

 JAVASCRIPT

 A Comprehensive Manual for

Creating Dynamic, Responsive Websites

and Applications That is Suitable for Both

Novices and Experts

 .

 ALL RIGHTS RESERVED

 No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the

copyright holder.

 Copyright

 ©

 IBRAHIM N.A

 ISBN:

 978-1-304-32537-2

 First Published, 2024

 Noogul Digital Publishing

 Audience

This tutorial is designed for the aspiring Web Designers and

Developers with a need to understand JavaScripting in

enough detail along with its simple overview, and practical

examples. This tutorial will give you enough ingredients to

start with JavaScript from where you can take yourself at

higher level of expertise.

Prerequisites

Before proceeding with this tutorial you should have a basic

working knowledge with Windows or Linux operating

system, additionally you must be familiar with:

 Experience with any text editor like notepad,

notepad++, or Edit plus etc.

 Have Basic and Advanced Knowledge of HTML.

 How to create directories and files on your

computer.

 How to navigate through different directories.

 How to type content in a file and save them on a

computer.

 Understanding about images in different formats

like JPEG, PNG format.

 Knowledge of How to use Google Sheets (Excel

Sheet).

 Contents

 Audience

 Chapter One

 Features of JavaScript

 1.

 Web Applications

 2.

 Web Development

 3.

 Mobile Applications

 4.

 Game

 5.

 Presentations

 6.

 Server Applications

 7.

 Web Servers

 Application of JavaScript

 External References

 Chapter Two

 JavaScript Basics

 JavaScript Can Change HTML Content

 JavaScript Can Change HTML Attribute Values

 JavaScript Can Change HTML Styles (CSS)

 JavaScript Can Hide HTML Elements

 JavaScript Can Show HTML Elements

 The <script> Tag

 JavaScript Functions and Events

 JavaScript in <head> or <body>

 JavaScript in <head>

 JavaScript in <body>

 JavaScript Expressions

 JavaScript Display Possibilities

 Using innerHTML

 Using document.write()

 Using window.alert()

 Using console.log()

 JavaScript Print

 JavaScript Statements

 JavaScript Programs

 JavaScript Statements

 JavaScript White Space

 JavaScript Line Length and Line Breaks

 JavaScript Code Blocks

 JavaScript Keywords

 JavaScript Values

 JavaScript Literals

 Chapter Three

 JavaScript Comment

 Types of JavaScript Comments

 JavaScript Single line Comment

 JavaScript Multi line Comment

 Using JavaScript Comments to Prevent Code

Execution

 Commenting Out Function Calls

 Commenting Out Function Bodies — Without Return Values

 Commenting Out Function Bodies — With Return Values

 Writing Effective JavaScript Comments

 Chapter Four

 JavaScript Variable

 JavaScript Keywords

 JavaScript Variable Naming Convention

 JavaScript Var Keyword

 JavaScript Let Keyword

 JavaScript Const Keyword

 When to Use JavaScript const?

 JavaScript Local Variable

 Function Scope

 JavaScript Global Variable

 Internals of global variable in JavaScript

 Automatically Global

 Global Variables in HTML

 How to use variables

 Where to use which variable

 Chapter Five

 JavaScript Operators

 JavaScript Assignment

 Assignment Examples

 JavaScript Arithmetic Operators

 JavaScript Assignment Operators

 JavaScript Comparison Operators

 JavaScript String Addition

 Adding Strings and Numbers

 JavaScript Logical Operators

 JavaScript Bitwise Operators

 Bitwise logical operators

 JavaScript Bitwise AND

 Example

 JavaScript Bitwise OR

 Example:

 JavaScript Bitwise XOR

 JavaScript Bitwise NOT (~)

 JavaScript (Zero Fill) Bitwise Left Shift (<<)

 JavaScript (Sign Preserving) Bitwise Right

Shift (>>)

 JavaScript (Zero Fill) Right Shift (>>>)

 Converting Decimal to Binary

 Converting Binary to Decimal

 Chapter Six

 JavaScript Data Types

 JavaScript primitive data types

 JavaScript non-primitive data types

 Examples

 The Concept of Data Types

 JavaScript Types are Dynamic

 JavaScript Strings

 JavaScript String Methods

 JavaScript String Length

 Extracting String Parts

 JavaScript String slice()

 Examples

 JavaScript String substring()

 Replacing String Content

 JavaScript String ReplaceAll()

 Converting to Upper and Lower Case

 JavaScript String concat()

 JavaScript String trim()

 JavaScript Numbers

 JavaScript Random

 Exponential Notation

 JavaScript BigInt

 JavaScript Integer Accuracy

 How to Create a BigInt

 JavaScript Booleans

 The Boolean() Function

 NaN data type

 Comparisons and Conditions

 JavaScript Comparison and Logical Operators

 Comparison Operators

 How Can it be Used

 Conditional (Ternary) Operator

 Comparing Different Types

 JavaScript if, else, and else if

 Conditional Statements

 The if Statement

 Example

 The else Statement

 Example

 The else if Statement

 Example

 JavaScript Switch Statement

 Example

 The break Keyword

 The default Keyword

 JavaScript Arrays

 JavaScript Array

 JavaScript Array Methods

 JavaScript Objects

 The type of Operator

 Chapter Seven

 JavaScript Functions

 Function Syntax

 Function declarations

 Function Invocation

 Invoking a JavaScript Function

 The Term “This” in Javascript

 Note

 The Global Object

 Invoking a Function as a Method

 Invoking a Function with a Function

Constructor

 Function Return

 The () Operator

 Functions Used as Variable Values

 Local Variables

 Chapter Eight

 JavaScript Objects

 Real Life Objects, Properties, and Methods

 Object Definition

 Object Properties

 Accessing Object Properties

 Object Methods

 The this Keyword

 Accessing Object Methods

 Do Not Declare Strings, Numbers, and

Booleans as Objects!

 Chapter Nine

 JavaScript Events

 HTML Events

 Mouse events:

 onclick Event Type

 onsubmit Event Type

 onmouseover and onmouseout

 Keyboard events:

 Form events:

 Window/Document events

 HTML DOM Events

 JavaScript Event Handlers

 Chapter Ten

 JavaScript Loop

 The For Loop

 do...while statement

 Example:

 Differences between do… while and While

Loop

 While Statement

 Example:

 Comparison between the while and for loop:

 Example: JavaScript For In Loop

 for-in Loop Examples

 The For Of Loop

 Properties of document object

 Methods of document object

 Accessing field value by document object

 JavaScript - document.getElementById()

method

 JavaScript - document.getElementsByName()

method

 JavaScript -

document.getElementsByTagName() method

 Another example of document.getElementsByTagName() method

 JavaScript - innerHTML

 Example of innerHTML property

 Show/Hide Comment Form Example using innerHTML

 JavaScript - innerText

 JavaScript innerText Example

 Understanding the Browser Environment

 The user interface

 Loader

 HTML parsing

 CSS parsing

 JavaScript parsing

 Layout and rendering

 Igniting the BOM

 The Navigator Object

 Window Object

 Methods of window object

 Example of alert() in javascript

 Example of confirm() in javascript

 Example of prompt() in javascript

 Example of open() in javascript

 Example of setTimeout() in javascript

 JavaScript History Object

 Property of JavaScript history object

 Methods of JavaScript history object

 Example of history object

 JavaScript Navigator Object

 Property of JavaScript navigator object

 Methods of JavaScript navigator object

 Example of navigator object

 JavaScript Screen Object

 Property of JavaScript Screen Object

 Example of JavaScript Screen Object

 Approach for Form Validation in JavaScript

 JavaScript Form Validation Example

 JavaScript Retype Password Validation

 JavaScript Number Validation

 JavaScript validation with image

 JavaScript email validation

 JavaScript Classes

 Class Declarations

 Class Declarations Example

 Class Declarations Example: Hoisting

 Class Declarations Example: Re-declaring Class

 Class expressions

 Unnamed Class Expression

 Class Expression Example: Re-declaring Class

 Named Class Expression Example

 JavaScript Objects

 Creating Objects in JavaScript

 1) JavaScript Object by object literal

 2) By creating instance of Object

 3) By using an Object constructor

 Defining method in JavaScript Object

 JavaScript Object Methods

 JavaScript Prototype Object

 Syntax:

 Prototype Chaining

 JavaScript Prototype Object

 JavaScript Constructor Method

 Points to remember

 Constructor Method Example

 JavaScript static Method

 JavaScript static Method Example

 Example 4

 JavaScript Encapsulation

 JavaScript Encapsulation Example

 JavaScript Encapsulation Example: Validate

 JavaScript Encapsulation Example: Prototype-based approach

 JavaScript Inheritance

 JavaScript extends Example: inbuilt object

 JavaScript extends Example: Custom class

 JavaScript extends Example: a Prototype-based approach

 JavaScript Polymorphism

 JavaScript Abstraction

 Chapter Fifteen

 JavaScript Cookies

 How Cookies Works?

 How to create a Cookie in JavaScript?

 JavaScript Cookie Example

 Cookie Attributes

 Cookie expires attribute

 Cookie max-age attribute

 Cookie path attribute

 Cookie path attribute Example

 Cookie domain attribute

 Cookie with multiple Name-Value pairs

 Examples to Store Name-Value pair in a Cookie

 Deleting a Cookie in JavaScript

 Examples to delete a Cookie

 Example 3

 Chapter Sixteen

 Integrating JavaScript with Google Apps Script

 What can Apps Script do?

 Custom Menus in Google Workspace

 Clickable images and drawings in Google

Sheets

 Dialogs and Sidebars in Google Workspace

Documents.

 Alert dialogs

 Prompt dialogs

 Custom dialogs

 Custom sidebars

 File-open dialogs

 Custom Functions in Google Sheets

 Developing a custom function

 obtaining a personalized feature via the Google Workspace

Marketplace

 Using a custom function

 Guidelines for custom functions

 Naming

 Arguments

 Return values

 Data types

 Autocomplete

 Using Google Apps Script services

 Sharing

 Optimization

 Google Sheets Macros

 Creating macros in Apps Script

 Editing macros

 Importing functions as macros

 Manifest structure for macros

 Best practices

 Things you can't do

 Chapter Seventeen

 Developing Web Apps in Apps Script

 Requirements for web apps

 Request parameters

 Deploy a script as a web app

 Test a web app deployment

 Permissions

 Embed your web app in Google Sites or any

Site of your Choice.

 Web Apps and Browser History

 How to create Login and Register Form using

Google spreadsheet data

 How to Display Google Sheet Data on

Webpage

 How to Submit HTML Form Data to Google

Spreadsheet

 How to Submit HTML Form to Gmail

 How to Search Google Sheet Contents from

HTML Website.

 Conclusion

 References

 Chapter One

 JavaScript Introduction

Many websites utilize JavaScript (js), a lightweight object-oriented

programming language, to script their webpages. When applied to an

HTML document, this fully functional programming language that is

interpreted allows for dynamic website interaction.

In 1995, JavaScript was released, allowing users of the Netscape

Navigator browser to add applications to web pages. Since then, all other

major graphical web browsers have implemented the language. It has

enabled the development of contemporary online applications, which

allow for immediate user interaction without requiring a page reload.

Conventional websites also employ JavaScript to provide a variety of

innovative features and interactive elements (Netscape, 2007).

Brendan Eich wrote JavaScript in ten days in May 1995. Eich was

employed by Netscape, where he developed JavaScript for Netscape

Navigator, the company's web browser. The plan was to use Java to

create the main interactive components of the client-side web. JavaScript

was intended to serve as the connecting language between those

elements and to provide a little bit of interactivity to HTML. JavaScript

needed to look like Java because of its supporting function in Java. That

eliminated working options like TCL, Python, Perl, and others (W3C,

2021).

JavaScript is a language that improves the Web. The language can assist

in transforming a static page of text into an intelligent, dynamic, and

engaging experience when used on the client computer. JavaScript

applications can be as subtle as greeting a visitor to a website with "Good

morning!" when it is morning in the client computer's time zone. Other

apps may be considerably more straightforward, like one that downloads

a slide show's content in one page and uses JavaScript to manage the

presentation's hiding, showing, and "flying slide" transitions.

JavaScript was first known as Mocha. When Netscape Navigator was first

released in beta, it was called LiveScript. When Netscape 2 was released

in 1995, it was renamed JavaScript. To avoid trademark difficulties,

Microsoft swiftly reverse-engineered JavaScript and launched an exact

clone of it in Internet Explorer, which they called Jscript.

JavaScript was accepted and standardized as EMCAScript in 1997 after

Netscape submitted it to Ecma International, a standards body.

Nevertheless, JavaScript and Java are unrelated programming languages.

During the period when Java was becoming more and more prominent in

the market, the name was offered and suggested. Databases like

CouchDB and MongoDB use JavaScript as their scripting and query

language in addition to web browsers. JavaScript founder Brandon Eich is

well-known for his remarks against the standardized language's name,

referring to ECMAScript (Ecma International) as a "unwanted trade name

that sounds like a skin disease."

Not only is ECMAScript a terrible moniker for a programming language,

but it's also the name that Netscape gave the language and that most

people use to refer to it. If you are familiar with programming in Java or

would like to learn at some time, it is a good idea to remember that

although there are some similarities between the two languages, they are

very different things. When JavaScript first came out, it was widely used

to add dynamic elements to websites.

An early outcome of JavaScript being integrated into web browsers was

the creation of so-called Dynamic HTML (DHTML), which allowed for a

variety of entertaining effects, such as the falling snowflake effect, pop-

up windows, and curling web page corners, as well as more practical

features like drop-down menus and form validation.

Features of JavaScript

The following are features of JavaScript:

i. All popular web browsers support JavaScript as they provide

built-in execution environments.

ii. JavaScript follows the syntax and structure of the C

programming language. Thus, it is a structured programming

language.

iii. JavaScript is a weakly typed language, where certain types are

implicitly cast (depending on the operation).

iv. JavaScript is an object-oriented programming language that

uses prototypes rather than using classes for inheritance.

v. It is a light-weighted and interpreted language.

vi. It is a case-sensitive language.

vii. JavaScript is supportable in several operating systems including,

Windows, macOS, etc.

viii. It provides good control to the users over the web browsers.

Uses of JavaScript

JavaScript is a programming language that enables the implementation

of intricate features on websites. You can be sure that JavaScript is used

whenever a website performs any function other than merely displaying

static content for you to view. Examples of such functions include

interactive maps, scrolling video jukeboxes, animated 2D/3D graphics,

and timely content updates. It is the third layer in the stack of common

web technologies, the first two of which (CSS and HTML) we have already

thoroughly discussed in other Learning Area sections.

Many websites utilize JavaScript, a lightweight object-oriented

programming language, to script their webpages. It is a complete

programming language that is interpreted. When JavaScript is added to

an HTML page, websites may have dynamic interactivity.

JavaScript enables users to create interactive contemporary web apps

without constantly refreshing the page. JavaScript is frequently used with

the DOM API to refresh a user interface by dynamically modifying HTML

and CSS.

It is mostly employed in online programs. Let's talk about JavaScript's

applications. An example of how JavaScript is used is seen in the image

below.

1. Web Applications

Because browsers are getting better every day, JavaScript has become

more and more popular as a tool for creating reliable online applications.

We may comprehend it by using Google Maps as an example. With Maps,

all a user needs to do is click and drag the mouse to view the

information. These ideas are supported by the usage of JavaScript.

2. Web Development

Creating web pages is a typical usage for JavaScript. It enables us to add

special effects and dynamic behavior to the webpage. It is mostly used

for validation on websites. JavaScript facilitates the execution of intricate

tasks and allows websites to communicate with their users. Another way

to load material into a document without refreshing the webpage is by

using JavaScript.

3. Mobile Applications

Nowadays, a lot of people utilize their mobile devices to access the

internet. We can also create an application for non-web environments

using JavaScript. JavaScript is a fantastic technology for developing

mobile applications because of its capabilities and applications. The

popular JavaScript framework for making mobile apps is called React

Native. We can create mobile applications for several operating systems

with React Native. Writing separate code for the iOS and Android

operating systems is not necessary. It simply has to be written once, and

it can operate on several systems.

4. Game

Games may also be made with JavaScript. It offers a number of

frameworks and libraries for making games. Either a 2D or 3D game may

be played. A few JavaScript game engines like Pixi.js and PhysicsJS assist

us in making an online game. Additionally, we may render 2D and 3D

pictures on browsers by using the JavaScript API known as the WebGL

(web graphics library).

5. Presentations

Moreover, JavaScript facilitates the creation of websites and

presentations. You may utilize the libraries, such BespokeJs and RevealJs,

to make an online slide show. Because they are simpler to utilize, we can

quickly and simply create something incredible.

With the use of HTML, Reveal.js is used to build stunning and dynamic

slide decks. Tablets and mobile devices are ideal for these presentations.

All CSS color formats are also supported. Animated bullet lists, responsive

scaling, and an extensive feature set are all included in the BespokeJS.

6. Server Applications

Many web applications feature a server-side component. HTTP requests

are handled and content is generated using JavaScript. Node.js allows

JavaScript to operate on servers as well. The environment that Node.js

offers has all the tools needed for JavaScript to execute on servers.

7. Web Servers

Node.js may be used to develop a web server. Because Node.js is event-

driven, it doesn't wait for the preceding call's answer. Node.js servers

carry large amounts of data quickly and without the need for buffering.

The createServer() function in the HTTP module may be used to create

the server. Whenever someone attempts to access port 8080, this

function gets called. The HTTP server should show HTML in response, and

it should also be provided in the HTTP header.

Application of JavaScript

Websites that are interactive are made with JavaScript. There are several

other applications for JavaScript that aid in enhancing webpage speed.

The following is a list of other uses for JavaScript:

 Client-side validation.

 Dynamic drop-down menus,

 Displaying pop-up windows and dialog boxes (like an alert dialog

box, confirm dialog box and prompt dialog box),

 Displaying clocks

 Displaying date and time.

 To validate the user input before submission of the form.

 Open and close new windows.

 To display dialog boxes and pop-up windows.

 To change the appearance of HTML documents.

 To create the forms that respond to user input without accessing

the server.

Prerequisite to Writing Your First JavaScript program

Before starting to build your first JavaScript application, make sure you

have all of your tools assembled and ready. By coincidence, the tools we

use in this book are also the ones we recommend you download and

install. We lead you through the procedure. Please feel free to utilize any

comparable or preferred tools you may have.

To understand why we selected these tools and to help you decide

whether or not to use them, we still advise you to read this portion of the

book. We provide you with some pointers on how to maximize the

functionality of each tool when you install it.

Downloading and installing Chrome

Google Chrome is the preferred web browser for dealing with JavaScript.

It's acceptable, of course, if you would rather use a different web browser

on a daily basis. Every browser will execute JavaScript accurately and

quickly. But since Google Chrome will be covered in some detail in this

book, we advise you to at least install it on your computer using the steps

outlined in this chapter. Because Google Chrome is now the most popular

web browser on the Internet and provides great features for making

JavaScript writers' tasks simpler, we decided to utilize it in this book. (Yes,

its popularity surpasses that of Internet Explorer.)

If you don’t have Chrome installed, follow these steps to install it:

i. Go to www.google.com/chrome.

ii. Hover over the Download tab and choose the appropriate

version for your computer.

iii. Open the downloaded file and follow the instructions to install

Chrome

Google Chrome parses, compiles, and executes JavaScript code using

Google's V8 JavaScript engine. Chrome is either the fastest or among the

fastest browsers at running JavaScript, depending on whose

benchmarking test you trust. The main browser manufacturers are

always trying to surpass one another. The competition has accelerated

the pace of every browser's JavaScript engine in recent years, so it

doesn't really matter who is the quickest at any one moment. You may

visit http://arewefastyet.com to view real-time comparisons of the

performance of several browsers in JavaScript tests.

The most popular browsers' JavaScript performance is automatically

checked and graphed on this site, which is updated many times a day by

Mozilla, the company that created the Firefox browser.

Downloading and installing a code editor

A source code editor, sometimes called a code editor, is essentially a text

editor with extra features that make it easier to create and modify

computer code. Sublime Text is the one we use. There are several code

editors available, so feel free to pick your preferred one if you already

know how to use it and find it comfortable. Code editors are very

individualized tools, and many programmers will discover that they work

better with a particular one solely because it seems more natural to

them. If you discover that Sublime Text simply isn't your thing.

Name Location Compatib

le with

Coda http://panic.com/coda Mac only

Aptana www.aptana.com
Mac or

Windows

Komodo

Edit

www.activestate.com/komodo‐

edit/downloads

Mac or

Windows

Dreamweav

er

http://adobe.com/products/dreamweaver.ht

ml

Mac or

Windows

Eclipse www.eclipse.org
Mac or

Windows

Notepad++ http://notepad‐plus‐plus.org
Windows

only

TextMate http://macromates.com Mac only

BBEdit www.barebones.com/products/bbedit Mac only

EMacs www.gnu.org/software/emacs
Mac or

Windows

TextPad www.textpad.com
Windows

only

vim www.vim.org
Mac or

Windows

Netbeans https://netbeans.org
Mac or

Windows

Bracket https://brackets.io/
Mac or

Windows

Visual

Studio Code
https://code.visualstudio.com/

Mac or

Windows

Reading JavaScript Code

Before you get started with writing JavaScript programs, you need to be

aware of a few rules of JavaScript:

 JavaScript is case-sensitive. We repeat this several times

throughout the book, because it’s an error that those who are new to

JavaScript make quite frequently. To JavaScript, the words pants and

Pants are completely different.

 JavaScript doesn’t care much about white space. White space

includes spaces, tabs, and line breaks — any character that doesn’t

have a visual representation. When you’re writing JavaScript code, it

doesn’t matter if you use one space, two spaces, a tab, or even a line

break (in most cases) within the code. JavaScript will ignore white

space. The one exception is when you’re writing out text that you

want JavaScript to print to the screen. In this case, the white space

you use will show up in the end result. The best practice, with

regards to white space in your code, is to use enough space that your

code is easy to read and to also be consistent with how you use this

space.

 Watch out for reserved words. JavaScript has a list of words that

have special meaning to the language. We list these words in

Chapter 3. For now, just be aware that some words, such as function,

while, break, and with have special meanings.

 JavaScript likes semicolons: JavaScript code is made up of

statements. You can think of statements as similar to sentences.

They are fundamental building blocks for JavaScript programs in the

same way that sentences are the building blocks of paragraphs. In

JavaScript, statements end with a semicolon. If you don’t use a

semicolon at the end of a statement, JavaScript will put it there for

you. This can lead to unexpected results, however, so it’s considered

a best practice to always end statements with a semicolon.

Running JavaScript in the Browser Window

While JavaScript is used in many other contexts, web browsers are the

most popular location to observe it in the wild. JavaScript was created to

handle typical browser actions like clicks and scrolling, control inputs and

outputs, manipulate online pages, and control the many functionalities of

web browsers!

To run JavaScript in a web browser, you have three options, all of which

will be shown in the following pages:

 Put it directly in an HTML event attribute

 Put it between an opening and closing script tag

 Put it in a separate document and include it in your HTML

document

Many times, you’ll use a combination of all three techniques within any

one web page. However, knowing when to use each is important and is a

skill that you’ll learn with more practice.

Using JavaScript in an HTML event attribute

HTML has a number of unique properties that are intended to cause

JavaScript to run in response to events that occur in the web browser or

user actions. An HTML button with an event property that reacts to

mouse click events is seen here:

<button id="bigButton" onclick="alert('Hello

World!');">Click Here</button>

In this case, when a user clicks on the button created by this HTML

element, a popup will appear with the words “Hello World!”. HTML has

over 70 different event attributes. Table 2-3 shows the most commonly

used ones.

Commonly Used HTML Event Attributes

Attribute Description

onload
Runs the script after the pages finishes

loading

onfocus
Runs the script when the element gets focus

(such as when a text box is active)

onblur

Runs the script when the element loses

focus (such as when the user clicks a new

text box in a form)

onchange
Runs the script when the value of an

element is changed

onselect
Runs the script when text has been

submitted

onsubmit
Runs the script when a form has been

submitted

onkeydown
Runs the script when a user is pressing a

key

onkeypress Runs the script when a user presses a key

onkeyup Runs the script when a user releases a key

onclick
Runs the script when a user mouse clicks an

element

ondrag Runs the script when an element is dragged

ondrop
Runs the script when a dragged element is

being dropped

onmouseover
Runs the script when a user moves a mouse

pointer over an element

Using JavaScript in a script element

The HTML script element allows you to embed JavaScript into an HTML

document. Often script elements are placed within the head element,

and, in fact, this placement was often stated as a requirement. Today,

however, script elements are used within the head element as well as in

the body of web pages. The format of the script element is very simple:

<script>

(insert your JavaScript here)

</script>

In this case, however, we place the script element at the bottom of the

body element

Embedding JavaScript within a Script Element

<!DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

</head>

<body>

<h1>Let's Count to 20 with JavaScript!</h1>

<p id="theCount"></p>

<script>

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "
";

}

</script>

</body>

</html>

Script placement and JavaScript execution

Scripts are generally loaded by web browsers and run when they load.

The browser reads a web page from top to bottom, exactly like it would

read a text page. Occasionally, you should wait for the script to execute

until the browser has finished loading the page's contents. We used the

body element's onload event property to do this. Placing the code that

has to be run at the conclusion of the code is another popular technique

to postpone execution.

Limitations of JavaScript in <script> elements

Although embedding JavaScript into a script element is far more popular

and widely accepted than inline scripting (placing JavaScript into event

attributes), it still has some significant drawbacks. The main drawback is

that these kinds of scripts are only usable on the web page on which they

are placed. To put it another way, if you include JavaScript in a script

element, you must duplicate and paste the script element precisely onto

each page that has it. You can understand how this may turn into a

maintenance nightmare given that some websites have hundreds or even

thousands of web pages.

When to use JavaScript in <script> elements

There are applications for this JavaScript embedding technique. It is okay

and can even speed up the loading and display of your web pages by

reducing the number of requests the web server needs to make to the

server for those JavaScript elements that do nothing more than call other

JavaScript elements.

As the name suggests, single-page applications only have one HTML

page, making them excellent candidates for this kind of embedding as

there is only one location where the script has to be updated. Generally

speaking, though, you want to try to avoid adding too much JavaScript

straight into an HTML page. Your code will become more organized and

require less maintenance as a consequence.

Including external JavaScript files

The src property of the script element is the third and most often used

method of including JavaScript in HTML texts. The only difference

between a script element with JavaScript between the tags and one with

a src attribute is that the JavaScript is loaded into the HTML document

from a different file.

External scripts are practical when the same code is used in many

different web pages.

JavaScript files have the file extension .js.

To use an external script, put the name of the script file in the src

(source) attribute of a <script> tag:

Here’s an example of a script element with a src attribute:

<script src="myScript.js"></script>

In this case, you would have a separate file, named myScript.js, that

would reside in the same folder as your HTML document.

<!DOCTYPE html>

<html>

<body>

<h2>Demo External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try

it</button>

<p>This example links to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>

NB:

i. You can place an external script reference

in <head> or <body> as you like.

ii. The script will behave as if it was located exactly

where the <script> tag is located.

iii. External scripts cannot contain <script> tags.

The benefits of using external JavaScript files are that using them

 Keeps your HTML files neater and less cluttered

 Makes your life easier because you need to modify JavaScript

in only one place when something changes or when you make a

bug fix

 It separates HTML and code

 It makes HTML and JavaScript easier to read and maintain

 Cached JavaScript files can speed up page loads

To add several script files to one page - use several script tags:

<script src="myScript1.js"></script>

<script src="myScript2.js"></script>

Creating a .js file

Creating an external JavaScript file is similar to creating an HTML file or

another other type of file. To create an external JavaScript file, follow

these steps:

i. In Sublime Text or any of your text editor, choose File ➪ New

File.

ii. Copy everything between <script> and </script> from

MyFirstProgram.html and paste it into your new .js file.

NB: Notice that external JavaScript files don’t contain <script>

elements, just the JavaScript.

iii. Save your new file as countToTwenty.js in the same folder as

MyFirstProgram.html.

iv. In MyFirstProgram.html, modify your script element to add a src

attribute, like this:

<script src="countToTwenty.js"></script

Your copy of MyFirstProgram.html should now look like this:

<!DOCTYPE html>

<html>

<head>

<title>Hello, HTML!</title>

</head>

<body>

<h1>Let's Count to 20 with JavaScript!</h1>

<p id="theCount"></p>

<script>

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "
";

}

</script>

</body>

</html>

Your new file, countToTwenty.js, should look like this:

function countToTwenty(){

var count = 0;

while (count < 20) {

count++;

document.getElementById("theCount").innerHTML +=

count + "
";

}

}

 External References

An external script can be referenced in 3 different ways:

 With a full URL (a full web address)

 With a file path (like /js/)

 Without any path

Example 1: This example uses a full URL to link to myScript.js:

<!DOCTYPE html>

<html>

<body>

<h2>External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Click Me</button>

<p>This example uses a full web URL to link to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="https://www.w3schools.com/js/myScript.js"></script>

</body>

</html>

Example 2: This example uses a file path to link to myScript.js:

<!DOCTYPE html>

<html>

<body>

<h2>External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example uses a file path to link to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="/js/myScript.js"></script>

</body>

</html>

Example 3: This example uses no path to link to myScript.js:

<!DOCTYPE html>

<html>

<body>

<h2>Demo External JavaScript</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

<p>This example links to "myScript.js".</p>

<p>(myFunction is stored in "myScript.js")</p>

<script src="myScript.js"></script>

</body>

</html>

Using the JavaScript Developer Console

Sometimes, it’s helpful to be able to run JavaScript commands without

creating an HTML page and including separate scripts or creating

<script> blocks. For these times, you can use the Chrome browser’s

JavaScript Console. To access the JavaScript Console, find the Chrome

menu in the upper-right corner of your browser. It looks like three

horizontal lines. Click the Chrome menu and then find More Tools in the

drop-down menu. Under More Tools, choose JavaScript Console from the

drop-down menu.

And, yes, there is a faster way to open the JavaScript Console. Simply

press Alt+Command+J (on Mac) or Control+Shift+J (on Windows).

The JavaScript Console is perhaps the best friend of the JavaScript

developer. Besides allowing you to test and run JavaScript code quickly

and easily, it also is where errors in your code are reported, and it has

features that will help you track down and solve problems with your code.

Once you’ve opened the JavaScript console, you can start inputting

commands into it, which will run as soon as you press Enter. To try it out,

open the JavaScript console and then type the following commands,

pressing Enter after each one:

 Chapter Two

 JavaScript Basics

This section aims to rapidly expose you to the fundamentals of JavaScript

so that you may begin writing programs. This part will teach you the

essential building blocks of JavaScript, avoiding a comprehensive

coverage of all theories and notions. Topics such as operators, if

statements, loops, variables, data types, swith, functions, objects, arrays,

and classes will be covered. Also, you'll discover how to combine them

together to create a compact yet reliable software.

As you may have be aware, JavaScript is widely used in the field of

software development nowadays. It serves as the cornerstone of front-end

web development and is essential to frameworks such as Angular, Vue,

and ReactJS. Additionally, it may be used to build robust backends using

Node.js platforms, run desktop programs like Slack, Atom, and Spotify, and

function as Progressive Web Apps (PWAs) on mobile devices.

In short, it’s everywhere—and for good reason. For starters, compared to

other languages like C and Java, JavaScript is generally easier to learn.

When we say ‘easier’, we mean in terms of how quickly you can go from

being a JavaScript novice to someone who can actually make a living

writing professional, high quality JavaScript code. So, in that sense, it’s

more accessible than some other languages like C and Java.

JavaScript is also a fun and rewarding language, which is especially

important when you’re just getting started in software development. The

community support is very good, so if you get stuck, there’s a good

chance that the problem and its solution already exist on the web.

JavaScript Can Change HTML Content

One of many JavaScript HTML methods is getElementById().

The example below "finds" an HTML element (with id="demo"), and

changes the element content (innerHTML) to "Hello JavaScript":

Example:

document.getElementById("demo").innerHTML = "Hello

JavaScript";

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"

onclick='document.getElementById("demo").innerHTML =

"Hello JavaScript!"'>Click Me!</button>

</body>

</html>

JavaScript accepts both double and single quotes:

document.getElementById('demo').innerHTML = 'Hello

JavaScript' ;

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can change HTML content.</p>

<button type="button"

onclick="document.getElementById('demo').innerHTML = 'Hello

JavaScript!'">Click Me!</button>

</body>

</html>

JavaScript Can Change HTML Attribute Values

In this example JavaScript changes the value of the src (source)

attribute of an tag:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can change HTML attribute values.</p>

<p>In this case JavaScript changes the value of the src (source)

attribute of an image.</p>

<button

onclick="document.getElementById('myImage').src='pic_bulbon.gif'">Tu

rn on the light</button>

<button

onclick="document.getElementById('myImage').src='pic_bulboff.gif'">Tu

rn off the light</button>

</body>

</html>

JavaScript Can Change HTML Styles (CSS)

Changing the style of an HTML element, is a variant of changing an HTML

attribute:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do? </h2>

<p id="demo">JavaScript can change the style of an HTML element.

</p>

<button type="button"

onclick="document.getElementById('demo').style.fontSize='35px'">Cli

ck Me!</button>

</body>

</html>

JavaScript Can Hide HTML Elements

Hiding HTML elements can be done by changing the display style:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p id="demo">JavaScript can hide HTML elements.</p>

<button type="button"

onclick="document.getElementById('demo').style.display='none'">Cli

ck Me!</button>

</body>

</html>

JavaScript Can Show HTML Elements

Showing hidden HTML elements can also be done by changing the

display style:

<!DOCTYPE html>

<html>

<body>

<h2>What Can JavaScript Do?</h2>

<p>JavaScript can show hidden HTML elements.</p>

<p id="demo" style="display:none">Hello JavaScript!</p>

<button type="button"

onclick="document.getElementById('demo').style.display='block'">Cli

ck Me!</button>

</body>

</html>

The <script> Tag

In HTML, JavaScript code is inserted between <script> and </script>

tags.

<script>

document.getElementById("demo").innerHTML = "My First

JavaScript" ;

</script>

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript in Body</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "My First

JavaScript";

</script>

</body>

</html>

Nb: Old JavaScript examples may use a type attribute: <script

type="text/javascript">.

The type attribute is not required. JavaScript is the default

scripting language in HTML.

JavaScript Functions and Events

A JavaScript function is a block of JavaScript code, that can be executed

when "called" for.

For example, a function can be called when an event occurs, like when

the user clicks a button.

JavaScript in <head> or <body>

You can place any number of scripts in an HTML document.

Scripts can be placed in the <body>, or in the <head> section of an

HTML page, or in both.

JavaScript in <head>

In this example, a JavaScript function is placed in the <head> section

of an HTML page.

The function is invoked (called) when a button is clicked:

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

document.getElementById("demo").innerHTML = "Paragraph

changed.";

}

</script>

</head>

<body>

<h2>Demo JavaScript in Head</h2>

<p id="demo">A Paragraph.</p>

<button type="button" onclick="myFunction()">Try it</button>

</body>

</html>

JavaScript in <body>

In this example, a JavaScript function is placed in the <body> section

of an HTML page.

The function is invoked (called) when a button is clicked:

 <!DOCTYPE html>

 <html>

 <body>

 <h2>

 Demo JavaScript in Body

 </h2>

 <p id="demo">

 A Paragraph

 </p>

 <button type="button" onclick="myFunction()">

 Try it

 </button>

 <script>

 function

 myFunction() {

 document.getElementById(

 "demo"

).innerHTML =

 "Paragraph changed."

 ;

 }

 </script>

 </body>

 </html>

NB : Placing scripts at the bottom of the <body> element

improves the display speed, because script interpretation slows

down the display.

JavaScript Expressions

An expression is a combination of values, variables, and operators, which

computes to a value. The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 * 10;

</script>

</body>

</html>

Expressions can also contain variable values:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

var x;

x = 5;

document.getElementById("demo").innerHTML = x * 10;

</script>

</body>

</html>

The values can be of various types, such as numbers and strings. For

example, "John" + " " + "Doe", evaluates to "John Doe":

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Expressions</h2>

<p>Expressions compute to values.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "John" + " " +

"Doe";

</script>

</body>

</html>

JavaScript Display Possibilities

JavaScript can "display" data in different ways:

 Writing into an HTML element, using innerHTML.

 Writing into the HTML output using document.write().

 Writing into an alert box, using window.alert().

 Writing into the browser console, using console.log().

Using innerHTML

To access an HTML element, JavaScript can use the

document.getElementById(id) method.

The id attribute defines the HTML element. The innerHTML property

defines the HTML content:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My First Paragraph.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 + 6;

</script>

</body>

</html>

NB: Changing the innerHTML property of an HTML element is a

common way to display data in HTML.

Using document.write()

For testing purposes, it is convenient to use document.write():

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<p>Never call document.write after the document has finished

loading.

It will overwrite the whole document.</p>

<script>

document.write(5 + 6);

</script>

</body>

</html>

NB: Using document.write() after an HTML document is loaded,

will delete all existing HTML:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<button type="button" onclick="document.write(5 + 6)">Try

it</button>

</body>

</html>

Using window.alert()

You can use an alert box to display data:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<script>

window.alert(5 + 6);

</script>

</body>

</html>

You can skip the window keyword. In JavaScript, the window object is

the global scope object. This means that variables, properties, and

methods by default belong to the window object. This also means that

specifying the window keyword is optional:

<!DOCTYPE html>

<html>

<body>

<h2>My First Web Page</h2>

<p>My first paragraph.</p>

<script>

alert(5 + 6);

</script>

</body>

</html>

Using console.log()

For debugging purposes, you can call the console.log() method in the

browser to display data.

<!DOCTYPE html>

<html>

<body>

<h2>Activate Debugging</h2>

<p>F12 on your keyboard will activate debugging.</p>

<p>Then select "Console" in the debugger menu.</p>

<p>Then click Run again.</p>

<script>

console.log(5 + 6);

</script>

</body>

</html>

JavaScript Print

JavaScript does not have any print object or print methods. You cannot

access output devices from JavaScript. The only exception is that you can

call the window.print() method in the browser to print the content of the

current window.

<!DOCTYPE html>

<html>

<body>

<h2>The window.print() Method</h2>

<p>Click the button to print the current page.</p>

<button onclick="window.print()">Print this page</button>

</body>

</html>

JavaScript Statements

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>A JavaScript program is a list of

statements to be executed by a computer.

</p>

<p id="demo"></p>

<script>

let x, y, z; // Statement 1

x = 5; // Statement 2

y = 6; // Statement 3

z = x + y; // Statement 4

document.getElementById("demo").innerHTML =

"The value of z is " + z + ".";

</script>

</body>

</html>

JavaScript Programs

A computer program is a list of "instructions" to be

"executed" by a computer. In a programming language,

these programming instructions are called statements. A

JavaScript program is a list of programming statements.

NB: In HTML, JavaScript programs are executed by the web

browser.

JavaScript Statements

JavaScript statements are composed of:

Values, Operators, Expressions, Keywords, and Comments.

This statement tells the browser to write "Hello Dolly." inside

an HTML element with id="demo":

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>In HTML, JavaScript statements are executed

by the browser.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"Hello Dolly.";

</script>

</body>

</html>

Most JavaScript programs contain many JavaScript

statements.

The statements are executed, one by one, in the same order

as they are written.

 JavaScript code is frequently used to refer to JavaScript

applications and statements.

 Semicolons;

Semicolons separate JavaScript statements.

Add a semicolon at the end of each executable statement:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>JavaScript statements are separated by

semicolons.</p>

<p id="demo1"></p>

<script>

let a, b, c;

a = 5;

b = 6;

c = a + b;

document.getElementById("demo1").innerHTML =

c;

</script>

</body>

</html>

When separated by semicolons, multiple statements

on one line are allowed:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>Multiple statements on one line are allowed.

</p>

<p id="demo1"></p>

<script>

let a, b, c;

a = 5; b = 6; c = a + b;

document.getElementById("demo1").innerHTML =

c;

</script>

</body>

</html>

NB: On the web, you might see examples without

semicolons.

Ending statements with semicolon is not required,

but highly recommended.

JavaScript White Space

JavaScript ignores multiple spaces. You can add white space

to your script to make it more readable.

