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Foreword 

It is true that in the past few decades, discovery of new allotrope, namely, carbon 
nanotubes, Buckminsterfullerene, graphene oxide has created the landmark in the 
history of adsorption process. The rapid development of nanoscience and nanotech-
nology has significantly improved the adsorption mechanism. The discovery of 
carbon nanomaterials has been the promising adsorbents for the metal ion adsorption, 
effluents from the battery industries, chemical industry, pharmaceutical industries, 
dyes, and pesticides. A versatile and highly efficient carbon nanomaterial-based 
composite aids in the removal of toxic pollutants from the water. Carbon nanoma-
terials could replace traditional adsorbents including zeolites, activated carbon from 
solid wastes, silica gel, molecular sieves, activated alumina, ion-exchange resins, 
clays, agricultural wastes, biosorbents and miscellaneous adsorbents because of the 
high sorption potential, malleable surface charges, enormous pore size, large surface 
area, and rapid adsorption kinetics. 

First part of the book deals with the fundamentals of nanomaterials, classification 
of carbon nanomaterials, and synthesis of carbon nanomaterials. It helps the reader to 
keep update the latest success and failures of nanomaterials. The literature in this field 
is exploding in such a manner that is extremely useful to have a concise overview. The 
well-documented explanation for the synthesis of carbon nanomaterials will benefit 
the chemist, physicist, biochemist, engineers, biologist, and another interdisciplinary 
scientist around the globe. The second part of the book gives the recent literatures for 
the adsorption and desorption of organic dyes, pesticides, micro-pollutants, heavy 
metals, and aromatic compounds. These studies will help the environmental scientist
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viii Foreword

to learn latest literatures on the adsorption studies. The final chapter deals with the 
theoretical modeling of the carbon nanotubes. Finally, I recommend this book for 
the undergraduate, postgraduate student, experimental scientist, and computational 
scientist. This book is recommended for both academic and industrial researchers. 

Prof. Daniel Pasquini 
Instituto de Química 

Universidade Federal de Uberlândia 
Uberlândia, Brazil 

daniel.pasquini@ufu.br

mailto:daniel.pasquini@ufu.br


Preface 

Adsorption is one of the most important fields of research for water purification. It 
is also the subject of surface phenomenon which creates a layer of the adsorbate 
on the surface of the adsorbent. It is the important topic of physical chemistry that 
every student enjoys from school level to the graduate level. The target audience of 
this book is, namely, undergraduate students, postgraduate students of environmental 
engineering, chemistry, environmental science, and Ph.D. students who are active 
in the area of environmental remediation. This book is mainly designed for both 
academics and industrial researchers. The goal of the book is to explain the basic 
concepts of nanomaterial adsorption. We focus on basic concepts of nanomaterials 
and their uses as the nanoadsorbents for the water purification. The basic concepts 
of adsorption are well explained with suitable examples. The principal aim of the 
book is to reach the audience with the latest trends on adsorption for the removal of 
metal, micro-pollutants, food adulterants, aromatic compounds, pesticides, dyes, and 
oil particles. This book motivates the student to study absorption at the introductory 
university level to the advanced level of research. 

This book gives the overview of the interdisciplinary aspects of adsorption and 
practical applications for the removal of hazardous chemicals from the water. We 
focus on the different types of adsorption isotherms, namely, Langmuir isotherm, 
Freundlich isotherm, BET adsorption isotherm, and others for water purification. 
Adsorption kinetics studies are well illustrated with different models, namely, first-
order, second-order, and third-order kinetics. The readers will be able to understand 
the basic mathematics concepts of kinetic models and further optimize these for 
the complex system. The required background is the basic knowledge of chemistry, 
biology, mathematics, and nanoscience at the first year level of the university. This 
book is divided into 16 chapters. Chapters “Introduction to Nanomaterials”–“Appli-
cation and Research Progress of Nanomaterials as Adsorbents in Environment Field” 
explain the introduction to nanomaterials, carbon nanoadsorbent, their synthesis,
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and surface modification. Chapters “Adsorption Isotherms and Kinetic Models” and 
“Adsorption and Desorption of Adulterants in the Food Industry” explain the funda-
mental adsorption isotherm, kinetic models, thermodynamic parameters, adsorp-
tion mechanism, and experimental adsorption techniques. Chapters “Adsorption 
and Desorption of Micropollutants”–“Purification of Water Using Carbon Nanoma-
terials” describe the adsorption and desorption of aromatic compounds, pesticides, 
heavy metal, micro-pollutants, food adulterant, oil particles, and dye molecules. The 
last two chapters deal with the theoretical modeling of carbon nanomaterials for the 
adsorption studies. 

Madurai, India 
Kottayam, India 

J. Tharini 
Sabu Thomas
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Introduction to Nanomaterials 

K. K. Wang, P. V. Chai, and W. L. Ang 

Abstract Nanomaterials have grown over the years globally associated to their 
advancement in the past decades and remarkable impact to the various applica-
tions. This chapter discussed the properties of the nanomaterials namely electrical, 
magnetic, mechanical, and antibacterial properties. Subsequently, the types of nano-
materials selected to be discussed in this book chapter are carbon, inorganic, organic, 
and composite based nanomaterials. The latter part of the book chapter shall focus 
on the classification of nanomaterials from zero dimensional to three dimensional 
and the synthesis of nanomaterials typically on bottom-up and top-downapproach. 

Keywords Nanomaterials · Properties of nanomaterials · Classification of 
nanomaterials · Bottom-up and top-down approach 

1 Introduction to Nanomaterials 

The word nanomaterials can be separated into two different words which are nano 
and materials. The word nano in Greek means dwarf. In the current International 
System of Units, nano is described as a prefix whereby one nanometer equals to 
billionth of a meter (10–9). Therefore, nanomaterials can be described as a class of 
materials that have singular or multiple dimensions in nanometric scale. The size of 
nanoparticles is set to be ranging from 1 to 100 nm. 

The idea of nanotechnology is first inspired and proposed in the year of 1959 
by the famous physicist Richard Feynman. During a talk with the title “There’s
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Plenty of Room at the Bottom”, Feynman sparked the possibilities of controlling 
and manipulating individual atoms or molecules. The idea came to fruition after 
the development of scanning tunneling microscope (STM). The STM technology 
allowed the researchers to catch sight of individual atoms. 

1.1 Properties of Nanomaterials 

Different nanomaterials exhibit different physicochemical properties. These prop-
erties have made the nanomaterials special in various applications. Examples of 
different properties are listed down such as electrical properties, magnetic properties, 
mechanical properties, and anti-bacterial properties. 

1.1.1 Electrical Properties 

Recently, polyaniline (PANI) based nanomaterials have attracted the interest of many 
researchers due to their good electrical properties despite their polymer nature. The 
PANI is also easy to produce and has high environmental stability [1]. The PANI is 
now very popular in the manufacture of various sensors, cells, and conductors [2–5]. 
For example, a study from Wen et al., 2018 found that the addition of 0.5 weight 
percentage of PANI into 60 weight percentage of silver-filled flexible conductors had 
greatly brought down the electrical resistivity by one-thirtieth of original. Besides, the 
addition of PANI had also increased the bending stability by a large margin [5]. Other 
than that, reduced graphene oxide (RGO) particles are also one of the nanomaterials 
that attract the attention of many researchers. For example, a study from Yang et al. 
(2017) showed that the 23 μm reduced graphene oxide with cellulose nanofiber film 
has an ultra-high electrical conductivity [6]. 

1.1.2 Magnetic Properties 

Some of the nanomaterials exhibit strong magnetic properties. This unique property 
can allow various applications in the science and engineering industries. For example, 
iron oxide (Fe2O3) nanoparticles have been used as pollutants cleanup agent or 
biomedical materials due to their magnetic properties [7–9]. For example, iron oxide 
has been used for magnetic drug delivery in the human body [9]. On the other hand, 
iron oxide nanoparticles have also been used for the cleaning of marine oil spills. 
The cleaning of oil spills can be done using the iron oxide based nano adsorbent as 
the oil can be adsorbed onto the surface of the nano adsorbent. After that, the oil can 
be recollected using a magnet as the iron oxide based nano adsorbent has magnetic 
properties [7, 8]. Figure 1 shows the magnetic properties of Fe2O3 nanoparticles in 
oil remediation.
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Fig. 1 Magnetic adsorbent for oil remediation [7] 

1.1.3 Mechanical Properties 

Carbon nanotubes (CNTs) are a type of nanomaterial that exhibits higher tensile 
strength than normal steel with lower density. Based on the study from Osmani et al. 
(2014), the tensile strength of multiwall CNT is 150.000 GPa compared to the 0.400 
GPa from steel. For the density, the multiwall CNT is 2.600 g/cm3 compared to the 
7.800 g/cm3 from steel. Lower density equals to lighter weight per unit volume [10]. 
This concludes that the CNTs are much stronger but lighter compared to conventional 
steel. Besides, the study from Hassan et al. (2022) also proved that the application 
of CNTs can improve the mechanical properties of concrete pavement. Based on the 
study, increasing weight percentage of CNTs can increase the compressive strength, 
tensile strength, and flexure strength of the concrete specimens after 28 days [11]. 
This shows that CNTs not only have high strength but are also able to increase the 
strength of other products such as nanofillers.
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1.1.4 Anti-bacterial Properties 

The anti-bacterial properties have been one of the most important properties after 
the COVID-19 outbreak. There are several types of nanomaterials that exhibit anti-
bacterial properties. These include silver nanoparticles, and gold nanoparticles. 
Different kinds of nanoparticles have various possible actions towards the microbes 
[12]. For example, based on the study from Choi et al. (2008), the silver nanoparticles 
could destroy different species of Gram-positive and Gram-negative bacteria [13]. 
Besides, the anti-microbial properties of silver nanoparticles can also be found in 
medical industries as they can be found in silicone maxilla facial prostheses covered 
with silver nanoparticles due to the antifungal properties [14]. On the other hand, 
gold nanoparticles are also proven to have the anti-microbial ability. The study from 
Kumar et al. (2016) showed that the gold nanoparticles synthesized using auric chlo-
ride as precursor and sodium citrate as stabilizing agent are good inhibitors for the 
growth of water borne pathogens [15]. 

1.2 Types of Nanomaterials 

In this section, all types of nanomaterials will be identified and introduced in detail. 
The nanomaterials can be listed into four types of nanomaterials namely carbon-
based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, 
and composite-based nanomaterials [16]. 

1.2.1 Carbon-Based Nanomaterials 

Carbon is one of the most abundant elements on the Earth. Therefore, the attraction 
towards nano carbon studies has grown recently. Based on current research, carbon 
can be used in the production of engineering materials such as fullerenes, carbon 
nanotubes, and graphene [17]. Different engineering materials exhibit different 
strengths and applications. For example, fullerenes exhibit the lowest unoccupied 
molecular orbital (LUMO). This can cause the C60 fullerenes to reduce up to six 
electrons therefore stabilizes negative charges [18, 19]. Fullerenes are suitable to 
be used in manufacturing solar cells [18]. Figure 2 illustrates the structure of C60 

fullerene.
Besides, the carbon nanotubes (CNTs), same as fullerenes, are formed by carbon 

only but have a cylindrical shape which is different compared to fullerenes. The 
CNTs have sparked research interests due to their high electrical conductivity, large 
surface area, light, and high mechanical strength characteristics. CNTs are very useful 
in manufacturing supercapacitors [20–22]. Furthermore, due to high mechanical 
strength, the CNTs can also be used in manufacturing aircraft fuselage and bullet 
proof vest [23, 24]. Figure 3 shows the structure of single-walled CNT.
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Fig. 2 Structure of C60 
fullerene [17]

Fig. 3 Structure of 
single-walled CNT [25] 

Graphene is arranged in two dimensions in hexagonal lattice structure formed by 
carbon atoms only. Like CNTs and fullerenes, graphene also exhibits high levels 
of electrical conductivity. It can be used in manufacturing lithium-ion batteries. 
Graphene can be used to tackle the issue of low power density of the current 
lithium-ion batteries [26]. Figure 4 shows the structure of graphene.
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Fig. 4 Structure of graphene 

1.2.2 Inorganic-Based Nanomaterials 

Inorganic-based nanomaterials can be divided into two groups which are metal-based 
nanomaterials and metal oxide-based nanomaterials. Some examples of metal-based 
nanomaterials include silver, gold, and copper. On the other hand, some examples of 
metal oxide-based nanomaterials are copper oxide, iron oxide, and silicon dioxide. 
Each of them can be applied in different ways due to their unique properties. Back 
to Sect. 1.1, silver and gold nanoparticles can be used for antimicrobial purposes 
whereas iron oxide that has magnetic properties can be used as pollutants clean up 
agents [7, 8, 12]. 

1.2.3 Organic-Based Nanomaterials 

Organic-based nanomaterials are the nanomaterials that are formed from organic 
materials excluding carbon materials. Examples of organic-based nanomaterials 
include dendrimers and micelle [16]. Dendrimers are synthetic polymers that are 
highly ordered with large number of repeating unit branches. The terminal function-
alities on the surface can be anionic, neutral, or cationic [27]. Dendrimers such as 
glucose-modified carbosilane dendrimers can be utilized as drug delivery carriers for 
cancer therapy [28]. 

1.2.4 Composite-Based Nanomaterials 

Composite-based nanomaterials are the nanomaterials that are formed from the 
combination of carbon-based with metal-based, metal oxide-based with organic-
based, metal-based with organic-based and etcetera [16]. Nanocomposites have
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Fig. 5 Structure of 
nanosphere 

attracted much attention as they can be employed in musculoskeletal engineering 
[29]. A study from Ahadian et al. (2014) utilized composites of carbon nanotubes 
(CNTs) with methacrylated gelatin polymer in fabricating muscle myofiber [30]. 
Besides, studies from Jayakumar et al. (2011) used nanocomposites of chitosan 
polymer coupled with TiO2 nanoneedles or ZrO2 in the fabrication of bone tissues 
[31, 32]. 

1.3 Classification of Nanomaterials 

The nanomaterials can be categorized into several categories according to their 
different number of dimensions that are not in the nanometric scale which is 
less than 100 nm. The categories include zero-dimensional nanomaterials, one-
dimensional nanomaterials, two-dimensional nanomaterials, and three-dimensional 
nanomaterials. 

1.3.1 Zero-Dimensional Nanomaterials 

The zero-dimensional nanomaterial is set to have all three dimensions including 
length, width, and height, within nanometric range (less than 100 nm). For example, 
quantum dots and nanospheres are categorized as zero-dimensional nanomaterials. 
Figure 5 shows an example of the structure and sizing of a nanosphere. The trans-
mission electron microscopy (TEM) image of nanosphere can refer to the following 
journal [33]. 

1.3.2 One-Dimensional Nanomaterials 

The one-dimensional nanomaterials are defined as the nanomaterials that have two 
dimensions in the nanometric scale whereas the other dimension is not in the nano-
metric scale. Examples of one-dimensional nanomaterials include nanotubes and 
nanowires. Figure 6 shows the structure of nanotubes and nanowires with given 
dimensions. Both the nanotubes and nanowires have lengths of more than 100 nm 
whereas the diameters are less than 100 nm.
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Fig. 6 Structure of 
nanowires and nanotubes 

Fig. 7 Structure of nanofilm and nanoplate 

1.3.3 Two-Dimensional Nanomaterials 

The two-dimensional nanomaterials are a category of nanomaterials that has only 
one dimension in nanometric scale whereas the other two dimensions are not. 
The example of two-dimensional nanomaterials includes nanofilms and nanoplates. 
Figure 7 shows the structure of nanoplate and nanofilm with dimensions. It was seen 
that nanoplates have lengths and widths of more than 100 nm whereas the heights 
are less than 100 nm. 

1.3.4 Three-Dimensional Nanomaterials 

Three-dimensional nanomaterials are defined as a category of nanomaterials with no 
dimension either length, width, or height, is within the nanometric scale. Normally,
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Fig. 8 Structure of nanoflower formed using one-dimensional nanotubes 

this category of nanomaterial is assembled or built by zero-dimensional, one-
dimensional, and two-dimensional nanomaterials. One of the examples of three-
dimensional nanomaterials is nanoflowers. Figure 8 shows a drawn example of the 
structure of nanoflowers prepared from one-dimensional nanomaterials. From the 
image, it is noticeable that the nanoflower is formed from one-dimensional nanotubes 
with the diameters of each nanotube equal to 50 nm (less than 100 nm) and the 
length of each nanotube equal to 120 nm (more than 100 nm). Whereas for the whole 
nanoflower, all dimensions exceeded 100 nm which diameters equal to 400 nm. 

1.4 Synthesis of Nanomaterials 

There are two main approaches in synthesizing nanomaterials which are top-down 
approach and bottom-up approach. The concept behind the top-down approach is 
when a bulk material is broken down into smaller nano pieces. There are several 
methods that are under the top-down approach. These include mechanical alloying, 
equal channel angular pressing, high pressure torsion, and accumulative roll bonding. 
Besides, for bottom-up approach, the concept behind is when individual atoms 
are being brought together to form nanomaterials. The bottom-up approach starts 
building nanoparticles from either liquid or solid precursor. There are also several 
methods under the bottom-up approach which include co-precipitation method, sol– 
gel method, spray-conversion method, physical vapor deposition, and chemical vapor 
deposition. 

1.4.1 Top-Down Method I (Mechanical Alloying) 

Mechanical alloying or milling is the easiest method in producing nanomaterials. 
There are several types of milling methods in producing nanomaterials such as ball 
milling, vibratory milling, and planetary milling [34–36]. During the ball milling
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process, the bulk materials will be inserted into a hollow cylindrical chamber together 
with small balls made from zirconia, alumina, and steel. The chamber rotates hori-
zontally, and the bulk materials will collide with the small balls using centrifugal 
forces. The figure of mechanical alloying of graphene can refer to the following 
journal [37]. 

1.4.2 Top-Down Method II (Equal Channel Angular Pressing) 

Equal channel angular pressing (ECAP) is also a mechanical process in producing 
nanomaterials. During production, the nanomaterial samples are produced by 
pressing the needed materials through a die. When the pressing process starts, the 
sample passes through the die with shear deformation. The shear induces recrystal-
lization to fine grain sizes [38]. The die contains two channels with an angle called 
die channel angle [39]. The pressing of the materials is done by a plunger as shown 
in the journal [38]. 

1.4.3 Top-Down Method III (High Pressure Torsion) 

High pressure torsion (HPT), like ECAP, is also a severe plastic deformation method 
[40]. This method allows the generation of nanograins and ultrafine grains in metallic 
materials [41]. During the process, high pressure is exerted onto the materials by two 
plungers. One of the plungers is fixed and the other is rotating at a fixed speed. 
This exerts intense shear stress onto the material [42]. The working mechanism is 
demonstrated in the journal [42]. 

1.4.4 Top-Down Method IV (Accumulative Roll Bonding) 

One of the newest severe plastic deformation methods is accumulative roll bonding 
(ARB). The ARB is a method to form ultrafine-grain structures in a single-phase 
metal [43]. The ARB process follows as a 4 mm thick sheet is rolled into 2 mm sheet 
with twice the original length. Then, the 2 mm sheet with twice the length is cut into 
two 2 mm sheets with original length. After that, the two 2 mm sheets are degreased 
and stacked together to make original thickness and length. Finally, the stack is then 
rolled again, and the cycle goes on. This method is able to allow large amount of 
plastic strain to the sheet without changing the dimensions. The tensile strengths can 
also be increased [44]. The figure of working mechanism of the ARB process can 
refer to the journal [45].
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1.4.5 Bottom-Up Method I (Co-Precipitation Method) 

Co-precipitation method is one of the easiest ways in synthesizing nanoparticles. This 
is done in several steps such as chemical precursor preparation, mixing of precursors, 
addition of precipitators (reducing agent), and purification of precipitated solids 
(nanoparticles) [46]. For example, the method from Massart utilized precursor’s ferric 
chloride and ferrous chloride with the addition of ammonia solutions as precipitators, 
the iron nanoparticles can be obtained by centrifugation and decantation. A study 
from Sheng et al. (2012) also proved that the co-precipitation method can prepare Mn-
Ce/TiO2 nanocatalyst by following the similar steps [47]. The synthesis of α-Fe2O3 

via the co-precipitation method can refer in the following journal [48]. 

1.4.6 Bottom-Up Method II (Sol–gel Method) 

The Sol–gel method is slightly different compared to the co-precipitation method. 
In this method, the precursor used is molecular and usually is metal alkoxide. The 
precursor selected will then be dissolved in solvent of either water or alcohol followed 
by continuous heating and stirring to obtain gel. After that, the wet gel will further 
undergo drying process. Then, the final dried gel will be powdered and calcined [49]. 
Many researchers have been using the sol–gel methods in catalyst synthesis [50]. For 
example, a study from Singh et al. (2014) proved that the addition of solvent into 
silica source and further undergo hydrolysis, aging, and drying, the product of silica 
powder will be obtained as shown in the journal [51]. 

1.4.7 Bottom-Up Method III (Spray Conversion Method) 

Spray conversion method, as known as spray pyrolysis, is a simple aerosol decom-
position technique [52]. In this process, a selected precursor solution is prepared. 
The solution is then atomized into small droplets. These droplets are then moved 
towards the heated substrate surface and a thin film is generated [53]. For example, a 
study from Hong et al. (2008) synthesized nano sized Co3O4 powder by using spray 
conversion method. The experiment dissolved cobalt nitrate in distilled water and 
the solution was fed into a heated nozzle. The solution was spray dried in hot air of 
250 °C [54]. The spray pyrolysis deposition is demonstrated in the following journal 
[52]. 

1.4.8 Bottom-Up Method IV (Physical Vapor Deposition) 

Physical vapor deposition is a process whereby solid material is evaporated in a 
vacuum. This technique has been widely used in the coating industry due to the 
formation of thin layers of nanomaterials on a surface [55]. There are several types
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of physical vapor deposition methods such as evaporation, sputtering, and laser abla-
tion. Evaporation is a process whereby the atoms or molecules reach the substrates 
due to thermal vaporization. This happens without the collisions from residual gas 
molecules [56]. Besides, sputtering is a process when the vaporization process of 
atoms occurs due to the bombardment of energetic ions towards the sputtering target 
[57]. Different from the other two, laser ablation is a method whereby an intense pulse 
of laser beam irradiates the source of interest causing the vaporization of atoms from 
source [58]. The processes and working mechanisms of the physical vapor deposi-
tion, sputtering process and laser ablation respectively can be shown in the following 
journals [55, 57, 59]. 

1.4.9 Bottom-Up Method V (Chemical Vapor Deposition) 

The chemical vapor deposition process is similar to the physical vapor deposition 
process. But both processes have some differences between them. For example, in 
physical vapor deposition, it uses only physical forces in depositing the thin layer 
while the chemical vapor deposition uses chemical processes. Therefore, chemical 
vapor deposition is more complex compared to the physical vapor deposition process. 
There are several steps in the process. Firstly, the precursors gas will be transported 
towards the surface of substrate. Then, the gas molecules will be adsorbed on the 
surface and the catalyzed heterogeneous surface reaction will be carried out. After 
that, the surface diffusion of molecules to the growth sites occurs and nucleation 
starts. Lastly, the by-products from the chemical reaction will be removed [60]. The 
figure of the chemical vapor deposition process can refer in the following journal 
[61]. 
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Carbon Nanoadsorbents 

Aruna Yadav and Surender Kumar 

Abstract Carbon is one of the highly explored materials because of its exceptional 
properties such as high chemical stability, superior mechanical strength, catena-
tion property, anisotropy and conductivity. Researchers have investigated numerous 
morphologies of carbon, specially at the nanoscale for their utilization in the advance-
ments of various operational areas. This chapter deals with the overview of various 
carbon based nanoadsorbents (CNs): Carbon nanotubes (CNTs), Graphene and its 
derivatives, fullerenes and carbon quantum dots (CQDs). The structure, exceptional 
properties and synthetic strategies of these nanoadsorbents have been discussed and 
compared. The shifts and advancements in these strategies were observed towards a 
greener perspective, so that CNs can be adopted as a suitable and efficient alternative 
for conventional techniques of water purification. 

Keywords Adsorption · Carbon nanotubes · Graphene · Fullerenes · Carbon 
quantum dots 

1 Introduction 

The discharge of untreated or inadequately treated wastewater from diverse sources 
including contaminants such as pesticides, dyes, pharmaceutical and personal care 
products, heavy metals, bacteria, microplastics and so on has resulted in the fast deple-
tion of freshwater resources [1]. Traditional wastewater treatment methods include 
floatation, coagulation-flocculation, filtration, sedimentation, membrane separation, 
ion exchange, reverse osmosis, oxidation and adsorption [2]. These conventional 
approaches are incapable of achieving the requisite level of decontamination in order 
to achieve accurate and cost-effective discharge requirements. Some modern tech-
nologies for wastewater cleanup include advanced oxidation processes, photocatal-
ysis under UV/visible light irradiation, ozonation, activated carbon adsorption and
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electro-precipitation, although they are costly and energy-intensive [3, 4]. Adsorp-
tion methods have largely superseded these approaches in the last ten years because 
of their inexpensive production costs, good selectivity, applicability at low concen-
trations, and ability to be used in both batch and continuous processes. Additionally, 
these adsorbents can be regenerated with various eluents and reused for subsequent 
adsorptive cycles. Carbon-based nanomaterials have properties such as high mechan-
ical strength, high surface area and low overall production costs that make them 
suitable for adsorption-based wastewater treatment. Recently, the application of the 
adsorbents, produced through an overall green process, for the removal of pollutants, 
like dyes, heavy metals, pharmaceutical and personal care products, pesticides etc., 
from the environment is highly needed in the current scenario to eliminatethe toxic 
effects caused by the use of chemicals in the conventional synthetic procedures [1, 
5]. In this context, this chapter aims to give an overview of CNs (CNTs, Graphenes 
and fullerenes) with the main focus on their structure, exceptional properties, method 
of synthesis and applications. 

2 Carbon Nanoadsorbents (CNs) 

According to the IUPAC (2012) recommendations, nanomaterials are the substances 
whose dimensions of particles in any form vary from 1 to 100 nm [6]. The most preva-
lent types of nanomaterials are: nanopowders, nanofilaments, nanowires, nanotubes, 
nanoblocks, nanofilms and nanocables [7]. Nanomaterials can be prepared using a 
variety of physical, chemical, or mechanical processes, depending on the required 
properties. One of the aspects responsible for a particular nanomaterial’s properties 
is the relationship between surface area and volume. Nanomaterials are distinguish-
able from one another based on shape and dimension and can be classified under 
four categories [7]: 

• Zero-dimensional (0D)-fullerenes, quantum dots, nanoparticles, molecules, clus-
ters, grains, nanopowders etc. 

• One-dimensional (1D)-nanotubes (CNT), nanowires, nanofilaments, springs, 
needles etc. 

• Two-dimensional (2D)-nanofilms (Graphene), nanolayers 
• Three-dimensional (3D)-nanocrystalline structure, fiber skeletons, powder skele-

tons etc. 

Carbon is one of the most investigated materials for a variety of reasons, 
including high chemical stability, exceptional mechanical strength, catenation prop-
erty, anisotropy, and conductivity. Different morphologies of carbon have been 
studied by researchers, including spheres (fullerenes), sheets (graphene and graphene 
oxide), hollow tubes (carbon nanotubes) and dots (CQDs) [8]. The high surface area 
to volume ratio of the carbon-based nanoadsorbents, make them an excellent mate-
rial for the wastewater purification applications. Moreover, when these nanomaterials 
are mixed with biomass, magnetic nanoparticles, polymers, metal oxides, and many
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other substances, unique properties are frequently observed [9]. These materials are 
quite competent and have the potential to be utilized in the advancement of many 
operational areas such as environment remediation, energy generation and storage, 
catalysis [10, 11]. There are varieties of methods to synthesize these nanomaterials 
as discussed subsequently under each section. Further, CNs may be functionalized 
through covalent or noncovalent interactions to increase the dispersion in aqueous 
solutions as well as increase their adsorption properties [12, 13]. 

2.1 Carbon Nanotubes (CNTs) 

CNTs are 1D CNswhere the graphite sheet gets rolled to form cylindrical tubes with 
diameter in nanoscale and can have an aspect ratio more than 1000 [13]. CNTs can be 
classified as: single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) 
depending upon the number of graphene sheets that get rolled [13, 14]. SWCNTs 
consist of a single graphene layer rolled up into cylindrical shape whereas MWCNTs 
consist of two or more graphene layers that coaxially roll up into concentric cylin-
drical shells with van der Waals forces between adjacent layers. CNTs can have three 
chiralities: armchair, zigzag and chiral one on the basis of the rolling angle of 
graphene layer. The chirality of CNT is defined by the chiral vector (Ch) as per 
Eq. 1. 

Ch = na1 + ma2 (1) 

where n and m are the integers showing the number of steps along the unit vectors, a1 
and a2, of the hexagonal lattice. The three different sorts of carbon atom orientations 
around the nanotube circumference are identified using this approach. The nanotube 
is arm-chair, if n = m, whereas, the nanotube is zig-zag, if m = 0. Otherwise, the 
nanotube is chiral [15]. Further, the armchair and zigzag CNTs can be of varying 
diameters on the basis of the number of carbon atoms in the cross section of CNT 
as shown in Fig. 1. Interestingly, MWCNT has multiple concentric graphene layers 
where each layer can have dissimilar chirality as well. However, this also makes the 
study of its physical properties is more complex than that of SWCNT.

2.1.1 Synthesis of CNTs 

Iijima performed the first CNT synthesis unintentionally using arc discharge [18]. 
However, the current scenario is entirely different as there are numerous methods 
for the synthesis of CNTs, resulting in the formation of different types of CNTs 
with specific characteristics such as size and purity as shown in Fig. 2. Typically, arc 
discharge, laser ablation, high pressure CO and chemical vapordeposition (CVD) are 
the major reported techniques for synthesis of CNTs [19, 20].
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Fig. 1 Chiralities of CNT a armchair; b zigzag; c chiral [15–17] (Reprinted from [16] © 1995 with 
permission from Elsevier); d Different types of arm chairs and zigzag CNTs

Arc discharge technique involves the use of a highly pure graphite anode and 
cathode under an inert atmosphere of helium gas. In the laser ablation technique, 
vaporization of a graphite target is carried out with the aid of laser, often in a quartz 
tubular furnace under an inert atmosphere of argon/helium gas at about five hundered
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Fig. 2 Method of synthesis of CNTs

torr of pressure. The as-synthesized CNTs are then further collected on a water-
cooled metal target [21, 22]. SWCNTs as well as MWCNTs can be synthesized 
by varying the reaction conditions. Hydrothermal synthesis is a solution reaction-
based approach that can take place in a wide range of temperature commonly used 
for the preparation of CNs. Ultrasonic treatment prior to hydrothermal condition 
can produce considerable amount of CNTs [23]. The CVD technique is utilized 
most commonly in the current scenario to synthesize both MWCNTs and SWCNTs 
with significant yield and purity [24]. There are numerous different types of CVD 
techniques like water assisted CVD, catalytic chemical vapor deposition, oxygen 
assisted CVD, thermal or plasma enhanced CVD, microwave plasma, hot-filament 
CVD or radiofrequency CVD [22]. Among these, the catalytic CVD has gained 
much more research interest as it is a facile technique which can produce CNTs in a 
considerable amount. Importantly, the particle size, morphology, alignment, length 
and density can be controlled using this technique. It involves the decomposition of 
a carbon containing solvent or hydrocarbon gas in an inert atmosphere which results 
in the deposition of CNTs on a substrate/support/reactor [24]. One of the limitations 
related to CVD technique is purification requirements after their synthesis. The CNTs 
produced with CVD are generally contaminated with impurities such as graphene 
flakes, metal catalyst and amorphous carbon, which needs to be removed prior to 
their application [24]. 

The growth of the CNTs occurs either by tip growth mechanism or root/base 
growth mechanism on the basis of interactions existing between metal-support [22]. 
Tip growth mechanism is observed in case of a weak interaction, where the hydro-
carbon decomposes on the metal top, while carbon diffuses through the metal [25].
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Fig. 3 CNT growth mechanism in CVD a tip-growth mechanism b root growth mechanism [24, 
26] (Reprinted from [26] © 2011 with permission from IntechOpen) 

Root/Base growth mechanism is observed in case of strong interaction among cata-
lyst and the support (Fig. 3). Similar to the tip-growth mechanism, here also the 
initiation occurs in a same fashion, hydrocarbon decomposes on the metal top while 
the carbon initiates to diffuse through the metal. But, in this case, the metal particle is 
unable to attain more height owing to the strong catalyst-substrate interaction. Thus, 
the CNT grows on top of the metal and the catalytic activity stops subsequently upon 
metal coverage by the excess of carbon, resulting in the CNT growth termination 
[24]. 

Furthermore, the growth of SWCNTs or MWCNTs is controlled by various factors 
such as type of catalyst used, catalyst concentration, particle size of catalyst, thick-
ness of catalyst layer, catalyst preparation conditions, growth temperature, pressure, 
growth time and gas flow rate [22, 27–29]. For example, CNTs of smaller diameters 
are promoted using Co catalyst, while, Ni produces the best quality CNT with higher 
yield using the CVD process [28]. Similarly, rice husk derived SiO2 was developed as 
a green and economical catalyst support where SWCNT of larger diameter (>2 nm) 
were selectively produced [29]. 

Manufacturing of CNTs at a larger scale requires utilization of greener precursors 
and development of techniques to diminish the overall processing costs and the 
negative effects on the environment. The rising demand for CNTs puts a pressure 
on the nonrenewable resources needed in their manufacture and raises the carbon 
footprint. Therefore, green synthesis techniques must be employed to ensure an
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environmentally benign and sustainable manufacturing process. Some of the method 
for green synthesis of CNTs are shown in Table 1.

Recently, researchers have shown much more scientific attention towards the 
fabrication of CNT-based composites for functional, environmental and structural 
applications [15, 44–48]. However, the use of CNTs at practical scale remains 
limited because of the problems associated with dispersion of entangled-CNT during 
processing, which results in the poor interactions between the interface of CNTs and 
the polymer matrix or other composite material [13]. It has been demonstrated that 
the mechanical, electrical and adsorptive potential of composites containing these 
entangled or agglomerated CNTs is significantly affected in comparison to the theo-
retical expectations for well-dispersed CNTs. To overcome this challenge various 
methods have been employed for the dispersion of CNTs such as ultrasonication, 
calendaring process, ball milling, stirring [15]. 

The most popular method for dispersing nanoparticles is ultrasonication. 
According to this method’s basic premise, attenuated waves are created in the 
molecules of the solvent through which ultrasound travels as it undergoes a sequence 
of compressions [49]. These shock waves induce separation of individual nanopar-
ticle from the bundled form. Various low viscosity solvents such as water, ethanol or 
acetone can be used as medium for the ultrasonic dispersion of CNTs. However, care 
must be taken as the structure of CNTs can be seriously damaged if the ultrasonic 
treatment is too aggressive (using higher frequencies or probe sonicator) and/or too 
long [15]. Another method of dispersion/mixing/homogenization of viscous mate-
rials such as CNT suspension, is the use of a machine with three roll mills, known 
as calender. The shear force produced by the rollers is typically used to effectively 
disperse CNTs in a polymer matrix [15]. Materials can be ground into an incredibly 
fine powder using the ball milling technique for a variety of applications. The milling 
process generates a high pressure locally owing to the frequent impact among the tiny, 
rigid balls placed in a concealed container, which results in the dispersion of CNT 
particles [15]. Stirring is a typical method for dispersing particles in liquid systems, 
and it can also be used to mix CNTs into a matrix of polymer or other compos-
ites. The mixing speed, shape and size of the propeller, influence the dispersion of 
nanomaterials [15]. Recent research frequently uses a combination of the aforesaid 
procedures, such as ultrasonication-ball milling and ultrasonication-stirring. 

2.2 Graphene and Its Derivatives 

The use of graphene and its derivatives as adsorbents to eliminate toxic substances 
from the environment has gained popularity in recent years. Graphene-based nano-
materials have proved to be an ideal material due to its unique physicochemical prop-
erties, such as high thermal conductivity, specific surface area, electron mobility and 
mechanical strength [7]. In graphene-based materials, sp2-hybridized carbon atoms 
are arranged in a 2D layer to form a hexagonal structure that resembles an orderly 
honeycomb [50, 51]. Graphene has attracted scientific efforts since 2004, when it was
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Table 1 Some method of synthesis of CNTs using green precursors 

Green Precursor Method of 
preparation 

Catalyst Type of CNT 
produced 

References 

Coconut oil CVD Fe MWCNT 
(80–100 nm) 
(3–4 μm) 
58% purity 

[30] 

Palm oil CVD Ferrocene/ 
silicon 

SWCNT and 
MWCNT 
(0.6–1.2 nm) 
(110 μm) 
90% purity 

[31] 

Rice Straw Pyrolysis Fe–Ni/Al2O3 MWCNT 
(15–40 nm) 

[32] 

Walnut extract CVD MWNT 
(8–15 nm) 
(3600 μm) 

[33] 

Camphor extracted from 
latex of Cinnamomum 
camphora 

CVD Fe–Co/Zeolite MWCNT 
(10 nm) 
88% 

[34] 

Camphor CVD Ferrocene SWCNT 
(1.2–1.3 nm) 
MWCNT 
(20–40 nm) 
∼90% 

[35] 

Eucalyptus oil Spray pyrolysis Silica-zeolite 
support 
impregnated 
with Fe/Co 

SWCNT 
(0.79–1.71 nm) 

[36] 

Wood saw dust mixed 
with the reducing agent 
(commercial zinc), calcite 
(bed material) 

Pyrolysis Ferrocene or 
Fe/Mo/MgO 

CNTs 
(thinner than 
50 nm) 

[37] 

Neem oil Spray 
pyrolysis-assisted 
CVD method 

Ferrocene MWCNT 
(15 and 30 nm) 
(20 to 40 μm) 

[38] 

Turpentine oil Spray pyrolysis Fe-Co/Zeolite SWCNT 
(7–20 nm) 
58% 

[39] 

Turpentine oil Spray pyrolysis Ferrocene MWCNT 
(15–40 nm) 
(70–130 μm) 

[40] 

Castor oil Spray pyrolysis Ferrocene MWCNT 
(20–60 nm) 
(5–10 μm) 

[41]

(continued)
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Table 1 (continued)

Green Precursor Method of
preparation

Catalyst Type of CNT
produced

References

Olive oil Spray pyrolysis NiCl2 SWCNT 
(27–31 nm) 

[42] 

Lignin CVD Lignin 
micelles as 
soft template 

MWCNT 
(10–110 nm) 
(1–6 μm) 

[43]

initially extracted from graphite using the mechanical exfoliation process [52]. Since 
then, its properties have been researched with the intention of using it in a variety of 
processes, including adsorption, separation and photocatalysis [53, 54]. They also 
have significant contribution in the segregation of toxic pollutants occurring in the 
petroleum industry effluents. 

Graphene has typically been employed as an efficient support material and co-
catalyst to create photocatalysts because of its conjugated system along with the free 
π electrons resulting in high electrical conductivity and huge surface area. The prin-
cipal challenges encountered in actual applications, however, are its low dispersion, 
ease of restacking, and challenging recovery from aqueous solution after treatment. 
As a result, many methods are being investigated for the tailoring of graphene by 
adding various functional groups (e.g., O, N, P, B, chalcogens and halogens) [55]. 
Graphene oxide/ Graphite oxide (GO) and reduced graphene oxide (rGO), are the 
most common graphene derivatives with oxygen-containing functional groups (i.e., 
hydroxyl, carboxyl, and epoxy groups), whose compositions cannot be properly 
defined because of various levels of oxidation as illustrated in Fig. 4. These modified 
groups present at the interface of adsorbent and adsorbate serve as reactive centers 
promoting photodegradation in addition to making GO and rGO hydrophilic [55, 
56]. Furthermore, the O atom being highly electronegative can attract the positively 
charged contaminants via electrostatic interactions, leading to their adsorption on 
GO and rGO surface [9, 50]. 

Fig. 4 Graphene and its derivatives
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2.2.1 Synthesis of Graphene and Its Derivatives 

As shown in Fig. 5, two separate strategies: the top-down approach and bottom-up 
approach, have been established for synthesizing graphene species to fulfil a variety 
of applications. The top-down approach involves the use of external forces which 
can overcome the weak forces of attraction (e.g., electrostatic interactions, hydrogen 
bonding, aromatic stacking and van der Waal forces) between adjacent layers of 
graphene leading to delamination of graphite into graphene. In contrast, the latter 
method relies on organic synthesis and 2D anisotropic assembly of tiny molecular 
modules [54, 57]. In top-down techniques, bulk carbonaceous materials (graphite) 
are peeled into flakes to produce graphene derivatives. The conventional mechanical 
exfoliation involves the operation of two opposite directional routes [58]. Graphite 
is well known for its lubricative nature, and its layers can undergo relative motion in 
sidewise direction if subjected to a shear force-based process through ball milling. 
The inevitable destruction and fragmentation of large flakes into smaller particles 
occurs during rolling movement along with constant collisions. In contrast, scotch 
tape method, a type of mechanical exfoliation, can simply exfoliate graphite multiple 
layers into thin layers of graphene by overcoming significant interlayer attractive 
forces when subjected to a normal force [57]. However, neither of the two uncon-
trolled and low-yield techniques can satisfy actual application requirements. This 
limitation can be overcome by the ultrasound assisted liquid phase exfoliation that can 
segregate individual layers of graphite easily with a significant yield [59]. The shear 
forces and the cavitation effect generated during the sonication process works on 
the graphite during exfoliation. To purify graphene and its derivatives, ideal solvents 
must be used, and they must also reduce interfacial tension for stable dispersion 
[54]. Recently, water, a green solvent, serves as an alternative for conventional toxic 
solvent for the exfoliation of graphite because of its low cost, non-toxicity and low 
boiling point. However, the process requires the addition of chemicals such as sodium 
lauryl sulfate surfactant, Perylene tetracarboxylate surfactant, vinyl imidazole-based 
polymer, which helps in production of stabilized suspensions [60–62]. Apart from 
this, unzipping of CNTs can also produce graphene at a bulk level [63]. CNTs can 
be completely unzipped at the nanoscale to form graphene nanoribbons, but partial 
unzipping of CNTs can result in novel carbon-based nanostructures with intercon-
nection of both CNTs and graphene [64]. Various mechanisms for the unzipping 
of CNTs have been studied by the researchers. Generally, wet chemical methods 
comprise of Li ion intercalation, sonication, hydrothermal reaction, chemical oxida-
tion and electrochemical method, while the dry processing methods include metal 
particle catalytic cutting, plasma etching, fast thermal expansion [64]. Regarding 
bottom-up strategies, the creation of graphene depends on appropriate choice of 
starting precursor molecules that undergo chemical reactions to create covalently 
connected 2D networks. One of the effective approach for producing large-area 
monolayer graphene or its derivatives with higher structural quality is CVD, which 
is dependent on type of growth precursors, temperatures, pressures, and the reaction 
environment as in case of CNTs [57]. Here also, C-atoms generated from the break-
down of hydrocarbons either in gaseous phase or in liquid phase, progressively grow
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Fig. 5 Method of synthesis of 2D graphene 

into substantial domains on metal catalyst throughout this procedure, and graphene 
is then removed from the substrate surface for additional usage. 

However, it is critically necessary to have graphene sheets with a desirable surface 
area, minimal flaws, and strong conductivity for theoretical research and real-world 
applications. More notably, due to their abundance of O-containing surface func-
tional groups, structural defects, heteroatomic irregularity and other distinctive prop-
erties, graphene derivatives (such as GO and rGO) have steadily evolved and provide 
potential opportunities for advanced applications for sustainable future [65]. 

GO is one of the oxidized form of graphene, with C atoms (sp2- hybridized) in 
conductive π states and some C atoms (sp3-hybridized bonded to O), in nonconduc-
tive σ states [54]. The surface of GO is hydrophilic in nature as it possesses abun-
dant functional groups like carboxyl (−COOH), hydroxyl (−OH), keto (C=O) and 
epoxy (C–O–C) [66]. Similar to graphene, synthesis strategies of GO also include 
the top-down and bottom-up approaches. GO can be prepared by the exfoliation 
of graphite oxide as shown in Fig. 4. The first attempt at GO preparation was 
made by Brodie in 1859, who treated Ceylon graphite with an oxidative solution 
of potassium chlorate and fuming nitric acid [67]. In 1898, Staudenmaier modi-
fied the Brodie’s method by using a combination of concentrated H2SO4, fuming  
HNO3 and KClO3 for the oxidation of graphite to GO [68]. Following the Brodie 
study, alternative approaches for the formulation of GO were proposed, the majority 
of which used mixture containing powerful oxidizers [69]. Hummer’s technique, 
which involved utilizing graphite powder (100 g), NaNO3 (50 g), H2SO4 (2.3 L), 
and KMnO4 (300 g) to oxidize graphene, is one of the most popular techniques used 
by researchers to produce GO. In comparison to Brodie’s method, Hummer’s method 
has some advantages like the oxidation process is relatively fast and takes a few hours 
to produce a greater amount of GO, as well as oxygen. However, the emission of 
explosive gases (ClO2) and toxic gases (NO2, N2O4) is the main drawback of this 
approach. Additionally, the residual ions, Na+ and NO3

−, are hard to eliminate from
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the reaction mixture. In order to reduce the hazardous consequences related to the 
traditional approach, some researches have been done that try to suggest improve-
ments to the Hummer’s method. Many innovative synthesis formulations based on 
modified Hummer’s methods are being developed to meet a variety of practical 
demands. Additionally, GO can be partially converted to graphene by removing O-
containing groups, which is notably useful for improving electrical conductivity and 
changing the structure [70]. The structure morphology and physicochemical prop-
erties of graphene or rGO are influenced by different reduction routes (such as UV 
irradiation, chemical, thermal, and electrochemical reduction) [56, 71, 72]. Various 
chemical reducing agents can lead to the reduction of oxygen content in a controlled 
manner by altering the reaction time, type of reductants, reaction temperature and 
environment [73]. Different approaches represent their own advantages and poten-
tials in terms of their large-scale production ability, which further depends on various 
factors such as energy usage, overall cost, toxicity analysis etc. 

GO sheets has been reduced chemically with the help of various reducing agents 
including borohydrides [74], hydrazine [75], gaseous hydrogen (after thermal expan-
sion) [76], hydroquinone [77], strong alkaline solutions [78], hydrohalic acids [79], 
metal–acid mixtures [80], S/N/O- containing reducing agents [73] etc. Thermal 
reduction has also been employed for the reduction of GO to rGO that involves 
the heat treatment to eliminate the oxide functional groups from the GO surfaces 
[72]. However, recently, some green techniques have been emerged as an alterna-
tive to above reduction methods [81]. For example, carbohydrates (glucose, sucrose 
and fructose) have been used for the reduction of exfoliation of graphite oxide 
into graphene nanosheets through a green and facile approach, where, the reducing 
agents as well as the oxidized products were environmentally benign [82]. Similarly, 
naturally occurring anti-oxidants such as carotenoids extracted from the vegetable 
(carrot, sweet potato etc.) have been explored for the green, facile and cost effec-
tive approach towards graphene synthesis [83]. As per another report, graphene 
nanosheets were synthesized with pomegranate juice, where it performed functions 
of reductant as well as a capping agent. Initially, a modified Hummer method was 
adopted to oxidize graphite, which was then converted to GO and lastly, GO was 
reduced to graphene nanosheet by pomegranate juice [84]. Verbena officinalis extract, 
lemon juice, carrot, bamboo shoot extract are also utilized as a green reducing agent 
for converting GO to RGO [85–87]. Interestingly, Polyethylene terephthalate (PET) 
bottle waste has been used as a source material in the synthesis of graphene. The 
process involves pyrolysis of PET waste in a closed system under autogenic pressure. 
It was reported that the BET surface area of the as-synthesized graphene was 721.7 
m2/g, while that of PET was less than 2 m2/g, which made graphene a promising 
candidate for the adsorption of methylene blue and acid blue 25 dyes [88].
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2.3 Fullerenes 

The fullerenes are the 0D CNs, having sp2-like hybridization owing to its curva-
ture effect. Many investigations have been conducted on fullerenes since C60 was 
discovered in 1985 [89]. Fullerenes have been extensively explored for its appli-
cations in solar cells, drug delivery systems, antioxidants, nano-sensors, wastewater 
purification and many more, because of their chemical and electronic properties [90]. 
C60, the smallest fullerene, has the diameter of 7 Å (approx.) and contains twelve 
pentagonal rings and twenty hexagonal rings of carbon atoms as shown in Fig. 6a 
[12]. Interestingly, the number of carbon atoms of a fullerene is always even varying 
from 20, 60, 70, 82, 100, 180 to 960. C60 fullerene is highly susceptible to chemical 
attacks as the number of hexagons is greater than 20 and the pentagons occupy highly 
tensioned position resulting in the reduced stability of the molecule [12]. The inner 
as well as the outer surface of fullerenes are covered with homogeneous π electrons, 
which can strongly interact with organic contaminants via π–π stacking. The clusters 
of fullerene provide various adsorptive sites that are responsible for the adsorption 
of different contaminants like surface adsorption areas, grooves occurring between 
adjacent fullerenes and the interstitial voids between fullerenes in aggregate. Appli-
cations of fullerene as adsorbent has also been reported for the removal of organic, 
inorganic, organometallic compounds etc. [91–93]. 

2.3.1 Synthesis of Fullerenes 

Fullerenes are conventionally synthesized by the arc-discharge vaporization of 
graphite, by CVD techniques, and by combustion processes (Fig. 6c). These tech-
niques are not, however, extremely effective, thus further development and advance-
ment in this area are required. The investigation of novel synthetic techniques is there-
fore essential to the development of the fullerene science. Kroto et al. synthesized an 
extremely stable cluster of C60 by using vaporized graphite via laser irradiation [89].

