

Tr∈T
drxr + M

∑

Tr∈T
xr . (4.23)

120 4 Replacing Hard Mathematical Models with Set Covering Formulations

subject to
∑

Tr∈Ti

xr ≥ 1 ∀ i ∈ V (4.24)

xr ∈ {0, 1} ∀ Tr ∈ T

The objective function aims to minimize the overall travel and vehicle costs, while
constraints (4.24) guarantee that each customer is visited at least once. It is worth
noting that the set-covering-based formulation is typically employed as a post-
optimization method in the VRP literature, as seen in [20]. In contrast, our findings
demonstrate that CMSA serves as a viable algorithmic framework for iteratively
applying both heuristics and exact components.

4.3.3 Application of ADAPT_CMSA to the EVRP-TW-SPD

Similar to the approach taken for the VSBP problem, we initially develop a
version of CMSA based on the assignment-type ILP model—specifically, model
.ILPEVRP

std —for the EVRP-TW-SPD. However, in contrast to the VSBP problem,
where CMSA_GEN was used as CMSA variant, in the case of the EVRP-TW-
SPD we use ADAPT_CMSA. Within the context of ADAPT_CMSA, the complete
set C of solution components includes a component . cij for each arc . aij from
.A = {(i, j)|i, j ∈ V

'
0,n+1, i /= j}. Consider the following illustration: The vector . I

encompasses all the node indexes for a small-scale problem instance featuring three
charging stations and five customers, with nodes indexed as 0 and 6 representing the
depot.

. I = (0,
︸︷︷︸
depot

1, 2, 3, 4, 5,
︸ ︷︷ ︸

customers

6,
︸︷︷︸
depot

7, 8, 9
︸ ︷︷ ︸

charging stations

)

Now, let us examine a solution comprising two tours, . T1 and . T2, where .T1 =<0-
9-1-4-6. > and .T2 =<0-2-8-3-7-5-6. >. In the context of ADAPT_CMSA, this solution
is expressed as .S = {c0,9, c9,1, c1,4, c4,6, c0,2, c2,8, c8,3, c3,7, c7,5, c5,6}. In other
words, a solution S in ADAPT_CMSA is maintained in terms of the list of solution
components that represent the arcs utilized in any of the tours within S.

4.3.4 The ADAPT_CMSA Algorithm

The pseudo-code outlined in Algorithm 4.2 is shared between ADAPT_CMSA

and ADAPT_CMSA_SETCOV. Although the pseudo-code for ADAPT_CMSA was
previously presented in Algorithm 2.1 on page 42, we now provide the spe-
cific pseudo-code for our implementation targeting the EVRP-TW-SPD. This is

4.3 Application to an Electric Vehicle Routing Problem 121

Algorithm 4.2: Pseudo-code of ADAPT_CMSA for the EVRP-TW-SPD
1: input 1: Complete set of solution components C
2: input 1: Values for ADAPT_CMSA parameters tprop, tILP, ninit, ninc

3: input 2: Values for solution construction parameters αLB, αUB, αred, linit size, l
inc
size

4: Sbsf := GenerateGreedySolution(C)
5: αbsf := αUB, C' := Sbsf

6: Initialize(na, lsize)
7: while CPU time limit not reached do
8: for i := 1, . . . , na do
9: S := ProbabilisticSolutionConstruction(C, Sbsf, αbsf, lsize)
10: LocalSearch1(S)
11: C' := C' ∪ S
12: end for
13: (SILP, tsolve) := SolveSubinstance(C', tILP) {This function returns two objects: (1) the

obtained solution (SILP), (2) the required computation time (tsolve)}
14: LocalSearch2(SILP)
15: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if
16: if f (SILP) < f (Sbsf) then
17: Sbsf := SILP

18: Initialize(na, lsize)
19: else
20: if f (SILP) > f (Sbsf) then
21: if na = ninit then αbsf := min{αbsf + αred 10 , α

UB} else Initialize(na, lsize) end if
22: else
23: Increment(na, lsize)
24: end if
25: end if
26: C' := Sbsf

27: end while
28: output: Sbsf

necessary because, in addition to problem-specific local search procedures, we
have introduced a generalization to ADAPT_CMSA. The changes in Algorithm 4.2
compared to Algorithm 2.1 are highlighted in blue and will be elaborated upon
in detail in the following. However, for gaining a general understanding of the
ADAPT_CMSA algorithm we recommend reading Sect. 2.2 of Chap. 2 starting on
page 43 before proceeding in this section.

Recall that in ADAPT_CMSA, the number of solution constructions per iteration
(. na) was dynamically adjusted as follows: Initially, at the algorithm’s start, . na was
initialized to 1. Additionally, whenever the solver solution (.SILP) proved strictly
superior to the best-so-far solution (. Sbsf), . na was re-initialized to 1. Furthermore,
when the quality of .SILP equaled the quality of . Sbsf, . na was increased by one. In
Algorithm 4.2, this process is generalized by introducing an initial value .ninit for . na
and an increment value .ninc for . na, both being tunable parameters of the algorithm.
Alongside . na, another parameter (. lsize), used to adjust the level of greediness for
solution construction, is introduced. This parameter, which is called the candidate
list size, undergoes a self-adaptive treatment identical to . na. In other words, this

122 4 Replacing Hard Mathematical Models with Set Covering Formulations

parameter is (re)initiated or incremented under the same conditions as . na. In order
to do so, Algorithm 4.2 employs two additional tunable parameters: .linitsize and . l

inc
size.

The generalizations described in this paragraph can be observed (in blue color) in
lines 6, 18, 21, and 23 of Algorithm 4.2.

The second modification from the original ADAPT_CMSA version in Chap. 2
involves the incorporation of problem-specific local search procedures. Specifically,
following the construction of a solution S through the function call in line 9 of Algo-
rithm 4.2, a local search procedure is invoked (refer to function LocalSearch1. (S)

in line 10), during which each tour of S undergoes a dedicated local search
process. Common intra-route operators such as relocation, swap, and two_opt are
sequentially applied for this purpose. Additionally, a best-improvement strategy
is adopted within the context of the applied operators. The relocation operator
systematically extracts each node from its current position within a route and
relocates it to an alternative position within the same route. Conversely, the swap
operator involves interchanging the positions of a pair of selected nodes within the
same route. Finally, the two_opt neighborhood explores all feasible combinations
of selecting two non-adjacent nodes in the same route and then reverses the
arrangement of the nodes situated between the chosen pair of nodes.

The second local search procedure is employed to enhance the solver solution
.SILP in each iteration; refer to the function LocalSearch2.(SILP) in line 14 of the
algorithm. Specifically, this local search procedure leverages inter-tour neighbor-
hoods such as exchange (1,1) and shift (1,0). The exchange (1,1) neighborhood
explores all possible two-customer swaps not within the same tour, while the
shift (1,0) neighborhood assesses each option for removing a customer from its
current tour and placing it at any feasible location in other tours. Similar to
LocalSearch1. (S), the operators employed by LocalSearch2.(S) adhere to the
best-improvement search strategy.

4.3.4.1 Constructing Solutions to the EVRP-TW-SPD

Solutions must be constructed in ADAPT_CMSA and ADAPT_CMSA_SETCOV

deterministically at the start of the algorithm—function GenerateGreedySolu-
tion(C) in line 4 of Algorithm 4.2—and probabilistically at each algorithm iteration,
see function ProbabilisticSolutionConstruction(C, . Sbsf, . αbsf, . lsize) in line 9 of
the algorithm. While at the start of the algorithm, a so-called insertion heuristic is
invoked to produce an initial, feasible solution, probabilistic solution constructions
during algorithm iterations make either use of the insertion algorithm or a version of
the Clarke & Wright (C&W) savings algorithm [6] adapted to the EVRP-TW-SPD.
The choice between these two methods is done uniformly at random. Both heuristics
exclusively generate feasible solutions. In the following, both solution construction
techniques are described.

4.3 Application to an Electric Vehicle Routing Problem 123

Probabilistic C&W Savings Algorithm In line with the original C&W approach,
our algorithm variant commences by creating a set of direct routes, labeled as
.R = {(0 − i − (n + 1)) | i ∈ V }. Subsequently, the algorithm initializes a
savings list L comprising pairs of nodes .(i, j), with i and j representing customers
and charging stations. The savings value . σij for each pair is calculated using the
following equation:

.σij := d0i + d0j − λdij + μ|d0i − d0j | (4.25)

In this context, . λ and . μ serve as the so-called route shape and asymmetry scaling
parameters, respectively. The route shape parameter . λ emphasizes the selection of
nodes based on their distance from each other [23], while the parameter . μ scales the
asymmetry between nodes i and j [18]. Effective values for these parameters are
determined through a parameter tuning process outlined in Sect. 4.3.6.2. It is crucial
to note that L exclusively contains pairs of nodes .(i, j) that meet the following two
criteria:

1. Nodes i and j belong to different tours.
2. Both i and j are adjacent to the depot in the tour to which they belong.

Furthermore, the construction of a solution is not solely influenced by the savings
values of node pairs .(i, j) but also by whether or not arc . aij appears in the current
best-so-far solution . Sbsf. For this purpose, an additional value, . qij , is computed for
each entry .(i, j) ∈ L:

.qij :=
{

(σij + 1) · αbsf if cij ∈ Sbsf

(σij + 1) · (1 − αbsf) otherwise
(4.26)

The algorithm executes the subsequent series of steps until the savings list L
becomes empty.

1. Following the computation of . qij for all entries in L, the list is arranged in
non-increasing order based on the . qij values. Subsequently, a reduced list . Lr

is generated, comprising the initial .lsize elements from L, where .lsize is a tunable
parameter of the algorithm.

2. Next, an entry .(i, j) is selected from . Lr based on the following probabilities:

.p(ij) := qij∑
(i',j ')∈Lr

qi'j '
∀ (i, j) ∈ Lr (4.27)

It is important to observe that the probability of choosing arcs that are part of
the best-so-far solution .Sbsf increases with an increasing value of . αbsf, where
.0 ≤ αLB ≤ αbsf ≤ αUB ≤ 1.

124 4 Replacing Hard Mathematical Models with Set Covering Formulations

3. Subsequently, the tours associated with nodes i and j are merged. The merging
process falls into one of the following four potential cases, depending on the
direct connection of nodes i and j to the depot:

(Case 1) • .T1 : {0 − i − · · · − n + 1}, . T2 : {0 − j − · · · − n + 1}
• Merging: Reverse . T1, .rev(T1), and concatenate with . T2
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 2) • .T1 : {0 − i − · · · − n + 1}, . T2 : {0 − · · · − j − n + 1}
• Merging: Reverse both . T1 and . T2, .rev(T1), .rev(T2), and concatenate
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 3) • .T1 : {0 − · · · − i − n + 1}, . T2 : {0 − j − · · · − n + 1}
• Merging: Concatenate . T1 and . T2
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

(Case 4) • .T1 : {0 − · · · − i − n + 1}, . T2 : {0 − · · · − j − n + 1}
• Merging: Reverse . T2, .rev(T2), and concatenate with . T1
• Result: . Tm : {0 − · · · − i − j · · · − n + 1}

Depending on the positions of nodes i and j within the tour, it may be necessary
to reverse one or both of the selected tours to establish a direct connection from
i to j . In such instances, the reversed version of tour . T1 is denoted as .rev(T1).
Subsequently, the feasibility of the combined tour . Tm is assessed with regard to
vehicle loading capacity and time windows. If the resulting route violates vehicle
capacity and/or time window constraints, it is considered infeasible and excluded
from the savings list. A new candidate is then chosen using the previously
outlined procedure. If the merged tour is infeasible due to battery constraints,
a charging station is introduced into the tour. Determining the optimal location
for the charging station involves identifying the first node in the tour where the
electric vehicle arrives with a negative battery level. Subsequently, a charging
station is inserted between this node and the preceding one. After determining
the insertion position, the charging station that minimally increases the overall
tour distance is selected and placed accordingly. If the tour remains infeasible,
the same procedure is applied to the preceding arcs. In cases where infeasibility
persists despite attempts to insert charging stations, the merged tour is discarded,
and the associated nodes are removed from the savings list. The next candidate
pair of nodes is then selected from the savings list, following the aforementioned
procedure. This tour merging process is iteratively executed until the savings
list is depleted. Once the merging phase concludes, some of the initially added
charging stations may become unnecessary. Consequently, redundant charging
stations are identified and subsequently removed from the constructed tours.

4. Finally, the savings list L is updated as described above.

In the final step, the ultimate set of tours undergoes a transformation into its
corresponding set of solution components.

Probabilistic Insertion Algorithm Our second constructive heuristic works by
sequentially incorporating customers into available tours until all customers have
been visited. The initial customer to be included in the tour is selected based on

4.3 Application to an Electric Vehicle Routing Problem 125

either the distance from the depot or the latest feasible visiting time. Specifically,
the initial tour is formed by inserting the customer with the greatest distance from
the depot or the earliest deadline. Following this, we generate a cost list L containing
all potential insertion points for each unvisited customer along with their associated
costs. The cost of inserting a customer at a specific point is determined using
the following equation, which calculates the cost .costj ik of inserting customer i
between nodes j and k.

.costj ik = dji + dik − djk (4.28)

Subsequently, a .qjik value is calculated for each entry .(j, i, k) ∈ L as follows:

. qjik :=

⎧
⎪⎪⎨

⎪⎪⎩

(costj ik + 1) · (1 − αbsf)(1 − αbsf) if cji ∈ Sbsf and cik ∈ Sbsf

(costj ik + 1) · αbsf if cji /∈ Sbsf and cik /∈ Sbsf

(costj ik + 1) · αbsf(1 − αbsf) otherwise

(4.29)

Following that, the choice of an entry .(j, i, k) from L is executed based on
the probabilities computed using Eq. (4.29). If the vehicle’s capacity allows, the
customer is incorporated into the appropriate location within the tour. Moreover, if
the insertion proves to be infeasible due to battery constraints, a charging station is
introduced into the tour using the method outlined in the C&W savings algorithm.
In instances where inserting a customer leads to the vehicle surpassing its load or
battery capacity (even after charging station insertion), or results in a time window
violation, a new tour is initiated, encompassing only the specific customer.

After inserting all of the customers and a complete solution is derived, the
obtained set of tours is transformed into the corresponding set S of solution
components.

4.3.4.2 Sub-instance Solving

The incumbent sub-instance . C' is solved at each iteration of ADAPT_CMSA

by first generating a corresponding ILP model based on model .ILPEVRP
std and

then solving the model with a CPU time limit of .tILP seconds with CPLEX in
functionSolveSubinstance(. C', . tILP). In order to generate this model, the following
constraints are added to .ILPEVRPstd :

. xij = 0 for all cij ∈ C \ C' (4.30)

Put differently, if an arc . aij has not been employed in any of the solutions that were
merged into . C', the utilization of this arc is prohibited by setting the value of . xij to
zero.

126 4 Replacing Hard Mathematical Models with Set Covering Formulations

4.3.5 The ADAPT_CMSA_SETCOV Algorithm

The ILP model for solving sub-instances in ADAPT_CMSA_SETCOV is model
.ILPEVRP

setcov from Sect. 4.3.2 on page 119. Remember that the complete set of solution
components C, in the case of ADAPT_CMSA_SETCOV, consists of a component . cr

for each valid tour .Tr ∈ T (see Sect. 4.3.2), that is, .C := {cr | Tr ∈ T }. Any subset
.S ⊂ C such that each customer .i ∈ V is served by exactly one tour of S is a valid
solution to the EVRP-TW-SPD problem instance.

The probabilistic solution construction process in ADAPT_CMSA_SETCOV oper-
ates in an identical manner as in ADAPT_CMSA. The distinction lies in the fact that
the solutions generated comprise solution components that directly correspond to
tours, as opposed to arcs as observed in the case of ADAPT_CMSA.

Another distinction lies in the utilization of the ILP model for solving sub-
instances, as previously mentioned. Specifically, when dealing with a sub-instance
. C', the corresponding ILP model is derived by substituting every occurrence
of . T in .ILPEVRPsetcov with . C'. This implies that the model exclusively considers
tours present in sub-instance . C' as eligible tours. Following each execution of
CPLEX, once the solver solution .SILP is attained, a check for duplicate customer
occurrences is conducted before returning the solution to the main algorithmic
level of ADAPT_CMSA_SETCOV. All redundant customers are identified, and
subsequently, the advantage of removing each redundant customer—directly tied to
the distance between the respective customer and its adjacent nodes—is calculated.
Following this, redundant customers are systematically eliminated, starting with the
one offering the greatest benefit, until each customer is allocated to a single tour
exclusively.

4.3.6 Experimental Evaluation

The experiments were carried out on the same high-performance computing cluster
used for all preceding experiments in this book, namely, the in-house computing
cluster of the IIIA-CSIC. The cluster is equipped with machines featuring Intel®

Xeon® 5670 CPUs, each possessing 12 cores clocked at 2.933 GHz and a minimum
of 32 GB of RAM. Additionally, the application to sub-instances in both CMSA
variants employed CPLEX version 20.1 in single-threaded mode. Furthermore, the
ILP models representing complete problem instances were tackled using CPLEX
version 20.1 in standalone mode.

4.3.6.1 Problem Instances for the EVRP-SPD-TW

A benchmark set of problem instances was generated on the basis of the EVRP-TW
instances introduced in [22]. The resulting dataset comprises a total of 92 instances,

4.3 Application to an Electric Vehicle Routing Problem 127

categorized into 36 small-sized instances and 56 large-sized instances. Small-sized
instances involve 5, 10, and 15 customers, while large-sized instances consist of 100
customers and 21 charging stations. These instances are classified into three distinct
groups based on the spatial distribution of customer locations: clustered instances
(indicated by the prefix “c” in the instance name), randomly distributed instances
(prefix “r”), and instances with a hybrid of random and clustered distributions
(prefix “rc”). Each group further encompasses two sub-classes (type1 and type2)
that differentiate instances based on factors such as time windows, vehicle load, and
battery capacity.

Initially, it was necessary to segregate the delivery demand into pickup and deliv-
ery demands because each customer in the original instances had only one demand
information. To derive delivery and pickup demands from the original demand, we
employed the method outlined in [21]. This approach involves calculating a ratio
.ρi = min{ xi

yi
,

yi

xi
} for each customer .i ∈ V , where .(xi, yi) represents the Cartesian

coordinates of customer i. Subsequently, the delivery demand . qi was determined by
multiplying the original demand . δi by . ρi , while the pickup demand . pi was obtained
by subtracting . qi from . δi .

