

Practical Deep
Learning at Scale
with MLflow

Bridge the gap between offline experimentation and
online production

Yong Liu

BIRMINGHAM—MUMBAI

Practical Deep Learning at Scale with MLflow
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Publishing Product Manager: Dhruv Jagdish Kataria
Senior Editor: Tazeen Shaikh
Content Development Editor: Manikandan Kurup
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan
Marketing Coordinators: Shifa Ansari and Abeer Riyaz Dawe

First published: July 2022

Production reference: 1160622

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-133-3

www.packt.com

http://www.packt.com

To my father and the memory of my mother for their sacrificial love,
prayers, and life-long support.

– Yong Liu

Foreword
I am thrilled to introduce this book on Practical Deep Learning at Scale with MLflow by
Dr. Yong Liu. Deep learning has been revolutionizing many areas of computing in the past
decade, but good resources for using it in production applications remain scarce. At the
same time, practitioners have realized that designing machine learning (ML) applications
to be operable, maintainable, and updateable is one of the hardest parts of using ML in
production, leading to the new field of MLOps. Dr. Liu tackles these issues head-on by
showing you how to build robust and maintainable deep learning applications using
MLflow, a widely-used open source MLOps framework, and multiple state-of-the-art
methods and software tools.

Dr. Liu brings a wealth of experience in production machine learning that shines through
in every chapter of the book. He has been working in large-scale computing since his
Ph.D., he has built large-scale production ML applications at Microsoft, Maana, and
Outreach, and he has published multiple research papers on deep learning. This means
that each chapter recommends practical approaches that have worked in multiple
organizations. Dr. Liu also presents all his material clearly to tell you the tradeoffs in
each decision, illustrates all the ideas through runnable code and surveys multiple open
source and commercial tools for each task.

As one of the original creators of MLflow, I was very excited that Dr. Liu chose MLflow
as the MLOps framework for this book. When we started MLflow in 2018, there was
no widely used open-source MLOps framework, so we designed a highly extensible
framework that can be integrated with a wide variety of other tools and services and
customized to each organization’s workflow. We’ve been thrilled with the fast growth of
the MLflow open source community since then and with the powerful integrations that
the community has contributed to libraries including PyTorch, SHAP, Delta Lake, and
others. Dr. Liu’s team was one of the early users of MLflow, so he is an expert on how to
use the framework in practice. I hope that you enjoy learning from his experience and
building groundbreaking applications using the latest techniques in deep learning.

Dr. Matei Zaharia

Chief Technologist, Databricks, and Co-Creator of MLflow

Contributors

About the author
Yong Liu has been working in big data science, machine learning, and optimization since
his doctoral student years at the University of Illinois at Urbana-Champaign (UIUC)
and later as a senior research scientist and principal investigator at the National Center
for Supercomputing Applications (NCSA), where he led data science R&D projects
funded by the National Science Foundation and Microsoft Research. He then joined
Microsoft and AI/ML start-ups in the industry. He has shipped ML and DL models to
production and has been a speaker at the Spark/Data+AI summit and NLP summit.
He has recently published peer-reviewed papers on deep learning, linked data, and
knowledge-infused learning at various ACM/IEEE conferences and journals.

I want to thank my wife and my two teenage kids for their support and
encouragement during the time of writing this book. I am also grateful for
those collaborators, team members, and mentors at Outreach Corporation

whom I have learned a lot from.

About the reviewers
Dr. Pavel Dmitriev received a B.S. degree in applied mathematics from Moscow State
University in 2002, and a Ph.D. degree in computer science from Cornell University in
2008. He previously worked as an engineer and a data scientist at Yahoo and Microsoft.
He is currently a vice president of data science at Outreach where he works on enabling
data-driven decision-making in sales through machine learning and experimentation.
Pavel's research was presented at a number of international conferences such as KDD,
ICSE, WWW, CIKM, BigData, and SEAA. A certified yoga and meditation instructor,
he actively works on improving physical and mental well-being in corporations through
classes and workshops.

Hong Yung (Joey) Yip is a Ph.D. candidate in computer science at the Artificial
Intelligence Institute (AIISC), University of South Carolina. His research interests are
the areas of knowledge-infused learning, which intertwines AI and knowledge graphs
to enhance neural networks in performance, interpretability, and explainability for
dynamic and real-time domains. He has co-authored and published at top venues
(WWW, ISWC, and IEEE). He has previously interned at the National Library of
Medicine, Bethesda MD, on developing scalable approaches for biomedical vocabulary
alignment, and with Outreach Corporation, Seattle WA, on conceptualizing a Sales
Engagement Graph framework for temporal pattern discovery and contextual
understanding in sales processes.

Table of Contents

Preface

Section 1 – Deep Learning Challenges and
MLflow Prime

1
Deep Learning Life Cycle and MLOps Challenges

Technical requirements � 4
Understanding the DL life cycle
and MLOps challenges � 5
Implementing a basic DL sentiment
classifier � 7
Understanding DL's full life cycle
development � 9
Understanding MLOps challenges � 12

Understanding DL data
challenges � 15

Understanding DL model
challenges � 17
Understanding DL code
challenges � 18
Understanding DL explainability
challenges � 19
Summary � 22
Further reading � 23

2
Getting Started with MLflow for Deep Learning

Technical requirements � 26
Setting up MLflow � 26
Setting up MLflow locally using
miniconda � 27
Setting up MLflow to interact with
a remote MLflow server � 29

Implementing our first DL
experiment with MLflow
autologging � 30
Exploring MLflow's components
and usage patterns � 35
Exploring experiments and
runs in MLflow � 35

viii Table of Contents

Exploring MLflow models and their
usages � 39
Exploring MLflow code tracking
and its usages � 43

Summary � 44
Further reading � 45

Section 2 – Tracking a Deep Learning
Pipeline at Scale

3
Tracking Models, Parameters, and Metrics

Technical requirements � 50
Setting up a full-fledged local
MLflow
tracking server � 51
Tracking model provenance � 53

Understanding the open provenance
tracking framework � 54
Implementing MLflow model tracking � 55

Tracking model metrics � 63
 Tracking model parameters � 66
Summary � 68
Further reading � 69

4
Tracking Code and Data Versioning

Technical requirements � 72
Tracking notebook and pipeline
versioning � 72
Pipeline tracking � 78

Tracking locally, privately built
Python libraries � 88

Tracking data versioning in
Delta Lake � 91
An example of tracking data using
MLflow � 93

Summary � 95
Further reading � 96

Table of Contents ix

Section 3 – Running Deep Learning Pipelines
at Scale

5
Running DL Pipelines in Different Environments

Technical requirements � 100
An overview of different
execution scenarios and
environments � 101
Running locally with local code � 104
Running remote code in
GitHub locally � 107

Running local code remotely
in the cloud � 109
Running remotely in the cloud
with remote code in GitHub � 118
Summary � 122
Further reading � 123

6
Running Hyperparameter Tuning at Scale

Technical requirements � 126
Understanding automatic
HPO for DL pipelines � 127
Types of hyperparameters and
their challenges � 127
How HPO works and which ones to
choose � 130

Creating HPO-ready DL models
with Ray Tune and MLflow � 134
Setting up Ray Tune and MLflow � 136

Creating the Ray Tune trainable for the
DL model � 137
Creating the Ray Tune HPO run
function � 142

Running the first Ray Tune HPO
experiment with MLflow � 145
Running HPO with Ray Tune
using Optuna and HyperBand � 147
Summary � 151
Further reading � 151

x Table of Contents

Section 4 - Deploying a Deep Learning
Pipeline at Scale

7
Multi-Step Deep Learning Inference Pipeline

Technical requirements � 156
Understanding patterns of DL
inference pipelines � 156
Understanding the MLflow Model
Python Function API � 159

Implementing a custom MLflow
Python model � 162
Implementing preprocessing
and postprocessing steps in a
DL inference pipeline � 169

Implementing language detection
preprocessing logic � 169
Implementing caching preprocessing
and postprocessing logic � 171
Implementing response composition
postprocessing logic � 172

Implementing an inference
pipeline as a new entry point in
the main MLproject � 175
Summary � 178
Further reading � 179

8
Deploying a DL Inference Pipeline at Scale

Technical requirements � 182
Understanding different
deployment tools and host
environments � 182
Deploying locally for batch and
web service inference � 185
Batch inference � 185
Model as a web service � 188

Deploying using Ray Serve and
MLflow deployment plugins � 190
Deploying to AWS SageMaker –
a complete end-to-end guide � 193

Step 1: Build a local SageMaker
Docker image � 194
Step 2: Add additional model artifacts
layers onto the SageMaker Docker
image � 195
Step 3: Test local deployment with the
newly built SageMaker Docker image � 197
Step 4: Push the SageMaker Docker
image to AWS Elastic Container
Registry � 199
Step 5: Deploy the inference pipeline
model to create a SageMaker endpoint � 202
Step 6: Query the SageMaker endpoint
for online inference � 205

Summary � 208
Further reading � 208

Table of Contents xi

Section 5 – Deep Learning Model
Explainability at Scale

9
Fundamentals of Deep Learning Explainability

Technical requirements � 214
Understanding the categories
and audience
of explainability � 215
Audience: who needs to know � 216
Stage: when to provide an
explanation in the DL life cycle � 217
Scope: which prediction needs
explanation � 217
Input data format: what is the format
of the input data � 218
Output data format: what is the
format of the output explanation � 218

Problem type: what is the machine
learning problem type � 219
Objectives type: what is the
motivation or goal to explain � 219
Method type: what is the specific
post-hoc explanation method used � 220

Exploring the SHAP
Explainability toolbox � 221
Exploring the Transformers
Interpret toolbox � 226
Summary � 228
Further reading � 229

10
Implementing DL Explainability with MLflow

Technical requirements � 232
Understanding current MLflow
explainability integration � 232
Implementing a SHAP
explanation using the MLflow
artifact logging API � 235
Implementing a SHAP explainer
using the MLflow pyfunc API � 241

Creating and logging an MLflow
pyfunc explainer � 242
Deploying an MLflow pyfunc
explainer for an EaaS � 246
Using an MLflow pyfunc explainer
for batch explanation � 248

Summary � 253
Further reading � 253

Index
Other Books You May Enjoy

Preface
Starting from AlexNet in 2012, which won the large-scale ImageNet competition, to
the BERT pre-trained language model in 2018, which topped many natural language
processing (NLP) leaderboards, the revolution of modern deep learning (DL) in the
broader artificial intelligence (AI) and machine learning (ML) community continues.
Yet, the challenges of moving these DL models from offline experimentation to a
production environment remain. This is largely due to the complexity and lack of a unified
open source framework for supporting the full life cycle development of DL. This book
will help you understand the big picture of DL full life cycle development, and implement
DL pipelines that can scale from a local offline experiment to a distributed environment
and online production clouds, with an emphasis on hands-on project-based learning to
support the end-to-end DL process using the popular open source MLflow framework.

The book starts with an overview of the DL full life cycle and the emerging machine
learning operations (MLOps) field, providing a clear picture of the four pillars of DL
(data, model, code, and explainability) and the role of MLflow in these areas. A basic
transfer learning-based NLP sentiment model using PyTorch Lightning Flash is built in the
first chapter, which is further developed, tuned, and deployed to production throughout the
rest of the book. From there onward, it guides you step-by-step to understand the concept
of MLflow experiments and usage patterns, using MLflow as a unified framework to track
DL data, code and pipeline, model, parameters, and metrics at scale. We'll run DL pipelines
in a distributed execution environment with reproducibility and provenance tracking, and
tune DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna
and HyperBand. We'll also build a multi-step DL inference pipeline with preprocessing
and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve
and AWS SageMaker, and finally, provide a DL Explanation-as-a-Service using SHapley
Additive exPlanations (SHAP) and MLflow integration.

By the end of this book, you'll have the foundation and hands-on experience to build
a DL pipeline from initial offline experimentation to final deployment and production,
all within a reproducible and open source framework. Along the way, you will also learn
the unique challenges with DL pipelines and how we overcome them with practical and
scalable solutions such as using multi-core CPUs, graphical processing units (GPUs),
distributed and parallel computing frameworks, and the cloud.

xiv Preface

Who this book is for
This book is written for data scientists, ML engineers, and AI practitioners who want to
master the full life cycle of DL development from inception to production using the open
source MLflow framework and related tools such as Ray Tune, SHAP, and Ray Serve. The
scalable, reproducible, and provenance-aware implementations presented in this book
ensure you build an enterprise-grade DL pipeline successfully. This book will support
anyone building powerful DL cloud applications.

What this book covers
Chapter 1, Deep Learning Life Cycle and MLOps Challenges, covers the five stages of
the full life cycle of DL and the first DL model in this book using the transfer learning
approach for text sentiment classification. It also defines the concept of MLOps along with
the three foundation layers and four pillars, and the roles of MLflow in these areas. An
overview of the challenges in DL data, model, code, and explainability are also presented.
This chapter is designed to bring everyone to the same foundational level and provides
clarity and guidelines on the scope of the rest of the book.

Chapter 2, Getting Started with MLflow for Deep Learning, serves as an MLflow primer
and a first hands-on learning module to quickly set up a local filesystem-based MLflow
tracking server or interact with a remote managed MLflow tracking server in Databricks,
and perform a first DL experiment using MLflow auto logging. It also explains some
foundational MLflow concepts through concrete examples such as experiments, runs,
metadata about and the relationship between experiments and runs, code tracking, model
logging, and model flavor. Specifically, we underline that experiments should be first-class
entities that can be used to bridge the gap between the offline and online production life
cycle of DL models. This chapter builds the foundational knowledge of MLflow.

Chapter 3, Tracking Models, Parameters, and Metrics, covers the first in-depth learning
module on tracking using a fully-fledged local MLflow tracking server. It starts with
setting up a local fully-fledged MLflow tracking server that runs in Docker Desktop, with
a MySQL backend store and a MinIO artifact store. Before implementing tracking, this
chapter provides an open provenance tracking framework based on the open provenance
model vocabulary specification, and presents six types of provenance questions that could
be implemented by using MLflow. It then provides hands-on implementation examples
on how to use MLflow model-logging APIs and registry APIs to track model provenance,
model metrics, and parameters, with or without auto logging. Unlike other typical MLflow
API tutorials, which only provide guidance on using the APIs, this chapter instead focuses
on how successfully we can use MLflow to answer the provenance questions. By the end
of this chapter, we could answer four out of six provenance questions, and the remaining
two questions can only be answered when we have a multi-step pipeline or deployment to
production, which are covered in the later chapters.

Preface xv

Chapter 4, Tracking Code and Data Versioning, covers the second in-depth learning
module on MLflow tracking. It analyzes the current practices on the usage of notebooks
and pipelines in the ML/DL projects. It recommends using VS Code notebooks and shows
a concrete DL notebook example that can be run either interactively or non-interactively
with MLflow tracking enabled. It also recommends using MLflow's MLproject to
implement a multi-step DL pipeline using MLflow's entry points and pipeline chaining.
A three-step DL pipeline is created for DL model training and registration. In addition,
it also shows the pipeline level tracking and individual step tracking through the parent-
child nested run in MLflow. Finally, it shows how to track public and privately built
Python libraries and data versioning in Delta Lake using MLflow.

Chapter 5, Running DL Pipelines in Different Environments, covers how to run a DL
pipeline in different environments. It starts with the scenarios and requirements for
executing DL pipelines in different environments. It then shows how to use MLflow's
command-line interface (CLI) to submit runs in four scenarios: running locally
with local code, running locally with remote code in GitHub, running remotely in the
cloud with local code, and running remotely in the cloud with remote code in GitHub.
The flexibility and reproducibility supported by MLflow to execute a DL pipeline also
provide building blocks for continuous integration/continuous deployment (CI/CD)
automation when needed.

Chapter 6, Running Hyperparameter Tuning at Scale, covers using MLflow to support HPO
at scale using state-of-the-art HPO frameworks such as Ray Tune. It starts with a review
of the types and challenges of DL pipeline hyperparameters. Then, it compares three HPO
frameworks Ray Tune, Optuna, and HyperOpt, and provides a detailed analysis of the
pros and cons and their integration maturity with MLflow. It then recommends and shows
how to use Ray Tune with MLflow to do HPO tuning for the DL model we have been
working on in this book so far. Furthermore, it covers how to switch to other HPO search
and scheduler algorithms such as Optuna and HyperBand. This enables us to produce
high-performance DL models that meet the business requirements in a cost-effective and
scalable way.

Chapter 7, Multi-Step Deep Learning Inference Pipeline, covers creating a multi-step
inference pipeline using MLflow's custom Python model approach. It starts with an
overview of four patterns of inference workflows in production where a single trained
model is usually not enough to meet the business application requirements. Additional
preprocessing and postprocessing steps are needed. It then presents a step-by-step guide
to implementing a multi-step inference pipeline that wraps the previously fine-tuned DL
sentiment model with language detection, caching, and additional model metadata. This
inference pipeline is then logged as a generic MLflow PyFunc model that can be loaded
using the common MLflow PyFunc load API. Having an inference pipeline wrapped as
an MLflow model opens doors for automation and consistent management of the model
pipeline within the same MLflow framework.

xvi Preface

Chapter 8, Deploying a DL Inference Pipeline at Scale, covers deploying a DL inference
pipeline into different host environments for production usage. It starts with an overview
of the landscape of deployment and hosting environments including batch inference
and streaming inference at scale. It then describes the different deployment mechanisms
such as MLflow built-in model serving tools, custom deployment plugins, and generic
model serving frameworks such as Ray Serve. It shows examples of how to deploy a batch
inference pipeline using MLflow's Spark user-defined function (UDF), and how to serve
a DL inference pipeline as a local web service using either MLflow's built-in model serving
tool or Ray Serve's MLflow deployment plugin, mlflow-ray-serve. It then describes
a complete step-by-step guide to deploying a DL inference pipeline to a managed AWS
SageMaker instance for production usage.

Chapter 9, Fundamentals of Deep Learning Explainability, covers the foundational
concepts of explainability and exploration of using two popular explainability tools.
It starts with an overview of the eight dimensions of explainability and explainable
AI (XAI), then provides concrete learning examples to explore the usage of SHAP
and Transformers-interpret toolboxes for an NLP sentiment pipeline. It emphasizes
that explainability should be lifted to be the first-class artifact when developing a DL
application since there are increasing demands and expectations for model and data
explanation in various business applications and domains.

Chapter 10, Implementing DL Explainability with MLflow, covers how to implement
DL explainability using MLflow to provide Explanation-as-a-Service (EaaS). It starts
with an overview of MLflow's current capability to support explainers and explanations.
Specifically, the existing integration with SHAP in MLflow APIs does not support DL
explainability at scale. Therefore, it provides two generic ways of using MLflow's artifact
logging APIs and PyFunc APIs for the implementation. Examples are provided for
implementing SHAP explanation, which logs the SHAP value in a bar chart in an MLflow
tracking server's artifact store. A SHAP explainer can be logged as an MLflow Python
model, and then loaded as either a Spark UDF for batch explanation or as a web service
for online EaaS. This provides maximal flexibility within a unified MLflow framework for
implementing explainability.

Preface xvii

To get the most out of this book
The majority of the code in this book can be implemented and executed using the open
source MLflow tool, with a few exceptions where a 14-day full Databricks trial is needed
(sign up at https://databricks.com/try-databricks) along with an AWS
Free Tier account (sign up at https://aws.amazon.com/free/). The following lists
some major software packages covered in this book:

•	 MLflow 1.20.2 and above

•	 Python 3.8.10

•	 Lightning-flash 0.5.0

•	 Transformers 4.9.2

•	 SHAP 0.40.0

•	 PySpark 3.2.1

•	 Ray[tune] 1.9.2

•	 Optuna 2.10.0

The complete package dependencies are listed in each chapter's requirements.txt
 file or the conda.yaml file in this book's GitHub repository. All code has been tested
to run successfully in a macOS or Linux environment. If you are a Microsoft Windows
user, it is recommended to install WSL2 to run the bash scripts provided in this book:
https://www.windowscentral.com/how-install-wsl2-windows-10. It
is a known issue that the MLflow CLI does not work properly in the Microsoft Windows
command line.

Starting from Chapter 3, Tracking Models, Parameters, and Metrics of this book, you
will also need to have Docker Desktop (https://www.docker.com/products/
docker-desktop/) installed to set up a fully-fledged local MLflow tracking server
for executing the code in this book. AWS SageMaker is needed in Chapter 8, Deploying a
DL Inference Pipeline at Scale, for the cloud deployment example. VS Code version 1.60
or above (https://code.visualstudio.com/updates/v1_60) is used as the
integrated development environment (IDE) in this book. Miniconda version 4.10.3
or above (https://docs.conda.io/en/latest/miniconda.html) is used
throughout this book for creating and activating virtual environments.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

https://databricks.com/try-databricks
https://aws.amazon.com/free/
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://code.visualstudio.com/updates/v1_60
https://docs.conda.io/en/latest/miniconda.html

xviii Preface

Finally, to get the most out of this book, you should have experience in programming in
Python and have a basic understanding of popular ML and data manipulation libraries
such as pandas and PySpark.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLFlow. If there's an update to the code, it will be updated in the GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803241333_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "For learning purposes, we have provided two example mlruns
artifacts and the huggingface cache folder in the GitHub repository under the
chapter08 folder."

A block of code is set as follows:

client = boto3.client('sagemaker-runtime')

response = client.invoke_endpoint(

 EndpointName=app_name,

 ContentType=content_type,

 Accept=accept,

 Body=payload

)

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803241333_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803241333_ColorImages.pdf

Preface xix

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

loaded_model = mlflow.pyfunc.spark_udf(

 spark,

 model_uri=logged_model,

 result_type=StringType())

Any command-line input or output is written as follows:

mlflow models serve -m models:/inference_pipeline_model/6

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "To execute
the code in this cell, you can just click on Run Cell in the top-right drop-down menu."

Tips or Important Notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:copyright@packt.com
http://authors.packtpub.com

xx Preface

Share Your Thoughts
Once you've read Practical Deep Learning at Scale with MLflow, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-803-24133-0

Section 1 -
Deep Learning

Challenges and
MLflow Prime

In this section, we will learn about the five stages of the full life cycle of deep learning
(DL), and understand the emerging field of machine learning operations (MLOps) and
the role of MLflow. We will provide an overview of the challenges in the four pillars of
a DL process: data, model, code, and explainability. Then, we will learn how to set up
a basic local MLflow development environment and run our first MLflow experiment for
a natural language processing (NLP) model built on top of PyTorch Lightning Flash.
Finally, we will explain the foundational MLflow concepts such as experiments, runs, and
many more, through this first MLflow experiment example.

This section comprises the following chapters:

•	 Chapter 1, Deep Learning Life Cycle and MLOps Challenges

•	 Chapter 2, Getting Started with MLflow for Deep Learning

1
Deep Learning Life

Cycle and MLOps
Challenges

The past few years have seen great success in Deep Learning (DL) for solving practical
business, industrial, and scientific problems, particularly for tasks such as Natural
Language Processing (NLP), image, video, speech recognition, and conversational
understanding. While research in these areas has made giant leaps, bringing these DL
models from offline experimentation to production and continuously improving the
models to deliver sustainable values is still a challenge. For example, a recent article by
VentureBeat (https://venturebeat.com/2019/07/19/why-do-87-of-data-
science-projects-never-make-it-into-production/) found that 87% of
data science projects never make it to production. While there might be business reasons
for such a low production rate, a major contributing factor is the difficulty caused by the
lack of experiment management and a mature model production and feedback platform.

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/

4 Deep Learning Life Cycle and MLOps Challenges

This chapter will help us to understand the challenges and bridge these gaps by learning
the concepts, steps, and components that are commonly used in the full life cycle of DL
model development. Additionally, we will learn about the challenges of an emerging
field known as Machine Learning Operations (MLOps), which aims to standardize
and automate ML life cycle development, deployment, and operation. Having a solid
understanding of these challenges will motivate us to learn the skills presented in the rest
of this book using MLflow, an open source, ML full life cycle platform. The business values
of adopting MLOps' best practices are numerous; they include faster time-to-market of
model-derived product features, lower operating costs, agile A/B testing, and strategic
decision making to ultimately improve customer experience. By the end of this chapter,
we will have learned about the critical role that MLflow plays in the four pillars of MLOps
(that is, data, model, code, and explainability), implemented our first working DL model,
and grasped a clear picture of the challenges with data, models, code, and explainability
in DL.

In this chapter, we're going to cover the following main topics:

•	 Understanding the DL life cycle and MLOps challenges

•	 Understanding DL data challenges

•	 Understanding DL model challenges

•	 Understanding DL code challenges

•	 Understanding DL explainability challenges

Technical requirements
All of the code examples for this book can be found at the following GitHub URL:
https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow.

You need to have Miniconda (https://docs.conda.io/en/latest/miniconda.
html) installed on your development environment. In this chapter, we will walk through
the process of installing the PyTorch lightning-flash library (https://github.
com/PyTorchLightning/lightning-flash), which can be used to build our
first DL model in the Implementing a basic DL sentiment classifier section. Alternatively,
you can sign up for a free Databricks Community Edition account at https://
community.cloud.databricks.com/login.html and use a GPU cluster and
a notebook to carry out the model development described in this book.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/PyTorchLightning/lightning-flash
https://github.com/PyTorchLightning/lightning-flash
https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html

Understanding the DL life cycle and MLOps challenges 5

In addition to this, if you are a Microsoft Windows user, we recommend that you
install WSL2 (https://www.windowscentral.com/how-install-wsl2-
windows-10) so that you have a Linux environment to run the command lines that are
present in this book.

Understanding the DL life cycle and MLOps
challenges
Nowadays, the most successful DL models that are deployed in production primarily
observe the following two steps:

1.	 Self-supervised learning: This refers to the pretraining of a model in a data-rich
domain that does not require labeled data. This step produces a pretrained model,
which is also called a foundation model, for example, BERT, GPT-3 for NLP, and
VGG-NETS for computer vision.

2.	 Transfer learning: This refers to the fine-tuning of the pretrained model in a
specific prediction task such as text sentiment classification, which requires labeled
training data.

One ground-breaking and successful example of a DL model in production is the Buyer
Sentiment Analysis model, which is built on top of BERT for classifying sales engagement
email messages, providing critical fine-grained insights into buyer emotions and signals
beyond simple activity metrics such as reply, click, and open rates (https://www.
prnewswire.com/news-releases/outreach-unveils-groundbreaking-
ai-powered-buyer-sentiment-analysis-transforming-sales-
engagement-301188622.html). There are different variants regarding how this
works, but in this book, we will primarily focus on the Transfer Learning paradigm of
developing and deploying DL models, as it exemplifies a practical DL life cycle.

https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html

6 Deep Learning Life Cycle and MLOps Challenges

Let's walk through an example to understand a typical core DL development paradigm.
For example, the popular BERT model released in late 2018 (a basic version of the BERT
model can be found at https://huggingface.co/bert-base-uncased) was
initially pretrained on raw texts (without human labeling) from over 11,000 books from
BookCorpus and the entire English Wikipedia. This pretrained language model was then
fine-tuned to many downstream NLP tasks, such as text classification and sentiment
analysis, in different application domains such as movie review classifications by using
labeled movie review data (https://huggingface.co/datasets/imdb). Note
that sometimes, it might be necessary to further pretrain a foundation model (for
example, BERT) within the application domain by using unlabeled data before fine-tuning
to boost the final model performance in terms of accuracy. This core DL development
paradigm is illustrated in Figure 1.1:

Figure 1.1 – A typical core DL development paradigm

Note that while Figure 1.1 represents a common development paradigm, not all of these
steps are necessary for a specific application scenario. For example, you might only
need to do fine-tuning using a publicly available pretrained DL model with your labeled
application-specific data. Therefore, you don't need to do your own pretraining or carry
out further pretraining using unlabeled data since other people or organizations have
already done the pretraining step for you.

DL over Classical ML
Unlike classical ML model development, where, usually, a feature engineering
step is required to extract and transform raw data into features to train an ML
model such as decision tree or logistic regression, DL can learn the features
automatically, which is especially attractive for modeling unstructured
data such as texts, images, videos, audio, and speeches. DL is also called
representational learning due to this characteristic. In addition to this, DL
is usually data- and compute-intensive, requiring Graphics Process Units
(GPUs), Tensor Process Units (TPU), or other types of computing hardware
accelerators for at-scale training and inference. Explainability for DL models
is also harder to implement, compared with traditional ML models, although
recent progress has now made that possible.

https://huggingface.co/bert-base-uncased
https://huggingface.co/datasets/imdb

Understanding the DL life cycle and MLOps challenges 7

Implementing a basic DL sentiment classifier
To set up the development of a basic DL sentiment classifier, you need to create a virtual
environment in your local environment. Let's assume that you have miniconda installed.
You can implement the following in your command-line prompt to create a new virtual
environment called dl_model and install the PyTorch lightning-flash package so
that the model can be built:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install lightning-flash[all]

Depending on your local machine's memory, the preceding commands might take
about 10 minutes to finish. You can verify the success of your installation by running the
following command:

conda list | grep lightning

If you see output similar to the following, your installation was successful:

lightning-bolts 0.3.4 pypi_0 pypi

lightning-flash 0.5.0 pypi_0 pypi

pytorch-lightning 1.4.4 pypi_0 pypi

Now you are ready to build your first DL model!

To begin building a DL model, complete the following steps:

1.	 Import the necessary torch and flash libraries, and import download_data,
TextClassificationData, and TextClassifier from the flash
subpackages:

import torch

import flash

from flash.core.data.utils import download_data

from flash.text import TextClassificationData,
TextClassifier

8 Deep Learning Life Cycle and MLOps Challenges

2.	 To get the dataset for fine-tuning, use download_data to download the
imdb.zip file, which is the public domain binary sentiment classification
(positive/negative) dataset from Internet Movie Database (IMDb) to a local data
folder. The IMDb ZIP file contains three CSV files:

	� train.csv

	� valid.csv

	� test.csv

Each file contains two columns: review and sentiment. We then use
TextClassificationData.from_csv to declare a datamodule
variable that assigns the "review" to input_fields, and the "sentiment" to
target_fields. Additionally, it assigns the train.csv file to train_file,
the valid.csv file to val_file, and the test.csv file to the test_file
properties of datamodule, respectively:

download_data("https://pl-flash-data.s3.amazonaws.com/
imdb.zip", "./data/")

datamodule = TextClassificationData.from_csv(

 input_fields="review",

 target_fields="sentiment",

 train_file="data/imdb/train.csv",

 val_file="data/imdb/valid.csv",

 test_file="data/imdb/test.csv"

)

3.	 Once we have the data, we can now perform fine-tuning using a foundation model.
First, we declare classifier_model by calling TextClassifier with a
backbone assigned to prajjwal1/bert-tiny (which is a much smaller BERT-
like pretrained model located in the Hugging Face model repository: https://
huggingface.co/prajjwal1/bert-tiny). This means our model will be
based on the bert-tiny model.

4.	 The next step is to set up the trainer by defining how many epochs we want to run
and how many GPUs we want to use to run them. Here, torch.cuda.device_
count() will return either 0 (no GPU) or 1 to N, where N is the maximum number
of GPUs you can have in your running environment. Now we are ready to call
trainer.finetune to train a binary sentiment classifier for the IMDb dataset:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes)

trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.

https://huggingface.co/prajjwal1/bert-tiny
https://huggingface.co/prajjwal1/bert-tiny

Understanding the DL life cycle and MLOps challenges 9

device_count())

trainer.finetune(classifier_model, datamodule=datamodule,
strategy="freeze")

DL Fine-Tuning Time
Depending on your running environment, the fine-tuning step might take
a couple of minutes on a GPU or around 10 minutes (if you're only using
a CPU). You can reduce max_epochs=1 if you simply want to get a basic
version of the sentiment classifier quickly.

5.	 Once the fine-tuning step is complete, we will test the accuracy of the model by
running trainer.test():

trainer.test()

The output of the test should look similar to the following screenshot, which
indicates that the final model accuracy is about 52%:

Figure 1.2 – The test results of our first DL model

The test result shown in the preceding diagram indicates that we have a basic version of
the model, as we only fine-tuned the foundation model for three epochs and haven't used
any advanced techniques such as hyperparameter tuning or better fine-tuning strategies.
However, this is a great accomplishment since you now have a working knowledge of
how the core DL model paradigm works! We will explore more advanced model training
techniques in later chapters of this book.

Understanding DL's full life cycle development
By now, you should have your first DL model ready and should feel proud of it. Now,
let's explore the full DL life cycle together to fully understand its concepts, components,
and challenges.

10 Deep Learning Life Cycle and MLOps Challenges

You might have gathered that the core DL development paradigm revolves around three
key artifacts: Data, Model, and Code. In addition to this, Explainability is another major
artifact that is required in many mission-critical application scenarios such as medical
diagnoses, the financial industry, and decision making for criminal justice. As DL is
usually considered a black box, providing explainability for DL increasingly becomes
a key requirement before and after shipping to production.

Note that Figure 1.1 is still considered offline experimentation if we are still trying to
figure out which model works using a dataset in a lab-like environment. Even in such
an offline experimentation environment, things will quickly become complicated.
Additionally, we would like to know and track which experiments we have or have
not performed so that we don't waste time repeating the same experiments, whatever
parameters and datasets we have used, and whatever kind of metrics we have for a
specific model. Once we have a model that's good enough for the use cases and customer
scenarios, the complexity increases as we need a way to continuously deploy and update
the model in production, monitor the model and data drift, and then retrain the model
when necessary. This complexity further increases when at-scale training, deployment,
monitoring, and explainability are needed.

Let's examine what a DL life cycle looks like (see Figure 1.3). There are five stages:

1.	 Data collection, cleaning, and annotation/labeling.
2.	 Model development (which is also known as offline experimentation). The core DL

development paradigm in Figure 1.1 is considered part of the model development
stage, which itself can be an iterative process.

3.	 Model deployment and serving in production.
4.	 Model validation and A/B testing (which is also known as online experimentation;

this is usually in a production environment).
5.	 Monitoring and feedback data collection during production.

Understanding the DL life cycle and MLOps challenges 11

Figure 1.3 provides a diagram to show that it is a continuous development cycle for
a DL model:

Figure 1.3 – The full DL development life cycle

In addition to this, we want to point out that the backbone of these five stages, as shown
in Figure 1.3, essentially revolves around the four artifacts: data, model, code, and
explainability. We will examine the challenges related to these four artifacts in the life
cycle in the following sections. However, first, let's explore and understand MLOps, which
is an evolving platform concept and framework that supports the full life cycle of ML. This
will help us understand these challenges in a big-picture context.

12 Deep Learning Life Cycle and MLOps Challenges

Understanding MLOps challenges
MLOps has some connections to DevOps, where a set of technology stacks and standard
operational procedures are used for software development and deployment combined
with IT operations. Unlike traditional software development, ML and especially DL
represent a new era of software development paradigms called Software 2.0 (https://
karpathy.medium.com/software-2-0-a64152b37c35). The key differentiator
of Software 2.0 is that the behavior of the software does not just depend on well-
understood programming language code (which is the characteristic of Software 1.0)
but depends on the learned weights in a neural network that's difficult to write as code.
In other words, there exists an inseparable integration of the code, data, and model that
must be managed together. Therefore, MLOps is being developed and is still evolving
to accommodate this new Software 2.0 paradigm. In this book, MLOps is defined as an
operational automation platform that consists of three foundation layers and four pillars.
They are listed as follows:

•	 Here are the three foundation layers:

	� Infrastructure management and automation

	� Application life cycle management and Continuous Integration and Continuous
Deployment (CI/CD)

	� Service system observability

•	 Here are the four pillars:

	� Data observability and management

	� Model observability and life cycle management

	� Explainability and Artificial Intelligence (AI) observability

	� Code reproducibility and observability

Additionally, we will explain MLflow's roles in these MLOps layers and pillars so that
we have a clear picture regarding what MLflow can do to build up the MLOps layers in
their entirety:

•	 Infrastructure management and automation: This includes, but is not limited
to, Kubernetes (also known as k8s) for automated container orchestration and
Terraform (commonly used for managing hundreds of cloud services and access
control). These tools are adapted to manage ML and DL applications that have
deployed models as service endpoints. These infrastructure layers are not the focus
of this book; instead, we will focus on how to deploy a trained DL model using
MLflow's provided capabilities.

https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35

Understanding the DL life cycle and MLOps challenges 13

•	 Application life cycle management and CI/CD: This includes, but is not limited
to, Docker containers for virtualization, container life cycle management tools
such as Kubernetes, and CircleCI or Concourse for CI and CD. Usually, CI means
that whenever there are code or model changes in a GitHub repository, a series of
automatic tests will be triggered to make sure no breaking changes are introduced.
Once these tests have been passed, new changes will be automatically released as
part of a new package. This will then trigger a new deployment process (CD) to
deploy the new package to the production environment (often, this will include
human approval as a safety gate). Note that these tools are not unique to ML
applications but have been adapted to ML and DL applications, especially when we
require GPU and distributed clusters for the training and testing of DL models. In
this book, we will not focus on these tools but will mention the integration points or
examples when needed.

•	 Service system observability: This is mostly for monitoring the hardware/
clusters/CPU/memory/storage, operating system, service availability, latency, and
throughput. This includes tools such as Grafana, Datadog, and more. Again, these
are not unique to ML and DL applications and are not the focus of this book.

•	 Data observability and management: This is traditionally under-represented in
the DevOps world but becomes very important in MLOps as data is critical within
the full life cycle of ML/DL models. This includes data quality monitoring, outlier
detection, data drift and concept drift detection, bias detection, secured and compliant
data sharing, data provenance tracking and versioning, and more. The tool stacks
in this area that are suitable for ML and DL applications are still emerging. A few
examples include DataFold (https://www.datafold.com/) and Databand
(https://databand.ai/open-source/). A recent development in data
management is a unified lakehouse architecture and implementation called Delta
Lake (http://delta.io) that can be used for ML data management. MLflow
has native integration points with Delta Lake, and we will cover that integration in
this book.

•	 Model observability and life cycle management: This is unique to ML/DL models,
and it only became widely available recently due to the rise of MLflow. This includes
tools for model training, testing, versioning, registration, deployment, serialization,
model drift monitoring, and more. We will learn about the exciting capabilities
that MLflow provides in this area. Note that once we combine CI/CD tools with
MLflow training/monitoring, user feedback loops, and human annotations, we can
achieve Continuous Training, Continuous Testing, and Continuous Labeling.
MLflow provides the foundational capabilities so that further automation in MLOps
becomes possible, although such complete automation will not be the focus of this
book. Interested readers can find relevant references at the end of this chapter to
explore this area further.

https://www.datafold.com/
https://databand.ai/open-source/
http://delta.io

14 Deep Learning Life Cycle and MLOps Challenges

•	 Explainability and AI observability: This is unique to ML/DL models and is
especially important for DL models, as traditionally, DL models are treated as
black boxes. Understanding why the model provides certain predictions is critical
for societally important applications. For example, in medical, financial, juridical,
and many human-in-the-loop decision support applications, such as civilian and
military emergency response, the demand for explainability is increasingly higher.
MLflow provides native integration with a popular explainability framework called
SHAP, which we will cover in this book.

•	 Code reproducibility and observability: This is not entirely unique to ML/DL
applications. However, DL models face some special challenges as the number of
DL code frameworks are diverse and the need to reproduce a model is not entirely
up to the code alone (we also need data and execution environments such as GPU
clusters). In addition to this, notebooks are commonly used in model development
and production. How to manage the notebooks along with the model run is
important. Usually, GitHub is used to manage the code repository; however, we need
to structure the ML project code in a way that's reproducible either locally (such as
on a local laptop) or remotely (for example, in a Databricks' GPU cluster). MLflow
provides this capability to allow DL projects that have been written once to run
anywhere, whether this is in an offline experimentation environment or an online
production environment. We will cover MLflow's MLproject capability in this book.

In summary, MLflow plays a critical and foundational role in MLOps. It fills in the gaps
that DevOps traditionally does not cover and, thus, is the focus of this book. The following
diagram (Figure 1.4) shows the central roles of MLflow in the still-evolving MLOps world:

Figure 1.4 – The three layers and four pillars of MLOps and MLflow's roles

Understanding DL data challenges 15

While the bottom two layers and the topmost layer are common within many software
development and deployment processes, the middle four pillars are either entirely unique
to ML/DL applications or partially unique to ML/DL applications. MLflow plays a
critical role in all four of these pillars in MLOps. This book will help you to confidently
apply MLflow to solve the issues of these four pillars while also equipping you to further
integrate with other tools in the MLOps layers depicted in Figure 1.4 for full automation
depending on your scenario requirements.

Understanding DL data challenges
In this section, we will discuss the data challenges at each stage of the DL life cycle, as
illustrated in Figure 1.3. Essentially, DL is a data-centric AI, unlike symbolic AI where
human knowledge can be used without lots of data. The challenges for data in DL are
pervasive in all stages of the full life cycle:

•	 Data collection/cleaning/annotation: One of DL's first successes began with
ImageNet (https://www.image-net.org/), where millions of images
are collected and annotated according to the English nouns in the WordNet
database (https://wordnet.princeton.edu/). This led to the successful
development of pretrained DL models for computer vision such as VGG-NETS
(https://pytorch.org/hub/pytorch_vision_vgg/), which can perform
state-of-the-art image classification and is widely used for industrial and business
applications. The main challenge of this kind of large-scale data collection and
annotation is the unknown bias, which is hard to measure in this process (https://
venturebeat.com/2020/11/03/researchers-show-that-computer-
vision-algorithms-pretrained-on-imagenet-exhibit-multiple-
distressing-biases/). Another example is the sales engagement platform
Outreach (https://www.outreach.io/), where we can classify a potential
buyer's sentiment. For instance, we might start by collecting email messages of 100
paid organizations to train a DL model. Following this, we would need to collect
email messages from more organizations, either due to an accuracy requirement or
expanded language coverage (such as from English only to other languages such as
German and French). These many iterations of data collection and annotation will
generate quite a lot of datasets. There is a tendency to just name the version of the
dataset with hardcoded version numbers as part of a dataset filename such as
the following:

MyCoolAnnotatedData-v1.0.csv

MyCoolAnnotatedData-v2.0.csv

MyCoolAnnotatedData-v3.0.csv

MyCoolAnnotatedData-v4.0.csv

https://www.image-net.org/
https://wordnet.princeton.edu/
https://pytorch.org/hub/pytorch_vision_vgg/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://www.outreach.io/

16 Deep Learning Life Cycle and MLOps Challenges

This seems to work until some changes are required in any one of the vX.0 datasets
due to the need to correct annotation errors or remove email messages because of
customer churn. Also, what happens if we need to combine several datasets together
or perform some data cleaning and transformation to train a new DL model? What
if we need to implement data augmentation to artificially generate some datasets?
Evidently, simply changing the names of the files is neither scalable nor sustainable.

•	 Model development: We need to understand that the bias in the data we use to
train/pretrain a DL model will reflect in the prediction when applying the model.
While we do not focus on de-biasing data in this book, we must implement data
versioning and data provenance as first-class artifacts when training and serving
a DL model so that we can track all model experiments. When fine-tuning
a pretrained model for our use cases, as we did earlier, we also need to track the
versioning of the fine-tuning dataset we use. In our previous example, we use
a variant of the BERT model to fine-tune the IMDb review data. While, in our
first example, we did not care about the versioning or source of the data, this is
important for a practical and real application. In summary, DL models need to
link to a particular version of datasets using a scalable approach. We will provide
solutions to this topic in this book.

•	 Model deployment and serving in production: This is for deploying into the
production environment to serve online traffic. DL model serving latency is of
particular importance and is interesting to collect at this stage. This might allow you
to adjust the hardware environment used for inference.

•	 Model validation and A/B testing: The data we collect at this stage is mostly for
user behavior metrics in the online experimentation environment (https://
www.slideshare.net/pavel/ab-testing-ai-global-artificial-
intelligence-conference-2019). Online data traffic also needs to be
characterized in order to understand whether there is a statistical difference in the
input to the model between offline experimentation and online experimentation.
Only if we pass the A/B testing and validate that the model indeed works better than
its previous version in terms of user behavior metrics do we roll out to production
for all users.

•	 Monitoring and feedback loops: In this stage, note that the data will need to be
continuously collected to detect data drift and concept drift. For example, in the
buyer sentiment classification example discussed earlier, if buyers start to use
terminology that is not encountered in the training data, the performance of the
model could suffer.

In summary, data tracking and observability are major challenges in all stages of the DL
life cycle.

https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019
https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019
https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019

Understanding DL model challenges 17

Understanding DL model challenges
In this section, we will discuss DL model challenges. Let's look at the challenges at each
stage of the DL life cycle, as depicted in Figure 1.3:

•	 Data collection/cleaning/annotation: While the data challenge has already been
stated, the challenge of linking data to the model of interest still exists. MLflow has
native integration with Delta Lake so that any trained model can be traced back to a
particular version within Delta Lake.

•	 Model development: This is the time for trying lots of model frameworks,
packages, and model selections. We need to track all the packages we use, along
with the model parameters, hyperparameters, and model metrics in all experiments
we run. Without a scalable and standardized way to track all experiments, this
becomes a very tangled space. This not only causes trouble in terms of not knowing
which experiments have been done so that we don't waste time doing them again,
but it also creates problems when tracking which model is ready to be deployed
or has already been deployed. Model serialization is another major challenge as
different DL frameworks tend to use different ways to serialize the model. For
example, pickle. (https://github.com/cloudpipe/cloudpickle)
is usually used in serializing the model written in Python. However, TorchScript
(https://pytorch.org/docs/stable/jit.html) is now highly
performant for PyTorch models. In addition, Open Neural Network Exchange or
ONNX (https://onnx.ai/) tries to provide more framework-agnostic DL
serialization. Finally, we need to log the serialized model and register the model so
that we can track model versioning. MLflow is one of the first open source tools to
overcome these challenges.

•	 Model deployment and serving in production: An easy-to-use model deployment
tool that can tie into the model registry is a challenge. MLflow can be used to
alleviate that, allowing you to load models for production deployment with full
provenance tracking.

•	 Model validation and A/B testing: During online validation and experimentation,
model performance needs to be validated and user behavior metrics need to be
collected. This is so that we can easily roll back or redeploy a particular version
of the models. A model registry is critical for at-scale online model production
validation and experimentation.

•	 Monitoring and feedback loops: Model drifting and degradation over time is
a real challenge. The visibility of model performance in production needs to be
continuously monitored. Feedback data can be used to decide whether a model
needs to be retrained.

https://github.com/cloudpipe/cloudpickle
https://pytorch.org/docs/stable/jit.html
https://onnx.ai/

18 Deep Learning Life Cycle and MLOps Challenges

In summary, DL model challenges in the full life cycle are unique. It is also worth pointing
out a common framework that can assist the model development and online production
back-and-forth is of great importance, as we don't want to use different tools just because
the execution environment is different. MLflow provides this unified framework to bridge
such gaps.

Understanding DL code challenges
In this section, we will discuss DL code challenges. Let's look at how these code challenges
are manifested in each of the stages described in Figure 1.3. In this section, and within
the context of DL development, code refers to the source code that's written in certain
programming languages such as Python for data processing and implementation, while
a model refers to the model logic and architecture in its serialized format (for example,
pickle, TorchScript, or ONNX):

•	 Data collection/cleaning/annotation: While data is the central piece in this stage,
the code that does the query, extraction/transformation/loading (ETL), and
data cleaning and augmentation is of critical importance. We cannot decouple
the development of the model from the data pipelines that provide the data feeds
to the model. Therefore, data pipelines that implement ETL need to be treated as
one of the integrated steps in both offline experimentation and online production.
A common mistake is that we use different data ETL and cleaning pipelines in
offline experimentation, and then implement different data ETL/cleaning pipelines
in online production, which could cause different model behaviors. We need to
version and serialize the data pipeline as part of the entire model pipeline. MLflow
provides several ways to allow us to implement such multistep pipelines.

•	 Model development: During offline experiments, in addition to different versions
of data pipeline code, we might also have different versions of notebooks or use
different versions of DL library code. The usage of notebooks is particularly
unique in ML/DL life cycles. Tracking which model results are produced by which
notebook/model pipeline/data pipeline needs to be done for each run. MLflow does
that with automatic code version tracking and dependencies. In addition, code
reproducibility in different running environments is unique to DL models, as DL
models usually require hardware accelerators such as GPUs or TPUs. The flexibility
of running either locally, or remotely, on a CPU or GPU environment is of great
importance. MLflow provides a lightweight approach in which to organize the ML
projects so that code can be written once and run everywhere.

Understanding DL explainability challenges 19

•	 Model deployment and serving in production: While the model is serving
production traffic, any bugs will need to be traced back to both the model and
code. Thus, tracking code provenance is critical. It is also critical to track all the
dependency code library versions for a particular version of the model.

•	 Model validation and A/B testing: Online experiments could use multiple versions
of models using different data feeds. Debugging any experimentation will require
not only knowing which model is used but also which code is used to produce that
model.

•	 Monitoring and feedback loops: This stage is similar to the previous stage in terms
of code challenges, where we need to know whether model degradation is due to
code bugs or model and data drifting. The monitoring pipeline needs to collect all
the metrics for both data and model performance.

In summary, DL code challenges are especially unique because DL frameworks are still
evolving (for example, TensorFlow, PyTorch, Keras, Hugging Face, and SparkNLP).
MLflow provides a lightweight framework to overcome many common challenges and can
interface with many DL frameworks seamlessly.

Understanding DL explainability challenges
In this section, we will discuss DL explainability challenges at each of the stages described
in Figure 1.3. It is increasingly important to view explainability as an integral and
necessary mechanism to define, test, debug, validate, and monitor models across the entire
model life cycle. Embedding explainability early will make subsequent model validation
and operations easier. Also, to maintain ongoing trust in ML/DL models, it is critical to be
able to explain and debug ML/DL models after they go live in production:

•	 Data collection/cleaning/annotation: As we have gathered, explainability is critical
for model prediction. The root cause of any model's trustworthiness or bias can be
traced back to the data used to train the model. Explainability for the data is still
an emerging area but is critical. So, what could go wrong and become a challenge
during the data collection/cleaning/annotation stage? For example, let's suppose
we have an ML/DL model, and its prediction outcome is about whether a loan
applicant will pay back a loan or not. If the data collected has certain correlations
between age and the loan payback outcome, this will cause the model to use age as
a predictor. However, a loan decision based on a person's age is against the law and
not allowed even if the model works well. So, during data collection, it could be that
the sampling strategy is not sufficient to represent certain subpopulations such as
different loan applicants in different age groups.