Fig. 6 a Structure of C60 fullerene b Ring stacking mechanism of fullerene synthesis (Reprinted 
from [94] © 1992 with permission from Elsevier) c) Fullerene synthetic techniques 
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A surge of interest in the chemistry of C60 was sparked by this experiment. Scien-
tists have attempted to explain the process of fullerene creation since the discovery 
of fullerenes. As per a report, the carbon feedstock is initially vaporized to small 
components (like C-atoms or C-dimers), which lastly recombine under specified 
temperature and pressure conditions to form fullerenes after undergoing a series of 
reactions [90]. However, several theories have been put forth to explain the produc-
tion process of fullerenes because this basic hypothesis is not an adequate one such 
as Goroff model, icospiral particle nucleation scheme, ring stacking model [90, 94]. 
The ring stacking model as shown in Fig. 6b, assumes that a closed cage of carbon 
is produced via sequential stacking with appropriate numbers and combinations of 
only even-numbered carbon rings without any loss of carbon atoms [94]. 

Fullerene’s thermal and chemical characteristics, especially their potential to 
accept electrons, have attracted scientific and commercial interest for environment 
remediation. The BET specific surface area of fullerene depends on the method of 
synthesis and was evaluated experimentally ranging from approximately 1.1–176 
m2 g−1[12]. A fullerene’s surface can be subjected to a variety of physical and chem-
ical processes that alter the systems’ overall qualities. For instance, the corrosion 
of carbon caused by heat treatment with CO2 results in the creation of CO and the 
removal of the -OH and -CH3 surface groups. In addition to chemical changes, heat 
treatment may cause tiny pores inside of the carbon particles to open, increasing the 
total surface area [12]. 

2.4 Carbon Quantum Dots (CQDs) 

CQDs are one of the most important emerging 0D CNs. CQDs are usually just a few 
nanometers in size (generally smaller than 10 nm) and exhibit a plethora of attractive 
characteristics such as high luminescent, high surface area, high quantum yield, 
broad absorption spectra, long fluorescent life, low comparative toxicity, high photo 
stability, ease of surface modifications, chemical inertness, high emission tenability 
and biocompatibility [95]. With such useful properties, CQDs attracts great interest of 
researchers in applications various fields such as drug delivery, energy storage, light 
emitting diodes, photocatalytic activity, biosensing, chemical sensing, bio-imaging 
and bio-medical applications etc. [95]. Both top-down and bottom-up approaches 
have been widely reported for the synthesis of CQDs. Several protocols such as 
electrochemical method, laser ablation, plasma treatment, arc discharge, microwave 
digestion, ultrasonic oscillation, hydrothermal synthesis, pyrolysis or carbonization 
of small organic moieties or biomass have been reported for the synthesis of CQDs 
as shown in Fig. 7 [96, 97].

According to past studies, CQDs have been fabricated from various natural carbon 
feedstocks such as ammonium citrate, ginkgo leaf, citric acid, ascorbic acid, dena-
tured milk, graphitic micro-particles, zein biopolymer, dried leaf, sodium hydroxide, 
gelatin, food wastes, grass, pomelo fruit, humic acid etc [98]. Also, CQDs can be 
exfoliated from activated carbon, coal, soot, carbon blak etc. by treating them with
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Fig. 7 Synthetic techniques for CQDs

strong oxidizing agents like H2SO4, HNO3 and KMnO4. This method has a potential 
of adoptability at a large-scale as these low-cost carbon sources are readily avail-
able. However, the major limitations associated with method are difficult removal of 
excess of oxidising agents and inorganic salts, evolution of highly toxic gases during 
the reaction [95]. Therefore, it is crucial that eco-friendly and simple CQD produc-
tion procedures are devised in order for the successful large-scale development of 
these CDs to be implemented. When compared to previously described methods, the 
hydrothermal approach is the most popular because of its ease of use, mild reac-
tion conditions, and high quantum yield. For example, a carbon and nitrogen-doped 
CODs were prepared by hydrothermal method using ammonium citrate as precursor 
and combined with layered double hydroxide for the fast and efficient decontam-
ination of Cd(II) [99]. Similarly, N, S co-doped CQDs were synthesized by the 
hydrothermal treatment of L-Histidine and L-Cysteine upto 180 °C for 10 h and 
used for the adsorption of methylene blue dye after loading the CQDs into hexag-
onal mesoporous silica [100]. CVD method has also been reported for the synthesis 
of CODs using Fe-Co/CaO catalyst, where, defective CNTs and CQD-CNT compos-
ites were fabricated selectively at different catalyst reduction temperatures and used 
for the removal of methylene blue dye [101]. 

Sugarcane bagasse, an agricultural waste, was reported for the efficient and 
economic synthesis of CQDs, where, GO was chemically shredded to graphene 
quantum dots and CQDs were prepared by chemical oxidation followed by exfoli-
ation [102]. Graphene quantum dots are small fragments with a diameter <100 nm 
along with a few-layers of graphene structure (one to ten). Very recently, graphene 
quantum dots have been reported to be synthesized via laser-induced polymerization 
of polyimide powder precursor in a single-step [103]. 

Recently, carbon dots (CDs) were reported as an efficient adsorbent for the removal 
of heavy metal from wastewater. Hydrothermal method was adopted for the fabri-
cation of a photoluminescent CDs from petroleum coke waste as precursor. The as-
prepared CDs was then well dispersed in a chitosan polymer matrix to form a fluores-
cent film with abundance of O, N and S functional groups which were responsible for
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the removal of Cd2+ from industrial wastewater. Interestingly, the Cd2+ removal effi-
ciency by the photoluminescent CDs was 5 times higher under the irradiation of UV-
light [96]. As per another report, an environmentally friendly, 3D fluorescent aerogel 
mesh was fabricated with dual functions of simultaneous adsorption and detection 
of Pb(II) utilizing CDs and collagen fibers. CDs were synthesized by hydrothermal 
treatment of citric acid and polyethyleneimine precursors at 180 °C for about 20 h. 
The effectiveness of this adsorbent was mainly because of the evenly distributed 
CDs on the aerogel and the numerous amino groups on the surface, which promote 
metal ion aggregation and chelation [104]. The application of microwaves has also 
been reported for the production of fluorescent CQDs using urea with bagasse, cellu-
lose or carboxymethyl cellulose as precursors. The synthesized CQDs were utilized 
for the adsorption of Pb(II) from an aqueous solution [105]. As per some latest 
advances, CDs and rGO composites are also being prepared with the aid of ultra-
sound, where electron transfer occurs from CDs to GO which helps in its reduction 
to rGO. This composite of CDs and rGO was further used in the determination as 
well as removal of organochlorine pesticides [106]. These findings demonstrate the 
potential efficiency of CQDs synthesized from various methods as promising carbon-
based nanomaterials for utilization in the field of wastewater remediation through 
adsorption, pollution detection and chemical sensing applications. 

3 Conclusion 

Ever-increasing interest in utilizing carbon-based nanomaterials for various applica-
tions in different fields has led to continued efforts in evaluation of their physicochem-
ical properties, structural studies, surface modifications, composite formation and 
other significant advancements. This chapter provides an overview of various carbon-
based nanomaterials which have been typically utilized as adsorbent for wastewater 
purification. The fabrication techniques for these CNs including CNTs, graphene 
and its derivatives, fullerenes and CQDs, involves both top-down and bottom-up 
approaches. With time, these techniques have been modified to develop an efficient, 
cost effective, facile, and environmentally benign synthetic strategy that can be imple-
mented at a commercial scale. Overall, CNs, due to their exceptional qualities are 
excellent candidate to substitute the conventional techniques of water purification, if 
proper modifications are adopted. 
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Carbon Nanomaterials and Their 
Composites as Adsorbents 

Khlood A. Alrefaey, A. B. Abdel-Aziz, Lobna A. Said, Irene Samy Fahim, 
and Ahmed G. Radwan 

Abstract Carbon nanomaterials with various nanostructures (carbon nanotubes, 
graphene, graphene oxide, fullerene, nano diamonds, carbon quantum dots, carbon 
nanofibers, graphitic carbon nitrides, and nano porous carbons) are the decade’s 
most distinguishing and popular materials. They have distinctive physicochemical 
qualities such as chemical stability, mechanical strength, hardness, thermal and elec-
trical conductivities, and so on. Furthermore, they are easily surface functionalized 
and tweaked, modifying them for high-end specific applications. Carbon nanos-
tructures’ properties and surface characteristics are determined by the synthesis 
method used to create them. Nanoscience and nanotechnology have the potential to 
create materials with unexpected functions and qualities, which are transforming all 
industries. Carbon nanoparticles such as fullerene, carbon nanotubes, and graphene 
stand out among the various kinds of nanomaterials. These nanoparticles offer a 
wide range of practical applications, particularly in adsorption processes. Carbon 
nanoparticles exhibit unique structures that could be used in the construction of 
extremely sensitive, selective, and effective adsorbent devices for the removal of 
inorganic, organic, and biological pollutants from water solutions, as well as nano 
sensors and drug delivery systems. In this chapter, we demonstrated the number 
of studies published in recent years that used carbon nanomaterials as adsorbents. 
Furthermore, this chapter discusses essential features of adsorption and different 
nanocarbon carbon composite material, such as the contrast between physical and 
chemical absorption. Furthermore, diverse carbon nanomaterial synthesis such as
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AC–FeO −Cu and Bimetallic FeO −Cu/algae activated carbon composites AC–Fe0 
−Cu methodologies, functionalization, and characteristics are provided and logically 
addressed. 

Keywords Carbon nanomaterials · Adsorption · Activated carbon · Commercial ·
Nano adsorbents 

1 Introduction 

Nanotechnology is defined as the design and manufacture of materials, electronics 
systems with control at nanoscale dimensions. As a result, size and control are at the 
heart of nanotechnology. The term “nanotechnologies” is chosen by some because 
of the wide range of applications, yet they all share the common attribute of control 
at the nanoscale scale [1]. 

Nanobiotechnology and bio nanotechnology—they are essentially synonyms— 
refer to materials and processes at the nanometer scale that are based on biological, 
biomimetic or biologically-inspired molecules, and nanotechnological devices used 
to monitor or control biological processes, e.g., in medicine (Laurent et al. 2010). 
An example of the former is the optically switched optical switch incorporating the 
biomolecule bacteriorhodopsin3 and an example of the latter is the biochip—an array 
of known DNA fragments used to capture unknown DNA from a sample [2]. 

The potential impact of nanoparticles on enhancing our quality of life as well as 
their potential involvement in environmental preservation, particularly with regard 
to water treatment, have generated a great deal of interest in nanotechnology. Recent 
advances in nanotechnology have produced a wide range of materials that are now 
being considered as potential nano adsorbents for use in biological and environmental 
applications. Carbon nanoparticles (CN), which include fullerene, carbon nanotubes 
(CNT), and members of the graphene family, stand out among the several groups of 
nanomaterials [3]. 

Recent research suggests that the application of CN may be able to address many of 
the current issues with water quality. Using CN as nano adsorbents, several research 
teams are presently concentrating on the treatment and purification of wastewater. 
The majority of the projects created by these teams aim to compare the effectiveness 
of CN to that of conventional adsorbents, particularly activated carbon. Conducting 
a survey of the papers that have been written on the issue is one way to properly 
understand the significance that has been or is accorded to CN for this purpose. 
The survey’s results, shownCNT have been the most thoroughly studied for adsorp-
tion applications among the three classes of possible carbon nano adsorbents that 
will be analyzed in this book. According to numerous studies, CNT has a good 
potential for adsorbing many of the organic and inorganic contaminants found in 
aqueous phases [4]. Although the graphene family’s members (such as graphene 
oxide and reduced graphene oxide) have not yet undergone as much research as 
CNT, several authors have shown that these materials are capable of effectively
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Fig. 1 CN structures with potential for adsorption applications: a graphene, b fullerene andc [3] 

removing a range of contaminants, such as antibiotics, heavy metals, and synthetic 
dyes, from aqueous solutions. Although less intensively than for the other two carbon 
allotropes, fullerenes’ adsorptive ability for organic pollutant chemicals in water has 
also been studied [5]. 

There has been a lot of study on new methods of diagnosing and treating diseases 
employing CN for medication delivery as well as for biosensor monitoring in terms of 
biological applications. Finding the perfect materials to guarantee the best properties 
of nanostructured sensors and drug delivery systems is currently the subject of much 
research. Given the growing number of articles in this field, CN offer enormous 
promise for such applications (Fig. 1). 

2 Carbon Nanomaterial 

Nanomaterials, especially carbon nanostructures, are promising systems for a number 
of uses, especially molecule adsorption, because of the way they are shaped, how 
they feel, and how they behave electrically. Allotropes of carbon are different because 
of the number of bonds between the carbon atoms or the way the layers are arranged 
in a crystal lattice. Carbon nanomaterials with different atomic bonds and arrange-
ments are made by sp2 hybridization at different levels. For example, a 2D carbon 
allotropic form like graphene [4] is a hypothetical infinite aromatic surface with sp2 
hybridization and a thickness of one carbon atom. Single-walled (SWCNT) [6], and 
multiwalled (MWCNT) [7] carbon nanotubes (both 1D systems) can be simplified 
as the result of one or more graphene sheets rolled up in a concentric shape.
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On the other hand, a 0D system like fullerene, C60, is made up of 60 carbon atoms 
that are hybridized in a sp2-like way. It has 20 hexagonal rings and 12 pentagonal 
rings, which make it curve [8]. The adsorbate molecule and carbon-based nanoad-
sorbents interact in different ways because of these changes in shape [9]. Aside from 
fullerene, carbon nanotubes, and graphene on their own, these materials should also 
be taken into account when they are arranged in 3D (bulk) [8] 

3 Structure, Shape, and Properties of Carbon 
Nanoadsorbents for Absorbing Gases 

Textural properties of the carbon nanostructures, such as surface area, pore volume, 
and average pore diameter, are the main factors that determine the adsorption capacity 
[3]. Also, the structures’ adsorption surface sites or dangling bonds can be important 
parts of the adsorption process because they are usually very reactive. The surface of 
carbonaceous nanomaterials can also be thought of as amphoteric, which means that 
they can be protonated (charged positively) or deprotonated (charged negatively). 
Also, oxygen can be used to add other functional groups, which can make new sites 
for chemical adsorption. In this case, the goal of this section is to give information 
about how graphene, carbon nanotubes, fullerene, and other related materials absorb 
things [8]. 

3.1 Fullerene’ Adsorption Properties 

Due to the curvature effect, the hybridization of fullerenes is similar to that of sp2 
molecules, even though they are made of carbon. The C60 molecule is made up of 12 
pentagons and 20 hexagons of carbon atoms. It has a diameter of about. The number 
of carbon atoms on a fullerene can be 20, 60, 70, 82, 100, 180, or even 960 [10]. This 
is always an even number. As the number of hexagons goes above 20 (as in the case 
of C60), the molecule becomes less stable as the pentagons move into more and more 
tense positions, making them more vulnerable to chemical attack. Laser ablation [9], 
carbon vaporization, or high-temperature heating of a graphite rod followed by an 
arc discharge between graphite electrodes are all ways to make fullerenes. Other 
ways to make it include synthesis in combustion [10], hybrid plasma, and thermal 
plasma, among others [11]. Say that the thermal and chemical properties of fullerene, 
including the fact that it could be an electron acceptor, make it of interest to business 
and science for use in environmental applications. By the Brunauer, Emmett, Teller– 
BET method, the specific surface area of fullerene found in experiments ranges from 
about 1.1 to 176 m2 g1 [12]. The different ways of synthesizing can explain this differ-
ence. As shown in Fig. 2, adsorption can happen at three different places on fullerene 
aggregates: the surface (A), the groove (B) that forms when two fullerenes touch, and
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Fig. 2 Schematic model for the possible adsorption sites of fullerene aggregates: surface area [17] 

the spaces (C) between the fullerenes in aggregates. Researchers have looked into how 
fullerenes absorb organic pollutants like organic and organometallic compounds [13], 
polycyclic aromatic hydrocarbons [14], and naphthalene and 1,2-dichlorobenzene 
in aqueous solutions. Also, the adsorption of organochlorine compounds in water 
solutions was studied and compared to the adsorption of activated carbon with and 
without fullerenes [15, 16]. The way that fullerene absorbs things was found to be 
better than that of activated carbon. It has been decided that most physical adsorption 
on fullerenes happens through dispersive interaction forces [14]. 

3.2 Carbon Nanotubes Adsorption Properties 

Similar to fullerenes, carbon nanotubes (CNT) are carbon allotropes with an aromatic 
surface when the carbon atoms are rolled up in a tubular structure (1D system). This 
carbon allotrope is a unique nanostructure with amazing electronic and mechan-
ical properties that depend directly on its chirality and diameter [14]. These unique 
properties and shapes make them very appealing for many practical applications, 
such as the development of devices for energy storage [7] and adsorption, with high 
sensitivity, selectivity, and efficiency [18]. 

The main ways to make CNT can be broken down into high-temperature methods, 
like arc discharge and laser ablation synthesis, and low-temperature methods, like
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chemical vapor deposition. When thinking about how CNTs attract things, it is impor-
tant to think about both their outer and inner surfaces. In particular, rolling up the 
graphene sheet to make the tube changes the nonplanar sp2 configuration of the 
carbon orbitals, which changes the charge surface compared to the original graphene 
sheet. Because of this curvature, the thermodynamic properties of the adsorption 
process with the CNT can be very different from those with the flat carbon sheet 
[19]. 

Several studies [18, 19] show that CNTs have pores. In MWCNTs, the porosity 
can be divided into inner hollow cavities with small diameters (ranging from 3 to 
6 nm in a narrow range) and aggregated pores with a wide range of sizes (20–40 nm), 
which are made when CNTs interact with each other. Several MWCNTs that stick 
to each other because of van der Waals forces get tangled up. This makes a group of 
pores [20] 

Many methods of characterization have shown that SWCNTs are better at being 
microporous and that MWCNTs are better at being mesoporous [19]. So, the first 
one (SWCNT) usually has a higher surface area than the other ones. Figure 3 shows 
that adsorption on SWCNT bundles can happen in four different places: I the grooves 
formed at the contact between adjacent tubes; (ii) outside of the bundles; (iii) the 
interstitial channels between the tubes in bundles; and (iv) inside the nanotubes 
(pores) with open ends. Small molecules, like gases, might be able to stick to the 
spaces between the SWCNTs when they are bundled together [7]. In contrast to 
SWCNTs, MWCNTs don’t come in bundles. In this last case, defects should also be 
thought of as places where adsorption can happen. Large biological contaminants 
like bacteria and viruses stick to the aggregated pores more than to other types of 
pores [21]. CNT’s structure lets it interact strongly with organic molecules through 
noncovalent forces like hydrogen bonding,—stacking, electrostatic forces, van der 
Waals forces, and hydrophobic interactions. Also, the structure of CNTs makes it 
possible to add one or more chemical functional groups, which could make the 
system more selective and stable Functionalization or purification processes can be 
used to attach the chemical functional groups to the CNT surface [22]. Chemical 
methods of purification can change the specific CNT surface area, the volume of 
its micropores and mesopores, and the average diameter of its pores in a big way. 
Chemical purification, which is also called “oxidative purification,” can be done 
with acid solutions (like HCl, HNO3, and H2SO4), basic compounds (like KOH and 
NH3), and gaseous compounds (like O2, CO2, and O3), among other things. The 
CNT’s texture may also change during the thermal purification process.

3.3 Nano Carbon’s Electronic and Optical Characteristics 

The ability of carbon nanoadsorbents to generate -interactions and other charge-
transfer driven mechanisms is highly controlled by these potentials. In turn, envi-
ronmental factors (such as pH and ionic strength), oxygen content or doping of 
the carbon nanostructure, as well as the adsorbate specie type, have an impact on
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Fig. 3 Schematic model for the possible adsorption sites of SWCNT bundle (left) and TEM [17]

Fig. 4 Chematic model for the pores aggregated of MWCNT (left) and TEM image of aggregated 
MWCNTs (right) [17] 

“−” interactions and other charge transfer-induced mechanisms (charge, presence 
of aromatic rings, etc.) (Fig. 4). 

3.4 Effect of Electronic Properties on Adsorption Capability 

It is well known that fullerene, CNT, and graphene interact with various molecules 
through charge-transfer. Raman spectroscopy is frequently used to acquire data on 
carbon nanomaterial properties, such as molecular charge transfer in graphene or 
CNTs. Raman maps that infer information on the adsorption of species onto carbon 
nanoadsorbents or the potential for it can be obtained by scanning the energy of the
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excitation light. There would be a shift on G or 2D band frequencies between before 
and after contact with the particular molecule, depending on the sort of charge transfer 
between the CNTs or graphene and the provided molecule (electron donor or acceptor 
induced mechanism [23]. Raman G band position shifts to lower frequency positions 
when electron donor species are adsorbed, but shifts to high frequency positions when 
electron acceptor species are adsorbed. Charge transfer causes the band gap area near 
Dirac point to tune, resulting in mid-gap molecular levels. Through “−” interactions, 
organic compounds with aromatic rings can also change the electrical structure of 
graphene. Metal–semiconductor transitions may result from the selective interaction 
of electron donor molecules with semiconducting SWCNTs and electron acceptor 
molecules with metallic ones. For instance, it has been observed that—interactions 
(depending on the number of aromatic rings, size and shape of the aromatic system, 
and molecular substitution units) are the reason why the sorption affinity of phenolic 
compounds on MWCNTs increases as the number of aromatic rings increases [24]. 
Adsorption is influenced by the type of substance and the strength of the interaction, 
which can, for instance, be connected to polarity and charge distribution. Strong 
chemical connections can be formed between CNTs and other radionuclides thanks 
to their free electrons. 

The electronic states and consequent interactions between a specific molecule or 
ion and the carbon nanospecies can also be influenced by environmental factors like 
pH and ionic strength. When the pH is high (pH > pKa), the negative surface charge 
promotes electrostatic interaction that is helpful for adsorbing cations, whereas a 
drop in pH causes the surface charge to be neutralized [3]. 

CNT adsorption properties can also be impacted by metal/nonmetal doping. For 
instance, B- and N-doping reduce the energy required for hydrogen to bind to CNTs. 
B-doped materials have an electron-deficient structure, and H adsorption would result 
in the formation of a coordination-like B-H bond. The atomic adsorption energy of 
H is reduced by N-doping, which forms an electron-rich structure. N-doped and B-
doped CNTs were found to promote Pt adsorption, but via distinct processes. While 
the B-doped case’s improvement was linked to a substantial hybridization between 
the Pt d orbital and boron p orbital, the N-doped case’s rise in Pt adsorption was due 
to activation of nitrogen adjacent carbon atoms [17]. 

3.5 Effect of Adsorption on the Optoelectronic Properties 

It is possible to achieve varied band gaps by converting metals into semiconductors 
or semiconductors into other semiconductors by altering the structure of SWCNTs 
caused by atom adsorption [14]. As might be expected, the partial charge of the 
C atom and its gap energy can be greatly influenced by the tube-molecule distance 
[25]. For example, significant modifications in the density of states (DOS) close to the 
Fermi level may produce candidates for sensor applications. High binding energies 
can result in considerable alterations of electronic states around Fermi energy for both 
the zigzag and armchair of the SWCNT after interaction with a particular specie, even
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though low binding energies (0.5 eV) suggest that the form of interaction is most 
likely physisorption. For instance, Ti adsorption changes semiconducting Zigzag 
SWCNTs into metals. Generally speaking, the transition metal atoms’ d orbitals are 
the source of their significantly higher binding energies, which modify the number 
of filled d states [26]. 

Even intense adsorption (chemisorption) of particular molecules, however, is 
occasionally unable to produce noticeable changes in the density of states close 
to the Fermi level. Exciton quenching in semiconducting SWCNT has already been 
observed using photoluminescence imaging [26]. 

Adsorption of a particular molecule can also have an impact on the field emission 
current from CNT tips, based on variations in the Fermi level and DOS close to 
the Fermi level [4]. One can anticipate that the Fermi level will shift toward the 
conduction band upon the adsorption of a specific molecule. 

4 Adsorption Mechanism 

Adsorption is a physicochemical treatment method in which dissolved molecules in 
impure water are chemically and physically linked to the adsorbent surface. Adsorp-
tion technology was referred to as a powerful technique for pollutants removal from 
filthy wastewater due to its higher pollutant’s removal performance than other conven-
tional approaches. Adsorption is recognized as a process that produces high-quality 
products at a reasonable price. The four processes of dye adsorption include dyes 
diffusion/convection, dyes diffusion across a diffusion boundary layer, dyes diffu-
sion from the surface into the interior of the adsorbent material, and dyes diffusion 
from the surface into the interior of the adsorbent material [27]. But the procedure 
comes to a close with the fourth and final stage. It denotes the adsorption of dye 
molecules on a substance’s surface brought on by interactions between the mate-
rials. The second phase could be impacted by the dye concentration and agitation 
period. Due to its impact on dye adsorption on the surface of the substrate, step 
three was also referred to as the rate-determining step. Porous diffusion, in which 
the adsorbate diffuses through the liquid and fills the pores, and adsorbed in the 
process are two more phenomena that could occur in step three. Surface diffusion 
is the second phenomenon, where the adsorbate is first adsorbed and then diffused 
from one site to another. The type of dye molecules—which can be either anionic 
or cationic—determines step 4 of the process. Several adsorbents are efficient at 
removing colours from wastewater that has been contaminated by textiles [4].
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5 Activated Carbon 

Activated carbon is a porous carbonaceous substance with various uses in desalina-
tion, water and wastewater treatment, and air purification due to its unique properties 
[28]. It is a versatile adsorbent material with a high porosity degree and a large 
surface area, with up to 90% of its carbon surface area. The outer surface structure of 
activated carbon, which contains many functional groups such as carbonyl, carboxyl, 
phenol, quinone, and lactone, was responsible for its perfect adsorption qualities. In 
addition to the appearance of hydrogen, oxygen, Sulphur, and nitrogen, those func-
tional groups were reported responsible for the contaminant’s adsorption process into 
the activated carbon adsorbent material [29]. These functional groups were created 
by precision, activation procedures, and thermal purification [30]. Agricultural left-
overs such as biomass, olive corn, corn stalks, rice rolls, bagasse, fruit stones, hard 
shells, fruit pulp, bones, and coffee beans can make activated carbon [31]. The raw 
materials used to make activated carbon should be inexpensive, plentiful, and safe 
[32]. Furthermore, the mineral concentration of this material and its biodegradability 
during initial storage should be kept to a minimum. Recently, cellulosic materials 
have become one of the most widely used materials in activated carbon production. 
The activated carbon has a high specific surface area with a highly porous structure 
of about 800 m2/g, indicating a greater adsorption capacity [23]. However, due to the 
high cost of commercial activated carbon, considerable amounts of naturally existing 
wastes 2 and plants have received more attention in recent years for pollution control 
applications. Algae is naturally renewable biochar used to produce activated carbon. 
Organic cellulose, alginate, lignin, starch, and other inorganic elements which are 
found in marine algae were investigated for their potential to be converted into acti-
vated carbon. Because of their low cost and simple supply, marine algae gained 
popularity as raw materials for making activated carbon in recent years. A variety 
of marine algae, including Ulva Lactuca [27], Systoceira strict, Turbinaria turbinata 
[33], Enteromorpha prolifera, Pterocladia capillacea, and Euphorbia rigida, were 
used to produce activated carbon [28]. 

6 Commercial Activated Carbon 

Due to its versatility in removing a variety of contaminants from contaminated media, 
commercial activated carbon, also known as charcoal, is a form of industrial adsorbent 
that is frequently used. Additionally, the thermal stability, enormous surface area 
of 500 to 2000 m2/g, high porosity, resistance to bases and acids, low cost, and 
customizable pore structure of activated carbon made them stand out [34].
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7 Biochar  

To make activated carbon, materials with a high carbon content can be used, including 
wood, coal, peat, tobacco, nutshells, and lignite [35, 36]. A further carbonaceous 
source for the formation of activated carbon is agriculture wastes, such as sugarcane 
bagasse, olive stones, cotton residues, soybean hulls, corn straws, peach stones, 
pinecones, rice hulls, rice straw, banana peels, apricot stones, corn cobs, bamboo, 
pith, etc. [37, 38]. However, earlier research claimed that 40% of activated carbon was 
removed from charcoal and that it could get rid of taste and odor. To produce activated 
carbon, two continuous stages of carbonization and activation were typically used. 
The first stage was carried out at a high temperature during the pyrolysis process, 
and the second stage was used to improve the pore structure of the activated carbon 
[39, 40]. Other research showed that the steps included a pretreatment procedure that 
involved crushing, grinding, and screening to provide the ideal size for an effective 
succeeding operation [41]. Figure 5 depicts the physical and chemical activation 
procedures for activated carbons. Due to the lower cost, higher surface area, and 
improved porosity of chemical activation, it is preferable to physical activation [42]. 
Chemical activation, however, necessitates additional expenditures for the chemical 
activation agents and additional steps in the chemical agent washing procedures [43]. 
The efficacy of pollutant adsorption is increased by microwave-assisted chemical 
activation by increasing surface area. Activated carbon can also be impregnated with 
chemicals like metal oxides and hydroxides to increase the effectiveness of removal. 

Various characterization methods, including the scanning electron microscopy 
(SEM) and transmission electron microscope, can be used to examine the prepared 
materials’ surface and physical features (TEM).

Fig. 5 Schematic 
production process of 
activated carbons by physical 
or chemical activation [44] 
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8 Bimetallic F E0 −Cu/algae Activated Carbon Composites 
AC–F E0 −Cu 

There is another type of adsorbent bimetallic nanoparticle composite with activated 
carbon used for adsorption such as AC–F e0 −Cu which used for treating indus-
trial wastewater contaminated with anionic methyl orange (M.O) dye. The bimetallic 
nanoparticles were effectively used as adsorbents. When two metals are combined, 
they can keep their own characteristics while also gaining new ones as a result of 
the joining process, creating a bimetallic molecule [45]. The properties of bimetallic 
nanoparticles were affected by their size, structure, and appearance. The combi-
nation of a small fraction of transition metals with nZVI functions as a reducing 
agent, increasing the surface reaction to remove organic molecules and other impu-
rities [46]. Various materials, including activated carbon, were used as adsorbents to 
remove contaminants such as dyes from liquid effluents. The activated carbon has 
a high specific surface area with a highly porous structure of about 800 m2/g, indi-
cating a greater adsorption capacity [47]. However, due to the high cost of commercial 
activated carbon, considerable amounts of naturally existing wastes and plants have 
received more attention in recent years for pollution control applications. Algae is 
naturally renewable biochar used to produce activated carbon [48]. Organic cellulose, 
alginate, lignin, starch, and other inorganic elements which found in marine algae 
were investigated for their potential to be converted into activated carbon. Because of 
their low cost and simple supply, marine algae gained popularity as raw materials for 
making activated carbon in recent years. A variety of marine algae, including Ulva 
Lactuca [49], Systoceira strict, Turbinaria turbinata [50], Enteromorpha prolifera 
[51] Pterocladia [52], and Euphorbia rigida [53], were used to produce activated 
carbon. Most of the previous research used one factor at a time (OFAT) experi-
ments for the optimization process, although the interacted models such as Response 
Surface Methodology (RSM) and Artificial Neural Network (ANN) combined with 
optimization algorithm are considered more effective for the optimization process 
[54]. The ANN model can learn linear, nonlinear and complex relationships between 
process variables. ANN model is implemented to predict removal efficiency. The 
Moth search algorithm (MSA) is a metaheuristic algorithm applied to the ANN 
model to get optimum conditions that achieve maximum removal efficiency. Meta-
heuristic algorithms solve optimization problems by simulating biological or physical 
phenomena [31]. These algorithms can be classified into five main classes, nature-
based, physics-based, swarm-based, human-based, and animal-based. Metaheuristic 
algorithms explore optimal solutions in a reasonable time and use sufficient compu-
tational resources. Many applications use metaheuristic algorithms such as detecting 
the edges of the brain tumor from a patient’s MR scan image of the brain by Genetic 
Algorithm (GA). Furthermore, metaheuristic algorithms were used to determine 
the parameters and orders of three fractional-order chaotic systems [28]. Methyle 
Orange (M.O) removal by polyaniline-based nano-adsorbent was investigated in [55]. 
RSM was implemented to predict removal efficiency. Furthermore, ANN was inte-
grated with differential evolution optimization (DEO) for the prediction of removal
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efficiency. ANN-DEO had better accuracy in prediction than RSM. However, the 
maximum removal efficiency was not evaluated. Furthermore, the polyaniline nano-
adsorbent was used to adsorb M.O in [56]. ANN was implemented to predict the 
removal efficiency. OFAT was implemented to get the maximum removal efficiency. 
The M.O removal by lignin-derived zeolite templated carbon materials was opti-
mized by RSM with Box–Behnken design. RSM was used to find the most influential 
factor on the removal efficiency. This paper aims to develop low-cost adsorbents of 
bimetallic F e0 −Cu/algae activated carbon composites AC–F e0 −Cu for treating 
industrial wastewater contaminated with anionic methyl orange (M.O) dye. The 
results of the time and the concentration experiments were used to test the isotherm 
and the kinetic models [57]. 

8.1 Preparation of Bimetallic (F E0 −Cu)/algae Activated 
Carbon Composites. 

The collected raw algae have been washed, dried, and ground into fine particles. The 
dried raw material is then utilized to make physical and chemical activated carbon. 
First, physical activated carbon is prepared by placing the actual weight of the algae 
in the muffle at 400 °C for 1 h and then increasing the temperature to 600 °C for 
2 h. The temperature is then reduced to 300 °C for 15 min [58]. On the other hand, 
chemical activated carbon is prepared by adding chemical activators (250 ml of 85% 
H3P O4 or 150 ml of 4 M H2SO4) to 50 g of algae and mixing at ambient temperature 
to create a homogeneous mixture. 

The mixture is then placed in an oven at 110zC for two hours, then carbonized for 
three hours at 600 °C, rinsed with deionized water till pH = 7 is attained, and dried 
in an oven at 110 °C [59, 60]. The synthesis of bimetallic F e0 −Cu, Additionally, 
bimetallic (F e0 −Cu)/algae-activated carbon composites (AC–F e0 −Cu) are gener-
ated in-situ in a single step. The 0.1 M F eCl3.6H2O solution, 0.002 M CuCl2.2H2O 
solution, and 1 g/L of the prepared activated carbon (AC) are constantly stirred at 
250 rpm in the conical flask. A 0.5 M sodium borohydride N aBH4 solution is added 
drop by drop from the burette. The solution is agitated for an additional 20 min after 
adding all of the N aBH4 solution to ensure that the iron ion reduction reaction in the 
solution has been completed. The generated precipitate is then separated via filtration 
method. The separated precipitate is washed many times with deionized water and 
ethanol. Finally, the product is dried at 70zC and stored at room temperature under 
an ethanol layer [61, 62].
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9 Fava Bean Activated Carbon-Supported Bimetallic Nano 
Zero-Valent Iron Copper (AC–F E0 −Cu): 

Researchers used different transition elements in recent years to see the most efficient 
for removing colours and heavy metal ions from industrial effluent. Bimetallic nano 
zero-valent iron-copper (F e0−Cu) attracted much attention due to the high efficiency 
seen in their performance to remove colours [62]. The initial concentration of dyes 
was one of the most important aspects for selecting the adsorption technique used to 
treat industrial wastewater. The adsorption efficiency decreased with increasing the 
dye content. Pores, charges, hydrophilic or hydrophobic character, size, and distri-
bution all affected adsorption effectiveness. It also depended on the surface area and 
whether functional groups were present or not [63]. The magnetic property inherent 
in particular adsorbents provided outstanding and remarkable efficiency. This found 
in various treatments, such as using nano ilmenite F eT iO3 to remove cationic dyes 
like methylene blue with high effectiveness of up to 71.9 mg/g [64]. The contact time 
of the adsorbent materials with the industrial wastewater was critical in removing 
as many contaminants as feasible. By extending the contact time, the adsorption 
capacity of the adsorbent increased [65, 66]. Fava bean was widely consumed in 
several regions, including the Mediterranean region of Europe and Africa, as well as 
Latin America, China, and India. Fava bean peels were thrown out in large amounts. 
Different activation techniques were used to produce activated carbon with different 
properties. In prior research, fava bean activated carbon powder was employed to 
remove heavy metal ions with high removal efficiencies [67]. Response Surface 
Methodology (RSM) and Artificial Neural Network (ANN) combined with optimiza-
tion algorithm are considered more effective for the optimization process [54]. The 
ANN model can learn linear, nonlinear and complex relationships between process 
variables [68]. ANN model is implemented to predict removal efficiency. The Moth 
search algorithm (MSA) is a metaheuristic algorithm applied to the ANN model to 
get optimum conditions that achieve maximum removal efficiency. Methyle Orange 
(M.O) removal by polyaniline-based nano-adsorbent was investigated in [9]. ANN 
was implemented to predict the removal efficiency. OFAT was implemnted to get the 
maximum removal efficiency. The M.O removal by lignin-derived zeolite templated 
carbon materials was optimized by RSM with Box–Behnken design [57]. RSM was 
used to find the most influential factor on the removal efficiency. 

10 Activated Carbon Application 

Due to its large surface area and high pore number, activated carbon was used to 
remove metals from contaminated wastewater. Polychlorinated biphenyls (PCBs), 
humanistic compounds, pesticides, detergents, and organic pollutants can all be 
removed from contaminated streams using activated carbon [69]. Activated carbon’s 
capacity to absorb color and other contaminants from textile and dye wastes was
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also mentioned and commercially available in the application. For instance, utilizing 
filtrasorb circledR activated carbon, acidic, dispersion, and basic contaminants from 
textile-polluted wastewater were effectively removed, but direct dyes were not 
[70]. Activated carbon has been shown in numerous experiments to be capable of 
removing both cationic and anionic dyes, including reactive black and methylene 
blue. Numerous compounds, including sodium dodecyl sulfate, sodium dodecylben-
zene sulfonate, and sodium dioctyl sulfosuccinate, interact with activated carbon to 
improve its ability to bind to heavy metals [71]. 

11 Activated Carbon Activation Methods 

The dry raw precursor was first carbonized at high temperatures, followed by acti-
vation, to create activated carbon. To extract the hydrocarbons from materials like 
wood, waste, and coal during the carbonization process, they should be exposed to 
a red spot in the distillation apparatus that is less than 700 C in temperature. The 
substance, also known as carbonized material, char, or biochar, was carbonized via a 
pyrolytic process [72]. After the activation procedure, different activation techniques 
were used to develop the porosity and build the structure that enables the activation 
of the fine solid cavities in the activated carbon that was created. 

11.1 Physical Activation 

Commercially, physical activation is applied in a two-step process that begins with 
carbonization (pyrolysis) in a neutral atmosphere and ends with activation in atmo-
spheric oxidizing gases like steam, carbon dioxide, and nitrogen or air mixtures at 
temperatures ranging from 400 to 900 C [73]. However, some drawbacks were noted 
for the physical activation of activated carbon, including a lengthy activation time, 
low prepared activated carbon adsorption capacity, and high energy consumption. 
This method can produce porous structure activated carbon with high physical power; 
however, it is an expensive approach for producing activated carbon [58, 74] 

11.2 Chemical Activation 

In order to chemically activate materials with a high cellulose content, such as wood, 
fruit pits, and sawdust, wet oxidation is frequently used. Starting with organic precur-
sors, chemicals, and high temperatures, the chemical activation process is prepared 
[74]. The raw components were heavily dried and soaked with oxidizing agents 
before the chemical activation occurred. The remaining mixture was then heated for 
a set period of time after the suspension had been dried. Depending on the activation
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Fig. 6 Different applied 
activators for the activation 
of activated carbon [44] 

components and the ultimate properties of the produced product, activation could 
take place at a temperature between 300 and 800 circC. The produced activated 
carbon was then obtained by repeatedly washing the mixture. Another objective of 
the last rinse is the recovery of active chemicals [75]. Dehydrating agents that affect 
pyrolytic are chemical activators. 

11.3 Activated Carbon Activators 

When obtaining activated carbon, some chemical substances were used as activation 
agents. The precursor undergoes a variety of reactions depending on the activating 
agent, which alters the adsorption behavior. Alkaline or acidic groups are the primary 
chemical types used as potential activator agents, as depicted in Fig. 6. 

11.3.1 Activation by Phosphoric Acid 

It was common practice to use phosphoric acid, which has the chemical formula 
H3PO4, in the activation of various lignocellulosic materials [76]. It is the chemical 
that is used most frequently in the activation of activated carbon because it can turn 
raw materials into high-porous activated carbon. Compared to potassium, zinc chlo-
ride, and hydroxide, H3PO4 has fewer toxicological and environmental pollutants. 
Additionally, H3PO4 may produce vast quantities of alkaline or acid-soluble phos-
phates with substances like nickel, iron, boron, and others that can be incorporated 
into carbon precursors. It also has a low activation temperature and is not volatile [77]. 
When H3PO4 was used as an activator, the pores that were formed on the activated 
carbon surface area were shown to be tunnel-shaped in carbon electron micrographs 
and images from scanning electron microscopes. Additionally, it typically featured
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a honeycomb structure, which was completely developed as the chambers’ corners 
could be seen [78] 

11.3.2 Activation by Zinc Chloride 

Among other activating agents, zinc chloride was frequently used to create acti-
vated carbon, particularly from cellulosic and lignocellulosic precursors [28]. For 
the samples that have been impregnated with this substance during activation, zinc 
chloride serves as a dampening agent. The passage of volatile chemicals through 
the saturated pores of zinc chloride remains unaffected, and after the activation 
procedure, the volatile substances are released from the surface of the activated 
carbon. Zinc chloride’s mass ratio is increased, which makes volatile compounds 
more easily released and promotes the absorption of nitrogen by activated carbon 
[79]. The activation of zinc chloride causes swelling, an electrolytic reaction, in the 
cellulose molecular structure. Additionally, expansion increases the number of intra-
and inter-coated cavities and breaks down cellulose molecules, increasing the surface 
area of the activated carbon [80]. As lignocellulosic materials are activated, carbon, 
hydrogen atoms, oxygen, carbon dioxide, methane, and aldehydes are generated, 
along with diatomaceous distillates [81]. 

11.3.3 Activation by Potassium Carbonate 

Potassium carbonate, which is a well-known activating ingredient in the synthesis 
of activated carbon, has the chemical formula K2CO3 [82]. Unlike potassium and 
sodium hydroxide, which have negative effects, using potassium carbonate as an 
activation agent for nutritional supplements is safe [83]. Furthermore, potassium 
carbonate was shown to be a better activating agent than potassium hydroxide since 
it increased the yield, surface area, and pore volume of activated carbon. Additionally, 
potassium carbonate-produced activated carbon has reduced ash and sulfur content 
and a higher capability for adsorbing big molecules like methylene blue [84] 

11.3.4 Activation by Sodium Hydroxide 

A large number of microspores are produced on the surface of the activated carbon 
as a result of chemical activation using alkaline chemicals like potassium hydroxide 
and sodium hydroxide. Numerous investigations have demonstrated the effectiveness 
of sodium hydroxide as an activating agent in the production of activated carbon. 
As a result of probable interactions between the active components and the organic 
precursor surface, the surface of the activated carbon generates micropores. This 
is due to the emission of CO, CO2, and H2 gases as a result of the alkali metal’s 
interaction with the carbon structure. These gases are produced when Na2CO3 and 
hydroxyl reduction, respectively, decompose at high temperatures. Activated carbon
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with a rough surface and different pore diameters is what remains after the sodium 
hydroxide and other ingredients have evaporated during the preparation process. This 
process focuses on creating activated carbon’s porous structure [85]. 

11.3.5 Activation by Potassium Hydroxide 

Recently, many potassium compounds, including K2CO3 and KOH, were widely 
used in the synthesis of activated carbon [86]. Because of its enormous surface area 
and ability to form activated carbon, potassium hydroxide has been used the most 
widely of all activators. Additionally, under the same circumstances, the fine pore size 
distribution, low environmental contamination, less corrosiveness, and lower cost 
[87]. When lignocellulosic materials were in their uncarbonized state, phosphoric 
acid and zinc chloride were used as chemical activators. On the other hand, activating 
coal precursor materials was done using metal compounds like potassium hydroxide 
[88]. Numerous investigations have demonstrated the efficiency of KOH-activated 
carbon in the adsorption of phenols, heavy metals, dyes, and insecticides, among other 
organic compounds [89]. The evaporation of potassium hydroxide from areas where 
this activator had previously been present caused the cavities that were observed on 
the surface of activated carbon after the activation process [90]. In contrast to other 
activators like ZnCl2 and H3PO4, KOH-activated carbon has a higher pore volume 
and surface area but is noted for having a lower yield (10–40%) [91]. 

11.3.6 Factors Affecting the Adsorption Process 

The adsorption process can be changed by time, pH, the concentration of the pollutant 
at the start, and the amount of adsorbent material used. To get a high adsorption 
capacity for removing pollutants from polluted wastewater, these parameters should 
be optimized. In the process of treating wastewater, pH is one of the things that affects 
how well activated carbon absorbs things [92]. Say that a change in pH changes the 
degree of ionization of the adsorptive molecules and the surface properties of the 
adsorptive material. The pH of the dye solution might not be very important to the 
adsorption process if the dye binds to the surface through van der Waals’ force, 
hydrophobic-hydrophobic interaction, or a hydrogen bond. Also, the best pH for 
dyes to stick to activated carbon depends on how it was activated and what kind 
of carbon precursors were used [93]. It was said that the concentration of dyes as 
an adsorbent material is a factor that affects how well dyes absorb. For example, as 
the number of effluent dyes goes up, the dye’s ability to absorb water goes up until 
the process is saturated. At this point, there is no more adsorption because all of 
the binding sites on the dyes are full. On the other hand, other research has shown 
that the dye’s ability to stick to a surface decreases as its concentration rises. This is 
because the adsorption sites on the surface of the adsorbent are filled up quickly [94]. 
Adsorbent dose: The amount of adsorbent is an important parameter because it affects 
the process of adsorption. In general, increasing the amount of adsorbent material
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makes dye removal work better. This is because the adsorbent surface has a lot of 
places where dye can stick to it. The effect of adsorbent dosage is an important factor 
that shows how well a material can absorb dyes. If adsorption happens with a small 
amount, it shows how important the material is from an economic point of view [95]. 
To get the best dye removal, the different factors that affect the adsorption process 
were optimized. Many optimized models were used to do this. For the optimization 
process, most studies used OFAT models, which stands for “one factor at a time.“ 
But optimization with interactive models like RSM and ANN is a better way to do 
things. 

12 Carbon Nanomaterials as Adsorbents 
for Environmental and Biological Applications. 

CN have been studied a lot for adsorption applications because they are chemically 
stable, have different structures, are light, and can be made in large quantities. Their 
textural properties, such as average pore diameter, total pore volume, and infinitely 
high surface-to-volume ratio, have led to a lot of research into the use of CN as 
potential adsorbents for water purification and biological applications [46, 60, 72]. 
Because CN is a chemical, its surfaces are easy to change with chemical and physical 
treatments. This lets its properties be improved in a specific way [39]. Also, the fact 
that biofunctionalizations are possible suggests that there are a lot of ways they 
could be used in biological systems. Because of these things, CN is an interesting 
subject for developing highly sensitive, selective, and efficient adsorbent devices for 
removing inorganic, organic, and biological contaminants from water solutions, as 
well as drug delivery systems and nano sensors [40]. 

13 Conclusion 

Remarks Carbon nanoparticles, as illustrated in this chapter, can be effective in 
the filtration and treatment of water. These nanomaterials, which include fullerene, 
carbon nanotubes, and graphene, have particularly intriguing structure, morphology, 
and adsorption properties, making them potentially useful in industry as nano adsor-
bents with high affinity, capacity, and selectivity. Sargassum dent folium, a low-cost 
natural alga, was effectively used to produce another composite nanomaterial with 
activated carbon, such as AC–F e0 −Cu supported on algal-activated carbon (AC– 
F e0  −Cu), for treating anionic methyl orange-contaminated industrial wastewater. 
Composites of unprocessed algae and H3P O4 chemical activated carbon demon-
strated the most effective decolorization. Furthermore, activated carbon from fava 
beans and bimetallic F e0 −Cu were used to treat industrial wastewater for the 
anionic methyl orange (M.O) dye, with a high removal efficiency expected. The
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removal efficiency is predicted using RSM and ANN models for different values of 
the components. By optimizing these models, the highest removal efficiency can be 
determined. ANN is improved by the Moth Search Algorithm (MSA). The highest 
removal efficiency and associated factor values are projected using these optimization 
strategies. 
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Biological Properties of Carbon Based 
Materials for Biomedical Applications 

A. Joel Amalan, M. Kanagalakshmi, K. Hemkumar, and Anitha Pius 

Abstract The study of carbon-based materials (CBMs) have grasped the attention 
of scientists from various field of science all around the world, like bio-sensing, 
cancer therapy, drug delivery, etc. This is due to the unique physical, chemical, and 
biological properties which includes thermal, mechanical, electrical, optical, antibac-
terial and antimicrobial activity. Various types of carbon-based materials like carbon 
fiber (CF), carbon nanotubes (CNT), graphene, carbon black (CB), activated carbon 
(AC), carbon dots/graphene quantum dots (CDs/GQDs), graphene oxide (GO), etc. 
have been investigated for various bio-medical applications which shows unique 
biological properties. 