The following lines are equivalent:

 let person =

 "Hege"

 ;

 let person=

 "Hege"

 ;

A good practice is to put spaces around operators (=

+ - * /):

let x = y + z;

JavaScript Line Length and Line Breaks

For best readability, programmers often like to avoid code

lines longer than 80 characters.

If a JavaScript statement does not fit on one line, the best

place to break it is after an operator:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>

The best place to break a code line is after an

operator or a comma.

</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

"Hello Dolly!";

</script>

</body>

</html>

JavaScript Code Blocks

JavaScript statements can be grouped together in code

blocks, inside curly brackets {...}.

The purpose of code blocks is to define statements to be

executed together.

One place you will find statements grouped together in

blocks, is in JavaScript functions:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Statements</h2>

<p>JavaScript code blocks are written between {

and }</p>

<button type="button"

onclick="myFunction()">Click Me!</button>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

function myFunction() {

document.getElementById("demo1").innerHTML =

"Hello Dolly!";

document.getElementById("demo2").innerHTML =

"How are you?";

}

</script>

</body>

</html>

NB: In this tutorial we use 2 spaces of indentation

for code blocks.

You will learn more about functions later in this

tutorial.

JavaScript Keywords

JavaScript statements often start with a keyword to

identify the JavaScript action to be performed.

Here is a list of some of the keywords you will learn about in

this tutorial:

Keyword Description

var Declares a variable

let Declares a block variable

const Declares a block constant

if
Marks a block of statements to be

executed on a condition

switch
Marks a block of statements to be

executed in different cases

for
Marks a block of statements to be

executed in a loop

function Declares a function

return Exits a function

try
Implements error handling to a block of

statements

 JavaScript keywords are reserved words.

 Reserved words cannot be used as names for variables.

 JavaScript syntax is the set of

 rules, how JavaScript programs are constructed:

 // How to create variables:

 var

 x;

 let

 y;

 // How to use variables:

 x = 5;

 y = 6;

 let

 z = x + y;

JavaScript Values

The JavaScript syntax defines two types of values:

 Fixed values

 Variable values

Fixed values are called Literals .

Variable values are called Variables .

JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

<p>Number can be written with or without

decimals.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

10.50;

</script>

</body>

</html>

2. Strings are text, written within double or single quotes:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Strings</h2>

<p>Strings can be written with double or single

quotes.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

'John Doe';

</script>

</body>

</html>

 Chapter Three

 JavaScript Comment

Even though JavaScript is designed to be simple and easy to

use, complicated code that is difficult to understand at a

glance can nevertheless be written. The JavaScript standard

offers two methods for creating code comments in certain

scenarios so that developers may describe what's occurring

in layman's terms.

Even though a browser cannot execute JavaScript

comments, it is nevertheless a recommended practice for

software developers to include comments. The provision of

helpful comments to illustrate how a piece of code works is

an indication of high-quality code, and almost all codes

could use them.

This Section discusses recommended practices for writing

the most impactful JavaScript comments as well as how to

create them and use them within programs.

The significant method of message delivery is through the

JavaScript comments. To make the code easier for the end

user to understand, it is used to include comments,

warnings, or other information about the code. The

JavaScript engine, which is integrated into the browser,

ignores the JavaScript comment.

JavaScript code may be made more understandable and

explained with the use of comments. When testing

alternative code, JavaScript comments may also be used to

stop the code from running.

Developers always wind up generating sophisticated code

as websites and systems change. When writing code in this

manner, the original author or developer may understand it

completely, but a developer who is new to the team or even

the author's future self may not understand it at first. In

these situations, comments serve as an extremely useful

tool for outlining the decisions and methods of thinking that

went into producing a block of code.

A Web Developer can write comments in JavaScript — both

single-line comments for quick explanation and multi-line

comments for a detailed explanation or formal

documentation.

Advantages of JavaScript comments

There are mainly two advantages of JavaScript comments.

i. To make code easy to understand It can be used

to elaborate the code so that end user can easily

understand the code.

ii. To avoid the unnecessary code It can also be

used to avoid the code being executed. Sometimes,

we add the code to perform some action. But after

sometime, there may be need to disable the code. In

such case, it is better to use comments.

Types of JavaScript Comments

There are two types of comments in JavaScript.

i. Single-line Comment

ii. Multi-line Comment

JavaScript Single line Comment

Single line comments are very useful to add a quick

comment or explanation over a line of code. Single line

comments start with //. Any text between // and the end of

the line will be ignored by JavaScript (will not be executed).

It is represented by double forward slashes (//). It can be

used before and after the statement. Let’s see the example

of single-line comment i.e. added before the statement.

<!DOCTYPE html>

<html>

<body>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

// Change heading:

document.getElementById("myH").innerHTML =

"JavaScript Comments";

// Change paragraph:

document.getElementById("myP").innerHTML = "My

first paragraph.";

</script>

</body>

</html>

This example uses a single line comment at the end of each

line to explain the code:

<!DOCTYPE html>

<html>

<body>

<script>

var a=10;

var b=20;

var c=a+b;//It adds values of a and b variable

document.write(c);//prints sum of 10 and 20

</script>

</body>

</html>

JavaScript Multi line Comment

Sometimes, a single line is not enough to document or

explain why certain code is written in a particular way or

what it does. This is when a JavaScript Developer will opt for

writing comments across multiple lines (a JavaScript multi-

line comment can also be referred to as block comments).

Multi-line comments start with /* and end with */. Any text

between /* and */ will be ignored by JavaScript. It can be

used to add single as well as multi line comments. So, it is

more convenient. It is represented by forward slash with

asterisk then asterisk with forward slash. For example:

<!DOCTYPE html>

<html>

<body>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

/*

The code below will change

the heading with id = "myH"

and the paragraph with id = "myP"

*/

document.getElementById("myH").innerHTML =

"JavaScript Comments";

document.getElementById("myP").innerHTML = "My

first paragraph.";

</script>

</body>

</html>

It can be used before, after and middle of the statement.

<html>

<body>

<script>

/* It is multi line comment.

It will not be displayed */

document.write("example of JavaScript multiline

comment");

</script>

</body>

</html>

Using JavaScript Comments to Prevent Code

Execution

Since JavaScript comments are not executed, they’re a good

way to prevent code execution while testing new features.

This strategy allows you to locate bugs, progressively

removing comments until you find the problematic code.

Using comments to prevent execution of code is suitable for

code testing.

Adding // in front of a code line changes the code lines

from an executable line to a comment.

This example uses // to prevent execution of

one of the code lines:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Comments</h2>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

//document.getElementById("myH").innerHTML =

"My First Page";

document.getElementById("myP").innerHTML = "My

first paragraph.";

</script>

<p>The line starting with // is not executed.</p>

</body>

</html>

This example uses a comment block to

prevent execution of multiple lines:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Comments</h2>

<h1 id="myH"></h1>

<p id="myP"></p>

<script>

/*

document.getElementById("myH").innerHTML =

"Welcome to my Homepage";

document.getElementById("myP").innerHTML =

"This is my first paragraph.";

*/

document.getElementById("myP").innerHTML =

"The comment-block is not executed.";

</script>

</body>

</html>

Commenting Out Function Calls

When creating a new function, it’s often helpful to make

sure that the function doesn’t impact any other code

negatively or unexpectedly. A common testing strategy is to

comment out the new function, then make sure the rest of a

program still runs as expected without it.

This example comments out a call to a newly implemented

method to make sure it hasn’t affected the rest of the

program before testing the method itself. Despite the

function for changing the value of “X” existing in the code,

the commented out method call prevents the function’s

execution.

function doSomething(x) {

let val = x / 2;

return val;

}

let x = 1;

let y = 4;

// x = doSomething(y); // call is commented out, "x"

doesn't change

Commenting Out Function Bodies — Without Return

Values

It isn’t always necessary to comment out an entire function

when testing. If a function doesn’t return a value, you can

comment out the body of the function using a JavaScript

multiline comment. In this case, the function itself would be

called, but the value of “X” still wouldn’t change because

nothing inside the function would execute.

let x = 1;

function doSomething(z) {

/*

let a = z * z;

x = a / 2;

*/}

doSomething(12);

Commenting Out Function Bodies — With Return

Values

The previous technique won’t work the same way if the

function immediately assigns its result to a variable;

commenting out the function body makes the function

return an undefined value. The undefined value then

changes the value of “X”, which could confuse testing.

function doSomething(z) {

/*

let val = z / 2;

return val;

*/}

let x = 1;

let y = 4;

x = doSomething(y); // "X" would be undefined;

may not be desirable

Careful commenting allows developers to pinpoint bugs and

track how code works, but it’s easy to introduce unexpected

behavior without meaning to while commenting, as the

previous example shows. Always make sure you account for

any ambiguity your comments may create in testing.

Writing Effective JavaScript Comments

Finding the right balance between too many comments and

too few, or deciding on which style of comments is best for a

certain piece of code, is an ongoing debate among

developers, one that is unlikely to be resolved anytime soon.

Some codebases follow a formal commenting scheme, while

others don’t.

Developers have different preferences for when to use

single line or multiline comments, but maintaining a

consistent strategy when commenting code ensures that

comments are clear regardless of the form they take. Some

programmers use single line comments for everything, while

others use multiline comments everywhere; some

programmers only use block comments for formal

documentation, while others use them for any long

comment that takes up more than a certain number of lines.

The key to effective JavaScript comments, no matter what

style you use, is to be consistent. As long as your comments

are clear and give developers a walkthrough of how your

code works, it doesn’t matter exactly what those comments

look like.

 Chapter Four

 JavaScript Variable

Millions upon millions of websites and applications are made

possible by JavaScript. It is crucial to save data and manage

your information when putting such websites into use.

JavaScript variables are a means of naming and storing data

or information in memory so that it is easier to recall where

it is kept.

In a program, variables are named as representatives.

Variables are used in programming to represent other

thingtws, much as x may indicate the location of the

treasure on a pirate map or stand for an as-yet-unknown

value in mathematics.

Variables can be thought of as data-containing containers.

These containers can be named, so that at a later time, you

can use the name of the container to remember and modify

the data inside of it.

Consider creating an online store where you must keep

track of product details. The product name, manufacturer,

launch date, quantity available, and price must all need to

be kept on file for each product. Since memory addresses on

a computer are lengthy strings of characters and numbers

that are impossible for a human to memorize, as a

developer, you will find it increasingly challenging to recall

where each piece of information is kept in memory.

These memory regions are named using a JavaScript

variable, which allows one to simply use the variable name

to obtain the information whenever it is needed again.

Variables are containers for values, and as variables are

required to modify values, they are essential to the creation

of anything interactive or dynamic in the JavaScript

language. After using the let or var keywords to declare a

variable, you assign a value to it. To put it simply, a

JavaScript variable is a storage location name. In JavaScript,

variables can be classified as either local or global.

Variables are pleasant terms used to store information.

Consider how you address a person by name as opposed to

using terms like "human," "one head, two eyes, one nose,"

and so on. All variables are just descriptive, human-friendly

titles for data points. Variables can store values in the

following several sorts of data:

 String

 Number

 Boolean

 Array

 Objects and symbols

JavaScript Keywords

JavaScript keywords are used to identify actions to be

performed. The let keyword tells the browser to create

variables:

<!DOCTYPE html>

<html>

<body>

<h2>The let Keyword Creates

Variables</h2>

<p id="demo"></p>

<script>

let x, y;

x = 5 + 6;

y = x * 10;

document.getElementById("demo").innerHTML = y;

</script>

</body>

</html>

The var keyword also tells the browser to create

variables:

<!DOCTYPE html>

<html>

<body>

<h2>The var Keyword Creates Variables</h2>

<p id="demo"></p>

<script>

var x, y;

x = 5 + 6;

y = x * 10;

document.getElementById("demo").innerHTML = y;

</script>

</body>

</html>

JavaScript variables can be created in three different ways

using keywords var , let and const . Initially, variables

were created using only the var keyword. But due to

some historic drawbacks of using var , let and const

were implemented for creating variables. It is recommended

that Developers don ’ t use the var keyword anymore to

declare variables. Irrespective of which keyword you use to

get your variable declared, the syntax still remains the

same.

<keyword> <variable_name> =

<value_to_be_stored>

As seen above, a variable can be created by specifying the

keyword, followed by a variable name that will be used to

store the value and as well retrieve it later, a simple

assignment operator (an equal sign) for assigning variable

values, and the value to be stored itself.

You can choose to create a local variable or a global

variable. Global variables are accessible from anywhere in

the program. Local variables are variables declared inside a

function, which avoids a conflict with another variable with

the same variable name.

You can also declare multiple variables in one statement in

JavaScript. Variable declaration can also span multiple lines.

JavaScript Variable Naming Convention

JavaScript variables are powerful programming constructs.

However, there is a convention that should be followed by

creating a variable in JavaScript.

Following are the rules that a Developer should follow to

properly get variables declared:

 Variable name should only contain alphabets,

numbers, $ and _

 Variable name should not start with a number

 Variable names are case-sensitive

i.e. result and Result are two different variables

 Variables can’t be named as one of the reserved

keywords like let, return, const, etc.

 Variable should use camelCase i.e. numOne is

preferred over NumOne or numone

 Variable can’t have hyphen - in its name

 Use easy-to-understand names that symbolize the

value stored in variables. For e.g. instead of calling a

variable phNum, a Developer can call it phoneNumber.

 Don’t use single-letter variable names like x, a, z,

etc.

JavaScript Var Keyword

Variables can be created using the var keyword. The only

thing to remember is that JavaScript won’t complain or

throw an error if a variable is being used before it is

declared using the var keyword. In modern programming

using JavaScript code, using the var keyword for variables is

discouraged and should be replaced with let or const

Variables created using var keyword are also function-

scoped or global-scoped i.e. it is very hard to limit wherein a

large block of code the variable should be accessible.

Hence, code written using the var keyword is hard to

maintain.

var numOne = 20;

var numTwo = 30;

var result = numOne + numTwo;

console.log(‘Result is: ‘, result);

Example using var

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are variables.</p>

<p id="demo"></p>

<script>

var x = 5;

var y = 6;

var z = x + y;

document.getElementById("demo").innerHTML =

"The value of z is: " + z;

</script>

</body>

</html>

Note:

The var keyword was used in all JavaScript code

from 1995 to 2015.

The let and const keywords were added to

JavaScript in 2015.

The var keyword should only be used in code

written for older browsers.

JavaScript Let Keyword

let keyword was introduced to solve hoisting issues that

the var keyword had. let variables are block-scoped and are

only accessible to where they are declared. This limits the

issues of variables being overwritten somewhere else in the

code. Apart from this, the variables created using

the let keyword follow the same syntax as the ones created

using the var keyword. Variables created

using let and var keywords can be reassigned a value of a

different kind. Hence they are mutable.

let numOne = 20;

let numTwo = 30;

var result = numOne + numTwo;

console.log(‘Result is: ‘, result); // should print 50

numThree = 60;

result = numOne + numThree; // reassign result

new value

console.log(‘Result is: ‘, result); // should print 80

Example using let

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are variables.</p>

<p id="demo"></p>

<script>

let x = 5;

let y = 6;

let z = x + y;

document.getElementById("demo").innerHTML =

"The value of z is: " + z;

</script>

</body>

</html>

JavaScript Const Keyword

Sometimes, variables created should not change the value

assigned to it. This can’t be achieved if you declare a

variable using let and var keywords. In such cases, a

variable should be created using the const keyword. A

variable created using const∏ can’t change the value

assigned to it. It symbolizes constants.

let numOne = 20;

let numTwo = 30;

const result = numOne + numTwo;

console.log(‘Result is: ‘, result); // should print 50

numThree = 60;

result = numOne + numThree; // this is not allowed

as result is a constant variable

console.log(‘Result is: ‘, result); // this will not be

executed as above line has error

Example using Const

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Variables</h1>

<p>In this example, x, y, and z are variables.</p>

<p id="demo"></p>

<script>

const x = 5;

const y = 6;

const z = x + y;

document.getElementById("demo").innerHTML =

"The value of z is: " + z;

</script>

</body>

</html>

const variables are also named differently sometimes when

they store a value that would be otherwise hard to

remember or store. Like private keys, colors, fonts, etc.

usually have complex values and hence const are

appropriate for it.

const LIGHT_GRAY = ‘#ccc’;

const DARK_GRAY = ‘#eee’;

When to Use JavaScript const?

If you want a general rule: always declare variables with

const. If you think the value of the variable can change, use

 let. In this example, price1, price2, and total, are

variables:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Variables</h1>

<p>In this example, price1, price2, and total are

variables.</p>

<p id="demo"></p>

<script>

const price1 = 5;

const price2 = 6;

let total = price1 + price2;

document.getElementById("demo").innerHTML =

"The total is: " + total;

</script>

</body>

</html>

The two variables price1 and price2 are declared with

the const keyword. These are constant values and cannot

be changed. The variable total is declared with the let

keyword. This is a value that can be changed.

JavaScript Local Variable

A JavaScript local variable is declared inside block or

function. It is accessible within the function or block only.

Variables declared within a JavaScript function, are LOCAL

to the function: For example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Scope</h2

<p>carName is undefined outside

myFunction():</p>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

myFunction();

function myFunction() {

let carName = "Volvo";

document.getElementById("demo1").innerHTML =

typeof carName + " " + carName;

}

document.getElementById("demo2").innerHTML =

typeof carName;

</script>

</body>

</html>

When you use JavaScript, local variables are variables that

are defined within functions. They have local scope, which

means that they can only be used within the functions that

define them. Accessing them outside the function will throw

an error.

<script>

function abc(){

var x=10;//local variabl

e

}

</script>

Or

<script>

If(10<13){

var y=20;//JavaScript

local variable

}

</script>

Local variables have Function Scope . They can only be

accessed from within the function. Since local variables are

only recognized inside their functions, variables with the

same name can be used in different functions.

Local variables are created when a function starts, and

deleted when the function is completed.

Function Scope

JavaScript has function scope: Each function creates a new

scope. Variables defined inside a function are not accessible

(visible) from outside the function. Variables declared with

var, let and const are quite similar when declared inside a

function. They all have Function Scope :

 function myFunction() {

 var carName = "Ho

 nda

 "; // Function Scope

 }

 Function myFunction() {

 let carName = "Honda"; // Function Scope

 }

 function myFunction() {

 const carName = "Honda"; // Function

Scope

 }

JavaScript Global Variable

These are variables that are defined in global scope i.e.

outside of functions. These variables have a global scope, so

they can be accessed by any function directly. In the case of

global scope variables, the keyword they are declared with

does not matter they all act the same. A variable declared

without a keyword is also considered global even though it

is declared in the function.

A JavaScript global variable is accessible from any function.

A variable i.e. declared outside the function or declared with

window object is known as global variable. For example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Scope</h2>

<p>A GLOBAL variable can be accessed from any

script or function.</p>

<p id="demo"></p>

<script>

let carName = "Volvo";

myFunction();

function myFunction() {

document.getElementById("demo").innerHTML = "I

can display " + carName;

}

</script>

</body>

</html>

<html>

<body>

<script>

var value=50;//global variable

function a(){

alert(value);

}

function b(){

alert(value);

}

a();

</script>

</body>

</html>

Another example

let petName = 'Rocky' // Global variable

myFunction()

function myFunction() {

fruit = 'apple'; // Considered global

console.log(typeof petName +

'- ' +

'My pet name is ' +

petName)

}

console.log(

typeof petName +

'- ' +

'My pet name is ' +

petName +

'Fruit name is ' +

fruit)

In the example above, We can see that the variable

petName is declared in the global scope and is easily

accessed inside functions. Also, the fruit was declared inside

the function without any keyword so it was considered

global and was accessible inside another function.

Declaring JavaScript global variable within function

To declare JavaScript global variables inside function, you

need to use window object .

Now it can be declared inside any function and can

be accessed from any function. For example:

<html>

<body>

<script>

function m(){

window.value=100;//declaring global variable by

window object

}

function n(){

alert(window.value);//accessing global variable from

other function

}

m();

n();

</script>

</body>

</html>

Internals of global variable in JavaScript

When you declare a variable outside the function, it is

added in the window object internally. You can access it

through window object also. For example:

var value=50;

function a(){

alert(window.value);//accessing global variabl

e

}

Automatically Global

If you assign a value to a variable that has not been

declared, it will automatically become a GLOBAL variable.

This code example will declare a global variable carName,

even if the value is assigned inside a function.

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Global

Variables</h2>

 <p>If you assign a value to a

variable that has not been declared, it will

automatically become a GLOBAL variable:</p>

 <p id="demo"></p>

 <script>

 myFunction();

 // code here can use carName as a

global variable

document.getElementById("demo").innerHTM

L = "I can display " + carName;

 function myFunction() {

 carName = "Volvo";

 }

 </script>

 </body>

 </html>

Global Variables in HTML

With JavaScript, the global scope is the JavaScript

environment.

In HTML, the global scope is the window object.

Global variables defined with the var keyword belong to the

window object:

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Scope</h2>

 <p>In HTML, global variables defined

with var, will become window variables.

</p>

 <p id="demo"></p>

 <script>

 var carName = "To

 yota

 ";

 // code here can use window.carName

document.getElementById("demo").innerHTML =

"I can display " + window.carName;

 </script>

 </body>

 </html>

 Global variables defined with the let

keyword do not belong to the window object:

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Global Variables</h2>

 <p>In HTML, global variables defined

with let, will not become window

variables.</p>

 <p id="demo"></p>

 <script>

 let carName = "To

 yota

 ";

 // code here can not use

window.carName

document.getElementById("demo").innerHTML =

"I can not display " + window.carName;

 </script>

 </body>

 </html>

How to use variables

 The scope of a variable or function determines

what code has access to it.

 Variables that are created inside a function are

local variables, and local variables can only be referred

to by the code within the function.

 Variables created outside of functions are global

variables, and the code in all functions has access to all

global variables.

 If you forget to code the var keyword in a

variable declaration, the JavaScript engine assumes that

the variable is global.

 This can cause debugging problems.

 In general, it’s better to pass local variables from

one function to another as parameters than it is to use

global variables.

 That will make your code easier to understand

with less chance of errors.

Where to use which variable

 Although it may seem easier to use global variables

than to pass data to a function and return data from it,

global variables often create problems. That’s because

any function can modify a global variable, and it’s all too

easy to misspell a variable name or modify the wrong

variable, especially in large applications. That, in turn,

can create debugging problems.

 In contrast, the use of local variables reduces the

likelihood of naming conflicts. For instance, two different

functions can use the same names for local variables

without causing conflicts. That of course, means fewer

errors and debugging problems. With just a few

exceptions, then, all of the code in your applications

should be in functions so all of the variables are local.

 If you misspell the name of a variable that you’ve

already declared, it will be treated as a new global

variable. With this in mind, be sure to include the

keyword when you declare new variables and always

declare a variable before you refer to it in your code.

Note: Use local variables whenever possible. Always use

the var keyword to declare a new variable before the

variable is referred to by other statements.

 Chapter Five

 JavaScript Operators

In JavaScript, an operator is a special symbol used to

perform operations on operands (values and variables).

JavaScript operators, expressions, and statements are the

basic building blocks of programs. They help you manipulate

and change values, perform math, compare two or more

values, and much, much more.

Example: var sum=10+20;

Here, + is the arithmetic operator and = is the assignment

operator.

At a high level, an expression is a valid unit of code that

resolves to a value. There are two types of expressions:

those that have side effects (such as assigning values) and

those that purely evaluate .

The expression x = 7 is an example of the first type. This

expression uses the = operator to assign the value

seven to the variable x. The expression itself evaluates to

7.

The expression 3 + 4 is an example of the second type.

This expression uses the + operator to add 3 and 4

together and produces a value, 7. However, if it's not

eventually part of a bigger construct (for example, a

variable declaration like const z = 3 + 4), its result will be

immediately discarded — this is usually a programmer

mistake because the evaluation doesn't produce any effects.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Grammar_and_types#declarations

As the examples above also illustrate, all complex

expressions are joined by operators , such as = and +.

In this section, we will introduce the following operators:

 Assignment operators

 Comparison operators

 Arithmetic operators

 Bitwise operators

 Logical operators

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#assignment_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#comparison_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#arithmetic_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#logical_operators

 BigInt operators

 String operators

 Conditional (ternary) operator

 Comma operator

 Unary operators

 Relational operators

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bigint_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#string_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#conditional_ternary_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#comma_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#unary_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#relational_operators

These operators join operands either formed by higher-

precedence operators or one of the basic expressions . A

complete and detailed list of operators and expressions is

also available in the reference .

The precedence of operators determines the order they

are applied when evaluating an expression. For example:

const x = 1 + 2 * 3;

const y = 2 * 3 + 1;

Despite * and + coming in different orders, both

expressions would result in 7 because * has

precedence over + , so the * -joined expression will

always be evaluated first. You can override operator

precedence by using parentheses (which creates a

grouped expression — the basic expression).

JavaScript Assignment

 The

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#basic_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#grouping_operator

 assignment operator

 assigns the value of the operand on the right to the

operand on the left.

The Assignment Operator (=) assigns a value to a

variable:

JavaScript provides the assignment operators to assign

values to variables with less key strokes. An assignment

operator assigns a value to its left operand based on the

value of its right operand. The simple assignment operator

is equal (=), which assigns the value of its right operand to

its left operand. That is, x = f() is an assignment

expression that assigns the value of f() to x.

There are also compound assignment operators that are

shorthand for the operations listed in the following table:

Name
Shorthand

operator
Meaning

Assignment x = f() x = f()

Addition

assignment
x += f() x = x + f()

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Addition_assignment

Subtraction

assignment

x -= f() x = x - f()

Multiplication

assignment
x *= f() x = x * f()

Division

assignment
x /= f() x = x / f()

Remainder

assignment
x %= f() x = x % f()

Exponentiation

assignment
x **= f() x = x ** f()

Left shift

assignment
x <<= f()

x = x <<

f()

Right shift

assignment
x >>= f()

x = x >>

f()

Unsigned right

shift assignment
x >>>= f()

x = x >>>

f()

Bitwise AND

assignment
x &= f() x = x & f()

Bitwise XOR

assignment
x ^= f() x = x ^ f()

Bitwise OR

assignment
x |= f() x = x | f()

Logical AND

assignment
x &&= f()

x && (x =

f())

Logical OR

assignment
x ||= f() x || (x = f())

Nullish coalescing

assignment

x ??= f() x ?? (x =

f())

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Subtraction_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Multiplication_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Division_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Remainder_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Exponentiation_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Left_shift_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Right_shift_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Unsigned_right_shift_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_AND_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_XOR_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_OR_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_OR_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Nullish_coalescing_assignment

Assignment Examples

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The = Operator</h2>

<p id="demo"></p>

<script>

let x = 10;

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Example 2:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The Assignment (=) Operator</h2>

<p id="demo"></p>

<script>

// Assign the value 5 to x

let x = 5;

// Assign the value 2 to y

let y = 2;

// Assign the value x + y to z

let z = x + y;

// Display z

document.getElementById("demo").innerHTML =

"The sum of x + y is: " + z;

</script>

</body>

</html>

Assignment Example 2:

<!DOCTYPE html>

<html>

<body>

<h1>Example: JavaScript Assignment

Operators</h1>

<p id="p1"></p>

<p id="p2"></p>

<p id="p3"></p>

<p id="p4"></p>

<p id="p5"></p>

<p id="p6"></p>

<script>

let x = 5, y = 10;

x = y;

document.getElementById("p1").innerHTML = x;

x += 1;

document.getElementById("p2").innerHTML = x;

x -= 1;

document.getElementById("p3").innerHTML = x;

x *= 5;

document.getElementById("p4").innerHTML = x;

x /= 5;

document.getElementById("p5").innerHTML = x;

x %= 2;

document.getElementById("p6").innerHTML = x;

</script>

</body>

</html>

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic

operations on the operands. The following operators are

known as JavaScript arithmetic operators.

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation (ES2016)

/ Division

% Modulus (Division Remainder)

++ Increment

-- Decrement

The commonly used assignment operator is =. You will

understand other assignment operators such as +=, -

=, *= etc as shown in the table below .

Operat

 Name

 Example

https://www.w3schools.com/js/js_2016.asp

or

=

 Assignment

operator

 a = 7; // 7

+=

 Addition

assignment

 a += 5; //

a = a + 5

-=

 Subtraction

Assignment

 a -= 2; // a

= a - 2

*=

 Multiplication

Assignment

 a *= 3; // a

= a * 3

/=

 Division

Assignment

 a /= 2; // a

= a / 2

%=

 Remainder

Assignment

 a %= 2; //

a = a % 2

**=

 Exponentiation

Assignment

 a **= 2; //

a = a**2

 Example : Arithmetic operators in JavaScript

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Arithmetic</h1>

<h2>Arithmetic Operations</h2>

<p>A typical arithmetic operation takes two

numbers (or expressions) and produces a new

number.</p>

<p id="demo"></p>

<script>

let x = 5;

let y = 3;

// addition

console.log('x + y = ', x + y); // 8

// subtraction

console.log('x - y = ', x - y); // 2

// multiplication

console.log('x * y = ', x * y); // 15

// division

console.log('x / y = ', x / y); // 1.6666666666666667

// remainder

console.log('x % y = ', x % y); // 2

// increment

console.log('++x = ', ++x); // x is now 6

console.log('x++ = ', x++); // prints 6 and then

increased to 7

console.log('x = ', x); // 7

// decrement

console.log('--x = ', --x); // x is now 6

console.log('x-- = ', x--); // prints 6 and then

decreased to 5

console.log('x = ', x); // 5

//exponentiation

console.log('x ** y =', x ** y);

document.getElementById("demo").innerHTML = x /

y;

</script>

</body>

</html>

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

The Addition Assignment Operator (+=) adds a

value to a variable.

Operator Example Same As

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

Example:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Arithmetic</h1>

<h2>The += Operator</h2>

<p id="demo"></p>

<script>

var x = 10;

x += 5;

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript Comparison Operators

JavaScript provides comparison operators that compare

two operands and return a boolean value true or

false.

Operato

rs
Description

==
Compares the equality of two operands

without considering type.

===
Compares equality of two operands with

type.

!= Compares inequality of two operands.

>

Returns a boolean value true if the left-

side value is greater than the right-side

value; otherwise, returns false.

<

Returns a boolean value true if the left-

side value is less than the right-side

value; otherwise, returns false.

>=

Returns a boolean value true if the left-

side value is greater than or equal to the

right-side value; otherwise, returns false.

<=

Returns a boolean value true if the left-

side value is less than or equal to the

right-side value; otherwise, returns false.

 Comparison operators compare two values and return

a boolean value, either true or false.

 For example,

 Const a=3, b=2;

 Console.log(a>b); //true

 Here, the comparison operator

 >

 is used to compare whether

 a

 is greater than

 b.

Operat

or
Description

Exampl

e

==

 Equal to: returns true if

the operands are equal

 x

== y

 !=

 Not equal to: returns

true if the operands are not

equal

 x

!= y

===

 Strict equal to: true if the

operands are equal and of the

same type

 x

=== y

!==

 Strict not equal to: true if

the operands are equal but of

different type or not equal at all

 x

!== y

>

 Greater than: true if left

operand is greater than the right

operand

 x

> y

>=

 Greater than or equal to:

true if left operand is greater

than or equal to the right

operand

 x

>= y

 Less than: true if the left

 x

<

operand is less than the right

operand

< y

<=

 Less than or equal to:

true if the left operand is less

than or equal to the right

operand

 x

<= y

Example

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Operators</h1>

<p>All conditional operators can be used on both

numbers and strings.</p>

<p id="demo"></p>

<script>

let text1 = "A";

let text2 = "B";

let result = text1 < text2;

document.getElementById("demo").innerHTML = "Is

A less than B? " + result;

</script>

</body>

</html>

Note that strings are compared alphabetically:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Operators</h1>

<p>Note that strings are compared alphabetically:

</p>

<p id="demo"></p>

<script>

let text1 = "20";

let text2 = "5";

let result = text1 < text2;

document.getElementById("demo").innerHTML = "Is

20 less than 5? " + result;

</script>

</body>

</html>

JavaScript String Addition

The + can also be used to add (concatenate) strings:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Operators</h1>

<h2>The + Operator</h2>

<p>The + operator concatenates (adds) strings.

</p>

<p id="demo"></p>

<script>

let text1 = "Jeremiah";

let text2 = "Timothy";

let text3 = "Mathew";

let text4 = text1 + " " + text2 + " " + text3;

document.getElementById("demo").innerHTML =

text4;

</script>

</body>

</html>

The += assignment operator can also be used to add

(concatenate) strings:

Example

 let

 text1 =

 "How are You Doing Today?"

 ;

 text1 +=

 "I am Fine Thank You"

 ;

The result of text1 will be:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Operators</h1>

<h2>The += Operator</h2>

<p>The assignment operator += can concatenate

strings.</p>

<p id="demo"></p>

<script>

let text1 = "How are you Doing Today? ";

text1 += "I am Fine Thank you";

document.getElementById("demo").innerHTML =

text1;

</script>

</body>

</html>

Note

When used on strings, the + operator is called the

concatenation operator.

Adding Strings and Numbers

Adding two numbers, will return the sum, but adding a

number and a string will return a string:

 Example

 let x = 5 + 5;

 let y =

 "5"

 + 5;

 let z =

 "Hello"

 + 5;

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Operators</h1>

<h2>The + Operator</h2>

<p>Adding a number and a string, returns a string.

</p>

<p id="demo"></p>

<script>

let x = 5 + 5;

let y = "5" + 5;

let z = "Hello" + 5;

document.getElementById("demo").innerHTML =

x + "
" + y + "
" + z;

</script>

</body>

</html>

JavaScript Logical Operators

Logical operators are typically used with Boolean (logical)

values; when they are, they return a Boolean value.

However, the && and || operators actually return the

value of one of the specified operands, so if these operators

are used with non-Boolean values, they may return a non-

Boolean value. The logical operators are described in the

following table. Logical operators perform logical operations

and return a boolean value, either true or false.

 Description

Operato

r

&&

 && is known as AND operator.

 It checks whether two operands

are non-zero or not (0, false, undefined,

null or "" are considered as zero).

 It returns 1 if they are non-zero;

otherwise, returns 0.

 ||

 || is known as OR operator.

 It checks whether any one of the

two operands is non-zero or not (0, false,

undefined, null or "" is considered as

zero).

 It returns 1 if any one of of them is

non-zero; otherwise, returns 0.

 !

 !

 is known as NOT operator.

 It reverses the boolean result of

the operand (or

condition). !false returns true,

and !true returns false.

 <!DOCTYPE html>

 <html>

 <body>

 <h1>Demo: JavaScript Logical

Operators</h1>

 <p id="p1"></p>

 <p id="p2"></p>

 <p id="p3"></p>

 <p id="p4"></p>

 <p id="p5"></p>

 <script>

 let a = 5, b = 10;

document.getElementById("p1").innerHTML = (a !=

b) && (a < b);

document.getElementById("p2").innerHTML = (a >

b) || (a == b);

document.getElementById("p3").innerHTML = (a <

b) || (a == b);

document.getElementById("p4").innerHTML = !(a <

b);

document.getElementById("p5").innerHTML = !(a >

b);

 </script>

 </body>

 </html>

 JavaScript Bitwise Operators

A bitwise operator treats their operands as a set of 32

bits (zeros and ones), rather than as decimal,

hexadecimal, or octal numbers. For example, the

decimal number nine has a binary representation of

1001. Bitwise operators perform their operations on

such binary representations, but they return standard

JavaScript numerical values.

Bitwise operators perform operations on binary

representations of numbers.

The following table summarizes JavaScript's bitwise

operators.

Operator
Usag

e
Description

Bitwise AND a & b

Returns a one in each bit

position for which the

corresponding bits of both

operands are ones.

Bitwise OR a | b

Returns a zero in each bit

position for which the

corresponding bits of both

operands are zeros.

Bitwise XOR a ^ b

Returns a zero in each bit

position for which the

corresponding bits are the

same. [Returns a one in each

bit position for which the

corresponding bits are

different.]

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a <<

b

Shifts a in binary

representation b bits to the

left, shifting in zeros from the

right.

Sign-

propagating

right shift

a >>

b

Shifts a in binary

representation b bits to the

right, discarding bits shifted

off.

Zero-fill

right shift

a

>>>

b

Shifts a in binary

representation b bits to the

right, discarding bits shifted

off, and shifting in zeros from

the left.

Bitwise logical operators

Conceptually, the bitwise logical operators work as follows:

The operands are converted to thirty-two-bit integers and

expressed by a series of bits (zeros and ones). Numbers

with more than 32 bits get their most significant bits

discarded.

Operato

r
Name Description

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#bitwise_logical_operators

& AND Sets each bit to 1 if both bits

are 1

| OR
Sets each bit to 1 if one of

two bits is 1

^ XOR
Sets each bit to 1 if only one

of two bits is 1

~ NOT Inverts all the bits

<<
Zero fill left

shift

Shifts left by pushing zeros in

from the right and let the

leftmost bits fall off

>>
Signed right

shift

Shifts right by pushing copies

of the leftmost bit in from the

left, and let the rightmost

bits fall off

>>>
Zero fill right

shift

Shifts right by pushing zeros

in from the left, and let the

rightmost bits fall off

Any numeric operand in the operation is converted into a 32

bit number. The result is converted back to a JavaScript

number.

Operation Result Same as Result

5 & 1 1 0101 & 0001 0001

5 | 1 5 0101 | 0001 0101

~ 5 10 ~0101 1010

5 << 1 10 0101 << 1 1010

5 ^ 1 4 0101 ^ 0001 0100

5 >> 1 2 0101 >> 1 0010

5 >>> 1 2 0101 >>> 1 0010

Each bit in the first operand is paired with the corresponding

bit in the second operand: first bit to first bit, second bit to

second bit, and so on.

The operator is applied to each pair of bits, and the result is

constructed bitwise.

For example, the binary representation of nine is 1001, and

the binary representation of fifteen is 1111. So, when the

bitwise operators are applied to these values, the results are

as follows:

Expression Result Binary Description

15 & 9 9 1111 & 1001 = 1001

15 | 9 15 1111 | 1001 = 1111

15 ^ 9 6 1111 ^ 1001 = 0110

~15 -16

~ 0000 0000 … 0000

1111 = 1111 1111 …

1111 0000

~9 -10

~ 0000 0000 … 0000

1001 = 1111 1111 …

1111 0110

Note that all 32 bits are inverted using the Bitwise NOT

operator, and that values with the most significant (left-

most) bit set to 1 represent negative numbers (two's-

complement representation). ~x evaluates to the same

value that -x - 1 evaluates to.

JavaScript Bitwise AND

When a bitwise AND is performed on a pair of bits, it returns

1 if both bits are 1.

One bit example: 4 bits example:

Operation Result Operation Result

0 & 0 0
1111 &

0000
0000

0 & 1 0
1111 &

0001
0001

1 & 0 0
1111 &

0010
0010

1 & 1 1
1111 &

0100
0100

Example

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Bitwise AND</h1>

<h2>The & Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5

& 1;

</script>

</body>

</html>

JavaScript Bitwise OR

 When a bitwise OR is performed on a pair of bits, it

returns 1 if one of the bits is 1:

 One bit example:

 4 bits example:

Operation

Operation

Result

 0 | 0

1111 | 0000

1111

 0 | 1

1111 | 0001

1111

 1 | 0

1111 | 0010

1111

 1 | 1

1111 | 0100

1111

Example:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Bitwise OR</h1>

<h2>The | Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5 |

1;

</script>

</body>

</html>

JavaScript Bitwise XOR

When a bitwise XOR is performed on a pair of bits, it returns

1 if the bits are different:

One bit example:

Operation Result

0 ^ 0 0

0 ^ 1 1

1 ^ 0 1

1 ^ 1 0

4 bits example:

Operation Result

1111 ^ 0000 1111

1111 ^ 0001 1110

1111 ^ 0010 1101

1111 ^ 0100 1011

Example:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Bitwise XOR</h1>

<h2>The ^ Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5

^ 1;

</script>

</body>

</html>

JavaScript Bitwise NOT (~)

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Bitwise NOT</h1>

<h2>The ~ Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = ~

5;

</script>

</body>

</html>

JavaScript (Zero Fill) Bitwise Left Shift (<<)

The left shift (<<) operator returns a number or BigInt

whose binary representation is the first operand shifted by

the specified number of bits to the left. Excess bits shifted

off to the left are discarded, and zero bits are shifted in from

the right.