20 Deep Learning Life Cycle and MLOps Challenges

A subpopulation could have lots of missing fields and then be dropped during
data cleaning. This could result in underrepresentation following the data cleaning
process. Human annotations could favor the privileged group and other possible
unconscious biases. A metric called Disparate Impact could reveal the hidden
biases in the data, which compares the proportion of individuals that receive a
positive outcome for two groups: an unprivileged group and a privileged group.
If the unprivileged group (for example, persons with age > 60) receives a positive
outcome (for example, loan approval) less than 80% of the proportion of the
privileged group (persons with age < 60), this is a disparate impact violation
based on the current common industry standard (a four-fifths rule). Tools such as
Dataiku could help to automate the disparate impact and subpopulation analysis to
find groups of people who may be treated unfairly or differently because of the data
used for model training.

•	 Model development: Model explainability during offline experimentation is very
important to not only help understand why a model behaves a certain way but also
help with model selection to decide which model to use if we need to put it into
production. Accuracy might not be the only criteria to select a winning model.
There are a few DL explainability tools, such as SHAP (please refer to Figure 1.5).
MLflow integration with SHAP provides a way to implement DL explainability:

Figure 1.5 – NLP text SHAP Variable Importance Plot when using a DL model

Understanding DL explainability challenges 21

Figure 1.5 shows that this NLP model's prediction results' number one feature is the word
impressive, followed by rent. Essentially, this breaks the black box of the DL model,
giving much confidence to the usage of DL models in production.

•	 Model deployment and serving in production: During the production stage, if
the explainability of the model prediction can be readily provided to users, then not
only will the usability (user-friendliness) of the model be improved, but also, we can
collect better feedback data as users are more incentivized to give more meaningful
feedback. A good explainability solution should provide point-level decisions
for any prediction outcome. This means that we should be able to answer why a
particular person's loan is rejected and how this rejection compares to other people
in a similar or different age group. So, the challenge is to have explainability as one
of the gated deployment criteria for releasing a new version of the model. However,
unlike accuracy metrics, it is very difficult to measure explainability as scores or
thresholds, although certain case-based reasoning could be applied and automated.
For example, if we have certain hold-out test cases where we expect the same or
similar explanations regardless of the versions of the model, then we could use that
as a gated release criterion.

•	 Model validation and A/B testing: During online experimentation and ongoing
production model validation, we would need explainability to understand
whether the model has been applied to the right data or whether the prediction is
trustworthy. Usually, ML/DL models encode complex and non-linear relationships.
During this stage, it is often desirable to understand how the model influences
the metrics of user behavior (for example, a higher conversion rate on a shopping
website). Influence sensitivity analysis could provide insights regarding whether
a certain user feature such as a user's income has a positive or negative impact on
the outcome. If during this stage, we found, for some reason, that higher incomes
cause a negative loan approval rate or a lower conversion rate, then this should
be automatically flagged. However, automated sensitivity analysis during model
validation and A/B testing is still not widely available and remains a challenging
problem. A few vendors such as TruEra provide potential solutions to this space.

22 Deep Learning Life Cycle and MLOps Challenges

•	 Monitoring and feedback loops: While model performance metrics and data
characteristics are of importance here, explainability can provide an incentive for
users to provide valuable feedback and user behavior metrics to identify drivers and
causes of model degradation if there are any. As we know, ML/DL models are prone
to overfitting and cannot generalize well beyond their training data. One important
explainability solution during model production monitoring is to measure how
feature importance shifts across different data splits (for example, pre-COVID
versus post-COVID). This can help data scientists to identify where degradation
in model performance is due to changing data (such as a statistical distribution
shift) or changing relationships between variables (such as a concept shift). A recent
example provided by TruEra (https://truera.com/machine-learning-
explainability-is-just-the-beginning/) illustrates that a loan model
changes its prediction behavior due to changes in people's annual income and
loan purposes before and after the COVID periods. This explainability of Feature
Importance Shift greatly helps to identify the root causes of changes in model
behavior during the model production monitoring stage.

In summary, DL explainability is a major challenge where ongoing research is still needed.
However, MLflow's integration with SHAP now provides a ready-to-use tool for practical
DL applications, which we will cover in our advanced chapter later in this book.

Summary
In this opening chapter, we implemented our first DL model by following the pretrain
plus fine-tuning core DL development paradigm using PyTorch lightning-flash for
a text sentiment classification model. We learned about the five stages of the full life cycle
of DL. We defined the concept of MLOps along with the three foundation layers and four
ML/DL pillars, where MLflow plays critical roles in all four pillars (data, model, code,
and explainability). Finally, we described the challenges in DL data, model, code, and
explainability.

With the knowledge and first DL model experience gained in this chapter, we are now
ready to learn about and implement MLflow in our DL model in the following chapters.
In the next chapter, we will start with the implementation of a DL model with MLflow
autologging enabled.

https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://truera.com/machine-learning-explainability-is-just-the-beginning/

Further reading 23

Further reading
To further your knowledge, please consult the following resources and documentation:

•	 On the Opportunities and Risks of Foundation Models (Stanford University):
https://arxiv.org/abs/2108.07258

•	 MLOps: not as Boring as it Sounds: https://itnext.io/mlops-not-as-
boring-as-it-sounds-eaebe73e3533

•	 AI is Driving Software 2.0… with Minimal Human Intervention: https://
www.datasciencecentral.com/profiles/blogs/ai-is-driving-
software-2-0-with-minimal-human-intervention

•	 MLOps: Continuous delivery and automation pipelines in machine learning (Google):
https://cloud.google.com/architecture/mlops-continuous-
delivery-and-automation-pipelines-in-machine-learning

•	 Deep Learning Development Cycle (Salesforce): https://metamind.readme.
io/docs/deep-learning-dev-cycle

•	 MLOps – The Missing Piece In The Enterprise AI Puzzle: https://www.forbes.
com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-
in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad

•	 MLOps: What It Is, Why It Matters, and How to Implement It:
https://neptune.ai/blog/mlops

•	 Explainable Deep Learning: A Field Guide for the Uninitiated: https://arxiv.
org/abs/2004.14545

•	 Machine learning explainability is just the beginning: https://truera.com/
machine-learning-explainability-is-just-the-beginning/

•	 AI Fairness — Explanation of Disparate Impact Remover: https://
towardsdatascience.com/ai-fairness-explanation-of-
disparate-impact-remover-ce0da59451f1

•	 Datasheets for Datasets: https://arxiv.org/pdf/1803.09010.pdf

https://arxiv.org/abs/2108.07258
https://itnext.io/mlops-not-as-boring-as-it-sounds-eaebe73e3533
https://itnext.io/mlops-not-as-boring-as-it-sounds-eaebe73e3533
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://metamind.readme.io/docs/deep-learning-dev-cycle
https://metamind.readme.io/docs/deep-learning-dev-cycle
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://neptune.ai/blog/mlops
https://arxiv.org/abs/2004.14545
https://arxiv.org/abs/2004.14545
https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://arxiv.org/pdf/1803.09010.pdf

2
 Getting Started
with MLflow for

Deep Learning
One of the key capabilities of MLflow is to enable Machine Learning (ML) experiment
management. This is critical because data science requires reproducibility and traceability
so that a Deep Learning (DL) model can be easily reproduced with the same data,
code, and execution environment. This chapter will help us get started with how to
implement DL experiment management quickly. We will learn about MLflow experiment
management concepts and capabilities, set up an MLflow development environment, and
complete our first DL experiment using MLflow. By the end of this chapter, we will have
a working MLflow tracking server showing our first DL experiment results.

In this chapter, we're going to cover the following main topics:

•	 Setting up MLflow

•	 Implementing our first MLflow logging-enabled DL experiment

•	 Exploring MLflow's components and usage patterns

26 Getting Started with MLflow for Deep Learning

Technical requirements
To complete the experiment in this chapter, we will need the following tools, libraries, and
GitHub repositories installed or checked out on our computer:

•	 VS Code: The version we use in this book is August 2021 (that is, version 1.60).
We use VS Code for our local code development environment. This is the
recommended way for local developments. Please refer to https://code.
visualstudio.com/updates/v1_60.

•	 MLflow: Version 1.20.2. In this chapter, in the Setting up MLflow section, we will
walk through how to set up MLflow locally or remotely. Please refer to https://
github.com/mlflow/mlflow/releases/tag/v1.20.2.

•	 Miniconda: Version 4.10.3. Please refer to https://docs.conda.io/en/
latest/miniconda.html.

•	 PyTorch lightning-flash: 0.5.0. Please refer to https://github.com/
PyTorchLightning/lightning-flash/releases/tag/0.5.0.

•	 The GitHub URL for the code in this chapter: You can find this at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLflow/tree/main/chapter02.

Setting up MLflow
MLflow is an open source tool that is primarily written in Python. It has over 10,000 stars
tagged in its GitHub source repository (https://github.com/mlflow/mlflow).
The benefits of using MLflow are numerous, but we can illustrate one benefit with the
following scenario: Let's say you are starting a new ML project, trying to evaluate different
algorithms and model parameters. Within a few days, you run hundreds of experiments
with lots of code changes using different ML/DL libraries and get different models with
different parameters and accuracies. You need to compare which model works better
and also allow your team members to reproduce the results for model review purposes.
Do you prepare a spreadsheet and write down the model name, parameters, accuracies,
and location of the models? How can someone else rerun your code or use your trained
model with a different set of evaluation datasets? This can quickly become unmanageable
when you have lots of iterations for different projects. MLflow can help you to track
your experiments, compare your model runs and allow others to reproduce your results
easily, reuse your trained models for review purposes, and even deploy your model to
production with ease.

https://code.visualstudio.com/updates/v1_60
https://code.visualstudio.com/updates/v1_60
https://github.com/mlflow/mlflow/releases/tag/v1.20.2
https://github.com/mlflow/mlflow/releases/tag/v1.20.2
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/mlflow/mlflow

Setting up MLflow 27

Sound exciting? Well, let's set up MLflow so that we can explore its components and
patterns. MLflow allows both a local setup and a cloud-based setup. We will walk through
both of these setup scenarios in the following sections.

Setting up MLflow locally using miniconda
First, let's set up MLflow in a local development environment. This allows quick
prototyping and helps you to get familiar with the basic functionality of the MLflow tool.
Additionally, it allows you to interact with a remote MLflow cloud server when required.
Follow these instructions to set up MLflow.

Assuming you already have a virtual conda environment created from Chapter 1, Deep
Learning Life Cycle and MLOps Challenges, you are ready to install MLflow in the same
virtual environment:

pip install mlflow

The preceding command will install the latest version of MLflow. If you want to install a
specific version of MLflow, you can use the following:

pip install mlflow==1.20.2

As you can see, I have installed MLflow version 1.20.2. By default, MLflow will use the
local filesystem to store all of the experiment artifacts (for example, a serialized model)
and metadata (parameters, metrics, and more). If a relational database is needed as
MLflow's backend storage, additional installation and configuration are required. For
now, let's use the filesystem for storage. You can verify your MLflow installation locally by
typing the following into the command line:

mlflow --version

Then, it will show the installed MLflow version, as follows:

mlflow, version 1.20.2

This confirms that we have installed version 1.20.2 of MLflow on our local development
environment. Additionally, you can launch the MLflow UI locally to see the MLflow
tracking server UI, as follows:

mlflow ui

28 Getting Started with MLflow for Deep Learning

Following this, you will see that the UI web server is running:

Figure 2.1 – Starting the MLflow UI in a local environment

Figure 2.1 shows the local MLflow UI website: http://127.0.0.1:5000/. If you click
on this URL, you will see the following MLflow UI showing up in your browser window.
Since this is a brand new MLflow installation, there is only one Default experiment with
no runs under it yet (please refer to Figure 2.2):

Figure 2.2 – The MLflow Default Experiments UI web page

Seeing the default MLflow UI page up and running concludes the successful setup of
MLflow locally with a local working MLflow tracking server.

Setting up MLflow 29

Setting up MLflow to interact with a remote
MLflow server
In a corporate production environment, MLflow is usually hosted on a cloud server,
which could be self-hosted or one of the Databricks' managed services in one of the cloud
providers (such as AWS, Azure, or Google Cloud). In those cases, there is a requirement to
set up your local development environment so that you can run your ML/DL experiment
locally but interact with the MLflow server remotely. Next, we will describe how to do this
using environment variables with the help of the following three steps:

1.	 In a bash shell command-line environment, define three new environment
variables if you are using a Databricks-managed MLflow tracking server. The first
environment variable is MLFLOW_TRACKING_URI, and the assigned value is
databricks:

export MLFLOW_TRACKING_URI=databricks

export DATABRICKS_HOST=https://*******

export DATABRICKS_TOKEN=dapi******

2.	 The second environment variable is DATABRICKS_HOST. If your Databricks
managed website looks like https://dbc-*.cloud.databricks.com/, then
that's the value of the DATABRICKS_HOST variable (replace * with your actual
website string).

3.	 The third environment variable is DATABRICKS_TOKEN. Navigate to your
Databricks-managed website at https://dbc-*.cloud.databricks.
com/#setting/account, click on Access Tokens, and then click on Generate
New Token. You will see a pop-up window with a Comment field (which can be
used to record why this token will be used) and expiration date, as shown in
Figure 2.3:

Figure 2.3 – Generating a Databricks access token

30 Getting Started with MLflow for Deep Learning

Click on the Generate button and a pop-up window similar to Figure 2.4 will
appear. It will ask you to copy that token. This token will need to be copied and
assigned to the DATABRICKS_TOKEN environment variable as the value:

Figure 2.4 – Copying the generated token that will be used for the environment variable

Once you have these three environment variables set up, you will be able to interact
with the Databricks-managed MLflow server in the future. Note that the access token
has an expiration date for security reasons, which can be revoked at any time by the
administrator, so make sure you have the environment variable updated accordingly when
the token is refreshed.

In summary, we have learned how to set up MLflow locally to interact with a local MLflow
tracking server or a remote MLflow tracking server. This will allow us to implement
our first MLflow tracking-enabled DL model in the next section so that we can explore
MLflow concepts and components in a hands-on way.

Implementing our first DL experiment with
MLflow autologging
Let's use the DL sentiment classifier we built in Chapter 1, Deep Learning Life Cycle
and MLOps Challenges, and add MLflow autologging to it to explore MLflow's tracking
capabilities:

1.	 First, we need to import the MLflow module:

import mlflow

Implementing our first DL experiment with MLflow autologging 31

This will provide MLflow Application Programming Interfaces (APIs) for logging
and loading models.

2.	 Just before we run the training code, we need to set up an active experiment using
mlflow.set_experiment for the current running code:

EXPERIMENT_NAME = "dl_model_chapter02"

mlflow.set_experiment(EXPERIMENT_NAME)

experiment = mlflow.get_experiment_by_name(EXPERIMENT_
NAME)

print("experiment_id:", experiment.experiment_id)

This sets an experiment named dl_model_chapter02 to be the current active
experiment. If this experiment does not exist in your current tracking server, it will
be created automatically.

Environment Variable
Note that you might need to set the tracking server URI using the
MLFLOW_TRACKING_URI environment variable before you run your
first experiment. If you are using a hosted Databricks server, implement the
following:

export MLFLOW_TRACKING_URI=databricks

If you are using a local server, then set this environment variable to empty or
the default localhost at port number 5000 as follows (note that this is our
current section's scenario and assumes you are using a local server):

export MLFLOW_TRACKING_URI= http://127.0.0.1:5000

3.	 Next, add one line of code to enable autologging in MLflow:

mlflow.pytorch.autolog()

This will allow the default parameters, metrics, and model to be automatically
logged to the MLflow tracking server.

Autologging in MLflow
Autologging in MLflow is still in experiment mode (as of version 1.20.2) and
might change in the future. Here, we use it to explore the MLflow components
since it only requires one line of code to automatically log everything of
interest. In the upcoming chapters, we will learn about and implement
additional ways to perform tracking and logging in MLflow. Also, note that
currently, autologging in MLflow for PyTorch (as of version 1.20.2) only works
for the PyTorch Lightning framework, not any arbitrary PyTorch code.

32 Getting Started with MLflow for Deep Learning

4.	 Use the Python context manager with statement to start the experiment run by
calling mlflow.start_run:

with mlflow.start_run(experiment_id=experiment.
experiment_id, run_name="chapter02"):

 trainer.finetune(classifier_model,

 datamodule=datamodule,

 strategy="freeze")

 trainer.test()

Notice that all lines of code underneath the with block are the regular DL model
fine-tuning and testing steps. We only enable automatic MLflow logging so that we
can observe the metadata that is being tracked/logged by the MLflow tracking server.

5.	 Next, you can run the entire code of first_dl_with_mlflow.py (the
full code can be viewed in this chapter's GitHub at https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter02/first_dl_with_mlflow.py) using the
following command line:

python first_dl_with_mlflow.py

On a non-GPU macOS laptop, the entire run takes less than 10 minutes. You should
have an output on your screen, as follows:

Figure 2.5 – DL model training/testing with MLflow autologging enabled

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py

Implementing our first DL experiment with MLflow autologging 33

If you are running this for the first time, you will see that the experiment with the
name of dl_model_chapter02 does not exist. Instead, MLflow automatically
creates this experiment for you:

Figure 2.6 – MLflow automatically creates a new environment if it does not exist

6.	 Now, we can open the MLflow UI locally to see what has been logged in the local
tracking server by navigating to http://127.0.0.1:5000/. Here, you will see
that a new experiment (dl_model_chapter02) with a new run (Run Name =
chapter02) has been logged:

Figure 2.7 – The MLflow tracking server UI shows a new experiment with a new run

34 Getting Started with MLflow for Deep Learning

Now, click on the hyperlink of the Start Time column in Figure 2.7. You will see the
details of the logged metadata of the run:

Figure 2.8 – The MLflow run UI shows the metadata details about the experiment run

Exploring MLflow's components and usage patterns 35

If you can view this screen in your own local environment, then congratulations! You
just completed the implementation of MLflow tracking for our first DL model! In the
next section, we will explore central concepts and components in MLflow using our
working example.

Exploring MLflow's components and usage
patterns
Let's use the working example implemented in the previous section to explore
the following central concepts, components, and usages in MLflow. These include
experiments, runs, metadata about experiments, artifacts for experiments, models,
and code.

Exploring experiments and runs in MLflow
Experiment is a first-class entity in the MLflow APIs. This makes sense as data scientists
and ML engineers need to run lots of experiments in order to build a working model
that meets the requirements. However, the idea of an experiment goes beyond just the
model development stage and extends to the entire life cycle of the ML/DL development
and deployment. So, this means that when we do retraining or training for a production
version of the model, we need to treat them as production-quality experiments. This
unified view of experiments builds a bridge between the offline and online production
environments. Each experiment consists of many runs where you can either change the
model parameters, input data, or even model type for each run. So, an experiment is an
umbrella entity containing a series of runs. The following diagram (Figure 2.9) illustrates
that a data scientist could carry out both offline experiments and online production
experiments across multiple stages of the life cycle of ML/DL models:

Figure 2.9 – Experiments across the offline and online production life cycles of ML/DL models

36 Getting Started with MLflow for Deep Learning

As you can see from Figure 2.9, during the model development stage, a data scientist
could run multiple runs of the same experiment or multiple experiments depending on
the project scenarios. If it is a small ML project, having all runs under one single offline
experiment could be enough. If it is a complex ML project, it is reasonable to design
different experiments and conduct runs under each experiment. A good reference for
designing ML experiments can be found at https://machinelearningmastery.
com/controlled-experiments-in-machine-learning/. Then, during the
model production phase, it is desirable to set up production-quality experiments, as we
need to perform model improvement and continuous deployment with model retraining.
A production experiment will provide a gated accuracy check to prevent regression of the
new model. Often, this is achieved by running automatic model evaluation and validation
against a hold-out test dataset to check whether a new model still meets the release bar in
terms of accuracy.

Now, let's explore the MLflow experiments in a hands-on way. Run the following MLflow
command line to interact with the tracking server:

mlflow experiments list

If your MLFLOW_TRACKING_URI environment variable points to a remote tracking
server, then it will list all the experiments that you have read access to. If you want to see
what's in the local tracking server, you could set MLFLOW_TRACKING_URI to nothing
(that is, empty), as follows (note that you don't need to do this if you have never had this
environment variable in your local user profile; however, doing this will make sure you
use a local tracking server):

export MLFLOW_TRACKING_URI=

Prior to your first implementation of the DL model with MLflow autologging enabled, the
output of listing all your experiments should look similar to Figure 2.10 (note that this also
depends on where you run the command line; the following output assumes you run the
command in your local folder where you can check the code for Chapter 2 on GitHub):

Figure 2.10 – The default MLflow experiment list in a local environment

Figure 2.10 lists the three columns of the experiment property: Experiment Id (an integer),
Name (a text field that can be used to describe the experiment name), and Artifact
Location (by default, this is located in the mlruns folder underneath the directory where
you execute the MLflow commands). The mlruns folder is used by a filesystem-based
MLflow tracking server to store all the metadata of experiment runs and artifacts.

https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/

Exploring MLflow's components and usage patterns 37

The Command-Line Interface (CLI) versus REST APIs versus Programming
Language-Specific APIs
MLflow provides three different types of tools and APIs to interact with the
tracking server. Here, the CLI is used so that we can explore the MLflow
components.

So, let's explore a specific MLflow experiment, as follows:

1.	 First, create a new experiment using the MLflow CLI, as follows:

mlflow experiments create -n dl_model_chapter02

The preceding command creates a new experiment named dl_model_chapter02.
If you have already run the first DL model with MLflow autologging in the previous
section, the preceding command will cause an error message, as follows:

mlflow.exceptions.MlflowException: Experiment 'dl_model_
chapter02' already exists.

This is to be expected, and you have done nothing wrong. Now if you list all
the experiments in the local tracking server, it should include the newly created
experiment, as shown here:

Figure 2.11 – The new MLflow experiments list after creating a new experiment

2.	 Now, let's examine the relationship between experiments and runs. If you look
carefully at the URL of the run page (Figure 2.8), you will see something similar to
the following:

http://127.0.0.1:5000/#/experiments/1/
runs/2f2ec6e72a5042f891abe0d3a533eec7

As you might have gathered, the integer after the experiments path is the
experiment ID. Then, after the experiment ID, there is a runs path, followed
by a GUID-like random string, which is the run ID. So, now we understand how
the runs are organized under the experiment with a globally unique ID (called
a run ID).

38 Getting Started with MLflow for Deep Learning

Knowing a run's globally unique ID is very useful. This is because we can retrieve
the run's logged data using run_id. If you use the mlflow runs describe
--run-id <run_id> command line, you can get the list of metadata that
this run has logged. For the experiment we just ran, the following shows the full
command with the run ID:

mlflow runs describe –-run-id
2f2ec6e72a5042f891abe0d3a533eec7

The output snippets of this command line are as follows (Figure 2.12):

Figure 2.12 – The MLflow command line describes the run in the JSON data format

Note that Figure 2.12 presents all the metadata about this run in JSON format. This
metadata includes parameters used by the model training; metrics for measuring the
accuracy of the model in training, validation, and testing; and more. The same data is
also presented in the MLflow UI in Figure 2.8. Note that the powerful MLflow CLI will
allow very convenient exploration of the MLflow logged metadata and artifacts as well as
enabling shell script-based automation, as we will explore in the upcoming chapters.

Exploring MLflow's components and usage patterns 39

Exploring MLflow models and their usages
Now, let's explore how the DL model artifacts are logged in the MLflow tracking server.
On the same run page, as shown in Figure 2.8, if you scroll down toward the bottom, you
will see the Artifacts section (Figure 2.13). This lists all the metadata regarding the model
and the serialized model itself:

Figure 2.13 – The model artifacts logged by MLflow

The MLflow Tracking Server's Backend Store and Artifact Store
An MLflow tracking server has two types of storage: first, a backend store,
which stores experiments and runs metadata along with params, metrics,
and tags for runs; and second, an artifact store, which stores larger files such
as serialized models, text files, or even generated plots for visualizing model
results. For the purpose of simplicity, in this chapter, we are using a local
filesystem for both the backend store and the artifact store. However, some
of the more advanced features such as model registry are not available in
a filesystem-based artifact store. In later chapters, we will learn how to use
a model registry.

40 Getting Started with MLflow for Deep Learning

Let's look at the list of artifacts, one by one:

•	 model_summary.txt: At the root folder level, this file looks similar to the
following output if you click on it. It describes the model metrics and the layers of
the DL model (please refer to Figure 2.14):

Figure 2.14 – The model summary file logged by MLflow

Exploring MLflow's components and usage patterns 41

Figure 2.14 provides a quick overview of what the DL model looks like in terms
of the number and type of neural network layers, the number and size of the
parameters, and the type of metrics used in training and validation. This is very
helpful when the DL model architecture is needed to be shared and communicated
among team members or stakeholders.

•	 The model folder: This folder contains a subfolder, called data, and three files
called MLmodel, conda.yaml, and requirements.txt:

	� MLmodel: This file describes the flavor of the model that MLflow supports. Flavor
is MLflow-specific terminology. It describes how the model is saved, serialized,
and loaded. For our first DL model, the following information is stored in an
MLmodel file (Figure 2.15):

Figure 2.15 – Content of the MLmodel file for our first DL model run with MLflow
Figure 2.15 illustrates that this is a PyTorch flavor model with run_id that we have
just run.

42 Getting Started with MLflow for Deep Learning

	� conda.yaml: This is a conda environment definition file used by the model to
describe our dependencies. Figure 2.16 lists the content logged by MLflow in the
run we just completed:

Figure 2.16 – The content of the conda.yaml file logged by MLflow

	� requirements.txt: This is a Python pip-specific dependency definition file.
It is just like the pip section in the conda.yaml file, as shown in Figure 2.16.

	� data: This is a folder that contains the actual serialized model, called
model.pth, and a description file, called pickle_module_info.txt, whose
content for our first DL experiment is as follows:

mlflow.pytorch.pickle_module

This means the model is serialized using a PyTorch-compatible pickle serialization
method provided by MLflow. This allows MLflow to load the model back to
memory later if needed.

Exploring MLflow's components and usage patterns 43

Model Registry versus Model Logging
The MLflow model registry requires a relational database such as MySQL as
the artifact store, not just a plain filesystem. Therefore, in this chapter, we will
not explore it yet. Note that a model registry is different from model logging
in that, for each run, you want to log model metadata and artifacts. However,
only for certain runs that meet your production requirements, you may want
to register them in the model registry for production deployment and version
control. In later chapters, we will learn how to register models.

By now, you should have a good understanding of the list of files and metadata about the
model and the serialized model (along with the .pth file extension in our experiment,
which refers to a PyTorch serialized model) logged in the MLflow artifact store. In
the upcoming chapters, we will learn more about how the MLflow model flavor works
and how to use the logged model for model registry and deployment. MLflow model
flavors are model frameworks such as PyTorch, TensorFlow, and scikit-learn, which are
supported by MLflow. Interested readers can find more details about the current built-in
model flavors supported by MLflow from the official MLflow documentation site at
https://www.mlflow.org/docs/latest/models.html#built-in-model-
flavors.

Exploring MLflow code tracking and its usages
When exploring the metadata of the run, we can also discover how the code is being
tracked. As shown in the MLflow UI and the command-line output in JSON, the code is
tracked in three ways: a filename, a Git commit hash, and a source type. You can execute
the following command line:

mlflow runs describe --run-id 2f2ec6e72a5042f891abe0d3a533eec7
| grep mlflow.source

You should be able to find the following segments of JSON key-value pairs in the output:

"mlflow.source.git.commit":
"ad6c7338a416ff4c2848d726b092057457c22408",

"mlflow.source.name": "first_dl_with_mlflow.py",

"mlflow.source.type": "LOCAL"

Based on this ad6c7338a416ff4c2848d726b092057457c22408 Git commit
hash, we can go on to find the exact copy of the Python code we used: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/
chapter02/first_dl_with_mlflow.py.

https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py

44 Getting Started with MLflow for Deep Learning

Note that, here, the source type is LOCAL. This means that we execute the
MLflow-enabled source code from a local copy of the code. In later chapters,
we will learn about other source types.

LOCAL versus Remote GitHub Code
If the source is a local copy of the code, there is a caveat regarding the Git
commit hash that you see in the MLflow tracking server. If you make code
changes locally but forget to commit them and then immediately start an
MLflow experiment tracking run, MLflow will only log the most recent Git
commit hash. We can solve this problem in one of two ways:

1. Commit our code changes before running the MLflow experiment.

2. Use remote GitHub code to run the experiment.

Since the first method is not easily enforceable, the second method is preferred.
Using remote GitHub code to run a DL experiment is an advanced topic that
we will explore in later chapters.

So far, we have learned about the MLflow tracking server, experiments, and runs.
Additionally, we have logged metadata about runs such as parameters and metrics,
examined code tracking, and explored model logging. These tracking and logging
capabilities ensure that we have a solid ML experiment management system, not only
for model development but also for model deployment in the future, as we need to track
which runs produce the model for production. Reproducibility and provenance-tracking
are the hallmarks of what MLflow provides. In addition to this, MLflow provides
other components such as MLproject for standardized ML project code organization,
a model registry for model versioning control, model deployment capabilities, and model
explainability tools. All of these MLflow components cover the whole life cycle of
ML/DL development, deployment, and production, which we will examine in more
depth in future chapters.

Summary
In this chapter, we learned how to set up MLflow to work with either a local MLflow
tracking server or a remote MLflow tracking server. Then, we implemented our first DL
model with MLflow autologging enabled. This allowed us to explore MLflow in
a hands-on way to understand a few central concepts and foundational components
such as experiments, runs, metadata about experiments and runs, code tracking, model
logging, and model flavor. The knowledge and first-round experiences gained in this
chapter will help us to learn more in-depth MLflow tracking APIs in the next chapter.

Further reading 45

Further reading
To further your knowledge, you can consult the following resources and documentation:

•	 The MLflow Command-Line Interface documentation: https://www.mlflow.
org/docs/latest/cli.html

•	 The MLflow PyTorch autologging documentation: https://www.mlflow.org/
docs/latest/tracking.html#pytorch-experimental

•	 The MLflow PyTorch model flavor documentation: https://www.mlflow.
org/docs/latest/python_api/mlflow.pytorch.html#module-
mlflow.pytorch

•	 MLflow and PyTorch — Where Cutting Edge AI meets MLOps: https://medium.
com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-
meets-mlops-1985cf8aa789

•	 Controlled Experiments in Machine Learning: https://
machinelearningmastery.com/controlled-experiments-in-
machine-learning/

https://www.mlflow.org/docs/latest/cli.html
https://www.mlflow.org/docs/latest/cli.html
https://www.mlflow.org/docs/latest/tracking.html#pytorch-experimental
https://www.mlflow.org/docs/latest/tracking.html#pytorch-experimental
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/

Section 2 –
Tracking a Deep

Learning Pipeline
at Scale

In this section, we will learn how to use MLflow to track deep learning (DL) pipelines to
answer various provenance-tracking questions related to data, model, and code (including
both notebook and pipeline code). We will start with setting up a local full-fledged
MLflow tracking server that will be used frequently in the rest of this book. A provenance
tracking framework that includes six types of provenance questions will be presented to
guide our implementation. Then, we will learn how to track model provenance, metrics,
and parameters using MLflow to answer these provenance questions. We will also learn
how to choose an appropriate notebook and pipeline framework to implement DL code
that's extensible and trackable. We will then implement a multi-step DL training/testing/
registration pipeline using MLflow's MLproject. Finally, we will learn how to track public
and privately built Python libraries and data versioning using Delta Lake.

This section comprises the following chapters:

•	 Chapter 3, Tracking Models, Parameters, and Metrics

•	 Chapter 4, Tracking Code and Data Versioning

3
 Tracking Models,

Parameters,
and Metrics

Given that MLflow can support multiple scenarios through the life cycle of DL models,
it is common to use MLflow's capabilities incrementally. Usually, people start with
MLflow tracking since it is easy to use and can handle many scenarios for reproducibility,
provenance tracking, and auditing purposes. In addition, tracking the history of a model
from cradle to sunset not only goes beyond the data science experiment management
domain but is also important for model governance in the enterprise, where business and
regulatory risks need to be managed for using models in production. While the precise
business values of tracking models in production are still evolving, the need for tracking
a model's entire life cycle is unquestionable and growing. For us to be able to do this, we
will begin this chapter by setting up a full-fledged local MLflow tracking server.

50 Tracking Models, Parameters, and Metrics

We will then take a deep dive into how we can track a model, along with its parameters
and metrics, using MLflow's tracking and registry APIs. By the end of this chapter,
you should feel comfortable using MLflow's tracking and registry APIs for various
reproducibility and auditing purposes.

In this chapter, we're going to cover the following main topics:

•	 Setting up a full-fledged local MLflow tracking server

•	 Tracking model provenance

•	 Tracking model metrics

•	 Tracking model parameters

Technical requirements
The following are the requirements you will need to follow the instructions provided in
this chapter:

•	 Docker Desktop: https://docs.docker.com/get-docker/.

•	 PyTorch lightning-flash: 0.5.0.: https://github.com/
PyTorchLightning/lightning-flash/releases/tag/0.5.0.

•	 VS Code with the Jupyter Notebook extension: https://github.com/
microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-
Debugging-for-Notebooks.

•	 The following GitHub URL for the code for this chapter: https://github.
com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLflow/tree/main/chapter03.

•	 WSL2: If you are a Microsoft Windows user, it is recommended to install WSL2 to
run the Bash scripts provided in this book: https://www.windowscentral.
com/how-install-wsl2-windows-10.

https://docs.docker.com/get-docker/
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.windowscentral.com/how-install-wsl2-windows-10

Setting up a full-fledged local MLflow tracking server 51

Setting up a full-fledged local MLflow
tracking server
In Chapter 2, Getting Started with MLflow for Deep Learning, we gained hands-on
experience working with a local filesystem-based MLflow tracking server and inspecting
the components of the MLflow experiment. However, there are limitations with a default
local filesystem-based MLflow server as the model registry functionality is not available.
The benefit of having a model registry is that we can register the model, version control
the model, and prepare for model deployment into production. Therefore, this model
registry will bridge the gap between offline experimentation and an online deployment
production scenario. Thus, we need a full-fledged MLflow tracking server with the
following stores to track the complete life cycle of a model:

•	 Backend store: A relational database backend is needed to support MLflow's
storage of metadata (metrics, parameters, and many others) about the experiment.
This also allows the query capability of the experiment to be used. We will use
a MySQL database as a local backend store.

•	 Artifact store: An object store that can store arbitrary types of objects, such as
serialized models, vocabulary files, figures, and many others. In a production
environment, a popular choice is the AWS S3 store. We will use MinIO (https://
min.io/), a multi-cloud object store, as a local artifact store, which is fully
compatible with the AWS S3 store API but can run on your laptop without you
needing to access the cloud.

To make this local setup as easy as possible, we will use the docker-compose
(https://docs.docker.com/compose/) tool with one line of command to start
and stop a local full-fledged MLflow tracking server, as described in the following steps.
Note that Docker Desktop (https://docs.docker.com/get-docker/) must be
installed and running on the machine before you can follow these steps. Docker helps
build and share containerized applications and microservices. The following steps will
launch the local MLflow tracking server inside your local Docker container:

1.	 Check out the chapter03 code repository for your local development
environment: https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03.

2.	 Change directory to the mlflow_docker_setup subfolder, which can be found
under the chapter03 folder.

3.	 Run the following command:

bash start_mlflow.sh

https://min.io/
https://min.io/
https://docs.docker.com/compose/
https://docs.docker.com/get-docker/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03

52 Tracking Models, Parameters, and Metrics

If the command is successful, you should see an output similar to the following on
your screen:

Figure 3.1 – A local full-fledged MLflow tracking server is up and running

4.	 Go to http://localhost/ to see the MLflow UI web page. Then, click the
Models tab in the UI (Figure 3.2). Note that this tab would not work if you only
had a local filesystem as the backend store for the MLflow tracking server. Hence,
the MLflow UI's backend is now running on the Docker container service you
just started, not a local filesystem. Since this is a brand-new server, there are no
registered models yet:

Figure 3.2 – MLflow model registry UI

5.	 Go to http://localhost:9000/,and the following screen (Figure 3.3) should
appear for the MinIO artifact store web UI. Enter minio for Access Key and
minio123 for Secret Key. These are defined in the .env file, under the mlflow_
docker_setup folder:

Tracking model provenance 53

Figure 3.3 – MinIO Web UI login page and browser page after logging in

At this point, you should have a full-fledged local MLflow tracking server running
successfully! If you want to stop the server, simply type the following command:

bash stop_mlflow.sh

The Docker-based MLflow tracking server will stop. We are now ready to use this local
MLflow server to track model provenance, parameters, and metrics.

Tracking model provenance
Provenance tracking for digital artifacts has been long studied in the literature. For
example, when you're using a piece of patient diagnosis data in the biomedical industry,
people usually want to know where it comes from, what kind of processing and cleaning
has been done to the data, who owns the data, and other history and lineage information
about the data. The rise of ML/DL models for industrial and business scenarios in
production makes provenance tracking a required functionality. The different granularities
of provenance tracking are critical for operationalizing and managing not just the data
science offline experimentation, but also before/during/after the model is deployed in
production. So, what needs to be tracked for provenance?

54 Tracking Models, Parameters, and Metrics

Understanding the open provenance tracking
framework
Let's look at a general provenance tracking framework to understand the big picture
of why provenance tracking is a major effort. The following diagram is based on the
Open Provenance Model Vocabulary Specification (http://open-biomed.
sourceforge.net/opmv/ns.html):

Figure 3.4 – An open provenance tracking framework

In the preceding diagram, there are three important items:

•	 Artifacts: Things that are produced or used by processes (A1 and A2).

•	 Processes: Actions that are performed by using or producing artifacts (P1 and P2).

•	 Causal relationships: Edges or relationships between artifacts and processes, such
as used, wasGeneratedBy, and wasDerivedFrom in the preceding diagram (R1, R2,
and R3).

Intuitively, this open provenance model (OPM) framework allows us to ask the following
5W1H (five Ws and one H) questions, as follows:

http://open-biomed.sourceforge.net/opmv/ns.html
http://open-biomed.sourceforge.net/opmv/ns.html

Tracking model provenance 55

Figure 3.5 – Types of provenance questions

Having a systematic provenance framework and a set of questions will help us learn how
to track model provenance and provide answers to these questions. This will motivate us
when we implement MLflow model tracking in the next section.

Implementing MLflow model tracking
We can use an MLflow tracking server to answer most of these types of provenance
questions if we implement both MLflow logging and registry for the DL model we use.
First, let's review what MLflow provides in terms of model provenance tracking. MLflow
provides two sets of APIs for model provenance:

•	 Logging API: This allows each run of the experiment or a model pipeline to log the
model artifact into the artifact store.

•	 Registry API: This allows a centralized location to track the version of the model
and the stages of the model's life cycle (None, Archived, Staging, or Production).

56 Tracking Models, Parameters, and Metrics

Difference between Model Logging and Model Registry
Although every run of the experiment needs to be logged and the model needs
to be saved in the artifact store, not every instance of the model needs to be
registered in the model registry. That's because, for many early exploratory
model experimentations, the model might not be good. Thus, it is not
necessarily registered to track the version. Only when a model has good offline
performance and becomes a candidate for promoting to production do we
need to register it in the model registry to go through the model promotion
process.

Although MLflow's official API documentation separates logging and registry
into two components, we will refer to them together as model tracking
functionality in MLflow in this book.

We already saw MLflow's auto-logging for the DL model we built in Chapter 2, Getting
Started with MLflow for Deep Learning. Although auto-logging is powerful, there are two
issues with the current version:

•	 It does not automatically register the model to the model registry.

•	 It does not work out of the box for the logged model to work directly with the
original input data (in our case, an English sentence) if you just follow MLflow's
suggestion to use the mlflow.pyfunc.load_model API to load the logged
model. This is a limitation that's probably due to the experimental nature of the
current auto-logging APIs in MLflow.

Let's walk through an example to review MLflow's capabilities and auto-logging's
limitations and how we can solve them:

1.	 Set up the following environment variables in your Bash terminal, where your
MinIO and MySQL-based Docker component is running:

export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000

export AWS_ACCESS_KEY_ID=minio

export AWS_SECRET_ACCESS_KEY=minio123

Note that AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY are using
the same values that were defined in the .env file, under the mlflow_docker_
setup folder. This is done to make sure that we are using the MLflow server that
we set up previously. Since these environmental variables are session-based, we can
also set up the following environment variables in the notebook's code, as follows:

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"

Tracking model provenance 57

os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://
localhost:9000"

The preceding three lines of code can be found in this chapter's notebook file,
just after importing the required Python packages. Before you execute the
notebook, make sure that you run the following commands to initialize the virtual
environment, dl_model, which now has additional required packages defined in
the requirements.txt file:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install -r requirements.txt

If you set up the dl_model virtual environment in the previous chapters, you can
skip the first line on creating a virtual environment called dl_model. However,
you still need to activate dl_model as the currently active virtual environment
and then run pip install -r requirements.txt to install all the required
Python packages. Once the dl_model virtual environment has been set up
successfully, you may proceed to the next step.

2.	 To follow along with this model tracking implementation, check out the
dl_model_tracking.ipynb notebook file in VS Code by going to this
chapter's GitHub repository: https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter03/dl_model_tracking.ipynb.

Note that, in the fourth cell of the dl_model_tracking.ipynb notebook, we
need to point it to the correct and new MLflow tracking URI that we just set up in
the Docker and define a new experiment, as follows:

EXPERIMENT_NAME = "dl_model_chapter03"

mlflow.set_tracking_uri('http://localhost')

3.	 We will still use the auto-logging capabilities provided by MLflow but we will assign
the run with a variable name, dl_model_tracking_run:

mlflow.pytorch.autolog()

with mlflow.start_run(experiment_id=experiment.
experiment_id, run_name="chapter03") as dl_model_
tracking_run:

 trainer.finetune(classifier_model,
datamodule=datamodule, strategy="freeze")

 trainer.test()

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb

58 Tracking Models, Parameters, and Metrics

dl_model_tracking_run allows us to get the run_id parameter and
other metadata about this run programmatically, as we will see in the next
step. Once this code cell has been executed, we will have a trained model
logged in the MLflow tracking server with all the required parameters
and metrics. However, the model hasn't been registered yet. We can find
the logged experiment in the MLflow web UI, along with all the relevant
parameters and metrics, at http://localhost/#/experiments/1/
runs/37a3fe9b6faf41d89001eca13ad6ca47. You can find the model
artifacts in the MinIO storage backend. Go to http://localhost:9000/
minio/mlflow/1/37a3fe9b6faf41d89001eca13ad6ca47/artifacts/
model/ to see the storage UI, as shown here:

Figure 3.6 – Model artifacts logged In the MinIO storage backend
The folder structure is similar to what we saw in Chapter 2, Getting Started with
MLflow for Deep Learning, when we used a plain filesystem to store the model
artifacts. However, here, we are using a MinIO bucket to store these model artifacts.

Tracking model provenance 59

4.	 Retrieve the run_id parameter from dl_model_tracking_run, as well as
other metadata, as follows:

run_id = dl_model_tracking_run.info.run_id

print("run_id: {}; lifecycle_stage: {}".format(run_id,

 mlflow.get_run(run_id).info.lifecycle_stage))

This will print out something like the following:
run_id: 37a3fe9b6faf41d89001eca13ad6ca47; lifecycle_
stage: active

5.	 Retrieve the logged model by defining the logged model URI. This will allow us to
reload the logged model at this specific location:

logged_model = f'runs:/{run_id}/model'

6.	 Use mlflow.pytorch.load_model and the following logged_model URI
to load the model back into memory and make a new prediction for a given input
sentence, as follows:

model = mlflow.pytorch.load_model(logged_model)

model.predict({'This is great news'})

This will output a model prediction label, as follows:
['positive']

mlflow.pytorch.load_model versus mlflow.pyfunc.load_model
By default, and in the MLflow experiment tracking page's artifact section, if
you have a logged model, MLflow will recommend using mlflow.pyfunc.
load_model to load back a logged model for prediction. However, this only
works for inputs such as a pandas DataFrame, NumPy array, or tensor; this
does not work for an NLP text input. Since auto-logging for PyTorch lightning
uses mlflow.pytorch.log_model to save the model, the correct way
to load a logged model back is to use mlflow.pytorch.load_model,
as we have shown here. This is because MLflow's default design is to use
mlflow.pyfunc.load_model with standardization and a known
limitation that can only accept input formats in terms of numbers. For text and
image data, it requires a tokenization step as a preprocessing step. However,
since the PyTorch model we saved here already performs tokenization as part
of the serialized model, we can use the native mlflow.pytorch.load_
model to directly load the model that accepts text as inputs.

60 Tracking Models, Parameters, and Metrics

With that, we have successfully logged the model and loaded the model back to
make a prediction. If we think this model is performing well enough, then we can
register it.

7.	 Let's register the model by using the mlflow.register_model API:

model_registry_version = mlflow.register_model(logged_
model, 'nlp_dl_model')

print(f'Model Name: {model_registry_version.name}')

print(f'Model Version: {model_registry_version.version}')

This will produce the following output:

Figure 3.7 – Model registration success message
This shows that the model has been successfully registered as version 1 in the model
registry, under the name nlp_dl_model.

We can also find this registered model in the MLflow web UI by clicking http://
localhost/#/models/nlp_dl_model/versions/1:

Figure 3.8 – MLflow tracking server web UI showing the newly registered model
By default, a newly registered model's stage is None, as shown in the preceding
screenshot.

Tracking model provenance 61

By having a model registered with a version number and stage label, we have laid
the foundation for deployment to staging (also known as pre-production) and then
production. We will discuss how to perform model deployment based on registered
models later in this book.

At this point, we have solved the two issues we raised at the beginning of this section
regarding the limitations of auto-logging:

•	 How to load a logged DL PyTorch model using the mlflow.pytorch.load_
model API instead of the mlflow.pyfunc.load_model API

•	 How to register a logged DL PyTorch model using the mlflow.register_
model API

Choices of MLflow DL Model Logging APIs
For DL models, the auto-logging for PyTorch only works for PyTorch
lightning frameworks. There are other DL frameworks, such as
TensorFlow, Keras, fastai, and MXNet, that are also supported by
the corresponding MLflow auto-logging APIs. For other PyTorch
frameworks such as Hugging Face, we can use MLflow's mlflow.
pyfunc.log_model to log the model, especially when we need to
have multi-step DL model pipelines. We will implement such custom
MLflow model flavors later in this book. If you don't want to use auto-
logging for PyTorch, then you can directly use mlflow.pytorch.
log_model. PyTorch's auto-logging uses mlflow.pytorch.log_
model inside its implementation (see the official MLflow open source
implementation here: https://github.com/mlflow/mlflow/
blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/
mlflow/pytorch/_pytorch_autolog.py#L314).

If we don't want to use auto-logging, then we can use MLflow's model logging API
directly. This also gives us an alternative way to simultaneously register the model in one
call. You can use the following line of code to both log and register the trained model:

mlflow.pytorch.log_model(pytorch_model=trainer.model, artifact_
path='dl_model', registered_model_name='nlp_dl_model')

Note that this line of code does not log any parameters or metrics of the model.

https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314
https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314
https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314

62 Tracking Models, Parameters, and Metrics

With that, we have not only logged many experiments and models in the tracking
server for offline experimentation but also registered performant models for production
deployment in the future with version control and provenance tracking. We can now
answer some of the provenance questions that we posted at the beginning of this chapter:

Figure 3.9 – Answers to model provenance questions

The why and where provenance questions are yet to be fully answered but will be done so
later in this book. This is because the why provenance question for the production model
can only be tracked and logged when the model is ready for deployment, where we need
to add comments and reasons to justify the model's deployment. The where provenance
question can be answered fully when we have a multiple-step model pipeline. However,
here, we only have a single-step pipeline, which is the simplest case. A multi-step
pipeline contains explicitly separate modulized code to specify which step performs what
functionality so that we can easily change the detailed implementation of any of the steps
without changing the flow of the pipeline. In the next two sections, we will investigate how
we can track metrics and the parameters of models without using auto-logging.

Tracking model metrics 63

Tracking model metrics
The default metric for the text classification model in the PyTorch lightning-flash
package is Accuracy. If we want to change the metric to F1 score (a harmonic mean
of precision and recall), which is a very common metric for measuring a classifier's
performance, then we need to change the configuration of the classifier model before
we start the model training process. Let's learn how to make this change and then use
MLflow's non-auto-logging API to log the metrics:

1.	 When defining the classifier variable, instead of using the default metric, we will
pass a metric function called torchmetrics.F1 as a variable, as follows:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes,
metrics=torchmetrics.F1(datamodule.num_classes))

This uses the built-in metrics function of torchmetrics, the F1 module, along
with the number of classes in the data we need to classify as a parameter. This makes
sure that the model is trained and tested using this new metric. You will see an
output similar to the following:

{'test_cross_entropy': 0.785443127155304, 'test_f1':
0.5343999862670898}

This shows that the model training and testing were using the F1 score as the
metric, not the default accuracy metric. For more information on how you can use
torchmetrics for customized metrics, please consult its documentation site:
https://torchmetrics.readthedocs.io/en/latest/.