Keywords Graphene oxide · Activated carbon · Low cytotoxicity ·
Biocompatibility · Antibacterial activity · Biodegradability 

1 Introduction 

Carbon-based materials (CBMs) is the fashioning materials for the recent research 
in the field of materials science and nanotechnology. Carbon is one of the most basic 
nanomaterials, which attracts wide attention due to its outstanding properties in terms 
of electrical conductivity; fast charge transfer, high stability and ease of modification. 
The morphology of the material can be easily altered for high surface area and large 
pore sizes, which resulted in the amorphous carbon material. Experiments have been 
done not only to alter the morphological structure of carbon but also to modify the 
elements. The following are a few advantages of carbon nanomaterials:

. Their supramolecular pi-pi stacking allows them to absorb a large amount of 
drugs.
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. CBMs can be used as theranostics materials due to their unique optical properties 
and ease of amalgamation with luminous chemicals.

. CBMs possess high heat conversion capacity in the near-infrared region, making 
them appropriate for photo-thermal therapy.

. Tunable surface chemistry can be used for the controlled release of therapeutics 
(Fig. 1). 

Various investigations on the alteration of carbon materials have been studied. 
Extensive studies in the past decades reveal that the carbon-based materials could 
be exploited to mimic physiological micro environments to promote cell adhe-
sion, proliferation, differentiation and even more to control their eventual fate. 
They possess many superior properties like chemical stability, biocompatibility, 
low toxicity and flexibility for surface functionalization. Because of their excel-
lent biocompatibility, solubility and selectivity, carbon-based materials have shown 
great potential as the bio-sensing and bio-imaging materials. Carbon-based materials 
play the promising candidates for the bio-delivery carriers with unique physicochem-
ical properties, such as large surface area, high purity, good bio-functional ability, 
good solubility, high drug loading capacity, the capability of cell membrane penetra-
tion, etc. There are many challenges in developing effective treatment, sensing, and

Fig. 1 Classification of various carbon based materials (CBMs) 
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imaging technologies in the biomedical applications. Here, we briefly review rele-
vant studies of carbon-based materials to explore their potential biological properties 
and applications, including in vitro, in vivo, cancer therapy, etc. 

2 Carbon Dots 

In 2004, Scrivens made the first carbon dots (CD) discovery using arc discharge 
technique [1]. They are typically of zero-dimensional (0D) nanoparticles with the 
particle size ranging between 0 and 10 nm. Different synthetic methods namely elec-
trochemical synthesis, combustion method, hydrothermal method, oxidation method, 
microwave method, ultrasonication, arc discharge, laser ablation and plasma method 
have been adopted [2]. They have many surface functional groups, such as carboxyl, 
amino, hydroxyl, and other groups, which makes it easier to alter their optical prop-
erties. The absorption band may be controlled through various surface passivation or 
modification techniques. The optical absorption of CDs is typically strongest in the 
UV region, with a tail that extends into the visible range. The majority of one-step 
manufactured CDs have absorbance between 280 and 360 nm [3]. 

2.1 Biological Properties and Applications of Carbon Dots: 

CDs have outstanding properties such as good biocompatibility, penetrability, low 
toxicity, weak interactions with proteins, resistance to photobleaching, fast clearance, 
low cost, and simple synthesis. CDs have shown tremendous applications in vitro 
and in vivo imaging due to their robust emission fluorescence and low cytotoxicity. 
CDs can easily pass through biological membranes and accumulate in the cytoplasm 
or nucleus of cells which serve as the fluorescent probe. The cytotoxicity of luminous 
CDs has so far been thoroughly studied in vitro [4]. There is the increasing number 
of studies to investigate the possible uses of CDs in vivo [5]. 

Recently, both in vitro and in vivo studies on the cytotoxicity of PEG1500N-
passivated CDs and PEG1500N (PEGylated 1500 N) were conducted. Human 
colorectal adenocarcinoma HT-29 cell and breast cancer MCF-7 cell line were both 
treated with PEG1500N-passivated CDs and PEG1500N [6]. It was demonstrated that 
PEG1500N had more effects on cell viability and proliferation than CDs. Addition-
ally, using intravenous injections in mice, in- vivo  bio-distribution and cytotoxicity 
of CDs were studied. CDs shows good photoluminescence (PL) bio-imaging at the 
lower concentration (Fig. 2).

Along with having exceptional biocompatibility, CDs have good electron-donor 
and electron-acceptor capabilities. CDs could be utilized for the intracellular ion 
detection, protein and enzyme identification, vitamin detection and nucleic acid 
detection, etc. The ion detection methods are identical, even though CDs made from 
diverse raw materials were used to sense variety of ions, including Cu2+, Hg2+,
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Fig. 2 Structure of carbon dots with surface passivation agents—PEG1500N

Ag2+, Cr3+, Fe3+, K+, Cl−, and H+. The surface functional groups on CDs shows 
distinct affinities to various target ions, which causes the PL intensity to be quenched 
by an electron or energy transfer mechanism and results in the good selectivity to 
other ions. To detect Hg2+, a brand-new optical sensor made of graphene oxide and 
oligodeoxyribonucleotide (ODN)-CDs was developed [7]. 

Graphene oxide could effectively suppresse the fluorescence of ODN-CDs using 
fluorescence resonance energy transfer. The luminescence was restored with the 
addition of Hg2+ by releasing ODN-CDs. An ultrasensitive CDs-based sensor have 
been developed to sense phosphate in the micromolar concentration [8]. CDs have 
received much attention because of their good photo-stability and reduced cytotoxi-
city. CDs serve as the excellent candidates in the bio-applications due to their visible 
excitation, emission wavelengths and high brightness at the individual dot level. 

3 Graphene 

Graphene is nothing but the thick sheet of carbon atoms organized in a hexagonal 
arrangement and bound together by sp2 hybridization. It shows high thermal conduc-
tivity, high current, chemical inertness, optical transmittance and extremely high 
hydrophobicity, [9]. It is the thinnest material created so far and it consists of multiple 
graphite layers. The crystal structure of graphene shows densely packed honeycomb 
of carbon atoms [10]. GO is produced from the oxidation of graphene [11] which has 
superior surface functionalities, amphiphilicity, fluorescence quenching ability and 
surface-enhanced Raman’s scattering properties [12]. Graphene is the promising plat-
form for tissue engineering, molecular drug delivery, cancer treatment, biosensing 
and bioimaging due to its biocompatibility and speedy functionalization.
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3.1 Biological Properties and Applications of Graphene 

It can be employed for biosensing, bioimaging, hypothermia capabilities, 
biomolecules recognition, bioassays, molecular medicine and small-molecule drug 
delivery [13] due to its wide surface area, oxygen-containing activity, improved 
conductivity and good biocompatibility. Scientists have discovered that nanoparti-
cles based on graphene exhibit outstanding antibacterial capabilities. The enormous 
surface area of graphene, particularly monolayer graphene and GO could leads to 
the surface phenomena, such as physical adsorption or catalytic chemical reaction. 

Zhang and colleagues prepared GO/polyaniline nanocomposite for the biosensing 
of DNA at the concentration range between 1 × 10−6 and 1 × 10−14 [14]. Bone tissue 
does not possess sufficient regeneration ability because of the nonvascular and cell-
free properties. Hence graphene based materials and biopolymers together are often 
adopted in bone tissue engineering to accelerate the growth and differentiation of 
bone cells (Fig. 3). 

Biomaterials used in the bone tissue engineering must be biodegradable in most 
cases, like collagen, gelatin (natural degradable biopolymers), polylactic acid, 
polyglycolic acid (PGA) (synthetic degradable biopolymers). Li et al. designed Poly 
(L-lactic acid) (PLLA) and graphene composite [15] for the biomedical applications. 
When GO is modified with PLA to form GO-g-PLLA, the tensile strength and 
elongation at the break of the prepared GO-g-PLLA nano-composite were improved. 
GO forms hydrogen bonds with PLLA and it is equally distributed in the polylactic 
acid and hence resulting in the polylactic acid/graphene oxide nanocomposites with 
significantly increased elastic modulus and tensile strength. Graphene may emerge 
as a distinct nanoparticle for application in biomedical research through effective 
collaboration with other disciplines of science.

Fig. 3 Scheme illustration for the preparation and functionalization of GO-g-PLLA 
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4 Carbon Nanotubes (CNT) 

CNT has a cylindrical and long tubular structure which consists of rolled-up sheets of 
graphene. It comprises of single-walled CNTs (SWCNTs) which are made of a single 
layer of carbon atoms and multi-walled CNTs (MWCNTs) which are formed by 
several nanotubes interlinked concentrically [16] Several biomedical applications of 
CNTs includes drug vectors, gene delivery to the cells or organs, tissue regeneration, 
and biosensor diagnostics and analysis. 

4.1 Biological Properties and Applications of Carbon 
Nanotubes 

CNTs shows excellent fast electron transfer kinetics, ultra-light weight, chem-
ical inertness, high tensile strength, good antibacterial and antifungal properties. 
MWCNTs’ antibacterial capabilities were influenced by the surface functional 
molecules, carbon nanotube density, diameter, length, and purity [17]. CNT deriva-
tives shows superior action against gram-positive bacteria and comparably lesser 
activity against gram-negative bacteria [18, 19]. CNTs have numerous favorable 
features that make them perfect candidate for the optical detection. It gives wide 
applications in the biomedical applications due to the low photo absorption and low 
auto-fluorescent background [20]. 

CNTs have attracted immense attention as a highly competent vehicle for trans-
porting various drug molecules into the living cells. Generally, drug molecules are 
attached to CNT sidewalls via covalent or non-covalent bonding between the drug 
molecules and functionalized CNT. Functionalization of carbon nanotubes might 
increases the antimicrobial activity while helping to decrease the toxicity towards 
mammalian cells. The current work uses the electric field to release the ibuprofen 
from the hybrid hydrogel made of sodium alginate (SA), bacterial cellulose (BC) 
and multi-walled carbon nanotubes (MWCNTs) (Fig. 4) [21].

The anti-bacterial properties of MWCNTs were affected by the several param-
eters, including surface functional molecules, density, diameter, length and carbon 
nanotube purity [22, 23]. Carbon nanotubes have shown unique advantages and there-
fore, acting as the carrier for the effective delivery of biomolecules like antibiotics, 
proteins, DNA, etc. MWCNT were applied for the bio sensing devices, antibacterial 
actives and cancer diagnosis.
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Fig. 4 Schematic of the preparation of the drug loaded BC/SA/MWCNTs hybrid hydrogels

5 Graphitic Carbon Nitride 

Graphitic carbon nitride (g-C3N4)-based materials are burgeoning fluorescent poly-
meric materials mainly due to the presence of C and N atoms. They find applications 
in the diagnosis and therapy, bio-sensing and antibacterial application [24]. Graphitic 
carbon nitride (g-C3N4) shows outstanding biocompatibility and unique fluores-
cent feature which find applications in the biosensor applications. To accomplish 
target-specific biomedical applications, we need to prepare g-C3N4-based materials 
with superior water-solubility, biodegradability, thin nanosheets and enhanced light 
absorption. Many attempts have been made to prepare synthesis novel g-C3N4-based 
hybrids. 

5.1 Biological Properties and Applications of Graphitic 
Carbon Nitride 

G-C3N4 nanostructures possess high fluorescent quantum and quenching yields, 
prominent photo stability, outstanding biocompatibility, low cost and nontoxicity, 
which have been used in in vitro and in vivo fluorescent biosensors [25]. Hydrogen-
bonded g-C3N4supramolecular quantum dots were synthesized by the engineering
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Fig. 5 The mechanism of E.coli inactivation in the presence of Ag/g-C3N4 under visible light 

of supramolecular chemistry which shows low cytotoxicity, biocompatibility and 
outstanding biodegradability [26]. G-C3N4 are more stable than conventional photo-
sensitizers, which facilitates further chemical engineering modification for a stronger 
therapeutic impact and multi-functionality [27]. 

G-C3N4-based photocatalysts have attracted attention in the antibacterial applica-
tions due to their high stability, bulk availability, low cost, and eminent optical perfor-
mance. Pure g-C3N4 without any additives shows outstanding antibacterial proper-
ties under visible light illumination due to its unique photo catalytic property [28]. 
By modifying g-C3N4 with Ag NPs, the photocatalytic performance of the g-C3N4 

could be significantly enhanced. The Ag/g-C3N4 heterostructures were reported to 
have excellent disinfection effects for Escherichia coli due to the surface plasmon 
resonance effect, good adsorption of visible light and decreased recombination of 
free charges [29] (Fig. 5). 

6 Activated Carbon 

Activated carbon, also known as activated charcoal, is a refined form of carbon 
which shows high capacity for adsorbing different types of organic and inorganic 
chemicals, filtering out impurities, purifying antibiotics, removing color from sugar, 
purifying gases and more. As the result, there are hundreds of different variants 
of commercially produced carbons are produced. Activated carbon is produced in
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the three primary categories namely extruded activated carbon, granular activated 
carbon, and powdered activated carbon. 

6.1 Biological Properties and Applications of Activated 
Carbon 

Nitrifying bacteria or heterotrophic bacteria are responsible for the metabolizing 
biodegradable organic materials which are aided by the activated carbon (AC) [30]. 
Numerous elements favor the adhesion, growth, and metabolism of these bacteria. 
Some of them are mentioned below:

. Extracellular polymers secreted by the bacteria.

. Grain surface unevenness coupled with a physical–chemical type adsorption capa-
bility (similar to that of organic molecules); these properties allow the bacteria to 
remain attached to the AC even in the presence of a high sheer force.

. Bacteria will be protected against chlorine when chlorine is found in the water.

. Organic molecules are used as the bacteria nutrients which are trapped in the AC 
pores. 

7 Carbon Fiber 

Carbon fibers are fibers of about 5–10 µm in diameter and are composed mostly of 
carbon atoms. Carbon fibers have several advantages including high stiffness, high 
tensile strength, low weight, high chemical resistance, high temperature tolerance 
and low thermal expansion. These properties have made carbon fiber very popular in 
aerospace, civil engineering, military and motorsports and other competition sports. 
However, they are relatively expensive when compared with similar fibers, such as 
glass fibers or plastic fibers. 

7.1 Biological Properties and Applications of Carbon Fiber 

Since the late 1970s, carbon fibers are utilized extensively as the biomaterials due 
to the light weight, high strength and flexibility. There have been several studies 
on carbon fiber composites and the majority of them includes the incorporation of 
polymers and other materials. Carbon fibers are typically used in the conjunction 
with other materials to enchanes their properties. Cell therapy, cytokine treatment 
and gene therapy are a few examples of techniques used in the regenerative medicine.
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Numerous studies on these techniques, either alone or in combination, are moving 
forward quickly [31]. To obtain outstanding regenerative performance, a strong scaf-
fold material is required that can keep cells or cytokines at the spot and aid in the 
synthesis of new tissue [32]. Carbon fibres composites have shown good biocom-
patibility in both in vivo implantation study and an in vitro cell adhesion study [33] 
Carbon fibres have gained lot of attention in the field of tissue regeneration. Carbon 
fibres were successfully used by Cameron et al. to repair the damaged abdominal 
walls in the rats [34]. 

8 Conclusion 

This chapter has dealt with the most recent developments in carbon nanoparticles’ 
therapeutic and imaging in the biomedicine. Carbon nanomaterials are the novel class 
of materials with intriguing chemical, optical and mechanical as well as biological 
characteristics. These carbon based materials shows excellent antibacterial applica-
tions. These nanomaterials, which are made from the same chemical element but 
have different allotropic forms of carbon, displays diverse properties and behaviors 
depending on the size and how the carbon atoms are bound to form the bigger struc-
tures on the nanoscale. It is now possible to create water-soluble and biocompatible 
carbon nanomaterials with minimal in vitro and in vivo toxicity and to use these 
nanostructures for a variety of biomedical imaging and therapeutic applications. 
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Synthesis Strategies of Various Carbon 
Materials 

Seema Panicker, Javad B. M. Parambath, and Ahmed A. Mohamed 

Abstract Carbon materials have been known since early human activities for heating 
purposes and basic daily life. With the development and the industrial revolution, the 
need for carbon materials for energy and scientific developments became inevitable. 
The diverse forms of carbon materials include cheap allotropy such as graphite and 
expensive such as diamond. The synthesis strategies are divided into natural and 
laboratory. The synthesis of carbon nanotubes in different forms has added many 
applications to the field. Moreover, graphene and its doped forms are considered 
a huge expansion into the chemistry of carbon materials. Here in this chapter, we 
discuss the fundamentals of the synthesis strategies of carbon materials. 

Keywords Carbon materials · Carbon nanotubes · Graphene · Carbon quantum 
dots · Synthesis strategies 

1 Introduction 

Carbon (Latin carbo, meaning “coal”) is one of the most abundant elements on 
the earth’s surface. It has a total of six electrons with four valence electrons which 
makes carbon unique as it enables the ability for catenation i.e., it can form C–C 
bonds to any extent as well as it also forms covalent bonds with other atoms that 
give rise to hundreds of different stable organic compounds and a wide range of 
carbon materials. Carbon has been there through civilizations on earth, and the most 
common carbon materials that have been used by humans since the pre-historic era 
are diamond, graphite, and charcoal. These materials consist of only carbon, but they 
have a broad spectrum of properties that were utilized to create a variety of materials. 
With the advancement of science and invent of modern technologies, carbon is now
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used to synthesize a wide variety of materials like fullerenes, graphitic onions, carbon 
nanotubes, fibers, carbon foils, etc. These carbon materials are built using different 
physical and chemical processes in a well-controlled system. Advancements in the 
field of synthesis and applications of carbon materials particularly carbon nanoma-
terials have been an active area of research in recent times. Carbon nanomaterials 
exhibit applications ranging from the formation of nanocomposites, sensors, elec-
tronics, and catalysis to energy storage and production devices, as adsorption and 
purification materials, in wastewater treatment, and many more. Carbon materials can 
be used in multidisciplinary fieldsonly because of their unique micromorphological 
structures, crystallinity, and multifaceted properties, which are entirely dependent 
on the methods and strategies used in their synthesis [1]. 

Carbon is abundantly available on earth’s crust and is being utilized by mankind 
in numerous ways. Out of the different forms of carbon, graphite is one of the most 
thermodynamically stable ones and it has shown a remarkably high conductivity, 
making it suitable for use in batteries, solar panels, electrodes, etc. Graphite is made 
up of layers of sheets that consist of graphene. It is strong and is recently being used 
to synthesize nanomaterials after conversion to graphene oxide. Graphene nanopar-
ticles are used in several applications [2]. Another popular carbon material used 
nowadays is carbon nanotubes (CNTs). The chemical and physical properties of 
graphene, CNTs, and fullerenes are related to each other, and they exhibit tremen-
dous scope in research and applications. The catalytic and adsorption properties of 
carbon materials are well-recorded, Figs. 1 and 2 [3, 4]. In recent times, different 
synthesis strategies have been developed for making heterostructures of carbon-
based nanomaterials, Fig. 1 [4]. Their synthesis under strictly regulated conditions 
has been successfully used in biomedical applications, drug delivery systems, nano-
electronics, optoelectronics as well as sensors and storage purposes [5]. Here, we 
discuss some of the crucial synthesis strategies of carbon materials and explore their 
dynamic development into multifaceted structures.

2 Carbon Nanotubes (CNTs) 

CNTs are multipurpose and one of the most important types of carbon materials, 
that have been developed in recent times. They have a cylindrical and tubular struc-
ture made up of sheets of graphene. There are single-walled CNTs (SWCNTs) and 
multi-walled CNTs (MWCNTs) consisting of interlinked nanotubes. As MWCNTs 
are multi-layered with carbon atoms, they have very high mechanical strength and 
possess higher tensile strength than common metals like iron and steel [6]. CNTs are 
most popularly used in making vacuum microelectronics, and electron field emission 
systems, used for storing energy and in electrochemical functions. There are various 
methods of synthesizing CNTs like the plasma-based methods which include the 
arc discharge and laser ablation methods and thermal preparation methods that use 
chemical vapor deposition (CVD) and hydrothermal methods.
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Fig. 1 Examples of heterostructures: zero-dimensional a core–shell and b core-cage nanoparticles, 
one-dimensional c core–shell nanowires and d multi-segment nanowires nanotubes, e, f multi-
dimensional sheet or network nanocomposites [4] 

Fig. 2 Laser ablation method for the synthesis of SWCNTs [3]
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CVD is the most used method in the synthesis of CNTs as this technique gives rise 
to the production of CNTs in different forms like powdered CNTs, as well as straight 
chain or coiled CNTs. The growth of CNTs in this process was checked with different 
temperatures. The arc discharge method was the most conventional method used to 
produce CNTs as described by Iijima [7]. In this method, the current was passed 
between two graphite electrodes in the presence of helium gas, and this resulted in 
the formation of graphite vapors. The vapors then condensed on the cathode and the 
well. The graphite that gets deposited on the walls forms the CTNs. Metals like Co 
and Ni can be used as anodes. Several other methods like passing a carbon-containing 
gas over a catalyst containing metal nanoparticles were reported by Calvert [8]. 

The laser ablation method is mainly used to synthesize MWCNTs [9]. In this 
process of synthesis, a pulsed or continuous laser was used to form vapors of a mixture 
containing graphite with traces of Co or Ni. In the chemical vapor deposition (CVD) 
method, different metal catalysts were used, and they are deposited on a substrate. The 
metal catalysts initiate the nucleation process, subsequently resulting in the etching 
and annealing of the substrate by compounds like ammonia. Carbon sources like 
methane, carbon monoxide, and acetylene were then used and were transformed into 
carbon atoms with the help of energy from plasma or a heated coil. The substrate and 
the carbon were then allowed to interact, giving rise to CNTs [10]. The hydrothermal 
technique is another method to synthesize CNTs, primarily the MWCNTs. In this 
method, a mixture of polyethylene and water was prepared and a catalyst e.g., Ni 
was added and heated at elevated temperatures ranging between 700 and 800 °C at 
a pressure of 60–100 MPa [11]. 

3 Carbon Quantum Dots and Carbon Sphères 

The carbon quantum dots (CDs) and carbon spheres are grouped as zero-dimensional 
carbon materials due to their spherical shape. Carbon dots mostly have a size ranging 
from 2 to 10 nm. The CDs exhibit fluorescence properties because of their small size, 
and they undergo a surface passivating procedure to become colorful and bright with 
photoluminescence properties. Thus, forming CDs that are very stable nanomaterials 
[12]. CDs are highly superior in properties like chemical inertness, and biocompat-
ibility, and they are the least cytotoxic compared to metallic quantum dots. Hence, 
CDs are widely used for biomedical applications [13, 14]. Different synthesis strate-
gies are applied for CD preparation. Methods used to prepare CDs are the laser 
ablation of graphite, electrochemical oxidation of graphite, chemical oxidation of 
a suitable precursor, proton-beam irradiation of nanodiamonds, microwave-assisted 
method, and thermal oxidation of suitable precursors. Carbon spheres with desired 
size and surface modifications were synthesized for a wide range of applications 
such as drug delivery, electrodes, catalysts, gas storage purposes, etc. Precise and 
highly controlled synthesis strategies were used to obtain carbon spheres with large 
monodispersity [1]. The synthesis approaches include hydrothermal reduction, emul-
sion, self-assembly, and templating methods. It is challenging to prepare uniform
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carbon spheres with sizes within the range of 200 nm, as smaller sizes are required 
for their bio-medical applications. Carbonization of polymer analogs was conducted 
to prepare carbon-based spheres. These polymers should be thermally stable and 
able to form carbon residues after elevated temperature pyrolysis. Hence, many 
various chemical synthesis methods were reported for the preparation of polymers 
and carbon spheres. The carbon nanospheres were synthesized by the carbonization 
of a polymer of resorcinol and formaldehyde in the presence of the basic amino acid 
L-lysine, which acted as a catalyst in this process. The size of the resulting carbon 
nanospheres was tuned in the desired range by adjusting the concentration of catalyst 
and resorcinol [1]. 

4 Buckminsterfullerene 

Buckminsterfullerene is the most popular and common fullerene, with 60 carbon 
atoms that are arranged in a cage-like structure. Recently C60 based nanoparticles of 
various shapes like nanorods, nanotubes, and nanosheets are being extensively used 
in the field of nanoscience. 

Fullerenes can be synthesized by the arc discharge method and the process was 
conducted under elevated-temperature furnaces. The carbon clusters were attached 
with a buffer and the reaction resulted in the condensation of carbon. Fullerenes 
thus synthesized were separated using chromatographic techniques [15]. Wei [16] 
reported another method for the synthesis of fullerenes by detonation method. In 
this process, trinitrotoluene (TNT) and graphite mixture were placed in a mold and 
converted into a column shape by applying pressure. HMX was used as a charge 
booster and the detonator was connected to a firing box and the TNT/graphite mixture, 
HMX, and a detonator were reacted in a vacuum vessel. The vessel was then put in 
cooling water to facilitate cooling. The products obtained were treated with acetone. 

5 Graphene Oxide 

Graphene is one of the most researched materials and is considered the “material 
of the future” [17]. Graphene is unique in the sense that it contains only carbon 
atoms in its structure, where each carbon atom is attached to three other carbon 
atoms. Because of its unique properties, graphene has large applications as gas and 
biomolecule sensors, transparent conductive films (TCFs), field effect transistors 
(FETs), and graphene batteries, Fig. 3 [18]. Graphene oxide is a carbon layered 
structure with functional groups such as = O, –OH, –O–, –COOH where oxygen is 
common in all of them. These groups are attached at both ends of the graphene oxide 
layers as well as on the edges of the plane [19]. Graphene oxides were synthesized 
by the process of oxidation of graphite into graphite oxide and then subjected to 
exfoliation to form graphene oxide. Because of its hydrophilic nature, graphene
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Fig. 3 Graphene oxide as the precursor of different derivatives [18] 

oxides are easily prepared as water or organic-based suspensions. Graphene oxide 
can be used as the precursor due to the presence of oxygen in it, for the synthesis of 
graphene derivatives such as fluorographene, bromographene, graphene, and many 
others, Fig. 3 [18]. 

The first attempt to synthesize graphene oxide was performed as early as 1859 by 
Brodie [20] who studied the reactivity of flake graphite. Nowadays, several routes of 
synthesis methods are used to prepare graphite oxide/graphene oxide. The use of an 
oxidizing agent in an acidic medium is one of the most common methods of synthesis. 
Electrochemical and microbial methods are also used very commonly. In one of the 
studies reported by Tour, Fig. 4 [21], phosphoric acid was mixed with sulfuric acid 
in a 1:9 ratio, and into this, a solution of potassium permanganate and graphite in 
the ratio of 6:1 was added in freezing conditions. After that, the mixture was heated 
at 50 °C and stirred for 12 h. The mixture was then poured into ice and finally 
30% H2O2was added to remove the excess potassium permanganate. Phosphoric 
acid works as a dispersive and etching agent, as well as a stabilizer of the oxidation 
process, which makes the synthesis of graphene oxide safe. This route produced a 
higher yield of graphene oxide with a higher level of oxidation and a more regular 
structure [21]. The eco-friendly electrochemical method is another popular method
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Fig. 4 Representation of the procedures followed starting with graphite flakes (GF). Under-
oxidized hydrophobic carbon material recovered during the purification of IGO, HGO, and HGO+. 
The increased efficiency of the IGO method is indicated by the very small amount of under-oxidized 
material produced [21]

of synthesis and is used for large-scale production of graphene oxide [22]. The use 
of biological systems also produced eco-friendly graphene oxide, Fig. 5 [23]. 

6 Nano-Diamond 

Nanoscale diamonds were discovered long before the plethora of nanomaterials 
began. Nanodiamonds (NDs) moreover, were naturally present in stars and mete-
orites before their first artificial synthesis [24, 25]. However, extensive applications 
and synthetic strategies have only been developed recently. Momentarily, NDs with 
diverse structures, small sizes, and relatively low toxicity occupy a special niche 
in the carbon nanomaterials class. First, synthetic NDs were formed by detonating 
carbon-rich explosives such as trinitrotoluene (TNT) and hexogen (RDX) in a closed 
chamber in an inert condition named detonation nanodiamond (DND) [26]. Consider-
able progress was achieved since then in NDs synthesis, discoveries such as laser abla-
tion [27], high-effect grinding ball milling [28], chemical vapor deposition (CVD) 
[29], micro plasma-aided gas phase synthesis [30], chlorination of carbides [31], 
heavy ion irradiation on graphite [32], carbon onions [33], and ultrasonic cavita-
tion [34]. Either top-down or bottom-up approaches are used to synthesize NDs as 
illustrated in Fig. 6. However, thus far we are unable to precisely control the NDs 
composition and still, the major synthetic strategy utilized at the production level is
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Fig. 5 Synthesis of EGO by water electrolytic oxidation. a Schematic illustration of the synthesis 
process of EGO by water electrolytic oxidation. b–e Photos of the raw material and the products 
obtained at each step. b FGP. c, GICP (blue area) obtained after EC intercalation of FGP in 98 
wt.% H2SO4 at 1.6 V for 20 min. d Graphite oxide (yellow area) obtained by water electrolytic 
oxidation of the GICP in 50 wt.% H2SO4 at  5 V for 30 s.  e Well-dispersed EGO aqueous solution 
(5 mg·mL−1) obtained by sonication of the graphite oxide in water for 5 min. Scale bars in b–d: 
1 mm [23]

the detonation method. Contextually, here we discuss recent advances in the synthesis 
of nanodiamonds.

Academic and industrial interest in NDs synthesis led to the exploration of a 
wide range of applications, including additives in lubricants, optoelectronics, drug 
delivery, bio labels or biomarkers in the biomedical community, etc., owing to their 
outstanding mechano-chemical resistance, biocompatibility, and optronic properties. 
Shenderova and Gruen provided a detailed discussion of the NDs’ synthetic strategies 
[35]. At present, high-pressure high-temperature (HPHT) synthesized by the “top-
down” method and detonation strategy a “bottom-up” method are the two major 
synthetic procedures for NDs [36]. 

DND NDs are formed after slow cooling of supersaturated carbon vapors gener-
ated by controlled inert condition explosion, resulting in 3–5 nm diamond particles 
[37]. Controlled air oxidation steps were reported to tune the particle sizes [38], and 
layer-by-layer C-atom removal via oxidation resulted in reduced size (5.2–4.8 nm) 
of NDs from DNDs [39]. Recently, NDs less than 2 nm were reported by one-
step-controlled oxidation in the air [40]. On the other hand, bottom-up methods for 
NDs synthesis provide a finer tunability of size, purity, and better surface chemistry. 
HPHT NDs were obtained by grinding micro diamonds, which used high pressure
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Fig. 6 Schematic illustration of NDs synthesis using top-down and bottom-up approaches [36]

and temperature in a hydraulic press in the presence of a metal catalyst and carbon 
precursor solution. These modern NDs are mostly far beyond 10 µm in size. Particle 
sizes reduced below 10 nm in the HPHT method are possible but aren’t commer-
cially scalable until now [41, 42]. Generally, synthesis of NDs should be possible 
in relatively low pressure and temperature, including variation from the theoretical 
graphite-diamond equilibrium line. However, the right choice of precursors and reac-
tion conditions can thermodynamically and kinetically favor NDs formation at milder 
conditions, including a selection of a proper catalyst. For instance, a recent report 
showed the low-temperature, hydrothermal method to form NDs by using graphene-
oxide or nitrated polycyclic aromatic hydrocarbons as a precursor [43]. A crystalline 
ND with an average size of 2–3 nm range was achieved even at a moderate 423 K 
temperature. A few other examples include the CVD technique used in diamond 
film synthesis. In general, adamantane and diamondoid are used as nucleation seeds 
for NDs film growth in CVD [44, 45]. Overall, material research has the potential
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to control ND synthetic strategies in tuning sizes, dopants, and surface chemistry, 
and the future of this discipline seems to be major in the basic science debate on 
the stability of sp2 vs sp3 carbon at the nanoscale, as well as for the development of 
applications. 

7 Activated Carbon 

Activated carbon (AC) is well-known and one of the oldest and most widely used 
adsorbents for water treatment. Though, the first report on commercial activated 
carbon enrolls to von Ostreijko who gained two patents in the 1900s, focusing on the 
basic concepts of chemical (metal chlorides, CO2) and physical (steam) activation 
of carbon [46]. ACs are carbon-based materials that contain a full-grown internal 
pore structure. ACs were produced from a variety of carbon-rich precursors such as 
wood, coal, lignite, and coconut shell [47]. Enhanced adsorption properties of ACs 
are credited to their high porosity (meso-, macro and micro) and the presence of 
a wide variety of functional groups (–COO−, –O–H, –C = O, –N–H, –S–H, etc.). 
The availability of functional groups depends on the activation process involved, 
precursor(s) used, and post-synthetic treatments. When dealing with the synthesis of 
ACs from various sources including biomass there are two routes, either (i) Physical 
method or (ii) Chemical method. 

Physical activation was initiated with a carbonization step where the carbon-rich 
source was heated from 500 to 900 °C in an inert condition. Then the activation step 
for the carbonized material was either done in a single step or by a two-step process. 
After pyrolysis to release volatiles, the material was put through oxidative gases like 
CO2, O2, and N2 at temperatures ranging from 800 to 1000 °C [48, 49]. The overall 
steps comprised a considerable enhancement in the surface area and porosity of the 
carbon material. However, an increase in temperature above 1200 °C reduced the 
ACs yield drastically along with the crumbling of pore structure [50]. Nonetheless, 
the properties of ACs depend on several synthetic parameters such as the nature of the 
activating agent, activation time, temperature, etc. [51]. Mostly, physical activation 
opens isolated/new pores and generates interconnected/widened pores [52]. 

Chemical methods of activation involve chemical agents such as H3PO4, ZnCl2, 
KOH, etc. for treatment after physical activation. The major advantage of chemical 
activation includes well-grown pores, better yield, and low activation temperatures, 
despite its demerit of high cost, toxicity, and tedious synthetic steps. This helps 
more control over functional groups and surface functionalization, resulting improve 
performance on various applications [53, 54]. Potassium hydroxide was used in the 
activation as one of the most common methods. Which involves complex solid-
state reactions and solid–liquid interface reactions including the reduction of K+ to 
metallic K [51]. Li et al. reported the effect of KOH on surface area and pore volumes, 
both increasing up to 1:4 coal: KOH ratio and thereafter decreasing. Similar reports 
suggested the KOH activation in generating controlled pore sizes [55] and K+ inter-
calation [56]. Alkali metal carbonates such as K2CO3 used activation significantly
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increased surface area/pore volume ratio with increased activation temperature [57, 
58]. Metal chlorides such as FeCl3 [59], MgCl2, and ZnCl2 [60, 61], and Bronsted 
acids like H2SO4, HNO3, and H3PO4were also used to activate the carbon [62, 63]. 
An important objective of varying synthesis methodologies is to control pore shape 
and size, along with functional group modifications. 

8 Conclusion 

To summarize, some of the most exemplary formsof carbon-based nanomaterials 
like nanotubes, fullerenes, graphene oxide, nanodiamonds, and activated carbon-
have undergone rapid development and new methods of synthesis strategies are being 
applied. The synthesis of carbon materials with well-defined morphology and nanos-
tructure and adjustable surface area and pore size can be synthesized in a controlled 
manner. 
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1 Introduction 

One definition of a nanometer describes it as “a mystical spot on the dimension scale,” 
describing it as “the point where the tiniest man-made gadgets meets the molecules 
and atoms of the physical world.” Researchers and technologists have paid a lot of 
attention to the nanomaterials sector over the last decade, and with good reason: 
nanometer solid materials have become increasingly significant because of their 
unique qualities [1]. The advancement of nanoscale science and technology faces four 
significant obstacles: the synthesis of materials with controlled structure and accuracy 
at the molecular, or atomic level; the property characterization of structurally well-
known components; the manufacturing of nanodevices; and the manipulation and 
integration of systems. Nanomaterials may vary greatly in their qualities due to 
the vast range of sizes and structures they can assume. These attributes are highly 
dependent on the nanomaterial’s overall size, as well as its size distribution, form, and 
chemical make-up [2]. Nanomaterials are distinguished from traditional materials by 
several distinctive qualities, both chemical and physical. One of the most essential 
aspects of nanoparticles is the fact that the vast majority of the atoms within them 
have a high degree of chemical reactivity as well as the capacity to retain a large 
number of metal ions on the particles’ surfaces [3]. Because saturation levels of 
the atoms present on the surface are low, they are susceptible to interaction with 
ions of different elements through static electricity [4]. As a result, nanoparticles 
have a high capacity for adsorption, therefore rendering them applicable to a diverse 
array of uses and purposes [5]. As a result, nanometer-sized materials may adsorb 
metal ions at high rates. Nanomaterials have recently been exploited as absorbing 
substances owing to their superior inherent qualities like high reactivity and tiny 
size of the particles in comparison to traditional substances such as normal sized 
titanium dioxide, alumina, and others [7, 8]. Since nanomaterials have large surface 
areas, they may strongly adsorb a wide range of chemicals, including trace metals 
and polar organic compounds [2, 5]. Nanomaterials may be produced using a variety 
of processes, including chemical vapour deposition and the sol-gel method [9–11]. 

Carbon stands out from the rest of the elements in the periodic table; since it seems 
to communicate with everyone on every level. Carbon is a very unique element. An 
atom of carbon may form a two electron bond, a four electron bond, or a six electron 
bond due to its electronic configuration of 1s2 2s2 2p2. Since carbon can hybridise 
its 2s and 2p orbitals in three separate ways, it has a high degree of versatility 
when it comes to forming connections with other atoms. This adaptability allows 
carbon to create bonds with atoms that have different properties. These ways are 
denoted by the following notations: sp3 (for two electron bonding, tetrahedral), sp2 

(for four bonding, trigonal planar), and sp (for 6 electron bonding, linear). As of 
more recent times, fullerenes and carbon nanotubes have been added to the classic 
members of the carbon family tree, which include stable form of carbon (graphite), 
solid carbon (diamond), and carbon in amorphous state. Yet, in actuality, as a result 
of the exceptional bonding adaptability of carbon, the authentic carbon nanoforms
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exhibit a significantly more varied range of shapes and sizes than those depicted here 
[12]. 

2 Nanomaterials 

Nanomaterials are distinguished from traditional materials by a broad range of chem-
ical as well as physical characteristics. The majority of atoms have significant levels 
of chemical activity and adsorption capacity, which is a crucial factor. The surface of 
the nanomaterials has an excessive number of metal ions [3, 13]. Because the surface 
atoms are unsaturated, they can be combined by static charge with ions from other 
elements. As a direct consequence of this, nanoparticles have the ability to strongly 
adsorb a diverse spectrum of molecules, including polar chemical compounds and 
trace metals. 

3 Classification of Nanoadsorbent 

Nanomaterials are primarily categorized into categories in accordance with their 
inherent skin characteristic and the role they serve in adsorption applications and 
subsequent external functionalization (Fig. 1). 

Metallic nanoparticles such as gold NPs, metallic oxide NPs, such as aluminium 
trioxide or titanium dioxide, nanostructured mixed oxides, such as nanostructured 
binary iron-titanium mixed oxide particles, and magnetic NPs, such as iron di 
and trioxide, are all examples of nanoparticles. According to their sorbent quali-
ties, carbon nanoparticles, carbon nanosheets, and carbon nanotubes make up the 
category of carbonaceous nanomaterials (CNMs), which is another significant one 
(CNSs). Similarly, silicon nanomaterials (SiNMs) comprise silicon nanoparticles 
(SiNPs), silicon nanosheets, and silicon nanotubes (SiNTs) (SiNSs). Nanofibers

Fig. 1 Classification of nanoadsorbent 
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(NFs), nanoclays, polymer-based nanomaterials (PNMs), xerogels, and aerogels are 
additional nanomaterials for adsorption processes [4]. 

The physical, material, and chemical properties of NPs are all directly influ-
enced by their intrinsic components, perceived sizes, and extrinsic skin structures 
[14–18]. Hence, the architecture, preparation, analysis, and uses of nanostructures 
have a significant impact on the advancement of the domain of nanomaterials. Many 
analytical techniques make significant uses of sample separation and preconcentra-
tion helped by nanoparticles [19]. Since their introduction to the field, nanoparticles 
(NPs) have been the subject of much research in the area of separation science, 
leading to several advancements in chromatographic and electrophoretic techniques 
for a select number of separation constituents or preconcentration medium. NPs can 
be added to the buffer and employed as a pseudo stationary phase in a form that are 
either continuously filled or partially filled, or they may serve as an interior surface 
covering in either a static or a dynamic state [20]. A nanoparticle is a Simplest-zero-
dimensional (0 D) nano-object that has all of its distinct linear dimensions with the 
same magnitude [21]. NPs are typically spherical in form. Nano crystallites are NPs 
with an atom (or ion) configuration that is clearly organized. 

4 Synthesis Techniques of Nanomaterials 

Nanostructured materials are used for a variety of purposes, including IT, magne-
tocaloric refrigeration, medical field, automotive, optical electronic devices, and 
many others [22, 23]. As a result, the synthesis of such materials is becoming more 
important in the field of material science. Existing methods rely on high pressure, 
solgel, salt solvent mediated high temperature, thermal vaporization, coprecipita-
tion using surfactants, surface capping agents, or organometallic precursor mediated 
growth processes, and the types of oxides that can be synthesized are rather limited 
[24, 25]. 

Physical properties of NPs are known to be highly dependent on their dimensions. 
Unfortunately, the majority of the currently known synthesis procedures provide NPs 
with rather broad size distributions. The careful control of reaction settings (Temper-
ature, stirring speed, duration, and reactant and stabilizing additive proportions) does 
not always allow one to narrow this distribution to the desired range. 

As a result, techniques for separating NPs into rather monodisperse fractions 
are being perfected in tandem with the development of procedures for synthesis of 
NPs with a narrow size distribution. Particles from surfactant-stabilized solutions are 
controlled precipitated, and then the coarsest fraction is separated by centrifugation, 
to accomplish this. After the decantation step, the precipitate can be re-dissolved 
and put through another round of precipitation and centrifugation. The procedure is 
carried out numerous times until NP fractions with the desired size distributions and 
dispersion degrees are obtained [26]. 

Key methods for the formation of NPs can be distinguished based on the type of 
precursor used and the characteristics of their processing, as follows.
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(i) transformations of NPs with changes in composition (ii) dispersion preparation 
from macroscopic materials and (iii) chemical synthesis, i.e., targeted change in the 
substance composition with termination (in some way) of the nascent phase growth 
at the nanosized stage [4, 27]. 

4.1 Synthesis of Carbon Nanotubes 

Carbon nanotube synthesis processes are divided into three categories: laser ablation, 
catalytic arc discharge, and Chemical Vapour Discharge [28]. The latter is perhaps the 
most intriguing for analytical purposes, as a result of the fact that it makes it possible 
to produce vertically aligned carbon nanotubes on a surface. For the purpose of 
scaling up production, several preparation methods have been tried and tested, all of 
which include carrying out the synthesis at temperatures that are relatively low while 
maintaining high yields and purity [29–31]. In most cases, the formation of carbon 
nanotubes (CNTs) is achieved by the catalytic dissociation of organic precursors or 
graphite. This process also results in the formation of nontubular carbons (NTCs). 
Because the majority of the time the NTCs are created after the catalyst is depleted, 
most CNT preparations have a surface that is coated with NTCs. When compared to 
CNTs, NTCs often feature porous architectures, which results in a distinct retention 
and trapping mechanism that may be regulated by diffusion. Although these NTCs 
do not possess the good sorbent features of the CNTs, the purity of the CNTs is 
an essential component that impacts their overall efficacy as a sorbent [32, 33]. 
More sorption sites on the wall and interstitial gaps between the tubes of the pure 
CNTs make it simple to perform adsorption and desorption, which in turn improves 
preconcentration. The CNTs’ availability is decreased by the NTC cover because the 
sorbate must diffuse through the NTC in order to reach the CNTs. Nevertheless, the 
porous structure of NTC slows down both the adsorption and desorption processes 
due to the mass transfer constraints introduced by the structure. 

The most generally used procedures for removing NTCs and residual cata-
lysts are acid treatment and gas phase oxidation [34–36]. Oxygen-containing func-
tional groups, such as OH, C=O, and COOH, are produced during these processes, 
enhancing the polarity, hydrophilicity, and ion-exchange capacity of the CNTs. When 
activated carbon is oxidised in the gas phase, hydroxyl and carbonyl surface groups 
become more concentrated, whereas carboxylic acid content becomes more promi-
nent when oxidised in the liquid phase [37]. The quantity of carboxyl and lactone 
groups on CNT treated with nitric acid was found to be greater than when similar 
procedure was carried out with H2O2 and KMnO4 [38]. Nonetheless, CNT fragmen-
tation (shortening) and defect creation in the graphitic network are two of the most 
significant problems associated with processes involving acid oxidation [39]. It has 
been discovered that the high ultrasonic power that is often used during the oxida-
tion process in order to disperse CNT agglomerates also contributes to the process of 
fragmentation. This result follows hot on the heels of the one that found acid content
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and exposure length to be key factors to fragmentation. Others include gentler treat-
ments, such as microwave treatment with dilute acids and a chelating agent [40–42]. 
Hence, it is vital to find a middle ground between the circumstances of the purifying 
process and the damage done to the CNTs. 

As a natural byproduct of the manufacturing process, carbon nanotubes often 
include traces of amorphous carbon as well as metal catalyst residues. In addition, 
since the process creates carbon nanotubes of varying diameters, an additional step 
of purification is required before these nanotubes may be used in a wide range of 
applications. Thus, there is a need for analytical techniques in order for the nanotubes 
to be characterised and then purified. There are several methods for processing the 
raw material, techniques such as acid washing, followed by centrifugation, resus-
pension in surfactant or polymeric media, cross-flow filtration, and flocculation 
using surfactants are all included [43–45]. In spite of the purification process, the 
produced sample of carbon nanotubes still consists of a heterogeneous combination 
of SWNT and MWNT of varying lengths and diameters. The electrical properties 
of nanotubes may be significantly influenced by their geometrical features, which 
also have an impact on how well they disperse in organic or aqueous fluids and how 
they interact with other substances like surfactants, polymers, or aromatic chemi-
cals. For the purpose of purifying fluorescent SWNT fragments, gel electrophoresis 
has been explicitly suggested as a preparative method. As a consequence, there are 
three major fractions. The process is time-consuming, and additional fractionation of 
previously isolated bands is necessary [46]. It has been suggested that capillary elec-
trophoresis or liquid chromatography be used for this second stage. Despite carbon 
nanotubes’ poor solubilization in water, capillary electrophoresis has shown promise 
for removing contaminants and fractionating SWNTs based on size and length [47]. 
In order to use capillary electrophoresis to determine nanotube purity, it is necessary 
to first solubilize the nanotubes [47]. Suspending SWNTs in polyvinylpyrrolidone 
or sodium dodecyl sulfate has been shown to be an effective way to overcome this 
limitation [48, 49]. The electrophoretic peaks observed were smaller, suggesting 
improved performance, with the latter. In both investigations, Raman technique was 
used for the detection. The use of atomic force microscopy allowed for the verifica-
tion of the various fractions’ levels of purity. Because of the heterogeneous nature 
of the nanotube suspension, this approach suffers from a poor level of repeatability 
across runs in terms of the numbers and locations of the peaks. This is the primary 
drawback associated with this technology [47]. 

Despite this, the CNTs that are generated by any of these techniques often include 
NTC in addition to remnants of previous catalysts here and there such as Fe, Co, and 
Ni. Metallic impurities may account for up to 40% of the total weight. The oxidation 
of CNTs, which may change their sorbent properties, and the generation of defects 
during purification are also factors to be taken into account [4]. 

Techniques for the dispersion and solubilization of carbon nanotubes may, in 
general, be divided up into three distinct categories. These categories are I disper-
sion following oxidative acid treatments, (ii) noncovalent stabilisation, and (iii) cova-
lent stabilisation. Common solubilization methods include oxidative acid treatment 
stages like refluxing in diluted nitric acid or refluxing/sonicating in a concentrated
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H2SO4/HNO3 combination [50]. A black supernatant solution that contains carboxy-
lated carbon nanotubes is formed after an oxidative acid treatment and several cycles 
of washing and centrifugation. On the other hand, this type of solubilization may 
cause surface flaws, and it can also cause tubes to become shorter than they were 
before. Because of this, several researchers have advised for the use of a noncovalent 
method to stabilize carbon nanotubes in solution. This is due to the fact that the 
structures and characteristics of carbon nanotubes are often maintained after they 
have been dispersed. While using this method, the carbon nanotubes are derivatized 
or complexed with micelles, polymers, or other aggregation systems in order to solu-
bilize and disperse them in an aqueous environment. These aggregates contain a 
hydrophobic core, which is the location of the nanotube, and a hydrophilic surface, 
which allows them to dissolve in water. The nanotube is found in the core of the 
aggregates [51]. Sodium dodecyl sulphate (also known as SDS), Triton X-100, and 
sodium dodecylbenzene sulfonate (also known as SDBS) are examples of the types 
of surfactants that are often used for nanotube dispersion. In order to make nanotubes 
more soluble, an organic functionalization of the surface of the nanotubes is required. 
This results in the product having a high degree of solubility. Controllable processes 
for altering carbon nanotubes with biologic or bioactive species have been devel-
oped, which is a major step forward in the direction of using carbon nanotubes in the 
biological and biomedical domains [52]. These improvements, which are especially 
significant for the creation of sensors in analytical research, have been documented 
in detail elsewhere. You may find those reports here and here [47]. It is possible to 
modify the CNTs’ physiochemical properties via the process of functionalization 
[53, 54]. Changes in polarity, hydrophilicity, and other features of the CNT surface 
may be brought about by the presence of a functional group bonded covalently to the 
surface. The presence of functional groups may also change the diffusional barrier 
of CNT surfaces, making them less accessible and lowering their affinity for certain 
analytes. Also, functionalization improves interaction with polymers and other mate-
rials, leading to the easier creation of composites that may serve as microtrapping 
substrates. Polymers and solgel immobilisation are the typical examples [55]. The 
specifics of CNT functionalization have been discussed in depth in a several works 
[56, 57]. 