The << operator is overloaded for two types of operands:

number and BigInt . For numbers, the operator returns a

32-bit integer. For BigInts, the operator returns a BigInt. It

first coerces both operands to numeric values and tests

the types of them. It performs BigInt left shift if both

operands becomes BigInts; otherwise, it converts both

operands to 32-bit integers and performs number left

shift. A TypeError is thrown if one operand becomes a

BigInt but the other becomes a number.

This is a zero fill left shift. One or more zero bits are pushed

in from the right, and the leftmost bits fall off:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#numeric_coercion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number#fixed-width_number_conversion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypeError

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Bitwise Left</h1>

<h2>The << Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 5

<< 1;

</script>

</body>

</html>

JavaScript (Sign Preserving) Bitwise Right Shift (>>)

The right shift (>>) operator returns a number or BigInt

whose binary representation is the first operand shifted by

the specified number of bits to the right. Excess bits shifted

off to the right are discarded, and copies of the leftmost bit

are shifted in from the left. This operation is also called

"sign-propagating right shift" or "arithmetic right shift",

because the sign of the resulting number is the same as the

sign of the first operand.

The >> operator is overloaded for two types of operands:

number and BigInt . For numbers, the operator returns a

32-bit integer. For BigInts, the operator returns a BigInt. It

first coerces both operands to numeric values and tests

the types of them. It performs BigInt right shift if both

operands becomes BigInts; otherwise, it converts both

operands to 32-bit integers and performs number right

shift. A TypeError is thrown if one operand becomes a

BigInt but the other becomes a number.

This is a sign preserving right shift. Copies of the leftmost bit

are pushed in from the left, and the rightmost bits fall off:

<!DOCTYPE html>

<html>

<body>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#numeric_coercion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number#fixed-width_number_conversion
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypeError

<h1>JavaScript Signed Bitwise Right</h1>

<h2>The >> Operator</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = -5

>> 1;

</script>

</body>

</html>

JavaScript (Zero Fill) Right Shift (>>>)

Zero-fill right shift (>>>) operator: It is a binary operator,

where the first operand specifies the number and the

second operand specifies the number of bits to shift . The

operator shifts the bits of the first operand by a number of

bits specified by the second operand.

The unsigned right shift (>>>) operator returns a

number whose binary representation is the first operand

shifted by the specified number of bits to the right. Excess

bits shifted off to the right are discarded, and zero bits are

shifted in from the left. This operation is also called "zero-

filling right shift", because the sign bit becomes 0 , so the

resulting number is always positive. Unsigned right shift

does not accept BigInt values.

Unlike other arithmetic and bitwise operators, the unsigned

right shift operator does not accept BigInt values. This is

because it fills the leftmost bits with zeroes, but

conceptually, BigInts have an infinite number of leading sign

bits, so there's no "leftmost bit" to fill with zeroes.

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Unsigned Bitwise Right</h1>

<h2>The >>> Operator</h2>

<p id="demo"></p>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt

<script>

document.getElementById("demo").innerHTML = 5

>>> 1;

</script>

</body>

</html>

Converting Decimal to Binary

Example 1:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Convert Decimal to Binary</h1>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

dec2bin(-5);

function dec2bin(dec){

return (dec >>> 0).toString(2);

}

</script>

</body>

</html>

Converting Binary to Decimal

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Convert Binary to Decimal</h2>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

bin2dec(101);

function bin2dec(bin){

return parseInt(bin, 2).toString(10);

}

</script>

</body>

</html>

 Chapter Six

 JavaScript Data Types

A variable ’ s data type is the kind of data the variable can

hold and what operations can be done with the value of the

variable. The number 10, used in a sentence, is different

than the number 10 used in an equation.

Data types are the way JavaScript distinguishes between

values that are meant to be words and values that are

meant to be treated as mathematical expressions.

Programming languages all have built-in data structures, but

these often differ from one language to another. If you think

about all the types of data that you work with on a daily

basis, pie charts, recipes, short stories, newspaper articles,

and so on, you ’ ll see just how much potential there is for

things to get very complicated when it comes to data. The

generous creators of JavaScript decided to make things very

simple for you. It has just five basic data types.

 This section attempts to list the built-in data

structures available in JavaScript and what properties they

have.

 These can be used to build other data structures.

 A value in JavaScript is always of a certain type.

 For example, a string or a number.

Furthermore, JavaScript is what ’ s called a loosely typed

language. What loosely typed means is that you don ’ t even

need to tell JavaScript, or even know, whether a variable

you ’ re creating will hold a word, a paragraph, a number, or

a different type of data.

 Loosely typed doesn

 ’

 t mean that JavaScript doesn

 ’

 t distinguish between words and numbers.

 JavaScript just is friendly about it and handles the

work of figuring out what type of data you store in your

variables largely behind the scenes.

 There are eight basic data types in JavaScript.

 We can put any type in a variable.

 For example, a variable can at one moment be a

string and then store a number:

JavaScript provides different data types to hold different

types of values. There are two types of data types in

JavaScript.

1. Primitive data type

2. Non-primitive (reference) data type

JavaScript is a dynamic type language; means you don't

need to specify type of the variable because it is

dynamically used by JavaScript engine.

You need to use var here to specify the data type. It can

hold any type of values such as numbers, strings etc.

There are eight basic data types in JavaScript. They are:

Data

Types

Description

 Example

String

 represents

textual data

 'hello', "hello

world!"

 etc

 an integer

 3, 3.234, 3e-2

Number

or a floating-point

number

etc.

BigInt

 an integer

with arbitrary

precision

90071992512474099

9n , 1n etc.

Boolean

 Any of two

values: true or

false

 true and false

undefined

 a data

type whose

variable is not

initialized

 let a;

null

 denotes a

null value

 let a = null;

Symbol

 data type

whose instances

are unique and

immutable

 let value =

Symbol('hello');

Object

 key-value

pairs of collection

of data

 let student = {

};

 Here, all data types except

 Object

 are primitive data types, whereas

 Object

 is non-primitive.

JavaScript primitive data types

There are five types of primitive data types in

JavaScript. They are as follows:

Data Type Description

String
represents sequence of characters

e.g. "hello"

Number
represents numeric values e.g.

100

Boolean
represents boolean value either

false or true

Undefined represents undefined value

Null represents null i.e. no value at all

JavaScript non-primitive data types

The non-primitive data types are as follows:

Data Type Description

Object
represents instance through

which we can access members

Array represents group of similar values

RegExp represents regular expression

Examples

 // Numbers:

 let

 length = 16;

 let

 weight = 7.5;

 // Strings:

 let

 color =

 "Yellow"

 ;

 let

 lastName =

 "Johnson"

 ;

 // Booleans

 let

 x =

 true

 ;

 let

 y =

 false

 ;

 // Object:

 const

 person = {firstName:

 "John"

 , lastName:

 "Doe"

 };

 // Array object:

 const

 cars = [

 "Saab"

 ,

 "Volvo"

 ,

 "BMW"

];

 // Date object:

 const

 date =

 new

 Date(

 "2022-03-25"

);

The Concept of Data Types

In programming, data types are an important concept. To be

able to operate on variables, it is important to know

something about the type.

Without data types, a computer cannot safely solve this:

let x = 16 + "Volvo" ;

Does it make any sense to add "Volvo" to sixteen? Will it

produce an error or will it produce a result?

JavaScript will treat the example above as:

let x = "16" + "Volvo" ;

 Note

 When adding a number and a string, JavaScript will

treat the number as a string.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript</h2>

<p>When adding a number and a string, JavaScript

will treat the number as a string.</p>

<p id="demo"></p>

<script>

let x = 16 + "Volvo";

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript Types are Dynamic

JavaScript has dynamic types. This means that the same

variable can be used to hold different data types:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Data Types</h2>

<p>JavaScript has dynamic types. This means that

the same variable can be used to hold different

data types:</p>

<p id="demo"></p>

<script>

let x; // Now x is undefined

x = 5; // Now x is a Number

x = "John"; // Now x is a String

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript Strings

The String type represents textual data and is encoded as

a sequence of 16-bit unsigned integer values representing

UTF-16 code units . Each element in the string occupies a

position in the string. The first element is at index 0, the

next at index 1, and so on. The length of a string is the

number of UTF-16 code units in it, which may not

correspond to the actual number of Unicode characters; see

the String reference page for more details.

JavaScript strings are immutable. This means that once a

string is created, it is not possible to modify it. String

methods create new strings based on the content of the

current string — for example:

 A substring of the original using substring().

 A concatenation of two strings using the

concatenation operator (+) or .

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#utf-16_characters_unicode_code_points_and_grapheme_clusters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length

 String

 is used to store text.

 In JavaScript, strings are surrounded by quotes:

 Single quotes:

 'Hello'

 Double quotes:

 "Hello"

 Backticks:

 `Hello`

Example:

//strings example

Const name =’ram’;

Const name1 =”cow”;

Const result =’the names are ${name} and

${name1}’;

Single quotes and double quotes are practically the same

and you can use either of them.

Backticks are generally used when you need to include

variables or expressions into a string. This is done by

wrapping variables or expressions with ${variable or

expression} as shown above.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Strings</h2>

<p>You can use quotes inside a string, as long as

they don't match the quotes surrounding the string:

</p>

<p id="demo"></p>

<script>

let answer1 = "It's alright";

let answer2 = "He is called 'Johnny'";

let answer3 = 'He is called "Johnny"';

document.getElementById("demo").innerHTML =

answer1 + "
" +

answer2 + "
" +

answer3;

</script>

</body>

</html>

JavaScript String Methods

In JavaScript, strings are used to represent and work with a

sequence of characters. A string can represent an object as

well as the primitive data type. JavaScript automatically

converts primitive strings to String objects so that it's

possible to use String methods and access properties

even for primitive strings.

String length

String slice()

String substring()

String substr()

String replace()

String replaceAll()

String toUpperCase()

String toLowerCase()

String concat() String trim()

String trimStart()

String trimEnd()

String padStart()

String padEnd()

String charAt()

String charCodeAt()

String split()

JavaScript String Length

The length property returns the length of a string:

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript Strings</h1>

 <h2>The length Property</h2>

 <p>The length of the string is:</p>

 <p id="demo"></p>

 <script>

 let text =

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";

document.getElementById("demo").innerHTML =

text.length;

 </script>

 </body>

 </html>

Extracting String Parts

There are 3 methods for extracting a part of a string:

 slice(start , end)

 substring(start , end)

 substr(start , length)

JavaScript String slice()

slice() extracts a part of a string and returns the extracted

part in a new string.

The method takes 2 parameters: start position, and end

position (end not included).

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The slice() Method</h2>

<p>The sliced (extracted) part of the string is:</p>

<p id="demo"></p>

<script>

let text = "Apple, JUMP, Kiwi";

let part = text.slice(7,13);

document.getElementById("demo").innerHTML =

part;

</script>

</body>

</html>

Note

JavaScript counts positions from zero.First position

is 0, while Second position is 1.

Examples

If you omit the second parameter, the method will slice out

the rest of the string:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The slice() Method</h2>

<p>Extract a part of a string from position 7:</p>

<p id="demo"></p>

<script>

let text = "Apple, Banana, Kiwi";

let part = text.slice(7)

document.getElementById("demo").innerHTML =

part;

</script>

</body>

</html>

 If a parameter is negative, the position is

counted from the end of the string:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The slice() Method</h2>

<p>Extract a part of a string counting from the

end:</p>

<p id="demo"></p>

<script>

let text = "Apple, Banana, Kiwi";

let part = text.slice(-12);

document.getElementById("demo").innerHTML =

part;

</script>

</body>

</html>

JavaScript String substring()

substring() is similar to slice().

The difference is that start and end values less than 0 are

treated as 0 in substring().

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Methods</h1>

<p>The substring() method extract a part of a

string and returns the extracted parts in a new

string:</p>

<p id="demo"></p>

<script>

let str = "Apple, Banana, Kiwi";

document.getElementById("demo").innerHTML =

str.substring(7,13);

</script>

</body>

</html>

Replacing String Content

The replace() method replaces a specified value with

another value in a string :

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript String Methods</h1>

<p>Replace "How Can i Help You" with "Are You

Happy?" in the paragraph below:</p>

<button onclick="myFunction()">Try it</button>

<button onclick="myFunction()">How can i help

you</button>

<p id="demo">Testing JavaScript String Method!

</p>

<script>

function myFunction() {

let text =

document.getElementById("demo").innerHTML;

document.getElementById("demo").innerHTML =

text.replace("Testing","Trying it Out ");

}

</script>

</body>

</html>

Note

The replace() method does not change the string it

is called on.

The replace() method returns a new string.

The replace() method replaces only the first

 match

JavaScript String ReplaceAll()

In 2021, JavaScript introduced the string

method replaceAll():

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The replaceAll() Method</h2>

<p>ES2021 intoduced the string method

replaceAll().</p>

<p id="demo"></p>

<script>

let text = "I love cats. Cats are very easy to love.

Cats are very popular."

text = text.replaceAll("Cats","Dogs");

text = text.replaceAll("cats","dogs");

document.getElementById("demo").innerHTML =

text;

</script>

</body>

</html>

The replaceAll() method allows you to specify a

regular expression instead of a string to be

replaced.

If the parameter is a regular expression, the global

flag (g) must be set, otherwise a TypeError is

thrown.

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Strings</h1>

<h2>The replaceAll() Method</h2>

<p>ES2021 intoduced the string method

replaceAll().</p>

<p id="demo"></p>

<script>

let text = "I love cats. Cats are very easy to love.

Cats are very popular";

text = text.replaceAll(/Cats/g,"Dogs");

text = text.replaceAll(/cats/g,"dogs");

document.getElementById("demo").innerHTML =

text;

</script>

</body>

</html>

Converting to Upper and Lower Case

A string is converted to upper case with toUpperCase():

A string is converted to lower case with toLowerCase():

 JavaScript String toUpperCase()

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript String Methods</h1>

 <p>Convert string to upper case:</p>

 <button onclick="myFunction()">Try

it</button>

 <p id="demo">Hello World!</p>

 <script>

 function myFunction() {

 let text =

document.getElementById("demo").innerHTML;

document.getElementById("demo").innerHTML =

 text.toUpperCase();

 }

 </script>

 </body>

 </html>

 JavaScript String to LowerCase()

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript String Methods</h1>

 <p>Convert string to lower case:</p>

 <button onclick="myFunction()">Try

it</button>

 <p id="demo">Hello World!</p>

 <script>

 function myFunction() {

 let text =

document.getElementById("demo").innerHTML;

document.getElementById("demo").innerHTML =

 text.toLowerCase();

 }

 </script>

 </body>

 </html>

JavaScript String concat()

concat() joins two or more strings:

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript String</h1>

 <h2>The concat() Method</h2>

 <p>The concat() method joins two or

more strings:</p>

 <p id="demo"></p>

 <script>

 let text1 = "Hello";

 let text2 = "World!";

 let text3 = text1.concat(" ",text2);

document.getElementById("demo").innerHTML =

text3;

 </script>

 </body>

 </html>

JavaScript String trim()

The trim() method removes whitespace from both sides of a

string:

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript Strings</h1>

 <h2>The trim() Method</h2>

 <p id="demo"></p>

 <script>

 let text1 = " Hello World!

 ";

 let text2 = text1.trim();

document.getElementById("demo").innerHT

ML =

 "Length text1 = " + text1.length +

"
Length text2 = " + text2.length;

 </script>

 </body>

 </html>

JavaScript Numbers

Numbers in JavaScript are stored as 64-bit, floating point

values. What this means, in English, is that numbers can

range from 5e-324 (that ’ s -5 followed by 324 zeros) to

1.7976931348623157e+308 (move the decimal 308 spots

to the right to see this giant number). Any number may

have decimal points or not. Unlike most programming

languages, JavaScript doesn ’ t have separate data types for

integers (positive or negative numbers without a fractional

part) and floating points (decimals).

The Number type is a double-precision 64-bit binary

format IEEE 754 value . It is capable of storing positive

floating-point numbers between2 -1074 (Number.MIN_VALUE)

and 2 1024 (Number.MAX_VALUE) as well as negative

floating-point numbers between -2 -1074 and -2 1024 , but it

can only safely store integers in the range -(2 53 − 1)

(Number.MIN_SAFE_INTEGER) to 2 53 − 1

(Number.MAX_SAFE_INTEGER). Outside this range,

JavaScript can no longer safely represent integers; they will

instead be represented by a double-precision floating point

approximation. You can check if a number is within the

range of safe integers using Number.isSafeInteger().

Values outside the range ± (2 -1074 to 2 1024) are

automatically converted:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number#number_encoding

 Positive values greater than Number.MAX_VALUE are

converted to +Infinity.

 Positive values smaller than Number.MIN_VALUE are

converted to +0.

 Negative values smaller than -Number.MAX_VALUE are

converted to -Infinity.

 Negative values greater than -Number.MIN_VALUE are

converted to -0.

+Infinity and -Infinity behave similarly to mathematical infinity, but with

some slight differences.

The Number type has only one value with multiple

representations: 0 is represented as both -0 and +0

(where 0 is an alias for +0). In practice, there is almost

no difference between the different representations; for

example, +0 === -0 is true. However, you are able to

notice this when you divide by zero:

NaN ("Not a Number") is a special kind of number value

that's typically encountered when the result of an arithmetic

operation cannot be expressed as a number. It is also the

only value in JavaScript that is not equal to itself.

Although a number is conceptually a "mathematical value"

and is always implicitly floating-point-encoded, JavaScript

provides bitwise operators . When applying bitwise

operators, the number is first converted to a 32-bit integer.

All JavaScript numbers are stored as decimal numbers

(floating point).

Numbers can be written with, or without decimals:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_operators#bitwise_operators

<p>Numbers can be written with, or without

decimals:</p>

<p id="demo"></p>

<script>

let x1 = 34.00;

let x2 = 34;

let x3 = 3.14;

document.getElementById("demo").innerHTML =

x1 + "
" + x2 + "
" + x3;

</script>

</body>

</html>

JavaScript Random

The Math.random() static method returns a floating-point,

pseudo-random number that's greater than or equal to 0

and less than 1, with approximately uniform distribution

over that range which you can then scale to your desired

range.

The implementation selects the initial seed to the

random number generation algorithm; it cannot be

chosen or reset by the user.

Syntax:

Math.random()

Return Value: The Math.random() method returns

a value less than 1.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Math.random()</h2>

<p>Every time you click the button,

getRndInteger(min, max) returns a random number

between 0

and 9 (both included):</p>

<button

onclick="document.getElementById('demo').innerHT

ML = getRndInteger(0,10)">Click Me</button>

<p id="demo"></p>

<script>

function getRndInteger(min, max) {

return Math.floor(Math.random() * (max - min)) +

min;

}

</script>

</body>

</html>

As you can see from the examples above, it might be

a good idea to create a proper random function to

use for all random integer purposes.

This JavaScript function always returns a random

number between min (included) and max (excluded):

In the example below: This JavaScript function always

returns a random number between min and max

(both included):

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Math.random()</h2>

<p>Every time you click the button,

getRndInteger(min, max) returns a random number

between 1 and 10 (both included):</p>

<button

onclick="document.getElementById('demo').innerHT

ML = getRndInteger(1,10)">Click Me</button>

<p id="demo"></p>

<script>

function getRndInteger(min, max) {

return Math.floor(Math.random() * (max - min + 1))

+ min;

}

</script>

</body>

</html>

Exponential Notation

Extra large or extra small numbers can be written with

scientific (exponential) notation:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Numbers</h2>

<p>Extra large or extra small numbers can be

written with scientific (exponential) notation:</p>

<p id="demo"></p>

<script>

let y = 123e5;

let z = 123e-5;

document.getElementById("demo").innerHTML =

y + "
" + z;

</script>

</body>

</html>

Note

Most programming languages have many number

types:

Whole numbers (integers): byte (8-bit), short

(16-bit), int (32-bit), long (64-bit)

Real numbers (floating-point): float (32-bit),

double (64-bit).

JavaScript numbers are always one type:

double (64-bit floating point).

JavaScript BigInt

The BigInt type is a numeric primitive in JavaScript that

can represent integers with arbitrary magnitude. With

BigInts, you can safely store and operate on large integers

even beyond the safe integer limit

(Number.MAX_SAFE_INTEGER) for Numbers.

A BigInt is created by appending n to the end of an

integer or by calling the BigInt() function.

In JavaScript, Number type can only represent numbers

less than (253 - 1) and more than -(253 - 1). However,

if you need to use a larger number than that, you can use

the BigInt data type.

A BigInt number is created by appending n to the end

of an integer.

All JavaScript numbers are stored in a a 64-bit floating-point

format.

JavaScript BigInt is a new datatype (ES2020) that can be

used to store integer values that are too big to be

https://www.w3schools.com/js/js_2020.asp

represented by a normal JavaScript Number.

<!DOCTYPE html>

<html>

<body>

<h1>JavScript Bigint</h1>

<p>A BigInt can not have decimals.</p>

<p id="demo"></p>

<p>You cannot perform math between a BigInt

type and a Number type.</p>

<script>

let x =

BigInt("123456789012345678901234567890");

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

JavaScript Integer Accuracy

JavaScript integers are only accurate up to 15 digits: In

JavaScript, all numbers are stored in a 64-bit floating-point

format (IEEE 754 standard).

With this standard, large integer cannot be exactly

represented and will be rounded.

Because of this, JavaScript can only safely represent

integers:

Up to 9007199254740991 +(2 53 -1)

and

Down to -9007199254740991 -(2 53 -1).

Integer values outside this range lose precision.

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Numbers</h1>

<h2>Integer Precision</h2>

<p>Integers (numbers without a period or

exponent notation) are accurate up to 15 digits:

</p>

<p id="demo"></p>

<script>

let x = 999999999999999;

let y = 9999999999999999;

document.getElementById("demo").innerHTML = x

+ "
" + y;

</script>

</body>

</html>

How to Create a BigInt

A BigInt value, also sometimes just called a BigInt, is a

bigint primitive, created by appending n to the end of an

integer literal, or by calling the BigInt() function (without the

new operator) and giving it an integer value or string value .

To create a BigInt, append n to the end of an integer or call

 BigInt():

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Numbers</h1>

<h2>Integer and BigInt</h2>

<p id="demo"></p>

<script>

let x = 9999999999999999;

let y = BigInt("9999999999999999");

document.getElementById("demo").innerHTML = x

+ "
" + y;

</script>

</body>

</html>

JavaScript Booleans

Boolean variables store one of two possible values: either

true or false. The term Boolean is named after George Boole

(1815 – 1864), who created an algebraic system of logic.

Because it ’ s named after a person, you generally write it

with an initial capital letter.

The Boolean type represents a logical entity and is

inhabited by two values: true and false.

Boolean values are usually used for conditional operations,

including ternary operators , if...else, while, etc .

Very often, in programming, you will need a data type that

can only have one of two values, like

 YES / NO

 ON / OFF

 TRUE / FALSE

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_operator

For this, JavaScript has a Boolean data type. It can only take

the values true or false .

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Booleans</h2>

<p>Booleans can have two values: true or false:

</p>

<p id="demo"></p>

<script>

let x = 5;

let y = 5;

let z = 6;

document.getElementById("demo").innerHTML =

(x == y) + "
" + (x == z);

</script>

</body>

</html>

The Boolean() Function

Boolean variables are often used for storing the results of

comparisons. You can find out the Boolean value of a

comparison or convert any value in JavaScript into a

Boolean value by using the Boolean() function.

 var isItGreater = Boolean (3 > 20);

 alert (isItGreater); // returns false

 var areTheySame = Boolean ("tiger" ===

"Tiger");

alert (areTheySame); // returns false

 The result of converting a value in JavaScript into a

Boolean value using the Boolean() function depends on the

value:

 In JavaScript, the following values

always evaluate to a Boolean false value:

 • NaN

 • undefined

 • 0 (numeric value zero)

 • -0

 • "" (empty string)

 • false

 Anything that is not one of the

preceding values evaluates to a Boolean

true.

 For example:

 • 74

 • "Eva"

 • "10"

 • "NaN"

 The number character "0" is not the same as the

numeric value 0 (zero).

 While 0 will always result in a Boolean value of false,

the string "0" will always result in a Boolean true.

 Boolean values are primarily used with conditional

expressions.

 The Following program creates a Boolean variable and

then test its value using an if/then statement

 var b = true;

 if (b == true) {

 alert ("It is true!");

 } else {

 alert ("It is false.");

}

Boolean values are written without quotes around them, like

this:

var myVar = true

 On the other hand, var myVar =

 “

 true

 ”

 creates a string variable.

You can use the Boolean() function to find out if an

expression (or a variable) is true:

 <!DOCTYPE html>

 <html>

 <body>

 <h1>JavaScript Booleans</h1>

 <p>Display the value of Boolean(10 > 9):

</p>

 <p id="demo"></p>

 <script>

document.getElementById("demo").innerHTML =

Boolean(10 > 9);

 </script>

 </body>

 </html>

Or even easier:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Booleans</h1>

<p>Display the value of 10 > 9:</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = 10

> 9;

</script>

</body>

</html>

 NaN data type

NaN stands for Not a Number . It ’ s the result that you get

when you try to do math with a string, or when a calculation

fails or can ’ t be done. For example, it ’ s impossible to

calculate the square root of a negative number. Trying to do

so will result in NaN.

 A more common occurrence that will produce NaN is

an attempt to perform mathematical operations using

strings that can

 ’

 t be converted to numbers.

 undefined data type

 Even if you create a variable in JavaScript and don

 ’

 t specifically give it a value, it still has a default value.

 This value is "undefined".

Comparisons and Conditions

The JavaScript Comparisons gives a full overview of

comparison operators.

The JavaScript Conditions gives a full overview of conditional

statements.

Here are some examples:

Operato

r
Description Example

== equal to if (day == "Monday")

> greater than if (salary > 9000)

< less than if (age < 18)

 The Boolean value of an expression is the basis for all

JavaScript comparisons and conditions.

 JavaScript Comparison and Logical Operators

Comparison and Logical operators are used to test

for true or false.

Comparison Operators

Comparison operators are used in logical statements to

determine equality or difference between variables or

values.

Given that x = 5, the table below explains the comparison

operators:

Operator Description
Comparin

g
Returns

== equal to x == 8 false

x == 5 true

x == "5"b true

===
equal value and

equal type

x === 5 true

x === "5" false

!= not equal x != 8 true

!==

not equal value

or not equal

type

x !== 5 false

x !== "5" true

x !== 8 true

> greater than x > 8 false

< less than x < 8 true

>=
greater than or

equal to
x >= 8 false

<=
less than or

equal to
x <= 8 true

How Can it be Used

Comparison operators can be used in conditional

statements to compare values and take action depending on

the result:

if (age < 18) text = "Too young to buy

alcohol";

Conditional (Ternary) Operator

JavaScript also contains a conditional operator that assigns

a value to a variable based on some condition.

Syntax

variablename = (condition) ? value1:value2

Example:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Comparison</h1>

<h2>The () ? : Ternary Operator</h2>

<p>Input your age and click the button:</p>

<input id="age" value="18" />

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>

function myFunction() {

let age = document.getElementById("age").value;

let voteable = (age < 18) ? "Too young":"Old

enough";

document.getElementById("demo").innerHTML =

voteable + " to vote.";

}

</script>

</body>

</html>

If the variable age is a value below 18, the value of

the variable voteable will be "Too young", otherwise

the value of voteable will be "Old enough".

Comparing Different Types

Comparing data of different types may give unexpected

results. When comparing a string with a number, JavaScript

will convert the string to a number when doing the

comparison. An empty string converts to 0. A non-numeric

string converts to NaN which is always false

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Comparisons</h2>

 <p>Input your age and click the button:

</p>

 <input id="age" value="18" />

 <button onclick="myFunction()">Try

it</button>

 <p id="demo"></p>

 <script>

 function myFunction() {

 let voteable;

 let age =

Number(document.getElementById("age").value);

 if (isNaN(age)) {

 voteable = "Input is not a number";

 } else {

 voteable = (age < 18) ?

 "Too young" : "Old enough";

 }

document.getElementById("demo").innerHTML =

voteable + " to vote";

 }

 </script>

 </body>

 </html>

JavaScript if, else, and else if

 Conditional statements are used to perform

different actions based on different conditions.

Conditional Statements

Very often when you write code, you want to perform

different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified

condition is true

 Use else to specify a block of code to be executed, if the same

condition is false

 Use else if to specify a new condition to test, if the first condition is

false

 Use switch to specify many alternative blocks of code to be

executed

The if Statement

The if statement is the fundamental control statement that

allows JavaScript to make decisions and execute statements

conditionally. Use the if statement to specify a block of

JavaScript code to be executed if a condition is true.

Syntax

if (condition) {

 // block of code to be executed if the condition is

true

}

 Note that if is in lowercase letters.

 Uppercase letters (If or IF) will generate a

JavaScript error.

Example

Make a "Good day" greeting if the hour is less than 18:00:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript if</h2>

<p>Display "Good day!" if the hour is less than

18:00:</p>

<p id="demo">Good Evening!</p>

<script>

if (new Date().getHours() < 18) {

document.getElementById("demo").innerHTML =

"Good day!";

}

</script>

</body>

</html>

The else Statement

Use the else statement to specify a block of code to be

executed if the condition is false .

if (condition) {

 // block of code to be executed if the

condition is true

} else {

 // block of code to be executed if the

condition is false

}

Example

If the hour is less than 18, create a "Good day" greeting,

otherwise "Good evening":

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript if .. else</h2>

<p>A time-based greeting:</p>

<p id="demo"></p>

<script>

const hour = new Date().getHours();

let greeting;

if (hour < 18) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

document.getElementById("demo").innerHTML =

greeting;

</script>

</body>

</html>

The else if Statement

Use the else if statement to specify a new condition if the

first condition is false.

Syntax

if (condition1) {

 // block of code to be executed if condition1

is true

} else if (condition2) {

 // block of code to be executed if the

condition1 is false and condition2 is true

} else {

 // block of code to be executed if the

condition1 is false and condition2 is false

}

Example

If time is less than 10:00, create a "Good morning" greeting,

if not, but time is less than 20:00, create a "Good day"

greeting, otherwise a "Good evening":

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript if .. else</h2>

<p>A time-based greeting:</p>

<p id="demo"></p>

<script>

const time = new Date().getHours();

let greeting;

if (time < 10) {

greeting = "Good morning";

} else if (time < 20) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

document.getElementById("demo").innerHTML =

greeting;

</script>

</body>

</html>

Note that there is no elseif syntax in JavaScript.

However, you can write it with a space between

else and if :

 if (x > 50) {

 /* do something */

 } else if (x > 5) {

 /* do something */

 } else {

 /* do something */

 }

JavaScript Switch Statement

The switch statement evaluates an expression ,

matching the expression's value against a series of case

clauses, and executes statements after the first case

clause with a matching value, until a break statement is

encountered. The default clause of a switch statement

will be jumped to if no case matches the expression's

value.

The JavaScript switch statement is used in decision

making. The switch statement evaluates an expression

and executes the corresponding body that matches the

expression's result.

 The switch statement is used to perform different

actions based on different conditions.

The switch statement evaluates a variable/expression

inside parentheses ().

 If the result of the expression is equal to value1, its

body is executed.

 If the result of the expression is equal to value2, its

body is executed.

 This process goes on. If there is no matching case,

the default body executes.

 Syntax

 switch(

 expression

) {

 case

 x

 :

 // code block

 break;

 case

 y

 :

 // code block

 break;

 default:

 //

 code block

 }

This is how it works:

 The switch expression is evaluated once.

 The value of the expression is compared with the

values of each case.

 If there is a match, the associated block of code is

executed.

 If there is no match, the default code block is

executed.

Example

The getDay() method returns the weekday as a number

between 0 and 6. (Sunday=0, Monday=1, Tuesday=2 ..)

This example uses the weekday number to calculate the

weekday name:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript switch</h2>

<p id="demo"></p>

<script>

let day;

switch (new Date().getDay()) {

case 0:

day = "Sunday";

break;

case 1:

day = "Monday";

break;

case 2:

day = "Tuesday";

break;

case 3:

day = "Wednesday";

break;

case 4:

day = "Thursday";

break;

case 5:

day = "Friday";

break;

case 6:

day = "Saturday";

}

document.getElementById("demo").innerHTML =

"Today is " + day;

</script>

</body>

</html>

The break Keyword

When JavaScript reaches a break keyword, it breaks out of

the switch block.

This will stop the execution inside the switch block.

It is not necessary to break the last case in a switch block.

The block breaks (ends) there anyway.

Notes:

 The break statement is optional. If the break statement

is encountered, the switch statement ends.

 If the break statement is not used, the cases after the

matching case are also executed.

 The default clause is also optional.

 If you omit the break statement, the next case will be

executed even if the evaluation does not match the

case.

The default Keyword

The default keyword specifies the code to run if there is no

case match:

 Example

 The

 getDay()

 method returns the weekday as a number between 0

and 6.

 If today is neither Saturday (6) nor Sunday (0), write a

default message:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript switch</h2>

<p id="demo"></p>

<script>

let text;

switch (new Date().getDay()) {

case 6:

text = "Today is Saturday";

break;

case 0:

text = "Today is Sunday";

break;

default:

text = "Looking forward to the Weekend";

}

document.getElementById("demo").innerHTML =

text;

</script>

</body>

</html>

JavaScript Arrays

 An array consists of array elements.

 Array elements are made up of the

array name and then an index number that is contained in

square brackets. The individual value within an array is

called an array element. Arrays use numbers (called the

index numbers) to access those elements. The following

example illustrates how arrays use index numbers to access

elements: JavaScript arrays are written with square

brackets.

 myArray[0] = "yellow balloon";

 myArray[1] = "red balloon";

 myArray[2] = "blue balloon";

 myArray[3] = "pink balloon";

In this example, the element with the index

number of 0 has a value of "yellow balloon".

The element with an index number 3 has a

value of "pink balloon". Just as with any

variable, you can give an array any name

that complies with the rules of naming

JavaScript variables. By assigning index

numbers in arrays, JavaScript gives you the

ability to make a single variable name hold a

nearly unlimited list of values.

Array items are separated by commas.

The following code declares (creates) an array called cars ,

containing three items (car names):

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Arrays</h2>

<p>Array indexes are zero-based, which means the

first item is [0].</p>

<p id="demo"></p>

<script>

const cars = ["Saab","Volvo","BMW"];

document.getElementById("demo").innerHTML =

cars[0];

</script>

</body>

</html>

Just so you don ’ t get too carried away, there actually is a

limit to the number of elements that you can have in an

array, although you ’ re very unlikely to ever reach it. The

limit is 4,294,967,295 elements.

In addition to naming requirements (which are the same for

any type of variable, as described in chapter 3), arrays have

a couple of other rules and special properties that you need

to be familiar with:

 Arrays are zero‐indexed

 Arrays can store any type of data

 JavaScript Array

 JavaScript array

 is an object that represents a collection of similar type of elements.

There are 3 ways to construct array in JavaScript

1. By array literal

2. By creating instance of Array directly (using new

keyword)

3. By using an Array constructor (using new keyword)

 1) JavaScript array literal

The syntax of creating array using array literal is given

below:

var arrayname=[value1,value2.....valueN];

As you can see, values are contained inside [] and

separated by , (comma).

<script>

var emp=["Sonoo","Vimal","Ratan"];

for (i=0;i <emp.length ;i++){

document.write(emp[i] + "
 ");

}

</script>

The .length property returns the length of an array.

 2) JavaScript Array directly (new keyword)

The syntax of creating array directly is given below:

var arrayname=new Array();

Here, new keyword is used to create instance of

array.

Let's see the example of creating array directly.

<script>

var i;

var emp = new Array();

emp[0] = "Arun";

emp[1] = "Varun";

emp[2] = "John";

for (i=0;i <emp.length ;i++){

document.write(emp[i] + "
 ");

}

</script>

 3) JavaScript array constructor (new keyword)

Here, you need to create instance of array by passing

arguments in constructor so that we don't have to provide

value explicitly.

The example of creating object by array constructor is given

below.

<script>

var emp=new Array("Jai","Vijay","Smith");

for (i=0;i <emp.length ;i++){

document.write(emp[i] + "
 ");

}

</script>

Output of the above example

Jai

Vijay

Smith

JavaScript Array Methods

Let's see the list of JavaScript array methods with their

description.

Methods

 Description

concat() It returns a new array object that

contains two or more merged

arrays.

copywithin()

It copies the part of the given

array with its own elements and

returns the modified array.

entries()

It creates an iterator object and a

loop that iterates over each

key/value pair.

every()

It determines whether all the

elements of an array are

satisfying the provided function

conditions.

flat()

It creates a new array carrying

sub-array elements concatenated

recursively till the specified

depth.

flatMap()

It maps all array elements via

mapping function, then flattens

the result into a new array.

fill()
It fills elements into an array with

static values.

from()

It creates a new array carrying

the exact copy of another array

element.

filter()

It returns the new array

containing the elements that

pass the provided function

conditions.

find()

It returns the value of the first

element in the given array that

satisfies the specified condition.

findIndex() It returns the index value of the

first element in the given array

that satisfies the specified

condition.

forEach()

It invokes the provided function

once for each element of an

array.

includes()
It checks whether the given array

contains the specified element.

indexOf()

It searches the specified element

in the given array and returns the

index of the first match.

isArray()
It tests if the passed value ia an

array.

join()
It joins the elements of an array

as a string.

keys()

It creates an iterator object that

contains only the keys of the

array, then loops through these

keys.

lastIndexOf()

It searches the specified element

in the given array and returns the

index of the last match.

map()

It calls the specified function for

every array element and returns

the new array

of()

It creates a new array from a

variable number of arguments,

holding any type of argument.

pop() It removes and returns the last

element of an array.

push()
It adds one or more elements to

the end of an array.

reverse()
It reverses the elements of given

array.

reduce(functio

n, initial)

It executes a provided function

for each value from left to right

and reduces the array to a single

value.

reduceRight()

It executes a provided function

for each value from right to left

and reduces the array to a single

value.

some()

It determines if any element of

the array passes the test of the

implemented function.

shift()
It removes and returns the first

element of an array.

slice()

It returns a new array containing

the copy of the part of the given

array.

sort()
It returns the element of the

given array in a sorted order.

splice()
It add/remove elements to/from

the given array.

toLocaleString(

)

It returns a string containing all

the elements of a specified array.

toString() It converts the elements of a

specified array into string form,

without affecting the original

array.

unshift()
It adds one or more elements in

the beginning of the given array.

values()

It creates a new iterator object

carrying values for each index in

the array.

JavaScript Objects

In computer science, an object is a value in memory which

is possibly referenced by an identifier . In JavaScript,

objects are the only mutable values. Functions are, in

fact, also objects with the additional capability of being

callable . JavaScript objects are written with curly braces

{}. Object properties are written as name:value pairs,

separated by commas.

https://developer.mozilla.org/en-US/docs/Glossary/Identifier
https://developer.mozilla.org/en-US/docs/Glossary/Mutable
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions

An object is a complex data type that allows us to store

collections of data. For example,

Const student ={

firstName:’ram’,

lastName:null,

class:10

};

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p id="demo"></p>

<script>

const person = {

firstName : "John",

lastName : "Doe",

age : 50,

eyeColor : "blue"

};

document.getElementById("demo").innerHTML =

person.firstName + " is " + person.age + " years

old.";

</script>

</body>

</html>

The type of Operator

You can use the JavaScript typeof operator to find the type

of a JavaScript variable.

The typeof operator returns the type of a variable or an

expression:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Operators</h1>

<h2>The typeof Operator</h2>

<p>The typeof operator returns the type of a

variable or an expression.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML =

typeof "" + "
" +

typeof 50 + "
" +

typeof "John Doe";

</script>

</body>

</html>

 Chapter Seven

 JavaScript Functions

Functions are one of the fundamental building blocks in

JavaScript. A function in JavaScript is similar to a procedure

a set of statements that performs a task or calculates a

value, but for a procedure to qualify as a function, it should

take some input and return an output where there is some

obvious relationship between the input and the output. To

use a function, you must define it somewhere in the scope

from which you wish to call it.

Quite often we need to perform a similar action in many

places of the script.

For example, we need to show a nice-looking message when

a visitor logs in, logs out and maybe somewhere else.

Functions are the main “ building blocks ” of the program.

They allow the code to be called many times without

repetition.

Function Syntax

A function is a block of code that performs a specific task.