2.	 Now, if we want to log all the metrics to the MLflow tracking server, including the
training, validation, and testing metrics, we need to get all the current metrics by
calling the trainer's callback function, as follows:

 cur_metrics = trainer.callback_metrics

Then, we need to cast all the metric values to float to make sure that they are
compatible with the MLflow log_metrics API:

 metrics = dict(map(lambda x: (x[0], float(x[1])),
cur_metrics.items()))

3.	 Now, we can call MLflow's log_metrics to log all the metrics in the
tracking server:

 mlflow.log_metrics(metrics)

https://torchmetrics.readthedocs.io/en/latest/

64 Tracking Models, Parameters, and Metrics

You will see the following metrics after using the F1 score as the classifier's metric,
which will be logged in MLflow's tracking server:

{'train_f1': 0.5838666558265686,

'train_f1_step': 0.75,

'train_cross_entropy': 0.7465656399726868,

'train_cross_entropy_step': 0.30964696407318115,

'val_f1': 0.5203999876976013,

'val_cross_entropy': 0.8168156743049622,

'train_f1_epoch': 0.5838666558265686,

'train_cross_entropy_epoch': 0.7465656399726868,

'test_f1': 0.5343999862670898,

'test_cross_entropy': 0.785443127155304}

Using MLflow's log_metrics API gives us more control with additional lines of
code, but if we are satisfied with its auto-logging capabilities, then the only thing
we need to change is what metric we want to use for the model training and testing
processes. In this case, we only need to define a new metric to use when declaring
a new DL model (that is, use the F1 score instead of the default accuracy metric).

4.	 If you want to track multiple model metrics simultaneously, such as the F1 score,
accuracy, precision, and recall, then the only thing you need to do is define a Python
list of metrics you want to compute and track, as follows:

list_of_metrics = [torchmetrics.Accuracy(),

 torchmetrics.F1(num_classes=datamodule.num_classes),

 torchmetrics.Precision(num_classes=datamodule.num_
classes),

 torchmetrics.Recall(num_classes=datamodule.num_
classes)]

Then, in the model initialization statement, instead of passing a single metric to the
metrics parameter, you can just pass the list_of_metrics Python list that we
just defined, above the metrics parameter, as follows:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes,
metrics=list_of_metrics)

Tracking model metrics 65

No more changes need to be made to the rest of the code. So, in the dl_model-
non-auto-tracking.ipynb notebook (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.
ipynb), you will notice that the preceding line is commented out by default.
However, you can uncomment it and then comment out the previous one:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes,
metrics=torchmetrics.F1(datamodule.num_classes))

Then, when you run the rest of the notebook, you will get the model testing reports,
along with the following metrics, in the notebook's output:

{'test_accuracy': 0.6424000263214111, 'test_
cross_entropy': 0.6315688490867615, 'test_f1':
0.6424000263214111, 'test_precision': 0.6424000263214111,
'test_recall': 0.6424000263214111}

You may notice that the numbers for accuracy, F1, precision, and recall are the
same. This is because, by default, torchmetrics uses a micro-average method,
which computes a single scalar average score for all the classes by counting total
true positives, false negatives, and false positives. Scikit-learn has an average
option called binary that outputs only the score for the positive label when it
is a binary classification model (https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html#). However,
torchmetrics does not support a binary average method for a binary
classification model. The only alternative is to use a none method, which computes
the metric for each class and returns the metric for each class, even for a binary
classification model. So, this does not produce a single scalar number. However,
you can always call scikit-learn's metrics API to compute an F1-score or other
metrics based on the binary average method by passing two lists of values. Here, we
can use y_true and y_predict, where y_true is the list of ground truth label
values and y_predict is the list of model predicted label values. This can be a
good exercise for you to try out as this is a common practice for all ML models, not
special treatment for a DL model.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#

66 Tracking Models, Parameters, and Metrics

 Tracking model parameters
As we have already seen, there are lots of benefits of using auto-logging in MLflow, but if
we want to track additional model parameters, we can either use MLflow to log additional
parameters on top of what auto-logging records, or directly use MLflow to log all the
parameters we want without using auto-logging at all.

Let's walk through a notebook without using MLflow auto-logging. If we want to have
full control of what parameters will be logged by MLflow, we can use two APIs: mlflow.
log_param and mlflow.log_params. The first one logs a single pair of key-value
parameters, while the second logs an entire dictionary of key-value parameters. So, what
kind of parameters might we be interested in tracking? The following answers this:

•	 Model hyperparameters: Hyperparameters are defined before the learning process
begins, which means they control how the learning process learns. These parameters
can be turned and can directly affect how well a model trains. In a DL model, the
list of hyperparameters includes the backbone language model, learning rate, loss
function, the optimizer to be used, and many more. MLflow's auto-logging does not
automatically log all the hyperparameters, so this is an opportunity for us to directly
use MLflow's log_params API to record them in the experiment.

•	 Model parameters: These parameters are learned during the model training
process. For a DL model, these usually refer to the neural network weights that are
learned during training. We don't need to log these weight parameters individually
since they are already in the logged DL model.

Let's log these hyperparameters using MLflow's log_params API, as follows:

 params = {"epochs": trainer.max_epochs}

 if hasattr(trainer, "optimizers"):

 optimizer = trainer.optimizers[0]

 params["optimizer_name"] = optimizer.__class__.__name__

 if hasattr(optimizer, "defaults"):

 params.update(optimizer.defaults)

 params.update(classifier_model.hparams)

 mlflow.log_params(params)

 Tracking model parameters 67

Note that here, we log the maximal number of epochs, the trainer's first optimizer's
name, the optimizer's default parameters, and the overall classifier's hyperparameters
(classifier_model.hparams). The one-line piece of code mlflow.log_
params(params) logs all the key-value parameters in the params dictionary to the
MLflow tracking server. If you see the following hyperparameters in the MLflow tracking
server, then it means it works!

Figure 3.10 – MLflow tracking server web UI showing the logged model hyperparameters

68 Tracking Models, Parameters, and Metrics

Notice that this list of parameters is more than what the auto-logger logs as we added
additional hyperparameters to log in the experiment. If you want to log any other
customized parameters, you can follow the same pattern in your experiment. The
complete notebook, without the use of auto-logging, can be checked out in this chapter's
GitHub repository at https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_
model-non-auto-tracking.ipynb.

If you have reached this point in this chapter, then you have successfully implemented an
MLflow tracking model and its metrics and parameters!

Summary
In this chapter, we set up a local MLflow development environment that has full support
for backend storage and artifact storage using MySQL and the MinIO object store. This
will be very useful for us when we develop MLflow-supported DL models in this book.
We started by presenting the open provenance tracking framework and asked model
provenance tracking questions that are of interest. We worked on addressing the issues
of auto-logging and successfully registered a trained model by loading a trained model
from a logged model in MLflow for prediction using the mlflow.pytorch.load_
model API. We also experimented on how to directly use MLflow's log_metrics,
log_params, and log_model APIs without auto-logging, which gives us more control
and flexibility over how we can log additional or customized metrics and parameters. We
were able to answer many of the provenance questions by performing model provenance
tracking, as well as by providing a couple of the questions that require further study of
using MLflow to track multi-step model pipelines and their deployment.

We will continue our learning journey in the next chapter and learn how to perform code
and data tracking using MLflow, which will give us additional power to answer data and
code-related provenance questions.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb

Further reading 69

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following resources:

•	 MLflow Docker setup reference: https://github.com/sachua/mlflow-
docker-compose

•	 MLflow PyTorch autologging implementation: https://github.com/
mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.
py

•	 MLflow PyTorch model logging, loading, and registry documentation: https://
www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html

•	 MLflow parameters and metrics logging documentation: https://www.
mlflow.org/docs/latest/python_api/mlflow.html

•	 MLflow model registry documentation: https://www.mlflow.org/docs/
latest/model-registry.html

•	 Digging into big provenance (with SPADE): https://queue.acm.org/
detail.cfm?id=3476885

•	 How to utilize torchmetrics and lightning-flash: https://www.
exxactcorp.com/blog/Deep-Learning/advanced-pytorch-
lightning-using-torchmetrics-and-lightning-flash

•	 Why are precision, recall, and F1 score equal when using micro averaging in a
multi-class problem? https://simonhessner.de/why-are-precision-
recall-and-f1-score-equal-when-using-micro-averaging-in-a-
multi-class-problem/

https://github.com/sachua/mlflow-docker-compose
https://github.com/sachua/mlflow-docker-compose
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html
https://www.mlflow.org/docs/latest/python_api/mlflow.html
https://www.mlflow.org/docs/latest/python_api/mlflow.html
https://www.mlflow.org/docs/latest/model-registry.html
https://www.mlflow.org/docs/latest/model-registry.html
https://queue.acm.org/detail.cfm?id=3476885
https://queue.acm.org/detail.cfm?id=3476885
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/

4
 Tracking Code and

Data Versioning
DL models are not just models – they are intimately tied to the code that trains and
tests the model and the data that's used for training and testing. If we don't track
the code and data that's used for the model, it is impossible to reproduce the model
or improve it. Furthermore, there have been recent industry-wide awakenings and
paradigm shifts toward a data-centric AI (https://www.forbes.com/sites/
gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-
centric-ai/?sh=5cbacdc574f5), where the importance of data is being lifted to
a first-class artifact in building ML and, especially, DL models. Due to this, in this chapter,
we will learn how to track code and data versioning using MLflow. We will learn about the
different ways we can track code and pipeline versioning and how to use Delta Lake for
data versioning. By the end of this chapter, you will be able to understand and implement
tracking techniques for both code and data with MLflow.

In this chapter, we're going to cover the following main topics:

•	 Tracking notebook and pipeline versioning

•	 Tracking locally, privately built Python libraries

•	 Tracking data versioning in Delta Lake

https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5
https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5
https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5

72 Tracking Code and Data Versioning

Technical requirements
The following are the technical requirements for this chapter:

•	 VS Code with the Jupyter Notebook extension: https://github.com/
microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-
Debugging-for-Notebooks.

•	 The code for this chapter, which can be found in this book's GitHub repository:
https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/tree/main/chapter04.

•	 Access to a Databricks instance so that you can learn how to use Delta Lake to
enable versioned data access.

Tracking notebook and pipeline versioning
Data scientists usually start by experimenting with Python notebooks offline, where
interactive execution is a key benefit. Python notebooks have come a long way since the
days of Jupyter notebooks (https://jupyter-notebook.readthedocs.io/en/
stable/). The success and popularity of Jupyter notebooks are undeniable. However,
there are limitations when it comes to using version control for Jupyter notebooks since
Jupyter notebooks are stored as JSON data with mixed output and code. This is especially
difficult if we trying to track code using MLflow as we're only using Jupyter's native
format, whose file extension is .ipynb. You may not be able to see the exact Git hash in
the MLflow tracking server for each run using a Jupyter notebook either. There are a lot
of interesting debates on whether or when a Jupyter notebook should be used, especially
in a production environment (see a discussion here: https://medium.com/mlops-
community/jupyter-notebooks-in-production-4e0d38803251). There are
multiple reasons why we shouldn't use Jupyter notebooks in a production environment,
especially when we need reproducibility in an end-to-end pipeline fashion, where unit
testing, proper code versioning, and dependency management could be difficult with a lot
of notebooks. There are some early innovations around scheduling, parameterizing, and
executing Jupyter notebooks in a workflow fashion using the open source tool papermill
by Netflix (https://papermill.readthedocs.io/en/latest/index.html).
However, a recent innovation by Databricks and VS Code makes notebooks much
easier to be version controlled and integrated with MLflow. Let's look at the notebook
characteristics that were introduced by these two tools:

•	 Interactive execution: Both Databricks's notebooks and VS Code's notebooks can
run the same way as traditional Jupyter notebooks, in a cell-by-cell execution mode.
By doing this, you can immediately see the output of the results.

https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://medium.com/mlops-community/jupyter-notebooks-in-production-4e0d38803251
https://medium.com/mlops-community/jupyter-notebooks-in-production-4e0d38803251
https://papermill.readthedocs.io/en/latest/index.html

Tracking notebook and pipeline versioning 73

•	 File format: Both Databricks's notebooks and VS Code's notebooks are stored as
plain-old Python code with a .py file extension. This allows all the regular Python
code linting (code format and style checking) to be applied to a notebook.

•	 Special symbols for rendering code cells and Mark down cells: Both Databricks
and VS Code leverage some special symbols to render Python files as interactive
notebooks. In Databricks, the special symbols to delineate code into different
executable cells are as follows:

COMMAND ----------

import mlflow

import torch

from flash.core.data.utils import download_data

from flash.text import TextClassificationData,
TextClassifier

import torchmetrics

The code below the special COMMAND line will be rendered as an executable cell in
the Databricks web UI portal, as follows:

Figure 4.1 – Databricks executable cell
To execute the code in this cell, you can just click Run Cell via the top-right drop-
down menu.

To add a large chunk of text to describe and comment on the code in Databricks
(also known as Markdown cells), you can use the # MAGIC symbol at the
beginning of the line, as follows:

MAGIC %md

MAGIC #### Notebooks for fine-tuning a pretrained
language model to do text-based sentiment classification

74 Tracking Code and Data Versioning

This is then rendered in the Databricks notebook as a Markdown comment cell,
as follows:

Figure 4.2 – Databricks Markdown text cell
In VS Code, a slightly different set of symbols is used for these two types of cells.
For a code cell, the # %% symbols are used at the beginning of the cell block:

%%

download_data("https://pl-flash-data.s3.amazonaws.com/
imdb.zip", "./data/")

datamodule = TextClassificationData.from_csv(

 input_fields="review",

 target_fields="sentiment",

 train_file="data/imdb/train.csv",

 val_file="data/imdb/valid.csv",

 test_file="data/imdb/test.csv"

)

This is then rendered in VS Code's editor, as follows:

Figure 4.3 – VS Code code cell
As you can see, there is a Run Cell button before the block of code that you can
click to run the code block interactively. If you click the Run Cell button, the code
block will start executing in the side panel of the editor window, as shown here:

Tracking notebook and pipeline versioning 75

 Figure 4.4 – Running code interactively in VS Code
To add a Markdown cell that contains comments, add the following to the
beginning of the line, as well as the necessary symbols:

%% Notebook for fine-tuning a pretrained language model
and sentiment classification

This will ensure that the text is not an executable code block in VS Code.
Given the advantages of Databricks and VS Code notebooks, we suggest using either for
version tracking. We can use GitHub to track the versioning of either type of notebook
since they use a regular Python file format.

Two Ways to Use Databricks Notebook Version Control
For a managed Databricks instance, a notebook version can be tracked in
two ways: by looking at the revision history on the side panel of the notebook
on the Databricks web UI, or by linking to a remote GitHub repository.
Detailed descriptions are available in the Databricks notebook documentation:
https://docs.databricks.com/notebooks/notebooks-
use.html#version-control.

https://docs.databricks.com/notebooks/notebooks-use.html#version-control
https://docs.databricks.com/notebooks/notebooks-use.html#version-control

76 Tracking Code and Data Versioning

While the Databricks web portal provides excellent support for notebook version control
and integration with MLflow experimentation tracking (see this chapter's callout boxes
on Two Ways to Use Databricks Notebook Version Control and Two Types of MLflow
Experiments in Databricks Notebooks), there is one major drawback of writing code
in the Databricks notebook web UI. This is because the web UI is not a typical integrated
development environment (IDE) compared to VS Code, where code style and formatting
tools such as flake8 (https://flake8.pycqa.org/en/latest/) and autopep8
(https://pypi.org/project/autopep8/) can easily be enforced. This can
have a major impact on code quality and maintainability. Thus, it is highly recommended
that you use VS Code to author notebook code (either a Databricks notebook or
a VS Code notebook).

Two Types of MLflow Experiments in Databricks Notebooks
For a managed Databricks web portal instance, there are two types of MLflow
experiments you can perform: workspace and notebook experiments.
A workspace experiment is mainly for a shared experiment folder that is not
tied to a single notebook. Remote code execution can write to a workspace
experiment folder if needed. On the other hand, a notebook scope experiment
is tied to a specific notebook and can be found directly on one of the top-right
menu items called Experiment in the notebook page on the Databricks web
portal. For more details, please look at the Databricks documentation website:
https://docs.databricks.com/applications/mlflow/
tracking.html#experiments.

Using this chapter's VS Code notebook, fine_tuning.py, which can be found in
this chapter's GitHub repository (https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter04/notebooks/fine_tuning.py), you will be able to run it interactively
in the VS Code editor and log the experiment in the MLflow Docker server that we set up
in Chapter 3, Tracking Models, Parameters, and Metrics. As a reminder, note that to run
this notebook in VS Code successfully, you will need to set up your virtual environment,
called dl_model, as described in the README.md file in this chapter's GitHub
repository. It consists of the following three steps:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install -r requirements.txt

If you run this notebook cell-by-cell from beginning to end, your experiment page will
look as follows:

https://flake8.pycqa.org/en/latest/
https://pypi.org/project/autopep8/
https://docs.databricks.com/applications/mlflow/tracking.html#experiments
https://docs.databricks.com/applications/mlflow/tracking.html#experiments
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py

Tracking notebook and pipeline versioning 77

Figure 4.5 – Logged experiment page after running a VS Code notebook interactively

You may immediately notice a problem in the preceding screenshot – Source: ipykernel_
laucher.py. This is not the source code file we just ran; that is, the fine_tuning.py file.
This is because VS Code notebooks are not natively integrated into the MLflow tracking
server for source file tracking; it can only show the ipykernel (https://pypi.org/
project/ipykernel/) that VS Code uses to execute a VS Code notebook
(https://github.com/microsoft/vscode-jupyter). Unfortunately, this is
a limitation that, at the time of writing, cannot be addressed by running VS Code
notebooks interactively for experiment code tracking. Databricks notebooks running
inside a hosted Databricks web UI have no such problem as they have native integration
with the MLflow tracking server that's bundled in the Databricks web portal.

However, since the VS Code notebooks are just Python code, we can run the notebooks in
the command line non-interactively, as follows:

python fine_tuning.py

This will log the actual source code's filename and the Git commit hash in the MLflow
experiment page without any issues, as shown here:

Figure 4.6 – Logged experiment page after running a VS Code notebook in the command line

https://pypi.org/project/ipykernel/
https://pypi.org/project/ipykernel/
https://github.com/microsoft/vscode-jupyter

78 Tracking Code and Data Versioning

The preceding screenshot shows the correct source filename (Source: fine_tuning.
py) and the correct git commit hash (661ffeda5ae53cff3623f2fcc8227d822e877e2d). This
workaround does not require us to change the notebook's code and could be very useful
if our initial interactive notebook debugging is done and we want to get a complete run
of the notebook, along with proper code version tracking in the MLflow tracking server.
Note that all the other parameters, metrics, and models are tracked properly, regardless of
whether we run the notebook interactively.

Pipeline tracking
Having discussed notebook code tracking (version and filename), let's turn to the topic
of pipeline tracking. Before we discuss pipeline tracking, however, we will discuss the
definition of a pipeline in the ML/DL life cycle. Conceptually, a pipeline is a multi-step
data processing and task workflow. However, the implementation of such a data/task
workflow can be quite different. A pipeline can be defined as a first-class Python API in
some ML packages. The two most well-known pipeline APIs are as follows:

•	 sklearn.pipeline.Pipeline (https://scikit-learn.org/stable/
modules/generated/sklearn.pipeline.Pipeline.html): This is
widely used for building tightly integrated multi-step pipelines for classical machine
learning or data extract, transform, and load (ETL) pipelines using pandas
DataFrames (https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html).

•	 pyspark.ml.Pipeline (https://spark.apache.org/docs/latest/
api/python/reference/api/pyspark.ml.Pipeline.html): This is
a PySpark version for building simple and tightly integrated multi-step pipelines
for machine learning or data ETL pipelines using Spark DataFrames (https://
spark.apache.org/docs/latest/api/python/reference/api/
pyspark.sql.DataFrame.html).

However, when we're building a DL model pipeline, we need to use multiple different
Python packages at different steps of the pipeline, so a one-size-fits-all approach using
a single pipeline API doesn't usually work. In addition, neither of the aforementioned
pipeline APIs have native support for the current popular DL packages, such as
Huggingface or PyTorch-Lightning, which require additional integration work.
Although some open source DL pipeline APIs exist such as Neuraxle (https://
github.com/Neuraxio/Neuraxle), which tries to provide a sklearn-like pipeline
interface and framework, it is not widely used. Furthermore, using these API-based
pipelines means that you'll be locked in when you need to add more steps to the
pipeline, which could reduce your flexibility to extend or evolve a DL pipeline when new
requirements arise.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.Pipeline.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.Pipeline.html
https://github.com/Neuraxio/Neuraxle
https://github.com/Neuraxio/Neuraxle

Tracking notebook and pipeline versioning 79

In this book, we will take a different approach to define and build a DL pipeline that's
based on MLflow's MLproject (https://www.mlflow.org/docs/latest/
projects.html#mlproject-file) structure. This will give you the most flexibility
to build a multi-step pipeline that can be tracked using MLflow. At the same time, for
each step, you will be allowed to use the most appropriate DL or data processing packages
without being locked in. Let's walk through this by breaking the single file-based Python
notebook, fine_tuning.py, into a multiple-step pipeline. This pipeline can be
visualized as a three-step flow diagram, as shown here:

Figure 4.7 – A three-step DL pipeline

This three-step flow is as follows:

1.	 Download the data to a local execution environment
2.	 Fine-tune the model
3.	 Register the model

These modular steps may seem to be overkill for our current example, but the power of
having a distinctive functional step is evident when more complexities are involved, or
when changes are needed at each step. Each step can be modified without them affecting
the other steps if we define the parameters that need to be passed between them. Each
step is a standalone Python file that can be executed independently with a set of input
parameters. There will be a main pipeline Python file that can run the whole pipeline or
a sub-section of the pipeline's steps. In the MLproject file, which is a standard YAML
file without the file extension, we can define four entry points (main, download_data,
fine_tuning_model, and register_model), their required input parameters,
their types and default values, and the command line to execute each entry point. In
our example, these entry points will be provided in a Python command-line execution
command. However, you can invoke any kind of execution, such as a batch shell script, if
needed for any particular steps. For example, the following lines in the MLproject file
for this chapter (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject)
describe the name of the project, the conda environment definition filename, and the
main entry point:

name: dl_model_chapter04

conda_env: conda.yaml

entry_points:

 main:

https://www.mlflow.org/docs/latest/projects.html#mlproject-file
https://www.mlflow.org/docs/latest/projects.html#mlproject-file
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject

80 Tracking Code and Data Versioning

 parameters:

 pipeline_steps:

 description: Comma-separated list of dl pipeline steps
to execute

 type: str

 default: all

 command: "python main.py --steps {pipeline_steps}"

Here, the name of the project is dl_model_chapter04. conda_env refers to a local
conda environment's YAML definition file, conda.yaml, which is located in the same
directory as the MLproject file. The entry_points section lists the first entry point,
called main. In the parameters section, there is one parameter called pipeline_
steps, which allows the user to define a comma-separated list of DL pipeline steps to
execute. This parameter is of the str type and its default value is all, which means that
all the pipeline steps will run. Lastly, the command section lists how to execute this step in
the command line.

The rest of the MLproject file defines the other three pipeline step entry points by
following the same syntactic convention as the main entry point. For example, the
following lines in the same MLproject file define the entry point of download_data:

 download_data:

 parameters:

 download_url:

 description: a url to download the data for fine tuning
a text sentiment classifier

 type: str

 default: https://pl-flash-data.s3.amazonaws.com/imdb.
zip

 local_folder:

 description: a local folder to store the downloaded
data

 type: str

 default: ./data

 pipeline_run_name:

 description: an mlflow run name

 type: str

 default: chapter04

 command:

Tracking notebook and pipeline versioning 81

 "python pipeline/download_data.py --download_url
{download_url} --local_folder {local_folder} \

 --pipeline_run_name {pipeline_run_name}"

The download_data section, similar to the main entry point, also defines the list of
parameters, types, and default values, as well as the command line to execute this step. We
can define the rest of the steps in the same manner as we did in the MLproject file that
we just checked out from this book's GitHub repository. For more details, take a look at
the full content of that MLproject file.

After defining the MLproject file, it becomes clear that we have defined a multi-step
pipeline in a declarative way. This is like a specification for the pipeline that says each
step's name, what input parameters it expects, and how to execute them. Now, the next
step is to implement the Python function to execute each step of the pipeline. So, let's look
at the core implementation of the main entry point's Python function, which is called
main.py. The following lines of code (not the entire Python code in main.py) illustrate
the core component of implementing the entire pipeline with just one step in the pipeline
(download_data):

@click.command()

@click.option("--steps", default="all", type=str)

def run_pipeline(steps):

 with mlflow.start_run(run_name='pipeline', nested=True) as
active_run:

 download_run = mlflow.run(".", "download_data",
parameters={})

if __name__ == "__main__":

 run_pipeline()

82 Tracking Code and Data Versioning

This main function snippet contains a run_pipeline function, which will be run
when the main.py file is executed in the command line. There is a parameter called
steps, which will be passed to this function when it's provided. In this example, we
are using the click Python package (https://click.palletsprojects.com/
en/8.0.x/) to parse command-line arguments. The run_pipeline function starts
an MLflow experiment run by calling mlflow.start_run and passing two parameters
(run_name and nested). We have used run_name before – it's the descriptive phrase
for this run. However, the nested parameter is new, which means that this is a parent
experiment run. This parent experiment run contains some child experiment runs that
will be hierarchically tracked in MLflow. Each parent run can contain one or more child
runs. In the example code, this contains one step of the pipeline run, called download_
data, which is invoked by calling mlflow.run. This is the key MLflow function to
invoke an MLproject's entry point programmatically. Once download_data has been
invoked and the run has finished, the parent run will also finish, thus concluding the
pipeline's run.

Two Ways to Execute an MLproject's Entry Point
There are two ways to execute an MLproject's entry point. First, you can
use MLflow's Python API, known as mlflow.run (https://www.
mlflow.org/docs/latest/python_api/mlflow.projects.
html#mlflow.projects.run). Alternatively, you can use the
MLflow's command-line interface tool, called mlflow run, which can
be called in a command-line shell environment to execute any entry point
directly (https://www.mlflow.org/docs/latest/cli.
html#mlflow-run).

Now, let's learn how to implement each step in the pipeline generically. For each pipeline
step, we put the Python files in a pipeline folder. In this example, we have three files:
download_data.py, fine_tuning_model.py, and register_model.py.
Thus, the relevant files for successfully building an MLflow supported pipeline project are
as follows:

MLproject

conda.yaml

main.py

pipeline/download_data.py

pipeline/fine_tuning_model.py

pipeline/register_model.py

https://click.palletsprojects.com/en/8.0.x/
https://click.palletsprojects.com/en/8.0.x/
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run

Tracking notebook and pipeline versioning 83

For the implementation of each pipeline step, we can use the following Python function
templates. A placeholder section is reserved for implementing the actual pipeline
step logic:

import click

import mlflow

@click.command()

@click.option("input")

def task(input):

 with mlflow.start_run() as mlrun:

 # Implement pipeline step logic here

 mlflow.log_parameter('parameter', parameter)

 mlflow.set_tag('pipeline_step', __file__)

 mlflow.log_artifacts(artifacts, artifact_path="data")

if __name__ == '__main__':

 task()

This template allows us to standardize the way we implement the pipeline step task. The
main idea here is that for each pipeline step task, it needs to start with mlflow.start_
run to launch an MLflow experiment run. Once we've implemented specific execution
logic in the function, we need to log some parameters using mlflow.log_parameter,
or some artifacts in the artifact store using mlflow.log_artifacts, that can be
passed to and used by the next step of the pipeline. This is called pipeline chaining, and
it allows multiple steps of a single pipeline or even different pipelines to share data and
artifacts. We also want to set a tag to indicate which step is executed using mlflow.
set_tag.

For example, in the download_data.py step, the core implementation is as follows:

import click

import mlflow

from flash.core.data.utils import download_data

@click.command()

@click.option("--download_url")

@click.option("--local_folder")

@click.option("--pipeline_run_name")

def task(download_url, local_folder, pipeline_run_name):

84 Tracking Code and Data Versioning

 with mlflow.start_run(run_name=pipeline_run_name) as mlrun:

 download_data(download_url, local_folder)

 mlflow.log_param("download_url", download_url)

 mlflow.log_param("local_folder", local_folder)

 mlflow.set_tag('pipeline_step', __file__)

 mlflow.log_artifacts(local_folder, artifact_
path="data")

if __name__ == '__main__':

 task()

In this download_data.py implementation, the task is to download the data for
model building from a remote URL to a local folder (download_data(download_
url, local_folder)). Once we've done this, we will log a few parameters, such as
download_url and local_folder. We can also log the newly downloaded data into
the MLflow artifact store using mlflow.log_artifacts. For this example, this may
not seem necessary since we only want to execute the next step in a local development
environment. However, for a more realistic scenario in a distributed execution
environment where each step could be run in different execution environments, this is
very desirable since we only need to pass the artifact URL path to the next step of the
pipeline to use; we don't need to know how and where the previous step was executed. In
this example, when the mlflow.log_artifacts(local_folder, artifact_
path="data") statement is called, the downloaded data folder is uploaded to the
MLflow artifact store. However, we will not use this artifact path for the downstream
pipeline step in this chapter. We will explore how we use this kind of artifact store to
pass artifacts to the next step in the pipeline later in this book. Here, we will use the log
parameters to pass the downloaded data path to the next step of the pipeline (mlflow.
log_param("local_folder", local_folder)). So, let's look at how we can
do that by extending main.py so that it includes the next step, which is the fine_
tuning_model entry point, as follows:

 with mlflow.start_run(run_name='pipeline', nested=True)
as active_run:

 download_run = mlflow.run(".", "download_data",
parameters={})

 download_run = mlflow.tracking.MlflowClient().get_
run(download_run.run_id)

 file_path_uri = download_run.data.params['local_
folder']

Tracking notebook and pipeline versioning 85

 fine_tuning_run = mlflow.run(".", "fine_tuning_
model", parameters={"data_path": file_path_uri})

We use mlflow.tracking.MlflowClient().get_run to get the download_run
MLflow run object and then use download_run.data.params to get file_path_
uri (in this case, it is just a local folder path). This is then passed to the next mlflow.
run, which is fine_tuning_run, as a key-value parameter (parameters={"data_
path": file_path_uri). This way, the fine_tuning_run pipeline step can use
this parameter to prefix its data source path. This is a very simplified scenario to illustrate
how we can pass data from one step to the next. Using the mlflow.tracking.
MlflowClient() API, which is provided by MLflow (https://www.mlflow.org/
docs/latest/python_api/mlflow.tracking.html), makes accessing a run's
information (parameters, metrics, and artifacts) straightforward.

We can also extend the main.py file with the third step of the pipeline by adding the
register_model step. This time, we need the logged model URI to register a trained
model, which depends on run_id of the fine_tuning_model step. So, in the fine_
tuning_model step, we need to get the run_id property of fine_tuning_model
run and then pass it through the input parameter for the register_model run,
as follows:

fine_tuning_run_id = fine_tuning_run.run_id

register_model_run = mlflow.run(".", "register_model",
parameters={"mlflow_run_id": fine_tuning_run_id})

Now, the register_model step can use fine_tuning_run_id to locate the logged
model. The core implementation of the register_model step is as follows:

 with mlflow.start_run() as mlrun:

 logged_model = f'runs:/{mlflow_run_id}/model'

 mlflow.register_model(logged_model, registered_model_
name)

This will register a fine-tuned model at the URI defined by the logged_model variable
to an MLflow model registry.

https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html
https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html

86 Tracking Code and Data Versioning

If you have followed these steps, then you should have a working pipeline that can be
tracked by MLflow from end to end. As a reminder, a prerequisite is to have the local
full-fledged MLflow server set up, as shown in Chapter 3, Tracking Models, Parameters,
and Metrics. You should have set up the virtual environment, dl_model, in the previous
section. To test this pipeline, check out this chapter's GitHub repository at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLFlow/tree/main/chapter04 and run the following command:

python main.py

This will run the entire three-step pipeline and log the pipeline's run_id (which is the
parent run) and each step's run as the child runs in the MLflow tracking server. The last
few lines of the console screen's output will display something as follows when it has
finished running (you will see lots of outputs on the screen when you run the pipeline):

Figure 4.8 – Console output of running the pipeline with MLflow run_ids

This shows the pipeline's run_id, which is f8f21fdf8fff4fd6a400eeb403b776c8;
the last step is the run_id property of fine_tuning_model, which is
5ba38e059695485396e709b809e9bb8d. If we go to the MLflow tracking server's
UI web page by clicking on http://localhost, we should be able to see the following
nested experiment runs in the dl_model_chapter04 experiment folder, as follows:

Figure 4.9 – A pipeline being run with nested three-step child runs in the MLflow tracking server

The preceding screenshot shows the pipeline run, along with the source main.py file and
the nested run of the three steps of the pipeline. Each step has a corresponding entry point
name defined in MLproject with a GitHub commit hash code version of d0d416. If you
click on the register_model run page, you will see the following information:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04

Tracking notebook and pipeline versioning 87

Figure 4.10 – Entry point register_model's run page on the MLflow tracking server

The preceding screenshot shows not only some of the familiar information
we have seen already, but also some new information such as Parent Run:
f8f21fdf8fff4fd6a400eeb403b776c8, Entry Point: register_model, and a fully populated
Run Command cell that's automatically generated by MLflow. Run Command contains
the file's location URL (a string that starts with file:///), the GitHub hash code
version, the entry point (-e register_model), the execution environment, which is
a local dev environment (-b local), and the expected parameters for the register_
model function (-P). We will learn how to use MLflow's MLproject to run commands
to execute tasks remotely later in this book. Here, we just need to understand that the
source code is referred to through the entry point (register_model), not the filename
itself, since the reference is declared as an entry point in the MLproject file.

If you saw the output shown in Figure 4.9 and Figure 4.10 in your MLflow tracking server,
then it's time to celebrate – you have successfully executed a multi-step DL pipeline using
MLflow!

In summary, to track a multi-step DL pipeline in MLflow, we can use MLproject to define
entry points for each pipeline step and a main pipeline entry point. In the main pipeline
function, we implement methods so that data can be passed between pipeline steps. Each
pipeline step then uses the data that's been shared, as well as other input parameters, to
execute a specific task. Both the main pipeline-level function and each step of the pipeline
are tracked using the MLflow tracking server, which produces a parent run_id to track
the main pipeline run and multiple MLflow nested runs to track each pipeline's step. We
introduced a template for each pipeline step to implement this task in a standard way. We
also explored the powerful pipeline chaining that's done through MLflow's run parameter
and artifact store to learn how to pass data between pipeline steps.

88 Tracking Code and Data Versioning

Now that you know how to track notebooks and pipelines, let's learn how to track Python
libraries.

Tracking locally, privately built Python
libraries
Now, let's turn our attention to tracking locally, privately built Python libraries. For
publicly released Python libraries, we can explicitly specify their released version,
which is published in PyPI, in a requirements file or a conda.yaml file. For example,
this chapter's conda.yaml file (https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter04/conda.yaml) defines the Python version and provides a reference to a
requirements file, as follows:

name: dl_model

channels:

 - conda-forge

dependencies:

 - python=3.8.10

 - pip

 - pip:

 - -r requirements.txt

The Python version is defined as 3.8.10 and is being enforced. This conda.yaml file
also refers to a requirements.txt file, which contains the following versioned Python
packages as a requirements.txt file, which is located in the same directory as the
conda.yaml file:

ipykernel==6.4.1

lightning-flash[all]==0.5.0

mlflow==1.20.2

transformers==4.9.2

boto3==1.19.7

pytorch-lightning==1.4.9

datasets==1.9.0

click==8.0.3

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml

Tracking locally, privately built Python libraries 89

As we can see, all these packages are being tracked explicitly using their published PyPI
(https://pypi.org/) version number. When you run the MLflow MLproject,
MLflow will use the conda.yaml file and the referenced requirements.txt file
to create a conda virtual environment dynamically. This ensures that the execution
environment is reproducible and that all the DL model pipelines can be run successfully.
You may have noticed that such a virtual environment was created for you the first time
you ran the previous section's MLflow pipeline project. You can do this again by running
the following command:

conda env list

This will produce a list of conda virtual environments in your current machine. You
should be able to find a virtual environment starting with a mlflow- prefix, followed by a
long string of alphanumerical characters, as follows:

mlflow-95353930ddb7b60101df80a5d64ef8bf6204a808

This is the virtual environment that's created by MLflow dynamically, which follows
the dependencies that are specified in conda.yaml and requirements.txt.
Subsequently, when you log the fine-tuned model, conda.yaml and requirements.
txt will be automatically logged in the MLflow artifact store, as follows:

Figure 4.11 – Python packages are being logged and tracked in the MLflow artifact store

https://pypi.org/

90 Tracking Code and Data Versioning

As we can see, the conda.yaml file was automatically expanded to include the content of
requirements.txt, as well as other dependencies that conda decides to include.

For privately built Python packages, which means the Python packages that are not
published to PyPI for public consumption and references, the recommended way to
include such a Python package is by using git+ssh. Let's assume that you have a
privately built project called cool-dl-utils, that the organization you work for is
called cool_org, and that your project's repository has been set up in GitHub. If you
want to include this project's Python package in the requirements file, you need to make
sure that you add your public key to your GitHub settings. If you want to learn how to
generate a public key and load it into GitHub, take a look at GitHub's guide at https://
docs.github.com/en/authentication/connecting-to-github-
with-ssh/adding-a-new-ssh-key-to-your-github-account. In the
requirements.txt file, you can add the following line, which will reference a specific
GitHub hash (81218891bbf5a447103884a368a75ffe65b17a44) and the Python
.egg package that was built from this private repository (you can also reference a .whl
package if you wish):

cool-dl-utils @ git+ssh://git@github.com/cool_org/cool-dl-
utils.git@81218891bbf5a447103884a368a75ffe65b17a44#egg=cool-dl-
utils

If you have a numerically released version in your privately built package, you can also
directly reference the release number in the requirements.txt file, as follows:

git+ssh://git@github.com/cool_org/cool-dl-utils.git@2.11.4

Here the release number of cool-dl-utils is 2.11.4. This allows MLflow to pull
this privately built package into the virtual environment to execute MLproject. In this
chapter, we don't need to reference any privately built Python packages, but it is worth
noting that MLflow can leverage the git+ssh approach to do that.

Now, let's learn how to track data versioning.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Tracking data versioning in Delta Lake 91

Tracking data versioning in Delta Lake
In this section, we'll learn how data is tracked in MLflow. Historically, data management
and versioning are usually considered as being different from machine learning and data
science. However, the advent of data-centric AI is playing an increasingly important role,
particularly in DL. Therefore, it is critical to know what and how data is being used to
improve the DL model. In the first data-centric AI competition, which was organized
by Andrew Ng in the summer of 2021, the requirements to become a winner were not
about changing and tuning a model, but rather improving the dataset of a fixed model
(https://https-deeplearning-ai.github.io/data-centric-comp/).
Here is a quote from the competition's web page:

"The Data-Centric AI Competition inverts the traditional format and asks
you to improve a dataset, given a fixed model. We will provide you with
a dataset to improve by applying data-centric techniques such as fixing

incorrect labels, adding examples that represent edge cases, applying data
augmentation, and so on."

This paradigm shift highlights the importance of data in deep learning, especially
supervised deep learning, where labeled data is important. An implied underlying
assumption is that different data will produce different model metrics, even if the same
model architecture and parameters are used. This requires us to diligently track the data
versioning process so that we know which version of the data is being used to produce the
winning model.

There are several emerging frameworks for tracking data versioning in the ML/DL life
cycle. One of the early pioneers in this domain is DVC (http://dvc.org). It uses a
set of GitHub-like commands to pull/push data as if they are code. It allows the data to
be stored remotely in S3, or Google Drive, among many other popular stores. However,
the data that's stored in the remote store becomes hashed and isn't human-readable.
This becomes a locked-in problem since the only way to access the data is through the
DVC tool and configuration. In addition, it is hard to track how the data and its schema
have been changed. While it is possible to integrate MLflow with DVC, its usability and
flexibility are not as desirable as we want. Thus, we will not deep dive into this approach
in this book. If you are interested in this, we suggest that you utilize the Versioning data
and models in ML projects using DVC and AWS reference at the end of this chapter to find
more details about using DVC.

https://https-deeplearning-ai.github.io/data-centric-comp/
http://dvc.org

92 Tracking Code and Data Versioning

The recently open sourced and open format-based Delta Lake (https://delta.io/)
is a practical solution for integrated data management and version control in a DL/ML
project, especially since MLflow can directly support such integration. This is also the
foundational data management layer, called Lakehouse (https://databricks.com/
blog/2020/01/30/what-is-a-data-lakehouse.html), which unifies both data
warehouse and streaming data into one data foundation layer. It supports both schema
change tracking and data versioning, which is ideal for a DL/ML data use scenario. Delta
tables are based on the open standard file format called Parquet (https://parquet.
apache.org/), which is widely supported for large-scale data storage.

Delta Table in Databricks
Note that this section assumes that you have access to a Databricks service,
which allows you to experiment with the Delta Lake format in the Databricks
File System (DBFS). You can get a trial account for the community version
by going to the Databricks portal: https://community.cloud.
databricks.com/login.html.

Note that this section requires you to use PySpark to manipulate the data through both
reading/writing data from/into storage such as S3. Delta Lake has a capability called
Time Travel that can automatically version the data. By passing a parameter such as
a timestamp or a version number, you can read any historical data for that particular
version or timestamp. This makes reproducing and tracking the experiments much easier
as the only temporal metadata about the data is the version number or timestamp of the
data. There are two ways to query the Delta table:

•	 timestampAsOf: This lets you read the Delta table, as well as read a version that
has a specific timestamp. The following code shows how the data can be read using
timestampAsOf:

df = spark.read \

 .format("delta") \

 .option("timestampAsOf", "2020-11-01") \

 .load("/path/to/my/table")

https://delta.io/
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://parquet.apache.org/
https://parquet.apache.org/
https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html

Tracking data versioning in Delta Lake 93

•	 versionAsOf: This defines the numerical value of the Delta table's version. You
also have the option to read a version that has a specific version, starting with
version 0. The following PySpark code reads the data with the versionAsOf
option defined as version 52:

df = spark.read \

 .format("delta") \

 .option("versionAsOf", "52") \

 .load("/path/to/my/table")

Having this kind of timestamped or versioned access is a key advantage to tracking any
file version using a Delta table. So, let's look at a concrete example of this in MLflow so
that we can track the IMDb dataset we have been using.

An example of tracking data using MLflow
For the IMDb datasets we have been using to fine-tune the sentiment classification model,
we will upload these CSV files into Databricks' data store or any S3 bucket that you can
access from your Databricks portal. Once you've done that, follow these steps to create a
Delta table that supports versioned and timestamped data access:

1.	 Read the following CSV files into a DataFrame (assuming that you uploaded the
train.csv file into the FileStore/imdb/ folder in Databricks):

imdb_train_df = spark.read.option('header', True).
csv('dbfs:/FileStore/imdb/train.csv')

2.	 Write the imdb_train_df DataFrame in DBFS as a Delta table, as follows:

imdb_train_df.write.format('delta').option("mergeSchema",
"true").mode("overwrite").save('/imdb/training.delta')

3.	 Read the training.delta file back into memory using the following command:

imdb_train_delta = spark.read.format('delta').load('/
imdb/training.delta')

94 Tracking Code and Data Versioning

4.	 Now, look at the history of the Delta table via the Databricks UI. You click on the
History tab once you've read the Delta table from storage into memory:

Figure 4.12 – The train_delta table's history with a version and a timestamp column
The preceding screenshot shows that the version is 0 and that the timestamp is
2021-11-22. This is the value that we can use to access the versionized data when
passing the version number or timestamp to a Spark DataFrame reader.

5.	 Read the versioned imdb/train_delta file using the following command:

train_data_version = spark.read.format("delta").
option("versionAsOf", "0").load('/imdb/train.delta')

This will read version 0 of the train.delta file. If we had other versions of this
file, we could pass a different version number.

6.	 Read the timestamped imdb/train_delta file using the following command:

train_data_timestamped = spark.read.format("delta").
option("timestampAsOf", "2021-11-22T03:39:22").load('/
imdb/train.delta')

This will read the timestamped data. At the time of writing, this is the only
timestamp we have, which is fine. If we had more timestamped data, we could pass a
different version to it.

7.	 Now, if we need to log this data version in the MLflow tracking experiment run, we
can just log the path of the data, the version number, and/or the timestamp using
mlflow.log_parameter(). This will log these as part of the experiment's
parameter key-value list:

mlflow.log_parameter('file_path', '/imdb/train.delta')

mlflow.log_parameter('file_version', '0')

Summary 95

mlflow.log_parameter('file_timestamp', '2021-11-
22T03:39:22')

The only requirement for using a Delta table is that the data needs to be stored in a
form of storage that supports Delta tables, such as Lakehouse, which is supported by
Databricks. This is of great value for enterprise ML/DL scenarios since we can track data
versioning alongside code and model versioning.

In summary, Delta Lake provides a simple yet powerful way to version data. MLflow can
easily log these version numbers and timestamps as part of the experiment's parameter
lists to track the data, as well as all the other parameters, metrics, artifacts, code, and
models consistently.

Summary
In this chapter, we took a deep dive into how we can track code and data versions in an
MLflow experiment run. We started by reviewing the different types of notebooks: Jupyter
notebooks, Databricks notebooks, and VS Code notebooks. We compared them and
recommended that VS Code should be used to author a notebook due to its IDE support,
as well as its Python styling, autocompletion, and many more rich features.

Then, after reviewing the limitations of existing ML pipeline API frameworks, we
discussed how to create a multi-step DL pipeline using MLflow's MLproject framework.
We showed a step-by-step approach to creating a three-step DL pipeline using MLproject
and how to implement a pipeline function to orchestrate the necessary tasks. We also
provided a Python implementation template to help you implement each pipeline task.
When running a pipeline with MLflow, we can track the entire pipeline's progress with a
parent run_id, and then use a child run_id for each pipeline step. The flexibility to do
pipeline chaining and tracking by passing parameters or artifact store locations to the next
step can be done using mlflow.run() and mlflow.tracking.MlflowClient().
We successfully ran the end-to-end three-step pipeline using the MLflow nested run
tracking capability. This will also open doors for us to extend the use of MLproject for
running different steps in a distributed way in future chapters.

We also learned how to track privately built Python packages using the git+ssh
approach. We then used the Delta Lake approach to gain versioned and timestamped
access to data. This allows data to be tracked in two ways using a version number or
a timestamp. MLflow can then log these version numbers or timestamps as a parameter
during the MLflow experiment run. Since we are entering the data-centric AI era, being
able to track data versioning is critical for reproducibility and time travel.

96 Tracking Code and Data Versioning

With that, we've finished learning how to comprehensively track code, data, and models
using MLflow. In the next chapter, we will learn how to scale out our DL experiment in
a distributed way.

Further reading
For more information about the topics that were covered in this chapter, take a look at the
following resources:

1.	 MLflow notebook experiment tracking in Databricks: https://docs.
databricks.com/applications/mlflow/tracking.html#create-
notebook-experiment

2.	 Building Multistep Workflows: https://www.mlflow.org/docs/latest/
projects.html#building-multistep-workflows

3.	 End-to-end ML pipelines with MLflow projects: https://dzlab.github.io/
ml/2020/08/09/mlflow-pipelines/

4.	 Installing a privately built Python package: https://medium.com/@
ffreitasalves/pip-installing-a-package-from-a-private-
repository-b57b19436f3e

5.	 Versioning data and models in ML projects using DVC and AWS: https://
medium.com/analytics-vidhya/versioning-data-and-models-in-
ml-projects-using-dvc-and-aws-s3-286e664a7209

6.	 Introducing Delta Time Travel for Large Scale Data Lakes: https://
databricks.com/blog/2019/02/04/introducing-delta-time-
travel-for-large-scale-data-lakes.html

7.	 How We Won the First Data-Centric AI Competition: Synaptic-AnN:
https://www.deeplearning.ai/data-centric-ai-competition-
synaptic-ann/

8.	 Reproduce Anything: Machine Learning Meets Data Lakehouse:
https://databricks.com/blog/2021/04/26/reproduce-anything-
machine-learning-meets-data-lakehouse.html

9.	 DATABRICKS COMMUNITY EDITION: A BEGINNER'S GUIDE:
https://www.topcoder.com/thrive/articles/databricks-
community-edition-a-beginners-guide

https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://www.mlflow.org/docs/latest/projects.html#building-multistep-workflows
https://www.mlflow.org/docs/latest/projects.html#building-multistep-workflows
https://dzlab.github.io/ml/2020/08/09/mlflow-pipelines/
https://dzlab.github.io/ml/2020/08/09/mlflow-pipelines/
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/
https://www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/
https://databricks.com/blog/2021/04/26/reproduce-anything-machine-learning-meets-data-lakehouse.html
https://databricks.com/blog/2021/04/26/reproduce-anything-machine-learning-meets-data-lakehouse.html
https://www.topcoder.com/thrive/articles/databricks-community-edition-a-beginners-guide
https://www.topcoder.com/thrive/articles/databricks-community-edition-a-beginners-guide

Section 3 –
Running Deep Learning

Pipelines at Scale

In this section, we will learn how to run deep learning (DL) pipelines in different
execution environments and perform hyperparameter tuning, or hyperparameter
optimization (HPO), at scale. We will start with an overview of the scenarios and
requirements for executing DL pipelines in different environments. We will then learn
how to use MLflow's command-line interface (CLI) to run in four different execution
scenarios in a distributed environment. From there on, we will learn how to choose
the best HPO framework by comparing Ray Tune, Optuna, and HyperOpt for tuning
hyperparameters of a DL pipeline. Finally, we will concentrate on how to implement
and run HPO for DL at scale using state-of-the-art HPO frameworks such as Ray Tune
and MLflow.

This section comprises the following chapters:

•	 Chapter 5, Running DL Pipelines in Different Environments

•	 Chapter 6, Running Hyperparameter Tuning at Scale

5
Running DL Pipelines

in Different
Environments

It is critical to have the flexibility of running a deep learning (DL) pipeline in different
execution environments such as local or remote, on-premises, or in the cloud. This is
because, during different stages of the DL development, there may be different constraints
or preferences to either improve the velocity of the development or ensure security
compliance. For example, it is desirable to do small-scale model experimentation in
a local or laptop environment, while for a full hyperparameter tuning, we need to run the
model on a cloud-hosted GPU cluster to get a quick turn-around time. Given the diverse
execution environments in both hardware and software configurations, it used to be
a challenge to achieve this kind of flexibility within a single framework. MLflow provides
an easy-to-use framework to run DL pipelines at scale in different environments. We will
learn how to do that in this chapter.