For the functionalization of CNTs and the synthesis of hybrid structures with 
intriguing features, a range of covalent or noncovalent methods have been estab-
lished [58–65]. For instance, covalent functionalization may be utilized to produce 
functional groups such as COOH or NH2, which can substantially modify the chem-
ical characteristics of CNTs and boost their performance in SPE. This can be done in 
order to improve the performance of CNTs in the context of solid phase extraction. 
This may be especially significant to the study of polar pharmaceutical compounds 
that have a broad range of pKa, which is one of the situations in which pH changes are 
often required to achieve good extraction efficiency. As a result, it becomes necessary 
to do several extractions at various pH levels, which presents a significant practical 
challenge when analyzing mixtures [66–68].
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4.2 Laser Ablation Method 

Nanotubes made of a single wall of carbon, also known as SWCNT have been 
produced by arcing or laser ablating carbon rod in the presence of a metal cata-
lyst in an environment containing inert gas [70]. Nitrogen gas has been utilised in 
the production of BN or B–C–N composite nanotubes [73]. Laser ablation is one 
of the methods used for synthesizing carbon nanotubes. In this process, a high-
energy laser is directed at a carbon target, typically in the form of graphite or a 
carbon-containing substrate. The laser’s energy vaporizes the target material, and 
the resulting vapor condenses to form nanotubes. Nitrogen-Containing Materials 
Nitrogen can be incorporated into the carbon lattice of nanotubes during their forma-
tion, potentially altering their properties. This can have both positive and negative 
effects, depending on the application. Nitrogen-doped carbon nanotubes can exhibit 
different electronic and catalytic properties compared to undoped nanotubes. The 
concern about nitrogen-containing materials making SWCNTs more prone to insta-
bility likely arises from the potential disruption of the carbon nanotube’s hexagonal 
lattice structure. The arrangement of carbon atoms in a nanotube is crucial for its 
mechanical, electrical, and other properties [69]. Experiments involving laser abla-
tion were carried out inside of an electrical tube furnace that had been heated to 
a temperature of 1200 °C [75]. Nitrogen was employed as the carrier gas, and the 
flow rate was around 300 standard cubic centimeters per minute. During the laser 
ablation process, the pressure inside the quartz reactor tube was maintained at approx-
imately 500 Torr. On the surface of the target, the beam with the second harmonic 
of aNd-yttrium-aluminium-garnet (YAG) laser with a pulse width of 8 nanoseconds 
was focused to achieve a concentration of energy within approximately 3 J/cm2 per 
pulse. For the synthesis of SWCNT, a graphite target containing 1.2% (Ni1Co) was 
utilized [72]. 

4.3 Chemical Vapour Deposition Method 

The creation of carbon nanotubes can be accomplished by a wide variety of processes, 
including arc discharge, CVD, laser ablation, flame synthesis, HiPco, electrolysis, 
pyrolysis, and flame synthesis are some of the processes that are used to produce 
carbon nanotubes and many others [77]. On the other hand, the chemical vapour 
decomposition (CVD) approach is currently the standard procedure that is widely 
accepted in the synthesis of CNTs due to the fact that it is both straightforward and 
inexpensive [77]. This technology was first developed in the 1960s and 1970s, and 
it has since been utilised, with great success, in the manufacturing of carbon fibres 
as well as carbon nanofibres [80]. In 1996, chemical vapour decomposition (CVD) 
was identified as a potentially useful approach for the manufacturing and synthesis of 
CNTs on a wide scale [81]. When compared to the methods of arc discharge and laser
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ablation, the CVD technique is regarded as the superior choice for the manufacturing 
of carbon nanotubes on a large scale and with a high degree of purity [82]. 

4.4 Arc Discharge Method 

Arc discharge is a method that can be utilized during the production of carbon 
nanotubes (CNTs) that involves the use of higher temperatures (over 1700 degrees 
Celsius). This method typically results in the creation of CNTs that have less struc-
tural faults when compared to other procedures [83]. When all of the necessary 
conditions for development are met, the synthesis of MWNTs through arc discharge 
is a very smooth process. The most common approach uses a DC arc discharge within 
a space that was pressurised and filled with helium lower than that of the atmosphere 
between two graphite electrodes, which are often cooled by water, and have diame-
ters ranging from 6 to 12 millimetres. Despite this, some more works involving the 
utilization of hydrogen or methane atmosphere have also been described [84]. For 
the synthesis of SWNTs, the arc discharge method is still used, although typically 
in conjunction with an updated strategy. The FHarc discharge method was discov-
ered by Chen and colleagues. In this process, the production of SWNTs involves a 
hydrogen DC arc discharge coupled with the evaporation of a carbon anode that has 
1% iron catalyst in a mixture of hydrogen and argon gas [84]. 

5 Surface Modification 

5.1 Surface Physical Modification 

In general, the term “surface physical modification” is used to describe a form 
of surface modification of nanoscales powders that does not involve the use of 
surface modifiers. Surface physical modification techniques include radiation treat-
ment, plasma treatment ultrasonic treatment n, thermal treatment, electrochemical 
treatment, and other similar techniques [84]. 

5.2 Ultrasonic Treatment 

The aggregation of nanoparticles can be effectively reduced through the use of the 
ultrasonic dispersion method. Both the nano-effect energy that is present between 
nanoparticles and the agglomeration of nanoparticles can be significantly reduced, 
and the latter can be effectively prevented through the utilization of local regions of 
high temperatures and pressures, as well as powerful shock waves and micro jets
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that are generated through ultrasonic cavitation. And ensure that it is completely 
disseminated [85]. 

5.3 Radiation Treatment 

Radiation technology is a relatively recent field of study that focuses on the investi-
gation, development, and practical putting into practice the physical laws, chemical 
reactions, and biological processes that are triggered when ionizing radiation comes 
into contact with matter. Irradiation with high energy creates active spots on the 
surface of the nanoparticle, and then an A monomer that is active organically is 
grafted onto the surface of the polymer film. This process modifies the micro- and 
nanoparticles’ surface characteristics, hence enhancing their compatibility with the 
polymer substrate [86]. 

6 Surface Chemical Modification 

Surface chemical modification is a process that can be used to alter the nanopar-
ticle’s surface, with its structure and state. Surface modification aims to achieve 
this goal, and surface chemical modification is one way to do so. Surface chemical 
modification refers to the intentional alteration of a nanoparticle’s surface characteris-
tics. This can include changing its chemical composition, reactivity, and interactions 
with other substances. The main goal of surface modification is to tailor nanoparti-
cles’ properties to suit particular applications. This could involve enhancing stability, 
improving dispersibility, attaching functional groups, or enabling interactions with 
other materials [87]. 

6.1 Estherification Method 

Esterification is the name given to the chemical reaction that takes place when metal 
oxides react with alcohols. The transformation of a nanoparticle’s surface from one 
that is hydrophilic and oleophobic into one that is lipophilic and hydrophobic is the 
most crucial phase of the esterification process that is used to modify the surface of 
nanoparticles. It is of utmost significance in a variety of practical applications [88].
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6.2 Coupling Agent Method 

The “Coupling Agent Method” is a surface modification technique that involves 
using a chemical compound with an amphoteric structure, which means it has both 
acidic and basic functional groups. The primary purpose of this coupling agent is 
to facilitate the bonding and interaction between different materials, often involving 
polymers..A strong chemical bond can be formed between two parts of the group 
in the molecule by one part of the group reacting includes a variety of functional 
groups on the surface of the powder, and another part of the group that is capable 
of carrying out some chemical reaction or physical entanglement with the organic 
polymer. Both of these processes are possible. Because of this, the coupling agent is 
sometimes referred to as a “molecular bridge.” Its goal is to enhance the interaction 
at the interface between the inorganic component and the organic component both 
together, which ultimately results in a significant increase in the efficiency of the 
composite material. Coupling agents that are commonly utilized include, but are not 
limited to, zirconium aluminate coupling agents, aluminate coupling agents, silane 
coupling agents, and titanate coupling agents. Other agents that are similar in nature 
also fall into this category [89]. 

6.3 Surface Graft Modification 

Due to the strong sp2 C–C bonds, carbon nanomaterials possess higher inert surfaces. 
Surface Graft Modification technique is used to graft functional groups onto their 
surfaces to generate new properties or to improve the interaction with different mate-
rials. Some of the common functional groups include amino (–NH2), hydroxyl (– 
OH), Carboxyl (–COOH) etc., can be introduced using various surface graft modifi-
cation methods (Fig 2). We can modify the properties of the polymer grafted particles 
by choosing appropriate grafting monomers and grafting conditions.

In the present day, there are many strategies for surface modification; nevertheless, 
there are still relatively few approaches to handle the problem on a fundamental level; 
hence, additional study is required. In addition, the usage of composite modifiers is 
something that needs to be taken into consideration when working on the surface 
modification of nanoparticles [90]. 

7 Conclusion 

As the materials are micro nano-sized, particularly in its nano-state, have many 
special properties, which have attracted researchers. This resulted in a variety of 
nano- and nano-composites with advanced functions and improved performance 
for deployment in numerous fields. Further, surface engineering techniques makes
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Fig. 2 Classification of surface graft modification methods

it applicable for automobile, aerospace, biomedical, quick prototyping industries. 
The nano-particles are accumulated with large specific surface area, high surface 
energy which makes them highly active, and easy to agglomerate. But this agglom-
erated secondary particle hinders to exert the nano-effects, making the material less 
than ideal. Therefore, in order to improve the dispersibility of material and improve 
their binding force with other components, surface modification of the nanoparti-
cles is highly advisable. Nanoparticle surface modification has become even more 
effective recently as the field has witnessed a paradigm shift age-old electroplating 
technique to latest techniques such as vapor phase deposition, thermal spraying, 
plasma welding, laser welding, and welding with electron, microwave, solar beams, 
synchrotron radiation, etc... These control the internal stress, increasing the repulsive 
force, decreasing the gravitation, which gives the nanoparticle a new function to meet 
the current needs of material processing and its applications. 
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of Nanomaterials as Adsorbents 
in Environment Field 
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Abstract Nanoscale materials represent a new class of materials with extremely 
broad application prospects. Their development and utilization are intricately inter-
twined with societal progress. Nanomaterial adsorbents possess distinctive attributes, 
including a large specific surface area, a quantum size effect, and special surface 
properties. Therefore, it exhibits excellent adsorption performance. Compared with 
other traditional adsorbents, the application prospects of nanomaterial adsorbents 
in the environmental field are more attractive. This chapter elucidates the types, 
synthesis and, characterization of nanomaterial adsorbents according to their prop-
erties. Combined with the application of relevant examples in the environment, 
the corresponding nanoscale adsorbents are briefly introduced. Furthermore, the 
application of nanomaterial adsorbents in environment treatment was prospected. 

Keywords Nanoscale materials · Adsorbents · Environmental pollution ·
Pollutants 

1 Introduction 

In recent years, research on nanoscale materials and nanoscale technology has 
received extensive attention [1, 2]. The late 1980s marked the ascent and rapid evolu-
tion of nanotechnology, playing a pivotal role in societal advancement, economic 
rejuvenation, and national progress. Amidst these developments, nanoscale mate-
rials emerged as key protagonists. Currently, nanometer materials are widely used 
in diverse technical domains, including aerospace, medicine, energy, environment, 
and sensors. At the same time, because of their large chemical activity and surface 
energy, nanoscale materials readily interact with foreign atoms to form stable 
structures, rendering them valuable as adsorbents [3]. Therefore, this chapter will 
comprehensively explore various facets of nanomaterial adsorbents.
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The notion of nanomaterials and nanotechnology was proposed by Richard 
Feynman in his 1959 lecture “There’s Plenty of Room at the Bottom”. Over time, 
as these fields have evolved, scientists have come to recognize the significant role 
that nanomaterials and technologies will play in the future. In the 1970s, scien-
tists came up with different guesses about the technology of nanomaterials from 
different angles. In 1974, scientist Donnie Gooch first used the term nanotechnology 
to describe precision machining. In 1982, scientists invented the scanning tunneling 
microscope (STM), a crucial instrument for studying the nanoworld. It revealed a 
visible world of atoms and molecules, contributing positively to the advancement of 
nanotechnology. The inaugural International Conference on Nanoscience and Tech-
nology was held in Baltimore, USA, 1990. This marked the birth of nanoscience and 
technology. In 1991, due to the discovery of carbon nanotubes, it became a hot spot 
for nanotechnology research. In 1993, the Vacuum Physics Laboratory of the Chinese 
Academy of Sciences in Beijing successfully wrote out the word “China”, marking 
China’s position in the international field of nanotechnology. In 1997, American 
scientists succeeded for the first time in moving a single electron with a single elec-
tron. In 1999, Brazilian and American scientists invented the world’s smallest “scale” 
in an experiment with carbon nanotubes. Nanotechnology has swiftly emerged as 
a new and rapidly developing field of technology. Recently, several countries have 
formulated relevant strategies or plans, and the development pattern of industrial 
applications of nanomaterials and technologies has been gradually formed. 

Nanometer is a physical unit of measure. Nanomaterials are ultramicroscopic 
particles in the size range of 1–100 nm and their dense aggregates, as well as mate-
rials made of nanoscale microcrystals [4–6]. This category encompasses a wide 
range of materials, including metallic, nonmetallic, inorganic, organic, and biological 
substances. Nanomaterials exhibit strong adsorption properties due to their relatively 
large specific surface area and high number of surface atoms [7]. They find extensive 
utility across various environmental applications, such as water pollution [8], soil 
pollution [9] and air pollution [10]. Nanoscale sorbents are widely employed across 
diverse fields, including information, energy, environment, biology, agriculture, and 
defense. 

An adsorbent is a solid substance capable of effectively adsorbing some compo-
nents from gases or liquids. It has a substantial specific surface area, an appro-
priate pore structure, and surface composition, it has a strong adsorption capacity 
for adsorbed substances [11]. Generally, adsorbents do not undergo chemical reac-
tions with adsorbed components or the surrounding medium [12]. Moreover, it is 
easy to manufacture and regenerate and has excellent adsorption and mechanical 
properties. Nonetheless, traditional adsorption materials have limitations in adsorp-
tion performance, including slow adsorption rate, small adsorption capacity, difficult 
regeneration, and short effective life [13]. It’s widely recognized that the adsorp-
tion performance of adsorbents is primarily influenced by the specific surface area 
and adsorption capacity of the materials. Consequently, the essential criteria for a 
material to serve as an effective adsorbent revolve around possessing a substantial 
specific surface area and impressive adsorption capacity. As a brand-new material, 
nanomaterials can conform to the characteristics of adsorbents and have excellent
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adsorption properties. This quality renders them highly promising for crafting high-
performance adsorbents [14]. Both domestic and international scientists have exten-
sively researched nanomaterials and implemented them across a variety of fields, 
spanning ceramics, chemical production, environment, bioengineering and medicine, 
military, and energy, among others. 

2 Properties of Nanoscale Material Adsorbents 

Compared to ordinary bulk materials, nanoscale materials demonstrate vastly distinct 
properties. At the nanoscale level, the wave nature of electrons and interatomic inter-
actions in matter will be affected. Thus, nanomaterial adsorbents feature distinc-
tive attributes absent in conventional counterparts. This section will describe the 
properties of nanomaterials. 

2.1 Surface Effect 

The surface effect is a phenomenon where alterations in particle size lead to a 
dramatic shift in the ratio of surface atomic numbers of nanoparticles to the total 
atomic numbers, subsequently resulting in changes in their nature [15]. When the 
particle diameter becomes smaller, the specific surface area of spherical particles 
will increase significantly. This will cause a relative increase in the number of atoms 
situated on the particle surface. Consequently, these surface atoms exhibit elevated 
activity and extreme instability, ultimately manifesting in different particle charac-
teristics. The surface effect can be neglected when the particle diameter is greater 
than 100 nm, but as the particle diameter decreases, the percentage of surface atoms 
will increase significantly. When the particle diameter decreases to approximately 
1 nm, the percentage of surface atoms can surpass 90%, implying that a significant 
majority of atoms are concentrated on the nanoparticle surface. Due to the surge in 
the count of surface atoms, accompanied by a deficiency in surface atomic coordina-
tion and heightened surface energy, these atoms are inherently inclined to bond with 
other atoms for stabilization [16]. Therefore, they possess high chemical activity. 

2.2 Small Size Effect 

When the size of a substance is processed to 1–100 nm, its physical and chemical 
properties change compared to the larger size. The change in macroscopic properties 
caused by smaller particle size is referred to as the “small size effect” [17–19]. 
For ultramicro particles, their decreasing size and increase in specific surface area 
bring about modifications in some of their original properties. (1) Special optical
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properties [20]: Nanometals exhibit significantly enhanced light absorption. The 
smaller size of the nanomaterial, the lower the light reflectivity. All metals appear 
black in the nanoparticle state. The reflectance of metal ultramicro particles to light 
is usually less than 1%, and they can be completely extinct when the thickness is 
only a few microns. Conversely, some non-metallic materials will appear reflective as 
they approach the nanoscale. (2) Special magnetic properties [21, 22]: The magnetic 
properties of small-sized superfine particles are significantly different from those of 
large materials. For instance, the coercivity of pure iron in large pieces is about 80 A/ 
m. However, when the particle size drops below 20 nm, coercivity surges by a factor of 
1,000. When the particle size is less than 6 nm, its coercivity decreases to 0, showing 
superparamagnetic properties. (3) Special thermal properties [23, 24]: The reduction 
of solid material to ultra-fine dimensions leads to a significant decrease in its melting 
point. This effect becomes most pronounced when particles are less than 10 nm. For 
example, the conventional melting point of gold is 1064 °C. When the particle size 
is reduced to 2 nm, the melting point is only about 327 °C. (4) Special mechanical 
properties: Nanomaterials demonstrate notably enhanced strength, hardness, and 
toughness. For instance, nanoceramic materials exhibit commendable toughness. 
Due to their vast interfaces, nanomaterials facilitate the migration of atoms under 
external forces, given the relatively chaotic atomic arrangement at these interfaces. 

2.3 Quantum Size Effect 

The quantum size effect refers to the effect of decreasing the number of atoms inside 
a particle. Due to volume reduction when the particle size drops to an extreme value. 
Kubo, a Japanese scientist, defines the quantum size effect, when the particle size 
drops to a minimum value, as a phenomenon in which the electron energy levels near 
the Fermi energy level appear to change from quasi-continuous to discontinuous 
discrete distribution [25]. This effect triggers significant alterations in the magnetic, 
optical, acoustic, thermal, and electrical properties of nanoparticles compared to 
macroscopic materials. Notably, nanoparticles display a pronounced quantum size 
effect in infrared absorption [26]. The peaks of resonance absorption are sharper than 
those of ordinary materials, and the specific heat capacity is nonlinearly related to 
temperature. The wave of electrons in the discrete quantized energy level of nanopar-
ticles also brings a series of special properties to the nanoparticles. These encompass 
high nonlinear optical properties, special chemical and photocatalytic properties, 
strong oxidation and reducing properties [27–29]. 

2.4 Macroscopic Quantum Tunneling Effect 

The tunneling effect refers to the ability of microscopic particles to cross the poten-
tial barriers [30]. Recently, it has been found that some macroscopic quantities have
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tunneling effects, encompassing aspects like the magnetization intensity of super-
particles, magnetic flux in quantum coherent devices, and electric charge. They 
undergo changes as they surmount the barriers within macroscopic systems, giving 
rise to the term “macroscopic quantum tunneling”. The scale of nanomaterials is in 
the transition domain at the interface of atomic clusters and macroscopic objects. It is 
a transitional metastable substance between macroscopic matter and a microscopic 
atom or molecule. The quantum size effect, surface effect, small size effect, and 
macroscopic quantum tunneling effect constitute the properties inherent to nanopar-
ticles and nanosolids. These factors bestow nanoparticles and nanosolids with a 
multitude of distinct mechanical, magnetic, optical, thermal, and chemical attributes. 
In comparison to conventional materials (such as single crystals, polycrystalline, and 
amorphous materials), they exhibit numerous exceptional characteristics. Exploring 
these properties in the context of nanomaterial adsorbents holds vital theoretical and 
practical significance, notably for advancing environmental catalyst development. 

3 Classification of Nanomaterial Adsorbents 

The role of nanomaterial adsorbents in adsorption applications mainly depends on 
the surface properties and external functionalization of nanomaterial. In broad terms, 
nanoscale adsorbents can be classified into nanoparticles, carbon nanomaterials, and 
other nanomaterials [31]. The surface atoms of nanometals, particularly those situated 
at the edges and corners, exhibit heightened chemical activity. 

3.1 Nanoparticles 

3.1.1 Metal Nanoparticles 

At the nanoscale, several fundamental properties of metals deviate significantly 
from those of bulk materials. These disparities encompass factors such as melting 
point, color, magnetism, electrochemical properties, and optical properties. These 
atoms are both the active site of the adsorbent and the active center of the catalyst. 
Nanoscale metal atomic clusters exist as a metastable state characterized by high 
surface energy, thereby rendering them prone to aggregation. The following two 
methods are commonly used to change their stability: (1) Utilizing porous materials 
such as Al2O3, SiO2, activated carbon and polymers as carriers, and immersing these 
carriers in a metal salt solution. This process involves fixing the metal ions onto the 
carrier by reducing them to zero-valent metal atoms. (2) Modifying the surfaces of 
nanoscale metals to alter their characteristics.
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3.1.2 Metal Oxide Nanoparticles 

Nanoscale metal oxides are widely used in the adsorption field of heavy metal ions. 
The γ-alumina nanoscale sorbents were synthesized for the removal of nickel ions 
from wastewater [32]. Nanoscale adsorbents with low and high specific surface areas 
(LSSA and HSSA) were prepared by solvothermal method. Under optimal condi-
tions, HSSA and LSSA nano adsorbents achieved nickel removal rates of 99.6% 
and 96.9% respectively. Lounsbury et al. [33] utilized nano-hematite (nα-Fe2O3) as  
a selenium adsorbent to study the effect of specific surface area on adsorption. Liu 
et al. [34] examined the effect of pore-forming agents (MnO2, Fe2O3, Co2O3, NiO,  
and CuO) content (12–34 wt%) and type on the dynamic pore compensation effect 
and adsorption performance of the adsorbents. The corresponding synthesis path 
is illustrated in Fig. 1. It can be observed from the figure that CaCO3 is thermally 
decomposed in a pure N2 atmosphere at 800 °C to obtain sintered CaO during regen-
eration. The pore dynamic compensation is realized by releasing the vapor generated 
from the reduction reaction of transition metal oxide MOx and H2. The adsorption 
process is carried out by changing the atmosphere. Two chemical reactions occurred 
in the whole pore forming process, including the carbonation of CaO and oxidization 
of the reduced product MOx-1. Compared with the nano-CaO/Al2O3 adsorbent, the 
nano-CaO-NiO/Al2O3 adsorbent showed the best dynamic pore compensation effect 
at a doped NiO content of 21wt%. A nano CaO-CaTiO adsorbent exhibiting high CO 
adsorption capacity and durability was synthesized [35]. The grain size of CaTiO can 
be reduced by the adsorption reaction method, and the doping content, temperature 
and time of thermal pretreatment can be reduced appropriately. Enhanced adsorption 
capacity is observed with smaller particle sizes of CaTiO, whereas greater durability 
is observed with larger particle sizes of CaTiO. 

Fig. 1 Schematic diagram of CaL process of nano-CaO-based adsorbents with pore forming agent 
[34]. Reproduced with the permission of Springer Nature
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3.1.3 Magnetic Nanoparticles 

In recent years, as a means to address the limitations of traditional adsorbents, 
magnetic nanoscale sorbents have garnered significant attention in the field of indus-
trial wastewater treatment [36]. These magnetic nano sorbents, obtained through 
magnetization and nano sorption by introducing magnets, exhibit exceptional solid– 
liquid separation ability. Under the action of an applied magnetic field, it can be reused 
after washing and regeneration through desorption. Currently, composite magnetic 
nanoscale sorbents are considered highly promising and efficient agents for treating 
heavy metals [37], dyes [38], and other organic pollutants [39] in wastewater. Studies 
have demonstrated that mesoporous magnetic activated carbon nanoparticles with 
good magnetic field response possess a huge specific surface area (671.2 m2/g). This 
attribute enables them to provide numerous active surface sites for the removal of 
cationic dye methylene blue and anionic dye reactive red 198 [40]. 

3.1.4 Metal Sulfide Nanoparticles 

Metal sulfide nanomaterials as adsorbents have excellent characteristics, including a 
fast adsorption rate, high adsorption capacity, and stable adsorption products, which 
have potential research and application value [41]. In a study, K/Zn/Sn/S layered 
metal sulfide nanosheets (KZTS-NS) were employed as adsorbents to remove Co2+ 

in the aqueous solution [42]. The adsorption mechanism is depicted in Fig. 2. The  
results reveal two mechanisms for Co2+ removal by KZTS-NS. At low concentrations, 
KZTS-NS mainly removes Co2+ through the ion exchange mechanism with K+ ions 
in Fig. 2a. As shown in Fig. 2b, when the initial concentration of Co2+ is high (20– 
100 mg/L), the adsorption mechanism includes both the ion exchange with K+ and the 
surface adsorption to form Zn0.76Co0.24S composite. The formation of Zn0.76Co0.24S 
destroys the layered structure. Furthermore, tubular nano copper sulfide (CuS) was 
prepared by hydrothermal method. It served as an adsorbent to remove 17α-ethynyl 
estradiol (EE2), demonstrating exceptional adsorption performance [43]. The nano-
material adsorbents can remove 90% EE2 (5 mg/L). In another study, a nano-ZnS 
gel network was employed by Irina [44] as a cation exchange material to eliminate 
Pb2+ and Hg2+ from aqueous solutions. Nano-sized zinc sulfide (ZnS) crystals with 
a specific surface area of 360 m2/g were prepared by thermal decomposition using 
single zinc ethylxanthate as precursor, which was used to remove As5+, As3+ and Pb2+ 

[45]. Additionally, cauliflower-like SnS nanoparticles exhibited rapid adsorption of 
all MB dye in aqueous solutions within a few seconds [46]. The unique cauliflower 
structure plays an important role in the adsorption process.

3.1.5 Nanostructured Mixed Oxides 

Incorporating magnetic oxides with other functional materials has been shown 
to reduce the aggregation of magnetic nanoparticles in wastewater, significantly
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Fig. 2 Schematic diagram of adsorption mechanism: a Mainly ion exchange in low Co2+ concentra-
tion solutions (10–20 mg/L); b both ion exchange and surface adsorption by forming Zn0.76Co0.24S 
composites when Co2+ concentration higher than 20 mg/L. The formation of Zn0.76Co0.24S 
composite could destroy the layered structure of KZTS-NS [42]. Reproduced with the permission 
of Elsevier

enhancing the adsorption of heavy metals [47]. The adsorption performance of Pb2+ 

and Cu2+ in aqueous solution is improved obviously by the magnetic nano-adsorbent 
coated with silica and zeolite. This adsorbent not only retains the high adsorption 
property of zeolite but also reduces the agglomeration phenomenon of nanoparticles 
[48]. It has been revealed that bentonite combined with magnetic nanoparticles can 
effectively increase the specific surface area of the adsorbent. The abundant hydroxyl 
active sites on its surface can coordinate with As and Cu, making it move quickly 
from aqueous solution to adsorbent in a short time [49]. Finally, achieve the purpose 
of removing heavy metals. Furthermore, functional groups such as amino, carboxyl, 
and thiol groups have been shown to significantly impact adsorption properties. It is 
well known that electrostatic attraction and electrostatic coordination is considered to 
be the two most important interactions between metal ions and adsorbents. Typically, 
the coordination between -NH2 or -SH and the bivalent metal ion predominates. And 
the prepared Fe3O4@SiO2-PEI-SH surface contains -NH2, -NH, -SH groups, both 
intra-group and inter-group coordination contribute to heavy metal ion adsorption, 
as illustrated in Fig. 3 [47]. Fe3O4 nanoparticles coated with polymeric humic acid 
(HA) showed favorable stability in natural water, acidic, and alkaline solutions. HA 
has an alkyl and aromatic unit backbone linked to carboxylic acid, phenolic hydroxyl, 
and quinone functional groups, which can ligand with heavy metals through oxygen 
and nitrogen-containing functional groups, effectively facilitating the removal of a 
wide range of heavy metals [37].
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Fig. 3 A possible mechanism adsorption of metal ions (M2+) on Fe3O4@SiO2-PEI-SH [47]. 
Reproduced with the permission of Elsevier 

3.2 Carbon Nanoscale Materials 

3.2.1 Carbon Nanotubes 

Research has discovered the presence of multi-walled carbon nanotubes and single-
walled carbon nanotubes on the surfaces of all graphite electrodes during discharge 
[50]. This discovery opens up a promising direction in the field of carbon materials 
research. Hydrogen storage is a crucial facet of gas adsorption research involving 
carbon nanotubes. Some studies have revealed that single-walled carbon nanotubes 
with an average diameter of 1.85 nm can absorb hydrogen with an adsorption capacity 
equivalent to 4.2% of the weight of the carbon nanotubes [51]. In the presence of 
Cu2+, Pb2+, and Cd2+ in an aqueous solution simultaneously, competitive adsorption 
occurs when nitrated carbon nanotubes are regarded as adsorbents [52]. Compared 
with activated carbon, carbon nanotubes are very effective for the adsorption of
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Fig. 4 The DBT adsorption mechanism of the NCNT/ZIF-8 nanosorbent [53]. Reproduced with 
the permission of Elsevier 

these heavy metal ions. A nitrogen-doped carbon nanotube/ZiF-8 (NCNT/ZiF-8) 
nanocomposite was prepared, and its performance in adsorption of dibenzothio-
phene (DBT) from the liquid phase was investigated. Its adsorption mechanism is 
shown in Fig. 4, the adsorption phenomenon is associated with particle diffusion 
into the internal surface of the adsorbent. The adsorption of DBT by NCNT/ZIF-8 
reached 81.2 mg/g, significantly surpassing the adsorption capacity of pure ZIF-8 at 
69.1 mg/g [53]. 

3.2.2 Graphene 

Graphene is an innovative material wherein carbon atoms, linked via sp2 hybridiza-
tion, form a tightly arranged single layer within a two-dimensional honeycomb lattice 
structure. The common methods of graphene production in powder are mechanical 
exfoliation, redox, and SiC epitaxial growth, and the method of thin film production is 
chemical vapor deposition. Benefitting from high optical transmittance and a substan-
tial specific surface area, graphene exhibits immense potential for applications within 
the adsorption domain. Notably, Graphene has outstanding photocatalytic properties, 
proving effective in the degradation of diverse pollutants. The large specific surface 
area gives graphene excellent adsorption properties, thus allowing it to adsorb heavy 
metal ions from water bodies. A nitrogen-rich porous N-GO doped chitosan double 
composite N-GO@HTCS (Fig. 5), serves as an efficient adsorbent for chromium 
removal in water, with its adsorption capacity reaching 42.64 mg/g within 50 min 
[54].
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Fig. 5 The feasible chromium sorption mechanism of n-GO@HTCS biocomposite [54]. Repro-
duced with the permission of Elsevier 

3.2.3 Fullerene 

Fullerene is a hollow spherical molecule composed of 60 carbon atoms. The discovery 
of fullerenes has devoted more attention to carbon nanostructures. It has high 
chemical stability, a large specific surface area, and good electrical conductivity 
[55]. By preparation Fe3O4@SiO2@C60 magnetic material was exploited to extract 
many pesticide residues from chrysanthemum. Notably, the nanoscale adsorbent 
demonstrates favorable stability and reusability [56]. Using fullerene to modify 
magnetic molecularly imprinted polymers (MIPs) increases the specific surface area 
of magnetic particles, forms a delocalized π conjugate structure, and enhances the 
hydrophobicity of magnetic particles. Eventually, the adsorption performance of 
methylene blue (MB) is enhanced [57]. Besides, the most interesting aspect of 
fullerene as an adsorbent is its selectivity. Many metal ions can be enriched with 
fullerenes. 

3.2.4 Nano-activated Carbon 

Nano-activated carbon possesses a relatively developed and rich pore structure, large 
specific surface area, rich surface functional groups, and excellent adsorption energy. 
Additionally, it also boasts robust mechanical strength and chemical stability, heat 
resistance, acid resistance, and alkali resistance. This material is insoluble in both 
water and organic solvents, rendering activated carbon-based catalysts easily regen-
erable following deactivation. In general, the production of nano-activated carbon 
involves grinding clean waste into fine particles, followed by heat treatment (pyrol-
ysis) of these particles, and subsequent physical and/or chemical activation [58]. 
Recently, nano-activated carbon was synthesized via two stages of pyrolysis and
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chemical activation methods using arhar fiber biomass as a precursor [59]. There-
fore, it has received a lot of attention from researchers. The adsorption properties 
of sulfur-containing compounds depend on the properties and quantity of oxygen-
containing functional groups on the activated carbon surface. Surface functional 
groups of oxidized activated carbon act as the active sites for adsorbent, engaging with 
sulfur atoms via direct interaction or surface complexation. Oxidation of activated 
carbon with (NH4)2S2O8, to increase the number of surface functional groups, aims 
to improve the adsorption performance [60]. After modification of water hyacinth 
activated carbon by 2-aminothiazole chelation functionalization, it can be used to 
remove Pb2+ and Hg2+ from water. Furthermore, utilizing KOH activated corn cob 
activated carbon, the removal efficiency of this nano-adsorbent for Hg2+ was 97.2% 
[61]. 

3.3 Other Nanoscale Materials 

3.3.1 Silicon Dioxide Nanoparticles 

Nano SiO2 is a non-toxic, odorless, and non-polluting non-metallic material. 
Due to its extensive specific surface area and chemical reactivity, silica finds 
broad application in the field of adsorption. The adsorbents, prepared using 3-
aminopropyltrimethoxysilane modified silica nanoparticles, successfully achieved 
the adsorption of Cu2+ and Pb2+ up to 2.18 mmol/g and 4.74 mmol/g [62], respec-
tively. The adsorption capacity of Pb2+ was 47.8 mg/g by using N-(2-amino-ethyl)-
2, 3-dihydroxybenzaldehyde imide modified SiO2 [63]. SiO2-CNT nano-adsorbent 
successfully achieved the removal of Hg2+, its removal amount reached 164 mg/g 
[64]. Using CTAB-functionalized nanoscale SiO2 (Fig. 6), the maximum adsorption 
capacity of β-lactam amoxicillin reached approximately 25 mg/g, surpassing the 
capacities of other adsorbents [65].

3.3.2 Nanoclay 

Clay is a natural resource endowed with numerous superior properties resulting 
from prolonged exposure to specific environmental conditions. For example, it has an 
extensive specific surface area, good adsorption properties, high adsorption capacity, 
and ion exchange capacity. The magnetic bentonite@MnFe2O4 (BCMFC) composite 
nanoscale adsorbent exhibited remarkable adsorption efficiency for Cr3+ and Cr4+ 

with 97.37% and 98.65% removal rates [66], respectively. The adsorption amounts 
of KG-g-PMETAC/MMT nanocomposite adsorbent prepared by microwave-assisted 
method were 155.85 mg/g, 149.64 mg/g and 137.77 mg/g for MB, toluidine blue, 
and crystalline violet [67], respectively.
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Fig. 6 Cartoon 
representation of AMX 
uptake onto CTAB 
functionalized nanosilica 
(CFNS) [65]. Reproduced 
with the permission of 
Elsevier

3.3.3 Polymer-Based Nanoscale Adsorbents 

The adsorption of metal and organic pollutants through polymer-based nanoscale 
adsorbents largely depends on the chemical properties of the adsorbents’ surface. 
Conventional magnetic adsorbents can be modified by polymers to increase the 
adsorption capacity. Polymer chemical modifications can lead to the selective adsorp-
tion of different metal ions by magnetic nanoparticles. Moreover, the regeneration 
and reusability of hybrid adsorbents are typically more straightforward compared 
to single nanoparticle adsorbents. Employing polymer anion exchange resin D201 
as the carrier, nano-cerium oxide (NCO) was loaded into the D201 pore to prepare 
the composite nano-adsorbent NCO@201. This innovative material was employed 
to extract fluoride from acidic wastewater. Impressively, the maximum adsorption 
capacity for fluoride removal reached 17.67 mg/g [68]. 

3.3.4 Organic Nanoscale Materials 

Metal–organic frameworks (MOFs) are crystalline porous materials formed by 
bridging structures of metal ions or organic ligands. MOFs have a rich crystal struc-
ture, high porosity, homogeneous pore size, and considerable specific surface area. 
These attributes have propelled MOFs to the forefront of interest in the catalytic
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adsorption field. BUC-17 with 2D structure was used for the adsorption treat-
ment of Cr6+ wastewater. The findings revealed that BUC-17 powder had excellent 
adsorption and removal effect on Cr6+, and the adsorption amount could reach 
121 mg/g at pH = 4 [69]. A columnar layered co-organic skeleton TMU-74 was 
designed and synthesized, which can rapidly, effectively, and selectively remove 
Pb2+ from polluted water samples, boasting an adsorption capacity of 385.71 mg/g 
[70]. Covalent organic frameworks (COFs) materials are emerging crystalline porous 
polymeric materials composed of organic molecules connected by covalent bonds. 
There are abundant porous channels, cavity structures, and particle gaps on the inner 
or outer surface of the material. It has excellent prospect in adsorption field. COF-S-
SH, produced using treating COF-V with 1,2-ethanedithiol, showcased its potential 
for Hg2+ adsorption and removal from wastewater, reaching an exceptional adsorp-
tion capacity of up to 1350 mg/g [71]. Furthermore, the ionic covalent organic frame-
work material BT-DGCl, prepared by introducing guanidinium groups with Cl−, can 
effectively remove Cr6+ [72]. 

4 Synthesis and Characterization of Common Nanoscale 
Adsorbents 

The chemical composition and structure of nanomaterial adsorbents are the key 
factors that determine their properties and applications. Up to now, a variety of 
nanoscale materials with various active adsorption sites and crystal structures have 
been developed and characterized. However, because of the different microstructures 
of nanomaterial adsorbents, their adsorption behaviors often vary significantly [73]. 
Characterization techniques of nanomaterial adsorbents play a pivotal role in theo-
retical research and application of nanoscale adsorbents, which is a cross technology 
between nanomaterial research and multiple applications. The chemical composi-
tion and structure of nanomaterial materials are key factors in their performance 
and applications. Therefore, it is necessary to characterize their microscopic features 
to explore their adsorption properties. This promotes the application of nanoscale 
adsorbents in multiple fields. 

4.1 Synthesis of Nanoscale Adsorbents 

4.1.1 Physical Synthesis Method 

Researchers have continuously developed synthetic methods for nanoscale adsor-
bents with small particle sizes, excellent stability, and difficult agglomeration in 
recent years. Common physical synthesis methods of nanomaterial adsorbents
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include ball milling [74], spraying, photolithography [75], and more. These tech-
niques are mainly based on mechanical processes, as well as the method of vapor-
izing precursors in vacuum or inert gas using optical and electrical technologies to 
form nanomaterials [76]. 

The physical crushing method, also known as the mechanical alloy (ball milling) 
method, pulverizes raw materials directly into ultrafine powder particles through 
mechanical crushing. In 1970, a fresh technology called “mechanical alloying” 
was first reported for synthesizing oxide dispersion strengthened alloys capable of 
withstanding high pressures and temperatures [77]. The crushing process involves 
the deformation and rupture of solid materials or particles under the action of 
crushing forces. When the crushing force becomes sufficiently high, the instanta-
neous force between the solid material or particles greatly exceeds the mechan-
ical strength of material. As a result, the material is crushed, and its size is effec-
tively reduced [78]. Therefore, this method is especially suitable for preparing nano-
powder particles of brittle materials. The specific surface area, surface functional 
groups and phase composition of materials are affected by grinding time, rotating 
speed, size of grinding balls, and atmosphere (air or vacuum, oxygen or no oxygen) 
[79]. The method has the advantages of inexpensive equipment, simple operation 
process, and no need for solvents. Therefore, it is considered an environmentally 
friendly, efficient, time-saving and cost-effective technique for material fabrication. 
However, the variety of materials that can be prepared using this method is rela-
tively limited. Improved the synthesis process of nitrogen-containing bone biochar 
by ball milling technology, which greatly increased the pore area and specific surface 
area of nanoscale adsorbents, and significantly increased the adsorption capacity of 
nitrogen-containing bone biochar to heavy metal ions [80]. Environmental friendly 
thiol-modified biochar (BMS-biochar) was synthesized from the original biochar 
and 3-mercaptopropyltrimethoxysilane (3-MPTS) by the ball milling process [81]. 
The results showed that the specific surface area of thiol-modified biochar materials 
could be improved by the ball milling method. And then more negatively charged 
surfaces and more functional group adsorption sites are provided. Ultimately, the 
adsorption performance is greatly improved. The potential mechanism for Hg2+ and 
CH3Hg+ adsorption through BMS-biochar was proposed, as shown in Fig. 7.

Physical vapor deposition (PVD), also referred to as the evaporation and condensa-
tion method, is commonly conducted within a vacuum chamber. This method utilizes 
a heat source to promote the evaporation and gasification of materials, allowing them 
to undergo physical reactions in a gaseous state. Eventually, they condense and grow 
into nanoparticles or coatings during the cooling process. The corrosion resistance, 
wear resistance, mechanical, thermal, and optical properties of the precursor were 
changed during the synthesis process [82]. The heating methods commonly used 
in the evaporation and gasification process include resistance heating, plasma jet 
heating, high frequency induction heating, electron beam heating, laser heating, arc 
heating, and microwave heating. The synthesis of ultrafine particles by different 
heating methods has different structures, particle sizes and distributions, and quan-
tities [83]. For instance, the synthesis of 2, 4, 5-triphenylimidazole nanowires 
is achieved through adsorbent-assisted physical vapor deposition. In short, the



120 H. Qin et al.

Fig. 7 Schematics of potential adsorption mechanisms of Hg2+ and CH3Hg+ on BMS-biochar 
[81]. Reproduced with the permission of Elsevier

precursor is heated and evaporated in a tube furnace with inert gas, and the product 
is collected downstream of flowing gas [84]. Studies have revealed that the unique 
size of nanowires is primarily dependent on optical properties. When the diameter of 
nanowires decreases, its absorption spectrum will shift blue, and the vibration fine 
structure of the emission spectrum will become more obvious. 

4.1.2 Chemical Synthesis Method 

Common chemical preparation methods include the sol–gel method, solvothermal 
method, chemical vapor deposition method, chemical precipitation method, and so 
on. The sol–gel method, a wet chemical technique, finds extensive application in 
nanomaterial development. This method is employed to develop a variety of high-
quality metal oxide-based nanomaterials. In the synthesis of metal oxide nanopar-
ticles, liquid precursors are converted into sols, which subsequently evolve into 
network structures known as gels [85]. In a typical sol–gel process, inorganic salt 
or metal alkoxide are employed as precursor. They are dissolved in water or organic 
solvent to form a homogeneous solution. The solute undergoes a hydrolysis reaction, 
resulting in the formation of nano-sized particles and sols. These sols undergo trans-
formation into gels under certain conditions. By utilizing low-temperature chemical 
processes, the microstructure of the material can be tailored and controlled within 
a relatively small size range, achieving uniformity at the submicron, nanometer, 
and even molecular levels. Subsequently, impurities are removed, and heat treat-
ment is applied to form oxides or other composite nanomaterials. A mesoporous 
silica-magnesium oxide ceramic fiber with excellent adsorption performance was
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Fig. 8 Schematic diagram of the synthesis method of TiO2 nanoparticles [87]. Reproduced with 
the permission of Wiley 

synthesized by sol–gel method using citric acid as a surfactant [86]. It has a diameter 
of 1.23 μm and a specific surface area of 142.61 m2/g and has a strong adsorp-
tion capacity for Pb (II), Cu (II), methylene blue, and fulvic acid. Another instance 
demonstrates a method for preparing titanium dioxide nanoparticles through the 
sol–gel approach, as depicted in Fig. 8 [87]. 

The hydrothermal method is one of the most famous and widely used methods for 
producing nanostructured materials. In the hydrothermal method, nanoscale mate-
rials are obtained by heterogeneous reactions in a high pressure and temperature 
water medium near the critical point in a sealed container [88]. It is considered as a 
simple and environmentally friendly preparation method of nanomaterials. It can be 
divided into hydrothermal crystallization method, hydrothermal synthesis method, 
hydrothermal decomposition method, hydrothermal oxidation method, hydrothermal 
reduction method, microwave hydrothermal method, supercritical hydrothermal 
synthesis method, and reactive electrode submerged arc method [89]. Of this amount, 
the solvothermal method is a method developed on the basis of hydrothermal reaction 
approach. The solvothermal method utilizes organic solvents instead of an aqueous 
solutions medium in the hydrothermal method, and reacts in a closed high-pressure 
reactor. At present, this method was used to prepare metal oxide nanoparticles [90], 
metal organic framework materials [91], covalent organic framework materials [92], 
and so on. The characteristics of nanomaterials prepared by the solvothermal method 
are closely related to the reaction conditions [93]. Compared with the sol–gel method, 
this technique does not require high temperature combustion and avoids the mixing 
of impurities and the formation of hard agglomeration of particles. At the same time, 
it is easy to adjust the reaction conditions, but also can control the crystallization,
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particle size, and porosity of nanoparticles. Moreover, it is advantageous to obtain 
suitable stoichiometric substances and the advantages of crystal morphology. For 
instance, CeO2 nanoparticles with effective adsorption capabilities were synthesized 
through a simple solvothermal method [94]. By controlling the experimental parame-
ters, nanoparticles with different diameters (50–800 nm) could be prepared. Another 
study reported the hydrothermal preparation metal–organic framework materials 
with core–shell structure (Fe3O4@Mg-MOF-74) [95]. The synthesis and enrichment 
conditions were optimized according to the control variables. The prepared nanoma-
terials achieved efficient enrichment and detection of glycopeptides via magnetic 
solid phase extraction, maintaining outstanding adsorption effect after 6 cycles. 
Likewise, a defective, carboxyl-exposed and highly stable MOF-808def nanomaterial 
adsorbent was synthesized using solvothermal method [96]. The adsorption mecha-
nism of pollutants and MOF-808def is illustrated in Fig. 9. This adsorbent exhibited 
robust adsorption properties for tetracycline antibiotics in complex environmental 
conditions. 

Chemical vapor deposition (CVD) is to utilize gas or adopt various means to 
change substances into gas, and make them react chemically in the gas state. Subse-
quently, they condense and grow into nanoparticles in the cold treatment process. 
According to evaporation methods, CVD can be divided into plasma enhanced 
chemical vapor deposition (PECVD) and laser induced chemical vapor deposition 
(LICVD). CVD is recognized as a solvent-free, one-step “green” technology. It has

Fig. 9 A schematic diagram of as-proposed interaction mechanisms between TC-HCl and MOF-
808def [96]. Reproduced with the permission of Elsevier
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Fig. 10 Schematic illustration of the synthetic procedure of oxygen-doped bundlelike porous boron 
nitride [101]. Reproduced with the permission of American Chemical Society

been widely employed for the synthesis of diverse nanomaterials, such as graphene 
[97], carbon nanotubes [53], transition metal disulfides [98], metal nanoparticles 
[99], and more. Utilizing a metal–organic chemical vapor deposition method, metal– 
organic precursors are sublimated into the microporous structure of MIL-101 [100], 
and then metal nanoparticles were obtained after deposition. Oxygen-doped bundle-
like porous boron nitride was synthesized through the thermal evaporation and high 
temperature pyrolysis of solvent [101]. The synthesis schematic is shown in Fig. 10. 
The research shows that the resulting nanoscale materials possess a high specific 
surface area (474.3 m2/g) and high porosity (0.332 m3/g). In the meantime, under 
the synergistic effect of oxidizing groups and lattice defects, bulk porous boron nitride 
can selectively adsorb and extract copper ions and lead ions. 

The chemical precipitation method involves introducing a precipitant into a solu-
tion of soluble salts containing one or more ions at a certain temperature. Subse-
quently, the solution is directly hydrolyzed or precipitated to form insoluble hydrox-
ides, oxides, or inorganic salts. Ultimately, the required nanoparticles can be obtained 
by pyrolysis or thermal removal. It is usually used to prepare metal oxide nanopar-
ticles and functionalize them to obtain excellent properties [102]. A novel magnetic 
nano-adsorbent was developed by covalently binding polyacrylic acid to the surface 
of Fe3O4 nanoparticles, followed by amino-functionalization using diethylenetri-
amine [103]. The amino-functionalized adsorbent material can quickly adsorb heavy 
metal ions and anions through chelation and ion exchange. Generally speaking, the 
general chemical precipitation method is difficult to control the size of nanopar-
ticles [104]. In order to solve this limitation, an inverse coprecipitation method 
was proposed by adding a cationic solution to the precipitation solution, which can 
produce more uniform nucleation precursors [105]. In addition, adding surfactants 
is also instrumental to obtain small-sized nanomaterials. 