JavaScript functions are basically used to encapsulate logic,

making that code more reusable and easier to understand.

The syntax for creating a function in JavaScript is quite

simple. Functions can take input in the form of parameters

and can return a value or output.

Functions help you organize and structure your code. They

also allow for code reuse and make it easier to understand

and maintain large codebases.

A JavaScript function is defined with the function keyword,

followed by a name, followed by parentheses ().

Function names can contain letters, digits, underscores, and

dollar signs (same rules as variables).

The parentheses may include parameter names separated

by commas:

(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside

curly brackets: {}

 function

 name

 (

 parameter1, parameter2, parameter3

) {

 //

 code to be executed

 }

Function parameters are listed inside the parentheses ()

in the function definition.

Function arguments are the values received by the

function when it is invoked.

Inside the function, the arguments (the parameters) behave

as local variables.

Function declarations

A function definition (also called a function declaration,

or function statement) consists of the function keyword,

followed by:

 The name of the function.

 A list of parameters to the function, enclosed in

parentheses and separated by commas.

 The JavaScript statements that define the function,

enclosed in curly brackets, { /* … */ }.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions#function_declarations

 function showMessage() {

 alert('Hello everyone!'

);

 }

The function keyword goes first, then goes the name of

the function , then a list of parameters between the

parentheses (comma-separated, empty in the example

above, we ’ ll see examples later) and finally the code of the

function, also named “ the function body ” , between curly

braces.

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Call a function which performs a calculation

and returns the result:</p>

<p id="demo"></p>

<script>

function myFunction(p1, p2) {

return p1 * p2;

}

let result = myFunction(4, 3);

document.getElementById("demo").innerHTML =

result;

</script>

</body>

</html>

Function Invocation

The JavaScript Function Invocation is used to execute

the function code and it is common to use the term “ call a

function ” instead of “ invoke a function ” . The code inside

a function is executed when the function is invoked.

The code inside the function will execute when "something"

 invokes (calls) the function:

 When an event occurs (when a user clicks a button)

 When it is invoked (called) from JavaScript code

 Automatically (self-invoked)

https://www.geeksforgeeks.org/introduction-to-javascript/

The function invocation is used to execute the code inside

the curly braces in the function definition by adding () after

function name after it has been defined to invoke that

particular function.

Invoking a JavaScript Function

The code inside a function is not executed when the

function is defined. The code inside a function is executed

when the function is invoked. It is common to use the term

"call a function" instead of "invoke a function". It is also

common to say "call upon a function", "start a function", or

"execute a function".

The example below will use invoke, because a JavaScript

function can be invoked without being called.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>The global function (myFunction) returns the

product of the arguments (a ,b):</p>

<p id="demo"></p>

<script>

function myFunction(a, b) {

return a * b;

}

document.getElementById("demo").innerHTML =

myFunction(10, 2);

</script>

</body>

</html>

Note

This is a common way to invoke a JavaScript

function, but not a very good practice. Global

variables, methods, or functions can easily create

name conflicts and bugs in the global object.

myFunction() and window.myFunction() is the same

function:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>Global functions automatically become window

methods. Invoking myFunction() is the same as

invoking window.myFunction().</p>

<p id="demo"></p>

<script>

function myFunction(a, b) {

return a * b;

}

document.getElementById("demo").innerHTML =

window.myFunction(10, 2);

</script>

</body>

</html>

The function above does not belong to any object. But in

JavaScript there is always a default global object.

In HTML the default global object is the HTML page itself, so

the function above "belongs" to the HTML page.

In a browser the page object is the browser window. The

function above automatically becomes a window function.

 The Term

 “

 This

 ”

 in Javascript

In JavaScript, the this keyword refers to an object. Which

 object depends on how this is being invoked (used or

called).

The this keyword refers to different objects depending on

how it is used:

In an object method, this refers to the object.

Alone, this refers to the global object.

In a function, this refers to the global object.

In a function, in strict mode, this is undefined.

In an event, this refers to the element that received

the event.

Methods like call(), apply(), and bind() can

refer this to any object.

Note

 This

 is not a variable.

 It is a keyword.

 You cannot change the value of

 this.

The Global Object

When a function is called without an owner object, the value

of this becomes the global object.

In a web browser the global object is the browser window.

This example returns the window object as the value of

this:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>In HTML the value of this, in a global

function, is the window object.</p>

<p id="demo"></p>

<script>

let x = myFunction();

function myFunction() {

return this;

}

document.getElementById("demo").innerHTML = x;

</script>

</body>

</html>

Invoking a Function as a Method

In JavaScript you can define functions as object methods.

The following example creates an object (myObject), with

two properties (firstName and lastName), and a method

(fullName):

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>myObject.fullName() will return John Doe:</p>

<p id="demo"></p>

<script>

const myObject = {

firstName:"John",

lastName: "Doe",

fullName: function() {

return this.firstName + " " + this.lastName;

}

}

document.getElementById("demo").innerHTML =

myObject.fullName();

</script>

</body>

</html>

The fullName method is a function. The function belongs

to the object. myObject is the owner of the function. The

thing called this, is the object that "owns" the JavaScript

code. In this case the value of this is myObject.

Test it! Change the fullName method to return the value

of this:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>The value of this, in an object

method, is the owner object.</p>

<p id="demo"></p>

<script>

const myObject = {

firstName:"John",

lastName: "Doe",

fullName: function() {

return this;

}

}

document.getElementById("demo").innerHTML =

myObject.fullName();

</script>

</body>

</html>

Invoking a Function with a Function Constructor

If a function invocation is preceded with the new keyword,

it is a constructor invocation.

It looks like you create a new function, but since JavaScript

functions are objects you actually create a new object:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Functions</h2>

<p>In this example, myFunction is a function

constructor:</p>

<p id="demo"></p>

<script>

function myFunction(arg1, arg2) {

this.firstName = arg1;

this.lastName = arg2;

}

const myObj = new myFunction("John","Doe")

document.getElementById("demo").innerHTML =

myObj.firstName;

</script>

</body>

</html>

Function Return

The return statement ends function execution and

specifies a value to be returned to the function caller.

When JavaScript reaches a return statement, the function

will stop executing.

If the function was invoked from a statement, JavaScript will

"return" to execute the code after the invoking statement.

Functions often compute a return value. The return value is

"returned" back to the "caller":

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Call a function which performs a calculation

and returns the result:</p>

<p id="demo"></p>

<script>

let x = myFunction(4, 3);

document.getElementById("demo").innerHTML = x;

function myFunction(a, b) {

return a * b;

}

</script>

</body>

</html>

The () Operator

The () operator invokes (calls) the function:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Invoke (call) a function that converts from

Fahrenheit to Celsius:</p>

<p id="demo"></p>

<script>

function toCelsius(f) {

return (5/9) * (f-32);

}

let value = toCelsius(77);

document.getElementById("demo").innerHTML =

value;

</script>

</body>

</html>

Accessing a function with incorrect parameters can

return an incorrect answer:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Invoke (call) a function to convert from

Fahrenheit to Celsius:</p>

<p id="demo"></p>

<script>

function toCelsius(f) {

return (5/9) * (f-32);

}

let value = toCelsius();

document.getElementById("demo").innerHTML =

value;

</script>

</body>

</html>

Accessing a function without () returns the function

and not the function result:

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Accessing a function without () returns the

function and not the function result:</p>

<p id="demo"></p>

<script>

function toCelsius(f) {

return (5/9) * (f-32);

}

let value = toCelsius;

document.getElementById("demo").innerHTML =

value;

</script>

</body>

</html>

Functions Used as Variable Values

Functions can be used the same way as you use variables,

in all types of formulas, assignments, and calculations.

 Example

 Instead of using a variable to store the return value of

a function:

 let

 x = toCelsius(77);

 let

 text =

 "The temperature is "

 + x +

 " Celsius"

 ;

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Using a function as a variable:</p>

<p id="demo"></p>

<script>

let text = "The temperature is " + toCelsius(77) + "

Celsius.";

document.getElementById("demo").innerHTML =

text;

function toCelsius(fahrenheit) {

return (5/9) * (fahrenheit-32);

}

</script>

</body>

</html>

Local Variables

Variables declared within a JavaScript function, become

LOCAL to the function. Local variables can only be

accessed from within the function.

<!DOCTYPE html>

<html>

<body>

<h1>JavaScript Functions</h1>

<p>Outside myFunction() carName is undefined.

</p>

<p id="demo1"></p>

<p id="demo2"></p>

<script>

let text = "Outside: " + typeof carName;

document.getElementById("demo1").innerHTML =

text;

function myFunction() {

let carName = "Volvo";

let text = "Inside: " + typeof carName + " " +

carName;

document.getElementById("demo2").innerHTML =

text;

}

myFunction();

</script>

</body>

</html>

Since local variables are only recognized inside their

functions, variables with the same name can be used in

different functions.

Local variables are created when a function starts, and

deleted when the function is completed.

 Chapter Eight

 JavaScript Objects

JavaScript is designed on a simple object-based paradigm.

An object is a collection of properties , and a property is an

association between a name (or key) and a value. A

property's value can be a function, in which case the

property is known as a method .

Objects in JavaScript, just as in many other programming

languages, can be compared to objects in real life. In

JavaScript, an object is a standalone entity, with properties

and type. Compare it with a cup, for example. A cup is an

object, with properties. A cup has a color, a design, weight,

a material it is made of, etc. The same way, JavaScript

objects can have properties, which define their

characteristics.

In addition to objects that are predefined in the browser, you

can define your own objects. This chapter describes how to

use objects, properties, and methods, and how to create

your own objects.

 JavaScript object is a non-primitive data-type

https://developer.mozilla.org/en-US/docs/Glossary/Property/JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/Method

that allows you to store multiple collections of data.

There are eight different forms of data in JavaScript, as we

learned in the chapter on data types. Because seven of

them only have one value — a string, a number, or anything

else — they are referred to as "primitive."

On the other hand, more sophisticated entities and keyed

collections of diverse data are stored as objects. Objects are

present in nearly every area of JavaScript. We thus need to

comprehend them before delving further into anything else.

An object can be created with figure brackets { … } with

an optional list of properties . A property is a “ key: value ”

pair, where key is a string (also called a “ property name

”), and value can be anything.

We can imagine an object as a cabinet with signed files.

Every piece of data is stored in its file by the key. It ’ s easy

to find a file by its name or add/remove a file

 Real Life Objects, Properties, and Methods

An automobile is a thing in reality. A automobile includes

features like color and weight, as well as functions like start

and stop: Although the attributes of all automobiles are the

same, each car has a different value for each property. The

procedures are the same in every automobile, although they

are carried out at various periods.

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Objects</h2>

 <p id="demo"></p>

 <script>

 // Create an object:

 const car = {type:"Toyota",

model:"Camry", color:"white"};

 // Display some data from the

object:

document.getElementById("demo").innerHTM

L = "The car type is " + car.type;

 </script>

 </body>

 </html>

 This code assigns many

values (Toyota, Camry, white) to

a variable named car.

 The values are written

as name:value pairs (name and value

separated by a colon).

Object Definition

You define (and create) a JavaScript object with an object

literal:

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript Objects</h2>

 <p id="demo"></p>

 <script>

 // Create an object:

 const person = {

 firstName: "John",

 lastName: "Doe",

 age: 50,

 eyeColor: "blue"

 };

 // Display some data from the

object:

document.getElementById("demo").innerHTM

L =

 person.firstName + " is " +

person.age + " years old.";

 </script>

 </body>

 </html>

Object Properties

The name:values pairs in JavaScript objects are called

properties:

Property Property Value

firstName John

lastName Doe

age 50

eyeColor blue

Accessing Object Properties

You can access object properties in two ways:

objectName.propertyName

or

objectName["propertyName"]

Example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p>There are two different ways to access an

object property.</p>

<p>You can use person.property or

person["property"].</p>

<p id="demo"></p>

<script>

// Create an object:

const person = {

firstName: "John",

lastName : "Doe",

id : 5566

};

// Display some data from the object:

document.getElementById("demo").innerHTML =

person.firstName + " " + person.lastName;

</script>

</body>

</html>

Example 2:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p>There are two different ways to access an

object property.</p>

<p>You can use person.property or

person["property"].</p>

<p id="demo"></p>

<script>

// Create an object:

const person = {

firstName: "John",

lastName : "Doe",

id : 5566

};

// Display some data from the object:

document.getElementById("demo").innerHTML =

person["firstName"] + " " + person["lastName"];

</script>

</body>

</html>

Object Methods

Collections of key/value pairs make up objects in JavaScript.

In addition to all standard JavaScript data types, including

strings, integers, and Booleans, the values can also have

methods and properties. The property turns into a method

when the value is a function. To explain the activities of the

objects, you often use methods.

In JavaScript, every object is descended from the parent

constructor called Object. Working with individual objects is

made simple by the several helpful built-in methods that

Object provides. While Object methods are used directly on

the Object constructor and take the object instance as an

argument, Array prototype methods like as sort() and

reverse() are used on the array instance. We call this a

static method. Moreover, objects can have methods. Actions

that may be carried out on objects are called methods.

Properties hold methods as function definitions.

Property Property Value

firstName John

lastName Doe

age 50

eyeColor blue

fullName
function() {return this.firstName + "

" + this.lastName;}

Example

 const

 person = {

 firstName:

 "John"

 ,

 lastName :

 "Doe"

 ,

 id : 5566,

 fullName :

 function

 () {

 return

 this

 .firstName +

 " "

 +

 this

 .lastName;

 }

 };

In the example above, this refers to the person

object.

I.E. this.firstName means the firstName property

of this.

I.E. this.firstName means the firstName property

of person.

Understanding the Term : “ THIS ”

In JavaScript, this keyword refers to an object . Which

object depends on how this is being invoked (used or

called).

The this keyword refers to different objects depending on

how it is used:

In an object method, this refers to the object.

Alone, this refers to the global object.

In a function, this refers to the global object.

In a function, in strict mode, this is undefined.

In an event, this refers to the element that received

the event.

Methods like call(), apply(), and bind() can

refer this to any object.

The this Keyword

In a function definition, this refers to the "owner" of the

function.

In the example above, this is the person object that

"owns" the fullName function.

In other words, this.firstName means the firstName

property of this object.

Accessing Object Methods

You access an object method with the following syntax:

Using:

objectName.methodName()

Example:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p>An object method is a function definition,

stored as a property value.</p>

<p id="demo"></p>

<script>

// Create an object:

const person = {

firstName: "John",

lastName: "Doe",

id: 5566,

fullName: function() {

return this.firstName + " " + this.lastName;

}

};

// Display data from the object:

document.getElementById("demo").innerHTML =

person.fullName();

</script>

</body>

</html>

If you access a method without the () parentheses,

it will return the function definition:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Objects</h2>

<p>If you access an object method without (), it

will return the function definition:</p>

<p id="demo"></p>

<script>

// Create an object:

const person = {

firstName: "John",

lastName : "Doe",

id : 5566,

fullName : function() {

return this.firstName + " " + this.lastName;

}

};

// Display data from the object:

document.getElementById("demo").innerHTML =

person.fullName;

</script>

</body>

</html>

Do Not Declare Strings, Numbers, and Booleans as

Objects!

When a JavaScript variable is declared with the keyword "

new ", the variable is created as an object:

x = new String(); // Declares x as a String

object

y = new Number(); // Declares y as a

Number object

z = new Boolean(); // Declares z as a

Boolean object

Avoid String , Number , and Boolean objects. They

complicate your code and slow down execution speed.

 Chapter Nine

 JavaScript Events

Events are things that happen in the system you are programming —

the system produces (or "fires") a signal of some kind when an event

occurs, and provides a mechanism by which an action can be

automatically taken (that is, some code running) when the event

occurs. Events are fired inside the browser window, and tend to be

attached to a specific item that resides in it. This might be a single

element, a set of elements, the HTML document loaded in the

current tab, or the entire browser window. There are many different

types of events that can occur.

For example, if the user clicks a button on a webpage, you might

want to react to that action by displaying an information box. In this

article, we discuss some important concepts surrounding events, and

look at how they work in browsers. This won't be an exhaustive

study; just what you need to know at this stage.

For example:

 The user selects, clicks, or hovers the cursor over a certain

element.

 The user chooses a key on the keyboard.

 The user resizes or closes the browser window.

 A web page finishes loading.

 A form is submitted.

 A video is played, paused, or ends.

 An error occurs.

You can gather from this (and from glancing at the MDN event

reference) that there are a lot of events that can be fired.

To react to an event, you attach an event handler to it. This is a

block of code (usually a JavaScript function that you as a

programmer create) that runs when the event fires. When such a

block of code is defined to run in response to an event, we say we

are registering an event handler. Note: Event handlers are

sometimes called event listeners — they are pretty much

interchangeable for our purposes, although strictly speaking, they

work together. The listener listens out for the event happening, and

the handler is the code that is run in response to it happening.

JavaScript's interaction with HTML is handled through events that

occur when the user or the browser manipulates a page.

https://developer.mozilla.org/en-US/docs/Web/Events

When the page loads, it is called an event. When the user clicks a

button, that click too is an event. Other examples include events like

pressing any key, closing a window, resizing a window, etc.

Developers can use these events to execute JavaScript coded

responses, which cause buttons to close windows, messages to be

displayed to users, data to be validated, and virtually any other type

of response imaginable.

Events are a part of the Document Object Model (DOM) Level 3 and

every HTML element contains a set of events which can trigger

JavaScript Code.

HTML Events

The change in the state of an object is known as an Event. In html,

there are various events which represents that some activity is

performed by the user or by the browser. When javascript code is

included in HTML , js react over these events and allow the

execution. This process of reacting over the events is called Event

Handling. Thus, js handles the HTML events via Event Handlers.

For example, when a user clicks over the browser, add js code, which

will execute the task to be performed on the event.

Some of the HTML events and their event handlers are:

Mouse events:

https://www.javatpoint.com/javascript-tutorial
https://www.javatpoint.com/html-tutorial

Event

Performed

Event

Handler
Description

click onclick
When mouse click on an

element

mouseover onmouseover
When the cursor of the mouse

comes over the element

mouseout onmouseout
When the cursor of the mouse

leaves an element

mousedow

n
onmousedown

When the mouse button is

pressed over the element

mouseup onmouseup
When the mouse button is

released over the element

mousemov

e

onmousemov

e

When the mouse movement

takes place.

onclick Event Type

This is the most frequently used event type which occurs when a

user clicks the left button of his mouse. You can put your validation,

warning etc., against this event type.

 Example:

<html>

<head> JavaScript Events </head>

<body>

<script language="Javascript" type="text/Javascript">

<!--

function clickevent()

{

document.write("Tutorial on Javascripting Events");

}

//-->

</script>

<form>

<input type="button" onclick="clickevent()" value="Hello

How are You?"/>

</form>

</body>

</html>

onsubmit Event Type

onsubmit is an event that occurs when you try to submit a form.

You can put your form validation against this event type.

 Example

The following example shows how to use onsubmit. Here we are

calling a validate() function before submitting a form data to the

webserver. If validate() function returns true, the form will be

submitted, otherwise it will not submit the data.

<html>

<head>

<script type = "text/javascript">

<!--

function validation() {

all validation goes here

.........

return either true or false

}

//-->

</script>

</head>

<body>

<form method = "POST" action = "t.cgi" onsubmit =

"return validate()">

.......

<input type = "submit" value = "Submit" />

</form>

</body>

</html>

onmouseover and onmouseout

These two event types will help you create nice effects with images

or even with text as well. The onmouseover event triggers when

you bring your mouse over any element and the onmouseout

triggers when you move your mouse out from that element. Try the

following example.

<html>

<head>

<script type = "text/javascript">

<!--

function over() {

document.write ("Mouse Over");

}

function out() {

document.write ("Mouse Out");

}

//-->

</script>

</head>

<body>

<p>Bring your mouse inside the division to see the result:

</p>

<div onmouseover = "over()" onmouseout = "out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

Keyboard events:

Event Performed Event Handler Description

Keydown & Keyup onkeydown & onkeyup

When the user

press and then

release the key

Form events:

Event

Performed

Event

Handler

Description

focus onfocus
When the user focuses on

an element

submit onsubmit
When the user submits the

form

blur onblur
When the focus is away

from a form element

change onchange

When the user modifies or

changes the value of a

form element

Window/Document events

Event Performed Event Handler Description

load onload

When the browser

finishes the loading

of the page

unload onunload

When the visitor

leaves the current

webpage, the

browser unloads it

resize onresize

When the visitor

resizes the window

of the browser

An HTML event can be something the browser does, or something a

user does.

Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed

 An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be

added to HTML elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added

to a <button> element:

<!DOCTYPE html>

<html>

<body>

<button

onclick="document.getElementById('demo').innerHTML=Date()">T

he time is?</button>

<p id="demo"></p>

</body>

</html>

In the example above, the JavaScript code changes the content of

the element with id="demo".

In the next example, the code changes the content of its own

element (using this.innerHTML):

Example1:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript HTML Events</h2>

<button onclick="this.innerHTML=Date()">The time is?

</button>

</body>

</html>

Example 2:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript HTML Events</h2>

<p>Click the button to display the date.</p>

<button onclick="displayDate()">The time is?</button>

<script>

function displayDate() {

document.getElementById("demo").innerHTML = Date();

}

</script>

<p id="demo"></p>

</body>

</html>

HTML DOM Events

HTML or DOM events are widely used in JavaScript code.

JavaScript code is executed with HTML/DOM events. So before

learning JavaScript, let ’ s have some idea about events.

DOM Events allow JavaScript to add event listener or event

handlers to HTML elements.

Examples

In HTML onclick is the event listener, myFunction is the

event handler:

<button onclick="myFunction()">Click me</button>

In JavaScript click is the event, myFunction is the event

handler:

button.addEventListener("click" , myFunction);

You might be wondering when to use touch events versus

mouse events, since they're so similar.

Touch events are only triggered on touch-enabled devices like

smartphones and touch-screen laptops. Mouse events like click

 and mousemove are triggered on the majority of browsers

and devices. However, in most smartphones, the mouseover

event isn't triggered at all, because they can't detect a finger

hovering over the phone. Some smartphones are adding sensors

for that though, so more smartphones will detect mouseover

in the future.

In most cases, you'll want to listen to mouse events instead of

touch events, because those are the most universal.

Event Occurs When Belongs To

abort

The loading of

a media is

aborted

UiEvent, Event

afterprint

A page has

started

printing

Event

animationend

A CSS

animation has

completed

AnimationEvent

animationiterati

on

A CSS

animation is

repeated

AnimationEvent

animationstart

A CSS

animation has

started

AnimationEvent

beforeprint A page is

about to be

printed

Event

beforeunload

Before a

document is

about to be

unloaded

UiEvent, Event

blur
An element

loses focus
FocusEvent

canplay

The browser

can start

playing a

media (has

buffered

enough to

begin)

Event

canplaythrough

The browser

can play

through a

media without

stopping for

buffering

Event

change

The content of

a form

element has

changed

Event

click
An element is

clicked on
MouseEvent

contextmenu An element is

right-clicked to

open a context

menu

MouseEvent

copy

The content of

an element is

copied

ClipboardEvent

cut

The content of

an element is

cutted

ClipboardEvent

dblclick
An element is

double-clicked
MouseEvent

drag
An element is

being dragged
DragEvent

dragend

Dragging of an

element has

ended

DragEvent

dragenter

A dragged

element

enters the

drop target

DragEvent

dragleave

A dragged

element

leaves the

drop target

DragEvent

dragover

A dragged

element is

over the drop

target

DragEvent

dragstart

Dragging of an

element has

started

DragEvent

drop A dragged

element is

DragEvent

dropped on

the target

durationchange

The duration

of a media is

changed

Event

ended

A media has

reach the end

("thanks for

listening")

Event

error

An error has

occurred while

loading a file

ProgressEvent, UiEvent, Eve

nt

focus
An element

gets focus
FocusEvent

focusin

An element is

about to get

focus

FocusEvent

focusout

An element is

about to lose

focus

FocusEvent

fullscreenchang

e

An element is

displayed in

fullscreen

mode

Event

fullscreenerror

An element

can not be

displayed in

fullscreen

mode

Event

hashchange There has HashChangeEvent

been changes

to the anchor

part of a URL

input

An element

gets user

input

InputEvent, Event

invalid
An element is

invalid
Event

keydown A key is down KeyboardEvent

keypress
A key is

pressed
KeyboardEvent

keyup
A key is

released
KeyboardEvent

load
An object has

loaded
UiEvent, Event

loadeddata
Media data is

loaded
Event

loadedmetadata

Meta data (like

dimensions

and duration)

are loaded

Event

loadstart

The browser

starts looking

for the

specified

media

ProgressEvent

message

A message is

received

through the

event source

Event

mousedown The mouse

button is

pressed over

an element

MouseEvent

mouseenter

The pointer is

moved onto

an element

MouseEvent

mouseleave

The pointer is

moved out of

an element

MouseEvent

mousemove

The pointer is

moved over an

element

MouseEvent

mouseover

The pointer is

moved onto

an element

MouseEvent

mouseout

The pointer is

moved out of

an element

MouseEvent

mouseup

A user

releases a

mouse button

over an

element

MouseEvent

mousewheel

Deprecated. U

se

the wheel eve

nt instead

WheelEvent

offline

The browser

starts working

offline

Event

online The browser

starts working

online

Event

open

A connection

with the event

source is

opened

Event

pagehide

User navigates

away from a

webpage

PageTransitionEvent

pageshow
User navigates

to a webpage
PageTransitionEvent

paste

Some content

is pasted in an

element

ClipboardEvent

pause
A media is

paused
Event

play

The media has

started or is

no longer

paused

Event

playing

The media is

playing after

beeing paused

or buffered

Event

popstate

The window's

history

changes

PopStateEvent

progress The browser is

downloading

Event

media data

ratechange

The playing

speed of a

media is

changed

Event

resize
The document

view is resized
UiEvent, Event

reset A form is reset Event

scroll
An scrollbar is

being scrolled
UiEvent, Event

search

Something is

written in a

search field

Event

seeked

Skipping to a

media position

is finished

Event

seeking

Skipping to a

media position

is started

Event

select
User selects

some text
UiEvent, Event

show

A <menu>

element is

shown as a

context menu

Event

stalled

The browser is

trying to get

unavailable

media data

Event

storage A Web Storage

area is

updated

StorageEvent

submit
A form is

submitted
Event

suspend

The browser is

intentionally

not getting

media data

Event

timeupdate

The playing

position has

changed (the

user moves to

a different

point in the

media)

Event

toggle

The user

opens or

closes the

<details>

element

Event

touchcancel
The touch is

interrupted
TouchEvent

touchend

A finger is

removed from

a touch screen

TouchEvent

touchmove

A finger is

dragged

across the

screen

TouchEvent

touchstart A finger is TouchEvent

placed on a

touch screen

transitionend

A CSS

transition has

completed

TransitionEvent

unload
A page has

unloaded
UiEvent, Event

volumechange

The volume of

a media is

changed

(includes

muting)

Event

waiting

A media is

paused but is

expected to

resume (e.g.

buffering)

Event

wheel

The mouse

wheel rolls up

or down over

an element

WheelEvent

JavaScript Event Handlers

Event handlers can be used to handle and verify user input, user

actions, and browser actions:

 Things that should be done every time a page loads

 Things that should be done when the page is closed

 Action that should be performed when a user clicks a

button

 Content that should be verified when a user inputs data

 And more ...

Many different methods can be used to let JavaScript work with

events:

 HTML event attributes can execute JavaScript code directly

 HTML event attributes can call JavaScript functions

 You can assign your own event handler functions to HTML

elements

 You can prevent events from being sent or being handled

 And more ...

 Chapter Ten

 JavaScript Loop

JavaScript Loops are powerful tools for performing

repetitive tasks efficiently. Loops in JavaScript execute a

block of code again and again while the condition is true.

For example, suppose we want to print “Hello World” 5

times. This can be done using JS Loop easily. In Loop, the

statement needs to be written only once and the loop will

be executed 5 times as shown below:

 FOR (LET I = 0; I < 5; I++) {

 CONSOLE.LOG("HELLO WORLD!");

 }

 Output

 Hello world!

 Hello world!

 Hello world!

 Hello world!

 Hello world!

Looping in programming languages is a feature that

facilitates the execution of code blocks repeatedly until

some condition becomes false.

 For example, if you want to show a message 100 times,

then you can use a loop.

 It's just a simple example; you can achieve much more

with loops.

The JavaScript loops are used to iterate the piece of

code using for, while, do while or for-in loops. It makes the

code compact. It is mostly used in array.

There are four types of loops in JavaScript.

1. for loop

2. while loop

3. do-while loop

4. for-in loop

Loops are handy, if you want to run the same code over and

over again, each time with a different value.

Often this is the case when working with arrays:

Instead of writing:

 text += cars[0] + "
";

 text += cars[1] + "
";

 text += cars[2] + "
";

 text += cars[3] + "
";

 text += cars[4] + "
";

 text += cars[5] + "
";

You can write:

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript For Loop</h2>

<p id="demo"></p>

<script>

const cars = ["BMW", "Volvo", "Saab", "Ford", "Fiat",

"Audi"];

let text = "";

for (let i = 0; i < cars.length; i++) {

text += cars[i] + "
";

}

document.getElementById("demo").innerHTML =

text;

</script>

</body>

</html>

The For Loop

The for statement creates a loop with 3 optional

expressions:

 When a for loop executes, the following occurs:

1. The initializing expression initialization, if any, is

executed. This expression usually initializes one or more

loop counters, but the syntax allows an expression of

any degree of complexity. This expression can also

declare variables.

2.

 The

 condition

 expression is evaluated.

 If the value of

 condition

 is true, the loop statements execute.

 Otherwise, the

 for

 loop terminates.

 (If the

 condition

 expression is omitted entirely, the condition is

assumed to be true.)

3.

 The

 statement

 executes.

 To execute multiple statements, use a

 block statement

 ({ }) to group those statements.

4.

 If present, the update expression

 afterthought

 is executed.

5.

 Control returns to Step 2

 for (

 expression 1

 ;

 expression 2

 ;

 expression 3

) {

 //

 code block to be executed

 }

Expression 1 is executed (one time) before the execution

of the code block.

Expression 2 defines the condition for executing the code

block.

Expression 3 is executed (every time) after the code block

has been executed.

<!DOCTYPE html>

<html>

<body>

<h2>JavaScript For Loop</h2>

<p id="demo"></p>

<script>

let text = "";

for (let i = 0; i < 5; i++) {

text += "The number is " + i + "
";

}

document.getElementById("demo").innerHTML =

text;

</script>

</body>

</html>

From the example above, you can read:

Expression 1 sets a variable before the loop starts (let i = 0).

Expression 2 defines the condition for the loop to run (i must

be less than 5).

 Expression 3 increases a value (i++) each time the

code block in the loop has been executed.

 The initialExpression initializes and/or declares

variables and executes only once.

 The condition is evaluated.

 If the condition is false, the for loop is

terminated.

 If the condition is true, the block of code inside of

the for loop is executed.

 The updateExpression updates the value

of initialExpression when the condition is true.

 The condition is evaluated again.

 This process continues until the condition is false.

 The

 for loop

 runs until the given condition becomes false

 .

 It is similar to the for loops in C++ and Java.

JavaScript for loop is used to iterate the elements/code

block a fixed number of times. It is used if the number of

the iteration is known.

for statement creates the loop that accepts three

optional expressions and a code block that will be executed

in a loop. The syntax of for statement is given below.

 for (statement 1 ; statement 2 ;

statement 3){

 code here...

 }

 Statement 1:

 It

 is the initialization of the counter.

 It is executed once before the execution of the

code block.

 Statement 2:

 It defines the testing condition for executing

the code block

 Statement 3:

 It is the increment or decrement of the counter

& executed (every time) after the code block has been

executed.

 Example:

 // JavaScript program to illustrate for

loop

 let x;

 // for loop begins when x=2

 // and runs till x <=4

 for (x = 2; x <= 4; x++) {

 console.log("Value of x:" + x);

 }

 Output:

 Value of x:2

 Value of x:3

 Value of x:4

 Flow chart

 This flowchart below shows the working

of the for loop in JavaScript.

 You can see the control flow in the For

loop.

Example:

HTML

In the example below, the function contains a for

 statement that counts the number of selected

options in a scrolling list (a <select> element that

allows multiple selections).

<form name="selectForm">

<label for="musicTypes"

>Choose some music types, then click the button

below:</label

>

<select id="musicTypes" name="musicTypes"

multiple>

<option selected>R&B</option>

<option>Jazz</option>

<option>Blues</option>

<option>New Age</option>

<option>Classical</option>

<option>Opera</option>

</select>

<button id="btn" type="button">How many are

selected?</button>

</form>

 JavaScript

 Here, the for statement declares the

variable i and initializes it to 0.

 It checks that i is less than the

number of options in the <select> element,

performs the succeeding if statement, and

increments i by 1 after each pass through the

loop.

function countSelected(selectObject) {

let numberSelected = 0;

for (let i = 0; i < selectObject.options.length; i++) {

if (selectObject.options[i].selected) {

numberSelected++;

}

}

return numberSelected;

}

const btn = document.getElementById("btn");

btn.addEventListener("click", () => {

const musicTypes =

document.selectForm.musicTypes;

console.log(`You have selected

${countSelected(musicTypes)} option(s).`);

});

 do...while statement

 The do ...

 while loop works in much the same way as the while

loop, except that it puts the statements before the

expression to test against.

 The effect is that the statements within a do ...

 while loop will always execute as least once.

 Example:

 Listing 6-6: Using a do .

 .

 .

 while Loop

 <html>

 <head>

 <title>Let's Count</title>

 </head>

 <body>

 <script>

 var i = 0;

 do {

 i++;

 document.write(I + "
");

 } while (i<10);

 </script>

 </body>

 </html>

In JavaScript, a do while loop is a control statement that let

the code to run repeatedly in response to a specified

boolean condition. It resembles an iterative if statement.

You can use the do…while loop to run a certain block of

code at least once.

Two primary categories of loops exist.

 Access regulated loops The test condition is

examined in this kind of loop prior to the loop body's

entry. Entry-controlled loops are those seen in while and

for loops.

 Exit Controlled Loops: At the conclusion of the loop

body, the test condition is examined or tested in this

kind of loop. Consequently, regardless of whether the

test condition is true or false, the loop body will run at

least once. An exit-controlled loop is a do-while loop.

The do...while statement repeats until a specified condition

evaluates to false.

 A do...while statement looks as follows:

 do {

 // Statements

 }

 while(conditions)

statement is always executed once before the condition is

checked. (To execute multiple statements, use a block

statement ({ }) to group those statements.)

If condition is true, the statement executes again. At the

end of every execution, the condition is checked. When the

condition is false, execution stops, and control passes to the

statement following do...while.

 Example:

 In the following example, the

 do

 loop iterates at least once and reiterates until

 i

 is no longer less than

 5

 .

 let i = 0;

 do {

 i += 1;

 console.log(i);

 } while (i < 5);

 The example below will illustrate

the use of a do…while loop

 let test = 1;

 do {

 console.log(test);

 test++;

 } while(test<=5)

 The main difference between do

 …

 while and while loop is that it is guaranteed that do

 …

 while loop will run at least once.

 Whereas, the while loop will not run even once if the

given condition is not satisfied.

 The example below

 will try to understand the

difference between two loops

 let test = 1;

 do {

 console.log(test);

 } while(test<1)

 while(test<1){

 console.log(test);

 }

 Output:

 1

Explanation: We can see that even if the condition is not

satisfied in the do…while loop the code still runs once, but

in the case of while loop, first the condition is checked

before entering into the loop. Since the condition does not

match therefore the while loop is not executed.

 Differences between do

 …

 while and While Loop

 Do….While

Loop

 While

Loop

 It is an exit-

controlled loop

 It is an

entry-controlled

loop.

 The number

of iterations will be at

least one irrespective

of the condition

 The

number of

iterations

depends upon

the condition

specified

 The block

code is controlled at

the end

 The

block of code is

controlled at

starting

 Note:

 When we are writing

conditions for the loop we should

always add a code that terminates the

code execution otherwise the loop will

always be true and the browser will

crash.

 Supported Browser:

 Chrome

 Edge

 Safari

 Firefox

 Internet Explorer

 While Statement

 The while statement creates a loop that runs as long as

a condition evaluates to true.

 Listing 6-5 shows a webpage containing an example of

the while loop.

 <html>

 <head>

 <title>Guess the Word</title>

 </head>

 <body>

 <script>

 var guessedWord = prompt("What word

am I thinking

 of?");

 while (guessedWord != "sandwich") { //

as long as the

 guessed word is not sandwich

 prompt("No.

 That's not it.

 Try again.");

 }

 alert("Congratulations!

 That's exactly right!"); //

 do this after exiting the loop

 </script>

 </body>

 </html>

 A

 while

 statement executes its statements as long as a

specified condition evaluates to

 true.

 A

 while

 statement looks as follows:

 while (condition) {

 Code block to be executed

 }

 If the condition becomes false, statement within the

loop stops executing and control passes to the statement

following the loop.

 Here’s an example of a while loop

that counts from 1 to 5.

 let count = 1;

 while (count <= 5) {

 console.log(count);

 count++;

 }

 Output:

 1

 2

 3

 4

 5

 Explanation: Here,

 Count is initialized to 1.

 The loop runs as long as count is less

than or equal to 5.

 Inside the

loop, console.log(count) outputs the current

value of count.

 After each iteration, count is

incremented by 1 (count++).

The condition test occurs before statement in the loop is

executed. If the condition returns true, statement is

executed and the condition is tested again. If the condition

returns false, execution stops, and control is passed to the

statement following while.

To execute multiple statements, use a block statement ({ })

to group those statements

 Example:

 The following

 while

 loop iterates as long as

 n

 is less than

 3

 :

 let n = 0;

 let x = 0;

 while (n < 3) {

 n++;

 x += n;

 }

 With each iteration, the loop increments

 n

 and adds that value to

 x.

 Therefore,

 x

 and

 n

 take on the following values:

 After the first pass:

 n

 =

 1

 and

 x

 =

 1

 After the second pass:

 n

 =

 2

 and

 x

 =

 3

 After the third pass:

 n

 =

 3

 and

 x

 =

 6

 After completing the third pass, the condition

 n < 3

 is no longer

 true, so the loop terminates.

 Avoid infinite loops.

Make sure the condition in a loop eventually becomes false

— otherwise, the loop will never terminate! The statements

in the following while loop execute forever because the

condition never becomes false :

// Infinite loops are bad!

while (true) {

console.log("Hello, world!");

}

 Comparison between

 the

 while and

 for

 loop:

Both while and for loops are used for repetitive tasks

in JavaScript, but they have different syntax and are

typically used in different scenarios.

1.

 Initialization

 :

 While Loop

 : The initialization of variables happens before

the loop.

 For Loop

 : The initialization of variables is done within the

loop syntax.

2.

 Condition

 :

 Both loops require a condition that determines

whether the loop should continue or terminate.

3.

 Increment/Decrement

 :

 While Loop

 : The increment/decrement of loop control

variable(s) must be done manually within the loop

block.

 For Loop

 : The increment/decrement of loop control

variable(s) is part of the loop syntax.

4.

 Use Cases

 :

 While Loop

 : Typically used when you don’t know the

number of iterations in advance or when you want to

create an infinite loop.

 For Loop

 : Generally used when you know the number of

iterations in advance or when iterating over arrays or

other collections.

 for…….in Loop

The for ... in statements loop through the properties in an

object. You can also use a for ... in statement to loop

through the values of an array.

The for ... in loop has an interesting quirk. It doesn ’ t care

about the order of properties or elements that it ’ s looping

through. For this reason, and because using for ... in loop is

slower, you ’ re much better off using a standard for loop to

loop through array elements.

Objects are data containers that have properties (what they

are) and methods (what they do). Web browsers have a set

of built-in objects that programmers can use to control the

function of the browser. The most basic of these is the

Document object. The write method of the Document object,

for example, tells your browser to insert a specified value

into the HTML document.

The Document object also has properties that it uses to

track and give programmers information about the current

document. The Document.images collection, for example,

contains all of the img tags in the current HTML document.

 <html>

 <head>

 <title>document properties</title>

 <style>

 .columns {

 -webkit-column-count: 6; // Chrome,

Safari, Opera

 -moz-column-count: 6; // Firefox

 column-count: 6;

 }

 </style>

 </head>

 <body>

 <div class="columns">

 <script>

 for (var prop in document){

 document.write (prop + "
");

 }

 </script>

 </div>

 </body>

</html>

The for...in loop iterates over the properties of an object.