100 Running DL Pipelines in Different Environments

In this chapter, we will first learn about the different DL pipeline execution scenarios
and their execution environments. We will also learn how to run the different steps of
the DL pipeline in different execution environments. Specifically, we will cover the
following topics:

•	 An overview of different execution scenarios and environments

•	 Running locally with local code

•	 Running remote code in GitHub locally

•	 Running local code remotely in the cloud

•	 Running remotely in the cloud with remote code in GitHub

By the end of this chapter, you will be comfortable setting up the DL pipelines to run
either locally or remotely with different execution environments.

Technical requirements
The following technical requirements are needed for completing the learning in
this chapter:

•	 The code in this chapter can be found at the following GitHub URL: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/tree/main/chapter05.

•	 Installation of the Databricks command-line interface (CLI) tool to access the
Databricks platform remote execution of DL pipelines: https://github.com/
databricks/databricks-cli.

•	 Access to a Databricks instance (must be the Enterprise version, as the Community
version does not support remote execution) for learning how to run DL pipelines
remotely on a cluster in Databricks.

•	 A full-fledged MLflow tracking server when running locally. This MLflow tracking
server setup is the same as in previous chapters.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/databricks/databricks-cli
https://github.com/databricks/databricks-cli

An overview of different execution scenarios and environments 101

An overview of different execution scenarios
and environments
In our previous chapters, we mainly focused on learning how to track DL pipelines
using MLflow's tracking capabilities. Most of our execution environments are in a local
environment, such as a local laptop or desktop environment. However, as we already
know, the DL full life cycle consists of different stages where we may need to run the DL
pipelines either entirely, partially, or as a single step in a different execution environment.
Here are two typical examples:

•	 When accessing data for model training purposes, it is not uncommon to require
the data to reside in an enterprise-security and privacy-compliant environment,
where both the computation and the storage cannot leave a compliant boundary.

•	 When training a DL model, it is usually desirable to use a remote GPU cluster to
maximize the efficiency of model training, where a local laptop usually does not
have the required hardware capability.

Both cases require a carefully defined execution environment that might be needed in one
or multiple stages of the DL lifecycle. Note that this is not just a requirement to be flexible
when moving from the development stage to a production environment, where the
execution hardware and software configuration could be understandably different. It
is also a requirement to be able to switch running environments during development
stages or in different production environments without making major changes to the
DL pipelines.

Here, we classify the different scenarios and execution environments into the following
four scenarios, based on the different combinations of the location of the source code of
DL pipelines and target execution environments, as shown in the following table:

Figure 5.1 – Four different scenarios of DL pipeline source codes and target execution environments

102 Running DL Pipelines in Different Environments

Figure 5.1 describes how either in development or production environments, we could
encounter the possibilities of using either local or remote code to run in a different
execution environment. Let's examine them one by one as follows:

•	 Local source code running in a local target environment: This usually happens at
the development stage, where modest computing power in a local environment is
adequate to support quick prototyping or test runs for small changes in an existing
pipeline. This is mostly the scenario we have been using in previous chapters for our
MLflow experiments when learning how to track pipelines.

•	 Local source code running in a remote target environment: This usually happens
at the development stage or re-training of an existing DL model, where a GPU or
other types of hardware accelerators, such as Tensor Processing Units (TPUs) or
field-programmable gate arrays (FPGAs), are needed to perform computational
and data-intensive model training or debugging prior to merging the GitHub
repository (using local code change first).

•	 Remote source code running in a local target environment: This usually happens
when we don't have any changes in the code but the data has changed, either
during the development stage or the production stage. For example, during the DL
development stage, we could change the data with newly augmented training data
either through some data augmentation techniques (for example, using AugLy to
augment existing training data: https://github.com/facebookresearch/
AugLy) or newly annotated training data. During the production deployment step,
we often need to run a regression test to evaluate a to-be-deployed DL pipeline
against a hold-out regression testing dataset, so that we don't deploy a degraded
model if the model performance accuracy metric does not meet the bar. In this
case, the hold-out testing dataset is not usually big, so the execution can be done
on the deployment server locally instead of launching to a remote cluster in
a Databricks server.

•	 Remote source code running in a remote target environment: This can happen
in the development stage or production stage, where we want to use a fixed version
of the DL pipeline code from GitHub to run in a remote GPU cluster to do model
training, hyperparameter tuning, or re-training. Such large-scale execution can be
time-consuming, and a remote GPU cluster could be very useful.

https://github.com/facebookresearch/AugLy
https://github.com/facebookresearch/AugLy

An overview of different execution scenarios and environments 103

Given the four different scenarios, it would be desirable to have a framework to be able
to run the same DL pipeline with minimal configuration changes under these conditions.
Prior to the arrival of MLflow, it took quite a lot of engineering and manual efforts to
support these scenarios. MLflow provides an MLproject framework that supports all these
four scenarios through the following three configurable mechanisms:

1.	 Entry points: We can define one or multiple entry points to execute different
steps of a DL pipeline. For example, the following is an example to define a main
entry point:

entry_points:

 main:

 parameters:

 pipeline_steps: { type: str, default: all }

 command: "python main.py –pipeline_steps {pipeline_
steps}"

The entry point's name is main, which, by default, will be used when executing an
MLflow run without specifying an entry point for an MLproject. Under this main
entry point, there is a list of parameters. We can define the parameter's type and
default value using a short syntax, as follows:

parameter_name: {type: data_type, default: value}

We can also use a long syntax, as follows:
parameter_name:

 type: data_type

 default: value

Here, we define only one parameter, called pipeline_steps, using the short
syntax format with a str type and a default value of all.

104 Running DL Pipelines in Different Environments

2.	 Software and library dependencies: We can use one conda .yaml configuration
file or a Docker image to define the software and library dependencies that can be
used by the MLproject's entry points. Note that a single MLproject can either use a
conda yaml file or a Docker image, but not both at the same time. Depending on
the DL pipeline dependencies, sometimes using a conda .yaml file over a Docker
image is preferred, since it is much more lightweight and easier to make changes
without requiring additional Docker image storage locations and loading a large
Docker image into memory in a resource-limited environment. However, a Docker
image does sometimes have advantages if there are any Java packages (.jar) that
are needed at runtime. If there are no such JAR dependencies, then it is preferred
to have a conda .yaml file to specify the dependencies. Furthermore, as of MLflow
version 1.22.0, running Docker-based projects on Databricks is not yet supported
by the MLflow command line. If there are indeed any Java package dependencies,
they can be installed using init scripts (for example, see the official documentation
at https://docs.databricks.com/clusters/init-scripts.
html#example-install-postgresql-jdbc-driver). Thus, we will use
conda .yaml configuration files to define execution environment dependencies in
this book.

3.	 Hardware dependencies: We can use a cluster configuration JSON file to define the
execution target backend environment, be it a GPU, CPU, or other types of clusters.
This is only needed when the target backend execution environment is non-local,
either in a Databricks server or a Kubernetes (K8s) cluster.

Previously, we learned how to use MLproject to create a multiple-step DL pipeline
running in a local environment in Chapter 4, Tracking Code and Data Versioning, for
tracking purposes. Now, we are going to learn how to use MLproject for supporting the
different running scenarios outlined previously.

Running locally with local code
Let's start with the first running scenario using the same Natural Language
Processing (NLP) text sentiment classification example as the driving use case. You
are advised to check out the following version of the source code from the GitHub
location to follow along with the steps and learnings: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05. Note that
this requires a specific Git hash committed version, as shown in the URL path. That means
we are asking you to check out a specific committed version, not the main branch.

https://docs.databricks.com/clusters/init-scripts.html#example-install-postgresql-jdbc-driver
https://docs.databricks.com/clusters/init-scripts.html#example-install-postgresql-jdbc-driver
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05

Running locally with local code 105

Let's start with the DL pipeline that downloads the review data to local storage as a first
execution exercise. Once you check out this chapter's code, you can type the following
command line to execute the DL pipeline's first step:

mlflow run . --experiment-name='dl_model_chapter05' -P
pipeline_steps='download_data'

If we don't specify an entry point, it defaults to main. In this case, this is our desired
behavior since we want to run the main entry point to start the parent DL pipeline.

The dot means the current local directory. This tells MLflow to use the code in the current
directory as the source to execute the project. If this command line runs successfully, you
should be able to see the first two lines of output in the console as follows, which also
reveal where the target execution environment is:

2022/01/01 19:15:37 INFO mlflow.projects.utils: === Created
directory /var/folders/51/whxjy4r92dx18788yp11ycyr0000gp/T/
tmp3qj2kws2 for downloading remote URIs passed to arguments of
type 'path' ===

2022/01/01 19:15:37 INFO mlflow.projects.backend.local: ===
Running command 'source /Users/yongliu/opt/miniconda3/bin/../
etc/profile.d/conda.sh && conda activate mlflow-95353930ddb7b
60101df80a5d64ef8bf6204a808 1>&2 && python main.py --pipeline_
steps download_data' in run with ID 'f7133b916a004c508e227f00d5
34e136' ===

Note that the second output line shows mlflow.projects.backend.local, which
means the target running environment is local. You may wonder where we define the local
execution environment in our initial command line. It turns out that by default, the value
for the parameter called --backend (or -b) is local. So, if we spell out the default
values, the mlflow run command line will look like the following:

mlflow run . -e main -b local --experiment-name='dl_model_
chapter05' -P pipeline_steps='download_data'

Note that we also need to specify experiment-name in the command line or through
an environment variable named MLFLOW_EXPERIMENT_NAME to define the experiment
in which this project will run. Alternatively, you can specify an experiment-id
parameter, or an environment variable named MLFLOW_EXPERIMENT_ID, to define
the experiment integer ID that already exists. You only need to define either the ID or
the name of the environment, but not both. It is common to define a human-readable
experiment name and then query the experiment ID for that experiment in other parts of
the code so that they will not be out of sync.

106 Running DL Pipelines in Different Environments

MLflow Experiment Name or ID for Running an MLproject
To run an MLproject either using the CLI or the mlflow.run Python API,
if we don't specify experiment-name or experiment-id through
either an environment variable or a parameter assignment, it will default to the
Default MLflow experiment. This is not desirable, as we want to organize
our experiments into clearly separated experiments. In addition, once an
MLproject starts running, any child runs will not be able to switch to a different
experiment name or ID. So, the best practice will be always to specify an
experiment name or an ID before launching an MLflow project run.

Once you finish the run, you will see the output as in the following lines:

2022-01-01 19:15:48,249 <Run: data=<RunData: metrics={},
params={'download_url': 'https://pl-flash-data.s3.amazonaws.
com/imdb.zip',

 'local_folder': './data',

 'mlflow run id': 'f9f74ebd80f246d58a5f7a3bfb3fc635',

 'pipeline_run_name': 'chapter05'}, tags={'mlflow.gitRepoURL':
'git@github.com:PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow.git',

 'mlflow.parentRunId': 'f7133b916a004c508e227f00d534e136',

Note that this is a nested MLflow run since we first launch a main entry point that starts
the whole pipeline (that's why there is mlflow.parentRunId), and then under this
pipeline, we run one or multiple steps. Here, the step we run is called download_data,
which is another entry point defined in the MLproject, but is invoked using the mlflow.
run Python API, as follows, in the main.py file:

download_run = mlflow.run(".", "download_data", parameters={})

Note that this also specifies which code source to use (local, since we specified a dot),
and by default, a local execution environment. That's why you should be able to see the
following lines in the console output:

 'mlflow.project.backend': 'local',

 'mlflow.project.entryPoint': 'download_data',

Running remote code in GitHub locally 107

You should also see a few other details of the run parameters for this entry point. The last
two lines of the command line output should look like the following:

2022-01-01 19:15:48,269 finished mlflow pipeline run with a
run_id = f7133b916a004c508e227f00d534e136

2022/01/01 19:15:48 INFO mlflow.projects: === Run (ID 'f7133b91
6a004c508e227f00d534e136') succeeded ===

If you see this, you should feel proud that you have successfully run a pipeline with one
step to completion.

While this is something we have done before without knowing some of the details, the
next section will allow us to run remote code in a local environment, where you will see
the increasing flexibility and power of MLproject.

Running remote code in GitHub locally
Now, let's see how we run remote code from a GitHub repository on a local execution
environment. This allows us to precisely run a specific version that has been checked into
the GitHub repository using the commit hash. Let's use the same example as before by
running a single download_data step of the DL pipeline that we have been using in this
chapter. In the command line prompt, run the following command:

mlflow run https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow#chapter05 -v
26119e984e52dadd04b99e6f7e95f8dda8b59238 --experiment-
name='dl_model_chapter05' -P pipeline_steps='download_data'

Notice the difference between this command line and the one in the previous section.
Instead of a dot to refer to a local copy of the code, we are pointing to a remote GitHub
repository (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow) and the folder name (chapter05) that
contains the MLproject file we want to reference. The # symbol denotes the relative
path to the root folder, according to MLflow's convention (see details on the MLflow
documentation at this website: https://www.mlflow.org/docs/latest/
projects.html#running-projects). We then define a version number by
specifying the Git commit hash using the -v parameter. In this case, it is this version we
have in the GitHub repository:

https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/
tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05

108 Running DL Pipelines in Different Environments

 Hidden Bug of Running an MLflow Project with GitHub's Main Branch
When we omit the -v parameter in the MLflow run, MLflow will assume we
want to use the default main branch of a GitHub project. However, MLflow's
source code has a hardcoded reference to the main branch of a GitHub project
as origin.refs.master, requiring the existence of a master branch in
the GitHub project. This does not work in newer GitHub projects such as this
book's project, since the default branch is called main, not master anymore,
due to the recent changes introduced by GitHub (see details here: https://
github.com/github/renaming). So, at the time of writing this book,
in the MLflow version 1.22.0, there is no way to run a default main branch of
a GitHub project. We need to specifically declare the Git commit hash version
when running an MLflow project in the GitHub repository.

So, what happens when you use the code in a remote GitHub project repository when
running an MLflow project? It becomes clear when you see the first line of the following
console output:

2021/12/30 18:57:32 INFO mlflow.projects.utils: === Fetching
project from https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow#chapter05 into /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpdyzaa1ye ===

This means that MLflow, on behalf of the user, starts to clone the
remote project to a local temporary folder called /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpdyzaa1ye.

If you navigate to this temporary folder, you will see that the entire project content from
GitHub has been cloned to this folder, not just the folder containing the ML project you
want to run.

The rest of the console output is as we have seen when using the local code. Once you
finish the run with the download_data step, you should be able to find the downloaded
data in the temporary folder under chapter05, since we define the local destination
folder as a ./data relative path in the ML project file:

local_folder: { type: str, default: ./data }

MLflow automatically converts this to an absolute path, and it becomes a relative path to
the cloned project folder under chapter05, since that's where the MLproject file resides.

https://github.com/github/renaming
https://github.com/github/renaming

Running local code remotely in the cloud 109

This capability to reference a remote GitHub project and run it in a local environment,
whether this local environment is your laptop or a virtual machine in the cloud, is
powerful. This enables automation through continuous integration and continuous
deployment (CI/CD) since this can be directly invoked in a command line, which can
then be scripted into a CI/CD script. The tracking part is also precise, since we have the
Git commit hash logged in the MLflow tracking server, which allows us to know exactly
which version of the code was executed.

Note in both the scenarios we just covered, the execution environment is a local machine
where the MLflow run command was issued. The MLflow project runs to completion
synchronously, meaning it is a blocking call and it will run to completion and show you the
progress in the console output in real time.

However, there are additional running scenarios we need to support. For example,
sometimes the machine where we issue the MLflow project run command is not powerful
enough to support the computation we need, such as training a DL model with many
epochs. Another scenario could be if the data to be downloaded or accessed for training
is multiple gigabytes and you don't want to download it to your local laptop for model
development. This requires us to be able to run the code in a remote cluster. Let's look at
how we can do that in the next section.

Running local code remotely in the cloud
In previous chapters, we ran all our code in a local laptop environment, and limited
our DL fine-tuning step to only three epochs due to the limited power of a laptop. This
serves the purpose of getting the code running and testing quickly in a local environment
but does not serve to build an actual high-performance DL model. We really need to
run the fine-tuning step in a remote GPU cluster. Ideally, we should only change some
configuration and still issue the MLflow run command line in a local laptop console, but
the actual pipeline will be submitted to a remote cluster in the cloud. Let's see how we can
do this for our DL pipeline.

Let's start with submitting code to run in a Databricks server. There are three
prerequisites:

•	 An Enterprise Databricks server: You need to have access to an Enterprise-licensed
Databricks server or a free trial version of the Databricks server (https://docs.
databricks.com/getting-started/try-databricks.html#sign-
up-for-a-databricks-free-trial) in the cloud. The Community version
of Databricks does not support this remote execution.

https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial
https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial
https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial

110 Running DL Pipelines in Different Environments

•	 The Databricks CLI: You need to set up the Databricks CLI where you issue the
MLflow project run commands. To install it, simply run the following command:

pip install databricks-cli

We also include this dependency in the requirements.txt file of chapter05
when you check out the code for this chapter.

•	 Access tokens for accessing the Databricks server: There are two ways to set up
the tokens: using an environment variable, or using the Databricks command-line
tool to generate a .databrickscfg file in your local home folder. You don't
need both, but if you do have both, the one defined using environment variables
will take a higher precedence when being picked up by the Databricks command
line. The approach of using environment variables and generating access tokens
is described in the Setting up MLflow to interact with a remote MLflow server
section of Chapter 1, Deep Learning Life Cycle and MLOps Challenges. Note these
environment variables can be set up in the command line directly or can be put into
your .bash_profile file if you are using a macOS or Linux machine.

Here, we describe how we can use the Databricks command-line tool to generate
a .databrickscfg file:

1.	 Run the following command to set up the token configuration:

databricks configure --token

2.	 Follow the prompt to fill in the remote Databricks host URL and the access token:

Databricks Host (should begin with https://):
https://????

Token: dapi??????????

3.	 Now, if you check your local home folder, you should find a hidden file called
.databrickscfg.

If you open this file, you should be able to see something like the following:
[DEFAULT]

host = https://??????

token = dapi???????

jobs-api-version = 2.0

Note that the last line indicates the remote job submission and execution API
version that the Databricks server is using.

Running local code remotely in the cloud 111

Now that you have the access set up correctly, let's see how we can run the DL pipeline
remotely in the remote Databricks server using the following steps:

1.	 Since we are going to use the remote Databricks server, the local MLflow server we
set up before no longer works. This means that we need to disable and comment
out the following lines in the main.py file, which are only useful to the local
MLflow server setup (check out the latest version of the code for chapter05 from
GitHub to follow the steps, at https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow.git):

os.environ["MLFLOW_TRACKING_URI"] = http://localhost

os.environ["MLFLOW_S3_ENDPOINT_URL"] = http://
localhost:9000

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"

Instead, we should use the following environment variable that can be defined in
a .bash_profile file or directly executed in the command line:

export MLFLOW_TRACKING_URI="databricks"

This will use the MLflow tracking server on the Databricks server. If you don't
specify this, it will default to a localhost but will fail since there is no localhost
version of MLflow on the remote Databricks server. So, make sure you have this set
up correctly. Now, we are ready to run our local code remotely.

2.	 Now, run the following command line to submit the local code to the remote
Databricks server to run. We will just start with the download_data step,
as follows:

mlflow run . -b databricks --backend-config cluster_spec.
json --experiment-name='/Shared/dl_model_chapter05' -P
pipeline_steps ='download_data'

You will see this time that the command line has two new parameters:
-b databricks, which specifies the backend as a Databricks server, and
--backend-config cluster_spec.json, which details the cluster
specification. The content of this cluster_spec.json file is as follows:

{

 "new_cluster": {

 "spark_version": "9.1.x-gpu-ml-scala2.12",

 "num_workers": 1,

 "node_type_id": "g4dn.xlarge"

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow.git
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow.git

112 Running DL Pipelines in Different Environments

 }

}

This cluster_spec.json file is typically located in the same folder in which
the MLproject file is located and needs to be predefined so that the MLflow run
command can pick it up. The example we give here only defines a minimal set
of parameters needed to create a job cluster on Databricks using AWS's GPU
virtual machine as a single node, but you can create a much richer cluster
specification if necessary (see the following Cluster Specification for Databricks
box for more details).

Cluster Specification for Databricks
When submitting jobs to Databricks, it requires the creation of a new job
cluster, which is different from an interactive cluster that you already have,
where you can run an interactive job by attaching a notebook. A cluster
specification is defined by minimally specifying the Databricks runtime
version, which in our current example is 9.1.x-gpu-ml-scala2.12,
the number of worker nodes, and the node type ID, as shown in our example. It
is recommended to use the long-term support (LTS) version of the Databricks
runtime (https://docs.databricks.com/release-notes/
runtime/9.1ml.html). The cluster node type depends on the cloud
provider. Here, we use AWS's single GPU node (g4dn.xlarge) for learning
purposes. There are many other configurations that you can define in this
cluster specification, including storage and access permission, and init
scripts. The easiest way to generate a working cluster specification JSON file
is to use the Databricks portal UI to create a new cluster, where you can select
the Databricks runtime version, cluster node types, and other parameters
(https://docs.databricks.com/clusters/create.html).
Then, you can get the JSON representation of the cluster by clicking on the
JSON link on the top right of the Create Cluster UI page (see Figure 5.2).

https://docs.databricks.com/release-notes/runtime/9.1ml.html
https://docs.databricks.com/release-notes/runtime/9.1ml.html
https://docs.databricks.com/clusters/create.html

Running local code remotely in the cloud 113

Figure 5.2 - An example of creating a cluster on Databricks
Also notice that the experiment-name parameter in the preceding command no
longer just takes an experiment name string but needs to include an absolute path
in the Databricks workspace. This is different from the local MLflow tracking server.
This convention must be followed to make this remote job submission work. Note
that if you want to have several levels of subfolder structures, such as the following,
then each subfolder must already exist in the Databricks server:

/rootPath/subfolder1/subfolder2/my_experiment_name

This means that the rootPath, subfolder1, and subfolder2 folders must
already exist. If not, the command line will fail since it cannot create the parent
folder automatically on the Databricks server. That last string, my_experiment_
name, can be automatically created if it does not already exist since that's the actual
experiment name that will host all the experiment runs. Note that, in this example,
we are using the command-line parameter to specify the experiment name, but it is
also possible to use the environment variable to specify it, as follows:

export MLFLOW_EXPERIMENT_NAME=/Shared/dl_model_chapter05

114 Running DL Pipelines in Different Environments

3.	 Once this command is executed, you will see a much shorter console output
message this time compared with the previous run in a local environment. This is
because when executing code this way, it runs asynchronous, which means the job
is submitted to the remote Databricks server and immediately returns to the console
without waiting. Let's look at the first three lines of the output:

INFO: '/Shared/dl_model_chapter05' does not exist.
Creating a new experiment

2022/01/06 17:35:32 INFO mlflow.projects.
databricks: === Uploading project to DBFS path /
dbfs/mlflow-experiments/427565/projects-code/
f1cbec57b21eabfca52f417f8482054bbea22be
9205b5bbde461780d809924c2.tar.gz ===

2022/01/06 17:35:32 INFO mlflow.projects.
databricks: === Finished uploading project to /
dbfs/mlflow-experiments/427565/projects-code/
f1cbec57b21eabfca52f417f8482054bbea22be
9205b5bbde461780d809924c2.tar.gz ===

The first line means that the experiment does not exist in the Databricks server, so
it is being created. If you run this a second time, this will not show up. The second
and third lines describe the process where MLflow packages the MLproject as a
.tar.gz file and uploads it to the Databricks file server. Note that, unlike a GitHub
project where it needs to check out the entire project from the repository, here, it
only needs to package the chapter05 folder since that's where our MLproject
resides. This can be confirmed by looking at the job running logs in the Databricks
cluster, which we will explain (where to get the job URL and how to look for the
logs) in the next few paragraphs.

Running local code remotely in the cloud 115

Synchronous and Asynchronous Running of MLproject
The official MLflow run CLI does not support a parameter to specify the
running of an MLflow project in asynchronous or synchronous mode.
However, the MLflow run Python API does have a parameter called
synchronous, which by default is set to be True. When using MLflow's
CLI to run an MLflow job using Databricks as the backend, the default
behavior is asynchronous. Sometimes, synchronous behavior of the CLI run
command is desirable during CI/CD automation when you need to make sure
the MLflow run completes successfully before moving to the next step. This
cannot be done with the official MLflow run CLI, but you can write a wrapper
CLI Python function to call MLflow's Python API with synchronous mode
set to True and then use your own CLI Python command to run the MLflow
job in synchronous mode. Also, note that mlflow.run() is the high-level
fluent (object-oriented) API for the mlflow.projects.run() API.
We use the mlflow.run() API extensively in this book for consistency.
For details on the MLflow run Python API, see the official documentation
page: https://www.mlflow.org/docs/latest/python_api/
mlflow.projects.html#mlflow.projects.run.

The next few lines of the output look similar to the following:
2022/01/06 17:48:31 INFO mlflow.projects.databricks: ===
Running entry point main of project . on Databricks ===

2022/01/06 17:48:31 INFO mlflow.projects.databricks: ===
Launched MLflow run as Databricks job run with ID 279456.
Getting run status page URL... ===

2022/01/06 17:48:31 INFO mlflow.projects.databricks: ===
Check the run's status at https://???.cloud.databricks.
com#job/168339/run/1 ===

These lines describe that the job has been submitted to the Databricks server and
the job run ID and the job URL are shown in the last line (replace ??? with your
actual Databricks URL to make this work for you). Notice that the MLflow run ID
is 279456, which is different from the ID you see in the job URL (168339). This is
because the job URL is managed by the Databricks job management system and has
a different way to generate and track each actual job.

https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run

116 Running DL Pipelines in Different Environments

4.	 Click the job URL link (https://???.cloud.databricks.
com#job/168339/run/1) and check the status of this job, which will show the
progress and standard output and error logs (see Figure 5.3). Usually, this page will
take a few minutes to start showing the running progress since it needs to create
a brand new cluster based on cluster_spec.json before it can start running
the job.

Figure 5.3 – MLflow run job status page with standard output

Figure 5.3 shows the job was successfully finished (Status: Succeeded) and the standard
output, which shows the content of the chapter05 folder was uploaded and extracted
in the Databricks File System (DBFS). As mentioned previously, only the MLproject we
want to run was packaged, uploaded, and extracted in the DBFS, not the entire project
repository.

On the same job status page, you will also find the standard errors section, which shows
the logs describing the pipeline step we wanted to run: download_data. These are not
errors but just informational messages. All Python logs are aggregated here. See Figure 5.4
for details:

Running local code remotely in the cloud 117

Figure 5.4 – MLflow job information logged on the job status page

Figure 5.4 shows the log that's very similar to what we see when we run in the local
interactive environment, but now these runs were executed in the cluster we specified
when we submitted the job. Note that the pipeline experiment ID is 427565 in Figure
5.4. You should be able to find the successfully completed MLflow DL pipeline runs in
the integrated MLflow tracking server on the Databricks server, using the experiment ID
427565 in the following URL pattern:

https://[your databricks hostname]/#mlflow/experiments/427565

If you see the familiar tracking results as we have seen in previous chapters, give yourself
a big hug since you just completed a major learning milestone in running local code in
a remote Databricks cluster!

Furthermore, we can run multiple steps of the DL pipeline using this approach without
changing any code in the individual step's implementation. For example, if we want to run
both the download_data and fine_tuning_model steps of the DL pipeline, we can
issue the following command:

mlflow run . -b databricks --backend-config cluster_spec.json
--experiment-name='/Shared/dl_model_chapter05' -P pipeline_
steps='download_data,fine_tuning_model'

The output console will show the following short messages:

2022/01/07 15:22:39 INFO mlflow.projects.databricks: ===
Uploading project to DBFS path /dbfs/mlflow-experiments/427565/
projects-code/743cadfec82a55b8c76e9f27754cfdd516545b155254e990c
2cc62650b8af959.tar.gz ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: ===
Finished uploading project to /dbfs/mlflow-experiments/427565/
projects-code/743cadfec82a55b8c76e9f27754cfdd516545b155254e990c
2cc62650b8af959.tar.gz ===

https://[your databricks hostname]/#mlflow/experiments/427565

118 Running DL Pipelines in Different Environments

2022/01/07 15:22:40 INFO mlflow.projects.databricks: ===
Running entry point main of project . on Databricks ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: ===
Launched MLflow run as Databricks job run with ID 279540.
Getting run status page URL... ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: ===
Check the run's status at https://?????.cloud.databricks.
com#job/168429/run/1 ===

You can then go to the job URL page shown in the last line of the console output and wait
until it creates a new cluster and completes both steps. You should then be able to find
both steps in the experiment folder logged in the MLflow tracking server, using the same
experiment URL (since we use the same experiment name):

https://[your databricks hostname]/#mlflow/experiments/427565

Now that we know how to run local code in a remote Databricks cluster, we will learn how
to run the code from a GitHub repository in a remote Databricks cluster.

Running remotely in the cloud with remote
code in GitHub
The most reliable way to reproduce a DL pipeline is to point to a specific version of the
project code in GitHub and then run it in the cloud without invoking any local resources.
This way, we know the exact version of the code as well as using the same running
environment defined in the project. Let's see how this works with our DL pipeline.

As a prerequisite and a reminder, the following three environment variables need to be set
up before you issue the MLflow run command to complete this section of the learning:

export MLFLOW_TRACKING_URI=databricks

export DATABRICKS_TOKEN=[databricks_token]

export DATABRICKS_HOST='https://[your databricks host name/'

We already know how to set up these environment variables from the last section. There
is potentially one more setup needed, which is to allow your Databricks server to access
your GitHub repository if it is non-public (see the following GitHub Token for Databricks
to Access a Non-Public or Enterprise Project Repository box).

https://[your databricks hostname]/#mlflow/experiments/427565

Running remotely in the cloud with remote code in GitHub 119

GitHub Token for Databricks to Access a Non-Public or Enterprise Project
Repository
To allow Databricks to access the project repository in GitHub, there is
another token that's needed. This can be generated by going to your personal
GitHub page (https://github.com/settings/tokens) and then
following the steps described on this page (https://docs.github.
com/en/authentication/keeping-your-account-and-
data-secure/creating-a-personal-access-token).
You can then follow the instructions on the Databricks documentation
website to set it up: https://docs.databricks.com/repos.
html#configure-your-git-integration-with-
databricks.

Now, let's run the project using the specific version in the GitHub repository for the full
pipeline on the remote Databricks cluster:

mlflow run https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow#chapter05 -v
395c33858a53bcd8ac217a962ab81e148d9f1d9a -b databricks
--backend-config cluster_spec.json --experiment-name='/Shared/
dl_model_chapter05' -P pipeline_steps='all'

We will then see the output as brief as six lines. Let's look at what the important
information on each line shows and how this works:

1.	 The first line shows where the content of the project repository was downloaded
to locally:

2022/01/07 17:36:54 INFO mlflow.projects.utils: ===
Fetching project from https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow#chapter05
into /var/folders/51/whxjy4r92dx18788yp11ycyr0000gp/T/
tmpzcepn5h5 ===

If we go to the temporary directory shown in this message on the
local machine where we execute this command, we see that the entire
repository is already downloaded to this folder: /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpzcepn5h5.

2.	 The next two lines show the project content was zipped and uploaded to a DBFS
folder on the Databricks server:

2022/01/07 17:36:57 INFO mlflow.projects.
databricks: === Uploading project to DBFS path /

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks

120 Running DL Pipelines in Different Environments

dbfs/mlflow-experiments/427565/projects-code/
fba3d31e1895b78f40227b5965461faddb
61ec9df906fb09b161f74efaa90aa2.tar.gz ===

2022/01/07 17:36:57 INFO mlflow.projects.
databricks: === Finished uploading project to /
dbfs/mlflow-experiments/427565/projects-code/
fba3d31e1895b78f40227b5965461faddb61ec
9df906fb09b161f74efaa90aa2.tar.gz ===

If we use the local command-line tool of Databricks, we can list this .tar.gz file
as if it is a local file (but in fact, it is located remotely on the Databricks server):

databricks fs ls -l dbfs:/mlflow-experiments/427565/
projects-code/fba3d31e1895b78f40227b5965461faddb61ec
9df906fb09b161f74efaa90aa2.tar.gz

You should see output similar to the following, which describes the attributes of the
file (size, owner/group ID, and whether it is a file or directory):

file 3070 fba3d31e1895b78f40227b5965461faddb61ec
9df906fb09b161f74efaa90aa2.tar.gz 1641605818000

3.	 The next line shows that it starts to run the main entry point for this GitHub
project:

2022/01/07 17:36:57 INFO mlflow.projects.databricks: ===
Running entry point main of project https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow#chapter05 on Databricks ===

Note the difference when we run the local code (it was a dot after the project, which
means the current directory on the local system). Now, it lists the full path of the
GitHub repository location.

4.	 The last two lines are like the previous section's output, where it lists out the
job URL:

2022/01/07 17:36:57 INFO mlflow.projects.databricks: ===
Launched MLflow run as Databricks job run with ID 279660.
Getting run status page URL... ===

2022/01/07 17:36:57 INFO mlflow.projects.databricks: ===
Check the run's status at https://????.cloud.databricks.
com#job/168527/run/1 ===

Running remotely in the cloud with remote code in GitHub 121

5.	 If we click the job URL in the last line of the console output, we will be able to see
the following content on that website (Figure 5.5):

Figure 5.5 – MLflow run job status page using the code from the GitHub repository

Figure 5.5 shows the end status of this job. Notice that the title of the page now says
MLflow Run for https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow#chapter05, instead of MLflow Run for . as shown in the previous
section when using local code to run.

The status of the job shows this was run successfully and you will also see that the results
are logged in the experiment page as before, with all three steps finished. The model is
also registered in the model registry as expected, in the Databricks server under the
following URL:

https://[your_databricks_hostname]/#mlflow/models/dl_
finetuned_model

In summary, the mechanism of how this approach works is shown in the following
diagram (Figure 5.6):

Figure 5.6 – Summary view of running remote GitHub code in a remote Databricks cluster server

122 Running DL Pipelines in Different Environments

Figure 5.6 shows that there are three different locations (a machine where we issue the
MLflow run command, a remote Databricks server, and a remote GitHub project).
When an MLflow run command is issued, the remote GitHub project source code is
cloned to the machine where the MLflow run command was issued, and then uploaded
to the remote Databricks server with a job submitted to execute the multiple steps of
the DL pipeline. This is an asynchronous execution, and the status of the job needs to be
monitored based on the job URL created.

Running an MLflow Project on Other Backends
Right now, Databricks supports two types of remote running backend
environments: Databricks and K8s. However, as of MLflow version 1.22.0
(https://www.mlflow.org/docs/latest/projects.
html#run-an-mlflow-project-on-kubernetes-
experimental), running MLflow projects on K8s is still in experimental
mode and is subject to change. If you are interested in learning more about
this, refer to the reference in the Further reading section to explore an example
provided. There are also other third-party provided backends (also called
community plugins) such as hadoop-yarn (https://github.com/
criteo/mlflow-yarn). Due to the availability of Databricks in all major
cloud providers and its maturity in supporting enterprise security-compliant
production scenarios, this book currently focuses on learning about running
MLflow projects remotely in a Databricks server.

Summary
In this chapter, we have learned how to run a DL pipeline in different execution
environments (local or remote Databricks clusters) using either local source code or
GitHub project repository code. This is critical not just for reproducibility and flexibility
in executing a DL pipeline, but also provides much better productivity and future
automation possibility using CI/CD tools. The power to run one or multiple steps of
a DL pipeline in remote resource-rich environments gives us the speed to execute large-
scale computation and data-intensive jobs that are typically seen in production-quality
DL model training and fine-tuning. This allows us to do hyperparameter tuning or
cross-validation of a DL model if necessary. We will start to learn how to run large-scale
hyperparameter tuning in the next chapter as our natural next step.

https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://github.com/criteo/mlflow-yarn
https://github.com/criteo/mlflow-yarn

Further reading 123

Further reading
•	 MLflow run projects parameters (for both command line and Python API):

https://www.mlflow.org/docs/latest/projects.html#running-
projects

•	 MLflow run command line (CLI) documentation: https://www.mlflow.org/
docs/latest/cli.html#mlflow-run

•	 MLflow run projects on Databricks: https://www.mlflow.org/docs/
latest/projects.html#run-an-mlflow-project-on-databricks

•	 An example of running an MLflow project on K8s: https://github.
com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/
LogisticRegression

•	 Running MLflow projects on Azure: https://docs.microsoft.com/en-us/
azure/machine-learning/how-to-train-mlflow-projects

https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-databricks
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-databricks
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-mlflow-projects
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-mlflow-projects

6
 Running

Hyperparameter
Tuning at Scale

Hyperparameter tuning or hyperparameter optimization (HPO) is a procedure that
finds the best possible deep neural network structures, types of pretrained models, and
model training process within a reasonable computing resource constraint and time
frame. Here, hyperparameter refers to parameters that cannot be changed or learned
during the ML training process, such as the number of layers inside a deep neural
network, the choice of a pretrained language model, or the learning rate, batch size, and
optimizer of the training process. In this chapter, we will use HPO as a shorthand to
refer to the process of hyperparameter tuning and optimization. HPO is a critical step
for producing a high-performance ML/DL model. Given that the search space of the
hyperparameter is very large, efficiently running HPO at scale is a major challenge. The
complexity and high cost of evaluating a DL model, compared to classical ML models,
further compound the challenges. Therefore, we will need to learn state-of-the-art HPO
approaches and implementation frameworks, implement increasingly complex and
scalable HPO methods, and track them with MLflow to ensure a reproducible tuning
process. By the end of this chapter, you will be comfortable with implementing scalable
HPO for DL model pipelines.

126 Running Hyperparameter Tuning at Scale

In this chapter, first, we will give an overview of the different automatic HPO frameworks
and applications of DL model tuning. Additionally, we will understand what to optimize
and when to choose what frameworks to use. We will compare three popular HPO
frameworks: HyperOpt, Optuna, and Ray Tune. We will show which of these is the
best choice for running HPO at scale. Then, we will focus on learning how to create
HPO-ready DL model codes that can use Ray Tune and MLflow. Following this, we
will show how we can switch to using different HPO algorithms easily with Optuna as
a primary example.

In this chapter, we'll cover the following topics:

•	 Understanding automatic HPO for DL pipelines

•	 Creating HPO-ready DL models using Ray Tune and MLflow

•	 Running the first Ray Tune HPO experiment with MLflow

•	 Running Ray Tune HPO with Optuna and HyperBand

Technical requirements
To understand the examples in this chapter, the following key technical requirements
are needed:

•	 Ray Tune 1.9.2: This is a flexible and powerful hyperparameter tuning framework
(https://docs.ray.io/en/latest/tune/index.html).

•	 Optuna 2.10.0: This is an imperative and define-by-run hyperparameter tuning
Python package (https://optuna.org/).

•	 The code for this chapter can be found in the following GitHub URL, which also
includes the requirements.txt file that contains the preceding key packages
and other dependencies: https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/
chapter06.

https://docs.ray.io/en/latest/tune/index.html
https://optuna.org/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06

Understanding automatic HPO for DL pipelines 127

Understanding automatic HPO for DL
pipelines
Automatic HPO has been studied for over two decades since the first known paper on
this topic was published in 1995 (https://www.sciencedirect.com/science/
article/pii/B9781558603776500451). It has been widely understood that
tuning hyperparameters for an ML model can improve the performance of the model –
sometimes, dramatically. The rise of DL models in recent years has triggered a new wave
of innovation and the development of new frameworks to tackle HPO for DL pipelines.
This is because a DL model pipeline imposes many new and large-scale optimization
challenges that cannot be easily solved by previous HPO methods. Note that, in contrast
to the model parameters that can be learned during the model training process, a set of
hyperparameters must be set before training.

Difference between HPO and Transfer Learning's Fine-Tuning
In this book, we have been focusing on one successful DL approach called
Transfer Learning (please refer to Chapter 1, Deep Learning Life Cycle and
MLOps Challenges, for a full discussion). The key step of a transfer learning
process is to fine-tune a pretrained model with some task- and domain-
specific labeled data to get a good task-specific DL model. However, the
fine-tuning step is just a special kind of model training step that also has lots of
hyperparameters to optimize. That's where HPO comes into play.

Types of hyperparameters and their challenges
There are several types of hyperparameters that you can use for a DL pipeline:

•	 DL model type and architecture: In the case of transfer learning, choosing which
pretrained models to use is one possible hyperparameter. For example, there are
over 27,000 pretrained models in the Hugging Face model repository (https://
huggingface.co/models), including BERT, RoBERTa, and many more. For
a particular prediction task, we might want to try a few of them to decide which is
the best one to use.

https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://huggingface.co/models
https://huggingface.co/models

128 Running Hyperparameter Tuning at Scale

•	 Learning- and training-related parameters: These include different types of
optimizers such as stochastic gradient descent (SGD) and Adam (you can view
a list of PyTorch optimizers at https://machinelearningknowledge.
ai/pytorch-optimizers-complete-guide-for-beginner/). It
also includes the associated parameters such as learning rate and batch size. It is
recommended that, when applicable, the following parameters should be first tuned
in their order of importance for a neural network model: learning rate, momentum,
mini-batch size, the number of hidden layers, learning rate decay, and regularization
(https://arxiv.org/abs/2003.05689).

•	 Data and pipeline configurations: A DL pipeline can include data processing and
transformation steps that could impact model training. For example, if we want to
compare the performance of a classification model for an email message with or
without the signature text body, then a hyperparameter for whether to include an
email signature is needed. Another example is when we don't have enough data or
variations of data; we could try to use various data augmentation techniques that
will lead to different sets of input for the model training (https://neptune.
ai/blog/data-augmentation-nlp).

As a reminder, not all hyperparameters are tunable or require tuning. For example, it
is not necessary for the number of epochs in a DL model to be tuned. This is because
training should stop when the accuracy metric stops improving or does not hold any
promise to do better than other hyperparameter configurations. This is called early
stopping or pruning and is one of the key techniques underpinning some recent state-
of-the-art HPO algorithms (for more discussions on early stopping, please refer to
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-
learning-in-6-easy-steps.html).

https://machinelearningknowledge.ai/pytorch-optimizers-complete-guide-for-beginner/
https://machinelearningknowledge.ai/pytorch-optimizers-complete-guide-for-beginner/
https://arxiv.org/abs/2003.05689
https://neptune.ai/blog/data-augmentation-nlp
https://neptune.ai/blog/data-augmentation-nlp
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html

Understanding automatic HPO for DL pipelines 129

Note that all these three categories of hyperparameters can be mixed and matched, and
the configuration of the entire hyperparameter space can be very large. For example,
if we want to choose the type of pretrained model we want to use as a hyperparameter
(for example, the choice could be BERT or RoBERTa), two learning-related parameters
(such as the learning rate and batch size), and two different data augmentation techniques
for NLP texts (such as random insertion and synonym replacement), then we have
five hyperparameters to optimize. Note that each hyperparameter can have quite a few
different candidate values to choose from, and if each hyperparameter has 5 different
values, then we will have a total of 55 = 3125 combinations of hyperparameters to try.
In practice, it is very common to have dozens of hyperparameters to try, and each
hyperparameter could have dozens of choices or distributions to sample from. This
quickly leads to a curse of dimensionality problem (https://insaid.medium.com/
automated-hyperparameter-tuning-988b5aeb7f2a). This high-dimensional
search space challenge is compounded by the expensive training and evaluation costs of
DL models; we know that even 1 epoch of a tiny BERT, which we tried in the previous
chapters, with a tiny set of training and validation dataset can take 1–2 mins. Now
imagine a realistic production-grade DL model with HPO that could take hours, days,
or even weeks if not executed efficiently. In general, the following is a list of the main
challenges that require the application of high-performance HPO at scale:

•	 The high-dimensional search space of hyperparameters

•	 The high cost of model training and evaluation time for increasingly large
DL models

•	 Time-to-production and deployment for DL models used in production

Performing Model Training and HPO Simultaneously
It is possible to change the hyperparameters dynamically during the training
process. This is a hybrid approach that does model training and HPO
simultaneously, such as Population-Based Training (PBT; https://
deepmind.com/blog/article/population-based-
training-neural-networks). However, this does not change the fact
that when starting a new epoch of training, a set of hyperparameters needs to
be predefined. This PBT is one of the innovations that tries to reduce both the
cost of searching for high-dimensional hyperparameter space and the training
cost of a DL model. Interested readers should consult the Further reading
section to dive deeper into this topic.

Now that we understand the general challenges and categories of hyperparameters to
optimize, let's look at how HPO works and how to choose a framework for our usage.

https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://deepmind.com/blog/article/population-based-training-neural-networks
https://deepmind.com/blog/article/population-based-training-neural-networks
https://deepmind.com/blog/article/population-based-training-neural-networks

130 Running Hyperparameter Tuning at Scale

How HPO works and which ones to choose
There are different ways to understand how HPO works. The classical HPO methods
include grid search and random search, where a set of hyperparameters are chosen with a
range of candidate values. Each one is run independently to completion, and then we pick
the best hyperparameter configuration from the set of trials we run, given the best model
performance metric we found. Although this type of search is easy to implement and
might not even require a sophisticated framework to support it, it is inherently inefficient
and might not even find the best configuration of hyperparameters due to the non-convex
nature of HPO. The term non-convex means that multiple local minimal or maximal
points exist, and an optimization method might not be able to find a global optimal (that
is, minimum or maximum). Put simply, a modern HPO needs to do two things:

•	 The adaptive sampling of hyperparameters (also known as Configuration Selection
or CS): This means it needs to find which set of hyperparameters to try by taking
advantage of prior knowledge. This is mostly about using different variants of
Bayesian optimization to adaptively identify new configurations based on previous
trials in a sequential way. This has been proven to outperform traditional grid
search and random search methods.

•	 The adaptive evaluation of the performance of a set of hyperparameters (also
known as Configuration Evaluation or CE): These approaches focus on adaptively
allocating more resources to promising hyperparameter configurations while
quickly pruning the poor ones. Resources can be in different forms such as the
size of the training dataset (for example, only using a small fraction of the training
dataset) or the number of iterations (for example, only using a few iterations to
decide which ones to terminate without running to convergence). There is a family
of methods called multi-armed bandit algorithms, such as the Asynchronous
Successive Halving Algorithm (ASHA). Here, all trials start with an initial budget,
then the worst half is removed, the budget is adjusted for the remaining ones, and
this repeats until only one trial is left.

In practice, we want to select a suitable HPO framework using the following five criteria:

•	 Callback integration with MLflow

•	 Scalability and support of GPU clusters

•	 Ease of use and flexible APIs

•	 Integration with cutting edge HPO algorithms (CS and CE)

•	 Support of DL frameworks

Understanding automatic HPO for DL pipelines 131

In this book, three frameworks have been compared, and the results are summarized
in Figure 6.1:

Figure 6.1: Comparison of Ray Tune, Optuna, and HyperOpt

As you can see from Figure 6.1, the winner is Ray Tune (https://docs.ray.io/
en/latest/tune/index.html), when compared to Optuna (https://optuna.
org/) and HyperOpt (https://hyperopt.github.io/hyperopt/). Let's explain
the five criteria, as follows:

•	 Callback integration with MLflow: Optuna's support of the MLflow callback is still
an experimental feature, while HyperOpt does not support callback at all, leaving
additional work for users to manage the MLflow tracking for each trial run.

https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://optuna.org/
https://optuna.org/
https://hyperopt.github.io/hyperopt/

132 Running Hyperparameter Tuning at Scale

Only Ray Tune supports both the Python mixin decorator and callback integration
with MLflow. Python mixin is a pattern that allows a standalone function to be
mixed in whenever needed. In this case, the MLflow functionality is automatically
mixed in during model training through the mlflow_mixin decorator. This
can turn any training function into a Ray Tune trainable function, automatically
configuring MLflow and creating a run in the same process as each Tune trial. You
can then use the MLflow API inside the training function and it will automatically
get reported to the correct run. Additionally, it supports MLflow's autologging,
which means that all of the MLflow tracking information will be logged into the
correct trial. For example, the following code snippet shows that our previous DL
fine-tuning function can be turned into a mlflow_mixin Ray Tune function,
as follows:

@mlflow _ mixin

def train _ dl _ model():

 mlflow.pytorch.autolog()

 trainer = flash.Trainer(

 max _ epochs=num _ epochs,

 callbacks=[TuneReportCallback(

 metrics, on='validation _ end')])

 trainer.finetune()

Note that when we define the trainer, we can add TuneReportCallback as one
of the callbacks, which will pass the metrics back to Ray Tune, while the MLflow
autologging does its job of logging all the tracking results simultaneously. In the
next section, we will show you how to turn the previous chapter's example of fine-
tuning the DL model into a Ray Tune trainable.

•	 Scalability and support of GPU clusters: Although Optuna and HyperOpt support
parallelization, they both have dependencies on some external databases (relational
databases or MongoDB) or SparkTrials. Only Ray Tune supports parallel and
distributed HPO through the Ray distributed framework natively, and it is also the
only one that supports running on a GPU cluster among these three frameworks.