4.3.6.2 Parameter Tuning

Similar to the approach taken for the VSBP problem, we utilized the scientific tuning
software irace [14] to determine effective parameter values for ADAPT_CMSA and
ADAPT_CMSA_SETCOV; see Sect. 1.2.1 on page 12 for a description. The tuning
process involved six instances: r107, r205, rc101, rc104, rc105, and rc205.
The budget allocated for irace—indicating the maximum number of algorithm runs
permitted for tuning—was set to 2500, with a fixed time limit of 900 CPU seconds
per instance. Additionally, the precision of irace was set to two decimal places for
numerical parameters. Table 4.5 details the parameters, their domains, and the final

Table 4.5 Parameters, their domains, and the chosen values as determined by irace

Parameter Domain ADAPT_CMSA ADAPT_CMSA_SETCOV

tILP {5, 7, 10, 15, 20, 25, 30, 35, 40} 40 20

αLB [0.6, 0.99] 0.92 0.75

αUB [0.6, 0.99] 0.98 0.86

αred [0.01, 0.1] 0.07 0.07

tprop [0.1, 0.8] 0.17 0.23

ninit {1, 3, 5, 10, 50, 100, 200, 300, 500} 1 10

ninc {1, 3, 5, 10, 50, 100, 200, 300, 400} 1 50

linit size {3, 5, 10, 15, 20, 50, 100, 200} 100 10

linc size {3, 5, 10, 15, 20, 50, 100, 200} 15 20

λ [1, 2] 1.99 1.38

μ [0, 1] 0.23 0.58

128 4 Replacing Hard Mathematical Models with Set Covering Formulations

values chosen for the experimentation. In this context, remember that the first group
of five parameters in this table are the usual ADAPT_CMSA parameters. The second
group consisting of four parameters are the ones resulting from the generalization
of ADAPT_CMSA. Finally, the last two parameters are the route shape parameter
(. λ) and the asymmetric scaling parameter (. μ) from the C&W solution construction
heuristic. Note also that, due to an already elevated number of algorithm parameters,
in the case of this experimental evaluation CPLEX was always applied with the
default parameter setting.

It is noteworthy that the values obtained for .ninit and .ninc are notably smaller in
the context of ADAPT_CMSA in comparison to those for ADAPT_CMSA_SETCOV.
One plausible explanation for this discrepancy is that the ILP model employed
within ADAPT_CMSA poses an obstacle to the algorithm’s success. It appears
that the sub-instances need to be kept as small as possible to enable CPLEX
to generate valid solutions within the constrained time when solving these sub-
instances. This interpretation is corroborated by the values obtained for . tILP. In the
case of ADAPT_CMSA, the time limit for CPLEX to solve the ILP models in each
iteration is approximately twice as high. In contrast, the value of the .linitsize parameter
determined for ADAPT_CMSA is considerably higher than that determined for
ADAPT_CMSA_SETCOV. A higher .linitsize could be perceived as a diversification
mechanism, serving as compensation for dealing with small sub-instances.

4.3.6.3 Results

This section presents a comprehensive experimental evaluation of the two CMSA
variants across all instances detailed in Sect. 4.3.6.1. The numerical outcomes for
small-sized instances can be found in Tables 4.6, 4.7, and 4.8, while results for
larger-sized instances are displayed in Tables 4.9, 4.10, and 4.11. To gauge the
algorithms’ effectiveness in handling small instances, we compared ADAPT_CMSA

and ADAPT_CMSA_SETCOV with the standalone application of CPLEX, denoted
henceforth as CPLEX. However, given CPLEX’s limitation in handling large
instances, our comparison for such scenarios is restricted to the two CMSA variants.
Both CMSA variants were executed with a computation time limit of 150 CPU
seconds for small instances and 900 CPU seconds for large instances. In contrast,
CPLEX was granted a computation time limit of 2 hours for small-size instances.
Each algorithm underwent 10 runs for each problem instance. It is worth noting
that, to calculate objective function values, we set the cost of each vehicle used in a
solution to .1000, i.e., .M = 1000.1

In each result table, the initial column presents the instance names, while the
columns labeled ‘m’ indicate the number of vehicles employed in the best solution
discovered by the respective algorithm across 10 runs. For both ADAPT_CMSA

and ADAPT_CMSA_SETCOV, the ‘best’ columns showcase the objective function

1 Remember that M is the cost given in the ILP models to the use of a vehicle.

4.3 Application to an Electric Vehicle Routing Problem 129

Ta
bl
e
4.
6

R
es
ul
ts
 f
or
 s
m
al
l-
si
ze
d
E
V
R
P-
T
W
-S
PD

 in
st
an
ce
s
w
ith

 5
 c
us
to
m
er
s

In
st
an
ce

C
P
L
E
X

A
D
A
P
T
_C

M
S
A

A
D
A
P
T
_C

M
S
A
_S

E
T
C
O
V

N
am

e
m

B
es
t

ga
p
(%

)
m

B
es
t

A
vg
.

T
im

e
m

B
es
t

A
vg
.

T
im

e

c
1
0
1
C
5

2
22
57
.7
5

0
2

22
57
.7
5

22
57
.7
5

0.
03

2
22
57
.7
5

22
57
.7
5

0.
01
7

c
1
0
3
C
5

1
11
75
.3
7

0
1

11
75
.3
7

11
75
.3
7

0.
77

1
11
75
.3
7

11
75
.3
7

0.
97
5

c
2
0
6
C
5

1
12
42
.5
6

0
1

12
42
.5
6

12
42
.5
6

0.
04

1
12
42
.5
6

12
42
.5
6

0.
00
6

c
2
0
8
C
5

1
11
58
.4
8

0
1

11
58
.4
8

11
58
.4
8

0.
01

1
11
58
.4
8

11
58
.4
8

0.
00
1

r
1
0
4
C
5

2
21
36
.6
9

0
2

21
36
.6
9

21
36
.6
9

0.
10

2
21
36
.6
9

21
36
.6
9

0.
01
1

r
1
0
5
C
5

2
21
56
.0
8

0
2

21
56
.0
8

21
56
.0
8

0.
01

2
21
56
.0
8

21
56
.0
8

0.
00
1

r
2
0
2
C
5

1
11
28
.7
8

0
1

11
28
.7
8

11
28
.7
8

12
.8
1

1
11
28
.7
8

11
28
.7
8

0.
00
1

r
2
0
3
C
5

1
11
79
.0
6

0
1

11
79
.0
6

11
79
.0
6

0.
32

1
11
79
.0
6

11
79
.0
6

0.
06
8

r
c
1
0
5
C
5

2
22
33
.7
7

0
2

22
33
.7
7

22
33
.7
7

0.
13

2
22
33
.7
7

22
33
.7
7

0.
06
1

r
c
1
0
8
C
5

2
22
53
.9
3

0
2

22
53
.9
3

22
53
.9
3

0.
01

2
22
53
.9
3

22
53
.9
3

0.
00
3

r
c
2
0
4
C
5

1
11
76
.3
9

0
1

11
76
.3
9

11
76
.3
9

0.
10

1
11
76
.3
9

11
76
.3
9

0.
01
5

r
c
2
0
8
C
5

1
11
67
.9
8

0
1

11
67
.9
8

11
67
.9
8

0.
74

1
11
67
.9
8

11
67
.9
8

0.
03
7

a
v
e
r
a
g
e

1.
42

16
05
.5
7

0
1.
42

16
05
.5
7

16
05
.5
7

1.
25

1.
42

16
05
.5
7

16
05
.5
7

0.
10
0

130 4 Replacing Hard Mathematical Models with Set Covering Formulations

Ta
bl
e
4.
7

R
es
ul
ts
 f
or
 s
m
al
l-
si
ze
d
E
V
R
P-
T
W
-S
PD

 in
st
an
ce
s
w
ith

 1
0
cu
st
om

er
s

In
st
an
ce

C
P
L
E
X

A
D
A
P
T
_C

M
S
A

A
D
A
P
T
_C

M
S
A
_S

E
T
C
O
V

N
am

e
m

B
es
t

G
ap
 (
%
)

m
B
es
t

A
vg
.

T
im

e
m

B
es
t

A
vg
.

T
im

e

c
1
0
1
C
1
0

3
33
88
.2
5

0
3

33
88
.2
5

33
88
.2
5

0.
40

3
33
88
.2
5

33
88
.5
5

0.
46

c
1
0
4
C
1
0

2
22
73
.9
3

0
2

22
73
.9
3

22
73
.9
3

0.
68

2
22
73
.9
3

22
73
.9
3

41
.3
1

c
2
0
2
C
1
0

1
13
04
.0
6

0
1

13
04
.0
6

13
04
.0
6

0.
64

1
13
04
.0
6

13
04
.0
6

0.
14

c
2
0
5
C
1
0

2
22
28
.2
8

0
2

22
28
.2
8

22
28
.2
8

15
.4
0

2
22
28
.2
8

22
28
.2
8

0.
05

r
1
0
2
C
1
0

3
32
49
.1
9

0
3

32
49
.1
9

32
49
.1
9

25
.9
3

3
32
49
.1
9

32
49
.1
9

0.
01

r
1
0
3
C
1
0

2
22
06
.1
2

0
2

22
06
.1
2

22
06
.1
2

7.
50

2
22
06
.1
2

22
06
.1
2

31
.3
3

r
2
0
1
C
1
0

1
12
41
.5
1

0
1

12
41
.5
1

12
41
.5
1

32
.3
2

1
12
41
.5
1

12
41
.5
1

22
.7
3

r
2
0
3
C
1
0

1
12
18
.2
1

0
1

12
18
.2
1

12
18
.2
1

20
.0
2

1
12
18
.2
1

12
18
.2
1

38
.6
7

r
c
1
0
2
C
1
0

4
44
23
.5
1

0
4

44
23
.5
1

44
23
.5
1

0.
34

4
44
23
.5
1

44
23
.5
1

0.
02

r
c
1
0
8
C
1
0

3
33
45
.9
3

0
3

33
45
.9
3

33
45
.9
3

20
.8
0

3
33
45
.9
3

33
45
.9
3

0.
02

r
c
2
0
1
C
1
0

1
14
12
.8
6

16
.6
4

1
14
12
.8
6

14
12
.8
6

2.
80

1
14
12
.8
6

14
12
.8
6

1.
33

r
c
2
0
5
C
1
0

2
23
25
.9
8

0
2

23
25
.9
8

23
25
.9
8

0.
19

2
23
25
.9
8

23
25
.9
8

0.
64

a
v
e
r
a
g
e

2.
08

23
84
.8
2

1.
66

2.
08

23
84
.8
2

23
84
.8
2

10
.5
9

2.
08

23
84
.8
2

23
84
.8
4

11
.3
92

4.3 Application to an Electric Vehicle Routing Problem 131

Ta
bl
e
4.
8

R
es
ul
ts
 f
or
 s
m
al
l-
si
ze
d
E
V
R
P-
T
W
-S
PD

 in
st
an
ce
s
w
ith

 1
5
cu
st
om

er
s

In
st
an
ce

C
P
L
E
X

A
D
A
P
T
_C

M
S
A

A
D
A
P
T
_C

M
S
A
_S

E
T
C
O
V

N
am

e
m

B
es
t

G
ap
 (
%
)

m
B
es
t

A
vg
.

T
im

e
m

B
es
t

A
vg
.

T
im

e

c
1
0
3
C
1
5

3
33
48
.4
6

7.
3

3
33
48
.4
6

33
48
.4
7

68
.5
9

3
33
48
.4
6

33
48
.4
6

5.
35

c
1
0
6
C
1
5

3
32
75
.1
3

0
3

32
75
.1
3

32
75
.1
3

6.
49

3
32
75
.1
3

32
75
.1
3

46
.0
3

c
2
0
2
C
1
5

2
23
83
.6
2

0
2

23
83
.6
2

23
83
.6
2

18
.1
2

2
23
83
.6
2

23
93
.3
9

7.
50

c
2
0
8
C
1
5

2
23
00
.5
5

0
2

23
00
.5
5

23
00
.5
5

1.
55

2
23
00
.5
5

23
00
.5
5

12
.2
3

r
1
0
2
C
1
5

5
54
12
.7
8

20
.6

5
54
12
.7
8

54
12
.7
8

2.
59

5
54
12
.7
8

54
12
.7
8

0.
12

r
1
0
5
C
1
5

4
43
36
.1
5

0
4

43
36
.1
5

43
36
.1
5

1.
47

4
43
36
.1
5

43
36
.1
5

1.
22

r
2
0
2
C
1
5

2
23
61
.5
1

27
.3

2
23
58
.0
0

23
64
.9
0

32
.3
2

1
15
07
.3
2

16
77
.4
6

64
.2
9

r
2
0
9
C
1
5

1
13
13
.2
4

0
1

13
13
.2
4

13
13
.2
4

17
.4
1

1
13
13
.2
4

13
13
.2
4

15
.6
2

r
c
1
0
3
C
1
5

4
43
97
.6
7

0
4

43
97
.6
7

43
97
.6
7

0.
34

4
43
97
.6
7

43
97
.6
7

0.
30

r
c
1
0
8
C
1
5

3
33
70
.2
5

0
3

33
70
.2
5

33
70
.2
5

58
.8
5

3
33
70
.2
5

33
70
.2
5

0.
34

r
c
2
0
2
C
1
5

2
23
94
.3
9

0
2

23
94
.3
9

23
94
.3
9

0.
68

2
23
94
.3
9

23
94
.3
9

27
.9
8

r
c
2
0
4
C
1
5

1
14
03
.3
8

28
.7

1
13
82
.2
2

13
85
.7
2

68
.0
9

1
13
82
.2
2

13
82
.5
5

71
.8
7

a
v
e
r
a
g
e

2.
67

30
24
.7
6

6.
99

2.
67

30
22
.7
1

30
23
.5
7

23
.0
4

2.
58

29
51
.8
2

29
66
.8
3

21
.0
70

132 4 Replacing Hard Mathematical Models with Set Covering Formulations

Table 4.9 Results for large-sized clustered EVRP-TW-SPD instances

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV

Name m Best Avg. Time m Best Avg. Time

c101 12 13,043.40 13,043.42 385.13 12 13,057.80 13,063.54 292.56

c102 11 12,056.80 12,920.23 560.77 11 12,073.10 12,944.34 468.81

c103 11 12,004.70 12,026.90 452.13 10 11,134.90 11,917.80 718.09

c104 10 10,872.80 11,353.78 629.96 10 10,870.70 10,876.49 608.43

c105 11 12,023.80 12,341.60 562.10 11 12,034.10 12,068.86 582.74

c106 11 12,013.10 12,438.06 652.00 11 12,025.70 12,059.29 434.80

c107 11 12,006.40 12,023.97 538.41 11 12,026.70 12,046.38 393.01

c108 11 11,994.70 12,016.10 579.51 10 11,025.80 11,822.60 556.58

c109 10 11,042.20 11,885.30 714.89 10 10,941.00 11,180.77 746.17

c201 4 4629.95 4629.95 37.59 4 4678.37 4703.43 390.96

c202 4 4629.95 4629.95 273.58 4 4664.26 4706.94 394.84

c203 4 4632.27 4690.06 740.49 4 4641.45 4734.31 497.60

c204 4 4633.08 4665.78 801.76 4 4660.64 4737.07 716.94

c205 4 4629.95 4629.95 76.87 4 4629.95 4629.95 125.43

c206 4 4629.95 4629.95 213.28 4 4629.95 4629.95 203.04

c207 4 4629.95 4629.95 255.85 4 4629.95 4635.27 260.34

c208 4 4629.95 4629.95 284.78 4 4629.95 4629.95 261.72

average 7.65 8476.64 8657.94 456.42 7.53 8373.78 8552.17 450.12

values of the best solutions derived from 10 runs. Additionally, the ‘avg.’ columns
display the average objective function values over the best solutions from each of
the 10 runs. Furthermore, the ‘time’ columns reveal the average computation times
of the two CMSA variants to find the best solutions in each run. Lastly, the ‘gap(%)’
columns indicate the percentage difference between the optimal solutions attained
and the best lower bounds achieved by CPLEX. It is essential to note that a gap value
of zero implies that CPLEX has identified (and proved) an optimal solution.

•> Main Observations for Small-Sized Problem Instances

• CPLEX solved 31 problem instances to optimality. For the remaining five problem
instances (rc201C10, c103C15, r102C15, r202C15, and rc204C15), it
provided feasible solutions.

• Both CMSA variants were able to find the optimal solutions computed by CPLEX.
• In the case of the r202C15 instance, ADAPT_CMSA and ADAPT_CMSA_

SETCOV were able to improve over the solution obtained by CPLEX by 0.15%
and 36.17%, respectively.

• Furthermore, ADAPT_CMSA and ADAPT_CMSA_SETCOV improved the solu-
tion obtained by CPLEX by 1.51% in the case of the rc204C15 instance.

4.3 Application to an Electric Vehicle Routing Problem 133

Table 4.10 Results for large-sized random EVRP-TW-SPD instances

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV

Name m Best Avg. Time m Best Avg. Time

r101 18 19,633.80 19,939.79 653.66 18 19,640.60 19,661.15 678.64

r102 17 18,470.80 19,292.16 707.40 16 17,474.10 17,696.35 798.71

r103 15 16,296.50 17,050.75 711.23 14 15,280.30 15,306.17 639.83

r104 13 14,141.10 14,255.53 616.85 12 13,084.30 13,111.31 766.15

r105 15 16,389.20 17,212.83 680.24 14 15,471.30 16,346.10 611.98

r106 15 16,292.00 16,836.67 701.75 14 15,314.80 15,441.68 746.22

r107 13 14,168.90 15,016.67 680.99 12 13,140.10 13,669.50 783.82

r108 12 13,079.80 13,531.30 667.03 11 12,073.70 12,998.17 742.49

r109 14 15,237.30 15,674.51 759.64 13 14,220.80 14,468.12 744.57

r110 13 14,170.20 14,905.73 528.09 12 13,114.30 13,544.76 770.70

r111 12 13,144.20 14,584.19 696.71 12 13,148.80 13,965.98 716.12

r112 12 13,155.60 14,053.56 471.58 12 13,044.10 13,078.65 850.31

r201 4 5192.33 5216.92 720.44 4 5276.75 5363.04 187.38

r202 3 4250.70 5020.88 688.65 3 4193.33 4940.22 876.26

r203 3 3942.74 4352.52 868.05 3 3985.02 4060.18 822.50

r204 3 3820.72 3854.31 787.19 3 3793.76 3827.81 876.38

r205 3 4055.28 4124.64 731.94 3 4065.06 4126.45 360.47

r206 3 3978.10 4065.05 756.40 3 3991.44 4047.16 784.07

r207 3 3878.91 3910.07 659.85 3 3881.97 3918.29 878.20

r208 3 3791.27 3829.39 849.73 3 3732.80 3776.20 895.79

r209 3 3975.64 4015.90 665.83 3 3933.55 3977.24 765.83

r210 3 3920.37 3984.78 755.82 3 3926.79 3961.42 740.36

r211 3 3814.42 3893.38 825.95 3 3824.47 3857.62 799.45

average 8.83 9947.82 10,374.85 703.70 8.43 9548.35 9788.85 732.01

• Both CMSA variants demand significantly less computation time compared
to CPLEX. To elaborate, while CPLEX took an average of 2965.35 seconds
to identify its best solutions (please note that this information is not pre-
sented in the result tables), ADAPT_CMSA achieved this in 23.04 seconds, and
ADAPT_CMSA_SETCOV accomplished it in a mere 21.07 seconds.