For each property, the code in the code block is executed.

Syntax

 for (let i in obj1) {

 // Prints all the keys in

 // obj1 on the console

 console.log(i);

 }

 Example: JavaScript For In Loop

 The for in statement loops through the properties of an

object:

 <!DOCTYPE html>

 <html>

 <body>

 <h2>JavaScript For In Loop</h2>

 <p>The for in statement loops

through the properties of an object:</p>

 <p id="demo"></p>

 <script>

 const person = {fname:"John",

lname:"Doe", age:25};

 let txt = "";

 for (let x in person) {

 txt += person[x] + " ";

 }

document.getElementById("demo").innerHT

ML = txt;

 </script>

 </body>

 </html>

 Example Explained

 The

 for in

 loop iterates over a

 person

 object

 Each iteration returns a

 key

 (x)

 The key is used to access the

 value

 of the key

 The value of the key is

 person[x]

 for in Loop Important Points

 Use the for-in loop to iterate over non-array

objects.

 Even though we can use a for-in loop for an

array, it is generally not recommended.

 Instead, use a for loop for looping over an array.

 The properties iterated with the for-in loop also

include the properties of the objects higher in

the Prototype chain.

 The order in which properties are iterated may

not match the properties that are defined in the object.

 for-in Loop Examples

 Example:

 A simple example to illustrate the for-in loop over an

array.

const array = [1, 2, 3, 4, 5];

for (const element of array) {

console.log(element);

}

 Output:

 1

 2

 3

 4

 5

Example: For-in loop iterates over the properties of an

object and its prototype chain’s properties. If we want to

display both properties of the “student1” object which

belongs to that object only and the prototype chain, then

we can perform it by for in loop.

const courses = {

// Declaring a courses object

firstCourse: "C++ STL",

secondCourse: "DSA Self Paced",

thirdCourse: "CS Core Subjects"

};

// Creating a new empty object with

// prototype set to courses object

const student1 = Object.create(courses);

// Defining student1 properties and methods

student1.id = 123;

student1.firstName = "Prakhar";

student1.showEnrolledCourses = function () {

console.log(courses);

}

// Iterating over all properties of

// student1 object

for (let prop in student1) {

console.log(prop + " -> "

+ student1[prop]);

}

Output:

 id -> 123

 firstName -> Prakhar

 showEnrolledCourses -> function ()

{

 console.log(courses);

 }

 firstCourse -> C++ STL

 secondCourse -> DSA Self Paced

 thirdCourse -> CS Core Subjects

 Supported Browsers:

 The browser supported are listed

below:

 Google Chrome

 Edge

 Firefox

 Opera

https://www.geeksforgeeks.org/internet-explorer-mode-in-microsoft-edge/

 Safari

 The For Of Loop

The JavaScript for of statement loops through the values of

an iterable object, such as arrays, strings, maps, sets,

NodeLists, and more: . It provides a simpler syntax

compared to traditional for loops.

Syntax

 for (variable of iterableObjectName) {

 //

 code block to be executed

 }

 Parameters

 :

 Variable : Represents the current value of each iteration

from the iterable. For every iteration the value of the next

property is assigned to the variable. Variable can be declared

with const , let , or var .

 Iterable : Any object that can be iterated over (e.g., arrays,

strings, maps).

Examples :

Iterate over an array:

 const arr = ["Fred", "Tom", "Bob"];

 for (let i of arr) {

 console.log(i);

 }

 // Output:

 // Fred

 // Tom

 // Bob

 const array = [1, 2, 3, 4, 5];

 for (const item of array) {

 console.log(item);

 }

 Output

 1

 2

 3

 4

 5

 Explanation:

 The code initializes an array with

values 1 through 5.

 It then iterates over each element of

the array using a for…of loop, logging each

element to the console.

Iterate over a Map :

 const m = new Map();

 m.set(1, "black");

 m.set(2, "red");

 for (let n of m) {

 console.log(n);

 }

 // Output:

 // [1, black]

 // [2, red]

 const map = new Map([

 ['key1', 'value1'],

 ['key2', 'value2'],

 ['key3', 'value3']

]);

 for (const [key, value] of map) {

 console.log(`Key: ${key}, Value:

${value}`);

 }

 Output

 Key: key1, Value: value1

 Key: key2, Value: value2

 Key: key3, Value: value3

 Explanation:

 Here,

 map is the Map object you want to

iterate over.

 for (const [key, value] of map) initiates

the for...of loop, where [key, value] represents each

key-value pair in the Map during each iteration.

 Inside the loop, console.log(Key:

${key}, Value: ${value}); prints each key-value

pair to the console during each iteration of the

loop.

Iterate over a Set :

 const s = new Set();

 s.add(1);

 s.add("red");

 for (let n of s) {

 console.log(n);

 }

 // Output:

 // 1

 // red

 const str = "Hello";

 for (const char of str) {

 console.log(char);

 }

 Output

 H

 e

 l

 l

 o

 Explanation:

 Here,

 str is the string you want to loop over.

 for (const char of str) initiates

the for...of loop, where char represents each

character in the string during each iteration.

 console.log(char) prints each character

to the console during each iteration of the loop.

 Chapter Eleven

 Utilizing the

JavaScript DOM

Web documents include a programming interface called the

Document Object Model (DOM). Programs can alter the

document's structure, design, and content by using it as a

representation of the page. In order to enable computer

languages to communicate with the page, the document is

represented by the

DOM as nodes and objects. An HTML document becomes a

document object when it loads in the browser. The HTML

document is represented by this root element. It contains

attributes and functions. We are able to incorporate

dynamic material into our webpage with the aid of

document objects.

 window.document

 is same as

 document

According to W3C - "The W3C Document Object Model

(DOM) is a platform and language-neutral interface that

allows programs and scripts to dynamically access and

update the content, structure, and style of a document."

Properties of document object

Below are the properties of document object that can be

accessed and modified by the document object.

Methods of document object

We can access and change the contents of document by its

methods.

The important methods of document object are as follows:

 Method

 Description

write("string")
writes the given string

on the doucment.

writeln("string")

writes the given string

on the doucment with

newline character at the

end.

getElementById()

returns the element

having the given id

value.

getElementsByName()

returns all the elements

having the given name

value.

getElementsByTagName()

returns all the elements

having the given tag

name.

getElementsByClassName

()

returns all the elements

having the given class

name.

Accessing field value by document object

In the example below, it gets the value of input text by user.

Here, we are using document.form1.name.value to get

the value of name field.

Here, document is the root element that represents the

html document.

<script type="text/javascript" >

function printvalue(){

var name=document.form1.name.value;

alert("Welcome: "+name);

}

</script>

<form name="form1" >

Enter Name: <input type="text" name="name"

/>

<input

 type="button" onclick="printvalue()" value="prin

t name" />

</form>

form1 is the name of the form.

name is the attribute name of the input text.

value is the property, that returns the value of the

input text.

JavaScript - document.getElementById() method

The document.getElementById() method returns the

element of specified id.

The example above has used

document.form1.name.value

to get the value of the input value. Instead of this, we can

use document.getElementById() method to get value of the

input text. But we need to define id for the input field. Let's

see the simple example of document.getElementById()

method that prints cube of the given number.

<script type="text/javascript">

function getcube(){

var number=document.getElementById("number").

value;

alert(number*number*number);

}

</script>

<form>

Enter No:

<input type="text" id="number" name="number"/

>

<input type="button" value="cube" onclick="getcu

be()"/>

</form>

JavaScript - document.getElementsByName() method

The document.getElementsByName() method returns all the

element of specified name.

The syntax of the getElementsByName() method is given below:

document.getElementsByName("name")

 Example of document.getElementsByName() method

In this example, we going to count total number of genders. Here, we are

using getElementsByName() method to get all the genders.

<script type="text/javascript">

function totalelements()

{

var allgenders=document.getElementsByName("gender");

alert("Total Genders:"+allgenders.length);

}

</script>

<form>

Male:<input type="radio" name="gender" value="male">

Female:

<input type="radio" name="gender" value="female">

<input type="button" onclick="totalelements()" value="Total G

enders">

</form>

JavaScript - document.getElementsByTagName() method

The document.getElementsByTagName() method returns all the element of specified

tag name.

The syntax of the getElementsByTagName() method is given below:

document.getElementsByTagName("name")

 Example of document.getElementsByTagName() method

In this example, we going to count total number of paragraphs used in the document. To do

this, we have called the document.getElementsByTagName("p") method that returns the

total paragraphs.

<script type="text/javascript">

function countpara(){

var totalpara=document.getElementsByTagName("p");

alert("total p tags are: "+totalpara.length);

}

</script>

<p>This is a pragraph</p>

<p>Here we are going to count total number of paragraphs by getElementByTag

me() method.</p>

<p>Let's see the simple example</p>

<button onclick="countpara()">count paragraph</button>

Another example of document.getElementsByTagName() method

In this example, we going to count total number of h2 and h3 tags used in the document.

<script type="text/javascript">

function counth2(){

var totalh2=document.getElementsByTagName("h2");

alert("total h2 tags are: "+totalh2.length);

}

function counth3(){

var totalh3=document.getElementsByTagName("h3");

alert("total h3 tags are: "+totalh3.length);

}

</script>

<h2>This is h2 tag</h2>

<h2>This is h2 tag</h2>

<h3>This is h3 tag</h3>

<h3>This is h3 tag</h3>

<h3>This is h3 tag</h3>

<button onclick="counth2()">count h2</button>

<button onclick="counth3()">count h3</button>

JavaScript - innerHTML

The innerHTML property can be used to write the dynamic html on the

html document.

It is used mostly in the web pages to generate the dynamic html such as

registration form, comment form, links etc.

Example of innerHTML property

In this example, we are going to create the html form when user clicks on

the button. In this example, we are dynamically writing the html form

inside the div name having the id mylocation. We are identifing this

position by calling the document.getElementById() method.

<script type="text/javascript" >

function showcommentform() {

var data="Name:<input type='text' name='name'>

Comment:
<textarea rows='5' cols='80'>

</textarea>

<input type='submit' value='Post Comment'>";

document.getElementById('mylocation').innerHTML=data;

}

</script>

<form name="myForm">

<input type="button" value="comment" onclick="showcommen

tform()">

<div id="mylocation"></div>

</form>

Show/Hide Comment Form Example using innerHTML

<!DOCTYPE html >

<html>

<head>

<title> First JS </title>

<script>

var flag=true;

function commentform(){

var cform=" <form action='Comment' > Enter Name:

<input type='text' name='name' />

Enter Email:
<input type='email' name='email'

/>
 Enter Comment:

<textarea rows='5' cols='70' ></textarea>

<input type='submit' value='Post Comment' />

</form> ";

if(flag){

document.getElementById("mylocation").innerHTML=cfo

rm;

flag=false;

}else{

document.getElementById("mylocation").innerHTML="";

flag=true;

}

}

</script>

</head>

<body>

<button onclick="commentform()" > Comment

</button>

<div id="mylocation" ></div>

</body>

</html>

JavaScript - innerText

The innerText property can be used to write the dynamic text on the html

document. Here, text will not be interpreted as html text but a normal text.

It is used mostly in the web pages to generate the dynamic content such as writing

the validation message, password strength etc.

JavaScript innerText Example

In this example, we are going to display the password strength when releases the

key after press.

<script type="text/javascript" >

function validate() {

var msg;

if(document.myForm.userPass.value.length > 5){

msg="good";

}

else{

msg="poor";

}

document.getElementById('mylocation').innerText=msg;

 }

</script>

<form name="myForm" >

<input

 type="password" value="" name="userPass" onkeyup="validat

e()" >

Strength: no strength

</form>

 Chapter Twelve

 Javascript Browser Object

Model.

A JavaScript programming interface tool for interacting with web browsers is called

Browser Object Model (BOM). This facilitates the JavaScript code, allowing access to

and manipulation of the browser window, frames, and other browser-related objects.

JavaScript may interface with browser capabilities using the Browser Object Model

(BOM). You can build and resize windows, show alarm messages, and alter the page

that is currently displayed in the browser by using the BOM.

 The default object of browser is window means you can call all the functions of

window by specifying window or directly.

 For example:

 window.alert(" Hey Friend");

 // Same as

 alert(" Hey Friend ");

 You can use a lot of properties (other objects) defined

underneath the window object like document, history, screen,

navigator, location, innerHeight, innerWidth,

 Understanding the Browser Environment

Web browsers are complicated pieces of software. When they work well, they operate

seamlessly and integrate all their functions into a smooth and seemingly simple web

browsing experience. We all know that web browsers have an occasional hiccup and

sometimes even crash. To understand why this happens, and to be able to make

better use of browsers, it ’ s important to know the many different parts of the web

browser and how these parts interact with each other.

 The user interface

The part of the web browser that you interact with when you type in a URL, click the

home button, create or use a bookmark, or change your browser settings is called

the user interface, or browser chrome (not to be confused with Google ’ s Chrome

browser).

The browser chrome consists of the web browser ’ s menus, window frames, toolbars,

and buttons that are outside of the main content window where web pages load.

 Loader

The loader is the part of a web browser that communicates with web servers and

downloads web pages, scripts, CSS, graphics, and all the other components of a web

page. Most often, loading is the part of displaying a web page that creates the

longest wait time for the user.

The HTML page is the first part of a web page that must be downloaded, as it

contains links and embedded scripts and styles that need to be processed in order to

display the page.

It displays a graphical view of everything that happens during the loading of a web

page, along with a timeline showing how long the loading of each part takes.

Once the HTML document is downloaded, browsers will open several connections to

the server in order to download the other parts of the web page as quickly as

possible. Generally, the parts of a web page that are linked from an HTML document

(also known as the resources) are loaded in the order in which they appear in the

HTML document.

For example, a script that is linked in the head element of the page will be loaded

before one that ’ s linked at the bottom of the page. The load order of resources is

critical to the efficiency and speed at which the page can be displayed to the user. In

order for a web page to be displayed correctly, the CSS styles that apply to that page

need to be loaded and parsed. Because of this, CSS should always be loaded in the

head element at the top of the web page.

JavaScript sometimes affects the display of a web page as well, but more often, it

affects only the functionality. When a script will affect the display of a web page, it

should be loaded in the head of the document (after the CSS).

Scripts that aren ’ t critical to how the web page appears should be linked from the

very end of the body element (right before the </body>), so as to not create a

blocking scenario in which the browser waits for scripts to load before displaying

anything to the user.

 HTML parsing

After a web page is downloaded, the HTML parsing component of the browser goes

to work parsing the HTML to create a model (called the Document Object Model or

DOM) of the web page. The DOM, which is covered in detail in Chapter Eleven, is like

a map of your web page. JavaScript programmers use this map to manipulate and

access all the different parts of a web page.

Upon completion of the HTML parsing, the browser begins downloading the other

components of the web page.

 CSS parsing

Once the CSS for a web page is completely downloaded, the web browser will parse

the styles and figure out which ones apply to the HTML document. CSS parsing is a

complex process involving multiple passes over a document in order to apply each

style correctly and to take into account how the styles impact each other.

 JavaScript parsing

The next step in displaying a web page is the JavaScript parsing. The JavaScript

parser compiles and runs every script in your web page in the order in which it

appears in the document. If your JavaScript code adds or removes elements, text, or

styles within the HTML DOM, the browser will update the HTML and CSS renderings

accordingly.

 Layout and rendering

Finally, once all the web page ’ s resources have been loaded and parsed, the

browser determines how to display the page and then displays it. Unless you ’ ve

specified that a script included earlier in the document should wait until the end to

be executed, the layout and rendering of your scripts will occur in the order they ’ re

included in the document.

In general, it ’ s better to display a web page to the user as quickly as possible, even

if the page may not be fully functional when it first appears. Modern websites

frequently employ this strategy specifically (called deferred loading) to improve the

perceived performance of their pages.

If you ’ ve ever opened a web page and had to wait for a moment before you can use

a form or interactive element, you ’ ve seen deferred loading in action.

 Igniting the BOM

JavaScript programmers can find out information about a user ’ s web browser and

control aspects of the user ’ s experience through an API called the Browser Object

Model.

There is no official standard for the Browser Object Model. Different browsers

implement it in different ways. However, there are some generally accepted

standards for how JavaScript interacts with web browsers.

 The Navigator Object

The Navigator object provides JavaScript with access to information about the user ’

s web browser. The Navigator object takes its name from the first web browser to

implement it, Netscape Navigator. The Navigator object isn ’ t built into JavaScript.

Rather, it ’ s a feature of web browsers that is accessible using JavaScript. Nearly

every web browser (and every modern web browser) has adopted the same

terminology to refer to this highest ‐ level browser object.

 The Navigator object accesses helpful information such as

 The name of the web browser

 The version of the web browser

 The physical location of the computer the browser is running on (if the

user allows the browser to access geolocation data).

 The language of the browser

 The type of computer the browser is running on.

 Window Object

In JavaScript, the Window object represents the window that contains a Document

Object Model document. The window object represents a window in browser. An

object of window is created automatically by the browser. Window is the object of

browser, it is not the object of JavaScript. The JavaScript objects are string, array,

date etc.

The Window object provides access to various properties and methods that enable

interaction with the browser environment, including manipulating the document,

handling events, managing timers, displaying dialog boxes, and more.

Methods of window object

The important methods of window object are as follows:

 Method

 Description

alert()
displays the alert box containing message with ok

button.

confirm()
displays the confirm dialog box containing message

with ok and cancel button.

prompt() displays a dialog box to get input from the user.

open() opens the new window.

close() closes the current window.

setTimeout()
performs action after specified time like calling

function, evaluating expressions etc.

 Example of alert() in javascript

It displays alert dialog box. It has message and ok button.

<script type="text/javascript">

function msg(){

 alert("Hello Alert Box");

}

</script>

<input type="button" value="click" onclick="msg()"/>

 Example of confirm() in javascript

It displays the confirm dialog box. It has message with ok and cancel buttons.

<script type="text/javascript">

function msg(){

var v= confirm("Are u sure?");

if(v==true){

alert("ok");

}

else{

alert("cancel");

}

}

</script>

<input type="button" value="delete record" onclick="msg()"/>

 Example of prompt() in javascript

It displays prompt dialog box for input. It has message and textfield.

<script type="text/javascript">

function msg(){

var v= prompt("Who are you?");

alert("I am "+v);

}

</script>

<input type="button" value="click" onclick="msg()"/>

 Example of open() in javascript

It displays the content in a new window.

<script type="text/javascript">

function msg(){

open("http://www.google.com");

}

</script>

<input type="button" value="javatpoint" onclick="msg()"/>

 Example of setTimeout() in javascript

It performs its task after the given milliseconds.

<script type="text/javascript">

function msg(){

setTimeout(

function(){

alert("Welcome to Javatpoint after 2 seconds")

},2000);

}

</script>

<input type="button" value="click" onclick="msg()"/>

 JavaScript History Object

The JavaScript history object represents an array of URLs visited by the user. By

using this object, you can load previous, forward or any particular page.

The history object is the window property, so it can be accessed by:

 window.history

 or

 history

 Property of JavaScript history object

There are only 1 property of history object.

No.

Property

 Description

1 length returns the length of the history URLs.

 Methods of JavaScript history object

There are only 3 methods of history object.

 No.

Method

 Description

1 forward() loads the next page.

2 back() loads the previous page.

3 go() loads the given page number.

 Example of history object

Let’s see the different usage of history object.

1. history.back();//for previous page

2. history.forward();//for next page

3. history.go(2);//for next 2nd page

4. history.go(-2);//for previous 2nd page

 JavaScript Navigator Object

The JavaScript navigator object is used for browser detection. It can be used to

get browser information such as appName, appCodeName, userAgent etc.

The navigator object is the window property, so it can be accessed by:

window.navigator

or

navigator

Property of JavaScript navigator object

There are many properties of navigator object that returns information of the

browser.

No.

 Property

 Description

1 appName returns the name

2 appVersion returns the version

3 appCodeName returns the code name

4 cookieEnabled
returns true if cookie is enabled

otherwise false

5 userAgent returns the user agent

6 language
returns the language. It is supported

in Netscape and Firefox only.

7 userLanguage
returns the user language. It is

supported in IE only.

8 plugins
returns the plugins. It is supported in

Netscape and Firefox only.

9 systemLanguage
returns the system language. It is

supported in IE only.

10 mimeTypes[]

returns the array of mime type. It is

supported in Netscape and Firefox

only.

11 platform returns the platform e.g. Win32.

12 online
returns true if browser is online

otherwise false.

Methods of JavaScript navigator object

The methods of navigator object are given below.

No.

 Method

 Description

1 javaEnabled() checks if java is enabled.

2 taintEnabled()
checks if taint is enabled. It is

deprecated since JavaScript 1.2.

 Example of navigator object

Let’s see the different usage of history object.

<script>

document.writeln("

navigator.appCodeName: "+navigator.appCodeName);

document.writeln("

navigator.appName: "+navigator.appName);

document.writeln("

navigator.appVersion: "+navigator.appVersion);

document.writeln("

navigator.cookieEnabled: "+navigator.cookieEnabled);

document.writeln("

navigator.language: "+navigator.language);

document.writeln("

navigator.userAgent: "+navigator.userAgent);

document.writeln("

navigator.platform: "+navigator.platform);

document.writeln("

navigator.onLine: "+navigator.onLine);

</script>

 JavaScript Screen Object

The JavaScript screen object holds information of browser screen. It can be used to

display screen width, height, colorDepth, pixelDepth etc.

The navigator object is the window property, so it can be accessed by:

window.screen

or

screen

Property of JavaScript Screen Object

There are many properties of screen object that returns information of the browser.

No.

 Property

 Description

1 width returns the width of the screen

2 height returns the height of the screen

3 availWidth returns the available width

4 availHeight returns the available height

5 colorDepth returns the color depth

6 pixelDepth returns the pixel depth.

 Example of JavaScript Screen Object

Let’s see the different usage of screen object.

<script>

document.writeln("
 screen.width: "+screen.width);

document.writeln("
 screen.height: "+screen.height);

document.writeln("

screen.availWidth: "+screen.availWidth);

document.writeln("

screen.availHeight: "+screen.availHeight);

document.writeln("

screen.colorDepth: "+screen.colorDepth);

document.writeln("

screen.pixelDepth: "+screen.pixelDepth);

</script>

 Chapter Thirteen

 JavaScript Form Validation

 JavaScript Form Validation ensures data integrity by verifying user input

before submission.

 It validates fields like passwords, emails, and selections, providing alerts for

invalid data, and enhancing user experience and data accuracy.

It is important to validate the form submitted by the user because it can have

inappropriate values. So, validation is must to authenticate user.

JavaScript provides facility to validate the form on the client-side so data processing

will be faster than server-side validation. Most of the web developers prefer

JavaScript form validation.

Through JavaScript, we can validate name, password, email, date, mobile numbers

and more fields.

 Approach for Form Validation in JavaScript

In this approach, we are following these steps

 Data Retrieval:

 It retrieves the values of various form fields like name, email, course

selection, password, and address using document.forms.RegForm.

 Data Validation:

 -

 Name Validation:

 Checks if the name field is empty or contains any digits.

 -

 Address Validation:

 Ensures the address field is not empty.

 -

 Email Validation:

 Verifies if the email field is not empty and contains the ‘@’

symbol.

 -

 Password Validation:

 Validates that the password field is not empty and has a

minimum length of 6 characters.

 -

 Course Selection Validation:

 Ensures that a course is selected from the dropdown.

 Error Handling:

 -

 If any of the validation criteria fail, it displays an alert message

using window.alert.

 -

 Sets focus back to the respective field that failed validation,

ensuring the user’s attention is drawn to the problematic field.

 Submission Control:

 -

 Returns true if all validation checks pass, indicating that the form

can be submitted.

 Otherwise, it returns false, preventing form submission.

 Focus Adjustment:

 -

 Sets focus to the first field that failed validation, ensuring the

user’s attention is drawn to the problematic field.

JavaScript Form Validation Example

In this example, we are going to validate the name and password. The name can’t be

empty and password can’t be less than 6 characters long.

 Here, we are validating the form on form submit.

 The user will not be forwarded to the next page until given values are

correct.

 Here, we are validating the form on form submit.

 The user will not be forwarded to the next page until given values are

correct.

<script>

function validateform(){

var name=document.myform.name.value;

var password=document.myform.password.value;

if (name==null || name==""){

 alert("Name can't be blank");

 return false;

}else if(password.length <6){

 alert("Password must be at least 6 characters long.");

 return false;

 }

}

</script>

<body>

<form

 name="myform" method="post" action="abc.jsp" onsubmit="return vali

dateform()" >

Name: <input type="text" name="name" >

Password: <input type="password" name="password" >

<input type="submit" value="register" >

</form>

JavaScript Retype Password Validation

<script type="text/javascript" >

function matchpass(){

var firstpassword=document.f1.password.value;

var secondpassword=document.f1.password2.valu

if(firstpassword==secondpassword){

return true;

}

else{

alert("password must be same!");

return false;

}

}

</script>

<form

 name="f1" action="register.jsp" onsubmit="return matchpass()"

>

Password: <input type="password" name="password" />

Re-enter Password: <input

 type="password" name="password2" />

<input type="submit" >

</form>

JavaScript Number Validation

Let's validate the textfield for numeric value only. Here, we are using isNaN()

function.

<script>

function validate(){

var num=document.myform.num.value;

if (isNaN(num)){

 document.getElementById("numloc").innerHTML="Enter Numeric v

alue only";

 return false;

}else{

 return true;

 }

}

</script>

<form name="myform" onsubmit="return validate()" >

Number: <input type="text" name="num" ><span id="numloc"

>

<input type="submit" value="submit" >

</form>

JavaScript validation with image

 Let’s see an interactive JavaScript form validation example that displays

correct and incorrect image if input is correct or incorrect.

<script>

function validate(){

var name=document.f1.name.value;

var password=document.f1.password.value;

var status=false;

if(name.length <1){

document.getElementById("nameloc").innerHTML=

" Please enter your name";

status=false;

}else{

document.getElementById("nameloc").innerHTML=" <img src='checked.

gif'/>";

status=true;

}

if(password.length <6){

document.getElementById("passwordloc").innerHTML=

" Password must be at least 6 char long";

status=false;

}else{

document.getElementById("passwordloc").innerHTML=" <img src='chec

ked.gif'/>";

}

return status;

}

</script>

<form name="f1" action="#" onsubmit="return validate()" >

<table>

<tr><td> Enter Name: </td><td><input type="text" name="name"

/>

</td></tr>

<tr><td> Enter Password: </td><td><input

 type="password" name="password" />

</td></tr>

<tr><td colspan="2" ><input type="submit" value="register" />

</td></tr>

</table>

</form>

JavaScript email validation

We can validate the email by the help of JavaScript. There are many criteria that

need to be follow to validate the email id such as:

 email id must contain the @ and character

 There must be at least one character before and after the @.

 There must be at least two characters after. (dot).

Let's see the simple example to validate the email field.

<script>

function validateemail()

{

var x=document.myform.email.value;

var atposition=x.indexOf("@");

var dotposition=x.lastIndexOf(".");

if (atposition <1 || dotposition <atposition +2 || dotposition+2 >

=x.length){

 alert("Please enter a valid e-

mail address \n atpostion:"+atposition+"\n dotposition:"+dotposition);

 return false;

 }

}

</script>

<body>

<form

 name="myform" method="post" action="#" onsubmit="return valid

ateemail();" >

Email: <input type="text" name="email" >

<input type="submit" value="register" >

</form>

 Chapter Fourteen

 JavaScript Object Oriented

Programming

Object-Oriented Programming is a programming style based on classes and objects.

These group data (properties) and methods (actions) inside a box. OOP was

developed to make code more flexible and easier to maintain. JavaScript is prototype-based

procedural language, which means it supports both functional and object-oriented programming.

JavaScript Classes

In JavaScript, classes are the special type of functions. We can define the class just like

function declarations and function expressions.

The JavaScript class contains various class members within a body including methods or

constructor. The class is executed in strict mode. So, the code containing the silent error or

mistake throws an error.

The class syntax contains two components:

 Class declarations

 Class expressions

Class Declarations

A class can be defined by using a class declaration. A class keyword is used to declare a

class with any particular name. According to JavaScript naming conventions, the name of

the class always starts with an uppercase letter.

Class Declarations Example

Let's see a simple example of declaring the class.

<script>

//Declaring class

class Employee

 {

//Initializing an object

 constructor(id,name) {

 this.id=id;

 this.name=name;

 }

//Declaring method

 detail() {

 document.writeln(this.id+" "+this.name+"
 ")

 }

 }

//passing object to a variable

var e1=new Employee(101,"Martin Roy");

var e2=new Employee(102,"Duke William");

e1.detail(); //calling method

e2.detail();

</script>

Class Declarations Example: Hoisting

Unlike function declaration, the class declaration is not a part of JavaScript hoisting. So, it is

required to declare the class before invoking it.

Let's see an example.

<script>

//Here, we are invoking the class before declaring it.

var e1=new Employee(101,"Martin Roy");

var e2=new Employee(102,"Duke William");

e1.detail(); //calling method

e2.detail();

//Declaring class

class Employee

 {

//Initializing an object

 constructor(id,name)

 {

 this.id=id;

 this.name=name;

 }

 detail()

 {

 document.writeln(this.id+" "+this.name+"
 ")

 }

 }

</script>

Class Declarations Example: Re-declaring Class

A class can be declared once only. If we try to declare class more than one time, it throws

an error.

<script>

//Declaring class

class Employee

 {

//Initializing an object

 constructor(id,name)

 {

 this.id=id;

 this.name=name;

 }

 detail()

 {

 document.writeln(this.id+" "+this.name+"
 ")

 }

 }

//passing object to a variable

var e1=new Employee(101,"Martin Roy");

var e2=new Employee(102,"Duke William");

e1.detail(); //calling method

e2.detail();

//Re-declaring class

class Employee

 {

 }

</script>

OUTPUT

Class expressions

Another way to define a class is by using a class expression. Here, it is not mandatory to

assign the name of the class. So, the class expression can be named or unnamed. The

class expression allows us to fetch the class name. However, this will not be possible with

class declaration.

Unnamed Class Expression

The class can be expressed without assigning any name to it.

Let's see an example.

<script>

var emp = class {

 constructor(id, name) {

 this.id = id;

 this.name = name;

 }

};

document.writeln(emp.name);

</script>

Class Expression Example: Re-declaring Class

Unlike class declaration, the class expression allows us to re-declare the same class. So, if

we try to declare the class more than one time, it throws an error.

<script>

//Declaring class

var emp=class

 {

//Initializing an object

 constructor(id,name)

 {

 this.id=id;

 this.name=name;

 }

//Declaring method

detail()

 {

 document.writeln(this.id+" "+this.name+"
 ")

 }

 }

//passing object to a variable

var e1=new emp(101,"Martin Roy");

var e2=new emp(102,"Duke William");

e1.detail(); //calling method

e2.detail();

//Re-declaring class

var emp=class

 {

//Initializing an object

 constructor(id,name)

 {

 this.id=id;

 this.name=name;

 }

 detail()

 {

 document.writeln(this.id+" "+this.name+"
 ")

 }

 }

//passing object to a variable

var e1=new emp(103,"James Bella");

var e2=new emp(104,"Nick Johnson");

e1.detail(); //calling method

e2.detail();

</script>

Named Class Expression Example

We can express the class with the particular name. Here, the scope of the class name is up

to the class body. The class is retrieved using class.name property.

<script>

var emp = class Employee {

 constructor(id, name) {

 this.id = id;

 this.name = name;

 }

};

document.writeln(emp.name);

/*document.writeln(Employee.name);

Error occurs on console:

"ReferenceError: Employee is not defined

*/

</script>

 JavaScript Objects

A JavaScript object is an entity having state and behavior (properties and method). For

example: car, pen, bike, chair, glass, keyboard, monitor etc.

JavaScript is an object-based language. Everything is an object in JavaScript.

JavaScript is template based not class based. Here, we don't create class to get the object.

But, we direct create objects.

Creating Objects in JavaScript

There are 3 ways to create objects.

1. By object literal

2. By creating instance of Object directly (using new keyword)

3. By using an object constructor (using new keyword)

 1) JavaScript Object by object literal

The syntax of creating object using object literal is given below:

object={property1:value1,property2:value2.....propertyN:valueN}

As you can see, property and value is separated by : (colon).

Let’s see the simple example of creating object in JavaScript.

<script>

emp={id:102,name:"Shyam Kumar",salary:40000}

document.write(emp.id+" "+emp.name+" "+emp.salay);

</script>

 2) By creating instance of Object

The syntax of creating object directly is given below:

var objectname=new Object();

Here, new keyword is used to create object.

<script>

var emp=new Object();

emp.id=101;

emp.name="Ravi Malik";

emp.salary=50000;

document.write(emp.id+" "+emp.name+" "+emp.salary);

</script>

 3) By using an Object constructor

Here, you need to create function with arguments. Each argument value can be assigned in

the current object by using this keyword. The this keyword refers to the current object.

The example of creating object by object constructor is given below.

<script>

function emp(id,name,salary){

this.id=id;

this.name=name;

this.salary=salary;

}

e=new emp(103,"Vimal Jaiswal",30000);

document.write(e.id+" "+e.name+" "+e.salary);

</script>

Defining method in JavaScript Object

We can define method in JavaScript object. But before defining method, we need to add

property in the function with same name as method.

The example of defining method in object is given below.

<script>

function emp(id,name,salary){

this.id=id;

this.name=name;

this.salary=salary;

this.changeSalary=changeSalary;

function changeSalary(otherSalary){

this.salary=otherSalary;

}

}

e=new emp(103,"Sonoo Jaiswal",30000);

document.write(e.id+" "+e.name+" "+e.salary);

e.changeSalary(45000);

document.write("
 "+e.id+" "+e.name+" "+e.salary);

</script>

JavaScript Object Methods

The various methods of Object are as follows:

S.No Methods Description

1 Object.assign()

This method is used to copy

enumerable and own properties

from a source object to a target

object

2 Object.create()

This method is used to create a

new object with the specified

prototype object and properties.

3 Object.defineProperty()

This method is used to describe

some behavioral attributes of the

property.

4 Object.defineProperties()

This method is used to create or

configure multiple object

properties.

5 Object.entries()
This method returns an array with

arrays of the key, value pairs.

6 Object.freeze() This method prevents existing

properties from being removed.

7
Object.getOwnPropertyDescriptor

()

This method returns a property

descriptor for the specified

property of the specified object.

8
Object.getOwnPropertyDescriptor

s()

This method returns all own

property descriptors of a given

object.

9 Object.getOwnPropertyNames()

This method returns an array of all

properties (enumerable or not)

found.

10 Object.getOwnPropertySymbols()
This method returns an array of all

own symbol key properties.

11 Object.getPrototypeOf()
This method returns the prototype

of the specified object.

12 Object.is()
This method determines whether

two values are the same value.

13 Object.isExtensible()
This method determines if an

object is extensible

14 Object.isFrozen()
This method determines if an

object was frozen.

15 Object.isSealed()
This method determines if an

object is sealed.

16 Object.keys()

This method returns an array of a

given object's own property

names.

17 Object.preventExtensions()
This method is used to prevent

any extensions of an object.

18 Object.seal()

This method prevents new

properties from being added and

marks all existing properties as

non-configurable.

19 Object.setPrototypeOf()

This method sets the prototype of

a specified object to another

object.

20 Object.values()
This method returns an array of

values.

 JavaScript Prototype Object

JavaScript is a prototype-based language that facilitates the objects to acquire properties

and features from one another. Here, each object contains a prototype object.

In JavaScript, whenever a function is created the prototype property is added to that

function automatically. This property is a prototype object that holds a constructor property.

Syntax:

ClassName.prototype.methodName

 What is the requirement of a prototype object?

Whenever an object is created in JavaScript, its corresponding functions are loaded into

memory. So, a new copy of the function is created on each object creation.

In a prototype-based approach, all the objects share the same function. This ignores the

requirement of creating a new copy of function for each object. Thus, the functions are

loaded once into the memory.

Prototype Chaining

In JavaScript, each object contains a prototype object that acquires properties and methods

from it. Again, an object's prototype object may contain a prototype object that also

acquires properties and methods, and so on. It can be seen as prototype chaining.

JavaScript Prototype Object

 Example 1

Let's see an example to add a new method to the constructor function.

<script>

function Employee(firstName,lastName)

{

 this.firstName=firstName;

 this.lastName=lastName;

}

Employee.prototype.fullName=function()

 {

 return this.firstName+" "+this.lastName;

 }

var employee1=new Employee("Martin","Roy");

var employee2=new Employee("Duke", "William");

document.writeln(employee1.fullName()+"
 ");

document.writeln(employee2.fullName());

</script>

Output:

Martin Roy

Duke William

 Example 2

Let's see an example to add a new property to the constructor function.

<script>

function Employee(firstName,lastName)

{

 this.firstName=firstName;

 this.lastName=lastName;

}

Employee.prototype.company="Javatpoint"

var employee1=new Employee("Martin","Roy");

var employee2=new Employee("Duke", "William");

document.writeln(employee1.firstName+" "+employee1.lastName+" "+employe

1.company+"
 ");

document.writeln(employee2.firstName+" "+employee2.lastName+" "+employe

2.company);

</script>

Output

Martin Roy Javatpoint

Duke William Javatpoint

 JavaScript Constructor Method

A JavaScript constructor method is a special type of method which is used to initialize and

create an object. It is called when memory is allocated for an object.

Points to remember

 The constructor keyword is used to declare a constructor method.

 The class can contain one constructor method only.

 JavaScript allows us to use parent class constructor through super keyword.

Constructor Method Example

Let's see a simple example of a constructor method.

<script>

class Employee {

 constructor() {

 this.id=101;

 this.name = "Martin Roy";

 }

}

var emp = new Employee();

document.writeln(emp.id+" "+emp.name);

</script>

Output

101 Martin Roy

 Constructor Method Example: super keyword

The super keyword is used to call the parent class constructor. Let's see an example.

<script>

class CompanyName

{

 constructor()

 {

 this.company="Javatpoint";

 }

}

class Employee extends CompanyName {

 constructor(id,name) {

 super();

 this.id=id;

 this.name=name;

 }

}

var emp = new Employee(1,"John");

document.writeln(emp.id+" "+emp.name+" "+emp.company);

</script>

Output

1 John Javatpoint

 Note -

 If we didn't specify any constructor method, JavaScript use default

constructor method.

JavaScript static Method

The JavaScript provides static methods that belong to the class instead of an

instance of that class. So, an instance is not required to call the static method.

These methods are called directly on the class itself.

 Points to remember

 The static keyword is used to declare a static method.

 The static method can be of any name.

 A class can contain more than one static method.

 If we declare more than one static method with a similar name, the JavaScript always

invokes the last one.

 The static method can be used to create utility functions.

 We can use this keyword to call a static method within another static method.

 We cannot use this keyword directly to call a static method within the non-static method. In

such case, we can call the static method either using the class name or as the property of the

constructor.

JavaScript static Method Example

Let's see a simple example of a static method.

<script>

class Test

{

 static display()

 {

 return "static method is invoked"

 }

}

document.writeln(Test.display());

</script>

Output

static method is invoked

 Example 2

Le's see an example to invoke more than one static method.

<script>

class Test

{

 static display1()

 {

 return "static method is invoked"

 }

 static display2()

 {

 return "static method is invoked again"

 }

}

document.writeln(Test.display1()+"
 ");

document.writeln(Test.display2());

</script>

Output

static method is invoked

static method is invoked again

 Example 3

Let's see an example to invoke more than one static method with similar

names.

<script>

class Test

{

 static display()

 {

 return "static method is invoked"

 }

 static display()

 {

 return "static method is invoked again"

 }

}

document.writeln(Test.display());

</script>

Output

static method is invoked again

Example 4

Let's see an example to invoke a static method within the constructor.

<script>

class Test {

 constructor() {

 document.writeln(Test.display()+"
 ");

 document.writeln(this.constructor.display());

 }

 static display() {

 return "static method is invoked"

 }

}

var t=new Test();

</script>

Output

static method is invoked

static method is invoked

 Example 5

Let's see an example to invoke a static method within the non-static method.