4.2 Characterization 

To investigate the relationship between the structure and properties of nanomaterial 
adsorbents, it is necessary to characterize them on the atomic scale and nanoscale. 
The main characterization encompasses aspects such as morphology, structure, 
composition analysis and property assessment.
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4.2.1 Morphological Characterization 

The morphology characteristics of nanomaterials can influence many physical and 
chemical properties of materials. Morphology characterization is an important part 
of material analysis, and morphology analysis is one of the main contents of studying 
nanomaterials. The morphology characteristics of nanomaterials can influence many 
physical and chemical properties of materials. Commonly employed methods for 
morphology characterization of nanomaterials encompass the scanning electron 
microscope (SEM) [106], transmission electron microscope (TEM) [107], STM 
[108], and atomic force microscope (AFM) [109]. SEM and TEM are the most 
widely employed characterizations, which can provide information such as geometric 
morphology, microstructure, dispersion state, particle size, and crystal facet informa-
tion. SEM can provide nanoscale morphology images, while TEM has high spatial 
resolution, enabling the acquisition of element composition and phase structure infor-
mation within specific regions. Notably, STM is only suitable for morphology anal-
ysis and surface atomic structure distribution analysis of conductive thin film mate-
rials, but not for nano-powder materials. Meanwhile, AFM can analyze conductive 
and nonconductive materials, but its resolution is worse than that of STM. Among 
these techniques, STM and AFM mainly applied in in-situ morphology analysis. 

4.2.2 Structural Characterization 

X-ray diffraction (XRD) phase analysis is based on the X-ray diffraction effect of 
a polycrystalline sample [110]. This method that can analyze and determine the 
existing form and phase structure of each component in a sample. The content of the 
analysis includes the crystallization of each component, the crystal phase, the crystal 
structure, the valence state of each element in the crystal, the bonding state, etc. It 
can also be used to identify unknown components. In the meantime, the specific 
surface area is a critical physical characteristic of nanoscale adsorbent. Typically, 
the nitrogen adsorption–desorption technique is employed to determine the BET 
(Brunauer Emmett Teller) specific surface area, and the BJH (Barret Joyner Helena) 
method is wielded to investigate the pore size distribution [110]. This technology is 
widely utilized and plays an important role. Infrared spectroscopy can be utilized to 
analyze defects, interstitial atoms, dislocations, grain boundaries, organic functional 
groups, and other information on nanomaterials. Among them, fourier transform 
infrared spectroscopy (FTIR) has been effectively applied [107]. Raman spectra 
can be used to probe various excitation states in nanoscale materials [110]. It exer-
cised the distinct vibrational and rotational energy levels of different substances to 
produce discernible raman frequency shifts, thus revealing information regarding the 
molecular structure and bond state characteristics of samples.
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4.2.3 Composition Analysis 

The physical properties of nanomaterials are closely related to their chemical compo-
sitions. Therefore, it is very important to determine the element composition, type, 
and amounts of impurities in nanomaterials. According to different analysis purposes, 
the composition analysis of nano adsorbent mainly involves spectral analysis, mass 
spectrometry analysis and energy spectrum analysis. Inductively coupled plasma 
(ICP) is a method to analyze the elements to be measured according to the charac-
teristic spectral lines emitted when excited atoms of the elements to be measured 
return to the ground state, using an inductively coupled plasma as the excitation 
source [111]. Inductively coupled plasma-mass spectrometry (ICP-MS) is a kind 
of elemental mass spectrum analysis method using inductively coupled plasma as 
an ion source. The ion source produces sample ions by mass analyzer and detector 
after mass spectrometry to obtain mass spectra. X-ray photoelectron spectroscopy 
(XPS) is a highly sensitive surface analysis technique [111]. Its detection depth is 
generally 4–15 nm of surface layer information, which is an effective means to study 
the physical properties such as element composition and chemical state on sample 
surface. Electron probe technology is a practical method for micro-area composition 
analysis. It combines electron beam scanning imaging with X-ray emission spec-
trum analysis, which can not only observe the microstructure of samples but also 
analyze the chemical composition of samples in selected areas. Additionally, energy 
dispersive spectrometer (EDS) is also a common micro-area composition analysis 
method, which exploits the different X-ray photon characteristic energies of different 
elements to analyze the composition. 

4.2.4 Characterization of Properties 

The common properties of nanoscale adsorbent materials include thermogravimetric 
analysis, zeta potential, magnetic characterization, and more. Thermogravimetric 
(TG) analysis is a technique employed to measure the change of material mass 
with temperature or time at a set temperature. The composition, thermal stability, 
thermal decomposition, and samples of nanoscale adsorbent materials and possible 
intermediates related to product quality can be understood by analyzing the TG 
curve. Zeta potential is the potential between the ionic layer attached to the surface 
of particles and the aqueous solution, which comprehends the electrostatic properties 
of materials and measures their stability [107]. The magnetism of nanoscale materials 
is usually characterized adopt a vibrating sample magnetometer [91].
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5 Application of Nanoscale Adsorbents in Environment 
Field 

In the environmental field, water pollution, soil pollution, and air pollution will bring 
extremely harmful to the survival and development of humans and other organ-
isms. However, conventional prevention measures and solutions can merely miti-
gate the extent of pollution, and many of these processes are cumbersome. At this 
time, the creation and application of nanomaterial adsorbents can effectively address 
these issues. Due to its high specific surface area, the nanoscale adsorbent exhibits 
superior adsorption performance. Therefore, it shows great potential in preparing 
high-performance adsorbents. Eventually, the rational utilization of nanomaterial 
adsorbents can provide more possibilities for environmental treatment. 

5.1 Wastewater Treatment 

Recently, the leap development of nanoscale adsorbents provides a golden opportu-
nity for innovation in water treatment technology. This progress has sparked exten-
sive research among numerous scholars. With the improvement of nanomaterial 
adsorbent preparation technology, nanoscale adsorbents have also been developed 
in wastewater treatment. Nanoscale adsorbent with a large specific surface area can 
provide a large number of active sites, resulting in a significant adsorption capacity. 
Therefore, it has an extremely strong ability to capture both oxygen radicals and 
alkane molecules, thus effectively removing pollutants from water environment. β-
Cyclodextrin (β-CD) is loaded onto the surfaces of zeolite and vermiculite to adsorb 
lead and cadmium ions from water. Research reveals that following the loading of β-
CD, the adsorption saturation of zeolite for Cd2+ and Pb2+ are 93.06 and 175.25 mg/ 
g, respectively [112]. The MgFe-LDH hollow nanospheres prepared by one-step 
thermal method, with large specific surface area and hollow pore structure, showed 
excellent adsorption performance for both As(V) and Cr(VI), and the removal rate 
was 99% within 5 min [8]. In addition, numerous studies have been conducted on the 
utilization of nanoscale adsorbents for the effective removal of antibiotic pollutants 
from water. Fe3O4@MoS2 nanomaterials are utilized as adsorbents for extracting 
sulfonamide antibiotics (SAs) from water samples [113]. Researchers have devel-
oped a variety of methods to eliminate permanganate ions (MnO4

−) from wastewater, 
encompassing chemical precipitation, electrochemical methods, biological methods, 
and adsorption methods [114]. The oxygen functional groups on the surface of 
graphene oxide are used as the preferential sites for rapid heterogeneous nucle-
ation. Therfore, a nanofiltration membrane made of ultrafine metal oxide/reduced 
graphene oxide nanocomposites was synthesized, which can remove 98% methy-
lene blue [115]. Furthermore, a magnetic graphene oxide (GO) gel was devised for 
the adsorption of Cu(II), Cd(II) and Pb(II) from wastewater. The material’s maximum 
adsorption capacity reached 55.96, 86.28, and 189.04 mg/g, respectively. Moreover,
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it has better selective adsorption for Pb(II) [116]. This also shows that the application 
of nanotechnology in water treatment has a promising future. 

5.2 Soil Remediation 

Traditional methods for remediating soil contaminated with organic compounds often 
encounter challenges such as low efficiency, high cost and susceptibility to secondary 
contamination. In contrast, the development and application of nanotechnology hold 
promising solutions to these issues. With the rapid development of materials science 
and nanotechnology, nanomaterials have found increasing applications in the realm 
of contaminated soil remediation. Compared with traditional remediation materials, 
nanomaterials have the advantages of large specific surface area, strong adsorption 
capacity, and high reactivity, which make nanomaterial remediation technology have 
excellent application prospects in contaminated soil remediation. As we all know, 
herbicides are extensively employed to manage and eradicate weeds across various 
crops. Consequently, atrazine is frequently detected in soil, and using Fe3O4@PS/ 
DVB-MNPs as nanoscale adsorbent can effectively extract pesticides from the soil 
[9]. CMC-stabilized MnO2 nanoparticles was used for degrading estradiol present 
in soil [117]. In response to the enrichment of heavy metals in soil, the preparation 
of nanoscale sorbents has enabled the preconcentration and determination of trace 
heavy metal ions. This achievement has been realized through the utilization of cobalt 
magnetic nanoparticles (MNPs) [118], which can effectively adsorb lead ions within 
the soil environment. The use of 50 mg/L multi-walled carbon nanotubes (MWCNTs) 
as carriers has significantly improved the migration of 0.1 mg/L phenanthrene in soil 
[119]. These examples underscore the superior attributes of nanoscale adsorbents that 
surpass those of traditional remediation materials. In the field of contaminated soil 
treatment, nanomaterials are irreplaceable by traditional remediation technologies in 
terms of their ability to adsorb and degrade heavy metals and organic pollutants as 
well as redox reactions. Consequently, nanomaterials have established themselves 
as indispensable tools in advancing contaminated soil treatment practices. 

5.3 Air Purification 

Atmospheric air contamination profoundly impacts human health in industrial 
cities. The adsorption process stands as the most prevalent and optimal technique 
for removing volatile organic compounds (VOCs). A novel application involving 
magnetic nano-adsorbents, employing Fe3O4 nanoparticles and zeolite Y, has been 
developed for air decontamination [120]. This concept was used to purify toluene 
from the air. Zhao et al. prepared a layer of cellulose nanofibers (CNF)/copper 
nitrate on a stainless-steel hollow structure to remove target air pollutants. The 
adsorption efficiency of PM2.5 remained consistently above 95% for over 24 h,
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and the adsorption amount of formaldehyde was 47.71 mg/g [10]. Toluene was also 
adsorbed using a CNC-PA6 composite nanofiber filter. This nano-adsorbent not only 
enhances the toluene adsorption capacity but also improves the fiber morphology 
and mechanical strength characteristics [121]. Nanotechnology has emerged as an 
advanced treatment strategy, harnessing various nanomaterials (NMs) to effectively 
remediate air pollution. Previous studies have shown that magnetic nanoparticles 
Mg0.25Fe2.75O4 effectively reduce carbon monoxide, particulate mass, and hydro-
carbon emissions [122]. Compared to conventional strategies, nano-sorbents display 
significant potential for air pollution remediation, owing to their high reactivity, effi-
ciency and lower. Thus, nanotechnology presents a promising avenue for advancing 
air pollution remediation. 

6 Conclusions and Future Perspectives 

Given the escalating environmental challenges, society is exhibiting a heightened 
focus on nanoscale adsorbents. Nanomaterial adsorbents, characterized by distinctive 
structures and exceptional adsorption capabilities, are garnering increased attention 
within the realm of environmental concerns. In the meantime, the types of nanoscale 
adsorbents have also become diverse due to their different properties. Currently, the 
development and application of nanoscale materials are still in the stage of research 
and breakthrough. And it is hoped that the rational development and application 
of nanomaterial adsorbents can achieve low cost, high efficiency, and large-scale 
application. 
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Adsorption Isotherms and Kinetic 
Models 

M. Kanagalakshmi, S. Gopika Devi, P. Ananthi, and Anitha Pius 

Abstract Adsorption is a significant phenomenon that underlies a variety of crucial 
technical and environmental processes. There is no question about the importance 
of adsorption in protecting the environment and the industrial sector. Additionally, 
the first stage in many catalytic processes is adsorption of reactants over the catalyst. 
Therefore, numerous attempts have been made to explore the various adsorption 
process elements. However, a vital stage in the design and operation of adsorp-
tion equipment is having the working grasp of adsorption equilibrium and kinetics. 
To comprehend the adsorption equilibrium and kinetics, several different isotherms 
and kinetics models have been created. This chapter makes an effort to present an 
overview of a particular set of theories, isotherms and kinetic models used to describe 
adsorption events at the gas–solid interface. This chapter is split into two sections: 
the first section covers the theories and models (kinetics). The models that are used 
to analyze the isotherms of adsorption are the main topic of the second section. 

Keywords Adsorption · Isotherms · Kinetics · Pseudo-first-order · BET 

1 Introduction 

One or more adsorbates may be used in an adsorption process and they may be 
fixed to an adsorbent by chemical or physical bonding. Due to its simplicity, effec-
tiveness, viability from an economic standpoint and social acceptability, adsorption 
is frequently employed in the wastewater treatment process [1]. Molecular sieves, 
polymeric adsorbents, activated carbon, and various other inexpensive substances are 
the examples of common adsorbents. Adsorption should be studied from a thermo-
dynamic and kinetic perspective to learn more about its functioning and processes. 
In addition to adsorption capacity, a chosen adsorbent’s kinetic performance is the 
crucial for the pilot application [2].
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The kind and type of adsorption is determined by the degree of contact between 
the molecules of the adsorbates and the adsorbents. The mechanism can also be 
categorized as either physisorption (physical adsorption) or chemisorption (chem-
ical adsorption). Van der Waals forces regulate the molecular interactions during 
physisorption, whereas valence forces are involved during chemisorptions [3]. The 
physisorption (low enthalpy of adsorption, formation of multilayers and reversibility) 
or chemisorption (electron transfer, formation of ionic or covalent bonds, occurring 
on monolayers only and irreversibility) of the adsorption process is determined by 
the thermodynamic parameters, whose estimation methodology is discussed [4]. 

The three basic phases of mass-transfer-governed process of adsorption are: (i) 
moving the adsorbate from the bulk to the exterior (ii) moving into the pores and 
(iii) binding the adsorbate to the active sites of the adsorbent. As a result, chem-
ical interactions as well as the contribution of adsorbent and intraparticle diffusion 
processes affect the rate of adsorption. Kinetic models seek to explain dynamic 
behavior, comprehend adsorbent-adsorbate interactions, and offer an understanding 
of the intricate adsorption mechanism. The pseudo-first-order and pseudo-second-
order models are the most often utilized equations, even though many sophisticated 
equations such as those by Elovich, Avrami, Bangham or film diffusion models have 
been produced [5]. 

For environmental remediation and wastewater treatment facilities in partic-
ular, understanding the design and operation of adsorption systems and processes 
is crucial. Understanding the adsorption process of contaminants on adsorbents 
requires a thorough grasp of adsorption isotherm models. The equilibrium of the 
sorption of adsorbate on the surface of adsorbents is also demonstrated by adsorp-
tion isotherms, which gives essential information for optimizing adsorbents for the 
removal of contaminants from the environment [6]. 

2 Adsorption Kinetics 

Adsorption is a complicated phenomenon that usually takes an approach that 
combines surface adsorption and diffusion into the pores. Adsorption kinetics are 
mainly controlled by numerous steps, including diffusion and reaction processes 
(Fig. 1).

Step1. Molecule and/or ion transfer from the bulk solution to the boundary film 
bordering the adsorbent surface. 

Step 2. Ion transport from boundary film to the surface of the adsorbent. 

Step 3. Transfer of ion from the surface to the intraparticular active sites and porous 
structure. 

Step 4. Chemical reaction, i.e., adsorption reaction on adsorption sites via chelating, 
ion exchange or complexation.
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Fig. 1 Schematic expression of mass transfer resistances in the pathway of species adsorption by 
porous adsorbents

2.1 Kinetic Model of Avrami 

According to this concept, the reaction occurs at the solid support’s active surface 
sites, and its equation has the following two forms: exponential and double 
logarithmic, respectively represented by Eqs. (1) and (2) 

Q1 = Qav(1 − e(kavt)nav ) (1) 

ln(−ln(1 − Qt )) = ln(Kav) + navln(t) (2) 

where Qav: Avrami theoretical value of the amount of the adsorption (mg g−1) 
Kav: Avrami rate constant 
t: time of contact (min) 
nav: Avrami order model and 
Qt: the amount of adsorbate in the adsorbent at time t (mg g−1). 
For the exponential model, it is easier to graph Qt as a function of contact time t, 

whereas, for the double logarithmic model, it is more convenient to graph ln (-ln (1-
Qt) as a function of contact time t), noting the coefficient of determination R2 [7]. 

2.2 Elovich’s Equation 

Zeldowitsch (1934) developed the so-called Elovich equation, a kinetic equation of 
chemisorption, to characterize the rate of carbon monoxide adsorption on manganese 
dioxide, which falls exponentially with increasing gas adsorbed: 

dq 

dt  
= ae−aq (3)



138 M. Kanagalakshmi et al.

where q represents the amount of gas adsorbed at time t 
a desorption constant and 
α is the initial adsorption rate. 
Equation (3) can be rearranged to a linear form: 

q =
(
2.3 

α

)
log(t + to) −

(
2.3 

α

)
logto (4) 

with 

to = 
1 

αa 
(5) 

A straight line with the appropriate value of t0 should result from plotting q vs 
log(t + t0). The Elovich equation is used to calculate the chemisorption kinetics of 
gases onto heterogeneous solids. 

With the assumption of aαt >> 1 Eq. (4) was integrated by using the boundary 
conditions of q = 0 at t  = 0 and q = q at t  = t to yield: 

q = αln(αa) + αlnt (6) 

The adsorption of gas onto solid materials is best described by Elovich’s equation. 
I has seen used to explain the adsorption of contaminants from aqueous solutions, 
such as the removal of Cadmium from effluents using bone char and the adsorption 
of Cr(VI) and Cu(II) by chitin, chitosan and Rhizopus arrhizus [8]. 

2.3 Lagergren’s Pseudo-First-Order 

The liquid–solid adsorption system based on the pseudo-first-order equation is the 
most frequently used with the Lagergren kinetic. The following ordinary first-order 
differential equation characterizes the adsorption kinetics of a species in an adsorbent 
particle in this model Eq. (7) 

dQ  

dt  
= K1(Qe − Qt ) (7) 

The differential equation Eq. (7) demonstrates that the adsorption capacity is 
inversely correlated with the “distance to equilibrium,” which is measured by the 
difference between the average concentration of the species in the adsorbed phase and 
the final concentration of the phase adsorbed in equilibrium with the fluid phase: For a 
clean particle, the average species concentration in the adsorbed phase is zero at time 
t = 0. As time goes on, the distance at equilibrium decreases and is neutralized when 
equilibrium is attained, being equal to the ultimate concentration of the adsorbed
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phase in equilibrium with the fluid phase. The average concentration of species 
in the adsorbed phase is equal to the concentration of the final adsorbed phase in 
equilibrium with the fluid phase, which is equal to zero. 

By integration of this differential equation Eq. (7) for the boundary conditions: qt 
= 0 to t  = 0 and qt = qt to t = t, the following pseudo-first-order Lagergren equation 
was obtained Eq. (8) 

ln(Qe − Qt ) = ln(Qe) − K1t (8) 

where Qe: the amount of adsorbate in the adsorbent at equilibrium (mg g−1) 
Qt: the amount of adsorbate in the adsorbent at time t (mg g−1); 
K1: constant rate of Lagergren’s first order and 
t: time of contact (min). 
To test this isotherm, it is convenient to represent ln (Qe-Qt) graphically as a 

function of the contact time t and to note the coefficient of determination R2 [9]. 

2.4 Pseudo-Second-Order 

The plots of t/qt against t from Eq. (9) and the pseudo-second-order parameters, qe and 
k2 were obtained from the pseudo-second-order plot. The correlation coefficients, 
R2 values, at different concentrations are much higher (>0.99) than the pseudo-first-
order. These results indicate that pseudo-second-order kinetics is applicable. 

t 

qt 
= 1 

k2q2 
e 

+ 
1 

qe 
(9) 

where the slope and intercept of a plot of t/qt vs t can be used to empirically calculate 
the second-order constants k2 (g/mg.min) [8]. 

2.5 Intraparticle Diffusion Kinetic Models 

Weber–Morris Diffusion Kinetic Model 

In this model, intraparticle diffusion significantly affects the kinetics of the adsorption 
process and the plots of qt vs t1/2 based on Eq. (10) produce straight lines that pass 
through the origin which yields the rate, constant kid. Additionally, the contribution 
of surface adsorption in the rate-controlling phase increases with the size of the 
intercept, c. 

q1 = kid t1/2 + C (10)
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where kid is the intraparticle diffusion rate constant (g/mg.min1/2) and c is the intercept 
in the plot of qt against t1/2 that is related to the thickness of the boundary layer [2]. 

3 Adsorption Isotherms 

The amount of material adsorbed by a substrate is often expressed as a function of the 
equilibrium concentration at the constant temperature. The process of representing 
this function is known as adsorption isotherms. 

3.1 One Parameter Isotherm Model 

Henry’s Isotherm Model 

In Henry’s Isotherm model, partial pressure of the adsorptive fluid is exactly propor-
tional to the amount of adsorbate. Henry’s adsorption constant, which appears in 
linear adsorption isotherms and is analogous to Henry’s gas law. It is based on Gibbs 
adsorption and it is used to identify the equilibrium adsorption state for adsorbates at 
the constant temperature. As the result, the partial pressure of the adsorptive fluid and 
the equilibrium quantity of adsorbate in the fluid are connected in Henry’s adsorption 
isotherm by 

Qe = KH Ce (11) 

where Qe is the amount of adsorbate at equilibrium condition (mg/g) 
KH is Henry’s adsorption constant and 
Ce is the equilibrium concentration of the adsorbate on the adsorbent. 
Henry’s isotherm is not suitable for high temperature and pressure experiments 

due to the violent molecular motion based on the strong contact force and potential 
energy [10]. 

3.2 Two Parameter Isotherm Models 

Dubinin-Radushkevic (D-R) Isotherm 

This isotherm assumes that the features of the adsorption curve are linked to the 
porosity of the adsorbent. It helps us to identify the type of adsorption that take place 
such as chemisorption or physisorption, and also to calculate the apparent adsorption 
energy. D-R does not presume that the adsorbent’s surface is uniform. The model’s 
linear form is written as:
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lnqe = lnQD − BD +
[
RT ln

(
1 + 

1 

Ce

)]2 

(12) 

where QD (mol/g) represents the maximum adsorption capacity and BD (mol2 /KJ2) 
are D-R constants derived from the slope and intercept of the plot of ln qe versus RT 
ln (1 + 1/Ce). It is possible to calculate the mean free energy of adsorption, E (KJ/ 
mol), which is the amount of energy needed to move one mole of adsorbate from 
solution to the surface of an adsorbent: 

E = 1 √
2BD  

(13) 

BD (mol2 /KJ2) is the free energy of sorption per mole of the adsorbate as it 
moves towards the surface of the adsorbent and QD (mol/g) is related to the extent 
of adsorption of adsorbate [11]. 

Elovich Isotherm 

Multilayer adsorption was implied by the equation defining this model, which is 
based on a kinetic principle that states that adsorption sites grow exponentially with 
adsorption. The kinetics of gas chemisorption onto solids were the initial target of 
the equation’s derivation. The following expressions represent the Elovich model: 

qe 
qm 

= KECee 
qe 
qm 

(14) 

but the linear form is expressed as follows: 

ln 
qe 
Ce 

= lnKeqm − 
qe 
qm 

(15) 

Elovich maximum adsorption capacity and Elovich constant can be calculated 
from the slope and intercept of the plot of ln(qe/Ce) versus qe [12]. 

Flory–Huggins Isotherm 

It is possible to predict the thermodynamic viability of an adsorption process using the 
Flory–Huggins isotherm model, which depends on how much the adsorbent surface is 
covered by the substance being adsorbed. The relation represents the Flory–Huggins 
isotherm model. 

θ 
Co 

= KFH  (1 − θ)nFH  (16) 

θ = 1 − 
Ce 

Co 
(17)
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where KFH is the Flory–Huggins’ constant [L mg−1]. The nFH parameter repre-
sents the number of adsorbate ions occupying sorption sites. Further, the equilibrium 
constant, KFH, can be used to inspect the spontaneity of the reaction by calculating 
Gibbs free energy using the relation [13].

�G = −RT lnKFH (18) 

Fowler-Gunggenheim Isotherm 

During the adsorption process, the Fowler–Guggenheim method takes into account 
the lateral interactions of the adsorbed molecules. One of the most fundamental corre-
lations, the model enables the prediction of the lateral interaction between adsorbates. 
This model is discussed in detail: 

KFG .Ce = 
θ 

1 − θ 
exp

(
2.θ.W 

R.T

)
(19) 

KFG stands for the L/mg Fowler–Guggenheim equilibrium constant. W is the 
interaction energy (kJ/mol) between molecules that have been adsorbed, and its 
value is correlated with the adsorption of heat. The temperature changes linearly as 
more molecules are adsorbed onto the surface of the adsorbent. 

(i) W > 0 kJ/mol denotes both the presence of exothermic reactions and the 
attraction between adsorbed molecules. 

(ii) W < 0 kJ/mol is the result of endothermic reactions and the attraction of 
adsorbed molecules. 

(iii) when W = 0 kJ/mol the adsorbed molecules do not interact [14]. 

Freundlich Isotherm 

A physical kind of adsorption known as a multilayer weakly bonded Freundlich 
isotherm characterizes this sort of adsorption. The heterogeneity of the adsorp-
tion sites is another presumption made by the Freundlich isotherm. The empirical 
relationship for expressing Freundlich isotherm is given in the equation: 

ln  Qe = lnK f + 
1 

n 
lnCe (20) 

where Kf is the Freundlich constant 
Ce is the concentration of adsorbate under equilibrium conditions (mg/L) 
Qe is the amount of adsorbate absorbed per unit of adsorbent (mg/g) and 
n is the value indicating the degree of linearity between the adsorbate solution 

and the adsorption process. 
The value of n is described as follows: 

(i) n = 1, linear adsorption. 
(ii) n < 1, adsorption process with chemical interaction.
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(iii) n > 1, adsorption process with physical interaction. 
(iv) Favorable adsorption process is declared when 0 < 1/n < 1, and a cooperative 

adsorption process occurs when 1/n > 1 [15]. 

Halsey Isotherm 

This equation is appropriate for assessing the multilayer adsorption system for 
adsorbate ions adsorption at the significant distance from the surface. The Halsey 
adsorption isotherm may be expressed as Eq. (21) 

qe = exp
(
lnKH − lnCe 

mH

)
(21) 

The fact that the experimental findings coincide with this equation, especially at 
the higher concentrations which supports the adsorbent’s heterogeneous pore distri-
bution. When it comes to isotherms of type II that occur in heterosporous substances, 
this equation provides a fair description of the adsorption data. Comparing multi-
layer adsorption isotherm models to the literature, the Halsey model best matches 
the experimental results [16]. 

Harkin-Jura Isotherm 

The Harkin-Jura isotherm model, which applies to solid–gas systems, is predicated 
based on the concept that multilayer adsorption may take place on the surface of 
absorbents with heterogeneous pore distribution. This Harkin-Jura isotherm model 
is expressed as follows: 

1 

Q2 
e 

= 
B 

A 
−

(
1 

A

)
logCe (22) 

where A and B are Harkin-Jura constants [10]. 

Hill Isotherm 

Hill’s equation was proposed as a theory to explain how different species attach to the 
homogenous substrates. According to the model, adsorption is a cooperative process 
in which the capacity of a macromolecule to bind with the ligand at one site could 
affect other binding sites at the same macromolecule. The results of the Hill model’s 
calculations and Hill isotherm’s linear form are displayed in 

qe = qH CnH  
e 

KD + CnH  
e 

(23) 

where KD, nH, and qH are constants [17].
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Hill-Deboer Isotherm 

The case where there is mobile adsorption, as well as lateral contact between adsorbed 
molecules, is described by the Hill-Deboer isotherm model. This isotherm equation’s 
linearized form is as follows 

ln

[
Ce(1 − θ ) 

θ

]
− θ 

1 − θ 
= −lnK1 − 

K2θ 
RT 

(24) 

where K1 is Hill-Deboer constant (Lmg−1) and K2 is the energetic constant of the 
interaction between adsorbed molecules (KJmol−1). Equilibrium data from adsorp-
tion experiments can be analyzed by plotting ln[Ce(1 − θ)/θ] − θ/(1 − θ) versus θ 
[14]. 

Jovanovic Isotherm 

The Langmuir model and the Jovanovic isotherm model both make the same hypoth-
esis. But it also takes into account the potential of mechanical interactions between 
the molecules that are adsorbing in addition to the Langmuir model. The Jovanovic 
model is also valid for localized adsorption, in contrast to the Langmuir model, 
which is only valid for mobile adsorption. The general Jovanovic equation for the 
homogeneous surface is given by the expression: 

Qe(P, T , e) = A[1 − exp(−bP)] (25) 

where A is the adsorption capacity at equilibrium and b is the Jovanovic parameter 
defined by: 

b = boexp
( q 

RT

)
(26) 

b0 is the corresponding limiting value of b as the temperature approaches infinity, 
q is the isosteric heat of adsorption. The linearized form of the Jovanovic isotherm 
model is shown below: 

lnQe = lnQmax − K jCe (27) 

where Qe is the amount of adsorbate in the adsorbent at equilibrium (mg g−1), Qmax 

is the maximum uptake of adsorbate obtainable when ln Qe is plotted against Ce, KJ 

is the Jovanovic constant. 
A modified form of the Jovanovic isotherm model known as the Jovanovic-

Freundlich isotherm model has proven to better fit the optimization model for 
L-Lysine imprinted Polymer [10]. 

Kiselev Isotherm 

The Kiselev adsorption isotherm equation is a localized monomolecular layer model. 
Its linearized expression is as follows Eq. (28):
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ln

[
1 

Ce(1 − θ )

]
= 

K1 

θ 
+ K1Kn (28) 

where Ki is Kiselev equilibrium constant (Lmg−1) and Kn is the equilibrium constant 
of the formation of a complex between adsorbed molecules determined from the 
linear plot of 1/Ce (1-q) versus 1/q [18]. 

Langmuir Isotherm 

The Langmuir isotherm was primarily created for the interaction between gases and 
solids, but it is also utilized for other adsorbents. The surface rates of adsorption and 
desorption are equal with zero accumulation under equilibrium circumstances since 
it is an empirical model based on kinetic principles. The Langmuir isotherm may be 
expressed as follows under the following conditions: (a) monolayer adsorption; (b) 
homogenous sites; (c) constant adsorption energy; and (d) absence of lateral contact 
between the adsorbed molecules. 

qe = 
qo KLCe 

1 + KLCe 
(29) 

where qo is the maximum amount of adsorbed surfactant in mg/ g and 
KL is the Langmuir constant in L/mg. 
The linearized version is 

Ce 

qe 
= 1 

KLqo 
+ 

Ce 

qo 
(30) 

A plot between Ce/qe versus Ce will generate a straight line with a slope of 1/qo 
and an intercept equal to 1/KLqo. 

Only one molecule can bind to each of the identical adsorption sites required by 
the monolayer assumption. Once a surfactant molecule has occupied a site, there is 
no longer any adsorption taking place there. At very low concentrations (KLCe 1), 
this model transforms into Henry’s model. The Langmuir isotherm model seems to 
have a single plateau according to the L-shaped curve. 

The separation factor, also known as the equilibrium parameter (RL) is a significant 
parameter associated with the Langmuir model that is used to determine whether 
surfactant adsorption is advantageous or disadvantageous. It may be demonstrated 
mathematically as 

RL = 1 

1 + KLCo 
(31) 

where KL and Co are the Langmuir constants and highest initial concentration of 
surfactant, respectively. 

In general, RL < 1 indicates that adsorption is favorable 
RL∼0 indicates that adsorption is irreversible 
RL = 1 indicates that the adsorption isotherm is linear and
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RL > 1 corresponds to unfavorable adsorption [19]. 

Temkin Isotherm 

This isotherm has a component that explicitly accounts for the interactions between 
the adsorbent and adsorbate. The model assumes that the heat of adsorption (a func-
tion of temperature) of all molecules in the layer will diminish linearly rather than 
logarithmically with coverage by disregarding the extremely low and high concen-
tration values. By plotting the amount sorbed qe versus ln Ce and calculating the 
constants from the slope and intercept, it was possible to demonstrate that, as 
predicted by the equation, the derivation is characterized by a uniform distribution 
of binding energies (up to some maximum binding energy). The following equation 
represtents the model: 

qe = 
RT 

b 
ln(AT Ce) (32) 

qe = 
RT 

bT 
lnAT +

(
RT 

b

)
lnCe (33) 

B = 
RT 

bT 
(34) 

qe = BlnAT + BlnCe (35) 

AT = Temkin isotherm equilibrium binding constant (L/g). 
bT = Temkin isotherm constant 
R = universal gas constant (8.314 J/mol/K) 
T = Temperature at 298 K 
B = Constant related to heat of sorption(J/mol) [12]. 

3.3 Three-Parameter Isotherms 

Brunauer–Emmett–Teller Isotherm 

In gas–solid equilibrium systems, the Brunauer–Emmett–Teller (BET) isotherm is a 
theoretical model that is often employed. BET is an expanded variant of the Langmuir 
isotherm that is used to create multilayer adsorption systems. From data on nitrogen 
adsorption, the BET model is frequently used to calculate the surface area of an 
adsorbent. The extension of this model to a liquid–solid interface is described by 
Eq. (36) 

qe = qmBET  CBET  Ce 

(Ce − Cs)[1 + (CBET  − 1) Ce 
Cs 

] (36)
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The energy of surface contact is correlated with the CBET parameter. This idea is 
valid for relative concentrations between 0.02 and 0.4. The adsorption energy does 
not vary with the rate of adsorption in the same layer, and there is no interaction 
between adsorbed molecules. This isotherm is based on the same assumptions as 
the Langmuir isotherm: surface and distribution of sites are uniform, and the surface 
is energetically homogenous. The rate of desorption from each layer is also equal 
to the rate of adsorption on that layer. Other simplifying assumptions were added 
to this model by multilayer adsorption of the BET model: the second, third and 
higher layers have the same adsorption energy, which equals the heat of fusion and is 
not directly affected by adsorbent-adsorbate interactions. However, compared to the 
second or subsequent levels, the energy for the top layer is different. In addition, the 
number of layers tends to be infinite as the concentration approaches the saturation 
concentration [16]. 

Jossens Isotherm 

The distribution of energy of adsorbate-adsorbent interactions on adsorption sites 
is the basis of the model developed by Jossens et al. It considers that the activated 
carbon surface is heterogeneous, concerning the interactions which it engages with 
the adsorbate: 

Ce = 
qe 
H 
exp(Fq  p e ) (37) 

where qe is the adsorbed amount at equilibrium (mg g−1) 
Ce is the equilibrium concentration of the adsorbate (mg L−1) and 
H, F, and p are the parameters of the equation of Jossens. H and F depend only 

on temperature. 
This equation can be reduced to Henry’s law at low capacities [20]. 

Kahn Isotherm 

The Kahn isotherm model represents the adsorption potential to be temperature 
independent. It suggests that the nature of the adsorbent and adsorbate is dependent 
on the adsorption procedure. Kahn isotherm equation is given as follows: 

qe = qmaxbK Ce 

(1 + bK Ce)aK 
(38) 

where ak is the exponent value of Kahn isotherm and 
bk signifies the Kahn isotherm constant [21]. 

Koble–Corrigan Isotherm 

The Sips isotherm model is similar to the Koble-Carrigan isotherm model. This model 
combines the Freundlich isotherm and the Langmuir isotherm. Koble–Carrigan 
isotherm model is given in the following equation:
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qeq =
AKCCnK  C  

eq 

1 + BKCCnK  C  
eq 

(39) 

The Freundlich isotherm is reached by this model at high adsorbate concentrations. 
The constant n must be bigger than or equal to 1 for it to be true. When n is less than 
1, it means that the model, although having a high concentration coefficient or a low 
error value, is unable to define the experimental data [22]. 

Langmuir–Freundlich Isotherm 

The Langmuir and Freundlich isotherms are the most often utilized analytical 
isotherms for simulating the adsorption of arsenic on iron oxides. The Lang-
muir–Freundlich isotherm, also referred to as Sip’s equation, is a flexible isotherm 
expression that can simulate both Langmuir and Freundlich behaviors. Langmuir– 
Freundlich isotherm, which can also be used to simulate pH-dependent sorption 
effects. 

A general form of the Langmuir–Freundlich isotherm equation can be written as: 

q = 
Qm(KaCeq )

n 

(KaCeq )
n + 1 

(40) 

where q is the amount of As(V) adsorbed on the sand at equilibrium (mg As(V)/ g 
sand) 

Qm is the adsorption capacity of the system (mg of sorbate/ g sorbent), which 
can also be expressed as Nt, which is a measure of the total number of binding sites 
available per gram of sorbent 

Ceq is the aqueous phase concentration at equilibrium (mg/ L). 
Ka is the affinity constant for adsorption (L/mg) n is the index of heterogeneity 

[23]. 

Radke-Prausnitz Isotherm 

Radke-Prausnitz model is the favored option for the majority of adsorption systems 
with low adsorbate concentrations due to several important characteristics. The 
isotherm model becomes a linear isotherm at low adsorbate concentrations. It 
approaches the Freundlich isotherm at large adsorbate concentrations, and when 
nRP = 0, it transforms into a Langmuir isotherm. This isotherm’s ability to provide 
an accurate match over a wide range of adsorbate concentrations is another essential 
characteristic. Radke-Prausnitz equation can be expressed as: 

q = qmRPbRP  p 

(1 + bRP  p)nRP  
(41) 

where qmRP is the maximum adsorption capacity [mmol/g] 
bRP is the Radke-Prausnitz constant [bar−1]. 
nRP is Radke-Prausnitz model exponent [24].



Adsorption Isotherms and Kinetic Models 149

Redlich-Peterson Isotherm 

The linear form of R–P isotherm equation. 
The R–P isotherm equation is expressed as 

qe = 
qmon ′bRPCe 

1 + bRPCα 
e 

(42) 

where q’mon and bRP are parameters of the R–P isotherm equation. 
Two linear forms of Eq. (42) can be obtained by transformation as 

ln

(
bRPqmon ′Ce 

qe 
− 1

)
= lnbRP  + αlnCe (43) 

and 

Ce 

qe 
= 1 

bRPqmom ′ +
(

1 

qmom ′
)
Cα 
e (44) 

The logarithmic linear form of Eq. (43) was adopted by many researchers. For 
fitting Eq. (43) to the experimental data to obtain a linear plot of ln bRP q’mon (Ce/ 
qe)−1) vs ln Ce, various constant (bRP q’mon) values must be tried before the optimum 
line is obtained. After obtaining the optimum line the constants of Eq. (43) are  to  be  
calculated. The range of bRP q’mon values is wide from 0.01 to several hundred, so it 
is not easy to obtain the correct value. Equation (44) is the exponential linear form 
obtained by plotting Ce/qe vs Ce 

α [25]. 

Sips Isotherm 

Sips or Langmuir–Freundlich isotherm has the following form: 

Q = KSC
βS 

f 

1 + aSCβS 

f 

(45) 

where KS is the Sips model isotherm constant (L/g) 
aS is the Sips model constant (L/mg) and 
βS the Sips model exponent. 
It efficiently decreases to the Freundlich isotherm at low sorbate concentrations, 

opposing Henry’s rule. It predicts a monolayer sorption capacity like that of the 
Langmuir isotherm at high sorbate concentrations. 

Sips model constants showed a similar pattern to Redlich-Peterson model 
constants [26]. 

Toth Isotherm 

The Toth isotherm is another empirical version of the Langmuir equation to mini-
mize the discrepancy between experimental data and equilibrium data predicted by
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the equation. The most effective use of this model is in the description of hetero-
geneous adsorption systems that fulfill the low and high-end boundary of adsorbate 
concentration. The following is how the Toth isotherm model is expressed: 

qe 
qm 

= θ = KeCe 

[1 + (KLCe)
n]1/n (46) 

where KL is Toth isotherm constant (mg g−1) and 
n is Toth isotherm constant (mg g−1). 
This equation simplifies to the Langmuir isotherm equation when n = 1. As a 

result, the parameter n describes the adsorption system’s heterogeneity, and if it 
deviates from unity (1) further, the system is considered heterogeneous. The Toth 
isotherm may be rearranged to give a linear form as follows: 

ln  
qn 
e 

qn 
m − qn 

e 

= nlnKL + nlnCe (47) 

The values of parameters of the Toth model can be evaluated by the nonlinear 
curve fitting method using sigma plot software. 

This isotherm model has been applied for the modeling of several multilayer and 
heterogeneous adsorption systems [27]. 

3.4 Four-Parameter Isotherms 

Baudu Isotherm 

According to Baudu, the Langmuir coefficients, b and qmL, are not constants across 
a wide concentration range when calculated by measuring tangents at various 
equilibrium concentrations. Their variations can be written in the following forms: 

b = boCx 
e (48) 

qmL = qm0C 
y 
e (49) 

Graphical study of ln b = f(lnCe) and ln qmL = f (lnCe) gives access to b0, qm0, x,  
and y. Baudu has transformed the Langmuir equation into the following expression: 

qe = 
qm0b0C

(1+x+y) 
e 

1 + b0C (1+x) 
e 

(50) 

with (1+x+y) and (1+x) <1 
where qe is the adsorbed amount at equilibrium (mg g−1).
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Ce is the equilibrium concentration of the adsorbate (mg L−1) 
qm0 is the Baudu maximum adsorption capacity (mg g−1) 
b0 the equilibrium constant, and x and y are the Baudu parameters. 
For lower surface coverage, Eq. (50) reduces to the Freundlich equation, i.e.: [28] 

qe = 
qm0b0C

(1+x+y) 
e 

1 + b0 
(51) 

Fritz-Schlunder Isotherm 

Another four-parameter equation of the Langmuir–Freundlich type was developed 
empirically by Fritz and Schlunder. It is expressed by the equation: 

qe = ACα 
e 

1 + BCβ 
e 

(52) 

with α and β ≤ 1 

where qe is the adsorbed amount at equilibrium (mg g−1) 

Ce is the equilibrium concentration of the adsorbate (mg L−1) 

A and B are the Fritz–Schlunder parameters and 

α and β are the Fritz–Schlunder equation exponents. 
At high liquid-phase concentrations of the adsorbate, Eq. (52) reduces to the 

Freundlich equation, i.e.: 

qe = 
1m FSs K1Cα FS  

e 

1 + K2C
β FS  
e 

(53) 

where qe signifies the monolayer adsorption capacity of the adsorbent (mg g−1) [29]. 

3.5 Five-Parameter Model 

Fritz–Schlunder-V Isotherm Model 

Fritz and Schlunder developed a five-parameter empirical model that is capable of 
simulating the model variations more precisely for application over a wide range of 
equilibrium data. The isotherm equation is 

qe = 
1m FSs K1CαFS  

e 

1 + K2C
βFS  
e 

(54)
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where qmFS5 is Fritz-Schlunder maximum adsorption capacity (mg g−1) and K1, K2, 
αFS, and βFS are Fritz-Schlunder parameters. 

This isotherm is valid only in the range of LFS value less than or equal to 1. 
This model approaches the Langmuir model while the value of both exponents αFS 

and βFS equals 1 and for higher adsorbate concentrations it reduces to the Freundlich 
model [30]. 

4 Conclusion 

This article examine the adsorption kinetics, adsorption isotherms and their mathe-
matical expressions, and their important parameters. Adsorption kinetic parameters 
offer information on the adsorbent’s adsorption capacity, rate of adsorption, and 
amount of adsorbate removed at equilibrium and at any given time. Adsorption 
reveals the sort of layer created during the adsorption as well as whether the process 
is physical or chemical. Adsorption kinetics and isotherms could be used in the 
adsorption processes, particularly those involving fluctuations in contact time and 
adsorbate concentrations. 
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Abstract Food products may be adulterated by the use of low-cost look-alike mate-
rials, low-quality materials, dilution of the original product, incorrect labeling of 
the material’s age and origin, and low-quality materials. The majority of dishonest 
traders base their decision to illegally adulterate their goods to increase sales on these 
four main criteria. Adsorption technology is one of these strategies that is effective 
and inexpensive. A special diagnostic technique for determining the chemical make-
up of food contaminants is DESI mass spectrometry (MS). Adsorption, a powerful 
technology that can separate complex mixtures under delicate working conditions, 
is frequently required in the food processing industry. Among these techniques, the 
adsorption method emerged as an efficient and cost-effective way of eliminating from 
the food sector both organic and inorganic allergens such as synthetic colorants and 
organic contaminants like methylene blue, benzene, phenols, and methyl orange. The 
study also examines the adsorption process’s kinetics, isotherms, and mechanism, 
which can be used to effectively extract and concentrate additives or adulterants from 
extracts or the food products or wastewater produced by agricultural operations and 
the food industry. 

Keywords Adulterant · Adsorption · Desorption · Methyl orange · Phenol 

1 Introduction 

Adsorption is the process of transferring an adsorbate in bulk from the aqueous 
stage to the adsorbent surfaces until a concentration-based thermodynamic equilib-
rium is attained and net adsorption is discontinued. The production of enzymes, 
fractionation of proteins and sugar, purification of penicillin, proteins, and isomers 
have all been accomplished using large-scale batch adsorption procedures. Never-
theless, batch adsorption has some disadvantages, such as a high stationary phase, 
low productivity, and high buffer consumption costs since not all of the adsorbent in
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the column is successfully used. A substantial quantity of side streams are produced 
during the manufacturing of food goods. These side streams are intricate mixtures 
that frequently contain valuable items that can be recovered and used once again in 
the food chain to improve their value [1, 2]. For example, grains include complex 
carbohydrates including glucans, arabinoxylans, and hemicellulose while fruits and 
vegetables contain polyphenols. Additionally, proteins can be extracted from agri-
cultural waste materials like canola meal. With the use of conventional techniques 
including precipitation, adsorption, filtering, and extraction, among others, these 
chemicals have been valued and recovered utilizing tried-and-true methods, such as 
the universal five-step method offered by [3, 4]. 

Color is a critical measure in quality assurance and one of the main sensory aspects 
that influences consumers’ food preferences and acceptability. Natural and synthetic 
dyes are used during processing with the intention of either adding color to otherwise 
colorless meals or recapturing the lost original color [5]. Synthetic dyes are widely 
used in the food industry because of their durability and capacity to create brilliant 
hues. According to some studies, however, consuming specific food additives may 
have adverse effects, such as the development of different malignancies, hypersen-
sitivity reactions, the induction of overactivity in youngsters, and behavioral issue 
[6]. Due to increasing concerns about their safety, a number of these coloration are 
no longer allowed to be used in food. Frequently, artificial coloring chemicals are 
used to color foods. However, there is now concern for their safety. The industry 
is forced to replace artificial colorants as a result of this restriction and the global 
trend toward eating healthier meals, which has increased interest in colorants made 
from natural sources. Thus, the moisture adsorption isotherms of the three naturally 
occurring food colors betalains, curcumin, and anthocyanins were investigated, and 
there in vitro hygroscopicity, antioxidant capacity, and color capacity were assessed. 
Natural colorants can be used to effectively color food items, and they may also have 
additional beneficial health effects. 

(Mildner-Szkudlarz and Jelen; 2008) state that there are numerous ways that rice 
might become polluted. Other cases include diluting milk and adding melamineadul-
terating mung beans in pistachio etc. [7, 8]. Customers are being taken advantage of, 
and it can be bad for their health. Food adulteration detection is essential to protect 
customers’ legal interests. Due to their high adsorption capacities, purity in recov-
ering the adsorbed molecules, affordability, and simplicity of regeneration, adsorp-
tion methods using nonpolar styrene–divinylbenzene (SDVB) copolymers or a few 
aqueous acrylic polymers are also known to be applicable for manufacturing appli-
cations. Foods rich in phenolic compounds can reduce a person’s risk of contracting 
chronic diseases such arthritis, diabetes, atherosclerosis, cancer, and other age-related 
ailments [9, 10]. The scientific field has recently become interested in the possibility 
of non-ionic polymeric macroporous synthetic resins, particularly SDVB and acrylic 
resins, for the separation and/or purification of phenolic chemicals. They have been 
used to purify and concentrate phenolic compounds from Inga edulis leaves (total 
phenolics and flavonoids), treat citrus processing wastewater (hesperidin), lessen the 
bitterness of juice (naringin), purify substances (cyanidin-3-glucoside), and adsorb 
tangeritin, hesperidin, naringin, quercetin, and naringenin [11–13].
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On the other hand, adsorption techniques provide a strong alternative for the 
removal of colors from industrial effluent together with other toxins, pollutants, 
and impurities. Traditional methods for evaluating foodstuffs to identify adulterants, 
such as high-performance liquid chromatography (HPLC), ion chromatography, gas 
chromatography-mass spectrometry, capillary electrophoresis, etc., are used to inves-
tigate the essential chemical compositions [14–16]. Artificial food coloring is used to 
cover up manufacturing errors and elevate inferior food to a higher standard. Artifi-
cial food dyes ingest into the body where they convert into poisons and cause cancer, 
mutations, and other adverse effects. These colors frequently cause allergic reac-
tions in humans. Many agricultural and forestry products, including wood sawdust, 
sunflower seed hulls, and maize cob waste, among others, hold a great deal of poten-
tial for use as adsorbents despite the fact that they include carbohydrates and peptides 
with various chemical groups like hydroxyl, carboxyl, and phosphates. Because of 
its abundance, low cost in comparison to other adsorbents such activated carbon or 
inorganic materials used in adsorption methods, and limited industrial use, it was 
chosen as an adsorbent for the removal of organic compounds from aqueous solu-
tions, odors, and colors [17, 18]. The various adsorbent kinds and their procedures for 
extracting both organic and inorganic pollutants will be demonstrated in the current 
study. Future adsorption process needs, the effects of multiple ion removal, various 
operational moods, kinetics, and isotherms will also be discussed (Figs. 1 and 2). 