In summary, it could be said that the small-sized problem instances are not
enough of a challenge to show many differences between the two CMSA variants.
Therefore, we now turn to the analysis of the results concerning large-sized
problem instances. Note that, in this case, the numerical results from Tables 4.9,
4.10, and 4.11 are accompanied by critical difference (CD) plots that provide
information about the statistical significance of the results; see Sect. 1.2.3 on
page 16 for a general description of CD plots. Note that, apart from the results
of ADAPT_CMSA and ADAPT_CMSA_SETCOV, these CD plots also consider the
results of probabilistic versions of the C&W savings heuristic (pC&W) and the
insertion heuristic (pSI) which were applied in a multi-start fashion with the same

134 4 Replacing Hard Mathematical Models with Set Covering Formulations

Table 4.11 Results for large-sized random clustered EVRP-TW-SPD instances

Instance ADAPT_CMSA ADAPT_CMSA_SETCOV

Name m Best Avg. Time m Best Avg. Time

rc101 16 17,667.70 18,513.67 718.11 16 17,696.20 17,741.63 629.24

rc102 16 17,576.80 17,909.78 558.28 15 16,558.20 16,628.46 601.70

rc103 14 15,366.90 16,245.06 764.45 13 14,358.20 14,999.16 691.74

rc104 13 14,270.50 14,315.17 637.05 12 13,222.50 13,261.65 698.43

rc105 15 16,500.90 16,933.42 652.30 14 15,470.70 15,820.90 639.84

rc106 14 15,432.50 16,069.05 632.16 13 14,448.30 15,249.17 578.17

rc107 13 14,313.40 14,437.31 769.62 12 13,276.50 13,386.51 738.62

rc108 12 13,226.00 13,891.71 620.56 12 13,184.70 13,214.50 717.49

rc201 4 5504.77 5819.06 703.93 4 5617.75 5786.48 322.85

rc202 4 5324.64 5442.41 593.36 4 5436.63 5541.80 196.92

rc203 4 5109.88 5177.69 644.21 4 5086.44 5159.15 757.20

rc204 3 4036.49 4525.03 745.44 3 3962.88 4252.28 899.13

rc205 4 5260.14 5338.50 607.45 4 5285.41 5375.54 314.93

rc206 4 5234.55 5289.90 670.19 4 5210.57 5275.72 562.86

rc207 3 4150.60 4930.81 694.79 3 4197.81 4650.01 864.38

rc208 3 3977.50 4046.09 762.57 3 3920.17 4002.79 750.41

average 8.88 10,184.58 10,555.29 673.40 8.50 9808.31 10,021.61 622.74

computation time limits as the CMSA variants. Their numerical results are not given
in the Tables, first, for space reasons, and second, because they were much worse
than those of the CMSA variants.

•> Main Observations Concerning Large-Sized Problem Instances

• First, the CD plot from Fig. 4.10a shows that, overall, ADAPT_CMSA_SETCOV

outperforms ADAPT_CMSA with statistical significance.
• This claim also holds true for the random and the random-clustered instances;

see the CD plots in Fig. 4.10c and d.
• However, from the results presented in Table 4.9, it seems difficult to come to a

definite conclusion for clustered-type instances. ADAPT_CMSA_SETCOV seems
to provide a slightly better performance both in terms of best and average results.
Nevertheless, Fig. 4.10 shows no significant difference between the performance
of ADAPT_CMSA_SETCOV and ADAPT_CMSA on clustered instances.

• It can also be observed that the performance of ADAPT_CMSA_SETCOV

decreases in the context of instances with a long scheduling horizon (c2*
r2* and rc2*); see Fig. 4.10f. Solutions for those instances include fewer
routes and hence more customers per route when compared to the solutions for
the instances with short scheduling horizons (c1* r1* and rc1*).

• Finally, both CMSA variants significantly outperform the probabilistic multi-
start versions of the construction heuristics (pC&W and pSI) in all cases.

4.3 Application to an Electric Vehicle Routing Problem 135

1 2 3 4

(a) All problem instances

1 2 3 4

(b) Clustered instances
1 2 3 4

(c) Random instances

1 2 3 4

(d) Random-clustered instances
1 2 3 4

1 2 3 4

Fig. 4.10 Critical Difference (CD) plots concerning the results for large-sized EVRP-TW-SPD
instances. The results in (a) consider all instances together, while the remaining plots display the
results for instance subsets

In summary, both variants of Adapt-CMSA show a very satisfactory per-
formance both in the context of small and large problem instances. Moreover,
ADAPT_CMSA_SETCOV shows superiority over ADAPT_CMSA, particularly in the
context of random and random-clustered instances.

4.3.6.4 Performance Difference Between the Two EVRP-TW-SPD ILP
Models

Finally, akin to the VSBP problem case, we aim to demonstrate the reasons for the
superior performance of ADAPT_CMSA_SETCOV over ADAPT_CMSA. To illustrate
this, we once again create sub-instances of varying sizes, convert them into models
.ILPEVRP

std and .ILPEVRP
setcov, and subsequently solve them using CPLEX.

Specifically, we created 10 sub-instances through a probabilistic process involv-
ing the construction of 100, resp. 500, solutions for a small problem instance and 50,
resp. 100, solutions for a large problem instance. In particular, instance r202C15
was used for representing a small problem instance (with 15 customers), while
c101 with 100 customers was used for representing a large problem instance.
In Fig. 4.11, radar charts illustrate the results obtained in these four scenarios.

136 4 Replacing Hard Mathematical Models with Set Covering Formulations

6600

100

20

 100

vars

improve-
ment

time

gap

6600

100

20

 100

vars

improve-
ment

time

gap

128100

800

20

 100

vars

improve-
ment

time

gap

128100

800

20

 100

vars

improve-
ment

time

gap

Fig. 4.11 Radar charts concerning the comparison of the two ILP models for the EVRP-TW-SPD
problem applied to a small problem instance with 15 customers (see (a) and (b)), and to a large
problem instance with 100 customers (see (c) and (d)). (a) Instance r202C15 (15 customers),
100 solutions. (b) Instance r202C15 (15 customers), 500 solutions. (c) Instance c101 (100
customers), 50 solutions. (d) Instance c101 (100 customers), 100 solutions

Remember that each radar plot shows four measures, averaged over the 10 sub-
instances:

1. The number of variables in the ILP models of the sub-instances (top).
2. The relative MIP gap after CPLEX termination (right).
3. The computation time required by CPLEX (bottom).
4. The absolute improvement when comparing the result of solving the sub-instance

with the best individual solution used to generate it.

It is important to note that the time limit for CPLEX was consistently set to 20 CPU
seconds in all cases.

A promising ILP model would be expected to exhibit a substantial improvement
with low values for the number of variables, the relative MIP gap, and the required
time. The radar charts concerning the large problem instance (see Fig. 4.11c and

4.3 Application to an Electric Vehicle Routing Problem 137

d) indicate that this is the case for model .ILPEVRPsetcov, while the opposite is actually
the case for model .ILPEVRP

std . Especially the case of the small problem instance
considering the lower number of solution constructions (see Fig. 4.11a) indicates
that sub-instances must not be too small. Otherwise, there might not be many
improvements to be found in the context of model .ILPEVRP

setcov.

4.3.6.5 STNWeb Graphics Concerning the EVRP-TW-SPD Results

Additionally, STNWeb graphics were produced for some examples of the obtained
EVRP-TW-SPD results; see Sect. 1.2.2 on page 13 for a description of the STNWeb
tool and the type of graphics that are produced. Figure 4.12 shows two typical cases.

Fig. 4.12 STNWeb graphics. (a) and (b) show 10 runs of ADAPT_CMSA and
ADAPT_CMSA_SETCOV for the random-clustered instance rc106, while (c) and (d) correspond
to the clustered instance c201. While (a) and (c) depict the complete STNs, (b) and (d) show the
same STNs after search space partitioning

138 4 Replacing Hard Mathematical Models with Set Covering Formulations

The first one, consisting of the complete STN in Fig. 4.12a and the STN after search
space partitioning in Fig. 4.12b, shows the case of a random-clustered instance
(rc106) for which ADAPT_CMSA_SETCOV works better than ADAPT_CMSA.
While the complete STN does not show any trajectory overlaps, the STN after search
space partitioning clearly shows that the ADAPT_CMSA_SETCOV trajectories end
up in the same area of the search space, while the ADAPT_CMSA trajectories have
some overlaps with the ADAPT_CMSA_SETCOV trajectories, especially in early,
resp. intermediate stages, of the search process. However, they simply stop earlier,
before reaching the area with the best solutions.

The second example shows the complete STN (Fig. 4.12c) and the STN after
search space partitioning (Fig. 4.12d) of a clustered instance (c201), for which
ADAPT_CMSA works better than ADAPT_CMSA_SETCOV. The complete STN
shows that all ADAPT_CMSA trajectories converge to the same best-found (and
possibly optimal) solution. The STN after search space partitioning shows that
ADAPT_CMSA is actually attracted by the same area of the search space. However,
the algorithm is not able to find the very best solutions in that area.

4.4 Conclusions and Future Research Directions

In this chapter, we have explored the application of various CMSA variants to tackle
two NP-hard combinatorial optimization problems. The first one was the Variable-
Sized Bin Packing problem, followed by the Electric Vehicle Routing Problem with
Time Windows and Simultaneous Pickup and Delivery. Both optimization problems
share a common characteristic: They can be formulated using an assignment-type
integer linear program as well as a set-covering-based integer linear program. Both
models were employed in identical CMSA algorithms for solving sub-instances at
each iteration.

The results unequivocally demonstrate the superior performance of CMSA vari-
ants utilizing set-covering-based models over those employing standard assignment-
type models. From our perspective, CMSA algorithms prove to be an ideal algorith-
mic framework for leveraging set-covering-based models in solving optimization
problems of this nature. This preference arises because CMSA algorithms are less
intricate and more straightforward to implement compared, for example, to column-
generation approaches. Furthermore, CMSA algorithms possess the capability to
explore search spaces, distinguishing them from simpler heuristic methods found in
the literature designed to take profit from set-covering-based models.

At least two possible lines for future work might be envisaged. One line
consists of the consolidation of the findings outlined in this chapter in the context
of additional combinatorial optimization problems that can be modeled by set-
covering-based models. Another possible line of work consists of the improvement
of the CMSA algorithms presented in this work. In the context of the VSBP
problem, for example, only the first solution construction approach that came to
mind was implemented. Adding additional greedy heuristics for the construction

References 139

step of CMSA could help to generate potentially different bins that, in combination
with other bins, could help to find even better solutions. In this way, the obtained
results might be improved in the few cases in which the proposed algorithm is not
able to compete with the state-of-the-art variable neighborhood search technique
from the literature. Also in the case of the electric vehicle routing problem, we see
potential for improvement by adding additional solution construction techniques.

References

1. Akbay, M.A., Kalayci, C.B., Blum, C.: Application of CMSA to the electric vehicle routing
problem with time windows, simultaneous pickup and deliveries, and partial vehicle charging.
In: L. Di Gaspero, P. Festa, A. Nakib, M. Pavone (eds.) Proceedings of MIC 2022 –
Metaheuristics International Conference, pp. 1–16. Springer International Publishing, Cham
(2023)

2. Angelelli, E., Mansini, R.: The vehicle routing problem with time windows and simultaneous
pick-up and delivery. In: Quantitative approaches to distribution logistics and supply chain
management, pp. 249–267. Springer (2002)

3. Asghari, M., Mirzapour Al-e-hashem, S.M.J.: Green vehicle routing problem: A state-of-the-
art review. International Journal of Production Economics 231, 107899 (2021)

4. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W., Vance, P.H.: Branch-and-
price: Column generation for solving huge integer programs. Operations Research 46(3), 316–
329 (1998)

5. Cacchiani, V., Hemmelmayr, V.C., Tricoire, F.: A set-covering based heuristic algorithm for
the periodic vehicle routing problem. Discrete Applied Mathematics 163, 53–64 (2014)

6. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery
points. Operations Research 12(4), 568–581 (1964)

7. Crainic, T.G., Perboli, G., Rei, W., Tadei, R.: Efficient lower bounds and heuristics for the
variable cost and size bin packing problem. Computers & Operations Research 38(11), 1474–
1482 (2011)

8. Desrochers, M., Soumis, F.: A column generation approach to the urban transit crew scheduling
problem. Transportation Science 23(1), 1–13 (1989)

9. Ekici, A.: A large neighborhood search algorithm and lower bounds for the variable-sized bin
packing problem with conflicts. European Journal of Operational Research 308(3), 1007–1020
(2023)

10. Fleszar, K.: A new MILP model and fast heuristics for the variable-sized bin packing problem
with time windows. Computers & Industrial Engineering 175, 108849 (2023)

11. Haouari, M., Serairi, M.: Heuristics for the variable sized bin-packing problem. Computers &
Operations Research 36(10), 2877–2884 (2009)

12. Hemmelmayr, V., Schmid, V., Blum, C.: Variable neighbourhood search for the variable sized
bin packing problem. Computers & Operations Research 39(5), 1097–1108 (2012)

13. Keskin, M., Çatay, B.: Partial recharge strategies for the electric vehicle routing problem with
time windows. Transportation Research Part C: Emerging Technologies 65, 111–127 (2016)

14. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The
irace package: Iterated racing for automatic algorithm configuration. Operations Research
Perspectives 3, 43–58 (2016)

15. Machado, A.M., Mauri, G.R., Boeres, M.C.S., de Alvarenga Rosa, R.: A new hybrid
matheuristic of GRASP and VNS based on constructive heuristics, set-covering and set-
partitioning formulations applied to the capacitated vehicle routing problem. Expert Systems
with Applications 184, 115556 (2021)

140 4 Replacing Hard Mathematical Models with Set Covering Formulations

16. Moghdani, R., Salimifard, K., Demir, E., Benyettou, A.: The green vehicle routing problem: A
systematic literature review. Journal of Cleaner Production 279, 123691 (2021)

17. Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing problems.
INFORMS Journal on Computing 18(1), 71–85 (2006)

18. Paessens, H.: The savings algorithm for the vehicle routing problem. European Journal of
Operational Research 34(3), 336–344 (1988)

19. Parker, M., Ryan, J.: A column generation algorithm for bandwidth packing. Telecommunica-
tion Systems 2(1), 185–195 (1993)

20. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for
vehicle routing. Journal of Heuristics 1(1), 147–167 (1995)

21. Salhi, S., Nagy, G.: A cluster insertion heuristic for single and multiple depot vehicle routing
problems with backhauling. Journal of the Operational Research Society 50(10), 1034–1042
(1999)

22. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with time windows
and recharging stations. Transportation Science 48(4), 500–520 (2014)

23. Yellow, P.: A computational modification to the savings method of vehicle scheduling. Journal
of the Operational Research Society 21(2), 281–283 (1970)

24. Yilmaz, Y., Kalayci, C.B.: Variable neighborhood search algorithms to solve the electric vehicle
routing problem with simultaneous pickup and delivery. Mathematics 10(17), 3108 (2022)

Chapter 5
Application of CMSA in the Presence
of Non-binary Variables

Abstract Up to this point, the applications of CMSA discussed in this book, as
well as those found in the related literature, have focused on addressing combi-
natorial optimization problems that can be expressed through binary integer linear
programming (ILP) formulations. Such problems represent an ideal scenario for
CMSA, as sub-instances can be easily defined by fixing specific decision variables
to certain values or excluding them altogether from the models. However, when
confronted with a problem expressed through a more general ILP that incorporates
discrete decision variables with non-binary domains, a notable challenge emerges.
Unlike constraint programming solvers, for example, ILP solvers cannot handle
non-contiguous domains, making it impossible to simply eliminate certain values
from these domains. In this chapter, we present an illustration of CMSA applied
to a combinatorial optimization problem naturally formulated as a non-binary ILP.
Specifically, we make use of the Bounded Knapsack Problem with Conflicts.

5.1 Introduction

In this book, the following combinatorial optimization problems have been dis-
cussed so far: (1) the Minimum Dominating Set (MDS) problem in Chaps. 1 and 3,
(2) the Far From Most String (FFMS) problem in Chaps. 2 and 3, (3) the Minimum
Positive Influence Dominating Set (MPIDS) problem in Chap. 2, (4) the Variable-
Sized Bin Packing (VSBP) problem in Chap. 4 and (5) the Electric Vehicle Routing
Problem with Time Windows and Simultaneous Pickup and Delivery (EVRP-TW-
SPD) in Chap. 4. All these problems share an important property. They are naturally
expressed in terms of binary ILPs, that is, ILPs that only consist of discrete decision
variables with binary domains. Moreover, sub-instances to these problems can
always be expressed through ILP models in which some decision variables are left
free, and others are fixed to one of the two values from their domains. Note that
whenever one value is removed from the domain of a binary decision variable, this
decision variable can immediately be fixed to the remaining value. In the context
of applications to problems such as the Multi-Dimensional Knapsack Problem

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_5

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5
https://doi.org/10.1007/978-3-031-60103-3_5

142 5 Application of CMSA in the Presence of Non-binary Variables

(see [1]) binary decision variables might even be removed from the corresponding
ILP models.

Now consider that we would like to apply CMSA to a combinatorial optimization
problem that is naturally expressed through a non-binary ILP model, that is, an ILP
model in which (at least some of) the variables have discrete, non-binary domains.
In this case, we might run into the following problem.

•> Application of CMSA to Non-binary Problem: Potential Problem

Imagine that the considered discrete optimization problem includes a decision
variable . xi with domain .Di := {1, 2, 3}. Moreover, imagine that we apply standard
CMSA using the generic way of defining the solution components, resulting in a
complete set C of solution components containing a solution component . cj

i for
each variable . xi and domain value .j ∈ Di . Further, imagine that we are in the
first iteration of CMSA and that .na = 2 solutions are constructed. One in which
.xi = 1, and another one in which .xi = 3. That is, the allowed values for . xi for
solving the corresponding sub-instance are .{1, 3}. However, this reduced domain is
non-contiguous, and ILP solvers are not able to handle non-contiguous variable
domains.