<script>

class Test {

 static display() {

 return "static method is invoked"

 }

 show() {

 document.writeln(Test.display()+"
 ");

 }

}

var t=new Test();

t.show();

</script>

Output

static method is invoked

 JavaScript Encapsulation

The JavaScript Encapsulation is a process of binding the data (i.e. variables)

with the functions acting on that data. It allows us to control the data and

validate it. To achieve an encapsulation in JavaScript: -

 Use var keyword to make data members private.

 Use setter methods to set the data and getter methods to get that data.

The encapsulation allows us to handle an object using the following properties:

Read/Write - Here, we use setter methods to write the data and getter

methods read that data.

Read Only - In this case, we use getter methods only.

Write Only - In this case, we use setter methods only.

 JavaScript Encapsulation Example

Let's see a simple example of encapsulation that contains two data members

with its setter and getter methods.

<script>

class Student

 {

 constructor()

 {

 var name;

 var marks;

 }

 getName()

 {

 return this.name;

 }

 setName(name)

 {

 this.name=name;

 }

 getMarks()

 {

 return this.marks;

 }

 setMarks(marks)

 {

 this.marks=marks;

 }

 }

 var stud=new Student();

 stud.setName("John");

 stud.setMarks(80);

 document.writeln(stud.getName()+" "+stud.getMarks());

</script>

Output

John 80

JavaScript Encapsulation Example: Validate

In this example, we validate the marks of the student.

<!DOCTYPE html>

<html>

<body>

<script>

class Student

{

constructor()

{

var name;

var marks;

}

getName()

{

return this.name;

}

setName(name)

{

this.name=name;

}

getMarks()

{

return this.marks;

}

setMarks(marks)

{

if(marks<0||marks>100)

{

alert("Invalid Marks");

}

else

{

this.marks=marks;

}

}

}

var stud=new Student();

stud.setName("John");

stud.setMarks(110);//alert() invokes

document.writeln(stud.getName()+"

"+stud.getMarks());

</script>

</body>

</html>

Output

John undefined

JavaScript Encapsulation Example: Prototype-based approach

Here, we perform prototype-based encapsulation.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 function Student(name,marks)

 {

 var s_name=name;

 var s_marks=marks;

 Object.defineProperty(this,"name",{

 get:function()

 {

 return s_name;

 },

 set:function(s_name)

 {

 this.s_name=s_name;

 }

 });

 Object.defineProperty(this,"marks",{

 get:function()

 {

 return s_marks;

 },

 set:function(s_marks)

 {

 this.s_marks=s_marks;

 }

 });

 }

 var stud=new Student("John",80);

 document.writeln(stud.name+" "+stud.marks);

 </script>

 </body>

 </html>

 JavaScript Inheritance

The JavaScript inheritance is a mechanism that allows us to create new classes

on the basis of already existing classes. It provides flexibility to the child class

to reuse the methods and variables of a parent class.

The JavaScript extends keyword is used to create a child class on the basis of

a parent class. It facilitates child class to acquire all the properties and behavior

of its parent class.

 Points to remember

o It maintains an IS-A relationship.

o The extends keyword is used in class expressions or class

declarations.

o Using extends keyword, we can acquire all the properties and

behavior of the inbuilt object as well as custom classes.

o We can also use a prototype-based approach to achieve inheritance.

JavaScript extends Example: inbuilt object

In this example, we extends Date object to display today's date.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 class Moment extends Date {

 constructor() {

 super();

 }}

 var m=new Moment();

 document.writeln("Current date:")

 document.writeln(m.getDate()+"-"+

(m.getMonth()+1)+"-"+m.getFullYear());

 </script>

 </body>

 </html>

 Let's see one more example to display the year

value from the given date.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 class Moment extends Date {

 constructor(year) {

 super(year);

 }}

 var m=new Moment("August 15, 1947 20:22:10");

 document.writeln("Year value:")

 document.writeln(m.getFullYear());

 </script>

 </body>

 </html>

JavaScript extends Example: Custom class

In this example, we declare sub-class that extends the properties of its parent

class.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 class Bike

 {

 constructor()

 {

 this.company="Honda";

 }

 }

 class Vehicle extends Bike {

 constructor(name,price) {

 super();

 this.name=name;

 this.price=price;

 }

 }

 var v = new Vehicle("Shine","70000");

 document.writeln(v.company+" "+v.name+"

"+v.price);

 </script>

 </body>

 </html>

JavaScript extends Example: a Prototype-based approach

Here, we perform prototype-based inheritance. In this approach, there is no

need to use class and extends keywords.

<script>

//Constructor function

function Bike(company)

{

 this.company=company;

}

Bike.prototype.getCompany=function()

{

 return this.company;

}

//Another constructor function

function Vehicle(name,price) {

 this.name=name;

 this.price=price;

 }

var bike = new Bike("Honda");

Vehicle.prototype=bike; //Now Bike treats as a parentof Vehicle.

var vehicle=new Vehicle("Shine",70000);

document.writeln(vehicle.getCompany()+" "+vehicle.name+" "+vehi

cle.price);

</script>

JavaScript Polymorphism

The polymorphism is a core concept of an object-oriented paradigm

that provides a way to perform a single action in different forms. It

provides an ability to call the same method on different JavaScript

objects. As JavaScript is not a type-safe language, we can pass any

type of data members with the methods.

 JavaScript Polymorphism Example 1

Let's see an example where a child class object invokes the parent

class method.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 class A

 {

 display()

 {

 document.writeln("A is invoked");

 }

 }

 class B extends A

 {

 }

 var b=new B();

 b.display();

 </script>

 </body>

 </html>

 Example 2

Let's see an example where a child and parent class contains the

same method. Here, the object of child class invokes both classes

method.

<script>

class A

 {

 display()

 {

 document.writeln("A is invoked
 ");

 }

 }

class B extends A

 {

 display()

 {

 document.writeln("B is invoked");

 }

 }

var a=[new A(), new B()]

a.forEach(function(msg)

{

msg.display();

});

</script>

O utput

A is invoked

B is invoked

 Example 3

Let's see the same example with prototype-based approach.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 function A()

 {

 }

 A.prototype.display=function()

 {

 return "A is invoked";

 }

 function B()

 {

 }

 B.prototype=Object.create(A.prototype);

 var a=[new A(), new B()]

 a.forEach(function(msg)

 {

 document.writeln(msg.display()+"
");

 });

 <script>

 </body>

 </html>

 JavaScript Abstraction

An abstraction is a way of hiding the implementation details and

showing only the functionality to the users. In other words, it ignores

the irrelevant details and shows only the required one.

 Points to remember

 We cannot create an instance of Abstract Class.

 It reduces the duplication of code.

 JavaScript Abstraction Example

 Example 1

Let's check whether we can create an instance of Abstract class or

not.

<script>

//Creating a constructor function

function Vehicle()

{

 this.vehicleName= vehicleName;

 throw new Error("You cannot create an instance of Abstrac

t class");

}

Vehicle.prototype.display=function()

{

 return this.vehicleName;

}

var vehicle=new Vehicle();

 </script>

 Example 2

Let's see an example to achieve abstraction.

 <!DOCTYPE html>

 <html>

 <body>

 <script>

 //Creating a constructor function

 function Vehicle()

 {

 this.vehicleName="vehicleName";

 throw new Error("You cannot create an

instance of Abstract Class");

 }

 Vehicle.prototype.display=function()

 {

 return "Vehicle is: "+this.vehicleName;

 }

 //Creating a constructor function

 function Bike(vehicleName)

 {

 this.vehicleName=vehicleName;

 }

 //Creating object without using the function

constructor

Bike.prototype=Object.create(Vehicle.prototype);

 var bike=new Bike("Honda");

 document.writeln(bike.display());

 </script>

 </body>

 </html>

 Example 3

In this example, we use instanceof operator to test whether the object

refers to the corresponding class.

<script>

//Creating a constructor function

 function Vehicle()

{

 this.vehicleName=vehicleName;

 throw new Error("You cannot create an instance of Abstrac

t class");

}

//Creating a constructor function

function Bike(vehicleName)

{

 this.vehicleName=vehicleName;

}

Bike.prototype=Object.create(Vehicle.prototype);

var bike=new Bike("Honda");

document.writeln(bike instanceof Vehicle);

document.writeln(bike instanceof Bike);

 </script>

 Chapter Fifteen

 JavaScript Cookies

A cookie is an amount of information that persists between a server-side and a client-side.

A web browser stores this information at the time of browsing.

A cookie contains the information as a string generally in the form of a name-value pair

separated by semi-colons. It maintains the state of a user and remembers the user's

information among all the web pages.

How Cookies Works?

 When a user sends a request to the server, then each of that request is treated as a new request sent by the

different user.

 So, to recognize the old user, we need to add the cookie with the response from the server.

 browser at the client-side.

 Now, whenever a user sends a request to the server, the cookie is added with that request automatically. Due to

the cookie, the server recognizes the users.

How to create a Cookie in JavaScript?

In JavaScript, we can create, read, update and delete a cookie by using document.cookie

 property.

The following syntax is used to create a cookie:

document.cookie="name=value";

 JavaScript Cookie Example

 Example 1

Let's see an example to set and get a cookie.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="setCookie" onclick="setCookie()" >

<input type="button" value="getCookie" onclick="getCookie()" >

 <script>

 function setCookie()

 {

 document.cookie="username=Duke Martin";

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 alert(document.cookie);

 }

 else

 {

 alert("Cookie not available");

 }

 }

 </script>

</body>

</html>

 Example 2

Here, we display the cookie's name-value pair separately.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="setCookie" onclick="setCookie()" >

<input type="button" value="getCookie" onclick="getCookie()" >

 <script>

 function setCookie()

 {

 document.cookie="username=Duke Martin";

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 var array=document.cookie.split("=");

 alert("Name="+array[0]+" "+"Value="+array[1];

 }

 else

 {

 alert("Cookie not available");

 }

 }

 </script>

</body>

</html>

 Example 3

In this example, we provide choices of color and pass the selected color value to the

cookie. Now, cookie stores the last choice of a user in a browser. So, on reloading the web

page, the user's last choice will be shown on the screen.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

 <select id="color" onchange="display()" >

 <option value="Select Color" > Select Color </option>

 <option value="yellow" > Yellow </option>

 <option value="green" > Green </option>

 <option value="red" > Red </option>

 </select>

 <script type="text/javascript" >

 function display()

 {

 var value = document.getElementById("color").value;

 if (value != "Select Color")

 {

 document.bgColor = value;

 document.cookie = "color=" + value;

 }

 }

 window.onload = function ()

 {

 if (document.cookie.length != 0)

 {

 var array = document.cookie.split("=");

 document.getElementById("color").value = array[1];

 document.bgColor = array[1];

 }

 }

 </script>

</body>

</html>

 Cookie Attributes

JavaScript provides some optional attributes that enhance the functionality of cookies.

Here, is the list of some attributes with their description.

 Attributes

 Description

expires
It maintains the state of a cookie up to the specified

date and time.

max-age
It maintains the state of a cookie up to the specified

time. Here, time is given in seconds.

path
It expands the scope of the cookie to all the pages of a

website.

domain
It is used to specify the domain for which the cookie is

valid.

Cookie expires attribute

The cookie expires attribute provides one of the ways to create a persistent cookie. Here, a

date and time are declared that represents the active period of a cookie. Once the declared

time is passed, a cookie is deleted automatically.

Let's see an example of cookie expires attribute.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="setCookie" onclick="setCookie()" >

<input type="button" value="getCookie" onclick="getCookie()" >

 <script>

 function setCookie()

 {

 document.cookie="username=Duke Martin;expires=Sun, 20 Aug 2030 12:

00:00 UTC";

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 var array=document.cookie.split("=");

 alert("Name="+array[0]+" "+"Value="+array[1]);

 }

 else

 {

 alert("Cookie not available");

 }

 }

 </script>

</body>

</html>

Cookie max-age attribute

The cookie max-age attribute provides another way to create a persistent cookie. Here,

time is declared in seconds. A cookie is valid up to the declared time only.

 Let's see an example of cookie max-age attribute.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="setCookie" onclick="setCookie()" >

<input type="button" value="getCookie" onclick="getCookie()" >

 <script>

 function setCookie()

 {

 document.cookie="username=Duke Martin;max-

age=" + (60 * 60 * 24 * 365) + ";"

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 var array=document.cookie.split("=");

 alert("Name="+array[0]+" "+"Value="+array[1]);

 }

 else

 {

 alert("Cookie not available");

 }

 }

 </script>

</body>

</html>

Cookie path attribute

If a cookie is created for a webpage, by default, it is valid only for the current directory and

sub-directory. JavaScript provides a path attribute to expand the scope of cookie up to all

the pages of a website.

 Cookie path attribute Example

Let's understand the path attribute with the help of an example.

Here, if we create a cookie for webpage2.html, it is valid only for itself and its sub-directory

(i.e., webpage3.html). It is not valid for webpage1.html file.

In this example, we use path attribute to enhance the visibility of cookies up to all the

pages. Here, you all just need to do is to maintain the above directory structure and put the

below program in all three web pages. Now, the cookie is valid for each web page.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="setCookie" onclick="seCookie()" >

<input type="button" value="getCookie" onclick="getCookie()" >

 <script>

 function setCookie()

 {

 document.cookie="username=Duke Martin;max-

age=" + (60 * 60 * 24 * 365) + ";path=/;"

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 var array=document.cookie.split("=");

 alert("Name="+array[0]+" "+"Value="+array[1]);

 }

 else

 {

 alert("Cookie not available");

 }

 }

 </script>

</body>

</html>

Cookie domain attribute

A JavaScript domain attribute specifies the domain for which the cookie is valid. Let's

suppose if we provide any domain name to the attribute such like:

domain=example.com

Here, the cookie is valid for the given domain and all its sub-domains.

However, if we provide any sub-domain to the attribute such like:

omain=training.example.com

Here, the cookie is valid only for the given sub-domain. So, it's a better approach to provide

domain name instead of sub-domain.

 Cookie with multiple Name-Value pairs

In JavaScript, a cookie can contain only a single name-value pair. However, to store more

than one name-value pair, we can use the following approach: -

o Serialize the custom object in a JSON string, parse it and then store in a cookie.

o For each name-value pair, use a separate cookie.

 Examples to Store Name-Value pair in a Cookie

 Example 1

Let's see an example to check whether a cookie contains more than one name-value pair.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

 Name: <input type="text" id="name" >

 Email: <input type="email" id="email" >

 Course: <input type="text" id="course" >

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

 function setCookie()

 {

//Declaring 3 key-value pairs

 var info="Name="+ document.getElementById("name").value+

entById("course").value;

//Providing all 3 key-value pairs to a single cookie

 document.cookie=info;

 }

 function getCookie()

 {

 if(document.cookie.length!=0)

 {

 //Invoking key-value pair stored in a cookie

 alert(document.cookie);

 }

 else

 {

 alert("Cookie not available")

 }

 }

</script>

</body>

</html>

 Example 2

Let's see an example to store different name-value pairs in a cookie using JSON.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

 Name: <input type="text" id="name" >

 Email: <input type="email" id="email" >

 Course: <input type="text" id="course" >

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

 function setCookie()

{

 var obj = {};//Creating custom object

 obj.name = document.getElementById("name").value;

obj.email = document.getElementById("email").value;

 obj.course = document.getElementById("course").value;

//Converting JavaScript object to JSON string

var jsonString = JSON.stringify(obj);

 document.cookie = jsonString;

}

 function getCookie()

{

 if(document.cookie.length!=0)

 {

//Parsing JSON string to JSON object

 var obj = JSON.parse(document.cookie);

 alert("Name="+obj.name+" "+"Email="+obj.email+" "+"Course="+o

bj.course);

 }

 else

 {

 alert("Cookie not available");

 }

}

 </script>

</body>

</html>

 Example 3

Let's see an example to store each name-value pair in a different cookie.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

 Name: <input type="text" id="name" >

 Email: <input type="email" id="email" >

 Course: <input type="text" id="course" >

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

 function setCookie()

{

 document.cookie = "name=" + document.getElementById("name").

 document.cookie = "email=" + document.getElementById("email").v

 document.cookie = "course=" + document.getElementById("course"

}

function getCookie()

{

 if (document.cookie.length != 0)

 {

 alert("Name="+document.getElementById("name").value+" Ema

ntById("course").value);

 }

 else

 {

 alert("Cookie not available");

 }

}

 </script>

</body>

</html>

 Deleting a Cookie in JavaScript

In the previous section, we learned the different ways to set and update a cookie in

JavaScript. Apart from that, JavaScript also allows us to delete a cookie. Here, we see all the

possible ways to delete a cookie.

 Different ways to delete a Cookie

These are the following ways to delete a cookie:

 A cookie can be deleted by using expire attribute.

 A cookie can also be deleted by using max-age attribute.

 We can delete a cookie explicitly, by using a web browser.

 Examples to delete a Cookie

 Example 1

In this example, we use expire attribute to delete a cookie by providing expiry date (i.e.

any past date) to it.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

function setCookie()

{

 document.cookie="name=Martin Roy; expires=Sun, 20 Aug 2000 12:0

0:00 UTC";

}

function getCookie() {

 if(document.cookie.length!=0)

 {

 alert(document.cookie);

 }

 else

 {

 alert("Cookie not avaliable");

 }

}

</script>

</body>

</html>

 Example 2

In this example, we use max-age attribute to delete a cookie by providing zero or

negative number (that represents seconds) to it.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

function setCookie()

{

 document.cookie="name=Martin Roy;max-age=0";

}

function getCookie()

{

 if(document.cookie.length!=0)

 {

 alert(document.cookie);

 }

 else

 {

 alert("Cookie not avaliable");

 }

}

</script>

</body>

</html>

Example 3

Let's see an example to set, get and delete multiple cookies.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="Set Cookie1" onclick="setCookie1()"

>

<input type="button" value="Get Cookie1" onclick="getCookie1()"

>

<input

 type="button" value="Delete Cookie1" onclick="deleteCookie1()" >

<input type="button" value="Set Cookie2" onclick="setCookie2()"

>

<input type="button" value="Get Cookie2" onclick="getCookie2()"

>

<input

 type="button" value="Delete Cookie2" onclick="deleteCookie2()" >

<input

 type="button" value="Display all cookies" onclick="displayCookie()"

>

<script>

function setCookie1()

{

 document.cookie="name=Bernice Johnson";

 cookie1= document.cookie;

}

function setCookie2()

{

 document.cookie="name=Othniel Williams";

 cookie2= document.cookie;

}

function getCookie1()

{

 if(cookie1.length!=0)

 {

 alert(cookie1);

 }

 else

 {

 alert("Cookie not available");

 }

}

function getCookie2()

{

 if(cookie2.length!=0)

 {

 alert(cookie2);

 }

 else

 {

 alert("Cookie not available");

 }

}

function deleteCookie1()

{

 document.cookie=cookie1+";max-age=0";

 cookie1=document.cookie;

 alert("Cookie1 is deleted");

}

function deleteCookie2()

{

 document.cookie=cookie2+";max-age=0";

 cookie2=document.cookie;

 alert("Cookie2 is deleted");

}

function displayCookie()

{

if(cookie1!=0&&cookie2!=0)

{

 alert(cookie1+" "+cookie2);

}

else if(cookie1!=0)

{

 alert(cookie1);

}

else if(cookie2!=0)

{

 alert(cookie2);

}

else{

 alert("Cookie not available");

}

}

</script>

</body>

</html>

 Example 4

Let's see an example to delete a cookie explicitly.

<!DOCTYPE html >

<html>

<head>

</head>

<body>

<input type="button" value="Set Cookie" onclick="setCookie()" >

<input type="button" value="Get Cookie" onclick="getCookie()" >

<script>

function setCookie()

{

 document.cookie="name=Martin Roy";

}

function getCookie()

{

 if(document.cookie.length!=0)

 {

 alert(document.cookie);

 }

 else

 {

 alert("Cookie not avaliable");

 }

}

</script>

</body>

</html>

 Chapter Sixteen

 Integrating JavaScript with

Google Apps Script

A rapid application development framework called Google Apps Script makes it

simple and quick to construct business apps that work with Google Workspace.

Developers may use built-in libraries for their preferred Google Workspace apps,

such as Gmail, Calendar, Drive, and more, while writing code in the contemporary

JavaScript language. Your scripts run on Google's servers, and they provide you

with a code editor directly in your browser, so there's nothing to install.

 What can Apps Script do?

 Apps Script has several uses.

 You can, among other things:

 Customize Google Sheets, Forms, and menus, dialog boxes, and sidebars.

 Create bespoke macros and functions for Google Sheets.

 Release web applications, either separate or integrated with Google Sites.

 Engage with AdSense, Analytics, Calendar, Drive, Gmail, and Maps, among

other Google services.

 Create add-ons and submit them to the marketplace for Google Workspace.

 Custom Menus in Google Workspace

By including user-interface components that, when clicked, carry out an Apps

Script action, scripts can expand the functionality of several Google products. In

Google Docs, Sheets, Slides, or Forms, the most typical example is executing a

script from a custom menu item. However, in Google Sheets, script functionalities

may also be activated by clicking on drawings and photos.

Google Docs, Sheets, Slides, and Forms may have additional menus added by

Apps Script, each of which is linked to a scripted function. (In Google Forms, users

who enter the form to reply are not able to see the custom menus; only editors

who open the form to make changes may see them.)

A script that is connected to a document, spreadsheet, or form can only generate

a menu in that manner. Write the menu code within a onOpen() method so that it

appears when the user opens a file.

The example below demonstrates adding a menu with one item, a visual divider,

and a sub-menu with an additional item. (Note that sub-menus are not supported

in Google Sheets and that you must use the addMenu() syntax instead, unless

you're using the latest version.) An alert dialog is displayed by the relevant

function when the user selects either menu option. See the guide to dialogs and

sidebars for further details on the many kinds of dialogs that are available for

opening.

 function onOpen() {

 var ui = SpreadsheetApp.getUi();

 // Or DocumentApp, SlidesApp or FormApp.

 ui.createMenu('Custom Menu')

 .addItem('First item', 'menuItem1')

 .addSeparator()

 .addSubMenu(ui.createMenu('Sub-menu')

 .addItem('Second item', 'menuItem2'))

 .addToUi();

 }

 function menuItem1() {

 SpreadsheetApp.getUi() // Or DocumentApp, SlidesApp or

FormApp.

 .alert('You clicked the first menu item!');

 }

 function menuItem2() {

 SpreadsheetApp.getUi() // Or DocumentApp, SlidesApp or

FormApp.

 .alert('You clicked the second menu item!');

 }

A spreadsheet, presentation, document, or form may only have one menu with a

certain name. A menu with the same name that is added by the same script or

another script replaces the previous one. Although you may build your onOpen()

code to bypass the menu in the future if a certain property is specified, menus

cannot be deleted while the file is open.

 Clickable images and drawings in Google Sheets

If the script is linked to the spreadsheet, you may also use an Apps Script

function to an image or drawing in Google Sheets. How to set this up is shown in

the example below.

 To build a script that is connected to the spreadsheet, choose

Extensions > Apps Script from the Google Sheets menu.

 In the script editor, remove any existing code and insert the

following code.

 function showMessageBox() {

 Browser.msgBox('You clicked it!');

 }

 Go back to Sheets and choose Insert > Image or Insert > Drawing to add

an image or drawing.

 Click the picture or drawing once it has been inserted. There's a little menu

choice that drops down in the upper right corner. Select Assign script by

clicking on it.

 Enter the name of the Apps Script function you wish to perform,

showMessageBox in this example, without parenthesis, in the dialog box that

pops up. Press OK.

 Re-click the picture or illustration. At this point, the function runs.

 Dialogs and Sidebars in Google Workspace Documents.

Custom HTML service pages can be shown in dialogs and sidebars, as well as pre-

built alerts and prompts, using scripts that are linked to Google Docs, Sheets, or

Forms. These components are usually accessed by menu items. (Note that user-

interface components in Google Forms are not visible to users opening the form

to answer; rather, they are only available to an editor who opens the form to

amend it.)

 Alert dialogs

An alert is a pre-made dialog box that appears in the editor of Google Sheets,

Docs, Slides, or Forms. It shows a message and a "OK" button; alternate buttons

and a title are not required. It is comparable to using client-side JavaScript in a

web browser to call window.alert().

When the alert dialog is active, the server-side script is suspended. When the

user exits the dialog, the script continues, but JDBC connections are lost during

the suspension.

Google Docs, Forms, Slides, and Sheets all employ the Ui.alert() method, which

has three variations, as the example below illustrates. You can use a value from

the Ui.ButtonSet enum as the buttons parameter to override the default "OK"

button. The Ui.Button enum and the return value for alert() should be compared

to determine which button the user pressed.

 function onOpen() {

 SpreadsheetApp.getUi() // Or DocumentApp or SlidesApp or

FormApp.

 .createMenu('Custom Menu')

 .addItem('Show alert', 'showAlert')

 .addToUi();

 }

 function showAlert() {

 var ui = SpreadsheetApp.getUi(); // Same variations.

 var result = ui.alert(

 'Please confirm',

 'Are you sure you want to continue?',

 ui.ButtonSet.YES_NO);

 // Process the user's response.

 if (result == ui.Button.YES) {

 // User clicked "Yes".

 ui.alert('Confirmation received.');

 } else {

 // User clicked "No" or X in the title bar.

 ui.alert('Permission denied.');

 }

 }

 Prompt dialogs

A pre-made dialog box known as a prompt appears inside the editor of Google

Documents, Sheets, Slides, or Forms. It shows a text-input area, a message, and

a "OK" button; other buttons and a title are optional. It is comparable to using

client-side JavaScript in a web browser to use window.prompt().

Requests that the server-side script be suspended while the dialog is active.

When the user exits the dialog, the script continues, but JDBC connections are

lost during the suspension.

Google Docs, Forms, Slides, and Sheets all employ the Ui.prompt() function,

which has three variations, as the example below illustrates. You can use a value

from the Ui.ButtonSet enum as the buttons parameter to override the default

"OK" button. After capturing the prompt() return value, call PromptResponse to

assess the user's answer.Use getResponseText() to get the user's input, then

compare PromptResponse's response value.the Ui.Button enum using

getSelectedButton().

 function onOpen() {

 SpreadsheetApp.getUi() // Or DocumentApp or SlidesApp or

FormApp.

 .createMenu('Custom Menu')

 .addItem('Show prompt', 'showPrompt')

 .addToUi();

 }

 function showPrompt() {

 var ui = SpreadsheetApp.getUi(); // Same variations.

 var result = ui.prompt(

 'Let\'s get to know each other!',

 'Please enter your name:',

 ui.ButtonSet.OK_CANCEL);

 // Process the user's response.

 var button = result.getSelectedButton();

 var text = result.getResponseText();

 if (button == ui.Button.OK) {

 // User clicked "OK".

 ui.alert('Your name is ' + text + '.');

 } else if (button == ui.Button.CANCEL) {

 // User clicked "Cancel".

 ui.alert('I didn\'t get your name.');

 } else if (button == ui.Button.CLOSE) {

 // User clicked X in the title bar.

 ui.alert('You closed the dialog.');

 }

 }

 Custom dialogs

An HTML service user interface may be shown inside a Google Docs, Sheets,

Slides, or Forms editor using a custom dialog.

When a custom dialog is active, the server-side script is not suspended. The

google.script API for HTML-service interfaces allows the client-side component to

call the server-side script asynchronously.

By using google.script.host.close() on the client side of an HTML-service interface,

the dialog may shut on its own. Only the user or the dialog itself has the ability to

close it; other interfaces cannot.

Google Docs, Forms, Slides, and Sheets all utilize the Ui.showModalDialog()

function to open the dialog, as seen in the sample below.

 Code.gs

 Page.html

 function onOpen() {

 SpreadsheetApp.getUi() // Or

DocumentApp or SlidesApp or FormApp.

 .createMenu('Custom Menu')

 .addItem('Show dialog',

'showDialog')

 .addToUi();

 }

 function showDialog() {

 var html =

HtmlService.createHtmlOutputFromFile('Pag

e')

 .setWidth(400)

 .setHeight(300);

 SpreadsheetApp.getUi() // Or

DocumentApp or SlidesApp or FormApp.

 .showModalDialog(html, 'My

custom dialog');

 }

 Hello, world!

 <input type="button"

value="Close"

onclick="google.script.host.close

()" />

 Custom sidebars

Within an editor for Google Docs, Forms, Slides, and Sheets, a sidebar can show

an HTML service user interface.

The server-side script is not suspended by sidebars when the dialog is active. The

google.script API for HTML-service interfaces allows the client-side component to

call the server-side script asynchronously.

Calling google.script.host.close() on the client side of an HTML-service interface

allows the sidebar to shut itself. Only the user or the sidebar itself has the ability

to close it; other interfaces cannot.

The method Ui.showSidebar() is used by Google Docs, Forms, Slides, and Sheets

to open the sidebar, as demonstrated in the sample below.

 Code.gs

 Page.html

 function onOpen() {

 SpreadsheetApp.getUi() // Or

DocumentApp or SlidesApp or FormApp.

 .createMenu('Custom Menu')

 .addItem('Show dialog',

 Hello, world!

 <input type="button"

value="Close"

onclick="google.script.host.close

()" />

'showDialog')

 .addToUi();

 }

 function showDialog() {

 var html =

HtmlService.createHtmlOutputFromFile('Pag

e')

 .setWidth(400)

 .setHeight(300);

 SpreadsheetApp.getUi() // Or

DocumentApp or SlidesApp or FormApp.

 .showModalDialog(html, 'My

custom dialog');

 }

 File-open dialogs

A "file-open" dialog for data housed on Google servers, Google Picker provides

access to Google Drive, Google Image Search, Google Video Search, and many

services.

Picker's client-side JavaScript API may be utilized in HTML services to construct a

custom dialog that allows users to upload new files or pick existing ones, as seen

in the example below. The selection is then passed back to your script for

additional usage.

To obtain an API key and enable Picker, go to following guidelines:

 Verify that your script project is using a standard GCP project.

 Enable the "Google Picker API" in your Google Cloud project.

 While your Google Cloud project is still open, select

 APIs & Services

 , then click

 Credentials

 .

 Click

 Create credentials > API key

 .

 This action creates the key, but you should edit the key to add both

application restrictions and an API restriction to the key.

 In the API key dialog, click

 Close

 .

 Next to the API key you created, click More >

 Edit API key

 .

 Under

 Application restrictions

 , complete the following steps:

 a)

 Select

 HTTP referrers (web sites)

 .

 b)

 Under

 Website restrictions

 , click

 Add an item

 .

 c)

 Click

 Referrer

 and enter *.google.com.

 d)

 Add another item and enter *.googleusercontent.com as the

referrer.

 e)

 Click

 Done

 .

 Under

 API restrictions

 , complete the following steps:

 a)

 Select

 Restrict key

 .

 b)

 In the

 Select APIs

 section, select

 Google Picker API

 and click

 OK

 .

 Note:

 The Google Picker API does not appear unless you have enabled it

because the list only shows APIs that have been enabled for the Cloud

project.

 Under

 API key

 , click Copy to clipboard .

 At the bottom, click

 Save

 .

NB: The following example invokes ScriptApp.getOAuthToken() in order to provide

Picker with the user's OAuth 2.0 access token. This method avoids Picker from

having to display its own authorization dialog, but it requires Apps Script to have

the OAuth scope that Picker requires. If not, as this "hello world" example

illustrates, your Picker code will need to define its own OAuth scopes.

 Code.gs

 /**

 * Creates a custom menu in Google Sheets when the

spreadsheet opens.

 */

 function onOpen() {

 try {

 SpreadsheetApp.getUi().createMenu('Picker')

 .addItem('Start', 'showPicker')

 .addToUi();

 } catch (e) {

 // TODO (Developer) - Handle exception

 console.log('Failed with error: %s', e.error);

 }

 }

 /**

 * Displays an HTML-service dialog in Google Sheets that

contains client-side

 * JavaScript code for the Google Picker API.

 */

 function showPicker() {

 try {

 const html =

HtmlService.createHtmlOutputFromFile('dialog.html')

 .setWidth(600)

 .setHeight(425)

 .setSandboxMode(HtmlService.SandboxMode.IFRAME);

 SpreadsheetApp.getUi().showModalDialog(html, 'Select a

file');

 } catch (e) {

 // TODO (Developer) - Handle exception

 console.log('Failed with error: %s', e.error);

 }

 }

 /**

 * Gets the user's OAuth 2.0 access token so that it can be

passed to Picker.

 * This technique keeps Picker from needing to show its own

authorization

 * dialog, but is only possible if the OAuth scope that Picker

needs is

 * available in Apps Script.

 In this case, the function includes an unused call

 * to a DriveApp method to ensure that Apps Script requests

access to all files

 * in the user's Drive.

 *

 * @return {string} The user's OAuth 2.0 access token.

 */

 function getOAuthToken() {

 try {

 DriveApp.getRootFolder();

 return ScriptApp.getOAuthToken();

 } catch (e) {

 // TODO (Developer) - Handle exception

 console.log('Failed with error: %s', e.error);

 }

 }

 Dialog.html

 <!DOCTYPE html>

 <html>

 <head>

 <link rel="stylesheet"

href="https://ssl.gstatic.com/docs/script/css/add-ons.css">

 <script>

 // IMPORTANT: Replace the value for DEVELOPER_KEY with

the API key obtained

 // from the Google Developers Console.

 var DEVELOPER_KEY = 'ABC123 ...

 ';

 var DIALOG_DIMENSIONS = {width: 600, height: 425};

 var pickerApiLoaded = false;

 /**

 * Loads the Google Picker API.

 */

 function onApiLoad() {

 gapi.load('picker', {'callback': function() {

 pickerApiLoaded = true;

 }});

 }

 /**

 * Gets the user's OAuth 2.0 access token from the server-

side script so that

 * it can be passed to Picker.

 This technique keeps Picker from needing to

 * show its own authorization dialog, but is only possible if

the OAuth scope

 * that Picker needs is available in Apps Script.

 Otherwise, your Picker code

 * will need to declare its own OAuth scopes.

 */

 function getOAuthToken() {

 google.script.run.withSuccessHandler(createPicker)

 .withFailureHandler(showError).getOAuthToken();

 }

 /**

 * Creates a Picker that can access the user's

spreadsheets.

 This function

 * uses advanced options to hide the Picker's left

navigation panel and

 * default title bar.

 *

 * @param {string} token An OAuth 2.0 access token that

lets Picker access the

 * file type specified in the addView call.

 */

 function createPicker(token) {

 if (pickerApiLoaded && token) {

 var picker = new google.picker.PickerBuilder()

 // Instruct Picker to display only spreadsheets in Drive.

 For other

 // views, see

https://developers.google.com/picker/docs/#otherviews

 .addView(google.picker.ViewId.SPREADSHEETS)

 // Hide the navigation panel so that Picker fills more of

the dialog.

 .enableFeature(google.picker.Feature.NAV_HIDDEN)

 // Hide the title bar since an Apps Script dialog already

has a title.

 .hideTitleBar()

 .setOAuthToken(token)

 .setDeveloperKey(DEVELOPER_KEY)

 .setCallback(pickerCallback)

 .setOrigin(google.script.host.origin)

 // Instruct Picker to fill the dialog, minus 2 pixels for

the border.

 .setSize(DIALOG_DIMENSIONS.width - 2,

 DIALOG_DIMENSIONS.height - 2)

 .build();

 picker.setVisible(true);

 } else {

 showError('Unable to load the file picker.');

 }

 }

 /**

 * A callback function that extracts the chosen document's

metadata from the

 * response object.

 For details on the response object, see

 * https://developers.google.com/picker/docs/result

 *

 * @param {object} data The response object.

 */

 function pickerCallback(data) {

 var action = data[google.picker.Response.ACTION];

 if (action == google.picker.Action.PICKED) {

 var doc = data[google.picker.Response.DOCUMENTS][0];

 var id = doc[google.picker.Document.ID];

 var url = doc[google.picker.Document.URL];

 var title = doc[google.picker.Document.NAME];

 document.getElementById('result').innerHTML =

 'You chose:
Name: <a href="' + url +

'">' + title +

 '
ID: ' + id;

 } else if (action == google.picker.Action.CANCEL) {

 document.getElementById('result').innerHTML = 'Picker

canceled.';

 }

 }

 /**

 * Displays an error message within the #result element.

 *

 * @param {string} message The error message to display.

 */

 function showError(message) {

 document.getElementById('result').innerHTML = 'Error: '

+ message;

 }

 </script>

 </head>

 <body>

 <div>

 <button onclick="getOAuthToken()">Select a

file</button>

 <p id="result"></p>

 </div>

 <script src="https://apis.google.com/js/api.js?

onload=onApiLoad"></script>

 </body>

 </html>

 Custom Functions in Google Sheets

Numerous built-in functions, like AVERAGE, SUM, and VLOOKUP, are available in

Google Sheets. If they don't meet your needs, you may create custom functions

using Google Apps Script, such as converting meters to miles or retrieving real-

time material from the Internet, and use them in Google Sheets exactly like a

built-in function.

Conventional JavaScript is used to construct custom functions. Previous Chapters

in this book has explained in details all you need to know, on JavaScript.

The example bellow illustrates a straightforward custom function called DOUBLE

that multiplies a value input by two (2):

 /**

 * Multiplies an input value by 2.

 * @param {number} input The number to double.

 * @return The input multiplied by 2.

 * @customfunction

 */

 function DOUBLE(input) {

 return input * 2;

 }

 Developing a custom function

 To write a custom function:

 In Google Sheets, create or open a spreadsheet.

 Choose Extensions > Apps Script from the menu.

 Open the script editor and remove any code.

 Just copy and paste the code for the aforementioned DOUBLE

function into the script editor.

 Click Save at the top.

 obtaining a personalized feature via the Google Workspace

Marketplace

A number of customized features are available as Google Sheets add-ons through

the Google Workspace Marketplace. To utilize or investigate these extras:

 In Google Sheets, create or open a spreadsheet.

 Click Add-ons > Get Add-ons at the top.

 Click the search box located in the upper right corner of the Google

Workspace Marketplace after it has opened.

 Enter "custom function" after typing it.

 Click Install to install any custom function add-ons you find

appealing.

 You may see a dialog box informing you that the add-on needs

permission.

 If so, carefully read the message before clicking "Allow."

 The spreadsheet starts to display the add-on.

 Open a separate spreadsheet and select Add-ons > Manage Add-ons

at the top to utilize the add-on.

 Click Options more_vert > Use in this document after selecting the

add-on you wish to use.

 Using a custom function

Once a custom function has been developed or installed from the Google

Workspace Marketplace, using it is just as simple as using one that is pre-

installed:

 To utilize the function, click the cell in question.

 Press Enter after typing the equals symbol (=), the function name, and any

input value (for example, =DOUBLE(A1)).

 The cell will show Loading... for a brief while before returning the outcome.

 Guidelines for custom functions

 There are several rules to follow before creating your own custom function.

 Naming

Apart from the customary practices for designating JavaScript functions, take

note of the following:

 A custom function's name must be unique from the names of built-in

functions, such as SUM().

 A custom function's name cannot conclude in an underscore (_), as in Apps

Script, this indicates a private function.

 The syntax function myFunction(), not var myFunction = new Function(), is

required when declaring the name of a custom function.

 Although the names of spreadsheet functions are often capitalized,

capitalization is not important.

 Arguments

A custom function can accept parameters as input values, just like a built-in

function can:

 The cell value will be the argument if you call your function with a

reference to a single cell as the parameter (e.g., =DOUBLE(A1)).

 The parameter for your function will be a two-dimensional array containing

the values of the cells if you call it with a reference to a range of cells as the

argument (e.g., =DOUBLE(A1:B10)). For instance, in the image below, Apps

Script interprets the parameters in =DOUBLE(A1:B2) as double([[1,3],[2,4]]).

Keep in mind that in order to accept an array as input, the DOUBLE example

code from above would need to be updated.

 Arguments to custom functions must be deterministic. That is, you cannot

pass in built-in spreadsheet functions like NOW() or RAND() as parameters to

a custom function since they produce a different answer each time they

compute. A custom function will always show Loading... if it attempts to

return a value based on one of these volatile built-in functions.

 Return values

Each custom function has to give back a value to the display in a way that:

 The cell from where the custom function was called displays the value if

the function returns one.

 When a custom function produces a two-dimensional array of values, as

long as the neighboring cells are vacant, the values spill over into them. The

custom method will instead produce an exception if doing so will cause the

array to overwrite the contents of any existing cells.

