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Foreword
I am thrilled to introduce this book on Practical Deep Learning at Scale with MLflow by 
Dr. Yong Liu. Deep learning has been revolutionizing many areas of computing in the past 
decade, but good resources for using it in production applications remain scarce. At the 
same time, practitioners have realized that designing machine learning (ML) applications 
to be operable, maintainable, and updateable is one of the hardest parts of using ML in 
production, leading to the new field of MLOps. Dr. Liu tackles these issues head-on by 
showing you how to build robust and maintainable deep learning applications using 
MLflow, a widely-used open source MLOps framework, and multiple state-of-the-art 
methods and software tools.

Dr. Liu brings a wealth of experience in production machine learning that shines through 
in every chapter of the book. He has been working in large-scale computing since his 
Ph.D., he has built large-scale production ML applications at Microsoft, Maana, and 
Outreach, and he has published multiple research papers on deep learning. This means 
that each chapter recommends practical approaches that have worked in multiple 
organizations. Dr. Liu also presents all his material clearly to tell you the tradeoffs in  
each decision, illustrates all the ideas through runnable code and surveys multiple open 
source and commercial tools for each task.

As one of the original creators of MLflow, I was very excited that Dr. Liu chose MLflow 
as the MLOps framework for this book. When we started MLflow in 2018, there was 
no widely used open-source MLOps framework, so we designed a highly extensible 
framework that can be integrated with a wide variety of other tools and services and 
customized to each organization’s workflow. We’ve been thrilled with the fast growth of 
the MLflow open source community since then and with the powerful integrations that 
the community has contributed to libraries including PyTorch, SHAP, Delta Lake, and 
others. Dr. Liu’s team was one of the early users of MLflow, so he is an expert on how to 
use the framework in practice. I hope that you enjoy learning from his experience and 
building groundbreaking applications using the latest techniques in deep learning.

Dr. Matei Zaharia

Chief Technologist, Databricks, and Co-Creator of MLflow
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Preface
Starting from AlexNet in 2012, which won the large-scale ImageNet competition, to 
the BERT pre-trained language model in 2018, which topped many natural language 
processing (NLP) leaderboards, the revolution of modern deep learning (DL) in the 
broader artificial intelligence (AI) and machine learning (ML) community continues. 
Yet, the challenges of moving these DL models from offline experimentation to a 
production environment remain. This is largely due to the complexity and lack of a unified 
open source framework for supporting the full life cycle development of DL. This book 
will help you understand the big picture of DL full life cycle development, and implement 
DL pipelines that can scale from a local offline experiment to a distributed environment 
and online production clouds, with an emphasis on hands-on project-based learning to 
support the end-to-end DL process using the popular open source MLflow framework.

The book starts with an overview of the DL full life cycle and the emerging machine 
learning operations (MLOps) field, providing a clear picture of the four pillars of DL 
(data, model, code, and explainability) and the role of MLflow in these areas. A basic 
transfer learning-based NLP sentiment model using PyTorch Lightning Flash is built in the 
first chapter, which is further developed, tuned, and deployed to production throughout the 
rest of the book. From there onward, it guides you step-by-step to understand the concept 
of MLflow experiments and usage patterns, using MLflow as a unified framework to track 
DL data, code and pipeline, model, parameters, and metrics at scale. We'll run DL pipelines 
in a distributed execution environment with reproducibility and provenance tracking, and 
tune DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna 
and HyperBand. We'll also build a multi-step DL inference pipeline with preprocessing 
and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve 
and AWS SageMaker, and finally, provide a DL Explanation-as-a-Service using SHapley 
Additive exPlanations (SHAP) and MLflow integration.

By the end of this book, you'll have the foundation and hands-on experience to build  
a DL pipeline from initial offline experimentation to final deployment and production, 
all within a reproducible and open source framework. Along the way, you will also learn 
the unique challenges with DL pipelines and how we overcome them with practical and 
scalable solutions such as using multi-core CPUs, graphical processing units (GPUs), 
distributed and parallel computing frameworks, and the cloud.
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Who this book is for
This book is written for data scientists, ML engineers, and AI practitioners who want to 
master the full life cycle of DL development from inception to production using the open 
source MLflow framework and related tools such as Ray Tune, SHAP, and Ray Serve. The 
scalable, reproducible, and provenance-aware implementations presented in this book 
ensure you build an enterprise-grade DL pipeline successfully. This book will support 
anyone building powerful DL cloud applications.

What this book covers
Chapter 1, Deep Learning Life Cycle and MLOps Challenges, covers the five stages of 
the full life cycle of DL and the first DL model in this book using the transfer learning 
approach for text sentiment classification. It also defines the concept of MLOps along with 
the three foundation layers and four pillars, and the roles of MLflow in these areas. An 
overview of the challenges in DL data, model, code, and explainability are also presented. 
This chapter is designed to bring everyone to the same foundational level and provides 
clarity and guidelines on the scope of the rest of the book.

Chapter 2, Getting Started with MLflow for Deep Learning, serves as an MLflow primer 
and a first hands-on learning module to quickly set up a local filesystem-based MLflow 
tracking server or interact with a remote managed MLflow tracking server in Databricks, 
and perform a first DL experiment using MLflow auto logging. It also explains some 
foundational MLflow concepts through concrete examples such as experiments, runs, 
metadata about and the relationship between experiments and runs, code tracking, model 
logging, and model flavor. Specifically, we underline that experiments should be first-class 
entities that can be used to bridge the gap between the offline and online production life 
cycle of DL models. This chapter builds the foundational knowledge of MLflow.

Chapter 3, Tracking Models, Parameters, and Metrics, covers the first in-depth learning 
module on tracking using a fully-fledged local MLflow tracking server. It starts with 
setting up a local fully-fledged MLflow tracking server that runs in Docker Desktop, with 
a MySQL backend store and a MinIO artifact store. Before implementing tracking, this 
chapter provides an open provenance tracking framework based on the open provenance 
model vocabulary specification, and presents six types of provenance questions that could 
be implemented by using MLflow. It then provides hands-on implementation examples 
on how to use MLflow model-logging APIs and registry APIs to track model provenance, 
model metrics, and parameters, with or without auto logging. Unlike other typical MLflow 
API tutorials, which only provide guidance on using the APIs, this chapter instead focuses 
on how successfully we can use MLflow to answer the provenance questions. By the end 
of this chapter, we could answer four out of six provenance questions, and the remaining 
two questions can only be answered when we have a multi-step pipeline or deployment to 
production, which are covered in the later chapters.
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Chapter 4, Tracking Code and Data Versioning, covers the second in-depth learning 
module on MLflow tracking. It analyzes the current practices on the usage of notebooks 
and pipelines in the ML/DL projects. It recommends using VS Code notebooks and shows 
a concrete DL notebook example that can be run either interactively or non-interactively 
with MLflow tracking enabled. It also recommends using MLflow's MLproject to 
implement a multi-step DL pipeline using MLflow's entry points and pipeline chaining. 
A three-step DL pipeline is created for DL model training and registration. In addition, 
it also shows the pipeline level tracking and individual step tracking through the parent-
child nested run in MLflow. Finally, it shows how to track public and privately built 
Python libraries and data versioning in Delta Lake using MLflow.

Chapter 5, Running DL Pipelines in Different Environments, covers how to run a DL 
pipeline in different environments. It starts with the scenarios and requirements for 
executing DL pipelines in different environments. It then shows how to use MLflow's 
command-line interface (CLI) to submit runs in four scenarios: running locally 
with local code, running locally with remote code in GitHub, running remotely in the 
cloud with local code, and running remotely in the cloud with remote code in GitHub. 
The flexibility and reproducibility supported by MLflow to execute a DL pipeline also 
provide building blocks for continuous integration/continuous deployment (CI/CD) 
automation when needed.

Chapter 6, Running Hyperparameter Tuning at Scale, covers using MLflow to support HPO 
at scale using state-of-the-art HPO frameworks such as Ray Tune. It starts with a review 
of the types and challenges of DL pipeline hyperparameters. Then, it compares three HPO 
frameworks Ray Tune, Optuna, and HyperOpt, and provides a detailed analysis of the 
pros and cons and their integration maturity with MLflow. It then recommends and shows 
how to use Ray Tune with MLflow to do HPO tuning for the DL model we have been 
working on in this book so far. Furthermore, it covers how to switch to other HPO search 
and scheduler algorithms such as Optuna and HyperBand. This enables us to produce 
high-performance DL models that meet the business requirements in a cost-effective and 
scalable way.

Chapter 7, Multi-Step Deep Learning Inference Pipeline, covers creating a multi-step 
inference pipeline using MLflow's custom Python model approach. It starts with an 
overview of four patterns of inference workflows in production where a single trained 
model is usually not enough to meet the business application requirements. Additional 
preprocessing and postprocessing steps are needed. It then presents a step-by-step guide 
to implementing a multi-step inference pipeline that wraps the previously fine-tuned DL 
sentiment model with language detection, caching, and additional model metadata. This 
inference pipeline is then logged as a generic MLflow PyFunc model that can be loaded 
using the common MLflow PyFunc load API. Having an inference pipeline wrapped as 
an MLflow model opens doors for automation and consistent management of the model 
pipeline within the same MLflow framework.
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Chapter 8, Deploying a DL Inference Pipeline at Scale, covers deploying a DL inference 
pipeline into different host environments for production usage. It starts with an overview 
of the landscape of deployment and hosting environments including batch inference 
and streaming inference at scale. It then describes the different deployment mechanisms 
such as MLflow built-in model serving tools, custom deployment plugins, and generic 
model serving frameworks such as Ray Serve. It shows examples of how to deploy a batch 
inference pipeline using MLflow's Spark user-defined function (UDF), and how to serve 
a DL inference pipeline as a local web service using either MLflow's built-in model serving 
tool or Ray Serve's MLflow deployment plugin, mlflow-ray-serve. It then describes 
a complete step-by-step guide to deploying a DL inference pipeline to a managed AWS 
SageMaker instance for production usage. 

Chapter 9, Fundamentals of Deep Learning Explainability, covers the foundational 
concepts of explainability and exploration of using two popular explainability tools. 
It starts with an overview of the eight dimensions of explainability and explainable 
AI (XAI), then provides concrete learning examples to explore the usage of SHAP 
and Transformers-interpret toolboxes for an NLP sentiment pipeline. It emphasizes 
that explainability should be lifted to be the first-class artifact when developing a DL 
application since there are increasing demands and expectations for model and data 
explanation in various business applications and domains.

Chapter 10, Implementing DL Explainability with MLflow, covers how to implement 
DL explainability using MLflow to provide Explanation-as-a-Service (EaaS). It starts 
with an overview of MLflow's current capability to support explainers and explanations. 
Specifically, the existing integration with SHAP in MLflow APIs does not support DL 
explainability at scale. Therefore, it provides two generic ways of using MLflow's artifact 
logging APIs and PyFunc APIs for the implementation. Examples are provided for 
implementing SHAP explanation, which logs the SHAP value in a bar chart in an MLflow 
tracking server's artifact store. A SHAP explainer can be logged as an MLflow Python 
model, and then loaded as either a Spark UDF for batch explanation or as a web service 
for online EaaS. This provides maximal flexibility within a unified MLflow framework for 
implementing explainability.
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To get the most out of this book
The majority of the code in this book can be implemented and executed using the open 
source MLflow tool, with a few exceptions where a 14-day full Databricks trial is needed 
(sign up at https://databricks.com/try-databricks) along with an AWS 
Free Tier account (sign up at https://aws.amazon.com/free/). The following lists 
some major software packages covered in this book:

• MLflow 1.20.2 and above

• Python 3.8.10

• Lightning-flash 0.5.0

• Transformers 4.9.2

• SHAP 0.40.0

• PySpark 3.2.1

• Ray[tune] 1.9.2

• Optuna 2.10.0

The complete package dependencies are listed in each chapter's requirements.txt 
 file or the conda.yaml file in this book's GitHub repository. All code has been tested 
to run successfully in a macOS or Linux environment. If you are a Microsoft Windows 
user, it is recommended to install WSL2 to run the bash scripts provided in this book: 
https://www.windowscentral.com/how-install-wsl2-windows-10. It 
is a known issue that the MLflow CLI does not work properly in the Microsoft Windows 
command line. 

Starting from Chapter 3, Tracking Models, Parameters, and Metrics of this book, you 
will also need to have Docker Desktop (https://www.docker.com/products/
docker-desktop/) installed to set up a fully-fledged local MLflow tracking server 
for executing the code in this book. AWS SageMaker is needed in Chapter 8, Deploying a 
DL Inference Pipeline at Scale, for the cloud deployment example. VS Code version 1.60 
or above (https://code.visualstudio.com/updates/v1_60) is used as the 
integrated development environment (IDE) in this book. Miniconda version 4.10.3 
or above (https://docs.conda.io/en/latest/miniconda.html) is used 
throughout this book for creating and activating virtual environments.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code from the book's GitHub repository (a link is available in the next 
section). Doing so will help you avoid any potential errors related to the copying and 
pasting of code.

https://databricks.com/try-databricks
https://aws.amazon.com/free/
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://code.visualstudio.com/updates/v1_60
https://docs.conda.io/en/latest/miniconda.html
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Finally, to get the most out of this book, you should have experience in programming in 
Python and have a basic understanding of popular ML and data manipulation libraries 
such as pandas and PySpark.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLFlow. If there's an update to the code, it will be updated in the GitHub 
repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781803241333_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. 
Here is an example: "For learning purposes, we have provided two example mlruns 
artifacts and the huggingface cache folder in the GitHub repository under the 
chapter08 folder."

A block of code is set as follows:

client = boto3.client('sagemaker-runtime') 

response = client.invoke_endpoint(

        EndpointName=app_name, 

        ContentType=content_type,

        Accept=accept,

        Body=payload

        )

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781803241333_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781803241333_ColorImages.pdf


Preface     xix

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

loaded_model = mlflow.pyfunc.spark_udf(

    spark,

    model_uri=logged_model, 

    result_type=StringType())

Any command-line input or output is written as follows:

mlflow models serve -m models:/inference_pipeline_model/6

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
instance, words in menus or dialog boxes appear in bold. Here is an example: "To execute 
the code in this cell, you can just click on Run Cell in the top-right drop-down menu."

Tips or Important Notes 
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at 
customercare@packtpub.com and mention the book title in the subject of  
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you have found a mistake in this book, we would be grateful  
if you would report this to us. Please visit www.packtpub.com/support/errata 
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts
Once you've read Practical Deep Learning at Scale with MLflow, we'd love to hear your 
thoughts! Please click here to go straight to the Amazon review page 
for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're 
delivering excellent quality content.

https://packt.link/r/1-803-24133-0


Section 1 -   
Deep Learning 

Challenges and 
MLflow Prime

In this section, we will learn about the five stages of the full life cycle of deep learning 
(DL), and understand the emerging field of machine learning operations (MLOps) and  
the role of MLflow. We will provide an overview of the challenges in the four pillars of  
a DL process: data, model, code, and explainability. Then, we will learn how to set up  
a basic local MLflow development environment and run our first MLflow experiment for 
a natural language processing (NLP) model built on top of PyTorch Lightning Flash. 
Finally, we will explain the foundational MLflow concepts such as experiments, runs, and 
many more, through this first MLflow experiment example. 

This section comprises the following chapters:

• Chapter 1, Deep Learning Life Cycle and MLOps Challenges

• Chapter 2, Getting Started with MLflow for Deep Learning





1
Deep Learning Life 

Cycle and MLOps 
Challenges

The past few years have seen great success in Deep Learning (DL) for solving practical 
business, industrial, and scientific problems, particularly for tasks such as Natural 
Language Processing (NLP), image, video, speech recognition, and conversational 
understanding. While research in these areas has made giant leaps, bringing these DL 
models from offline experimentation to production and continuously improving the 
models to deliver sustainable values is still a challenge. For example, a recent article by 
VentureBeat (https://venturebeat.com/2019/07/19/why-do-87-of-data-
science-projects-never-make-it-into-production/) found that 87% of 
data science projects never make it to production. While there might be business reasons 
for such a low production rate, a major contributing factor is the difficulty caused by the 
lack of experiment management and a mature model production and feedback platform.

https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/
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This chapter will help us to understand the challenges and bridge these gaps by learning 
the concepts, steps, and components that are commonly used in the full life cycle of DL 
model development. Additionally, we will learn about the challenges of an emerging 
field known as Machine Learning Operations (MLOps), which aims to standardize 
and automate ML life cycle development, deployment, and operation. Having a solid 
understanding of these challenges will motivate us to learn the skills presented in the rest 
of this book using MLflow, an open source, ML full life cycle platform. The business values 
of adopting MLOps' best practices are numerous; they include faster time-to-market of 
model-derived product features, lower operating costs, agile A/B testing, and strategic 
decision making to ultimately improve customer experience. By the end of this chapter, 
we will have learned about the critical role that MLflow plays in the four pillars of MLOps 
(that is, data, model, code, and explainability), implemented our first working DL model, 
and grasped a clear picture of the challenges with data, models, code, and explainability  
in DL.

In this chapter, we're going to cover the following main topics:

• Understanding the DL life cycle and MLOps challenges

• Understanding DL data challenges 

• Understanding DL model challenges

• Understanding DL code challenges

• Understanding DL explainability challenges

Technical requirements 
All of the code examples for this book can be found at the following GitHub URL: 
https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow.

You need to have Miniconda (https://docs.conda.io/en/latest/miniconda.
html) installed on your development environment. In this chapter, we will walk through 
the process of installing the PyTorch lightning-flash library (https://github.
com/PyTorchLightning/lightning-flash), which can be used to build our 
first DL model in the Implementing a basic DL sentiment classifier section. Alternatively, 
you can sign up for a free Databricks Community Edition account at https://
community.cloud.databricks.com/login.html and use a GPU cluster and  
a notebook to carry out the model development described in this book. 

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/PyTorchLightning/lightning-flash
https://github.com/PyTorchLightning/lightning-flash
https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html
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In addition to this, if you are a Microsoft Windows user, we recommend that you 
install WSL2 (https://www.windowscentral.com/how-install-wsl2-
windows-10) so that you have a Linux environment to run the command lines that are 
present in this book.

Understanding the DL life cycle and MLOps 
challenges
Nowadays, the most successful DL models that are deployed in production primarily 
observe the following two steps:

1. Self-supervised learning: This refers to the pretraining of a model in a data-rich 
domain that does not require labeled data. This step produces a pretrained model, 
which is also called a foundation model, for example, BERT, GPT-3 for NLP, and 
VGG-NETS for computer vision.

2. Transfer learning: This refers to the fine-tuning of the pretrained model in a 
specific prediction task such as text sentiment classification, which requires labeled 
training data. 

One ground-breaking and successful example of a DL model in production is the Buyer 
Sentiment Analysis model, which is built on top of BERT for classifying sales engagement 
email messages, providing critical fine-grained insights into buyer emotions and signals 
beyond simple activity metrics such as reply, click, and open rates (https://www.
prnewswire.com/news-releases/outreach-unveils-groundbreaking-
ai-powered-buyer-sentiment-analysis-transforming-sales-
engagement-301188622.html). There are different variants regarding how this 
works, but in this book, we will primarily focus on the Transfer Learning paradigm of 
developing and deploying DL models, as it exemplifies a practical DL life cycle. 

https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
https://www.prnewswire.com/news-releases/outreach-unveils-groundbreaking-ai-powered-buyer-sentiment-analysis-transforming-sales-engagement-301188622.html
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Let's walk through an example to understand a typical core DL development paradigm. 
For example, the popular BERT model released in late 2018 (a basic version of the BERT 
model can be found at https://huggingface.co/bert-base-uncased) was 
initially pretrained on raw texts (without human labeling) from over 11,000 books from 
BookCorpus and the entire English Wikipedia. This pretrained language model was then 
fine-tuned to many downstream NLP tasks, such as text classification and sentiment 
analysis, in different application domains such as movie review classifications by using 
labeled movie review data (https://huggingface.co/datasets/imdb). Note 
that sometimes, it might be necessary to further pretrain a foundation model (for 
example, BERT) within the application domain by using unlabeled data before fine-tuning 
to boost the final model performance in terms of accuracy. This core DL development 
paradigm is illustrated in Figure 1.1:

Figure 1.1 – A typical core DL development paradigm

Note that while Figure 1.1 represents a common development paradigm, not all of these 
steps are necessary for a specific application scenario. For example, you might only 
need to do fine-tuning using a publicly available pretrained DL model with your labeled 
application-specific data. Therefore, you don't need to do your own pretraining or carry 
out further pretraining using unlabeled data since other people or organizations have 
already done the pretraining step for you.

DL over Classical ML
Unlike classical ML model development, where, usually, a feature engineering 
step is required to extract and transform raw data into features to train an ML 
model such as decision tree or logistic regression, DL can learn the features 
automatically, which is especially attractive for modeling unstructured 
data such as texts, images, videos, audio, and speeches. DL is also called 
representational learning due to this characteristic. In addition to this, DL 
is usually data- and compute-intensive, requiring Graphics Process Units 
(GPUs), Tensor Process Units (TPU), or other types of computing hardware 
accelerators for at-scale training and inference. Explainability for DL models 
is also harder to implement, compared with traditional ML models, although 
recent progress has now made that possible. 

https://huggingface.co/bert-base-uncased
https://huggingface.co/datasets/imdb
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Implementing a basic DL sentiment classifier
To set up the development of a basic DL sentiment classifier, you need to create a virtual 
environment in your local environment. Let's assume that you have miniconda installed. 
You can implement the following in your command-line prompt to create a new virtual 
environment called dl_model and install the PyTorch lightning-flash package so 
that the model can be built:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install lightning-flash[all]

Depending on your local machine's memory, the preceding commands might take 
about 10 minutes to finish. You can verify the success of your installation by running the 
following command:

conda list | grep lightning

If you see output similar to the following, your installation was successful:

lightning-bolts     0.3.4                    pypi_0    pypi

lightning-flash     0.5.0                    pypi_0    pypi

pytorch-lightning   1.4.4                    pypi_0    pypi

Now you are ready to build your first DL model!

To begin building a DL model, complete the following steps:

1. Import the necessary torch and flash libraries, and import download_data, 
TextClassificationData, and TextClassifier from the flash 
subpackages:

import torch

import flash

from flash.core.data.utils import download_data

from flash.text import TextClassificationData, 
TextClassifier
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2. To get the dataset for fine-tuning, use download_data to download the  
imdb.zip file, which is the public domain binary sentiment classification 
(positive/negative) dataset from Internet Movie Database (IMDb) to a local data 
folder. The IMDb ZIP file contains three CSV files: 

 � train.csv

 � valid.csv 

 � test.csv 

Each file contains two columns: review and sentiment. We then use 
TextClassificationData.from_csv to declare a datamodule  
variable that assigns the "review" to input_fields, and the "sentiment" to 
target_fields. Additionally, it assigns the train.csv file to train_file, 
the valid.csv file to val_file, and the test.csv file to the test_file 
properties of datamodule, respectively:

download_data("https://pl-flash-data.s3.amazonaws.com/
imdb.zip", "./data/")

datamodule = TextClassificationData.from_csv(

    input_fields="review",

    target_fields="sentiment",

    train_file="data/imdb/train.csv",

    val_file="data/imdb/valid.csv",

    test_file="data/imdb/test.csv"

)

3. Once we have the data, we can now perform fine-tuning using a foundation model. 
First, we declare classifier_model by calling TextClassifier with a 
backbone assigned to prajjwal1/bert-tiny (which is a much smaller BERT-
like pretrained model located in the Hugging Face model repository: https://
huggingface.co/prajjwal1/bert-tiny). This means our model will be 
based on the bert-tiny model. 

4. The next step is to set up the trainer by defining how many epochs we want to run 
and how many GPUs we want to use to run them. Here, torch.cuda.device_
count() will return either 0 (no GPU) or 1 to N, where N is the maximum number 
of GPUs you can have in your running environment. Now we are ready to call 
trainer.finetune to train a binary sentiment classifier for the IMDb dataset:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes)

trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.

https://huggingface.co/prajjwal1/bert-tiny
https://huggingface.co/prajjwal1/bert-tiny
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device_count())

trainer.finetune(classifier_model, datamodule=datamodule, 
strategy="freeze")

DL Fine-Tuning Time
Depending on your running environment, the fine-tuning step might take  
a couple of minutes on a GPU or around 10 minutes (if you're only using  
a CPU). You can reduce max_epochs=1 if you simply want to get a basic 
version of the sentiment classifier quickly.

5. Once the fine-tuning step is complete, we will test the accuracy of the model by 
running trainer.test():

trainer.test()

The output of the test should look similar to the following screenshot, which  
indicates that the final model accuracy is about 52%:

Figure 1.2 – The test results of our first DL model

The test result shown in the preceding diagram indicates that we have a basic version of 
the model, as we only fine-tuned the foundation model for three epochs and haven't used 
any advanced techniques such as hyperparameter tuning or better fine-tuning strategies. 
However, this is a great accomplishment since you now have a working knowledge of 
how the core DL model paradigm works! We will explore more advanced model training 
techniques in later chapters of this book.

Understanding DL's full life cycle development
By now, you should have your first DL model ready and should feel proud of it. Now,  
let's explore the full DL life cycle together to fully understand its concepts, components, 
and challenges.
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You might have gathered that the core DL development paradigm revolves around three 
key artifacts: Data, Model, and Code. In addition to this, Explainability is another major 
artifact that is required in many mission-critical application scenarios such as medical 
diagnoses, the financial industry, and decision making for criminal justice. As DL is 
usually considered a black box, providing explainability for DL increasingly becomes  
a key requirement before and after shipping to production.

Note that Figure 1.1 is still considered offline experimentation if we are still trying to 
figure out which model works using a dataset in a lab-like environment. Even in such 
an offline experimentation environment, things will quickly become complicated. 
Additionally, we would like to know and track which experiments we have or have 
not performed so that we don't waste time repeating the same experiments, whatever 
parameters and datasets we have used, and whatever kind of metrics we have for a 
specific model. Once we have a model that's good enough for the use cases and customer 
scenarios, the complexity increases as we need a way to continuously deploy and update 
the model in production, monitor the model and data drift, and then retrain the model 
when necessary. This complexity further increases when at-scale training, deployment, 
monitoring, and explainability are needed. 

Let's examine what a DL life cycle looks like (see Figure 1.3). There are five stages: 

1. Data collection, cleaning, and annotation/labeling. 
2. Model development (which is also known as offline experimentation). The core DL 

development paradigm in Figure 1.1 is considered part of the model development 
stage, which itself can be an iterative process.

3. Model deployment and serving in production. 
4. Model validation and A/B testing (which is also known as online experimentation; 

this is usually in a production environment).
5. Monitoring and feedback data collection during production.  
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Figure 1.3 provides a diagram to show that it is a continuous development cycle for  
a DL model:

Figure 1.3 – The full DL development life cycle 

In addition to this, we want to point out that the backbone of these five stages, as shown 
in Figure 1.3, essentially revolves around the four artifacts: data, model, code, and 
explainability. We will examine the challenges related to these four artifacts in the life 
cycle in the following sections. However, first, let's explore and understand MLOps, which 
is an evolving platform concept and framework that supports the full life cycle of ML. This 
will help us understand these challenges in a big-picture context.
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Understanding MLOps challenges
MLOps has some connections to DevOps, where a set of technology stacks and standard 
operational procedures are used for software development and deployment combined 
with IT operations. Unlike traditional software development, ML and especially DL 
represent a new era of software development paradigms called Software 2.0 (https://
karpathy.medium.com/software-2-0-a64152b37c35). The key differentiator 
of Software 2.0 is that the behavior of the software does not just depend on well-
understood programming language code (which is the characteristic of Software 1.0) 
but depends on the learned weights in a neural network that's difficult to write as code. 
In other words, there exists an inseparable integration of the code, data, and model that 
must be managed together. Therefore, MLOps is being developed and is still evolving 
to accommodate this new Software 2.0 paradigm. In this book, MLOps is defined as an 
operational automation platform that consists of three foundation layers and four pillars. 
They are listed as follows:

• Here are the three foundation layers:

 � Infrastructure management and automation

 � Application life cycle management and Continuous Integration and Continuous 
Deployment (CI/CD)

 � Service system observability

• Here are the four pillars:

 � Data observability and management

 � Model observability and life cycle management

 � Explainability and Artificial Intelligence (AI) observability

 � Code reproducibility and observability

Additionally, we will explain MLflow's roles in these MLOps layers and pillars so that  
we have a clear picture regarding what MLflow can do to build up the MLOps layers in 
their entirety:

• Infrastructure management and automation: This includes, but is not limited 
to, Kubernetes (also known as k8s) for automated container orchestration and 
Terraform (commonly used for managing hundreds of cloud services and access 
control). These tools are adapted to manage ML and DL applications that have 
deployed models as service endpoints. These infrastructure layers are not the focus 
of this book; instead, we will focus on how to deploy a trained DL model using 
MLflow's provided capabilities.

https://karpathy.medium.com/software-2-0-a64152b37c35
https://karpathy.medium.com/software-2-0-a64152b37c35
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• Application life cycle management and CI/CD: This includes, but is not limited 
to, Docker containers for virtualization, container life cycle management tools 
such as Kubernetes, and CircleCI or Concourse for CI and CD. Usually, CI means 
that whenever there are code or model changes in a GitHub repository, a series of 
automatic tests will be triggered to make sure no breaking changes are introduced. 
Once these tests have been passed, new changes will be automatically released as 
part of a new package. This will then trigger a new deployment process (CD) to 
deploy the new package to the production environment (often, this will include 
human approval as a safety gate). Note that these tools are not unique to ML 
applications but have been adapted to ML and DL applications, especially when we 
require GPU and distributed clusters for the training and testing of DL models. In 
this book, we will not focus on these tools but will mention the integration points or 
examples when needed.

• Service system observability: This is mostly for monitoring the hardware/
clusters/CPU/memory/storage, operating system, service availability, latency, and 
throughput. This includes tools such as Grafana, Datadog, and more. Again, these 
are not unique to ML and DL applications and are not the focus of this book.

• Data observability and management: This is traditionally under-represented in 
the DevOps world but becomes very important in MLOps as data is critical within 
the full life cycle of ML/DL models. This includes data quality monitoring, outlier 
detection, data drift and concept drift detection, bias detection, secured and compliant 
data sharing, data provenance tracking and versioning, and more. The tool stacks 
in this area that are suitable for ML and DL applications are still emerging. A few 
examples include DataFold (https://www.datafold.com/) and Databand 
(https://databand.ai/open-source/). A recent development in data 
management is a unified lakehouse architecture and implementation called Delta 
Lake (http://delta.io) that can be used for ML data management. MLflow 
has native integration points with Delta Lake, and we will cover that integration in 
this book. 

• Model observability and life cycle management: This is unique to ML/DL models, 
and it only became widely available recently due to the rise of MLflow. This includes 
tools for model training, testing, versioning, registration, deployment, serialization, 
model drift monitoring, and more. We will learn about the exciting capabilities 
that MLflow provides in this area. Note that once we combine CI/CD tools with 
MLflow training/monitoring, user feedback loops, and human annotations, we can 
achieve Continuous Training, Continuous Testing, and Continuous Labeling. 
MLflow provides the foundational capabilities so that further automation in MLOps 
becomes possible, although such complete automation will not be the focus of this 
book. Interested readers can find relevant references at the end of this chapter to 
explore this area further.

https://www.datafold.com/
https://databand.ai/open-source/
http://delta.io
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• Explainability and AI observability: This is unique to ML/DL models and is 
especially important for DL models, as traditionally, DL models are treated as 
black boxes. Understanding why the model provides certain predictions is critical 
for societally important applications. For example, in medical, financial, juridical, 
and many human-in-the-loop decision support applications, such as civilian and 
military emergency response, the demand for explainability is increasingly higher. 
MLflow provides native integration with a popular explainability framework called 
SHAP, which we will cover in this book.

• Code reproducibility and observability: This is not entirely unique to ML/DL 
applications. However, DL models face some special challenges as the number of 
DL code frameworks are diverse and the need to reproduce a model is not entirely 
up to the code alone (we also need data and execution environments such as GPU 
clusters). In addition to this, notebooks are commonly used in model development 
and production. How to manage the notebooks along with the model run is 
important. Usually, GitHub is used to manage the code repository; however, we need 
to structure the ML project code in a way that's reproducible either locally (such as 
on a local laptop) or remotely (for example, in a Databricks' GPU cluster). MLflow 
provides this capability to allow DL projects that have been written once to run 
anywhere, whether this is in an offline experimentation environment or an online 
production environment. We will cover MLflow's MLproject capability in this book.

In summary, MLflow plays a critical and foundational role in MLOps. It fills in the gaps 
that DevOps traditionally does not cover and, thus, is the focus of this book. The following 
diagram (Figure 1.4) shows the central roles of MLflow in the still-evolving MLOps world:

Figure 1.4 – The three layers and four pillars of MLOps and MLflow's roles
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While the bottom two layers and the topmost layer are common within many software 
development and deployment processes, the middle four pillars are either entirely unique 
to ML/DL applications or partially unique to ML/DL applications. MLflow plays a 
critical role in all four of these pillars in MLOps. This book will help you to confidently 
apply MLflow to solve the issues of these four pillars while also equipping you to further 
integrate with other tools in the MLOps layers depicted in Figure 1.4 for full automation 
depending on your scenario requirements.

Understanding DL data challenges
In this section, we will discuss the data challenges at each stage of the DL life cycle, as 
illustrated in Figure 1.3. Essentially, DL is a data-centric AI, unlike symbolic AI where 
human knowledge can be used without lots of data. The challenges for data in DL are 
pervasive in all stages of the full life cycle:

• Data collection/cleaning/annotation: One of DL's first successes began with 
ImageNet (https://www.image-net.org/), where millions of images 
are collected and annotated according to the English nouns in the WordNet 
database (https://wordnet.princeton.edu/). This led to the successful 
development of pretrained DL models for computer vision such as VGG-NETS 
(https://pytorch.org/hub/pytorch_vision_vgg/), which can perform 
state-of-the-art image classification and is widely used for industrial and business 
applications. The main challenge of this kind of large-scale data collection and 
annotation is the unknown bias, which is hard to measure in this process (https://
venturebeat.com/2020/11/03/researchers-show-that-computer-
vision-algorithms-pretrained-on-imagenet-exhibit-multiple-
distressing-biases/). Another example is the sales engagement platform 
Outreach (https://www.outreach.io/), where we can classify a potential 
buyer's sentiment. For instance, we might start by collecting email messages of 100 
paid organizations to train a DL model. Following this, we would need to collect 
email messages from more organizations, either due to an accuracy requirement or 
expanded language coverage (such as from English only to other languages such as 
German and French). These many iterations of data collection and annotation will 
generate quite a lot of datasets. There is a tendency to just name the version of the 
dataset with hardcoded version numbers as part of a dataset filename such as  
the following:

MyCoolAnnotatedData-v1.0.csv

MyCoolAnnotatedData-v2.0.csv

MyCoolAnnotatedData-v3.0.csv

MyCoolAnnotatedData-v4.0.csv

https://www.image-net.org/
https://wordnet.princeton.edu/
https://pytorch.org/hub/pytorch_vision_vgg/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://venturebeat.com/2020/11/03/researchers-show-that-computer-vision-algorithms-pretrained-on-imagenet-exhibit-multiple-distressing-biases/
https://www.outreach.io/
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This seems to work until some changes are required in any one of the vX.0 datasets 
due to the need to correct annotation errors or remove email messages because of 
customer churn. Also, what happens if we need to combine several datasets together 
or perform some data cleaning and transformation to train a new DL model? What 
if we need to implement data augmentation to artificially generate some datasets? 
Evidently, simply changing the names of the files is neither scalable nor sustainable.

• Model development: We need to understand that the bias in the data we use to 
train/pretrain a DL model will reflect in the prediction when applying the model. 
While we do not focus on de-biasing data in this book, we must implement data 
versioning and data provenance as first-class artifacts when training and serving  
a DL model so that we can track all model experiments. When fine-tuning  
a pretrained model for our use cases, as we did earlier, we also need to track the 
versioning of the fine-tuning dataset we use. In our previous example, we use 
a variant of the BERT model to fine-tune the IMDb review data. While, in our 
first example, we did not care about the versioning or source of the data, this is 
important for a practical and real application. In summary, DL models need to 
link to a particular version of datasets using a scalable approach. We will provide 
solutions to this topic in this book.

• Model deployment and serving in production: This is for deploying into the 
production environment to serve online traffic. DL model serving latency is of 
particular importance and is interesting to collect at this stage. This might allow you 
to adjust the hardware environment used for inference.

• Model validation and A/B testing: The data we collect at this stage is mostly for 
user behavior metrics in the online experimentation environment (https://
www.slideshare.net/pavel/ab-testing-ai-global-artificial-
intelligence-conference-2019). Online data traffic also needs to be 
characterized in order to understand whether there is a statistical difference in the 
input to the model between offline experimentation and online experimentation. 
Only if we pass the A/B testing and validate that the model indeed works better than 
its previous version in terms of user behavior metrics do we roll out to production 
for all users. 

• Monitoring and feedback loops: In this stage, note that the data will need to be 
continuously collected to detect data drift and concept drift. For example, in the 
buyer sentiment classification example discussed earlier, if buyers start to use 
terminology that is not encountered in the training data, the performance of the 
model could suffer.  

In summary, data tracking and observability are major challenges in all stages of the DL 
life cycle. 

https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019
https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019
https://www.slideshare.net/pavel/ab-testing-ai-global-artificial-intelligence-conference-2019
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Understanding DL model challenges
In this section, we will discuss DL model challenges. Let's look at the challenges at each 
stage of the DL life cycle, as depicted in Figure 1.3:

• Data collection/cleaning/annotation: While the data challenge has already been 
stated, the challenge of linking data to the model of interest still exists. MLflow has 
native integration with Delta Lake so that any trained model can be traced back to a 
particular version within Delta Lake. 

• Model development: This is the time for trying lots of model frameworks, 
packages, and model selections. We need to track all the packages we use, along 
with the model parameters, hyperparameters, and model metrics in all experiments 
we run. Without a scalable and standardized way to track all experiments, this 
becomes a very tangled space. This not only causes trouble in terms of not knowing 
which experiments have been done so that we don't waste time doing them again, 
but it also creates problems when tracking which model is ready to be deployed 
or has already been deployed. Model serialization is another major challenge as 
different DL frameworks tend to use different ways to serialize the model. For 
example, pickle. (https://github.com/cloudpipe/cloudpickle) 
is usually used in serializing the model written in Python. However, TorchScript 
(https://pytorch.org/docs/stable/jit.html) is now highly 
performant for PyTorch models. In addition, Open Neural Network Exchange or 
ONNX (https://onnx.ai/) tries to provide more framework-agnostic DL 
serialization. Finally, we need to log the serialized model and register the model so 
that we can track model versioning. MLflow is one of the first open source tools to 
overcome these challenges.

• Model deployment and serving in production: An easy-to-use model deployment 
tool that can tie into the model registry is a challenge. MLflow can be used to 
alleviate that, allowing you to load models for production deployment with full 
provenance tracking. 

• Model validation and A/B testing: During online validation and experimentation, 
model performance needs to be validated and user behavior metrics need to be 
collected. This is so that we can easily roll back or redeploy a particular version 
of the models. A model registry is critical for at-scale online model production 
validation and experimentation.

• Monitoring and feedback loops: Model drifting and degradation over time is 
a real challenge. The visibility of model performance in production needs to be 
continuously monitored. Feedback data can be used to decide whether a model 
needs to be retrained.

https://github.com/cloudpipe/cloudpickle
https://pytorch.org/docs/stable/jit.html
https://onnx.ai/
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In summary, DL model challenges in the full life cycle are unique. It is also worth pointing 
out a common framework that can assist the model development and online production 
back-and-forth is of great importance, as we don't want to use different tools just because 
the execution environment is different. MLflow provides this unified framework to bridge 
such gaps.

Understanding DL code challenges
In this section, we will discuss DL code challenges. Let's look at how these code challenges 
are manifested in each of the stages described in Figure 1.3. In this section, and within 
the context of DL development, code refers to the source code that's written in certain 
programming languages such as Python for data processing and implementation, while 
a model refers to the model logic and architecture in its serialized format (for example, 
pickle, TorchScript, or ONNX):

• Data collection/cleaning/annotation: While data is the central piece in this stage, 
the code that does the query, extraction/transformation/loading (ETL), and 
data cleaning and augmentation is of critical importance. We cannot decouple 
the development of the model from the data pipelines that provide the data feeds 
to the model. Therefore, data pipelines that implement ETL need to be treated as 
one of the integrated steps in both offline experimentation and online production. 
A common mistake is that we use different data ETL and cleaning pipelines in 
offline experimentation, and then implement different data ETL/cleaning pipelines 
in online production, which could cause different model behaviors. We need to 
version and serialize the data pipeline as part of the entire model pipeline. MLflow 
provides several ways to allow us to implement such multistep pipelines.

• Model development: During offline experiments, in addition to different versions 
of data pipeline code, we might also have different versions of notebooks or use 
different versions of DL library code. The usage of notebooks is particularly 
unique in ML/DL life cycles. Tracking which model results are produced by which 
notebook/model pipeline/data pipeline needs to be done for each run. MLflow does 
that with automatic code version tracking and dependencies. In addition, code 
reproducibility in different running environments is unique to DL models, as DL 
models usually require hardware accelerators such as GPUs or TPUs. The flexibility 
of running either locally, or remotely, on a CPU or GPU environment is of great 
importance. MLflow provides a lightweight approach in which to organize the ML 
projects so that code can be written once and run everywhere. 
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• Model deployment and serving in production: While the model is serving 
production traffic, any bugs will need to be traced back to both the model and 
code. Thus, tracking code provenance is critical. It is also critical to track all the 
dependency code library versions for a particular version of the model.

• Model validation and A/B testing: Online experiments could use multiple versions 
of models using different data feeds. Debugging any experimentation will require 
not only knowing which model is used but also which code is used to produce that 
model. 

• Monitoring and feedback loops: This stage is similar to the previous stage in terms 
of code challenges, where we need to know whether model degradation is due to 
code bugs or model and data drifting. The monitoring pipeline needs to collect all 
the metrics for both data and model performance.

In summary, DL code challenges are especially unique because DL frameworks are still 
evolving (for example, TensorFlow, PyTorch, Keras, Hugging Face, and SparkNLP). 
MLflow provides a lightweight framework to overcome many common challenges and can 
interface with many DL frameworks seamlessly.

Understanding DL explainability challenges
In this section, we will discuss DL explainability challenges at each of the stages described 
in Figure 1.3. It is increasingly important to view explainability as an integral and 
necessary mechanism to define, test, debug, validate, and monitor models across the entire 
model life cycle. Embedding explainability early will make subsequent model validation 
and operations easier. Also, to maintain ongoing trust in ML/DL models, it is critical to be 
able to explain and debug ML/DL models after they go live in production:

• Data collection/cleaning/annotation: As we have gathered, explainability is critical 
for model prediction. The root cause of any model's trustworthiness or bias can be 
traced back to the data used to train the model. Explainability for the data is still 
an emerging area but is critical. So, what could go wrong and become a challenge 
during the data collection/cleaning/annotation stage? For example, let's suppose 
we have an ML/DL model, and its prediction outcome is about whether a loan 
applicant will pay back a loan or not. If the data collected has certain correlations 
between age and the loan payback outcome, this will cause the model to use age as 
a predictor. However, a loan decision based on a person's age is against the law and 
not allowed even if the model works well. So, during data collection, it could be that 
the sampling strategy is not sufficient to represent certain subpopulations such as 
different loan applicants in different age groups. 
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A subpopulation could have lots of missing fields and then be dropped during 
data cleaning. This could result in underrepresentation following the data cleaning 
process. Human annotations could favor the privileged group and other possible 
unconscious biases. A metric called Disparate Impact could reveal the hidden 
biases in the data, which compares the proportion of individuals that receive a 
positive outcome for two groups: an unprivileged group and a privileged group. 
If the unprivileged group (for example, persons with age > 60) receives a positive 
outcome (for example, loan approval) less than 80% of the proportion of the 
privileged group (persons with age < 60), this is a disparate impact violation 
based on the current common industry standard (a four-fifths rule). Tools such as 
Dataiku could help to automate the disparate impact and subpopulation analysis to 
find groups of people who may be treated unfairly or differently because of the data 
used for model training.

• Model development: Model explainability during offline experimentation is very 
important to not only help understand why a model behaves a certain way but also 
help with model selection to decide which model to use if we need to put it into 
production. Accuracy might not be the only criteria to select a winning model. 
There are a few DL explainability tools, such as SHAP (please refer to Figure 1.5). 
MLflow integration with SHAP provides a way to implement DL explainability:

Figure 1.5 – NLP text SHAP Variable Importance Plot when using a DL model
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Figure 1.5 shows that this NLP model's prediction results' number one feature is the word 
impressive, followed by rent. Essentially, this breaks the black box of the DL model, 
giving much confidence to the usage of DL models in production.

• Model deployment and serving in production: During the production stage, if 
the explainability of the model prediction can be readily provided to users, then not 
only will the usability (user-friendliness) of the model be improved, but also, we can 
collect better feedback data as users are more incentivized to give more meaningful 
feedback. A good explainability solution should provide point-level decisions 
for any prediction outcome. This means that we should be able to answer why a 
particular person's loan is rejected and how this rejection compares to other people 
in a similar or different age group. So, the challenge is to have explainability as one 
of the gated deployment criteria for releasing a new version of the model. However, 
unlike accuracy metrics, it is very difficult to measure explainability as scores or 
thresholds, although certain case-based reasoning could be applied and automated. 
For example, if we have certain hold-out test cases where we expect the same or 
similar explanations regardless of the versions of the model, then we could use that 
as a gated release criterion. 

• Model validation and A/B testing: During online experimentation and ongoing 
production model validation, we would need explainability to understand 
whether the model has been applied to the right data or whether the prediction is 
trustworthy. Usually, ML/DL models encode complex and non-linear relationships. 
During this stage, it is often desirable to understand how the model influences 
the metrics of user behavior (for example, a higher conversion rate on a shopping 
website). Influence sensitivity analysis could provide insights regarding whether 
a certain user feature such as a user's income has a positive or negative impact on 
the outcome. If during this stage, we found, for some reason, that higher incomes 
cause a negative loan approval rate or a lower conversion rate, then this should 
be automatically flagged. However, automated sensitivity analysis during model 
validation and A/B testing is still not widely available and remains a challenging 
problem. A few vendors such as TruEra provide potential solutions to this space.
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• Monitoring and feedback loops: While model performance metrics and data 
characteristics are of importance here, explainability can provide an incentive for 
users to provide valuable feedback and user behavior metrics to identify drivers and 
causes of model degradation if there are any. As we know, ML/DL models are prone 
to overfitting and cannot generalize well beyond their training data. One important 
explainability solution during model production monitoring is to measure how 
feature importance shifts across different data splits (for example, pre-COVID 
versus post-COVID). This can help data scientists to identify where degradation 
in model performance is due to changing data (such as a statistical distribution 
shift) or changing relationships between variables (such as a concept shift). A recent 
example provided by TruEra (https://truera.com/machine-learning-
explainability-is-just-the-beginning/) illustrates that a loan model 
changes its prediction behavior due to changes in people's annual income and 
loan purposes before and after the COVID periods. This explainability of Feature 
Importance Shift greatly helps to identify the root causes of changes in model 
behavior during the model production monitoring stage.

In summary, DL explainability is a major challenge where ongoing research is still needed. 
However, MLflow's integration with SHAP now provides a ready-to-use tool for practical 
DL applications, which we will cover in our advanced chapter later in this book.