Fig. 1 Pb adsorption using an ion exchange process
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Fig. 2 Basic adsorption concepts 

2 Process of Adsorption and Its Mechanism 

Reversible adsorption is more effective when the goal is to recover the solute because 
it allows for a variety of interactions between the adsorbent and the molecule in the 
aqueous phase, including van der Waals, covalent bonds, electrical, H bonds, and 
acid–base interactions. The fundamental adsorption mechanics and technical design 
methods are discussed in classical publications [19, 20]. The stages of the adsorption 
process are solute-solid contact, porosity diffusion within the solid phase, and bulk 
transfer from the aqueous phase to the particle’s outer surface. The solute and adsor-
bent’s physical–chemical characteristics, as well as the particle sizes and affinities, 
operational circumstances, and one or more of these processes, can all affect how 
quickly the entire process works. Information on equilibrium, kinetics, and column 
is necessary for practical operation. The affinity toward the adsorbent is signifi-
cantly influenced by the solute characteristics and interactions between phenolic 
compounds. Therefore, extrapolation from a separate system is not appropriate when 
working with complex solutions, and each instance requires distinct optimization. 
Model solutions’ adsorbent performance is not an accurate representation of the 
process in actual solutions [21, 22]. The effects of pH and temperature must be 
identified for each adsorbent and solute solution to properly change the settings and 
achieve the maximum rates, adsorption capacity, and desorption yields. To avoid 
oxidation, the operating temperature and contact time during the recovery process 
must be tuned for hydrolysis. 

Batch tests are usually used to select resins from the available options. Subsequent 
column investigations enable breakthrough curve development, suitable eluting agent 
selection, and process scale-up. Some materials benefit from phenolic compounds’ 
selective adsorption. The recovery of thermo-sensitive molecules is limited by the 
irreversible nature of the process and the necessity of regeneration using chemicals or 
at high temperatures, although regeneration of activated carbon employing extreme 
fluids may be able to overcome this restriction [23, 24]. 

Covalent bonding produces electrostatic attraction, which results in chemical 
adsorption, also known as chemisorption. In chemisorption, the material being 
absorbed interacts chemically with the adsorbent, which had been previously
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subjected to certain chemical alterations to form such exterior functional groups 
(i.e. acidic functional groups like carboxylic anhydride, carbonyl, lactone, carboxyl, 
and hydroxyl), which are the most prevalent types of surface functional groups. 
As a result, these functional groups adsorb the material considerably more firmly, 
requiring much more energy to release it. 

Resins are the most extensively researched adsorbents due to their chemical 
stability, low toxicity, selectivity, high adsorption capacity, and ease of regeneration 
at moderate temperatures. When extracting vanillin and syringaldehyde from lignin 
in alkaline solutions, for instance, one can avoid the considerable acid consump-
tion necessary for direct acidification of the solution by using cation exchangers. 
Ion-exchange resins have also been suggested for the adsorption of pure phenolics 
and naturalistic extracts in addition to the frequently employed non-ionic resins. 
The enrichment and purification of phenolic chemicals from extraction and waste 
streams is one potential use for the synthetic resins now employed commercially 
in food processing to remove undesirable polyphenols responsible for astringency, 
bitterness, or browning [25]. By using cation exchangers, for instance, to extract 
syringaldehyde and vanillin from lignin in alkaline solutions, the solution is avoided 
being directly acidified, which would have required the use of a large amount of 
acid. In industrial food processing, synthetic resins are often used to remove astrin-
gent and bitter polyphenols. Browning may be suggested for the growth and purity 
of phenolic components from extraction and waste streams. Molecularly impressed 
polymers, which are cross-linked 3-D structures with specialized binding capabilities 
to maintain the necessary targeted molecules, have been proposed for the analysis or 
purification of phenolic compounds [26, 27]. 

Many research have employed chemical modification with alkali or acid treatment, 
or both, and found that when onion skin was treated with thioglycolic acid to increase 
ion adsorption on different agricultural waste surfaces, the onion dust did not change. 
Citrate is grafted onto pomelo peels in order to remove methylene blue from an 
aqueous solution [28]. Peels from bananas and peapods were chemically pretreated 
with HCl and NaOH, and the results in terms of adsorption capacity were good. Rice 
straw carbon (RSC) is created by adding 10% KOH solution to rice straw after it has 
been pretreated with NaOH, ethanol, HCL, and deionized water to create rice straw 
biochar. Sugarcane bagasse was treated with citric acid to increase the adsorption 
capacity to 13.5 mg/g. 

3 Adsorption Characteristics of Physisorption 
and Chemisorption 

Adsorption takes place on the surface of a substrate. Adsorption is the process by 
which a substance builds up on a surface in progressively higher concentrations of a 
particular molecular species. Activated charcoal is where gases like oxygen, nitrates, 
and hydrogen adsorb. The adsorption process requires the following two elements:
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Fig. 3 Flowchart of the adsorption and desorption processes 

Adsorbate: a substance that sticks to the surface of another substance, such as the 
gases H2, N2, and O2. Adsorbent: A substance that adsorbs on the surface of an 
adsorbent. Several examples include alumina, silica gel, and charcoal. 

Physisorption characteristics: This type of adsorption is primarily caused by phys-
ical forces, which are also the cause of weak physisorption phenomena, numerous 
layers in this adsorption, and physical adsorption that can occur anywhere on the 
adsorbent. 

Chemisorption has the following characteristics: (1) This type of adsorption is 
caused by chemical forces; (2) It is a powerful process; (3) It almost always occurs 
in a single layer; (4) Chemisorption occurs at reaction centers on the adsorbent and 
is very selective; (5) Surface area, temperature, and the type of adsorbate affect 
chemisorption; and (6) The activation energy ranges from 40 to 400 kJ/mol (Fig. 3). 

4 Different Types of Adsorbent Resins 

Adsorbent resin, also known as polymer adsorbent, is a form of high molecular 
polymer that not only acts as an adsorbent but also concentrates and separates organic 
materials. Depending on the surface characteristics of the resin, which is manufac-
tured from a monomer polymer with a tiny dipole moment, the adsorption resin is 
frequently characterized as a non-polar adsorption resin. A common example of an
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adsorption resin with any functional group is the styrene–divinylbenzene system; a 
medium polarity adsorption resin is an ester-containing adsorption resin like acry-
late or methacrylate and dimethacrylate. A specific form of cross-linked copolymer 
known as a polar adsorption resin is one that has a nitrogen, oxygen, or sulfur polar 
functional group, such as an amide group, a cyano group, or a phenolic hydroxyl 
group. The customizable Adsorbent resins, which are macroporous polymer adsor-
bents, are frequently used in the decolorization of juice, pharmaceutical purification, 
and plant extraction. Activated carbon, which has a huge specific surface area (500– 
1700 m2/g), was the first adsorbent used by humans. Water pollutants may be removed 
using ion exchange, chemical adsorption, and physical adsorption. It also has effec-
tive gas adsorption capabilities. Numerous studies and review articles have examined 
the different adsorbents’ methods for extracting pollutants from contaminated water. 
Such adsorbents fall within the categories of natural or artificial adsorbents. 

The different types of natural adsorbents include cement, chitin, ash, charcoal, 
clay, minerals, chitosan, zeolites, ores, and peat. The availability and cost of these 
natural adsorbents are benefits, and they also offer a lot of potential for modification 
so that they can eventually have superior adsorption capabilities. 

Industrial waste, sewage sludge, home-use adsorbents, marine adsorbents, and 
adsorbents made of polymers are all examples of synthetic adsorbents [29]. Every 
adsorbent has different properties, such as pores, structural porosity, and the compo-
sition of its adsorbing surfaces. Red mud, ore minerals, peat moss, petrochemical 
wastes, fruit wastes, coconut shells, sugar industry wastes, fertilizer wastes, chitosan, 
blast furnace slag, sedimentary soil, clays, zeolites, seaweed, algae, sediment and soil, 
ore minerals, and a variety of other waste products are just a few examples of the 
waste materials that are produced. 

5 Activated Carbon (AC) 

Activated carbon (AC), which has a high internal surface area, is pourable, and 
has excellent micro-porousness, is said to be the best heavy metal adsorbent. Large 
surface areas, high adsorption capacities, porous sorbents, high rates, functional 
groups, the capacity to efficiently adsorb a variety of pollutants, superior kinetics, 
and high-quality treated effluent are some of the main benefits of AC [30]. 

The main disadvantages of AC, on the other hand, are its high cost and the need 
for multifunctional chemicals to increase its value as a disposal method. The phenols 
in industrial wastewater generated by the petrochemical, pharmaceutical, and chem-
ical pesticide industries are also removed using AC. The main suppliers include 
paints, steel mills, petroleum refineries, coal gas, coke oven facilities, plywood 
manufacturing businesses, pharmaceuticals, and synthetic resins [31].
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6 Natural Adsorbent 

The Macroporous adsorbent is a type of high molecular polymer that uses the 
concepts of molecular screening and adsorption to concentrate and filter organic 
compounds. By physically adsorbing specific organic compounds from the solu-
tion, the macroporous adsorbent achieves separation and purification goals. It can be 
absorbed by swelling in water and organic solvents have good selectivity to organic 
materials and are unaffected by the presence of inorganic salts, strong ions, and low 
molecular molecules. When separating the target object, the molecule polarity in 
addition to the particle size must be taken into consideration. 

Although adsorbent resins with tiny pores have more surface area, molecules must 
be able to enter the bead for them to be adsorbed. Chemical interactions, solubility, 
size, weight, and capacity are some of the elements that affect adsorption efficiency. 
A variety of polymer matrices, such as aromatic polystyrene or polydivinylben-
zene, aromatic halogenated polystyrene/divinyl benzene, and aliphatic methacry-
late, are available for adsorbent resins. Selecting the right adsorbent resin requires 
consideration of the distinctive physical characteristics of each polymer matrix. 

7 Nanomaterial Adsorbent 

An example of a particular kind of nanomaterial employed in the adsorption of 
contaminants from polluted water and wastes is carbon nanotubes. CNTs are made 
up of 1 or more cylindrical sheets with a radius under 100 nm and a length of more than 
20 m. CNTs are functionalized to boost their efficacy. Metal-oxides that are extremely 
tiny, up to the Nanoscale, are known as nanomaterials [32]. Cadmium, iron, lead, 
copper, arsenic, mercury, chromium, cobalt, selenium, and other heavy metals and 
organic contaminants can be effectively removed from aqueous solutions using these 
adsorbents. Due to their high surface-to-volume ratio, large surface area, catalytic 
properties, and other beneficial characteristics, these adsorbents demonstrated excep-
tional adsorption performance against many pollutants in water and wastewater. 
Ferric oxides, Aluminium oxides, titanium oxides, cerium oxides, manganese oxides, 
magnesium oxides, etc., are the most widely utilized metal oxide nanomaterials [33] 
(Table 1).
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Table 1 Recovery of biofunctional and techno functional molecules from food processing 
byproducts 

S. no Adsorbent resins Nature and function 

1 SEPLITE@LWT510 Water treatment resins for removing COD and 
organic substance 

2 MN102 Color, taste and odor removal 

3 PAD600 Caffeine removal 

4 MN100, MN102, MN502, MN152 Decolorization sugar solution 

5 PAD400 Natural color extraction (Taste and odour) 

6 SEPLITE@LX1600 Protein recovery 

7 SEPLITE@LXA81 Removal of phenolic compounds 

8 SEPLITE@LXA81 Herbal extract purification 

Structure of Natural Adsorbents 

(i) Recovery of Proteins and Peptides 

Ion exchangers are one method for isolating and purifying proteins and amino 
acids, including whey proteins, which are produced in huge amounts as cheese-
making byproducts. The majority of the proteins in whey are R-lactalbumin and
-lactoglobulin, with lesser amounts of immunoglobulin, bovine serum albumin, 
glycomacropeptides, lactoferrin, and lacto peroxidase.
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(ii) Recovery of Polyphenols from Food Processing Waste 

Plant secondary metabolites, notably polyphenols, are frequently found in high 
concentrations in the byproducts of the processing of plant foods. Phenolic 
compounds are highly sought-after by the pharmaceutical, food, and cosmetics 
industries due to their biofunctional characteristics, such as their anti-carcinogenic, 
antithrombotic, anti-inflammatory, and antioxidant qualities, as well as their techno-
functional characteristics, such as their antioxidant and antibacterial potential or their 
preserving and regulating effects on food color and scent. 

(iii) Phenolic Extracts from Fruit 

Even though leftover peels, cells, cores, and membranes from the production of 
citrus juice are commonly used as cow feed, pectin can also be extracted from them. 
Molasses, ethanol, pulp wash, flavonoids, D-limonene, natural flavors, and scents 
can all be derived from citrus byproducts. Citrus fruits and the products made from 
them are well known for having a particularly high concentration of flavanones and 
flavanone glycosides [34]. 

8 Adulteration in Food and Health Risk 

Customers need foods with color and diversity. The dealers enhance the quality and 
appeal of their products to maximize sales and profit. Consumer illiteracy, negligence, 
apathy, and a lack of coordinated action to control the threat. Inadequate enforcement 
of laws and a lack of sanctions that deter crimes [35, 36]. Synthetic food colours are 
used to hide food manufacturing problems and make inadequate food appear great. 
Artificial food colorings interact with food and transform into toxins in the body, 
where they cause cancer, mutations, and other harmful consequences. Some people 
experience allergic responses to these colours. Customers want dishes with colour and 
diversity. Causes of synthetic food color adulteration: The dealers enhance the quality 
and appeal of their products to increase sales and profit. Inadequate enforcement 
of regulations and a lack of deterrent penalties for violators, Consumer ignorance, 
carelessness, apathy, and a lack of organized effort to stop the threat [37] N.  

The latest food crises show that all foods are susceptible to food adulteration. 
Since milk was tested for nitrogen content, melamine, a nitrogen-rich chemical with 
67% nitrogen per mass unit, was added to milk to increase the protein content and 
prevent detection. Food adulteration frequently has a detrimental effect on people’s 
health some of the issues are (i) cancer and paralysis caused by the addition of 
mineral oils to fats and edible oils; (ii) liver damage, harm to an unborn child’s brain, 
allergies, and abortion. (iii) giddiness, joint discomfort, and stomach issues caused 
by switching from coffee to chicory powder; (iv) diarrhea and vomiting caused by 
zinc-containing drugs, and so on [38]. To identify adulteration, a variety of methods 
(chemical/biochemical, physical, and molecular) are used, depending on the sort of 
adulteration that needs to be found. Physical methods include studying the phys-
ical characteristics of food and performing macroscopic visual structure analysis.
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Immunologic, spectroscopic, electrophoretic, and chromatographic procedures are 
among the methodologies utilized in chemical and biochemical research. 

Some techniques, such as Raman, mass spectrometry techniques, vibrational spec-
troscopies, mid-infrared, near-infrared, Nuclear Magnetic Resonance Spectroscopy, 
mass spectrometry techniques, and mid-infrared are created to address significant 
challenges including food security, bioterrorism, and climate change in addition to the 
ongoing concern with contaminated food. Since they take a lot of time and are unsuit-
able for color combinations, adsorptive voltammetry, thin-layer chromatography, and 
spectrophotometry methods are no longer utilized to detect food dyes. Reversed-
phase chromatography (RPLC), capillary electrophoresis, and ion pair RPLC are 
utilized instead. Aquatic items that include a food preservative like formaldehyde 
can be found using surface-enhanced Raman spectroscopy using Au/SiO2 as the 
activator substrates. While concentrated gas chromatography is used to determine 
sorbate and benzoate in tomato and orange beverages, sequence injection analysis is 
utilized to identify nitrate and nitrite in cured meat [39, 40]. 

They harm the kidneys and adrenals and are carcinogenic. Artificial food coloring 
decreases hemoglobin concentration, red cell count, and allergic reactions. They 
prevent nerve endings from taking up dopamine (reduced dopamine turnover). These 
colors have an impact on the liver and intestine, as well as restlessness, irritability, and 
disturbed sleep in atopic or hypertensive children more so than adults. They produce 
glossitis, which shows symptoms (Inflation of the tongue). Different allergic reac-
tions might cause urticaria, dermatitis, angioedema, etc. When consumed in exces-
sive concentrations, artificial food colors can cause ear infections, asthma, dyslexia, 
eczema, and other conditions [41]. 

9 Operating Design 

In a laboratory context, certain undesirable hazardous substances, such as synthetic 
colors and heavy metals, can be adsorbed on various adsorbents utilizing batch mode 
or adsorption techniques for fixed bed columns. When utilizing adsorption to remove 
specific pollutant components, batch laboratory adsorption studies can be beneficial. 

Batch studies: Using batch approaches, it is possible to examine how several factors, 
such as pH, adsorbent dosage, pollutant beginning concentration, surface shape, 
modification methodology, temperature, and contact time, affect the adsorption 
process. The information regarding the interaction between adsorbate and adsorbent 
can be learned from the batch equilibrium studies’ determined adsorption capacity. 

The pollutant’s initial concentration (Co) and the final concentration (C1) are 
determined via the batch adsorption method. In the adsorption process, W stands for 
the mass of the adsorbent used, V for the volume of the solution being studied, and 
qo and q1 for the first and last stages, respectively, of adsorption capability (pollutant 
concentration on solid). 

The equation contains the process’s mass balance.
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Under the condition of equilibrium, C1 Ce and q1 qe, 

V(C0 − C1) = W
(
q0 − q1

)
(1) 

Under equilibrium conditions: C1 Ce and q1 qe so the equation will be 

V(C0 − Ce) = W(q0 − qe) (2) 

Batch Adsorption equations is V(C0 − Ce) = W(q0 − qe). 

10 Testing for Static Adsorption and Desorption to Screen 
Resins 

The following steps were taken to conduct the static adsorption and desorption 
studies: 1 g of resin was put into a 125 mL Erlenmeyer flask. Then, each flask 
received 50 mL of fruit aqueous extract. To rule out any influences on the observed 
absorbance, a control sample was used to monitor any changes in the initial concen-
tration values. The flasks were then shaken for 24 h at 120 rpm at room temperature 
(25 °C) in a shaking water bath. Adsorption was followed by filtering and washing 
resins in 50 mL of pure water. For ethanol solution that had been 70% and 95% acidi-
fied (with 1% formic acid), desorption was evaluated. The resins filled with adsorbate 
were placed in flasks and were then given 50 ml of an ethanol–water solution. 

To calculate the ratios between the adsorption and desorption capabilities, the 
following formulas were utilized. Adsorption evaluation 

Desorption Assessment, 

D =  (CdVD) ÷ (C0 − Ce)V0 × 100 
R is equal to Cd ∗ Vd ÷ C0V0 × 100. 

where Cd is the solute concentrations in the desorption solutions (in milligrams per 
liter), D is the desorption ratio (in percent),Vd is the volume of the desorption solution 
(in milliliters), and C0, Ce and V0 are present.
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11 Adsorption Kinetics 

On a first batch of chosen resins, the adsorption kinetics were studied. Sorption 
kinetics, which governs the residence time of the sorption reaction and establishes 
the efficiency of sorption, describes the rate of solute adsorption. The rate of phenolic 
chemical absorption on the selected resins was determined using pseudo-first-order 
and pseudo-second-order kinetic models [42]. 

Pseudo-First Order 

Lagregren created the pseudo-first-order equation in 1898 to determine the adsorption 
rate. The equation provides the adsorption rate, 

The equation’s linear form is as follows after integration with boundaries 
conditions from t = 0 to t  = t and qt = 0 to qt  = qt: 

log(qe − qt) = log −qe − k
/
2.303 × t 

The slope and intercept of the log (qe–qt) vs time plots, which result in a straight 
line, are used to compute the values of qe and k at various starting concentrations if 
the kinetics data are consistent with pseudo-first-order kinetics. 

Pseudo-Second Order 

The equation provides the pseudo-second-order adsorption rate, where the adsor-
bent’s capacity (in mg/g) is represented by q ((1–5) %) %. 

t
/
qt = 1

/
k2qe2 + 1

/
qe × t 

When the solution concentration reaches Cb, Q is the flow rate (ml/min) and M 
is the mass of adsorbent packed across the column (g). 

12 Adsorption Isotherm 

The retention (or release) or movement of a material from aqueous porosity media 
or aquatic environments to a solid layer at a constant temperature and pH is often 
represented by a broad curve known as an adsorption isotherm. Adsorption equilib-
rium (the ratio of the amount of adsorbed to the residual of the solution) is achieved 
when the phase-containing adsorbent has been in connection with the adsorbent for
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enough time and its adsorbate concentrations in the bulk solution are dynamically 
balanced with the interface concentration [43–45]. 

At room temperature (25 °C), 30 °C, and 35 °C, the equilibrium isotherms of 
adsorption and the effects of anthocyanins on three different resins were examined. 
Two of the most popular models for characterizing adsorption isotherms are the 
Langmuir and Freundlich isotherms. According to the Langmuir model, the adsorbed 
molecules do not interact with one another and have energetically equivalent sorp-
tion sites. The Freundlich model predicts that molecules will adsorb to surfaces with 
heterogeneous sorption regions and a range of sorption energies. A monomolecular’s 
adsorption activity in both a single-molecular layer and a multimolecular layer can 
be explained by this model. Correlation coefficients for each model on three different 
resins at well-chosen temperatures. Due to greater correlation coefficients, the Lang-
muir model was thought to be a better model for describing adsorption equilibrium 
for all three resins. 

13 Recovery of Adulterants from the Food Sources 

An extremely valuable enzyme called papain has been employed in some sectors, 
including the food business and the pharmaceutical sector. Papain is used to alleviate 
swelling, discomfort, and inflammation following surgery or injury. Using reversed-
phase expanded bed adsorption chromatography, it has been made possible to directly 
recover papain enzyme from unclarified Carica papaya juice. At linear flow velocity, 
bed expansion of two, and feedstock viscosity, the dynamic binding capability for the 
RP-EBAC at 10% breakthrough adsorbent was attained. The investigation of papain 
extraction by RPLC from unclarified papaya juice used the AmberliteTM XAD7HP 
equipment. The purification of papain in RP-EBAC was increased using a two-step 
elution process, which resulted in great papain purity and a large purifying factor of 
7.04. This work demonstrates the enormous potential of purifying papain utilizing 
RP-EBAC and an optimization stage during the extraction of juice from unclarified 
Carica papaya [46]. 

14 Applications of the DESI for Examining Chemical 
Pollutants in Food 

Involatile chemical substances can be promptly evaluated and their structure revealed 
using desorption mass spectrometry (MS), a technique that has been utilized for 
years. Successful applications include laser desorption ionization (LDI), secondary 
ion mass spectrometry (SIMS), fast atom bombardment (FAB), desorption chemical 
ionization (DCI), matrix-assisted or surface-enhanced laser desorption/ionization 
(MALDI or SELDI), and field desorption (FD). All of these approaches have the



Adsorption and Desorption of Adulterants in the Food Industry 169

limitation of probing and ionizing the material in a vacuum, which first modifies the 
environment. Even though MALDI can be used at atmospheric pressure, the presence 
of the matrix considerably alters the sample, making it difficult to detect compounds 
with low molecular masses [47]. 

We propose DESI as a quick, qualitative or semi-quantitative screening tool that 
may be used on the spot before collecting samples and transporting them to the 
food-control laboratory. By adding DESI chemicals to the electrospray solvent, it is 
simple to modify the selectivity and sensitivity of the electrospray process. Examples 
of reactions using betaine aldehyde, boric acid, phenylboronic acid, hydroxylamine, 
and acylium ions that have improved the identification of cholesterol, cis-diols, 
phosphonate esters, anabolic steroids, and cyclic acetals have been published. The 
atmospheric pressure electrospray ionization method (MS), which has a chemical-
ionization (DAPCI) and photoionization (DAPPI) versions have been created as 
adaptations to the DESI principle. Sudan dyes may not be added as colorants. Chen 
et al., published a report on the quick DESI-MS2 analysis of Sudan I, II, III, and 
IV in sausages and chili powder, Fried eggs, and tomato sauce. According to the 
English summary of this Chinese study, the LODs, or limits of detection, for these 
dietary matrices ranged from 0.01 to 1.0 pg/mm2. In an aerosol, the powdered fake 
sweetener was found. Applications like these could support preserving food sector 
workplace hygiene requirements [48, 49]. 

The DESI-MS2 analysis of a naturally produced diterpene glycoside sweetener 
found in Stevia plants and dietary products was recently disclosed by Jackson et al. 
Rubusoside, steviolbioside, stevioside, rebaudioside A–F, and glucoside were found 
in raw leaves, and accurate-mass data from DESILTQ–Orbitrap analysis confirmed 
this discovery. The identical diterpene glycosides were still present in a sample of a 
marketed supplement, despite the presence of many fructose oligomers. Hartmanova 
et al. used Nano-DESI to recognize tainted wine. Red wine samples’ major antho-
cyanin patterns as revealed by DESI contrasted favorably with the results of LC-MS2. 
More importantly, DESI analysis of the anthocyanin profiles swiftly detected illegal 
wine coloring or the combination of different wine varietals. The anthocyanins in 
grape slices and the wine stains on the cotton fabric were also given early information 
[50]. 

15 Probe-Mass Spectrometry for the Study of Atmospheric 
Solids 

Fussell et al. assessed the use of ASAP in food analysis. The detection of hazardous 
colors in spices and the detection of pesticides in cereals were the two main areas 
of inquiry. Additionally, according to Fussell et al., papaya was found to contain the 
coumarins found in cinnamon as well as the EU-approved food additives bixin and 
norbixin. While ASAP-MS generates robust qualitative results, the method struggles
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Table 2 Applications for desorption electrospray Ionization (DESI) mass spectrometry in the 
detection of chemical adulterants in Food 

Chemical analytes Food sample matrix forms 

Adulteration 

Melamine, cyanuric acid Milk 

Anthocyanins Wine, slice of wine grapes, wine stain on cotton 

Food forensics 

Steroids Seized hormone cocktail 

Steroid esters Bovine hair 

Tylosin Residue from medicine mixture 

Budesonide Dust particle 

Food additives 

Sudan dyes Sausages, chilli powder, fried eggs, tomato sauce 

Natural sweeter Dietary supplement, leaf 

Artificial sweetner Powder like aerosol particle 

to generate enough quantitative results, making it potentially insufficient for detecting 
food adulteration [51] (Table 2). 

16 Paper Spray Mass Spectrometry (PS-MS) 

According to some, PS-MS was the first ambient mass spectrometry method devel-
oped. In order for paper spray ionization to work, a triangle of paper that has been 
slightly wet with solution is exposed to a high voltage. Charged particles are produced 
when the high voltage is delivered, which is typical of an ESI process. A lot of work 
has gone into using PS-MS to analyze food, according to the literature. Zhang et al. 
provided a summary of some of the previous research, which included the discovery 
of melamine in milk powder and infant formula, Sudan colors in chili powder, plas-
ticizers in sports drinks, and salbutamol, clenbuterol, ractopamine, and terbutaline 
in pork and beef [52]. 

17 Regeneration and Reuse 

The general development of adulterants on the surface of the adsorbent over time 
causes the efficiency of the chemical to decrease throughout the adsorption process. 
The depleted surface ions must also be replaced in order for the process to be lucrative. 
Numerous eluents, including NaOH, H2SO4, HCL, NA2CO3, etc., have been utilized 
in studies to remove pollutants from adsorbent surfaces [53].
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18 Conclusion 

Adsorption is a method that has the potential to get removal of adulterants. The batch 
mood is beneficial for assessing an adsorbent’s adsorption capacity even though it 
cannot be used while formulating adsorption column experiments. a method for 
removing both inorganic contaminants like synthetic colors and dyes and organic 
pollutants like phenols, methylene blue, methyl orange, and benzene from polluted 
water or food. The most popular adsorbents are examined in this overview along 
with research on their effectiveness, price, and regeneration. These include bio-
sorbents, natural adsorbents, industrial byproducts, activated carbon, nanomaterials, 
and agricultural wastes. This study also covers the adsorption process, which makes 
use of kinetics and isotherms. The two isotherm models that are most frequently used 
to explain how organic and inorganic chemicals adsorb are Langmuir and Freundlich. 
Pseudo-first-order and pseudo-second-order kinetics theories are frequently used to 
describe the adsorption process. Adsorption mechanism is determined by the type of 
functional groups on the adsorbent’s surface, and chemical modification procedures 
can increase adsorption capacity. 
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Adsorption and Desorption 
of Micropollutants 

K. Hemkumar, P. Ananthi, M. Kanagalakshmi, and Anitha Pius 

Abstract Micropollutant (MP) contamination of water resources has sparked exten-
sive environmental research. These MPs are frequently found in sewage, ground-
water, wastewater, drinking water and surface water. This chapter gives the brief 
overview of the isotherms of MPs from aqueous solution from various adsor-
bents such as agricultural solid wastes, activated carbons, clays, and metal–organic-
framework. Several isotherm models including Langmuir, Temkin, Freundlich, 
Dubinin- Radushkevich, Sips, Redlich-Peterson and Toth isotherm were discussed. 
This chapter demonstrates that the equilibrium graph fits the Langmuir isotherm 
in most cases and has found successful application in many monolayer adsorption 
sorption processes. Most of the literatures available perform batch process but this 
review provides the platform for developing continuous flow systems with large-
scale applications at the small-scale also. The majority of the reported studies are 
done in batch mode, but this review provides a foundation for designing continuous 
flow systems with industrial applications at the commercial level as well. 

Keywords Micropollutant · Antibiotics · UV treatment · Pharmaceutical waste ·
Freundlich · Desorption 

1 Introduction 

Environmental pollution has become the severe hazard to human health and water 
resources over the last decade and it has become necessary to eliminate the harmful 
contaminants from water matrices. Organic pollutants, also classified as “emerging 
contaminants,” includes medications, hormones, personal care items, surfactants, 
illicit narcotics and pesticides [1]. Pharmaceutical chemicals are often prescribed and 
provided to the humans and domestic livestock in the modern period and their subse-
quent excretion results in the drug accumulation in the surrounding water resources
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[2]. Many methods for treating water pollution were caused by the pharmaceuticals 
and personal care products (PPCPs) including advanced oxidation process (AOP), 
photodegradation, enzymatic systems, membrane filtration, and adsorption. Most 
methods have drawbacks or challenges, such as high energy consumption and toxic 
intermediates etc. Because of its ease of operation and lack of secondary pollution, 
adsorption method that directly removes PPCPs from polluted water was currently 
regarded as the one of the most feasible and effective methods [3]. Carbon adsor-
bents, clay, minerals, polymeric resins and other adsorbents such as metals and 
their oxides, molecularly imprinted polymers, mesoporous material and gels are 
the most commonly used adsorbents for the removal of pharmaceutical compounds 
from aqueous solution. Despite the foregoing, it is worthwhile to investigate modified 
adsorbents for the removal of pharmaceutical compounds from water than conven-
tional systems [4]. Metal–organic-frameworks (MOFs) are formed by strong coor-
dination bonds between inorganic clusters and organic ligands. Over the last two 
decades, the diversity of organic and metal units has resulted in over 20,000 different 
types of MOFs with specific surface areas ranging from 100 to 10,000 m2 g−1. MOFs  
have a distinct advantage over conventional porous materials due to its pore size, 
high specific surface area and its properties could be controlled through synthesis 
and rational design. 

Excellent chemical properties and pore structure of MOF’s make them suitable 
for the usage as the catalysis, adsorption/separation, sensing, energy storage and 
biological applications. MOFs with good water stability would enhance the stability 
through post-synthetic modification strategies and in-situ synthesis. The use of MOFs 
in the water phase adsorption and separation is being promoted significantly by 
these ongoing studies. As a result, these MOFs have been used to separate and 
adsorb contaminants including inorganic and organic compounds. Aside from those 
mesoporous MOFs, some microporous MOFs with small vent such as UiO-66, ZIF-
67 and ZIF-8 have been extensively studied in terms of surface adsorption; tunable 
chemical properties. The presence of active sites on the MOF allows the complete 
interaction with guest molecules and hence enhancing the adsorption activity. This 
chapter concentrates on advancements in the application of MOF-based antibacterial 
adsorption materials. The superior quality of MOFs provides necessary conditions 
for preparing MOFs as an adsorbing materials with excellent activity and knowledge 
for the removal of PPCPs [5]. 

2 Common Source of MPs (Antibiotics) 

Antibiotics are primary components of present-day medicines that are used to treat a 
various diseases caused by the various pathogens. They are widely used in human and 
animal medicines, as well as in aquaculture to improve the growth and development. 
Due to their inappropriate behavior, overusage and discharge in the environment 
have the negative impact on the environment [6].
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Fig. 1 Emerging contaminates 

2.1 Hospitals 

Hospital wastewaters are a complex mixture of many antibiotics that cause problems 
to the environment which are 10–20 times more toxic than typical municipal waste. 
The majority of hospital wastes are antibiotics which are usually un-metabolized 
medicines from patients, mainly through feces and urine. The amount of antibi-
otics released from the hospital sewage wastewater varies according to the antibiotic 
cluster. For example, it is approximately 67% for azithromycin, 49% for fluoro-
quinolones, and 94% for clarithromycin [7]. Fluoroquinolones are present in high 
concentrations in hospital wastewater because these antibiotics are commonly used 
as the first line of treatment in hospitals (Fig. 1). 

2.2 Pharmaceutical Waste 

Pharmaceutical companies have been identified as a potential source of antibiotics 
in the environment. Common antibiotics such as oxytetracycline (600 mg L−1) and 
ciprofloxacin (10 mg L−1) in wastewater effluents from the pharmaceutical industry 
could be several mg L−1 higher than permissible values [8]. Large amounts of sulfon-
amides, quinolones, and macrolides were found in water bodies with the majority
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of antibiotics being cefotaxime, azithromycin, ofloxacin, sulfamethoxazole, clar-
ithromycin and trimethoprim present in 1.3, 2.8, 1.2, 1.1, 2.4 and 0.9 g L−1 respec-
tively. β lactam antibiotic such as Cephalexin was found in higher concentrations 
which is around 4.2 g L−1 in river water [9]. 

2.3 Domestic Waste 

Human’s excretory product has the significant amount of antibiotics in the form of 
host molecules and unsettled forms, which eventually reach wastewater treatment 
plants. Conventional wastewater treatment plants, which primarily stimulate sludge 
progression, does not remove these antibiotic molecules. As the result, higher concen-
trations of host molecule and their by-products are generally detected in the water 
bodies. In India, antibiotics such as norfloxacin, levofloxacin and ciprofloxacin were 
found in higher concentrations ranging from 44.5 to 311.0 g L−1. In case of the United 
States, sulfamethoxazole, ciprofloxacin and cephalexin were found in the concen-
tration ranging from 0.2 to 13.8 g L−1 [10]. Sulfamethoxazole and trimethoprim 
antibiotics are commonly found in household wastewater. 

2.4 Animal Production 

Cattle farms generate significant amounts of unabsorbed antibiotics. China 
is the world’s largest consumer of veterinary antibiotics. Beef cattle farms 
uses erythromycin and sulfathiazole, while swine farms uses sulfadimethoxine, 
lincomycin, sulfathiazole and sulfamethazine [11]. 

2.5 Aquaculture 

Marine species cultivation is the fast-growing calorie rich sources, accounting for 
the half of global fish consumption. Due to exhaustive farming practices and the fast 
transmission of diseases has resulted in the high antibiotic levels in feedstuffs. The 
majority of antibiotics are found in fish feedstuffs which are released into the water 
bodies as urine, faecal matter and sewage feedstuffs. Several classes of antibiotics 
are seen in water streams and accumulate in the sewage water. For example, the 
highest observed antibiotics content in water samples from shrimp ponds in Vietnam 
were found to be 2.02 and 5.53 mg L−1 for trimethoprim and sulfamethoxazole, 
respectively, whereas the maximum content of oxytetracycline were found to be 
17.9 mg L1 in the freshwater bodies [12].
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3 Different Treatment Technologies 

The efficient and cost-effective PPCPs removal from wastewater is an important and 
difficult job for restoring environment. Many removal techniques are known in the 
literatures depend on the several factors namely amount of PPCP, amount of effluent 
and the cost. Wastewater treatment plants (WWT) are made up of a series of chemical, 
biological and physical unit activities and processes that are classed as primary, 
secondary, and tertiary. Secondary treatment methods are generally biological and 
helps in decreasing the biochemical oxygen demand or organic content of influent 
via trickling filters, activated sludge, etc. Tertiary treatment often employs adsorption 
and advanced oxidation processes (AOPs) (Fig. 2). 

3.1 Pharmaceutical Waste Treatment by Activated Carbons 

Many scientists have made efforts to find alternate carbon sources for producing acti-
vated carbons. Activated carbons (AC) are typically produced through the pyrolysis 
of biomass in an inert atmosphere. Freundlich, Langmuir, and Dubinin- Raduske-
vitch models have been used to simulate adsorption isotherms. The Langmuir model 
better represent the adsorption of sulfamethoxazole and metronidazole which shows

Fig. 2 Material used in antibiotic removal 
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the maximum adsorption capacities of 184.66 and 145.89 mg g−1, respectively. The 
adsorption of naproxen (NPX), diclofenac (DCF), ketoprofen (KPN) and ibuprofen 
(IBF) on AC made from waste olive cakes was reported by Baccar et al. [13]. The 
results revealed that the Langmuir isotherm fits well with adsorption of four phar-
maceuticals compounds namely Ibuprofen, ketoprofen, naproxen, diclofenac and 
shows maximum adsorption capacities of 12.6, 24.7, 39.5, 56.2 mg g−1, respectively. 
Ferreira et al. investigated the adsorption of paracetamol using AC from Babassu and 
Dende Coconut Mesocarp [14]. The single layer adsorption were found to be 71.39 
and 70.62 mg g−1 at the AC derived from babassu coconut mesocarp and dende 
coconut mesocarp respectively. 

3.2 Pharmaceutical Products Treatment by Clay Minerals 

Clays are abundant and thus inexpensive three dimensional materials. Diatomite, 
Illite, montmorillonite, serpentine, saponite, kaolinite, bentonite, pyrophyllite, sepi-
olite, vermiculite and fuller’s earth are some well-known clay minerals. Many 
researchers have demonstrated that clays have a relatively good ability to remove 
pharmaceutical products. Bekci et al. used montmorillonite KSF to remove trimetho-
prim under various conditions such as pH, temperature and ionic strength [15]. To 
determine the characteristic parameters of each model, the adsorption data could 
be fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equation models. 
Bekci et al. investigated the adsorption of trimethoprim by montmorillonite clay 
using a batch technique at various temperature and pH. Trimethoprim adsorption 
was described using the Langmuir, Dubinin-Radushkevich and Freundlich isotherm 
models to attain capacity values of adsorption. The results showed that the (relative 
capacity values of adsorption) KSF decreases with increasing temperature in the 
298–318 K range [16]. These results showed the Langmuir model fits better than 
the Freundlich model. Thiebault et al. investigated the doxepin and tramadol adsorp-
tion on the sodium exchanged smectite and they fitted with Dubinin- Radushkevich, 
Langmuir and Freundlich equation models [17]. 

3.3 UV Treatment 

UV irradiation is slowly finding applications in the wastewater treatment, where 
photolytic activity can be indirect or direct. In the direct type, photons are projected 
towards the target antibiotics which results in the antibiotics molecule cleavage. In 
the indirect type, biologically active substance such as dissolved organic matter act 
as an oxidizing agent. The quantum yield of the molecule and accumulation of UV 
light usually alter the UV-triggered deprivation of an antibiotic. During the removal 
of anitibiotics during photolyis, UV dosage, organic matter, molecular chemical 
assembly and reaction period plays the major role [18].
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3.4 Photochemical and Chlorination Technique 

There are only limited literature available for antibiotic removal from the water bodies 
using chlorinating agents. Chlorination is an effective water detoxifying technique 
used around the world before water bodies get released from various pathogens. 
Among the different chlorinating agents, hypochlorite has the highest oxidation 
capacity of 1.47 V, followed by chlorine gas at 1.35 V and chlorine dioxide 0.96 V. 
The main disadvantages of using Cl based detoxifiers includes the production of 
detoxifier fragments [19]. 

3.5 Biological Treatment 

Biological treatment is the process of converting composite organic matter (antibi-
otics) into various metabolic compounds via bio-transformation or mineraliza-
tion using a contaminated or uncombined microorganism medium. Flavin-based 
monooxygenase and flavin reductase was demonstrated by the SADA and SADC 
genes respectively, results in the formation of p-aminophenol. The resultant p-
aminophenol was converted into hydroxyquinol prior to mineralization [20]. Several 
techniques can be used to generate robust algal species for antibiotic elimination. The 
abundance of algae in the environment allows for the development of algal strains 
for antibiotic removal. 

4 Agricultural Solid Wastes 

Waste from agricultural has no economic value and frequently causes issues while 
disposing. Raw agricultural solid wastes such as leaves and seeds, as well as from 
forest waste residues, have been used as the adsorbent due to the low cost and unique 
physicochemical properties. Araujo et al. discussed the removal of Diclofenac using 
seed husk of Moringa Oleifera [21]. As a adsorbent material, coffee and rice husk 
wastes are used by Paredes-Laverde et al. showed the removal of norfloxacin a widely 
used antibiotic drug [22]. Langmuir, Freundlich and Redlich-Peterson isotherms were 
used to analyze the equilibrium adsorption data. A monolayer-type adsorption model 
was suggested which follows Langmuir and Redlich-Peterson isotherms. N’diaye and 
Kankou prepared a low-cost adsorbent using Balanites aegyptiaca seeds for adsorp-
tion of caffeine from an aqueous solution [23]. The purpose of batch sorption exper-
iments was to determine caffeine adsorption isotherms on the Balanites aegyptiaca 
seeds. Four isotherm models Sips, Freundlich, Redlich-Peterson, and Langmuir were 
examined for nonlinear modelling of adsorption. N’diaye and Kankou investigated 
the use of a Zizyphus mauritiana seed as the adsorbent for caffeine removal from 
an aqueous solution. The Langmuir, Toth isotherms, Freundlich, Sips, Temkin and
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Redlich–Peterson were used to calculate and analyze equilibrium isotherms using 
a nonlinear method [24]. The Langmuir isotherm model was found to be the best 
fit for the experimental data and the single layer adsorption maximum capacity was 
found to be 2.29 mg g−1. Batch equilibrium method was carried out by N’diaye et al. 
to investigate the paracetamol adsorption on the shells of groundnut. The Langmuir, 
Freundlich, Temkin, Sips, Redlich–Peterson and Toth equations were used to fit the 
experimental data [25]. 

5 Adsorption—A Versatile Treatment Option 

Carbonaceous materials such as carbon nanotubes( CNT), AC and graphene oxide 
(GO); mesoporous clay, MOF and bio-sorbents like agricultural soil, sludge have 
all been explored for PPCP removal [26]. Hasan et al. (2013) investigated various 
adsorbents for the removal of PPCP; however, the maximum removal efficiency was 
obtained using MIL-101 functionalized ethylene diamine, while using acidic amino 
methane sulfonic acid shows poor performance [27]. 

6 Adsorption of Micropollutants by MOFs 

MOF have high surface area and porosity, highly stable and easy to synthesis with 
the tunable properties. The MOFs’ distinct properties make them ideal material for 
the variety of applications, including hydrogen storage, purification and filtration, 
catalysis, optical devices and sensor [28]. For adsorbing antibiotics from the aqueous 
solutions, various kinds of adsorbent using MOF-based materials, which includes 
bare MOFs and their composite materials, have been reported. Microporous MOFs 
act as the perfect materials for the antibiotic removal due to the large surface area, 
good number of functional groups on the outer surface and small size [29]. 

Quinolones such as enoxacin, ciprofloxacin, norfloxacin and ofloxacin are glob-
ally used in the treatment of bacterial infection caused in animal and human. It has 
been used for decades, ever since the first-generation quinolone was synthesised 
synthetically in the 1960s. However, prolonged use and production of these drugs 
has resulted in the water pollution. The use of β-lactam and penicillin antibiotics in 
the clinical settings has increased significantly which includes ceftriaxone, ampicillin 
(AMP), cefradine (RAD), cloxacillin (CLX), and amoxicillin (AMX) [30]. β-lactam 
antibiotics, particularly penicillin and amoxicillin account for the approximately 60– 
75% of global antibiotic usage due to their high bactericidal activity, low toxicity, 
and broad application. 

Tetracyclines, which include oxytetracycline (OTC), tetracycline (TC), and 
chlortetracycline (CTC) have 4 hexatomic rings and several functional groups, partic-
ularly the carbonyl and hydroxyl groups [31]. This kind of medicines is used to treat 
bacterial infections in animals and humans by blocking most Gram-negative and
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Gram-positive bacteria. These antibiotics have a low absorption efficiency and a slug-
gish metabolism, and they are discharged in the vast quantities into the environment 
via the excretory system. 

Furantoin (NFT) and furacillin (NZF) were primarily used to cure infections in 
intestinal infections, urinary tract, wound on skin and as food additives to prevent 
infection on intestinal region in poultry. Similarly, some health organizations have 
classed nitrofurans and their by-products compounds as a non-edible one, and they 
are currently utilized in the animals only. Because of their lower pKa values, NZF and 
NFT have a more controlled electrostatic interaction than β-lactams and tetracyclines 
[32]. 

Nitroimidazoles are a class of medications that have a specific nitroimidazole ring 
structure, such as tinidazole (TNZ), metronidazole (MNZ), dimetridazole (DMZ) and 
menidazole (MZ). Nitroimidazoles could be utilized as anti-viral, anti-tumor, anti-
tuberculosis and anti-parasitic sensitizers. Most of the microporous MOFs were also 
used in the trapping of these pollutants due to their less molecular sizes. Furthermore, 
the lower pKa values 3.0 favor the use of MOFs which is positively charged. 

7 Desorption of MPs from MOFs 

MOFs have demonstrated exceptional adsorptive removal applicability for the variety 
of antibiotics. Adsorption technology still confronts hurdles, particularly with regard 
to recycling. After dozens of cycles, incomplete desorption would eventually induce 
inadequate adsorption performance, resulting in the secondary waste and high cost. 
As the result, contaminant desorption from adsorbent as well as adsorbent regenera-
tion is a critical and basic unit. Unlike adsorption, desorption involves mass transfer 
process in which pollutants migrate from the liquid phase of adsorbent’s surface or 
channel. Desorption efficiency strongly dependent on the intrinsic qualities of the 
adsorbent, adsorbate, and, most critically, the eluent. Various eluents have been used 
to obtain effective antibacterial desorption from MOF-based adsorbents. Organic 
solvents such as acetone and alcohols, aqueous solutions like acid and alkaline solu-
tions, salts, water and hybrid mixtures of organic solvent and water are among the 
eluents chosen. Based on the following rules, the majority of regeneration percent-
ages can reach >84%: First and foremost, adsorbate concentration differences in the 
eluent and adsorbent are required; secondly most antibiotics have varying solubility 
in water and organic solvents [33]. 

As a result, the polarity of the chosen eluent should be compatible with the antimi-
crobial agent. In this regard, acetone, methanol, and ethanol perform the desorp-
tion of nitroimidazoles, sulfonamides, and tetracyclines. For example, ammonia, 
HCl and NaOH were used to limit the desorption of tetracyclines, quinolones and 
sulphonamides.
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8 Conclusion 

This chapter discusses the adsorptive removal of the antibiotics using various adsor-
bents. Antibiotics are the emerging pollutants that are toxic even at the trace levels 
and it is persistent nature in the environment which posses the major treats to the 
ecosystem. Hence it is essential to remove the pollutants using simple, low cost 
and appropriate methods. The current chapter outlined the environmental fates and 
behaviours of antibiotics, as well as the challenges. We have discussed the current 
antibiotic removal technology as well as the advances in that field. A review of 
various technologies revealed that adsorption using MOFs and their combination 
have shown the effective technologies for the removal of antibiotics. Thus, MOF-
based materials shows the outstanding performance for antibiotics removal. We hope 
that this chapter will be useful to researchers and will encourage the use of high-
efficiency MOF-based adsorbents for the commercial treatment of pharmaceutical 
wastewater. 
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Recent Trends in the Adsorption 
and Desorption of Heavy Metals 

P. Ananthi, K. Hemkumar, S. Subasini, and Anitha Pius 

Abstract The biggest issue in the globe is the environmental pollution, mainly 
from heavy metals and minerals from industrial effluents. Their concentration has 
reached risky levels due to the widespread anthropogenic activities such as industrial 
operations, mining, agricultural processes, and industrial waste materials. Several 
adsorbents have been utilised to remove heavy metals in recent years due to the 
rising pollution levels. Industrial effluent contains heavy metals such as Ni, Cr, Pb, 
Zn, Ar, Cr, Se, and U and other organic pollutants. Adsorbents have been used 
in the variety of successful heavy metal removal procedures because it is highly 
straightforward, affordable, efficient, and adaptable. It has emerged as the method of 
choice for removing hazardous pollutants from wastewater. Here, we discuss about 
how to remove heavy metals from wastewater using freshly prepared nanoparticles. 
The good investigation would be useful for figuring out how to conduct adsorption– 
desorption cycles for the removal of heavy metal from the water sources. 