 Cells that it returns a value to are the only ones that a custom function can

impact. Put differently, only the cells it is called from and their neighboring

cells may be edited by a custom function. It cannot modify any other cells.

Instead, utilize a custom menu to launch a function in order to change any

cell.

 A call to a custom function needs to return in 30 seconds or less. The cell

will show the following error if it doesn't: The custom function is executing

with an internal error.

 Data types

Depending on the type of data, Google Sheets saves it in several forms. Apps

Script handles these values as the proper JavaScript data type when they are

used in custom methods. These are the most frequently misunderstood areas:

 Date objects in Apps Script are created from times and dates in Sheets.

The custom function will have to adjust if there is a time zone difference

between the spreadsheet and the script, which is an uncommon issue.

 Although handling duration values in Sheets might be challenging, they

also become Date objects.

 In Apps Script, percentage values in Sheets are converted to decimal

numbers. For instance, in Apps Script, a cell having a value of 10% becomes

0.1.

 Autocomplete

Similar to built-in functions, custom functions in Google Sheets may also use

autocomplete. You will get a list of pre-built and custom functions that match the

function name you write in a cell.

If a custom function's script has a JsDoc @customfunction tag, like in the

DOUBLE() example below, it will show up in this list.

 /**

 * Multiplies the input value by 2.

 *

 * @param {number} input The value to multiply.

 * @return The input multiplied by 2.

 * @customfunction

 */

 function DOUBLE(input) {

 return input * 2;

 }

 Using Google Apps Script services

More complicated operations can be carried out using custom functions by calling

certain Google Apps Script services. For instance, to translate a Spanish sentence

from English, a custom function can make a call to the Language service.

Custom functions never request permission from users to access personal data, in

contrast to the majority of other types of Apps Scripts. As a result, they are

limited to calling the following services, which do not possess access to personal

data:

Supporte

d

services

 Notes

Cache

 Works, but not particularly useful in custom

functions

HTML

 Can generate HTML, but cannot display it (rarely

useful)

JDBC

Language

Lock

 Works, but not particularly useful in custom

functions

Maps

 Can calculate directions, but not display maps

 getUserProperties() only gets the properties of the

spreadsheet owner.

Properties

 Spreadsheet editors can't set user properties in a

custom function.

Spreadshe

et

 Read only (can use most get*() methods, but

not set*()).

 Cannot open other spreadsheets

(SpreadsheetApp.openById() or SpreadsheetApp.openByUrl(

)).

URL Fetch

Utilities

XML

Should your customized function provide an error message The service requires

user authorization and hence cannot be utilized in a custom function; you do not

have permission to use it.

Rather than building a new function, construct a custom menu that calls an Apps

Script function to use a service not on the above list. When a function is called

from a menu, it can utilize all Apps Script services and will prompt the user for

permission if needed.

 Sharing

Initially, custom functions are restricted to the spreadsheet in which they were

developed. This implies that unless you employ one of the following techniques, a

custom function created in one spreadsheet cannot be utilized in another

spreadsheet:

 To access the script editor, click Extensions > Apps Script. Once the script

editor is open, copy and paste the script content from the first spreadsheet

into the script editor of another spreadsheet.

 Click File > Make a copy to create a copy of the spreadsheet with the

custom function in it. Scripts that are connected to a spreadsheet are copied

along with it. The script may be copied by anybody with access to the

spreadsheet. (Partners with view-only access are unable to access the script

editor within the spreadsheet. But when they copy something, they get

ownership of the copy and are able to view the script.)

 Release the script as an Add-on for Google Sheets Editor.

 Optimization

Every time a spreadsheet with a custom function is utilized, Google Sheets calls

the Apps Script server once again. This procedure can be very slow if your

spreadsheet has thousands (or hundreds!) of calls to custom functions.

Therefore, think about changing a custom function such that it takes a range as

input in the form of a two-dimensional array and returns a two-dimensional array

that can overflow into the proper cells if you want to use it again on a huge range

of data.

For instance, the above-described DOUBLE() function may be changed to take a

single cell or a range of cells like this:

 /**

 * Multiplies the input value by 2.

 *

 * @param {number|Array<Array<number>>} input The

value or range of cells

 * to multiply.

 * @return The input multiplied by 2.

 * @customfunction

 */

 function DOUBLE(input) {

 return Array.isArray(input) ?

 input.map(row => row.map(cell => cell * 2)) :

 input * 2;

 }

The aforementioned technique calls DOUBLE recursively on each value in the

two-dimensional array of cells by using the map function of JavaScript's Array

object. The findings are returned as a two-dimensional array. As seen in the

picture below, you may do this by using DOUBLE only once and have it compute

for a huge number of cells at once. (Alternatively, you could use nested if

statements in place of the map call to get the same result.)

Similar to that, the custom code below employs a two-dimensional array to

efficiently retrieve live material from the Internet and show two columns of

results with only one function call. The process would take a much longer if every

cell needed to call a different function, as the Apps Script server would need to

download and process the XML feed each time.

 /**

 * Show the title and date for the first page of posts on the

 * Developer blog.

 *

 * @return Two columns of data representing posts on the

 * Developer blog.

 * @customfunction

 */

 function getBlogPosts() {

 var array = [];

 var url = 'https://gsuite-

developers.googleblog.com/atom.xml';

 var xml = UrlFetchApp.fetch(url).getContentText();

 var document = XmlService.parse(xml);

 var root = document.getRootElement();

 var atom =

XmlService.getNamespace('http://www.w3.org/2005/Atom');

 var entries = document.getRootElement().getChildren('entry',

atom);

 for (var i = 0; i < entries.length; i++) {

 var title = entries[i].getChild('title', atom).getText();

 var date = entries[i].getChild('published', atom).getValue();

 array.push([title, date]);

 }

 return array;

 }

Almost every custom function that is often used in a spreadsheet can benefit

from these strategies, while the specifics of implementation will depend on how

the function behaves.

 Google Sheets Macros

A Google Sheets macro is a set of recorded operations. Once recorded, you may

use a menu item or shortcut key to subsequently repeat those activities by

activating a macro.

You may record macros in Google Sheets that replicate a defined sequence of

user interface interactions. After recording a macro, you may associate it with a

Ctrl+Alt+Shift+Number keyboard shortcut.

That shortcut allows you to easily run the same macro steps again, usually on

new data or in a different location. Additionally, the Google Sheets Extensions >

Macros menu allows you to initiate the macro.

Google Sheets automatically generates an Apps Script function (the macro

function) that duplicates the macro steps when you record a macro. The macro

function is introduced in a file called macros.gs to an Apps Script project that is

tied to the sheet. The macro function is inserted to the project file if one already

exists, if it is bound to the sheet with that name. Moreover, Google Sheets

immediately modifies the script project manifest, logging the macro's name and

keyboard shortcut.

You can edit recorded macros directly in the Apps Script editor because they are

all defined fully within Apps Script. With Apps Script, you can even create macros

from start or convert functions that you've already written into macros.

 Creating macros in Apps Script

Apps Script functions are capable of being used as macro functions. Importing an

existing function from the Google Sheets editor is the simplest method to

accomplish this.

As an alternative, you can follow these instructions to create macros in the Apps

Script editor:

 To access the script tied to the sheet in the Apps Script editor, choose

Extensions > Apps Script in the Google Sheets user interface.

 Compose the macro function. Macro functions ought to be empty—that is,

they ought to return nothing.

 To construct the macro and attach it to the macro function, edit your script

manifest. Give it a special name and keyboard shortcut.

 The script project should be saved. After that, the macro may be used in

the sheet.

 To ensure that it performs as anticipated, test the macro function in the

sheet.

 Editing macros

The following steps may be used to edit macros that are associated to a sheet:

 To manage macros in the Google Sheets user interface, go to Extensions >

Macros.

 Locate the macro that needs editing, then choose more_vert > Edit macro.

This launches the project file containing the macro function in the Apps

Script editor.

 To alter the behavior of the macro, edit the macro function.

 The script project should be saved. After that, the macro may be used in

the sheet.

 To ensure that it performs as anticipated, test the macro function in the

sheet.

 Importing functions as macros

You may import a function as a new macro into an existing script that is

connected to a sheet and then give it a keyboard shortcut. To do this, modify the

manifest file and update the sheets.macros[] property with a new element.

As an alternative, use the following procedures to import a function from the Sheets UI as a macro:

 In the Google Sheets UI, select

 Extensions

 >

 Macros

 >

 Import

 .

 Select a function from the list presented and then click Add function .

 Select clear to close the dialog.

 Select Extensions > Macros > Manage macros .

 Locate the function you just imported in the list. Assign a unique keyboard shortcut to the macro. You

can also change the macro name here; the name defaults to the name of the function.

 Click Update to save the macro configuration.

 Manifest structure for macros

The part of a manifest that defines Google Sheets macros is displayed in the

sample snippet of a manifest file that follows. The name of the macro function

and its corresponding keyboard shortcut are defined in the sheets section of the

manifest.

 {

 ...

 "sheets": {

 "macros": [{

 "menuName": "QuickRowSum",

 "functionName": "calculateRowSum",

 "defaultShortcut": "Ctrl+Alt+Shift+1"

 }, {

 "menuName": "Headerfy",

 "functionName": "updateToHeaderStyle",

 "defaultShortcut": "Ctrl+Alt+Shift+2"

 }]

 }

 }

 Best practices

The following principles should be followed when you create or manage macros in

Apps Script.

 When macros are lightweight, they function better. Try to keep a macro's

number of activities to a minimum.

 When repetitive processes need to be performed repeatedly with minimal

or no setup, macros are the ideal choice. Instead, think about employing a

custom menu item for additional actions.

 Never forget that there may only be ten macros with keyboard shortcuts on

a particular sheet at any one moment, and that each macro's shortcut must

be distinct. The Extensions > Macros menu is the sole way to run any new

macros.

 If you choose the entire range before executing the macro, you may

apply macros that alter a single cell to a range of cells.

 This implies that writing macros to do the same action over a preset

range of cells is frequently superfluous.

 (Google Workspace, 2024)

 Things you can't do

 The following are some limitations on the use of macros:

 Utilize macros outside of script bounds:

 Scripts that are attached to certain Google Sheets define macros.

 If a macro definition is found in a standalone script or web

application, it is disregarded.

 Set macros in the add-ons for Sheets:

 Spreading macro definitions using a Sheets add-on is not possible.

 Users of a Sheets add-on project disregard any macro definitions in

that add-on.

 Make macros available in script libraries

 : Distribution of macro definitions using Apps Script libraries is not

possible.

 Outside of Google Sheets, use macros:

 There are no macros in Google Docs, Forms, or Slides; they are

exclusive to Google Sheets.

 Chapter Seventeen

 Developing Web Apps in Apps

Script

A program that can be accessed using a web browser is called a web application. Web

applications resemble mobile apps when accessed through a mobile device's browser, but

they are not the same.

A script may be made into a web application and published online if its user interface is

developed. For instance, it would be ideal to offer a script that allows customers to book

meetings with support team members as a web application, allowing consumers to access

it straight from their browsers.

As long as they fulfill the specifications listed below, scripts that are independent or

integrated with Google Workspace applications can be developed into web applications.

 Requirements for web apps

 If a script satisfies certain criteria, it can be released as a web application:

 A doGet(e) or doPost(e) function is present.

 The function returns either a TextOutput object from the Content service or an

HTML service HtmlOutput object.

 Request parameters

Apps Script executes the function doGet(e) when a user visits an app or when a program

submits an HTTP GET request to the app. Rather of sending an HTTP POST request to the

app, Apps Script does doPost(e). The e argument in all scenarios denotes an event

parameter that may include details about any request parameters. The table below

displays the event object's structure:

 Fields

 e.queryString

 The value of the query string portion of

the URL, or null if no query string is specified

 name=alice&n=1&n=2

 e.parameter

 An object of key/value pairs that

correspond to the request parameters.

 Only the first value is returned for

parameters that have multiple values.

 {"name": "alice", "n": "1"}

 e.parameters

 An object similar to e.parameter, but

with an array of values for each key

 {"name": ["alice"], "n": ["1", "2"]}

 e.pathInfo

 The URL path after /exec or /dev.

 For example, if the URL path ends

in /exec/hello, the path info is hello.

 e.contextPath

 Not used, always the empty string.

 e.contentLength

 The length of the request body for POST

requests, or -1 for GET requests

 332

 e.postData.length

 The same as e.contentLength

 332

 e.postData.type

 The MIME type of the POST body

 text/csv

e.postData.contents

 The content text of the POST body

 Alice,21

 e.postData.name

 Always the value "postData"

 postData

For instance, you could pass parameters such as username and age to a URL as

shown below:

 https://script.google.com/.../exec?username=jsmith&age=21

Then, you can display the parameters like so:

 function doGet(e) {

 var params = JSON.stringify(e);

 return

ContentService.createTextOutput(params).setMimeType(ContentService.MimeType.JSO

N);

 }

 In the above example,

 doGet(e)

 returns the following output:

 {

 "queryString": "username=jsmith&age=21",

 "parameter": {

 "username": "jsmith",

 "age": "21"

 },

 "contextPath": "",

 "parameters": {

 "username": [

 "jsmith"

],

 "age": [

 "21"

]

 },

 "contentLength": -1

 }

Source: (Google Workspace, 2024)

 Deploy a script as a web app

 To deploy a script as a web app, follow these steps:

1.

 At the top right of the script project, click

 Deploy

 >

 New deployment

 .

2.

 Next to "Select type," click Enable deployment types settings >

 Web app

 .

3.

 Enter the information about your web app in the fields under

"Deployment configuration."

4.

 Click

 Deploy

 .

 You can share the web app URL with those you would like to use your app, provided you have granted them access.

 Test a web app deployment

 To test your script as a web app, follow the steps below:

1.

 At the top right of the script project, click

 Deploy > Test deployments

 .

2.

 Next to "Select type," click Enable deployment types settings

 > Web app

 .

3.

 Under the web app URL, click

 Copy

 .

4.

 Paste the URL in your browser and test your web app.

 This URL ends in /dev and can only be accessed by users who have edit

access to the script.

 This instance of the app always runs the most recently saved code and is

only intended for testing during development.

 Permissions

A web application's permissions vary based on how you choose to run it:

 Run the application in my place. In this instance, regardless of who views the web

application, the script always runs as you, the script owner.

 Run the application as the user visiting the website—In this scenario, the script

executes using the user's identity who is now utilizing the website. When the user

grants access using this permission method, the web application displays the email

address of the script owner.

 Embed your web app in Google Sites or any Site of your Choice.

 A web application has to be launched before it can be embedded into Google Sites.

 The Deployed URL from the Deploy dialog is also required.

 Use these procedures to embed a web application into a Sites page:

1.

 Open the Sites page where you'd like to add the web app.

2.

 Select

 Insert > Embed URL

 .

3.

 Paste in the web app URL and then click

 ADD

 .

The page preview displays the web application in a frame. Before the web app runs

normally after you publish the page, visitors to your website might need to grant the web

app permission. Users are prompted for consent by unauthorized online applications.

 Web Apps and Browser History

A online application using Apps Script may be desired if it simulates a multi-page

application or has a dynamic user interface that is controlled by URL parameters. To

achieve this effectively, you may construct a state object that will serve as the user

interface (UI) or page for your app, and when the user interacts with it, you can push the

state into the browser history.

In order to ensure that your web application shows the right user interface (UI) as the user

moves the browser's buttons back and forth, you may also listen to past events. You may

allow the user to launch your app in a certain state by having your app dynamically

generate its user interface (UI) based on URL parameters by querying the parameters

during load time.

Two asynchronous client-side JavaScript APIs are offered by Apps Script to help develop

online applications that are connected to the user's browsing history:

 Google.script.history offers techniques to enable dynamic reaction to modifications

in the browser history. This entails adding states—basic objects that you may define—

to the history of the browser, swapping out the current state at the top of the history

stack, and configuring a callback function for the listener to use in response to history

modifications.

 If the URL parameters and URL fragment are available for the current page, they

may be retrieved using google.script.url.

Only web apps have access to these historical APIs. Neither sidebars nor dialog boxes nor

add-ons are supported. It is also not advised to utilize this capability in web apps that are

integrated with Google Sites.

 How to create Login and Register Form using Google spreadsheet

data

The example below illustrates how to create a Login and register form using google

spreadsheet data. You can access the Video Tutorial on https://youtu.be/2qRti1S9rK8 . The

codes are displayed below:

Example 1:

https://youtu.be/2qRti1S9rK8

Code.gs

 function doGet(e) {

 var x = HtmlService.createTemplateFromFile("");

 var y = x.evaluate();

 var z =

y.setXFrameOptionsMode(HtmlService.XFrameOptionsMode.ALLOWALL);

 return z;

 }

 function checkLogin(username, password) {

 var url = '';

 var ss= SpreadsheetApp.openByUrl(url);

 var webAppSheet = ss.getSheetByName("DATA");

 var getLastRow = webAppSheet.getLastRow();

 var found_record = '';

 for(var i = 1; i <= getLastRow; i++)

 {

 if(webAppSheet.getRange(i, 1).getValue().toUpperCase() ==

username.toUpperCase() &&

 webAppSheet.getRange(i, 2).getValue().toUpperCase() ==

password.toUpperCase())

 {

 found_record = 'TRUE';

 }

 }

 if(found_record == '')

 {

 found_record = 'FALSE';

 }

 return found_record;

 }

 function AddRecord(usernamee, passwordd, email, phone) {

 var url = '';

 var ss= SpreadsheetApp.openByUrl(url);

 var webAppSheet = ss.getSheetByName("DATA");

 webAppSheet.appendRow([usernamee,passwordd,email,phone]);

 }

 Index.html

 <!DOCTYPE html>

 <html>

 <head>

 <base target="_top">

 <script>

 function AddRow()

 {

 var usernamee =

document.getElementById("usernamee").value;

 var passwordd = document.getElementById("passwordd").value;

 var email = document.getElementById("email").value;

 var phone = document.getElementById("phone").value;

 if (usernamee==""|| passwordd==""|| email==""|| phone=="")

{

 return false;

 }

 else {

google.script.run.AddRecord(usernamee,passwordd,email,phone);

 document.getElementById("page2_id1").className =

"page2_id1-off";

 document.getElementById("page3_id1").className =

"page3_id1";

 }

 }

 function LoginUser()

 {

 var username = document.getElementById("username").value;

 var password = document.getElementById("password").value;

 google.script.run.withSuccessHandler(function(output)

 {

 if(output == 'TRUE')

 {

 document.getElementById("displayusername").innerHTML =

username;

 document.getElementById("page1_id1").className =

"page1_class1-off";

 document.getElementById("page4_id1").className =

"page4_id1";

 }

 else if(output == 'FALSE')

 {

 document.getElementById("errorMessage").innerHTML =

"Invalid data";

 }

 }).checkLogin(username, password);

 }

 function function1(){

 document.getElementById("page1_id1").className =

"page1_class1-off";

 document.getElementById("page2_id1").className =

"page2_id1";

 }

 function function3(){

 document.getElementById("page3_id1").className = "page3_id1-

off";

 document.getElementById("page1_id1").className = "page1_id1";

 }

 </script>

 <style>

 /*page1*/

 .page1_class1-off{

 display: none;

 }

 /*page2*/

 .page2_class1{

 display: none;

 }

 .page2_id1-off{

 display:none;

 }

 /*page3*/

 .page3_class1{

 display:none;

 }

 .page3_id1-off{

 display:none;

 }

 /*page4*/

 .page4_class1{

 display:none;

 }

 .page4_id1-off{

 display:none;

 }

 input[type=text]:hover{

 border-bottom:2px solid black;

 }

 input[type=number]:hover{

 border-bottom:2px solid black;

 }

 input[type=password]:hover{

 border-bottom:2px solid black;

 }

 .user{

 display: inline-block;

 width: 75px;

 height: 75px;

 border: 8px solid black;

 border-radius: 50%;

 position: relative;

 overflow: hidden;

 box-sizing: border-box;

 }

 /*the head/*/

 .user::before{

 content: '';

 display: inline-block;

 width: 24px;

 height: 24px;

 background: black;

 border-radius: 50%;

 position: absolute;

 left: calc(50% - 11px);

 top: 10px;

 }

 /*the body*/

 .user::after{

 content: '';

 display: inline-block;

 width:50px;

 height:40px;

 background: black;

 border-radius: 50%;

 position: absolute;

 left: calc(50% - 24px);

 top: 39px;

 }

 </style>

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 </head>

 <body>

 <!--page1-->

 <center>

 <div class="page1_class1" id="page1_id1"

style="background:none;border:2px solid gray;border-radius: 20px;width:

250px;padding-top: 10px;padding-bottom: 20px;padding-left: 20px;padding-

right: 20px;">

 <h1>Login Form</h1>

 <input type="text" id="username" placeholder="Username"

style="border-top: none;border-right: none;border-left: none;outline: none;

text-align: center;font-size:0.9em ;width: 50%;font-weight:bold;"/>

 <input type="password" id="password" placeholder="Password"

style="border-top: none;border-right: none;border-left: none;outline: none;

text-align: center;font-size:0.9em ;width: 50%;font-weight:bold;"/>

 <input type="submit" value="Login" onclick="LoginUser()"

style="float: right;padding-top: 1px;padding-bottom: 1px;padding-left:

10px;padding-right: 10px;font-size: 0.9em;font-weight:bold;" />

 If you don't have an account,<input type="button"

onClick="function1()" value="Create New" style="margin-top: 5px;font-

weight:bold;" />

 </div>

 <!--page2-->

 <div class="page2_class1" id="page2_id1"

style="background:none;border:2px solid gray;border-radius: 20px;width:

250px;padding-top: 10px;padding-bottom: 20px;padding-left: 20px;padding-

right: 20px;">

 <h1>Create Account</h1>

 <input type="text" id="usernamee" placeholder="Name"

style="border-top: none;border-right: none;border-left: none;outline: none;

text-align: center;font-size:0.9em ;width: 50%;font-weight:bold;"/>

 <input type="password" id="passwordd" placeholder="Create

password" style="border-top: none;border-right: none;border-left:

none;outline: none; text-align: center;font-size: 0.9;width: 50%;font-

weight:bold;" />

 <input type="text" id="email" placeholder="Email"

style="border-top: none;border-right: none;border-left: none;outline: none;

text-align: center;font-size:0.9em ;width: 50%;font-weight:bold;"/>

 <input type="number" id="phone" placeholder="Phone no."

 style="border-top: none;border-right: none;border-left: none;outline:

none; text-align: center;font-size:0.9em ;width: 50%;font-weight:bold;" />

 <b style="color:red;">Password must contain letters and

numbers.

 It will not work without letters and numbers.

 <input type="submit" value="Create" onclick="AddRow()"

style="float: right;padding-top: 1px;padding-bottom: 1px;padding-left:

10px;padding-right: 10px;font-size: 0.9em;font-weight:bold;" />

 </div>

 <!--page3-->

 <div class="page3_class1" id="page3_id1"

style="background:none;border:2px solid gray;border-radius: 20px;width:

250px;padding-top: 10px;padding-bottom: 20px;padding-left: 20px;padding-

right: 20px;"><center>

 <h2> Your account has been successfully created.

 Login to your account</h2>

 <input type="submit" onClick="function3()" value="Login"

style="font-weight:bold;">

 </div>

 <!--page4-->

 <div class="page4_class1" id="page4_id1"

style="background:none;border:2px solid gray;border-radius: 20px;width:

250px;padding-top: 10px;padding-bottom: 20px;padding-left: 20px;padding-

right: 20px;" ><center>

 <h2>Hi <b id="displayusername" style="color:red;">!

</h2>

 <div class="user"></div>

 <h2> You are successfully logged in.</h2>

 <h2>**************</h2>

 </div>

 </center>

 </body>

 </html>

 Example 2:

 These example applies some CSS properties to the Login and Registration form.

 Code.gs

 function doGet(e) {

 var x = HtmlService.createTemplateFromFile("index");

 var y = x.evaluate();

 var z =

y.setXFrameOptionsMode(HtmlService.XFrameOptionsMode.ALLOWALL);

 return z;

 }

 function checkLogin(username, password) {

 var url = ‘Enter Your Google Sheet URL’;

 var ss= SpreadsheetApp.openByUrl(url);

 var webAppSheet = ss.getSheetByName("Noogul");

 var getLastRow = webAppSheet.getLastRow();

 var found_record = '';

 for(var i = 1; i <= getLastRow; i++)

 {

 if(webAppSheet.getRange(i, 1).getValue().toUpperCase() ==

username.toUpperCase() &&

 webAppSheet.getRange(i, 2).getValue().toUpperCase() ==

password.toUpperCase())

 {

 found_record = 'TRUE';

 }

 }

 if(found_record == '')

 {

 found_record = 'FALSE';

 }

 return found_record;

 }

 function AddRecord(usernamee, passwordd, email, phone) {

 var url = ‘Enter Your Google Sheet URL’;

 var ss= SpreadsheetApp.openByUrl(url);

 var webAppSheet = ss.getSheetByName("Noogul");

 webAppSheet.appendRow([usernamee,passwordd,email,phone]);

 }

 Index.html

 <!DOCTYPE html>

 <html>

 <head>

 <base target="_top">

 <script>

 function AddRow()

 {

 var usernamee =

document.getElementById("usernamee").value;

 var passwordd = document.getElementById("passwordd").value;

 var email = document.getElementById("email").value;

 var phone = document.getElementById("phone").value;

 if (usernamee==""|| passwordd==""|| email==""|| phone=="")

{

 return false;

 }

 else {

google.script.run.AddRecord(usernamee,passwordd,email,phone);

 document.getElementById("page2_id1").className =

"page2_id1-off";

 document.getElementById("page3_id1").className =

"page3_id1";

 }

 }

 function LoginUser()

 {

 var username = document.getElementById("username").value;

 var password = document.getElementById("password").value;

 google.script.run.withSuccessHandler(function(output)

 {

 if(output == 'TRUE')

 {

 var url1 ='Enter Redirect Url address Here';

 var winRef = window.open(url1);

 winRef ?

 google.script.host.close() : window.onload=function()

{document.getElementById('url').href = url1;}

 }

 else if(output == 'FALSE')

 {

 document.getElementById("errorMessage").innerHTML =

"Invalid Data";

 }

 }).checkLogin(username, password);

 }

 function function1(){

 document.getElementById("page1_id1").className =

"page1_class1-off";

 document.getElementById("page2_id1").className =

"page2_id1";

 }

 function function3(){

 document.getElementById("page3_id1").className = "page3_id1-

off";

 document.getElementById("page1_id1").className = "page1_id1";

 }

 </script>

 <style>

 /*page1*/

 .page1_class1-off{

 display: none;

 }

 /*page2*/

 .page2_class1{

 display: none;

 }

 .page2_id1-off{

 display:none;

 }

 /*page3*/

 .page3_class1{

 display:none;

 }

 .page3_id1-off{

 display:none;

 }

 /*page4*/

 .page4_class1{

 display:none;

 }

 .page4_id1-off{

 display:none;

 }

 input[type=text]:hover{

 border-bottom:2px solid black;

 }

 input[type=number]:hover{

 border-bottom:2px solid black;

 }

 input[type=password]:hover{

 border-bottom:2px solid black;

 }

 .user{

 display: inline-block;

 width: 75px;

 height: 75px;

 border: 8px solid black;

 border-radius: 50%;

 position: relative;

 overflow: hidden;

 box-sizing: border-box;

 }

 /*the head/*/

 .user::before{

 content: '';

 display: inline-block;

 width: 24px;

 height: 24px;

 background: black;

 border-radius: 50%;

 position: absolute;

 left: calc(50% - 11px);

 top: 10px;

 }

 /*the body*/

 .user::after{

 content: '';

 display: inline-block;

 width:50px;

 height:40px;

 background: black;

 border-radius: 50%;

 position: absolute;

 left: calc(50% - 24px);

 top: 39px;

 }

 </style>

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 </head>

 <body>

 <!--page1-->

 <center>

 <div class="page1_class1" id="page1_id1" style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;">

 <div class="header">

 </div>

 <input type="text" id="username" placeholder="Username"

style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;"/>

 <input type="password" id="password" placeholder="Password"

style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;"/>

 <input type="submit" value="Login" onclick="LoginUser()"

 style="width: 80%;

 background-color: dodgerblue;

 color: white;

 padding: 15px 20px;

 border: none;

 cursor: pointer;

 width: 100%;

 opacity: 0.9;" />

 If you don't have an account,<input type="button"

onClick="function1()" value="Create New" style="margin-top: 5px;font-

weight:bold;" />

 </div>

 <!--page2-->

 <div class="page2_class1" id="page2_id1" style="width: 50%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;">

 <h1>Create Account</h1>

 <input type="text" id="usernamee" placeholder="Username"

style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;"/>

 <input type="password" id="passwordd" placeholder="Create

password" style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;" />

 <input type="text" id="email" placeholder="Email" style="width:

80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;"/>

 <input type="number" id="phone" placeholder="Phone no."

 style="width: 80%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;" />

 <b style="color:red;">Password must contain letters and

numbers.

 It will not work without letters and numbers.

 <input type="submit" value="Create" onclick="AddRow()"

style="width: 80%;

 background-color: dodgerblue;

 color: white;

 padding: 15px 20px;

 border: none;

 cursor: pointer;

 width: 100%;

 opacity: 0.9;" />

 </div>

 <!--page3-->

 <div class="page3_class1" id="page3_id1"

style="background:none;border:2px solid gray;border-radius: 20px;width:

250px;padding-top: 10px;padding-bottom: 20px;padding-left: 20px;padding-

right: 20px;"><center>

 <h2> Your account has been successfully created.

 Login to your account</h2>

 <input type="submit" onClick="function3()" value="Login"

style="font-weight:bold;">

 </div>

 <!--page4-->

 <div class="page4_class1" id="page4_id1" style="width: 50%;

 background-color: #FFFAF0;

 color: Green;

 padding: 14px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;" ><center>

 <h2>Hi <b id="displayusername" style="color:red;">!

</h2>

 <div class="user"></div>

 <h2> You are successfully logged in.</h2>

 <nav>

 DASHBOARD

 UPLOAD

CONTENT

 BLOG

 </nav>

 </div>

 </center>

 </body>

 </html>

 How to Display Google Sheet Data on Webpage

You must first have a Google Spreadsheet with some data in it. For this, you may utilize an

already-existing one or make a new one. By doing this, the webpage will be able to show

every Google Sheet on an HTML website. The Youtube Video Link Illustrates the application

of these codes https://youtu.be/-dkewMUYU7A

https://youtu.be/-dkewMUYU7A

 Code.gs

 function doGet(e) {

 var x = HtmlService.createTemplateFromFile("");

 var y = x.evaluate();

 var z =

y.setXFrameOptionsMode(HtmlService.XFrameOptionsMode.ALLOWALL);

 return z;

 }

 function getSheetData() {

 var a= SpreadsheetApp.getActiveSpreadsheet();

 var b = a.getSheetByName('Sheet1');

 var c = b.getDataRange();

 return c.getValues();

 }

 Index.html

 <!DOCTYPE html>

 <html>

 <head>

 <base target="_top">

 </head>

 <body>

 <center>

 <h2>Display google sheet data on webpage</h2>

 <table border="3" style="border:2px solid black"

cellpadding="5px" >

 <?var tableData = getSheetData();?>

 <?for(var i = 0; i < tableData.length; i++) { ?>

 <?if(i == 0) { ?>

 <tr>

 <?for(var j = 0; j < tableData[i].length; j++) { ?>

 <th><?= tableData[i][j] ?></th>

 <?

 } ?>

 </tr>

 <?

 } else { ?>

 <tr>

 <?for(var j = 0; j < tableData[i].length; j++) { ?>

 <td><?= tableData[i][j] ?></td>

 <?

 } ?>.

 </tr>

 <?

 } ?>

 <?

 } ?>

 </table></center>

 </body>

 </html>

 How to Submit HTML Form Data to Google Spreadsheet

The following example https://youtu.be/7Vn3ycGS04I submits filled details of HTML form

data to google Spreadsheet. Efficient data collection and management is essential for both

individuals and enterprises in the current digital era. HTML forms are a common tool for

data collection, and Google Sheets is a great place to store this data. We'll walk you

through setting up a data entry form on your website and moving the data to Google

Sheets with ease. You'll have an effective tool to expedite your data collecting procedure by

the conclusion of this session.

 Recognizing the Value of HTML Form Integration with Google Sheets

 Let's quickly go over the benefits of integrating HTML forms with Google Sheets before

getting into the technical details.

 This strategy has several advantages:

i. Effective Data Gathering: Since HTML forms are so widely available and easy

to use, gathering data is a snap.

https://youtu.be/7Vn3ycGS04I

ii. Real-time Updates: Information input into the form may be immediately

reflected in the Google Sheet, giving you access to the most recent information

available.

iii. Single Data Storage: Google Sheets eliminates the need for dispersed files

and manual data entry by offering a single area for organizing and storing your

data.

 Example 1:

 Code.gs

 var sheetName = 'Sheet1'

 var scriptProp = PropertiesService.getScriptProperties()

 function intialSetup () {

 var activeSpreadsheet = SpreadsheetApp.getActiveSpreadsheet()

 scriptProp.setProperty('key', activeSpreadsheet.getId())

 }

 function doPost (e) {

 var lock = LockService.getScriptLock()

 lock.tryLock(10000)

 try {

 var doc = SpreadsheetApp.openById(scriptProp.getProperty('key'))

 var sheet = doc.getSheetByName(sheetName)

 var headers = sheet.getRange(1, 1, 1,

sheet.getLastColumn()).getValues()[0]

 var nextRow = sheet.getLastRow() + 1

 var newRow = headers.map(function(header) {

 return header === 'timestamp' ?

 new Date() : e.parameter[header]

 })

 sheet.getRange(nextRow, 1, 1,

newRow.length).setValues([newRow])

 return ContentService

 .createTextOutput(JSON.stringify({ 'result': 'success', 'row':

nextRow }))

 .setMimeType(ContentService.MimeType.JSON)

 }

 catch (e) {

 return ContentService

 .createTextOutput(JSON.stringify({ 'result': 'error', 'error': e }))

 .setMimeType(ContentService.MimeType.JSON)

 }

 finally {

 lock.releaseLock()

 }

 }

 Form.html

 <!DOCTYPE html>

 <html>

 <head>

 <title>database</title>

 <style>

 input[type=text], select {

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 input[type=email], select {

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 textarea {

 width: 80%;

 height: 250px;

 padding: 12px 20px;

 box-sizing: border-box;

 border: 2px solid #ccc;

 border-radius: 4px;

 background-color: #f8f8f8;

 font-size: 16px;

 resize: none;

 }

 input[type=submit] {

 width: 80%;

 background-color: #4CAF50;

 color: white;

 padding: 14px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 }

 input[type=submit]:hover {

 background-color: #45a049;

 }

 div {

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 20px;

 }

 body {font-family: Arial, Helvetica, sans-serif;}

 * {box-sizing: border-box;}

 </style>

 </head>

 <body>

 <form method="post" autocomplete="off" name="google-sheet">

 <center>

 <h1>Registration Form</h1>

 <table style =

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }>

 <tr><td></td>

 <td> <h3>Full Name:</h3><input type="text"

name="Name" placeholder="Enter Author Full Name" required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3>Email:</h3><input type="email" name="email"

autocomplete="off" placeholder="Enter Your Correct Email Address"

required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3>Title:</h3><input type="text" name="Title"

placeholder="Enter The Title of your Content" required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3> Sub-Title:</h3><input type="text" name="Sub-

Title" placeholder="Enter The Sub-Title of your Content (Optional)" /></td>

 </tr>

 <tr><td></td>

 <td> <h3>Beneficiary Name:</h3><input type="text"

name="Beneficiary Name" placeholder="Designate who gets paid when your

Book sells" required="" />

 <h3>Banking Country:</h3><input type="text"

name="Country" placeholder="Country of Residence" required="" />

 <h3>Beneficiary Account Number:</h3><input

type="text" name="Account Number" placeholder="Account Number of

Beneficiary" required="" />

 <h3>Bank Name:</h3><input type="text" name="Bank

Name" placeholder="Enter Bank Name" required="" />

 <h3>Bank Branch:</h3><input type="text"

name="Bank Branch" placeholder="What Branch is your Bank Located"

required="" />

 <h3>Bank Swift Code:</h3><input type="text"

name="Swift Code" placeholder="Your Bank Swift Code" required="" />

 <h3>Tax ID (Optional):</h3><input type="text"

name="Tax ID" placeholder="Enter your Tax ID (Optional)" />

 </td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Additional Payment Information (Optional)

</h2><h4>Paypal

Payment (Payable in USD only.

 $5 Processing Fee).</h4>

 </td>

 </tr>

 <tr><td></td>

 <td> <h3>Send Payments to:</h3><input type="text"

name=" Paypal Email Address " placeholder="Enter your Paypal Email

Address" />

 </td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Concent"

name="Consent" value="Concent">

 <label for="Concent">I Concent - to

receive emails from Noogul, including exclusive offers, newsletters,

promotions, and other notifications </label>

 </tr>

 </table>

 <input type="submit" name="submit" value="Submit"/>

 </center>

 </form>

 <script type="text/javascript">

 const scriptURL = ‘

 Enter the Appscript URL where filled contents will be

submitted to'

 const form = document.forms['google-sheet']

 form.addEventListener('submit', e => {

 e.preventDefault()

 fetch(scriptURL, { method: 'POST', body: new

FormData(form)})

 .then(response => alert("You have successfully

submitted."))

 .catch(error => console.error('Error!', error.message))

 })

 </script>

 </body>

 </html>

 Example 2

 : The example below shows how to submit HTML Forms to google sheets with CSS

Properties.

 Code.gs

 var sheetName = 'Publish'

 var scriptProp = PropertiesService.getScriptProperties()

 function intialSetup () {

 var activeSpreadsheet =

SpreadsheetApp.getActiveSpreadsheet()

 scriptProp.setProperty('key', activeSpreadsheet.getId())

 }

 function doPost (e) {

 var lock = LockService.getScriptLock()

 lock.tryLock(10000)

 try {

 var doc =

SpreadsheetApp.openById(scriptProp.getProperty('key'))

 var sheet = doc.getSheetByName(sheetName)

 var headers = sheet.getRange(1, 1, 1,

sheet.getLastColumn()).getValues()[0]

 var nextRow = sheet.getLastRow() + 1

 var newRow = headers.map(function(header) {

 return header === 'timestamp' ?

 new Date() : e.parameter[header]

 })

 sheet.getRange(nextRow, 1, 1,

newRow.length).setValues([newRow])

 return ContentService

 .createTextOutput(JSON.stringify({ 'result': 'success', 'row':

nextRow }))

 .setMimeType(ContentService.MimeType.JSON)

 }

 catch (e) {

 return ContentService

 .createTextOutput(JSON.stringify({ 'result': 'error', 'error': e }))

 .setMimeType(ContentService.MimeType.JSON)

 }

 finally {

 lock.releaseLock()

 }

 }

 Publish.html

 <!DOCTYPE html>

 <html>

 <head>

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>database</title>

 </head>

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-

awesome.min.css">

 <style>

 body {

 background-color: #FF3399;

 }

 input[type=text], select {

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 input[type=email], select {

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 input[type=email], select {

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 textarea {

 width: 80%;

 height: 250px;

 padding: 12px 20px;

 box-sizing: border-box;

 border: 2px solid #ccc;

 border-radius: 4px;

 background-color: #f8f8f8;

 font-size: 16px;

 resize: none;

 }

 input[type=submit] {

 width: 80%;

 background-color: #4CAF50;

 color: white;

 padding: 14px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 }

 input[type=submit]:hover {

 background-color: #45a049;

 }

 div {

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 20px;

 }

 body {font-family: Arial, Helvetica, sans-serif;}

 * {box-sizing: border-box;}

 </style>

 <body>

 <form method="post" autocomplete="off" name="google-sheet">

 <center>

 <div>

 <table style =

 width: 80%;

 padding: 12px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }>

 <tr><td></td>

 <td> <h3>Full Name:</h3><input type="text"

name="Name" placeholder="Enter Author Full Name" required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3>Email:</h3><input type="email" name="email"

autocomplete="off" placeholder="Enter Your Correct Email Address"

required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3>Title:</h3><input type="text" name="Title"

placeholder="Enter The Title of your Content" required="" /></td>

 </tr>

 <tr><td></td>

 <td><h3> Sub-Title:</h3><input type="text" name="Sub-

Title" placeholder="Enter The Sub-Title of your Content (Optional)" /></td>

 </tr>

 <tr><td ></td>

 <td style ="width: 80%"><select name="category"

required="" >

 <option value="Select Category">Select Category >>>>>

</option>

 <option value="Art and Photography">Art and

Photography</option>

 <option value="Business and Economics">Business and

Economics</option>

 <option value="Biographies and Memoirs">Biographies and

Memoirs</option>

 <option value="Children's">Children's</option>

 <option value="Comics & Graphic Novels">Comics & Graphic

Novels</option>

 <option value="Computers & Technology">Computers &

Technology</option>

 <option value="Religion & Spirituality">Religion &

Spirituality</option>

 <option value="Science & Medicine">Science & Medicine</option>

 <option value="Social Science">Social Science</option>

 <option value="Psychology">Psychology</option>

 <option value="Sports">Sports</option>

 <option value="Travel & Adventure">Travel & Adventure</option>

 <option value="Young Adult">Young Adult</option>

 </select>

 </td>

 </tr>

 <tr><td></td>

 <td> <h3> Contributors (Optional):</h3><input

type="text" name="Contributors" placeholder="Specify Either Co-author,

Editor or Illustrator with their names separated with Comma (,)" /></td>

 </tr>

 <tr><td></td>

 <td><h3>Project Details(Synopsis) :</h3><textarea

id="subject" name="Synopsis" placeholder="Provide all important metadata

to help readers find your book.