Summary
In this opening chapter, we implemented our first DL model by following the pretrain 
plus fine-tuning core DL development paradigm using PyTorch lightning-flash for 
a text sentiment classification model. We learned about the five stages of the full life cycle 
of DL. We defined the concept of MLOps along with the three foundation layers and four 
ML/DL pillars, where MLflow plays critical roles in all four pillars (data, model, code, 
and explainability). Finally, we described the challenges in DL data, model, code, and 
explainability. 

With the knowledge and first DL model experience gained in this chapter, we are now 
ready to learn about and implement MLflow in our DL model in the following chapters. 
In the next chapter, we will start with the implementation of a DL model with MLflow 
autologging enabled. 

https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://truera.com/machine-learning-explainability-is-just-the-beginning/
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Further reading
To further your knowledge, please consult the following resources and documentation:

• On the Opportunities and Risks of Foundation Models (Stanford University): 
https://arxiv.org/abs/2108.07258

• MLOps: not as Boring as it Sounds: https://itnext.io/mlops-not-as-
boring-as-it-sounds-eaebe73e3533

• AI is Driving Software 2.0… with Minimal Human Intervention: https://
www.datasciencecentral.com/profiles/blogs/ai-is-driving-
software-2-0-with-minimal-human-intervention

• MLOps: Continuous delivery and automation pipelines in machine learning (Google): 
https://cloud.google.com/architecture/mlops-continuous-
delivery-and-automation-pipelines-in-machine-learning

• Deep Learning Development Cycle (Salesforce): https://metamind.readme.
io/docs/deep-learning-dev-cycle

• MLOps – The Missing Piece In The Enterprise AI Puzzle: https://www.forbes.
com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-
in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad

• MLOps: What It Is, Why It Matters, and How to Implement It:  
https://neptune.ai/blog/mlops

• Explainable Deep Learning: A Field Guide for the Uninitiated: https://arxiv.
org/abs/2004.14545

• Machine learning explainability is just the beginning: https://truera.com/
machine-learning-explainability-is-just-the-beginning/

• AI Fairness — Explanation of Disparate Impact Remover: https://
towardsdatascience.com/ai-fairness-explanation-of-
disparate-impact-remover-ce0da59451f1

• Datasheets for Datasets: https://arxiv.org/pdf/1803.09010.pdf

https://arxiv.org/abs/2108.07258
https://itnext.io/mlops-not-as-boring-as-it-sounds-eaebe73e3533
https://itnext.io/mlops-not-as-boring-as-it-sounds-eaebe73e3533
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
 https://www.datasciencecentral.com/profiles/blogs/ai-is-driving-software-2-0-with-minimal-human-intervention
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://metamind.readme.io/docs/deep-learning-dev-cycle
https://metamind.readme.io/docs/deep-learning-dev-cycle
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://www.forbes.com/sites/janakirammsv/2021/01/05/mlopsthe-missing-piece-in-the-enterprise-ai-puzzle/?sh=3d5c89dd24ad
https://neptune.ai/blog/mlops
https://arxiv.org/abs/2004.14545
https://arxiv.org/abs/2004.14545
https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://truera.com/machine-learning-explainability-is-just-the-beginning/
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://towardsdatascience.com/ai-fairness-explanation-of-disparate-impact-remover-ce0da59451f1
https://arxiv.org/pdf/1803.09010.pdf




2
 Getting Started  
with MLflow for 

Deep Learning
One of the key capabilities of MLflow is to enable Machine Learning (ML) experiment 
management. This is critical because data science requires reproducibility and traceability 
so that a Deep Learning (DL) model can be easily reproduced with the same data, 
code, and execution environment. This chapter will help us get started with how to 
implement DL experiment management quickly. We will learn about MLflow experiment 
management concepts and capabilities, set up an MLflow development environment, and 
complete our first DL experiment using MLflow. By the end of this chapter, we will have  
a working MLflow tracking server showing our first DL experiment results.

In this chapter, we're going to cover the following main topics:

• Setting up MLflow 

• Implementing our first MLflow logging-enabled DL experiment

• Exploring MLflow's components and usage patterns
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Technical requirements 
To complete the experiment in this chapter, we will need the following tools, libraries, and 
GitHub repositories installed or checked out on our computer:

• VS Code: The version we use in this book is August 2021 (that is, version 1.60). 
We use VS Code for our local code development environment. This is the 
recommended way for local developments. Please refer to https://code.
visualstudio.com/updates/v1_60.

• MLflow: Version 1.20.2. In this chapter, in the Setting up MLflow section, we will 
walk through how to set up MLflow locally or remotely. Please refer to https://
github.com/mlflow/mlflow/releases/tag/v1.20.2.

• Miniconda: Version 4.10.3. Please refer to https://docs.conda.io/en/
latest/miniconda.html.

• PyTorch lightning-flash: 0.5.0. Please refer to https://github.com/
PyTorchLightning/lightning-flash/releases/tag/0.5.0.

• The GitHub URL for the code in this chapter: You can find this at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLflow/tree/main/chapter02.

Setting up MLflow
MLflow is an open source tool that is primarily written in Python. It has over 10,000 stars 
tagged in its GitHub source repository (https://github.com/mlflow/mlflow). 
The benefits of using MLflow are numerous, but we can illustrate one benefit with the 
following scenario: Let's say you are starting a new ML project, trying to evaluate different 
algorithms and model parameters. Within a few days, you run hundreds of experiments 
with lots of code changes using different ML/DL libraries and get different models with 
different parameters and accuracies. You need to compare which model works better 
and also allow your team members to reproduce the results for model review purposes. 
Do you prepare a spreadsheet and write down the model name, parameters, accuracies, 
and location of the models? How can someone else rerun your code or use your trained 
model with a different set of evaluation datasets? This can quickly become unmanageable 
when you have lots of iterations for different projects. MLflow can help you to track 
your experiments, compare your model runs and allow others to reproduce your results 
easily, reuse your trained models for review purposes, and even deploy your model to 
production with ease.

https://code.visualstudio.com/updates/v1_60
https://code.visualstudio.com/updates/v1_60
https://github.com/mlflow/mlflow/releases/tag/v1.20.2
https://github.com/mlflow/mlflow/releases/tag/v1.20.2
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter02
https://github.com/mlflow/mlflow
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Sound exciting? Well, let's set up MLflow so that we can explore its components and 
patterns. MLflow allows both a local setup and a cloud-based setup. We will walk through 
both of these setup scenarios in the following sections.

Setting up MLflow locally using miniconda
First, let's set up MLflow in a local development environment. This allows quick 
prototyping and helps you to get familiar with the basic functionality of the MLflow tool. 
Additionally, it allows you to interact with a remote MLflow cloud server when required. 
Follow these instructions to set up MLflow.

Assuming you already have a virtual conda environment created from Chapter 1, Deep 
Learning Life Cycle and MLOps Challenges, you are ready to install MLflow in the same 
virtual environment:

pip install mlflow

The preceding command will install the latest version of MLflow. If you want to install a 
specific version of MLflow, you can use the following:

pip install mlflow==1.20.2

As you can see, I have installed MLflow version 1.20.2. By default, MLflow will use the 
local filesystem to store all of the experiment artifacts (for example, a serialized model) 
and metadata (parameters, metrics, and more). If a relational database is needed as 
MLflow's backend storage, additional installation and configuration are required. For 
now, let's use the filesystem for storage. You can verify your MLflow installation locally by 
typing the following into the command line:

mlflow --version

Then, it will show the installed MLflow version, as follows:

mlflow, version 1.20.2

This confirms that we have installed version 1.20.2 of MLflow on our local development 
environment. Additionally, you can launch the MLflow UI locally to see the MLflow 
tracking server UI, as follows:

mlflow ui
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Following this, you will see that the UI web server is running:

Figure 2.1 – Starting the MLflow UI in a local environment

Figure 2.1 shows the local MLflow UI website: http://127.0.0.1:5000/. If you click 
on this URL, you will see the following MLflow UI showing up in your browser window. 
Since this is a brand new MLflow installation, there is only one Default experiment with 
no runs under it yet (please refer to Figure 2.2):

Figure 2.2 – The MLflow Default Experiments UI web page

Seeing the default MLflow UI page up and running concludes the successful setup of 
MLflow locally with a local working MLflow tracking server.
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Setting up MLflow to interact with a remote  
MLflow server
In a corporate production environment, MLflow is usually hosted on a cloud server, 
which could be self-hosted or one of the Databricks' managed services in one of the cloud 
providers (such as AWS, Azure, or Google Cloud). In those cases, there is a requirement to 
set up your local development environment so that you can run your ML/DL experiment 
locally but interact with the MLflow server remotely. Next, we will describe how to do this 
using environment variables with the help of the following three steps:

1. In a bash shell command-line environment, define three new environment 
variables if you are using a Databricks-managed MLflow tracking server. The first 
environment variable is MLFLOW_TRACKING_URI, and the assigned value is 
databricks:

export MLFLOW_TRACKING_URI=databricks

export DATABRICKS_HOST=https://*******

export DATABRICKS_TOKEN=dapi******

2. The second environment variable is DATABRICKS_HOST. If your Databricks 
managed website looks like https://dbc-*.cloud.databricks.com/, then 
that's the value of the DATABRICKS_HOST variable (replace * with your actual 
website string). 

3. The third environment variable is DATABRICKS_TOKEN. Navigate to your 
Databricks-managed website at https://dbc-*.cloud.databricks.
com/#setting/account, click on Access Tokens, and then click on Generate 
New Token. You will see a pop-up window with a Comment field (which can be 
used to record why this token will be used) and expiration date, as shown in  
Figure 2.3:

Figure 2.3 – Generating a Databricks access token 
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Click on the Generate button and a pop-up window similar to Figure 2.4 will 
appear. It will ask you to copy that token. This token will need to be copied and 
assigned to the DATABRICKS_TOKEN environment variable as the value:

Figure 2.4 – Copying the generated token that will be used for the environment variable

Once you have these three environment variables set up, you will be able to interact 
with the Databricks-managed MLflow server in the future. Note that the access token 
has an expiration date for security reasons, which can be revoked at any time by the 
administrator, so make sure you have the environment variable updated accordingly when 
the token is refreshed.

In summary, we have learned how to set up MLflow locally to interact with a local MLflow 
tracking server or a remote MLflow tracking server. This will allow us to implement 
our first MLflow tracking-enabled DL model in the next section so that we can explore 
MLflow concepts and components in a hands-on way.

Implementing our first DL experiment with 
MLflow autologging
Let's use the DL sentiment classifier we built in Chapter 1, Deep Learning Life Cycle 
and MLOps Challenges, and add MLflow autologging to it to explore MLflow's tracking 
capabilities:

1. First, we need to import the MLflow module:

import mlflow
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This will provide MLflow Application Programming Interfaces (APIs) for logging 
and loading models. 

2. Just before we run the training code, we need to set up an active experiment using 
mlflow.set_experiment for the current running code:

EXPERIMENT_NAME = "dl_model_chapter02"

mlflow.set_experiment(EXPERIMENT_NAME)

experiment = mlflow.get_experiment_by_name(EXPERIMENT_
NAME)

print("experiment_id:", experiment.experiment_id)

This sets an experiment named dl_model_chapter02 to be the current active 
experiment. If this experiment does not exist in your current tracking server, it will 
be created automatically.

Environment Variable
Note that you might need to set the tracking server URI using the  
MLFLOW_TRACKING_URI environment variable before you run your 
first experiment. If you are using a hosted Databricks server, implement the 
following: 

export MLFLOW_TRACKING_URI=databricks 

If you are using a local server, then set this environment variable to empty or 
the default localhost at port number 5000 as follows (note that this is our 
current section's scenario and assumes you are using a local server): 

export MLFLOW_TRACKING_URI= http://127.0.0.1:5000 

3.  Next, add one line of code to enable autologging in MLflow:

mlflow.pytorch.autolog()

This will allow the default parameters, metrics, and model to be automatically 
logged to the MLflow tracking server.

Autologging in MLflow
Autologging in MLflow is still in experiment mode (as of version 1.20.2) and 
might change in the future. Here, we use it to explore the MLflow components 
since it only requires one line of code to automatically log everything of 
interest. In the upcoming chapters, we will learn about and implement 
additional ways to perform tracking and logging in MLflow. Also, note that 
currently, autologging in MLflow for PyTorch (as of version 1.20.2) only works 
for the PyTorch Lightning framework, not any arbitrary PyTorch code.
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4. Use the Python context manager with statement to start the experiment run by 
calling mlflow.start_run:

with mlflow.start_run(experiment_id=experiment.
experiment_id, run_name="chapter02"):

    trainer.finetune(classifier_model, 

                     datamodule=datamodule, 

                     strategy="freeze")

    trainer.test()

Notice that all lines of code underneath the with block are the regular DL model 
fine-tuning and testing steps. We only enable automatic MLflow logging so that we 
can observe the metadata that is being tracked/logged by the MLflow tracking server.

5. Next, you can run the entire code of first_dl_with_mlflow.py (the 
full code can be viewed in this chapter's GitHub at https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter02/first_dl_with_mlflow.py) using the 
following command line:

python first_dl_with_mlflow.py

On a non-GPU macOS laptop, the entire run takes less than 10 minutes. You should 
have an output on your screen, as follows:

Figure 2.5 – DL model training/testing with MLflow autologging enabled

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter02/first_dl_with_mlflow.py
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If you are running this for the first time, you will see that the experiment with the 
name of dl_model_chapter02 does not exist. Instead, MLflow automatically 
creates this experiment for you:

Figure 2.6 – MLflow automatically creates a new environment if it does not exist

6. Now, we can open the MLflow UI locally to see what has been logged in the local 
tracking server by navigating to http://127.0.0.1:5000/. Here, you will see 
that a new experiment (dl_model_chapter02) with a new run (Run Name = 
chapter02) has been logged:

Figure 2.7 – The MLflow tracking server UI shows a new experiment with a new run
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Now, click on the hyperlink of the Start Time column in Figure 2.7. You will see the 
details of the logged metadata of the run:

Figure 2.8 – The MLflow run UI shows the metadata details about the experiment run
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If you can view this screen in your own local environment, then congratulations! You  
just completed the implementation of MLflow tracking for our first DL model! In the  
next section, we will explore central concepts and components in MLflow using our 
working example.

Exploring MLflow's components and usage 
patterns
Let's use the working example implemented in the previous section to explore 
the following central concepts, components, and usages in MLflow. These include 
experiments, runs, metadata about experiments, artifacts for experiments, models,  
and code.

Exploring experiments and runs in MLflow
Experiment is a first-class entity in the MLflow APIs. This makes sense as data scientists 
and ML engineers need to run lots of experiments in order to build a working model 
that meets the requirements. However, the idea of an experiment goes beyond just the 
model development stage and extends to the entire life cycle of the ML/DL development 
and deployment. So, this means that when we do retraining or training for a production 
version of the model, we need to treat them as production-quality experiments. This 
unified view of experiments builds a bridge between the offline and online production 
environments. Each experiment consists of many runs where you can either change the 
model parameters, input data, or even model type for each run. So, an experiment is an 
umbrella entity containing a series of runs. The following diagram (Figure 2.9) illustrates 
that a data scientist could carry out both offline experiments and online production 
experiments across multiple stages of the life cycle of ML/DL models:

Figure 2.9 – Experiments across the offline and online production life cycles of ML/DL models
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As you can see from Figure 2.9, during the model development stage, a data scientist 
could run multiple runs of the same experiment or multiple experiments depending on 
the project scenarios. If it is a small ML project, having all runs under one single offline 
experiment could be enough. If it is a complex ML project, it is reasonable to design 
different experiments and conduct runs under each experiment. A good reference for 
designing ML experiments can be found at https://machinelearningmastery.
com/controlled-experiments-in-machine-learning/. Then, during the 
model production phase, it is desirable to set up production-quality experiments, as we 
need to perform model improvement and continuous deployment with model retraining. 
A production experiment will provide a gated accuracy check to prevent regression of the 
new model. Often, this is achieved by running automatic model evaluation and validation 
against a hold-out test dataset to check whether a new model still meets the release bar in 
terms of accuracy.

Now, let's explore the MLflow experiments in a hands-on way. Run the following MLflow 
command line to interact with the tracking server:

mlflow experiments list 

If your MLFLOW_TRACKING_URI environment variable points to a remote tracking 
server, then it will list all the experiments that you have read access to. If you want to see 
what's in the local tracking server, you could set MLFLOW_TRACKING_URI to nothing 
(that is, empty), as follows (note that you don't need to do this if you have never had this 
environment variable in your local user profile; however, doing this will make sure you 
use a local tracking server):

export MLFLOW_TRACKING_URI=

Prior to your first implementation of the DL model with MLflow autologging enabled, the 
output of listing all your experiments should look similar to Figure 2.10 (note that this also 
depends on where you run the command line; the following output assumes you run the 
command in your local folder where you can check the code for Chapter 2 on GitHub):

Figure 2.10 – The default MLflow experiment list in a local environment

Figure 2.10 lists the three columns of the experiment property: Experiment Id (an integer), 
Name (a text field that can be used to describe the experiment name), and Artifact 
Location (by default, this is located in the mlruns folder underneath the directory where 
you execute the MLflow commands). The mlruns folder is used by a filesystem-based 
MLflow tracking server to store all the metadata of experiment runs and artifacts.

https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
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The Command-Line Interface (CLI) versus REST APIs versus Programming 
Language-Specific APIs
MLflow provides three different types of tools and APIs to interact with the 
tracking server. Here, the CLI is used so that we can explore the MLflow 
components. 

So, let's explore a specific MLflow experiment, as follows:

1. First, create a new experiment using the MLflow CLI, as follows:

mlflow experiments create -n dl_model_chapter02

The preceding command creates a new experiment named dl_model_chapter02. 
If you have already run the first DL model with MLflow autologging in the previous 
section, the preceding command will cause an error message, as follows:

mlflow.exceptions.MlflowException: Experiment 'dl_model_
chapter02' already exists.

This is to be expected, and you have done nothing wrong. Now if you list all 
the experiments in the local tracking server, it should include the newly created 
experiment, as shown here:

Figure 2.11 – The new MLflow experiments list after creating a new experiment

2. Now, let's examine the relationship between experiments and runs. If you look 
carefully at the URL of the run page (Figure 2.8), you will see something similar to 
the following:

http://127.0.0.1:5000/#/experiments/1/
runs/2f2ec6e72a5042f891abe0d3a533eec7

As you might have gathered, the integer after the experiments path is the 
experiment ID. Then, after the experiment ID, there is a runs path, followed  
by a GUID-like random string, which is the run ID. So, now we understand how  
the runs are organized under the experiment with a globally unique ID (called  
a run ID). 
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Knowing a run's globally unique ID is very useful. This is because we can retrieve 
the run's logged data using run_id. If you use the mlflow runs describe 
--run-id <run_id> command line, you can get the list of metadata that 
this run has logged. For the experiment we just ran, the following shows the full 
command with the run ID:

mlflow runs describe –-run-id 
2f2ec6e72a5042f891abe0d3a533eec7

The output snippets of this command line are as follows (Figure 2.12):

Figure 2.12 – The MLflow command line describes the run in the JSON data format

Note that Figure 2.12 presents all the metadata about this run in JSON format. This 
metadata includes parameters used by the model training; metrics for measuring the 
accuracy of the model in training, validation, and testing; and more. The same data is 
also presented in the MLflow UI in Figure 2.8. Note that the powerful MLflow CLI will 
allow very convenient exploration of the MLflow logged metadata and artifacts as well as 
enabling shell script-based automation, as we will explore in the upcoming chapters.
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Exploring MLflow models and their usages
Now, let's explore how the DL model artifacts are logged in the MLflow tracking server. 
On the same run page, as shown in Figure 2.8, if you scroll down toward the bottom, you 
will see the Artifacts section (Figure 2.13). This lists all the metadata regarding the model 
and the serialized model itself:

Figure 2.13 – The model artifacts logged by MLflow

The MLflow Tracking Server's Backend Store and Artifact Store
An MLflow tracking server has two types of storage: first, a backend store, 
which stores experiments and runs metadata along with params, metrics, 
and tags for runs; and second, an artifact store, which stores larger files such 
as serialized models, text files, or even generated plots for visualizing model 
results. For the purpose of simplicity, in this chapter, we are using a local 
filesystem for both the backend store and the artifact store. However, some  
of the more advanced features such as model registry are not available in  
a filesystem-based artifact store. In later chapters, we will learn how to use  
a model registry.



40      Getting Started with MLflow for Deep Learning

Let's look at the list of artifacts, one by one:

• model_summary.txt: At the root folder level, this file looks similar to the 
following output if you click on it. It describes the model metrics and the layers of 
the DL model (please refer to Figure 2.14):

Figure 2.14 – The model summary file logged by MLflow
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Figure 2.14 provides a quick overview of what the DL model looks like in terms 
of the number and type of neural network layers, the number and size of the 
parameters, and the type of metrics used in training and validation. This is very 
helpful when the DL model architecture is needed to be shared and communicated 
among team members or stakeholders.

• The model folder: This folder contains a subfolder, called data, and three files 
called MLmodel, conda.yaml, and requirements.txt:

 � MLmodel: This file describes the flavor of the model that MLflow supports. Flavor 
is MLflow-specific terminology. It describes how the model is saved, serialized, 
and loaded. For our first DL model, the following information is stored in an 
MLmodel file (Figure 2.15):

Figure 2.15 – Content of the MLmodel file for our first DL model run with MLflow
Figure 2.15 illustrates that this is a PyTorch flavor model with run_id that we have 
just run.
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 � conda.yaml: This is a conda environment definition file used by the model to 
describe our dependencies. Figure 2.16 lists the content logged by MLflow in the 
run we just completed:

Figure 2.16 – The content of the conda.yaml file logged by MLflow 

 � requirements.txt: This is a Python pip-specific dependency definition file. 
It is just like the pip section in the conda.yaml file, as shown in Figure 2.16.

 � data: This is a folder that contains the actual serialized model, called  
model.pth, and a description file, called pickle_module_info.txt, whose 
content for our first DL experiment is as follows:

mlflow.pytorch.pickle_module

This means the model is serialized using a PyTorch-compatible pickle serialization 
method provided by MLflow. This allows MLflow to load the model back to 
memory later if needed.
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Model Registry versus Model Logging
The MLflow model registry requires a relational database such as MySQL as 
the artifact store, not just a plain filesystem. Therefore, in this chapter, we will 
not explore it yet. Note that a model registry is different from model logging 
in that, for each run, you want to log model metadata and artifacts. However, 
only for certain runs that meet your production requirements, you may want 
to register them in the model registry for production deployment and version 
control. In later chapters, we will learn how to register models.

By now, you should have a good understanding of the list of files and metadata about the 
model and the serialized model (along with the .pth file extension in our experiment, 
which refers to a PyTorch serialized model) logged in the MLflow artifact store. In 
the upcoming chapters, we will learn more about how the MLflow model flavor works 
and how to use the logged model for model registry and deployment. MLflow model 
flavors are model frameworks such as PyTorch, TensorFlow, and scikit-learn, which are 
supported by MLflow. Interested readers can find more details about the current built-in 
model flavors supported by MLflow from the official MLflow documentation site at 
https://www.mlflow.org/docs/latest/models.html#built-in-model-
flavors.

Exploring MLflow code tracking and its usages
When exploring the metadata of the run, we can also discover how the code is being 
tracked. As shown in the MLflow UI and the command-line output in JSON, the code is 
tracked in three ways: a filename, a Git commit hash, and a source type. You can execute 
the following command line:

mlflow runs describe --run-id 2f2ec6e72a5042f891abe0d3a533eec7 
| grep mlflow.source

You should be able to find the following segments of JSON key-value pairs in the output:

"mlflow.source.git.commit": 
"ad6c7338a416ff4c2848d726b092057457c22408",

"mlflow.source.name": "first_dl_with_mlflow.py",

"mlflow.source.type": "LOCAL"

Based on this ad6c7338a416ff4c2848d726b092057457c22408 Git commit 
hash, we can go on to find the exact copy of the Python code we used: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/
chapter02/first_dl_with_mlflow.py.

https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/blob/ad6c7338a416ff4c2848d726b092057457c22408/chapter02/first_dl_with_mlflow.py


44      Getting Started with MLflow for Deep Learning

Note that, here, the source type is LOCAL. This means that we execute the  
MLflow-enabled source code from a local copy of the code. In later chapters,  
we will learn about other source types. 

LOCAL versus Remote GitHub Code
If the source is a local copy of the code, there is a caveat regarding the Git 
commit hash that you see in the MLflow tracking server. If you make code 
changes locally but forget to commit them and then immediately start an 
MLflow experiment tracking run, MLflow will only log the most recent Git 
commit hash. We can solve this problem in one of two ways: 

1. Commit our code changes before running the MLflow experiment. 

2. Use remote GitHub code to run the experiment. 

Since the first method is not easily enforceable, the second method is preferred. 
Using remote GitHub code to run a DL experiment is an advanced topic that 
we will explore in later chapters.

So far, we have learned about the MLflow tracking server, experiments, and runs. 
Additionally, we have logged metadata about runs such as parameters and metrics, 
examined code tracking, and explored model logging. These tracking and logging 
capabilities ensure that we have a solid ML experiment management system, not only 
for model development but also for model deployment in the future, as we need to track 
which runs produce the model for production. Reproducibility and provenance-tracking 
are the hallmarks of what MLflow provides. In addition to this, MLflow provides  
other components such as MLproject for standardized ML project code organization,  
a model registry for model versioning control, model deployment capabilities, and model 
explainability tools. All of these MLflow components cover the whole life cycle of  
ML/DL development, deployment, and production, which we will examine in more  
depth in future chapters.

Summary
In this chapter, we learned how to set up MLflow to work with either a local MLflow 
tracking server or a remote MLflow tracking server. Then, we implemented our first DL 
model with MLflow autologging enabled. This allowed us to explore MLflow in  
a hands-on way to understand a few central concepts and foundational components 
such as experiments, runs, metadata about experiments and runs, code tracking, model 
logging, and model flavor. The knowledge and first-round experiences gained in this 
chapter will help us to learn more in-depth MLflow tracking APIs in the next chapter.
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Further reading
To further your knowledge, you can consult the following resources and documentation:

• The MLflow Command-Line Interface documentation: https://www.mlflow.
org/docs/latest/cli.html

• The MLflow PyTorch autologging documentation: https://www.mlflow.org/
docs/latest/tracking.html#pytorch-experimental

• The MLflow PyTorch model flavor documentation: https://www.mlflow.
org/docs/latest/python_api/mlflow.pytorch.html#module-
mlflow.pytorch

• MLflow and PyTorch — Where Cutting Edge AI meets MLOps: https://medium.
com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-
meets-mlops-1985cf8aa789

• Controlled Experiments in Machine Learning: https://
machinelearningmastery.com/controlled-experiments-in-
machine-learning/

https://www.mlflow.org/docs/latest/cli.html
https://www.mlflow.org/docs/latest/cli.html
https://www.mlflow.org/docs/latest/tracking.html#pytorch-experimental
https://www.mlflow.org/docs/latest/tracking.html#pytorch-experimental
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html#module-mlflow.pytorch
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://medium.com/pytorch/mlflow-and-pytorch-where-cutting-edge-ai-meets-mlops-1985cf8aa789
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/
https://machinelearningmastery.com/controlled-experiments-in-machine-learning/




Section 2 –   
Tracking a Deep 

Learning Pipeline  
at Scale

In this section, we will learn how to use MLflow to track deep learning (DL) pipelines to 
answer various provenance-tracking questions related to data, model, and code (including 
both notebook and pipeline code). We will start with setting up a local full-fledged 
MLflow tracking server that will be used frequently in the rest of this book. A provenance 
tracking framework that includes six types of provenance questions will be presented to 
guide our implementation. Then, we will learn how to track model provenance, metrics, 
and parameters using MLflow to answer these provenance questions. We will also learn 
how to choose an appropriate notebook and pipeline framework to implement DL code 
that's extensible and trackable. We will then implement a multi-step DL training/testing/
registration pipeline using MLflow's MLproject. Finally, we will learn how to track public 
and privately built Python libraries and data versioning using Delta Lake.

This section comprises the following chapters:

• Chapter 3, Tracking Models, Parameters, and Metrics

• Chapter 4, Tracking Code and Data Versioning





3
 Tracking Models, 

Parameters,  
and Metrics

Given that MLflow can support multiple scenarios through the life cycle of DL models, 
it is common to use MLflow's capabilities incrementally. Usually, people start with 
MLflow tracking since it is easy to use and can handle many scenarios for reproducibility, 
provenance tracking, and auditing purposes. In addition, tracking the history of a model 
from cradle to sunset not only goes beyond the data science experiment management 
domain but is also important for model governance in the enterprise, where business and 
regulatory risks need to be managed for using models in production. While the precise 
business values of tracking models in production are still evolving, the need for tracking  
a model's entire life cycle is unquestionable and growing. For us to be able to do this, we 
will begin this chapter by setting up a full-fledged local MLflow tracking server. 
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We will then take a deep dive into how we can track a model, along with its parameters 
and metrics, using MLflow's tracking and registry APIs. By the end of this chapter, 
you should feel comfortable using MLflow's tracking and registry APIs for various 
reproducibility and auditing purposes.

In this chapter, we're going to cover the following main topics:

• Setting up a full-fledged local MLflow tracking server

• Tracking model provenance

• Tracking model metrics

• Tracking model parameters

Technical requirements
The following are the requirements you will need to follow the instructions provided in 
this chapter: 

• Docker Desktop: https://docs.docker.com/get-docker/.

• PyTorch lightning-flash: 0.5.0.: https://github.com/
PyTorchLightning/lightning-flash/releases/tag/0.5.0.

• VS Code with the Jupyter Notebook extension: https://github.com/
microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-
Debugging-for-Notebooks.

• The following GitHub URL for the code for this chapter: https://github.
com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLflow/tree/main/chapter03.

• WSL2: If you are a Microsoft Windows user, it is recommended to install WSL2 to 
run the Bash scripts provided in this book: https://www.windowscentral.
com/how-install-wsl2-windows-10.

https://docs.docker.com/get-docker/
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/PyTorchLightning/lightning-flash/releases/tag/0.5.0
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://www.windowscentral.com/how-install-wsl2-windows-10
https://www.windowscentral.com/how-install-wsl2-windows-10
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Setting up a full-fledged local MLflow  
tracking server
In Chapter 2, Getting Started with MLflow for Deep Learning, we gained hands-on 
experience working with a local filesystem-based MLflow tracking server and inspecting 
the components of the MLflow experiment. However, there are limitations with a default 
local filesystem-based MLflow server as the model registry functionality is not available. 
The benefit of having a model registry is that we can register the model, version control 
the model, and prepare for model deployment into production. Therefore, this model 
registry will bridge the gap between offline experimentation and an online deployment 
production scenario. Thus, we need a full-fledged MLflow tracking server with the 
following stores to track the complete life cycle of a model:

• Backend store: A relational database backend is needed to support MLflow's 
storage of metadata (metrics, parameters, and many others) about the experiment. 
This also allows the query capability of the experiment to be used. We will use  
a MySQL database as a local backend store.

• Artifact store: An object store that can store arbitrary types of objects, such as 
serialized models, vocabulary files, figures, and many others. In a production 
environment, a popular choice is the AWS S3 store. We will use MinIO (https://
min.io/), a multi-cloud object store, as a local artifact store, which is fully 
compatible with the AWS S3 store API but can run on your laptop without you 
needing to access the cloud.

To make this local setup as easy as possible, we will use the docker-compose 
(https://docs.docker.com/compose/) tool with one line of command to start 
and stop a local full-fledged MLflow tracking server, as described in the following steps. 
Note that Docker Desktop (https://docs.docker.com/get-docker/) must be 
installed and running on the machine before you can follow these steps. Docker helps 
build and share containerized applications and microservices. The following steps will 
launch the local MLflow tracking server inside your local Docker container:

1. Check out the chapter03 code repository for your local development 
environment: https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03.

2. Change directory to the mlflow_docker_setup subfolder, which can be found 
under the chapter03 folder.

3. Run the following command:

bash start_mlflow.sh

https://min.io/
https://min.io/
https://docs.docker.com/compose/
https://docs.docker.com/get-docker/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLflow/tree/main/chapter03
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If the command is successful, you should see an output similar to the following on 
your screen:

Figure 3.1 – A local full-fledged MLflow tracking server is up and running

4. Go to http://localhost/ to see the MLflow UI web page. Then, click the 
Models tab in the UI (Figure 3.2). Note that this tab would not work if you only 
had a local filesystem as the backend store for the MLflow tracking server. Hence, 
the MLflow UI's backend is now running on the Docker container service you 
just started, not a local filesystem. Since this is a brand-new server, there are no 
registered models yet:

Figure 3.2 – MLflow model registry UI

5. Go to http://localhost:9000/,and the following screen (Figure 3.3) should 
appear for the MinIO artifact store web UI. Enter minio for Access Key and 
minio123 for Secret Key. These are defined in the .env file, under the mlflow_
docker_setup folder:
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Figure 3.3 – MinIO Web UI login page and browser page after logging in

At this point, you should have a full-fledged local MLflow tracking server running 
successfully! If you want to stop the server, simply type the following command:

bash stop_mlflow.sh

The Docker-based MLflow tracking server will stop. We are now ready to use this local 
MLflow server to track model provenance, parameters, and metrics.

Tracking model provenance
Provenance tracking for digital artifacts has been long studied in the literature. For 
example, when you're using a piece of patient diagnosis data in the biomedical industry, 
people usually want to know where it comes from, what kind of processing and cleaning 
has been done to the data, who owns the data, and other history and lineage information 
about the data. The rise of ML/DL models for industrial and business scenarios in 
production makes provenance tracking a required functionality. The different granularities 
of provenance tracking are critical for operationalizing and managing not just the data 
science offline experimentation, but also before/during/after the model is deployed in 
production. So, what needs to be tracked for provenance?
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Understanding the open provenance tracking 
framework
Let's look at a general provenance tracking framework to understand the big picture 
of why provenance tracking is a major effort. The following diagram is based on the 
Open Provenance Model Vocabulary Specification (http://open-biomed.
sourceforge.net/opmv/ns.html): 

Figure 3.4 – An open provenance tracking framework

In the preceding diagram, there are three important items:

• Artifacts: Things that are produced or used by processes (A1 and A2).

• Processes: Actions that are performed by using or producing artifacts (P1 and P2).

• Causal relationships: Edges or relationships between artifacts and processes, such 
as used, wasGeneratedBy, and wasDerivedFrom in the preceding diagram (R1, R2, 
and R3).

Intuitively, this open provenance model (OPM) framework allows us to ask the following 
5W1H (five Ws and one H) questions, as follows:

http://open-biomed.sourceforge.net/opmv/ns.html
http://open-biomed.sourceforge.net/opmv/ns.html
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Figure 3.5 – Types of provenance questions

Having a systematic provenance framework and a set of questions will help us learn how 
to track model provenance and provide answers to these questions. This will motivate us 
when we implement MLflow model tracking in the next section.

Implementing MLflow model tracking
We can use an MLflow tracking server to answer most of these types of provenance 
questions if we implement both MLflow logging and registry for the DL model we use. 
First, let's review what MLflow provides in terms of model provenance tracking. MLflow 
provides two sets of APIs for model provenance:

• Logging API: This allows each run of the experiment or a model pipeline to log the 
model artifact into the artifact store. 

• Registry API: This allows a centralized location to track the version of the model 
and the stages of the model's life cycle (None, Archived, Staging, or Production).
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Difference between Model Logging and Model Registry
Although every run of the experiment needs to be logged and the model needs 
to be saved in the artifact store, not every instance of the model needs to be 
registered in the model registry. That's because, for many early exploratory 
model experimentations, the model might not be good. Thus, it is not 
necessarily registered to track the version. Only when a model has good offline 
performance and becomes a candidate for promoting to production do we 
need to register it in the model registry to go through the model promotion 
process.

Although MLflow's official API documentation separates logging and registry 
into two components, we will refer to them together as model tracking 
functionality in MLflow in this book. 

We already saw MLflow's auto-logging for the DL model we built in Chapter 2, Getting 
Started with MLflow for Deep Learning. Although auto-logging is powerful, there are two 
issues with the current version:

• It does not automatically register the model to the model registry.

• It does not work out of the box for the logged model to work directly with the 
original input data (in our case, an English sentence) if you just follow MLflow's 
suggestion to use the mlflow.pyfunc.load_model API to load the logged 
model. This is a limitation that's probably due to the experimental nature of the 
current auto-logging APIs in MLflow.

Let's walk through an example to review MLflow's capabilities and auto-logging's 
limitations and how we can solve them:

1. Set up the following environment variables in your Bash terminal, where your 
MinIO and MySQL-based Docker component is running: 

export MLFLOW_S3_ENDPOINT_URL=http://localhost:9000

export AWS_ACCESS_KEY_ID=minio

export AWS_SECRET_ACCESS_KEY=minio123

Note that AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY are using 
the same values that were defined in the .env file, under the mlflow_docker_
setup folder. This is done to make sure that we are using the MLflow server that 
we set up previously. Since these environmental variables are session-based, we can 
also set up the following environment variables in the notebook's code, as follows:

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"
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os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://
localhost:9000"

The preceding three lines of code can be found in this chapter's notebook file, 
just after importing the required Python packages. Before you execute the 
notebook, make sure that you run the following commands to initialize the virtual 
environment, dl_model, which now has additional required packages defined in 
the requirements.txt file:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install -r requirements.txt

If you set up the dl_model virtual environment in the previous chapters, you can 
skip the first line on creating a virtual environment called dl_model. However, 
you still need to activate dl_model as the currently active virtual environment 
and then run pip install -r requirements.txt to install all the required 
Python packages. Once the dl_model virtual environment has been set up 
successfully, you may proceed to the next step.

2. To follow along with this model tracking implementation, check out the 
dl_model_tracking.ipynb notebook file in VS Code by going to this 
chapter's GitHub repository: https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter03/dl_model_tracking.ipynb.

Note that, in the fourth cell of the dl_model_tracking.ipynb notebook, we 
need to point it to the correct and new MLflow tracking URI that we just set up in 
the Docker and define a new experiment, as follows:

EXPERIMENT_NAME = "dl_model_chapter03"

mlflow.set_tracking_uri('http://localhost')

3. We will still use the auto-logging capabilities provided by MLflow but we will assign 
the run with a variable name, dl_model_tracking_run:

mlflow.pytorch.autolog()

with mlflow.start_run(experiment_id=experiment.
experiment_id, run_name="chapter03") as dl_model_
tracking_run:

    trainer.finetune(classifier_model, 
datamodule=datamodule, strategy="freeze")

    trainer.test()

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model_tracking.ipynb
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dl_model_tracking_run allows us to get the run_id parameter and 
other metadata about this run programmatically, as we will see in the next 
step. Once this code cell has been executed, we will have a trained model 
logged in the MLflow tracking server with all the required parameters 
and metrics. However, the model hasn't been registered yet. We can find 
the logged experiment in the MLflow web UI, along with all the relevant 
parameters and metrics, at http://localhost/#/experiments/1/
runs/37a3fe9b6faf41d89001eca13ad6ca47. You can find the model 
artifacts in the MinIO storage backend. Go to http://localhost:9000/
minio/mlflow/1/37a3fe9b6faf41d89001eca13ad6ca47/artifacts/
model/ to see the storage UI, as shown here:

Figure 3.6 – Model artifacts logged In the MinIO storage backend 
The folder structure is similar to what we saw in Chapter 2, Getting Started with 
MLflow for Deep Learning, when we used a plain filesystem to store the model 
artifacts. However, here, we are using a MinIO bucket to store these model artifacts.
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4. Retrieve the run_id parameter from dl_model_tracking_run, as well as 
other metadata, as follows:

run_id = dl_model_tracking_run.info.run_id

print("run_id: {}; lifecycle_stage: {}".format(run_id,

    mlflow.get_run(run_id).info.lifecycle_stage))

This will print out something like the following:
run_id: 37a3fe9b6faf41d89001eca13ad6ca47; lifecycle_
stage: active

5. Retrieve the logged model by defining the logged model URI. This will allow us to 
reload the logged model at this specific location:

logged_model = f'runs:/{run_id}/model'

6. Use mlflow.pytorch.load_model and the following logged_model URI 
to load the model back into memory and make a new prediction for a given input 
sentence, as follows:

model = mlflow.pytorch.load_model(logged_model)

model.predict({'This is great news'})

This will output a model prediction label, as follows:
['positive']

mlflow.pytorch.load_model versus mlflow.pyfunc.load_model
By default, and in the MLflow experiment tracking page's artifact section, if 
you have a logged model, MLflow will recommend using mlflow.pyfunc.
load_model to load back a logged model for prediction. However, this only 
works for inputs such as a pandas DataFrame, NumPy array, or tensor; this 
does not work for an NLP text input. Since auto-logging for PyTorch lightning 
uses mlflow.pytorch.log_model to save the model, the correct way 
to load a logged model back is to use mlflow.pytorch.load_model, 
as we have shown here. This is because MLflow's default design is to use 
mlflow.pyfunc.load_model with standardization and a known 
limitation that can only accept input formats in terms of numbers. For text and 
image data, it requires a tokenization step as a preprocessing step. However, 
since the PyTorch model we saved here already performs tokenization as part 
of the serialized model, we can use the native mlflow.pytorch.load_
model to directly load the model that accepts text as inputs.
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With that, we have successfully logged the model and loaded the model back to 
make a prediction. If we think this model is performing well enough, then we can 
register it. 

7. Let's register the model by using the mlflow.register_model API:

model_registry_version = mlflow.register_model(logged_
model, 'nlp_dl_model')

print(f'Model Name: {model_registry_version.name}')

print(f'Model Version: {model_registry_version.version}')

This will produce the following output:

Figure 3.7 – Model registration success message 
This shows that the model has been successfully registered as version 1 in the model 
registry, under the name nlp_dl_model.

We can also find this registered model in the MLflow web UI by clicking http://
localhost/#/models/nlp_dl_model/versions/1:

Figure 3.8 – MLflow tracking server web UI showing the newly registered model
By default, a newly registered model's stage is None, as shown in the preceding 
screenshot.
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By having a model registered with a version number and stage label, we have laid 
the foundation for deployment to staging (also known as pre-production) and then 
production. We will discuss how to perform model deployment based on registered 
models later in this book.

At this point, we have solved the two issues we raised at the beginning of this section 
regarding the limitations of auto-logging:

• How to load a logged DL PyTorch model using the mlflow.pytorch.load_
model API instead of the mlflow.pyfunc.load_model API

• How to register a logged DL PyTorch model using the mlflow.register_
model API

Choices of MLflow DL Model Logging APIs
For DL models, the auto-logging for PyTorch only works for PyTorch 
lightning frameworks. There are other DL frameworks, such as 
TensorFlow, Keras, fastai, and MXNet, that are also supported by 
the corresponding MLflow auto-logging APIs. For other PyTorch 
frameworks such as Hugging Face, we can use MLflow's mlflow.
pyfunc.log_model to log the model, especially when we need to 
have multi-step DL model pipelines. We will implement such custom 
MLflow model flavors later in this book. If you don't want to use auto-
logging for PyTorch, then you can directly use mlflow.pytorch.
log_model. PyTorch's auto-logging uses mlflow.pytorch.log_
model inside its implementation (see the official MLflow open source 
implementation here: https://github.com/mlflow/mlflow/
blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/
mlflow/pytorch/_pytorch_autolog.py#L314).

If we don't want to use auto-logging, then we can use MLflow's model logging API 
directly. This also gives us an alternative way to simultaneously register the model in one 
call. You can use the following line of code to both log and register the trained model:

mlflow.pytorch.log_model(pytorch_model=trainer.model, artifact_
path='dl_model', registered_model_name='nlp_dl_model')

Note that this line of code does not log any parameters or metrics of the model.

https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314
https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314
https://github.com/mlflow/mlflow/blob/290bf3d54d1e5ce61944455cb302a5d6390107f0/mlflow/pytorch/_pytorch_autolog.py#L314
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With that, we have not only logged many experiments and models in the tracking 
server for offline experimentation but also registered performant models for production 
deployment in the future with version control and provenance tracking. We can now 
answer some of the provenance questions that we posted at the beginning of this chapter:

Figure 3.9 – Answers to model provenance questions

The why and where provenance questions are yet to be fully answered but will be done so 
later in this book. This is because the why provenance question for the production model 
can only be tracked and logged when the model is ready for deployment, where we need 
to add comments and reasons to justify the model's deployment. The where provenance 
question can be answered fully when we have a multiple-step model pipeline. However, 
here, we only have a single-step pipeline, which is the simplest case. A multi-step 
pipeline contains explicitly separate modulized code to specify which step performs what 
functionality so that we can easily change the detailed implementation of any of the steps 
without changing the flow of the pipeline. In the next two sections, we will investigate how 
we can track metrics and the parameters of models without using auto-logging.
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Tracking model metrics
The default metric for the text classification model in the PyTorch lightning-flash 
package is Accuracy. If we want to change the metric to F1 score (a harmonic mean 
of precision and recall), which is a very common metric for measuring a classifier's 
performance, then we need to change the configuration of the classifier model before 
we start the model training process. Let's learn how to make this change and then use 
MLflow's non-auto-logging API to log the metrics:

1. When defining the classifier variable, instead of using the default metric, we will 
pass a metric function called torchmetrics.F1 as a variable, as follows:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes, 
metrics=torchmetrics.F1(datamodule.num_classes))

This uses the built-in metrics function of torchmetrics, the F1 module, along 
with the number of classes in the data we need to classify as a parameter. This makes 
sure that the model is trained and tested using this new metric. You will see an 
output similar to the following:

{'test_cross_entropy': 0.785443127155304, 'test_f1': 
0.5343999862670898}

This shows that the model training and testing were using the F1 score as the 
metric, not the default accuracy metric. For more information on how you can use 
torchmetrics for customized metrics, please consult its documentation site: 
https://torchmetrics.readthedocs.io/en/latest/.

2. Now, if we want to log all the metrics to the MLflow tracking server, including the 
training, validation, and testing metrics, we need to get all the current metrics by 
calling the trainer's callback function, as follows:

    cur_metrics = trainer.callback_metrics

Then, we need to cast all the metric values to float to make sure that they are 
compatible with the MLflow log_metrics API:

    metrics = dict(map(lambda x: (x[0], float(x[1])), 
cur_metrics.items()))

3. Now, we can call MLflow's log_metrics to log all the metrics in the  
tracking server:

    mlflow.log_metrics(metrics)

https://torchmetrics.readthedocs.io/en/latest/


64      Tracking Models, Parameters, and Metrics

You will see the following metrics after using the F1 score as the classifier's metric, 
which will be logged in MLflow's tracking server:

{'train_f1': 0.5838666558265686, 

'train_f1_step': 0.75, 

'train_cross_entropy': 0.7465656399726868, 

'train_cross_entropy_step': 0.30964696407318115, 

'val_f1': 0.5203999876976013, 

'val_cross_entropy': 0.8168156743049622, 

'train_f1_epoch': 0.5838666558265686, 

'train_cross_entropy_epoch': 0.7465656399726868, 

'test_f1': 0.5343999862670898, 

'test_cross_entropy': 0.785443127155304}

Using MLflow's log_metrics API gives us more control with additional lines of 
code, but if we are satisfied with its auto-logging capabilities, then the only thing 
we need to change is what metric we want to use for the model training and testing 
processes. In this case, we only need to define a new metric to use when declaring  
a new DL model (that is, use the F1 score instead of the default accuracy metric).