When dealing with a mixed problem, which includes both binary and non-binary
variables, one can consider the following differentiation. If the count of non-binary
variables is relatively small compared to the number of binary variables, it may
be reasonable to disregard the non-binary variables and rely exclusively on the
binary decision variables for the functioning of CMSA. However, if the number
of non-binary variables is substantial, this approach becomes impractical. Under
such circumstances, one might contemplate the binarization of the ILP, and that is
precisely the methodology elucidated in this chapter. Specifically, we illustrate the
implementation of standard CMSA on a combinatorial optimization problem termed
the Bounded Knapsack Problem with Conflicts (BKPWC). This variant represents
an extension of the widely recognized Bounded Knapsack Problem (BKP) [9].

5.2 The Bounded Knapsack Problem with Conflicts

The Bounded Knapsack Problem (BKP) was first presented in [9] as an extension
of the classical 0-1 Knapsack Problem (0-1 KP) [7], and later treated, for example,
in [5, 6]. Hereby, a knapsack with capacity .Ccap has to be filled with items from a
finite set of n items. Each item j has a profit . pj and a weight . wj . Moreover, . mj > 0
copies of each item j are maximally available. To obtain a candidate solution, it has
to be decided how many (of maximally . mj) copies of each item j are to be placed
into the knapsack. Note that this last aspect is the extension in comparison to the
classical 0-1 KP, where each item may, or may not, be placed in the knapsack.

5.2 The Bounded Knapsack Problem with Conflicts 143

Finally, a candidate solution is feasible if the sum of the weights of all item copies
added to the knapsack is maximally .Ccap, which is the capacity of the knapsack. The
objective function value of a feasible solution is calculated as the sum of the profits
of all item copies added to the knapsack.

In this chapter, we consider an extension of the BKP called the BKP with
Conflicts (BKPWC). This problem variant is inspired by a recent trend in the
packing literature that concerns the consideration of conflicts between items. Exam-
ples of related problems include the Bin Packing Problem with Conflicts [4], the
Quadratic Multi-knapsack Problem with Conflicts and Balance Constraints [8], and
the Variable-Sized Bin Packing Problem with Conflicts and Item Fragmentation [3].
In the context of the BKPWC, when two items i and j are in conflict, the knapsack
may only contain copies of one of the two items. To model item conflicts, we
introduce a so-called conflict graph .G = (V ,E) where an edge .(i, j) exists in
E if, and only if, items i and j are in conflict.

The BKPWC can be modelled as an ILP in the following way.

.max
n∑

j=1

pj · xj . (5.1)

subject to
n∑

j=1

wj · xj ≤ Ccap. (5.2)

xj ≤ M · yj ∀ j = 1, . . . , n. (5.3)

yi + yj ≤ 1 ∀ (i, j) ∈ E (5.4)

yj ∈ {0, 1}
xj ∈ {0, . . . , mj }

Note that two sets of variables are utilized in this model. The integer variables
.0 ≤ xj ≤ mj indicate the number of copies of each item that are placed into
the knapsack. Moreover, the binary variables .0 ≤ yj ≤ 1 are so-called indicator
variables. Constraints (5.3) force a variable . yj to assume value one if at least
one copy of item j is placed into the knapsack. Hereby, M is constant set to the
maximum of all .mj -values, that is, .M := max{mj | j = 1, . . . , n}. Finally,
constraint (5.2) is the capacity constraint, while constraints (5.4) are the conflict
constraints.

5.2.1 Converting the BKPWC ILP to a Binary Program

One of the most popular methods for converting a general ILP into a binary ILP
is the following one; see also page 60 of [2]. Let . xj be a general discrete variable
with domain .Dj := {d1, d2, . . . , dk−1, dk} containing k values. Hereby, each value

144 5 Application of CMSA in the Presence of Non-binary Variables

.dr ∈ Dj is an integer value, that is, .dr ∈ Z. Without loss of generality, let us
assume that .d1 ≤ d2 ≤ . . . ≤ dk−1 ≤ dk . Moreover, note that the values in . Dj may
be non-contiguous, that is, it does not necessarily hold that .dr+1 = dr + 1 for all
.r ∈ {1, . . . , k − 1}. Then, the discrete variable . xj can be replaced in the given ILP
by a set of k binary variables .{xj,r | r = 1, . . . , k}. Moreover, each occurrence of
. xj in the given ILP is replaced by the following sum:

.

k∑

r=1

dr · xj,r (5.5)

In addition, the following constraint is added to the ILP:

.

k∑

r=1

xj,r = 1 (5.6)

This constraint enforces that the value of exactly one of the binary variables that are
used to replace the discrete variable . xj is set to 1.

Making use of these rules, the ILP model of the BKPWC can be converted to the
following binary ILP:

.max
n∑

j=1

(
pj ·

mj∑

r=0

xj,r

)
. (5.7)

subject to
n∑

j=1

(
wj ·

mj∑

r=0

xj,r

)
≤ Ccap. (5.8)

mj∑

r=0

xj,r ≤ M · yj ∀ j = 1, . . . , n. (5.9)

yi + yj ≤ 1 ∀ (i, j) ∈ E. (5.10)

mj∑

r=0

xj,r = 1 ∀ j = 1, . . . , n (5.11)

yj ∈ {0, 1}
xj,r ∈ {0, 1} ∀ j = 1, . . . , n and r = 0, . . . , mj

5.3 Application of CMSA to the BKPWC 145

5.3 Application of CMSA to the BKPWC

Next, the application of standard CMSA from Sect. 1.3.1 of Chap. 1 to the BKPWC
is described. Our implementation will be based on the intuitively defined set of
solution components C which consists of a solution component .cj,r for each
combination of a decision variable . xj with a domain value .r ∈ Dj = {0, . . . , mj }.
In other words, when a component .cj,r is present in sub-instance . C' this means
that domain value r for variable . xj is an allowed choice in the ILP model that
corresponds to sub-instance . C'. In the following, we describe, first, how solutions
are generated in a probabilistic way at each iteration of CMSA_INT. Second, the way
of generating the ILP model corresponding to sub-instance . C' is described.

5.3.1 Probabilistic Solution Construction

The probabilistic construction of a valid BKPWC solution is pseudo-coded in
Algorithm 5.1. First, we assume—without loss of generality—that the items are
ordered such that .

pj

wj
≥ pj+1

wj+1
for all .j = 1, . . . , n−1. The construction of a solution

consists of deciding, for each item, the number of item copies to be placed into
the knapsack. After initializing the solution S to the empty set, and the remaining
capacity (. scap) to the total capacity of the knapsack (.Ccap), the first item to be
handled is chosen uniformly at random; see line 4 of Algorithm 5.1. After selecting
the number .l ∈ {0, . . . , mj } of copies of item j to be placed in the knapsack in
function SelectNumberOfCopies.(j,mj , scap) (explained below) and adding the
corresponding solution component . cj,l to solution S, set I is updated by removing

Algorithm 5.1: BKPWC solution construction
1: input: the items j = 1, . . . , n
2: S := ∅, scap := Ccap
3: I := {1, . . . , n} {Set of all items}
4: Choose j ∈ I uniformly at random
5: l := SelectNumberOfCopies(j, mj , scap)
6: S := S ∪ {cj,l}, scap := scap − l · wj
7: I := I \ {j} \ {k ∈ {1, . . . , n} | (i, k) ∈ E or wk > scap}
8: while I /= ∅ do
9: j := min{i | i ∈ I }
10: l := SelectNumberOfCopies(j, mj , scap)
11: S := S ∪ {cj,l}, scap := scap − l · wj
12: I := I \ {j} \ {k ∈ {1, . . . , n} | (i, k) ∈ E or wk > scap}
13: end while
14: for j ∈ {1, . . . , n} s.t. no component cj,∗ ∈ S exists do
15: S := S ∪ {cj,0}
16: end for
17: output: S

146 5 Application of CMSA in the Presence of Non-binary Variables

item j , all items that are in conflict with j , and all items of which not even a single
copy would fit into the incumbent partial solution; see line 7. Then, at each further
step of the solution construction procedure, first, the lowest-index item is chosen
from I . Subsequently, the number of copies of j to be placed in the knapsack is
selected (line 10), the corresponding solution component is added to S and I is
updated as described above. This procedure ends as soon as I is empty. Finally, for
all untreated items j , solution component .cj,0 is added to S, which indicates that S
does not contain a single copy of these items; see lines 14–16.

The remaining aspect of the solution construction is the choice of the number of
copies of selected items in function SelectNumberOfCopies.(j,mj , scap) which is
executed in lines 5 and 10 of Algorithm 5.1. First, the maximum number of copies
(.nmax) of j that would fit into S is determined. More specifically, .nmax is set to
the largest integer value such that .nmax · wj ≤ scap. Moreover, .nmax is possibly
further reduced due to the maximum number of available copies of j : . nmax :=
min{nmax,mj }. Then, a value v is sampled from a normal distribution .N(0, σ 2),
that is, a normal distribution with zero as mean and . σ as standard deviation. In case
.v < 0, v is multiplied with . −1 in order to obtain a positive value. Finally, l (the
number of copies of item j to be placed in the knapsack) is defined as follows:

.l := nmax − ⎿v⏌ , (5.12)

where .⎿v⏌ refers to the integer part of v. Note that, in this way of selecting l, the
highest chance is given to the maximum number of copies. Obviously, this chance
decreases with an increasing value of . σ , which is a parameter of our algorithm.
This way of selecting l is reasonable as it was shown by studying optimal BKPWC
solutions, that the number of copies of most of the selected items is actually the
maximum possible one.

5.3.2 Sub-instance Solving

Sub-instance . C' is, at each iteration of CMSA_INT, tackled by solving an ILP model
on the basis of the binarized ILP model for the BKPWC presented in Sect. 5.2.1.
In fact, the ILP model corresponding to a sub-instance . C' is obtained from the ILP
model in Sect. 5.2.1 by simply removing all terms including a variable .xj,r whose
solution component .cj,r is not found in . C'. This is for the following reasons. If
a solution component .cj,r does not form part of . C', choosing r copies of item j
for being placed into the knapsack is not an option. Therefore, variable .xj,r must be
fixed to zero, which—in the case of this ILP—can be handled by removing all terms
involving .xj,r from the ILP.

5.4 Experimental Evaluation 147

5.4 Experimental Evaluation

The following algorithms are included in the experimental evaluation presented in
this section:

1. GREEDY: A greedy heuristic obtained by executing the approach from Algo-
rithm 5.1 in a deterministic way by choosing the next item always as the
lowest-index item not treated yet, and by always selecting the maximum number
of item copies that fit into the incumbent partial solution.

2. CPLEX: Application of CPLEX 22.1 to each considered problem instance with
the default parameter values of CPLEX. The employed ILP model is the natural
one with integer variables from page 143.

3. CPLEX_BIN: Application of CPLEX 22.1 to each considered problem instance
with the default parameter values of CPLEX. The employed ILP model is the
binarized one exclusively utilizing binary variables from Sect. 5.2.1.

4. CMSA: The standard CMSA algorithm, based on the intuitive way of defining the
set of solution components as outlined in this chapter.

Note that CPLEX 22.1 is used—both in standalone mode (CPLEX and CPLEX_BIN)
and within CMSA—in single-threaded mode. For conducting the experiments we
used the IIIA-CSIC in-house high-performance computing cluster of machines
equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least
32 GB of RAM.

5.4.1 Problem Instances

A large set of 1800 problem instances was generated as suggested in [9]. In
particular, these instances differ in the number of items (.n ∈ {500, 1000, 5000}),
the knapsack capacity of an instance (.captype ∈ {10, 20, 30, 40, 50}), and in the
number of conflicts (.conftype ∈ {1, 3, 5, 10}). Note that both .captype and . conftype
refer to percentages. For each combination of these three instance parameters, 30
problem instances were randomly generated in the following way.

For each item j , first, a profit . pj is randomly selected from .{1, 2, . . . , 99, 100}.
Second, a non-correlated weight .wj is chosen from the same range, that is,
from .{1, 2, . . . , 99, 100}. Next, a maximal number of item copies . mj is selected
uniformly at random from .{5, 6, 7, 8, 9, 10}. Then, the knapsack capacity of item j
is fixed as follows:

.Ccap :=
⎢⎢⎢⎣

(∑n
j=1 mj · wj

)
· captype

100

⎥⎥⎥⎦ (5.13)

148 5 Application of CMSA in the Presence of Non-binary Variables

Finally, of all possible conflicts between two items i and j , .conftype% are randomly
selected and added to the problem instance.

5.4.2 Parameter Tuning

As for all other experimental studies described in this book, the irace tool—
generally described in Sect. 1.2.1 on page 12—was used for tuning the parameters
of CMSA. The following is the list of parameters considered for parameter tuning:

• . na: The number of solution constructions per CMSA iteration.
• .agemax: The maximum age solution components may reach before being

removed from the sub-instance . C'.
• . tILP: The CPU time limit (in seconds) for the application of CPLEX for solving

a sub-instance . C'.
• .cplexemphasis: Use of heuristic emphasis in CPLEX.
• .cplexwarmstart: Use of warm start in CPLEX.
• .cplexabort: Aborting CPLEXwhenever then best-so-far solution .SILP is improved.
• . σ : The standard deviation of the normal distribution involved in the choice of the

number of copies of an item to be placed into the knapsack. This parameter was
described in Sect. 5.3.1.

CMSA was tuned depending on problem instance size in terms of the number of
items. In other words, CMSA was tuned for items with 500, 1000, and 5000 items
separately. As tuning instances, additional problem instances were generated. More
specifically, for each combination of n, .captype, and .conftype, exactly one tuning
instance was generated. This makes a total of 20 tuning instances per tuning run.
As a computation time limit, 100 CPU seconds was used for all instances with . n =
500 items, 250 CPU seconds for all instances with .n = 1000 items, and 600 CPU
seconds for all instances with .n = 5000 items. Note also that irace was given a
budget of 2000 algorithm runs for each tuning application.

The results of the tuning process are provided in Table 5.1, together with
the parameter domains considered. The following observations are worth to be
discussed. First, the value of . σ is very low in all cases. This indicates that the chance
of choosing a number of copies of an item to be placed in the knapsack which
is different to the maximum possible one should be very low. Another interesting
observation concerns the number of solution constructions per iteration. While this
number is rather high for instances with 500 and 1000 items, it drops significantly
in the case of instances with 5000 items. This happens, most probably, because
CPLEX reaches its limits when problem instances of that size are considered. As a

5.4 Experimental Evaluation 149

Table 5.1 Parameters, domains and tuning results of CMSA for the BKPCW

Parameter Domain 500 items 1000 items 5000 items

.na .{1, . . . , 200} 172 169 14

.agemax .{1, . . . , 10} 6 1 3

.tILP .{1, . . . , 20} 5 7 13

.cplexemphasis .{true,false} false true false

.cplexwarmstart .{true,false} true true true

.cplexabort .{true,false} false true false

.σ .[1, 10] 1.12 1.07 1.59

final comment, it always seems beneficial to make use of the warm-start feature of
CPLEX for solving sub-instances.

5.4.3 Results

All four algorithmic techniques (GREEDY, CPLEX, CPLEX_BIN and CMSA) were
applied exactly once to each of the problem instances from the benchmark set. The
computation time limit for CPLEX, CPLEX_BIN and CMSA was the same as the
one used for tuning (see previous section). The results are shown in the form of
box plots in Figs. 5.1, 5.2, and 5.3. Note that there is exactly one graphic for each
problem instance size. Each of these graphics contains a .4 × 5 grid of box plots.
Hereby, the rows present the results (from top to bottom) for problem instances
with an increasing knapsack capacity, and the columns (from left to right) present
the results for problem instances with an increasing number of conflicts.

To be able to support the analysis of the results with claims about their statis-
tical significance, CD plots are provided as in all other experimental evaluations
presented in this book. These plots are provided in Fig. 5.4. In particular, the plot
in Fig. 5.4a contains statistics for all problem instances together. The next three
plots (Fig. 5.4b–d) provide information for the problem instances grouped by size
(number of items). Finally, Fig. 5.4e–h show the results for the benchmark set
grouped by the number of conflicts.

150 5 Application of CMSA in the Presence of Non-binary Variables

Fig. 5.1 BKPWC results for instances with 500 items

5.4 Experimental Evaluation 151

Fig. 5.2 BKPWC results for instances with 1000 items

152 5 Application of CMSA in the Presence of Non-binary Variables

Fig. 5.3 BKPWC results for instances with 5000 items

5.4 Experimental Evaluation 153

1 2 3 4

(a)

1 2 3 4

(b)
1 2 3 4

(c)

1 2 3 4

(d)
1 2 3 4

(e)

1 2 3 4

(f)
1 2 3 4

(g)

1 2 3 4

(h)

Fig. 5.4 Critical Difference (CD) plots concerning BKPCW results. (a) All instances. (b)
Instances with 500 items. (c) Instances with 1000 items. (d) Instances with 5000 items. (e)
Instances with conftype = 1. (f) Instances with conftype = 3. (g) Instances with conftype = 5.
(h) Instances with conftype = 10

154 5 Application of CMSA in the Presence of Non-binary Variables

•> Main Observations Concerning the BKPWC Results

1. First, and most importantly, CMSA generally outperforms both CPLEX variants
(CPLEX and CPLEX_BIN) and GREEDY.

2. Again—as, for example, in the case of the MDS problem presented in Chap. 1—
the comparison with the CPLEX variants shows exactly the pattern that one
would expect from the comparison of a hybrid technique with an exact technique:
when problem instances are rather easy to be solved with CPLEX, CMSA

performs on a comparable level. In contrast, when problem instances become
large and/or difficult to solve, CMSA clearly outperforms both CPLEX variants.

3. In general, problem instances become more difficult for both CPLEX variants
with growing size, with growing capacity, and with a growing number of
conflicts. In fact, for most of the problem instances with 5000 items, both CPLEX
variants can only find the trivial solution obtained by choosing to place no item
copies at all into the knapsack.1

4. The CD plots for sub-groups of the benchmark set allow to make the following
interesting observation. When grouping by instance size—see Fig. 5.4b–d—
the performances of the two CPLEX variants are basically indistinguishable.
However, when grouping the instances with respect to the number of conflicts
(see Fig. 5.4e–h) it shows that CPLEX_BIN outperforms CPLEX with statistical
significance for instances with the lowest and the highest number of conflicts,
while the opposite is the case for instances with the two medium levels of
conflicts. However, at this moment we do not have any explanation for this
phenomenon.