Understanding automatic HPO for DL pipelines 133

•	 Ease of use and flexibility of the APIs: Among all the three frameworks, only
Optuna supports define-by-run APIs, which allows you to dynamically define the
hyperparameters in a Pythonic programming style, including loops and branches
(https://optuna.readthedocs.io/en/stable/tutorial/10_key_
features/002_configurations.html). This is in contrast to the define-
and-run APIs, which both Ray Tune and HyperOpt support, where the search space
is defined by a predefined dictionary prior to evaluating the objective function.
These two terms, define-by-run and define-and-run, were actually coined by the
DL framework's development community. In the early days, when TensorFlow 1.0
was initially released, a neural network needed to be defined first and then lazily
executed later, which is called define-and-run. These two phases, 1) the construction
of the neural network phase and 2) the evaluation phases, are sequentially executed,
and the neural network structure cannot be changed after the construction
phase. The newer DL frameworks, such as TensorFlow 2.0 (or the eager execution
version of TensorFlow) and PyTorch, support the define-by-run neural network
computation. There are no two separate phases for constructing and evaluating
neural networks. Users can directly manipulate the neural networks while doing
the computation. While the define-by-run API provided by Optuna can be used
to directly define the hyperparameter search space dynamically, it does have some
drawbacks. The main problem is that the parameter concurrence is not known until
runtime, which could complicate the implementation of the optimization method.
This is because knowing the parameter concurrence beforehand is well supported
for many sampling methods. Thus, in this book, we prefer using define-and-
run APIs. Also, note that Ray Tune can support the define-by-run API through
integration with Optuna (you can see an example in Ray Tune's GitHub repository
at https://github.com/ray-project/ray/blob/master/python/
ray/tune/examples/optuna_define_by_run_example.py#L35).

•	 Integration with cutting-edge HPO algorithms (CS and CE): On the CS side,
among these three frameworks, HyperOpt has the least active development
to support or integrate with the latest cutting-edge HPO sampling and search
methods. Its primary search method is Tree-Structured Parzen Estimators (TPE),
which is a Bayesian optimization variant that's especially effective for a mixed
categorical and conditional hyperparameter search space. Similarly, Optuna's
primary sampling method is TPE. On the contrary, Ray Tune supports all cutting-
edge searching methods, including the following:

	� DragonFly (https://dragonfly-opt.readthedocs.io/en/master/),
which is a highly scalable Bayesian optimization framework

https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html
https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/optuna_define_by_run_example.py#L35
https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/optuna_define_by_run_example.py#L35
https://dragonfly-opt.readthedocs.io/en/master/

134 Running Hyperparameter Tuning at Scale

	� BlendSearch (https://microsoft.github.io/FLAML/docs/
Use-Cases/Tune-User-Defined-Function/#hyperparameter-
optimization-algorithm) from Microsoft Research

In addition, Ray Tune also supports TPE through integration with Optuna and
HyperOpt.

On the CE side, HyperOpt does not support any pruning or schedulers to stop the
non-promising hyperparameter configuration. Both Optuna and Ray Tune support
quite a few pruners (in Optuna) or schedulers (in Ray Tune). However, only Ray
Tune supports PBT. Given the active development community and flexible API
developed by Ray Tune, it is possible for Ray tune to continue to integrate and
support any emerging schedulers or pruners in a timely fashion.

•	 Support of DL frameworks: HyperOpt is not specifically designed or integrated
with any DL frameworks. This does not mean you cannot use HyperOpt for tuning
DL models. However, HyperOpt does not offer any pruning or scheduler support
to perform early stopping for unpromising hyperparameter configuration, which
is a major disadvantage for HyperOpt to be used for DL model tuning. Both Ray
Tune and Optuna have integration with popular DL frameworks such as PyTorch
Lightning and TensorFlow/Keras.

In addition to the major criteria that we just discussed, Ray Tune also has the best
documentation, extensive code examples, and a vibrant open source developer
community, which is why we prefer to use Ray Tune for our learning in this chapter.
In the following sections, we will learn how to create HPO-ready DL models with Ray
Tune and MLflow.

Creating HPO-ready DL models with Ray Tune
and MLflow
To use Ray Tune with MLflow for HPO, let's use the fine-tuning step in our DL pipeline
example from Chapter 5, Running DL Pipelines in Different Environments, to see what
needs to be set up and what code changes we need to make. Before we start, first, let's
review a few key concepts that are specifically relevant to our usage of Ray Tune:

•	 Objective function: An objective function can be either to minimize or maximize
some metric values for a given configuration of hyperparameters. For example, in
the DL model training and fine-tuning scenarios, we would like to maximize the
F1-score for the accuracy of an NLP text classifier. This objective function needs to
be wrapped as a trainable function, where Ray Tune can do HPO. In the following
section, we will illustrate how to wrap our NLP text sentiment model.

https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm
https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm
https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm

Creating HPO-ready DL models with Ray Tune and MLflow 135

•	 Function-based APIs and class-based APIs: A function-based API allows a user
to insert Ray Tune statements into the model training function (called trainable in
Ray Tune) such as tune.report for reporting model metrics (https://docs.
ray.io/en/latest/tune/api_docs/trainable.html#function-
api). A class-based API requires the model training function (trainable) to be a
subclass of tune.Trainable (https://docs.ray.io/en/latest/tune/
api_docs/trainable.html#trainable-class-api). A class-based API
provides more control of how Ray Tune controls the model training processing. This
might be very helpful if you start writing a new piece of architecture for a neural
network model. However, when using a pretrained foundation model for fine-
tuning, it is much easier to use a function-based API since we can leverage packages
such as PyTorch Lightning Flash to do HPO.

•	 Trials: Each trial is a run of a specific configuration of hyperparameters. This can
be executed by passing the trainable function into tune.run, where Ray Tune will
orchestrate the HPO process.

•	 Search space: This is a set of configurations where each hyperparameter will
be assigned a way in which to sample from certain distributions (for example,
log uniform distribution sampling can use tune.loguniform) or from some
categorical variables (for example, tune.choice(['a', 'b' ,'c']) can
allow you to choose these three choices uniformly). Usually, this search space is
defined as a Python dictionary variable called config.

•	 Suggest: This is the search algorithm or CS algorithm that you need to choose
for selecting the best trial. Ray Tune provides integration to many popular open
source search algorithms and can automatically convert the search space defined in
Ray Tune into the format that the underlying optimization algorithms expect.
A list of available search algorithms can be found through the tune.suggest API
(https://docs.ray.io/en/latest/tune/api_docs/suggestion.
html#tune-search-alg).

•	 Scheduler: This is also called CE, as mentioned earlier. While the tune.suggest
API provides the optimization algorithms for searching, it does not offer the early
stopping or pruning capability to halt the obviously unpromising trials after just
a few iterations. Since early stopping or pruning can significantly speed up the
HPO process, it is highly recommended that you use a scheduler in conjunction
with a searcher. Ray Tune provides many popular schedulers through its scheduler
API (tune.schedulers), such as ASHA, HyperBand, and more. (Please visit
https://docs.ray.io/en/latest/tune/api_docs/schedulers.
html#trial-schedulers-tune-schedulers.)

https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#trainable-class-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#trainable-class-api
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#trial-schedulers-tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#trial-schedulers-tune-schedulers

136 Running Hyperparameter Tuning at Scale

Having reviewed the basic concepts and APIs of Ray Tune, in the next section, we will be
setting up Ray Tune and MLflow to run HPO experiments.

Setting up Ray Tune and MLflow
Now that we understand the basic concepts and APIs of Ray Tune, let's see how we can
set up Ray Tune to perform HPO for the fine-tuning step of our previous NLP sentiment
classifier. You might want to download this chapter's code (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter06/) to follow along with these instructions:

1.	 Install Ray Tune by typing the following command into your conda virtual
environment, dl_model_hpo:

pip install ray[tune]==1.9.2

2.	 This will install Ray Tune in the virtual environment where you will launch
the HPO runs for your DL model fine-tuning. Note that we have also provided
the complete requirements.txt file in this chapter's GitHub repository
(https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter06/
requirements.txt), where you should be able to run the following
installation command:

pip install -r requirements.txt

3.	 The complete instructions in the README.md file, which are in the same folder,
should give you more guidance if you need to know how to set up a proper virtual
environment.

4.	 For the MLflow setup, assuming you already have a full-fledged MLflow
tracking server set up, the only thing you need to pay attention to is making
sure that you have the environment variables set up correctly to access the
MLflow tracking server. Run the following in your shell to set them up.
Alternatively, you can overwrite your environmental variables by calling
os.environ["environmental_name"]=value in the Python code. As a
reminder, we have shown the following environment variables that can be set in the
command lines per Terminal session:

export MLFLOW _ TRACKING _ URI=http://localhost

export MLFLOW _ S3 _ ENDPOINT _ URL=http://localhost:9000

export AWS _ ACCESS _ KEY _ ID="minio"

export AWS _ SECRET _ ACCESS _ KEY="minio123"

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt

Creating HPO-ready DL models with Ray Tune and MLflow 137

5.	 Run the step of download_data to download the raw data to the local folder
under the chapter06 parent folder:

mlflow run . -P pipeline _ steps='download _ data'
--experiment-name dl _ model _ chapter06

When the preceding execution is done, you should be able to find the IMDB data
under the chapter06/data/ folder.

Now we are ready to create an HPO step to fine-tune the NLP sentiment model we
built earlier.

Creating the Ray Tune trainable for the DL model
There are multiple changes that we need to make to allow Ray Tune to run HPO to fine-
tune the DL model that we developed in previous chapters. Let's walk through the steps,
as follows:

1.	 First, let's identify the list of possible hyperparameters (both tunable and
non-tunable) in our previous fine-tuning code. Recall that our fine-tuning code
looks similar to the following (only the key lines of code are shown here; the
complete code can be found in chapter05 in the GitHub repository at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_
tuning_model.py#L19):

datamodule = TextClassificationData.from _ csv(

 input _ fields="review",

 target _ fields="sentiment",

 train _ file=f"{data _ path}/imdb/train.csv",

 val _ file=f"{data _ path}/imdb/valid.csv",

 test _ file=f"{data _ path}/imdb/test.csv")

classifier _ model = TextClassifier(

 backbone= "prajjwal1/bert-tiny",

 num _ classes=datamodule.num _ classes,

 metrics=torchmetrics.F1(datamodule.num _ classes))

trainer = flash.Trainer(max _ epochs=3)

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19

138 Running Hyperparameter Tuning at Scale

trainer.finetune(classifier _ model,

 datamodule=datamodule, strategy="freeze")

The preceding code has four major pieces:

	� The datamodule variable: This defines the data sources for training,
validation, and testing. There is a batch_size parameter with a
default value of 1, which is not shown here, but it is one of the most
important hyperparameters to tune. For more details, please see the
explanation in the lightning-flash code documentation (https://
github.com/PyTorchLightning/lightning-flash/
blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/
data/data_module.py#L64).

	� classifier_model: This defines a classifier with the exposed parameters
through the TextClassifier API of lightning-flash. There are
multiple hyperparameters in the input arguments that could be tuned,
including learning_rate, the backbone foundation model, optimizer,
and more. You can see the complete list of input arguments in the
lightning-flash code documentation for the TextClassifier API
(https://github.com/PyTorchLightning/lightning-flash/
blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/
classification/model.py#L44).

	� trainer: This defines a trainer variable that can be used for fine-tuning. Here,
there are a few hyperparameters that need to be set, but not necessarily tuned,
such as num_epochs, as discussed earlier.

	� trainer.finetune: This does the actual finetuning (transfer learning). Note
that there is also a possible hyperparameter strategy that could be tuned.

For learning purposes, we will pick learning_rate and batch_size as the two
hyperparameters to tune, as these two are the most important hyperparameters to
optimize for a DL model. Once you finish this chapter, you should be able to easily
add additional hyperparameters to the list of candidates for optimization.

https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44

Creating HPO-ready DL models with Ray Tune and MLflow 139

2.	 Ray Tune requires a trainable function to be passed into tune.run. This means we
need to create a trainable function. By default, a trainable function only takes one
required input parameter, config, which contains a dictionary of key-value pairs
of hyperparameters and other parameters for identifying an execution environment
such as an MLflow tracking URL. However, Ray Tune provides a wrapper function,
called tune.with_parameters, which allows you to pass along additional
arbitrary parameters and objects (https://docs.ray.io/en/latest/tune/
tutorials/overview.html#how-can-i-pass-further-parameter-
values-to-my-trainable). First, let's create a function called finetuning_
dl_model to encapsulate the logic that we just examined regarding the fine-tuning
step, using a mlflow_mixin decorator. This allows MLflow to be initialized
automatically when this function is called:

@mlflow _ mixin

def finetuning _ dl _ model(config, data _ dir=None,

 num _ epochs=3, num _ gpus=0):

This function takes a config dictionary as input where a list of hyperparameters
and MLflow configurations can be passed in. Additionally, we add three additional
arguments to the function signature: data_dir for the location of the directory,
num_epochs for the maximum number of epochs for each trial to run, and num_
gpus for the number of GPUs for each trial to use if there is any.

3.	 In this mlflow_mixin decorated function, we can use all the MLflow tracking
APIs if necessary, but as of MLflow version 1.22.0, since MLflow's autologging
support no longer is an experimental feature, but a mature production quality
feature (https://github.com/mlflow/mlflow/releases/tag/
v1.22.0), we should just use autologging in our code, as follows:

mlflow.pytorch.autolog()

This is efficient and requires no change. However, the batch_size
hyperparameter is not automatically captured by autologging, so we need to add
one more logging statement after the fine-tuning is done, as follows:

mlflow.log _ param('batch _ size',config['batch _ size'])

https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://github.com/mlflow/mlflow/releases/tag/v1.22.0
https://github.com/mlflow/mlflow/releases/tag/v1.22.0

140 Running Hyperparameter Tuning at Scale

4.	 In the rest of the implementation body of the finetuning_dl_model
function, the majority of the code is the same as before. There are a few
changes. In the datamodule variable assignment statement, we add batch_
size=config['batch_size'] to allow the mini-batch size of the training data
to be tunable, as shown here:

datamodule = TextClassificationData.from _ csv(

 input _ fields="review",

 target _ fields="sentiment",

 train _ file=f"{data _ dir}/imdb/train.csv",

 val _ file=f"{data _ dir}/imdb/valid.csv",

 test _ file=f"{data _ dir}/imdb/test.csv",

 batch _ size=config['batch _ size'])

5.	 When defining the classifier_model variable, instead of using the default
values of the set of hyperparameters, now we need to pass in the config dictionary
to assign these values:

classifier _ model = TextClassifier(

 backbone=config['foundation _ model'],

 learning _ rate=config['lr'],

 optimizer=config['optimizer _ type'],

 num _ classes=datamodule.num _ classes,

 metrics=torchmetrics.F1(datamodule.num _ classes))

6.	 Next, we need to modify the trainer assignment code. Here, we need to do two
things: first, we need to define a metrics key-value dictionary to pass from PyTorch
Lightning to Ray Tune. The key in this metrics dictionary is the name to be
referenced in the Ray Tune trial run, while the value of the key in this dictionary is
the corresponding metric name reported by PyTorch Lightning.

Creating HPO-ready DL models with Ray Tune and MLflow 141

Metric Names in the PyTorch Lightning's Validation Step
When passing the metrics to Ray Tune, first, we need to know the
metric names used in PyTorch Lightning during the validation step
since HPO only uses validation data for evaluation, not the hold-out test
datasets. It turns out PyTorch Lightning has a hardcoded convention
to prefix all metrics with the corresponding training, validation, and
testing step names and an underscore. A metric named f1 will be
reported in PyTorch Lightning as train_f1 during the training step,
val_f1 during the validation step, and test_f1 during the testing
step. (You can view the PyTorch Lightning code logic at https://
github.com/PyTorchLightning/lightning-flash/
blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/
flash/core/model.py#L462). In our example, we can pick cross_
entropy and f1 as the metrics during the validation step, which are named
val_cross_entropy and val_f1, to pass back to Ray Tune as loss
and f1, respectively. That means, in Ray Tune's trial run, we reference these
two metrics as simply loss and f1.

So, here we define two metrics that we want to pass from the PyTorch Lightning
validation step, val_cross_entropy and val_f1, to Ray Tune as loss and
f1, respectively:

metrics = {"loss":"val _ cross _ entropy", "f1":"val _ f1"}

Now, we can pass this metrics dictionary to the trainer assignment, as follows:
trainer = flash.Trainer(max _ epochs=num _ epochs,

 gpus=num _ gpus,

 progress _ bar _ refresh _ rate=0,

 callbacks=[TuneReportCallback(metrics,

 on='validation _ end')])

Notice that the metrics dictionary is passed through TuneReportCallBack
when the validation_end event happens. This means that when the
validation step is done in PyTorch Lightning, it will automatically trigger the
Ray Tune report function to report the list of metrics back to Ray Tune for
evaluation. The supported list of valid events for TuneReportCallback
to use can be found in Ray Tune's integration with the PyTorch Lightning
source code (https://github.com/ray-project/ray/blob/
fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/
integration/pytorch_lightning.py#L170).

https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170

142 Running Hyperparameter Tuning at Scale

7.	 Finally, we can call trainer.finetune to execute the fine-tuning step. Here, we
can pass finetuning_strategies as one of the tunable hyperparameters to the
argument list:

trainer.finetune(classifier _ model,

 datamodule=datamodule,

 strategy=config['finetuning _ strategies'])

8.	 This completes the changes to the original function of fine-tuning the DL model.
Now we have a new finetuning_dl_model function that's ready to be wrapped
in tune.with_parameters to become a Ray Tune trainable function. It should
be called as follows:

trainable = tune.with _ parameters(finetuning _ dl _ model,
data _ dir, num _ epochs, num _ gpus)

9.	 Note that there is no need to pass the config parameter, as it is implicitly
assumed that it's the first parameter of finetuning_dl_model. The other three
parameters need to be passed to the tune.with_parameters wrapper. Also,
make sure this statement to create a trainable object for Ray Tune is placed outside
of the finetuning_dl_model function.

In the next section, it will be placed inside Ray Tune's HPO running function called run_
hpo_dl_model.

Creating the Ray Tune HPO run function
Now, let's create a Ray Tune HPO run function to do the following five things:

•	 Define the MLflow runtime configuration parameters including a tracking URI and
an experiment name.

•	 Define the hyperparameter search space using Ray Tune's random distributions API
(https://docs.ray.io/en/latest/tune/api_docs/search_space.
html#random-distributions-api) to sample the list of hyperparameters we
identified earlier.

•	 Define a Ray Tune trainable object using tune.with_parameters, as shown
toward the end of the previous subsection.

•	 Call tune.run. This will execute the HPO run and return Ray Tune's experiment
analysis object when it has been completed.

•	 Log the best configuration parameters when the entire HPO run is finished.

https://docs.ray.io/en/latest/tune/api_docs/search_space.html#random-distributions-api
https://docs.ray.io/en/latest/tune/api_docs/search_space.html#random-distributions-api

Creating HPO-ready DL models with Ray Tune and MLflow 143

Let's walk through the implementation to see how this function can be implemented:

1.	 First, let's define the hyperparameter's config dictionary, as follows:

mlflow.set _ tracking _ uri(tracking _ uri)

mlflow.set _ experiment(experiment _ name)

This will take tracking_uri and experiment_name of MLflow as the input
parameters and set them up correctly. If this is the first time you're running this,
MLflow will also create the experiment.

2.	 Then, we can define the config dictionary, which can include both tunable and
non-tunable parameters, and the MLflow configuration parameters. As discussed
in the previous section, we will tune learning_rate and batch_size but will
also include other hyperparameters for bookkeeping and future tuning purposes:

config = {

 "lr": tune.loguniform(1e-4, 1e-1),

 "batch _ size": tune.choice([32, 64, 128]),

 "foundation _ model": "prajjwal1/bert-tiny",

 "finetuning _ strategies": "freeze",

 "optimizer _ type": "Adam",

 "mlflow": {

 "experiment _ name": experiment _ name,

 "tracking _ uri": mlflow.get _ tracking _ uri()

 },

 }

As you can see from the config dictionary, we called tune.loguniform to
sample a log uniform distribution between 1e-4 and 1e-1 to select a learning rate.
For the batch size, we called tune.choice to select one of three distinct values
uniformly. For the rest of the key-value pairs, they are non-tunable since they do
not use any sampling methods but are needed to run the trials.

3.	 Define the trainable object using tune.with_parameters with all of the extra
parameters except for the config parameter:

trainable = tune.with _ parameters(

 finetuning _ dl _ model,

 data _ dir=data _ dir,

 num _ epochs=num _ epochs,

 num _ gpus=gpus _ per _ trial)

144 Running Hyperparameter Tuning at Scale

In the next statement, this will be called the tune.run function.
4.	 Now we are ready to run the HPO by calling tune.run, as follows:

analysis = tune.run(

 trainable,

 resources _ per _ trial={

 "cpu": 1,

 "gpu": gpus _ per _ trial

 },

 metric="f1",

 mode="max",

 config=config,

 num _ samples=num _ samples,

 name="hpo _ tuning _ dl _ model")

Here, the objective is to find the set of hyperparameters that maximizes the
F1-score among all of the trials, so the mode is max and the metric is f1. Note
that this metric name, f1, is from the metrics dictionary that we defined in
the previous finetuning_dl_model function, where we mapped PyTorch
Lightning's val_f1 to f1. This f1 value is then passed to Ray Tune at the end of
each trial's validation step. The trainable object is passed to tune.run as the
first parameter, which will be executed as many times as the parameter of num_
samples allows. Following this, resources_per_trial defines the CPU and
GPU to use. Note that in the preceding example, we haven't specified any search
algorithms. This means it will use tune.suggest.basic_variant by default,
which is a grid search algorithm. There is also no scheduler defined, so, by default,
there is no early stopping, and all trials will be run in parallel with the maximum
number of CPUs allowed on the execution machine. When the run finishes, an
analysis variable is returned, which contains the best hyperparameters found,
along with other information.

5.	 Log the best configuration of the hyperparameters found. This can be done by using
the returned analysis variable from tune.run, as follows:

logger.info("Best hyperparameters found were: %s", analysis.
best _ config)

That's it. Now we can give it a try. If you download the complete code from this
chapter's GitHub repository, you should be able to find the hpo_finetuning_
model.py file under the pipeline folder.

Running the first Ray Tune HPO experiment with MLflow 145

With the preceding change, now we are ready to run our first HPO experiment.

Running the first Ray Tune HPO experiment
with MLflow
Now that we have set up Ray Tune, MLflow, and created the HPO run function, we can try
to run our first Ray Tune HPO experiment, as follows:

python pipeline/hpo _ finetuning _ model.py

After a couple of seconds, you will see the following screen, Figure 6.2, which shows that
all 10 trials (that is, the values that we set for num_samples) are running concurrently:

Figure 6.2 – Ray Tune running 10 trials in parallel on a local multi-core laptop

After approximately 12–14 mins, you will see that all the trials have finished and the best
hyperparameters will be printed out on the screen, as shown in the following (your results
might vary due to the stochastic nature, the limited number of samples, and the use of
grid search, which does not guarantee a global optimal):

Best hyperparameters found were: {'lr': 0.025639008922511797,
'batch _ size': 64, 'foundation _ model': 'prajjwal1/bert-
tiny', 'finetuning _ strategies': 'freeze', 'optimizer _ type':
'Adam', 'mlflow': {'experiment _ name': 'hpo-tuning-chapter06',
'tracking _ uri': 'http://localhost'}}

146 Running Hyperparameter Tuning at Scale

You can find the results for each trial under the result log directory, which, by default, is in
the current user's ray_results folder. From Figure 6.2, we can see that the results are in
/Users/yongliu/ray_results/hpo_tuning_dl_model.

You will see the final output of the best hyperparameters on your screen, which means
you have completed running your first HPO experiment! You can see that all 10 trials are
logged in the MLflow tracking server, and you can visualize and compare all 10 runs using
the parallel coordinates plot provided by the MLflow tracking server. You can produce
such a plot by going to the MLflow experiment page and selecting the 10 trials you just
finished and then clicking on the Compare button near the top of the page (see Figure
6.3). This will bring you to the side-by-side comparison page with the plotting options
being displayed at the bottom of the page:

Figure 6.3 – Clicking Compare to compare all 10 trial runs on the MLflow experiment page

You can click on the Parallel Coordinates Plot menu item, which allows you to select the
parameters and metrics to plot. Here, we select lr and batch_size as the parameters and
val_f1 and val_cross_entropy as the metrics. The plot is shown in Figure 6.4:

Running HPO with Ray Tune using Optuna and HyperBand 147

Figure 6.4 –Parallel Coordinates Plot for comparing the HPO trial results

As you can see in Figure 6.4, it is very easy to see that batch_size of 128 and lr of 0.02874
produce the best val_f1 score of 0.6544 and val_cross_entropy (the loss value) of 0.62222.
As mentioned earlier, this HPO run did not use any advanced search algorithms and
schedulers, so let's see whether we can do better with more experiments in the following
sections using early stopping and pruning.

Running HPO with Ray Tune using Optuna and
HyperBand
Now, let's do some experiments with different search algorithms and schedulers. Given
that Optuna is such a great TPE-based search algorithm, and ASHA is a great scheduler
that does asynchronous parallel trials with early termination of the unpromising ones, it
would be interesting to see how many changes we need to do to make this work.

It turns out the change is very minimal based on what we have already done in the
previous section. Here, we will illustrate the four main changes:

1.	 Install the Optuna package. This can be done by running the following command:

pip install optuna==2.10.0

This will install Optuna in the same virtual environment that we had before. If you
have already run pip install -r requirements.text, then Optuna has
already been installed and you can skip this step.

148 Running Hyperparameter Tuning at Scale

2.	 Import the relevant Ray Tune modules that integrate with Optuna and the ASHA
scheduler (here, we use the HyperBand implementation of ASHA) as follows:

from ray.tune.suggest import ConcurrencyLimiter

from ray.tune.schedulers import AsyncHyperBandScheduler

from ray.tune.suggest.optuna import OptunaSearch

3.	 Now we are ready to add the search algorithm variable and scheduler variable to the
HPO execution function, run_hpo_dl_model, as follows:

searcher = OptunaSearch()

searcher = ConcurrencyLimiter(searcher, max _ concurrent=4)

scheduler = AsyncHyperBandScheduler()

Note that the searcher variable is now using Optuna, and we set the maximal
number of concurrent runs to 4 for this searcher variable to try at any given time
during the HPO search process. The scheduler is initialized with the HyperBand
scheduler.

4.	 Assign the searcher and scheduler to the corresponding parameters of the tune.
run call, as follows:

analysis = tune.run(

 trainable,

 resources _ per _ trial={

 "cpu": 1,

 "gpu": gpus _ per _ trial

 },

 metric="f1",

 mode="max",

 config=config,

 num _ samples=num _ samples,

 search _ alg=searcher,

 scheduler=scheduler,

 name="hpo _ tuning _ dl _ model")

Note that searcher is assigned to the search_alg parameter, and scheduler
is assigned to the scheduler parameter. That's it. Now we are ready to run
HPO with Optuna under the unified Ray Tune framework, with all of the MLflow
integration that's already been provided by Ray Tune.

Running HPO with Ray Tune using Optuna and HyperBand 149

We have provided the complete Python code in the hpo_finetuning_model_
optuna.py file under the pipeline folder. Let's run this HPO experiment as follows:

python pipeline/hpo _ finetuning _ model _ optuna.py

You will immediately notice the following in the console output:

[I 2022-02-06 21:01:27,609] A new study created in memory with
name: optuna

This means that we are now using Optuna as the search algorithm. Additionally, you will
notice that there are four concurrent trials in the status output displayed on the screen.
As time goes by, some trials will be terminated after one or two iterations (epochs) before
completion. This means ASHA is at work and has eliminated those unpromising trials
to save computing resources and speed up the searching process. Figure 6.5 shows one
of the outputs during the run where three trials were terminated with only one iteration.
You can find num_stopped=3 in the status output (the third line in Figure 6.5), where it
says Using AsynHyerBand: num_stopped=3. This means that AsyncHyperBand
terminated these three trials before they were completed:

Figure 6.5 – Running HPO with Ray Tune using Optuna and AsyncHyperBand

At the end of the run, you will see the following results:

2022-02-06 21:11:59,695 INFO tune.py:626 -- Total run time:
632.10 seconds (631.91 seconds for the tuning loop).

2022-02-06 21:11:59,728 Best hyperparameters found were: {'lr':
0.0009599443695046438, 'batch _ size': 128, 'foundation _ model':
'prajjwal1/bert-tiny', 'finetuning _ strategies': 'freeze',

150 Running Hyperparameter Tuning at Scale

'optimizer _ type': 'Adam', 'mlflow': {'experiment _ name':
'hpo-tuning-chapter06', 'tracking _ uri': 'http://localhost'}}

Notice that the total run time was only 10 minutes. Compared with the previous section
that used grid search without early stopping, this saves 2–4 minutes. Now, this might seem
brief, but remember that we are only using a tiny BERT model here with only 3 epochs.
In a production HPO run, using a large pretrained foundation model with 20 epochs
is not uncommon, and the speed of searching will be significant with a good search
algorithm combined with a scheduler such as the Asynchronous HyperBand scheduler.
The integration of MLflow provided by Ray Tune comes for free, as we can now switch to
a different search algorithm and/or a scheduler under a single framework.

While this section only shows you how to use Optuna within the Ray Tune and MLflow
framework, replacing Optuna with HyperOpt is a simple drop-in change. Instead of
initializing a searcher with OptunaSearch, we can use HyperOptSearch (you
can see an example at https://github.com/ray-project/ray/blob/
d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/
examples/hyperopt_conditional_search_space_example.py#L80), and
the rest of the code is the same. We leave this as an exercise for you to explore.

Using Different Search Algorithms and Schedulers with Ray Tune
Note that not all search algorithms can work with any scheduler. What search
algorithms and schedulers you choose depends on the model complexity
and evaluation cost. For a DL model, since the cost of running one epoch is
usually high, it is very desirable to use a modern search algorithm such as TPE,
Dragonfly, and BlendSearch, coupled with an ASHA type scheduler such as
the HyperBand scheduler that we use. For more detailed guidance on which
search algorithms and schedulers to use, you should consult the following
documentation on the Ray Tune website: https://docs.ray.io/en/
latest/tune/tutorials/overview.html#which-search-
algorithm-scheduler-should-i-choose.

Now that we understand how to use Ray Tune and MLflow to do highly parallel and
efficient HPO for DL models, this builds the foundation for us to do more advanced HPO
experiments at scale in the future.

https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose

Summary 151

Summary
In this chapter, we covered the fundamentals and challenges of HPO, why it is important
for the DL model pipeline, and what a modern HPO framework should support. We
compared three popular frameworks – Ray Tune, Optuna, and HyperOpt – and picked
Ray Tune as the winner for running state-of-the-art HPO at scale. We saw how to
create HPO-ready DL model code using Ray Tune and MLflow and ran our first HPO
experiment with Ray Tune and MLflow. Additionally, we covered how to switch to other
search and scheduler algorithms once we have our HPO code framework set up, using the
Optuna and HyperBand schedulers as an example. The learnings from this chapter will
help you to competently carry out large-scale HPO experiments in real-life production
environments, allowing you to produce high-performance DL models in a cost-effective
way. We have also provided many references in the Further reading section at the end of
this chapter to encourage you to study further.

In our next chapter, we will continue learning how to build preprocessing and
postprocessing steps for a model inference pipeline using MLflow, which is a typical
scenario in a real production environment after having an HPO-tuned DL model that's
ready for production.

Further reading
•	 Best Tools for Model Tuning and Hyperparameter Optimization: https://

neptune.ai/blog/best-tools-for-model-tuning-and-
hyperparameter-optimization

•	 Comparison between Optuna and HyperOpt: https://neptune.ai/blog/
optuna-vs-hyperopt

•	 How (Not) to Tune Your Model with Hyperopt: https://databricks.com/
blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.
html

•	 Why Hyper parameter tuning is important for your model?: https://medium.
com/analytics-vidhya/why-hyper-parameter-tuning-is-
important-for-your-model-1ff4c8f145d3

•	 The Art of Hyperparameter Tuning in Deep Neural Nets by Example: https://
towardsdatascience.com/the-art-of-hyperparameter-tuning-
in-deep-neural-nets-by-example-685cb5429a38

•	 Automated Hyperparameter tuning: https://insaid.medium.com/
automated-hyperparameter-tuning-988b5aeb7f2a

https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization
https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization
https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization
https://neptune.ai/blog/optuna-vs-hyperopt
https://neptune.ai/blog/optuna-vs-hyperopt
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a

152 Running Hyperparameter Tuning at Scale

•	 Get better at building PyTorch models with Lightning and Ray Tune: https://
towardsdatascience.com/get-better-at-building-pytorch-
models-with-lightning-and-ray-tune-9fc39b84e602

•	 Ray & MLflow: Taking Distributed Machine Learning Applications to
Production: https://medium.com/distributed-computing-with-
ray/ray-mlflow-taking-distributed-machine-learning-
applications-to-production-103f5505cb88

•	 A Novice's Guide to Hyperparameter Optimization at Scale: https://wood-b.
github.io/post/a-novices-guide-to-hyperparameter-
optimization-at-scale/

•	 A Databricks notebook to run Ray Tune and MLflow on a Databricks cluster:
https://databricks-prod-cloudfront.cloud.databricks.com/
public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/
1089858099311442/7376217192554178/latest.html

•	 A Brief Introduction to Ray Distributed Objects, Ray Tune, and a Small Comparison
to Parsl: https://cloud4scieng.org/2021/04/08/a-brief-
introduction-to-ray-distributed-objects-ray-tune-and-a-
small-comparison-to-parsl/

https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/

Section 4 –
Deploying a Deep
Learning Pipeline

at Scale

In this section, we will learn how to implement and deploy a multi-step inference
pipeline for production usage. We will start with an overview of four patterns of inference
workflows in production. We will then learn how to implement a multi-step inference
pipeline with preprocessing and postprocessing steps around a fine-tuned deep learning
(DL) model using MLflow PyFunc APIs. With a ready-to-deploy MLflow PyFunc-
compatible DL inference pipeline, we will learn about different deployment tools and
hosting environments to decide which tool to use for a specific deployment scenario. We
will then implement and deploy a batch inference pipeline using MLflow's Spark user-
defined function (UDF). From there on, we will focus on deploying a web service using
either MLflow's built-in model serving tool or Ray Serve's MLflow deployment plugin.
Finally, we will show a complete step-by-step guide to deploying a DL inference pipeline
to a managed AWS SageMaker instance for production usage.

This section comprises the following chapters:

•	 Chapter 7, Multi-Step Deep Learning Inference Pipeline

•	 Chapter 8, Deploying a DL Inference Pipeline at Scale

7
Multi-Step Deep

Learning Inference
Pipeline

Now that we have successfully run HPO (Hyperparameter Optimization) and produced
a well-tuned DL model that meets the business requirements, it is time to move to the next
step towards using this model for prediction. This is where the model inference pipeline
comes into play, where the model is used for predicting or scoring real-world data in
production, either in real time or batch mode. However, an inference pipeline usually does
not just rely on a single model but needs preprocessing and postprocessing logic that is
not necessarily seen during the model development stage. Examples of preprocessing steps
include detecting the language locale (English or some other languages) before passing the
input data to the model for scoring. Postprocessing could include enriching the predicted
labels with additional metadata to meet the business application's requirements. There are
also patterns of ML/DL inference pipelines that could even involve an ensemble of models
to solve a real-world business problem. Many ML projects often underestimate the efforts
needed to implement a production inference pipeline, which could result in degradation
of the model's performance in production or in the worst case, failure of the entire project.
Thus, it is important to learn how to recognize the pattern of different inference pipelines
and implement them properly before we deploy the model into production.

156 Multi-Step Deep Learning Inference Pipeline

By the end of this chapter, you will be able to use MLflow to confidently implement
preprocessing and postprocessing steps for a multi-step inference pipeline that is ready to
be used in production in future chapters.

In this chapter, we're going to cover the following main topics:

•	 Understanding patterns of DL inference pipelines

•	 Understanding the MLflow Model Python Function API

•	 Implementing a custom MLflow Python model

•	 Implementing preprocessing and postprocessing steps in a DL inference pipeline

•	 Implementing an inference pipeline as a new entry point in the main ML project

Technical requirements
The following are the technical requirements for this chapter:

•	 The GitHub code for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter07

•	 A full-fledged local MLflow tracking server, as described in Chapter 3, Tracking
Models, Parameters, and Metrics.

Understanding patterns of DL inference
pipelines
As the model development enters the stage of implementing an inference pipeline for the
upcoming production usage, it is important to understand that having a well-tuned and
trained DL model is only half the success story for business AI strategy. The other half
includes deploying, serving, monitoring, and continuously improving the model after it
goes into production. Designing and implementing a DL inference pipeline is the initial
step toward the second half of the story. While the model has been trained, tuned, and
tested on curated offline datasets, now it needs to handle prediction in two ways:

•	 Batch inference: This usually requires some scheduled or ad hoc execution of an
inference pipeline for some offline batch of observational data. The turnaround time
for producing prediction results is daily, weekly, or other schedules.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07

Understanding patterns of DL inference pipelines 157

•	 Online inference: This usually requires a web service for real-time execution of an
inference pipeline that produces prediction results for input data in under a second
or even less than 100 milliseconds depending on the user scenarios.

Note that because the execution environment and data characteristics could be different
from the offline training and testing environment, there will be additional preprocessing
or postprocessing steps around the core model logic developed during the model training
and tuning steps. While it should be emphasized that any sharable data preprocessing
steps should be used in both the training pipeline and inference pipeline, it is unavoidable
that some business logic will come into play, which will allow the inference pipeline to
have additional preprocessing and postprocessing logic. For example, a very common step
in a DL inference pipeline is to use caching to store and return prediction results based on
a recently seen input so that an expensive model evaluation does not need to be invoked.
This step is not needed for a training/testing pipeline during the model development stage.

While the pattern for inference pipelines is still emerging, it is now commonly known that
there are at least four patterns in a real-world production environment:

•	 Multi-step pipeline: This is the most typical usage of the model in production,
which includes a linear workflow of preprocessing steps before the model logic
is invoked and some postprocessing steps after the model evaluation results are
returned. While this is conceptually simple, the implementation can still be varied.
We will see how we can do this efficiently in this chapter using MLflow.

•	 Ensemble of models: This is a more complex scenario where multiple different
models can be used. These could be the same types of models with different versions
for A/B testing purposes or different types of models. For example, for a complex
conversational AI chatbot scenario, an intent classification model of the user query
to classify user intents into a specific category is required. Then a content relevance
model is also required to retrieve relevant answers to present to the user based on
the detected user intent.

•	 Business logic and model: This usually involves additional business logic on how
and where the input to the model should come from, such as querying from an
enterprise database for user information and validation or retrieving precomputed
additional features from a feature store before invoking a model. In addition,
postprocessing business logic could also transform the prediction results into some
application-specific logic and store the results in some backend storage. While this
could be as simple as a linear multi-step pipeline, it can also quickly become a DAG
(Directed Acyclic Graph) with multiple fan-in and fan-out parallel tasks before and
after the model has been invoked.

158 Multi-Step Deep Learning Inference Pipeline

•	 Online learning: This is one of the most complex inference tasks in production
where a model is constantly learning and updating its parameters such as
reinforcement learning.

While it is necessary to understand the big picture of the complexity of inference
pipelines in production, the purpose of this chapter is to learn how we can create reusable
building blocks of inference pipelines that could be used in multiple scenarios through
the powerful and generic MLflow Model API, which can encapsulate preprocessing
and postprocessing steps alongside a trained model. Interested readers are encouraged
to learn more about the model pattern in production from this post (https://www.
anyscale.com/blog/serving-ml-models-in-production-common-
patterns) and other references in the Further reading section.

So, what's the MLflow Model API and how do you use that to implement preprocessing
and postprocessing logic for a multi-step inference pipeline? Let's find out in the
next section.

Multi-Step Inference Pipeline as an MLflow Model
Previously, in Chapter 3, Tracking Models, Parameters, and Metrics, we
introduced the flexible loosely coupled multi-step pipeline implementation
using MLflow MLproject so that we could execute and track a multi-step
training pipeline explicitly in MLflow. However, during inference time, it is
desirable to implement lightweight preprocessing and postprocessing logic
alongside a trained model that's already logged in the model repository. The
MLflow Model API provides a mechanism to wrap a trained model with
preprocessing and postprocessing logic and then save the newly wrapped
model as a new model that encapsulates the inference pipeline logic. This
unifies the way to load an original model or an inference pipeline model using
MLflow Model APIs. This is critical for flexible deployment using MLflow and
opens doors for creative inference pipeline building.

https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns

Understanding patterns of DL inference pipelines 159

Understanding the MLflow Model Python Function API
The MLflow Model (https://www.mlflow.org/docs/latest/models.
html#id25) is one of the core components provided by MLflow to load, save, and log
models in different flavors (for example, a scikit-learn or a PyTorch model flavor). A
model flavor is an MLflow defined standard format that explicitly specifies a directory
of arbitrary files and a description file called MLmodel. As a reminder and an example,
Figure 7.1 shows what we have saved after fine-tuning our example NLP sentiment
classifier in the MLflow artifact store and the content of the MLmodel file:

Figure 7.1 – MLmodel content for a fine-tuned PyTorch model

As can be seen from Figure 7.1, the flavor of this model is PyTorch. There are also a
few other metadata about the model, such as the conda environment, which defines
the dependencies for running the model, and many others. Given this self-contained
information, it should be enough to allow MLflow to load the model back using the
mlflow.pytorch.load_model API as follows:

logged_model = f'runs:/{run_id}/model'
model = mlflow.pytorch.load_model(logged_model)

https://www.mlflow.org/docs/latest/models.html#id25
https://www.mlflow.org/docs/latest/models.html#id25

160 Multi-Step Deep Learning Inference Pipeline

This will allow loading the model that was logged by an MLflow run with run_id back
to memory and doing inference. Now imagine we have the following scenario where we
need to add some preprocessing logic to check the language type of the input text. This
requires loading a language detector model (https://amitness.com/2019/07/
identify-text-language-python/) such as the FastText language detector
(https://fasttext.cc/), or Google's Compact Language Detector v3 (https://
pypi.org/project/gcld3/). Additionally, we also want to check whether there is
any cached prediction for the exact same input. If it exists, then we should just return the
cached result without invoking the expensive model prediction part. This is very typical
preprocessing logic. For postprocessing, a common scenario is to return the prediction
along with some metadata about the model URIs so that we can debug any potential
prediction issue in production. Given this preprocessing and postprocessing logic, the
inference pipeline now looks like the following figure:

Figure 7.2 – Multi-step inference pipeline

As can be seen from Figure 7.2, these five steps include the following:

•	 One original fine-tuned model for prediction (a PyTorch DL model)

•	 One additional language detection model that was not part of our previous
training pipeline

•	 Cache operations (check cache and store to cache) for improving response
performance

•	 One response message composition step

Rather than splitting these five steps into five different entry points in an ML project
(recall that an entry point in an ML project can be arbitrary execution code in Python or
other executables), it is much more elegant to compose this multi-step inference pipeline
in a single entry point, since these steps are closely related to the model's prediction
step. In addition, the advantage of encapsulating these closely related steps into a single
inference pipeline is that we can save and load the inference pipeline as an MLmodel
artifact. MLflow provides a generic way to implement this multi-step inference pipeline as
a new Python model, without losing the flexibility of adding additional preprocessing and
postprocessing capability if needed as shown in the following figure:

https://amitness.com/2019/07/identify-text-language-python/
https://amitness.com/2019/07/identify-text-language-python/
https://fasttext.cc/
https://pypi.org/project/gcld3/
https://pypi.org/project/gcld3/

Understanding patterns of DL inference pipelines 161

 Figure 7.3 – Encapsulate the multi-step preprocessing and postprocessing logic into
a new MLflow Python model

As can be seen from Figure 7.3, if we encapsulate the preprocessing and postprocessing
logic into a new MLflow model called inference_pipeline_model, then we can
load this entire inference pipeline as if it is just another model. This will also allow us to
formalize the input and output format (called Model Signature) for the inference pipeline
so that whoever wants to consume this inference pipeline will not need to guess what the
format of the input and output is.

The mechanism to implement this at a high level is as follows:

1.	 First, create a custom MLflow pyfunc (Python function) model (https://
www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#creating-custom-pyfunc-models) to wrap the existing trained
model. Specifically, we need to go beyond the built-in model flavors (https://
www.mlflow.org/docs/latest/models.html#built-in-model-
flavors) provided by MLflow and implement a new Python class that inherits
from mlflow.pyfunc.PythonModel (https://www.mlflow.org/
docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.
PythonModel), defining predict() and, optionally, the load_context()
methods in this new Python class.

In addition, we can specify the Model Signature (https://mlflow.org/
docs/latest/models.html#model-signature) by defining the schema
of a model's inputs and outputs. These schemas can be either column-based or
tensor-based. It is highly recommended to implement these schemas for automatic
input validation and model diagnosis in a production environment.

2.	 Then implement the preprocessing and postprocessing logic within this MLflow
pyfunc. These could include caching, language detection, a response message, and
any other logic that's needed.

3.	 Finally, implement the entry point in the ML project for the inference pipeline so
that we can invoke the inference pipeline as if it is a single model artifact.

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://mlflow.org/docs/latest/models.html#model-signature
https://mlflow.org/docs/latest/models.html#model-signature

162 Multi-Step Deep Learning Inference Pipeline

Now that we understand the fundamentals of MLflow's custom Python model to
represent a multi-step inference pipeline, let's see how we can implement it for our NLP
sentiment classification model with the preprocessing and postprocessing steps described
in Figure 7.3 in the following sections.

Implementing a custom MLflow Python model
Let's first describe the steps to implement a custom MLflow Python model without any
extra preprocessing and postprocessing logic:

1.	 First, make sure we have a trained DL model that's ready to be used for inference
purposes. For the sake of learning in this chapter, we include the training pipeline
MLproject in this chapter, so that we can easily produce a fine-tuned DL model.
To run the training pipeline, make sure you have the virtual environment set up
for this chapter by following the README file in this chapter's GitHub repository
and set up the environment variables accordingly (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter07/README.md). Then, in the command line,
run the following command to generate a fine-tuned model in the local MLflow
tracking server:

mlflow run . --experiment-name dl_model_chapter07 -P
pipeline_steps=download_data,fine_tuning_model

Once this is done, you will have a fine-tuned DL model logged in the MLflow
tracking server. Now, we will use the logged model URI as the input for the
inference pipeline since we will wrap it and save it as a new MLflow model.
The logged model URI is something like the following, where the long random
alphanumeric string is the run_id of the fine_tuning_model MLflow run,
which you can find in the MLflow tracking server:

runs:/1290f813d8e74a249c86eeab9f6ed24e/model

2.	 Once you have a trained/fine-tuned model, we are ready to implement a new
custom MLflow Python model as follows. You may want to check out the VS Code
notebook for basic_custom_dl_model.py in the GitHub repo (https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_
custom_dl_model.py) to follow through the steps outlined here:

class InferencePipeline(mlflow.pyfunc.PythonModel):
 def __init__(self, finetuned_model_uri):
 self.finetuned_model_uri = finetuned_model_uri

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py

Implementing a custom MLflow Python model 163

 def sentiment_classifier(self, row):
 pred_label = self.finetuned_text_classifier.
predict({row[0]})
 return pred_label

 def load_context(self, context):
 self.finetuned_text_classifier = mlflow.pytorch.
load_model(self.finetuned_model_uri)

 def predict(self, context, model_input):
 results = model_input.apply(
 self.sentiment_classifier, axis=1,
 result_type='broadcast')
 return results

Let's see what we have implemented. First, the InferencePipeline class
inherits from the MLflow.pyfunc.PythonModel module, and implements four
methods as follows:

	� predict: This is a method that's required by mlflow.pyfunc.
PythonModel, which returns the prediction result. Here, the model_input
parameter is a pandas DataFrame, which contains a column with input text that
needs to be classified. We leverage the pandas DataFrame's apply method to
run a sentiment_classifier method to score each row of the DataFrame's
text and the result is a DataFrame with each row being the predicted label. Since
our original fine-tuned model does not accept a pandas DataFrame as input (it
accepts a list of text strings as input), we need to implement a new classifier as
a wrapper to the original model. That's the sentiment_classifier method.
The other context parameter is the MLflow context to describe where the model
artifact is stored. Since we will pass an MLflow logged model URI, this context
parameter is not used in our implementation, as the logged model URI contains
everything MLflow needs to load a model.

	� sentiment_classifier: This is a wrapper method to allow each row of the
input pandas DataFrame to be scored by calling the fine-tuned DL model's
prediction function. Note that we are wrapping the first element of the row into
a list so that the DL model can correctly use it as an input.

164 Multi-Step Deep Learning Inference Pipeline

	� init: This is a standard Python constructor method. Here, we use it to pass in
a previously fine-tuned DL model URI, finetuned_model_uri, so that we
can load it in the load_context method. Note that we do not want to directly
load the model in the init method since it will cause a serialization issue (if
you want to try, you will find out serializing a DL model naively is not a fun
experience). Since the fine-tuned DL model is already serialized and deserialized
through the mlflow.pytorch APIs, we should not reinvent the wheel here. The
recommended way is to load the model in the load_context method.

	� load_context: This method is called when loading an MLflow model with the
mlflow.pyfunc.load_model API. This is executed immediately after the
Python model is constructed. Here, we load the fine-tuned DL model by using the
mlflow.pytorch.load_model API. Note that whatever models are loaded
in this method can use their corresponding deserializing methods. This will open
doors for loading other models such as a language detection model, which could
contain native code (for example, C++ code) that cannot be serialized using
Python serialization protocols. This is one of the nice features provided by the
MLflow model API framework.

3.	 Now that we have an MLflow custom model that can accept a column-based input,
we can also define the model signature as follows:

input = json.dumps([{'name': 'text', 'type': 'string'}])
output = json.dumps([{'name': 'text', 'type': 'string'}])
signature = ModelSignature.from_dict({'inputs': input,
'outputs': output})

This signature defines an input format with one named column called text with
a datatype of string, and an output format with one named column called text
with a datatype of string. The mlflow.models.ModelSignature class
is used to create this signature object. This will be used when we log the new
custom model in MLflow, as we will see in the next step.