4. If you want to track multiple model metrics simultaneously, such as the F1 score, 
accuracy, precision, and recall, then the only thing you need to do is define a Python 
list of metrics you want to compute and track, as follows:

list_of_metrics = [torchmetrics.Accuracy(),

   torchmetrics.F1(num_classes=datamodule.num_classes),

   torchmetrics.Precision(num_classes=datamodule.num_
classes),

   torchmetrics.Recall(num_classes=datamodule.num_
classes)]

Then, in the model initialization statement, instead of passing a single metric to the 
metrics parameter, you can just pass the list_of_metrics Python list that we 
just defined, above the metrics parameter, as follows:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes, 
metrics=list_of_metrics)
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No more changes need to be made to the rest of the code. So, in the dl_model-
non-auto-tracking.ipynb notebook (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.
ipynb), you will notice that the preceding line is commented out by default. 
However, you can uncomment it and then comment out the previous one:

classifier_model = TextClassifier(backbone="prajjwal1/
bert-tiny", num_classes=datamodule.num_classes, 
metrics=torchmetrics.F1(datamodule.num_classes))

Then, when you run the rest of the notebook, you will get the model testing reports, 
along with the following metrics, in the notebook's output:

{'test_accuracy': 0.6424000263214111, 'test_
cross_entropy': 0.6315688490867615, 'test_f1': 
0.6424000263214111, 'test_precision': 0.6424000263214111, 
'test_recall': 0.6424000263214111}

You may notice that the numbers for accuracy, F1, precision, and recall are the 
same. This is because, by default, torchmetrics uses a micro-average method, 
which computes a single scalar average score for all the classes by counting total 
true positives, false negatives, and false positives. Scikit-learn has an average 
option called binary that outputs only the score for the positive label when it 
is a binary classification model (https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html#). However, 
torchmetrics does not support a binary average method for a binary 
classification model. The only alternative is to use a none method, which computes 
the metric for each class and returns the metric for each class, even for a binary 
classification model. So, this does not produce a single scalar number. However, 
you can always call scikit-learn's metrics API to compute an F1-score or other 
metrics based on the binary average method by passing two lists of values. Here, we 
can use y_true and y_predict, where y_true is the list of ground truth label 
values and y_predict is the list of model predicted label values. This can be a 
good exercise for you to try out as this is a common practice for all ML models, not 
special treatment for a DL model.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#
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 Tracking model parameters
As we have already seen, there are lots of benefits of using auto-logging in MLflow, but if 
we want to track additional model parameters, we can either use MLflow to log additional 
parameters on top of what auto-logging records, or directly use MLflow to log all the 
parameters we want without using auto-logging at all.

Let's walk through a notebook without using MLflow auto-logging. If we want to have 
full control of what parameters will be logged by MLflow, we can use two APIs: mlflow.
log_param and mlflow.log_params. The first one logs a single pair of key-value 
parameters, while the second logs an entire dictionary of key-value parameters. So, what 
kind of parameters might we be interested in tracking? The following answers this:

• Model hyperparameters: Hyperparameters are defined before the learning process 
begins, which means they control how the learning process learns. These parameters 
can be turned and can directly affect how well a model trains. In a DL model, the 
list of hyperparameters includes the backbone language model, learning rate, loss 
function, the optimizer to be used, and many more. MLflow's auto-logging does not 
automatically log all the hyperparameters, so this is an opportunity for us to directly 
use MLflow's log_params API to record them in the experiment.

• Model parameters: These parameters are learned during the model training 
process. For a DL model, these usually refer to the neural network weights that are 
learned during training. We don't need to log these weight parameters individually 
since they are already in the logged DL model.

Let's log these hyperparameters using MLflow's log_params API, as follows:

    params = {"epochs": trainer.max_epochs}

    if hasattr(trainer, "optimizers"):

        optimizer = trainer.optimizers[0]

        params["optimizer_name"] = optimizer.__class__.__name__

    if hasattr(optimizer, "defaults"):

        params.update(optimizer.defaults)

    params.update(classifier_model.hparams)

    mlflow.log_params(params)
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Note that here, we log the maximal number of epochs, the trainer's first optimizer's 
name, the optimizer's default parameters, and the overall classifier's hyperparameters 
(classifier_model.hparams). The one-line piece of code mlflow.log_
params(params) logs all the key-value parameters in the params dictionary to the 
MLflow tracking server. If you see the following hyperparameters in the MLflow tracking 
server, then it means it works!

Figure 3.10 – MLflow tracking server web UI showing the logged model hyperparameters 
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Notice that this list of parameters is more than what the auto-logger logs as we added 
additional hyperparameters to log in the experiment. If you want to log any other 
customized parameters, you can follow the same pattern in your experiment. The 
complete notebook, without the use of auto-logging, can be checked out in this chapter's 
GitHub repository at https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_
model-non-auto-tracking.ipynb.

If you have reached this point in this chapter, then you have successfully implemented an 
MLflow tracking model and its metrics and parameters!

Summary
In this chapter, we set up a local MLflow development environment that has full support 
for backend storage and artifact storage using MySQL and the MinIO object store. This 
will be very useful for us when we develop MLflow-supported DL models in this book. 
We started by presenting the open provenance tracking framework and asked model 
provenance tracking questions that are of interest. We worked on addressing the issues 
of auto-logging and successfully registered a trained model by loading a trained model 
from a logged model in MLflow for prediction using the mlflow.pytorch.load_
model API. We also experimented on how to directly use MLflow's log_metrics, 
log_params, and log_model APIs without auto-logging, which gives us more control 
and flexibility over how we can log additional or customized metrics and parameters. We 
were able to answer many of the provenance questions by performing model provenance 
tracking, as well as by providing a couple of the questions that require further study of 
using MLflow to track multi-step model pipelines and their deployment. 

We will continue our learning journey in the next chapter and learn how to perform code 
and data tracking using MLflow, which will give us additional power to answer data and 
code-related provenance questions.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter03/dl_model-non-auto-tracking.ipynb
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Further reading
To learn more about the topics that were covered in this chapter, take a look at the 
following resources:

• MLflow Docker setup reference: https://github.com/sachua/mlflow-
docker-compose

• MLflow PyTorch autologging implementation: https://github.com/
mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.
py

• MLflow PyTorch model logging, loading, and registry documentation: https://
www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html

• MLflow parameters and metrics logging documentation: https://www.
mlflow.org/docs/latest/python_api/mlflow.html

• MLflow model registry documentation: https://www.mlflow.org/docs/
latest/model-registry.html

• Digging into big provenance (with SPADE): https://queue.acm.org/
detail.cfm?id=3476885

• How to utilize torchmetrics and lightning-flash: https://www.
exxactcorp.com/blog/Deep-Learning/advanced-pytorch-
lightning-using-torchmetrics-and-lightning-flash

• Why are precision, recall, and F1 score equal when using micro averaging in a 
multi-class problem? https://simonhessner.de/why-are-precision-
recall-and-f1-score-equal-when-using-micro-averaging-in-a-
multi-class-problem/

https://github.com/sachua/mlflow-docker-compose
https://github.com/sachua/mlflow-docker-compose
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://github.com/mlflow/mlflow/blob/master/mlflow/pytorch/_pytorch_autolog.py
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html
https://www.mlflow.org/docs/latest/python_api/mlflow.pytorch.html
https://www.mlflow.org/docs/latest/python_api/mlflow.html
https://www.mlflow.org/docs/latest/python_api/mlflow.html
https://www.mlflow.org/docs/latest/model-registry.html
https://www.mlflow.org/docs/latest/model-registry.html
https://queue.acm.org/detail.cfm?id=3476885
https://queue.acm.org/detail.cfm?id=3476885
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://www.exxactcorp.com/blog/Deep-Learning/advanced-pytorch-lightning-using-torchmetrics-and-lightning-flash
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/
https://simonhessner.de/why-are-precision-recall-and-f1-score-equal-when-using-micro-averaging-in-a-multi-class-problem/




4
 Tracking Code and 

Data Versioning
DL models are not just models – they are intimately tied to the code that trains and 
tests the model and the data that's used for training and testing. If we don't track 
the code and data that's used for the model, it is impossible to reproduce the model 
or improve it. Furthermore, there have been recent industry-wide awakenings and 
paradigm shifts toward a data-centric AI (https://www.forbes.com/sites/
gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-
centric-ai/?sh=5cbacdc574f5), where the importance of data is being lifted to  
a first-class artifact in building ML and, especially, DL models. Due to this, in this chapter, 
we will learn how to track code and data versioning using MLflow. We will learn about the 
different ways we can track code and pipeline versioning and how to use Delta Lake for 
data versioning. By the end of this chapter, you will be able to understand and implement 
tracking techniques for both code and data with MLflow.

In this chapter, we're going to cover the following main topics: 

• Tracking notebook and pipeline versioning

• Tracking locally, privately built Python libraries

• Tracking data versioning in Delta Lake

https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5
https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5
https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-campaign-for-data-centric-ai/?sh=5cbacdc574f5
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Technical requirements 
The following are the technical requirements for this chapter:

• VS Code with the Jupyter Notebook extension: https://github.com/
microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-
Debugging-for-Notebooks.

• The code for this chapter, which can be found in this book's GitHub repository: 
https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/tree/main/chapter04.

• Access to a Databricks instance so that you can learn how to use Delta Lake to 
enable versioned data access.

Tracking notebook and pipeline versioning
Data scientists usually start by experimenting with Python notebooks offline, where 
interactive execution is a key benefit. Python notebooks have come a long way since the 
days of Jupyter notebooks (https://jupyter-notebook.readthedocs.io/en/
stable/). The success and popularity of Jupyter notebooks are undeniable. However, 
there are limitations when it comes to using version control for Jupyter notebooks since 
Jupyter notebooks are stored as JSON data with mixed output and code. This is especially 
difficult if we trying to track code using MLflow as we're only using Jupyter's native 
format, whose file extension is .ipynb. You may not be able to see the exact Git hash in 
the MLflow tracking server for each run using a Jupyter notebook either. There are a lot 
of interesting debates on whether or when a Jupyter notebook should be used, especially 
in a production environment (see a discussion here: https://medium.com/mlops-
community/jupyter-notebooks-in-production-4e0d38803251). There are 
multiple reasons why we shouldn't use Jupyter notebooks in a production environment, 
especially when we need reproducibility in an end-to-end pipeline fashion, where unit 
testing, proper code versioning, and dependency management could be difficult with a lot 
of notebooks. There are some early innovations around scheduling, parameterizing, and 
executing Jupyter notebooks in a workflow fashion using the open source tool papermill 
by Netflix (https://papermill.readthedocs.io/en/latest/index.html). 
However, a recent innovation by Databricks and VS Code makes notebooks much 
easier to be version controlled and integrated with MLflow. Let's look at the notebook 
characteristics that were introduced by these two tools:

• Interactive execution: Both Databricks's notebooks and VS Code's notebooks can 
run the same way as traditional Jupyter notebooks, in a cell-by-cell execution mode. 
By doing this, you can immediately see the output of the results. 

https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/microsoft/vscode-jupyter/wiki/Setting-Up-Run-by-Line-and-Debugging-for-Notebooks
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://medium.com/mlops-community/jupyter-notebooks-in-production-4e0d38803251
https://medium.com/mlops-community/jupyter-notebooks-in-production-4e0d38803251
https://papermill.readthedocs.io/en/latest/index.html
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• File format: Both Databricks's notebooks and VS Code's notebooks are stored as 
plain-old Python code with a .py file extension. This allows all the regular Python 
code linting (code format and style checking) to be applied to a notebook.

• Special symbols for rendering code cells and Mark down cells: Both Databricks 
and VS Code leverage some special symbols to render Python files as interactive 
notebooks. In Databricks, the special symbols to delineate code into different 
executable cells are as follows:

# COMMAND ---------- 

import mlflow

import torch

from flash.core.data.utils import download_data

from flash.text import TextClassificationData, 
TextClassifier

import torchmetrics

The code below the special COMMAND line will be rendered as an executable cell in 
the Databricks web UI portal, as follows:

Figure 4.1 – Databricks executable cell
To execute the code in this cell, you can just click Run Cell via the top-right drop-
down menu.

To add a large chunk of text to describe and comment on the code in Databricks 
(also known as Markdown cells), you can use the # MAGIC symbol at the 
beginning of the line, as follows:

# MAGIC %md

# MAGIC #### Notebooks for fine-tuning a pretrained 
language model to do text-based sentiment classification
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This is then rendered in the Databricks notebook as a Markdown comment cell,  
as follows:

Figure 4.2 – Databricks Markdown text cell
In VS Code, a slightly different set of symbols is used for these two types of cells.  
For a code cell, the # %% symbols are used at the beginning of the cell block:

# %%

download_data("https://pl-flash-data.s3.amazonaws.com/
imdb.zip", "./data/")

datamodule = TextClassificationData.from_csv(

    input_fields="review",

    target_fields="sentiment",

    train_file="data/imdb/train.csv",

    val_file="data/imdb/valid.csv",

    test_file="data/imdb/test.csv"

)

This is then rendered in VS Code's editor, as follows:

Figure 4.3 – VS Code code cell
As you can see, there is a Run Cell button before the block of code that you can 
click to run the code block interactively. If you click the Run Cell button, the code 
block will start executing in the side panel of the editor window, as shown here:
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 Figure 4.4 – Running code interactively in VS Code
To add a Markdown cell that contains comments, add the following to the 
beginning of the line, as well as the necessary symbols:

# %% Notebook for fine-tuning a pretrained language model 
and sentiment classification

This will ensure that the text is not an executable code block in VS Code.
Given the advantages of Databricks and VS Code notebooks, we suggest using either for 
version tracking. We can use GitHub to track the versioning of either type of notebook 
since they use a regular Python file format. 

Two Ways to Use Databricks Notebook Version Control
For a managed Databricks instance, a notebook version can be tracked in 
two ways: by looking at the revision history on the side panel of the notebook 
on the Databricks web UI, or by linking to a remote GitHub repository. 
Detailed descriptions are available in the Databricks notebook documentation:  
https://docs.databricks.com/notebooks/notebooks-
use.html#version-control.

https://docs.databricks.com/notebooks/notebooks-use.html#version-control
https://docs.databricks.com/notebooks/notebooks-use.html#version-control
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While the Databricks web portal provides excellent support for notebook version control 
and integration with MLflow experimentation tracking (see this chapter's callout boxes 
on Two Ways to Use Databricks Notebook Version Control and Two Types of MLflow 
Experiments in Databricks Notebooks), there is one major drawback of writing code  
in the Databricks notebook web UI. This is because the web UI is not a typical integrated 
development environment (IDE) compared to VS Code, where code style and formatting 
tools such as flake8 (https://flake8.pycqa.org/en/latest/) and autopep8 
(https://pypi.org/project/autopep8/) can easily be enforced. This can  
have a major impact on code quality and maintainability. Thus, it is highly recommended 
that you use VS Code to author notebook code (either a Databricks notebook or  
a VS Code notebook). 

Two Types of MLflow Experiments in Databricks Notebooks
For a managed Databricks web portal instance, there are two types of MLflow 
experiments you can perform: workspace and notebook experiments.  
A workspace experiment is mainly for a shared experiment folder that is not 
tied to a single notebook. Remote code execution can write to a workspace 
experiment folder if needed. On the other hand, a notebook scope experiment 
is tied to a specific notebook and can be found directly on one of the top-right 
menu items called Experiment in the notebook page on the Databricks web 
portal. For more details, please look at the Databricks documentation website: 
https://docs.databricks.com/applications/mlflow/
tracking.html#experiments.

Using this chapter's VS Code notebook, fine_tuning.py, which can be found in 
this chapter's GitHub repository (https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter04/notebooks/fine_tuning.py), you will be able to run it interactively 
in the VS Code editor and log the experiment in the MLflow Docker server that we set up 
in Chapter 3, Tracking Models, Parameters, and Metrics. As a reminder, note that to run 
this notebook in VS Code successfully, you will need to set up your virtual environment, 
called dl_model, as described in the README.md file in this chapter's GitHub 
repository. It consists of the following three steps:

conda create -n dl_model python==3.8.10

conda activate dl_model

pip install -r requirements.txt

If you run this notebook cell-by-cell from beginning to end, your experiment page will 
look as follows:

https://flake8.pycqa.org/en/latest/
https://pypi.org/project/autopep8/
https://docs.databricks.com/applications/mlflow/tracking.html#experiments
https://docs.databricks.com/applications/mlflow/tracking.html#experiments
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/notebooks/fine_tuning.py
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Figure 4.5 – Logged experiment page after running a VS Code notebook interactively 

You may immediately notice a problem in the preceding screenshot – Source: ipykernel_
laucher.py. This is not the source code file we just ran; that is, the fine_tuning.py file. 
This is because VS Code notebooks are not natively integrated into the MLflow tracking 
server for source file tracking; it can only show the ipykernel (https://pypi.org/
project/ipykernel/) that VS Code uses to execute a VS Code notebook  
(https://github.com/microsoft/vscode-jupyter). Unfortunately, this is  
a limitation that, at the time of writing, cannot be addressed by running VS Code 
notebooks interactively for experiment code tracking. Databricks notebooks running 
inside a hosted Databricks web UI have no such problem as they have native integration 
with the MLflow tracking server that's bundled in the Databricks web portal.

However, since the VS Code notebooks are just Python code, we can run the notebooks in 
the command line non-interactively, as follows:

python fine_tuning.py

This will log the actual source code's filename and the Git commit hash in the MLflow 
experiment page without any issues, as shown here:

Figure 4.6 – Logged experiment page after running a VS Code notebook in the command line 

https://pypi.org/project/ipykernel/
https://pypi.org/project/ipykernel/
https://github.com/microsoft/vscode-jupyter
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The preceding screenshot shows the correct source filename (Source: fine_tuning.
py) and the correct git commit hash (661ffeda5ae53cff3623f2fcc8227d822e877e2d). This 
workaround does not require us to change the notebook's code and could be very useful 
if our initial interactive notebook debugging is done and we want to get a complete run 
of the notebook, along with proper code version tracking in the MLflow tracking server. 
Note that all the other parameters, metrics, and models are tracked properly, regardless of 
whether we run the notebook interactively. 

Pipeline tracking
Having discussed notebook code tracking (version and filename), let's turn to the topic 
of pipeline tracking. Before we discuss pipeline tracking, however, we will discuss the 
definition of a pipeline in the ML/DL life cycle. Conceptually, a pipeline is a multi-step 
data processing and task workflow. However, the implementation of such a data/task 
workflow can be quite different. A pipeline can be defined as a first-class Python API in 
some ML packages. The two most well-known pipeline APIs are as follows:

• sklearn.pipeline.Pipeline (https://scikit-learn.org/stable/
modules/generated/sklearn.pipeline.Pipeline.html): This is 
widely used for building tightly integrated multi-step pipelines for classical machine 
learning or data extract, transform, and load (ETL) pipelines using pandas 
DataFrames (https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.html).

• pyspark.ml.Pipeline (https://spark.apache.org/docs/latest/
api/python/reference/api/pyspark.ml.Pipeline.html): This is 
a PySpark version for building simple and tightly integrated multi-step pipelines 
for machine learning or data ETL pipelines using Spark DataFrames (https://
spark.apache.org/docs/latest/api/python/reference/api/
pyspark.sql.DataFrame.html).

However, when we're building a DL model pipeline, we need to use multiple different 
Python packages at different steps of the pipeline, so a one-size-fits-all approach using 
a single pipeline API doesn't usually work. In addition, neither of the aforementioned 
pipeline APIs have native support for the current popular DL packages, such as 
Huggingface or PyTorch-Lightning, which require additional integration work. 
Although some open source DL pipeline APIs exist such as Neuraxle (https://
github.com/Neuraxio/Neuraxle), which tries to provide a sklearn-like pipeline 
interface and framework, it is not widely used. Furthermore, using these API-based 
pipelines means that you'll be locked in when you need to add more steps to the 
pipeline, which could reduce your flexibility to extend or evolve a DL pipeline when new 
requirements arise.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.Pipeline.html
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.Pipeline.html
https://github.com/Neuraxio/Neuraxle
https://github.com/Neuraxio/Neuraxle
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In this book, we will take a different approach to define and build a DL pipeline that's 
based on MLflow's MLproject (https://www.mlflow.org/docs/latest/
projects.html#mlproject-file) structure. This will give you the most flexibility 
to build a multi-step pipeline that can be tracked using MLflow. At the same time, for 
each step, you will be allowed to use the most appropriate DL or data processing packages 
without being locked in. Let's walk through this by breaking the single file-based Python 
notebook, fine_tuning.py, into a multiple-step pipeline. This pipeline can be 
visualized as a three-step flow diagram, as shown here:

Figure 4.7 – A three-step DL pipeline 

This three-step flow is as follows: 

1. Download the data to a local execution environment
2. Fine-tune the model
3. Register the model 

These modular steps may seem to be overkill for our current example, but the power of 
having a distinctive functional step is evident when more complexities are involved, or 
when changes are needed at each step. Each step can be modified without them affecting 
the other steps if we define the parameters that need to be passed between them. Each 
step is a standalone Python file that can be executed independently with a set of input 
parameters. There will be a main pipeline Python file that can run the whole pipeline or 
a sub-section of the pipeline's steps. In the MLproject file, which is a standard YAML 
file without the file extension, we can define four entry points (main, download_data, 
fine_tuning_model, and register_model), their required input parameters, 
their types and default values, and the command line to execute each entry point. In 
our example, these entry points will be provided in a Python command-line execution 
command. However, you can invoke any kind of execution, such as a batch shell script, if 
needed for any particular steps. For example, the following lines in the MLproject file 
for this chapter (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject) 
describe the name of the project, the conda environment definition filename, and the 
main entry point:

name: dl_model_chapter04

conda_env: conda.yaml

entry_points:

  main:

https://www.mlflow.org/docs/latest/projects.html#mlproject-file
https://www.mlflow.org/docs/latest/projects.html#mlproject-file
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/MLproject
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    parameters:

      pipeline_steps:

        description: Comma-separated list of dl pipeline steps 
to execute 

        type: str

        default: all

    command: "python main.py --steps {pipeline_steps}"

Here, the name of the project is dl_model_chapter04. conda_env refers to a local 
conda environment's YAML definition file, conda.yaml, which is located in the same 
directory as the MLproject file. The entry_points section lists the first entry point, 
called main. In the parameters section, there is one parameter called pipeline_
steps, which allows the user to define a comma-separated list of DL pipeline steps to 
execute. This parameter is of the str type and its default value is all, which means that 
all the pipeline steps will run. Lastly, the command section lists how to execute this step in 
the command line.

The rest of the MLproject file defines the other three pipeline step entry points by 
following the same syntactic convention as the main entry point. For example, the 
following lines in the same MLproject file define the entry point of download_data:

  download_data:

    parameters:

      download_url:

        description: a url to download the data for fine tuning 
a text sentiment classifier

        type: str

        default: https://pl-flash-data.s3.amazonaws.com/imdb.
zip

      local_folder:

        description: a local folder to store the downloaded 
data

        type: str

        default: ./data

      pipeline_run_name:

        description: an mlflow run name

        type: str

        default: chapter04

    command:
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      "python pipeline/download_data.py --download_url 
{download_url} --local_folder {local_folder} \

      --pipeline_run_name {pipeline_run_name}"

The download_data section, similar to the main entry point, also defines the list of 
parameters, types, and default values, as well as the command line to execute this step. We 
can define the rest of the steps in the same manner as we did in the MLproject file that 
we just checked out from this book's GitHub repository. For more details, take a look at 
the full content of that MLproject file.

After defining the MLproject file, it becomes clear that we have defined a multi-step 
pipeline in a declarative way. This is like a specification for the pipeline that says each 
step's name, what input parameters it expects, and how to execute them. Now, the next 
step is to implement the Python function to execute each step of the pipeline. So, let's look 
at the core implementation of the main entry point's Python function, which is called 
main.py. The following lines of code (not the entire Python code in main.py) illustrate 
the core component of implementing the entire pipeline with just one step in the pipeline 
(download_data):

@click.command()

@click.option("--steps", default="all", type=str)

def run_pipeline(steps):

    with mlflow.start_run(run_name='pipeline', nested=True) as 
active_run:

        download_run = mlflow.run(".", "download_data", 
parameters={})

if __name__ == "__main__":

    run_pipeline()
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This main function snippet contains a run_pipeline function, which will be run 
when the main.py file is executed in the command line. There is a parameter called 
steps, which will be passed to this function when it's provided. In this example, we 
are using the click Python package (https://click.palletsprojects.com/
en/8.0.x/) to parse command-line arguments. The run_pipeline function starts 
an MLflow experiment run by calling mlflow.start_run and passing two parameters 
(run_name and nested). We have used run_name before – it's the descriptive phrase 
for this run. However, the nested parameter is new, which means that this is a parent 
experiment run. This parent experiment run contains some child experiment runs that 
will be hierarchically tracked in MLflow. Each parent run can contain one or more child 
runs. In the example code, this contains one step of the pipeline run, called download_
data, which is invoked by calling mlflow.run. This is the key MLflow function to 
invoke an MLproject's entry point programmatically. Once download_data has been 
invoked and the run has finished, the parent run will also finish, thus concluding the 
pipeline's run. 

Two Ways to Execute an MLproject's Entry Point
There are two ways to execute an MLproject's entry point. First, you can 
use MLflow's Python API, known as mlflow.run (https://www.
mlflow.org/docs/latest/python_api/mlflow.projects.
html#mlflow.projects.run). Alternatively, you can use the 
MLflow's command-line interface tool, called mlflow run, which can 
be called in a command-line shell environment to execute any entry point 
directly (https://www.mlflow.org/docs/latest/cli.
html#mlflow-run). 

Now, let's learn how to implement each step in the pipeline generically. For each pipeline 
step, we put the Python files in a pipeline folder. In this example, we have three files: 
download_data.py, fine_tuning_model.py, and register_model.py.  
Thus, the relevant files for successfully building an MLflow supported pipeline project are 
as follows:

MLproject

conda.yaml

main.py

pipeline/download_data.py

pipeline/fine_tuning_model.py

pipeline/register_model.py

https://click.palletsprojects.com/en/8.0.x/
https://click.palletsprojects.com/en/8.0.x/
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
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For the implementation of each pipeline step, we can use the following Python function 
templates. A placeholder section is reserved for implementing the actual pipeline  
step logic:

import click

import mlflow

@click.command()

@click.option("input")

def task(input):

    with mlflow.start_run() as mlrun:

        # Implement pipeline step logic here 

        mlflow.log_parameter('parameter', parameter)

        mlflow.set_tag('pipeline_step', __file__)

        mlflow.log_artifacts(artifacts, artifact_path="data")

if __name__ == '__main__':

    task()

This template allows us to standardize the way we implement the pipeline step task. The 
main idea here is that for each pipeline step task, it needs to start with mlflow.start_
run to launch an MLflow experiment run. Once we've implemented specific execution 
logic in the function, we need to log some parameters using mlflow.log_parameter, 
or some artifacts in the artifact store using mlflow.log_artifacts, that can be 
passed to and used by the next step of the pipeline. This is called pipeline chaining, and 
it allows multiple steps of a single pipeline or even different pipelines to share data and 
artifacts. We also want to set a tag to indicate which step is executed using mlflow.
set_tag.

For example, in the download_data.py step, the core implementation is as follows:

import click

import mlflow

from flash.core.data.utils import download_data

@click.command()

@click.option("--download_url")

@click.option("--local_folder")

@click.option("--pipeline_run_name")

def task(download_url, local_folder, pipeline_run_name):
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    with mlflow.start_run(run_name=pipeline_run_name) as mlrun:

        download_data(download_url, local_folder)

        mlflow.log_param("download_url", download_url)

        mlflow.log_param("local_folder", local_folder)

        mlflow.set_tag('pipeline_step', __file__)

        mlflow.log_artifacts(local_folder, artifact_
path="data")

if __name__ == '__main__':

    task()

In this download_data.py implementation, the task is to download the data for 
model building from a remote URL to a local folder (download_data(download_
url, local_folder)). Once we've done this, we will log a few parameters, such as 
download_url and local_folder. We can also log the newly downloaded data into 
the MLflow artifact store using mlflow.log_artifacts. For this example, this may 
not seem necessary since we only want to execute the next step in a local development 
environment. However, for a more realistic scenario in a distributed execution 
environment where each step could be run in different execution environments, this is 
very desirable since we only need to pass the artifact URL path to the next step of the 
pipeline to use; we don't need to know how and where the previous step was executed. In 
this example, when the mlflow.log_artifacts(local_folder, artifact_
path="data") statement is called, the downloaded data folder is uploaded to the 
MLflow artifact store. However, we will not use this artifact path for the downstream 
pipeline step in this chapter. We will explore how we use this kind of artifact store to 
pass artifacts to the next step in the pipeline later in this book. Here, we will use the log 
parameters to pass the downloaded data path to the next step of the pipeline (mlflow.
log_param("local_folder", local_folder)). So, let's look at how we can 
do that by extending main.py so that it includes the next step, which is the fine_
tuning_model entry point, as follows:

        with mlflow.start_run(run_name='pipeline', nested=True) 
as active_run:

            download_run = mlflow.run(".", "download_data", 
parameters={})

            download_run = mlflow.tracking.MlflowClient().get_
run(download_run.run_id)

            file_path_uri = download_run.data.params['local_
folder']
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            fine_tuning_run = mlflow.run(".", "fine_tuning_
model", parameters={"data_path": file_path_uri})

We use mlflow.tracking.MlflowClient().get_run to get the download_run 
MLflow run object and then use download_run.data.params to get file_path_
uri (in this case, it is just a local folder path). This is then passed to the next mlflow.
run, which is fine_tuning_run, as a key-value parameter (parameters={"data_
path": file_path_uri ). This way, the fine_tuning_run pipeline step can use 
this parameter to prefix its data source path. This is a very simplified scenario to illustrate 
how we can pass data from one step to the next. Using the mlflow.tracking.
MlflowClient() API, which is provided by MLflow (https://www.mlflow.org/
docs/latest/python_api/mlflow.tracking.html), makes accessing a run's 
information (parameters, metrics, and artifacts) straightforward. 

We can also extend the main.py file with the third step of the pipeline by adding the 
register_model step. This time, we need the logged model URI to register a trained 
model, which depends on run_id of the fine_tuning_model step. So, in the fine_
tuning_model step, we need to get the run_id property of fine_tuning_model 
run and then pass it through the input parameter for the register_model run,  
as follows:

fine_tuning_run_id = fine_tuning_run.run_id

register_model_run = mlflow.run(".", "register_model", 
parameters={"mlflow_run_id": fine_tuning_run_id})

Now, the register_model step can use fine_tuning_run_id to locate the logged 
model. The core implementation of the register_model step is as follows:

    with mlflow.start_run() as mlrun:

        logged_model = f'runs:/{mlflow_run_id}/model'

        mlflow.register_model(logged_model, registered_model_
name)

This will register a fine-tuned model at the URI defined by the logged_model variable 
to an MLflow model registry. 

https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html
https://www.mlflow.org/docs/latest/python_api/mlflow.tracking.html
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If you have followed these steps, then you should have a working pipeline that can be 
tracked by MLflow from end to end. As a reminder, a prerequisite is to have the local 
full-fledged MLflow server set up, as shown in Chapter 3, Tracking Models, Parameters, 
and Metrics. You should have set up the virtual environment, dl_model, in the previous 
section. To test this pipeline, check out this chapter's GitHub repository at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-
with-MLFlow/tree/main/chapter04 and run the following command:

python main.py

This will run the entire three-step pipeline and log the pipeline's run_id (which is the 
parent run) and each step's run as the child runs in the MLflow tracking server. The last 
few lines of the console screen's output will display something as follows when it has 
finished running (you will see lots of outputs on the screen when you run the pipeline):

Figure 4.8 – Console output of running the pipeline with MLflow run_ids

This shows the pipeline's run_id, which is f8f21fdf8fff4fd6a400eeb403b776c8; 
the last step is the run_id property of fine_tuning_model, which is 
5ba38e059695485396e709b809e9bb8d. If we go to the MLflow tracking server's 
UI web page by clicking on http://localhost, we should be able to see the following 
nested experiment runs in the dl_model_chapter04 experiment folder, as follows:

Figure 4.9 – A pipeline being run with nested three-step child runs in the MLflow tracking server

The preceding screenshot shows the pipeline run, along with the source main.py file and 
the nested run of the three steps of the pipeline. Each step has a corresponding entry point 
name defined in MLproject with a GitHub commit hash code version of d0d416. If you 
click on the register_model run page, you will see the following information:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter04
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Figure 4.10 – Entry point register_model's run page on the MLflow tracking server

The preceding screenshot shows not only some of the familiar information 
we have seen already, but also some new information such as Parent Run: 
f8f21fdf8fff4fd6a400eeb403b776c8, Entry Point: register_model, and a fully populated 
Run Command cell that's automatically generated by MLflow. Run Command contains 
the file's location URL (a string that starts with file:///), the GitHub hash code 
version, the entry point (-e register_model), the execution environment, which is 
a local dev environment (-b local), and the expected parameters for the register_
model function (-P). We will learn how to use MLflow's MLproject to run commands 
to execute tasks remotely later in this book. Here, we just need to understand that the 
source code is referred to through the entry point (register_model), not the filename 
itself, since the reference is declared as an entry point in the MLproject file.

If you saw the output shown in Figure 4.9 and Figure 4.10 in your MLflow tracking server, 
then it's time to celebrate – you have successfully executed a multi-step DL pipeline using 
MLflow!

In summary, to track a multi-step DL pipeline in MLflow, we can use MLproject to define 
entry points for each pipeline step and a main pipeline entry point. In the main pipeline 
function, we implement methods so that data can be passed between pipeline steps. Each 
pipeline step then uses the data that's been shared, as well as other input parameters, to 
execute a specific task. Both the main pipeline-level function and each step of the pipeline 
are tracked using the MLflow tracking server, which produces a parent run_id to track 
the main pipeline run and multiple MLflow nested runs to track each pipeline's step. We 
introduced a template for each pipeline step to implement this task in a standard way. We 
also explored the powerful pipeline chaining that's done through MLflow's run parameter 
and artifact store to learn how to pass data between pipeline steps.
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Now that you know how to track notebooks and pipelines, let's learn how to track Python 
libraries.

Tracking locally, privately built Python 
libraries
Now, let's turn our attention to tracking locally, privately built Python libraries. For 
publicly released Python libraries, we can explicitly specify their released version, 
which is published in PyPI, in a requirements file or a conda.yaml file. For example, 
this chapter's conda.yaml file (https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/
chapter04/conda.yaml) defines the Python version and provides a reference to a 
requirements file, as follows:

name: dl_model 

channels:

  - conda-forge

dependencies:

  - python=3.8.10

  - pip

  - pip:

    - -r requirements.txt

The Python version is defined as 3.8.10 and is being enforced. This conda.yaml file 
also refers to a requirements.txt file, which contains the following versioned Python 
packages as a requirements.txt file, which is located in the same directory as the 
conda.yaml file:

ipykernel==6.4.1

lightning-flash[all]==0.5.0

mlflow==1.20.2

transformers==4.9.2

boto3==1.19.7

pytorch-lightning==1.4.9

datasets==1.9.0

click==8.0.3

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter04/conda.yaml
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As we can see, all these packages are being tracked explicitly using their published PyPI 
(https://pypi.org/) version number. When you run the MLflow MLproject, 
MLflow will use the conda.yaml file and the referenced requirements.txt file 
to create a conda virtual environment dynamically. This ensures that the execution 
environment is reproducible and that all the DL model pipelines can be run successfully. 
You may have noticed that such a virtual environment was created for you the first time 
you ran the previous section's MLflow pipeline project. You can do this again by running 
the following command:

conda env list

This will produce a list of conda virtual environments in your current machine. You 
should be able to find a virtual environment starting with a mlflow- prefix, followed by a 
long string of alphanumerical characters, as follows:

mlflow-95353930ddb7b60101df80a5d64ef8bf6204a808

This is the virtual environment that's created by MLflow dynamically, which follows 
the dependencies that are specified in conda.yaml and requirements.txt. 
Subsequently, when you log the fine-tuned model, conda.yaml and requirements.
txt will be automatically logged in the MLflow artifact store, as follows:

Figure 4.11 – Python packages are being logged and tracked in the MLflow artifact store

https://pypi.org/
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As we can see, the conda.yaml file was automatically expanded to include the content of 
requirements.txt, as well as other dependencies that conda decides to include. 

For privately built Python packages, which means the Python packages that are not 
published to PyPI for public consumption and references, the recommended way to 
include such a Python package is by using git+ssh. Let's assume that you have a 
privately built project called cool-dl-utils, that the organization you work for is 
called cool_org, and that your project's repository has been set up in GitHub. If you 
want to include this project's Python package in the requirements file, you need to make 
sure that you add your public key to your GitHub settings. If you want to learn how to 
generate a public key and load it into GitHub, take a look at GitHub's guide at https://
docs.github.com/en/authentication/connecting-to-github-
with-ssh/adding-a-new-ssh-key-to-your-github-account. In the 
requirements.txt file, you can add the following line, which will reference a specific 
GitHub hash (81218891bbf5a447103884a368a75ffe65b17a44) and the Python 
.egg package that was built from this private repository (you can also reference a .whl 
package if you wish):

cool-dl-utils @ git+ssh://git@github.com/cool_org/cool-dl-
utils.git@81218891bbf5a447103884a368a75ffe65b17a44#egg=cool-dl-
utils

If you have a numerically released version in your privately built package, you can also 
directly reference the release number in the requirements.txt file, as follows:

git+ssh://git@github.com/cool_org/cool-dl-utils.git@2.11.4

Here the release number of cool-dl-utils is 2.11.4. This allows MLflow to pull 
this privately built package into the virtual environment to execute MLproject. In this 
chapter, we don't need to reference any privately built Python packages, but it is worth 
noting that MLflow can leverage the git+ssh approach to do that.

Now, let's learn how to track data versioning.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
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Tracking data versioning in Delta Lake
In this section, we'll learn how data is tracked in MLflow. Historically, data management 
and versioning are usually considered as being different from machine learning and data 
science. However, the advent of data-centric AI is playing an increasingly important role, 
particularly in DL. Therefore, it is critical to know what and how data is being used to 
improve the DL model. In the first data-centric AI competition, which was organized 
by Andrew Ng in the summer of 2021, the requirements to become a winner were not 
about changing and tuning a model, but rather improving the dataset of a fixed model 
(https://https-deeplearning-ai.github.io/data-centric-comp/). 
Here is a quote from the competition's web page:

"The Data-Centric AI Competition inverts the traditional format and asks 
you to improve a dataset, given a fixed model. We will provide you with 
a dataset to improve by applying data-centric techniques such as fixing 

incorrect labels, adding examples that represent edge cases, applying data 
augmentation, and so on."

This paradigm shift highlights the importance of data in deep learning, especially 
supervised deep learning, where labeled data is important. An implied underlying 
assumption is that different data will produce different model metrics, even if the same 
model architecture and parameters are used. This requires us to diligently track the data 
versioning process so that we know which version of the data is being used to produce the 
winning model.

There are several emerging frameworks for tracking data versioning in the ML/DL life 
cycle. One of the early pioneers in this domain is DVC (http://dvc.org). It uses a 
set of GitHub-like commands to pull/push data as if they are code. It allows the data to 
be stored remotely in S3, or Google Drive, among many other popular stores. However, 
the data that's stored in the remote store becomes hashed and isn't human-readable. 
This becomes a locked-in problem since the only way to access the data is through the 
DVC tool and configuration. In addition, it is hard to track how the data and its schema 
have been changed. While it is possible to integrate MLflow with DVC, its usability and 
flexibility are not as desirable as we want. Thus, we will not deep dive into this approach 
in this book. If you are interested in this, we suggest that you utilize the Versioning data 
and models in ML projects using DVC and AWS reference at the end of this chapter to find 
more details about using DVC.

https://https-deeplearning-ai.github.io/data-centric-comp/
http://dvc.org
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The recently open sourced and open format-based Delta Lake (https://delta.io/) 
is a practical solution for integrated data management and version control in a DL/ML 
project, especially since MLflow can directly support such integration. This is also the 
foundational data management layer, called Lakehouse (https://databricks.com/
blog/2020/01/30/what-is-a-data-lakehouse.html), which unifies both data 
warehouse and streaming data into one data foundation layer. It supports both schema 
change tracking and data versioning, which is ideal for a DL/ML data use scenario. Delta 
tables are based on the open standard file format called Parquet (https://parquet.
apache.org/), which is widely supported for large-scale data storage. 

Delta Table in Databricks
Note that this section assumes that you have access to a Databricks service, 
which allows you to experiment with the Delta Lake format in the Databricks 
File System (DBFS). You can get a trial account for the community version 
by going to the Databricks portal: https://community.cloud.
databricks.com/login.html.

Note that this section requires you to use PySpark to manipulate the data through both 
reading/writing data from/into storage such as S3. Delta Lake has a capability called 
Time Travel that can automatically version the data. By passing a parameter such as 
a timestamp or a version number, you can read any historical data for that particular 
version or timestamp. This makes reproducing and tracking the experiments much easier 
as the only temporal metadata about the data is the version number or timestamp of the 
data. There are two ways to query the Delta table:

• timestampAsOf: This lets you read the Delta table, as well as read a version that 
has a specific timestamp. The following code shows how the data can be read using 
timestampAsOf:

df = spark.read \

  .format("delta") \

  .option("timestampAsOf", "2020-11-01") \

  .load("/path/to/my/table")

https://delta.io/
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://parquet.apache.org/
https://parquet.apache.org/
https://community.cloud.databricks.com/login.html
https://community.cloud.databricks.com/login.html
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• versionAsOf: This defines the numerical value of the Delta table's version. You 
also have the option to read a version that has a specific version, starting with 
version 0. The following PySpark code reads the data with the versionAsOf 
option defined as version 52:

df = spark.read \

  .format("delta") \

  .option("versionAsOf", "52") \

  .load("/path/to/my/table")

Having this kind of timestamped or versioned access is a key advantage to tracking any 
file version using a Delta table. So, let's look at a concrete example of this in MLflow so 
that we can track the IMDb dataset we have been using.

An example of tracking data using MLflow
For the IMDb datasets we have been using to fine-tune the sentiment classification model, 
we will upload these CSV files into Databricks' data store or any S3 bucket that you can 
access from your Databricks portal. Once you've done that, follow these steps to create a 
Delta table that supports versioned and timestamped data access:

1. Read the following CSV files into a DataFrame (assuming that you uploaded the 
train.csv file into the FileStore/imdb/ folder in Databricks):

imdb_train_df = spark.read.option('header', True).
csv('dbfs:/FileStore/imdb/train.csv')

2. Write the imdb_train_df DataFrame in DBFS as a Delta table, as follows:

imdb_train_df.write.format('delta').option("mergeSchema", 
"true").mode("overwrite").save('/imdb/training.delta')

3. Read the training.delta file back into memory using the following command:

imdb_train_delta = spark.read.format('delta').load('/
imdb/training.delta')
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4. Now, look at the history of the Delta table via the Databricks UI. You click on the 
History tab once you've read the Delta table from storage into memory:

Figure 4.12 – The train_delta table's history with a version and a timestamp column
The preceding screenshot shows that the version is 0 and that the timestamp is 
2021-11-22. This is the value that we can use to access the versionized data when 
passing the version number or timestamp to a Spark DataFrame reader.

5. Read the versioned imdb/train_delta file using the following command:

train_data_version = spark.read.format("delta").
option("versionAsOf", "0").load('/imdb/train.delta')  

This will read version 0 of the train.delta file. If we had other versions of this 
file, we could pass a different version number.

6. Read the timestamped imdb/train_delta file using the following command:

train_data_timestamped = spark.read.format("delta").
option("timestampAsOf", "2021-11-22T03:39:22").load('/
imdb/train.delta')  

This will read the timestamped data. At the time of writing, this is the only 
timestamp we have, which is fine. If we had more timestamped data, we could pass a 
different version to it.

7. Now, if we need to log this data version in the MLflow tracking experiment run, we 
can just log the path of the data, the version number, and/or the timestamp using 
mlflow.log_parameter(). This will log these as part of the experiment's 
parameter key-value list:

mlflow.log_parameter('file_path', '/imdb/train.delta')

mlflow.log_parameter('file_version', '0')
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mlflow.log_parameter('file_timestamp', '2021-11-
22T03:39:22') 

The only requirement for using a Delta table is that the data needs to be stored in a 
form of storage that supports Delta tables, such as Lakehouse, which is supported by 
Databricks. This is of great value for enterprise ML/DL scenarios since we can track data 
versioning alongside code and model versioning.

In summary, Delta Lake provides a simple yet powerful way to version data. MLflow can 
easily log these version numbers and timestamps as part of the experiment's parameter 
lists to track the data, as well as all the other parameters, metrics, artifacts, code, and 
models consistently.

Summary
In this chapter, we took a deep dive into how we can track code and data versions in an 
MLflow experiment run. We started by reviewing the different types of notebooks: Jupyter 
notebooks, Databricks notebooks, and VS Code notebooks. We compared them and 
recommended that VS Code should be used to author a notebook due to its IDE support, 
as well as its Python styling, autocompletion, and many more rich features. 

Then, after reviewing the limitations of existing ML pipeline API frameworks, we 
discussed how to create a multi-step DL pipeline using MLflow's MLproject framework. 
We showed a step-by-step approach to creating a three-step DL pipeline using MLproject 
and how to implement a pipeline function to orchestrate the necessary tasks. We also 
provided a Python implementation template to help you implement each pipeline task. 
When running a pipeline with MLflow, we can track the entire pipeline's progress with a 
parent run_id, and then use a child run_id for each pipeline step. The flexibility to do 
pipeline chaining and tracking by passing parameters or artifact store locations to the next 
step can be done using mlflow.run() and mlflow.tracking.MlflowClient(). 
We successfully ran the end-to-end three-step pipeline using the MLflow nested run 
tracking capability. This will also open doors for us to extend the use of MLproject for 
running different steps in a distributed way in future chapters.

We also learned how to track privately built Python packages using the git+ssh 
approach. We then used the Delta Lake approach to gain versioned and timestamped 
access to data. This allows data to be tracked in two ways using a version number or  
a timestamp. MLflow can then log these version numbers or timestamps as a parameter 
during the MLflow experiment run. Since we are entering the data-centric AI era, being 
able to track data versioning is critical for reproducibility and time travel. 
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With that, we've finished learning how to comprehensively track code, data, and models 
using MLflow. In the next chapter, we will learn how to scale out our DL experiment in  
a distributed way.