 " style="height:250px"></textarea></td>

 </tr>

 <tr><td></td>

 <td><h3>Keywords:</h3><input type="text"

name="Keywords" placeholder="Add Keywords...."

 required="" /></td>

 </tr>

 <tr><td ></td>

 <td style ="width: 100%"><select name="Language"

required="" >

 <option value="Select Language">Select Language >>>>>

</option>

 <option value="English">English</option>

 <option value="German">German</option>

 <option value="Spanish">Spanish</option>

 <option value="Chinese">Chinese</option>

 <option value="French">French</option>

 <option value="Iranian">Iranian</option>

 <option value="Hausa">Hausa</option>

 <option value="Igbo">Igbo</option>

 <option value="Yoruba">Yoruba</option>

 <option value="Abkhazian">Abkhazian</option>

 <option value="Acoli">Acoli</option>

 <option value="Afrikaans">Afrikaans</option>

 <option value="Bambara">Bambara</option>

 <option value="Zapotec">Zapotec</option>

 <option value="Yapeze">Yapeze</option>

 <option value="Twi">Twi</option>

 </select>

 </td>

 <tr><td></td>

 <td><h3>Other Language: </h3><input type="text"

name="others" placeholder="Kindly indicate other Languags if not Specified

(Optional)" /></td>

 </tr>

 <tr><td ></td>

 <td style ="width: 80%;" ><select name="Audience"

required="" >

 <option value="Select Audience">Select Audience >>>>>

</option>

 <option value="General/Trade - Adult Fiction and Non-

Fiction">General/Trade - Adult Fiction and Non-Fiction</option>

 <option value="Children/Juvenile - Children's Books age range 2 -

12 years, not for educational purposes">Children/Juvenile - Children's Books

age range 2 - 12 years, not for educational purposes</option>

 <option value="Young Adult - Teen Fiction and Non-Fiction, age

range 12 - 20 years, not for educational Purposes">Young Adult - Teen Fiction

and Non-Fiction, age range 12 - 20 years, not for educational

Purposes</option>

 <option value="Primary and Secondary/ Elementary and High

School Educational Material, age range 5 - 18years">Primary and Secondary/

Elementary and High School Educational Material, age range 5 -

18years</option>

 </select>

 </td>

 <tr><td></td>

 <td><h3>Table of Contents :</h3><textarea id="subject"

name="Contents" placeholder="Provide your Table of Content (Optional).

 " style="height:250px"></textarea></td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Select a Goal

</h2><p>Start by telling us what you plan to do

with your Book.

 From printing your own copies to selling around the world or on your

own website, we’ve got you covered!

 </p>

 <input type="checkbox" id="Global Distribution"

name="Global Distribution" value="Global Distribution">

 <label for="Global Distribution">Global

Distribution (Sell your Book through 40,000+ global retailers using

Noogul distribution service.

 Please note that a title page, copyright page, and ISBN are required.

 </label> </td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Print Your Book"

name="Print Your Book" value="Print Your Book">

 <label for="Print Your Book">Print Your Book

(Upload your Book files to your account and purchase copies).

 </label>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049"; >Book

Specification

</h2> <p>Select your book's specifications, add

content and design your cover and interior.</p>

 <input type="checkbox" id="5.5 X 8.25" name="5.5

X 8.25" value="5.5 X 8.25 ">

 <label for="5.5 X 8.25">5.5 X 8.25 inch

</label>

 <img src="7.jpg" alt="Print Book "

style="width:250px;height:250px;"><p>(Fiction, Poetry, and Non-Fiction Less

than 50,000 words).

 Ideal to present or showcase your fiction, non fictional, catalogs or

manuals book cover design</p></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="6 x 9" name="6 x 9"

value="6 x 9">

 <label for="6 x 9">6 x 9 inch </label>

 <img src="8.jpg" alt="6 x 9 "

style="width:200px;height:300px;"><p>(Self-help, Biographies, Business and

Academic Less than 75,000 words)</p></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="6.625 x 10.25 inch"

name="6.625 x 10.25 inch" value="6.625 x 10.25 inch">

 <label for="6.625 x 10.25 inch">6.625 x 10.25

inch </label>

 <img src="9.jpg" alt="6.625 x 10.25 inch "

style="width:300px;height:200px;"><p>(168.3 x 260.4 mm) with 0.75 inch

spine width for each book to showcase collection or compilation of your

graphic novels cover design.</p></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="8.5 x 11 inch"

name="8.5 x 11 inch" value="8.5 x 11 inch">

 <label for="8.5 x 11 inch">8.5 x 11 inch

</label>

 <img src="10.jpg" alt="8.5 x 11 inch "

style="width:300px;height:200px;"><p>(Academic Books More than 75,000

words)</p></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="11 x 8.5 inch"

name="11 x 8.5 inch" value="11 x 8.5 inch">

 <label for="11 x 8.5 inch">11 x 8.5 inch

</label>

 <img src="11.jpg" alt="11 x 8.5 inch "

style="width:300px;height:200px;"><p>(280 x 216 mm) Horizontal Book Box

with 0.75 inch (19 mm) spine thickness.

 Ideal to showcase your 260 ~ 360 pages photo albums, catalogs,

children story books, series of book in a package cover design.</p></td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Binding Type

</h2><p>Select the color and paper for your

interior, and the binding and finish for your cover.

 Note that if an option is unavailable for your Book size, it will not be

available in this step.</p>

 <input type="checkbox" id="Paper Back"

name="Paper Back" value="Paper Back ">

 <label for="Paper Back">Paper Back

</label>

 <img src="8.jpg" alt="Paper Back "

style="width:200px;height:300px;"></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Thick Back"

name="Thick Back" value="Thick Back">

 <label for="Thick Back">Thick Back

</label>

 <img src="12.jpg" alt="Thick Back "

style="width:300px;height:200px;"></td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049"; >Book

Interior

</h2><p>Standard ink is recommended for Books using

text and limited graphics, while Premium is ideal for rich colors and more

complex graphics.</p>

 <input type="checkbox" id="Black & White

Premium" name="Black & White Premium" value="Black & White Premium ">

 <label for="Black & White Premium">Black &

White Premium </label>

 <img src="13.png" alt="Black &

White Premium " style="width:300px;height:200px;"></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Premium Color"

name="Premium Color" value="Premium Color">

 <label for="Premium Color">Premium Color

 </label>

 <img src="5.png" alt="Premium Color "

style="width:300px;height:200px;"></td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Paper Type

</h2><p>For Premium ink, we suggest the heavier

80# paper.

 For more economical options, use Standard ink and the 60# paper

weight.</p>

 <input type="checkbox" id="80# White-Coated

Paper" name="80# White-Coated Paper" value="80# White-Coated Paper">

 <label for="80# White-Coated Paper">80#

White-Coated Paper </label>

 <img src="14.jpg" alt="80#

White-Coated Paper " style="width:300px;height:200px;"></td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="60# Cream Paper"

name="60# Cream Paper" value="60# Cream Paper">

 <label for="60# Cream Paper">60# Cream

Paper </label>

 <img src="15.jpg" alt="60# Cream Paper "

style="width:300px;height:200px;"></td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049"; >Book

Cover Lamination

</h2><p>Select the cover finish for your Book.

</p>

 <input type="checkbox" id="Glossy Finish"

name="Glossy Finish" value="Glossy Finish">

 <label for="Glossy Finish">Glossy

Finish(Recommended for darker colored covers and designs with spatial

detailing) </label> </td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Matte Finish"

name="Matte Finish" value="Matte Finish">

 <label for="Matte Finish">Matte Finish

(Recommended for lighter colored covers, especially with graphic designs)

 </label>

 </td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Copyright

</h2><p>Select the copyright license that best suits

your work.

 For more information about copyright, please visit our Terms of

Agreement.

 </p>

 <input type="checkbox" id="All Right Reserved"

name="All Right Reserved" value="All Right Reserved">

 <label for="All Right Reserved">All Rights

Reserved - Standard Copyright License (All Rights Reserved licensing.

 Your work cannot be distributed, remixed, or otherwise used without

your express consent.) </label> </td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Some Right Reserved"

name="Some Right Reserved" value="Some Right Reserved">

 <label for="Some Right Reserved">Some Rights

Reserved - Creative Commons (CC BY) (Some rights are reserved, based

on the specific Creative Commons Licensing you select.

 Please Specify) </label>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="No Right Reserved"

name="No Right Reserved" value="No Right Reserved">

 <label for="No Right Reserved ">No Rights

Reserved - Public Domain (No rights are reserved and the work is freely

available for anyone to use, distribute, and alter in any way).</label>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049"; >Add

Pricing and Payees

</h2><p>Set the price for each currency

manually or select a revenue goal for each Book sale.

 </p>

 </td>

 </tr>

 <tr><td ></td>

 <td style ="width: 80%;" ><select name="Pricing"

required="" >

 <option value="Select Currency">Select Currency >>>>>

</option>

 <option value="NAIRA">NAIRA ₦</option>

 <option value="EURO">EURO €</option>

 <option value="INDIAN RUPEE">INDIAN RUPEE ₹</option>

 <option value="GBP">GBP £ </option>

 <option value="USD">USD $</option>

 <option value="CENT">CENT ¢</option>

 <option value="BITCOIN">BITCOIN ₿</option>

 <option value="CNY">CNY 元</option>

 <option value="WON">WON ￦</option>

 <option value="CEDI">CEDI ₵ </option>

 <option value="ARS">ARS $</option>

 <option value="BRL">BRL R</option>

 <option value="CAD">CAD $</option>

 <option value="JMD">JMD J </option>

 <option value="PHP">PHP ₱</option>

 <option value="NOK">NOK k</option>

 <option value="VEF">VEF B</option>

 </select>

 <input type="text" name="Price" placeholder="Add the price of

your Product" required="" />

 </td>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049"; >Profit

Payment Information

</h2><h4>Designate who gets paid when

your Book sells.</h4>

 </td>

 </tr>

 <tr><td></td>

 <td> <h3>Beneficiary Name:</h3><input type="text"

name="Beneficiary Name" placeholder="Designate who gets paid when your

Book sells" required="" />

 <h3>Banking Country:</h3><input type="text"

name="Country" placeholder="Country of Residence" required="" />

 <h3>Beneficiary Account Number:</h3><input

type="text" name="Account Number" placeholder="Account Number of

Beneficiary" required="" />

 <h3>Bank Name:</h3><input type="text" name="Bank

Name" placeholder="Enter Bank Name" required="" />

 <h3>Bank Branch:</h3><input type="text"

name="Bank Branch" placeholder="What Branch is your Bank Located"

required="" />

 <h3>Bank Swift Code:</h3><input type="text"

name="Swift Code" placeholder="Your Bank Swift Code" required="" />

 <h3>Tax ID (Optional):</h3><input type="text"

name="Tax ID" placeholder="Enter your Tax ID (Optional)" />

 </td>

 </tr>

 <tr><td></td>

 <td ><h2 Style ="background-color: #45a049";

>Additional Payment Information (Optional)

</h2><h4>Paypal

Payment (Payable in USD only.

 $5 Processing Fee).</h4>

 </td>

 </tr>

 <tr><td></td>

 <td> <h3>Send Payments to:</h3><input type="text"

name="Beneficiary Name" placeholder="Enter your Paypal Email Address" />

 </td>

 </tr>

 <tr><td></td>

 <td>

 <input type="checkbox" id="Concent"

name="Consent" value="Concent">

 <label for="Concent">I Concent - to

receive emails from Noogul, including exclusive offers, newsletters,

promotions, and other notifications </label>

 </tr>

 </table>

 <center>

 <input type="submit" name="submit" value="Submit"/>

<INPUT type="reset" Style="width: 40%;

 background-color: #FF6347;

 color: white;

 padding: 14px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;">

 </center>

 </form>

 <script type="text/javascript">

 const scriptURL = ‘Enter the Appscript URL where filled contents

will be submitted to'

 const form = document.forms['google-sheet']

 form.addEventListener('submit', e => {

 e.preventDefault()

 fetch(scriptURL, { method: 'POST', body: new

FormData(form)})

 .then(response => alert("You have successfully

submitted."))

 .catch(error => console.error('Error!', error.message))

 })

 </script>

 </body>

 </html>

 How to Submit HTML Form to Gmail

 The example below gives a detailed template of how to submit html forms to Gmail or any email provider of your

choice.

 Code.gs

 function formatMailBody(obj,order) {

 var result = "";

 for (var idx in order) {

 var key = order[idx];

 result += "<h4 style='text-transform: capitalize; margin-bottom:

0'>" + key + "</h4><div>" + sanitizeInput(obj[key]) + "</div>";

 }

 return result;

 }

 function sanitizeInput(rawInput) {

 var placeholder = HtmlService.createHtmlOutput(" ");

 placeholder.appendUntrusted(rawInput);

 return placeholder.getContent();

 }

 function doPost(e) {

 try {

 Logger.log(e);

 record_data(e);

 var mailData = e.parameters;

 var orderParameter = e.parameters.formDataNameOrder;

 var dataOrder;

 if (orderParameter) {

 dataOrder = JSON.parse(orderParameter);

 }

 var sendEmailTo = (typeof TO_ADDRESS !== "undefined") ?

 TO_ADDRESS : mailData.formGoogleSendEmail;

 if (sendEmailTo) {

 MailApp.sendEmail({

 to: String(sendEmailTo),

 subject: "Contact form submitted",

 htmlBody: formatMailBody(mailData, dataOrder)

 });

 }

 return ContentService // return json success results

 .createTextOutput(

 JSON.stringify({"result":"success",

 "data": JSON.stringify(e.parameters) }))

 .setMimeType(ContentService.MimeType.JSON);

 } catch(error) { // if error return this

 Logger.log(error);

 return ContentService

 .createTextOutput(JSON.stringify({"result":"error", "error":

error}))

 .setMimeType(ContentService.MimeType.JSON);

 }

 }

 function record_data(e) {

 var lock = LockService.getDocumentLock();

 lock.waitLock(30000); // hold off up to 30 sec to avoid concurrent

writing

 try {

 Logger.log(JSON.stringify(e)); // log the POST data in case we need

to debug it

 var doc = SpreadsheetApp.getActiveSpreadsheet();

 var sheetName = e.parameters.formGoogleSheetName ||

"sheetname";

 var sheet = doc.getSheetByName(sheetName);

 var oldHeader = sheet.getRange(1, 1, 1,

sheet.getLastColumn()).getValues()[0];

 var newHeader = oldHeader.slice();

 var fieldsFromForm = getDataColumns(e.parameters);

 var row = [new Date()]; // first element in the row should always

be a timestamp

 for (var i = 1; i < oldHeader.length; i++) { // start at 1 to avoid

Timestamp column

 var field = oldHeader[i];

 var output = getFieldFromData(field, e.parameters);

 row.push(output);

 var formIndex = fieldsFromForm.indexOf(field);

 if (formIndex > -1) {

 fieldsFromForm.splice(formIndex, 1);

 }

 }

 for (var i = 0; i < fieldsFromForm.length; i++) {

 var field = fieldsFromForm[i];

 var output = getFieldFromData(field, e.parameters);

 row.push(output);

 newHeader.push(field);

 }

 var nextRow = sheet.getLastRow() + 1; // get next row

 sheet.getRange(nextRow, 1, 1, row.length).setValues([row]);

 if (newHeader.length > oldHeader.length) {

 sheet.getRange(1, 1, 1,

newHeader.length).setValues([newHeader]);

 }

 }

 catch(error) {

 Logger.log(error);

 }

 finally {

 lock.releaseLock();

 return;

 }

 }

 function getDataColumns(data) {

 return Object.keys(data).filter(function(column) {

 return !(column === 'formDataNameOrder' || column ===

'formGoogleSheetName' || column === 'formGoogleSendEmail' || column

=== 'honeypot');

 });

 }

 function getFieldFromData(field, data) {

 var values = data[field] || '';

 var output = values.join ?

 values.join(', ') : values;

 return output;

 }

 Contactus.html

 <!doctype html>

 <html>

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1.0">

 <title>Contact Us</title>

 </head>

 <body>

 <center>

 <form class="gform pure-form pure-form-stacked"

method="POST" data-email=""

 action="">

 <div class="form-elements">

 <div style="background:none;border:8px solid gray;border-

radius: 30px;width: 400px;padding-top: 15px;padding-bottom: 40px;padding-

left: 20px;padding-right: 20px;">

 <b class="content-head" style="font-size: 2.3em;">Contact

Us!

 <b style="margin-left: -255px;font-size: 1.3em;">Name

 <input type="text" name="name" required="" style="font-

size: 1em;width: 300px;"/>

 <b style="margin-left: -255px;font-size: 1.3em;">Email

 <input type="email" name="email" required="" style="font-

size: 1em;width: 300px;"/>

 <b style="margin-left: -255px;font-size: 1.3em;">Phone

 <input type="number" name="phone" required=""

style="font-size: 1em;width: 300px;"/>

 <b style="margin-left: -110px;font-size: 1.3em;">How can we

help you?

 <textarea name="message" rows="5" cols="22" required=""

style="font-size: 1.3em;width: 300px;"></textarea>

 <button style="float: right;width: 100px;height: 27px;font-size:

1.1em;margin-right: 48px;">

 send</button>

 </div>

 </div>

 <!-- Thankyou_message -->

 <div class="thankyou_message"

style="display:none;background:none;border:8px solid gray;border-radius:

40px;width: 400px;padding-top: 15px;padding-bottom: 40px;padding-left:

20px;padding-right: 20px;">

 <h1>Thanks for contacting us!</h1>

 <h1>*******</h1>

 </div>

 </form>

 <script data-cfasync="false" type="text/javascript">

 (function() {

 function validEmail(email) {

 var re = /^([\w-]+(?:\.[\w-]+)*)@((?:[\w-]+\.)*\w[\w-]{0,66})\.([a-

z]{2,6}(?:\.[a-z]{2})?)$/i;

 return re.test(email);

 }

 function validateHuman(honeypot) {

 if (honeypot) {

 console.log("Robot Detected!");

 return true;

 } else {

 console.log("Welcome Human!");

 }

 }

 function getFormData(form) {

 var elements = form.elements;

 var fields = Object.keys(elements).filter(function(k) {

 return (elements[k].name !== "honeypot");

 }).map(function(k) {

 if(elements[k].name !== undefined) {

 return elements[k].name;

 }else if(elements[k].length > 0){

 return elements[k].item(0).name;

 }

 }).filter(function(item, pos, self) {

 return self.indexOf(item) == pos && item;

 });

 var formData = {};

 fields.forEach(function(name){

 var element = elements[name];

 formData[name] = element.value;

 if (element.length) {

 var data = [];

 for (var i = 0; i < element.length; i++) {

 var item = element.item(i);

 if (item.checked || item.selected) {

 data.push(item.value);

 }

 }

 formData[name] = data.join(', ');

 }

 });

 // add form-specific values into the data

 formData.formDataNameOrder = JSON.stringify(fields);

 formData.formGoogleSheetName = form.dataset.sheet ||

"sheetname"; // default sheet name

 formData.formGoogleSendEmail = form.dataset.email || ""; // no

email by default

 console.log(formData);

 return formData;

 }

 function handleFormSubmit(event) {

 event.preventDefault();

 var form = event.target;

 var data = getFormData(form);

 if(data.email && !validEmail(data.email)) {

 var invalidEmail = form.querySelector(".email-invalid");

 if (invalidEmail) {

 invalidEmail.style.display = "block";

 return false;

 }

 } else {

 disableAllButtons(form);

 var url = form.action;

 var xhr = new XMLHttpRequest();

 xhr.open('POST', url);

 xhr.setRequestHeader("Content-Type", "application/x-www-form-

urlencoded");

 xhr.onreadystatechange = function() {

 console.log(xhr.status, xhr.statusText);

 console.log(xhr.responseText);

 var formElements = form.querySelector(".form-elements")

 if (formElements) {

 formElements.style.display = "none"; // hide form

 }

 var thankYouMessage =

form.querySelector(".thankyou_message");

 if (thankYouMessage) {

 thankYouMessage.style.display = "block";

 }

 return;

 };

 var encoded = Object.keys(data).map(function(k) {

 return encodeURIComponent(k) + "=" +

encodeURIComponent(data[k]);

 }).join('&');

 xhr.send(encoded);

 }

 }

 function loaded() {

 console.log("Contact form submission handler loaded

successfully.");

 var forms = document.querySelectorAll("form.gform");

 for (var i = 0; i < forms.length; i++) {

 forms[i].addEventListener("submit", handleFormSubmit, false);

 }

 };

 document.addEventListener("DOMContentLoaded", loaded, false);

 function disableAllButtons(form) {

 var buttons = form.querySelectorAll("button");

 for (var i = 0; i < buttons.length; i++) {

 buttons[i].disabled = true;

 }

 }

 })();

 </script>

 </center>

 </body>

 </html>

 Example 2: Sample Contact form with CSS attributes

 Contactus.html

 <!DOCTYPE html>

 <html>

 <head>

 <style>

 * {

 box-sizing: border-box;

 }

 input[type=text], select, textarea {

 width: 100%;

 padding: 12px;

 border: 1px solid #ccc;

 border-radius: 4px;

 resize: vertical;

 }

 label {

 padding: 12px 12px 12px 0;

 display: inline-block;

 }

 input[type=submit] {

 background-color: #04AA6D;

 color: white;

 padding: 12px 20px;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 float: right;

 }

 input[type=submit]:hover {

 background-color: #45a049;

 }

 .container {

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 20px;

 }

 .col-25 {

 float: left;

 width: 25%;

 margin-top: 6px;

 }

 .col-75 {

 float: left;

 width: 75%;

 margin-top: 6px;

 }

 /* Clear floats after the columns */

 .row::after {

 content: "";

 display: table;

 clear: both;

 }

 /* Responsive layout - when the screen is less than 600px wide,

make the two columns stack on top of each other instead of next to each

other */

 @media screen and (max-width: 600px) {

 .col-25, .col-75, input[type=submit] {

 width: 100%;

 margin-top: 0;

 }

 }

 </style>

 </head>

 <body>

 <h2>Responsive Form</h2>

 <p>Resize the browser window to see the effect.

 When the screen is less than 600px wide, make the two columns

stack on top of each other instead of next to each other.</p>

 <div class="container">

 <form action="/action_page.php">

 <div class="row">

 <div class="col-25">

 <label for="fname">First Name</label>

 </div>

 <div class="col-75">

 <input type="text" id="fname" name="firstname"

placeholder="Your name..">

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="lname">Last Name</label>

 </div>

 <div class="col-75">

 <input type="text" id="lname" name="lastname"

placeholder="Your last name..">

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="country">Country</label>

 </div>

 <div class="col-75">

 <select id="country" name="country">

 <option value="australia">Australia</option>

 <option value="canada">Canada</option>

 <option value="usa">USA</option>

 </select>

 </div>

 </div>

 <div class="row">

 <div class="col-25">

 <label for="subject">Subject</label>

 </div>

 <div class="col-75">

 <textarea id="subject" name="subject" placeholder="Write

something.."

 style="height:200px"></textarea>

 </div>

 </div>

 <div class="row">

 <input type="submit" value="Submit">

 </div>

 </form>

 </div>

 </body>

 </html>

 How to Search Google Sheet Contents from HTML Website.

 This example displays contents of Google Sh

 Code.gs

 function doGet() { return

HtmlService.createTemplateFromFile("Index").evaluate().setXFrameOptionsMode(HtmlServ

LL); }

 /* PROCESS FORM */

 function processForm(formObject){

 var result = "";

 if(formObject.searchtext){//Execute if form passes search text

 result = search(formObject.searchtext);

 }

 return result;

 }

 //SEARCH FOR MATCHED CONTENTS

 function search(searchtext){

 var spreadsheetId = ‘Enter Your Spreadsheet ID'; //** CHANGE !!!

 var dataRage = 'Data!A2:Y'; //** CHANGE !!!

 var data = Sheets.Spreadsheets.Values.get(spreadsheetId, dataRage).values;

 var ar = [];

 data.forEach(function(f) {

 if (~f.indexOf(searchtext)) {

 ar.push(f);

 }

 });

 return ar;

 }

 Page.html

 <!DOCTYPE html>

 <html>

 <head>

 <base target="_top">

 <script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"

integrity="sha384-

JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"

crossorigin="anonymous"></script>

 <script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.bundle.min.

js" integrity="sha384-

xrRywqdh3PHs8keKZN+8zzc5TX0GRTLCcmivcbNJWm2rs5C8PRhcEn3czEjhAO9o"

crossorigin="anonymous"></script>

 <!--##JAVASCRIPT FUNCTIONS ---

--- -->

 <script>

 //PREVENT FORMS FROM SUBMITTING / PREVENT DEFAULT

BEHAVIOUR

 function preventFormSubmit() {

 var forms = document.querySelectorAll('form');

 for (var i = 0; i < forms.length; i++) {

 forms[i].addEventListener('submit', function(event) {

 event.preventDefault();

 });

 }

 }

 window.addEventListener("load", preventFormSubmit, true);

 //HANDLE FORM SUBMISSION

 function handleFormSubmit(formObject) {

google.script.run.withSuccessHandler(createTable).processForm(formObject);

 document.getElementById("search-form").reset();

 }

 //CREATE THE DATA TABLE

 function createTable(dataArray) {

 if(dataArray && dataArray !== undefined && dataArray.length

!= 0){

 var result = "<table class='table table-sm table-striped'

id='dtable' style='font-size:0.8em'>"+

 "<thead style='white-space: nowrap'>"+

 "<tr>"+ //Change table headings

to match witht he Google Sheet

 "<th scope='col'>EMAIL</th>"+

 "<th scope='col'>PROJECT TITLE</th>"+

 "<th scope='col'>AUTHOR</th>"+

 "<th scope='col'>PRICE</th>"+

 "<th scope='col'>UNITS</th>"+

 "<th scope='col'>TOTAL</th>"+

 "<th scope='col'>ESTIMATED REVENUE</th>"+

 "<th scope='col'>BENEFICIARY</th>"+

 "<th scope='col'>BANK</th>"+

 "<th scope='col'>ACCOUNT NUM</th>"+

 "<th scope='col'>SWIFT CODE</th>"+

 "<th scope='col'>COUNTRY</th>"+

 "<th scope='col'>PAYMENT STATUS</th>"+

 "</tr>"+

 "</thead>";

 for(var i=0; i<dataArray.length; i++) {

 result += "<tr>";

 for(var j=0; j<dataArray[i].length; j++){

 result += "<td>"+dataArray[i][j]+"</td>";

 }

 result += "</tr>";

 }

 result += "</table>";

 var div = document.getElementById('search-results');

 div.innerHTML = result;

 }else{

 var div = document.getElementById('search-results');

 //div.empty()

 div.innerHTML = "Data not found!";

 }

 }

 </script>

 <!--##JAVASCRIPT FUNCTIONS ~ END ---------------------------------------

------------- -->

 </head>

 <body>

 <div class="container">

 <div class="row">

 <div class="col">

 <!-- ## SEARCH FORM -- --

>

 <form id="search-form" class="form-inline"

onsubmit="handleFormSubmit(this)">

 <div class="form-group mb-2">

 <label for="searchtext"style="font-size:30px;">Sales

and Payments</label>

 </div>

 <div class="form-group mx-sm-3 mb-2">

 <input type="text" class="form-control" id="searchtext"

name="searchtext" placeholder="Enter Email Address"style="width: 50%;

 color: black;

 padding: 14px 20px;

 margin: 8px 0;

 border-radius: 20px;width: 250px

 border-radius: 4px;

 cursor: pointer;" >

 </div>

 <button type="submit"style="width: 50%;

 background-color: #4CAF50;

 color: #FFFFFF;

 padding: 14px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;" class="btn btn-primary mb-

2">SALES OVERVIEW</button>

 </form>

 <!-- ## SEARCH FORM ~ END ---

-- -->

 </div>

 </div>

 <div class="row">

 <div class="col">

 <!-- ## TABLE OF SEARCH RESULTS -----------------------------------

------------- -->

 <div id="search-results" class="table-responsive">

 <!-- The Data Table is inserted here by JavaScript -->

 </div>

 <!-- ## TABLE OF SEARCH RESULTS ~ END -------------------------

----------------------- -->

 </div>

 </div>

 </div>

 </body>

 </html>

 Conclusion

JavaScript is a dynamic programming language for

computers. It is most frequently utilized as a lightweight

component of web pages, whose implementations enable

client-side script to create dynamic pages and engage with

the user. It is an object-oriented programming language that

is interpreted.

The fact that JavaScript doesn't require pricey development

tools is one of its main advantages. A basic text editor like

Notepad can be used as a starting point. You don't even

need to purchase a compiler because it is an interpreted

language that runs within a web browser.

Millions of Web pages utilize JavaScript to enhance their

appearance, verify forms, identify browsers, set cookies,

and do a lot more. The most widely used programming

language on the Internet, JavaScript is compatible with all of

the main browsers, including Internet Explorer, Mozilla

Firefox, and Opera.

 References

Ecma International. (2024). "ECMAScript® 2025 Language

Specification". 27 March 2024.

Google Workspace. (2024). Google Apps Script overview.

Retrieved May 23, 2024, from Apps Script.

Netscape, S. (2007). "Netscape and Sun announce

JavaScript, the Open, Cross-platform Object Scripting

Language for Enterprise Networks and the Internet" .

https://web.archive.org/web/20070916144913/https:/

/wp.netscape.com/newsref/pr/newsrelease67.html.

W3C. (2021, 5 31). World Wide Web Consortium "How to

code: The best ways to learn programming in 2021" .

Retrieved 12 1, 2022

	Audience
	Chapter One
	Features of JavaScript
	1. Web Applications
	2. Web Development
	3. Mobile Applications
	4. Game
	5. Presentations
	6. Server Applications
	7. Web Servers
	Application of JavaScript
	External References

	Chapter Two
	JavaScript Basics
	JavaScript Can Change HTML Content
	JavaScript Can Change HTML Attribute Values
	JavaScript Can Change HTML Styles (CSS)
	JavaScript Can Hide HTML Elements
	JavaScript Can Show HTML Elements
	The <script> Tag
	JavaScript Functions and Events
	JavaScript in <head> or <body>
	JavaScript in <head>
	JavaScript in <body>
	JavaScript Expressions
	JavaScript Display Possibilities
	Using innerHTML
	Using document.write()
	Using window.alert()
	Using console.log()
	JavaScript Print

	JavaScript Statements
	JavaScript Programs
	JavaScript Statements
	JavaScript White Space
	JavaScript Line Length and Line Breaks
	JavaScript Code Blocks
	JavaScript Keywords
	JavaScript Values
	JavaScript Literals

	Chapter Three
	JavaScript Comment
	Types of JavaScript Comments
	JavaScript Single line Comment
	JavaScript Multi line Comment
	Using JavaScript Comments to Prevent Code Execution
	Commenting Out Function Calls
	Commenting Out Function Bodies — Without Return Values
	Commenting Out Function Bodies — With Return Values
	Writing Effective JavaScript Comments

	Chapter Four
	JavaScript Variable
	JavaScript Keywords
	JavaScript Variable Naming Convention
	JavaScript Var Keyword
	JavaScript Let Keyword
	JavaScript Const Keyword
	When to Use JavaScript const?
	JavaScript Local Variable
	Function Scope
	JavaScript Global Variable
	Internals of global variable in JavaScript
	Automatically Global
	Global Variables in HTML
	How to use variables
	Where to use which variable

	Chapter Five
	JavaScript Operators
	JavaScript Assignment
	Assignment Examples
	JavaScript Arithmetic Operators
	JavaScript Assignment Operators
	JavaScript Comparison Operators
	JavaScript String Addition
	Adding Strings and Numbers
	JavaScript Logical Operators
	JavaScript Bitwise Operators
	Bitwise logical operators
	JavaScript Bitwise AND
	Example
	JavaScript Bitwise OR
	Example:
	JavaScript Bitwise XOR
	JavaScript Bitwise NOT (~)
	JavaScript (Zero Fill) Bitwise Left Shift (<<)
	JavaScript (Sign Preserving) Bitwise Right Shift (>>)
	JavaScript (Zero Fill) Right Shift (>>>)
	Converting Decimal to Binary
	Converting Binary to Decimal

	Chapter Six
	JavaScript Data Types
	JavaScript primitive data types
	JavaScript non-primitive data types
	Examples
	The Concept of Data Types
	JavaScript Types are Dynamic
	JavaScript Strings

	JavaScript String Methods
	JavaScript String Length
	Extracting String Parts
	JavaScript String slice()
	Examples
	JavaScript String substring()
	Replacing String Content
	JavaScript String ReplaceAll()
	Converting to Upper and Lower Case
	JavaScript String concat()
	JavaScript String trim()

	JavaScript Numbers
	JavaScript Random
	Exponential Notation
	JavaScript BigInt
	JavaScript Integer Accuracy
	How to Create a BigInt
	JavaScript Booleans
	The Boolean() Function
	NaN data type
	Comparisons and Conditions

	JavaScript Comparison and Logical Operators
	Comparison Operators
	How Can it be Used
	Conditional (Ternary) Operator
	Comparing Different Types

	JavaScript if, else, and else if
	Conditional Statements
	The if Statement
	Example
	The else Statement
	Example
	The else if Statement
	Example

	JavaScript Switch Statement
	Example
	The break Keyword
	The default Keyword
	JavaScript Arrays

	JavaScript Array
	JavaScript Array Methods
	JavaScript Objects
	The type of Operator

	Chapter Seven
	JavaScript Functions
	Function Syntax
	Function declarations
	Function Invocation
	Invoking a JavaScript Function
	The Term “This” in Javascript
	Note
	The Global Object
	Invoking a Function as a Method
	Invoking a Function with a Function Constructor
	Function Return
	The () Operator
	Functions Used as Variable Values
	Local Variables

	Chapter Eight
	JavaScript Objects
	Real Life Objects, Properties, and Methods
	Object Definition
	Object Properties
	Accessing Object Properties
	Object Methods
	The this Keyword
	Accessing Object Methods
	Do Not Declare Strings, Numbers, and Booleans as Objects!

	Chapter Nine
	JavaScript Events
	HTML Events
	Mouse events:
	onclick Event Type
	onsubmit Event Type
	onmouseover and onmouseout
	Keyboard events:
	Form events:
	Window/Document events

	HTML DOM Events
	JavaScript Event Handlers

	Chapter Ten
	JavaScript Loop
	The For Loop
	do...while statement
	Example:
	Differences between do… while and While Loop
	While Statement
	Example:
	Comparison between the while and for loop:
	Example: JavaScript For In Loop
	for-in Loop Examples
	The For Of Loop
	Properties of document object
	Methods of document object
	Accessing field value by document object

	JavaScript - document.getElementById() method
	JavaScript - document.getElementsByName() method
	JavaScript - document.getElementsByTagName() method
	Another example of document.getElementsByTagName() method

	JavaScript - innerHTML
	Example of innerHTML property
	Show/Hide Comment Form Example using innerHTML

	JavaScript - innerText
	JavaScript innerText Example
	Understanding the Browser Environment
	The user interface
	Loader
	HTML parsing
	CSS parsing
	JavaScript parsing
	Layout and rendering
	Igniting the BOM
	The Navigator Object
	Window Object
	Methods of window object
	Example of alert() in javascript
	Example of confirm() in javascript
	Example of prompt() in javascript
	Example of open() in javascript
	Example of setTimeout() in javascript
	JavaScript History Object
	Property of JavaScript history object
	Methods of JavaScript history object
	Example of history object
	JavaScript Navigator Object
	Property of JavaScript navigator object
	Methods of JavaScript navigator object
	Example of navigator object
	JavaScript Screen Object
	Property of JavaScript Screen Object
	Example of JavaScript Screen Object
	Approach for Form Validation in JavaScript
	JavaScript Form Validation Example
	JavaScript Retype Password Validation
	JavaScript Number Validation
	JavaScript validation with image
	JavaScript email validation

	JavaScript Classes
	Class Declarations
	Class Declarations Example
	Class Declarations Example: Hoisting
	Class Declarations Example: Re-declaring Class
	Class expressions
	Unnamed Class Expression
	Class Expression Example: Re-declaring Class
	Named Class Expression Example
	JavaScript Objects
	Creating Objects in JavaScript
	1) JavaScript Object by object literal
	2) By creating instance of Object
	3) By using an Object constructor
	Defining method in JavaScript Object
	JavaScript Object Methods
	JavaScript Prototype Object
	Syntax:
	Prototype Chaining
	JavaScript Prototype Object
	JavaScript Constructor Method
	Points to remember
	Constructor Method Example

	JavaScript static Method
	JavaScript static Method Example
	Example 4
	JavaScript Encapsulation
	JavaScript Encapsulation Example
	JavaScript Encapsulation Example: Validate
	JavaScript Encapsulation Example: Prototype-based approach
	JavaScript Inheritance
	JavaScript extends Example: inbuilt object
	JavaScript extends Example: Custom class
	JavaScript extends Example: a Prototype-based approach

	JavaScript Polymorphism
	JavaScript Abstraction

	Chapter Fifteen
	JavaScript Cookies
	How Cookies Works?
	How to create a Cookie in JavaScript?
	JavaScript Cookie Example
	Cookie Attributes
	Cookie expires attribute
	Cookie max-age attribute
	Cookie path attribute
	Cookie path attribute Example
	Cookie domain attribute
	Cookie with multiple Name-Value pairs
	Examples to Store Name-Value pair in a Cookie
	Deleting a Cookie in JavaScript
	Examples to delete a Cookie
	Example 3

	Chapter Sixteen
	Integrating JavaScript with Google Apps Script
	What can Apps Script do?
	Custom Menus in Google Workspace
	Clickable images and drawings in Google Sheets
	Dialogs and Sidebars in Google Workspace Documents.
	Alert dialogs
	Prompt dialogs
	Custom dialogs
	Custom sidebars
	File-open dialogs
	Custom Functions in Google Sheets
	Developing a custom function
	obtaining a personalized feature via the Google Workspace Marketplace
	Using a custom function
	Guidelines for custom functions
	Naming
	Arguments
	Return values
	Data types
	Autocomplete
	Using Google Apps Script services
	Sharing
	Optimization
	Google Sheets Macros
	Creating macros in Apps Script
	Editing macros
	Importing functions as macros
	Manifest structure for macros
	Best practices
	Things you can't do

	Chapter Seventeen
	Developing Web Apps in Apps Script
	Requirements for web apps
	Request parameters
	Deploy a script as a web app
	Test a web app deployment
	Permissions
	Embed your web app in Google Sites or any Site of your Choice.
	Web Apps and Browser History
	How to create Login and Register Form using Google spreadsheet data
	How to Display Google Sheet Data on Webpage
	How to Submit HTML Form Data to Google Spreadsheet
	How to Submit HTML Form to Gmail
	How to Search Google Sheet Contents from HTML Website.

	Conclusion
	References