4.	 Next, we can log this new custom model in MLflow as if this is a generic MLflow
pyfunc model using the mlflow.pyfunc.log_model API as follows:

MODEL_ARTIFACT_PATH = 'inference_pipeline_model'
with mlflow.start_run() as dl_model_tracking_run:
 finetuned_model_uri =
'runs:/1290f813d8e74a249c86eeab9f6ed24e/model'
 inference_pipeline_uri = f'runs:/{dl_model_tracking_
run.info.run_id}/{MODEL_ARTIFACT_PATH}'
 mlflow.pyfunc.log_model(
 artifact_path=MODEL_ARTIFACT_PATH,

Implementing a custom MLflow Python model 165

 conda_env=CONDA_ENV,
 python_model=InferencePipeline(
 finetuned_model_uri),
 signature=signature)

The preceding code will log a model in the MLflow tracking server with a top-level
folder named inference_pipeline_model, since we define the MODEL_
ARTIFACT_PATH variable with this string value and assign this value to the
artifact_path parameter of the mlflow.pyfunc.log_model method. The
other three parameters we assign are the following:

	� conda_env: This is to define the conda environment where this custom model
will run. Here, we can pass the absolute path of the conda.yaml file in the
root folder of this chapter defined by the CONDA_ENV variable (details of this
variable can be found in the source code of this basic_custom_dl_model.py
notebook on GitHub).

	� python_model: Here, we call the new InferencePipeline class we just
implemented and pass in the parameter of finetuned_model_uri. This
way, the inference pipeline will load the correct fine-tuned model for prediction
purposes.

	� signature: We also pass the signature for both input and output we just defined
and assign it to the signature parameter so that model input and output schema
can be logged and enforced for validation purposes.

As a reminder, make sure you replace the
'runs:/1290f813d8e74a249c86eeab9f6ed24e/model' value for the
finetuned_model_uri variable with your own fine-tuned model URI generated
in step 1 so that the code will correctly load the original fine-tuned model.

166 Multi-Step Deep Learning Inference Pipeline

5.	 If you follow through the VS Code notebook for basic_custom_dl_model.py
and run it cell by cell up to step 4, you should be able to find a newly logged model
in the Artifacts section of the MLflow tracking server as shown in the following
screenshot:

Figure 7.4 – Inference MLflow model with model schema and a root folder of inference_pipeline_model
As can be seen from Figure 7.4, the root folder name (top left of the screenshot)
is inference_pipeline_model, which is the artifact_path parameter's
assigned value when calling mlflow.pyfunc.log_model. Note, if we do not
specify the artifact_path parameter, by default it will be just model. You
can confirm this by just looking at Figure 7.1 earlier in this chapter. Also note that
now there is a Model schema section as shown in Figure 7.4, which is new. This
describes both the input and output format as we defined before. In fact, if we click
the MLmodel file under the inference_pipeline_model folder, we can see
the full content as follows:

Implementing a custom MLflow Python model 167

Figure 7.5 – The content of inference_pipeline_model's MLmodel file
As can be seen from Figure 7.5, the content of the MLmodel file now contains a
signature section near the bottom, a new section compared with Figure 7.1.
However, there are some more important differences in terms of the model flavor.
The flavor of inference_pipeline_model is a generic mlflow.pyfunc.
model model, not a mlflow.pytorch model anymore. In fact, if you compare
Figure 7.5 with Figure 7.1, which is our PyTorch fine-tuned DL model, there is a
section about pytorch and its model_data and pytorch_version, which
has now completely disappeared in Figure 7.5. For MLflow, it has no knowledge of
the original model, which is a PyTorch model, but just a generic MLflow pyfunc
model as the newly wrapped model. This is great news since now we only need one
generic MLflow pyfunc API to load the model, regardless of how complex the
wrapped model is and how many more preprocessing and postprocessing steps are
inside this generic pyfunc model when we implement it in the next section.

6.	 We now can load inference_pipeline_model using the generic mlflow.
pyfunc.load_model to load the model and do prediction with an input
pandas DataFrame as follows:

input = {"text":["what a disappointing movie","Great
movie"]}
input_df = pd.DataFrame(input)
with mlflow.start_run():
 loaded_model = \
 mlflow.pyfunc.load_model(inference_pipeline_uri)
 results = loaded_model.predict(input_df)

168 Multi-Step Deep Learning Inference Pipeline

Here, inference_pipeline_uri is the URI produced in step 4 as the unique
identifier for inference_pipeline_model. For example, an inference_
pipeline_uri value could look as follows:

'runs:/6edf6013d2454f7f8a303431105f25f2/inference_
pipeline_model'

Once the model is loaded, we can just call the predict function to score the
input_df DataFrame. This calls the predict function of our newly implemented
InferencePipleine class, as described in step 2. The results will look something
like the following:

Figure 7.6 – Output of the inference pipeline in a pandas DataFrame format

If you see the prediction results like in Figure 7.6, then you should feel proud that you
have just implemented a working custom MLflow Python model that has enormous
flexibility and power to enable us to implement preprocessing and postprocessing
logic without changing any of the logging and loading model parts, as we will see
in the next section.

Creating a New Flavor of MLflow Custom Model
As shown in this chapter, we can build a wrapped MLflow custom model
using an already trained model for inference purposes. It should be noted
that it is also possible to build an entirely new flavor of MLflow custom model
for training purposes. This is needed when you have a model that's not yet
supported by the built-in MLflow model flavors. For example, if you want
to train a brand new FastText model based on your own corpus but as of
MLflow version 1.23.1, there is no FastText MLflow model flavor yet, then you
can build a new FastText MLflow model flavor (see reference: https://
medium.com/@pennyqxr/how-save-and-load-fasttext-
model-in-mlflow-format-37e4d6017bf0). Interested readers
can also find more references in the Further reading section at the end of
this chapter.

mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0
mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0
mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0

Implementing preprocessing and postprocessing steps in a DL inference pipeline 169

Implementing preprocessing and
postprocessing steps in a DL inference pipeline
Now that we have a basic generic MLflow Python model that can do prediction on an
input pandas DataFrame and produce output in another pandas DataFrame, we
are ready to tackle the multi-step inference scenario described before. Note that while
the initial implementation in the previous section might not look earth-shaking, this
opens doors for implementing preprocessing and postprocessing logic that was not
possible before while maintaining the capability of using the generic mlflow.pyfunc.
log_model and mlflow.pyfunc.load_model to treat the entire inference pipeline
as a generic pyfunc model, regardless of how complex the original DL model is and
how many additional preprocessing and postprocessing steps there are. Let's see how
we can do this in this section. You may want to check out the VS Code notebook for
multistep_inference_model.py from GitHub (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter07/notebooks/multistep_inference_model.py) to
follow through the steps in this section.

In Figure 7.3, we depicted two preprocessing steps prior to the model prediction,
and two postprocessing steps after the model prediction. So where and how do we
add the preprocessing and postprocessing logic while keeping this entire inference
pipeline as a single MLflow model? It turns out the main changes will happen in the
InferencePipeline class implemented in the previous section. Let's walk through the
implementation and changes step by step in the following subsections.

Implementing language detection preprocessing logic
Let's first implement the language detection preprocessing logic:

1.	 To detect the language type of the input text, we can use Google's Compact Language
Detector v3. Note that this language detector is a neural network model that contains
native code (the core implementation is in C++) with a Python binding so that we can
use it in a Python environment (https://github.com/google/cld3). As this
model cannot be serialized by using Python serialization protocols such as pickle, it
would be a major challenge to figure out how to package this in an MLflow pyfunc
model. The good news is that MLflow's load_context method allows us to load
this model without worrying about serialization and deserialization. We only need to
add two lines of code in the load_context method in the InferencePipeline
class as follows to load the language detector model:

import gcld3
self.detector = gcld3.NNetLanguageIdentifier(

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/google/cld3

170 Multi-Step Deep Learning Inference Pipeline

 min_num_bytes=0,
 max_num_bytes=1000)

The preceding two lines are added into the load_context method, along
with the preexisting statement that loads the fine-tuned DL model for sentiment
classification. This will allow the language detector to be loaded as soon as the
initialization of the InferencePipeline class is done. This language detector
will use up to the first 1,000 bytes of the input to determine the language type.
Once this language detector is loaded, then we can use it to detect the language
in a preprocessing method.

2.	 In a preprocessing method for language detection, we will accept each row of
the input text, detect the language, and return the language type as a string
as follows:

def preprocessing_step_lang_detect(self, row):
 language_detected = \
 self.detector.FindLanguage(text=row[0])
 if language_detected.language != 'en':
 print("found Non-English Language text!")
 return language_detected.language

The implementation is straightforward. We also add a printout to see if we see any
non-English text in the input to the console. If your business logic requires you
to implement any preemptive actions when dealing with some specific language,
then you can add more logic in this method. Here, we just return the language
type detected.

3.	 Then, in the sentiment_classifier method that scores each row of the
input, we can just add one line prior to the prediction to first detect the language
as follows:

language_detected = self.preprocessing_step_lang_
detect(row)

Later, we pass along the language_detected variable to the response as we will
see in the postprocessing logic implementation.

And that's all it takes to implement the language detection as a preprocessing step in the
inference pipeline.

Now let's see how to implement the other step: cache, which requires both preprocessing
(detecting if there are any preexisting matched prediction results for the same input) and
postprocessing (storing a key-value pair of input and prediction results in the cache).

Implementing preprocessing and postprocessing steps in a DL inference pipeline 171

Implementing caching preprocessing and
postprocessing logic
Let's see how we can implement caching in the InferencePipeline class:

1.	 We can add a new statement to initialize the cache store in the init method, as this
has no problem being serialized or deserialized:

from cachetools import LRUCache
self.cache = LRUCache(100)

This will initialize a Least Recently Used cache with 100 objects stored.
2.	 Next, we will add a preprocessing method to detect if any input is in the cache:

def preprocessing_step_cache(self, row):
 if row[0] in self.cache:
 print("found cached result")
 return self.cache[row[0]]

If it finds the exact input row as a key already in the cache, then it returns the
cached value.

3.	 In the sentiment_classifier method, we can add the preprocessing step to
check the cache and if it finds the cache, then it will immediately return the cached
response without invoking the expensive DL model classifier:

 cached_response = self.preprocessing_step_cache(row)
 if cached_response is not None:
 return cached_response

This preprocessing step should be placed as the first step in the sentiment_
classifier method, before doing language detection and model prediction.
This can significantly speed up real-time prediction responses when there are many
duplicated inputs.

4.	 Also in the sentiment_classifier method, we need to add a postprocessing
step to store new input and prediction responses in the cache:

self.cache[row[0]]=response

That's it. We have successfully added caching as a preprocessing and postprocessing step
in the InferencePipeline class.

172 Multi-Step Deep Learning Inference Pipeline

Implementing response composition
postprocessing logic
Now let's see how we can implement the response composition logic as a postprocessing
step after the original DL model prediction is invoked and the result is returned. Just
returning a prediction label of positive or negative usually is not enough, as we
would like to know which version of the model was used and what language was detected
for debugging and diagnosis in the production environment. The response to the caller of
the inference pipeline will no longer be a plain string, but rather a serialized JSON string.
Follow these steps to implement this postprocessing logic:

1.	 In the init method of the InferencePipeline class, we need to add a new
inference_pipeline_uri parameter, so that we can capture this generic
MLflow pyfunc model's reference for provenance tracking purposes. Both the
finetuned_model_uri and inference_pipeline_uri parameters will be
part of the response's JSON object. The init method now looks like the following:

def __init__(self,
 finetuned_model_uri,
 inference_pipeline_uri=None):
 self.cache = LRUCache(100)
 self.finetuned_model_uri = finetuned_model_uri
 self.inference_pipeline_uri = inference_pipeline_uri

2.	 In the sentiment_classifier method, add a new postprocessing statement
to compose a new response based on the language detected, predicted label, and
the model metadata including both finetuned_model_uri and inference_
pipeline_uri:

response = json.dumps({
 'response': {
 'prediction_label': pred_label
 },
 'metadata': {
 'language_detected': language_
detected,
 },
 'model_metadata': {
 'finetuned_model_uri': self.
finetuned_model_uri,
 'inference_pipeline_model_uri': self.
inference_pipeline_uri
 },
 })

Implementing preprocessing and postprocessing steps in a DL inference pipeline 173

Note that we use json.dumps to encode a nested Python string object into a
JSON formatted string, so that the caller can easily parse out the response using
JSON tools.

3.	 In the mlflow.pyfunc.log_model statement, we need to add
a new inference_pipeline_uri parameter when calling the
InferencePipeline class:

mlflow.pyfunc.log_model(
 artifact_path=MODEL_ARTIFACT_PATH,
 conda_env=CONDA_ENV,
 python_model=InferencePipeline(finetuned_model_uri,
 inference_pipeline_uri),
 signature=signature)

This will log a new inference pipeline model with all the additional processing logic
we implemented. This completes the implementation of the multi-step inference
pipeline depicted in Figure 7.3.

Note that once the model is logged with all these new steps, to consume this new inference
pipeline, that's to say, to load this model, requires zero code changes. We can load the
newly logged model the same way as before:

loaded_model = mlflow.pyfunc.load_model(inference_pipeline_uri)

If you have followed through the steps up until now, you should also run the VS Code
notebook for multistep_inference_model.py cell by cell up to step 3 described in
this subsection. Now we can try to use this new multi-step inference pipeline to test it out.
We can prepare a new set of input data where there are duplicates and a non-English text
string as follows:

input = {"text":["what a disappointing movie", "Great movie",
"Great movie", "很好看的电影"]}
input_df = pd.DataFrame(input)

174 Multi-Step Deep Learning Inference Pipeline

This input includes two duplicated entries (Great movie) and one Chinese text string
(the last element in the input list, where the meaning of the Chinese text is the same
as Great Movie). Now we can just load the model and call results = loaded_
model.predict(input_df) as before. And during the execution of this predict
statement, you should see the following two statements in the console output:

found cached result
found Non-English language text.

This means that our caching and language detector works!

We can also print out the results to double-check whether our multi-step pipeline works
or not using the following code:

for i in range(results.size):
 print(results['text'][i])

This will print out the full content for each row of the response. Here, we display the
output for the last one (which has the Chinese text) as an example:

Figure 7.7 – JSON response for the Chinese text string input using the multi-step inference pipeline

Implementing an inference pipeline as a new entry point in the main MLproject 175

As can be seen in Figure 7.7, prediction_label is included in the response (which
is negative). Since we have been using TinyBERT for the English language only, this
incorrect prediction is expected. If we switch to a multilingual pretrained language model
such as bert-base-multilingual-uncased (https://huggingface.co/bert-
base-multilingual-uncased) as the foundation model during model training
and fine-tuning, then supporting inference for multiple languages is possible. In fact, the
multilingual version of BERT supports 102 world languages. If we look at the language_
detected field under the metadata section in the JSON response, we see the string
"zh", which represents the Chinese language. This is what the language detector
produced in the preprocessing step. Additionally, the model_metadata section includes
both the original finetuned_model_uri and inference_pipeline_model_uri.
These are MLflow tracking server-specific URIs that we can use to uniquely trace and
identify which fine-tuned model and inference pipeline was used for this prediction result.
This is very important for provenance tracking and diagnosis analysis in the production
environment. Comparing this complete JSON output with the earlier prediction label
output in Figure 7.6, this has much richer contextual information for the consumer of the
inference pipeline to use.

If you see the JSON output in your notebook run like Figure 7.7, give yourself a round of
applause, because you have just completed a big milestone in implementing a multi-step
inference pipeline that can be reused and deployed into production for realistic business
scenarios.

Implementing an inference pipeline as a new
entry point in the main MLproject
Now that we have successfully implemented a multi-step inference pipeline as a new
custom MLflow model, we can go one step further by incorporating this as a new entry
point in the main MLproject so that we can run the following entire pipeline end to end
(Figure 7.8). Check out this chapter's code from GitHub to follow through and run the
pipeline in your local environment.

Figure 7.8 – End-to-end pipeline using MLproject

https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased

176 Multi-Step Deep Learning Inference Pipeline

We can add the new entry point inference_pipeline_model into the MLproject
file. You can check out this file on the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter07/MLproject):

inference_pipeline_model:
 parameters:
 finetuned_model_run_id: { type: str, default: None }
 command: "python pipeline/inference_pipeline_model.py
--finetuned_model_run_id {finetuned_model_run_id}"

This entry point or step can be invoked either standalone or as part of the entire pipeline
depicted in Figure 7.8. As a reminder, make sure you have set up the environment
variables as described in the README file of this chapter for the MLflow tracking server
and backend storage URIs before you execute the MLflow run commands. This step logs
and registers a new inference_pipeline_model, which itself contains multi-step
preprocessing and postprocessing logic. The following command can be used to run this
step at the root level of the chapter07 folder, if you know the finetuned_model_
run_id:

mlflow run . -e inference_pipeline_model --experiment-
name dl_model_chapter07 -P finetuned_model_run_
id=07b900a96af04037a956c74ef691396e

This will not only log a new inference_pipeline_model in the MLflow tracking
server but will also register a new version of inference_pipeline_model in the
MLflow model registry. You can find the registered inference_pipeline_model in
your local MLflow server with the following link:

http://localhost/#/models/inference_pipeline_model/

As an example, a registered inference_pipeline_model version 6 is shown in the
following screenshot:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject

Implementing an inference pipeline as a new entry point in the main MLproject 177

Figure 7.9 – A registered inference_pipeline_model at version 6

You can also run the entire end-to-end pipeline depicted in Figure 7.8 as follows:

mlflow run . --experiment-name dl_model_chapter07

This will run all the steps in this end-to-end pipeline and finish with a logged and
registered inference_pipeline_model in the model registry.

The implementation of the Python code for inference_pipeline_model.py, which
is executed when the entry point inference_pipeline_model is invoked, is basically
copying the InferencePipeline class we implemented in the VS Code notebook for
multistep_inference_model.py with a couple of small changes as follows:

•	 Adding a task function to be executed as a parameterized entry point for this step:

def task(finetuned_model_run_id, pipeline_run_name):

What this function does is starting a new MLflow run to log and register a new
inference pipeline model.

•	 Turning on the model registration while logging as follows:

mlflow.pyfunc.log_model(
 artifact_path=MODEL_ARTIFACT_PATH,
 conda_env=CONDA_ENV,
 python_model=InferencePipeline(
 finetuned_model_uri,
 inference_pipeline_uri),
 signature=signature,
 registered_model_name=MODEL_ARTIFACT_PATH)

178 Multi-Step Deep Learning Inference Pipeline

Note that we assign to registered_model_name the value of MODEL_
ARTIFACT_PATH, which is inference_pipeline_model. This enables the
model to be registered under this name in the MLflow model registry, as seen in
Figure 7.9.

The complete code for this new entry point can be found in the GitHub repository:
https://github.com/PacktPublishing/Practical-Deep-Learning-
at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_
pipeline_model.py.

Note that we also need to add a new section in the main.py file to allow the
inference_pipeline_model entry point to also be callable from within the main
entry point. The implementation is straightforward, just like adding other steps previously
as described in Chapter 4, Tracking Code and Data Versioning. Interested readers
should check out the main.py file from GitHub to take a look at the implementation:
https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter07/main.py.

This concludes the implementation of adding a new entry point in the MLproject so that
we can run the multi-step inference pipeline creation, logging, and registering using the
MLflow run command tool.

Summary
In this chapter, we covered a very important topic on creating a multi-step inference
pipeline using MLflow's custom Python model approach, namely mlflow.pyfunc.
PythonModel.

We discussed four patterns of inference workflow in production where usually a single
trained model is not enough to complete the business application requirements. It is
highly likely some preprocessing and postprocessing logic is not seen during the model
training and development stage. That's why MLflow's pyfunc approach is an elegant
approach to implementing a custom MLflow model that can wrap a trained DL model
with additional preprocessing and postprocessing logic.

We successfully implemented an inference pipeline model that wraps our DL sentiment
classifier with language detection using Google's Compact Language Detector, caching,
and additional model metadata in addition to the prediction label. We went one step
further to incorporate the inference pipeline model creation step into the end-to-end
model development workflow so that we can produce a registered inference pipeline
model with one MLflow run command.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/main.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/main.py

Further reading 179

The skills and lessons learned in this chapter will be critical for anyone who wants to
implement a real-world inference pipeline using the MLflow pyfunc approach. This also
opens doors for supporting flexible and powerful deployment into production scenarios,
which we will cover in the next chapter.

Further reading
•	 MLflow Models (MLflow documentation): https://www.mlflow.org/docs/

latest/models.html#

•	 Implementing the statsmodels flavor in MLflow: https://blog.stratio.com/
implementing-the-statsmodels-flavor-in-mlflow/

•	 InferLine: ML inference Pipeline Composition Framework: https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf

•	 Batch Inference vs Online Inference: https://mlinproduction.com/batch-
inference-vs-online-inference/

•	 Lessons from building a small MLOps pipeline: https://www.nestorsag.com/
blog/lessons-from-building-a-small-ml-ops-pipeline/

•	 Text summarizer on Hugging Face with MLflow: https://vishsubramanian.
me/hugging-face-with-mlflow/

https://www.mlflow.org/docs/latest/models.html#
https://www.mlflow.org/docs/latest/models.html#
https://blog.stratio.com/implementing-the-statsmodels-flavor-in-mlflow/
https://blog.stratio.com/implementing-the-statsmodels-flavor-in-mlflow/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf
https://mlinproduction.com/batch-inference-vs-online-inference/
https://mlinproduction.com/batch-inference-vs-online-inference/
https://www.nestorsag.com/blog/lessons-from-building-a-small-ml-ops-pipeline/
https://www.nestorsag.com/blog/lessons-from-building-a-small-ml-ops-pipeline/
https://vishsubramanian.me/hugging-face-with-mlflow/
https://vishsubramanian.me/hugging-face-with-mlflow/

8
Deploying

a DL Inference
Pipeline at Scale

Deploying a deep learning (DL) inference pipeline for production usage is both exciting
and challenging. The exciting part is that, finally, the DL model pipeline can be used for
prediction with real-world production data, which will provide real value to the business
scenarios. However, the challenging part is that there are different DL model serving
platforms and host environments. It is not easy to choose the right framework for the right
model serving scenarios, which can minimize deployment complexity but provide the
best model serving experiences in a scalable and cost-effective way. This chapter will cover
the topics as an overview of different deployment scenarios and host environments, and
then provide hands-on learning on how to deploy to different environments, including
local and remote cloud environments using MLflow deployment tools. By the end of this
chapter, you should be able to confidently deploy an MLflow DL inference pipeline to
various host environments for either batching or real-time inference services.

182 Deploying a DL Inference Pipeline at Scale

In this chapter, we're going to cover the following main topics:

•	 Understanding the landscape of deployment and hosting environments

•	 Deploying locally for batch and web service inference

•	 Deploying using Ray Serve and MLflow deployment plugins

•	 Deploying to AWS SageMaker – a complete end-to-end guide

Technical requirements
The following items are required for this chapter's learning:

•	 GitHub repository code for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter08.

•	 Ray serve and mlflow-ray-serve plugin: https://github.com/
ray-project/mlflow-ray-serve.

•	 AWS SageMaker: You will need to have an AWS account. You can create a free AWS
account easily through the free signup website at https://aws.amazon.com/
free/.

•	 AWS command-line interface (CLI): https://docs.aws.amazon.com/cli/
latest/userguide/getting-started-install.html.

•	 Docker Desktop: https://www.docker.com/products/docker-
desktop/.

•	 Complete the example in Chapter 7, Multi-Step Deep Learning Inference Pipeline,
of this book. This will give you a ready-to-deploy inference pipeline to use in this
chapter.

Understanding different deployment tools and
host environments
There are different deployment tools in the MLOps technology stack that have different
target use cases and host environments for deploying different model inference pipelines.
In Chapter 7, Multi-Step Deep Learning Inference Pipeline, we learned the different
inference scenarios and requirements and implemented a multi-step DL inference pipeline
that can be deployed into a model hosting/serving environment. Now, we will learn how
to deploy such a model to a few specific model hosting and serving environments. This is
visualized in Figure 8.1 as follows:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/ray-project/mlflow-ray-serve
https://github.com/ray-project/mlflow-ray-serve
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/

Understanding different deployment tools and host environments 183

Figure 8.1 – Using model deployment tools to deploy a model inference pipeline to
a model hosting and serving environment

As can be seen from Figure 8.1, there can be different deployment tools for different model
hosting and serving environments. Here, we list the three typical scenarios as follows:

•	 Batch inference at scale: If we want to do batch inference at a regular schedule,
we can use the PySpark user defined function (UDF) to load an MLflow model
flavor to do this, since we can leverage Spark's scalable computational approach
on a distributed cluster (https://mlflow.org/docs/latest/models.
html#export-a-python-function-model-as-an-apache-spark-
udf). We will show an example of how to do this in the next section.

•	 Streaming inference at scale: This usually requires an endpoint that hosts the
Model as a Service (MaaS). There exist quite a few tools and frameworks for
production-grade deployment and model serving. We will compare a few tools in
this section to understand how they work and how well they integrate with MLflow
before we start learning how to do this type of deployment in this chapter.

•	 On-device model inference: This is an emerging area called TinyML, which
deploys ML/DL models in a resource-limited environment such as mobile, sensor,
or edge device (https://www.kdnuggets.com/2021/11/on-device-
deep-learning-pytorch-mobile-tensorflow-lite.html). Two
popular frameworks are PyTorch Mobile (https://pytorch.org/mobile/
home/) and TensorFlow Lite (https://www.tensorflow.org/lite). This
is not the focus of this book. You are encouraged to check out some further reading
for this area at the end of this chapter.

https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://www.kdnuggets.com/2021/11/on-device-deep-learning-pytorch-mobile-tensorflow-lite.html
https://www.kdnuggets.com/2021/11/on-device-deep-learning-pytorch-mobile-tensorflow-lite.html
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://www.tensorflow.org/lite

184 Deploying a DL Inference Pipeline at Scale

Now, let's look at what kind of tools are available for deploying model inference as
a service, especially those tools that have support for MLflow model deployment.
There are three types of model deployment and serving tools, as follows:

•	 MLflow built-in model deployment: This comes out of the box from MLflow
releases, which includes deployments to a local web server, AWS SageMaker, and
Azure ML. There is also a managed MLflow on Databricks that supports model
serving in public review as of this writing, which we will not cover in this book
since this is well presented in the official Databricks documentation (interested
readers should look up the official documentation on this Databricks feature at
this website: https://docs.databricks.com/applications/mlflow/
model-serving.html). However, we will show you how to use the MLflow
built-in model deployment to deploy to local and remote AWS SageMaker in this
chapter.

•	 MLflow custom deployment plugins: MLflow provides an API for deploying to
custom serving environments through MLflow deployment plugins (https://
mlflow.org/docs/latest/plugins.html#deployment-plugins).
Examples include mlflow-torchserv (https://github.com/mlflow/
mlflow-torchserve), mlflow-ray-serve (https://github.com/
ray-project/mlflow-ray-serve), and mlflow-triton-plugin
(https://github.com/triton-inference-server/server/tree/
v2.17.0/deploy/mlflow-triton-plugin). We will show how to use the
mlflow-ray-serve plugin for deployment in this chapter.

•	 Model serving tools that can deploy MLflow model flavors: These are usually
generic model serving frameworks that support many types of models, including
MLflow model flavors. Examples include Seldon MLServer (https://
docs.seldon.io/projects/seldon-core/en/latest/servers/
mlflow.html), Ray Serve (https://docs.ray.io/en/latest/serve/
ml-models.html#integration-with-model-registries) and Triton
Inference Server; only two MLflow model flavors – Open Neural Network
Exchange (ONNX) and Triton – are supported at the time of writing (https://
developer.nvidia.com/nvidia-triton-inference-server). We will
show you how to use Ray Serve together with the mlflow-ray-serve plugin to
deploy the MLflow Python model. Note that, although in this book we show how
to use an MLflow customized plugin to deploy with a generic ML serve tool such as
Ray Serve, it is important to note that a generic ML serve tool can do much more
with or without an MLflow customized plugin.

https://docs.databricks.com/applications/mlflow/model-serving.html
https://docs.databricks.com/applications/mlflow/model-serving.html
https://mlflow.org/docs/latest/plugins.html#deployment-plugins
https://mlflow.org/docs/latest/plugins.html#deployment-plugins
https://github.com/mlflow/mlflow-torchserve
https://github.com/mlflow/mlflow-torchserve
https://github.com/ray-project/mlflow-ray-serve
https://github.com/ray-project/mlflow-ray-serve
https://github.com/triton-inference-server/server/tree/v2.17.0/deploy/mlflow-triton-plugin
https://github.com/triton-inference-server/server/tree/v2.17.0/deploy/mlflow-triton-plugin
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.ray.io/en/latest/serve/ml-models.html#integration-with-model-registries
https://docs.ray.io/en/latest/serve/ml-models.html#integration-with-model-registries

Deploying locally for batch and web service inference 185

Optimize DL Inference through Specialized Inference Engines
There are some special MLflow model flavors such as ONNX (https://
onnx.ai/) and TorchScript (https://huggingface.co/docs/
transformers/v4.17.0/en/serialization#torchscript)
that are specially designed for DL model inference runtime. We can convert
a DL model into an ONNX model flavor (https://github.com/
microsoft/onnxruntime) or a TorchScript server (https://
pytorch.org/serve/). As both ONNX and TorchScript are still
evolving and are specifically designed for the original DL model part, but not
the entire inference pipeline, we are not covering them in this chapter.

Now that we have a good understanding of the varieties of the deployment tools and
model serving frameworks, let's learn how to do the deployment in the following sections
with concrete examples.

Deploying locally for batch and web service
inference
For development and testing purposes, we usually need to deploy our model locally to
verify it works as expected. Let's see how to do it for two scenarios: batch inference and
web service inference.

Batch inference
For batch inference, follow these instructions:

1.	 Make sure you have completed Chapter 7, Multi-Step Deep Learning Inference
Pipeline. This will produce an MLflow pyfunc DL inference model pipeline URI
that can be loaded using standard MLflow Python functions. The logged model can
be uniquely located by the run_id and model name as follows:

logged_model = 'runs:/37b5b4dd7bc04213a35db646520ec404/
inference_pipeline_model'

The model can also be identified by the model name and version number using the
model registry as follows:

logged_model = 'models:/inference_pipeline_model/6'

https://onnx.ai/
https://onnx.ai/
https://huggingface.co/docs/transformers/v4.17.0/en/serialization#torchscript
https://huggingface.co/docs/transformers/v4.17.0/en/serialization#torchscript
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://pytorch.org/serve/
https://pytorch.org/serve/

186 Deploying a DL Inference Pipeline at Scale

2.	 Follow the instructions under the Batch inference at-scale using PySpark
UDF function section of this README.md file (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/README.md) to set up the local virtual
environment, a full-fledged MLflow tracking server, and a few environment
variables so that we can execute the code on your local environment.

3.	 Load the model with the MLflow mlflow.pyfunc.spark_udf API to create
a PySpark UDF function as follows. You may want to check out the batch_
inference.py file from GitHub to follow through (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/batch/batch_inference.py):

loaded_model = mlflow.pyfunc.spark_udf(spark, model_
uri=logged_model, result_type=StringType())

This will wrap the inference pipeline as a PySpark UDF function with a return result
type of String. This is because our model inference pipeline has a model signature
requiring the output as a string type column.

4.	 Now, we can apply the PySpark UDF function to the input DataFrame. Note that the
input DataFrame must have a text column with a string data type since that's
what the model signature requires:

df = df.withColumn('predictions', loaded_model())

Because our model inference pipeline has defined a model signature, we don't
need to specify any column parameters if it finds the text column in the input
DataFrame, which is df in this example. Note that we can read a large volume of
data using Spark's read API, which supports different data format reading, such as
CSV, JSON, Parquet, and many more. In our example, we read the test.csv file
from the IMDB dataset. This will leverage Spark's powerful distributed computation
on a cluster if we have a large volume of data. This enables us to do batch inference
at scale effortlessly.

5.	 To run the batch inference code from end to end, you should check out the
complete code provided in the repository at this location: https://github.
com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/batch/batch_inference.py. Make
sure you replace the logged_model variable with your own run_id and model
name or the registered model name and version before you run the following
command in the batch folder:

python batch_inference.py

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py

Deploying locally for batch and web service inference 187

6.	 You should see the output in Figure 8.2 on the screen:

Figure 8.2 – Batch inference using PySpark UDF function
As can be seen from Figure 8.2, the multi-step inference pipeline we loaded worked
correctly and even detected non-English texts and duplicates, although the language
detector probably produced some false positives. The output is a two-column
DataFrame where the JSON response of the model prediction is saved in the
predictions column. Note that you can use the same code provided in batch_
inference.py in a Databricks notebook and process a very large volume of input
data with a Spark cluster by changing the input data and the logged model location.

Now that we know how to do batch inference at scale, let's see how to deploy to a local
web service for the same model inference pipeline.

188 Deploying a DL Inference Pipeline at Scale

Model as a web service
We can deploy the same logged model inference pipeline to a web service locally and have
an endpoint that accepts HTTP requests with an HTTP response.

The local deployment is quite straightforward with just one command line. We can deploy
a logged model or a registered model using the model URI as in the previous batch
inference, as follows:

mlflow models serve -m models:/inference_pipeline_model/6

You should be able to see the following:

2022/03/06 21:50:19 INFO mlflow.models.cli: Selected backend
for flavor 'python_function'

2022/03/06 21:50:21 INFO mlflow.utils.conda: === Creating conda
environment mlflow-a0968092d20d039088e2875ad04bbaa0f3a75206 ===

± |main U:1 ?:8 X| done

Solving environment: done

This will create the conda environment using the logged model so that it will have
all the dependencies to run. After the conda environment is created, you should see
the following:

2022/03/06 21:52:11 INFO mlflow.pyfunc.backend: === Running
command 'source /Users/yongliu/opt/miniconda3/bin/../etc/
profile.d/conda.sh && conda activate mlflow-a0968092d20d039
088e2875ad04bbaa0f3a75206 1>&2 && gunicorn --timeout=60 -b
127.0.0.1:5000 -w 1 ${GUNICORN_CMD_ARGS} -- mlflow.pyfunc.
scoring_server.wsgi:app'

[2022-03-06 21:52:12 -0800] [97554] [INFO] Starting gunicorn
20.1.0

[2022-03-06 21:52:12 -0800] [97554] [INFO] Listening at:
http://127.0.0.1:5000 (97554)

[2022-03-06 21:52:12 -0800] [97554] [INFO] Using worker: sync

[2022-03-06 21:52:12 -0800] [97561] [INFO] Booting worker with
pid: 97561

Deploying locally for batch and web service inference 189

Now, the model is deployed as a web service and ready to accept HTTP requests for model
prediction. Open a different Terminal window and type the following command to invoke
the model web service to get a prediction response:

curl http://127.0.0.1:5000/invocations -H 'Content-Type:
application/json' -d '{

 "columns": ["text"],

 "data": [["This is the best movie we saw."], ["What a
movie!"]]

}'

We can see the following prediction response immediately:

[{"text": "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/07b900a96af04037a956c74ef691396e/
model\", \"inference_pipeline_model_uri\":
\"runs:/37b5b4dd7bc04213a35db646520ec404/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\":
\"runs:/07b900a96af04037a956c74ef691396e/model\", \"inference_
pipeline_model_uri\": \"runs:/37b5b4dd7bc04213a35db646520ec404/
inference_pipeline_model\"}}"}]

If you have followed the steps so far and saw the prediction results, you should feel very
proud that you just deployed a DL model inference pipeline into a local web service! This
is great for testing and debugging, and the behavior of the model will not change on
a production web server, so we should make sure it works on a local web server.

So far, we have learned how to use the built-in MLflow deployment tool. Next, we will see
how to use a generic deployment tool, Ray Serve, to deploy an MLflow inference pipeline.

190 Deploying a DL Inference Pipeline at Scale

Deploying using Ray Serve and MLflow
deployment plugins
A more generic way to do deployment is to use a framework such as Ray Serve
(https://docs.ray.io/en/latest/serve/index.html). Ray Serve has
several advantages, such as DL model frameworks agnostics, native Python support, and
supporting complex model composition inference patterns. Ray Serve supports all major
DL frameworks and any arbitrary business logic. So, can we leverage both Ray Serve
and MLflow to do model deployment and serve? The good news is that we can use the
MLflow deployment plugins provided by Ray Serve to do this. Let's walk through how to
use the mlflow-ray-serve plugin to do MLflow model deployment using Ray Serve
(https://github.com/ray-project/mlflow-ray-serve). Before we begin, we
need to install the mlflow-ray-serve package:

pip install mlflow-ray-serve

Then, we need to start a single node Ray cluster locally first using the following two
commands:

ray start --head

serve start

This will start a Ray cluster locally, and you can access its dashboard from your web
browser at http://127.0.0.1:8265/#/ as follows:

Figure 8.3 – A locally running Ray cluster

https://docs.ray.io/en/latest/serve/index.html
https://github.com/ray-project/mlflow-ray-serve

Deploying using Ray Serve and MLflow deployment plugins 191

Figure 8.3 shows a locally running Ray cluster. You can then issue the following command
to deploy inference_pipeline_model into Ray Serve as follows:

mlflow deployments create -t ray-serve -m
runs:/63f101fb3700472ca58975488636f4ae/inference_pipeline_model
--name dl-inference-model-on-ray -C num_replicas=1

This will show the following screen output:

2022-03-20 20:16:46,564 INFO worker.py:842 -- Connecting to
existing Ray cluster at address: 127.0.0.1:6379

2022-03-20 20:16:46,717 INFO api.py:242 -- Updating
deployment 'dl-inference-model-on-ray'. component=serve
deployment=dl-inference-model-on-ray

(ServeController pid=78159) 2022-03-20 20:16:46,784 INFO
deployment_state.py:912 -- Adding 1 replicas to deployment
'dl-inference-model-on-ray'. component=serve deployment=dl-
inference-model-on-ray

2022-03-20 20:17:10,309 INFO api.py:249 -- Deployment
'dl-inference-model-on-ray' is ready at `http://127.0.0.1:8000/
dl-inference-model-on-ray`. component=serve deployment=dl-
inference-model-on-ray

python_function deployment dl-inference-model-on-ray is created

This means that an endpoint at http://127.0.0.1:8000/dl-inference-model-
on-ray is ready to serve an online inference request! You can test this deployment
using the Python code provided at chapter08/ray_serve/query_ray_serve_
endpoint.py as follows:

python ray_serve/query_ray_serve_endpoint.py

This will show results on the screen as follows:

2022-03-20 21:16:45,125 INFO worker.py:842 -- Connecting to
existing Ray cluster at address: 127.0.0.1:6379

[{'name': 'dl-inference-model-on-ray', 'info':
Deployment(name=dl-inference-model-on-ray,version=None,route_
prefix=/dl-inference-model-on-ray)}]

{

 "columns": [

 "text"

],

192 Deploying a DL Inference Pipeline at Scale

 "index": [

 0,

 1

],

 "data": [

 [

 "{\"response\": {\"prediction_label\":
[\"negative\"]}, \"metadata\": {\"language_detected\": \"en\"},
\"model_metadata\": {\"finetuned_model_uri\": \"runs:/
be2fb13fe647481eafa071b79dde81de/model\", \"inference_pipeline_
model_uri\": \"runs:/63f101fb3700472ca58975488636f4ae/
inference_pipeline_model\"}}"

],

 [

 "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\": \"en\"},
\"model_metadata\": {\"finetuned_model_uri\": \"runs:/
be2fb13fe647481eafa071b79dde81de/model\", \"inference_pipeline_
model_uri\": \"runs:/63f101fb3700472ca58975488636f4ae/
inference_pipeline_model\"}}"

]

]

}

You should see the inference model response as expected. If you followed through up
to this point, congratulations on your successful deployment using the mlflow-ray-
serve MLflow deployment plugin! If you no longer need this Ray Serve instance, you
can stop it by executing the following command line:

ray stop

This will stop all running Ray instances on your local machine.

Deploying to AWS SageMaker – a complete end-to-end guide 193

Deployment Using MLflow Deployment Plugins
There are several MLflow deployment plugins. We just showed how to
use mlflow-ray-serve to deploy a generic MLflow Python model,
inference_pipeline_model. This opens doors to deploying to
many target destinations where you can launch a Ray cluster in any cloud
provider. We will not cover more details in this chapter as it's beyond the
scope of this book. If you are interested, refer to the Ray documentation on
how to launch cloud clusters (AWS, Azure, and Google Cloud Platform
(GCP)): https://docs.ray.io/en/latest/cluster/cloud.
html#:~:text=The%20Ray%20Cluster%20Launcher%20
can,ready%20to%20launch%20your%20cluster. Once there is a
Ray cluster, you can follow the same procedure to deploy an MLflow model.

Now that we know several ways to deploy locally and could further deploy to the cloud
using Ray Serve if desirable, let's see how we can deploy to a cloud-managed inference
service, AWS SageMaker, in the next section, since it is widely used and can provide
a good lesson on how to deploy in a realistic scenario.

Deploying to AWS SageMaker – a complete
end-to-end guide
AWS SageMaker has a cloud-hosted model service managed by AWS. We will use AWS
SageMaker as an example to show you how to deploy to a remote cloud provider for
hosted web services that can serve real production traffic. AWS SageMaker has a suite of
ML/DL-related services including supporting annotation and model training and many
more. Here, we show how to bring your own model (BYOM) for deployment. This means
that you have a model inference pipeline trained outside of AWS SageMaker, and now just
need to deploy to SageMaker for hosting. Follow the next steps to prepare and deploy a
DL sentiment model. A few prerequisites are required:

•	 You must have Docker Desktop running in your local environment.

•	 You must have an AWS account. You can create a free AWS account easily through
the free signup website at https://aws.amazon.com/free/.

Once you have these requirements , activate the dl-model-chapter08 conda virtual
environment to follow through a few steps for deploying to SageMaker. We breakdown
these steps into six subsections as follows:

1.	 Build a local SageMaker Docker image
2.	 Add additional model artifacts layers onto the SageMaker Docker image

https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://aws.amazon.com/free/

194 Deploying a DL Inference Pipeline at Scale

3.	 Test local deployment with the newly built SageMaker Docker image
4.	 Push the SageMaker Docker image to AWS Elastic Container Registry
5.	 Deploy the inference pipeline model to create a SageMaker endpoint
6.	 Query the SageMaker endpoint for online inference

Let's start with the first step to build a local SageMaker Docker image.

Step 1: Build a local SageMaker Docker image
We intentionally start with a local build without pushing to the AWS so that we can learn
how to add additional layers on top of this basic image and verify everything locally before
incurring any cloud cost:

mlflow sagemaker build-and-push-container --build --no-push -c
mlflow-dl-inference

You will see a lot of screen outputs and at the end, it will show something like
the following:

#15 exporting to image

#15 sha256:e8c613e07b0b7ff33893b694f7759a10
d42e180f2b4dc349fb57dc6b71dcab00

#15 exporting layers

#15 exporting layers 8.7s done

#15 writing image sha256:95bc539b021179e5e87087
012353ebb43c71410be535ef368d1121b550c57bd4 done

#15 naming to docker.io/library/mlflow-dl-inference done

#15 DONE 8.7s

If you see the image name mlflow-dl-inference, that means you have successfully
created a SageMaker-compatible MLflow-model-serving Docker image. You can verify
this by running the following command:

docker images | grep mlflow-dl-inference

You should see output like the following:

mlflow-dl-inference latest
95bc539b0211 6 minutes ago 2GB

Deploying to AWS SageMaker – a complete end-to-end guide 195

Step 2: Add additional model artifacts layers onto the
SageMaker Docker image
Recall that our inference pipeline model builds on top of a fine-tuned DL model and
we load the model through the MLflow PythonModel API's load_context function
(https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#mlflow.pyfunc.PythonModel) without serializing the fine-tuned model
itself. This is partly because MLflow cannot serialize the PyTorch DataLoader (https://
pytorch.org/docs/stable/data.html#single-and-multi-process-
data-loading) properly using pickle since the DataLoader does not implement pickle
serialization as of this writing. This does give us an opportunity to learn how we can
deploy when some of the dependencies cannot be serialized properly, especially when
dealing with a real-world DL model.

Two Ways to Allow a Docker Container to Access an MLflow Tracking Server
There are two ways to allow a Docker container such as mlflow-dl-
inference to access and load a fine-tuned model at runtime. The first
method is to allow the container to include the MLflow tracking server URL
and access token. This may cause some security concerns in an enterprise
environment since the Docker image now contains some security credentials.
The second method is to directly copy all the referenced artifacts to create a
new Docker image that's self-sufficient. At runtime, it does not have to know
where the original MLflow tracking server is located since it has all model
artifacts locally. This self-contained approach eliminates any concerns of
security leaking. We use this second approach in this chapter for deployment.

In this chapter, we will copy the referenced fine-tuned model into a new Docker image
that's built on top of the basic mlflow-dl-inference Docker image. This will make
a new self-contained Docker image without relying on any external MLflow tracking
server. To do this, you need to either download the fine-tuned DL model from a model
tracking server to your current local folder, or you can just run our MLproject's pipeline
locally using the local filesystem as the MLflow tracking server backend. Follow the
Deploy to AWS SageMaker section in the README.md file to reproduce the local MLflow
runs to prepare a fine-tuned model and inference-pipeline-model in the local
folder. For learning purposes, we have provided two example mlruns artifacts and
the huggingface cache folder in the GitHub repository in the chapter08 folder
(https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/tree/main/chapter08), so that we can start building a new
Docker image right away by using these existing artifacts.

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08

196 Deploying a DL Inference Pipeline at Scale

To build a new Docker image, we need to create a Dockerfile as follows:

FROM mlflow-dl-inference

ADD mlruns/1/meta.yaml /opt/mlflow/mlruns/1/meta.yaml

ADD mlruns/1/d01fc81e11e842f5b9556ae04136c0d3/ /opt/mlflow/
mlruns/1/d01fc81e11e842f5b9556ae04136c0d3/

ADD tmp/opt/mlflow/hf/cache/dl_model_chapter08/csv/ /opt/
mlflow/tmp/opt/mlflow/hf/cache/dl_model_chapter08/csv/

The first line means that it starts with the existing mlflow-dl-inference Docker
image, and the following three lines of ADD will copy one meta.yaml file and two
folders to the corresponding locations in the Docker image. Note that if you already have
produced your own runs by following the README file, then you do not need to add the
third line. Note that, by default, when the Docker container starts, it automatically goes to
this/opt/mlflow/ working directory so everything needs to be copied to this folder for
easy access. Also, note that the /opt/mlflow directory requires superuser permission,
so you need to be prepared to enter your local machine's admin password (usually, on
your own laptop, that's your own password).

Copy Privately Built Python Packages into Docker Images
It is also possible to copy privately built Python packages into Docker images
so that we can directly reference them in the conda.yaml file without
going outside of the container itself. For example, we can copy a private
Python wheel package, cool-dl-package-1.0.py3-none-any.
whl, to the /usr/private-wheels/cool-dl-package/cool-
dl-package-1.0-py3-none-any.whl Docker folder, and then we
can point to this path in the conda.yaml file. This allows MLflow model
artifacts to load these locally accessible Python packages successfully. In our
current example, we don't use this approach since we haven't used any privately
built Python packages. This is useful for future reference if you are interested in
exploring this.

Now, you can run the following command to build a new Docker image in the
chapter08 folder as follows:

docker build . -t mlflow-dl-inference-w-finetuned-model

Deploying to AWS SageMaker – a complete end-to-end guide 197

This will build a new Docker image, mlflow-dl-inference-w-finetuned-model,
on top of mlflow-dl-inference. You should see the following output (only the first
and last couple of lines are presented for brevity):

[+] Building 0.2s (9/9) FINISHED

 => [internal] load build definition from Dockerfile
 0.0s

…………

=> => naming to docker.io/library/mlflow-dl-inference-w-
finetuned-model

Now, you have a new Docker image named mlflow-dl-inference-w-finetuned-
model, which contains the fine-tuned model. Now, we are ready to deploy our inference
pipeline model using this new Docker image, which is SageMaker compatible.

Step 3: Test local deployment with the newly built
SageMaker Docker image
Before we deploy to the cloud, let's test the deployment locally with this new SageMaker
Docker image. MLflow provides a convenient way to test this locally using the following
command:

mlflow sagemaker run-local -m runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_model -p
5555 -i mlflow-dl-inference-w-finetuned-model

This command will start running the mlflow-dl-inference-w-finetuned-
model Docker container locally and deploy the inference pipeline model with a
dc5f670efa1a4eac95683633ffcfdd79 run ID into this container.

Fix a Potential Docker Error
Note that you may encounter a Docker error saying The path /opt/mlflow/
mlruns/1/ dc5f670efa1a4eac95683633ffcfdd79/artifacts/inference_pipeline_
model is not shared from the host and is not known to Docker. You can
configure shared paths from Docker | Preferences... | Resources | File Sharing
to fix this Docker error.

198 Deploying a DL Inference Pipeline at Scale

We already provided this inference pipeline model in the GitHub repository, so this
should work out-of-the-box when you check out the repository in your local environment.
The port for web service is 5555. Once the command is running, you will see a lot of
outputs on the screen, and finally, you should see the following:

[2022-03-18 01:47:20 +0000] [552] [INFO] Starting gunicorn
20.1.0

[2022-03-18 01:47:20 +0000] [552] [INFO] Listening at:
http://127.0.0.1:8000 (552)

[2022-03-18 01:47:20 +0000] [552] [INFO] Using worker: gevent

[2022-03-18 01:47:20 +0000] [565] [INFO] Booting worker with
pid: 565

[2022-03-18 01:47:20 +0000] [566] [INFO] Booting worker with
pid: 566

[2022-03-18 01:47:20 +0000] [567] [INFO] Booting worker with
pid: 567

[2022-03-18 01:47:20 +0000] [568] [INFO] Booting worker with
pid: 568

[2022-03-18 01:47:20 +0000] [569] [INFO] Booting worker with
pid: 569

[2022-03-18 01:47:20 +0000] [570] [INFO] Booting worker with
pid: 570

This means that the service is up and running. You might see a few warnings about the
PyTorch version not being compatible, but they can be safely ignored. Once this service is
up and running, you can then test against it in a different Terminal window by issuing a
curl web request as follows, like we have tried before:

curl http://127.0.0.1:5555/invocations -H 'Content-Type:
application/json' -d '{

 "columns": ["text"],

 "data": [["This is the best movie we saw."], ["What a
movie!"]]