Further reading
For more information about the topics that were covered in this chapter, take a look at the 
following resources:

1. MLflow notebook experiment tracking in Databricks: https://docs.
databricks.com/applications/mlflow/tracking.html#create-
notebook-experiment

2. Building Multistep Workflows: https://www.mlflow.org/docs/latest/
projects.html#building-multistep-workflows

3. End-to-end ML pipelines with MLflow projects: https://dzlab.github.io/
ml/2020/08/09/mlflow-pipelines/

4. Installing a privately built Python package: https://medium.com/@
ffreitasalves/pip-installing-a-package-from-a-private-
repository-b57b19436f3e

5. Versioning data and models in ML projects using DVC and AWS: https://
medium.com/analytics-vidhya/versioning-data-and-models-in-
ml-projects-using-dvc-and-aws-s3-286e664a7209

6. Introducing Delta Time Travel for Large Scale Data Lakes: https://
databricks.com/blog/2019/02/04/introducing-delta-time-
travel-for-large-scale-data-lakes.html

7. How We Won the First Data-Centric AI Competition: Synaptic-AnN:  
https://www.deeplearning.ai/data-centric-ai-competition-
synaptic-ann/

8. Reproduce Anything: Machine Learning Meets Data Lakehouse:  
https://databricks.com/blog/2021/04/26/reproduce-anything-
machine-learning-meets-data-lakehouse.html

9. DATABRICKS COMMUNITY EDITION: A BEGINNER'S GUIDE:  
https://www.topcoder.com/thrive/articles/databricks-
community-edition-a-beginners-guide

https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://docs.databricks.com/applications/mlflow/tracking.html#create-notebook-experiment
https://www.mlflow.org/docs/latest/projects.html#building-multistep-workflows
https://www.mlflow.org/docs/latest/projects.html#building-multistep-workflows
https://dzlab.github.io/ml/2020/08/09/mlflow-pipelines/
https://dzlab.github.io/ml/2020/08/09/mlflow-pipelines/
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
mailto:https://medium.com/@ffreitasalves/pip-installing-a-package-from-a-private-repository-b57b19436f3e
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://medium.com/analytics-vidhya/versioning-data-and-models-in-ml-projects-using-dvc-and-aws-s3-286e664a7209
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/
https://www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/
https://databricks.com/blog/2021/04/26/reproduce-anything-machine-learning-meets-data-lakehouse.html
https://databricks.com/blog/2021/04/26/reproduce-anything-machine-learning-meets-data-lakehouse.html
https://www.topcoder.com/thrive/articles/databricks-community-edition-a-beginners-guide
https://www.topcoder.com/thrive/articles/databricks-community-edition-a-beginners-guide


Section 3 –   
Running Deep Learning 

Pipelines at Scale

In this section, we will learn how to run deep learning (DL) pipelines in different 
execution environments and perform hyperparameter tuning, or hyperparameter 
optimization (HPO), at scale. We will start with an overview of the scenarios and 
requirements for executing DL pipelines in different environments. We will then learn 
how to use MLflow's command-line interface (CLI) to run in four different execution 
scenarios in a distributed environment. From there on, we will learn how to choose 
the best HPO framework by comparing Ray Tune, Optuna, and HyperOpt for tuning 
hyperparameters of a DL pipeline. Finally, we will concentrate on how to implement  
and run HPO for DL at scale using state-of-the-art HPO frameworks such as Ray Tune 
and MLflow. 

This section comprises the following chapters:

• Chapter 5, Running DL Pipelines in Different Environments

• Chapter 6, Running Hyperparameter Tuning at Scale





5
Running DL Pipelines 

in Different 
Environments

It is critical to have the flexibility of running a deep learning (DL) pipeline in different 
execution environments such as local or remote, on-premises, or in the cloud. This is 
because, during different stages of the DL development, there may be different constraints 
or preferences to either improve the velocity of the development or ensure security 
compliance. For example, it is desirable to do small-scale model experimentation in  
a local or laptop environment, while for a full hyperparameter tuning, we need to run the 
model on a cloud-hosted GPU cluster to get a quick turn-around time. Given the diverse 
execution environments in both hardware and software configurations, it used to be  
a challenge to achieve this kind of flexibility within a single framework. MLflow provides 
an easy-to-use framework to run DL pipelines at scale in different environments. We will 
learn how to do that in this chapter.
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In this chapter, we will first learn about the different DL pipeline execution scenarios  
and their execution environments. We will also learn how to run the different steps of  
the DL pipeline in different execution environments. Specifically, we will cover the 
following topics:

• An overview of different execution scenarios and environments

• Running locally with local code

• Running remote code in GitHub locally

• Running local code remotely in the cloud

• Running remotely in the cloud with remote code in GitHub

By the end of this chapter, you will be comfortable setting up the DL pipelines to run 
either locally or remotely with different execution environments.

Technical requirements
The following technical requirements are needed for completing the learning in  
this chapter:

• The code in this chapter can be found at the following GitHub URL: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/tree/main/chapter05.

• Installation of the Databricks command-line interface (CLI) tool to access the 
Databricks platform remote execution of DL pipelines: https://github.com/
databricks/databricks-cli.

• Access to a Databricks instance (must be the Enterprise version, as the Community 
version does not support remote execution) for learning how to run DL pipelines 
remotely on a cluster in Databricks.

• A full-fledged MLflow tracking server when running locally. This MLflow tracking 
server setup is the same as in previous chapters.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter05
https://github.com/databricks/databricks-cli
https://github.com/databricks/databricks-cli
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An overview of different execution scenarios 
and environments
In our previous chapters, we mainly focused on learning how to track DL pipelines 
using MLflow's tracking capabilities. Most of our execution environments are in a local 
environment, such as a local laptop or desktop environment. However, as we already 
know, the DL full life cycle consists of different stages where we may need to run the DL 
pipelines either entirely, partially, or as a single step in a different execution environment. 
Here are two typical examples:

• When accessing data for model training purposes, it is not uncommon to require 
the data to reside in an enterprise-security and privacy-compliant environment, 
where both the computation and the storage cannot leave a compliant boundary. 

• When training a DL model, it is usually desirable to use a remote GPU cluster to 
maximize the efficiency of model training, where a local laptop usually does not 
have the required hardware capability.

Both cases require a carefully defined execution environment that might be needed in one 
or multiple stages of the DL lifecycle. Note that this is not just a requirement to be flexible 
when moving from the development stage to a production environment, where the 
execution hardware and software configuration could be understandably different. It  
is also a requirement to be able to switch running environments during development 
stages or in different production environments without making major changes to the  
DL pipelines.

Here, we classify the different scenarios and execution environments into the following 
four scenarios, based on the different combinations of the location of the source code of 
DL pipelines and target execution environments, as shown in the following table:

Figure 5.1 – Four different scenarios of DL pipeline source codes and target execution environments
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Figure 5.1 describes how either in development or production environments, we could 
encounter the possibilities of using either local or remote code to run in a different 
execution environment. Let's examine them one by one as follows:

• Local source code running in a local target environment: This usually happens at 
the development stage, where modest computing power in a local environment is 
adequate to support quick prototyping or test runs for small changes in an existing 
pipeline. This is mostly the scenario we have been using in previous chapters for our 
MLflow experiments when learning how to track pipelines.

• Local source code running in a remote target environment: This usually happens 
at the development stage or re-training of an existing DL model, where a GPU or 
other types of hardware accelerators, such as Tensor Processing Units (TPUs) or 
field-programmable gate arrays (FPGAs), are needed to perform computational 
and data-intensive model training or debugging prior to merging the GitHub 
repository (using local code change first).

• Remote source code running in a local target environment: This usually happens 
when we don't have any changes in the code but the data has changed, either 
during the development stage or the production stage. For example, during the DL 
development stage, we could change the data with newly augmented training data 
either through some data augmentation techniques (for example, using AugLy to 
augment existing training data: https://github.com/facebookresearch/
AugLy) or newly annotated training data. During the production deployment step, 
we often need to run a regression test to evaluate a to-be-deployed DL pipeline 
against a hold-out regression testing dataset, so that we don't deploy a degraded 
model if the model performance accuracy metric does not meet the bar. In this  
case, the hold-out testing dataset is not usually big, so the execution can be done  
on the deployment server locally instead of launching to a remote cluster in  
a Databricks server.

• Remote source code running in a remote target environment: This can happen 
in the development stage or production stage, where we want to use a fixed version 
of the DL pipeline code from GitHub to run in a remote GPU cluster to do model 
training, hyperparameter tuning, or re-training. Such large-scale execution can be 
time-consuming, and a remote GPU cluster could be very useful.

https://github.com/facebookresearch/AugLy
https://github.com/facebookresearch/AugLy
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Given the four different scenarios, it would be desirable to have a framework to be able 
to run the same DL pipeline with minimal configuration changes under these conditions. 
Prior to the arrival of MLflow, it took quite a lot of engineering and manual efforts to 
support these scenarios. MLflow provides an MLproject framework that supports all these 
four scenarios through the following three configurable mechanisms:

1. Entry points: We can define one or multiple entry points to execute different  
steps of a DL pipeline. For example, the following is an example to define a main 
entry point:

entry_points:

  main:

    parameters:

      pipeline_steps: { type: str, default: all }

    command: "python main.py –pipeline_steps {pipeline_
steps}"

The entry point's name is main, which, by default, will be used when executing an 
MLflow run without specifying an entry point for an MLproject. Under this main 
entry point, there is a list of parameters. We can define the parameter's type and 
default value using a short syntax, as follows:

parameter_name: {type: data_type, default: value}

We can also use a long syntax, as follows:
parameter_name:

  type: data_type

  default: value

Here, we define only one parameter, called pipeline_steps, using the short 
syntax format with a str type and a default value of all.
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2. Software and library dependencies: We can use one conda .yaml configuration 
file or a Docker image to define the software and library dependencies that can be 
used by the MLproject's entry points. Note that a single MLproject can either use a 
conda yaml file or a Docker image, but not both at the same time. Depending on 
the DL pipeline dependencies, sometimes using a conda .yaml file over a Docker 
image is preferred, since it is much more lightweight and easier to make changes 
without requiring additional Docker image storage locations and loading a large 
Docker image into memory in a resource-limited environment. However, a Docker 
image does sometimes have advantages if there are any Java packages (.jar) that 
are needed at runtime. If there are no such JAR dependencies, then it is preferred 
to have a conda .yaml file to specify the dependencies. Furthermore, as of MLflow 
version 1.22.0, running Docker-based projects on Databricks is not yet supported 
by the MLflow command line. If there are indeed any Java package dependencies, 
they can be installed using init scripts (for example, see the official documentation 
at https://docs.databricks.com/clusters/init-scripts.
html#example-install-postgresql-jdbc-driver). Thus, we will use 
conda .yaml configuration files to define execution environment dependencies in 
this book.

3. Hardware dependencies: We can use a cluster configuration JSON file to define the 
execution target backend environment, be it a GPU, CPU, or other types of clusters. 
This is only needed when the target backend execution environment is non-local, 
either in a Databricks server or a Kubernetes (K8s) cluster.

Previously, we learned how to use MLproject to create a multiple-step DL pipeline 
running in a local environment in Chapter 4, Tracking Code and Data Versioning, for 
tracking purposes. Now, we are going to learn how to use MLproject for supporting the 
different running scenarios outlined previously. 

Running locally with local code
Let's start with the first running scenario using the same Natural Language 
Processing (NLP) text sentiment classification example as the driving use case. You 
are advised to check out the following version of the source code from the GitHub 
location to follow along with the steps and learnings: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05. Note that 
this requires a specific Git hash committed version, as shown in the URL path. That means 
we are asking you to check out a specific committed version, not the main branch.

https://docs.databricks.com/clusters/init-scripts.html#example-install-postgresql-jdbc-driver
https://docs.databricks.com/clusters/init-scripts.html#example-install-postgresql-jdbc-driver
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05


Running locally with local code     105

Let's start with the DL pipeline that downloads the review data to local storage as a first 
execution exercise. Once you check out this chapter's code, you can type the following 
command line to execute the DL pipeline's first step:

mlflow run . --experiment-name='dl_model_chapter05' -P 
pipeline_steps='download_data'

If we don't specify an entry point, it defaults to main. In this case, this is our desired 
behavior since we want to run the main entry point to start the parent DL pipeline. 

The dot means the current local directory. This tells MLflow to use the code in the current 
directory as the source to execute the project. If this command line runs successfully, you 
should be able to see the first two lines of output in the console as follows, which also 
reveal where the target execution environment is:

2022/01/01 19:15:37 INFO mlflow.projects.utils: === Created 
directory /var/folders/51/whxjy4r92dx18788yp11ycyr0000gp/T/
tmp3qj2kws2 for downloading remote URIs passed to arguments of 
type 'path' ===

2022/01/01 19:15:37 INFO mlflow.projects.backend.local: === 
Running command 'source /Users/yongliu/opt/miniconda3/bin/../
etc/profile.d/conda.sh && conda activate mlflow-95353930ddb7b
60101df80a5d64ef8bf6204a808 1>&2 && python main.py --pipeline_
steps download_data' in run with ID 'f7133b916a004c508e227f00d5
34e136' ===

Note that the second output line shows mlflow.projects.backend.local, which 
means the target running environment is local. You may wonder where we define the local 
execution environment in our initial command line. It turns out that by default, the value 
for the parameter called --backend (or -b) is local. So, if we spell out the default 
values, the mlflow run command line will look like the following:

mlflow run . -e main -b local --experiment-name='dl_model_
chapter05' -P pipeline_steps='download_data'

Note that we also need to specify experiment-name in the command line or through 
an environment variable named MLFLOW_EXPERIMENT_NAME to define the experiment 
in which this project will run. Alternatively, you can specify an experiment-id 
parameter, or an environment variable named MLFLOW_EXPERIMENT_ID, to define 
the experiment integer ID that already exists. You only need to define either the ID or 
the name of the environment, but not both. It is common to define a human-readable 
experiment name and then query the experiment ID for that experiment in other parts of 
the code so that they will not be out of sync.
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MLflow Experiment Name or ID for Running an MLproject 
To run an MLproject either using the CLI or the mlflow.run Python API, 
if we don't specify experiment-name or experiment-id through 
either an environment variable or a parameter assignment, it will default to the 
Default MLflow experiment. This is not desirable, as we want to organize 
our experiments into clearly separated experiments. In addition, once an 
MLproject starts running, any child runs will not be able to switch to a different 
experiment name or ID. So, the best practice will be always to specify an 
experiment name or an ID before launching an MLflow project run. 

Once you finish the run, you will see the output as in the following lines:

2022-01-01 19:15:48,249 <Run: data=<RunData: metrics={}, 
params={'download_url': 'https://pl-flash-data.s3.amazonaws.
com/imdb.zip',

 'local_folder': './data',

 'mlflow run id': 'f9f74ebd80f246d58a5f7a3bfb3fc635',

 'pipeline_run_name': 'chapter05'}, tags={'mlflow.gitRepoURL': 
'git@github.com:PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow.git',

 'mlflow.parentRunId': 'f7133b916a004c508e227f00d534e136',

Note that this is a nested MLflow run since we first launch a main entry point that starts 
the whole pipeline (that's why there is mlflow.parentRunId), and then under this 
pipeline, we run one or multiple steps. Here, the step we run is called download_data, 
which is another entry point defined in the MLproject, but is invoked using the mlflow.
run Python API, as follows, in the main.py file:

download_run = mlflow.run(".", "download_data", parameters={})

Note that this also specifies which code source to use (local, since we specified a dot), 
and by default, a local execution environment. That's why you should be able to see the 
following lines in the console output:

 'mlflow.project.backend': 'local',

 'mlflow.project.entryPoint': 'download_data',
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You should also see a few other details of the run parameters for this entry point. The last 
two lines of the command line output should look like the following:

2022-01-01 19:15:48,269 finished mlflow pipeline run with a 
run_id = f7133b916a004c508e227f00d534e136

2022/01/01 19:15:48 INFO mlflow.projects: === Run (ID 'f7133b91
6a004c508e227f00d534e136') succeeded ===

If you see this, you should feel proud that you have successfully run a pipeline with one 
step to completion. 

While this is something we have done before without knowing some of the details, the 
next section will allow us to run remote code in a local environment, where you will see 
the increasing flexibility and power of MLproject.

Running remote code in GitHub locally
Now, let's see how we run remote code from a GitHub repository on a local execution 
environment. This allows us to precisely run a specific version that has been checked into 
the GitHub repository using the commit hash. Let's use the same example as before by 
running a single download_data step of the DL pipeline that we have been using in this 
chapter. In the command line prompt, run the following command:

mlflow run https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow#chapter05 -v 
26119e984e52dadd04b99e6f7e95f8dda8b59238  --experiment-
name='dl_model_chapter05' -P pipeline_steps='download_data'

Notice the difference between this command line and the one in the previous section. 
Instead of a dot to refer to a local copy of the code, we are pointing to a remote GitHub 
repository (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow) and the folder name (chapter05) that 
contains the MLproject file we want to reference. The # symbol denotes the relative 
path to the root folder, according to MLflow's convention (see details on the MLflow 
documentation at this website: https://www.mlflow.org/docs/latest/
projects.html#running-projects). We then define a version number by 
specifying the Git commit hash using the -v parameter. In this case, it is this version we 
have in the GitHub repository:

https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/
tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/26119e984e52dadd04b99e6f7e95f8dda8b59238/chapter05


108     Running DL Pipelines in Different Environments

 Hidden Bug of Running an MLflow Project with GitHub's Main Branch
When we omit the -v parameter in the MLflow run, MLflow will assume we 
want to use the default main branch of a GitHub project. However, MLflow's 
source code has a hardcoded reference to the main branch of a GitHub project 
as origin.refs.master, requiring the existence of a master branch in 
the GitHub project. This does not work in newer GitHub projects such as this 
book's project, since the default branch is called main, not master anymore, 
due to the recent changes introduced by GitHub (see details here: https://
github.com/github/renaming). So, at the time of writing this book, 
in the MLflow version 1.22.0, there is no way to run a default main branch of 
a GitHub project. We need to specifically declare the Git commit hash version 
when running an MLflow project in the GitHub repository.

So, what happens when you use the code in a remote GitHub project repository when 
running an MLflow project? It becomes clear when you see the first line of the following 
console output:

2021/12/30 18:57:32 INFO mlflow.projects.utils: === Fetching 
project from https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow#chapter05 into /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpdyzaa1ye ===

This means that MLflow, on behalf of the user, starts to clone the 
remote project to a local temporary folder called /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpdyzaa1ye.

If you navigate to this temporary folder, you will see that the entire project content from 
GitHub has been cloned to this folder, not just the folder containing the ML project you 
want to run. 

The rest of the console output is as we have seen when using the local code. Once you 
finish the run with the download_data step, you should be able to find the downloaded 
data in the temporary folder under chapter05, since we define the local destination 
folder as a ./data relative path in the ML project file:

local_folder: { type: str, default: ./data }

MLflow automatically converts this to an absolute path, and it becomes a relative path to 
the cloned project folder under chapter05, since that's where the MLproject file resides. 

https://github.com/github/renaming
https://github.com/github/renaming
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This capability to reference a remote GitHub project and run it in a local environment, 
whether this local environment is your laptop or a virtual machine in the cloud, is 
powerful. This enables automation through continuous integration and continuous 
deployment (CI/CD) since this can be directly invoked in a command line, which can 
then be scripted into a CI/CD script. The tracking part is also precise, since we have the 
Git commit hash logged in the MLflow tracking server, which allows us to know exactly 
which version of the code was executed.

Note in both the scenarios we just covered, the execution environment is a local machine 
where the MLflow run command was issued. The MLflow project runs to completion 
synchronously, meaning it is a blocking call and it will run to completion and show you the 
progress in the console output in real time.

However, there are additional running scenarios we need to support. For example, 
sometimes the machine where we issue the MLflow project run command is not powerful 
enough to support the computation we need, such as training a DL model with many 
epochs. Another scenario could be if the data to be downloaded or accessed for training 
is multiple gigabytes and you don't want to download it to your local laptop for model 
development. This requires us to be able to run the code in a remote cluster. Let's look at 
how we can do that in the next section.

Running local code remotely in the cloud
In previous chapters, we ran all our code in a local laptop environment, and limited 
our DL fine-tuning step to only three epochs due to the limited power of a laptop. This 
serves the purpose of getting the code running and testing quickly in a local environment 
but does not serve to build an actual high-performance DL model. We really need to 
run the fine-tuning step in a remote GPU cluster. Ideally, we should only change some 
configuration and still issue the MLflow run command line in a local laptop console, but 
the actual pipeline will be submitted to a remote cluster in the cloud. Let's see how we can 
do this for our DL pipeline.

Let's start with submitting code to run in a Databricks server. There are three 
prerequisites:

• An Enterprise Databricks server: You need to have access to an Enterprise-licensed 
Databricks server or a free trial version of the Databricks server (https://docs.
databricks.com/getting-started/try-databricks.html#sign-
up-for-a-databricks-free-trial) in the cloud. The Community version 
of Databricks does not support this remote execution.

https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial
https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial
https://docs.databricks.com/getting-started/try-databricks.html#sign-up-for-a-databricks-free-trial
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• The Databricks CLI: You need to set up the Databricks CLI where you issue the 
MLflow project run commands. To install it, simply run the following command:

pip install databricks-cli

We also include this dependency in the requirements.txt file of chapter05 
when you check out the code for this chapter. 

• Access tokens for accessing the Databricks server: There are two ways to set up 
the tokens: using an environment variable, or using the Databricks command-line 
tool to generate a .databrickscfg file in your local home folder. You don't 
need both, but if you do have both, the one defined using environment variables 
will take a higher precedence when being picked up by the Databricks command 
line. The approach of using environment variables and generating access tokens 
is described in the Setting up MLflow to interact with a remote MLflow server 
section of Chapter 1, Deep Learning Life Cycle and MLOps Challenges. Note these 
environment variables can be set up in the command line directly or can be put into 
your .bash_profile file if you are using a macOS or Linux machine. 

Here, we describe how we can use the Databricks command-line tool to generate  
a .databrickscfg file:

1. Run the following command to set up the token configuration:

databricks configure --token

2. Follow the prompt to fill in the remote Databricks host URL and the access token:

Databricks Host (should begin with https://): 
https://????

Token: dapi??????????

3. Now, if you check your local home folder, you should find a hidden file called 
.databrickscfg.

If you open this file, you should be able to see something like the following:
[DEFAULT]

host = https://??????

token = dapi???????

jobs-api-version = 2.0 

Note that the last line indicates the remote job submission and execution API 
version that the Databricks server is using.
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Now that you have the access set up correctly, let's see how we can run the DL pipeline 
remotely in the remote Databricks server using the following steps:

1. Since we are going to use the remote Databricks server, the local MLflow server we 
set up before no longer works. This means that we need to disable and comment 
out the following lines in the main.py file, which are only useful to the local 
MLflow server setup (check out the latest version of the code for chapter05 from 
GitHub to follow the steps, at https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow.git):

os.environ["MLFLOW_TRACKING_URI"] = http://localhost

os.environ["MLFLOW_S3_ENDPOINT_URL"] = http://
localhost:9000

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"

Instead, we should use the following environment variable that can be defined in  
a .bash_profile file or directly executed in the command line:

export MLFLOW_TRACKING_URI="databricks"

This will use the MLflow tracking server on the Databricks server. If you don't 
specify this, it will default to a localhost but will fail since there is no localhost 
version of MLflow on the remote Databricks server. So, make sure you have this set 
up correctly. Now, we are ready to run our local code remotely.

2. Now, run the following command line to submit the local code to the remote 
Databricks server to run. We will just start with the download_data step,  
as follows:

mlflow run . -b databricks --backend-config cluster_spec.
json --experiment-name='/Shared/dl_model_chapter05' -P 
pipeline_steps ='download_data'

You will see this time that the command line has two new parameters: 
-b databricks, which specifies the backend as a Databricks server, and 
--backend-config cluster_spec.json, which details the cluster 
specification. The content of this cluster_spec.json file is as follows:

{

    "new_cluster": {

        "spark_version": "9.1.x-gpu-ml-scala2.12",

        "num_workers": 1,

        "node_type_id": "g4dn.xlarge"

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow.git
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow.git
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    }

}

This cluster_spec.json file is typically located in the same folder in which 
the MLproject file is located and needs to be predefined so that the MLflow run 
command can pick it up. The example we give here only defines a minimal set  
of parameters needed to create a job cluster on Databricks using AWS's GPU  
virtual machine as a single node, but you can create a much richer cluster 
specification if necessary (see the following Cluster Specification for Databricks  
box for more details).

Cluster Specification for Databricks
When submitting jobs to Databricks, it requires the creation of a new job 
cluster, which is different from an interactive cluster that you already have, 
where you can run an interactive job by attaching a notebook. A cluster 
specification is defined by minimally specifying the Databricks runtime 
version, which in our current example is 9.1.x-gpu-ml-scala2.12, 
the number of worker nodes, and the node type ID, as shown in our example. It 
is recommended to use the long-term support (LTS) version of the Databricks 
runtime (https://docs.databricks.com/release-notes/
runtime/9.1ml.html). The cluster node type depends on the cloud 
provider. Here, we use AWS's single GPU node (g4dn.xlarge) for learning 
purposes. There are many other configurations that you can define in this 
cluster specification, including storage and access permission, and init 
scripts. The easiest way to generate a working cluster specification JSON file 
is to use the Databricks portal UI to create a new cluster, where you can select 
the Databricks runtime version, cluster node types, and other parameters 
(https://docs.databricks.com/clusters/create.html). 
Then, you can get the JSON representation of the cluster by clicking on the 
JSON link on the top right of the Create Cluster UI page (see Figure 5.2).

https://docs.databricks.com/release-notes/runtime/9.1ml.html
https://docs.databricks.com/release-notes/runtime/9.1ml.html
https://docs.databricks.com/clusters/create.html
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Figure 5.2 - An example of creating a cluster on Databricks 
Also notice that the experiment-name parameter in the preceding command no 
longer just takes an experiment name string but needs to include an absolute path 
in the Databricks workspace. This is different from the local MLflow tracking server. 
This convention must be followed to make this remote job submission work. Note 
that if you want to have several levels of subfolder structures, such as the following, 
then each subfolder must already exist in the Databricks server:

/rootPath/subfolder1/subfolder2/my_experiment_name

This means that the rootPath, subfolder1, and subfolder2 folders must 
already exist. If not, the command line will fail since it cannot create the parent 
folder automatically on the Databricks server. That last string, my_experiment_
name, can be automatically created if it does not already exist since that's the actual 
experiment name that will host all the experiment runs. Note that, in this example, 
we are using the command-line parameter to specify the experiment name, but it is 
also possible to use the environment variable to specify it, as follows:

export MLFLOW_EXPERIMENT_NAME=/Shared/dl_model_chapter05
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3. Once this command is executed, you will see a much shorter console output 
message this time compared with the previous run in a local environment. This is 
because when executing code this way,  it runs asynchronous, which means the job 
is submitted to the remote Databricks server and immediately returns to the console 
without waiting. Let's look at the first three lines of the output:

INFO: '/Shared/dl_model_chapter05' does not exist. 
Creating a new experiment

2022/01/06 17:35:32 INFO mlflow.projects.
databricks: === Uploading project to DBFS path /
dbfs/mlflow-experiments/427565/projects-code/
f1cbec57b21eabfca52f417f8482054bbea22be 
9205b5bbde461780d809924c2.tar.gz ===

2022/01/06 17:35:32 INFO mlflow.projects.
databricks: === Finished uploading project to /
dbfs/mlflow-experiments/427565/projects-code/
f1cbec57b21eabfca52f417f8482054bbea22be 
9205b5bbde461780d809924c2.tar.gz ===

The first line means that the experiment does not exist in the Databricks server, so 
it is being created. If you run this a second time, this will not show up. The second 
and third lines describe the process where MLflow packages the MLproject as a 
.tar.gz file and uploads it to the Databricks file server. Note that, unlike a GitHub 
project where it needs to check out the entire project from the repository, here, it 
only needs to package the chapter05 folder since that's where our MLproject 
resides. This can be confirmed by looking at the job running logs in the Databricks 
cluster, which we will explain (where to get the job URL and how to look for the 
logs) in the next few paragraphs.
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Synchronous and Asynchronous Running of MLproject
The official MLflow run CLI does not support a parameter to specify the 
running of an MLflow project in asynchronous or synchronous mode. 
However, the MLflow run Python API does have a parameter called 
synchronous, which by default is set to be True. When using MLflow's 
CLI to run an MLflow job using Databricks as the backend, the default 
behavior is asynchronous. Sometimes, synchronous behavior of the CLI run 
command is desirable during CI/CD automation when you need to make sure 
the MLflow run completes successfully before moving to the next step. This 
cannot be done with the official MLflow run CLI, but you can write a wrapper 
CLI Python function to call MLflow's Python API with synchronous mode 
set to True and then use your own CLI Python command to run the MLflow 
job in synchronous mode. Also, note that mlflow.run() is the high-level 
fluent (object-oriented) API for the mlflow.projects.run() API. 
We use the mlflow.run() API extensively in this book for consistency. 
For details on the MLflow run Python API, see the official documentation 
page: https://www.mlflow.org/docs/latest/python_api/
mlflow.projects.html#mlflow.projects.run. 

The next few lines of the output look similar to the following:
2022/01/06 17:48:31 INFO mlflow.projects.databricks: === 
Running entry point main of project . on Databricks ===

2022/01/06 17:48:31 INFO mlflow.projects.databricks: === 
Launched MLflow run as Databricks job run with ID 279456. 
Getting run status page URL... ===

2022/01/06 17:48:31 INFO mlflow.projects.databricks: === 
Check the run's status at https://???.cloud.databricks.
com#job/168339/run/1 ===

These lines describe that the job has been submitted to the Databricks server and 
the job run ID and the job URL are shown in the last line (replace ??? with your 
actual Databricks URL to make this work for you). Notice that the MLflow run ID 
is 279456, which is different from the ID you see in the job URL (168339). This is 
because the job URL is managed by the Databricks job management system and has 
a different way to generate and track each actual job. 

https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run
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4. Click the job URL link (https://???.cloud.databricks.
com#job/168339/run/1) and check the status of this job, which will show the 
progress and standard output and error logs (see Figure 5.3). Usually, this page will 
take a few minutes to start showing the running progress since it needs to create  
a brand new cluster based on cluster_spec.json before it can start running 
the job.

Figure 5.3 – MLflow run job status page with standard output

Figure 5.3 shows the job was successfully finished (Status: Succeeded) and the standard 
output, which shows the content of the chapter05 folder was uploaded and extracted 
in the Databricks File System (DBFS). As mentioned previously, only the MLproject we 
want to run was packaged, uploaded, and extracted in the DBFS, not the entire project 
repository.

On the same job status page, you will also find the standard errors section, which shows 
the logs describing the pipeline step we wanted to run: download_data. These are not 
errors but just informational messages. All Python logs are aggregated here. See Figure 5.4 
for details:
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Figure 5.4 – MLflow job information logged on the job status page

Figure 5.4 shows the log that's very similar to what we see when we run in the local 
interactive environment, but now these runs were executed in the cluster we specified 
when we submitted the job. Note that the pipeline experiment ID is 427565 in Figure 
5.4. You should be able to find the successfully completed MLflow DL pipeline runs in 
the integrated MLflow tracking server on the Databricks server, using the experiment ID 
427565 in the following URL pattern:

https://[your databricks hostname]/#mlflow/experiments/427565

If you see the familiar tracking results as we have seen in previous chapters, give yourself  
a big hug since you just completed a major learning milestone in running local code in  
a remote Databricks cluster!

Furthermore, we can run multiple steps of the DL pipeline using this approach without 
changing any code in the individual step's implementation. For example, if we want to run 
both the download_data and fine_tuning_model steps of the DL pipeline, we can 
issue the following command:

mlflow run . -b databricks --backend-config cluster_spec.json 
--experiment-name='/Shared/dl_model_chapter05' -P pipeline_
steps='download_data,fine_tuning_model'

The output console will show the following short messages:

2022/01/07 15:22:39 INFO mlflow.projects.databricks: === 
Uploading project to DBFS path /dbfs/mlflow-experiments/427565/
projects-code/743cadfec82a55b8c76e9f27754cfdd516545b155254e990c
2cc62650b8af959.tar.gz ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: === 
Finished uploading project to /dbfs/mlflow-experiments/427565/
projects-code/743cadfec82a55b8c76e9f27754cfdd516545b155254e990c
2cc62650b8af959.tar.gz ===

https://[your databricks hostname]/#mlflow/experiments/427565
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2022/01/07 15:22:40 INFO mlflow.projects.databricks: === 
Running entry point main of project . on Databricks ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: === 
Launched MLflow run as Databricks job run with ID 279540. 
Getting run status page URL... ===

2022/01/07 15:22:40 INFO mlflow.projects.databricks: === 
Check the run's status at https://?????.cloud.databricks.
com#job/168429/run/1 ===

You can then go to the job URL page shown in the last line of the console output and wait 
until it creates a new cluster and completes both steps. You should then be able to find 
both steps in the experiment folder logged in the MLflow tracking server, using the same 
experiment URL (since we use the same experiment name):

https://[your databricks hostname]/#mlflow/experiments/427565

Now that we know how to run local code in a remote Databricks cluster, we will learn how 
to run the code from a GitHub repository in a remote Databricks cluster.

Running remotely in the cloud with remote 
code in GitHub
The most reliable way to reproduce a DL pipeline is to point to a specific version of the 
project code in GitHub and then run it in the cloud without invoking any local resources. 
This way, we know the exact version of the code as well as using the same running 
environment defined in the project. Let's see how this works with our DL pipeline. 

As a prerequisite and a reminder, the following three environment variables need to be set 
up before you issue the MLflow run command to complete this section of the learning:

export MLFLOW_TRACKING_URI=databricks

export DATABRICKS_TOKEN=[databricks_token]

export DATABRICKS_HOST='https://[your databricks host name/'

We already know how to set up these environment variables from the last section. There 
is potentially one more setup needed, which is to allow your Databricks server to access 
your GitHub repository if it is non-public (see the following GitHub Token for Databricks 
to Access a Non-Public or Enterprise Project Repository box).

https://[your databricks hostname]/#mlflow/experiments/427565
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GitHub Token for Databricks to Access a Non-Public or Enterprise Project 
Repository
To allow Databricks to access the project repository in GitHub, there is 
another token that's needed. This can be generated by going to your personal 
GitHub page (https://github.com/settings/tokens) and then 
following the steps described on this page (https://docs.github.
com/en/authentication/keeping-your-account-and-
data-secure/creating-a-personal-access-token). 
You can then follow the instructions on the Databricks documentation 
website to set it up: https://docs.databricks.com/repos.
html#configure-your-git-integration-with-
databricks.

Now, let's run the project using the specific version in the GitHub repository for the full 
pipeline on the remote Databricks cluster:

mlflow run https://github.com/PacktPublishing/Practical-
Deep-Learning-at-Scale-with-MLFlow#chapter05 -v 
395c33858a53bcd8ac217a962ab81e148d9f1d9a -b databricks 
--backend-config cluster_spec.json --experiment-name='/Shared/
dl_model_chapter05' -P pipeline_steps='all'

We will then see the output as brief as six lines. Let's look at what the important 
information on each line shows and how this works:

1. The first line shows where the content of the project repository was downloaded  
to locally:

2022/01/07 17:36:54 INFO mlflow.projects.utils: === 
Fetching project from https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow#chapter05 
into /var/folders/51/whxjy4r92dx18788yp11ycyr0000gp/T/
tmpzcepn5h5 ===

If we go to the temporary directory shown in this message on the 
local machine where we execute this command, we see that the entire 
repository is already downloaded to this folder: /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpzcepn5h5. 

2. The next two lines show the project content was zipped and uploaded to a DBFS 
folder on the Databricks server:

2022/01/07 17:36:57 INFO mlflow.projects.
databricks: === Uploading project to DBFS path /

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks
https://docs.databricks.com/repos.html#configure-your-git-integration-with-databricks
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dbfs/mlflow-experiments/427565/projects-code/
fba3d31e1895b78f40227b5965461faddb 
61ec9df906fb09b161f74efaa90aa2.tar.gz ===

2022/01/07 17:36:57 INFO mlflow.projects.
databricks: === Finished uploading project to /
dbfs/mlflow-experiments/427565/projects-code/
fba3d31e1895b78f40227b5965461faddb61ec 
9df906fb09b161f74efaa90aa2.tar.gz ===

If we use the local command-line tool of Databricks, we can list this .tar.gz file 
as if it is a local file (but in fact, it is located remotely on the Databricks server):

databricks fs ls -l dbfs:/mlflow-experiments/427565/
projects-code/fba3d31e1895b78f40227b5965461faddb61ec 
9df906fb09b161f74efaa90aa2.tar.gz

You should see output similar to the following, which describes the attributes of the 
file (size, owner/group ID, and whether it is a file or directory):

file  3070  fba3d31e1895b78f40227b5965461faddb61ec 
9df906fb09b161f74efaa90aa2.tar.gz  1641605818000

3. The next line shows that it starts to run the main entry point for this GitHub 
project:

2022/01/07 17:36:57 INFO mlflow.projects.databricks: === 
Running entry point main of project https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow#chapter05 on Databricks ===

Note the difference when we run the local code (it was a dot after the project, which 
means the current directory on the local system). Now, it lists the full path of the 
GitHub repository location.

4. The last two lines are like the previous section's output, where it lists out the  
job URL:

2022/01/07 17:36:57 INFO mlflow.projects.databricks: === 
Launched MLflow run as Databricks job run with ID 279660. 
Getting run status page URL... ===

2022/01/07 17:36:57 INFO mlflow.projects.databricks: === 
Check the run's status at https://????.cloud.databricks.
com#job/168527/run/1 ===
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5. If we click the job URL in the last line of the console output, we will be able to see 
the following content on that website (Figure 5.5):

Figure 5.5 – MLflow run job status page using the code from the GitHub repository

Figure 5.5 shows the end status of this job. Notice that the title of the page now says 
MLflow Run for https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow#chapter05, instead of MLflow Run for . as shown in the previous 
section when using local code to run.

The status of the job shows this was run successfully and you will also see that the results 
are logged in the experiment page as before, with all three steps finished. The model is  
also registered in the model registry as expected, in the Databricks server under the 
following URL:

https://[your_databricks_hostname]/#mlflow/models/dl_
finetuned_model

In summary, the mechanism of how this approach works is shown in the following 
diagram (Figure 5.6):

Figure 5.6 – Summary view of running remote GitHub code in a remote Databricks cluster server
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Figure 5.6 shows that there are three different locations (a machine where we issue the 
MLflow run command, a remote Databricks server, and a remote GitHub project). 
When an MLflow run command is issued, the remote GitHub project source code is 
cloned to the machine where the MLflow run command was issued, and then uploaded 
to the remote Databricks server with a job submitted to execute the multiple steps of 
the DL pipeline. This is an asynchronous execution, and the status of the job needs to be 
monitored based on the job URL created. 

Running an MLflow Project on Other Backends
Right now, Databricks supports two types of remote running backend 
environments: Databricks and K8s. However, as of MLflow version 1.22.0 
(https://www.mlflow.org/docs/latest/projects.
html#run-an-mlflow-project-on-kubernetes-
experimental), running MLflow projects on K8s is still in experimental 
mode and is subject to change. If you are interested in learning more about 
this, refer to the reference in the Further reading section to explore an example 
provided. There are also other third-party provided backends (also called 
community plugins) such as hadoop-yarn (https://github.com/
criteo/mlflow-yarn). Due to the availability of Databricks in all major 
cloud providers and its maturity in supporting enterprise security-compliant 
production scenarios, this book currently focuses on learning about running 
MLflow projects remotely in a Databricks server.

Summary
In this chapter, we have learned how to run a DL pipeline in different execution 
environments (local or remote Databricks clusters) using either local source code or 
GitHub project repository code. This is critical not just for reproducibility and flexibility 
in executing a DL pipeline, but also provides much better productivity and future 
automation possibility using CI/CD tools. The power to run one or multiple steps of  
a DL pipeline in remote resource-rich environments gives us the speed to execute large-
scale computation and data-intensive jobs that are typically seen in production-quality 
DL model training and fine-tuning. This allows us to do hyperparameter tuning or 
cross-validation of a DL model if necessary. We will start to learn how to run large-scale 
hyperparameter tuning in the next chapter as our natural next step.

https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-kubernetes-experimental
https://github.com/criteo/mlflow-yarn
https://github.com/criteo/mlflow-yarn
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Further reading
• MLflow run projects parameters (for both command line and Python API): 

https://www.mlflow.org/docs/latest/projects.html#running-
projects

• MLflow run command line (CLI) documentation: https://www.mlflow.org/
docs/latest/cli.html#mlflow-run

• MLflow run projects on Databricks: https://www.mlflow.org/docs/
latest/projects.html#run-an-mlflow-project-on-databricks

• An example of running an MLflow project on K8s: https://github.
com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/
LogisticRegression

• Running MLflow projects on Azure: https://docs.microsoft.com/en-us/
azure/machine-learning/how-to-train-mlflow-projects

https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/projects.html#running-projects
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/cli.html#mlflow-run
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-databricks
https://www.mlflow.org/docs/latest/projects.html#run-an-mlflow-project-on-databricks
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://github.com/SameeraGrandhi/mlflow-on-k8s/tree/master/examples/LogisticRegression
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-mlflow-projects
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-train-mlflow-projects
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Hyperparameter 
Tuning at Scale

Hyperparameter tuning or hyperparameter optimization (HPO) is a procedure that 
finds the best possible deep neural network structures, types of pretrained models, and 
model training process within a reasonable computing resource constraint and time 
frame. Here, hyperparameter refers to parameters that cannot be changed or learned 
during the ML training process, such as the number of layers inside a deep neural 
network, the choice of a pretrained language model, or the learning rate, batch size, and 
optimizer of the training process. In this chapter, we will use HPO as a shorthand to 
refer to the process of hyperparameter tuning and optimization. HPO is a critical step 
for producing a high-performance ML/DL model. Given that the search space of the 
hyperparameter is very large, efficiently running HPO at scale is a major challenge. The 
complexity and high cost of evaluating a DL model, compared to classical ML models, 
further compound the challenges. Therefore, we will need to learn state-of-the-art HPO 
approaches and implementation frameworks, implement increasingly complex and 
scalable HPO methods, and track them with MLflow to ensure a reproducible tuning 
process. By the end of this chapter, you will be comfortable with implementing scalable 
HPO for DL model pipelines.
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In this chapter, first, we will give an overview of the different automatic HPO frameworks 
and applications of DL model tuning. Additionally, we will understand what to optimize 
and when to choose what frameworks to use. We will compare three popular HPO 
frameworks: HyperOpt, Optuna, and Ray Tune. We will show which of these is the 
best choice for running HPO at scale. Then, we will focus on learning how to create 
HPO-ready DL model codes that can use Ray Tune and MLflow. Following this, we  
will show how we can switch to using different HPO algorithms easily with Optuna as  
a primary example. 

In this chapter, we'll cover the following topics:

• Understanding automatic HPO for DL pipelines

• Creating HPO-ready DL models using Ray Tune and MLflow

• Running the first Ray Tune HPO experiment with MLflow

• Running Ray Tune HPO with Optuna and HyperBand

Technical requirements 
To understand the examples in this chapter, the following key technical requirements  
are needed:

• Ray Tune 1.9.2: This is a flexible and powerful hyperparameter tuning framework 
(https://docs.ray.io/en/latest/tune/index.html).

• Optuna 2.10.0: This is an imperative and define-by-run hyperparameter tuning 
Python package (https://optuna.org/). 

• The code for this chapter can be found in the following GitHub URL, which also 
includes the requirements.txt file that contains the preceding key packages 
and other dependencies: https://github.com/PacktPublishing/
Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/
chapter06.

https://docs.ray.io/en/latest/tune/index.html
https://optuna.org/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter06
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Understanding automatic HPO for DL 
pipelines
Automatic HPO has been studied for over two decades since the first known paper on 
this topic was published in 1995 (https://www.sciencedirect.com/science/
article/pii/B9781558603776500451). It has been widely understood that 
tuning hyperparameters for an ML model can improve the performance of the model – 
sometimes, dramatically. The rise of DL models in recent years has triggered a new wave 
of innovation and the development of new frameworks to tackle HPO for DL pipelines. 
This is because a DL model pipeline imposes many new and large-scale optimization 
challenges that cannot be easily solved by previous HPO methods. Note that, in contrast 
to the model parameters that can be learned during the model training process, a set of 
hyperparameters must be set before training. 

Difference between HPO and Transfer Learning's Fine-Tuning
In this book, we have been focusing on one successful DL approach called 
Transfer Learning (please refer to Chapter 1, Deep Learning Life Cycle and 
MLOps Challenges, for a full discussion). The key step of a transfer learning 
process is to fine-tune a pretrained model with some task- and domain-
specific labeled data to get a good task-specific DL model. However, the 
fine-tuning step is just a special kind of model training step that also has lots of 
hyperparameters to optimize. That's where HPO comes into play. 

Types of hyperparameters and their challenges
There are several types of hyperparameters that you can use for a DL pipeline:

• DL model type and architecture: In the case of transfer learning, choosing which 
pretrained models to use is one possible hyperparameter. For example, there are 
over 27,000 pretrained models in the Hugging Face model repository (https://
huggingface.co/models), including BERT, RoBERTa, and many more. For  
a particular prediction task, we might want to try a few of them to decide which is 
the best one to use. 

https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://www.sciencedirect.com/science/article/pii/B9781558603776500451
https://huggingface.co/models
https://huggingface.co/models
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• Learning- and training-related parameters: These include different types of 
optimizers such as stochastic gradient descent (SGD) and Adam (you can view 
a list of PyTorch optimizers at https://machinelearningknowledge.
ai/pytorch-optimizers-complete-guide-for-beginner/). It 
also includes the associated parameters such as learning rate and batch size. It is 
recommended that, when applicable, the following parameters should be first tuned 
in their order of importance for a neural network model: learning rate, momentum, 
mini-batch size, the number of hidden layers, learning rate decay, and regularization 
(https://arxiv.org/abs/2003.05689).

• Data and pipeline configurations: A DL pipeline can include data processing and 
transformation steps that could impact model training. For example, if we want to 
compare the performance of a classification model for an email message with or 
without the signature text body, then a hyperparameter for whether to include an 
email signature is needed. Another example is when we don't have enough data or 
variations of data; we could try to use various data augmentation techniques that 
will lead to different sets of input for the model training (https://neptune.
ai/blog/data-augmentation-nlp).  

As a reminder, not all hyperparameters are tunable or require tuning. For example, it 
is not necessary for the number of epochs in a DL model to be tuned. This is because 
training should stop when the accuracy metric stops improving or does not hold any 
promise to do better than other hyperparameter configurations. This is called early 
stopping or pruning and is one of the key techniques underpinning some recent state-
of-the-art HPO algorithms (for more discussions on early stopping, please refer to 
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-
learning-in-6-easy-steps.html).

https://machinelearningknowledge.ai/pytorch-optimizers-complete-guide-for-beginner/
https://machinelearningknowledge.ai/pytorch-optimizers-complete-guide-for-beginner/
https://arxiv.org/abs/2003.05689
https://neptune.ai/blog/data-augmentation-nlp
https://neptune.ai/blog/data-augmentation-nlp
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
https://databricks.com/blog/2019/08/15/how-not-to-scale-deep-learning-in-6-easy-steps.html
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Note that all these three categories of hyperparameters can be mixed and matched, and 
the configuration of the entire hyperparameter space can be very large. For example, 
if we want to choose the type of pretrained model we want to use as a hyperparameter 
(for example, the choice could be BERT or RoBERTa), two learning-related parameters 
(such as the learning rate and batch size), and two different data augmentation techniques 
for NLP texts (such as random insertion and synonym replacement), then we have 
five hyperparameters to optimize. Note that each hyperparameter can have quite a few 
different candidate values to choose from, and if each hyperparameter has 5 different 
values, then we will have a total of 55 = 3125 combinations of hyperparameters to try. 
In practice, it is very common to have dozens of hyperparameters to try, and each 
hyperparameter could have dozens of choices or distributions to sample from. This 
quickly leads to a curse of dimensionality problem (https://insaid.medium.com/
automated-hyperparameter-tuning-988b5aeb7f2a). This high-dimensional 
search space challenge is compounded by the expensive training and evaluation costs of 
DL models; we know that even 1 epoch of a tiny BERT, which we tried in the previous 
chapters, with a tiny set of training and validation dataset can take 1–2 mins. Now 
imagine a realistic production-grade DL model with HPO that could take hours, days, 
or even weeks if not executed efficiently. In general, the following is a list of the main 
challenges that require the application of high-performance HPO at scale:

• The high-dimensional search space of hyperparameters

• The high cost of model training and evaluation time for increasingly large  
DL models

• Time-to-production and deployment for DL models used in production

Performing Model Training and HPO Simultaneously
It is possible to change the hyperparameters dynamically during the training 
process. This is a hybrid approach that does model training and HPO 
simultaneously, such as Population-Based Training (PBT; https://
deepmind.com/blog/article/population-based-
training-neural-networks). However, this does not change the fact 
that when starting a new epoch of training, a set of hyperparameters needs to 
be predefined. This PBT is one of the innovations that tries to reduce both the 
cost of searching for high-dimensional hyperparameter space and the training 
cost of a DL model. Interested readers should consult the Further reading 
section to dive deeper into this topic.