5.5 Conclusions and Further Research Directions

As this chapter has shown, there is no problem in applying CMSA to general ILPs.
And in the example case that was studied—that is, the Bounded Knapsack Problem
With Conflicts—this certainly makes sense. However, note that the transformation
of an ILP to a binary problem increases both the number of variables and the
number of constraints. Depending on the problem, respectively the considered
problem instance, this increase might be significant. Imagine problem instances of
the studied knapsack problem with a much higher upper bound for the number of
item copies, for example. Therefore, such a transformation might not always be that
well-behaved as shown in this chapter. In other words, the algorithm designer has
to decide from case to case whether a transformation to a binary problem with the

1 This can be seen by the fact that the solutions generated by the CPLEX variants have value zero.

References 155

subsequent application of CMSA makes sense. Moreover, many practically relevant
optimization problems can be expressed in terms of mixed ILP models, involving
both integer and binary variables, possibly in addition to continuous variables. In
those cases, CMSA might be applied, for example, solely considering the binary
variables. However, this strongly depends on the number of binary variables in
comparison to the integer variables. In general, the application of CMSA to mixed
ILPs might be a promising line for future research.

References

1. Blum, C., Ochoa, G.: A comparative analysis of two matheuristics by means of merged local
optima networks. European Journal of Operational Research 290(1), 36–56 (2021)

2. Chen, D.S., Batson, R.G., Dang, Y.: Applied integer programming: modeling and solution. John
Wiley & Sons (2011)

3. Ekici, A.: Variable-sized bin packing problem with conflicts and item fragmentation. Computers
& Industrial Engineering 163, 107844 (2022)

4. Gendreau, M., Laporte, G., Semet, F.: Heuristics and lower bounds for the bin packing problem
with conflicts. Computers & Operations Research 31(3), 347–358 (2004)

5. Kellerer, H., Pferschy, U., Pisinger, D.: The Bounded Knapsack Problem, pp. 185–209. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

6. Li, Y., He, Y., Li, H., Guo, X., Li, Z.: A binary particle swarm optimization for solving
the bounded knapsack problem. In: H. Peng, C. Deng, Z. Wu, Y. Liu (eds.) Computational
Intelligence and Intelligent Systems, pp. 50–60. Springer Singapore, Singapore (2019)

7. Martello, S., Toth, P.: A new algorithm for the 0-1 knapsack problem. Management Science
34(5), 633–644 (1988)

8. Olivier, P., Lodi, A., Pesant, G.: The quadratic multiknapsack problem with conflicts and balance
constraints. INFORMS Journal on Computing 33(3), 949–962 (2021)

9. Pisinger, D.: A minimal algorithm for the bounded knapsack problem. INFORMS Journal on
Computing 12(1), 75–82 (2000)

Chapter 6
Additional Research Lines Concerning
CMSA

Abstract The main chapters of this book were devoted to significant research
endeavors within the CMSA framework. Conversely, this concluding chapter
provides a brief overview of research directions related to CMSA that have either
received limited exploration so far or are presently under investigation. Specifically,
it introduces a general CMSA approach for binary integer linear programming
models. In this context, CMSA is employed to address integer linear programming
models without any identification of the modeled problem. Furthermore, the
chapter discusses a study where a metaheuristic is utilized instead of an integer
linear programming solver for sub-instance solving. Following an examination that
elucidates the relationship between large neighborhood search and CMSA, the
chapter wraps up by underscoring promising avenues for future research.

6.1 A Problem-Agnostic CMSA for Binary Problems

One potential drawback of CMSA lies in the necessity for a problem-specific
approach to probabilistically generate solutions during the solution construction
step for the optimization problem under consideration. However, sometimes a well-
working heuristic might not be available. Therefore, the authors of [5] attempted to
develop a problem-agnostic CMSA for the application to general binary ILPs (BIPs)
that can be expressed in the following way:

.min{cT x : Ax ≤ b, xj ∈ {0, 1} ∀j = 1, . . . , n} (6.1)

where A is an .m × n matrix, . b is the right-hand-side vector of size m, . c is a cost
vector, and . x is the vector of n binary decision variables. Note that m is the number
of constraints of this BIP. This type of problem is generic enough to model a wide
range of combinatorial optimization problems, including all optimization problems
considered in this book. In addition, a myriad of applications are listed, for example,
in the MIPLIB 2010 and 2017 collections of problem instances [12, 16].

For the application of a problem-agnostic CMSA to such a general BIP, the main
challenge is to find a way for the fast production of (possibly) feasible solutions,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3_6

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-60103-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6
https://doi.org/10.1007/978-3-031-60103-3_6

158 6 Additional Research Lines Concerning CMSA

without knowing the exact nature of the problem and without any knowledge about
the structure of feasible solutions. In this context, note that the necessity of quickly
identifying feasible solutions to general ILPs is important also for ILP solvers
such as CPLEX and Gurobi. Therefore, the research community on mathematical
programming has put quite some effort into this issue. Over the years, several
methods have been proposed to try to produce feasible solutions to general ILPs.
One of the best-known approaches is the so-called feasibility pump [3, 10, 11].
However, the authors of [5] decided for a faster mechanism based on linear
relaxation solving and on a simple constraint programming (CP) tool, as explained
below.

6.1.1 Application of CMSA_GEN

The authors applied an extension of standard CMSA based on the generic way of
defining the solution components (CMSA_GEN). Remember that this CMSA variant
was outlined in Sect. 1.4.2 of Chap. 1 of this book. For this CMSA variant applied to
BIPs, the set C of generic solution components will contain for each binary variable
. xi two solution components:

1. Component . c0j : corresponding to .xj = 0.

2. Component . c1j : corresponding to .xj = 1.

A solution to the given BIP is any binary vector . s that fulfills the constraints from
Eq. (6.1). In case a solution . s to the problem is characterized by .si = 0 (which
means that . xi is set to zero), the corresponding CMSA-solution S (defined as a set
of solution components) contains component . c0i . Similarly, if .si = 1 in a solution . s,
then S contains component . c1i . The complete, generic set of solution components C
is therefore defined as follows:

.C := {c01, . . . , c0n, c11, . . . , c1n} , (6.2)

where n is the number of binary variables in the BIP. Note that a feasible CMSA-
solution S contains exactly n solution components: .{c∗

j | j = 1, . . . , n}, that is, one
component per variable of the BIP.

As a final technical clarification, it is important to note that, for the rest of this
section, we extend the objective function of the addressed BIP by considering that
.f (∅) := ∞. Moreover, in the following, we will use both the vector notation of a
solution (. s) and the CMSA-based notation of a solution in terms of a set of solution
components (S) interchangeably. It is also important to remark that the optimization
goal for the function f is considered to be minimization.

6.1 A Problem-Agnostic CMSA for Binary Problems 159

6.1.1.1 Before the Start of CMSA_GEN

Before starting with the first CMSA_GEN iteration, the node heuristic of CPLEX is
used to obtain the first feasible solution. If, in this way, a feasible solution can be
obtained, it is stored in . sbsf, which is the vector version of the best-so-far CMSA-
solution . Sbsf. Otherwise, .Sbsf is set to . ∅, as usual, and the LP relaxation of the given
BIP is solved. However, in order not to spend too much computation time on this
step, a computation time limit of . tLP seconds is applied. After this, the possibly
optimal solution of the LP relaxation is stored in vector . xLP.

6.1.1.2 Solution Construction

Whenever function ProbabilisticSolutionGeneration(C) is called (see line 8 of
Algorithm 1.1 on page 19 of Chap. 1), the following is done. First, a so-called
sampling vector .xsamp for sampling new (possibly feasible) solutions by randomized
rounding is generated. If .Sbsf /= ∅, .xsamp is generated based on the vector-version
. sbsf of .Sbsf and a so-called determinism rate .0 < drate < 0.5 as follows:

. x
samp
j =

{
drate if sbsfj = 0

1 − drate if sbsfj = 1

for all .j = 1, . . . , n. In case .Sbsf = ∅, .xsamp is—for all .j = 1, . . . , n—generated
on the basis of . xLP:

. x
samp
j =

⎧⎪⎪⎨
⎪⎪⎩

xLP
j if drate ≤ xLP

j ≤ 1 − drate

drate if xLP
j < drate

1 − drate if xLP
j > 1 − drate

After generating .xsamp, a possibly infeasible binary solutions . s is generated from
.xsamp by randomized rounding. Note that this is done in the order .j = 1, . . . , n.
Finally, . s is translated in set-form S and returned to CMSA_GEN.

CP-Support During Solution Construction Optionally, the algorithm proposed
in [5] makes use of the Constraint Propagation engine cprop that implements ideas
from [1, 20] for the construction of solutions.1

The support of CP is utilized in two distinct manners. Firstly, it involves
processing all constraints, detecting implications derived from the constraint set, and
preprocessing the problem to maintain the corresponding variables fixed throughout
the search process. Secondly, it alters the solution construction mechanism as

1 The used CP tool can be obtained at https://github.com/h-g-s/cprop.

https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop
https://github.com/h-g-s/cprop

160 6 Additional Research Lines Concerning CMSA

follows: instead of sequentially deriving values for variables in the order of . j =
1, . . . , n, a random order . π is selected for each solution construction. This means
that at step j , instead of determining a value for variable . xj , a value for variable
.xπ(j) is determined. Subsequently, after selecting a value for variable .xπ(j), the CP
tool verifies if this assignment yields an infeasible solution. If so, variable . xπ(j)

is fixed to the alternative value. If, once again, the CP tool concludes that this
configuration cannot result in a feasible solution, the standard solution construction
progresses as outlined before—that is, without CP support—is utilized to finalize
the construction of an unfeasible solution. Conversely, if a feasible value can be
selected for the current variable, CP might suggest potential implications involving
further (so far unfixed) variables that consequently need to be fixed to certain values.
All such implications are addressed before handling the next non-fixed variable
according to . π .2

6.1.1.3 Extension of the Standard Algorithm

Instead of utilizing fixed values for parameters .drate and . tILP, the approach outlined
in [5] proposes the following strategy. Both parameters have an associated lower
and upper bound. At the initiation of CMSA_GEN, the values for .drate and .tILP are
initialized to their lower bounds. If an iteration leads to an improvement of the best-
so-far solution, the values of .drate and .tILP revert to their respective lower bounds.
Conversely, if there is no improvement, the values of .drate and .tILP are incremented
by a factor determined by subtracting the lower bound from the upper bound and
dividing the result by . 5.0. In addition, whenever the value of .drate or .tILP surpasses
its upper bound, it is reset to the lower bound value. According to the authors, this
methodology draws inspiration from the approach used to manage neighborhood
size in variable neighborhood search (VNS) algorithms [15].

6.1.2 Experimental Evaluation

Two CMSA variants were tested in [5]. The first one, CMSA_GEN, does not employ
CP support for solution construction, while the second one—CMSA_GEN_CP—
does make use of CP. Moreover, CPLEX was applied to all problem instances with
two settings. CPLEX-OPT makes use of the default settings, while CPLEX-HEUR

utilizes the highest level of heuristic emphasis. CPLEX 12.7 was employed for
these experiments in 2019. However, they were already performed on the IIIA-CSIC
in-house high-performance computing cluster of machines equipped with Intel®

Xeon® 5670 CPUs having 12 cores of 2.933 GHz and at least 32 GB of RAM.

2 Note that, after fixing a value for .xπ(j), the value of .xπ(j+1) might already be fixed due to one of
the implications dealt with earlier.

6.1 A Problem-Agnostic CMSA for Binary Problems 161

Table 6.1 Characteristics of the six BIP instances for which results are shown in Fig. 6.1

BIP instance name # Cols/Vars # Rows Opt. Val. MIPLIB status 2019

air04 8904 823 56137.0 Easy

opm2-z12-s14 10,800 319,508 . −64291.0 Hard

protfold 1835 2112 . −31.0 Hard

rmine14 32,205 268,535 Unknown Open

t1717 73,885 551 Unknown Open

rflcs-2048-3n-div-8 5461 7,480,548 Unknown n.a.

6.1.2.1 Benchmark Instances

30 problem instances (27 from MIPLIB 2010 and three additional ones from the
authors’ research) were chosen for the experimentation in [5]. We only show
graphical results for six of these instances. Their names and characteristics are
provided in Table 6.1. In particular, after the first table column with the instance
names, two columns provide the number of columns (corresponding to the number
of binary variables) and the number of rows, respectively, of the matrix A from
the BIP model; see Eq. (6.1) on page 157. Next, row number four presents the
value of an optimal solution (if known), and the last table column shows the
MIPLIB status in 2019 (ranging from ‘easy’ to ‘open’). Note that the last instance
(rflcs-2048-3n-div-8) is a difficult instance of the so-called repetition-free
longest common subsequence (RFLCS) problem from the authors’ research. The
hardness of this instance is due to a massive amount of constraints.

6.1.2.2 Results

Instead of performing a full parameter tuning, the authors of [5] designed four
different settings, and determined the best setting for each problem instance. We
refer the interested reader to [5] for more information.

All four approaches (CMSA_GEN, CMSA_GEN_CP, CPLEX-OPT, and CPLEX-
HEUR) were applied with a computation time limit of 1000 CPU seconds to each
problem instance. However, as the CMSA variants are stochastic algorithms, they
are applied 10 times to each instance, while the two CPLEX variants are applied
exactly once to each instance. A sample of the obtained results is presented for
the six problem instances from Table 6.1 in Fig. 6.1. It contains for each problem
instance a graphic that shows the evolution (in terms of the objective function value
of the best-found solutions) over time. Note that, in the case of the CMSA variants,
the graphics show the average behavior over 10 runs, together with a confidence
ribbon.

162 6 Additional Research Lines Concerning CMSA

-60000

-40000

-20000

0

0 250 500 750 1000
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

-30

-25

-20

-15

-10

0 250 500 750 1000
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

-4000

-3000

-2000

-1000

0

0 250 500 750 1000
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

180000

185000

190000

195000

200000

0 250 500 750 1000
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

-120

-90

-60

-30

0

0 250 500 750 1000
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

56400

56800

57200

0 10 20 30 40 50
Time

O
bj
ec
tiv
e
fu
nc
tio
n
va
lu
e

Methods

CMSA_GEN

CMSA_GEN_CP

CPLEX_HEUP

CPLEX_OPT

Fig. 6.1 Anytime performance of CMSA_GEN, CMSA_GEN_CP, CPLEX-HEUR and CPLEX-OPT

for six exemplary BIP instances from MIPLIB 2010. The mean performance of the CMSA variants,
together with the confidence ribbon (based on 10 independent runs) is provided. (a) Instance
air04. (b) Instance opm2-z12-s14. (c) Instance protfold. (d) Instance rmine14. (e)
Instance t1717. (f) Instance rflcs-2048-3n-div-8

6.2 Applying a Metaheuristic in the CMSA Framework 163

•> Observations Concerning the BIP Results

• For instances categorized as ‘easy’, both CPLEX variants are usually faster
than the CMSA variants in reaching optimal solutions. An example is shown
in Fig. 6.1a (instance air04).

• Often, CPLEX-HEUR obtains better solutions than CPLEX-OPT, which is to
be expected, because the focus of CPLEX-HEUR is on quickly finding good
solutions, while the focus of CPLEX-OPT is on proving optimality earlier.

• For problem instances categorized as ‘hard’ and ‘open’, both CMSA variants
often show a clear advantage over the two CPLEX versions in the sense that (1)
good solutions are found much earlier in the search process, and (2) the solutions
found at the end of a run are generally much better than those found by the
CPLEX versions. Examples are shown in Fig. 6.1b–d.

• Concerning a comparison between the two CMSA variants, it can be observed
that the standard variant (CMSA_GEN) is often faster than the CMSA variant
with CP support (CMSA_GEN_CP). This is because CP support comes with a
cost. This is most strikingly seen in the example of Fig. 6.1e. However, on the
other side, CP support helps to find feasible solutions in the context of moderately
constrained problems.

• Finally, one of the disadvantages of both CMSA variants is shown in the context
of very constrained problems. For such problems, the CMSA variants often do
not even find a single feasible solution.

6.1.3 Discussion

The work on a problem-agnostic CMSA version for BIP problems is certainly
only a first step along this avenue of research. In particular, the ability of the
algorithm to quickly find feasible solutions must be improved in the context of
highly constrained problems. For this purpose, the hybrid biased random key genetic
algorithm (BRKGA) from [2] might be used, for example.

6.2 Applying a Metaheuristic in the CMSA Framework

In [19], the authors presented a variant of CMSA in which the use of an exact solver
for solving sub-instances was replaced by the use of a metaheuristic. The authors
were able to show in the context of the so-called weighted independent domination
(WID) problem that their metaheuristic-based CMSA outperformed the standalone
application of the metaheuristic. In other words, this paper provided evidence for
the ability of CMSA to improve approximate techniques such as metaheuristics

164 6 Additional Research Lines Concerning CMSA

when applied within the CMSA framework. In the following, we shortly describe
the application from [19] and replicate some of the obtained results.

6.2.1 The Weighted Independent Domination (WID) Problem

The WID problem is an NP-hard combinatorial optimization problem first intro-
duced in [7]. For the description of the problem, the following graph-theoretical
concepts are required, in addition to the ones already used in this book. In particular,
given an undirected graph .G = (V ,E), an edge .e ∈ E is called incident to a node
.v ∈ V , in case v is one of the two endpoints of e. Furthermore, the set of edges
incident to a node .v ∈ V is denoted by .δ(v). Remember from Chap. 1 that a subset
.D ⊆ V of the nodes is called a dominating set if every node .v ∈ V \ D is adjacent
to at least one node from D, that is if for every node .v ∈ V \ D there exists at least
one node .u ∈ D such that .v ∈ N(u).

•> Independent Sets and Their Relation to Dominating Sets

• Unlike a dominating set, an independent set .I ⊆ V has the property that no pair
.v /= v' ∈ I of vertices are connected by an edge in the graph G.

• Hereby, an independent set .I ⊆ V is labeled as a maximal independent set if the
addition of any node from .V \ I would result in the loss of the independent set
property.

• It is worth noting that every maximal independent set is a dominating set. Con-
sequently, a maximal independent set is commonly referred to as an independent
dominating set.

• Vice versa, a subset .D ⊆ V is an independent dominating set if D is a maximal
independent set.

Finally, given an independent dominating set .D ∈ V , for all .v ∈ V \D we define
the D-restricted neighborhood .N(v | D) as .N(v | D) := N(v) ∩ D, that is, the
neighborhood of v is restricted to all its neighbors that are in D.