Keywords Adsorption · Desorption · Heavy metal ·Water · Industrial effluents ·
Cr 

1 Introduction 

Environmental pollutants and their toxicity are major issues all over the world. New 
pollutants develop over time, causing serious health and scientific problems. Water 
contamination is one of the most important environmental issues that affect all living 
things. In the last few decades, numerous scientists and researchers throughout the 
world have been focusing on removing various contaminants from water and wastew-
ater. Due to their mobility in the aqueous ecosystem, toxicity to higher life forms and 
their non-biodegradable nature, heavy metals are considered to be the most significant 
inorganic contaminant in the aquatic environment. Heavy metals are still the most
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common inorganic contaminants, and their presence in sludge, fertilizer, pesticides, 
municipal trash, mine residues, and smelting industries could cause huge damage to 
the environment [1]. The exposure of heavy metals As, Pb, Cd, Cr, Zn, Hg, Cu, Cd 
and cause cancer, bone damage and tissue damage. Hence it is must to remove the 
heavy from the aquatic ecosystem. Many heavy metal removal methods have been 
used namely mica precipitation, lime coagulation, ion exchange, reverse osmosis 
and solvent extraction. When the metal concentration in the effluent is minimal, 
these so-called traditional procedures are ineffective as they are also non-selective 
[2]. Adsorption is a well-known method used for the effective removal of heavy 
metal ions [3]. Chemical and biological sorbents could be used in the adsorption 
to remove and recover heavy metals. All living things on the Earth, including trees, 
plants, algae, fish, and plankton in the ocean and freshwater are considered as biosor-
bents. The variety of adsorbents, such as red mud, zeolite, clay, fly ash and activated 
carbon could be used in the chemisorption approach. The adsorbents should satisfy 
the following requirements, 

(i) It should be inexpensive and reusable; 
(ii) accurate and reliably capture and release revelations; 
(iii) Efficient and easy desorption of metal ions from the sorbents [4]. 

The high affinity of the adsorption process to the surface of adsorbents made 
desorption difficult even though the adsorption of contaminants from aqueous solu-
tions is easy. Desorption is generally used to rejuvenate adsorbents and to remove 
reversibly adsorbed species molecules from them [5]. One of the important quali-
ties of an efficient adsorbent for practical applications is rejuvenation. Additionally, 
the expense of creating the adsorbent increases the significance of rejuvenation. 
Adsorbent rejuvenation generally results in the recovery of adsorbate molecules, the 
reusing of adsorbents in the adsorption process and reducing secondary waste [6]. 
The adsorbents will be used in a continuous sorption–desorption cycle for total metal 
removal and recovery. Recycling involves repeating the adsorption and desorption 
processes, which has substantial advantages for both the economy and the environ-
ment [7]. Reviewing the adsorption–desorption properties of several heavy metals 
from their respective adsorbents is the primary goal of the current chapter. 

2 Heavy Metal Toxicity 

An element with an atomic mass between 63.5 and 200.6 with a specific gravity of 
at least 5.0 is referred to be heavy metal. The majority of heavy metals are hazardous 
to the environment and human health. In industrial wastewater, heavy metals such 
as lead, chromium, mercury, uranium, selenium, zinc, arsenic, cadmium, silver, 
gold, and nickel are present. The main dangers associated with exposure to heavy 
metals for human health includes lead, cadmium, mercury, and arsenic. International 
organisations like the World Health Organization constantly assess the impact of 
these metals on human health after significant research on them (WHO).The central
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nervous system, heart, lungs, kidneys, liver, endocrine glands, and bones suffer severe 
damage from the transient heavy metal intoxications. Chronic exposure to heavy 
metals causes several disorders that impact the same systems and may increase the 
risk of acquiring some cancers [8] (Table 1). 

Table 1 Heavy metal ions’ sources and toxic effects 

S. No Heavy 
metal 

Major source Toxic effect References 

1 Chromium Steel fabrication, 
dyeing, paints and 
textile, pigments 

Lung tumours, epigastric 
discomfort, nausea, vomiting, 
severe diarrhoea, 
teratogenicity, and vomiting 

Gadd [9] 

2 Zinc Refineries, mining, 
plumping, brass 
manufacturing 

Gastrointestinal distress 
causes short term 
“metal-fume fever” 

Manohar et al. [10] 

3 Copper Printing operations, 
plating, painting, 
and copper 
polishing 

Diarrhoea, acute toxicity, 
neurotoxicity and dizziness 

Biswas et al. [11] 

4 Nickel Non-ferrous metal, 
enamelling 
porcelain, making 
paint, and 
electroplating 

Lung cancer, chronic 
bronchitis, and a decrease in 
lung function 

Robertson [12] 

5 Cadmium Welding, refining, 
fertilizer, plastic, 
pesticide, mining 

Hypertension, weight loss, 
bone marrow, gastrointestinal 
problem, kidney damage, 
bronchitis, lung disorder, 
cancer, Itai–Itai disease 

Singh et al. [13] 

6 Lead Mining, burning of 
coal, painting, use 
of pigments, and 
electroplating 

Mental retardation in 
children, liver, kidney, brain, 
and gastrointestinal damage, 
anaemia and appetite loss 

Chen and Hao [14]; 
Papandreou et al. 
[15] 

7 Mercury Batteries, mining, 
the paper industry, 
and the paint 
industry 

skin corrosiveness, 
protoplasm poisoning, 
damage to the neurological 
system, eyes, and muscles, 
dermatitis, kidney damage 

Sumesh et al. [16] 

8 Arsenic Pesticides, 
smelting, rock 
sedimentation, 
mining 

Hepatomegaly, Bronchitis, 
dermatitis, hemolysis, bone 
marrow depression 

Granados-Correa 
and Serrano-Gómez 
[17]
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Fig. 1 Several typical methods of heavy metal removal 

3 Methods of Heavy Metal Removal 

3.1 Chemical Precipitation 

This method procedure begins with the addition of chemical reagents and ends with 
the separation of the precipitated solids from the cleaned water. By adding coagulants 
such as salts, alum, iron, lime, and other metals, organic polymers can be precipitated. 
Using a combined air flotation and hydroxide precipitation approach, Gopalratnam 
et al. (1988) reported that Cu, Zn and Pand up to 96.2% of the oil were removed from 
industrial wastewaters [18] (Fig. 1). 

3.2 Ion Exchange 

Over the last few decades, the physical/chemical method of ion exchange, which 
removes impurities from water, has become more widely used method. Cations are 
replaced with metal ions in wastewater during the ion exchange process. In the 
ion exchange procedure, synthetic resin and natural zeolites are employed. Zeolites 
are frequently employed because of their low cost and ability to remove the metal 
selectively. Strong base anion exchange resins can be used to extract As(V) with 
ease. The pH of the solution, ion concentration, alkalinity, and type of resin all have 
a role in the ion exchange process’ ability to remove As (V). Its restrictions include 
the assumption that the pH of the solution affects this method and the fact that it 
cannot be applied on a big scale [19].
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3.3 Electrodialysis 

Ions are moved through a semi-permeable membrane by an electric voltage during 
the membrane electrodialysis (ED) process. Since the membranes are cation- or 
anion-selective, only positive ions or only negative ions will effectively pass through. 
Positively charged ions can pass through negatively charged polyelectrolytes known 
as cation-selective membranes whereas negatively charged ions are rejected. 

3.4 Flocculation/Coagulation 

Both flocculation and coagulation play crucial roles in the treatment of wastewater 
and drinking water. When a coagulant or chemical is added to water, a coagulation 
chemical reaction takes place. The coagulant encourages water’s gelatinous particles 
to group together forming microscopic clusters called “flocs”. Then, these flocs attract 
any suspended materials. During flocculation, water is mixed slowly and softly to 
allow the flocs to grow and reach a size where they may easily settle out [20]. 

3.5 Ultrafiltration 

Ultrafiltration is a separation technique that makes use of membranes having pores 
that range in size from 0.1 to 0.001 microns. Ultrafiltration is often used to elim-
inate high-molecular-weight compounds, inorganic polymeric molecules, organic 
and colloidal materials and other types of molecules. Particles, colloids, and macro-
molecules are preserved but low molecular weight substances and water pass through 
the membrane during this pressure-driven purification process. The primary mecha-
nism of removal is size exclusion, but membrane or particle surface chemistry and 
electrical charge can also be important. 

3.6 Reverse Osmosis 

Reverse osmosis uses membranes that resemble cellophane to separate dirty water 
from the pure water. In the RO process, the concentrated side of the membrane 
is compressed to drive clean water into the diluted side while rejected water is 
used to wash away impurities from the concentrated side. Some applications for RO 
processes includes the treatment of radioactive wastewater, municipal wastewater, 
contaminated groundwater, organic wastewater, wastewater from electroplating and 
metal finishing, pulp and paper, mining and petrochemical, textile, food processing 
industries, radioactive wastewater, and organic wastewater [20].
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3.7 Adsorption 

During the adsorption process, a gas or liquid solution forms an atomic or molecular 
film on the surface of a solid adsorbent (adsorbate). Adsorption is frequently used in 
commercial operations such as water filtration and waste water treatment. Due to its 
simplicity and affordability, adsorption is currently one of the most effective treat-
ment method for the wastewater [21]. This is the common technique for eliminating 
metal ions from the range of industrial effluents. The most commonly used adsorbent 
are activated carbon, which appear in the form of small pellets or a powder. This is 
highly porous, amorphous solid made up of microscopic crystallites with a graphite 
lattice. 

4 Biology in the Heavy Metal Adsorption Process 

Bioaccumulation and biosorption are the two primary methods for eliminating metals 
from the environment. Biosorption is the term used to describe any biological inter-
action that results in the adsorption of xenobiotic substances from the environment. 
Biological substances in biosorption can either be genuine living beings or anything 
derived from them. Bioaccumulation is the metabolically active process that uses 
living organisms to remove the harmful substances. Biosorption is a metabolically 
inactive process requires the interaction of sorbent and sorbate. Bioaccumulation 
involves intracellular and extracellular mechanisms and is primarily influenced by 
physical, chemical, and biological variables [22]. 

4.1 Biosorption 

The biosorbent consists of the solid phase and the sorbate which help in elimi-
nating the heavy metals using biological components. Essentially, the sorbate is still 
disseminated in the liquid phase. For the long period of time, plant leftovers and 
agricultural waste are used to make biosorbents. However, it has been demonstrated 
that microorganisms act as the superior biosorbent compared to plant and agricultural 
waste for heavy metals biosorption. Many microorganisms, including bacteria, algae, 
fungi, yeast, and cyanobacteria have been used in these experiments. However, due 
to their diversity, ease of cultivation, high yield, the existence of the greatest number 
of cell wall components, and functional groups, fungi are the most frequently used 
adsorbents [23].
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4.2 Bioaccumulation 

The process of bioaccumulation sometimes referred to as active biosorption, 
combines the wide range of techniques, metal ion binding to the intracellular compo-
nents as well as methylation. Regarding kinetics and activation energy, bioaccumu-
lation and biosorption are the distinct processes. Physical parameters and biological 
traits both affect the bioaccumulation. The factors that influence bioaccumulation 
includes nutrition, temperature, pH and the presence or absence of light. Biomass 
is the non-recyclable process because metal ions are deposited inside the microbial 
cell during bioaccumulation, which increases the possibility of creating new waste. 
Biosorption and bioaccumulation have activation energies of around 21 and 63 kilo 
Joule/mol, respectively. Since dead biomass absorbs heavy metals, biosorption is 
typically thought of as a passive process, whereas fundamentally, bioaccumulation 
involves live microorganisms actively securing metal ions [24]. 

5 Types of Nanoparticles for Removing Heavy Metals 

Based on the types of nanomaterial, nanoadsorbent could be classified as metal— 
oxide nanoparticles, carbon based nanoparticles, silica based nanoparticles, zerova-
lent particles and nanocomposite (Fig. 2). 

Fig. 2 Types of nanoparticles for heavy metal removal
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5.1 Carbon-Based Nanoparticles 

Carbon-based nanomaterials such as fullerenes, carbon nanotubes, activated carbon, 
and graphene and their derivatives have been widely used in the recent years for 
the exclusion of heavy metals [25]. Carbon adsorbents have a unique ability for the 
effective removal of heavy metals due to their abundance of active, flexible surface 
functional groups, which are important for the surface chemistry of carbon particles 
and the accumulation of heavy metals. 

5.2 Carbon Nanotubes 

Carbon nanotubes, the most common form of carbon, can be considered structural 
forms of carbon compounds. They are mostly cylindrical in shape and range in size 
from 100 to 1000 nm in length and 1–3 nm in width. Multiwalled carbon nanotubes 
are made up of several graphene sheets as opposed to single-walled carbon nanotubes, 
which are made up of a single graphene sheet that has the shape of a pipe [26]. They 
can be divided into two groups: single-walled and multi-walled carbon nanotubes. 
Due to the high active surface area to volume ratio and precise measurements of the 
aperture size, carbon nanotubes are effective in removing heavy metals. In contrast 
to granular activated carbon and conventional powder have inherent drawbacks such 
as a smaller active surface area and a higher adsorption activation energy and good 
adsorption capacity. For the highly complicated process of removing heavy metal 
ions from the wastewater, carbon nanotubes were used as the adsorbent. In this 
process, the functional groups of heavy metal ions and carbon nanotubes interact 
electrostatically [29]. 

5.3 Graphene Nanoparticles 

Graphene and graphene-based particles have been more popular in recent years as 
an alternative to carbon nanotubes for the removal of heavy metals from wastewater 
due to their different features, greater electrical properties, mechanical strength and 
thermal conductivity [27]. Graphene oxide is produced when graphene reacts with 
different oxygen functional groups, like epoxy and carbonyl groups. Graphene oxide 
and activated carbon could be used as the base materials which effectively bind with 
the metal ions. The heavy metal removal by graphene depend on the electrostatic 
interactions and the precipitation of surface metal hydroxide [25].
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5.4 Silica-Based Nanoparticles 

Silica-based nanoparticles are the excellent candidates for the application because 
of their unique properties, such as variable surface characteristics, well-defined pore 
size and large surface area and selective adsorption. Heavy metal removal was greatly 
aided by the silica-based nanoparticles because of their better surface qualities and 
lack of toxicity [28, 29]. The 3-D web configuration of silica (SiO2) permeable has 
a greater surface area which enables the metal ions to enter the interior area with 
a high response percentage. It also offers superior water stability and mechanical 
stability. These nanoparticles could be modified with amide or sulfhydryl groups 
to provide nanocomposite strength. The NH2-SNHS silica nano hollow sphere act 
as the effective adsorbent for the removal of Cd2+, Ni2+and Pb2+ metal ions. The 
heavy metal such as Cd2+, Ni2+and Pb2+ could be removed at the neutral pH in 
the nanomolar concentration. It has been proposed that silica-based nanoparticles’ 
capacity to chelate can be enhanced by the addition of an amino group. The heavy 
metal namely Cu2+, Cd2+, Pb2+andCd2+ metal ions could be removed from the water 
samples by the nano polyaniline and nanocomposite of nano silica. This is due to the 
polyaniline and silica nanocomposites’ hydroxyl functional groups form complex 
with heavy metal ions (Sil-Phy-NPANI) [30, 31]. 

5.5 Metal Oxide-Based Nanoparticles 

Based on metal oxide nanoparticles, which are thought to be promising moieties, 
have amazing properties like increased elimination capacity and a preference towards 
heavy metals. Among this nanoscale, oxides are the oxides of manganese, zirconium, 
titanium, cerium, zinc, iron, and magnesium. 

5.6 Iron Oxide-Based Nanoparticles 

Due to their strong paramagnetism, economic viability, straightforward manufac-
turing process, enhanced surface-to-volume ratio, and low noxiousness, iron oxide 
nanoparticles offer a huge promise for the removal of many pollutants. Iron-based 
nanoparticles have been prepared in the variety of shapes, including nano-ovals, 
nanorings, and nanobelts, for heavy metal exclusion. Metal adsorption on iron oxide 
nanomaterials removed the variety of organic and inorganic contaminants from 
various water sources, which resulted in the buildup of nanoparticles that altered 
their magnetic characteristics [32, 33]. Different chelating agents and functional 
groups, such as amine, hydroxyl, carboxyl, and sulfhydryl groups, have been added 
to magnetite Fe3O4 nanoparticles to decrease metal buildup in the aqueous solution.
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Goethite (–FeOOH), a critical form of iron oxide-based nanoparticles, is recog-
nised as an efficient adsorbent for removing the heavy metals from the aqueous 
medium. When compared to non-nanoscale –FeOOH, FeOOH nanoparticles made 
from various ferrous and ferric salts showed outstanding removal effectiveness for 
uranium, especially in the pH range between 5.5 and 7.5. 

5.7 Zinc Oxide-Based Nanoparticles 

Zinc oxide (ZnO) nanoparticles are used as adsorbents due to their substantial surface 
area, low cost, and good exclusion capability. The average size of the casein-capped 
ZnO nanoparticles was found to be 10 nm and they fitted with the Langmuir model. 
Using the batch approach, ZnO nanoparticles removed Zn2+, Cd2+, and Hg2+ with 
respective adsorption capacities of 357, 387, and 714 mg g−1 [37]. The average size 
of the casein-capped ZnO nanoparticles was found to be 10 nm and they fitted with 
the Langmuir model. 

5.8 Aluminium Oxide, Mn Oxide and TiO2-Based 
Nanoparticles 

Additionally, it has been found that manganese oxide (MnO) nanoparticles, hydrous 
manganese oxide and manganese dioxide at nanoscales could remove the heavy 
metals from waste water [34, 35] due to the sizeable surface area of MnO and M–O + 

and M–O units present on its surfaces. Hydrous manganese oxide is the good adsor-
bent for the removal of heavy metals because of its larger outer surface, adsorption 
permeable nature, and robust metal ions’ electrostatic interaction. Alumina (Al2O3) 
exists in four different crystalline forms, with -Al2O3 being the most widely utilised 
due to its incredibly high stability. Their intriguing characteristic includes excel-
lent thermal conductivity, resistance to corrosion and wear, electrical insulation and 
compressive strength [39]. 

TiO2 nanoparticles are a potential asset for the removal of heavy metals from 
wastewater due to the higher chemical stability, simple manufacturing process, low 
cost, photocatalytic nature, and lack of abrasiveness. TiO2 nanoparticles was prepared 
from the Jatropha curcas L. leaf extract which eliminate 76.48 per cent of Cr6+at a 
pH of 5 and a dose of 1 mg mL−1 from sewage by photocatalytic activity [36].
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5.9 Zero-Valent Metal-Based Nanoparticles 

Hazardous contaminants can only be removed from wastewater with the help of 
nanoparticles of zero-valent metal. These days, zero valent zinc nanoparticles have a 
remarkable ability to remove dioxins, while Ag nanomaterials are employed to carry 
out the antibacterial activity in wastewater purification. Zero-valent iron is created 
by combining iron nanoparticles with 0 valency Fe(0) with a ferric oxide layer, 
with Fe serving as the reducing potential (0). The ferric oxide coating, on the other 
hand, offers binding sites for metal ion electrostatic communication. It has generated 
considerable interest as the novel adsorbent for the removal of several heavy metals, 
such as Hg2+, Cr6+, Cu2+, Ni2+, Cd2+, and many others. This is primarily brought by 
its higher reduction potential in the presence of numerous active sites [37]. 

5.10 Ag and Au Nanoparticles 

Numerous investigations have shown the relationship between Ag nanoparticles and 
Hg2+ metal. Due to Ag’s reduced reduction capacity, it has little contact between 
Hg2+ and bulk Ag. Ag nanoparticles still perform better by forming compounds like 
AuHg, AuHg3, and Au3Hg. Au nanoparticles demonstrate a higher affinity for Hg 
with an adsorption capacity of 4.065 g g−1. Citrate-coated Au nanoparticles were 
successful in removing Hg2+ ions, while citrate ions act as the reducing agent to 
convert Hg2+ to Hg0[16]. 

6 Adsorption–Desorption Investigations Were Conducted 
Using the Following Experimental Setup 

In adsorption–desorption investigations, heavy metals are typically removed from the 
adsorbents using batch and column methods. At the laboratory scale, it was found 
that column experiments was perfect for desorption studies. A liquid phase is pushed 
through a column that is filled with a specific substance, in the case of desorption, 
heavy metal-loaded adsorbents, to conduct the column experiment. The eluent solu-
tion is then injected through the column after achieving equilibrium between the 
adsorbent and neutral liquid. Columns are made of stainless steel or acrylic glass. 
Studies on the adsorption and desorption of heavy metals frequently employ glass 
columns [38]. 

Placing the column where percolation occurs is the most common technique. The 
pump helps the liquid move from top to bottom in this configuration. Using sawdust 
as a biosorbent, cadmium ions were adsorbed and desorbed using this technique. 
The fixed-vertical column was used to push the heavy metals solution. After the 
sorbents had been saturated with metal ions, the eluent was poured through the
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column, and the effluent was then gathered. This process was performed for each of 
the adsorption–desorption cycles. Eluent can also move upward through a column 
where a pump helps the liquid move from the bottom to the top of the column. 
However, occasionally, the eluent is propagated across distinct columns that are 
connected in series to one another. This kind of arrangement has been successful 
in completing adsorption–desorption experiments simultaneously. The adsorption 
and regeneration capacities of ion exchange resin were evaluated using a column 
experiment. A column filled with ion exchange resin was fed with aqueous solutions 
of heavy metal ions in a downflow mode to achieve adsorption. The eluent flow 
direction was reversed to conduct the desorption experiment after the adsorption 
technique was finished, running both experiments simultaneously in the same setup. 
For continuous experimental operations with high effluent flow rates, adsorption– 
desorption in a column mode is advantageous [39]. When doing research in batch 
mode, the setup is created by mixing the desorbing eluent with the heavy metal-loaded 
adsorbent. The adsorbents and eluents are then separated after the setup has been 
shaken for a predefined period in an orbital shaker. The recovered eluent’s heavy 
metal ion concentration is then calculated. To carry out the nitric acid desorption 
activity for removing cadmium ions from the sesame waste biosorbent, the biosorbent 
and adsorbent solution were combined, and the mixture was then kept in a shaking 
condition for 30 min. Although column mode facilitates continuous heavy metal 
adsorption and desorption, the batch mode has several advantages over column mode, 
which are listed below: 

Expensive machinery is needed to build column experimental set–up.

. It is challenging to keep the eluent flow rate through the column constant.

. It is challenging to keep the temperature uniform across the column.

. It is challenging to maintain a constant temperature throughout the column.

. A variation in particle size in the column’s bed may affect the stability of the 
result.

. Compared to the batch experimental mode, the column experimental technique 
is more complex and labour-intensive. 

7 Conclusion 

In the last several decades, rapid industrialization has led to an increase in the usage of 
heavy metal ions and creating major environmental issues on the global scale. There 
have been various attempts to discover the suitable corrective solution because of 
the substance’s toxic and bio-accumulative characteristics. Heavy metal ions have 
been removed using the variety of traditional techniques but these techniques have 
been ineffective for many reasons. For the elimination of heavy metal ions, even at 
low concentrations, the adsorption process is one of the most beneficial and efficient 
method. It is an alternative to the traditional methods for removing harmful heavy 
metals from industrial effluents, and it has several benefits, including low cost, high 
efficiency, minimal chemical/biological sludge, and renewal of adsorbent. The danger
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and influence of nanomaterials on the ecosystem, however, cannot be disregarded. 
When taking into account their cost, synthesis, reusability, and separation, there is 
still a long way to go before adopting nanomaterials in the practical treatment of 
heavy metals. 

It’s essential to choose adsorbents that are affordable, efficient, and recyclable. 
Adsorbents have high capacity for solubilization, inexpensive, easy to separate from 
aqueous solutions and can be reused. Similarly, selecting an appropriate eluent is the 
crucial factor in the desorption study. The eluent should be metal-selective, econom-
ically viable, and have a high desorption rate. Collaboration and technology transfer 
among professionals in the relevant field will lead to successful adsorption studies. 
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Carbon Nanomaterials for Adsorption 
and Desorption of Pesticides 

Astha Tripathi, Seema Lal, and Pratibha Kumari 

Abstract Pesticides represent a major class of water contaminants that are released 
in huge amounts to water bodies through agricultural activities. The accumulation 
of pesticides in soil and water causes severe health problems including endocrine 
disruption, damage of the kidney, liver, and other body organs, reproductive prob-
lems, and cancer. It is crucial to remove pesticides from the environment to protect 
biodiversity and reduce their hazardous effect on human beings. Adsorption is the 
most simple, practical, economical, feasible, and efficient method to remove pesti-
cides from the environment. Carbon-based nanomaterials are gaining an increasing 
upsurge of interest as effective adsorbent materials due to their high surface area, 
biocompatibility, thermal stability, and high adsorption efficiency. The application of 
various carbon-based nanomaterials such as graphene, carbon nanotubes, chitosan, 
and cellulose has been demonstrated in this chapter for the development of efficient 
adsorbent material/membrane for the removal of all types of pesticides present in 
water. The regeneration of these materials can be performed through the desorption 
of pesticides and several recycling runs have been reported using these materials 
under mild conditions. 

Keywords Pesticides · Adsorption · Carbon materials · Graphene · Chitosan ·
Cellulose · Carbon nanotubes 

1 Introduction 

The drastic increase in the world population has pressurized the agriculture sector to 
increase production so that the food demand can be fulfilled. Agriculture production 
is improved by utilizing pesticides in fields. The excessive use of pesticides in agri-
culture has made water bodies highly contaminated. The agrochemicals industryis 
also releasing a huge amount of wastewater containing pesticides. It is essential to
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eliminate pesticides from water to protect people and the environment from poten-
tial harm. Pesticides can cause various health problems, from minor skin and eye 
irritation to more serious conditions like cancer, endocrine disruption, and reproduc-
tive issues. Pesticides can also contaminate soil and water, leading to a decrease in 
biodiversity. Removing pesticides from the water helps to reduce the risks of these 
negative effects to people and the environment. Although many strategies have been 
developed for the remediation of pesticides including photocatalysis, redox degra-
dation, adsorption, and electrochemical reactions, there is an urgent need for more 
facile technology to solve the problem of water pollution. 

Adsorption is a process by which pesticides can be effectively removed from water 
bodies. In this process, the pesticide molecules are attracted to and bind to the surface 
of the adsorbent material. Nanomaterials are promising adsorbent materials due to 
their high surface area and unique physical and chemical properties. Therefore, nano-
adsorbents are being developed with specific functionalization to induce specificity 
in adsorption. Adsorption is an effective process and nano-adsorbents can be used 
to remove pesticides from the water bodies. Zeolites and mesoporous silica are the 
most widely used adsorbent materials for water treatment. 

Carbon nanomaterials have been widely used in adsorption applications due to 
their unique physicochemical properties, and high tunable surface area. Various 
pollutants such as heavy metals, organic compounds, pesticides, and radioactive 
materials have been removed using carbon-based nanomaterials. Carbon nanoma-
terials are also being explored for their application in targeted drug delivery. The 
adsorption and desorption using carbon nanomaterials is a promising area of research 
that could lead to more effective and sustainable methods for environmental reme-
diation. Graphene derivatives, carbon nanotubes, cellulose, chitosan, and graphitic 
carbon nitride are the most commonly used carbon-based nanomaterials which have 
been explored in the adsorptive removal of pesticides as discussed in the following 
sections. 

2 Graphene 

Graphene, a wonder material made of a single layer of carbon atoms is a 2D-graphite 
sheet in its 2D-honeycomb lattice. The sp2-bonded C-atoms are arranged in a regular 
hexagonal pattern as in a graphite sheet [1]. The common method of isolation of 
graphene sheets is simply cleaving the 3D graphite with sticky tape. The honeycomb 
2D-lattice (one atom thick) of graphene with the network of pi-electrons can be 
considered as graphitic allotropes of carbon. Graphene can be modified to graphene 
oxide and reduced graphene by various chemical methods (Fig. 1) and it can be 
transformed into different carbon allotropes (Fig. 2).

Graphene offers pivotal properties (Fig. 3) such as high capacitance, outstanding 
carrier mobility, fast electron transfer rate, high surface area (2630 m2g−1), 
high surface-to-volume ratio, greater mechanical strength, and superior electrical
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Graphene oxide 
Reduced Graphene 

Graphene 

Fig. 1 Structure of graphene

conductivity [2]. Graphene provides infinite possibilities for functionalization and 
modification of its carbon backbone which makes it a versatile adsorbent.

2.1 Graphene-Based Materials for Pesticide Removal 

Graphene exhibits a high adsorption tendency and is thereby used as an excellent 
material for the removal of various pesticides from water. In a recent study, a distinct 
core/shell structured composite of graphene oxide, magnetite, and diatomite was 
synthesized by dry coating technique and was used for the adsorption of organochlo-
rine pesticides [3]. The surface area, pore volume, and pore diameter of synthe-
sized composites were 23.4 m2/g, 0.0026 cm3/g, and 4.5 nm, respectively. The pH-
independent 97% adsorption with 7.78 mg/g maximum adsorption efficiency was 
observed for organochlorine pesticides within 2 h. These magnetic GO composites 
offered seven regeneration cycles with 90% removal efficiency. 

Kumari et al. [4] reported the synthesis and characterization of azo-functionalized 
calix[4]pyrrole decorated graphene oxide as an adsorbent for the removal of floni-
camide insecticide. The batch studies as a function of the concentration of floni-
camide solution, contact time, adsorbent dosage, temperature, and pH were evalu-
ated. Maximum adsorption efficiency of 11.43 mg/g with 93.38% adsorption capacity 
within 40 min was attributed to the synergistic effect capable of offering more adsorp-
tion sites. The adsorption data were found to follow Langmuir adsorption isotherm 
with pseudo-second-order kinetics. In another study by the same group of researchers, 
ionic-liquid modified calix[4]arene magnetite nanoparticles have been reported as 
nano adsorbent for nitrogenous pesticides, metribuzin (MET), and dicloran (DIC) 
from aqueous media. The maximum adsorption with the physisorption phenomenon 
was found to be 5.88 and 1.94 mg/g for MET and DIC respectively. The adsorption 
data were reported to follow Freundlich isotherm and pseudo-second-order kinetics
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Fig. 2 Graphene transformation to various carbon allotropes

Fig. 3 Unique properties 
and applications of 
2D-graphene
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with three regeneration cycles [5]. The modified Fischer esterification protocol was 
also reported for the synthesis of silica monolith anchored graphene oxide composite 
as an efficient adsorbent for carbofuran and imidacloprid pesticides from wastew-
ater [6]. The synthesized adsorbent/composite material was found to be highly effi-
cient with a maximum adsorption capacity of 342.46 mg g−1 for imidacloprid and 
37.15 mg g−1 for carbofuran. The adsorption data followed the pseudo-second-
order kinetic model and the Freundlich adsorption isotherm. The application of 
various graphene oxide-modified nanomaterials for the adsorption of pesticides is 
summarized in Table 1.

3 Carbon Nanotubes (CNT) 

Carbon nanotubes (CNTs) are rolled-up tubes of graphite hexagonal sheets (2D). 
The CNTs can be capped at ends by carbon pentagons. Such enclosed CNTs may be 
described as cylindrical fullerenes. However, the open carbon CNTs are also known. 

There are two types of CNTs: Single-walled carbon nanotubes (SWCNTs) and 
multi-walled carbon nanotubes (MWCNTs) (Fig. 4). A SWCNT consist of one cylin-
drical tube (diameter of 0.4-5 nm) and an MWCNT consist consists of several concen-
tric tubes (outer diameter in the range of 2–25 nm, and inner diameter of 1–3 nm). The 
interlayer distance in MWCNT is about 0.35 nm. The energy stored in the dangling 
bonds of a 2-D graphene sheet is reduced by forming the CNTs through the rolling 
up of the graphene sheet. The CNTs may show thermal and electrical conductivities 
like graphite. However, the electrical conductivity of a CNT depends on both the 
chirality and diameter of the tube. Thus, depending on the condition, the CNTs may 
be metallic, semi metallic (Eg = 0), semiconducting (Finite Eg value), or insulating 
(Eg very large).

The unique, well-defined, and adjustable nano structural properties of CNTs offer 
a wide potential for water remediation by adsorption of various toxic contami-
nants present in the water. These hollow nanotubes provide easy transfer of water 
molecules and make them appropriate for the separation of various pollutants 
including pesticides [2, 17, 18]. 

3.1 Carbon Nanotubes for Pesticide Removal 

There are many reports on the application of carbon nanotubes in the adsorp-
tive removal of many water contaminants. In a study [19], researchers reported 
the synthesis, characterization, and application of magnetic multiwalled carbon 
nanotubes with zeolitic imidazolate frameworks-67 for the adsorption of pesticide 
butachlor from water bodies. In this study, response surface morphology was used 
for the optimization of experimental parameters. The maximum adsorption of 86% 
was observed for the butachlor within 95 min at pH 4.5 with an initial concentration
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Table 1 Graphene-based materials as adsorbent for pesticides removal 

Graphene-based materials Pesticide removed Adsorption capacity (mg/ 
g) 

Adsorption isotherm followed 
and the kinetic model 

Regeneration 
cycles 

Remarks Refs. 

Magnetic graphene oxide and 
carboxymethyl cellulose 

Chlorpyrifos 108.3 Langmuir and Pseudo second 
order 

4 Response surface 
methodology (RSM) and 
central composite design 
(CCD) were used 

Dolatabadi 
et al. [7] 

MIL 101(Cr) MOF decorated with 
graphene oxide nano-layers 

2, 4-dichloro phenoxy 
acetic acid 

476.9 Langmuir and Pseudo second 
order 

4 The one-pot 
hydrothermal method was 
used for the synthesis 

Khaloo et al. 
[8] 

Graphene and hexagonal boron nitride Diazinon, parathion, 
oxacillin and 
ciprofloxacin 

2680 Langmuir and Pseudo second 
order 

5 L-ascorbic acid as a 
reducing agent 

Chi et al. [9] 

Graphene oxide (GO), reduced graphene 
oxide (rGO), and graphene nanoplatelets 
(GNP) 

Atrazine rGO (1084) 
GO (1011.9) GNP (1006) 

The Langmuir, Freundlich, 
Temkin, 
Dubinin– Radushkevich and 
Sips models 
Elovich kinetic model 

– The adsorption process 
was driven synergistically 
by H-bonding and π-π 
conjugation interactions 

Azizzadeh 
et al. [10] 

Graphene oxide (GO) and reduced 
graphene oxide (rGO) 

Methomyl (Met), 
Acetamiprid (Ace), 
Azoxystrobin (Azo) 

For Met, Ace and Azo 
with GO are 106.22, 
285.96,and 2896.84 mg/g 
and 
with rGO are 96.86, 
357.65, and 2818.04 mg/ 
g respectively 

Sips model, 
pseudo-second-order, and 
Elovich models 

Face-centered composite 
design (FCCD) through 
response surface 
methodology (RSM), 
Synergestic adsorption 
mechanism 

Shi et al. 
[11]

(continued)
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Table 1 (continued)

Graphene-based materials Pesticide removed Adsorption capacity (mg/
g)

Adsorption isotherm followed
and the kinetic model

Regeneration
cycles

Remarks Refs.

Graphene oxide grafted polymer Sulfonylurea herbicides Pseudo-second-order kinetics 
equation and Freundlich 
model 

n-π, π-π, hydrogen 
bonding, hydrophobic 
and electrostatic 
interaction 

Li et al. [12] 

Nanocomposite of Fe3O4 nanoparticles, 
graphene oxide, 
and N-methyl-D-glucamine functionalized 
calix[4]arene 

Hexaconazole and 
chlorpyrifos 

78.74 and 
93.46 mg g−1 were 
obtained for chlorpyrifos 
and hexaconazole, 
respectively 

Langmuir and Pseudo second 
order 

Thermodynamic and free 
energy data indicated the 
physisorption mechanism 
for the adsorption process 

Nodeh et al. 
[13] 

Activated carbon derived from sieve-like 
cellulose/graphene oxide composites 

Organophosphorus 
pesticides 

152.5 mg g−1 for 
chlorpyrifos 

Langmuir 8 Adsorption mechanism 
depends on the 
electron-donating 
abilities of the S and P 
atoms of pesticides 

Suo et al. 
[14] 

Graphene-based 
tetraethoxysilane-methyltrimethoxysilane 
sol–gel hybrid magnetic nanocomposite 

Organophosphorus 
pesticides 
(phosphamidon, 
dimethoate, 
chlorpyrifos, diazinon) 

54.4–76.3 mg g−1 Rashidi 
Nodeh et al. 
[15] 

Graphene-based silica-coated magnetic 
nanoparticles 

Lindane, chlorpyrifos, 
hexaconazole, and 
azaconazole 

13.04–18.69 mg g−1 Nodeh et al. 
[16]
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Comparison between Carbon Nanotubes 

Fig. 4 Comparison between single-walled carbon nanotubes (SWCNTs) and multiple walled 
carbon nanotubes (MWCNTs)

of 5.75 ppm. The adsorption data were well-fitted by the Temkin adsorption model 
and followed pseudo-second-order adsorption kinetics. Lee and Chang [20] reported 
a quantum chemical approach for the adsorption of organophosphorus pesticides 
chlorpyrifos and fenitrothion on four materials based on boron nitride nanotubes 
(namely, pristine BNNT, C-doped BNNT, tetrapeptide/BNNT, and tetrapeptide/C-
doped BNNT). It has been found that the decoration of tetrapeptide on BNNT has 
enhanced the sensing of both the pesticides with inferior adsorption than carbon-
doped BNNT. The C-doping method attributed to the reduction of bandgap and 
formation of hydrogen bonds with enhanced non-covalent interactions. These mate-
rials offer applications not only as sensors but as good adsorbents for the purification 
of water by selectivity toward organophosphorus pesticides.
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Lung et al. [21] reported the devrinol and triadimefon pesticides adsorption 
using iron and manganese oxides modified and carboxylic functionalized carbon 
nanotubes. The batch studies were performed considering the effect of pH, initial 
concentration of pesticides, amount of CNT doses, temperature, and contact time. 
The temperature-dependent maximum adsorption capacity was found in the range 
of 14.925 and 20.492 mg/g for devrinol and between 12.723 and 14.706 mg/g for 
triadimefon. The experimental data were best fitted to the Langmuir isotherm model 
and follow the pseudo-second-order kinetic model. The reusability of this nanocom-
posite was determined via five adsorption–desorption cycles and the degree of 
removal of pesticides decreased up to 79.4% for devrinol and 60.7% for triadimefon 
pesticide. 

In a recent study, researchers reported the loading of two metal–organic frame-
works (ZIF-8 or UiO66-NH2) on CNT aerogels by in situ nucleation process as 
MOFs@MPCA aerogels. The synthesized products were evaluated for the adsorp-
tion of chipton and alachlor herbicides. The maximum adsorption capacity reported 
for Chipton using UiO66-NH2@MPCA was 227.3 mg/g with 5 recycle processes 
without much decrease in the adsorption process [22]. In another study, malathion 
pesticide adsorption in the presence of dissolved organic matter (DOM) in water using 
2-phenylethylamine-modified MWCNT is reported [23]. The modified MWCNT 
showed enhanced adsorption efficiency (98.34%) in 50 min. than unmodified 
MWCNTs (92.14%) in 30 min. The presence of DOM in aqueous media significantly 
reduced the adsorption capacity by up to 52.74% without affecting other physical 
properties. The adsorption data were found to be chemisorption supported by Lang-
muir adsorption isotherm and followed a pseudo-second-order kinetic model. The 
reusability efficacy of modified MWCNT decreased to 3.22% in two cycles in the 
presence of DOM. 

In another study [24], MWCNTs were efficiently used for 100% adsorption of 
diazinon, one of the most commonly used organophosphorus pesticides from water 
bodies. The specific surface area (SBET) and the inside diameter of the multi-walled 
carbon nanotubes were 370 m2 /g and 3–5 nm, respectively. The adsorption parame-
ters included an initial diazinon pesticide concentration of (0.3 mg/L) and MWCNT 
as nanoadsorbent with a concentration of 0.1 g/L at pH 4 and 7 within a contact time 
of 15 min. The highest efficiency of diazinon pesticide removal was observed by 
multi-walled nanotubes at pH = 4 (100%) and the lowest removal efficiency (1%) 
at pH = 7. The high removal efficiency of diazinon in acidic pH is attributed to the 
protonation of the hydroxyl group on the adsorbent and the protonation of nitrogen 
atoms on the diazinon pyrimidine groups. 

In a similar study [25], MWCNT modified by chitosan using the crosslinking 
method was explored for the adsorption of diazinon from water media. It has been 
found that the synthesized adsorbate has 222.86 mg/g adsorption capacity within 
60 min at pH 5.5. The adsorption data were well fitted in the Sips isotherm model 
and followed pseudo-second-order adsorption kinetics. The synthesized adsorbent 
can be successfully regenerated for up to four cycles with a 7.82 mg/g adsorption 
capacity.
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Malathion, the first contact broad-spectrum organophosphorus pesticide with a 
rapid and relatively constant effect is the most used pesticide for the control of 
sucking and chewing insects. Repeated or prolonged contact with this pesticide can 
lead to acute effects. Reports are available for the adsorptive removal of malathion 
(57%) using MWCNT [26]. The optimization of experimental parameters was done 
based on three-factor surface modeling (RSM) approach and achieved as high as 
100% adsorption of malathion pesticide with an initial concentration of malathion 
and MWCNT of 6 mg/L and 0.5 g/L respectively in a contact time of 30 min. 

Magnetic CNT consisting of metal–organic framework ZIF-8 and magnetic multi-
walled carbon nanotubes with high surface area and large pore volume has also 
been reported for the removal of organophosphorus pesticides from water [27]. In a 
study by Barbosa et al., iron and aluminum oxide incorporated and nitrogen-doped 
magnetic CNT prepared by the chemical vapor deposition method was utilized for 
pesticide removal [28]. In another study [29], CNT was compared with pulverized 
activated carbon and granular activated carbon for the adsorption of three pesti-
cides including atrazine, simazine, and diuron from water treatment plants in their 
commercial and analytical forms. It has been observed that pristine CNT was highly 
efficient for the adsorption of atrazine and simazine as functionalization doesn’t favor 
enhanced adsorption. 

4 Chitosan  

Chitosan, poly [β-(1 → 4)-2-amino-2-deoxy-D-glucopyranose], is the second most 
abundant and widely used natural polymer obtained from the deacetylation of chitin 
[30]. Chitosan exhibits a unique set of properties, making it an excellent candidate 
for the development of water treatment systems. Among them, their high biodegrad-
ability, low toxicity, non-allergenic, and natural availability are the most relevant. 
However, this biopolymer has some limitations such as low acid stability, poor 
mechanical properties, low thermal stability, resistance to mass transfer, low porosity, 
and surface areas [31–34]. Chitosan can exhibit molecular weights between 5 and 
1000 kg/mol. Depending on the level of acetylation, chitosan is a semicrystalline 
polymer that exists in many allomorphs in the solid state [35]. 

A significant portion of the units in chitosan has hydroxy and amino functional 
groups [36, 37]. These groups are accountable for chitosan’s reactivity as an excep-
tional natural and potent adsorbent. The greater reactivity of these groups enables 
chitosan applications in a variety of domains, including wastewater treatment, ion 
exchange, and functional matrixes [38, 39]. The amino group on chitosan is particu-
larly an advantageous functional group that can be modified chemically to obtain 
chitosan derivatives with desired adsorption characteristics. Several researchers 
worked largely on the modification of chelating functionalities, mainly by increasing 
amino groups [40–42]. The applications of some chitosan-based materials in the 
adsorptive removal of pesticides are presented in Table 2.
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Table 2 Carbon-based materials for pesticide removal through adsorption 

Adsorbent Pesticide removed Adsorbent 
capacity 
(qe) mg/g  

Remarks and isotherms Refs. 

Chitosan-sodium alginate Malathion 52.08 – Sabbagh 
et al. [43] 

Chitosan-glycidyl methacrylate 2,4-Dichlorophenoxyacetic 
acid (2,4-D) 

– – Silvestro 
et al. [44] 

Chitosan-nanoclay hydrogel 
beads 

Paraquat – Non-spontaneous, physisorption takes place Baigorria 
and Fraceto 
[45] 

Activated carbon Bentazon 169.4 At 20–40 °C, the adsorption was exothermic, spontaneous, and 
practical. The adsorption data are fit by the pseudo-second-order 
model, providing evidence for the chemisorption mechanism 

Omri et al. 
[46] 

Activated carbon Carbofuran 164.0 Adsorption was efficient and exothermic Salman and 
Hameed 
[47] 

Activated carbon 2,4-D 33.5 to 
171.32 

Exothermic, viable adsorption was possible. It was a 
physisorption process and a diffusion kind of adsorption 

Salman and 
Njoku [48] 

Activated carbon MCPA (4-chloro-2-
methylphenoxyacetic acid) 

11.51 to 
63.38 

Exothermic and feasible adsorption Gimeno 
et al. [49] 

Cellulose/graphene oxide Chlorpyrifos 152.50 The ability of the S and P atoms to donate electrons was crucial 
to the adsorption mechanism 

Suo et al. 
[14] 

Cellulose/graphene Ametryn 6.45 to 
9.58 

Endothermic, spontaneous adsorption takes place Zhang et al. 
[50] 

Chitosan Glyphosate 35.08 The –NH3 group of chitosan and pesticide anion were found to 
interact electrostatically 

Rissouli 
et al. [51]

(continued)
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Table 2 (continued)

Adsorbent Pesticide removed Adsorbent
capacity
(qe) mg/g

Remarks and isotherms Refs.

Chitosan Oxadiazon 5.02 Oxadiazon exhibited a potent chemisorption to the adsorbent 
chitosan 

Arvand 
et al. [52] 

Coconut shell-based activated 
carbon (NP-5) 

Chloroorganic compound 
HCH 

650 Exothermic adsorption took place. Since HCH was adsorbed in a 
monolayer, there was little to no competition for adsorption 
surface sites with water molecules or pesticide molecules 

Ignatowicz 
[53] 

Molecularly imprinted polymer 1-naphthyl methyl 
carbamate 

50.0 Strong hydrogen bonds between the pesticide’s amide group and 
carbocyclic groups occur at acidic pH levels 

So et al. [54] 

Crosslinked modified chitosan Pantachlorophenol 36.63 Exothermic, feasible, and spontaneous adsorption occurred 
Values of ΔH  ̊ suggested that physical adsorption would be 
possible 

Shankar 
et al. [55] 

Magnetic-nanomodified 
activated carbon 

Thiamethoxam 42.44 – de Freitas 
et al. [56] 

Chitosan-activated carbon Oxadizon – – Arvand 
et al. [52] 

Walnut shell-modified activated 
carbon 

Diazinon 4.95 to 
156.25 

The amount 1/n < 1 demonstrated that diazinon adsorption was 
physisorption based on the Freundlich isotherm 

Bayat et al. 
[57] 

MnFe2O4@cellulose-activated 
carbon 

Glyphosate 167.2 Chemisorption played a major role in the adsorption process. The 
π- electrons from the adsorbent and the d electrons from the 
adsorbate combine to form new chemical bonds 

Chen et al. 
[58]
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4.1 Chitosan Modified with Metal or Metal Oxide 
Nanoparticles 

Metal and metal oxide nanoparticles, due to their small size and high density at their 
corner or edge surface sites exhibit distinctive physical and chemical properties [59]. 
The use of metals and metal oxides in composites of chitosan- has received increased 
attention in recent years as an alternative adsorbent in the treatment of water. 

Chitosan and chitosan functionalized with silver nanoparticles (AgNPs) were 
synthesized by Moustafa et al. as adsorbents for the removal of imidacloprid. It was 
observed that at a slightly acidic pH, chitosan and AgNP@chitosan membranes 
successfully removed 40 and 85% of imidacloprid, respectively. Moreover, the 
amount of imidacloprid removed was proportional to its original concentration, 
showing that the AgNP@chitosan membrane can effectively remove imidacloprid 
even at higher pesticide concentrations. Dehaghi et al. [59] examined the effec-
tiveness of composite chitosan/ZnOnanoparticles (CS/ZnONP) as an adsorbent in 
batch studies. The removal capacities of nanocomposite beads were investigated. 
The good adsorption performance of the CS/ZnONP beads was demonstrated. The 
removal effectiveness by CS/ZnONPs beads increased from 49 to 99% for permethrin 
solution (0.1 mg L−1) when chitosan beads were replaced by this nanocomposite. 
In this study, desorption was done in the presence of 0.1 M of sodium hydroxide 
solution. The permethrin adsorption and regeneration investigations showed that the 
CS/ZnONP beads could be recycled successfully, with 56% adsorption efficiency 
after three cycles in a column adsorption method. Additionally, CS-ZnONP beads 
provide a new biocompatible and environmentally benign technique for pesticide 
removal and can be employed in water treatment. 

Shankar et al. [55] studied the role of chitosan and modified chitosan as an adsor-
bent for the adsorption of pentachlorophenol, a fungicide used in the wood protection 
sector that is responsible for soil and groundwater contamination, which can cause 
leukemia and peripheral neuropathy [60]. Their group synthesized chitosan (CS), 
chitosan crosslinked with 2-hydroxy-1-naphthaldehyde (CSH), and functionalized 
chitosan grafted with CuCl2 (CSHC) and studied their efficiency for pesticide adsorp-
tion. The high adsorption capacity of CSH (39.1 mg/g), CSHC (35.4 mg/g), and CS 
(24.4 mg/g) was observed. The desorption studies were conducted in the presence 
of NaOH, NaCl, H2SO4, and H3PO4. It was observed that NaOH works better than 
other desorbing agents to regenerate the worn-out chitosan composites. Jaiswal et al. 
[61] examined the performance of synthesized novel copper-coated chitosan for the 
removal of malathion from agricultural runoff. At an optimum pH of 2,the maximum 
adsorption capacity of malathion was observed to be 322.6 ± 3.5 mg g−1.
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4.2 Chitosan Modified with Organoclay 

Due to its substantial surface area and high surface energy, organoclay has a great 
adsorption capacity. Their efficiency can be improved by modification with carbon-
based nanomaterials. Because of the intrinsic water molecule cover layer in clay 
including bentonite, and montmorillonite, these materials become hydrophilic and 
thereby put limitations to their application for the adsorption of organic contami-
nants. It has been suggested that the surface modifications of clay with chitosan or 
organic cations, such as cationic surfactants, can affect the surface’s hydrophilicity. 
As a result, organically modified organoclays are garnering much more interest as 
adsorbents to remove organic contaminants from the environment. 