Now that we understand the general challenges and categories of hyperparameters to 
optimize, let's look at how HPO works and how to choose a framework for our usage.

https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://deepmind.com/blog/article/population-based-training-neural-networks
https://deepmind.com/blog/article/population-based-training-neural-networks
https://deepmind.com/blog/article/population-based-training-neural-networks
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How HPO works and which ones to choose
There are different ways to understand how HPO works. The classical HPO methods 
include grid search and random search, where a set of hyperparameters are chosen with a 
range of candidate values. Each one is run independently to completion, and then we pick 
the best hyperparameter configuration from the set of trials we run, given the best model 
performance metric we found. Although this type of search is easy to implement and 
might not even require a sophisticated framework to support it, it is inherently inefficient 
and might not even find the best configuration of hyperparameters due to the non-convex 
nature of HPO. The term non-convex means that multiple local minimal or maximal 
points exist, and an optimization method might not be able to find a global optimal (that 
is, minimum or maximum). Put simply, a modern HPO needs to do two things:

• The adaptive sampling of hyperparameters (also known as Configuration Selection 
or CS): This means it needs to find which set of hyperparameters to try by taking 
advantage of prior knowledge. This is mostly about using different variants of 
Bayesian optimization to adaptively identify new configurations based on previous 
trials in a sequential way. This has been proven to outperform traditional grid 
search and random search methods.

• The adaptive evaluation of the performance of a set of hyperparameters (also 
known as Configuration Evaluation or CE): These approaches focus on adaptively 
allocating more resources to promising hyperparameter configurations while 
quickly pruning the poor ones. Resources can be in different forms such as the 
size of the training dataset (for example, only using a small fraction of the training 
dataset) or the number of iterations (for example, only using a few iterations to 
decide which ones to terminate without running to convergence). There is a family 
of methods called multi-armed bandit algorithms, such as the Asynchronous 
Successive Halving Algorithm (ASHA). Here, all trials start with an initial budget, 
then the worst half is removed, the budget is adjusted for the remaining ones, and 
this repeats until only one trial is left. 

In practice, we want to select a suitable HPO framework using the following five criteria:

• Callback integration with MLflow

• Scalability and support of GPU clusters

• Ease of use and flexible APIs 

• Integration with cutting edge HPO algorithms (CS and CE)

• Support of DL frameworks
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In this book, three frameworks have been compared, and the results are summarized  
in Figure 6.1:

Figure 6.1: Comparison of Ray Tune, Optuna, and HyperOpt

As you can see from Figure 6.1, the winner is Ray Tune (https://docs.ray.io/
en/latest/tune/index.html), when compared to Optuna (https://optuna.
org/) and HyperOpt (https://hyperopt.github.io/hyperopt/). Let's explain 
the five criteria, as follows:

• Callback integration with MLflow: Optuna's support of the MLflow callback is still 
an experimental feature, while HyperOpt does not support callback at all, leaving 
additional work for users to manage the MLflow tracking for each trial run. 

https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://optuna.org/
https://optuna.org/
https://hyperopt.github.io/hyperopt/
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Only Ray Tune supports both the Python mixin decorator and callback integration 
with MLflow. Python mixin is a pattern that allows a standalone function to be 
mixed in whenever needed. In this case, the MLflow functionality is automatically 
mixed in during model training through the mlflow_mixin decorator. This 
can turn any training function into a Ray Tune trainable function, automatically 
configuring MLflow and creating a run in the same process as each Tune trial. You 
can then use the MLflow API inside the training function and it will automatically 
get reported to the correct run. Additionally, it supports MLflow's autologging, 
which means that all of the MLflow tracking information will be logged into the 
correct trial. For example, the following code snippet shows that our previous DL 
fine-tuning function can be turned into a mlflow_mixin Ray Tune function,  
as follows:

@mlflow _ mixin

def train _ dl _ model():

    mlflow.pytorch.autolog()

    trainer = flash.Trainer(

        max _ epochs=num _ epochs,

        callbacks=[TuneReportCallback(

            metrics, on='validation _ end')])

    trainer.finetune()

Note that when we define the trainer, we can add TuneReportCallback as one 
of the callbacks, which will pass the metrics back to Ray Tune, while the MLflow 
autologging does its job of logging all the tracking results simultaneously. In the 
next section, we will show you how to turn the previous chapter's example of fine-
tuning the DL model into a Ray Tune trainable.

• Scalability and support of GPU clusters: Although Optuna and HyperOpt support 
parallelization, they both have dependencies on some external databases (relational 
databases or MongoDB) or SparkTrials. Only Ray Tune supports parallel and 
distributed HPO through the Ray distributed framework natively, and it is also the 
only one that supports running on a GPU cluster among these three frameworks.
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• Ease of use and flexibility of the APIs: Among all the three frameworks, only 
Optuna supports define-by-run APIs, which allows you to dynamically define the 
hyperparameters in a Pythonic programming style, including loops and branches 
(https://optuna.readthedocs.io/en/stable/tutorial/10_key_
features/002_configurations.html). This is in contrast to the define-
and-run APIs, which both Ray Tune and HyperOpt support, where the search space 
is defined by a predefined dictionary prior to evaluating the objective function. 
These two terms, define-by-run and define-and-run, were actually coined by the 
DL framework's development community. In the early days, when TensorFlow 1.0 
was initially released, a neural network needed to be defined first and then lazily 
executed later, which is called define-and-run. These two phases, 1) the construction 
of the neural network phase and 2) the evaluation phases, are sequentially executed, 
and the neural network structure cannot be changed after the construction 
phase. The newer DL frameworks, such as TensorFlow 2.0 (or the eager execution 
version of TensorFlow) and PyTorch, support the define-by-run neural network 
computation. There are no two separate phases for constructing and evaluating 
neural networks. Users can directly manipulate the neural networks while doing 
the computation. While the define-by-run API provided by Optuna can be used 
to directly define the hyperparameter search space dynamically, it does have some 
drawbacks. The main problem is that the parameter concurrence is not known until 
runtime, which could complicate the implementation of the optimization method. 
This is because knowing the parameter concurrence beforehand is well supported 
for many sampling methods. Thus, in this book, we prefer using define-and-
run APIs. Also, note that Ray Tune can support the define-by-run API through 
integration with Optuna (you can see an example in Ray Tune's GitHub repository 
at https://github.com/ray-project/ray/blob/master/python/
ray/tune/examples/optuna_define_by_run_example.py#L35).

• Integration with cutting-edge HPO algorithms (CS and CE): On the CS side, 
among these three frameworks, HyperOpt has the least active development 
to support or integrate with the latest cutting-edge HPO sampling and search 
methods. Its primary search method is Tree-Structured Parzen Estimators (TPE), 
which is a Bayesian optimization variant that's especially effective for a mixed 
categorical and conditional hyperparameter search space. Similarly, Optuna's 
primary sampling method is TPE. On the contrary, Ray Tune supports all cutting-
edge searching methods, including the following: 

 � DragonFly (https://dragonfly-opt.readthedocs.io/en/master/), 
which is a highly scalable Bayesian optimization framework

https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html
https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html
https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/optuna_define_by_run_example.py#L35
https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/optuna_define_by_run_example.py#L35
https://dragonfly-opt.readthedocs.io/en/master/
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 � BlendSearch (https://microsoft.github.io/FLAML/docs/
Use-Cases/Tune-User-Defined-Function/#hyperparameter-
optimization-algorithm) from Microsoft Research

In addition, Ray Tune also supports TPE through integration with Optuna and 
HyperOpt. 

On the CE side, HyperOpt does not support any pruning or schedulers to stop the 
non-promising hyperparameter configuration. Both Optuna and Ray Tune support 
quite a few pruners (in Optuna) or schedulers (in Ray Tune). However, only Ray 
Tune supports PBT. Given the active development community and flexible API 
developed by Ray Tune, it is possible for Ray tune to continue to integrate and 
support any emerging schedulers or pruners in a timely fashion.

• Support of DL frameworks: HyperOpt is not specifically designed or integrated 
with any DL frameworks. This does not mean you cannot use HyperOpt for tuning 
DL models. However, HyperOpt does not offer any pruning or scheduler support 
to perform early stopping for unpromising hyperparameter configuration, which 
is a major disadvantage for HyperOpt to be used for DL model tuning. Both Ray 
Tune and Optuna have integration with popular DL frameworks such as PyTorch 
Lightning and TensorFlow/Keras. 

In addition to the major criteria that we just discussed, Ray Tune also has the best 
documentation, extensive code examples, and a vibrant open source developer 
community, which is why we prefer to use Ray Tune for our learning in this chapter.  
In the following sections, we will learn how to create HPO-ready DL models with Ray 
Tune and MLflow.

Creating HPO-ready DL models with Ray Tune 
and MLflow 
To use Ray Tune with MLflow for HPO, let's use the fine-tuning step in our DL pipeline 
example from Chapter 5, Running DL Pipelines in Different Environments, to see what 
needs to be set up and what code changes we need to make. Before we start, first, let's 
review a few key concepts that are specifically relevant to our usage of Ray Tune:

• Objective function: An objective function can be either to minimize or maximize 
some metric values for a given configuration of hyperparameters. For example, in 
the DL model training and fine-tuning scenarios, we would like to maximize the 
F1-score for the accuracy of an NLP text classifier. This objective function needs to 
be wrapped as a trainable function, where Ray Tune can do HPO. In the following 
section, we will illustrate how to wrap our NLP text sentiment model.

https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm
https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm
https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function/#hyperparameter-optimization-algorithm
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• Function-based APIs and class-based APIs: A function-based API allows a user 
to insert Ray Tune statements into the model training function (called trainable in 
Ray Tune) such as tune.report for reporting model metrics (https://docs.
ray.io/en/latest/tune/api_docs/trainable.html#function-
api). A class-based API requires the model training function (trainable) to be a 
subclass of tune.Trainable (https://docs.ray.io/en/latest/tune/
api_docs/trainable.html#trainable-class-api). A class-based API 
provides more control of how Ray Tune controls the model training processing. This 
might be very helpful if you start writing a new piece of architecture for a neural 
network model. However, when using a pretrained foundation model for fine-
tuning, it is much easier to use a function-based API since we can leverage packages 
such as PyTorch Lightning Flash to do HPO.

• Trials: Each trial is a run of a specific configuration of hyperparameters. This can 
be executed by passing the trainable function into tune.run, where Ray Tune will 
orchestrate the HPO process.

• Search space: This is a set of configurations where each hyperparameter will 
be assigned a way in which to sample from certain distributions (for example, 
log uniform distribution sampling can use tune.loguniform) or from some 
categorical variables (for example, tune.choice(['a', 'b' ,'c']) can 
allow you to choose these three choices uniformly). Usually, this search space is 
defined as a Python dictionary variable called config.

•  Suggest: This is the search algorithm or CS algorithm that you need to choose  
for selecting the best trial. Ray Tune provides integration to many popular open 
source search algorithms and can automatically convert the search space defined in 
Ray Tune into the format that the underlying optimization algorithms expect.  
A list of available search algorithms can be found through the tune.suggest API 
(https://docs.ray.io/en/latest/tune/api_docs/suggestion.
html#tune-search-alg).

• Scheduler: This is also called CE, as mentioned earlier. While the tune.suggest 
API provides the optimization algorithms for searching, it does not offer the early 
stopping or pruning capability to halt the obviously unpromising trials after just 
a few iterations. Since early stopping or pruning can significantly speed up the 
HPO process, it is highly recommended that you use a scheduler in conjunction 
with a searcher. Ray Tune provides many popular schedulers through its scheduler 
API (tune.schedulers), such as ASHA, HyperBand, and more. (Please visit 
https://docs.ray.io/en/latest/tune/api_docs/schedulers.
html#trial-schedulers-tune-schedulers.)

https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#function-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#trainable-class-api
https://docs.ray.io/en/latest/tune/api_docs/trainable.html#trainable-class-api
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#trial-schedulers-tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#trial-schedulers-tune-schedulers
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Having reviewed the basic concepts and APIs of Ray Tune, in the next section, we will be 
setting up Ray Tune and MLflow to run HPO experiments.

Setting up Ray Tune and MLflow 
Now that we understand the basic concepts and APIs of Ray Tune, let's see how we can 
set up Ray Tune to perform HPO for the fine-tuning step of our previous NLP sentiment 
classifier. You might want to download this chapter's code (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter06/) to follow along with these instructions:

1. Install Ray Tune by typing the following command into your conda virtual 
environment, dl_model_hpo:

pip install ray[tune]==1.9.2

2. This will install Ray Tune in the virtual environment where you will launch 
the HPO runs for your DL model fine-tuning. Note that we have also provided 
the complete requirements.txt file in this chapter's GitHub repository 
(https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter06/
requirements.txt), where you should be able to run the following  
installation command:

pip install -r requirements.txt

3. The complete instructions in the README.md file, which are in the same folder, 
should give you more guidance if you need to know how to set up a proper virtual 
environment. 

4. For the MLflow setup, assuming you already have a full-fledged MLflow 
tracking server set up, the only thing you need to pay attention to is making 
sure that you have the environment variables set up correctly to access the 
MLflow tracking server. Run the following in your shell to set them up. 
Alternatively, you can overwrite your environmental variables by calling 
os.environ["environmental_name"]=value in the Python code. As a 
reminder, we have shown the following environment variables that can be set in the 
command lines per Terminal session:

export MLFLOW _ TRACKING _ URI=http://localhost

export MLFLOW _ S3 _ ENDPOINT _ URL=http://localhost:9000

export AWS _ ACCESS _ KEY _ ID="minio"

export AWS _ SECRET _ ACCESS _ KEY="minio123"

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter06/requirements.txt
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5. Run the step of download_data to download the raw data to the local folder 
under the chapter06 parent folder:

mlflow run . -P pipeline _ steps='download _ data' 
--experiment-name dl _ model _ chapter06

When the preceding execution is done, you should be able to find the IMDB data 
under the chapter06/data/ folder.

Now we are ready to create an HPO step to fine-tune the NLP sentiment model we  
built earlier. 

Creating the Ray Tune trainable for the DL model
There are multiple changes that we need to make to allow Ray Tune to run HPO to fine-
tune the DL model that we developed in previous chapters. Let's walk through the steps,  
as follows:

1. First, let's identify the list of possible hyperparameters (both tunable and 
non-tunable) in our previous fine-tuning code. Recall that our fine-tuning code 
looks similar to the following (only the key lines of code are shown here; the 
complete code can be found in chapter05 in the GitHub repository at https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_
tuning_model.py#L19):

datamodule = TextClassificationData.from _ csv(

    input _ fields="review",

    target _ fields="sentiment",

    train _ file=f"{data _ path}/imdb/train.csv",

    val _ file=f"{data _ path}/imdb/valid.csv",

    test _ file=f"{data _ path}/imdb/test.csv")

classifier _ model = TextClassifier(

    backbone= "prajjwal1/bert-tiny",

    num _ classes=datamodule.num _ classes, 

    metrics=torchmetrics.F1(datamodule.num _ classes))

trainer = flash.Trainer(max _ epochs=3)

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter05/pipeline/fine_tuning_model.py#L19
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trainer.finetune(classifier _ model, 

    datamodule=datamodule, strategy="freeze") 

The preceding code has four major pieces: 

 � The datamodule variable: This defines the data sources for training, 
validation, and testing. There is a batch_size parameter with a 
default value of 1, which is not shown here, but it is one of the most 
important hyperparameters to tune. For more details, please see the 
explanation in the lightning-flash code documentation (https://
github.com/PyTorchLightning/lightning-flash/
blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/
data/data_module.py#L64).

 � classifier_model: This defines a classifier with the exposed parameters 
through the TextClassifier API of lightning-flash. There are 
multiple hyperparameters in the input arguments that could be tuned, 
including learning_rate, the backbone foundation model, optimizer, 
and more. You can see the complete list of input arguments in the 
lightning-flash code documentation for the TextClassifier API 
(https://github.com/PyTorchLightning/lightning-flash/
blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/
classification/model.py#L44).

 � trainer: This defines a trainer variable that can be used for fine-tuning. Here, 
there are a few hyperparameters that need to be set, but not necessarily tuned, 
such as num_epochs, as discussed earlier.

 � trainer.finetune: This does the actual finetuning (transfer learning). Note 
that there is also a possible hyperparameter strategy that could be tuned.

For learning purposes, we will pick learning_rate and batch_size as the two 
hyperparameters to tune, as these two are the most important hyperparameters to 
optimize for a DL model. Once you finish this chapter, you should be able to easily 
add additional hyperparameters to the list of candidates for optimization.

https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/core/data/data_module.py#L64
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44
https://github.com/PyTorchLightning/lightning-flash/blob/450902d713980e0edefcfd2d2a2a35eb875072d7/flash/text/classification/model.py#L44
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2. Ray Tune requires a trainable function to be passed into tune.run. This means we 
need to create a trainable function. By default, a trainable function only takes one 
required input parameter, config, which contains a dictionary of key-value pairs 
of hyperparameters and other parameters for identifying an execution environment 
such as an MLflow tracking URL. However, Ray Tune provides a wrapper function, 
called tune.with_parameters, which allows you to pass along additional 
arbitrary parameters and objects (https://docs.ray.io/en/latest/tune/
tutorials/overview.html#how-can-i-pass-further-parameter-
values-to-my-trainable). First, let's create a function called finetuning_
dl_model to encapsulate the logic that we just examined regarding the fine-tuning 
step, using a mlflow_mixin decorator. This allows MLflow to be initialized 
automatically when this function is called:

@mlflow _ mixin

def finetuning _ dl _ model(config, data _ dir=None,

                        num _ epochs=3, num _ gpus=0):

This function takes a config dictionary as input where a list of hyperparameters 
and MLflow configurations can be passed in. Additionally, we add three additional 
arguments to the function signature: data_dir for the location of the directory, 
num_epochs for the maximum number of epochs for each trial to run, and num_
gpus for the number of GPUs for each trial to use if there is any. 

3. In this mlflow_mixin decorated function, we can use all the MLflow tracking 
APIs if necessary, but as of MLflow version 1.22.0, since MLflow's autologging 
support no longer is an experimental feature, but a mature production quality 
feature (https://github.com/mlflow/mlflow/releases/tag/
v1.22.0), we should just use autologging in our code, as follows:

mlflow.pytorch.autolog()

This is efficient and requires no change. However, the batch_size 
hyperparameter is not automatically captured by autologging, so we need to add 
one more logging statement after the fine-tuning is done, as follows:

mlflow.log _ param('batch _ size',config['batch _ size'])

https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://docs.ray.io/en/latest/tune/tutorials/overview.html#how-can-i-pass-further-parameter-values-to-my-trainable
https://github.com/mlflow/mlflow/releases/tag/v1.22.0
https://github.com/mlflow/mlflow/releases/tag/v1.22.0
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4. In the rest of the implementation body of the finetuning_dl_model 
function, the majority of the code is the same as before. There are a few 
changes. In the datamodule variable assignment statement, we add batch_
size=config['batch_size'] to allow the mini-batch size of the training data 
to be tunable, as shown here:

datamodule = TextClassificationData.from _ csv(

    input _ fields="review",

    target _ fields="sentiment",

    train _ file=f"{data _ dir}/imdb/train.csv",

    val _ file=f"{data _ dir}/imdb/valid.csv",

    test _ file=f"{data _ dir}/imdb/test.csv",

    batch _ size=config['batch _ size'])

5. When defining the classifier_model variable, instead of using the default 
values of the set of hyperparameters, now we need to pass in the config dictionary 
to assign these values:

classifier _ model = TextClassifier(

    backbone=config['foundation _ model'],

    learning _ rate=config['lr'],

    optimizer=config['optimizer _ type'],

    num _ classes=datamodule.num _ classes,

    metrics=torchmetrics.F1(datamodule.num _ classes))

6. Next, we need to modify the trainer assignment code. Here, we need to do two 
things: first, we need to define a metrics key-value dictionary to pass from PyTorch 
Lightning to Ray Tune. The key in this metrics dictionary is the name to be 
referenced in the Ray Tune trial run, while the value of the key in this dictionary is 
the corresponding metric name reported by PyTorch Lightning.
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Metric Names in the PyTorch Lightning's Validation Step
When passing the metrics to Ray Tune, first, we need to know the 
metric names used in PyTorch Lightning during the validation step 
since HPO only uses validation data for evaluation, not the hold-out test 
datasets. It turns out PyTorch Lightning has a hardcoded convention 
to prefix all metrics with the corresponding training, validation, and 
testing step names and an underscore. A metric named f1 will be 
reported in PyTorch Lightning as train_f1 during the training step, 
val_f1 during the validation step, and test_f1 during the testing 
step. (You can view the PyTorch Lightning code logic at https://
github.com/PyTorchLightning/lightning-flash/
blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/
flash/core/model.py#L462). In our example, we can pick cross_
entropy and f1 as the metrics during the validation step, which are named 
val_cross_entropy and val_f1, to pass back to Ray Tune as loss 
and f1, respectively. That means, in Ray Tune's trial run, we reference these 
two metrics as simply loss and f1. 

So, here we define two metrics that we want to pass from the PyTorch Lightning 
validation step, val_cross_entropy and val_f1, to Ray Tune as loss and  
f1, respectively:

metrics = {"loss":"val _ cross _ entropy", "f1":"val _ f1"}

Now, we can pass this metrics dictionary to the trainer assignment, as follows:
trainer = flash.Trainer(max _ epochs=num _ epochs,

    gpus=num _ gpus,

    progress _ bar _ refresh _ rate=0,

    callbacks=[TuneReportCallback(metrics, 

        on='validation _ end')])

Notice that the metrics dictionary is passed through TuneReportCallBack 
when the validation_end event happens. This means that when the 
validation step is done in PyTorch Lightning, it will automatically trigger the 
Ray Tune report function to report the list of metrics back to Ray Tune for 
evaluation. The supported list of valid events for TuneReportCallback 
to use can be found in Ray Tune's integration with the PyTorch Lightning 
source code (https://github.com/ray-project/ray/blob/
fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/
integration/pytorch_lightning.py#L170). 

https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/PyTorchLightning/lightning-flash/blob/8b244d785c5569e9aa7d2b878a5f94af976d3f55/flash/core/model.py#L462
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170
https://github.com/ray-project/ray/blob/fb0d6e6b0b48b0a681719433691405b96fbea104/python/ray/tune/integration/pytorch_lightning.py#L170
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7. Finally, we can call trainer.finetune to execute the fine-tuning step. Here, we 
can pass finetuning_strategies as one of the tunable hyperparameters to the 
argument list:

trainer.finetune(classifier _ model,

    datamodule=datamodule,

    strategy=config['finetuning _ strategies'])

8. This completes the changes to the original function of fine-tuning the DL model. 
Now we have a new finetuning_dl_model function that's ready to be wrapped 
in tune.with_parameters to become a Ray Tune trainable function. It should 
be called as follows: 

trainable = tune.with _ parameters(finetuning _ dl _ model, 
data _ dir, num _ epochs, num _ gpus)

9. Note that there is no need to pass the config parameter, as it is implicitly 
assumed that it's the first parameter of finetuning_dl_model. The other three 
parameters need to be passed to the tune.with_parameters wrapper. Also, 
make sure this statement to create a trainable object for Ray Tune is placed outside 
of the finetuning_dl_model function. 

In the next section, it will be placed inside Ray Tune's HPO running function called run_
hpo_dl_model.

Creating the Ray Tune HPO run function
Now, let's create a Ray Tune HPO run function to do the following five things:

• Define the MLflow runtime configuration parameters including a tracking URI and 
an experiment name.

• Define the hyperparameter search space using Ray Tune's random distributions API 
(https://docs.ray.io/en/latest/tune/api_docs/search_space.
html#random-distributions-api) to sample the list of hyperparameters we 
identified earlier.

• Define a Ray Tune trainable object using tune.with_parameters, as shown 
toward the end of the previous subsection.

• Call tune.run. This will execute the HPO run and return Ray Tune's experiment 
analysis object when it has been completed.

• Log the best configuration parameters when the entire HPO run is finished.

https://docs.ray.io/en/latest/tune/api_docs/search_space.html#random-distributions-api
https://docs.ray.io/en/latest/tune/api_docs/search_space.html#random-distributions-api
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Let's walk through the implementation to see how this function can be implemented:

1. First, let's define the hyperparameter's config dictionary, as follows:

mlflow.set _ tracking _ uri(tracking _ uri)

mlflow.set _ experiment(experiment _ name)

This will take tracking_uri and experiment_name of MLflow as the input 
parameters and set them up correctly. If this is the first time you're running this, 
MLflow will also create the experiment.

2. Then, we can define the config dictionary, which can include both tunable and 
non-tunable parameters, and the MLflow configuration parameters. As discussed 
in the previous section, we will tune learning_rate and batch_size but will 
also include other hyperparameters for bookkeeping and future tuning purposes:

config = {

        "lr": tune.loguniform(1e-4, 1e-1),

        "batch _ size": tune.choice([32, 64, 128]),

        "foundation _ model": "prajjwal1/bert-tiny",

        "finetuning _ strategies": "freeze",

        "optimizer _ type": "Adam",

        "mlflow": {

            "experiment _ name": experiment _ name,

            "tracking _ uri": mlflow.get _ tracking _ uri()

        },

    }

As you can see from the config dictionary, we called tune.loguniform to 
sample a log uniform distribution between 1e-4 and 1e-1 to select a learning rate. 
For the batch size, we called tune.choice to select one of three distinct values 
uniformly. For the rest of the key-value pairs, they are non-tunable since they do 
not use any sampling methods but are needed to run the trials.

3. Define the trainable object using tune.with_parameters with all of the extra 
parameters except for the config parameter:

trainable = tune.with _ parameters(

    finetuning _ dl _ model,

    data _ dir=data _ dir,

    num _ epochs=num _ epochs,

    num _ gpus=gpus _ per _ trial)
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In the next statement, this will be called the tune.run function.
4. Now we are ready to run the HPO by calling tune.run, as follows:

analysis = tune.run(

    trainable,

    resources _ per _ trial={

        "cpu": 1,

        "gpu": gpus _ per _ trial

    },

    metric="f1",

    mode="max",

    config=config,

    num _ samples=num _ samples,

    name="hpo _ tuning _ dl _ model")

Here, the objective is to find the set of hyperparameters that maximizes the 
F1-score among all of the trials, so the mode is max and the metric is f1. Note 
that this metric name, f1, is from the metrics dictionary that we defined in 
the previous finetuning_dl_model function, where we mapped PyTorch 
Lightning's val_f1 to f1. This f1 value is then passed to Ray Tune at the end of 
each trial's validation step. The trainable object is passed to tune.run as the 
first parameter, which will be executed as many times as the parameter of num_
samples allows. Following this, resources_per_trial defines the CPU and 
GPU to use. Note that in the preceding example, we haven't specified any search 
algorithms. This means it will use tune.suggest.basic_variant by default, 
which is a grid search algorithm. There is also no scheduler defined, so, by default, 
there is no early stopping, and all trials will be run in parallel with the maximum 
number of CPUs allowed on the execution machine. When the run finishes, an 
analysis variable is returned, which contains the best hyperparameters found, 
along with other information. 

5. Log the best configuration of the hyperparameters found. This can be done by using 
the returned analysis variable from tune.run, as follows:

logger.info("Best hyperparameters found were: %s", analysis.
best _ config)

That's it. Now we can give it a try. If you download the complete code from this 
chapter's GitHub repository, you should be able to find the hpo_finetuning_
model.py file under the pipeline folder. 
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With the preceding change, now we are ready to run our first HPO experiment.

Running the first Ray Tune HPO experiment 
with MLflow
Now that we have set up Ray Tune, MLflow, and created the HPO run function, we can try 
to run our first Ray Tune HPO experiment, as follows:

python pipeline/hpo _ finetuning _ model.py

After a couple of seconds, you will see the following screen, Figure 6.2, which shows that 
all 10 trials (that is, the values that we set for num_samples) are running concurrently:

Figure 6.2 – Ray Tune running 10 trials in parallel on a local multi-core laptop

After approximately 12–14 mins, you will see that all the trials have finished and the best 
hyperparameters will be printed out on the screen, as shown in the following (your results 
might vary due to the stochastic nature, the limited number of samples, and the use of 
grid search, which does not guarantee a global optimal):

Best hyperparameters found were: {'lr': 0.025639008922511797, 
'batch _ size': 64, 'foundation _ model': 'prajjwal1/bert-
tiny', 'finetuning _ strategies': 'freeze', 'optimizer _ type': 
'Adam', 'mlflow': {'experiment _ name': 'hpo-tuning-chapter06', 
'tracking _ uri': 'http://localhost'}}
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You can find the results for each trial under the result log directory, which, by default, is in 
the current user's ray_results folder. From Figure 6.2, we can see that the results are in 
/Users/yongliu/ray_results/hpo_tuning_dl_model. 

You will see the final output of the best hyperparameters on your screen, which means 
you have completed running your first HPO experiment! You can see that all 10 trials are 
logged in the MLflow tracking server, and you can visualize and compare all 10 runs using 
the parallel coordinates plot provided by the MLflow tracking server. You can produce 
such a plot by going to the MLflow experiment page and selecting the 10 trials you just 
finished and then clicking on the Compare button near the top of the page (see Figure 
6.3). This will bring you to the side-by-side comparison page with the plotting options 
being displayed at the bottom of the page:

Figure 6.3 – Clicking Compare to compare all 10 trial runs on the MLflow experiment page

You can click on the Parallel Coordinates Plot menu item, which allows you to select the 
parameters and metrics to plot. Here, we select lr and batch_size as the parameters and 
val_f1 and val_cross_entropy as the metrics. The plot is shown in Figure 6.4:
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Figure 6.4 –Parallel Coordinates Plot for comparing the HPO trial results

As you can see in Figure 6.4, it is very easy to see that batch_size of 128 and lr of 0.02874 
produce the best val_f1 score of 0.6544 and val_cross_entropy (the loss value) of 0.62222. 
As mentioned earlier, this HPO run did not use any advanced search algorithms and 
schedulers, so let's see whether we can do better with more experiments in the following 
sections using early stopping and pruning.

Running HPO with Ray Tune using Optuna and 
HyperBand
Now, let's do some experiments with different search algorithms and schedulers. Given 
that Optuna is such a great TPE-based search algorithm, and ASHA is a great scheduler 
that does asynchronous parallel trials with early termination of the unpromising ones, it 
would be interesting to see how many changes we need to do to make this work. 

It turns out the change is very minimal based on what we have already done in the 
previous section. Here, we will illustrate the four main changes:

1. Install the Optuna package. This can be done by running the following command:

pip install optuna==2.10.0

This will install Optuna in the same virtual environment that we had before. If you 
have already run pip install -r requirements.text, then Optuna has 
already been installed and you can skip this step.
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2. Import the relevant Ray Tune modules that integrate with Optuna and the ASHA 
scheduler (here, we use the HyperBand implementation of ASHA) as follows:

from ray.tune.suggest import ConcurrencyLimiter

from ray.tune.schedulers import AsyncHyperBandScheduler

from ray.tune.suggest.optuna import OptunaSearch

3. Now we are ready to add the search algorithm variable and scheduler variable to the 
HPO execution function, run_hpo_dl_model, as follows:

searcher = OptunaSearch()

searcher = ConcurrencyLimiter(searcher, max _ concurrent=4)

scheduler = AsyncHyperBandScheduler()

Note that the searcher variable is now using Optuna, and we set the maximal 
number of concurrent runs to 4 for this searcher variable to try at any given time 
during the HPO search process. The scheduler is initialized with the HyperBand 
scheduler.

4. Assign the searcher and scheduler to the corresponding parameters of the tune.
run call, as follows:

analysis = tune.run(

    trainable,

    resources _ per _ trial={

        "cpu": 1,

        "gpu": gpus _ per _ trial

    },

    metric="f1",

    mode="max",

    config=config,

    num _ samples=num _ samples,

    search _ alg=searcher,

    scheduler=scheduler,

    name="hpo _ tuning _ dl _ model")

Note that searcher is assigned to the search_alg parameter, and scheduler 
is assigned to the scheduler parameter. That's it. Now we are ready to run 
HPO with Optuna under the unified Ray Tune framework, with all of the MLflow 
integration that's already been provided by Ray Tune.
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We have provided the complete Python code in the hpo_finetuning_model_
optuna.py file under the pipeline folder. Let's run this HPO experiment as follows:

python pipeline/hpo _ finetuning _ model _ optuna.py

You will immediately notice the following in the console output:

[I 2022-02-06 21:01:27,609] A new study created in memory with 
name: optuna

This means that we are now using Optuna as the search algorithm. Additionally, you will 
notice that there are four concurrent trials in the status output displayed on the screen. 
As time goes by, some trials will be terminated after one or two iterations (epochs) before 
completion. This means ASHA is at work and has eliminated those unpromising trials 
to save computing resources and speed up the searching process. Figure 6.5 shows one 
of the outputs during the run where three trials were terminated with only one iteration. 
You can find num_stopped=3 in the status output (the third line in Figure 6.5), where it 
says Using AsynHyerBand: num_stopped=3. This means that AsyncHyperBand 
terminated these three trials before they were completed:

Figure 6.5 – Running HPO with Ray Tune using Optuna and AsyncHyperBand 

At the end of the run, you will see the following results:

2022-02-06 21:11:59,695    INFO tune.py:626 -- Total run time: 
632.10 seconds (631.91 seconds for the tuning loop).

2022-02-06 21:11:59,728 Best hyperparameters found were: {'lr': 
0.0009599443695046438, 'batch _ size': 128, 'foundation _ model': 
'prajjwal1/bert-tiny', 'finetuning _ strategies': 'freeze', 
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'optimizer _ type': 'Adam', 'mlflow': {'experiment _ name': 
'hpo-tuning-chapter06', 'tracking _ uri': 'http://localhost'}}

Notice that the total run time was only 10 minutes. Compared with the previous section 
that used grid search without early stopping, this saves 2–4 minutes. Now, this might seem 
brief, but remember that we are only using a tiny BERT model here with only 3 epochs. 
In a production HPO run, using a large pretrained foundation model with 20 epochs 
is not uncommon, and the speed of searching will be significant with a good search 
algorithm combined with a scheduler such as the Asynchronous HyperBand scheduler. 
The integration of MLflow provided by Ray Tune comes for free, as we can now switch to 
a different search algorithm and/or a scheduler under a single framework.

While this section only shows you how to use Optuna within the Ray Tune and MLflow 
framework, replacing Optuna with HyperOpt is a simple drop-in change. Instead of 
initializing a searcher with OptunaSearch, we can use HyperOptSearch (you 
can see an example at https://github.com/ray-project/ray/blob/
d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/
examples/hyperopt_conditional_search_space_example.py#L80), and 
the rest of the code is the same. We leave this as an exercise for you to explore.

Using Different Search Algorithms and Schedulers with Ray Tune
Note that not all search algorithms can work with any scheduler. What search 
algorithms and schedulers you choose depends on the model complexity 
and evaluation cost. For a DL model, since the cost of running one epoch is 
usually high, it is very desirable to use a modern search algorithm such as TPE, 
Dragonfly, and BlendSearch, coupled with an ASHA type scheduler such as 
the HyperBand scheduler that we use. For more detailed guidance on which 
search algorithms and schedulers to use, you should consult the following 
documentation on the Ray Tune website: https://docs.ray.io/en/
latest/tune/tutorials/overview.html#which-search-
algorithm-scheduler-should-i-choose.

Now that we understand how to use Ray Tune and MLflow to do highly parallel and 
efficient HPO for DL models, this builds the foundation for us to do more advanced HPO 
experiments at scale in the future. 

https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://github.com/ray-project/ray/blob/d6b0b9a209e3f693afa6441eb284e48c02b10a80/python/ray/tune/examples/hyperopt_conditional_search_space_example.py#L80
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose
https://docs.ray.io/en/latest/tune/tutorials/overview.html#which-search-algorithm-scheduler-should-i-choose
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Summary
In this chapter, we covered the fundamentals and challenges of HPO, why it is important 
for the DL model pipeline, and what a modern HPO framework should support. We 
compared three popular frameworks – Ray Tune, Optuna, and HyperOpt – and picked 
Ray Tune as the winner for running state-of-the-art HPO at scale. We saw how to 
create HPO-ready DL model code using Ray Tune and MLflow and ran our first HPO 
experiment with Ray Tune and MLflow. Additionally, we covered how to switch to other 
search and scheduler algorithms once we have our HPO code framework set up, using the 
Optuna and HyperBand schedulers as an example. The learnings from this chapter will 
help you to competently carry out large-scale HPO experiments in real-life production 
environments, allowing you to produce high-performance DL models in a cost-effective 
way. We have also provided many references in the Further reading section at the end of 
this chapter to encourage you to study further.

In our next chapter, we will continue learning how to build preprocessing and 
postprocessing steps for a model inference pipeline using MLflow, which is a typical 
scenario in a real production environment after having an HPO-tuned DL model that's 
ready for production.

Further reading
• Best Tools for Model Tuning and Hyperparameter Optimization: https://

neptune.ai/blog/best-tools-for-model-tuning-and-
hyperparameter-optimization

• Comparison between Optuna and HyperOpt: https://neptune.ai/blog/
optuna-vs-hyperopt

• How (Not) to Tune Your Model with Hyperopt: https://databricks.com/
blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.
html

• Why Hyper parameter tuning is important for your model?: https://medium.
com/analytics-vidhya/why-hyper-parameter-tuning-is-
important-for-your-model-1ff4c8f145d3

• The Art of Hyperparameter Tuning in Deep Neural Nets by Example: https://
towardsdatascience.com/the-art-of-hyperparameter-tuning-
in-deep-neural-nets-by-example-685cb5429a38

• Automated Hyperparameter tuning: https://insaid.medium.com/
automated-hyperparameter-tuning-988b5aeb7f2a

https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization 
https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization 
https://neptune.ai/blog/best-tools-for-model-tuning-and-hyperparameter-optimization 
https://neptune.ai/blog/optuna-vs-hyperopt
https://neptune.ai/blog/optuna-vs-hyperopt
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html 
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html 
https://databricks.com/blog/2021/04/15/how-not-to-tune-your-model-with-hyperopt.html 
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://medium.com/analytics-vidhya/why-hyper-parameter-tuning-is-important-for-your-model-1ff4c8f145d3
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://towardsdatascience.com/the-art-of-hyperparameter-tuning-in-deep-neural-nets-by-example-685cb5429a38
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
https://insaid.medium.com/automated-hyperparameter-tuning-988b5aeb7f2a
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• Get better at building PyTorch models with Lightning and Ray Tune: https://
towardsdatascience.com/get-better-at-building-pytorch-
models-with-lightning-and-ray-tune-9fc39b84e602

• Ray & MLflow: Taking Distributed Machine Learning Applications to 
Production: https://medium.com/distributed-computing-with-
ray/ray-mlflow-taking-distributed-machine-learning-
applications-to-production-103f5505cb88

• A Novice's Guide to Hyperparameter Optimization at Scale: https://wood-b.
github.io/post/a-novices-guide-to-hyperparameter-
optimization-at-scale/

• A Databricks notebook to run Ray Tune and MLflow on a Databricks cluster: 
https://databricks-prod-cloudfront.cloud.databricks.com/
public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/ 
1089858099311442/7376217192554178/latest.html

• A Brief Introduction to Ray Distributed Objects, Ray Tune, and a Small Comparison 
to Parsl: https://cloud4scieng.org/2021/04/08/a-brief-
introduction-to-ray-distributed-objects-ray-tune-and-a-
small-comparison-to-parsl/

https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://towardsdatascience.com/get-better-at-building-pytorch-models-with-lightning-and-ray-tune-9fc39b84e602
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://wood-b.github.io/post/a-novices-guide-to-hyperparameter-optimization-at-scale/
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/6762389964551879/1089858099311442/7376217192554178/latest.html
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/
https://cloud4scieng.org/2021/04/08/a-brief-introduction-to-ray-distributed-objects-ray-tune-and-a-small-comparison-to-parsl/


Section 4 –   
Deploying a Deep 
Learning Pipeline  

at Scale

In this section, we will learn how to implement and deploy a multi-step inference 
pipeline for production usage. We will start with an overview of four patterns of inference 
workflows in production. We will then learn how to implement a multi-step inference 
pipeline with preprocessing and postprocessing steps around a fine-tuned deep learning 
(DL) model using MLflow PyFunc APIs. With a ready-to-deploy MLflow PyFunc-
compatible DL inference pipeline, we will learn about different deployment tools and 
hosting environments to decide which tool to use for a specific deployment scenario. We 
will then implement and deploy a batch inference pipeline using MLflow's Spark user-
defined function (UDF). From there on, we will focus on deploying a web service using 
either MLflow's built-in model serving tool or Ray Serve's MLflow deployment plugin. 
Finally, we will show a complete step-by-step guide to deploying a DL inference pipeline 
to a managed AWS SageMaker instance for production usage.

This section comprises the following chapters:

• Chapter 7, Multi-Step Deep Learning Inference Pipeline

• Chapter 8, Deploying a DL Inference Pipeline at Scale





7
Multi-Step Deep 

Learning Inference 
Pipeline

Now that we have successfully run HPO (Hyperparameter Optimization) and produced 
a well-tuned DL model that meets the business requirements, it is time to move to the next 
step towards using this model for prediction. This is where the model inference pipeline 
comes into play, where the model is used for predicting or scoring real-world data in 
production, either in real time or batch mode. However, an inference pipeline usually does 
not just rely on a single model but needs preprocessing and postprocessing logic that is 
not necessarily seen during the model development stage. Examples of preprocessing steps 
include detecting the language locale (English or some other languages) before passing the 
input data to the model for scoring. Postprocessing could include enriching the predicted 
labels with additional metadata to meet the business application's requirements. There are 
also patterns of ML/DL inference pipelines that could even involve an ensemble of models 
to solve a real-world business problem. Many ML projects often underestimate the efforts 
needed to implement a production inference pipeline, which could result in degradation 
of the model's performance in production or in the worst case, failure of the entire project. 
Thus, it is important to learn how to recognize the pattern of different inference pipelines 
and implement them properly before we deploy the model into production. 
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By the end of this chapter, you will be able to use MLflow to confidently implement 
preprocessing and postprocessing steps for a multi-step inference pipeline that is ready to 
be used in production in future chapters.

In this chapter, we're going to cover the following main topics:

• Understanding patterns of DL inference pipelines

• Understanding the MLflow Model Python Function API

• Implementing a custom MLflow Python model

• Implementing preprocessing and postprocessing steps in a DL inference pipeline

• Implementing an inference pipeline as a new entry point in the main ML project

Technical requirements
The following are the technical requirements for this chapter:

• The GitHub code for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter07

• A full-fledged local MLflow tracking server, as described in Chapter 3, Tracking 
Models, Parameters, and Metrics.

Understanding patterns of DL inference 
pipelines
As the model development enters the stage of implementing an inference pipeline for the 
upcoming production usage, it is important to understand that having a well-tuned and 
trained DL model is only half the success story for business AI strategy. The other half 
includes deploying, serving, monitoring, and continuously improving the model after it 
goes into production. Designing and implementing a DL inference pipeline is the initial 
step toward the second half of the story. While the model has been trained, tuned, and 
tested on curated offline datasets, now it needs to handle prediction in two ways:

• Batch inference: This usually requires some scheduled or ad hoc execution of an 
inference pipeline for some offline batch of observational data. The turnaround time 
for producing prediction results is daily, weekly, or other schedules.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter07
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• Online inference: This usually requires a web service for real-time execution of an 
inference pipeline that produces prediction results for input data in under a second 
or even less than 100 milliseconds depending on the user scenarios.

Note that because the execution environment and data characteristics could be different 
from the offline training and testing environment, there will be additional preprocessing 
or postprocessing steps around the core model logic developed during the model training 
and tuning steps. While it should be emphasized that any sharable data preprocessing 
steps should be used in both the training pipeline and inference pipeline, it is unavoidable 
that some business logic will come into play, which will allow the inference pipeline to 
have additional preprocessing and postprocessing logic. For example, a very common step 
in a DL inference pipeline is to use caching to store and return prediction results based on 
a recently seen input so that an expensive model evaluation does not need to be invoked. 
This step is not needed for a training/testing pipeline during the model development stage.

While the pattern for inference pipelines is still emerging, it is now commonly known that 
there are at least four patterns in a real-world production environment:

• Multi-step pipeline: This is the most typical usage of the model in production, 
which includes a linear workflow of preprocessing steps before the model logic 
is invoked and some postprocessing steps after the model evaluation results are 
returned. While this is conceptually simple, the implementation can still be varied. 
We will see how we can do this efficiently in this chapter using MLflow.

• Ensemble of models: This is a more complex scenario where multiple different 
models can be used. These could be the same types of models with different versions 
for A/B testing purposes or different types of models. For example, for a complex 
conversational AI chatbot scenario, an intent classification model of the user query 
to classify user intents into a specific category is required. Then a content relevance 
model is also required to retrieve relevant answers to present to the user based on 
the detected user intent. 

• Business logic and model: This usually involves additional business logic on how 
and where the input to the model should come from, such as querying from an 
enterprise database for user information and validation or retrieving precomputed 
additional features from a feature store before invoking a model. In addition, 
postprocessing business logic could also transform the prediction results into some 
application-specific logic and store the results in some backend storage. While this 
could be as simple as a linear multi-step pipeline, it can also quickly become a DAG 
(Directed Acyclic Graph) with multiple fan-in and fan-out parallel tasks before and 
after the model has been invoked.
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• Online learning: This is one of the most complex inference tasks in production 
where a model is constantly learning and updating its parameters such as 
reinforcement learning.

While it is necessary to understand the big picture of the complexity of inference 
pipelines in production, the purpose of this chapter is to learn how we can create reusable 
building blocks of inference pipelines that could be used in multiple scenarios through 
the powerful and generic MLflow Model API, which can encapsulate preprocessing 
and postprocessing steps alongside a trained model. Interested readers are encouraged 
to learn more about the model pattern in production from this post (https://www.
anyscale.com/blog/serving-ml-models-in-production-common-
patterns) and other references in the Further reading section.

So, what's the MLflow Model API and how do you use that to implement preprocessing 
and postprocessing logic for a multi-step inference pipeline? Let's find out in the  
next section.