In the WID problem, we are presented with an undirected graph . G = (V ,E)

along with weights assigned to both nodes and edges. To elaborate, for each vertex
.v ∈ V and each edge .e ∈ E, we are provided with a non-negative integer weight
.w(v) ≥ 0 and .w(e) ≥ 0, respectively. The objective of the WID problem is to
identify an independent dominating set D within graph G that minimizes a cost
function defined as follows:

.f (D) :=
∑
u∈D

w(u) +
∑

v∈V \D
min{w(v, u) | u ∈ N(v | D)} (6.3)

6.2 Applying a Metaheuristic in the CMSA Framework 165

4

4 5
1

4

5

3

2 2

2 2

1 6

(a)

4

4 5
1

4

5

3

2 2

2 2

1 6

(b)

4

4 5
1

4

5

3

2 2

2 2

1 6

(c)

4

4 5
1

4

5

3

2 2

2 2

1 6

(d)

Fig. 6.2 (a) shows an undirected graph with node and edge weights. (b) a minimum dominating
set (weights are irrelevant). (c) a maximum independent set (weights are irrelevant). (d) an optimal
WID solution. Bold edges contribute to the objective function value which is . 2+1+2+4+1+3 =
13. The first 3 numbers are the node weights and the remaining three numbers are the contributing
edge weights

In other words, the objective function value of an independent dominating set D is
computed by summing the weights of the nodes within D, in addition to the weights
of the minimum-weight edges linking nodes outside D to nodes inside D.

As an example consider the graphics in Fig. 6.2. In particular, the graphic
in Fig. 6.2a shows a simple example graph. The weights assigned to nodes are
displayed within the nodes themselves, while the weights assigned to edges are
shown adjacent to the respective edges. Figure 6.2b shows an optimal MDS
(minimum dominating set) solution of this graph. (Remember that node and edge
weights are irrelevant for the MDS problem.) However, note that the node-set
from Fig. 6.2b is not an independent set, because the two nodes of the set are
connected by an edge of the graph. Figure 6.2c shows an optimal MIS (maximum
independent set) solution, a problem for which the node and edge weights are again
irrelevant. Finally, the graphic of Fig. 6.2d shows the optimal WID solution for this
simple example graph. Those nodes that do not form part of the solution (top left,
middle right, and bottom left) are linked by means of the minimum-weight edges—
indicated in bold—to nodes that form part of the solution.

6.2.1.1 ILP Model of the WID Problem

The authors of [19] developed three different ILP models for the WID problem.
Here we only present the computationally best one. But keep in mind that even
this ILP model, which is the best one out of three different models, cannot be used
within CMSA for solving sub-instances because it can only be applied to very small
problem instances.

The ILP model makes use of two sets of binary variables. For each node . v ∈ V

it uses a binary variable . xv . Moreover, for each edge .e ∈ E the model uses a binary

166 6 Additional Research Lines Concerning CMSA

variable . ze. Hereby, . xv indicates if v is chosen for the solution, while . ze indicates if
.e ∈ E is selected for connecting a non-chosen node to a chosen one.

.min
∑
v∈V

xvw(v) +
∑
e∈E

zew(e). (6.4)

subject to xv + xu ≤ 1 ∀ e = (u, v) ∈ E. (6.5)

xv +
∑

u∈N(v)
xu ≥ 1 ∀ v ∈ V . (6.6)

xv + xu ≥ ze ∀ e = (u, v) ∈ E. (6.7)

xv +
∑

e∈δ(v)
ze ≥ 1 ∀ v ∈ V (6.8)

xv ∈ {0, 1} ∀ v ∈ V

ze ∈ {0, 1} ∀ e ∈ E

Constraints (6.5) are the independent set constraints, that is, they make sure that
adjacent nodes can not both form part of the solution. Furthermore, constraints (6.6)
represent the dominating set constraints. These constraints guarantee that for every
node .v ∈ V , either the node itself or at least one of its neighbors is included in
the solution. Next, constraints (6.7) have the following function. When both . xv and
. xu—concerning an edge .e = (u, v) ∈ E—are set to zero, the respective constraint
(6.7) forces variable . ze to take value zero, which means that an edge that connects
two non-selected nodes can not be chosen for the solution. If, for any edge . e =
(u, v) ∈ E, both . xv and . xu are assigned zero, the associated constraint (6.7) forces
variable . ze to assume the value zero as well. This indicates that an edge linking two
unselected nodes cannot be included in the solution. Finally, constraints (6.8) ensure
that each node .v ∈ V that does not form part of the solution is connected by an edge
to a node that forms part of the solution.

6.2.2 A Greedy Heuristic for the WID Problem

Two different greedy heuristics were developed in [19]. However, here we only
describe the better one—henceforth simply called GREEDY—which is used within
the metaheuristic for the WID problem whose description is provided in the next
section.

The pseudo-code of GREEDY is given in Algorithm 6.1. In general terms,
GREEDY commences with an empty partial solution .S = ∅, and iteratively adds
precisely one node from the remaining graph .G' = (V ', E') (as explained further
down) to the partial solution S at each construction step. Hereby, S being a partial
solution means that S is an independent set, but not yet a dominating set. However,

6.2 Applying a Metaheuristic in the CMSA Framework 167

Algorithm 6.1: Greedy heuristic (GREEDY) for the WID problem
1: input: a undirected graph G = (V , E) with node and edge weights
2: S := ∅
3: G' := G
4: while V ' /= ∅ do
5: v∗ := argmin

{
f aux(S ∪ {v}) | v ∈ V '} {Ties are randomly resolved}

6: S := S ∪ {v∗}
7: Remove from G' all nodes from N [v | G'] and their incident edges
8: end while
9: output: An independent dominating set S of G

it can be extended to be a dominating set. At the start of GREEDY, the remaining
graph . G' is a copy of G; see line 3.

For describing how a node from . G' is chosen at each construction step, the
following notations are required. First, the maximum weight of any edge in E is
denoted by .wmax. An auxiliary objective function value .f aux(S) is defined for any
(partial) solution S as follows.

.f aux(S) :=
∑
v∈V

c(v | S) , (6.9)

where .c(v | S) is called the contribution of node v concerning partial solution S.
These contributions are defined as follows:

1. If .v ∈ S: . c(v | S) := w(v)

2. If .v /∈ S and .N(v) ∩ S = ∅: . c(v | S) := wmax
3. If .v /∈ S and .N(v) ∩ S /= ∅: . c(v | S) := min{w(e) | e = (v, u), u ∈ S}
Note that in the case of S being a complete solution, it holds that .f (S) = f aux(S).
GREEDY chooses, at each construction step, the node .v∗ ∈ V ' such that its addition
to the current partial solution S leads to the least increase of the auxiliary objective
function value; see line 5 of Algorithm 6.1.

After adding node .v∗ ∈ V ' to S, all nodes from .N [v∗ | G']—that is, from the
closed neighborhood of . v∗ in . G'—are removed from . V '. Moreover, all their incident
edges are removed from . E'. In this way, only those nodes that maintain the property
of S being an independent set may be added to S in subsequent construction steps.

6.2.3 A PBIG Metaheuristic for the WID Problem

Based on the greedy heuristic outlined in the previous section, the authors of [19]
devised a so-called population-based iterated greedy (PBIG) metaheuristic for
solving the WID problem. Hereby, a PBIG algorithm is a simple extension of the
well-known iterated greedy (IG) algorithm [21] towards working with populations
of solutions.

168 6 Additional Research Lines Concerning CMSA

Algorithm 6.2: PBIG for the WID problem
1: input: an input graph G = (E, V), values for parameters psize, L, U, drate, lsize
2: P := Generate_Initial_Population(psize, drate, lsize)
3: while termination condition not satisfied do
4: Pnew := ∅
5: for each candidate solution S ∈ P do
6: Ŝ := Destroy_Partially(S)
7: S' := Reconstruct(̂S, drate, lsize)
8: Adapt_Destruction_Rate(S, S')
9: Pnew := Pnew ∪ {S'}
10: end for
11: P := Accept(P,Pnew)
12: end while
13: output: best solution from P

The pseudo-code of PBIG is provided in Algorithm 6.2. The algorithm starts by
generating the initial population of .psize solutions in function Generate_Initial_
Population.(psize, drate, lsize). For this purpose, GREEDY is applied .psize times in a
probabilistic way by using two parameters (.drate ∈ [0, 1] and .lsize ∈ Z

+) in the
following way. At each construction step of GREEDY, first, a random value . 0 ≤ r ≤
1 is chosen uniformly at random. In case .r ≤ drate, the best node (. v∗, see line 5 of
Algorithm 6.1) is deterministically chosen. Otherwise—that is, in case .r > drate—
the best .min{|V '|, lsize} nodes from . V ' are considered and one of them is chosen
uniformly at random.

At each iteration of PBIG, the following is done regarding each solution
S of the incumbent population . P. First, S is partially destroyed in function
Destroy_Partially. (S). For this purpose, solution S maintains an individual destruc-
tion rate .destSrate whose value is dynamically updated and may move between a lower
bound L and an upper bound U , which are parameters of PBIG. That is, the values
of L and U must be fixed before running .PBIG such that .0 ≤ L ≤ U ≤ 1. To
partially destroy solution S, .max{3, ⎿destSrate · |S|⏌} randomly chosen vertices from
S are removed. This results in a partial solution . Ŝ.

The partial solution . Ŝ obtained by the destruction procedure outlined above is
then subject to probabilistic reconstruction in function Reconstruct.(Ŝ, drate, lsize),
resulting in a new complete solution . S' which is stored in set .Pnew. This is done
by the procedure already used for the probabilistic construction of the solutions
of the initial population above. Moreover, the individual destruction rate .destS

'
rate is

initialized to the lower bound L.
In other words, each solution .S ∈ P gives rise to a new solution . S'. As a last

step, the individual destruction rate .destSrate of the solution S is updated in function
Adapt_Destruction_Rate.(S, S') based on . S' as follows: if .f (S') < f (S), . destSrate
is set to the lower bound L. Otherwise, an amount of .destincrate is added to .dest

S
rate. If

this causes that .destSrate > U , .destSrate is re-initialized to the lower bound L.

6.2 Applying a Metaheuristic in the CMSA Framework 169

Finally, the last step of each iteration of PBIG consists in the selection of the
best .psize solutions from .P ∪ Pnew and replacing the solutions in . P with these . psize
solutions.

The key idea behind any PBIG algorithm is to combine the exploration capabil-
ities of a population-based approach with the exploitation capabilities of a greedy
heuristic. By maintaining a population of solutions and iteratively improving them
through partial destruction and probabilistic reconstruction, PBIG aims to efficiently
explore the search space while focusing on promising regions that contain high-
quality solutions. Overall, PBIG algorithms tend to provide a balance between
exploration and exploitation, making them effective for solving various combina-
torial optimization problems. The specific implementation details and parameter
settings may vary depending on the problem being addressed.

6.2.4 Using PBIG for Solving Sub-instances in CMSA

In [19], the authors used standard CMSA based on the intuitive way of defining the
solution components (CMSA_INT) that was introduced in Sect. 1.3.1 of Chap. 1 of
this book. In particular, for each node .vi ∈ V of the input graph .G = (V ,E) the
complete set C of solution components contains a solution component . ci . As PBIG

is used instead of CPLEX for solving sub-instances at each algorithm iteration, the
resulting approach is henceforth called CMSA_PBIG.

The probabilistic construction of solutions in CMSA_INT works in the same way
as explained above for the construction of the solutions of the initial population in
PBIG. The only difference is that the determinism rate (.drate) and the candidate list
size (. lsize) are now called .dCMSA

rate and .lCMSA

size to differentiate them from the .drate and . lsize
parameters of PBIG.

Sub-instances . C' of CMSA_PBIG, which are sets of solution components cor-
responding to nodes of the WID input graph, are solved—as already mentioned
above—by PBIG. However, note that for solving a sub-instance . C', all actions of
PBIG are restricted to the selection of nodes corresponding to solution components
in . C'. Moreover, note that PBIG is applied to each sub-instance without being warm-
started, that is, the best-so-far solution of CMSA_PBIG is not used to influence the
generation of the initial PBIG iteration. This is because, in preliminary experiments,
this was shown to be counterproductive.

6.2.5 Experimental Evaluation

As the aim of this section is the reproduction of some of the results from [19],
we only included PBIG and CMSA_PBIG into the comparison. As in all other cases
presented in this book, the IIIA-CSIC in-house high-performance computing cluster

170 6 Additional Research Lines Concerning CMSA

Table 6.2 Parameters,
domains, and tuning results
for the WID problem

Parameter Domain PBIG CMSA_PBIG

.psize .{2, . . . , 200} 184 43

L .[0.05, 0.95] 0.51 0.38

U .[0.05, 0.95] 0.79 0.73

.destincrate .[0.01, 0.1] 0.05 0.1

.drate .[0.0, 0.99] 0.25 0.04

.lsize .{3, . . . , 50} 23 15

.na .{2, . . . , 50} n.a. 40

.agemax .{1, . . . , 50} n.a. 1

.dCMSA
rate .[0.0, 0.99] n.a. 0.41

.lCMSA

size .{3, . . . , 50} n.a. 30

.tILP .{1, . . . , 50} n.a. 23

of machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of 2.933 GHz
and at least 32 GB of RAM was used for conducting all the experiments.

6.2.5.1 Problem Instances

Instead of using the problem instances from the original paper [19], we decided to
produce random graphs with the Erdös-Rényi model [9], which requires the number
of nodes (n) and the probability of an edge existing between any pair of nodes
(p) as input. In particular, we generated 30 graphs for each combination of . |V | ∈
{500, 1000, 1500, 2000} and three different graph densities .p ∈ {0.05, 0.15, 0.25}.
In total, this benchmark set consists of 360 graphs. As in Chap. 1 in the context of
the MDS problem, we used the implementation of the Erdös-Rényi model from the
igraph library for this purpose.3

6.2.5.2 Parameter Tuning

As usual in this book, the irace tool was utilized for tuning the parameters of PBIG

and CMSA_PBIG. Both algorithms were tuned exactly once for the entire benchmark
set, which is a difference to [19] where parameter tuning was more fine-grained. For
parameter tuning, additional problem instances were generated. More specifically,
for each combination of .|V | and graph density, exactly one tuning instance was
generated. This makes a total of 12 tuning instances. As computation time limit, . |V |
CPU seconds were given, that is, the more nodes a graph has, the longer the allowed
running time. Finally, irace was given a budget of 3000 algorithm runs.

Table 6.2 shows both the parameters involved in the two algorithms together
with their domains, and the tuning results. The first six parameters in this table

3 https://igraph.org/.

 -1446 58376 a -1446 58376 a

6.2 Applying a Metaheuristic in the CMSA Framework 171

are the parameters of PBIG. The next five parameters are the usual CMSA-related
parameters.4

The following parameter settings are noteworthy. The determinism rate for
solution construction in the CMSA-part of CMSA_PBIG (as shown by the value of
parameter .dCMSA

rate) is very different to the determinism rate for solution reconstruction
in the PBIG-part of CMSA_PBIG (see the value of parameter .drate). While the
value is rather high for the construction of solutions that are merged into the sub-
instance of CMSA_PBIG, the value is very low (0.04) for the application of PBIG

for solving the sub-instance at each iteration. A possible interpretation is that for
CMSA_PBIG it seems important to equip the sub-instances with seemingly good
solution components, while the focus of PBIG for solving the sub-instances is clearly
on exploration.

6.2.5.3 Results

Both algorithms (PBIG and CMSA_PBIG) were applied exactly once to each of the
problem instances from the benchmark set. The computation time limit was the
same as the one used for tuning (see previous section). The results are shown in
the form of box plots in Fig. 6.3, which contains a .3 × 4 grid of box plots. Hereby,
the rows present the results (from top to bottom) for problem instances with an
increasing graph size (in terms of the number of nodes), and the columns (from
left to right) present the results for problem instances with an increasing density.
To be able to support the analysis of the results with claims about their statistical
significance, a CD plot (see Fig. 6.4) is provided, as in all other experimental
evaluations presented in this book. In particular, the plot in Fig. 6.4 contains
statistics over the whole set of problem instances.

•> Main Observations Concerning the WID Problem Results

1. First, and most importantly, CMSA_PBIG outperforms PBIG with statistical
significance.

2. Second, the box plots in Fig. 6.3 show that the improvement of CMSA_PBIG over
PBIG can be seen for all graph sizes and densities.

3. Third, the improvement of CMSA_PBIG over PBIG seems to grow with an
increasing graph density.

4 Consider that parameter . tILP, which received its name due to being the time limit for the ILP
solver CPLEX, limits the computation time of PBIG at each iteration of CMSA_PBIG. However,
for consistency reasons, we did not change the name of this parameter for the present application.

172 6 Additional Research Lines Concerning CMSA

Fig. 6.3 Results of CMSA_PBIG and PBIG for the WID problem

6.3 Relation Between CMSA and LNS 173

Fig. 6.4 Critical Difference
(CD) plot concerning the
WID problem results

1 2

6.2.6 Discussion

Even though in the context of the PBIG metaheuristics for solving the WID problem
we were able to obtain an improvement when applying PBIG within the CMSA
framework, this improvement is not something that can be generally expected when
studying other metaheuristic implementations for other combinatorial optimization
problems. As an example, note that we tried to apply the BA algorithms from
Chap. 3 within the CMSA framework, both for the MDS and the FFMS problem.
However, in both cases, the standalone application of BA obtained better results
than the application of BA in the CMSA framework. We suspect that, in the case of
the application of CMSA_PBIG for the WID problem, the CMSA framework might
help PBIG to escape from the area of attraction of local optima. Escaping from local
optimal seems less required in the case of BA when applied for the MDS and FFMS
problems.

6.3 Relation Between CMSA and LNS

As a final topic in this concluding chapter, this section will be devoted to shed
some light on the differences between CMSA and large neighborhood search
(LNS), which is arguably the most well-known hybrid metaheuristic that has been
developed so far. In both methods, sub-instances of the tackled problem instances
are solved at each iteration. However, they differ in the way in which these sub-
instances are obtained. The relation between CMSA and LNS has been studied
in [6]. Here we provide a short overview of their main findings.

6.3.1 Destruction-Based LNS

The authors of [6] compared CMSA with destruction-based LNS, that is, with an
LNS method that partially destroys the incumbent solution at each iteration, before
the obtained partial solution is passed to CPLEX (or another exact solver) in order

174 6 Additional Research Lines Concerning CMSA

to compute the best valid solution that contains that partial solution (within a given
time limit). For more information on LNS see Sect. 1.1.5 on page 10.