}'

Deploying to AWS SageMaker – a complete end-to-end guide 199

Note that the port number is 5555 for the localhost. You should then see the response
as follows:

[{"text": "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\":
[\"negative\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

You may wonder how this is different from the previous section's local web service for
the inference model. The difference is that this time, we are using a SageMaker container
locally, while previously, it was just a local web service without a Docker container. Having
the SageMaker container tested locally is very important so that you don't waste time and
money deploying a failed model service to the cloud.

Next, we are ready to deploy this container to AWS SageMaker.

Step 4: Push the SageMaker Docker image to AWS
Elastic Container Registry
Now, you can push your newly built mlflow-dl-inference-w-finetuned-model
Docker image to AWS Elastic Container Registry (ECR) with the following command.
Make sure you have your AWS access token and access ID set up correctly (the real one,
not the local development one). Once you have your access key ID and token, run the
following command to set up your access to the real AWS:

aws configure

Answer all the questions after executing the command and you will be ready to go.
Now, you can run the following command to push the mlflow-dl-inference-w-
finetuned-model Docker image to the AWS ECR:

mlflow sagemaker build-and-push-container --no-build --push -c
mlflow-dl-inference-w-finetuned-model

200 Deploying a DL Inference Pipeline at Scale

Make sure you don't build a new image with the --no-build option included in the
command since we just want to push the image, not build a new one. You will see the
following output, which shows the image is being pushed to the ECR. Note that in the
following output, the AWS account is masked with xxxxx. You will see your account
number showing in the output. Make sure you have the permission to write to the AWS
ECR store:

2022/03/18 17:36:05 INFO mlflow.sagemaker: Pushing image to ECR

2022/03/18 17:36:06 INFO mlflow.sagemaker: Pushing docker
image mlflow-dl-inference-w-finetuned-model to xxxxx.dkr.
ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-finetuned-
model:1.23.1

Created new ECR repository: mlflow-dl-inference-w-finetuned-
model

2022/03/18 17:36:06 INFO mlflow.sagemaker: Executing: aws ecr
get-login-password | docker login --username AWS --password-
stdin xxxxx.dkr.ecr.us-west-2.amazonaws.com;

docker tag mlflow-dl-inference-w-finetuned-model xxxxx.dkr.
ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-finetuned-
model:1.23.1;

docker push xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-
inference-w-finetuned-model:1.23.1

Login Succeeded

The push refers to repository [xxxxx.dkr.ecr.us-west-2.
amazonaws.com/mlflow-dl-inference-w-finetuned-model]

447db5970ca5: Pushed

9d6787a516e7: Pushed

1.23.1: digest: sha256:f49f85741bc2b82388e85c79f6621f4
d7834e19bdf178b70c1a6c78c572b4d10 size: 3271

Deploying to AWS SageMaker – a complete end-to-end guide 201

Once this is done, if you go to the AWS website (for example, if you use the us-west-2
region data center, the URL is https://us-west-2.console.aws.amazon.com/
ecr/repositories?region=us-west-2), you should find your newly pushed
image in the ECR with a folder named mlflow-dl-inference-w-finetuned-
model. You will then find the image in this folder as follows (Figure 8.4):

Figure 8.4 – AWS ECR repositories with mlflow-dl-inference-w-finetuned-model image tag 1.23.1

Note that the image tag number 1.23.1 in Figure 8.4 is the MLflow version we used. This
image has a full URI, which you can get using the Copy URI option. It will look as
follows (with the AWS account masked with xxxxx):

xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-
finetuned-model:1.23.1

You will need this image URI to deploy to SageMaker in the next step. Let's now deploy to
SageMaker to create an inference endpoint.

https://us-west-2.console.aws.amazon.com/ecr/repositories?region=us-west-2
https://us-west-2.console.aws.amazon.com/ecr/repositories?region=us-west-2

202 Deploying a DL Inference Pipeline at Scale

Step 5: Deploy the inference pipeline model to create a
SageMaker endpoint
Now, it is time to deploy the inference pipeline model to SageMaker using this image
URI we just pushed to the AWS ECR registry. We have included the sagemaker/
deploy_to_sagemaker.py code in the chapter08 folder in the GitHub repository.
You will need to use the correct AWS role for the deployment. You can create a new
AWSSageMakerExecutionRole role in your account and assign two permissions
policies to this role, AmazonS3FullAccess and AmazonSageMakerFullAccess.
In a real-world scenario, you might want to tighten the permission to a more restricted
policy, but for learning purposes, this will work fine. The following figure shows the screen
after the role is created:

Figure 8.5 – Create a role that can be used for deployment in SageMaker

Deploying to AWS SageMaker – a complete end-to-end guide 203

You also need to create an S3 bucket for SageMaker to upload the model artifacts and
deploy them to SageMaker. In our example, we created a bucket called dl-inference-
deployment. When we execute the deployment script, as shown here, the model to
be deployed will be first uploaded to the dl-inference-deployment bucket and
then deployed to SageMaker. We have provided the complete deployment script in the
chapter08/sagemaker/deploy_to_sagemaker.py GitHub repository so you
can download and execute it as follows (as a reminder, before you run this script, make
sure you reset the environment variable of MLFLOW_TRACKING_URI to empty, as in
export MLFLOW_TRACKING_URI=):

sudo python sagemaker/deploy_to_sagemaker.py

This script executes the following two tasks:

1.	 Makes a copy of the local mlruns under the chapter08 folder to a local /opt/
mlflow folder so that SageMaker deployment code can pick up the inference-
pipeline-model to upload. Because the /opt path is usually restricted, here
we use sudo (superuser) to do this copy. This will prompt you to type in your user
password on your laptop.

2.	 Uses the mlflow.sagemaker.deploy API to create a new SageMaker endpoint,
dl-sentiment-model.

The code snippet is as follows:
mlflow.sagemaker.deploy(

 mode='create',

 app_name=endpoint_name,

 model_uri=model_uri,

 image_url=image_uri,

 execution_role_arn=role,

 instance_type='ml.m5.xlarge',

 bucket = bucket_for_sagemaker_deployment,

 instance_count=1,

 region_name=region

)

The parameters need some explanations so that we fully understand all the
preparation work that is needed:

	� model_uri: This is the inference pipeline model's URI. In our example,
it is runs:/dc5f670efa1a4eac95683633ffcfdd79/inference_
pipeline_model.

204 Deploying a DL Inference Pipeline at Scale

	� image_url: This is the Docker image we uploaded to the AWS ECR. In our
example, it is xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-
inference-w-finetuned-model:1.23.1. Note that you need to replace
the masked AWS account number, xxxxx, with your actual account number.

	� execution_role_arn: This is the role we created to allow SageMaker to do
the deployment. In our example, it is arn:aws:iam::565251169546:role/
AWSSageMakerExecutionRole. Again, you need to replace xxxxx with your
actual AWS account number.

	� bucket: This is the S3 bucket we created to allow SageMaker to upload the
model and then do the actual deployment. In our example, it is dl-inference-
deployment.

The rest of the parameters are self-explanatory.
After you execute the deployment script, you will see the following output (where xxxxx
is the masked AWS account number):

2022/03/18 19:30:47 INFO mlflow.sagemaker: Using the python_
function flavor for deployment!

2022/03/18 19:30:47 INFO mlflow.sagemaker: tag response:
{'ResponseMetadata': {'RequestId': 'QMAQRCTJT36TXD2H',
'HostId': 'DNG57U3DJrhLcsBxa39zsjulUH9VB56FmGkxAiMYN+2fhc/
rRukWe8P3qmBmvRYbMj0sW3B2iGg=', 'HTTPStatusCode':
200, 'HTTPHeaders': {'x-amz-id-2':
'DNG57U3DJrhLcsBxa39zsjulUH9VB56FmGkxAiMYN+2fhc/
rRukWe8P3qmBmvRYbMj0sW3B2iGg=', 'x-amz-request-id':
'QMAQRCTJT36TXD2H', 'date': 'Sat, 19 Mar 2022 02:30:48 GMT',
'server': 'AmazonS3', 'content-length': '0'}, 'RetryAttempts':
0}}

2022/03/18 19:30:47 INFO mlflow.sagemaker: Creating new
endpoint with name: dl-sentiment-model ...

2022/03/18 19:30:47 INFO mlflow.sagemaker: Created model with
arn: arn:aws:sagemaker:us-west-2:xxxxx:model/dl-sentiment-
model-model-qbca2radrxitkujn3ezubq

2022/03/18 19:30:47 INFO mlflow.sagemaker: Created
endpoint configuration with arn: arn:aws:sagemaker:us-
west-2:xxxxx:endpoint-config/dl-sentiment-model-config-
r9ax3wlhrfisxkacyycj8a

2022/03/18 19:30:48 INFO mlflow.sagemaker: Created endpoint
with arn: arn:aws:sagemaker:us-west-2:xxxxx:endpoint/
dl-sentiment-model

2022/03/18 19:30:48 INFO mlflow.sagemaker: Waiting for the

Deploying to AWS SageMaker – a complete end-to-end guide 205

deployment operation to complete...

2022/03/18 19:30:48 INFO mlflow.sagemaker: Waiting for endpoint
to reach the "InService" state. Current endpoint status:
"Creating"

This may take several minutes (sometimes more than 10 minutes). You may see some
warning messages regarding PyTorch version compatibility as you saw when doing local
SageMaker deployment testing. You can also go directly to the SageMaker website and you
will see the status of the endpoints starting with Creating, and then eventually turning to
a green-colored InService status as follows:

Figure 8.6 – AWS SageMaker dl-sentiment-model endpoint InService

If you see the InService status, then congratulations! You have successfully deployed a DL
inference pipeline model into SageMaker and you can now use it for production traffic!

Now that the status of the service is inService, you can query it using the command line in
the next step.

Step 6: Query the SageMaker endpoint for online
inference
To query the SageMaker endpoint, you can use the following command line:

aws sagemaker-runtime invoke-endpoint --endpoint-name
'dl-sentiment-model' --content-type 'application/json;
format=pandas-split' --body '{"columns":["text"], "data":
[["This is the best movie we saw."], ["What a movie!"]]}'
response.json

206 Deploying a DL Inference Pipeline at Scale

You will then see the output as follows:

{

 "ContentType": "application/json",

 "InvokedProductionVariant": "dl-sentiment-model-model-
qbca2radrxitkujn3ezubq"

}

The actual prediction results are stored in a local response.json file, which can be
viewed by running the following command to show the content of the response:

cat response.json

This will display the content as follows:

[{"text": "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\":
[\"negative\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

This is the expected response pattern from our inference pipeline model! It is also
possible to run the query against the SageMaker inference endpoint using Python code,
which we have provided in the chapter08/sagemaker/ query_sagemaker_
endpoint.py file in the GitHub repository. The core code snippet uses Boto3 and the
SageMakerRuntime client's invoke_endpoint to query, as follows:

client = boto3.client('sagemaker-runtime')

response = client.invoke_endpoint(

 EndpointName=app_name,

 ContentType=content_type,

 Accept=accept,

 Body=payload

)

Deploying to AWS SageMaker – a complete end-to-end guide 207

The parameters for invoke_endpoint need some explanation:

•	 EndpointName: This is the inference endpoint name. In our example, it is
dl-inference-model.

•	 ContentType: This is the MIME type of the input data in the request body. In our
example, we use application/json; format=pandas-split.

•	 Accept: This is the desired MIME type of the inference in the response body. In
our example, we expect the text/plain string type.

•	 Body: This is the actual text that we want to predict the sentiment using
the DL model inference service. In our example, it is {"columns":
["text"],"data": [["This is the best movie we saw."],
["What a movie!"]]}.

The full code is provided in the GitHub repository, and you can run it in the command
line as follows:

python sagemaker/query_sagemaker_endpoint.py

You will see the following output on your Terminal screen:

Application status is: InService

[{"text": "{\"response\": {\"prediction_label\":
[\"positive\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\":
[\"negative\"]}, \"metadata\": {\"language_detected\":
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

This is what we expect from our inference pipeline model's response! If you have followed
this chapter up to here, congratulate yourself on successfully deploying our inference
pipeline model into production in a remote cloud host, AWS SageMaker! When you are
done following the lessons in this chapter, make sure to delete the endpoint so that it
doesn't incur unnecessary costs.

Let's summarize what we've learned in this chapter.

208 Deploying a DL Inference Pipeline at Scale

Summary
In this chapter, we have learned different ways to deploy an MLflow inference pipeline
model for both batch inference and online real-time inference. We started with a brief
survey on different model serving scenarios (batch, streaming, and on-device) and looked
at three different categories of tools for MLflow model deployment (the MLflow built-in
deployment tool, MLflow deployment plugins, and generic model inference serving
frameworks that could work with the MLflow inference model). Then, we covered several
local deployment scenarios, using the PySpark UDF function to do batch inference and
MLflow local deployment for web service. Afterward, we learned how to use Ray Serve
in conjunction with the mlflow-ray-serve plugin to deploy an MLflow Python
inference pipeline model into a local Ray cluster. This opens doors to deploy to any
cloud platform such as AWS, Azure ML, or GCP, as long as we can set up a Ray cluster in
the cloud. Finally, we provided a complete end-to-end guide on how to deploy to AWS
SageMaker, focusing on a common scenario of BYOM, where we have a trained inference
pipeline model that's built outside of AWS SageMaker and now needs to be deployed to
AWS SageMaker for a hosting model service. Our step-by-step guide should provide
you with the confidence to deploy an MLflow inference pipeline model for real
production usage.

Note that the landscape of deploying DL inference pipeline models is still evolving, and
we just learned some foundational skills. You are encouraged to explore more from the
Further reading section for more advanced topics.

Now that we know how to deploy and host a DL inference pipeline, we will learn how to
do model explainability in the next chapter, which is of great importance for trustworthy
and interpretable model prediction results in many real-world scenarios.

Further reading
•	 An Introduction to TinyML: https://towardsdatascience.com/

an-introduction-to-tinyml-4617f314aa79

•	 Performance Optimizations and MLFlow Integrations – Seldon Core 1.10.0 Released:
https://www.seldon.io/performance-optimizations-and-
mlflow-integrations-seldon-core-1-10-0-released/

•	 Ray & MLflow: Taking Distributed Machine Learning Applications to
Production: https://medium.com/distributed-computing-with-
ray/ray-mlflow-taking-distributed-machine-learning-
applications-to-production-103f5505cb88

https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://www.seldon.io/performance-optimizations-and-mlflow-integrations-seldon-core-1-10-0-released/
https://www.seldon.io/performance-optimizations-and-mlflow-integrations-seldon-core-1-10-0-released/
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88

Further reading 209

•	 Managing your machine learning lifecycle with MLflow and Amazon SageMaker:
https://aws.amazon.com/blogs/machine-learning/managing-
your-machine-learning-lifecycle-with-mlflow-and-amazon-
sagemaker/

•	 Deploy A Locally Trained ML Model In Cloud Using AWS SageMaker:
https://medium.com/geekculture/84af8989d065

•	 PyTorch vs TensorFlow in 2022: https://www.assemblyai.com/blog/
pytorch-vs-tensorflow-in-2022/

•	 Try Databricks: Free Trial or Community Edition: https://docs.databricks.
com/getting-started/try-databricks.html#free-trial-or-
community-edition

•	 MLOps with MLflow and Amazon SageMaker Pipelines: https://
towardsdatascience.com/mlops-with-mlflow-and-amazon-
sagemaker-pipelines-33e13d43f238

•	 PyTorch JIT and TorchScript: https://towardsdatascience.com/
pytorch-jit-and-torchscript-c2a77bac0fff

•	 ML Model Serving Best Tools: https://neptune.ai/blog/ml-model-
serving-best-tools

•	 Deploying Machine Learning models to production — Inference service architecture
patterns: https://medium.com/data-for-ai/deploying-machine-
learning-models-to-production-inference-service-
architecture-patterns-bc8051f70080

•	 How to Deploy Large-Size Deep Learning Models into Production:
https://towardsdatascience.com/how-to-deploy-large-size-
deep-learning-models-into-production-66b851d17f33

•	 Serving ML models at scale using Mlflow on Kubernetes: https://medium.com/
artefact-engineering-and-data-science/serving-ml-models-
at-scale-using-mlflow-on-kubernetes-7a85c28d38e

•	 When PyTorch meets MLflow: https://mlops.community/when-pytorch-
meets-mlflow/

•	 Deploy a model to an Azure Kubernetes Service Cluster: https://docs.
microsoft.com/en-us/azure/machine-learning/how-to-deploy-
azure-kubernetes-service?tabs=python

•	 ONNX and Azure Machine Learning: Create and accelerate ML models:
https://docs.microsoft.com/en-us/azure/machine-learning/
concept-onnx

https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://medium.com/geekculture/84af8989d065
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/pytorch-jit-and-torchscript-c2a77bac0fff
https://towardsdatascience.com/pytorch-jit-and-torchscript-c2a77bac0fff
https://neptune.ai/blog/ml-model-serving-best-tools
https://neptune.ai/blog/ml-model-serving-best-tools
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://towardsdatascience.com/how-to-deploy-large-size-deep-learning-models-into-production-66b851d17f33
https://towardsdatascience.com/how-to-deploy-large-size-deep-learning-models-into-production-66b851d17f33
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://mlops.community/when-pytorch-meets-mlflow/
https://mlops.community/when-pytorch-meets-mlflow/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/concept-onnx
https://docs.microsoft.com/en-us/azure/machine-learning/concept-onnx

Section 5 –
Deep Learning Model

Explainability at Scale

In this section, we will learn about the foundational concepts of explainability and
explainable artificial intelligence (XAI) and how to implement deep learning (DL)
explainability with MLflow. We will start with an overview of the eight dimensions of
explainability and then learn how to use SHapley Additive exPlanations (SHAP) and
Transformers Interpret to perform explainability for a natural language processing
(NLP) pipeline. Furthermore, we will learn and analyze the current MLflow integration
with SHAP to understand the trade-offs and avoid potential implementation problems.
Then, we will show how to implement SHAP using MLflow's logging APIs. Finally, we will
learn how to implement a SHAP explainer as an MLflow Python model and then load it as
either a Spark UDF for batch explanation or as a web service for online Explanation-as-a-
Service (EaaS).

This section comprises the following chapters:

•	 Chapter 9, Fundamentals of Deep Learning Explainability

•	 Chapter 10, Implementing DL Explainability with MLflow

9
Fundamentals of

Deep Learning
Explainability

Explainability is providing selective human-understandable explanations for a decision
provided by an automated system. In the context of this book, during the full life cycle
of deep learning (DL) development, explainability should be emphasized as a first-class
artifact, along with the other three pillars: data, code, and model. This is because different
stakeholders and regulators, model developers, and final consumers of the model output
may have different needs to understand how the data is used and why the model produces
certain predictions or classifications. Without such understanding, it will be difficult to
gain the trust of the consumers of the model output or to diagnose what could have gone
wrong when model output results drift. This also means that explainability tools should be
employed not only for explaining prediction results from a deployed model in production
or during offline experimentation, but also for understanding the data characteristics and
differences between the datasets used in offline model training and the ones encountered
in online model operation.

214 Fundamentals of Deep Learning Explainability

In addition, in many highly regulated industries, such as autonomous driving,
medical diagnosis, banking, and finance, there is also a legal mandate that
demands the right to explanation (https://academic.oup.com/idpl/
article/7/4/233/4762325) for any individual to get an explanation for an output
of the algorithm. Finally, a recent survey showed that over 82% of CEOs believe that
AI-based decisions must be explainable to be trusted as enterprises accelerate their
investment in developing and deploying AI-based initiatives (https://cloud.
google.com/blog/topics/developers-practitioners/bigquery-
explainable-ai-now-ga-help-you-interpret-your-machine-
learning-models). Therefore, it is important to learn the fundamentals of
explainability and the related tools so that we know when to use what tools for what
audience to provide a relevant, accurate, and consistent explanation.

By the end of this chapter, you will be confident to know what a good explanation is and
what tools exist for different explainability purposes and will gain hands-on experience in
using two explainability toolboxes for explaining DL sentiment classification models.

In this chapter, we're going to cover the following main topics:

•	 Understanding the categories and audience of explainability

•	 Exploring the SHAP Explainability toolbox

•	 Exploring the Transformers Interpret toolbox

Technical requirements
The following requirements are necessary to complete the learning in this chapter:

•	 SHAP Python library: https://github.com/slundberg/shap

•	 Transformers Interpret Python library: https://github.com/cdpierse/
transformers-interpret

•	 Captum Python library: https://github.com/pytorch/captum

•	 Code from the GitHub repository for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter09

https://academic.oup.com/idpl/article/7/4/233/4762325
https://academic.oup.com/idpl/article/7/4/233/4762325
https://cloud.google.com/blog/topics/developers-practitioners/bigquery-explainable-ai-now-ga-help-you-interpret-your-machine-learning-models
https://cloud.google.com/blog/topics/developers-practitioners/bigquery-explainable-ai-now-ga-help-you-interpret-your-machine-learning-models
https://cloud.google.com/blog/topics/developers-practitioners/bigquery-explainable-ai-now-ga-help-you-interpret-your-machine-learning-models
https://cloud.google.com/blog/topics/developers-practitioners/bigquery-explainable-ai-now-ga-help-you-interpret-your-machine-learning-models
https://github.com/slundberg/shap
https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/pytorch/captum
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter09
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter09
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter09

Understanding the categories and audience of explainability 215

Understanding the categories and audience
of explainability
As this chapter's opening texts imply, explainability for a DL system becomes increasingly
critical, sometimes even mandatory, in highly regulated industries such as financial,
legal, governmental, and medical application domains. An example lawsuit partially due
to the lack of ML explainability is the case of B2C2 v Quoine (https://www.scl.
org/articles/12130-explainable-machine-learning-how-can-you-
determine-what-a-party-knew-or-intended-when-a-decision-was-
made-by-machine-learning), where automated AI trading algorithms mistakenly
placed an order with 250 times the market price for bitcoin trading. The recent successful
applications of DL models in production stimulate active and abundant research and
development in the explainability area due to the need to understand why and how a DL
model works. You may have heard of the term explainable artificial intelligence (XAI),
which was started by the US Defense Advanced Research Projects Agency (DARPA)
in 2015 for its XAI program with the goal of enabling end users to better understand,
trust, and effectively manage AI systems (https://onlinelibrary.wiley.com/
doi/epdf/10.1002/ail2.61). However, the concept of explainability goes way
back to the early days of expert systems in the 1980s or even earlier (https://wires.
onlinelibrary.wiley.com/doi/full/10.1002/widm.1391), and the recent
surge of attention on the topic of explainability just highlights how important it is.

So, what's an explanation? It turns out that this is still an active research topic in the
ML/DL/AI community. From a practical purpose, a precise definition of explanation
depends on who wants the explanations for what purpose at what time across the ML/DL/
AI life cycle (https://dl.acm.org/doi/abs/10.1145/3461778.3462131).
So, explainability can be defined as the capability to provide an audience-appropriate,
human-understandable interpretation of why and how a model provides certain predictions.
This may also include the data explainability aspect, where and how the data was used
through provenance tracking, what the data characteristics are, or whether it has changed
due to unexpected events. For example, sales and marketing emails changed due to
an unexpected COVID outbreak (https://www.validity.com/resource-
center/disruption-in-email/). Such data changes will unexpectedly change the
distribution of model prediction results. We need to take into account such data changes
when explaining the model drift. This means the complexity of the explanations needs to
be tailored and selective to the receiving audience without overwhelming information. For
example, a complex explanation with many technical jargons such as activation might not
work as well as a simple text summary with business-friendly terms. This further shows
that explainability is also a Human-Computer Interface/Interaction (HCI) topic.

https://www.scl.org/articles/12130-explainable-machine-learning-how-can-you-determine-what-a-party-knew-or-intended-when-a-decision-was-made-by-machine-learning
https://www.scl.org/articles/12130-explainable-machine-learning-how-can-you-determine-what-a-party-knew-or-intended-when-a-decision-was-made-by-machine-learning
https://www.scl.org/articles/12130-explainable-machine-learning-how-can-you-determine-what-a-party-knew-or-intended-when-a-decision-was-made-by-machine-learning
https://www.scl.org/articles/12130-explainable-machine-learning-how-can-you-determine-what-a-party-knew-or-intended-when-a-decision-was-made-by-machine-learning
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ail2.61
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ail2.61
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1391
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1391
https://dl.acm.org/doi/abs/10.1145/3461778.3462131
https://www.validity.com/resource-center/disruption-in-email/
https://www.validity.com/resource-center/disruption-in-email/

216 Fundamentals of Deep Learning Explainability

To get the big picture of what the explainability categories and corresponding audiences
look like, we consider the eight dimensions of explanations shown in Figure 9.1:

Figure 9.1 – Eight dimensions to understand explainability

As can be seen from Figure 9.1, the complexity of explainability can be understood
from eight dimensions. This is not necessarily an exhaustive categorization, but rather
a guide to understanding different perspectives from HCI, the full life cycle of AI/ML/
DL, and different technical approaches. In the following discussion, we will highlight the
dimensions and their inter-relationships that are most relevant to DL applications, since
the focus of this chapter is on DL explainability.

Audience: who needs to know
As pointed out recently by a study (https://dl.acm.org/doi/
abs/10.1145/3461778.3462131), it is important to understand who needs to
know what kind of explanations at what stage across an AI project life cycle. This will
also affect the explanation output formats. An earlier study (https://arxiv.org/
pdf/1702.08608.pdf) also points out that depending on whether a domain expert is
involved in a real application task (for example, a medical doctor in a diagnosis of cancer),
the cost of validating an explanation could also be high since it requires an actual human
in a real work environment.

For current practical DL projects, we need to tailor our methods and presentations of
explanations depending on the target audience, such as data scientists, ML engineers,
business stakeholders, User Experience (UX) designers, or end users, as there is no
one-size-fits-all approach.

https://dl.acm.org/doi/abs/10.1145/3461778.3462131
https://dl.acm.org/doi/abs/10.1145/3461778.3462131
https://arxiv.org/pdf/1702.08608.pdf
https://arxiv.org/pdf/1702.08608.pdf

Understanding the categories and audience of explainability 217

Stage: when to provide an explanation in the DL
life cycle
A stage usually refers to when the explanations can be provided during the model
development life cycle. For a model such as a decision tree, since it is a white-box
model, we say we can provide ante-hoc explainability. However, currently, most DL
models are mostly treated as black-box models even though self-explaining DL models
are being gradually developed with ante-hoc explainability (https://arxiv.
org/abs/2108.11761). Therefore, for current practical DL applications, post-hoc
explainability is needed. In addition, when the model development stages are in training,
validation, or production, the explainability scope can be global, cohort, or local, even
using the same post-hoc explainability tools (https://towardsdatascience.
com/a-look-into-global-cohort-and-local-model-explainability-
973bd449969f).

Scope: which prediction needs explanation
Scope refers to whether we can provide the explanation for all predictions, a subset of
the predictions, or just one specific prediction, even if we use the same post-hoc tool for
a black-box DL model. The most common global explainability is to describe feature
importance and allow users to know which feature is the most impactful one for the
overall model performance. Local explainability is about feature attribution for a specific
prediction instance. The difference between feature attribution and feature importance
is that feature attribution not only quantifies the ranking and magnitude of the feature
impact, but also the direction of the impact (for example, whether a feature is positively or
negatively affecting the prediction).

Many of the post-hoc tools for DL models are very good at local explainability. Cohort
explainability is useful for identifying potential model bias for some specific groups such
as age or race groups. For a DL model, if we want to have a global explanation, we often
need to use a surrogate model such as a decision tree model to emulate the behavior of
a DL model (https://towardsdatascience.com/explainable-ai-xai-
methods-part-5-global-surrogate-models-9c228d27e13a). However, this
approach does not always work well as it is very difficult to know whether the surrogate
model is approximating the predictions of the original black-box model well enough.
So, in practice, local explainability tools for DL models are often used, such as SHapley
Additive exPlanations (SHAP), which we will explain in the method dimension.

https://arxiv.org/abs/2108.11761
https://arxiv.org/abs/2108.11761
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/explainable-ai-xai-methods-part-5-global-surrogate-models-9c228d27e13a
https://towardsdatascience.com/explainable-ai-xai-methods-part-5-global-surrogate-models-9c228d27e13a

218 Fundamentals of Deep Learning Explainability

Input data format: what is the format of the
input data
Input data format refers to what kind of input data we are dealing with when developing
and using the model. While a simple model might only focus on a single type of input
data format such as text, many complex models might require using a mix of structured
tabular data plus unstructured data such as images or texts. In addition, there is also
a separate need to understand the input data hidden bias (during model training and
validation) or drifting (during production). As such, this is quite a complex topic. The data
explanation can also be used for monitoring data outliers and drifting during production.
This is applicable to all types of ML/DL models.

Output data format: what is the format of the
output explanation
Output explanation format refers to how we present the explanations to our target
audience. Often, an image explanation might be a bar chart showing the feature
importance with the top few features and their scores, or a saliency map that highlights
the spatial support of a particular class in each image for image-related ML problems. For
a textual output, it could be an English sentence to say why a credit application is rejected
because of a few factors that are understandable to the applicants. Natural language
processing (NLP) model explainability could also be through interactive exploration
that uses salience maps, attention, and other rich visualization (see examples in Google's
Language Interpretability Tool (LIT): https://ai.googleblog.com/2020/11/
the-language-interpretability-tool-lit.html). As there is no silver
bullet for explainability of these complex output formats, it is critical to meet the needs,
experiences, and expectations of the audience that asks for the explanation.

https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html
https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html

Understanding the categories and audience of explainability 219

Problem type: what is the machine learning
problem type
Problem type refers to all kinds of ML/AI problems broadly, but for practical purposes,
current commercially successful problems are mostly around classification, regression,
and clustering. Reinforcement learning and recommendation systems also see increasingly
successful adoption in the industry. DL models are now often used in all these types of
problems or are at least being evaluated as a potential candidate model.

Objectives type: what is the motivation or goal to
explain
Objectives type refers to the motivation of using explainability in AI/ML projects. It has
been argued that the number one objective of explainability is to gain trust by providing
a sufficient understanding of the AI system behavior and uncovering vulnerabilities,
biases, and flaws of the system. An additional motivation is to infer the causal relationship
from the input and output prediction. Other objectives include improving the model
accuracy through a better understanding of the inner workings of the AI/ML systems,
and justifying the model behavior and decisions through transparent explanations when
potentially severe consequences are involved. It is even possible to reveal unknown
insights and rules that are based on explanations (https://www.tandfonline.
com/doi/full/10.1080/10580530.2020.1849465). Overall, it is very desirable
to break the black box so that when being used in a real production system, the AI/ML
models and systems can be used with confidence.

220 Fundamentals of Deep Learning Explainability

Method type: what is the specific post-hoc explanation
method used
Method type (post-hoc) refers to post-hoc methods that are very relevant to the DL
models. There are two major categories of post-hoc methods: perturbation-based and
gradient-based. Recent work has started to unify these two approaches, although it is
not yet widely applicable for practical usage (https://teamcore.seas.
harvard.edu/publications/towards-unification-and-robustness-
perturbation-and-gradient-based). The following is a brief discussion on
these two types of methods:

•	 Perturbation-based methods leverage perturbations of individual instances to
construct interpretable local approximations using linear models to explain
the predictions. The most popular perturbation-based methods include
Local Interpretable Model-Agnostic Explanations (LIME), (https://
arxiv.org/pdf/1602.04938.pdf), SHAP, and variants of LIME and
SHAP such as BayesLIME and BayesSHAP, TreeSHAP, and many more
(https://towardsdatascience.com/what-are-the-prevailing-
explainability-methods-3bc1a44f94df). LIME can be used for tabular,
image, and textual input data and is model agnostic. That's to say, LIME can be used
for any type of classifiers (tree-based or DL models) regardless of the algorithms
being used. SHAP uses principles from cooperative game theory to identify the
contribution of different features to the prediction in order to quantify the impact
of each feature. SHAP produces a so-called shapely value, which is the average of
all the marginal contributions to all possible coalitions or combinations of different
features. It works well for many types of models, including DL models, although the
computational time could be much faster for tree-based models such as XGBoost or
LightGBM (https://github.com/slundberg/shap).

•	 Gradient-based methods, such as SmoothGrad (https://arxiv.
org/abs/1706.03825) and Integrated Gradients (https://
towardsdatascience.com/understanding-deep-learning-models-
with-integrated-gradients-24ddce643dbf), leverages gradients
computed with respect to input dimensions of individual instances to explain
model predictions. They can be applied to both image and textual input data,
although sometimes, textual input could suffer a manipulation or adversary attack
(https://towardsdatascience.com/limitations-of-integrated-
gradients-for-feature-attribution-ca2a50e7d269), which will
change the feature importance undesirably.

https://teamcore.seas.harvard.edu/publications/towards-unification-and-robustness-perturbation-and-gradient-based
https://teamcore.seas.harvard.edu/publications/towards-unification-and-robustness-perturbation-and-gradient-based
https://teamcore.seas.harvard.edu/publications/towards-unification-and-robustness-perturbation-and-gradient-based
https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://github.com/slundberg/shap
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
https://towardsdatascience.com/understanding-deep-learning-models-with-integrated-gradients-24ddce643dbf
https://towardsdatascience.com/understanding-deep-learning-models-with-integrated-gradients-24ddce643dbf
https://towardsdatascience.com/understanding-deep-learning-models-with-integrated-gradients-24ddce643dbf
https://towardsdatascience.com/limitations-of-integrated-gradients-for-feature-attribution-ca2a50e7d269
https://towardsdatascience.com/limitations-of-integrated-gradients-for-feature-attribution-ca2a50e7d269

Exploring the SHAP Explainability toolbox 221

Note that there are additional types of methods such as counterfactual (https://
christophm.github.io/interpretable-ml-book/counterfactual.
html) or prototype-based methods (https://christophm.github.io/
interpretable-ml-book/proto.html), which we will not cover in
this book.

Having discussed the many dimensions of explainability, it is important to know that
XAI is still an emerging area (https://fairlyaccountable.org/aaai-2021-
tutorial/doc/AAAI_slides_final.pdf) and it is sometimes even difficult to find
agreement among different explainability methods when applying to the same dataset or
models (see a recent study on the topic of disagreement problems in explainable ML from
the practitioners' perspective: https://arxiv.org/abs/2202.01602). In the end,
it does require some experimentation to find out which explainability provides the human
validated explanations that are meeting the requirements for a specific prediction task in
the real world.

In the next two sections of this chapter, we will focus on providing some hands-on
experiments using some popular and emerging toolkits to learn how to do explainability.

Exploring the SHAP Explainability toolbox
For our learning purpose, let's review some popular explainability toolboxes while
experimenting with some examples. Based on the number of GitHub stars (16,000 as of
April 2022, https://github.com/slundberg/shap), SHAP is the most widely
used and integrated open source model explainability toolbox. It is also the foundation
explanation tool that is integrated with MLflow. Here, we would like to run a small
experiment to get some hands-on experience on how this works. Let's use a sentimental
analysis NLP model to explore how SHAP can be used for explaining the model behavior:

1.	 Set up the virtual environment on your local environment after checking out this
chapter's code from GitHub. Running the following command will create a new
virtual environment called dl-explain:

conda env create -f conda.yaml

This will install SHAP and its related dependencies such as matplotlib in this
virtual environment. Once this virtual environment is created, activate this virtual
environment by running the following command:

conda activate dl-explain

Now, we are ready to run the experiment with SHAP.

https://christophm.github.io/interpretable-ml-book/proto.html
https://christophm.github.io/interpretable-ml-book/proto.html
https://fairlyaccountable.org/aaai-2021-tutorial/doc/AAAI_slides_final.pdf
https://fairlyaccountable.org/aaai-2021-tutorial/doc/AAAI_slides_final.pdf
https://arxiv.org/abs/2202.01602
https://github.com/slundberg/shap

222 Fundamentals of Deep Learning Explainability

2.	 You can check out the shap_explain.ipynb notebook to follow through
with the exploration. The first step in this notebook is to import the relevant
Python libraries:

import transformers

import shap

from shap.plots import *

These imports will allow us to use the Hugging Face transformers pipeline API to
get a pre-trained NLP model and SHAP functions.

3.	 We then create dl_model using the transformers pipeline API for sentiment_
analysis. Note this is a pretrained pipeline so we can use this without additional
finetuning. The default transformer model used in this pipeline is distilbert-
base-uncased-finetuned-sst-2-english (https://huggingface.
co/distilbert-base-uncased-finetuned-sst-2-english):

dl_model = transformers.pipeline(

 'sentiment-analysis', return_all_scores=True)

This will produce a model ready to predict positive or negative sentiment for an
input sentence.

4.	 Try this dl_model with two input sentences and see whether the output
makes sense:

dl_model(

 ["What a great movie! ...if you have no taste.",

 "Not a good movie to spend time on."])

This will produce an output of the labels and probability scores for each sentence
as follows:

[[{'label': 'NEGATIVE', 'score': 0.00014734962314832956},
{'label': 'POSITIVE', 'score': 0.9998526573181152}],
[{'label': 'NEGATIVE', 'score': 0.9997993111610413},
{'label': 'POSITIVE', 'score': 0.00020068213052581996}]]

It seems that the first sentence was predicted with a high probability to be
POSITIVE, and the second sentence was predicted with a high probability to be
NEGATIVE. Now, if we take a deep look at the first sentence, we may think the
model prediction was incorrect, as there is a subtle negative emotion in the second
part of the sentence (no taste). So, we want to know why the model made such
a prediction. This is where model explainability comes into play.

Exploring the SHAP Explainability toolbox 223

5.	 Now, let's use the SHAP API, shap.Explainer, to get the Shapley values for the
two sentences we are interested in explaining:

explainer = shap.Explainer(dl_model)

shap_values = explainer(["What a great movie! ...if you
have no taste.", "Not a good movie to spend time on."])

6.	 Once we have shap_values, we can visualize the Shapley values using different
visualization techniques. The first one is to use shap.plot.text to visualize the
first sentence's Shapley values when the prediction label is POSITIVE:

shap.plots.text(shap_values[0, :, "POSITIVE"])

This will produce the plot as follows:

Figure 9.2 – SHAP visualization for sentence 1 with a positive prediction
As can be seen in Figure 9.2, the word great has a very large SHAP value that
dominates the influence of the final prediction, while the word no has less effect
on the final prediction. This results in the final prediction result of POSITIVE.
So, what about the second sentence with a NEGATIVE prediction? Running the
following command will produce a similar plot:

shap.plots.text(shap_values[1, :, "NEGATIVE"])

This command creates the following plot:

Figure 9.3 – SHAP visualization for sentence 2 with a negative prediction
As can be seen from Figure 9.3, the word Not has a strong influence on the final
prediction, while the word good has a very small influence, resulting in the final
prediction of a NEGATIVE sentiment. This makes a lot of sense, which is a good
explanation of the model's behavior.

224 Fundamentals of Deep Learning Explainability

7.	 We can also visualize shap_values using different plots. A common one is the
bar plot, which plots the feature contribution to the final prediction. Running the
following command will produce a plot for the first sentence:

bar(shap_values[0, :,'POSITIVE'])

This will produce a bar chart as follows:

Figure 9.4 – SHAP bar chart for sentence 1 with a positive prediction
As can be seen from Figure 9.4, the chart ranks the most important features from
top to bottom, where the top ones with a positive influence on the final prediction
are plotted on the positive side of the x axis, while the negative contribution is
plotted on the negative side of the x axis. The x axis is the value of each token or
word's SHAP value with a sign (+ or -). This clearly shows the word great is
a strong positive factor that impacts the final prediction, while have no
taste has some negative effect but not enough to change the direction of the
final prediction.

Similarly, we can plot a bar chart for the second sentence as follows:
bar(shap_values[1, :,'NEGATIVE'])

Exploring the SHAP Explainability toolbox 225

This will produce the following bar chart:

Figure 9.5 – SHAP bar chart for sentence 2 with a negative prediction
As can be seen from Figure 9.5, the word Not has a strong contribution to the final
prediction, while the word good is second. These two words have the opposite
effect on the final prediction, but apparently, the word Not is much stronger and
has a much larger SHAP value.

If you have followed along with this example and seen the SHAP charts in your notebook,
congratulations! This means you have successfully run the SHAP Explainability tool to
explain the DL transformer model for the NLP text sentiment analysis.

Let's further explore another popular explainability tool to see how they perform different
explanations.

226 Fundamentals of Deep Learning Explainability

Exploring the Transformers Interpret toolbox
As we already reviewed in the first section of this chapter, there are two major methods:
perturbation-based and gradient-based post-hoc explainability tools. SHAP belongs
to the perturbation-based family. Now, let's look at a gradient-based toolbox called
Transformers Interpret (https://github.com/cdpierse/transformers-
interpret). This is a relatively new tool, but it is built on top of a unified model
interpretability and understanding library for PyTorch called Captum (https://
github.com/pytorch/captum), which provides a unified API to use either
perturbation or gradient-based tools (https://arxiv.org/abs/2009.07896).
Transformers Interpret further simplifies the API of Captum so that we can quickly
explore gradient-based explainability methods to get some hands-on experience.

To get started, first make sure you already have the dl-explain virtual environment set
up and activated, as described in the previous section. Then, we can use the same Hugging
Face transformer sentiment analysis model to explore some NLP sentiment classification
examples. Then, we can perform the following steps to learn how to use Transformers
Interpret to do the model explanation. You may want to check out the gradient_
explain.ipynb notebook to follow the instructions:

1.	 Import relevant packages into the notebook as follows:

from transformers import
AutoModelForSequenceClassification, AutoTokenizer

from transformers_interpret import
SequenceClassificationExplainer

This will use Hugging Face's transformer model and tokenizer, as well as the
explainability function from transformers_interpret.

2.	 Create the model and the tokenizer using the same pre-trained model as previous
section, which is the distilbert-base-uncased-finetuned-sst-2-
english model:

model_name = "distilbert-base-uncased-finetuned-sst-2-
english"

model = AutoModelForSequenceClassification.from_
pretrained(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)

Now that we have the model and tokenizer, we can create an explainability variable
using the SequenceClassificationExplainer API.

https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/pytorch/captum
https://github.com/pytorch/captum
https://arxiv.org/abs/2009.07896

Exploring the Transformers Interpret toolbox 227

3.	 Create an explainer and give an example sentence to get the word attribution from
the explainer:

cls_explainer = SequenceClassificationExplainer(model,
tokenizer)

word_attributions = cls_explainer("Not a good movie to
spend time on.")

4.	 We can also get the prediction label before we check the word attributions by
running the following command:

cls_explainer.predicted_class_name

This will produce a result of Negative, which means the prediction is a negative
sentiment. So, let's see how the explainer provides an explanation for this prediction.

5.	 We can just display the word_attributions value, or we can visualize it. The
value of word_attributions is as follows:

Figure 9.6 – Layered integrated gradient word attribution values with a negative prediction
As can be seen from Figure 9.6, using the layered integrated gradient method, which
is the current explainer's default method implemented in the Transformers Interpret
library, the word not contributed positively to the final prediction result, which
is a negative sentiment. This makes sense. Notice that several other words, such as
to spend time on, also have a strong positive influence on the final prediction.
Given the cross-attention mechanism, it seems the model is trying to extract not
to spend time on as the main attribution to the final prediction. Note we can
also visualize these word attributions as follows:

cls_explainer.visualize("distilbert_viz.html")

228 Fundamentals of Deep Learning Explainability

This will produce the follow plot:

Figure 9.7 – Layered integrated gradient word attribution values with a negative prediction
As can be seen in Figure 9.7, it highlights the word importance of not to spend
time on to positively impact the final negative prediction.

Now that we have experimented with both perturbation and gradient-based explainability
methods, we have successfully completed our hands-on exploration of using the
explainability tool for post-hoc local explanation.

Next, we will summarize what we learned in this chapter.

Summary
In this chapter, we reviewed explainability in AI/ML through an eight-dimension
categorization. Although this is not necessarily a comprehensive or exhaustive overview,
this does give us a big picture of who to explain to, different stages and scopes to explain,
various kinds of input and output formats of the explanation, common ML problems and
objectives types, and finally, different post-hoc explainability methods. We then provided
two concrete exercises to explore the SHAP and Transformers Interpret toolboxes, which
can provide perturbation and gradient-based feature attribution explanations for NLP text
sentiment DL models.

This gives us a solid foundation for using explainability tools for DL models. However,
given the active development of XAI, this is only the beginning of using XAI in DL
models. Additional explainability toolboxes such as TruLens (https://github.com/
truera/trulens), Alibi (https://github.com/SeldonIO/alibi), Microsoft
Responsible AI Toolbox (https://github.com/microsoft/responsible-
ai-toolbox), and IBM AI Explainability 360 Toolkit (https://github.com/
Trusted-AI/AIX360) are all in active development and worthy of investigation and
future learning. Additional links are also provided in the Further reading section to help
you continue to learn this topic.

Now that we know the fundamentals of explainability, in the next chapter, we will learn
how to implement explainability in the MLflow framework so that we can provide
a unified way to support explanation within the MLflow framework.

https://github.com/truera/trulens
https://github.com/truera/trulens
https://github.com/SeldonIO/alibi
https://github.com/microsoft/responsible-ai-toolbox
https://github.com/microsoft/responsible-ai-toolbox
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360

Further reading 229

Further reading
•	 New frontiers in Explainable AI: https://towardsdatascience.com/

new-frontiers-in-explainable-ai-af43bba18348

•	 Towards a Rigorous Science of Interpretable Machine Learning: https://arxiv.
org/pdf/1702.08608.pdf

•	 The Toolkit Approach to Trustworthy AI: https://opendatascience.com/
the-toolkit-approach-to-trustworthy-ai/

•	 A Framework for Learning Ante-hoc Explainable Models via Concepts: https://
arxiv.org/abs/2108.11761

•	 Demystifying Post-hoc Explainability for ML models: https://spectra.
mathpix.com/article/2021.09.00007/demystify-post-hoc-
explainability

•	 A Look Into Global, Cohort and Local Model Explainability: https://
towardsdatascience.com/a-look-into-global-cohort-and-
local-model-explainability-973bd449969f

•	 What Are the Prevailing Explainability Methods? https://
towardsdatascience.com/what-are-the-prevailing-
explainability-methods-3bc1a44f94df

•	 Explainable Artificial Intelligence: Objectives, Stakeholders, and Future Research
Opportunities: https://www.tandfonline.com/doi/full/10.1080/105
80530.2020.1849465

https://towardsdatascience.com/new-frontiers-in-explainable-ai-af43bba18348
https://towardsdatascience.com/new-frontiers-in-explainable-ai-af43bba18348
https://arxiv.org/pdf/1702.08608.pdf
https://arxiv.org/pdf/1702.08608.pdf
https://opendatascience.com/the-toolkit-approach-to-trustworthy-ai/
https://opendatascience.com/the-toolkit-approach-to-trustworthy-ai/
https://arxiv.org/abs/2108.11761
https://arxiv.org/abs/2108.11761
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465

10
Implementing

DL Explainability
with MLflow

The importance of deep learning (DL) explainability is now well established, as we
learned in the previous chapter. In order to implement DL explainability in a real-world
project, it is desirable to log the explainer and the explanations as artifacts, just like
other model artifacts in the MLflow server, so that we can easily track and reproduce
the explanation. The integration of DL explainability tools such as SHAP (https://
github.com/slundberg/shap) with MLflow can support different implementation
mechanisms, and it is important to understand how these integrations can be used for
our DL explainability scenarios. In this chapter, we will explore several ways to integrate
the SHAP explanations into MLflow by using different MLflow capabilities. As tools for
explainability and DL models are both rapidly evolving, we will also highlight the current
limitations and workarounds when using MLflow for DL explainability implementation.
By the end of this chapter, you will feel comfortable implementing SHAP explanations and
explainers using MLflow APIs for scalable model explainability.

https://github.com/slundberg/shap
https://github.com/slundberg/shap

232 Implementing DL Explainability with MLflow

In this chapter, we're going to cover the following main topics:

•	 Understanding current MLflow explainability integration

•	 Implementing SHAP explanations using the MLflow artifact logging API

•	 Implementing SHAP explainers using the MLflow pyfunc API

Technical requirements
The following requirements are necessary to complete this chapter:

•	 MLflow full-fledged local server: This is the same one we have been using since
Chapter 3, Tracking Models, Parameters, and Metrics.

•	 The SHAP Python library: https://github.com/slundberg/shap.

•	 Spark 3.2.1 and PySpark 3.2.1: See the details in the README.md file of this
chapter's GitHub repository.

•	 Code from the GitHub repository for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter10.

Understanding current MLflow explainability
integration
MLflow has several ways to support explainability integration. When implementing
explainability, we refer to two types of artifacts: explainers and explanations:

•	 An explainer is an explainability model, and a common one is a SHAP model
that could be different kinds of SHAP explainers, such as TreeExplainer,
KernelExplainer, and PartitionExplainer (https://shap.readthedocs.
io/en/latest/generated/shap.explainers.Partition.html). For
computational efficiency, we usually choose PartitionExplainer for DL models.

•	 An explanation is an artifact that shows some form of output from the explainer,
which could be text, numerical values, or plots. Explanations can happen in offline
training or testing, or can happen during online production. Thus, we should be
able to provide an explainer for offline evaluation or an explainer endpoint for
online queries if we want to know why the model provides certain predictions.

https://github.com/slundberg/shap
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html
https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html

Understanding current MLflow explainability integration 233

Here, we give a brief overview of the current capability as of MLflow version 1.25.1
(https://pypi.org/project/mlflow/1.25.1/). There are four different ways to
use MLflow for explainability as follows:

•	 Use the mlflow.log_artifact API (https://www.mlflow.org/docs/
latest/python_api/mlflow.html#mlflow.log_artifact) to log
relevant explanation artifacts such as bar plots and Shapley values arrays. This gives
maximum flexibility for logging explanations. This can be used either offline as
batch processing or online when we automatically log a SHAP bar plot for a certain
prediction. Note that logging an explanation for each prediction during online
production scenarios is expensive, so we should provide a separate explanation API
for on-demand queries.