Multi-Step Inference Pipeline as an MLflow Model
Previously, in Chapter 3, Tracking Models, Parameters, and Metrics, we 
introduced the flexible loosely coupled multi-step pipeline implementation 
using MLflow MLproject so that we could execute and track a multi-step 
training pipeline explicitly in MLflow. However, during inference time, it is 
desirable to implement lightweight preprocessing and postprocessing logic 
alongside a trained model that's already logged in the model repository. The 
MLflow Model API provides a mechanism to wrap a trained model with 
preprocessing and postprocessing logic and then save the newly wrapped 
model as a new model that encapsulates the inference pipeline logic. This 
unifies the way to load an original model or an inference pipeline model using 
MLflow Model APIs. This is critical for flexible deployment using MLflow and 
opens doors for creative inference pipeline building.

https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
https://www.anyscale.com/blog/serving-ml-models-in-production-common-patterns
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Understanding the MLflow Model Python Function API
The MLflow Model (https://www.mlflow.org/docs/latest/models.
html#id25) is one of the core components provided by MLflow to load, save, and log 
models in different flavors (for example, a scikit-learn or a PyTorch model flavor). A 
model flavor is an MLflow defined standard format that explicitly specifies a directory 
of arbitrary files and a description file called MLmodel. As a reminder and an example, 
Figure 7.1 shows what we have saved after fine-tuning our example NLP sentiment 
classifier in the MLflow artifact store and the content of the MLmodel file:

Figure 7.1 – MLmodel content for a fine-tuned PyTorch model

As can be seen from Figure 7.1, the flavor of this model is PyTorch. There are also a 
few other metadata about the model, such as the conda environment, which defines 
the dependencies for running the model, and many others. Given this self-contained 
information, it should be enough to allow MLflow to load the model back using the 
mlflow.pytorch.load_model API as follows:

logged_model = f'runs:/{run_id}/model'
model = mlflow.pytorch.load_model(logged_model)

https://www.mlflow.org/docs/latest/models.html#id25
https://www.mlflow.org/docs/latest/models.html#id25
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This will allow loading the model that was logged by an MLflow run with run_id back 
to memory and doing inference. Now imagine we have the following scenario where we 
need to add some preprocessing logic to check the language type of the input text. This 
requires loading a language detector model (https://amitness.com/2019/07/
identify-text-language-python/) such as the FastText language detector 
(https://fasttext.cc/), or Google's Compact Language Detector v3 (https://
pypi.org/project/gcld3/). Additionally, we also want to check whether there is 
any cached prediction for the exact same input. If it exists, then we should just return the 
cached result without invoking the expensive model prediction part. This is very typical 
preprocessing logic. For postprocessing, a common scenario is to return the prediction 
along with some metadata about the model URIs so that we can debug any potential 
prediction issue in production. Given this preprocessing and postprocessing logic, the 
inference pipeline now looks like the following figure:

Figure 7.2 – Multi-step inference pipeline

As can be seen from Figure 7.2, these five steps include the following:

• One original fine-tuned model for prediction (a PyTorch DL model)

• One additional language detection model that was not part of our previous  
training pipeline

• Cache operations (check cache and store to cache) for improving response 
performance

• One response message composition step

Rather than splitting these five steps into five different entry points in an ML project 
(recall that an entry point in an ML project can be arbitrary execution code in Python or 
other executables), it is much more elegant to compose this multi-step inference pipeline 
in a single entry point, since these steps are closely related to the model's prediction 
step. In addition, the advantage of encapsulating these closely related steps into a single 
inference pipeline is that we can save and load the inference pipeline as an MLmodel 
artifact. MLflow provides a generic way to implement this multi-step inference pipeline as 
a new Python model, without losing the flexibility of adding additional preprocessing and 
postprocessing capability if needed as shown in the following figure: 

https://amitness.com/2019/07/identify-text-language-python/
https://amitness.com/2019/07/identify-text-language-python/
https://fasttext.cc/
https://pypi.org/project/gcld3/
https://pypi.org/project/gcld3/
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 Figure 7.3 – Encapsulate the multi-step preprocessing and postprocessing logic into  
a new MLflow Python model

As can be seen from Figure 7.3, if we encapsulate the preprocessing and postprocessing 
logic into a new MLflow model called inference_pipeline_model, then we can 
load this entire inference pipeline as if it is just another model. This will also allow us to 
formalize the input and output format (called Model Signature) for the inference pipeline 
so that whoever wants to consume this inference pipeline will not need to guess what the 
format of the input and output is.

The mechanism to implement this at a high level is as follows:

1. First, create a custom MLflow pyfunc (Python function) model (https://
www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#creating-custom-pyfunc-models) to wrap the existing trained 
model. Specifically, we need to go beyond the built-in model flavors (https://
www.mlflow.org/docs/latest/models.html#built-in-model-
flavors) provided by MLflow and implement a new Python class that inherits 
from mlflow.pyfunc.PythonModel (https://www.mlflow.org/
docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.
PythonModel), defining predict() and, optionally, the load_context() 
methods in this new Python class. 

In addition, we can specify the Model Signature (https://mlflow.org/
docs/latest/models.html#model-signature) by defining the schema  
of a model's inputs and outputs. These schemas can be either column-based or 
tensor-based. It is highly recommended to implement these schemas for automatic 
input validation and model diagnosis in a production environment. 

2. Then implement the preprocessing and postprocessing logic within this MLflow 
pyfunc. These could include caching, language detection, a response message, and 
any other logic that's needed.

3. Finally, implement the entry point in the ML project for the inference pipeline so 
that we can invoke the inference pipeline as if it is a single model artifact. 

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://mlflow.org/docs/latest/models.html#model-signature
https://mlflow.org/docs/latest/models.html#model-signature
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Now that we understand the fundamentals of MLflow's custom Python model to  
represent a multi-step inference pipeline, let's see how we can implement it for our NLP 
sentiment classification model with the preprocessing and postprocessing steps described 
in Figure 7.3 in the following sections.

Implementing a custom MLflow Python model 
Let's first describe the steps to implement a custom MLflow Python model without any 
extra preprocessing and postprocessing logic:

1. First, make sure we have a trained DL model that's ready to be used for inference 
purposes. For the sake of learning in this chapter, we include the training pipeline 
MLproject in this chapter, so that we can easily produce a fine-tuned DL model. 
To run the training pipeline, make sure you have the virtual environment set up 
for this chapter by following the README file in this chapter's GitHub repository 
and set up the environment variables accordingly (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter07/README.md). Then, in the command line, 
run the following command to generate a fine-tuned model in the local MLflow 
tracking server:

mlflow run . --experiment-name dl_model_chapter07 -P 
pipeline_steps=download_data,fine_tuning_model

Once this is done, you will have a fine-tuned DL model logged in the MLflow 
tracking server. Now, we will use the logged model URI as the input for the 
inference pipeline since we will wrap it and save it as a new MLflow model. 
The logged model URI is something like the following, where the long random 
alphanumeric string is the run_id of the fine_tuning_model MLflow run, 
which you can find in the MLflow tracking server:

runs:/1290f813d8e74a249c86eeab9f6ed24e/model

2. Once you have a trained/fine-tuned model, we are ready to implement a new 
custom MLflow Python model as follows. You may want to check out the VS Code 
notebook for basic_custom_dl_model.py in the GitHub repo (https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_
custom_dl_model.py) to follow through the steps outlined here: 

class InferencePipeline(mlflow.pyfunc.PythonModel):
    def __init__(self, finetuned_model_uri):
        self.finetuned_model_uri = finetuned_model_uri

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/basic_custom_dl_model.py
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    def sentiment_classifier(self, row):
        pred_label = self.finetuned_text_classifier.
predict({row[0]})
        return pred_label

    def load_context(self, context):
        self.finetuned_text_classifier = mlflow.pytorch.
load_model(self.finetuned_model_uri)

    def predict(self, context, model_input):
        results = model_input.apply(
                    self.sentiment_classifier, axis=1,
                    result_type='broadcast')
        return results

Let's see what we have implemented. First, the InferencePipeline class 
inherits from the MLflow.pyfunc.PythonModel module, and implements four 
methods as follows:

 � predict: This is a method that's required by mlflow.pyfunc.
PythonModel, which returns the prediction result. Here, the model_input 
parameter is a pandas DataFrame, which contains a column with input text that 
needs to be classified. We leverage the pandas DataFrame's apply method to 
run a sentiment_classifier method to score each row of the DataFrame's 
text and the result is a DataFrame with each row being the predicted label. Since 
our original fine-tuned model does not accept a pandas DataFrame as input (it 
accepts a list of text strings as input), we need to implement a new classifier as  
a wrapper to the original model. That's the sentiment_classifier method. 
The other context parameter is the MLflow context to describe where the model 
artifact is stored. Since we will pass an MLflow logged model URI, this context 
parameter is not used in our implementation, as the logged model URI contains 
everything MLflow needs to load a model.

 � sentiment_classifier: This is a wrapper method to allow each row of the 
input pandas DataFrame to be scored by calling the fine-tuned DL model's 
prediction function. Note that we are wrapping the first element of the row into  
a list so that the DL model can correctly use it as an input.
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 � init: This is a standard Python constructor method. Here, we use it to pass in 
a previously fine-tuned DL model URI, finetuned_model_uri, so that we 
can load it in the load_context method. Note that we do not want to directly 
load the model in the init method since it will cause a serialization issue (if 
you want to try, you will find out serializing a DL model naively is not a fun 
experience). Since the fine-tuned DL model is already serialized and deserialized 
through the mlflow.pytorch APIs, we should not reinvent the wheel here. The 
recommended way is to load the model in the load_context method.

 � load_context: This method is called when loading an MLflow model with the 
mlflow.pyfunc.load_model API. This is executed immediately after the 
Python model is constructed. Here, we load the fine-tuned DL model by using the 
mlflow.pytorch.load_model API. Note that whatever models are loaded 
in this method can use their corresponding deserializing methods. This will open 
doors for loading other models such as a language detection model, which could 
contain native code (for example, C++ code) that cannot be serialized using 
Python serialization protocols. This is one of the nice features provided by the 
MLflow model API framework.

3. Now that we have an MLflow custom model that can accept a column-based input, 
we can also define the model signature as follows:

input = json.dumps([{'name': 'text', 'type': 'string'}])
output = json.dumps([{'name': 'text', 'type': 'string'}])
signature = ModelSignature.from_dict({'inputs': input, 
'outputs': output})

This signature defines an input format with one named column called text with 
a datatype of string, and an output format with one named column called text 
with a datatype of string. The mlflow.models.ModelSignature class 
is used to create this signature object. This will be used when we log the new 
custom model in MLflow, as we will see in the next step.

4. Next, we can log this new custom model in MLflow as if this is a generic MLflow 
pyfunc model using the mlflow.pyfunc.log_model API as follows:

MODEL_ARTIFACT_PATH = 'inference_pipeline_model'
with mlflow.start_run() as dl_model_tracking_run:
    finetuned_model_uri = 
'runs:/1290f813d8e74a249c86eeab9f6ed24e/model'
    inference_pipeline_uri = f'runs:/{dl_model_tracking_
run.info.run_id}/{MODEL_ARTIFACT_PATH}'
    mlflow.pyfunc.log_model(
      artifact_path=MODEL_ARTIFACT_PATH,
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      conda_env=CONDA_ENV,
      python_model=InferencePipeline(
        finetuned_model_uri),
      signature=signature)

The preceding code will log a model in the MLflow tracking server with a top-level 
folder named inference_pipeline_model, since we define the MODEL_
ARTIFACT_PATH variable with this string value and assign this value to the 
artifact_path parameter of the mlflow.pyfunc.log_model method. The 
other three parameters we assign are the following:

 � conda_env: This is to define the conda environment where this custom model 
will run. Here, we can pass the absolute path of the conda.yaml file in the 
root folder of this chapter defined by the CONDA_ENV variable (details of this 
variable can be found in the source code of this basic_custom_dl_model.py 
notebook on GitHub).

 � python_model: Here, we call the new InferencePipeline class we just 
implemented and pass in the parameter of finetuned_model_uri. This 
way, the inference pipeline will load the correct fine-tuned model for prediction 
purposes.

 � signature: We also pass the signature for both input and output we just defined 
and assign it to the signature parameter so that model input and output schema 
can be logged and enforced for validation purposes.

As a reminder, make sure you replace the 
'runs:/1290f813d8e74a249c86eeab9f6ed24e/model' value for the 
finetuned_model_uri variable with your own fine-tuned model URI generated 
in step 1 so that the code will correctly load the original fine-tuned model. 
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5. If you follow through the VS Code notebook for basic_custom_dl_model.py 
and run it cell by cell up to step 4, you should be able to find a newly logged model 
in the Artifacts section of the MLflow tracking server as shown in the following 
screenshot:

Figure 7.4 – Inference MLflow model with model schema and a root folder of inference_pipeline_model
As can be seen from Figure 7.4, the root folder name (top left of the screenshot) 
is inference_pipeline_model, which is the artifact_path parameter's 
assigned value when calling mlflow.pyfunc.log_model. Note, if we do not 
specify the artifact_path parameter, by default it will be just model. You 
can confirm this by just looking at Figure 7.1 earlier in this chapter. Also note that 
now there is a Model schema section as shown in Figure 7.4, which is new. This 
describes both the input and output format as we defined before. In fact, if we click 
the MLmodel file under the inference_pipeline_model folder, we can see 
the full content as follows:
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Figure 7.5 – The content of inference_pipeline_model's MLmodel file
As can be seen from Figure 7.5, the content of the MLmodel file now contains a 
signature section near the bottom, a new section compared with Figure 7.1. 
However, there are some more important differences in terms of the model flavor. 
The flavor of inference_pipeline_model is a generic mlflow.pyfunc.
model model, not a mlflow.pytorch model anymore. In fact, if you compare 
Figure 7.5 with Figure 7.1, which is our PyTorch fine-tuned DL model, there is a 
section about pytorch and its model_data and pytorch_version, which 
has now completely disappeared in Figure 7.5. For MLflow, it has no knowledge of 
the original model, which is a PyTorch model, but just a generic MLflow pyfunc 
model as the newly wrapped model. This is great news since now we only need one 
generic MLflow pyfunc API to load the model, regardless of how complex the 
wrapped model is and how many more preprocessing and postprocessing steps are 
inside this generic pyfunc model when we implement it in the next section. 

6. We now can load inference_pipeline_model using the generic mlflow.
pyfunc.load_model to load the model and do prediction with an input 
pandas DataFrame as follows:

input = {"text":["what a disappointing movie","Great 
movie"]}
input_df = pd.DataFrame(input)
with mlflow.start_run():
    loaded_model = \
    mlflow.pyfunc.load_model(inference_pipeline_uri)
    results = loaded_model.predict(input_df)
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Here, inference_pipeline_uri is the URI produced in step 4 as the unique 
identifier for inference_pipeline_model. For example, an inference_
pipeline_uri value could look as follows:

'runs:/6edf6013d2454f7f8a303431105f25f2/inference_
pipeline_model'

Once the model is loaded, we can just call the predict function to score the 
input_df DataFrame. This calls the predict function of our newly implemented 
InferencePipleine class, as described in step 2. The results will look something 
like the following:

Figure 7.6 – Output of the inference pipeline in a pandas DataFrame format

If you see the prediction results like in Figure 7.6, then you should feel proud that you 
have just implemented a working custom MLflow Python model that has enormous 
flexibility and power to enable us to implement preprocessing and postprocessing  
logic without changing any of the logging and loading model parts, as we will see  
in the next section.

Creating a New Flavor of MLflow Custom Model
As shown in this chapter, we can build a wrapped MLflow custom model 
using an already trained model for inference purposes. It should be noted 
that it is also possible to build an entirely new flavor of MLflow custom model 
for training purposes. This is needed when you have a model that's not yet 
supported by the built-in MLflow model flavors. For example, if you want 
to train a brand new FastText model based on your own corpus but as of 
MLflow version 1.23.1, there is no FastText MLflow model flavor yet, then you 
can build a new FastText MLflow model flavor (see reference: https://
medium.com/@pennyqxr/how-save-and-load-fasttext-
model-in-mlflow-format-37e4d6017bf0). Interested readers  
can also find more references in the Further reading section at the end of  
this chapter.

mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0
mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0
mailto:https://medium.com/@pennyqxr/how-save-and-load-fasttext-model-in-mlflow-format-37e4d6017bf0
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Implementing preprocessing and 
postprocessing steps in a DL inference pipeline
Now that we have a basic generic MLflow Python model that can do prediction on an 
input pandas DataFrame and produce output in another pandas DataFrame, we 
are ready to tackle the multi-step inference scenario described before. Note that while 
the initial implementation in the previous section might not look earth-shaking, this 
opens doors for implementing preprocessing and postprocessing logic that was not 
possible before while maintaining the capability of using the generic mlflow.pyfunc.
log_model and mlflow.pyfunc.load_model to treat the entire inference pipeline 
as a generic pyfunc model, regardless of how complex the original DL model is and 
how many additional preprocessing and postprocessing steps there are. Let's see how 
we can do this in this section. You may want to check out the VS Code notebook for 
multistep_inference_model.py from GitHub (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter07/notebooks/multistep_inference_model.py) to 
follow through the steps in this section. 

In Figure 7.3, we depicted two preprocessing steps prior to the model prediction, 
and two postprocessing steps after the model prediction. So where and how do we 
add the preprocessing and postprocessing logic while keeping this entire inference 
pipeline as a single MLflow model? It turns out the main changes will happen in the 
InferencePipeline class implemented in the previous section. Let's walk through the 
implementation and changes step by step in the following subsections.

Implementing language detection preprocessing logic
Let's first implement the language detection preprocessing logic:

1. To detect the language type of the input text, we can use Google's Compact Language 
Detector v3. Note that this language detector is a neural network model that contains 
native code (the core implementation is in C++) with a Python binding so that we can 
use it in a Python environment (https://github.com/google/cld3). As this 
model cannot be serialized by using Python serialization protocols such as pickle, it 
would be a major challenge to figure out how to package this in an MLflow pyfunc 
model. The good news is that MLflow's load_context method allows us to load 
this model without worrying about serialization and deserialization. We only need to 
add two lines of code in the load_context method in the InferencePipeline 
class as follows to load the language detector model:

import gcld3
self.detector = gcld3.NNetLanguageIdentifier(

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/notebooks/multistep_inference_model.py
https://github.com/google/cld3
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    min_num_bytes=0,
    max_num_bytes=1000)

The preceding two lines are added into the load_context method, along 
with the preexisting statement that loads the fine-tuned DL model for sentiment 
classification. This will allow the language detector to be loaded as soon as the 
initialization of the InferencePipeline class is done. This language detector 
will use up to the first 1,000 bytes of the input to determine the language type.  
Once this language detector is loaded, then we can use it to detect the language  
in a preprocessing method.

2. In a preprocessing method for language detection, we will accept each row of  
the input text, detect the language, and return the language type as a string  
as follows:

def preprocessing_step_lang_detect(self, row):
    language_detected = \
    self.detector.FindLanguage(text=row[0])
    if language_detected.language != 'en':
        print("found Non-English Language text!")
    return language_detected.language

The implementation is straightforward. We also add a printout to see if we see any 
non-English text in the input to the console. If your business logic requires you  
to implement any preemptive actions when dealing with some specific language, 
then you can add more logic in this method. Here, we just return the language  
type detected.

3. Then, in the sentiment_classifier method that scores each row of the  
input, we can just add one line prior to the prediction to first detect the language  
as follows:

language_detected = self.preprocessing_step_lang_
detect(row)

Later, we pass along the language_detected variable to the response as we will 
see in the postprocessing logic implementation.

And that's all it takes to implement the language detection as a preprocessing step in the 
inference pipeline. 

Now let's see how to implement the other step: cache, which requires both preprocessing 
(detecting if there are any preexisting matched prediction results for the same input) and 
postprocessing (storing a key-value pair of input and prediction results in the cache).
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Implementing caching preprocessing and 
postprocessing logic
Let's see how we can implement caching in the InferencePipeline class:

1. We can add a new statement to initialize the cache store in the init method, as this 
has no problem being serialized or deserialized:

from cachetools import LRUCache
self.cache = LRUCache(100)

This will initialize a Least Recently Used cache with 100 objects stored.
2. Next, we will add a preprocessing method to detect if any input is in the cache:

def preprocessing_step_cache(self, row):
    if row[0] in self.cache:
        print("found cached result")
        return self.cache[row[0]]

If it finds the exact input row as a key already in the cache, then it returns the  
cached value.

3. In the sentiment_classifier method, we can add the preprocessing step to 
check the cache and if it finds the cache, then it will immediately return the cached 
response without invoking the expensive DL model classifier:

    cached_response = self.preprocessing_step_cache(row)
    if cached_response is not None:
        return cached_response

This preprocessing step should be placed as the first step in the sentiment_
classifier method, before doing language detection and model prediction.  
This can significantly speed up real-time prediction responses when there are many 
duplicated inputs.

4. Also in the sentiment_classifier method, we need to add a postprocessing 
step to store new input and prediction responses in the cache:

self.cache[row[0]]=response

That's it. We have successfully added caching as a preprocessing and postprocessing step 
in the InferencePipeline class.
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Implementing response composition  
postprocessing logic
Now let's see how we can implement the response composition logic as a postprocessing 
step after the original DL model prediction is invoked and the result is returned. Just 
returning a prediction label of positive or negative usually is not enough, as we 
would like to know which version of the model was used and what language was detected 
for debugging and diagnosis in the production environment. The response to the caller of 
the inference pipeline will no longer be a plain string, but rather a serialized JSON string. 
Follow these steps to implement this postprocessing logic:

1. In the init method of the InferencePipeline class, we need to add a new 
inference_pipeline_uri parameter, so that we can capture this generic 
MLflow pyfunc model's reference for provenance tracking purposes. Both the 
finetuned_model_uri and inference_pipeline_uri parameters will be 
part of the response's JSON object. The init method now looks like the following:

def __init__(self, 
             finetuned_model_uri,
             inference_pipeline_uri=None):
    self.cache = LRUCache(100)
    self.finetuned_model_uri = finetuned_model_uri
    self.inference_pipeline_uri = inference_pipeline_uri

2. In the sentiment_classifier method, add a new postprocessing statement 
to compose a new response based on the language detected, predicted label, and 
the model metadata including both finetuned_model_uri and inference_
pipeline_uri:

response = json.dumps({
                'response': {
                    'prediction_label': pred_label
                },
                'metadata': {
                    'language_detected': language_
detected,
                },
                'model_metadata': {
                    'finetuned_model_uri': self.
finetuned_model_uri,
                    'inference_pipeline_model_uri': self.
inference_pipeline_uri
                },
            })                    
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Note that we use json.dumps to encode a nested Python string object into a  
JSON formatted string, so that the caller can easily parse out the response using 
JSON tools.

3. In the mlflow.pyfunc.log_model statement, we need to add 
a new inference_pipeline_uri parameter when calling the 
InferencePipeline class:

mlflow.pyfunc.log_model(
  artifact_path=MODEL_ARTIFACT_PATH,
  conda_env=CONDA_ENV,
  python_model=InferencePipeline(finetuned_model_uri,
  inference_pipeline_uri),
  signature=signature)

This will log a new inference pipeline model with all the additional processing logic 
we implemented. This completes the implementation of the multi-step inference 
pipeline depicted in Figure 7.3. 

Note that once the model is logged with all these new steps, to consume this new inference 
pipeline, that's to say, to load this model, requires zero code changes. We can load the 
newly logged model the same way as before: 

loaded_model = mlflow.pyfunc.load_model(inference_pipeline_uri)

If you have followed through the steps up until now, you should also run the VS Code 
notebook for multistep_inference_model.py cell by cell up to step 3 described in 
this subsection. Now we can try to use this new multi-step inference pipeline to test it out. 
We can prepare a new set of input data where there are duplicates and a non-English text 
string as follows:

input = {"text":["what a disappointing movie", "Great movie", 
"Great movie", "很好看的电影"]}
input_df = pd.DataFrame(input)
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This input includes two duplicated entries (Great movie) and one Chinese text string 
(the last element in the input list, where the meaning of the Chinese text is the same 
as Great Movie). Now we can just load the model and call results = loaded_
model.predict(input_df) as before. And during the execution of this predict 
statement, you should see the following two statements in the console output:

found cached result 
found Non-English language text.

This means that our caching and language detector works! 

We can also print out the results to double-check whether our multi-step pipeline works 
or not using the following code:

for i in range(results.size):
    print(results['text'][i])

This will print out the full content for each row of the response. Here, we display the 
output for the last one (which has the Chinese text) as an example:

Figure 7.7 – JSON response for the Chinese text string input using the multi-step inference pipeline
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As can be seen in Figure 7.7, prediction_label is included in the response (which 
is negative). Since we have been using TinyBERT for the English language only, this 
incorrect prediction is expected. If we switch to a multilingual pretrained language model 
such as bert-base-multilingual-uncased (https://huggingface.co/bert-
base-multilingual-uncased) as the foundation model during model training 
and fine-tuning, then supporting inference for multiple languages is possible. In fact, the 
multilingual version of BERT supports 102 world languages. If we look at the language_
detected field under the metadata section in the JSON response, we see the string 
"zh", which represents the Chinese language. This is what the language detector 
produced in the preprocessing step. Additionally, the model_metadata section includes 
both the original finetuned_model_uri and inference_pipeline_model_uri. 
These are MLflow tracking server-specific URIs that we can use to uniquely trace and 
identify which fine-tuned model and inference pipeline was used for this prediction result. 
This is very important for provenance tracking and diagnosis analysis in the production 
environment. Comparing this complete JSON output with the earlier prediction label 
output in Figure 7.6, this has much richer contextual information for the consumer of the 
inference pipeline to use. 

If you see the JSON output in your notebook run like Figure 7.7, give yourself a round of 
applause, because you have just completed a big milestone in implementing a multi-step 
inference pipeline that can be reused and deployed into production for realistic business 
scenarios.

Implementing an inference pipeline as a new 
entry point in the main MLproject
Now that we have successfully implemented a multi-step inference pipeline as a new 
custom MLflow model, we can go one step further by incorporating this as a new entry 
point in the main MLproject so that we can run the following entire pipeline end to end 
(Figure 7.8). Check out this chapter's code from GitHub to follow through and run the 
pipeline in your local environment.

Figure 7.8 – End-to-end pipeline using MLproject

https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/bert-base-multilingual-uncased
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We can add the new entry point inference_pipeline_model into the MLproject 
file. You can check out this file on the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter07/MLproject):

inference_pipeline_model:
    parameters:
      finetuned_model_run_id: { type: str, default: None }
    command: "python pipeline/inference_pipeline_model.py 
--finetuned_model_run_id {finetuned_model_run_id}"

This entry point or step can be invoked either standalone or as part of the entire pipeline 
depicted in Figure 7.8. As a reminder, make sure you have set up the environment 
variables as described in the README file of this chapter for the MLflow tracking server 
and backend storage URIs before you execute the MLflow run commands. This step logs 
and registers a new inference_pipeline_model, which itself contains multi-step 
preprocessing and postprocessing logic. The following command can be used to run this 
step at the root level of the chapter07 folder, if you know the finetuned_model_
run_id:

mlflow run . -e inference_pipeline_model  --experiment-
name dl_model_chapter07 -P finetuned_model_run_
id=07b900a96af04037a956c74ef691396e

This will not only log a new inference_pipeline_model in the MLflow tracking 
server but will also register a new version of inference_pipeline_model in the 
MLflow model registry. You can find the registered inference_pipeline_model in 
your local MLflow server with the following link:

http://localhost/#/models/inference_pipeline_model/

As an example, a registered inference_pipeline_model version 6 is shown in the 
following screenshot:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/MLproject
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Figure 7.9 – A registered inference_pipeline_model at version 6

You can also run the entire end-to-end pipeline depicted in Figure 7.8 as follows:

mlflow run . --experiment-name dl_model_chapter07

This will run all the steps in this end-to-end pipeline and finish with a logged and 
registered inference_pipeline_model in the model registry.

The implementation of the Python code for inference_pipeline_model.py, which 
is executed when the entry point inference_pipeline_model is invoked, is basically 
copying the InferencePipeline class we implemented in the VS Code notebook for 
multistep_inference_model.py with a couple of small changes as follows:

• Adding a task function to be executed as a parameterized entry point for this step:

def task(finetuned_model_run_id, pipeline_run_name):

What this function does is starting a new MLflow run to log and register a new 
inference pipeline model.

• Turning on the model registration while logging as follows:

mlflow.pyfunc.log_model(
    artifact_path=MODEL_ARTIFACT_PATH,
    conda_env=CONDA_ENV,          
    python_model=InferencePipeline(
        finetuned_model_uri, 
        inference_pipeline_uri),
    signature=signature,
    registered_model_name=MODEL_ARTIFACT_PATH)
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Note that we assign to registered_model_name the value of MODEL_
ARTIFACT_PATH, which is inference_pipeline_model. This enables the 
model to be registered under this name in the MLflow model registry, as seen in 
Figure 7.9.

The complete code for this new entry point can be found in the GitHub repository: 
https://github.com/PacktPublishing/Practical-Deep-Learning-
at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_
pipeline_model.py.

Note that we also need to add a new section in the main.py file to allow the 
inference_pipeline_model entry point to also be callable from within the main 
entry point. The implementation is straightforward, just like adding other steps previously 
as described in Chapter 4, Tracking Code and Data Versioning. Interested readers 
should check out the main.py file from GitHub to take a look at the implementation: 
https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter07/main.py.

This concludes the implementation of adding a new entry point in the MLproject so that 
we can run the multi-step inference pipeline creation, logging, and registering using the 
MLflow run command tool.

Summary
In this chapter, we covered a very important topic on creating a multi-step inference 
pipeline using MLflow's custom Python model approach, namely mlflow.pyfunc.
PythonModel. 

We discussed four patterns of inference workflow in production where usually a single 
trained model is not enough to complete the business application requirements. It is 
highly likely some preprocessing and postprocessing logic is not seen during the model 
training and development stage. That's why MLflow's pyfunc approach is an elegant 
approach to implementing a custom MLflow model that can wrap a trained DL model 
with additional preprocessing and postprocessing logic. 

We successfully implemented an inference pipeline model that wraps our DL sentiment 
classifier with language detection using Google's Compact Language Detector, caching, 
and additional model metadata in addition to the prediction label. We went one step 
further to incorporate the inference pipeline model creation step into the end-to-end 
model development workflow so that we can produce a registered inference pipeline 
model with one MLflow run command. 

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/pipeline/inference_pipeline_model.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/main.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter07/main.py
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The skills and lessons learned in this chapter will be critical for anyone who wants to 
implement a real-world inference pipeline using the MLflow pyfunc approach. This also 
opens doors for supporting flexible and powerful deployment into production scenarios, 
which we will cover in the next chapter.

Further reading
• MLflow Models (MLflow documentation): https://www.mlflow.org/docs/

latest/models.html#

• Implementing the statsmodels flavor in MLflow: https://blog.stratio.com/
implementing-the-statsmodels-flavor-in-mlflow/

• InferLine: ML inference Pipeline Composition Framework: https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf

• Batch Inference vs Online Inference: https://mlinproduction.com/batch-
inference-vs-online-inference/

• Lessons from building a small MLOps pipeline: https://www.nestorsag.com/
blog/lessons-from-building-a-small-ml-ops-pipeline/

• Text summarizer on Hugging Face with MLflow: https://vishsubramanian.
me/hugging-face-with-mlflow/

https://www.mlflow.org/docs/latest/models.html#
https://www.mlflow.org/docs/latest/models.html#
https://blog.stratio.com/implementing-the-statsmodels-flavor-in-mlflow/
https://blog.stratio.com/implementing-the-statsmodels-flavor-in-mlflow/
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.pdf
https://mlinproduction.com/batch-inference-vs-online-inference/
https://mlinproduction.com/batch-inference-vs-online-inference/
https://www.nestorsag.com/blog/lessons-from-building-a-small-ml-ops-pipeline/
https://www.nestorsag.com/blog/lessons-from-building-a-small-ml-ops-pipeline/
https://vishsubramanian.me/hugging-face-with-mlflow/
https://vishsubramanian.me/hugging-face-with-mlflow/
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Deploying  

a DL Inference 
Pipeline at Scale

Deploying a deep learning (DL) inference pipeline for production usage is both exciting 
and challenging. The exciting part is that, finally, the DL model pipeline can be used for 
prediction with real-world production data, which will provide real value to the business 
scenarios. However, the challenging part is that there are different DL model serving 
platforms and host environments. It is not easy to choose the right framework for the right 
model serving scenarios, which can minimize deployment complexity but provide the 
best model serving experiences in a scalable and cost-effective way. This chapter will cover 
the topics as an overview of different deployment scenarios and host environments, and 
then provide hands-on learning on how to deploy to different environments, including 
local and remote cloud environments using MLflow deployment tools. By the end of this 
chapter, you should be able to confidently deploy an MLflow DL inference pipeline to 
various host environments for either batching or real-time inference services.
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In this chapter, we're going to cover the following main topics:

• Understanding the landscape of deployment and hosting environments

• Deploying locally for batch and web service inference

• Deploying using Ray Serve and MLflow deployment plugins

• Deploying to AWS SageMaker – a complete end-to-end guide

Technical requirements 
The following items are required for this chapter's learning:

• GitHub repository code for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter08.

• Ray serve and mlflow-ray-serve plugin: https://github.com/
ray-project/mlflow-ray-serve.

• AWS SageMaker: You will need to have an AWS account. You can create a free AWS 
account easily through the free signup website at https://aws.amazon.com/
free/.

• AWS command-line interface (CLI): https://docs.aws.amazon.com/cli/
latest/userguide/getting-started-install.html.

• Docker Desktop: https://www.docker.com/products/docker-
desktop/.

• Complete the example in Chapter 7, Multi-Step Deep Learning Inference Pipeline, 
of this book. This will give you a ready-to-deploy inference pipeline to use in this 
chapter.

Understanding different deployment tools and 
host environments
There are different deployment tools in the MLOps technology stack that have different 
target use cases and host environments for deploying different model inference pipelines. 
In Chapter 7, Multi-Step Deep Learning Inference Pipeline, we learned the different 
inference scenarios and requirements and implemented a multi-step DL inference pipeline 
that can be deployed into a model hosting/serving environment. Now, we will learn how 
to deploy such a model to a few specific model hosting and serving environments. This is 
visualized in Figure 8.1 as follows:

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/ray-project/mlflow-ray-serve
https://github.com/ray-project/mlflow-ray-serve
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
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Figure 8.1 – Using model deployment tools to deploy a model inference pipeline to  
a model hosting and serving environment

As can be seen from Figure 8.1, there can be different deployment tools for different model 
hosting and serving environments. Here, we list the three typical scenarios as follows:

• Batch inference at scale: If we want to do batch inference at a regular schedule, 
we can use the PySpark user defined function (UDF) to load an MLflow model 
flavor to do this, since we can leverage Spark's scalable computational approach 
on a distributed cluster (https://mlflow.org/docs/latest/models.
html#export-a-python-function-model-as-an-apache-spark-
udf). We will show an example of how to do this in the next section. 

• Streaming inference at scale: This usually requires an endpoint that hosts the 
Model as a Service (MaaS). There exist quite a few tools and frameworks for 
production-grade deployment and model serving. We will compare a few tools in 
this section to understand how they work and how well they integrate with MLflow 
before we start learning how to do this type of deployment in this chapter.

• On-device model inference: This is an emerging area called TinyML, which 
deploys ML/DL models in a resource-limited environment such as mobile, sensor, 
or edge device (https://www.kdnuggets.com/2021/11/on-device-
deep-learning-pytorch-mobile-tensorflow-lite.html). Two 
popular frameworks are PyTorch Mobile (https://pytorch.org/mobile/
home/) and TensorFlow Lite (https://www.tensorflow.org/lite). This 
is not the focus of this book. You are encouraged to check out some further reading 
for this area at the end of this chapter.

https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://www.kdnuggets.com/2021/11/on-device-deep-learning-pytorch-mobile-tensorflow-lite.html
https://www.kdnuggets.com/2021/11/on-device-deep-learning-pytorch-mobile-tensorflow-lite.html
https://pytorch.org/mobile/home/
https://pytorch.org/mobile/home/
https://www.tensorflow.org/lite
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Now, let's look at what kind of tools are available for deploying model inference as  
a service, especially those tools that have support for MLflow model deployment.  
There are three types of model deployment and serving tools, as follows:

• MLflow built-in model deployment: This comes out of the box from MLflow 
releases, which includes deployments to a local web server, AWS SageMaker, and 
Azure ML. There is also a managed MLflow on Databricks that supports model 
serving in public review as of this writing, which we will not cover in this book 
since this is well presented in the official Databricks documentation (interested 
readers should look up the official documentation on this Databricks feature at 
this website: https://docs.databricks.com/applications/mlflow/
model-serving.html). However, we will show you how to use the MLflow 
built-in model deployment to deploy to local and remote AWS SageMaker in this 
chapter.

• MLflow custom deployment plugins: MLflow provides an API for deploying to 
custom serving environments through MLflow deployment plugins (https://
mlflow.org/docs/latest/plugins.html#deployment-plugins). 
Examples include mlflow-torchserv (https://github.com/mlflow/
mlflow-torchserve), mlflow-ray-serve (https://github.com/
ray-project/mlflow-ray-serve), and mlflow-triton-plugin 
(https://github.com/triton-inference-server/server/tree/
v2.17.0/deploy/mlflow-triton-plugin). We will show how to use the 
mlflow-ray-serve plugin for deployment in this chapter.

• Model serving tools that can deploy MLflow model flavors: These are usually 
generic model serving frameworks that support many types of models, including 
MLflow model flavors. Examples include Seldon MLServer (https://
docs.seldon.io/projects/seldon-core/en/latest/servers/
mlflow.html), Ray Serve (https://docs.ray.io/en/latest/serve/
ml-models.html#integration-with-model-registries) and Triton 
Inference Server; only two MLflow model flavors – Open Neural Network 
Exchange (ONNX) and Triton – are supported at the time of writing (https://
developer.nvidia.com/nvidia-triton-inference-server). We will 
show you how to use Ray Serve together with the mlflow-ray-serve plugin to 
deploy the MLflow Python model. Note that, although in this book we show how 
to use an MLflow customized plugin to deploy with a generic ML serve tool such as 
Ray Serve, it is important to note that a generic ML serve tool can do much more 
with or without an MLflow customized plugin.

https://docs.databricks.com/applications/mlflow/model-serving.html
https://docs.databricks.com/applications/mlflow/model-serving.html
https://mlflow.org/docs/latest/plugins.html#deployment-plugins
https://mlflow.org/docs/latest/plugins.html#deployment-plugins
https://github.com/mlflow/mlflow-torchserve
https://github.com/mlflow/mlflow-torchserve
https://github.com/ray-project/mlflow-ray-serve
https://github.com/ray-project/mlflow-ray-serve
https://github.com/triton-inference-server/server/tree/v2.17.0/deploy/mlflow-triton-plugin
https://github.com/triton-inference-server/server/tree/v2.17.0/deploy/mlflow-triton-plugin
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.seldon.io/projects/seldon-core/en/latest/servers/mlflow.html
https://docs.ray.io/en/latest/serve/ml-models.html#integration-with-model-registries
https://docs.ray.io/en/latest/serve/ml-models.html#integration-with-model-registries
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Optimize DL Inference through Specialized Inference Engines
There are some special MLflow model flavors such as ONNX (https://
onnx.ai/) and TorchScript (https://huggingface.co/docs/
transformers/v4.17.0/en/serialization#torchscript) 
that are specially designed for DL model inference runtime. We can convert 
a DL model into an ONNX model flavor (https://github.com/
microsoft/onnxruntime) or a TorchScript server (https://
pytorch.org/serve/). As both ONNX and TorchScript are still 
evolving and are specifically designed for the original DL model part, but not 
the entire inference pipeline, we are not covering them in this chapter.

Now that we have a good understanding of the varieties of the deployment tools and 
model serving frameworks, let's learn how to do the deployment in the following sections 
with concrete examples.

Deploying locally for batch and web service 
inference 
For development and testing purposes, we usually need to deploy our model locally to 
verify it works as expected. Let's see how to do it for two scenarios: batch inference and 
web service inference.

Batch inference
For batch inference, follow these instructions:

1. Make sure you have completed Chapter 7, Multi-Step Deep Learning Inference 
Pipeline. This will produce an MLflow pyfunc DL inference model pipeline URI 
that can be loaded using standard MLflow Python functions. The logged model can 
be uniquely located by the run_id and model name as follows:

logged_model = 'runs:/37b5b4dd7bc04213a35db646520ec404/
inference_pipeline_model'

The model can also be identified by the model name and version number using the 
model registry as follows:

logged_model = 'models:/inference_pipeline_model/6'

https://onnx.ai/
https://onnx.ai/
https://huggingface.co/docs/transformers/v4.17.0/en/serialization#torchscript
https://huggingface.co/docs/transformers/v4.17.0/en/serialization#torchscript
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://pytorch.org/serve/
https://pytorch.org/serve/
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2. Follow the instructions under the Batch inference at-scale using PySpark 
UDF function section of this README.md file (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/README.md) to set up the local virtual 
environment, a full-fledged MLflow tracking server, and a few environment 
variables so that we can execute the code on your local environment.

3. Load the model with the MLflow mlflow.pyfunc.spark_udf API to create 
a PySpark UDF function as follows. You may want to check out the batch_
inference.py file from GitHub to follow through (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/batch/batch_inference.py):

loaded_model = mlflow.pyfunc.spark_udf(spark, model_
uri=logged_model, result_type=StringType())

This will wrap the inference pipeline as a PySpark UDF function with a return result 
type of String. This is because our model inference pipeline has a model signature 
requiring the output as a string type column.

4. Now, we can apply the PySpark UDF function to the input DataFrame. Note that the 
input DataFrame must have a text column with a string data type since that's 
what the model signature requires:

df = df.withColumn('predictions', loaded_model())

Because our model inference pipeline has defined a model signature, we don't 
need to specify any column parameters if it finds the text column in the input 
DataFrame, which is df in this example. Note that we can read a large volume of 
data using Spark's read API, which supports different data format reading, such as 
CSV, JSON, Parquet, and many more. In our example, we read the test.csv file 
from the IMDB dataset. This will leverage Spark's powerful distributed computation 
on a cluster if we have a large volume of data. This enables us to do batch inference 
at scale effortlessly.

5. To run the batch inference code from end to end, you should check out the 
complete code provided in the repository at this location: https://github.
com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/blob/main/chapter08/batch/batch_inference.py. Make 
sure you replace the logged_model variable with your own run_id and model 
name or the registered model name and version before you run the following 
command in the batch folder:

python batch_inference.py

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter08/batch/batch_inference.py
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6. You should see the output in Figure 8.2 on the screen:

Figure 8.2 – Batch inference using PySpark UDF function
As can be seen from Figure 8.2, the multi-step inference pipeline we loaded worked 
correctly and even detected non-English texts and duplicates, although the language 
detector probably produced some false positives. The output is a two-column 
DataFrame where the JSON response of the model prediction is saved in the 
predictions column. Note that you can use the same code provided in batch_
inference.py in a Databricks notebook and process a very large volume of input 
data with a Spark cluster by changing the input data and the logged model location. 

Now that we know how to do batch inference at scale, let's see how to deploy to a local 
web service for the same model inference pipeline.
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Model as a web service
We can deploy the same logged model inference pipeline to a web service locally and have 
an endpoint that accepts HTTP requests with an HTTP response. 

The local deployment is quite straightforward with just one command line. We can deploy 
a logged model or a registered model using the model URI as in the previous batch 
inference, as follows:

mlflow models serve -m models:/inference_pipeline_model/6

You should be able to see the following:

2022/03/06 21:50:19 INFO mlflow.models.cli: Selected backend 
for flavor 'python_function'

2022/03/06 21:50:21 INFO mlflow.utils.conda: === Creating conda 
environment mlflow-a0968092d20d039088e2875ad04bbaa0f3a75206 ===

± |main U:1 ?:8 X| done

Solving environment: done

This will create the conda environment using the logged model so that it will have  
all the dependencies to run. After the conda environment is created, you should see  
the following:

2022/03/06 21:52:11 INFO mlflow.pyfunc.backend: === Running 
command 'source /Users/yongliu/opt/miniconda3/bin/../etc/
profile.d/conda.sh && conda activate mlflow-a0968092d20d039
088e2875ad04bbaa0f3a75206 1>&2 && gunicorn --timeout=60 -b 
127.0.0.1:5000 -w 1 ${GUNICORN_CMD_ARGS} -- mlflow.pyfunc.
scoring_server.wsgi:app'

[2022-03-06 21:52:12 -0800] [97554] [INFO] Starting gunicorn 
20.1.0

[2022-03-06 21:52:12 -0800] [97554] [INFO] Listening at: 
http://127.0.0.1:5000 (97554)

[2022-03-06 21:52:12 -0800] [97554] [INFO] Using worker: sync

[2022-03-06 21:52:12 -0800] [97561] [INFO] Booting worker with 
pid: 97561
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Now, the model is deployed as a web service and ready to accept HTTP requests for model 
prediction. Open a different Terminal window and type the following command to invoke 
the model web service to get a prediction response:

curl http://127.0.0.1:5000/invocations -H 'Content-Type: 
application/json' -d '{

    "columns": ["text"],

    "data": [["This is the best movie we saw."], ["What a 
movie!"]]

}'

We can see the following prediction response immediately:

[{"text": "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/07b900a96af04037a956c74ef691396e/
model\", \"inference_pipeline_model_uri\": 
\"runs:/37b5b4dd7bc04213a35db646520ec404/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": 
\"runs:/07b900a96af04037a956c74ef691396e/model\", \"inference_
pipeline_model_uri\": \"runs:/37b5b4dd7bc04213a35db646520ec404/
inference_pipeline_model\"}}"}]

If you have followed the steps so far and saw the prediction results, you should feel very 
proud that you just deployed a DL model inference pipeline into a local web service! This 
is great for testing and debugging, and the behavior of the model will not change on  
a production web server, so we should make sure it works on a local web server.