The pseudocode for a general LNS approach utilizing an ILP solver to solve
the corresponding sub-instance at each iteration is outlined in Algorithm 6.3. As
in the case of CMSA, we assume that solutions in this LNS algorithm are subsets
from a complete set C of solution components. Initially, the starting solution . Sbsf

(also serving as the best-so-far solution) is generated using the function Gener-
ateInitialSolution(C) (refer to line 2). Typically, a greedy heuristic is employed for
this task. During each iteration, the following steps are executed. Firstly, a copy
of the best-so-far solution .Sbsf is partially destroyed; this is achieved through the
function DestroyPartially(.Sbsf, destrate) at line 5, where the extent of destruction is
determined by a parameter .destrate known as the destruction rate. Various methods
can be used for the partial destruction of a solution. The most basic approach,
likely prevalent in many cases, involves random destruction. However, one might
consider employing heuristically guided methods for partial destruction. Regardless,
the resulting partial solution . S' is then passed to the ILP solver through the function
Reconstruct(. S', . tILP) at line 6. This function, besides . S', takes a time limit .tILP as
input. The ILP solver is directed to only consider solutions containing . S' for this
operation, effectively constraining the sub-instance to solutions incorporating . S'.
The function returns .SILP, the best valid solution found within .tILP CPU seconds.
Given the time constraint, it is important to note that .SILP may not necessarily be an
optimal solution to the sub-instance. Finally, the better solution between .SILP and
.Sbsf is selected as the incumbent solution for the next iteration. While this selection
process may appear stringent, other more probabilistic approaches for choosing
between .SILP and .Sbsf are conceivable. Nevertheless, the LNS algorithm examined
in [6] is equipped with a variable destruction rate .L ≤ destrate ≤ U , managed akin
to the neighborhood size in Variable Neighborhood Search (VNS) algorithms [14].
Specifically, if .SILP is better than . Sbsf, .destrate is reverted to the lower bound L.
Otherwise, .destrate is incremented by .destincrate, another parameter of the algorithm.
If, post-increment, .destrate surpasses the upper bound U , it is reset to the lower
bound L. Appropriate selection of L and U values enables the algorithm to escape
from local minima.

6.3.2 Empirical Comparative Study

Given the description of destruction-based LNS above, it is clear that both CMSA
and LNS solve sub-instances of the tackled problem instances at each iteration.
The difference between the two approaches is found in the way in which these
sub-instances are generated and maintained. While CMSA updates an initially
empty sub-instance by adding those solution components that appear in constructed
solutions, LNS obtains a new sub-instance at each iteration by the partial destruction
of a copy of the best-so-far solution. This implies also a difference in the way in
which sub-instances are solved. In the case of CMSA, as we have seen through

6.3 Relation Between CMSA and LNS 175

Algorithm 6.3: Destruction-based large neighborhood search (LNS)

1: input: solution components (C), values for parameters L, U , destinc rate, tILP
2: Sbsf := GenerateInitialSolution(C)
3: destrate := L
4: while CPU time limit not reached do
5: S' := DestroyPartially(Sbsf, destrate)
6: SILP := Reconstruct(S', tILP)
7: if SILP is better than Sbsf then
8: Sbsf := SILP

9: destrate := L
10: else
11: destrate := destrate + destinc rate
12: if destrate > U then destrate := L
13: end if
14: end while
15: output: Sbsf

a range of examples in this book, the ILP model of the problem to be solved is
extended to allow only components from the current sub-instance to be included in
solutions. In contrast, the ILP model in the case of LNS is extended to enforce the
presence of the solution components in the incumbent partial solution to be present
in any valid solution.

The question asked by the authors of [6] was the following one: is there a type of
optimization problem for which CMSA generally outperforms LNS, and vice versa?
They hypothesized that CMSA outperforms LNS when the number of components
in valid solutions is rather low, and vice versa. To test this hypothesis, CMSA and
LNS were both implemented for two different problems: (1) the multi-dimensional
knapsack problem (MDKP) and (2) the minimum common string partition (MCSP)
problem.

On the example of the MDKP it is easy to see why this problem was chosen.
The MDKP, an NP-hard combinatorial optimization problem, has been extensively
studied and falls under the category of subset selection problems. Additionally,
it has served as a popular benchmark for testing new algorithmic approaches, as
evidenced by previous research; see, for example, [8, 17]). The problem is formally
defined as follows: Given a set C of n items and m different resources, each resource
(.k = 1, . . . , m) has a specified quantity (referred to as capacity) .capk > 0, and
each item .ci ∈ C (.i = 1, . . . , n) requires a certain amount (referred to as resource
consumption) .ri,k ≥ 0 from the k-th resource. Additionally, each item .ci ∈ C is
associated with a positive profit . pi . A subset .S ⊆ C is considered a feasible solution
if, for each resource .k = 1, . . . , m, the total consumption over all selected items
(.
∑

ci∈S ri,k) does not surpass the resource capacity .capk . Furthermore, a feasible
solution S is deemed non-extensible if it is impossible to add any item . ci ∈ C \ S

to S without compromising its validity as a solution. The primary objective is to

176 6 Additional Research Lines Concerning CMSA

identify a feasible subset S that maximizes the total profit (.
∑

ci∈S pi). The standard
ILP formulation for the MDKP is outlined as follows:

.max
∑
ci∈C

pi · xi . (6.10)

subject to
∑
ci∈C

ri,k · xi ≤ capk ∀ k = 1, . . . , m (6.11)

xi ∈ {0, 1} ∀ ci ∈ C

Note that this model is based on a binary variable for each item from C. The
inequalities (6.11) limit the total consumption for each resource and are called
knapsack constraints.

•> The MDKP is Parametrizable

Note that when resource capacities are low, valid MDKP solutions contain few
items and are, therefore, rather small. On the other side, the larger the resource
capacities, the larger are valid solutions. In this sense, MDKP instances can be
generated in a controlled and parameterized way to obtain problem instances from
the whole range between instances with solutions containing very few items, and
instances with solutions containing a lot of items.

The authors of [6] used the methodology described in [8, 13] for the generation
of MDKP instances. In particular, five different values for n (the number of items)
were considered: .n ∈ {100, 500, 1000, 5000, 10,000}. Moreover, the number of
resources (m) was fixed to 30. The tightness of a problem instance is determined
by the resource capacities. The methodology from [8, 13] allows to determine the
instance tightness through a parameter . α which may take values between zero
and one. The lower the value of . α—that is, the tighter the generated problem
instance—the smaller are the solutions, and vice versa. To generate instances over
the whole tightness range, values .α ∈ {0.1, 0.2, . . . , 0.8, 0.9} were considered.
Finally, the resource requirements .ri,j were always chosen uniformly at random
from .{1, . . . , 1000}. In total, 30 instances were generated for each combination of n
and . α, and the whole benchmark set consists of .1350 problem instances.

After tuning both CMSA and LNS for each combination of instance size (n) and
instance tightness (. α), both algorithms were applied exactly once to each problem
instance with computation time limits depending on the instance size. Here we show
only the most interesting results for instances with .n ∈ {5000, 10,000}. Figure 6.5
shows the percentage improvement of CMSA over LNS for instances with . n = 5000
items (Fig. 6.5a) and instances with .n = 10,000 items (Fig. 6.5b). The x-axis of
these box plots ranges over the whole instance tightness range, which increases
from left to right. Each box is obtained from the results for 30 instances. Dots in
the positive area (grey-shaded) are results for instances for which CMSA produced

6.4 Future Work on CMSA 177

Fig. 6.5 The percentage improvement of CMSA over LNS for instances with increasing resource
capacity tightness. (a) Instances with .n = 5000. (b) Instances with . n = 10,000

a better result than LNS. Conversely, dots in the negative area represent instances
for which LNS outperformed CMSA. In particular, note that these box plot graphics
(empirically) confirm the author’s hypothesis: CMSA works better than LNS for
MDKP problem instances with rather small solutions. The same was shown in [6]
in the context of the MCSP problem.

6.3.2.1 Discussion

The results from [6] presented above indicate that CMSA and LNS are somehow
complementary. The question remains why CMSA has this apparent advantage over
LNS for problems (or problem instances) for which solutions are rather small. The
following intuition may eventually be validated. When solutions are small, LNS can
not do large steps in the search space, because it always maintains a part of the
incumbent solution. Therefore, if LNS starts with an initial solution that is far away
from high-quality solutions, LNS might not be able to reach these solutions. This
is because finding a feasible path to high-quality solutions might be rather unlikely
to be found by LNS. On the other side, CMSA generates at each iteration several
solutions in a probabilistic way. These solutions may, potentially, be located in any
part of the search space. They are then merged into the sub-instance, which enables
CMSA to do larger steps in the search space, even in the context of small solutions.

6.4 Future Work on CMSA

At this moment, the author sees at least three promising lines of future work on
CMSA. The first one concerns an extension of the work done to develop a problem-
agnostic CMSA for binary optimization problems; see Sect. 6.1. To achieve this,
the way of generating feasible solutions for highly constrained problems must
be improved. A problem-agnostic CMSA variant that reliably outperforms high-

178 6 Additional Research Lines Concerning CMSA

performance ILP solvers such as CPLEX and Gurobi would be very valuable as an
easy-to-use tool for benchmarking new, hand-crafted optimization algorithms for
specific optimization problems. So far, the ILP solvers themselves are used for this
purpose. However, they are generally easily beaten in the context of large enough
(or difficult enough) problem instances. Not disposing of a problem-agnostic CMSA
requires designing a CMSA for any particular problem by hand.5 Even though this
might not be difficult in many cases, this sets the bar rather high for the adoption of
CMSA as a baseline algorithm.

A second avenue of promising research concerns the one of utilizing state-of-
the-art art exact (or approximate) solvers for specific problems instead of black-box
ILP solvers for solving sub-instances in CMSA. In [18], the authors showed that
by applying the currently best MaxSAT solvers within the framework of negative
learning ant colony optimization they were able to improve over the results of these
solvers. We imagine that this could also be possible in the context of CMSA.

The third research line deals with the use of machine learning (ML) techniques
to add a learning component to the solution construction mechanism of CMSA.
Remember that, in Chap. 3 of this book, a learning mechanism for CMSA was
proposed in which solutions to be merged into the incumbent sub-instance were
generated by a metaheuristic applied in an intertwined way with CMSA. However,
using ML, there are other options for adding a learning mechanism. Reinforcement
learning (RL) [22]—in particular, algorithms known from the multi-armed bandit
problem—might be used for learning to construct good solutions during the runtime
of CMSA.

To summarize, promising research remains to be done in the context of
the CMSA algorithm. The optimization group at the IIIA-CSIC in Bellaterra
(Barcelona) will take on this endeavor during the coming years. Our hope is
certainly also that some other research groups on metaheuristics and their hybrids
will join this effort in the quest for increasingly efficient CMSA variants.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin,
Germany (2007)

2. Andrade, C.E., Ahmed, S., Nemhauser, G.L., Shao, Y.: A hybrid primal heuristic for finding
feasible solutions to mixed integer programs. European Journal of Operational Research
263(1), 62–71 (2017)

3. Berthold, T., Lodi, A., Salvagnin, D.: Ten years of feasibility pump, and counting. EURO
Journal on Computational Optimization 7(1), 1–14 (2019)

4. Blum, C.: Advocating CMSA as a baseline algorithm for algorithm comparison in combi-
natorial optimization. In: Proceedings of InCITe 2024 – 4th International Conference on
Information Technology, Lecture Notes in Electrical Engineering. Springer Nature Singapore
(2024). In press

5 In fact, this is advocated, for example, in [4].

References 179

5. Blum, C., Gambini Santos, H.: Generic CP-supported CMSA for binary integer linear
programs. In: M.J. Blesa Aguilera, C. Blum, H. Gambini Santos, P. Pinacho-Davidson,
J. Godoy del Campo (eds.) Proceedings of 11th International Workshop on Hybrid Metaheuris-
tics – HM 2019, pp. 1–15. Springer International Publishing, Cham (2019)

6. Blum, C., Ochoa, G.: A comparative analysis of two matheuristics by means of merged local
optima networks. European Journal of Operational Research 290(1), 36–56 (2021)

7. Chang, S.C., Liu, J.J., Wang, Y.L.: The weighted independent domination problem in series-
parallel graphs. Intelligent Systems and Applications 274, 77–84 (2015)

8. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem.
Discrete Applied Mathematics 49(1), 189–212 (1994)

9. Erdös, P., Rényi, A.: On random graphs I. Publ. math. debrecen 6(290-297), 18 (1959)
10. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Mathematical Programming 104,

91–104 (2005)
11. Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Mathematical Programming Computation

1(2-3), 201–222 (2009)
12. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel,

P., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs,
T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: data-driven compilation of the 6th mixed-
integer programming library. Mathematical Programming Computation 13(3), 443–490 (2021)

13. Hanafi, S., Freville, A.: An efficient tabu search approach for the 0-1 multidimensional
knapsack problem. European Journal of Operational Research 106(2–3), 659–675 (1998)

14. Hansen, P., Mladenović, N.: Variable Neighborhood Search: Principles and Applications.
European Journal of Operational Research 130(3), 449–467 (2001)

15. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search.
Springer (2019)

16. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.D., Ralphs, T.K., Salvagnin,
D., Steffy, D.E., Wolter, K.: MIPLIB 2010: Mixed integer programming library version 5.
Mathematical Programming Computation 3, 103–163 (2011)

17. Leung, S.C.H., Zhang, D., Zhou, C., Wu, T.: A hybrid simulated annealing metaheuristic
algorithm for the two-dimensional knapsack problem. Computers and Operations Research
39(1), 64–73 (2012)

18. Nurcahyadi, T., Blum, C., Manyà, F.: Negative learning ant colony optimization for MaxSAT.
International Journal of Computational Intelligence Systems 15(1), 71 (2022)

19. Pinacho Davidson, P., Blum, C., Lozano, J.A.: The weighted independent domination problem:
Integer linear programming models and metaheuristic approaches. European Journal of
Operational Research 265(3), 860–871 (2018)

20. Sandholm, T., Shields, R.: Nogood learning for mixed integer programming. Tech. Rep. CMU-
CS-06-155, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA (2006)

21. Stützle, T., Ruiz, R.: Iterated Greedy, pp. 1–31. Springer International Publishing, Cham (2018)
22. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press (2018)

Appendix A
C++ Program Code: CMSA Applied
to the MDS Problem

The following program code in C++ is the one of CMSA_INT applied to the
minimum dominating set (MDS) problem as described in Chap. 1. This program
code was used for the experimentation. We provide this code as an example for the
simplicity of CMSA.

CMSA for the MDS Problem

/**
cmsa.cpp - description

begin : Wed Nov 30 2022
copyright : (C) 2022 by Christian Blum
email : christian.blum@iiia.csic.es

***/

/**
* This program is free software; you can redistribute it *
* and/or modify it under the terms of the GNU General *
* Public License as published by the Free Software *
* Foundation; either version 2 of the License, or (at *
* your option) any later version. *
***/

using namespace std;

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <cmath>
#include <vector>

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3

181

https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3

182 A C++ Program Code: CMSA Applied to the MDS Problem

#include <list>
#include <set>
#include <map>
#include <iomanip>
#include <algorithm>
#include <sstream>
#include <limits>
#include <random>
#include <chrono>
#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

struct Option {
int vertex;
double value;

};

struct Solution {
set<int> vertices;
int score;

};

// CMSA PARAMETERS
double computation_time_limit = 1000.0;
double cplex_time_limit = 10.0;
double determinism_rate = 0.8;
int n_of_sols = 10;
int age_limit = 10;
int candidate_list_size = 10;
bool warm_start = false;
bool heuristic_emphasis = false;
bool cplex_abort = false;

// INSTANCE DATA
int n_of_vertices;
vector< set<int> > neigh;
string input_file;

/* function for making CPLEX abort a run when improving
over the currently best solution */

ILOSOLVECALLBACK2(abortCallback, IloCplex::Aborter&, abo,
int&, curbest) {

if (hasIncumbent()) {
IloNum nv = getIncumbentObjValue();
if (curbest > int(nv)) abo.abort();

}
}

/* function for sorting a vector of options */
bool option_compare(const Option& o1, const Option& o2) {

return (o1.value > o2.value);

A C++ Program Code: CMSA Applied to the MDS Problem 183

}

/* function for producing a random integer between 0
and max - 1 */

int produce_random_integer(int max, double& rnum) {

int num = int(double(max)*rnum);
if (num == max) num = num - 1;
return num;

}

/* function that returns a random element from a set of int */
int get_random_element(const set<int>& s, double& rnum) {

double r = produce_random_integer(int(s.size()), rnum);
set<int>::iterator it = s.begin();
advance(it, r);
return *it;

}

/* function for reading command line parameter values */
void read_parameters(int argc, char **argv) {

int iarg=1;
while (iarg < argc) {

if (strcmp(argv[iarg],"-i")==0) input_file = argv[++iarg
];

else if (strcmp(argv[iarg],"-t")==0)
computation_time_limit = atof(argv[++iarg]);

else if (strcmp(argv[iarg],"-cpl_t")==0)
cplex_time_limit = atof(argv[++iarg]);

else if (strcmp(argv[iarg],"-drate")==0)
determinism_rate = atof(argv[++iarg]);

else if (strcmp(argv[iarg],"-nsols")==0)
n_of_sols = atoi(argv[++iarg]);

else if (strcmp(argv[iarg],"-max_age")==0)
age_limit = atoi(argv[++iarg]);

else if (strcmp(argv[iarg],"-lsize")==0)
candidate_list_size = atoi(argv[++iarg]);

else if (strcmp(argv[iarg],"-warm_start")==0) {
int val = atoi(argv[++iarg]);
if (val == 1) warm_start = true;

}
else if (strcmp(argv[iarg],"-h_emph")==0) {

int val = atoi(argv[++iarg]);
if (val == 1) heuristic_emphasis = true;

}
else if (strcmp(argv[iarg],"-cpl_abort")==0) {

int val = atoi(argv[++iarg]);
if (val == 1) cplex_abort = true;

}
iarg++;

}
}

184 A C++ Program Code: CMSA Applied to the MDS Problem

/* function for solving a sub-instance by calling CPLEX */
void run_cplex(Solution& cpl_sol, Solution& best_sol,

vector<int>& age, double& r_limit) {

IloEnv env;
env.setOut(env.getNullStream());
env.setWarning(env.getNullStream());
cpl_sol.score = std::numeric_limits<int>::max();

try {

IloModel model(env);