•	 Use the mlflow.pyfunc.PythonModel API (https://www.mlflow.
org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.
pyfunc.PythonModel) to create an explainer that can be logged and loaded
with MLflow's pyfunc methods, mlflow.pyfunc.log_model for logging and
mlflow.pyfunc.load_model or mlflow.pyfunc.spark_udf for loading
an explainer. This gives us maximum flexibility to create customized explainers
as MLflow generic pyfunc models and can be used for either offline batch
explanation or online as an Explanation as a Service (EaaS).

•	 Use the mlflow.shap API (https://www.mlflow.org/docs/latest/
python_api/mlflow.shap.html). This has some limitations. For example,
the mlflow.shap.log_explainer method only supports scikit-learn and
PyTorch models. The mlflow.shap.log_explanation method only supports
shap.KernelExplainer (https://shap-lrjball.readthedocs.io/
en/latest/generated/shap.KernelExplainer.html). This is very
computationally intensive, as the computing time grows exponentially with respect
to the number of features; thus, it is not feasible to compute explanations for even
a moderate size dataset (see a posted GitHub issue https://github.com/
mlflow/mlflow/issues/4071). The existing examples provided by MLflow
are for classical ML models in scikit-learn packages such as linear regression or
random forest, with no DL model explainability examples (https://github.
com/mlflow/mlflow/tree/master/examples/shap). We will show
in later sections of this chapter that this API currently does not support the
transformers-based SHAP explainers and explanations, thus we will not use this
API in this chapter. We will highlight some of the issues as we walk through our
examples in this chapter.

https://pypi.org/project/mlflow/1.25.1/
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.log_artifact
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.log_artifact
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.shap.html
https://www.mlflow.org/docs/latest/python_api/mlflow.shap.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
https://github.com/mlflow/mlflow/issues/4071
https://github.com/mlflow/mlflow/issues/4071
https://github.com/mlflow/mlflow/tree/master/examples/shap
https://github.com/mlflow/mlflow/tree/master/examples/shap

234 Implementing DL Explainability with MLflow

•	 Use the mlflow.evaluate API (https://www.mlflow.org/docs/
latest/python_api/mlflow.html#mlflow.evaluate). This can be used
for evaluation after the model is already trained and tested. This is an experimental
feature and might change in the future. It supports MLflow pyfunc models.
However, it has some limitations in that the evaluation dataset label values must be
numeric or Boolean, all feature values must be numeric, and each feature column
must only contain scalar values (https://www.mlflow.org/docs/latest/
models.html#model-evaluation). Again, existing examples provided by
MLflow are only for classical ML models in scikit-learn packages (https://
github.com/mlflow/mlflow/tree/master/examples/evaluation).
We could use this API to just log the classifier metrics for an NLP sentiment
model, but the explanation part will be skipped automatically by this API because
it requires a feature column containing scalar values (an NLP model input is a text
input). Thus, this is not applicable to the DL model explainability we need. So, we
will not use this API in this chapter.

Given that some of these APIs are still experimental and are still evolving, users should
be aware of the limitations and workarounds to successfully implement explainability
with MLflow. For DL model explainability, as we will learn in this chapter, it is quite
challenging to implement using MLflow as the MLflow integration with SHAP is still a
work-in-progress as of MLflow version 1.25.1. In the following sections, we will learn
when and how to use these different APIs to implement explanations and log and load
explainers for DL models.

https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.evaluate
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.evaluate
https://www.mlflow.org/docs/latest/models.html#model-evaluation
https://www.mlflow.org/docs/latest/models.html#model-evaluation
https://github.com/mlflow/mlflow/tree/master/examples/evaluation
https://github.com/mlflow/mlflow/tree/master/examples/evaluation

Implementing a SHAP explanation using the MLflow artifact logging API 235

Implementing a SHAP explanation using the
MLflow artifact logging API
MLflow has a generic tracking API that can log any artifact: mlflow.log_artifact.
However, the examples given in the MLflow documentation usually use scikit-learn and
tabular numerical data for training, testing, and explaining. Here, we want to show how to
use mlflow.log_artifact for an NLP sentimental DL model to log relevant artifacts,
such as Shapley value arrays and Shapley value bar plots. You can check out the Python
VS Code notebook, shap_mlflow_log_artifact.py, in this chapter's GitHub
repository (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/
shap_mlflow_log_artifact.py) to follow along with the steps:

1.	 Make sure you have the prerequisites, including a local full-fledged MLflow server
and the conda virtual environment, ready. Follow the instructions in the README.
md (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.
md) file in the Chapter 10 folder to get these ready.

2.	 Make sure you activate the chapter10-dl-explain virtual environment as
follows before you start running any code in this chapter:

conda activate chapter10-dl-explain

3.	 Import the relevant libraries at the beginning of the notebook as follows:

import os

import matplotlib.pyplot as plt

import mlflow

from mlflow.tracking import MlflowClient

from mlflow.utils.file_utils import TempDir

import shap

import transformers

from shap.plots import *

import numpy as np

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md

236 Implementing DL Explainability with MLflow

4.	 The next step is to set up some environment variables. The first three environment
variables are for the local MLflow URIs, and the fourth is for disabling a Hugging
Face warning that arises due to a known Hugging Face tokenization issue:

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"

os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://
localhost:9000"

os.environ["TOKENIZERS_PARALLELISM"] = "False"

5.	 We will also need to set up the MLflow experiment and show the MLflow
experiment ID as an output on the screen:

EXPERIMENT_NAME = "dl_explain_chapter10"

mlflow.set_tracking_uri('http://localhost')

mlflow.set_experiment(EXPERIMENT_NAME)

experiment = mlflow.get_experiment_by_name(EXPERIMENT_
NAME)

print("experiment_id:", experiment.experiment_id)

If you have been running the notebook, you should see an output like the following:
experiment_id: 14

This means the MLflow experiment ID for the experiment name dl_explain_
chapter10 is 14. Note that, you could also set the MLflow tracking URI as an
environment variable as follows:

export MLFLOW_TRACKING_URI=http://localhost

Here, we use MLflow's mlflow.set_tracking_uri API to define the URI
location instead. Either way is fine.

6.	 Now we can create a DL model to classify a sentence into either positive or negative
sentiment using Hugging Face's transformer pipeline API. Since this is already
fine-tuned, we will focus on how to get the explainer and explanation for the model,
rather than focusing on how to train or finetune a model:

dl_model = transformers.pipeline('sentiment-analysis',
return_all_scores=False)

explainer = shap.Explainer(dl_model)

shap_values = explainer(["Not a good movie to spend time
on.", "This is a great movie."])

Implementing a SHAP explanation using the MLflow artifact logging API 237

The code snippets create a sentiment analysis model, dl_model, and then create a
SHAP explainer for this model. Then we provide a list of two sentences for this
explainer to get the shap_values object. This will be used for logging in MLflow.

Given the shap_values object, we can now start a new MLflow run and log both
the Shapley values and the bar plot that we saw in the previous chapter (Chapter 9,
Fundamentals of Deep Learning Explainability). The first line of code makes sure all
active MLflow runs are ended. This is useful if we want to rerun this block of code
multiple times interactively:

mlflow.end_run()

Then we define two constants. One, artifact_root_path, is for the root path
in the MLflow artifact store, which will be used to store all the SHAP explanation
objects. The other, shap_bar_plot, is for the artifact filename, which will be used
for the bar plot figure:

artifact_root_path = "model_explanations_shap"

artifact_file_name = 'shap_bar_plot'

7.	 We then start a new MLflow run, under which we will generate and log three SHAP
files into the MLflow artifact store under the path model_explanations_shap:

with mlflow.start_run() as run:

 with TempDir() as temp_dir:

 temp_dir_path = temp_dir.path()

 print("temp directory for artifacts: {}".
format(temp_dir_path))

We also need to have a temporary local directory, as shown in the preceding code
snippet to first save the SHAP files, and then log those files to the MLflow server. If
you have run the notebook up to this point, you should see a temporary directory in
the output like the following:

temp directory for artifacts: /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpgw520wu1

8.	 Now we are ready to generate the SHAP files and save them. The first one is the bar
plot, which is a little bit tricky to save and log. Let's walk through the following code
to understand how we do this:

try:

 plt.clf()

 plt.subplots_adjust(bottom=0.2, left=0.4)

238 Implementing DL Explainability with MLflow

 shap.plots.bar(shap_values[0, :, "NEGATIVE"],

 show=False)

 plt.savefig(f"{temp_dir_path}/{artifact_file_name}")

finally:

 plt.close(plt.gcf())

mlflow.log_artifact(f"{temp_dir_path}/{artifact_file_
name}.png", artifact_root_path)

Note that we are using matplotlib.pyplot, which was imported as plt to first
clear the figure using plt.clf() and then create a subplot with some adjustments.
Here, we define bottom=0.2, which means the position of the bottom edge of
the subplots is at 20% of the figure height. Similarly, we adjust the left edge of the
subplot. Then we use the shap.plots.bar SHAP API to plot the bar plot for the
first sentence's feature contribution to the prediction, but with the show parameter
to be False. This means, we will not see the plot in the interactive run, but the
figure is stored in the pyplot plt variable, which can then be saved using plt.
savefig to a local temporary directory with the filename prefix shap_bar_
plot. pyplot will automatically add the file extension .png to the file once it
is saved. So, this will save a local image file called shap_bar_plot.png in the
temporary folder. The last statement calls MLflow's mlflow.log_artifact to
upload this PNG file to the MLflow tracking server's artifact store in the root folder,
model_explanations_shap. We also need to make sure that we close the
current figure by calling plt.close(plt.gcf()).

9.	 In addition to logging the shap_bar_plot.png to the MLflow server, we also
want to log the Shapley base_values array and shap_values array as NumPy
arrays into the MLflow track server. This can be done through the following
statements:

np.save(f"{temp_dir_path}/shap_values",

 shap_values.values)

np.save(f"{temp_dir_path}/base_values",

 shap_values.base_values)

 mlflow.log_artifact(

 f"{temp_dir_path}/shap_values.npy",

 artifact_root_path)

 mlflow.log_artifact(

 f"{temp_dir_path}/base_values.npy",

 artifact_root_path)

Implementing a SHAP explanation using the MLflow artifact logging API 239

This will first save a local copy of shap_values.npy and base_values.npy
in the local temporary folder and then upload it to the MLflow tracking server's
artifact store.

10.	 If you followed the notebook up until here, you should be able to verify in the local
MLflow server whether these artifacts are successfully stored. Go to the MLflow
UI at the localhost – http://localhost/ and then find the experiment dl_
explain_chapter10. You should then be able to find the experiment you just
ran. It should look something like Figure 10.1, where you can find three files in
the model_explanations_shap folder: base_values.npy, shap_bar_
plot.png, and shap_values.npy. Figure 10.1 shows the bar plot of feature
contribution of different tokens or words for the prediction result of the sentence –
Not a good movie to spend time on. The URL for this experiment page
is something like the following:

http://localhost/#/experiments/14/
runs/10f0655189f740aeb813a015f1f6e115

Figure 10.1 – MLflow log_artifact API saves the SHAP bar plot as an image
in the MLflow tracking server

240 Implementing DL Explainability with MLflow

Alternatively, you can also use code to programmatically download these files stored
in the MLflow tracking server and check them locally. We provide such code in the
last cell of the notebook.

11.	 If you run the last cell block of the notebook code, which is to download the three
files from the MLflow server we just saved and print them out, you should be able to
see the following output, as displayed in Figure 10.2. The mechanism to download
artifacts from the MLflow tracking server is to use the MlflowClient().
download_artifacts API, where you provide the MLflow run ID (in our
example, it is 10f0655189f740aeb813a015f1f6e115) and the artifact root
path model_explanations_shap as the parameters to the API:

downloaded_local_path = MlflowClient().download_
artifacts(run.info.run_id, artifact_root_path)

This will download all files in model_explanations_shap on the
MLflow tracking server to a local path, which is the return variable
downloaded_local_path:

Figure 10.2 – Download the SHAP base_values and shap_values array from the MLflow tracking server
to a local path and display them

Implementing a SHAP explainer using the MLflow pyfunc API 241

To display the two NumPy arrays, we need to call NumPy's load API to load them
and then print them:

base_values = np.load(os.path.join(downloaded_local_path,
"base_values.npy"), allow_pickle=True)

shap_values = np.load(os.path.join(downloaded_local_path,
"shap_values.npy"), allow_pickle=True)

Note that we need to set the allow_pickle parameter to True when calling the
np.load API so that NumPy can correctly load these files back into memory.

While you can run this notebook interactively in the VS Code environment, you
can also run it in the command line as follows:

python shap_mlflow_log_artifact.py

This will produce all the output in the console and log all the artifacts into the
MLflow server as we have seen in our interactive running of the notebook.

If you have run the code so far, congratulations on the successful completion of
implementing logging SHAP explanations to the MLflow tracking server using MLflow's
mlflow.log_artifact API!

Although the process of logging all the explanations seems a little bit long, this approach
does have the advantage of having no dependency on what kind of explainer is used since
the explainer is defined outside of the MLflow artifact logging API.

In the next section, we will see how to use the built-in mlflow.pyfunc.PythonModel
API to log a SHAP explainer as an MLflow model and then deploy as an endpoint or use it
in a batch mode as if it is a generic MLflow pyfunc model.

Implementing a SHAP explainer using the
MLflow pyfunc API
As we know from the previous section, a SHAP explainer can be used offline whenever
needed by creating a new instance of an explainer using SHAP APIs. However, as the
underlying DL models are often logged into the MLflow server, it is desirable to also log
the corresponding explainer into the MLflow server, so that we not only keep track of the
DL models, but also their explainers. In addition, we can use the generic MLflow pyfunc
model logging and loading APIs for the explainer, thus unifying access to DL models and
their explainers.

242 Implementing DL Explainability with MLflow

In this section, we will learn step-by-step how to implement a SHAP explainer as a generic
MLflow pyfunc model and how to use it for offline and online explanation. We will break
the process up into three subsections:

•	 Creating and logging an MLflow pyfunc explainer

•	 Deploying an MLflow pyfunc explainer for an EaaS

•	 Using an MLflow pyfunc explainer for batching explanation

Let's start with the first subsection on creating and logging a MLflow pyfunc explainer.

Creating and logging an MLflow pyfunc explainer
In order to follow this section, please check out nlp_sentiment_classifier_
explainer.py in the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter10/pipeline/nlp_sentiment_classifier_
explainer.py):

1.	 First, by subclassing mlflow.pyfunc.PythonModel, we can create
a customized MLflow model that encapsulates a SHAP explainer. So, let's declare
this class as follows:

class SentimentAnalysisExplainer(mlflow.pyfunc.
PythonModel):

2.	 Next, we need to instantiate an explainer. Instead of creating an explainer in the
init method of this class, we will use the load_context method to load a SHAP
explainer for the Hugging Face NLP sentiment analysis classifier, as follows:

def load_context(self, context):

 from transformers import pipeline

 import shap

 self.explainer = shap.Explainer(pipeline('sentiment-
analysis', return_all_scores=True))

This will create a SHAP explainer whenever this
SentimentAnalysisExplainer class is executed. Note that the sentiment
classifier is a Hugging Face pipeline object, with the return_all_scores
parameter set to True. This means that this will return the label and probability
score for both positive and negative sentiment of each input text.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py

Implementing a SHAP explainer using the MLflow pyfunc API 243

Avoid Runtime Errors for SHAP explainers
If we implement self.explainer in the init method in this class, we
will encounter a runtime error related to the SHAP package's _masked_
model.py file, which complains about TypeError: unsupported
operand type(s) for +: 'NoneType' and 'int'. Any code implemented in the
PythonModel class's init method will be serialized by MLflow, so it is
clear that this runtime error comes from MLflow's serialization. However,
implementing self.explainer in the load_context function avoids
MLflow's serialization, and works correctly when invoking this explainer at
runtime.

3.	 We will then implement the sentiment_classifier_explanation method,
which takes an input of a pandas DataFrame row and produces a pickled shap_
values output as an explanation for a single row of text input:

def sentiment_classifier_explanation(self, row):

 shap_values = self.explainer([row['text']])

 return [pickle.dumps(shap_values)]

Note that we need to use a pair of square brackets to enclose the row['text']
value so that it becomes a list not just a single value. This is because this SHAP
explainer expects a list of texts, not just a single string. If we don't enclose the value
within the square brackets, then the explainer will split the entire string character
by character, treating each character as if it is a word, which is not what we want.
Once we get the Shapley values as the output from the explainer as shap_values,
we then need to serialize them using pickle.dumps before returning to the
caller. MLflow pyfunc model input and output signature do not support complex
object without serialization, so this pickling step makes sure that the model output
signature is MLflow compliant. We will see the definition of this MLflow pyfunc
explainer's input and output signature in step 5 shortly.

4.	 Next, we need to implement the required predict method for this class. This will
apply the sentiment_classifier_explanation method to the entire input
pandas DataFrame, as follows:

def predict(self, context, model_input):

 model_input[['shap_values']] = model_input.apply(

 self.sentiment_classifier_explanation, axis=1,

 result_type='expand')

 model_input.drop(['text'], axis=1, inplace=True)

 return model_input

244 Implementing DL Explainability with MLflow

This will produce a new column named shap_values for each row of the input
pandas DataFrame in the text column. We then drop the text column and
return a single-column shap_values DataFrame as the final prediction result: in
this case, the explanation results as a DataFrame.

5.	 Now that we have the SentimentAnalysisExplainer class implementation,
we can use the standard MLflow pyfunc model logging API to log this model into
the MLflow tracking server. Before doing the MLflow logging, let's make sure we
declare this explainer's model signature, as follows:

input = json.dumps([{'name': 'text', 'type': 'string'}])

output = json.dumps([{'name': 'shap_values', 'type':
'string'}])

signature = ModelSignature.from_dict({'inputs': input,
'outputs': output})

These statements declare that the input is a DataFrame with a single string type
text column and the output is a DataFrame with a single string type shap_
values column. Recall that this shap_values column is a pickled serialized
bytes string, which contains the Shapley values object.

6.	 Finally, we can implement the explainer logging step using the mlflow.pyfunc.
log_model method in a task method, as follows:

with mlflow.start_run() as mlrun:

 mlflow.pyfunc.log_model(

 artifact_path=MODEL_ARTIFACT_PATH,

 conda_env=CONDA_ENV,

 python_model=SentimentAnalysisExplainer(),

 signature=signature)

There are four parameters in the log_model method that we use. The MODEL_
ARTIFACT_PATH is the name of the folder in the MLflow tracking server where
the explainer will be stored. Here, the value is defined as nlp_sentiment_
classifier_explainer in the Python file you checked out. CONDA_ENV is
the conda.yaml file in this chapter's root folder. The python_model parameter
is the SentimentAnalysisExplainer class we just implemented, and
signature is the explainer input and output signature we defined.

7.	 Now we are ready to run this whole file as follows in the command line:

python nlp_sentiment_classifier_explainer.py

Implementing a SHAP explainer using the MLflow pyfunc API 245

Assuming you have the local MLflow tracking server and environment variables
set up correctly by following the README.md file for this chapter in the GitHub
repository, this will produce the following two lines in the console output:

2022-05-11 17:49:32,181 Found credentials in environment
variables.

2022-05-11 17:49:32,384 finished logging
nlp sentiment classifier explainer run_id:
ad1edb09e5ea4d8ca0332b8bc2f5f6c9

This means we have successfully logged the explainer in our local MLflow
tracking server.

8.	 Go to the MLflow web UI at http://localhost/ in the web browser and click
the dl_explain_chapter10 experiment folder. You should be able to find this
run and the logged explainer in the Artifacts folder under nlp_sentiment_
classifier_explainer, which should look as shown in Figure 10.3:

Figure 10.3 – A SHAP explainer is logged as an MLflow pyfunc model
Notice that the MLmodel metadata shown in Figure 10.3 does not differ much from
the normal DL inference pipeline that we logged before as an MLflow pyfunc model
except for the artifact_path name and the signature. That's the advantage
of using this approach because now we can use the generic MLflow pyfunc model
methods to load this explainer or deploy it as a service.

246 Implementing DL Explainability with MLflow

Problems with the mlflow.shap.log_explainer API
As we mentioned earlier, MLflow has a mlflow.shap.log_explainer
API that provides a method to log an explainer. However, this API does not
support our NLP sentiment classifier explainer because our NLP pipeline is
not a known model flavor that MLflow currently supports. Thus even though
log_explainer can write this explainer object into the tracking server,
when loading the explainer back into memory using the mlflow.shap.
load_explainer API, it will fail with the following error message:
TypeError: __init__() missing 1 required positional argument: 'pipeline'.
Thus, we avoid using the mlflow.shap.log_explainer API in
this book.

Now that we have a logged explainer, we can use it in two ways: deploy it into a web
service so that we can create an endpoint to establish an EaaS, or load the explainer
directly through MLflow pyfunc load_model or spark_udf method using the MLflow
run_id. Let's start with the web service deployment by setting up a local web service.

Deploying an MLflow pyfunc explainer for an EaaS
We can set up a local EaaS in a standard MLflow way since now the SHAP explainer is just
like a generic MLflow pyfunc model. Perform the following steps to see how this can be
implemented locally:

1.	 Run the following MLflow command to set up a local web service
for the explainer we just logged. The run_id in this example is
ad1edb09e5ea4d8ca0332b8bc2f5f6c9:

mlflow models serve -m runs:/
ad1edb09e5ea4d8ca0332b8bc2f5f6c9/nlp_sentiment_
classifier_explainer

This will produce the following console output:

 Figure 10.4 – SHAP EaaS console output

Implementing a SHAP explainer using the MLflow pyfunc API 247

Notice that in Figure 10.4, the default underlying pretrained language model is
loaded after the gunicore HTTP server is up and running. This is because our
implementation of the explainer was inside the load_context method, which
is exactly what is to be expected: loading the explainer immediately after the web
service is up and running.

2.	 In a different terminal window, type the following command to invoke the explainer
web service at port 5000 of localhost with two sample texts as input:

curl -X POST -H "Content-Type:application/
json; format=pandas-split" --data
'{"columns":["text"],"data":[["This is meh weather"],
["This is great weather"]]}' http://127.0.0.1:5000/
invocations

This will produce the following output:

Figure 10.5 – Response in a DataFrame after calling our SHAP EaaS
Note that in Figure 10.5, the column name is shap_values, while the values
are pickled bytes hexadecimal data. These are not human readable, but can be
converted back to the original shap_values using pickle.loads method at
the caller side. So, if you see a response output like Figure 10.5, congratulations for
setting up a local EaaS! You can deploy this explainer service just like other MLflow
service deployments, as described in Chapter 8, Deploying a DL Inference Pipeline
at Scale, since this explainer now can be called just like a generic MLflow pyfunc
model service.

Next, we will see how to use the MLflow pyfunc explainer for batch explanation.

248 Implementing DL Explainability with MLflow

Using an MLflow pyfunc explainer for batch
explanation
There are two ways to implement offline batch explanation using an MLflow pyfunc
explainer:

•	 Load the pyfunc explainer as an MLflow pyfunc model to explain a given pandas
DataFrame input.

•	 Load the pyfunc explainer as a PySpark UDF to explain a given PySpark
DataFrame input.

Let's start with loading the explainer as an MLflow pyfunc model.

Loading the MLflow pyfunc explainer as an MLflow pyfunc model
As we have already mentioned, another way to consume an MLflow logged explainer is to
load the explainer in a local Python code using MLflow's pyfunc load_model method
directly, instead of deploying it into a web service. This is very straightforward, and we
will show you how it can be done. You can check out the code in the shap_mlflow_
pyfunc_explainer.py file in the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py):

1.	 The first step is to load the logged explainer back into memory. The following code
does this using mlflow.pyfunc.load_model and the explainer run_id URI:

run_id = "ad1edb09e5ea4d8ca0332b8bc2f5f6c9"

logged_explainer = f'runs:/{run_id}/nlp_sentiment_
classifier_explainer'

explainer = mlflow.pyfunc.load_model(logged_explainer)

This should load the explainer as if it is just a generic MLflow pyfunc model. We can
print out the metadata of the explainer by running the following code:

explainer

This will show the following output:
mlflow.pyfunc.loaded_model: artifact_path: nlp_sentiment_
classifier_explainer flavor: mlflow.pyfunc.model run_id:
ad1edb09e5ea4d8ca0332b8bc2f5f6c9

This means this is a mlflow.pyfunc.model flavor, which is great news, since we
can use the same MLflow pyfunc API to use this explainer.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py

Implementing a SHAP explainer using the MLflow pyfunc API 249

2.	 Next, we will get some example data to test the newly loaded explainer:

import datasets

dataset = datasets.load_dataset("imdb", split="test")

short_data = [v[:500] for v in dataset["text"][:20]]

df_test = pd.DataFrame (short_data, columns = ['text'])

This will load the IMDb test dataset, truncate each review text to 500 characters,
and pick the first 20 rows to make a pandas DataFrame for explanation in the
next step.

3.	 Now, we can run the explainer as follows:

results = explainer.predict(df_test)

This will run the SHAP partition explainer for the input DataFrame df_test. It
will show the following output for each row of the DataFrame when it is running:

Partition explainer: 2it [00:38, 38.67s/it]

The result will be a pandas DataFrame with a single column, shap_values. This
may take a few minutes as it needs to tokenize each row, execute the explainer, and
serialize the output.

4.	 Once the explainer execution is done, we can check the results by deserializing the
row content. Here is the code to check the first output:

results_deserialized = pickle.loads(results['shap_
values'][0])

print(results_deserialized)

This will print out the first row's shap_values. Figure 10.6 shows a partial
screenshot of the output of shap_values:

Figure 10.6 – Partial output of the deserialized shap_values from the explanation

250 Implementing DL Explainability with MLflow

As we can see in Figure 10.6, the output of shap_values is no different from what
we learned in Chapter 9, Fundamentals of Deep Learning Explainability, when we
did not use MLflow to log and load the explainer. We can also generate Shapley text
plots to highlight the contribution of the texts to the predicted sentiment.

5.	 Run the following statement in the notebook to see the Shapely text plot:

shap.plots.text(results_deserialized[:,:,"POSITIVE"])

This will generate a plot displayed in Figure 10.7:

Figure 10.7 – Shapley text plot using deserialized shap_values from our MLflow logged explainer
As can be seen in Figure 10.7, this review has a positive sentiment and the keywords
or phrases that contribute to the predicted sentiment are good, love, and some
other phrases highlighted in red. When you see this Shapley text plot, you should
give yourself a round of applause, as you have finished learning how to use an
MLflow logged explainer to generate batch explanation.

As mentioned during the step-by-step implementation of this batch explanation, it is a
little slow to do a large batch explanation using this pyfunc model approach. Luckily, we
have another way to implement the batch explanation using the PySpark UDF function,
which we will explain in the next subsection.

Loading the pyfunc explainer as a PySpark UDF
For scalable batch explanation, we can use Spark's distributed computing capability, which
is supported by loading the pyfunc explainer as a PySpark UDF. There is no extra work
to use this capability, since this is provided by the MLflow pyfunc API already through
the mlflow.pyfunc.spark_udf method. We will show you how to implement this
at-scale explanation step by step:

1.	 First, make sure you have worked through the README.md file (https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter10/README.md) to install
Spark, create and activate the chapter10-dl-pyspark-explain virtual
environment, and set up all the environment variables before you run the PySpark
UDF code to do the explanation at scale.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md

Implementing a SHAP explainer using the MLflow pyfunc API 251

2.	 Then you can start running the VS Code notebook, shap_mlflow_pyspark_
explainer.py, which you can check out in the GitHub repository: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_
mlflow_pyspark_explainer.py. Run the following command
at chapter10/notebooks/:

python shap_mlflow_pyspark_explainer.py

You will get the final output displayed in Figure 10.8, among quite a few lines of
output preceding these final few lines:

Figure 10.8 – PySpark UDF explainer's output of the first two rows of text's shap_values along
with their input texts

As can be seen in Figure 10.8, the PySpark UDF explainer's output is a PySpark
DataFrame that has two columns: text and shap_values. The text column
is the original input text, while the shap_values column contains the pickled
serialized Shapley values, just like we saw in the previous subsection when we used
the pyfunc explainer for the pandas DataFrame.

Now let's see what's happening in the code. We will explain the key code blocks
in the shap_mlflow_pyspark_explainer.py file. Since this is a VS Code
notebook, you can run it either in the command line as we just did or interactively
inside the VS Code IDE window.

3.	 The first key code block is to load the explainer using the mflow.pyfunc.
spark_udf method, as follows:

spark = SparkSession.builder.appName("Batch explanation
with MLflow DL explainer").getOrCreate()

run_id = "ad1edb09e5ea4d8ca0332b8bc2f5f6c9"

logged_explainer = f'runs:/{run_id}/nlp_sentiment_
classifier_explainer'

explainer = mlflow.pyfunc.spark_udf(spark, model_
uri=logged_explainer, result_type=StringType())

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py

252 Implementing DL Explainability with MLflow

The first statement is to initialize a SparkSession variable and then use run_id
to load the logged explainer into memory. Run the explainer to get the metadata
as follows:

explainer

We will get the following result:
<function mlflow.pyfunc.spark_udf.<locals>.udf(iterator:
Iterator[Tuple[Union[pandas.core.series.Series, pandas.
core.frame.DataFrame], ...]]) -> Iterator[pandas.core.
series.Series]>

This means we now have a SHAP explainer wrapped as a Spark UDF function. This
allows us to directly apply the SHAP explainer for an input PySpark DataFrame in
the next step.

4.	 We load the IMDb test dataset as before to get a list of short_data, and then
create a PySpark DataFrame for the top 20 rows of the test dataset for explanation:

df_pandas = pd.DataFrame (short_data, columns = ['text'])

spark_df = spark.createDataFrame(df_pandas)

spark_df = spark_df.withColumn('shap_values',
explainer())

Note the last statement, which uses PySpark's withColumn function to add a new
shap_values column to the input DataFrame, spark_df, which originally
contained only one column, text. This is a natural way to use Spark's parallel and
distributed computing capability. If you have run both the previous non-Spark
approach using the MLflow pyfunc load_model method and the current PySpark
UDF one, you will notice that the Spark approach runs much faster, even on a local
computer. This allows us to do SHAP explanation at scale for many instances of
input texts.

5.	 Finally, to verify the results, we show the spark_df DataFrame's top two rows,
which was illustrated in Figure 10.8.

By now, with MLflow's pyfunc Spark UDF wrapped SHAP explainer, we can confidently
do large-scale batch explanation. Congratulations!

Let's now summarize what we have learned in this chapter in the next section.

Summary 253

Summary
In this chapter, we first reviewed the existing approaches in the MLflow APIs that could
be used for implementing explainability. Two existing MLflow APIs, mlflow.shap
and mlflow.evaluate, have limitations, thus cannot be used for the complex DL
models and pipelines explainability scenarios we need. We then focused on two main
approaches to implement SHAP explanations and explainers within the MLflow API
framework: mlflow.log_artifact for logging explanations and mlflow.pyfunc.
PythonModel for logging a SHAP explainer. Using the log_artifact API can allow
us to log Shapley values and explanation plots into the MLflow tracking server. Using
mlflow.pyfunc.PythonModel allows us to log a SHAP explainer as a MLflow pyfunc
model, thus opening doors to deploy a SHAP explainer as a web service to create an EaaS
endpoint. It also opens doors to use SHAP explainers through the MLflow pyfunc load_
model or spark_udf API for large-scale offline batch explanation. This enables us to
confidently implement explainability at scale for DL models.

As the field of explainability continues to evolve, MLflow's integration with SHAP and
other explainability toolboxes will also continue to improve. Interested readers are
encouraged to continue their learning journey through the links provided in the further
reading section. Happy continuous learning and growing!

Further reading
•	 Shapley Values at Scale: https://neowaylabs.github.io/data-

science/shapley-values-at-scale/

•	 Scaling SHAP Calculations With PySpark and Pandas UDF: https://
databricks.com/blog/2022/02/02/scaling-shap-calculations-
with-pyspark-and-pandas-udf.html

•	 Speeding up Shapley value computation using Ray, a distributed computing system:
https://www.telesens.co/2020/10/05/speeding-up-shapley-
value-computation-using-ray-a-distributed-computing-
system/

•	 Interpreting an NLP model with LIME and SHAP: https://medium.com/@
kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-
834ccfa124e4

•	 Model Evaluation in MLflow: https://databricks.com/
blog/2022/04/19/model-evaluation-in-mlflow.html

https://neowaylabs.github.io/data-science/shapley-values-at-scale/
https://neowaylabs.github.io/data-science/shapley-values-at-scale/
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
https://databricks.com/blog/2022/04/19/model-evaluation-in-mlflow.html
https://databricks.com/blog/2022/04/19/model-evaluation-in-mlflow.html

Index

A
access tokens

for Databricks server access 110
ante-hoc explainability 217
Asynchronous Successive Halving

Algorithm (ASHA) 130
AugLy

reference link 102
auto-logging

limitations 61
autologging, MLflow 31
AWS SageMaker

about 193
deploying to 193-207

B
B2C2 v Quoine

reference link 215
backends

MLflow Project, running on 122
basic DL sentiment classifier

implementing 7-9
batch explanation

MLflow pyfunc explainer, using 248

batch inference
about 156
Deep Learning (DL) inference

pipeline, deploying for 185-187
bert-base-multilingual-

uncased (BERT) 175
BERT-like pretrained model, Hugging

Face model repository
reference link 8

binary 65
bring your own model (BYOM) 193
built-in model flavors, MLflow

reference link 43

C
caching postprocessing logic

implementing 171
caching preprocessing logic

implementing 171
Captum

about 226
reference link 226

CircleCI 13
classical ML 6

256 Index

click Python package
reference link 82

cloud
DL pipelines, running remotely

with local code 109-118
DL pipelines, running remotely with

remote code in GitHub 118-122
clusters

reference link 112
cluster-scoped init scripts

reference link 104
code, submitting to run in

Databricks server
prerequisites 109, 110

code tracking, MLflow 43, 44
Compact Language Detector v3

reference link 160
Concourse 13
configurable mechanisms,

MLproject framework
entry points 103
hardware dependencies 104
software and library dependencies 104

Continuous Integration and Continuous
Deployment (CI/CD) 12, 109

Continuous Labeling 13
Continuous Testing 13
Continuous Training 13
custom MLflow Python model

implementing 162-168

D
data

tracking, example with MLflow 93-95
data and pipeline configurations

reference link 127

Databand
URL 13

Databricks
cluster specification 112
Delta table 92
GitHub Token, for Databricks to access

enterprise project repository 119
reference link 119

Databricks CLI 110
Databricks command-line tool

used, for generating
.databrickscfg file 110

Databricks Community Edition
reference link 92

Databricks feature
reference link 184

Databricks File System (DBFS) 92, 116
Databricks Runtime 9.1 LTS,

for machine learning
reference link 112

data-centric AI competition
reference link 91

Datadog 13
DataFold

URL 13
Dataiku 20
data versioning

tracking, in Delta Lake 91, 92
Deep Learning (DL)

about 3, 6
code challenges 18, 19
data challenges 15, 16
explainability challenges 19-22
life cycle development and stages 9-11
model challenges 17

Index 257

Deep Learning (DL) inference pipeline
caching postprocessing

and preprocessing logic,
implementing 171

deploying, for batch inference 185-187
deploying, to web service 188, 189
deployment tools 184, 185
deployment tools, scenarios 183
language detection preprocessing

logic, implementing 169, 170
patterns 156-158
response composition postprocessing

logic, implementing 172-175
Defense Advanced Research Projects

Agency (DARPA) 215
Delta Lake

data versioning, tracking 91, 92
reference link 92
URL 13

Delta table
in Databricks 92

Directed Acyclic Graph (DAG) 157
Disparate Impact 20
DL experiment

implementing, with MLflow
autologging 30-35

DL model
building 7-9
Ray Tune trainable, creating 137-142

DL pipelines
automatic HPO 127
running, locally with local code 104-107
running, locally with remote

code in GitHub 107-109
running, remotely in cloud

with local code 109-118
running, remotely in cloud with

remote code in GitHub 118-122

running, remotely in remote
Databricks server 111-118

docker-compose tool
reference link 51

Docker Desktop
reference link 51

Docker error 197
DVC

URL 91

E
Elastic Container Registry (ECR) 199
Enterprise Databricks server

reference link 109
entry points 103
execution environments 101
execution scenarios

about 101
examples 102

experiments 35, 36
explainability

audience 215-221
categories 215-221

explainable artificial intelligence
(XAI) 215

Explanation as a Service (EaaS)
about 233
MLflow pyfunc deploying for 246, 247

extraction/transformation/
loading (ETL) 18

F
fastai 61
FastText

URL 160
feature attribution 217

258 Index

Feature Importance Shift 22
field-programmable gate

arrays (FPGAs) 102
foundation model 5
full-fledged local MLflow tracking server

artifact store 51
backend store 51
setting up 51-53

G
GitHub

DL pipelines, running locally
with remote code 107-109

DL pipelines, running remotely in
cloud with remote code 118-122

Google Cloud Platform (GCP)
reference link 193

Grafana 13
Graphics Process Units (GPUs) 6

H
hadoop-yarn

reference link 122
HPO-ready DL models

creating, with MLflow 134
creating, with Ray Tune 134

HPO, with Ray Tune
running, HyperBand used 147-150
running, Optuna used 147-150

Hugging Face 61
Human-Computer Interface/

Interaction (HCI) 215
HyperBand

used, for running HPO with
Ray Tune 147-150

hyperparameter optimization (HPO)
callback integration, with

MLflow 131, 132
DL frameworks, support 134
GPU clusters, scalability

and support 132
integrating, with cutting-edge HPO

algorithms (CS and CE) 133
scalability, and support of

GPU clusters 132
selecting 130
working 130

Hyperparameter Optimization (HPO) 155
hyperparameters 66
hyperparameters types

data and pipeline configurations 128
DL model type and architecture 127
learning- and training-related

parameters 128

I
ImageNet

URL 15
inference pipeline

implementing, as new entry point
in MLproject 175-178

Internet Movie Database (IMDb)
building 8

K
Keras 61
KernelExplainer 232
Kubernetes (K8s) cluster 12, 104

Index 259

L
Lakehouse

about 92
reference link 92

language detection preprocessing logic
implementing 169, 170

Language Interpretability Tool (LIT) 218
local code

used, for running DL pipelines
locally 104-107

used, for running DL pipelines
remotely in cloud 109-118

local GitHub code
versus remote GitHub code 44

Local Interpretable Model-Agnostic
Explanations (LIME) 220

long-term support (LTS) version 112

M
Machine Learning Operations (MLOps)

about 4
challenges 12
foundation layers 12
pillars 12

micro-average method 65
miniconda 7
MinIO

URL 51
MLflow

about 26
code tracking 43, 44
components 35
data, tracking example with 93-95
MLOps layers, building 12-14
model registry, versus model logging 43
models 39-43

Ray Tune HPO experiment,
running with 145-147

reference link 26
setting up 26, 136, 137
setting up, locally with miniconda 27, 28
setting up, to interact with remote

MLflow server 29, 30
tracking server 39
usage patterns 35
used, for creating HPO-ready

DL models 134, 135
MLflow, APIs for model provenance

logging API 55
registry API 55

MLflow artifact logging API
used, for implementing SHAP

explanation 235-241
MLflow autologging

about 31
DL experiment, implementing 30-35

MLflow Custom Model
flavor, creating 168

MLflow deployment plugins
deploying, with Ray Serve 190-192
references 184
using, for deployment 193

mlflow.evaluate API
reference link 234

MLflow experiment
exploring 37, 38

MLflow Experiment Name/ID
for MLflow project run 106

MLflow explainability integration
about 232-234
artifacts 232

mlflow.log_artifact API
reference link 233

mlflow.log_param API 66

260 Index

mlflow.log_params API 66
MLflow Model Python Function

API 159-162
MLflow model tracking

implementing 55- 62
MLflow Project

running, on other backends 122
MLflow Project, running with

GitHub's Main Branch
hidden bug 108

MLflow pyfunc API
used, for implementing

SHAP explainer 241
MLflow pyfunc explainer

creating 242-246
deploying, for EaaS 246, 247
loading, as MLflow pyfunc

model 248-250
logging 242-246
using, for batch explanation 248

mlflow.pyfunc.load_model
versus mlflow.pytorch.load_model 59

MLflow pyfunc model
MLflow pyfunc explainer,

loading as 248-250
mlflow.pyfunc.PythonModel API

reference link 233
mlflow.run tool

reference link 82
MLflow run Python API

reference link 115
mlflow.shap API

reference link 233
mlflow.shap.log_explainer API

issues 246
mlflow.tracking

reference link 85

MLflow version
reference link 233

MLmodel 159
MLproject

about 44
asynchronous mode 115
synchronous mode 115
entry point, executing, ways 82
inference pipeline, implementing as

new entry point in 175-178
Model as a Service (MaaS) 183
model hyperparameters 66
Model Logging

versus Model Registry 56
model metrics

tracking 63-65
model parameters

about 66
tracking 66-68

model provenance
tracking 53

Model Registry
versus Model Logging 56

Model Signature
reference link 161

N
Natural Language Processing (NLP) 104

O
online inference 157
Open Neural Network Exchange (ONNX)

about 184
reference link 17, 185

Index 261

Open Provenance Model (OPM)
about 54
Vocabulary Specification,

reference link 54
open provenance tracking

framework 54, 55
Optuna

used, for running HPO with
Ray Tune 147-150

Outreach
URL 15

P
Parquet

about 92
reference link 92

PartitionExplainer 232
patterns

of DL inference pipelines 156-158
types 157

pickle
reference link 17

pipeline
tracking 79-87

pipeline chaining 83
Population-Based Training (PBT)

reference link 129
post-hoc explainability 217
pyfunc explainer

loading, as PySpark UDF 250-252
pyfunc model

reference link 161
PyPI

URL 89
PySpark 92
PySpark UDF

pyfunc explainer, loading as 250-252

Python libraries
tracking 88-90

PyTorch lightning framework 61
PyTorch Mobile

reference link 183
PyTorch model 159
PyTorch optimizers

reference link 128

R
Ray Serve

about 190
advantages 190
reference link 184, 190
used, for deploying MLflow

deployment plugins 190-192
Ray Tune

function-based APIs and
class-based APIs 135

scheduler 135
search space 135
setting up 136
suggest 135
trials 135
used, for creating HPO-ready

DL models 134, 135
Ray Tune HPO experiment

running, with MLflow 145-147
Ray Tune HPO run function

creating 142-144
Ray Tune trainable

creating, for DL model 137-142
remote code

used, for running DL pipelines locally
in GitHub cloud 118-122

used, for running DL pipelines
locally in GitHub 107-109

262 Index

remote GitHub code
versus local GitHub code 44

response composition postprocessing logic
implementing 172-175

S
scikit-learn 159
Seldon MLServer

reference link 184
self-supervised learning 5
SHAP Explainability toolbox

exploring 221-225
SHAP explainer

implementing, with MLflow
pyfunc API 241

runtime errors, avoiding 243
SHAP explanation

implementing, with MLflow
artifact logging API 235-241

SHapley Additive exPlanations
(SHAP) 217

Software 2.0
reference link 12

stochastic gradient descent (SGD) 128

T
target execution environment

(local and remote) 101
TensorFlow 61
TensorFlow Lite

reference link 183
Tensor Processing Units (TPUs) 102
Terraform 12
Time Travel 92
TinyML 183

torchmetrics
reference link 63

TorchScript
reference link 17, 185

transfer learning 5
Transformers Interpret toolbox

exploring 226-228
reference link 226

TreeExplainer 232
Tree-Structured Parzen

Estimators (TPE) 133
Triton

reference link 184
Triton Inference Server

reference link 184
typical core DL development paradigm

example 6

U
user defined function (UDF) 183
User Experience (UX) 216

V
VGG-NETS

reference link 15
VS Code 162

W
web service

Deep Learning (DL) inference
pipeline, deploying to 188, 189

WordNet database
URL 15

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

264 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Engineering MLOps

Emmanuel Raj

ISBN: 9781800562882

•	 Formulate data governance strategies and pipelines for ML training and deployment

•	 Get to grips with implementing ML pipelines, CI/CD pipelines, and ML
monitoring pipelines

•	 Design a robust and scalable microservice and API for test and production
environments

•	 Curate your custom CD processes for related use cases and organizations

•	 Monitor ML models, including monitoring data drift, model drift, and
application performance

•	 Build and maintain automated ML systems

https://www.packt.com/product/data/b16572-engineering-mlops/

Other Books You May Enjoy 265

Machine Learning Engineering with Python

Andrew McMahon

ISBN: 9781801079259

•	 Find out what an effective ML engineering process looks like

•	 Uncover options for automating training and deployment and learn how to
use them

•	 Discover how to build your own wrapper libraries for encapsulating your data
science and machine learning logic and solutions

•	 Understand what aspects of software engineering you can bring to machine learning

•	 Gain insights into adapting software engineering for machine learning using
appropriate cloud technologies

•	 Perform hyperparameter tuning in a relatively automated way

https://www.packt.com/product/data/b17343-machine-learning-engineering-with-python/

266

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Practical Deep Learning at Scale with MLflow, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or
leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-803-24133-0
https://packt.link/r/1-803-24133-0

	Cover
	Title page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1 -
Deep Learning Challenges and MLflow Prime
	Chapter 1: Deep Learning Life Cycle and MLOps Challenges
	Technical requirements
	Understanding the DL life cycle and MLOps challenges
	Implementing a basic DL sentiment classifier
	Understanding DL's full life cycle development
	Understanding MLOps challenges

	Understanding DL data challenges
	Understanding DL model challenges
	Understanding DL code challenges
	Understanding DL explainability challenges
	Summary
	Further reading

	Chapter 2: Getting Started
with MLflow for Deep Learning
	Technical requirements
	Setting up MLflow
	Setting up MLflow locally using miniconda
	Setting up MLflow to interact with a remote
MLflow server

	Implementing our first DL experiment with MLflow autologging
	Exploring MLflow's components and usage patterns
	Exploring experiments and runs in MLflow
	Exploring MLflow models and their usages
	Exploring MLflow code tracking and its usages

	Summary
	Further reading

	Section 2 -
Tracking a Deep Learning Pipeline
at Scale
	Chapter 3: Tracking Models, Parameters,
and Metrics
	Technical requirements
	Setting up a full-fledged local MLflow
tracking server
	Tracking model provenance
	Understanding the open provenance tracking framework
	Implementing MLflow model tracking

	Tracking model metrics
	 Tracking model parameters
	Summary
	Further reading

	Chapter 4: Tracking Code and Data Versioning
	Technical requirements
	Tracking notebook and pipeline versioning
	Pipeline tracking

	Tracking locally, privately built Python libraries
	Tracking data versioning in Delta Lake
	An example of tracking data using MLflow

	Summary
	Further reading

	Section 3 -
Running Deep Learning Pipelines at Scale
	Chapter 5: Running DL Pipelines in Different Environments
	Technical requirements
	An overview of different execution scenarios and environments
	Running locally with local code
	Running remote code in GitHub locally
	Running local code remotely in the cloud
	Running remotely in the cloud with remote code in GitHub
	Summary
	Further reading

	Chapter 6: Running Hyperparameter Tuning at Scale
	Technical requirements
	Understanding automatic HPO for DL pipelines
	Types of hyperparameters and their challenges
	How HPO works and which ones to choose

	Creating HPO-ready DL models with Ray Tune and MLflow
	Setting up Ray Tune and MLflow
	Creating the Ray Tune trainable for the DL model
	Creating the Ray Tune HPO run function

	Running the first Ray Tune HPO experiment with MLflow
	Running HPO with Ray Tune using Optuna and HyperBand
	Summary
	Further reading

	Section 4 -
Deploying a Deep Learning Pipeline
at Scale
	Chapter 7: Multi-Step Deep Learning Inference Pipeline
	Technical requirements
	Understanding patterns of DL inference pipelines
	Understanding the MLflow Model Python Function API

	Implementing a custom MLflow Python model
	Implementing preprocessing and postprocessing steps in a DL inference pipeline
	Implementing language detection preprocessing logic
	Implementing caching preprocessing and postprocessing logic
	Implementing response composition
postprocessing logic

	Implementing an inference pipeline as a new entry point in the main MLproject
	Summary
	Further reading

	Chapter 8: Deploying
a DL Inference Pipeline at Scale
	Technical requirements
	Understanding different deployment tools and host environments
	Deploying locally for batch and web service inference
	Batch inference
	Model as a web service

	Deploying using Ray Serve and MLflow deployment plugins
	Deploying to AWS SageMaker – a complete end-to-end guide
	Step 1: Build a local SageMaker Docker image
	Step 2: Add additional model artifacts layers onto the SageMaker Docker image
	Step 3: Test local deployment with the newly built SageMaker Docker image
	Step 4: Push the SageMaker Docker image to AWS Elastic Container Registry
	Step 5: Deploy the inference pipeline model to create a SageMaker endpoint
	Step 6: Query the SageMaker endpoint for online inference

	Summary
	Further reading

	Section 5 -
Deep Learning Model Explainability at Scale
	Chapter 9: Fundamentals of Deep Learning Explainability
	Technical requirements
	Understanding the categories and audience
of explainability
	Audience: who needs to know
	Stage: when to provide an explanation in the DL
life cycle
	Scope: which prediction needs explanation
	Input data format: what is the format of the
input data
	Output data format: what is the format of the output explanation
	Problem type: what is the machine learning
problem type
	Objectives type: what is the motivation or goal to explain
	Method type: what is the specific post-hoc explanation method used

	Exploring the SHAP Explainability toolbox
	Exploring the Transformers Interpret toolbox
	Summary
	Further reading

	Chapter 10: Implementing
DL Explainability with MLflow
	Technical requirements
	Understanding current MLflow explainability integration
	Implementing a SHAP explanation using the MLflow artifact logging API
	Implementing a SHAP explainer using the MLflow pyfunc API
	Creating and logging an MLflow pyfunc explainer
	Deploying an MLflow pyfunc explainer for an EaaS
	Using an MLflow pyfunc explainer for batch explanation

	Summary
	Further reading

	Index
	Other Books You May Enjoy