So far, we have learned how to use the built-in MLflow deployment tool. Next, we will see 
how to use a generic deployment tool, Ray Serve, to deploy an MLflow inference pipeline.
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Deploying using Ray Serve and MLflow 
deployment plugins
A more generic way to do deployment is to use a framework such as Ray Serve 
(https://docs.ray.io/en/latest/serve/index.html). Ray Serve has 
several advantages, such as DL model frameworks agnostics, native Python support, and 
supporting complex model composition inference patterns. Ray Serve supports all major 
DL frameworks and any arbitrary business logic. So, can we leverage both Ray Serve 
and MLflow to do model deployment and serve? The good news is that we can use the 
MLflow deployment plugins provided by Ray Serve to do this. Let's walk through how to 
use the mlflow-ray-serve plugin to do MLflow model deployment using Ray Serve 
(https://github.com/ray-project/mlflow-ray-serve). Before we begin, we 
need to install the mlflow-ray-serve package:

pip install mlflow-ray-serve

Then, we need to start a single node Ray cluster locally first using the following two 
commands:

ray start --head

serve start

This will start a Ray cluster locally, and you can access its dashboard from your web 
browser at http://127.0.0.1:8265/#/ as follows:

Figure 8.3 – A locally running Ray cluster

https://docs.ray.io/en/latest/serve/index.html
https://github.com/ray-project/mlflow-ray-serve
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Figure 8.3 shows a locally running Ray cluster. You can then issue the following command 
to deploy inference_pipeline_model into Ray Serve as follows: 

mlflow deployments create -t ray-serve -m 
runs:/63f101fb3700472ca58975488636f4ae/inference_pipeline_model 
--name dl-inference-model-on-ray -C num_replicas=1

This will show the following screen output:

2022-03-20 20:16:46,564    INFO worker.py:842 -- Connecting to 
existing Ray cluster at address: 127.0.0.1:6379

2022-03-20 20:16:46,717    INFO api.py:242 -- Updating 
deployment 'dl-inference-model-on-ray'. component=serve 
deployment=dl-inference-model-on-ray

(ServeController pid=78159) 2022-03-20 20:16:46,784    INFO 
deployment_state.py:912 -- Adding 1 replicas to deployment 
'dl-inference-model-on-ray'. component=serve deployment=dl-
inference-model-on-ray

2022-03-20 20:17:10,309    INFO api.py:249 -- Deployment 
'dl-inference-model-on-ray' is ready at `http://127.0.0.1:8000/
dl-inference-model-on-ray`. component=serve deployment=dl-
inference-model-on-ray

python_function deployment dl-inference-model-on-ray is created

This means that an endpoint at http://127.0.0.1:8000/dl-inference-model-
on-ray is ready to serve an online inference request! You can test this deployment 
using the Python code provided at chapter08/ray_serve/query_ray_serve_
endpoint.py as follows:

python ray_serve/query_ray_serve_endpoint.py

This will show results on the screen as follows:

2022-03-20 21:16:45,125    INFO worker.py:842 -- Connecting to 
existing Ray cluster at address: 127.0.0.1:6379

[{'name': 'dl-inference-model-on-ray', 'info': 
Deployment(name=dl-inference-model-on-ray,version=None,route_
prefix=/dl-inference-model-on-ray)}]

{

    "columns": [

        "text"

    ],
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    "index": [

        0,

        1

    ],

    "data": [

        [

            "{\"response\": {\"prediction_label\": 
[\"negative\"]}, \"metadata\": {\"language_detected\": \"en\"}, 
\"model_metadata\": {\"finetuned_model_uri\": \"runs:/
be2fb13fe647481eafa071b79dde81de/model\", \"inference_pipeline_
model_uri\": \"runs:/63f101fb3700472ca58975488636f4ae/
inference_pipeline_model\"}}"

        ],

        [

            "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": \"en\"}, 
\"model_metadata\": {\"finetuned_model_uri\": \"runs:/
be2fb13fe647481eafa071b79dde81de/model\", \"inference_pipeline_
model_uri\": \"runs:/63f101fb3700472ca58975488636f4ae/
inference_pipeline_model\"}}"

        ]

    ]

}

You should see the inference model response as expected. If you followed through up 
to this point, congratulations on your successful deployment using the mlflow-ray-
serve MLflow deployment plugin! If you no longer need this Ray Serve instance, you 
can stop it by executing the following command line:

ray stop

This will stop all running Ray instances on your local machine.
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Deployment Using MLflow Deployment Plugins
There are several MLflow deployment plugins. We just showed how to 
use mlflow-ray-serve to deploy a generic MLflow Python model, 
inference_pipeline_model. This opens doors to deploying to 
many target destinations where you can launch a Ray cluster in any cloud 
provider. We will not cover more details in this chapter as it's beyond the 
scope of this book. If you are interested, refer to the Ray documentation on 
how to launch cloud clusters (AWS, Azure, and Google Cloud Platform 
(GCP)): https://docs.ray.io/en/latest/cluster/cloud.
html#:~:text=The%20Ray%20Cluster%20Launcher%20
can,ready%20to%20launch%20your%20cluster. Once there is a 
Ray cluster, you can follow the same procedure to deploy an MLflow model.

Now that we know several ways to deploy locally and could further deploy to the cloud 
using Ray Serve if desirable, let's see how we can deploy to a cloud-managed inference 
service, AWS SageMaker, in the next section, since it is widely used and can provide  
a good lesson on how to deploy in a realistic scenario. 

Deploying to AWS SageMaker – a complete 
end-to-end guide
AWS SageMaker has a cloud-hosted model service managed by AWS. We will use AWS 
SageMaker as an example to show you how to deploy to a remote cloud provider for 
hosted web services that can serve real production traffic. AWS SageMaker has a suite of 
ML/DL-related services including supporting annotation and model training and many 
more. Here, we show how to bring your own model (BYOM) for deployment. This means 
that you have a model inference pipeline trained outside of AWS SageMaker, and now just 
need to deploy to SageMaker for hosting. Follow the next steps to prepare and deploy a 
DL sentiment model. A few prerequisites are required: 

• You must have Docker Desktop running in your local environment.

• You must have an AWS account. You can create a free AWS account easily through 
the free signup website at https://aws.amazon.com/free/.

Once you have these requirements , activate the dl-model-chapter08 conda virtual 
environment to follow through a few steps for deploying to SageMaker. We breakdown 
these steps into six subsections as follows:

1. Build a local SageMaker Docker image
2. Add additional model artifacts layers onto the SageMaker Docker image

https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://docs.ray.io/en/latest/cluster/cloud.html#:~:text=The%20Ray%20Cluster%20Launcher%20can,ready%20to%20launch%20your%20cluster
https://aws.amazon.com/free/
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3. Test local deployment with the newly built SageMaker Docker image
4. Push the SageMaker Docker image to AWS Elastic Container Registry
5. Deploy the inference pipeline model to create a SageMaker endpoint
6. Query the SageMaker endpoint for online inference

Let's start with the first step to build a local SageMaker Docker image.

Step 1: Build a local SageMaker Docker image
We intentionally start with a local build without pushing to the AWS so that we can learn 
how to add additional layers on top of this basic image and verify everything locally before 
incurring any cloud cost:

mlflow sagemaker build-and-push-container --build --no-push -c 
mlflow-dl-inference

You will see a lot of screen outputs and at the end, it will show something like  
the following:

#15 exporting to image

#15 sha256:e8c613e07b0b7ff33893b694f7759a10 
d42e180f2b4dc349fb57dc6b71dcab00

#15 exporting layers

#15 exporting layers 8.7s done

#15 writing image sha256:95bc539b021179e5e87087 
012353ebb43c71410be535ef368d1121b550c57bd4 done

#15 naming to docker.io/library/mlflow-dl-inference done

#15 DONE 8.7s

If you see the image name mlflow-dl-inference, that means you have successfully 
created a SageMaker-compatible MLflow-model-serving Docker image. You can verify 
this by running the following command:

docker images | grep mlflow-dl-inference

You should see output like the following:

mlflow-dl-inference          latest                   
95bc539b0211   6 minutes ago   2GB



Deploying to AWS SageMaker – a complete end-to-end guide     195

Step 2: Add additional model artifacts layers onto the 
SageMaker Docker image
Recall that our inference pipeline model builds on top of a fine-tuned DL model and 
we load the model through the MLflow PythonModel API's load_context function 
(https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.
html#mlflow.pyfunc.PythonModel) without serializing the fine-tuned model 
itself. This is partly because MLflow cannot serialize the PyTorch DataLoader (https://
pytorch.org/docs/stable/data.html#single-and-multi-process-
data-loading) properly using pickle since the DataLoader does not implement pickle 
serialization as of this writing. This does give us an opportunity to learn how we can 
deploy when some of the dependencies cannot be serialized properly, especially when 
dealing with a real-world DL model. 

Two Ways to Allow a Docker Container to Access an MLflow Tracking Server
There are two ways to allow a Docker container such as mlflow-dl-
inference to access and load a fine-tuned model at runtime. The first 
method is to allow the container to include the MLflow tracking server URL 
and access token. This may cause some security concerns in an enterprise 
environment since the Docker image now contains some security credentials. 
The second method is to directly copy all the referenced artifacts to create a 
new Docker image that's self-sufficient. At runtime, it does not have to know 
where the original MLflow tracking server is located since it has all model 
artifacts locally. This self-contained approach eliminates any concerns of 
security leaking. We use this second approach in this chapter for deployment. 

In this chapter, we will copy the referenced fine-tuned model into a new Docker image 
that's built on top of the basic mlflow-dl-inference Docker image. This will make 
a new self-contained Docker image without relying on any external MLflow tracking 
server. To do this, you need to either download the fine-tuned DL model from a model 
tracking server to your current local folder, or you can just run our MLproject's pipeline 
locally using the local filesystem as the MLflow tracking server backend. Follow the 
Deploy to AWS SageMaker section in the README.md file to reproduce the local MLflow 
runs to prepare a fine-tuned model and inference-pipeline-model in the local 
folder. For learning purposes, we have provided two example mlruns artifacts and 
the huggingface cache folder in the GitHub repository in the chapter08 folder 
(https://github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/tree/main/chapter08), so that we can start building a new 
Docker image right away by using these existing artifacts. 

https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://pytorch.org/docs/stable/data.html#single-and-multi-process-data-loading
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter08
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To build a new Docker image, we need to create a Dockerfile as follows:

FROM mlflow-dl-inference

ADD mlruns/1/meta.yaml  /opt/mlflow/mlruns/1/meta.yaml

ADD mlruns/1/d01fc81e11e842f5b9556ae04136c0d3/ /opt/mlflow/
mlruns/1/d01fc81e11e842f5b9556ae04136c0d3/

ADD tmp/opt/mlflow/hf/cache/dl_model_chapter08/csv/ /opt/
mlflow/tmp/opt/mlflow/hf/cache/dl_model_chapter08/csv/

The first line means that it starts with the existing mlflow-dl-inference Docker 
image, and the following three lines of ADD will copy one meta.yaml file and two 
folders to the corresponding locations in the Docker image. Note that if you already have 
produced your own runs by following the README file, then you do not need to add the 
third line. Note that, by default, when the Docker container starts, it automatically goes to 
this/opt/mlflow/ working directory so everything needs to be copied to this folder for 
easy access. Also, note that the /opt/mlflow directory requires superuser permission, 
so you need to be prepared to enter your local machine's admin password (usually, on 
your own laptop, that's your own password).

Copy Privately Built Python Packages into Docker Images 
It is also possible to copy privately built Python packages into Docker images 
so that we can directly reference them in the conda.yaml file without 
going outside of the container itself. For example, we can copy a private 
Python wheel package, cool-dl-package-1.0.py3-none-any.
whl, to the /usr/private-wheels/cool-dl-package/cool-
dl-package-1.0-py3-none-any.whl Docker folder, and then we 
can point to this path in the conda.yaml file. This allows MLflow model 
artifacts to load these locally accessible Python packages successfully. In our 
current example, we don't use this approach since we haven't used any privately 
built Python packages. This is useful for future reference if you are interested in 
exploring this.

Now, you can run the following command to build a new Docker image in the 
chapter08 folder as follows:

docker build . -t mlflow-dl-inference-w-finetuned-model
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This will build a new Docker image, mlflow-dl-inference-w-finetuned-model, 
on top of mlflow-dl-inference. You should see the following output (only the first 
and last couple of lines are presented for brevity):

[+] Building 0.2s (9/9) FINISHED

 => [internal] load build definition from Dockerfile 
                                                     0.0s

…………

=> => naming to docker.io/library/mlflow-dl-inference-w-
finetuned-model

Now, you have a new Docker image named mlflow-dl-inference-w-finetuned-
model, which contains the fine-tuned model. Now, we are ready to deploy our inference 
pipeline model using this new Docker image, which is SageMaker compatible.

Step 3: Test local deployment with the newly built 
SageMaker Docker image
Before we deploy to the cloud, let's test the deployment locally with this new SageMaker 
Docker image. MLflow provides a convenient way to test this locally using the following 
command:

mlflow sagemaker run-local -m runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_model -p 
5555 -i mlflow-dl-inference-w-finetuned-model

This command will start running the mlflow-dl-inference-w-finetuned-
model Docker container locally and deploy the inference pipeline model with a 
dc5f670efa1a4eac95683633ffcfdd79 run ID into this container. 

Fix a Potential Docker Error
Note that you may encounter a Docker error saying The path /opt/mlflow/
mlruns/1/ dc5f670efa1a4eac95683633ffcfdd79/artifacts/inference_pipeline_
model is not shared from the host and is not known to Docker. You can 
configure shared paths from Docker | Preferences... | Resources | File Sharing 
to fix this Docker error.
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We already provided this inference pipeline model in the GitHub repository, so this 
should work out-of-the-box when you check out the repository in your local environment. 
The port for web service is 5555. Once the command is running, you will see a lot of 
outputs on the screen, and finally, you should see the following:

[2022-03-18 01:47:20 +0000] [552] [INFO] Starting gunicorn 
20.1.0

[2022-03-18 01:47:20 +0000] [552] [INFO] Listening at: 
http://127.0.0.1:8000 (552)

[2022-03-18 01:47:20 +0000] [552] [INFO] Using worker: gevent

[2022-03-18 01:47:20 +0000] [565] [INFO] Booting worker with 
pid: 565

[2022-03-18 01:47:20 +0000] [566] [INFO] Booting worker with 
pid: 566

[2022-03-18 01:47:20 +0000] [567] [INFO] Booting worker with 
pid: 567

[2022-03-18 01:47:20 +0000] [568] [INFO] Booting worker with 
pid: 568

[2022-03-18 01:47:20 +0000] [569] [INFO] Booting worker with 
pid: 569

[2022-03-18 01:47:20 +0000] [570] [INFO] Booting worker with 
pid: 570

This means that the service is up and running. You might see a few warnings about the 
PyTorch version not being compatible, but they can be safely ignored. Once this service is 
up and running, you can then test against it in a different Terminal window by issuing a 
curl web request as follows, like we have tried before:

curl http://127.0.0.1:5555/invocations -H 'Content-Type: 
application/json' -d '{

    "columns": ["text"],

    "data": [["This is the best movie we saw."], ["What a 
movie!"]]

}'
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Note that the port number is 5555 for the localhost. You should then see the response  
as follows:

[{"text": "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\": 
[\"negative\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

You may wonder how this is different from the previous section's local web service for 
the inference model. The difference is that this time, we are using a SageMaker container 
locally, while previously, it was just a local web service without a Docker container. Having 
the SageMaker container tested locally is very important so that you don't waste time and 
money deploying a failed model service to the cloud.

Next, we are ready to deploy this container to AWS SageMaker.

Step 4: Push the SageMaker Docker image to AWS 
Elastic Container Registry
Now, you can push your newly built mlflow-dl-inference-w-finetuned-model 
Docker image to AWS Elastic Container Registry (ECR) with the following command. 
Make sure you have your AWS access token and access ID set up correctly (the real one, 
not the local development one). Once you have your access key ID and token, run the 
following command to set up your access to the real AWS:

aws configure

Answer all the questions after executing the command and you will be ready to go. 
Now, you can run the following command to push the mlflow-dl-inference-w-
finetuned-model Docker image to the AWS ECR:

mlflow sagemaker build-and-push-container --no-build --push -c 
mlflow-dl-inference-w-finetuned-model
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Make sure you don't build a new image with the --no-build option included in the 
command since we just want to push the image, not build a new one. You will see the 
following output, which shows the image is being pushed to the ECR. Note that in the 
following output, the AWS account is masked with xxxxx. You will see your account 
number showing in the output. Make sure you have the permission to write to the AWS 
ECR store:

2022/03/18 17:36:05 INFO mlflow.sagemaker: Pushing image to ECR

2022/03/18 17:36:06 INFO mlflow.sagemaker: Pushing docker 
image mlflow-dl-inference-w-finetuned-model to xxxxx.dkr.
ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-finetuned-
model:1.23.1

Created new ECR repository: mlflow-dl-inference-w-finetuned-
model

2022/03/18 17:36:06 INFO mlflow.sagemaker: Executing: aws ecr 
get-login-password | docker login  --username AWS  --password-
stdin xxxxx.dkr.ecr.us-west-2.amazonaws.com;

docker tag mlflow-dl-inference-w-finetuned-model xxxxx.dkr.
ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-finetuned-
model:1.23.1;

docker push xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-
inference-w-finetuned-model:1.23.1

Login Succeeded

The push refers to repository [xxxxx.dkr.ecr.us-west-2.
amazonaws.com/mlflow-dl-inference-w-finetuned-model]

447db5970ca5: Pushed

9d6787a516e7: Pushed

1.23.1: digest: sha256:f49f85741bc2b82388e85c79f6621f4 
d7834e19bdf178b70c1a6c78c572b4d10 size: 3271
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Once this is done, if you go to the AWS website (for example, if you use the us-west-2 
region data center, the URL is https://us-west-2.console.aws.amazon.com/
ecr/repositories?region=us-west-2), you should find your newly pushed 
image in the ECR with a folder named mlflow-dl-inference-w-finetuned-
model. You will then find the image in this folder as follows (Figure 8.4): 

 

Figure 8.4 – AWS ECR repositories with mlflow-dl-inference-w-finetuned-model image tag 1.23.1

Note that the image tag number 1.23.1 in Figure 8.4 is the MLflow version we used. This 
image has a full URI, which you can get using the Copy URI option. It will look as 
follows (with the AWS account masked with xxxxx):

xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-inference-w-
finetuned-model:1.23.1

You will need this image URI to deploy to SageMaker in the next step. Let's now deploy to 
SageMaker to create an inference endpoint.

https://us-west-2.console.aws.amazon.com/ecr/repositories?region=us-west-2
https://us-west-2.console.aws.amazon.com/ecr/repositories?region=us-west-2
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Step 5: Deploy the inference pipeline model to create a 
SageMaker endpoint
Now, it is time to deploy the inference pipeline model to SageMaker using this image 
URI we just pushed to the AWS ECR registry. We have included the sagemaker/
deploy_to_sagemaker.py code in the chapter08 folder in the GitHub repository. 
You will need to use the correct AWS role for the deployment. You can create a new 
AWSSageMakerExecutionRole role in your account and assign two permissions 
policies to this role, AmazonS3FullAccess and AmazonSageMakerFullAccess. 
In a real-world scenario, you might want to tighten the permission to a more restricted 
policy, but for learning purposes, this will work fine. The following figure shows the screen 
after the role is created:

Figure 8.5 – Create a role that can be used for deployment in SageMaker
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You also need to create an S3 bucket for SageMaker to upload the model artifacts and 
deploy them to SageMaker. In our example, we created a bucket called dl-inference-
deployment. When we execute the deployment script, as shown here, the model to 
be deployed will be first uploaded to the dl-inference-deployment bucket and 
then deployed to SageMaker. We have provided the complete deployment script in the 
chapter08/sagemaker/deploy_to_sagemaker.py GitHub repository so you 
can download and execute it as follows (as a reminder, before you run this script, make 
sure you reset the environment variable of MLFLOW_TRACKING_URI to empty, as in 
export MLFLOW_TRACKING_URI=):

sudo python sagemaker/deploy_to_sagemaker.py

This script executes the following two tasks:

1. Makes a copy of the local mlruns under the chapter08 folder to a local /opt/
mlflow folder so that SageMaker deployment code can pick up the inference-
pipeline-model to upload. Because the /opt path is usually restricted, here 
we use sudo (superuser) to do this copy. This will prompt you to type in your user 
password on your laptop.

2. Uses the mlflow.sagemaker.deploy API to create a new SageMaker endpoint, 
dl-sentiment-model.

The code snippet is as follows:
mlflow.sagemaker.deploy(

    mode='create',

    app_name=endpoint_name,

    model_uri=model_uri,

    image_url=image_uri,

    execution_role_arn=role,

    instance_type='ml.m5.xlarge',

    bucket = bucket_for_sagemaker_deployment,

    instance_count=1,

    region_name=region

)

The parameters need some explanations so that we fully understand all the 
preparation work that is needed:

 � model_uri: This is the inference pipeline model's URI. In our example, 
it is runs:/dc5f670efa1a4eac95683633ffcfdd79/inference_
pipeline_model.
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 � image_url: This is the Docker image we uploaded to the AWS ECR. In our 
example, it is xxxxx.dkr.ecr.us-west-2.amazonaws.com/mlflow-dl-
inference-w-finetuned-model:1.23.1. Note that you need to replace 
the masked AWS account number, xxxxx, with your actual account number.

 � execution_role_arn: This is the role we created to allow SageMaker to do 
the deployment. In our example, it is arn:aws:iam::565251169546:role/
AWSSageMakerExecutionRole. Again, you need to replace xxxxx with your 
actual AWS account number.

 � bucket: This is the S3 bucket we created to allow SageMaker to upload the 
model and then do the actual deployment. In our example, it is dl-inference-
deployment. 

The rest of the parameters are self-explanatory. 
After you execute the deployment script, you will see the following output (where xxxxx 
is the masked AWS account number):

2022/03/18 19:30:47 INFO mlflow.sagemaker: Using the python_
function flavor for deployment!

2022/03/18 19:30:47 INFO mlflow.sagemaker: tag response: 
{'ResponseMetadata': {'RequestId': 'QMAQRCTJT36TXD2H', 
'HostId': 'DNG57U3DJrhLcsBxa39zsjulUH9VB56FmGkxAiMYN+2fhc/
rRukWe8P3qmBmvRYbMj0sW3B2iGg=', 'HTTPStatusCode': 
200, 'HTTPHeaders': {'x-amz-id-2': 
'DNG57U3DJrhLcsBxa39zsjulUH9VB56FmGkxAiMYN+2fhc/
rRukWe8P3qmBmvRYbMj0sW3B2iGg=', 'x-amz-request-id': 
'QMAQRCTJT36TXD2H', 'date': 'Sat, 19 Mar 2022 02:30:48 GMT', 
'server': 'AmazonS3', 'content-length': '0'}, 'RetryAttempts': 
0}}

2022/03/18 19:30:47 INFO mlflow.sagemaker: Creating new 
endpoint with name: dl-sentiment-model ...

2022/03/18 19:30:47 INFO mlflow.sagemaker: Created model with 
arn: arn:aws:sagemaker:us-west-2:xxxxx:model/dl-sentiment-
model-model-qbca2radrxitkujn3ezubq

2022/03/18 19:30:47 INFO mlflow.sagemaker: Created 
endpoint configuration with arn: arn:aws:sagemaker:us-
west-2:xxxxx:endpoint-config/dl-sentiment-model-config-
r9ax3wlhrfisxkacyycj8a

2022/03/18 19:30:48 INFO mlflow.sagemaker: Created endpoint 
with arn: arn:aws:sagemaker:us-west-2:xxxxx:endpoint/
dl-sentiment-model

2022/03/18 19:30:48 INFO mlflow.sagemaker: Waiting for the 
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deployment operation to complete...

2022/03/18 19:30:48 INFO mlflow.sagemaker: Waiting for endpoint 
to reach the "InService" state. Current endpoint status: 
"Creating"

This may take several minutes (sometimes more than 10 minutes). You may see some 
warning messages regarding PyTorch version compatibility as you saw when doing local 
SageMaker deployment testing. You can also go directly to the SageMaker website and you 
will see the status of the endpoints starting with Creating, and then eventually turning to 
a green-colored InService status as follows: 

Figure 8.6 – AWS SageMaker dl-sentiment-model endpoint InService

If you see the InService status, then congratulations! You have successfully deployed a DL 
inference pipeline model into SageMaker and you can now use it for production traffic!

Now that the status of the service is inService, you can query it using the command line in 
the next step.

Step 6: Query the SageMaker endpoint for online 
inference
To query the SageMaker endpoint, you can use the following command line:

aws sagemaker-runtime invoke-endpoint --endpoint-name 
'dl-sentiment-model' --content-type 'application/json; 
format=pandas-split' --body '{"columns":["text"], "data": 
[["This is the best movie we saw."], ["What a movie!"]]}' 
response.json
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You will then see the output as follows:

{

    "ContentType": "application/json",

    "InvokedProductionVariant": "dl-sentiment-model-model-
qbca2radrxitkujn3ezubq"

}

The actual prediction results are stored in a local response.json file, which can be 
viewed by running the following command to show the content of the response:

cat response.json

This will display the content as follows:

[{"text": "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\": 
[\"negative\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

This is the expected response pattern from our inference pipeline model! It is also 
possible to run the query against the SageMaker inference endpoint using Python code, 
which we have provided in the chapter08/sagemaker/ query_sagemaker_
endpoint.py file in the GitHub repository. The core code snippet uses Boto3 and the 
SageMakerRuntime client's invoke_endpoint to query, as follows:

client = boto3.client('sagemaker-runtime') 

response = client.invoke_endpoint(

    EndpointName=app_name, 

    ContentType=content_type,

    Accept=accept,

    Body=payload

    )
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The parameters for invoke_endpoint need some explanation:

• EndpointName: This is the inference endpoint name. In our example, it is 
dl-inference-model.

• ContentType: This is the MIME type of the input data in the request body. In our 
example, we use application/json; format=pandas-split.

• Accept: This is the desired MIME type of the inference in the response body. In 
our example, we expect the text/plain string type. 

• Body: This is the actual text that we want to predict the sentiment using 
the DL model inference service. In our example, it is {"columns": 
["text"],"data": [["This is the best movie we saw."], 
["What a movie!"]]}.

The full code is provided in the GitHub repository, and you can run it in the command 
line as follows:

python sagemaker/query_sagemaker_endpoint.py

You will see the following output on your Terminal screen:

Application status is: InService

[{"text": "{\"response\": {\"prediction_label\": 
[\"positive\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_
uri\": \"runs:/d01fc81e11e842f5b9556ae04136c0d3/
model\", \"inference_pipeline_model_uri\": \"runs:/
dc5f670efa1a4eac95683633ffcfdd79/inference_pipeline_
model\"}}"}, {"text": "{\"response\": {\"prediction_label\": 
[\"negative\"]}, \"metadata\": {\"language_detected\": 
\"en\"}, \"model_metadata\": {\"finetuned_model_uri\": \"runs:/
d01fc81e11e842f5b9556ae04136c0d3/model\", \"inference_pipeline_
model_uri\": \"runs:/dc5f670efa1a4eac95683633ffcfdd79/
inference_pipeline_model\"}}"}]

This is what we expect from our inference pipeline model's response! If you have followed 
this chapter up to here, congratulate yourself on successfully deploying our inference 
pipeline model into production in a remote cloud host, AWS SageMaker! When you are 
done following the lessons in this chapter, make sure to delete the endpoint so that it 
doesn't incur unnecessary costs.

Let's summarize what we've learned in this chapter. 
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Summary
In this chapter, we have learned different ways to deploy an MLflow inference pipeline 
model for both batch inference and online real-time inference. We started with a brief 
survey on different model serving scenarios (batch, streaming, and on-device) and looked 
at three different categories of tools for MLflow model deployment (the MLflow built-in 
deployment tool, MLflow deployment plugins, and generic model inference serving 
frameworks that could work with the MLflow inference model). Then, we covered several 
local deployment scenarios, using the PySpark UDF function to do batch inference and 
MLflow local deployment for web service. Afterward, we learned how to use Ray Serve 
in conjunction with the mlflow-ray-serve plugin to deploy an MLflow Python 
inference pipeline model into a local Ray cluster. This opens doors to deploy to any 
cloud platform such as AWS, Azure ML, or GCP, as long as we can set up a Ray cluster in 
the cloud. Finally, we provided a complete end-to-end guide on how to deploy to AWS 
SageMaker, focusing on a common scenario of BYOM, where we have a trained inference 
pipeline model that's built outside of AWS SageMaker and now needs to be deployed to 
AWS SageMaker for a hosting model service. Our step-by-step guide should provide  
you with the confidence to deploy an MLflow inference pipeline model for real  
production usage.

Note that the landscape of deploying DL inference pipeline models is still evolving, and 
we just learned some foundational skills. You are encouraged to explore more from the 
Further reading section for more advanced topics.

Now that we know how to deploy and host a DL inference pipeline, we will learn how to 
do model explainability in the next chapter, which is of great importance for trustworthy 
and interpretable model prediction results in many real-world scenarios.

Further reading
• An Introduction to TinyML: https://towardsdatascience.com/

an-introduction-to-tinyml-4617f314aa79

• Performance Optimizations and MLFlow Integrations – Seldon Core 1.10.0 Released: 
https://www.seldon.io/performance-optimizations-and-
mlflow-integrations-seldon-core-1-10-0-released/

• Ray & MLflow: Taking Distributed Machine Learning Applications to 
Production: https://medium.com/distributed-computing-with-
ray/ray-mlflow-taking-distributed-machine-learning-
applications-to-production-103f5505cb88

https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://www.seldon.io/performance-optimizations-and-mlflow-integrations-seldon-core-1-10-0-released/
https://www.seldon.io/performance-optimizations-and-mlflow-integrations-seldon-core-1-10-0-released/
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
https://medium.com/distributed-computing-with-ray/ray-mlflow-taking-distributed-machine-learning-applications-to-production-103f5505cb88
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• Managing your machine learning lifecycle with MLflow and Amazon SageMaker: 
https://aws.amazon.com/blogs/machine-learning/managing-
your-machine-learning-lifecycle-with-mlflow-and-amazon-
sagemaker/

• Deploy A Locally Trained ML Model In Cloud Using AWS SageMaker:  
https://medium.com/geekculture/84af8989d065

• PyTorch vs TensorFlow in 2022: https://www.assemblyai.com/blog/
pytorch-vs-tensorflow-in-2022/

• Try Databricks: Free Trial or Community Edition: https://docs.databricks.
com/getting-started/try-databricks.html#free-trial-or-
community-edition

• MLOps with MLflow and Amazon SageMaker Pipelines: https://
towardsdatascience.com/mlops-with-mlflow-and-amazon-
sagemaker-pipelines-33e13d43f238 

• PyTorch JIT and TorchScript: https://towardsdatascience.com/
pytorch-jit-and-torchscript-c2a77bac0fff

• ML Model Serving Best Tools: https://neptune.ai/blog/ml-model-
serving-best-tools

• Deploying Machine Learning models to production — Inference service architecture 
patterns: https://medium.com/data-for-ai/deploying-machine-
learning-models-to-production-inference-service-
architecture-patterns-bc8051f70080

• How to Deploy Large-Size Deep Learning Models into Production:  
https://towardsdatascience.com/how-to-deploy-large-size-
deep-learning-models-into-production-66b851d17f33

• Serving ML models at scale using Mlflow on Kubernetes: https://medium.com/
artefact-engineering-and-data-science/serving-ml-models-
at-scale-using-mlflow-on-kubernetes-7a85c28d38e

• When PyTorch meets MLflow: https://mlops.community/when-pytorch-
meets-mlflow/

• Deploy a model to an Azure Kubernetes Service Cluster: https://docs.
microsoft.com/en-us/azure/machine-learning/how-to-deploy-
azure-kubernetes-service?tabs=python

• ONNX and Azure Machine Learning: Create and accelerate ML models:  
https://docs.microsoft.com/en-us/azure/machine-learning/
concept-onnx

https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://aws.amazon.com/blogs/machine-learning/managing-your-machine-learning-lifecycle-with-mlflow-and-amazon-sagemaker/
https://medium.com/geekculture/84af8989d065
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://docs.databricks.com/getting-started/try-databricks.html#free-trial-or-community-edition
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/mlops-with-mlflow-and-amazon-sagemaker-pipelines-33e13d43f238
https://towardsdatascience.com/pytorch-jit-and-torchscript-c2a77bac0fff
https://towardsdatascience.com/pytorch-jit-and-torchscript-c2a77bac0fff
https://neptune.ai/blog/ml-model-serving-best-tools
https://neptune.ai/blog/ml-model-serving-best-tools
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://medium.com/data-for-ai/deploying-machine-learning-models-to-production-inference-service-architecture-patterns-bc8051f70080
https://towardsdatascience.com/how-to-deploy-large-size-deep-learning-models-into-production-66b851d17f33
https://towardsdatascience.com/how-to-deploy-large-size-deep-learning-models-into-production-66b851d17f33
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://medium.com/artefact-engineering-and-data-science/serving-ml-models-at-scale-using-mlflow-on-kubernetes-7a85c28d38e
https://mlops.community/when-pytorch-meets-mlflow/
https://mlops.community/when-pytorch-meets-mlflow/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-azure-kubernetes-service?tabs=python
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Section 5 –  
Deep Learning Model 

Explainability at Scale

In this section, we will learn about the foundational concepts of explainability and 
explainable artificial intelligence (XAI) and how to implement deep learning (DL) 
explainability with MLflow. We will start with an overview of the eight dimensions of 
explainability and then learn how to use SHapley Additive exPlanations (SHAP) and 
Transformers Interpret to perform explainability for a natural language processing 
(NLP) pipeline. Furthermore, we will learn and analyze the current MLflow integration 
with SHAP to understand the trade-offs and avoid potential implementation problems. 
Then, we will show how to implement SHAP using MLflow's logging APIs. Finally, we will 
learn how to implement a SHAP explainer as an MLflow Python model and then load it as 
either a Spark UDF for batch explanation or as a web service for online Explanation-as-a-
Service (EaaS).

This section comprises the following chapters:

• Chapter 9, Fundamentals of Deep Learning Explainability 

• Chapter 10, Implementing DL Explainability with MLflow





9
Fundamentals of 

Deep Learning 
Explainability

Explainability is providing selective human-understandable explanations for a decision 
provided by an automated system. In the context of this book, during the full life cycle 
of deep learning (DL) development, explainability should be emphasized as a first-class 
artifact, along with the other three pillars: data, code, and model. This is because different 
stakeholders and regulators, model developers, and final consumers of the model output 
may have different needs to understand how the data is used and why the model produces 
certain predictions or classifications. Without such understanding, it will be difficult to 
gain the trust of the consumers of the model output or to diagnose what could have gone 
wrong when model output results drift. This also means that explainability tools should be 
employed not only for explaining prediction results from a deployed model in production 
or during offline experimentation, but also for understanding the data characteristics and 
differences between the datasets used in offline model training and the ones encountered 
in online model operation. 
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In addition, in many highly regulated industries, such as autonomous driving, 
medical diagnosis, banking, and finance, there is also a legal mandate that 
demands the right to explanation (https://academic.oup.com/idpl/
article/7/4/233/4762325) for any individual to get an explanation for an output 
of the algorithm. Finally, a recent survey showed that over 82% of CEOs believe that 
AI-based decisions must be explainable to be trusted as enterprises accelerate their 
investment in developing and deploying AI-based initiatives (https://cloud.
google.com/blog/topics/developers-practitioners/bigquery-
explainable-ai-now-ga-help-you-interpret-your-machine-
learning-models). Therefore, it is important to learn the fundamentals of 
explainability and the related tools so that we know when to use what tools for what 
audience to provide a relevant, accurate, and consistent explanation. 

By the end of this chapter, you will be confident to know what a good explanation is and 
what tools exist for different explainability purposes and will gain hands-on experience in 
using two explainability toolboxes for explaining DL sentiment classification models.

In this chapter, we're going to cover the following main topics:

• Understanding the categories and audience of explainability

• Exploring the SHAP Explainability toolbox

• Exploring the Transformers Interpret toolbox

Technical requirements
The following requirements are necessary to complete the learning in this chapter:

• SHAP Python library: https://github.com/slundberg/shap

• Transformers Interpret Python library: https://github.com/cdpierse/
transformers-interpret

• Captum Python library: https://github.com/pytorch/captum

• Code from the GitHub repository for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter09
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Understanding the categories and audience  
of explainability
As this chapter's opening texts imply, explainability for a DL system becomes increasingly 
critical, sometimes even mandatory, in highly regulated industries such as financial, 
legal, governmental, and medical application domains. An example lawsuit partially due 
to the lack of ML explainability is the case of B2C2 v Quoine (https://www.scl.
org/articles/12130-explainable-machine-learning-how-can-you-
determine-what-a-party-knew-or-intended-when-a-decision-was-
made-by-machine-learning), where automated AI trading algorithms mistakenly 
placed an order with 250 times the market price for bitcoin trading. The recent successful 
applications of DL models in production stimulate active and abundant research and 
development in the explainability area due to the need to understand why and how a DL 
model works. You may have heard of the term explainable artificial intelligence (XAI), 
which was started by the US Defense Advanced Research Projects Agency (DARPA) 
in 2015 for its XAI program with the goal of enabling end users to better understand, 
trust, and effectively manage AI systems (https://onlinelibrary.wiley.com/
doi/epdf/10.1002/ail2.61). However, the concept of explainability goes way 
back to the early days of expert systems in the 1980s or even earlier (https://wires.
onlinelibrary.wiley.com/doi/full/10.1002/widm.1391), and the recent 
surge of attention on the topic of explainability just highlights how important it is. 

So, what's an explanation? It turns out that this is still an active research topic in the 
ML/DL/AI community. From a practical purpose, a precise definition of explanation 
depends on who wants the explanations for what purpose at what time across the ML/DL/
AI life cycle (https://dl.acm.org/doi/abs/10.1145/3461778.3462131). 
So, explainability can be defined as the capability to provide an audience-appropriate, 
human-understandable interpretation of why and how a model provides certain predictions. 
This may also include the data explainability aspect, where and how the data was used 
through provenance tracking, what the data characteristics are, or whether it has changed 
due to unexpected events. For example, sales and marketing emails changed due to 
an unexpected COVID outbreak (https://www.validity.com/resource-
center/disruption-in-email/). Such data changes will unexpectedly change the 
distribution of model prediction results. We need to take into account such data changes 
when explaining the model drift. This means the complexity of the explanations needs to 
be tailored and selective to the receiving audience without overwhelming information. For 
example, a complex explanation with many technical jargons such as activation might not 
work as well as a simple text summary with business-friendly terms. This further shows 
that explainability is also a Human-Computer Interface/Interaction (HCI) topic.

https://www.scl.org/articles/12130-explainable-machine-learning-how-can-you-determine-what-a-party-knew-or-intended-when-a-decision-was-made-by-machine-learning
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To get the big picture of what the explainability categories and corresponding audiences 
look like, we consider the eight dimensions of explanations shown in Figure 9.1:

Figure 9.1 – Eight dimensions to understand explainability 

As can be seen from Figure 9.1, the complexity of explainability can be understood 
from eight dimensions. This is not necessarily an exhaustive categorization, but rather 
a guide to understanding different perspectives from HCI, the full life cycle of AI/ML/
DL, and different technical approaches. In the following discussion, we will highlight the 
dimensions and their inter-relationships that are most relevant to DL applications, since 
the focus of this chapter is on DL explainability.

Audience: who needs to know
As pointed out recently by a study (https://dl.acm.org/doi/
abs/10.1145/3461778.3462131), it is important to understand who needs to 
know what kind of explanations at what stage across an AI project life cycle. This will 
also affect the explanation output formats. An earlier study (https://arxiv.org/
pdf/1702.08608.pdf) also points out that depending on whether a domain expert is 
involved in a real application task (for example, a medical doctor in a diagnosis of cancer), 
the cost of validating an explanation could also be high since it requires an actual human 
in a real work environment. 

For current practical DL projects, we need to tailor our methods and presentations of 
explanations depending on the target audience, such as data scientists, ML engineers, 
business stakeholders, User Experience (UX) designers, or end users, as there is no 
one-size-fits-all approach.

https://dl.acm.org/doi/abs/10.1145/3461778.3462131
https://dl.acm.org/doi/abs/10.1145/3461778.3462131
https://arxiv.org/pdf/1702.08608.pdf
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Stage: when to provide an explanation in the DL  
life cycle
A stage usually refers to when the explanations can be provided during the model 
development life cycle. For a model such as a decision tree, since it is a white-box 
model, we say we can provide ante-hoc explainability. However, currently, most DL 
models are mostly treated as black-box models even though self-explaining DL models 
are being gradually developed with ante-hoc explainability (https://arxiv.
org/abs/2108.11761). Therefore, for current practical DL applications, post-hoc 
explainability is needed. In addition, when the model development stages are in training, 
validation, or production, the explainability scope can be global, cohort, or local, even 
using the same post-hoc explainability tools (https://towardsdatascience.
com/a-look-into-global-cohort-and-local-model-explainability-
973bd449969f).

Scope: which prediction needs explanation
Scope refers to whether we can provide the explanation for all predictions, a subset of 
the predictions, or just one specific prediction, even if we use the same post-hoc tool for 
a black-box DL model. The most common global explainability is to describe feature 
importance and allow users to know which feature is the most impactful one for the 
overall model performance. Local explainability is about feature attribution for a specific 
prediction instance. The difference between feature attribution and feature importance 
is that feature attribution not only quantifies the ranking and magnitude of the feature 
impact, but also the direction of the impact (for example, whether a feature is positively or 
negatively affecting the prediction). 

Many of the post-hoc tools for DL models are very good at local explainability. Cohort 
explainability is useful for identifying potential model bias for some specific groups such 
as age or race groups. For a DL model, if we want to have a global explanation, we often 
need to use a surrogate model such as a decision tree model to emulate the behavior of 
a DL model (https://towardsdatascience.com/explainable-ai-xai-
methods-part-5-global-surrogate-models-9c228d27e13a). However, this 
approach does not always work well as it is very difficult to know whether the surrogate 
model is approximating the predictions of the original black-box model well enough. 
So, in practice, local explainability tools for DL models are often used, such as SHapley 
Additive exPlanations (SHAP), which we will explain in the method dimension.

https://arxiv.org/abs/2108.11761
https://arxiv.org/abs/2108.11761
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Input data format: what is the format of the  
input data
Input data format refers to what kind of input data we are dealing with when developing 
and using the model. While a simple model might only focus on a single type of input 
data format such as text, many complex models might require using a mix of structured 
tabular data plus unstructured data such as images or texts. In addition, there is also 
a separate need to understand the input data hidden bias (during model training and 
validation) or drifting (during production). As such, this is quite a complex topic. The data 
explanation can also be used for monitoring data outliers and drifting during production. 
This is applicable to all types of ML/DL models.

Output data format: what is the format of the 
output explanation
Output explanation format refers to how we present the explanations to our target 
audience. Often, an image explanation might be a bar chart showing the feature 
importance with the top few features and their scores, or a saliency map that highlights 
the spatial support of a particular class in each image for image-related ML problems. For 
a textual output, it could be an English sentence to say why a credit application is rejected 
because of a few factors that are understandable to the applicants. Natural language 
processing (NLP) model explainability could also be through interactive exploration 
that uses salience maps, attention, and other rich visualization (see examples in Google's 
Language Interpretability Tool (LIT): https://ai.googleblog.com/2020/11/
the-language-interpretability-tool-lit.html). As there is no silver 
bullet for explainability of these complex output formats, it is critical to meet the needs, 
experiences, and expectations of the audience that asks for the explanation.

https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html
https://ai.googleblog.com/2020/11/the-language-interpretability-tool-lit.html
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Problem type: what is the machine learning  
problem type
Problem type refers to all kinds of ML/AI problems broadly, but for practical purposes, 
current commercially successful problems are mostly around classification, regression, 
and clustering. Reinforcement learning and recommendation systems also see increasingly 
successful adoption in the industry. DL models are now often used in all these types of 
problems or are at least being evaluated as a potential candidate model.

Objectives type: what is the motivation or goal to 
explain
Objectives type refers to the motivation of using explainability in AI/ML projects. It has 
been argued that the number one objective of explainability is to gain trust by providing 
a sufficient understanding of the AI system behavior and uncovering vulnerabilities, 
biases, and flaws of the system. An additional motivation is to infer the causal relationship 
from the input and output prediction. Other objectives include improving the model 
accuracy through a better understanding of the inner workings of the AI/ML systems, 
and justifying the model behavior and decisions through transparent explanations when 
potentially severe consequences are involved. It is even possible to reveal unknown 
insights and rules that are based on explanations (https://www.tandfonline.
com/doi/full/10.1080/10580530.2020.1849465). Overall, it is very desirable 
to break the black box so that when being used in a real production system, the AI/ML 
models and systems can be used with confidence.
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Method type: what is the specific post-hoc explanation 
method used
Method type (post-hoc) refers to post-hoc methods that are very relevant to the DL 
models. There are two major categories of post-hoc methods: perturbation-based and 
gradient-based. Recent work has started to unify these two approaches, although it is  
not yet widely applicable for practical usage ( https://teamcore.seas.
harvard.edu/publications/towards-unification-and-robustness-
perturbation-and-gradient-based). The following is a brief discussion on  
these two types of methods:

• Perturbation-based methods leverage perturbations of individual instances to 
construct interpretable local approximations using linear models to explain 
the predictions. The most popular perturbation-based methods include 
Local Interpretable Model-Agnostic Explanations (LIME), (https://
arxiv.org/pdf/1602.04938.pdf), SHAP, and variants of LIME and 
SHAP such as BayesLIME and BayesSHAP, TreeSHAP, and many more 
(https://towardsdatascience.com/what-are-the-prevailing-
explainability-methods-3bc1a44f94df). LIME can be used for tabular, 
image, and textual input data and is model agnostic. That's to say, LIME can be used 
for any type of classifiers (tree-based or DL models) regardless of the algorithms 
being used. SHAP uses principles from cooperative game theory to identify the 
contribution of different features to the prediction in order to quantify the impact 
of each feature. SHAP produces a so-called shapely value, which is the average of 
all the marginal contributions to all possible coalitions or combinations of different 
features. It works well for many types of models, including DL models, although the 
computational time could be much faster for tree-based models such as XGBoost or 
LightGBM (https://github.com/slundberg/shap). 

• Gradient-based methods, such as SmoothGrad (https://arxiv.
org/abs/1706.03825) and Integrated Gradients (https://
towardsdatascience.com/understanding-deep-learning-models-
with-integrated-gradients-24ddce643dbf), leverages gradients 
computed with respect to input dimensions of individual instances to explain 
model predictions. They can be applied to both image and textual input data, 
although sometimes, textual input could suffer a manipulation or adversary attack 
(https://towardsdatascience.com/limitations-of-integrated-
gradients-for-feature-attribution-ca2a50e7d269), which will 
change the feature importance undesirably. 
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Note that there are additional types of methods such as counterfactual (https://
christophm.github.io/interpretable-ml-book/counterfactual.
html) or prototype-based methods (https://christophm.github.io/
interpretable-ml-book/proto.html), which we will not cover in  
this book.

Having discussed the many dimensions of explainability, it is important to know that 
XAI is still an emerging area (https://fairlyaccountable.org/aaai-2021-
tutorial/doc/AAAI_slides_final.pdf) and it is sometimes even difficult to find 
agreement among different explainability methods when applying to the same dataset or 
models (see a recent study on the topic of disagreement problems in explainable ML from 
the practitioners' perspective: https://arxiv.org/abs/2202.01602). In the end, 
it does require some experimentation to find out which explainability provides the human 
validated explanations that are meeting the requirements for a specific prediction task in 
the real world. 

In the next two sections of this chapter, we will focus on providing some hands-on 
experiments using some popular and emerging toolkits to learn how to do explainability.

Exploring the SHAP Explainability toolbox
For our learning purpose, let's review some popular explainability toolboxes while 
experimenting with some examples. Based on the number of GitHub stars (16,000 as of 
April 2022, https://github.com/slundberg/shap), SHAP is the most widely 
used and integrated open source model explainability toolbox. It is also the foundation 
explanation tool that is integrated with MLflow. Here, we would like to run a small 
experiment to get some hands-on experience on how this works. Let's use a sentimental 
analysis NLP model to explore how SHAP can be used for explaining the model behavior:

1. Set up the virtual environment on your local environment after checking out this 
chapter's code from GitHub. Running the following command will create a new 
virtual environment called dl-explain:

conda env create -f conda.yaml

This will install SHAP and its related dependencies such as matplotlib in this 
virtual environment. Once this virtual environment is created, activate this virtual 
environment by running the following command:

conda activate dl-explain

Now, we are ready to run the experiment with SHAP.

https://christophm.github.io/interpretable-ml-book/proto.html
https://christophm.github.io/interpretable-ml-book/proto.html
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2. You can check out the shap_explain.ipynb notebook to follow through  
with the exploration. The first step in this notebook is to import the relevant  
Python libraries:

import transformers

import shap

from shap.plots import *

These imports will allow us to use the Hugging Face transformers pipeline API to 
get a pre-trained NLP model and SHAP functions. 