/* for each vertex of the input graph we introduce a
binary variable */

IloNumVarArray x(env, n_of_vertices, 0, 1, ILOINT);

// preparing warm-start
IloNumVarArray mipVar(env);
IloNumArray mipVal(env);
if (warm_start) {

for (int i = 0; i < n_of_vertices; ++i) {
mipVar.add(x[i]);
if (int((best_sol.vertices).count(i)) > 0) mipVal

.add(1);
else mipVal.add(0);

}
}
// end preparing warm-start

// generating the objective function
IloExpr obj(env);
for (int i = 0; i < n_of_vertices; ++i) obj += x[i];
model.add(IloMinimize(env, obj));
obj.end();

// generating the constraints
for (int i = 0; i < n_of_vertices; ++i) {

IloExpr expr(env);
expr += x[i];
for (set<int>::iterator sit = neigh[i].begin(); sit

!= neigh[i].end(); ++sit) expr += x[*sit];
model.add(expr >= 1);
expr.end();

/* the values of those variables whose vertices are
not in the sub-instance are fixed to zero */

if (age[i] == -1){
IloExpr expr1(env);
expr1 += x[i];
model.add(expr1 == 0);
expr1.end();

}
}

A C++ Program Code: CMSA Applied to the MDS Problem 185

IloCplex cpl(model);

/* the aborter stops CPLEX once a better solution than
"best_sol" is found */

if (cplex_abort) {
IloCplex::Aborter abo(env);
cpl.use(abo);
cpl.use(abortCallback(env, abo, best_sol.score));

}
if (warm_start) cpl.addMIPStart(mipVar, mipVal);
cpl.setParam(IloCplex::TiLim, r_limit);
cpl.setParam(IloCplex::EpGap, 0.0);
cpl.setParam(IloCplex::EpAGap, 0.0);
cpl.setParam(IloCplex::Threads, 1);
if (heuristic_emphasis) cpl.setParam(IloCplex::Param::

Emphasis::MIP, 5);
cpl.setWarning(env.getNullStream());

// calling CPLEX to solve the model
cpl.solve();

/* the following is done if CPLEX found at least one
feasible solution */

if (cpl.getStatus() == IloAlgorithm::Optimal
or cpl.getStatus() == IloAlgorithm::Feasible) {

cpl_sol.score = 0;
IloNumArray x_val(env);
cpl.getValues(x_val, x);
for (int i = 0; i < n_of_vertices; ++i) {

// ADAPT-STEP of CMSA
if (age[i] >= 0) {

/* increment the age of all vertices in the
sub-instance */

age[i] += 1;
if (double(x_val[i]) > 0.8) {

cpl_sol.score += 1;
/* set the age of all vertices from the

best CPLEX solution to zero */
age[i] = 0;
(cpl_sol.vertices).insert(i);

}
/* remove all vertices whose age has reached

the age limit from the sub-instance */
if (age[i] >= age_limit) {

age[i] = -1;
}

}
}

}
}
catch (IloException& e) {

cerr << "Concert exception caught: " << e << endl;
}
env.end();

186 A C++ Program Code: CMSA Applied to the MDS Problem

}

/* function that probabilistically generates a solution with a
greedy bias */

void generate_solution(Solution& greedy_sol, vector<int>& age,
default_random_engine& generator,
uniform_real_distribution<double>& standard_distribution) {

greedy_sol.score = 0;
vector<bool> allready_covered(n_of_vertices, false);
int num_nodes_uncovered = n_of_vertices;
vector< set<int> > uncovered_neighbors = neigh;

set<int> candidates;
for (int i = 0; i < n_of_vertices; ++i) candidates.insert(i);

while (num_nodes_uncovered > 0) {
vector<Option> choice;
double max_val = -1.0;
set<int> max_vertices;

/* generate all options for the extension of the current
partial solution */

for (set<int>::iterator cit = candidates.begin();
cit != candidates.end(); ++cit) {

Option opt;
opt.vertex = *cit;
opt.value = double(uncovered_neighbors[*cit].size());
if (opt.value >= max_val) {

if (opt.value > max_val) {
max_val = opt.value;
max_vertices.clear();

}
max_vertices.insert(*cit);

}
choice.push_back(opt);

}
sort(choice.begin(), choice.end(), option_compare);

int chosen_vertex;
double dec = standard_distribution(generator);
if (dec > determinism_rate) {

int max = candidate_list_size;
if (int(choice.size()) < candidate_list_size)

max = int(choice.size());
double rnum = standard_distribution(generator);
int pos = produce_random_integer(max, rnum);
chosen_vertex = choice[pos].vertex;

}
else {

double rnum = standard_distribution(generator);
chosen_vertex = get_random_element(max_vertices, rnum

);
}

A C++ Program Code: CMSA Applied to the MDS Problem 187

(greedy_sol.vertices).insert(chosen_vertex);

/* MERGE-STEP of CMSA: if a vertex chosen for the current
solution does not yet form part of the sub-instance,
add it to the sub-instance by initializing its age
value to zero */

if (age[chosen_vertex] == -1) {
age[chosen_vertex] = 0;

}

if (not allready_covered[chosen_vertex]) {
allready_covered[chosen_vertex] = true;
--num_nodes_uncovered;

}
greedy_sol.score += 1;

num_nodes_uncovered -= int(uncovered_neighbors[
chosen_vertex].size());

set<int> to_cover = uncovered_neighbors[chosen_vertex];
for (set<int>::iterator sit = to_cover.begin();

sit != to_cover.end(); ++sit) {
allready_covered[*sit] = true;
for (set<int>::iterator ssit = neigh[*sit].begin();

ssit != neigh[*sit].end(); ssit++)
uncovered_neighbors[*ssit].erase(*sit);

}
uncovered_neighbors[chosen_vertex].clear();

for (set<int>::iterator sit = neigh[chosen_vertex].begin
(); sit != neigh[chosen_vertex].end(); sit++)
uncovered_neighbors[*sit].erase(chosen_vertex);

candidates.erase(chosen_vertex);
set<int> to_delete;

for (set<int>::iterator cit = candidates.begin(); cit !=
candidates.end(); ++cit) {
if (int(uncovered_neighbors[*cit].size()) == 0 and

allready_covered[*cit]) to_delete.insert(*cit);
}
for (set<int>::iterator sit = to_delete.begin(); sit !=

to_delete.end(); ++sit) candidates.erase(*sit);
}

}

/**********
Main function

**********/

int main(int argc, char **argv) {

if (argc < 3) {
cout << "Usage: ./cmsa -i <input_file> ..." << endl;
exit(1);

188 A C++ Program Code: CMSA Applied to the MDS Problem

}
else read_parameters(argc,argv);

std::cout << std::setprecision(2) << std::fixed;

// initializes the random number generator
unsigned seed = std::chrono::system_clock::now().

time_since_epoch().count();
std::default_random_engine generator(seed);
std::uniform_real_distribution<double>

standard_distribution(0.0,1.0);

ifstream indata;
indata.open(input_file.c_str());
if(!indata) {

cout << "Error: file could not be opened" << endl;
}

// reading the problem instance file
indata >> n_of_vertices;
neigh = vector< set<int> >(n_of_vertices);
int v1, v2;
while (indata >> v1 >> v2) {

neigh[v1].insert(v2);
neigh[v2].insert(v1);

}
indata.close();

/* "age" is an integer vector that contains the age of all
vertices. An age of -1 means that the vertex does not form
part of the sub-instance, while an age of >= 0 means that
the vertex forms part of the sub-instance. */

vector<int> age(n_of_vertices, -1);

Solution best_sol;
best_sol.score = std::numeric_limits<int>::max();

// the computation time starts now
clock_t start = clock();

// variable ctime stores the current time that has passed
double ctime = 0.0;

bool stop = false;

// main loop of the CMSA algorithm
while (not stop and (ctime < computation_time_limit)) {

// CONSTRUCT-STEP of CMSA: generate "n_of_sols" solutions
for (int na = 0; na < n_of_sols; ++na) {

Solution greedy_sol;
generate_solution(greedy_sol, age, generator,

standard_distribution);
if (greedy_sol.score < best_sol.score) {

A C++ Program Code: CMSA Applied to the MDS Problem 189

best_sol = greedy_sol;
clock_t current = clock();
ctime = double(current - start) / CLOCKS_PER_SEC;
cout << "best " << best_sol.score << "\ttime " <<

ctime << "\tgreedy" << endl;
}

}

/* calculate the time "r_limit" given to CPLEX for the
next application to the current sub-instance */
clock_t current = clock();
ctime = double(current - start) / CLOCKS_PER_SEC;
double r_limit = computation_time_limit - ctime;
if (r_limit > cplex_time_limit) r_limit =

cplex_time_limit;

/* if the remaining computation time is less than 0.1
seconds, it does not make sense to call CPLEX.
Variable ’stop’ is set to true and the algorithm stops */
if (r_limit < 0.1) stop = true;
if (not stop) {

Solution cpl_sol;
/* SOLVE-STEP of CMSA: apply CPLEX to the current

sub-instance */
run_cplex(cpl_sol, best_sol, age, r_limit);
if (cpl_sol.score < best_sol.score) {

best_sol = cpl_sol;
current = clock();
ctime = double(current - start) / CLOCKS_PER_SEC;
cout << "best " << best_sol.score << "\ttime " <<

ctime << "\tcplex" << endl;
}
current = clock();
ctime = double(current - start) / CLOCKS_PER_SEC;

}
}

}

Index

A
Ant colony optimization, 10, 60, 178

B
Bacterial algorithm, 71, 73, 79, 88, 92, 93, 173
Binary integer linear programming, 157–159,

161, 163

C
Combinatorial optimization problem, 5, 6, 9,

10, 17, 18, 20, 41, 42, 59, 67, 95,
138, 141, 142, 157, 164, 169, 173,
175

Constraint programming, 141, 158
Continuous optimization problem, 3, 4, 6
Critical difference plot, 16, 31, 32, 53, 59, 67,

83, 92, 133, 135, 153, 173

D
Discrete optimization, 4
Dynamic programming, 8

E
Evolutionary algorithm, 9, 35, 71
Exact method, 8, 9

F
Feasible solution, 3, 5, 35, 60, 62, 86, 93, 119,

122, 132, 143, 157–160, 163, 175,
177

G
Greedy heuristic, 9, 20, 25, 46, 48, 63, 64, 98,

122, 138, 147, 149, 166, 167, 169,
174

I
Integer linear programming, 6–9, 11, 19–21,

23–25, 35, 43, 45, 48, 60, 61, 63, 76,
95–102, 115, 116, 119, 120, 125,
126, 128, 136, 141–147, 154, 155,
158, 165, 171, 174–176, 178

L
Large neighborhood search, 11, 14, 15, 17, 34,

173, 175
Learning mechanism, 71, 79, 84, 88, 178

M
Machine learning, 12, 16, 93, 178

P
Parameter tuning, 12, 27, 42, 49, 51, 52, 54, 57,

58, 64, 79, 86, 88, 89, 102, 123, 127,
148, 161, 170

Particle swarm optimization, 9, 10, 35
Population-based iterated greedy, 167–171,

173

R
Reinforcement learning, 178

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
C. Blum, Construct, Merge, Solve & Adapt, Computational Intelligence Methods
and Applications, https://doi.org/10.1007/978-3-031-60103-3

191

https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3
https://doi.org/10.1007/978-3-031-60103-3

192 Index

S
Search trajectory, 14, 33, 53, 54, 65, 66, 84, 115
Simulated annealing, 10, 35
Statistical significance, 29, 32, 50, 53, 58, 65,

82, 84, 92, 105, 109, 133, 134, 149,
154, 171

STNWeb, 14–16, 33, 53, 54, 65, 69, 84, 109,
137

T
Tabu search, 10

V
Variable neighborhood search, 9, 10, 98, 105,

160, 174

	Preface
	Acknowledgments
	Contents
	Acronyms
	1 Introduction to CMSA
	1.1 Introduction to Optimization
	1.1.1 Examples of Continuous Optimization Problems
	1.1.2 Examples of Combinatorial Optimization Problems
	1.1.3 Modelling an Optimization Problem
	1.1.4 Basic Optimization Techniques
	1.1.5 Hybrid Optimization Techniques

	1.2 Tools Used in This Book
	1.2.1 irace: A Tool for Parameter Tuning
	1.2.2 STNWeb: A Tool for the Graphical Comparison of Algorithms
	1.2.3 scmamp: A Tool for the Statistical Comparison of Algorithms

	1.3 CMSA: Construct, Merge, Solve & Adapt
	1.3.1 Standard CMSA

	1.4 Application to Minimum Dominating Set
	1.4.1 An Intuitive Way of Defining the Solution Components
	1.4.1.1 Constructing Solutions to the MDS Problem
	1.4.1.2 Solving Sub-instances of the MDS Problem

	1.4.2 A Generic Way of Defining the Solution Components
	1.4.2.1 Solution Construction
	1.4.2.2 Sub-instance Solving

	1.4.3 Experimental Evaluation
	1.4.3.1 MDS Benchmark Sets
	1.4.3.2 Parameter Tuning
	1.4.3.3 Results

	1.5 Algorithmic Proposals Related to CMSA
	References

	2 Self-adaptive CMSA
	2.1 Introduction
	2.2 Self-adaptive CMSA: General Description
	2.3 Application to the MPIDS Problem
	2.3.1 Generic Definition of the Solution Components
	2.3.2 Constructing Solutions to the MPIDS Problem
	2.3.3 Sub-instance Solving
	2.3.4 Experimental Evaluation
	2.3.4.1 MPIDS Benchmark Sets
	2.3.4.2 Parameter Tuning
	2.3.4.3 First Results
	2.3.4.4 Results with a Specialized Parameter Tuning

	2.4 Application to the FFMS Problem
	2.4.1 Augmented Objective Function
	2.4.2 Intuitive Definition of the Solution Components
	2.4.3 Constructing Solutions to the FFMS Problem
	2.4.4 Sub-instance Solving
	2.4.5 Experimental Evaluation
	2.4.5.1 FFMS Benchmark Set
	2.4.5.2 Parameter Tuning
	2.4.5.3 Results

	2.5 Conclusions
	References

	3 Adding Learning to CMSA
	3.1 Introduction
	3.2 The Bacterial Algorithm
	3.3 The Learn_Cmsa Algorithm: A General Description
	3.4 Application to the MDS Problem
	3.4.1 Generating the Initial Population
	3.4.2 Implementation of Conjugation
	3.4.3 Implementation of Regeneration
	3.4.4 Experimental Evaluation
	3.4.4.1 Benchmark Instances
	3.4.4.2 Algorithm Tuning
	3.4.4.3 Results

	3.5 Application to the FFMS Problem
	3.5.1 Generating the Initial Population
	3.5.2 Implementation of Conjugation
	3.5.3 Implementation of Regeneration
	3.5.4 Experimental Evaluation
	3.5.4.1 Benchmark Instances
	3.5.4.2 Parameter Tuning
	3.5.4.3 Results

	3.6 Conclusions and Possible Research Directions
	References

	4 Replacing Hard Mathematical Models with Set Covering Formulations
	4.1 Introduction
	4.2 Application to Variable-Sized Bin Packing
	4.2.1 Short Literature Review Concerning the VSBP Problem
	4.2.2 Set-Covering Based ILP Model of the VSBP Problem
	4.2.3 Application of Standard CMSA to the VBSP Problem
	4.2.3.1 Probabilistic Construction of VSBP Solutions
	4.2.3.2 Sub-instance Generation and Solving

	4.2.4 Application of Set-Covering Based CMSA to the VSBP Problem
	4.2.5 Experimental Evaluation
	4.2.5.1 VSBP Problem Instances
	4.2.5.2 Parameter Tuning
	4.2.5.3 Numerical Results
	4.2.5.4 Performance Difference Between the Two VSBP ILP Models
	4.2.5.5 STNWeb Graphics Concerning the VSBP Results

	4.3 Application to an Electric Vehicle Routing Problem
	4.3.1 Short Literature Review Concerning the EVRP-TW-SPD
	4.3.2 Set-Covering Based ILP Model of the EVRP-TW-SPD
	4.3.3 Application of Adapt_Cmsa to the EVRP-TW-SPD
	4.3.4 The Adapt_Cmsa Algorithm
	4.3.4.1 Constructing Solutions to the EVRP-TW-SPD
	4.3.4.2 Sub-instance Solving

	4.3.5 The Adapt_Cmsa_SetCov Algorithm
	4.3.6 Experimental Evaluation
	4.3.6.1 Problem Instances for the EVRP-SPD-TW
	4.3.6.2 Parameter Tuning
	4.3.6.3 Results
	4.3.6.4 Performance Difference Between the Two EVRP-TW-SPD ILP Models
	4.3.6.5 STNWeb Graphics Concerning the EVRP-TW-SPD Results

	4.4 Conclusions and Future Research Directions
	References

	5 Application of CMSA in the Presence of Non-binary Variables
	5.1 Introduction
	5.2 The Bounded Knapsack Problem with Conflicts
	5.2.1 Converting the BKPWC ILP to a Binary Program

	5.3 Application of CMSA to the BKPWC
	5.3.1 Probabilistic Solution Construction
	5.3.2 Sub-instance Solving

	5.4 Experimental Evaluation
	5.4.1 Problem Instances
	5.4.2 Parameter Tuning
	5.4.3 Results

	5.5 Conclusions and Further Research Directions
	References

	6 Additional Research Lines Concerning CMSA
	6.1 A Problem-Agnostic CMSA for Binary Problems
	6.1.1 Application of Cmsa_Gen
	6.1.1.1 Before the Start of Cmsa_Gen
	6.1.1.2 Solution Construction
	6.1.1.3 Extension of the Standard Algorithm

	6.1.2 Experimental Evaluation
	6.1.2.1 Benchmark Instances
	6.1.2.2 Results

	6.1.3 Discussion

	6.2 Applying a Metaheuristic in the CMSA Framework
	6.2.1 The Weighted Independent Domination (WID) Problem
	6.2.1.1 ILP Model of the WID Problem

	6.2.2 A Greedy Heuristic for the WID Problem
	6.2.3 A PBIG Metaheuristic for the WID Problem
	6.2.4 Using Pbig for Solving Sub-instances in CMSA
	6.2.5 Experimental Evaluation
	6.2.5.1 Problem Instances
	6.2.5.2 Parameter Tuning
	6.2.5.3 Results

	6.2.6 Discussion

	6.3 Relation Between CMSA and LNS
	6.3.1 Destruction-Based LNS
	6.3.2 Empirical Comparative Study
	6.3.2.1 Discussion

	6.4 Future Work on CMSA
	References

	A C++ Program Code: CMSA Applied to the MDS Problem
	Index