3. We then create dl_model using the transformers pipeline API for sentiment_
analysis. Note this is a pretrained pipeline so we can use this without additional 
finetuning. The default transformer model used in this pipeline is distilbert-
base-uncased-finetuned-sst-2-english (https://huggingface.
co/distilbert-base-uncased-finetuned-sst-2-english):

dl_model = transformers.pipeline(

    'sentiment-analysis', return_all_scores=True)

This will produce a model ready to predict positive or negative sentiment for an 
input sentence.

4. Try this dl_model with two input sentences and see whether the output  
makes sense:

dl_model(

    ["What a great movie! ...if you have no taste.", 

     "Not a good movie to spend time on."])

This will produce an output of the labels and probability scores for each sentence  
as follows:

[[{'label': 'NEGATIVE', 'score': 0.00014734962314832956}, 
{'label': 'POSITIVE', 'score': 0.9998526573181152}], 
[{'label': 'NEGATIVE', 'score': 0.9997993111610413}, 
{'label': 'POSITIVE', 'score': 0.00020068213052581996}]]

It seems that the first sentence was predicted with a high probability to be 
POSITIVE, and the second sentence was predicted with a high probability to be 
NEGATIVE. Now, if we take a deep look at the first sentence, we may think the 
model prediction was incorrect, as there is a subtle negative emotion in the second 
part of the sentence (no taste). So, we want to know why the model made such  
a prediction. This is where model explainability comes into play.
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5. Now, let's use the SHAP API, shap.Explainer, to get the Shapley values for the 
two sentences we are interested in explaining:

explainer = shap.Explainer(dl_model) 

shap_values = explainer(["What a great movie! ...if you 
have no taste.", "Not a good movie to spend time on."])

6. Once we have shap_values, we can visualize the Shapley values using different 
visualization techniques. The first one is to use shap.plot.text to visualize the 
first sentence's Shapley values when the prediction label is POSITIVE:

shap.plots.text(shap_values[0, :, "POSITIVE"])

This will produce the plot as follows:

Figure 9.2 – SHAP visualization for sentence 1 with a positive prediction 
As can be seen in Figure 9.2, the word great has a very large SHAP value that 
dominates the influence of the final prediction, while the word no has less effect 
on the final prediction. This results in the final prediction result of POSITIVE. 
So, what about the second sentence with a NEGATIVE prediction? Running the 
following command will produce a similar plot:

shap.plots.text(shap_values[1, :, "NEGATIVE"])

This command creates the following plot:

 

Figure 9.3 – SHAP visualization for sentence 2 with a negative prediction 
As can be seen from Figure 9.3, the word Not has a strong influence on the final 
prediction, while the word good has a very small influence, resulting in the final 
prediction of a NEGATIVE sentiment. This makes a lot of sense, which is a good 
explanation of the model's behavior.
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7. We can also visualize shap_values using different plots. A common one is the 
bar plot, which plots the feature contribution to the final prediction. Running the 
following command will produce a plot for the first sentence:

bar(shap_values[0, :,'POSITIVE'])

This will produce a bar chart as follows:

Figure 9.4 – SHAP bar chart for sentence 1 with a positive prediction 
As can be seen from Figure 9.4, the chart ranks the most important features from 
top to bottom, where the top ones with a positive influence on the final prediction 
are plotted on the positive side of the x axis, while the negative contribution is 
plotted on the negative side of the x axis. The x axis is the value of each token or 
word's SHAP value with a sign (+ or -). This clearly shows the word great is  
a strong positive factor that impacts the final prediction, while have no  
taste has some negative effect but not enough to change the direction of the  
final prediction.

Similarly, we can plot a bar chart for the second sentence as follows:
bar(shap_values[1, :,'NEGATIVE'])
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This will produce the following bar chart:

Figure 9.5 – SHAP bar chart for sentence 2 with a negative prediction 
As can be seen from Figure 9.5, the word Not has a strong contribution to the final 
prediction, while the word good is second. These two words have the opposite 
effect on the final prediction, but apparently, the word Not is much stronger and 
has a much larger SHAP value. 

If you have followed along with this example and seen the SHAP charts in your notebook, 
congratulations! This means you have successfully run the SHAP Explainability tool to 
explain the DL transformer model for the NLP text sentiment analysis.

Let's further explore another popular explainability tool to see how they perform different 
explanations.
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Exploring the Transformers Interpret toolbox
As we already reviewed in the first section of this chapter, there are two major methods: 
perturbation-based and gradient-based post-hoc explainability tools. SHAP belongs 
to the perturbation-based family. Now, let's look at a gradient-based toolbox called 
Transformers Interpret (https://github.com/cdpierse/transformers-
interpret). This is a relatively new tool, but it is built on top of a unified model 
interpretability and understanding library for PyTorch called Captum (https://
github.com/pytorch/captum), which provides a unified API to use either 
perturbation or gradient-based tools (https://arxiv.org/abs/2009.07896). 
Transformers Interpret further simplifies the API of Captum so that we can quickly 
explore gradient-based explainability methods to get some hands-on experience.

To get started, first make sure you already have the dl-explain virtual environment set 
up and activated, as described in the previous section. Then, we can use the same Hugging 
Face transformer sentiment analysis model to explore some NLP sentiment classification 
examples. Then, we can perform the following steps to learn how to use Transformers 
Interpret to do the model explanation. You may want to check out the gradient_
explain.ipynb notebook to follow the instructions:

1. Import relevant packages into the notebook as follows:

from transformers import 
AutoModelForSequenceClassification, AutoTokenizer

from transformers_interpret import 
SequenceClassificationExplainer

This will use Hugging Face's transformer model and tokenizer, as well as the 
explainability function from transformers_interpret.

2. Create the model and the tokenizer using the same pre-trained model as previous 
section, which is the distilbert-base-uncased-finetuned-sst-2-
english model:

model_name = "distilbert-base-uncased-finetuned-sst-2-
english"

model = AutoModelForSequenceClassification.from_
pretrained(model_name)

tokenizer = AutoTokenizer.from_pretrained(model_name)

Now that we have the model and tokenizer, we can create an explainability variable 
using the SequenceClassificationExplainer API.

https://github.com/cdpierse/transformers-interpret
https://github.com/cdpierse/transformers-interpret
https://github.com/pytorch/captum
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3. Create an explainer and give an example sentence to get the word attribution from 
the explainer:

cls_explainer = SequenceClassificationExplainer(model, 
tokenizer)

word_attributions = cls_explainer("Not a good movie to 
spend time on.")

4. We can also get the prediction label before we check the word attributions by 
running the following command:

cls_explainer.predicted_class_name

This will produce a result of Negative, which means the prediction is a negative 
sentiment. So, let's see how the explainer provides an explanation for this prediction.

5. We can just display the word_attributions value, or we can visualize it. The 
value of word_attributions is as follows:

Figure 9.6 – Layered integrated gradient word attribution values with a negative prediction 
As can be seen from Figure 9.6, using the layered integrated gradient method, which 
is the current explainer's default method implemented in the Transformers Interpret 
library, the word not contributed positively to the final prediction result, which 
is a negative sentiment. This makes sense. Notice that several other words, such as 
to spend time on, also have a strong positive influence on the final prediction. 
Given the cross-attention mechanism, it seems the model is trying to extract not 
to spend time on as the main attribution to the final prediction. Note we can 
also visualize these word attributions as follows:

cls_explainer.visualize("distilbert_viz.html")
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This will produce the follow plot:

Figure 9.7 – Layered integrated gradient word attribution values with a negative prediction 
As can be seen in Figure 9.7, it highlights the word importance of not to spend 
time on to positively impact the final negative prediction.

Now that we have experimented with both perturbation and gradient-based explainability 
methods, we have successfully completed our hands-on exploration of using the 
explainability tool for post-hoc local explanation. 

Next, we will summarize what we learned in this chapter.

Summary
In this chapter, we reviewed explainability in AI/ML through an eight-dimension 
categorization. Although this is not necessarily a comprehensive or exhaustive overview, 
this does give us a big picture of who to explain to, different stages and scopes to explain, 
various kinds of input and output formats of the explanation, common ML problems and 
objectives types, and finally, different post-hoc explainability methods. We then provided 
two concrete exercises to explore the SHAP and Transformers Interpret toolboxes, which 
can provide perturbation and gradient-based feature attribution explanations for NLP text 
sentiment DL models. 

This gives us a solid foundation for using explainability tools for DL models. However, 
given the active development of XAI, this is only the beginning of using XAI in DL 
models. Additional explainability toolboxes such as TruLens (https://github.com/
truera/trulens), Alibi (https://github.com/SeldonIO/alibi), Microsoft 
Responsible AI Toolbox (https://github.com/microsoft/responsible-
ai-toolbox), and IBM AI Explainability 360 Toolkit (https://github.com/
Trusted-AI/AIX360) are all in active development and worthy of investigation and 
future learning. Additional links are also provided in the Further reading section to help 
you continue to learn this topic.

Now that we know the fundamentals of explainability, in the next chapter, we will learn 
how to implement explainability in the MLflow framework so that we can provide  
a unified way to support explanation within the MLflow framework.

https://github.com/truera/trulens
https://github.com/truera/trulens
https://github.com/SeldonIO/alibi
https://github.com/microsoft/responsible-ai-toolbox
https://github.com/microsoft/responsible-ai-toolbox
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
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Further reading
• New frontiers in Explainable AI: https://towardsdatascience.com/

new-frontiers-in-explainable-ai-af43bba18348

• Towards a Rigorous Science of Interpretable Machine Learning: https://arxiv.
org/pdf/1702.08608.pdf

• The Toolkit Approach to Trustworthy AI: https://opendatascience.com/
the-toolkit-approach-to-trustworthy-ai/

• A Framework for Learning Ante-hoc Explainable Models via Concepts: https://
arxiv.org/abs/2108.11761

• Demystifying Post-hoc Explainability for ML models: https://spectra.
mathpix.com/article/2021.09.00007/demystify-post-hoc-
explainability

• A Look Into Global, Cohort and Local Model Explainability: https://
towardsdatascience.com/a-look-into-global-cohort-and-
local-model-explainability-973bd449969f

• What Are the Prevailing Explainability Methods? https://
towardsdatascience.com/what-are-the-prevailing-
explainability-methods-3bc1a44f94df

• Explainable Artificial Intelligence: Objectives, Stakeholders, and Future Research 
Opportunities: https://www.tandfonline.com/doi/full/10.1080/105
80530.2020.1849465

https://towardsdatascience.com/new-frontiers-in-explainable-ai-af43bba18348
https://towardsdatascience.com/new-frontiers-in-explainable-ai-af43bba18348
https://arxiv.org/pdf/1702.08608.pdf
https://arxiv.org/pdf/1702.08608.pdf
https://opendatascience.com/the-toolkit-approach-to-trustworthy-ai/
https://opendatascience.com/the-toolkit-approach-to-trustworthy-ai/
https://arxiv.org/abs/2108.11761
https://arxiv.org/abs/2108.11761
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://spectra.mathpix.com/article/2021.09.00007/demystify-post-hoc-explainability
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/a-look-into-global-cohort-and-local-model-explainability-973bd449969f
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://towardsdatascience.com/what-are-the-prevailing-explainability-methods-3bc1a44f94df
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465
https://www.tandfonline.com/doi/full/10.1080/10580530.2020.1849465
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Implementing  

DL Explainability 
with MLflow

The importance of deep learning (DL) explainability is now well established, as we 
learned in the previous chapter. In order to implement DL explainability in a real-world 
project, it is desirable to log the explainer and the explanations as artifacts, just like 
other model artifacts in the MLflow server, so that we can easily track and reproduce 
the explanation. The integration of DL explainability tools such as SHAP (https://
github.com/slundberg/shap) with MLflow can support different implementation 
mechanisms, and it is important to understand how these integrations can be used for 
our DL explainability scenarios. In this chapter, we will explore several ways to integrate 
the SHAP explanations into MLflow by using different MLflow capabilities. As tools for 
explainability and DL models are both rapidly evolving, we will also highlight the current 
limitations and workarounds when using MLflow for DL explainability implementation. 
By the end of this chapter, you will feel comfortable implementing SHAP explanations and 
explainers using MLflow APIs for scalable model explainability.

https://github.com/slundberg/shap
https://github.com/slundberg/shap
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In this chapter, we're going to cover the following main topics:

• Understanding current MLflow explainability integration 

• Implementing SHAP explanations using the MLflow artifact logging API

• Implementing SHAP explainers using the MLflow pyfunc API 

Technical requirements
The following requirements are necessary to complete this chapter:

• MLflow full-fledged local server: This is the same one we have been using since 
Chapter 3, Tracking Models, Parameters, and Metrics.

• The SHAP Python library: https://github.com/slundberg/shap.

• Spark 3.2.1 and PySpark 3.2.1: See the details in the README.md file of this 
chapter's GitHub repository.

• Code from the GitHub repository for this chapter: https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-
MLFlow/tree/main/chapter10.

Understanding current MLflow explainability 
integration
MLflow has several ways to support explainability integration. When implementing 
explainability, we refer to two types of artifacts: explainers and explanations: 

• An explainer is an explainability model, and a common one is a SHAP model 
that could be different kinds of SHAP explainers, such as TreeExplainer, 
KernelExplainer, and PartitionExplainer (https://shap.readthedocs.
io/en/latest/generated/shap.explainers.Partition.html). For 
computational efficiency, we usually choose PartitionExplainer for DL models.

• An explanation is an artifact that shows some form of output from the explainer, 
which could be text, numerical values, or plots. Explanations can happen in offline 
training or testing, or can happen during online production. Thus, we should be 
able to provide an explainer for offline evaluation or an explainer endpoint for 
online queries if we want to know why the model provides certain predictions.

https://github.com/slundberg/shap
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/tree/main/chapter10
https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html
https://shap.readthedocs.io/en/latest/generated/shap.explainers.Partition.html
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Here, we give a brief overview of the current capability as of MLflow version 1.25.1 
(https://pypi.org/project/mlflow/1.25.1/). There are four different ways to 
use MLflow for explainability as follows:

• Use the mlflow.log_artifact API (https://www.mlflow.org/docs/
latest/python_api/mlflow.html#mlflow.log_artifact) to log 
relevant explanation artifacts such as bar plots and Shapley values arrays. This gives 
maximum flexibility for logging explanations. This can be used either offline as 
batch processing or online when we automatically log a SHAP bar plot for a certain 
prediction. Note that logging an explanation for each prediction during online 
production scenarios is expensive, so we should provide a separate explanation API 
for on-demand queries.

• Use the mlflow.pyfunc.PythonModel API (https://www.mlflow.
org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.
pyfunc.PythonModel) to create an explainer that can be logged and loaded 
with MLflow's pyfunc methods, mlflow.pyfunc.log_model for logging and 
mlflow.pyfunc.load_model or mlflow.pyfunc.spark_udf for loading 
an explainer. This gives us maximum flexibility to create customized explainers 
as MLflow generic pyfunc models and can be used for either offline batch 
explanation or online as an Explanation as a Service (EaaS).

• Use the mlflow.shap API (https://www.mlflow.org/docs/latest/
python_api/mlflow.shap.html). This has some limitations. For example, 
the mlflow.shap.log_explainer method only supports scikit-learn and 
PyTorch models. The mlflow.shap.log_explanation method only supports 
shap.KernelExplainer (https://shap-lrjball.readthedocs.io/
en/latest/generated/shap.KernelExplainer.html). This is very 
computationally intensive, as the computing time grows exponentially with respect 
to the number of features; thus, it is not feasible to compute explanations for even 
a moderate size dataset (see a posted GitHub issue https://github.com/
mlflow/mlflow/issues/4071). The existing examples provided by MLflow 
are for classical ML models in scikit-learn packages such as linear regression or 
random forest, with no DL model explainability examples (https://github.
com/mlflow/mlflow/tree/master/examples/shap). We will show 
in later sections of this chapter that this API currently does not support the 
transformers-based SHAP explainers and explanations, thus we will not use this 
API in this chapter. We will highlight some of the issues as we walk through our 
examples in this chapter.

https://pypi.org/project/mlflow/1.25.1/
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.log_artifact
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.log_artifact
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.PythonModel
https://www.mlflow.org/docs/latest/python_api/mlflow.shap.html
https://www.mlflow.org/docs/latest/python_api/mlflow.shap.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
https://github.com/mlflow/mlflow/issues/4071
https://github.com/mlflow/mlflow/issues/4071
https://github.com/mlflow/mlflow/tree/master/examples/shap
https://github.com/mlflow/mlflow/tree/master/examples/shap
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• Use the mlflow.evaluate API (https://www.mlflow.org/docs/
latest/python_api/mlflow.html#mlflow.evaluate). This can be used 
for evaluation after the model is already trained and tested. This is an experimental 
feature and might change in the future. It supports MLflow pyfunc models. 
However, it has some limitations in that the evaluation dataset label values must be 
numeric or Boolean, all feature values must be numeric, and each feature column 
must only contain scalar values (https://www.mlflow.org/docs/latest/
models.html#model-evaluation). Again, existing examples provided by 
MLflow are only for classical ML models in scikit-learn packages (https://
github.com/mlflow/mlflow/tree/master/examples/evaluation). 
We could use this API to just log the classifier metrics for an NLP sentiment 
model, but the explanation part will be skipped automatically by this API because 
it requires a feature column containing scalar values (an NLP model input is a text 
input). Thus, this is not applicable to the DL model explainability we need. So, we 
will not use this API in this chapter.

Given that some of these APIs are still experimental and are still evolving, users should 
be aware of the limitations and workarounds to successfully implement explainability 
with MLflow. For DL model explainability, as we will learn in this chapter, it is quite 
challenging to implement using MLflow as the MLflow integration with SHAP is still a 
work-in-progress as of MLflow version 1.25.1. In the following sections, we will learn 
when and how to use these different APIs to implement explanations and log and load 
explainers for DL models.

https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.evaluate
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.evaluate
https://www.mlflow.org/docs/latest/models.html#model-evaluation
https://www.mlflow.org/docs/latest/models.html#model-evaluation
https://github.com/mlflow/mlflow/tree/master/examples/evaluation
https://github.com/mlflow/mlflow/tree/master/examples/evaluation
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Implementing a SHAP explanation using the 
MLflow artifact logging API
MLflow has a generic tracking API that can log any artifact: mlflow.log_artifact. 
However, the examples given in the MLflow documentation usually use scikit-learn and 
tabular numerical data for training, testing, and explaining. Here, we want to show how to 
use mlflow.log_artifact for an NLP sentimental DL model to log relevant artifacts, 
such as Shapley value arrays and Shapley value bar plots. You can check out the Python 
VS Code notebook, shap_mlflow_log_artifact.py, in this chapter's GitHub 
repository (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/
shap_mlflow_log_artifact.py) to follow along with the steps:

1. Make sure you have the prerequisites, including a local full-fledged MLflow server 
and the conda virtual environment, ready. Follow the instructions in the README.
md (https://github.com/PacktPublishing/Practical-Deep-
Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.
md) file in the Chapter 10 folder to get these ready.

2. Make sure you activate the chapter10-dl-explain virtual environment as 
follows before you start running any code in this chapter:

conda activate chapter10-dl-explain

3. Import the relevant libraries at the beginning of the notebook as follows:

import os

import matplotlib.pyplot as plt

import mlflow

from mlflow.tracking import MlflowClient

from mlflow.utils.file_utils import TempDir

import shap

import transformers

from shap.plots import *

import numpy as np

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_log_artifact.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
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4. The next step is to set up some environment variables. The first three environment 
variables are for the local MLflow URIs, and the fourth is for disabling a Hugging 
Face warning that arises due to a known Hugging Face tokenization issue:

os.environ["AWS_ACCESS_KEY_ID"] = "minio"

os.environ["AWS_SECRET_ACCESS_KEY"] = "minio123"

os.environ["MLFLOW_S3_ENDPOINT_URL"] = "http://
localhost:9000"

os.environ["TOKENIZERS_PARALLELISM"] = "False"

5. We will also need to set up the MLflow experiment and show the MLflow 
experiment ID as an output on the screen:

EXPERIMENT_NAME = "dl_explain_chapter10"

mlflow.set_tracking_uri('http://localhost')

mlflow.set_experiment(EXPERIMENT_NAME)

experiment = mlflow.get_experiment_by_name(EXPERIMENT_
NAME)

print("experiment_id:", experiment.experiment_id)

If you have been running the notebook, you should see an output like the following:
experiment_id: 14

This means the MLflow experiment ID for the experiment name dl_explain_
chapter10 is 14. Note that, you could also set the MLflow tracking URI as an 
environment variable as follows:

export MLFLOW_TRACKING_URI=http://localhost

Here, we use MLflow's mlflow.set_tracking_uri API to define the URI 
location instead. Either way is fine.

6. Now we can create a DL model to classify a sentence into either positive or negative 
sentiment using Hugging Face's transformer pipeline API. Since this is already 
fine-tuned, we will focus on how to get the explainer and explanation for the model, 
rather than focusing on how to train or finetune a model:

dl_model = transformers.pipeline('sentiment-analysis', 
return_all_scores=False)

explainer = shap.Explainer(dl_model)

shap_values = explainer(["Not a good movie to spend time 
on.", "This is a great movie."])
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The code snippets create a sentiment analysis model, dl_model, and then create a 
SHAP explainer for this model. Then we provide a list of two sentences for this 
explainer to get the shap_values object. This will be used for logging in MLflow.

Given the shap_values object, we can now start a new MLflow run and log both 
the Shapley values and the bar plot that we saw in the previous chapter (Chapter 9, 
Fundamentals of Deep Learning Explainability). The first line of code makes sure all 
active MLflow runs are ended. This is useful if we want to rerun this block of code 
multiple times interactively:

mlflow.end_run()

Then we define two constants. One, artifact_root_path, is for the root path 
in the MLflow artifact store, which will be used to store all the SHAP explanation 
objects. The other, shap_bar_plot, is for the artifact filename, which will be used 
for the bar plot figure:

artifact_root_path = "model_explanations_shap"

artifact_file_name = 'shap_bar_plot'

7. We then start a new MLflow run, under which we will generate and log three SHAP 
files into the MLflow artifact store under the path model_explanations_shap:

with mlflow.start_run() as run:

   with TempDir() as temp_dir:

        temp_dir_path = temp_dir.path()

        print("temp directory for artifacts: {}".
format(temp_dir_path))

We also need to have a temporary local directory, as shown in the preceding code 
snippet to first save the SHAP files, and then log those files to the MLflow server. If 
you have run the notebook up to this point, you should see a temporary directory in 
the output like the following:

temp directory for artifacts: /var/folders/51/
whxjy4r92dx18788yp11ycyr0000gp/T/tmpgw520wu1

8. Now we are ready to generate the SHAP files and save them. The first one is the bar 
plot, which is a little bit tricky to save and log. Let's walk through the following code 
to understand how we do this:

try:

     plt.clf()

     plt.subplots_adjust(bottom=0.2, left=0.4)
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     shap.plots.bar(shap_values[0, :, "NEGATIVE"],

                    show=False)

     plt.savefig(f"{temp_dir_path}/{artifact_file_name}")

finally:

     plt.close(plt.gcf())

mlflow.log_artifact(f"{temp_dir_path}/{artifact_file_
name}.png", artifact_root_path)

Note that we are using matplotlib.pyplot, which was imported as plt to first 
clear the figure using plt.clf() and then create a subplot with some adjustments. 
Here, we define bottom=0.2, which means the position of the bottom edge of 
the subplots is at 20% of the figure height. Similarly, we adjust the left edge of the 
subplot. Then we use the shap.plots.bar SHAP API to plot the bar plot for the 
first sentence's feature contribution to the prediction, but with the show parameter 
to be False. This means, we will not see the plot in the interactive run, but the 
figure is stored in the pyplot plt variable, which can then be saved using plt.
savefig to a local temporary directory with the filename prefix shap_bar_
plot. pyplot will automatically add the file extension .png to the file once it 
is saved. So, this will save a local image file called shap_bar_plot.png in the 
temporary folder. The last statement calls MLflow's mlflow.log_artifact to 
upload this PNG file to the MLflow tracking server's artifact store in the root folder, 
model_explanations_shap. We also need to make sure that we close the 
current figure by calling plt.close(plt.gcf()).

9. In addition to logging the shap_bar_plot.png to the MLflow server, we also 
want to log the Shapley base_values array and shap_values array as NumPy 
arrays into the MLflow track server. This can be done through the following 
statements:

np.save(f"{temp_dir_path}/shap_values", 

        shap_values.values)

np.save(f"{temp_dir_path}/base_values", 

        shap_values.base_values)

        mlflow.log_artifact(

            f"{temp_dir_path}/shap_values.npy", 

            artifact_root_path)

        mlflow.log_artifact(

            f"{temp_dir_path}/base_values.npy", 

            artifact_root_path)      
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This will first save a local copy of shap_values.npy and base_values.npy 
in the local temporary folder and then upload it to the MLflow tracking server's 
artifact store.

10. If you followed the notebook up until here, you should be able to verify in the local 
MLflow server whether these artifacts are successfully stored. Go to the MLflow 
UI at the localhost – http://localhost/ and then find the experiment dl_
explain_chapter10. You should then be able to find the experiment you just 
ran. It should look something like Figure 10.1, where you can find three files in 
the model_explanations_shap folder: base_values.npy, shap_bar_
plot.png, and shap_values.npy. Figure 10.1 shows the bar plot of feature 
contribution of different tokens or words for the prediction result of the sentence – 
Not a good movie to spend time on. The URL for this experiment page 
is something like the following:

http://localhost/#/experiments/14/
runs/10f0655189f740aeb813a015f1f6e115

Figure 10.1 – MLflow log_artifact API saves the SHAP bar plot as an image  
in the MLflow tracking server
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Alternatively, you can also use code to programmatically download these files stored 
in the MLflow tracking server and check them locally. We provide such code in the 
last cell of the notebook.

11. If you run the last cell block of the notebook code, which is to download the three 
files from the MLflow server we just saved and print them out, you should be able to 
see the following output, as displayed in Figure 10.2. The mechanism to download 
artifacts from the MLflow tracking server is to use the MlflowClient().
download_artifacts API, where you provide the MLflow run ID (in our 
example, it is 10f0655189f740aeb813a015f1f6e115 ) and the artifact root 
path model_explanations_shap as the parameters to the API:

downloaded_local_path = MlflowClient().download_
artifacts(run.info.run_id, artifact_root_path)

This will download all files in model_explanations_shap on the  
MLflow tracking server to a local path, which is the return variable  
downloaded_local_path:

Figure 10.2 – Download the SHAP base_values and shap_values array from the MLflow tracking server 
to a local path and display them
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To display the two NumPy arrays, we need to call NumPy's load API to load them 
and then print them:

base_values = np.load(os.path.join(downloaded_local_path, 
"base_values.npy"), allow_pickle=True)

shap_values = np.load(os.path.join(downloaded_local_path, 
"shap_values.npy"), allow_pickle=True)

Note that we need to set the allow_pickle parameter to True when calling the 
np.load API so that NumPy can correctly load these files back into memory. 

While you can run this notebook interactively in the VS Code environment, you 
can also run it in the command line as follows:

python shap_mlflow_log_artifact.py

This will produce all the output in the console and log all the artifacts into the 
MLflow server as we have seen in our interactive running of the notebook. 

If you have run the code so far, congratulations on the successful completion of 
implementing logging SHAP explanations to the MLflow tracking server using MLflow's 
mlflow.log_artifact API!  

Although the process of logging all the explanations seems a little bit long, this approach 
does have the advantage of having no dependency on what kind of explainer is used since 
the explainer is defined outside of the MLflow artifact logging API.

In the next section, we will see how to use the built-in mlflow.pyfunc.PythonModel 
API to log a SHAP explainer as an MLflow model and then deploy as an endpoint or use it 
in a batch mode as if it is a generic MLflow pyfunc model.

Implementing a SHAP explainer using the 
MLflow pyfunc API
As we know from the previous section, a SHAP explainer can be used offline whenever 
needed by creating a new instance of an explainer using SHAP APIs. However, as the 
underlying DL models are often logged into the MLflow server, it is desirable to also log 
the corresponding explainer into the MLflow server, so that we not only keep track of the 
DL models, but also their explainers. In addition, we can use the generic MLflow pyfunc 
model logging and loading APIs for the explainer, thus unifying access to DL models and 
their explainers.
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In this section, we will learn step-by-step how to implement a SHAP explainer as a generic 
MLflow pyfunc model and how to use it for offline and online explanation. We will break 
the process up into three subsections:

• Creating and logging an MLflow pyfunc explainer

• Deploying an MLflow pyfunc explainer for an EaaS

• Using an MLflow pyfunc explainer for batching explanation

Let's start with the first subsection on creating and logging a MLflow pyfunc explainer.

Creating and logging an MLflow pyfunc explainer
In order to follow this section, please check out nlp_sentiment_classifier_
explainer.py in the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter10/pipeline/nlp_sentiment_classifier_
explainer.py):

1. First, by subclassing mlflow.pyfunc.PythonModel, we can create  
a customized MLflow model that encapsulates a SHAP explainer. So, let's declare 
this class as follows:

class SentimentAnalysisExplainer(mlflow.pyfunc.
PythonModel):

2. Next, we need to instantiate an explainer. Instead of creating an explainer in the 
init method of this class, we will use the load_context method to load a SHAP 
explainer for the Hugging Face NLP sentiment analysis classifier, as follows:

def load_context(self, context):

  from transformers import pipeline

  import shap

  self.explainer = shap.Explainer(pipeline('sentiment-
analysis', return_all_scores=True))

This will create a SHAP explainer whenever this 
SentimentAnalysisExplainer class is executed. Note that the sentiment 
classifier is a Hugging Face pipeline object, with the return_all_scores 
parameter set to True. This means that this will return the label and probability 
score for both positive and negative sentiment of each input text.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/pipeline/nlp_sentiment_classifier_explainer.py
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Avoid Runtime Errors for SHAP explainers
If we implement self.explainer in the init method in this class, we 
will encounter a runtime error related to the SHAP package's _masked_
model.py file, which complains about TypeError: unsupported 
operand type(s) for +: 'NoneType' and 'int'. Any code implemented in the 
PythonModel class's init method will be serialized by MLflow, so it is 
clear that this runtime error comes from MLflow's serialization. However, 
implementing self.explainer in the load_context function avoids 
MLflow's serialization, and works correctly when invoking this explainer at 
runtime. 

3. We will then implement the sentiment_classifier_explanation method, 
which takes an input of a pandas DataFrame row and produces a pickled shap_
values output as an explanation for a single row of text input:

def sentiment_classifier_explanation(self, row):

  shap_values = self.explainer([row['text']])

  return [pickle.dumps(shap_values)]

Note that we need to use a pair of square brackets to enclose the row['text'] 
value so that it becomes a list not just a single value. This is because this SHAP 
explainer expects a list of texts, not just a single string. If we don't enclose the value 
within the square brackets, then the explainer will split the entire string character 
by character, treating each character as if it is a word, which is not what we want. 
Once we get the Shapley values as the output from the explainer as shap_values, 
we then need to serialize them using pickle.dumps before returning to the 
caller. MLflow pyfunc model input and output signature do not support complex 
object without serialization, so this pickling step makes sure that the model output 
signature is MLflow compliant. We will see the definition of this MLflow pyfunc 
explainer's input and output signature in step 5 shortly.

4. Next, we need to implement the required predict method for this class. This will 
apply the sentiment_classifier_explanation method to the entire input 
pandas DataFrame, as follows:

def predict(self, context, model_input):

  model_input[['shap_values']] = model_input.apply(

    self.sentiment_classifier_explanation, axis=1, 

    result_type='expand')

  model_input.drop(['text'], axis=1, inplace=True)

  return model_input
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This will produce a new column named shap_values for each row of the input 
pandas DataFrame in the text column. We then drop the text column and 
return a single-column shap_values DataFrame as the final prediction result: in 
this case, the explanation results as a DataFrame. 

5. Now that we have the SentimentAnalysisExplainer class implementation, 
we can use the standard MLflow pyfunc model logging API to log this model into 
the MLflow tracking server. Before doing the MLflow logging, let's make sure we 
declare this explainer's model signature, as follows:

input = json.dumps([{'name': 'text', 'type': 'string'}])

output = json.dumps([{'name': 'shap_values', 'type': 
'string'}])

signature = ModelSignature.from_dict({'inputs': input, 
'outputs': output})

These statements declare that the input is a DataFrame with a single string type 
text column and the output is a DataFrame with a single string type shap_
values column. Recall that this shap_values column is a pickled serialized 
bytes string, which contains the Shapley values object.

6. Finally, we can implement the explainer logging step using the mlflow.pyfunc.
log_model method in a task method, as follows:

with mlflow.start_run() as mlrun:          

  mlflow.pyfunc.log_model(

    artifact_path=MODEL_ARTIFACT_PATH, 

    conda_env=CONDA_ENV,                           

    python_model=SentimentAnalysisExplainer(), 

    signature=signature)

There are four parameters in the log_model method that we use. The MODEL_
ARTIFACT_PATH is the name of the folder in the MLflow tracking server where 
the explainer will be stored. Here, the value is defined as nlp_sentiment_
classifier_explainer in the Python file you checked out. CONDA_ENV is 
the conda.yaml file in this chapter's root folder. The python_model parameter 
is the SentimentAnalysisExplainer class we just implemented, and 
signature is the explainer input and output signature we defined.

7. Now we are ready to run this whole file as follows in the command line:

python nlp_sentiment_classifier_explainer.py
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Assuming you have the local MLflow tracking server and environment variables 
set up correctly by following the README.md file for this chapter in the GitHub 
repository, this will produce the following two lines in the console output:

2022-05-11 17:49:32,181 Found credentials in environment 
variables.

2022-05-11 17:49:32,384 finished logging 
nlp sentiment classifier explainer run_id: 
ad1edb09e5ea4d8ca0332b8bc2f5f6c9

This means we have successfully logged the explainer in our local MLflow  
tracking server.

8. Go to the MLflow web UI at http://localhost/ in the web browser and click 
the dl_explain_chapter10 experiment folder. You should be able to find this 
run and the logged explainer in the Artifacts folder under nlp_sentiment_
classifier_explainer, which should look as shown in Figure 10.3:

Figure 10.3 – A SHAP explainer is logged as an MLflow pyfunc model 
Notice that the MLmodel metadata shown in Figure 10.3 does not differ much from 
the normal DL inference pipeline that we logged before as an MLflow pyfunc model 
except for the artifact_path name and the signature. That's the advantage 
of using this approach because now we can use the generic MLflow pyfunc model 
methods to load this explainer or deploy it as a service. 
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Problems with the mlflow.shap.log_explainer API
As we mentioned earlier, MLflow has a mlflow.shap.log_explainer 
API that provides a method to log an explainer. However, this API does not 
support our NLP sentiment classifier explainer because our NLP pipeline is 
not a known model flavor that MLflow currently supports. Thus even though 
log_explainer can write this explainer object into the tracking server, 
when loading the explainer back into memory using the mlflow.shap.
load_explainer API, it will fail with the following error message: 
TypeError: __init__() missing 1 required positional argument: 'pipeline'. 
Thus, we avoid using the mlflow.shap.log_explainer API in  
this book.

Now that we have a logged explainer, we can use it in two ways: deploy it into a web 
service so that we can create an endpoint to establish an EaaS, or load the explainer 
directly through MLflow pyfunc load_model or spark_udf method using the MLflow 
run_id. Let's start with the web service deployment by setting up a local web service.

Deploying an MLflow pyfunc explainer for an EaaS
We can set up a local EaaS in a standard MLflow way since now the SHAP explainer is just 
like a generic MLflow pyfunc model. Perform the following steps to see how this can be 
implemented locally:

1. Run the following MLflow command to set up a local web service 
for the explainer we just logged. The run_id in this example is 
ad1edb09e5ea4d8ca0332b8bc2f5f6c9:

mlflow models serve -m runs:/ 
ad1edb09e5ea4d8ca0332b8bc2f5f6c9/nlp_sentiment_
classifier_explainer

This will produce the following console output:

 Figure 10.4 – SHAP EaaS console output
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Notice that in Figure 10.4, the default underlying pretrained language model is 
loaded after the gunicore HTTP server is up and running. This is because our 
implementation of the explainer was inside the load_context method, which 
is exactly what is to be expected: loading the explainer immediately after the web 
service is up and running.

2. In a different terminal window, type the following command to invoke the explainer 
web service at port 5000 of localhost with two sample texts as input:

curl -X POST -H "Content-Type:application/
json; format=pandas-split" --data 
'{"columns":["text"],"data":[["This is meh weather"], 
["This is great weather"]]}' http://127.0.0.1:5000/
invocations

This will produce the following output:

Figure 10.5 – Response in a DataFrame after calling our SHAP EaaS
Note that in Figure 10.5, the column name is shap_values, while the values  
are pickled bytes hexadecimal data. These are not human readable, but can be 
converted back to the original shap_values using pickle.loads method at 
the caller side. So, if you see a response output like Figure 10.5, congratulations for 
setting up a local EaaS! You can deploy this explainer service just like other MLflow 
service deployments, as described in Chapter 8, Deploying a DL Inference Pipeline 
at Scale, since this explainer now can be called just like a generic MLflow pyfunc 
model service.

Next, we will see how to use the MLflow pyfunc explainer for batch explanation.
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Using an MLflow pyfunc explainer for batch 
explanation
There are two ways to implement offline batch explanation using an MLflow pyfunc 
explainer:

• Load the pyfunc explainer as an MLflow pyfunc model to explain a given pandas 
DataFrame input.

• Load the pyfunc explainer as a PySpark UDF to explain a given PySpark  
DataFrame input.

Let's start with loading the explainer as an MLflow pyfunc model.

Loading the MLflow pyfunc explainer as an MLflow pyfunc model
As we have already mentioned, another way to consume an MLflow logged explainer is to 
load the explainer in a local Python code using MLflow's pyfunc load_model method 
directly, instead of deploying it into a web service. This is very straightforward, and we 
will show you how it can be done. You can check out the code in the shap_mlflow_
pyfunc_explainer.py file in the GitHub repository (https://github.com/
PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/
blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py): 

1. The first step is to load the logged explainer back into memory. The following code 
does this using mlflow.pyfunc.load_model and the explainer run_id URI:

run_id = "ad1edb09e5ea4d8ca0332b8bc2f5f6c9"

logged_explainer = f'runs:/{run_id}/nlp_sentiment_
classifier_explainer'

explainer = mlflow.pyfunc.load_model(logged_explainer)

This should load the explainer as if it is just a generic MLflow pyfunc model. We can 
print out the metadata of the explainer by running the following code:

explainer

This will show the following output:
mlflow.pyfunc.loaded_model: artifact_path: nlp_sentiment_
classifier_explainer flavor: mlflow.pyfunc.model run_id: 
ad1edb09e5ea4d8ca0332b8bc2f5f6c9

This means this is a mlflow.pyfunc.model flavor, which is great news, since we 
can use the same MLflow pyfunc API to use this explainer.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyfunc_explainer.py
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2. Next, we will get some example data to test the newly loaded explainer:

import datasets

dataset = datasets.load_dataset("imdb", split="test")

short_data = [v[:500] for v in dataset["text"][:20]]

df_test = pd.DataFrame (short_data, columns = ['text'])

This will load the IMDb test dataset, truncate each review text to 500 characters, 
and pick the first 20 rows to make a pandas DataFrame for explanation in the  
next step.

3. Now, we can run the explainer as follows:

results = explainer.predict(df_test)

This will run the SHAP partition explainer for the input DataFrame df_test. It 
will show the following output for each row of the DataFrame when it is running:

Partition explainer: 2it [00:38, 38.67s/it]

The result will be a pandas DataFrame with a single column, shap_values. This 
may take a few minutes as it needs to tokenize each row, execute the explainer, and 
serialize the output.

4. Once the explainer execution is done, we can check the results by deserializing the 
row content. Here is the code to check the first output:

results_deserialized = pickle.loads(results['shap_
values'][0])

print(results_deserialized)

This will print out the first row's shap_values. Figure 10.6 shows a partial 
screenshot of the output of shap_values:

Figure 10.6 – Partial output of the deserialized shap_values from the explanation
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As we can see in Figure 10.6, the output of shap_values is no different from what 
we learned in Chapter 9, Fundamentals of Deep Learning Explainability, when we 
did not use MLflow to log and load the explainer. We can also generate Shapley text 
plots to highlight the contribution of the texts to the predicted sentiment.

5. Run the following statement in the notebook to see the Shapely text plot:

shap.plots.text(results_deserialized[:,:,"POSITIVE"])

This will generate a plot displayed in Figure 10.7:

Figure 10.7 – Shapley text plot using deserialized shap_values from our MLflow logged explainer
As can be seen in Figure 10.7, this review has a positive sentiment and the keywords 
or phrases that contribute to the predicted sentiment are good, love, and some 
other phrases highlighted in red. When you see this Shapley text plot, you should 
give yourself a round of applause, as you have finished learning how to use an 
MLflow logged explainer to generate batch explanation.

As mentioned during the step-by-step implementation of this batch explanation, it is a 
little slow to do a large batch explanation using this pyfunc model approach. Luckily, we 
have another way to implement the batch explanation using the PySpark UDF function, 
which we will explain in the next subsection.

Loading the pyfunc explainer as a PySpark UDF 
For scalable batch explanation, we can use Spark's distributed computing capability, which 
is supported by loading the pyfunc explainer as a PySpark UDF. There is no extra work 
to use this capability, since this is provided by the MLflow pyfunc API already through 
the mlflow.pyfunc.spark_udf method. We will show you how to implement this 
at-scale explanation step by step:

1. First, make sure you have worked through the README.md file (https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter10/README.md) to install 
Spark, create and activate the chapter10-dl-pyspark-explain virtual 
environment, and set up all the environment variables before you run the PySpark 
UDF code to do the explanation at scale.

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/README.md
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2. Then you can start running the VS Code notebook, shap_mlflow_pyspark_
explainer.py, which you can check out in the GitHub repository: https://
github.com/PacktPublishing/Practical-Deep-Learning-at-
Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_
mlflow_pyspark_explainer.py. Run the following command  
at chapter10/notebooks/:

python shap_mlflow_pyspark_explainer.py

You will get the final output displayed in Figure 10.8, among quite a few lines of 
output preceding these final few lines:

Figure 10.8 – PySpark UDF explainer's output of the first two rows of text's shap_values along  
with their input texts

As can be seen in Figure 10.8, the PySpark UDF explainer's output is a PySpark 
DataFrame that has two columns: text and shap_values. The text column 
is the original input text, while the shap_values column contains the pickled 
serialized Shapley values, just like we saw in the previous subsection when we used 
the pyfunc explainer for the pandas DataFrame.

Now let's see what's happening in the code. We will explain the key code blocks 
in the shap_mlflow_pyspark_explainer.py file. Since this is a VS Code 
notebook, you can run it either in the command line as we just did or interactively 
inside the VS Code IDE window.

3. The first key code block is to load the explainer using the mflow.pyfunc.
spark_udf method, as follows:

spark = SparkSession.builder.appName("Batch explanation 
with MLflow DL explainer").getOrCreate()

run_id = "ad1edb09e5ea4d8ca0332b8bc2f5f6c9"

logged_explainer = f'runs:/{run_id}/nlp_sentiment_
classifier_explainer'

explainer = mlflow.pyfunc.spark_udf(spark, model_
uri=logged_explainer, result_type=StringType())

https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
https://github.com/PacktPublishing/Practical-Deep-Learning-at-Scale-with-MLFlow/blob/main/chapter10/notebooks/shap_mlflow_pyspark_explainer.py
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The first statement is to initialize a SparkSession variable and then use run_id 
to load the logged explainer into memory. Run the explainer to get the metadata  
as follows:

explainer

We will get the following result:
<function mlflow.pyfunc.spark_udf.<locals>.udf(iterator: 
Iterator[Tuple[Union[pandas.core.series.Series, pandas.
core.frame.DataFrame], ...]]) -> Iterator[pandas.core.
series.Series]>

This means we now have a SHAP explainer wrapped as a Spark UDF function. This 
allows us to directly apply the SHAP explainer for an input PySpark DataFrame in 
the next step.

4. We load the IMDb test dataset as before to get a list of short_data, and then 
create a PySpark DataFrame for the top 20 rows of the test dataset for explanation:

df_pandas = pd.DataFrame (short_data, columns = ['text'])

spark_df = spark.createDataFrame(df_pandas)

spark_df = spark_df.withColumn('shap_values', 
explainer())

Note the last statement, which uses PySpark's withColumn function to add a new 
shap_values column to the input DataFrame, spark_df, which originally 
contained only one column, text. This is a natural way to use Spark's parallel and 
distributed computing capability. If you have run both the previous non-Spark 
approach using the MLflow pyfunc load_model method and the current PySpark 
UDF one, you will notice that the Spark approach runs much faster, even on a local 
computer. This allows us to do SHAP explanation at scale for many instances of 
input texts.

5. Finally, to verify the results, we show the spark_df DataFrame's top two rows, 
which was illustrated in Figure 10.8.

By now, with MLflow's pyfunc Spark UDF wrapped SHAP explainer, we can confidently 
do large-scale batch explanation. Congratulations!

Let's now summarize what we have learned in this chapter in the next section.
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Summary
In this chapter, we first reviewed the existing approaches in the MLflow APIs that could 
be used for implementing explainability. Two existing MLflow APIs, mlflow.shap 
and mlflow.evaluate, have limitations, thus cannot be used for the complex DL 
models and pipelines explainability scenarios we need. We then focused on two main 
approaches to implement SHAP explanations and explainers within the MLflow API 
framework: mlflow.log_artifact for logging explanations and mlflow.pyfunc.
PythonModel for logging a SHAP explainer. Using the log_artifact API can allow 
us to log Shapley values and explanation plots into the MLflow tracking server. Using 
mlflow.pyfunc.PythonModel allows us to log a SHAP explainer as a MLflow pyfunc 
model, thus opening doors to deploy a SHAP explainer as a web service to create an EaaS 
endpoint. It also opens doors to use SHAP explainers through the MLflow pyfunc load_
model or spark_udf API for large-scale offline batch explanation. This enables us to 
confidently implement explainability at scale for DL models.

As the field of explainability continues to evolve, MLflow's integration with SHAP and 
other explainability toolboxes will also continue to improve. Interested readers are 
encouraged to continue their learning journey through the links provided in the further 
reading section. Happy continuous learning and growing!

Further reading
• Shapley Values at Scale: https://neowaylabs.github.io/data-

science/shapley-values-at-scale/

• Scaling SHAP Calculations With PySpark and Pandas UDF: https://
databricks.com/blog/2022/02/02/scaling-shap-calculations-
with-pyspark-and-pandas-udf.html

• Speeding up Shapley value computation using Ray, a distributed computing system: 
https://www.telesens.co/2020/10/05/speeding-up-shapley-
value-computation-using-ray-a-distributed-computing-
system/

• Interpreting an NLP model with LIME and SHAP: https://medium.com/@
kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-
834ccfa124e4

• Model Evaluation in MLflow: https://databricks.com/
blog/2022/04/19/model-evaluation-in-mlflow.html

https://neowaylabs.github.io/data-science/shapley-values-at-scale/
https://neowaylabs.github.io/data-science/shapley-values-at-scale/
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://databricks.com/blog/2022/02/02/scaling-shap-calculations-with-pyspark-and-pandas-udf.html
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
https://www.telesens.co/2020/10/05/speeding-up-shapley-value-computation-using-ray-a-distributed-computing-system/
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
mailto:https://medium.com/@kalia_65609/interpreting-an-nlp-model-with-lime-and-shap-834ccfa124e4
https://databricks.com/blog/2022/04/19/model-evaluation-in-mlflow.html
https://databricks.com/blog/2022/04/19/model-evaluation-in-mlflow.html
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