For the adsorptive removal of clopyralid, Celis et al. [62] created a bio-
nanocomposite based on montmorillonite and chitosan. It was found that the physical 
and chemical properties of chitosan get enhanced after incorporating the clay and 
could be employed as an efficient adsorbent. Depending on the cationic exchange 
capacity (CEC) of the clay, chitosan chains formed mono- or bilayer structures within 
the clay mineral interlayer. The adsorption of chitosan on montmorillonite results in 
structures with strong adsorption properties for anions because the –NH3+ groups 
operate as anionic exchange sites. 

Hnana et al. [63] studied the adsorption of glyphosate by developing an adsorbent 
with Moroccan Ghassoul (stevensite) doped with cationic surfactant CTAB which 
gets impregnated into its inter lamellar spaces by cation exchange reaction and by 
chitosan direct interaction with clay sheet. The adsorption capacity of Stv/CTAB 
(128.49 mg/g) was lesser than that of Stv/CS (159.10 mg/g). 

4.3 Chitosan Decorated with Metal–Organic Framework 

Huang et al. [64] synthesized different nanocomposites by varying the concentration 
of ionic liquids and UiO-66 with chitosan and used it as an adsorbent for the removal 
of 2,4-D. Ionic liquid provides stability to chitosan and UiO-66 brings the availability 
of oxygen groups which enhances the adsorption capacity of the adsorbent. The other 
factor which affects the adsorption capacity is the electrostatic interaction between 
the positive charge on the surface of the adsorbent and the 2,4-D anion. The high 
adsorption efficiency of 336 mg/g was obtained using ILCS/U-10 adsorbent. 

Motaghi et al. [65] developed a nanocomposite of magnetic chitosan doped 
with activated carbon and UiO-66 (MCS/AC@UiO-66) for the ultrasound-assisted 
adsorption of imidacloprid. Three different forms of eluents, including nitric acid, 
ethanol, and deionized water, were used to regenerate MCS/AC@UiO-66. The adsor-
bent was first gathered using an external magnet, and nitric acid was then used to 
regenerate the adsorbent. The removal efficiency of the adsorbent was 88.56 percent, 
93.45 percent, and 88.45 percent for Co (II), malachite green, and imidacloprid,
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respectively, even after five consecutive cycles, demonstrating the high stability and 
efficiency of the bio-nanocomposite. 

The removal of acephate (AC), omthosate (OM), and methyl parathion (MP) was 
investigated by Mostafa et al. [66] using chitosan/zeolite-A (CS/ZA) as an adsorbent. 
Higher stability, surface reactivity, and a high adsorption capacity were provided by 
zeolite when used as a carrier with chitosan. For Acephate (AC), omthosate (OM), 
and methyl parathion (MP), adsorption capacities of 650.7 mg/g, 506.5 mg/g, and 
560.8 mg/g, respectively, were observed during the adsorption experiments using 
fixed bed columns. The recyclability of CS/ZAcomposite as an adsorbent for AC, 
OM, and MP pesticides was examined. For the desorption, the CS/ZA nanocomposite 
was washed with diluted NaOH solution (0.02 M) at a constant temperature of 50  ̊ C 
for 120 min. The regenerated CS/ZA particles were utilized in five adsorption runs 
for the three pesticides. 

4.4 Chitosan-Based Other Materials for Pesticide Adsorption 

Using chitosan and a chitosan/alginate membrane, glyphosate herbicide was removed 
from water in a study by Carneiro et al. [67]. They found that chitosan functions as 
a better adsorbent than chitosan-alginate with an adsorption capacity of 10.88 μg/g 
and 8.70 μg respectively, which follows pseudo-second-order kinetics. The electro-
static interaction between the herbicides and chitosan in this adsorption is the basis 
for its operation. Dinu et al. [68] synthesized chitosan cryogels (CSGA) for pesticide 
adsorption. CSGA sponges were prepared using a facile and cost-effective approach 
that consisted of a three-step cryogenic process: (i) freezing at −18 °C, (ii) storage in 
a frozen state for a certain period, and (iii) thawing at room temperature. The batch 
adsorption experiments were performed under varied conditions, where the effects 
of several parameters, such as pH, contact time, and initial pollutant concentration, 
were evaluated to identify the appropriate adsorption conditions for maximum pesti-
cide removal. The CSGA-based cryogel sponges exhibited a maximum adsorption 
capacity of 160.82 mg/g for Fastac 10EC pesticide and good recyclability at room 
temperature. 

Sabbagh et al. [69] synthesized chitosan alginate nanocomposites by using the 
microemulsion method. Alginate with chitosan can be produced as a biopolymer 
through electrostatic forces between alginate carboxylate polyanions and chitosan 
amine polycations. To effectively remove pollutants from effluents, the produced 
biopolymer is used as an adsorbent. The highest rate of clearance for malathion is 
82.35% by using this material. Attallah et al. [70] designed a chitosan/gelatin (CS/ 
Gel) polymeric composite and employed it as an adsorbent for pesticide adsorptive 
removal from an aqueous solution. As model pesticides, atrazine and fenitrothion 
were used. The CS/Gel composite had excellent results in terms of reusability, and 
the reduction in adsorption capacity after three cycles was negligible. The developed 
adsorption approach using CS/Gel composite as adsorbent was evaluated against 
synthetic pesticides wastewater samples created by fortifying distilled water with
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varying quantities of atrazine and fenitrothion as a trial for large-scale wastewater 
treatment. After 120 min, a removal efficiency range of 85.65 to 96.45%of the model 
pesticides was observed. Chitosan gel beads and porous crab shell powder were also 
employed for the removal of seventeen organochlorine pesticides in water [71]. 

5 Cellulose 

Cellulose, a natural and abundant biopolymer, has been studied as a potential adsor-
bent for the removal of pesticides from contaminated soil and water resources. 
The high surface area, hydrophilicity, and biocompatibility of cellulose make it a 
promising candidate for use in pesticide removal [72–74]. The adsorption of various 
pesticide formulations by cellulose-based materials has been examined in numerous 
research studies (Table 2). 

5.1 Cellulose-Based Materials for Pesticide Removal 

Kodali et al. [75] developed an entirely novel cellulose-based composite and eval-
uated its effectiveness in removing the 2,4-dichloro phenoxy acetic acid (2,4-D) 
from water. The outcomes demonstrated the strong 2,4-D adsorption ability of the 
cellulose-based composite, with a maximum adsorption capacity of 428.18 mg/g. 
When using the adsorbent to scale up the adsorption process, recycling or reusability 
of the adsorbent is crucial. The possibility of using diluted formic acid as a desorption 
reagent was investigated. After three cycles, attempts at continued recurrent regen-
eration resulted in a decline, with regeneration efficiencies of 99 percent, 97 percent, 
and 96 percent for the first, second, and third cycles, respectively. AgNPs were 
embedded in nanofabricated cellulose, which was then employed as an adsorbent to 
remove paraquat, cartap, and cypermethrin [76]. 

Tüysüz et al. [77] examined the usage of poly(2-hydroxyethyl methacrylate-
glycidyl methacrylate (HEMA-GMA) polymeric cryogels modified with cellulose 
nanofibers as an adsorbent to remove atrazine. The findings demonstrated that the 
synthesized adsorbent performed exceptionally well in eliminating target microp-
ollutants from an alkaline medium through electrostatic interactions based on the 
interaction of -OH groups of the cellulose linked to the polymeric material with 
partial positive areas on atrazine. The maximum adsorption capacity of 95.76 mg/g 
was obtained using this adsorbent. Dolatabadi et al. [7] reported the use of magnetic 
graphene oxide and carboxy methyl cellulose composites (MGOC) for the adsorp-
tion of chlorpyrifos. The maximum adsorption capacity of 108.3 mg/g was observed. 
A solution of NaOH (50 mM) was used to conduct the desorption experiments. Five 
adsorption and desorption cycles were performed which demonstrated that after five 
consecutive cycles, the removal efficiency percentage reduced from 100 to 86.1%. 
The 50 mM NaOH solution was unable to release the physiochemically adsorbed
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chlorpyrifos throughout each adsorption cycle. As a result, the sorption capacity for 
the following cycle was reduced. 

Surface-initiated atom transfer radical polymerization method was employed by 
Lin et al. [78] to develop photo-responsive cellulose-based engraved smart imprinted 
adsorbent materials (P-Cell-MI), which was used for the removal of 2,4-dichloro 
phenoxy acetic acid. The produced materials outperformed non-imprinted cellulose 
materials in terms of absorption capacity (11.039 mg/g). The desorption study was 
done after treating the adsorbent with UV light. Moreover, P-Cell-MIP demonstrated 
remarkable stability, improved reusability after 8 cycles, and UV light recovery. Xu 
et al. [79] designed a bi-functionalized Zr-amino-based adsorbent for the elimination 
of glyphosate. They showed in their investigation that higher adsorption efficiency 
was partially due to the protonated amino group’s electrostatic attraction and mainly 
due to the ligation between the zirconium and P-O group. The adsorption capacity 
of 107.38 mg/g was observed in studies. 

According to Takács et al. [80] an adsorbent produced by incorporating GMA 
(glycidyl methacrylate) onto cellulose was employed for the removal of phenol and 
pesticides such as 2,4-dichloro phenoxy acetic acid. Phenol was adsorbed more 
quickly and reached saturation in 5–6 h. The adsorption capacity was relatively low 
(4–8 mg/g). The addition of β -CD greatly increased the pesticide’s ability to adsorb 
as reported by Desmet et al. [81]. 

The mechanisms of pesticide adsorption by cellulose involve several factors, 
including the surface charge of the adsorbent, the pH of the solution, and the chem-
ical structure of the pesticide. Kumar et al. found that the adsorption process of 
chlorpyrifos by cellulose nanofibers was mainly driven by hydrogen bonding and 
electrostatic interactions between the negatively charged cellulose nanofibers and 
the positively charged chlorpyrifos molecules. By grafting polyvinyl amine onto 
cellulose nanocrystals, the amino group was introduced for the elimination of chlor-
pyrifos [82]. The maximum adsorption capacity for chlorpyrifos was 98.116 mg/ 
g, which suggested that the nanocomposite of nanocellulose with polyvinyl amine 
grafting had a much higher adsorption capacity than other adsorbents. 

To increase the adsorption capacity of pure cadmium sulfide (CdS) nanoparticles, 
Komal et al.  [83] investigated a novel and simple design method employing silanized 
cellulose nanofibers (SCNF) generated from sugarcane bagasse as a template. For 
all contaminants, the CdS@10%SCNF nanocomposite showed good adsorption effi-
ciency. Even after six adsorptive runs, there was no discernible change in the adsorp-
tion performance. This result confirms the remarkable stability of the CdS@10% 
SCNF nanocomposite. 

A positively charged MnFe2O4@cellulose activated carbon (CAC) was also 
synthesized for the removal of negatively charged pesticides [58]. MnFe2O4 @CAC 
had a substantially greater maximum glyphosate adsorption capacity (167.2 mg/ 
g) than both CAC (61.44 mg/g) and MnFe2O4 nanoparticles (93.48 mg/g).The 
cellulose-graphene oxide (CCE/G) nanocomposite, which resembles a sieve was 
modified with KOH to develop alkaline cellulose-graphene oxide(ACCE/G) for the 
adsorption of chlorpyrifos [14]. A maximum adsorption capacity of 152.5 mg/g for
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ACCE/G was noted. It was observed that the electron-donating properties of the 
sulfur and phosphorus groups were responsible for the adsorption mechanisms. 

The composite Cu-BTC@cotton was employed for the removal of Ethion [84]. 
The maximum sorption capacity of Cu-BTC@cotton composite reached 182 mg/g 
and the removal percent of ethion exceeded 97%. Abdelhameed et al. employed 
cellulose acetate doped with Cu-MOF as an adsorbent to remove the herbicide 
dimethoate from wastewater [85]. When 40% Copper-MOF with cellulose acetate 
(Cu-BTC@CA) membrane was utilized in place of the cellulose acetate membrane, 
the adsorption capabilities significantly increased from 207.8 mg/g to 321.9 mg/g. 
By dissolving the dimethoate in acetonitrile and then drying it on air at room temper-
ature, the dimethoate was separated from the membrane. For a total of five cycles, the 
recycled membrane was used for dimethoate adsorption. The adsorption capacity of 
dimethoate decreased from 321.9 mg/g to 249.4 mg/g after 5 iterations. As a result, 
the Cu-BTC@CA membrane demonstrated effective reusability in the adsorption of 
dimethoate, reflecting its broad applicability in the removal of pesticides. 

Using modified carbonized bacterial cellulose, Zhu et al. [86] created different 
adsorbents. They found that the hydrophobic interaction between the organophos-
phate pesticides and the carbonized bacterial cellulose treated with hydrazine hydrate 
resulted in a 13-fold improvement in adsorption effectiveness. Cellulose-based mate-
rials have shown promising results as effective adsorbents for the removal of pesti-
cides from contaminated soils and water resources. Further research is required 
to investigate cellulose-based adsorbents’ potential applications and scalability for 
large-scale pesticide removal. 

6 Graphitic-Carbon Nitride 

Graphitic-carbon nitride(G-C3N4) is one of the strongest and most stable carbon 
nitride compounds.G-C3N4 is a compound that mostly consists of graphite-like 
planes of sp2 hybridized C and N atoms. G-C3N4 is more appealing for photocatalysis 
[87, 88], energy storage [89], solar cells [90], and sensors [91] due to the incorpo-
ration of nitrogen atoms (such as s-triazine and tri-s-triazine). Due to its narrow 
band gap, which is excellent for the adsorption of visible light, it has frequently 
been used as a photocatalyst and efficiently broken-down harmful compounds when 
exposed to sunlight. Active sites for the adsorption of hazardous chemicals from 
effluent are provided by the functional groups on the surface, such as –NH2, >N–N<, 
= N–, –NH–, and =C–N < [92]. The adsorption of organic and inorganic contami-
nants from water is improved by physical contacts (such as electrostatic interactions,
∏-∏ conjugated interactions, and hydrophobic interactions), as well as chemical 
interactions (such as complex formation or acid–base reactions). 

Watcharenwong et al. [93] studied the ability of g-C3N4 made from melamine 
squandering to remove paraquat from an aqueous solution. In their findings, it was 
found that alkaline media are preferable for paraquat adsorption. For efficient diquat 
elimination, Liang et al. [94] functionalized the g-C3N4 with –OH and –NH2 groups.
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The g-CN-0.3 sample had an excellent capacity for DQ herbicide adsorption, with 
saturation adsorption capacities of 159.7 mg/g at pH = 7 and room temperature. 

7 Desorption of Pesticides 

The carbon-based materials exhibit good adsorption capacity for water contaminants 
including pesticides. However, the desorption of pesticides using carbon nanoma-
terials is an emerging field of research that holds great promise for environmental 
remediation. The regeneration and reusability of adsorbents depend on the desorption 
process. The desorption of pesticides from carbon nanomaterials is usually achieved 
by using different chemical and physical methods. The physical methods involve 
thermal treatment, microwave irradiation, or electromagnetic energy treatment which 
help to break the bonds between the pesticides and carbon nanomaterials. In chem-
ical methods, typically solvents or surfactants are used to overcome the bonding 
interaction of pesticides with carbon nanomaterials. Some of the desorption systems 
are described in the above sections along with the adsorption of pesticides and some 
related materials’ desorption solvents are mentioned in Table 3. 

8 Conclusion 

Pesticides are essential for the high production of the agriculture sector; however, 
their extensive use leads to the accumulation of these toxic substances in water 
bodies. Among several technologies and materials, the combination of nanotech-
nologies and carbon-based nanomaterials, such as carbon nanotubes, graphene, and

Table 3 Desorption of pesticides 

Adsorbent Pesticide Desorbent 
system 

Recovery 
(%) 

Cycle References 

Chitosan-zinc oxide 
nanoparticles 

Permethrin NaOH 56 3 Dehaghi 
et al. [36] 

Molecularly imprinted 
polymer 

1-naphthyl methyl 
carbamate 

Acetonitrile 93 8 So et al. 
[54] 

Carbon nanotube filter 
coating for 
microextraction 

Organochlorine 
insecticides 

Thermal 
desorption 

45 to 116 Lü et al. 
[95] 

Walnut shells Carbofuran and 
chlorpyrifos 

Methanol 99 6 Memon 
et al. [96] 

Activated carbon Bentazon Ethanol 73.8 to 
78.3 

3 Omri et al. 
[46] 
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its derivatives, is regarded as the most successful approach for environmental reme-
diation. The advantages of using carbon nanomaterials for pesticide adsorption and 
desorption are their high surface area, and porosity, which may be altered to increase 
their adsorption/desorption capacity for certain pollutants, and strong and selec-
tive adsorption capability. Additionally, carbon nanomaterials are environmentally 
friendly and can be easily synthesized from renewable resources. 

However, there are still challenges that need to be addressed for the usage of carbon 
nanomaterials for the adsorption and desorption of pesticides. Some of the challenges 
include their high production costs, potential toxicity to the environment and human 
health, and the possibility that environmental factors such as pH, temperature, and the 
presence of other environmental contaminants may affect how effective they are at 
adsorbing pesticides. Carbon-based nanomaterials can be unstable and challenging 
to reuse as they can degrade or lose their capacity to adsorb over time. The release 
of carbon nanomaterials into the environment could also harm human health. 

Carbon-based nanomaterials offer tremendous possibilities for the future because 
of their strong adsorption capacity, substantial surface area, and reactivity. Pesticide-
degrading enzymes can also be employed to functionalize carbon nanomaterials to 
boost their effectiveness and stability. Additionally, the investigation into the potential 
risks and benefits of using carbon-based nanomaterials for pesticide adsorption and 
desorption is still in its early phases. As a result, further investigation is necessary 
to fully understand the potential risks and advantages of employing carbon-based 
nanoparticles to remove pesticides. 
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Adsorption and Desorption of Dyes 

S. Gopika Devi, A. Joel Amalan, S. Subasini, and Anitha Pius 

Abstract The color of the water is the most important and evident indicator of 
water quality parameter. It may not only be unsettling visually, but also the sign of 
contamination. Adsorption is the most widely used dye removal technology since it is 
straightforward, economical and very successful method. This chapter give current 
information on the most extensively research for the dyes adsorption and desorp-
tion methods. Illustrations are provided for the impacts of the initial dye concentra-
tion, pH, adsorbent dose, particle size and temperature. Likewise, potential eluents 
might be used to wash out contaminants from adsorbent materials. In this chapter, 
the adsorption and desorption investigations of dyes Methylene Blue, Congo Red, 
Malachite Green and Crystal Violet are discussed. 

Keywords Adsorption · Efficient adsorbents · Classification of dyes · Adsorption 
influencing parameters · Desorption eluents 

1 Introduction 

A hygienic living environment and safe drinking water are the basic requirements 
to support healthy living. For residential use as well as industrial and agricultural 
purposes, clean water is an absolute need. Larger wastewater effluents would be 
produced as a result of the increased water demanding units. Aquifers have been 
constantly depleted as the result of the excessive use of water and the release of 
hazardous chemicals during industrial and agricultural operations and placing the 
constant demand on the life-sustaining resource of water. Water pollution can be 
caused by the variety of activity including mining, industrial waste, sewage, pesti-
cides and agricultural fertilizers etc. Major pollutants in the wastewater effluents are 
heavy metals, organic chemicals, dyes and halogenated hydrocarbons. Adsorption, 
membrane filtration, coagulation/flocculation, oxidation, biological treatment and
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Fig. 1 Modern and traditional methods of wastewater treatment 

other techniques have all been developed to date to reduce the risks of contaminants 
[1] (Fig. 1). 

However, these procedures have lot of drawbacks. Chemical treatments, for 
instance, are quick, easy operations with the variety of oxidant approaches. In addi-
tion to all of these characteristics, chemical procedures are typically laboratory size 
and economically unviable for small enterprises to meet their energy needs. Even at 
high concentrations, physical methods like membrane filtration are quick and simple 
procedures. They are thought to be useful for practically all forms of contaminants, 
including suspended particles, mineral ions and dyes [2]. However, they are not prac-
tical for small companies due to their expensive energy consumption, maintenance 
and high operating costs, which result in quick membrane blockage at high concen-
trations. Coagulation and flocculation are straightforward physiochemical processes, 
however managing sludge volume creation (big-size flocs) is difficult and raises the 
cost of operation. The public wells adopt the biological treatment since it is an easy 
and appealing procedure from an economic standpoint. However, it takes a long 
time to degrade slowly and need the maintenance of healthy microbes in an ideal 
habitat [3]. Following an examination of several wastewater treatment methods, it 
is concluded that adsorption is the surface phenomena. Unbalanced residual force 
is present at the surface of a liquid or solid when it is under strain or unsaturation. 
Higher surface energy is the outcome of these uneven residual forces. As the result, 
the molecular species that come into touch with the surface of liquids or solids 
always have the tendency to attract and hold them [4]. It is the non-destructive, tech-
nologically straightforward, effective, and economical method. It is very effective in
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removing the different pollutants from the wastewater, including colors, metal ions, 
minerals and other impurities from textile, pharmaceutical, food, leather, paint and 
varnish industries [5]. 

After textiles are dyed, the leftover dye-concentrated effluent is frequently released 
into the environment at high pH and temperatures without being treated. This 
phenomenon will affect the oxygen transfer mechanism and the self-purification 
procedure of environmental water bodies, because of the high biological, chemical 
oxygen demand, high suspended particle content and other dangerous compounds 
in the wastewater. These compounds are difficult to remove from the water bodies 
because they are frequently synthetic in origin and have a complex aromatic molec-
ular structure that enhances their chemical stability and also adding dyes to the water 
supply system.

. Dye make the water more turbid.

. The majority of dyes are carcinogenic, (bladder, liver, kidney) mutagenic and 
toxic to living organisms.

. They can cause allergic reactions to skin, eye, mucous membrane irritation, 
dermatitis, and respiratory problems.

. They have a significant impact on the photosynthetic activity of the aquatic envi-
ronment because they block light from penetrating the water, inhibiting the growth 
of algae, which are crucial for the production of oxygen as well as being a 
foundation of the food chain. 

In the last 30 years, the issue of dyes in natural waterways has not received much 
attention, and it has only lately been included in the environmental regulations [6]. 

2 Classification of Dyes 

Dye can be classified based on the structure, source, color, solubility, and application 
techniques. In essence, the most typical classification was based on their chemical 
structure and it uses. The grouping by ionic nature (particle charge upon dissolving in 
aqueous media) and the application are combined in Fig. 2 [7]. Let us talk about the 
cationic and anionic dyes. Dyes are classified as the reactive, direct and acid (anionic 
dyes), basic (cationic dyes), or dispersion and vat (non-ionic dyes) depending on the 
application technique [1].

2.1 Reactive Dyes 

Reactive dyes (Fig. 3) enable the attainment of high wet strength. Reactive 
groups includes vinyl-sulfone, chlorotriazine, trichloropyrimidine and difluoro-
chloropyrimidine which form the covalent link with the fibre [8]. The findings of 
the adsorption method indicate that the anionic dyes were attracted to the positively
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Dye classification 
based on ionic nature 

Non 
Ionic 

Anionic 
Cationic 

Direct 

• Water soluble
. Used for rayon, cotton 

, nylon, paper
. Chemical types: 

Phthalocyanine, 
oxazine, azo, stibine

. Can interact with the 
negative group on the 

fibre molecules to form 
a salt,  firmly being 

attached to the fibre so 
that the fibre is dyed

. Types – azo, trimethyl 
methane, anthraquinone 

dyes

. Water soluble

. Used for wool, 
nylon, silk, paper

. Chemical types: 
anthraquinone, 
xanthegne, azo, nitro

. Water soluble

. Used for wool, cotton nylon, 
silk,

. Chemical types: 
anthraquinone, formazan, 
oxazine, basic

. The reactive site of the dye 
reacts with functional groups 
on fibre 

Vat 

Disperse

. Water insoluble

. Dyes solubilised by 
dropping NaHSO3 
exhausted on deoxidised 
fibre.

. Used for wool and cotton

. Chemical types: 
indigoids and 
anthraquinone

. Water insoluble 
. Used for polyamide, 

acrylic, polyester, 
acetate and plastics

. Chemical types:
. Styryl, Azo, nitro, , 

benzodifuranone 

Fig. 2 Ionic-based categorization of dyes

Fig. 3 Struture of reactive blue 19

charged surfaces of the adsorbent via electrical attraction because reactive dyes 
are soluble in aqueous media and have higher negative charge density. Originally 
intended for cellulose fibers, these dyes are now used on cotton, wool and polyamide 
textiles. Additionally, several fiber-reactive dyes for protein and polyamide fibers are 
also readily accessible on the market. It is impossible to overstate the significance 
of reactive dyes in the worldwide coloring industry. Reactive dyes are thought to be 
the most difficult to remove of all dyes since they frequently slip through traditional 
treatment techniques unscathed [9]. 
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Fig. 4 Struture of 
phthlocyanine 

2.2 Direct Dyes 

The textile industry still uses direct dye most frequently for printing and dying 
purposes. It find significant contribution to the textile industry due their extensive 
usage in printing and dying cotton, viscose, silk, wool, and leather, direct dyes. 
Although these dyes are anionic and water-soluble, they cannot be categorized as 
acid dyes since they do not connect to the fiber via acid groups. The following 
are the main categories of chromophore: azo, stilbene, phthalocyanine, Di oxazine, 
formazan, anthraquinone, quinoloneand thiazole. In contrast to reactive dyes, direct 
dyes are less resistant to washing while having a large range of hues and tones and 
being well-known for being simple to use [9]. Reactive Blue 19 (Fig. 4) is the typical 
example of direct dye. 

2.3 Acid Dyes 

As implied by the name, the molecules of acid dyes include one or more acidic func-
tionalities (SO3H and COOH). They have exceptional chemical and photochemical 
stability, which accounts for the complex composition, low biodegradability and high 
tinctorial value. They are difficult to eliminate using standard techniques. Aquatic 
ecosystems can be harmed by their breakdown products or metabolites, which have 
the potential to be mutagenic or carcinogenic. Due to their vivid color and excellent 
solubility, water-soluble acid dyes, particularly sulphonic acid dyes, are used exten-
sively. The dye molecules have highly distinct structural differences and frequently 
include certain metal complexes. The presence of sulfonated groups (Fig. 5), which 
enable water solubility and azo (the most significant group), anthraquinone, triph-
enylmethane or copper phthalocyanine are the group’s distinguishing characteristics 
[10].
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Fig. 5 Struture of acid red 138 

2.4 Cationic-Basic Dyes 

Basic dyes fall under the category of cationic dyes due to the coloured cationic salt 
in an aqueous solution. Later, the anionic surface of the substrate (acrylic, paper, 
and nylon) reacts with these cationic salts to form electrostatic attraction between 
the resultant cations and the negatively charged substrates. The cationic functional 
groups (−NR3+ or = NR2+) are often substituted amino compounds and amino acids 
that are acid-soluble compound [11]. By creating ionic connections with the fiber’s 
anionic groups, they would adhere to it. Basic dyes have a significant number of 
aromatic rings that contribute to their resonance capacity, a complex and massive 
structure that makes them robust and stable in the environment, and they are resistant 
to degradation. This feature prevents sunlight from penetrating, which lowers photo-
synthetic activity and lowers the effectiveness of natural biological self-cleansing 
[12]. 

2.5 Disperse Dyes 

Disperse dyes are water-insoluble dyes having tiny, non-ionic structures that are 
connected with polar functional groups like −NO2 and −CN. They are dispensed 
from an aqueous dispersion onto hydrophobic fibers. Disperse dyes are used on the 
surface of nylon, acrylic, cellulose, and cellulose acetate fibers [13]. Chemically 
speaking, simple azo compounds make up more than 50% of dispersion colors, 
anthraquinones make up around 25% and the remaining dyes are methine, nitro or 
naphthoquinone dyes. Disperse dyes are sometimes known as “sublimation” inks 
because, when heated, the ink molecules “sublimate” or shift instantly from a solid 
to a gas without ever passing through a liquid stage. The bulk of dispersion dyes are 
based on azo compounds, however, anthraquinone derivatives are frequently used 
to produce violet and blue hues. Due to their nano size, dispersed dye particles can 
maintain higher stability, particularly in high-temperature dyeing procedures [14]. 
Figure 6 shows the structure of Disperse Red 90.
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Fig. 6 Structure of disperse 
red 90 

2.6 Vat Dyes 

Vat dyes are frequently used to color cellulosic cotton garments. This is the principal 
causes of pollution in wastewater from textile and other industrial effluents. These 
kinds of colors are insoluble in water. Excellent color fastness, washability and 
chlorine-bleachable colored fibers are the some of the hallmarks of vat dyes. They 
are practically insoluble in water and therefore have no affinity for cellulosic fibers. 
In traditional tank dyeing processes, the dye is reduced in an alkaline medium in 
the presence of strong reducing agents such as sodium dithionite (Na2S2O4) [15]. 
Figure 7 shows the structure of indigo dye in its oxidation and reduction form.

3 Factors Affecting the Adsorption Process 

Several factors affect the effectiveness of liquid phase adsorption. The adsorbent/ 
adsorptive interaction, the adsorbent’s surface chemistry, pore structure, particle size, 
the adsorbent’s nature, the presence of other ions in the aqueous solution, pH, temper-
ature, pressure and contact time are the some examples of these physicochemical 
factors affecting the adsorption process. It is also vital to consider the adsorbate’s 
polarity, size, molecular weight, and molecular structure (Fig. 8) [16].

4 Types of Adsorbents 

It is critical to develop novel adsorbents with superior qualities, i.e., cheap and conve-
niently accessible, high removal efficiency even at trace levels. The adsorbents may 
be extracted from industrial waste, animal waste or agricultural waste or nanoador-
bent (Fig. 9). This kind of adsorbent is the crucial component in the process of getting 
rid of waste since all adsorbents include functional groups that are essential to the 
adsorption. The porosity, pore structure and adsorbent surface area are the unique
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Fig. 7 Structure of indigo dye both in oxidized and reduced form
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Fig. 8 Factors influencing the adsorption process
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Fig. 9 Various adsorbents for the wastewater treatment 

properties of adsorbent. Their classification and sorting have become crucial due to 
the rise in the usage of adsorbents [17]. 

4.1 Low-Cost Adsorbents 

Wastewater can be purified using the variety of in expensive adsorbents. They are 
most favoured material because of their economic viability and decreased waste and 
less by-product production. For example—red mud, coalfly ash, coffee residue, waste 
tea, sugarcane bagasse, eggshell waste [18]. 

4.2 Natural Adsorbents 

Several substances in nature can be used as adsorbents for the removal of contami-
nants, heavy metal ions, organic compounds and colors from the wastewater. Natural 
adsorbent includes chitin, clay, zeolite, peat moss, coal and wood. Zeolites are 
alumina silicates that resemble crystals and are formed naturally. They have tetra-
hedral framework structure which are connected by the oxygen atoms. Zeolites that 
have been surfactant-modified could absorb various organic contaminants. Natural 
zeolites may exhibit efficient adsorption ranging from 45 to 64% in 4 h [19]. 

The biopolymers chitin and chitosan is made of fiber which have special qual-
ities and biodegradability. These fibers have garnered a lot of interest due to their 
superior removal efficiency and strength compared to the activated carbon. Chitin is
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a naturally occurring, renewable material that has potential usage as the adsorbent 
in wastewater treatment. Alternative inorganic adsorbents like clay minerals provide 
several benefits, such as wide availability, low cost, non-toxicity and greater pollutant 
adsorption. Their ability to absorb organic molecules and cations is improved by the 
colloidal characteristics and negative charge layers. However, they are not very good 
at adsorbing anions in their native state. Different surfactants, however, can enhance 
adsorption by flipping the surface charge from negative to positive. Anionic dyes can 
be absorbed by raw clay [20]. 

Additionally, natural clay that has not been treated effectively eliminates colors 
of several chemicals and ionic dyes. Wood is seen as a cheap, non-renewable natural 
adsorbent that can be disposed by burning [21]. Wood has lately been investigated 
to develop its use in several sectors of energy storage, solar steam generation and 
wastewater treatment. Timber is composed of cellulose microfibrils embedded in the 
porous lignin matrix, taking advantage of the hierarchical and porous structure. It 
can be used without any pre-treatment to remove color. Several plants with wood and 
bark, such as Eucalyptus bark, have been employed for pollutant adsorption from 
wastewater [22]. 

4.3 Agricultural Wastes 

Agricultural waste products include vegetable and fruit peels which are used with 
pre-treatment and they are easily used as inexpensive adsorbents. Agricultural wastes 
are mostly made of cellulose and lignin, which gives them a flexible structure, a range 
of chemical characteristics and the ability to serve as the appealing alternatives to 
the traditional adsorbents. They are found in polymer chains with certain functional 
groups, such as carboxyl, alcohol, aldehyde, phenol and ketone, which aid in the 
removal of different pollutants from water. A range of agricultural wastes, like pulse 
seed coat, wheat bran, rice husk, coconut, orange, lemon and banana peels are used 
as adsorbents [23]. 

Both natural and modified forms of agricultural waste are beneficial. The waste 
product is properly cleansed, crushed and sieved until it reaches the necessary particle 
size in the natural system. Finally it is employed as an adsorbent for the water 
purification. filter Granular activated carbon (GAC) is created by pre-treating the 
material namely hazelnut, almond, walnut and apricot shells into a modified form. 
The rice husk was converted into the urea activated carbon for the removal of nitrate 
ions from wastewater. In order to remove malachite green, a variety of plant materials, 
including plant bark, coconut fiber, coconut shell, pine needles, neem leaf powder 
and cactus leaves have been used with the removal efficiencies of more than 90% at 
the ideal pH [24]. 

Citric acid is added to rice bran, rice straws and soybean hulls to make them more 
effective in removing various dyes from the wastewater. Methylene blue, a frequently 
dye could be removed by the mean of lotus leaves and pumpkin seeds [25].
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4.4 Industrial Wastes 

Solid waste was created due to the industrial activity; certain by-products are recy-
cled, while others are dumped in the landfills. Heavy metals, organic compounds 
and colors are removed from the wastewater using inexpensive adsorbents. These 
materials include fly ash, palm oil ash, red mud, bagasse ash, coffee waste, etc., are 
affordable and widely accessible locally [26]. 

If these wastes are not handled, they may result in significant environmental issues. 
Many different treatment techniques are used, but they are difficult, expensive, and 
produce secondary contaminants. Pollution will be greatly reduced if these wastes 
are converted into useful materials. 

Fly ash has been found to have a porous surface with tiny, irregularly shaped, 
glassy spherical particles. Fly ash’s surface has been altered to make it more 
adsorption-friendly. It is the by-product of combustion that is primarily employed 
in the manufacture of cement, bricks and other building materials. Due to its high 
alumina and silica content and suitability for adsorption, fly ash is the cheap adsor-
bent materials. Fly ash from bagasse, a waste product of the sugar industry is difficult 
to dispose it from the environment and hence utilized as the filler in building prod-
ucts; however, it has been transformed into an effective adsorbent for the removal of 
harmful substances [27]. 

Red mud, an effluent from the aluminum industry, has drawn attention as an active 
adsorbent to reduce pollution by effectively absorbing a variety of aquatic toxins Due 
to the presence of sodium hydroxide solution (used in the refining process), red mud 
has an alkaline pH range of 10–12. Due to its alkaline makeup, it may constitute 
hazardous waste and must be neutralized before being used as an adsorbent. Red 
mud after neutralisation has a pH between 8 and 8.5. Red mud adsorption has been 
used extensively to remove colors and arsenic from wastewater [28]. 

4.5 Nano-adsorbents 

Although nanotechnology has many effective uses, wastewater treatment has 
emerged as a particularly intriguing topic of study. The production and investiga-
tion of nanoscale elements are fundamental to nanotechnology. In several areas of 
interest recently, nanomaterials, nano-adsorbents or nanoparticles have demonstrated 
promising uses, primarily in the removal of metallic contaminants from industrial 
effluent. Various analytes have been separated from one another and purified using 
nanomaterials, particularly in the form of nano-adsorbents and their variations. At the 
nanoscale, materials are categorized according to different biological, physical and 
chemical characteristics than according to their conventional or real size. As a result, 
materials with a high surface-to-volume ratio at the nanoscale include metal oxides, 
ceramics, polymers and carbon derivatives. The surface area of materials quickly
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rises with decreasing particle size and alternatively, materials’ macroscopic-level 
properties are altered at the nanoscale [29]. 

4.6 Carbon-Based Nanomaterials 

Numerous carbon-based nanomaterials have been generated due to the rising need 
for nanotechnology. Due to its wide surface area and adjustable porosity, activated 
carbon has the great potential for adsorption studies. Nanomaterials made of carbon 
and graphene, like nanotubes, come in functionalized and non-functionalized vari-
eties. Higher adsorption activities are possible by the functionalization of carbon-
based nanomaterials on the surfaces. Carbon based nanomaterials has two major 
advantages namely (1) improved hydrophilicity which boosts the dispersion in an 
aqueous media (2) improves the electrostatic interactions between adsorbent and 
adsorbate to maximize adsorption capacity and provides greater surface area for the 
exposure to the contaminants. If the surface is functionalized by a negative charge, 
the electrostatic interactions are the main driving mechanism for the adsorption of 
especially positively charged species such as heavy metals. By effectively eliminating 
contaminants from the water, carbon nanotubes (CNTs) could help to maintain the 
healthy environment. 

Iijima developed CNTs in 1991, and since then, several research have done to 
exploit the CNT for the water purification. CNTs have a huge surface area that 
makes them as the ideal materials for the adsorption of pollutants. Three-dimensional 
(3D) graphene is a viable choice for the adsorption process due to its uniform 
structure, high surface area, chemical stability, structural sustainability and highly 
oleophilic and hydrophobic surfaces. In comparison to current adsorbents, graphene 
has made substantial advancements in its capacity to absorb organic liquids and 
oils. Heavy metal ions and organic pollutants have been successfully removed using 
nano-adsorbents made of graphene and CNTs [30]. 

4.7 Metal Oxide-Based Nanomaterials 

The removal of harmful metal ions, inorganic and organic contaminants from wastew-
ater and raw water has previously been accomplished using a sizable variety of 
metal oxide nanomaterials, such as Fe3O4, CuO, ZnO, and their composites. Due to 
their enormous surface area and effective catalytic activity, metal nanoparticles are 
regarded as the ideal material for eliminating harmful dyes, particularly azo dyes. The 
best materials for the adsorption of arsenic and other ions are iron and its compounds, 
goethite, hematite, granular ferric hydroxide, and iron oxide-coated surfaces. CuO is 
the good nano adsorbent for the removal of arsenic from water due to easily regener-
able and reusable. ZnO is a substance that is extremely stable and safe which function 
in the pH range between 5.8 and 6. Compared to individual metal oxides, zinc oxide
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nanocomposites exhibit a high adsorption capacity. Fe–Mn, Fe–Ce, Fe–Ti, Fe–Zr, 
Ce–Ti, Fe–Cu, Fe–Cr, and Mn–Co are some examples of these composites [31]. 

4.8 Nanocomposites 

Several nano-sized adsorbents have been created and used in the water filtration 
systems. Therefore, there is still much work to be done in creating innovative nano-
adsorbents for the waste water treatment. To achieve this goal, nanomaterials are 
being thoroughly investigated to the develop adsorbent with flexible separation 
properties, such as a large surface area and more binding sites. For the filtration 
of water, spinal ferrite nanoparticles (SFNPs) and their nanocomposites are used. 
Numerous studies have shown that nanocomposites based on SFNPs have improved 
photodegradation capabilities and may be used to entirely remove pollutants [32]. 

4.9 Boron Nitride Material 

The chemical compound boron nitride (BN) is made up of an equal amount of boron 
(B) and nitrogen (N) atoms. In 1842, Balmain created BN for the first time through the 
interaction of molten boric acid (H3BO3) and potassium cyanide (KCN). Since then, 
several studies on the creation of various BN nanostructures, including nanotubes, 
nanofibers, nanoparticles, nanoflowers and nanosheets, have been developed. With 
its enormous surface area, oxidation resistance, and chemical durability, hexagonal 
boron nitride in a porous form exhibits special chemical and physical properties. 
Due to these properties, BN is the favorable material for the storage of hydrogen, 
adsorption of inorganic and organic contaminants, and as the catalysis [33]. 

4.10 Bio-sorbents 

An adsorptive technique called bio-sorption can remove contaminants, metal ions, 
and organic dyes from aqueous solutions. As suggested by the name, bio-sorbents are 
made from biological sources or by using biological methods. These bio-sorbents 
contain certain functional groups on their surfaces that tend to attract or bind to 
contaminants. Depending on the functional group polarity, this technique success-
fully eliminates the variety of organic and inorganic substances by the passive attach-
ment to the bio-sorbents. Algal charcoal was used as the bio-sorbent to remove the 
hazardous pigments, heavy metals, different inorganic, organic contaminants from 
the waste effluents.
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The alteration of walnut shells has shown to be the potential technique for 
producing bio-sorbents for the practical sorption capabilities. The sorption capacity 
was further enhanced by the modifications with inorganic acid [1]. 

5 Desorption Studies 

Desorption may arise from heat (thermal energy), incoming light such as infrared, 
visible, or ultraviolet photons, or an incident beam of energetic particles such as 
electrons. Additionally, it take place after chemical processes like oxidation or reduc-
tion in an electrochemical cell or following a chemical process involving adsorbed 
substances in which the surface might function as the catalyst. 

Desorption experiments were conducted to regenerate the used adsorbent and 
hence making the procedure more cost-effective and cheaper. There are signifi-
cant amount of frequently dangerous by-products and trashes. These solids may be 
recycled and hence allowing the the recovery of the adsorbent and the contaminant. 

The desorption depends on the nature of adsorbent, adsorbate (various types of 
dyes with an ionic nature) and the adsorption process. Examining the adsorbent’s 
reusability is the crucial factor in the adsorption–desorption investigations. The adsor-
bent has to be cleaned and regenerated in between the dye removals so that it can 
be reused again. Various desorption techniques and a wide variety of eluents were 
utilized to renew the used adsorbents [34]. 

Siroos S. et al. investigated the adsorption of the dyes malachite green, and 
auramine-O, on the NaX nano zeolites. The used NaX nano zeolites were cleaned 
with a little quantity of methanol before dried in the vacuum oven. The outcomes 
show that the adsorption efficiency declines after five cycles [35]. 

Malachite green (MG) dye desorption on cellulose nano fibril aerogels was studied 
by Feng J. et al. The first rounds of utilized aerogels were dissolved in the deionized 
water and finally 16% of the MG was regenerated. The material was also subjected 
to desorption process using 50 mL of 0 mM, 50 mM, and 200-mM sodium chloride 
solutions [36]. 

The adsorption–desorption behavior of the dyes Direct Orange-26 (DO-26), 
Direct Red-31 (DR-31), Direct Blue-67 (DB-67) and Ever direct Orange-3GL (EDO-
3) over native, modified rice husk was thoroughly studied by Bhatti et al. After the 
biosorbent was dried at 60 °C, the dye desorption was examined using distilled H2O 
(pH 8, 10, and 12), NaOH, and Na2CO3 (0.1 M). Under standard circumstances, it 
was shown that rice husk biomass can adsorb EDO-3, DR-31, DO-26, and DB-67 
dyes at rates of 75.32, 80.59, 62.88, and 53.97 (mg/g), respectively. After 10 sorption/ 
desorption cycles, the rice husk biomass’s adsorption capability was decreased by 
17% [37]. 

Ilknur S. Entürk and Mazen Alzein evaluated the adsorption–desorption of Acid 
Violet 17 on a regenerated acid-activated pistachio shell. As per the protocol, 100 mL 
of HCl, NaCl, CH3COOH, and NaOH desorption agents were prepared at various 
concentrations (0.1, 0.2, 0.4, and 0.8 M), along with solvents (ethanol and distilled
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water), and 1 g of the dye-loaded adsorbent was obtained (0.1, 0.2, 0.4, and 0.8 M). 
The desorption treatments was carried out separately with water and ethanol which 
shows poor desorption efficiency. After three rounds of desorption, the AV 17 dye’s 
adsorption efficiency dropped from 94.76 to 75.84% [38]. 

In desorption investigations, Mohammad A. Al-Ghouti and Rana S. Al-Absi intro-
duced black and green olive stones to the 50 mL of acidic solution of acetic acid and 
ethanol (%vol) (10:1, 5:1, and 1:1) that are loaded with 600 mg/L of methylene blue. 
The mixture was shaken for 24 h at 25 °C and 150 rpm. Finlly MB-loaded green 
and black olive stones show the desorption removal capabilities of 92.5 and 88.1%, 
respectively [39]. 

Momina et al. studied the chemical regeneration. on the bentonite surface for the 
adsorption of methylene blue dye. The following solvents were used: sodium chlo-
ride (NaCl), nitric acid (HNO3), ethanol (C2H5OH), propanol (C3H7OH), acetone 
((CH3)2CO) and distilled water (H2O). Using an aqueous HCl solution, significant 
amout of desorption of MB (70%) was accomplished. Ainoa Murcia-Salvador et al. 
used NaOH as the effective solvent for the adsorption–desorption of Direct Blue 
78 on the eggshell surface. Figure 10 shows potential eluents that might be used to 
rejuvenate adsorbent materials. 
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Fig. 10 Eluents that could be used to remove impurities from adsorbent substances
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Desorption agents such as HCl, NaCl, CH3COOH, and NaOH were synthesized 
with solvents such as ethanol and distilled water in an orbital mixer running at 125 rpm 
for 24 and 48 h. The desorption treatments was carried separately with water and 
ethanol which shows poor desorption efficiency. After three rounds of desorption, 
the AV 17 dye’s adsorption efficiency dropped from 94.76 to 75.84% [40]. 

6 Conclusion 

Due to the advancement of science and the chemical industry, researchers were 
able to develop several synthetic dyes. Many of the synthetic dyes are hazardous 
to the environment and human health. Therefore, we must address the problem of 
treating industrial wastewater (mostly textile and dye waste) and create effective 
and sustainable water treatment systems. Although there are many methods for the 
water treatment, adsorption is perhaps the most widely used commercial technology. 
Several external factors affect the remediation process, and it is crucial to optimize 
these factors so that the system can be used even at the lower concentrations with low 
costs, minimal by-products and high efficiency. With various adsorbents, Methylene 
Blue and Congo Red demonstrated both endothermic and exothermic properties. The 
type and mechanism of adsorption were influenced by the temperature, pH of the 
solution and many other factors. It is clear from studying the solution’s chemistry 
that anionic and cationic dyes respond differently to acidic and basic environments. 
The ionic nature of the dye should be taken into consideration while developing the 
adsorption process. Exothermic processes are advantageous from a green chemistry 
perspective since they don’t require extra energy. 
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Two-Dimensional Carbon-Based 
Materials for Sorption of Selected 
Aromatic Compounds in Water 

Adedapo O. Adeola and Patricia B. C. Forbes 

Abstract The availability of clean water is of pressing concern in developing coun-
tries and has been a key area of focus for research and development worldwide. 
The sixth Sustainable Development Goal of the United Nations emphasizes the need 
for clean water. Aromatic hydrocarbons are emerging organic contaminants that are 
being found frequently in drinking water, municipal wastewater, and surface water. 
Conventional wastewater treatment plants have been shown to have limited effi-
ciency in removing these trace pollutants from water. Due to advantages including 
cost, effectiveness, simplicity of use, and reusability, the adsorption process is recog-
nized as a promising water remediation technology for aromatic compound removal. 
Advanced carbon-based materials discussed in this chapter are two-dimensional 
materials, such as graphene and carbon nanotubes, and their composites. Their perfor-
mance towards remediating monocyclic aromatic hydrocarbons (MAHs) and poly-
cyclic aromatic hydrocarbons (PAHs) was explored using recent published results 
between 2007 and 2022 from reputable sources. The concluding section of the chapter 
presents recommendations for bridging knowledge gaps, as well as suggestions for 
future research direction. 
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1 Introduction 

The cyclic ring structure of aromatic compounds alternates between double and 
single bonds. The presence of at least one planar carbon ring and the alternation 
of double and single bonds in the carbon ring are the two main requirements for 
classifying a compound as aromatic [1, 2]. In industries, aromatic compounds are 
widely employed in the manufacture of pharmaceuticals, plastics, insecticides, etc. 
These are chemicals that can have a negative impact on all forms of life, particularly 
in terms of human health [3, 4]. 

Adsorption methods using various carbon-based materials are often used to decon-
taminate water containing aromatic chemicals. As a result, numerous research studies 
have been conducted to better understand the adsorption mechanisms involved 
in these processes [5–10]. Carbon-based adsorbents such as graphene, carbon 
nanotubes, and their derivatives, are frequently utilized as the effective adsorbents 
for aromatic pollutants in water due to their tunable surface functional groups and 
relatively large surface areas [11]. The adsorbent type, sorbate properties and hydro-
chemistry (such as pH, temperature, ionic strength) may influence the adsorption 
capacity of carbonaceous materials [6, 9]. The four primary components of the surface 
of carbon materials are the basal planes, crystal edges and defects, ash impurities, 
and surface groups containing oxygen. These surface groups are often found around 
the graphitic basal planes’ edges. There are two types of surface functional groups: 
basic groups (pyrone- and chromene-like structures) and acidic groups (carbonyl, 
carboxyl, phenolic, lactone, hydroxyl and anhydride) [12]. 

Researchers have attempted to comprehend how the various aromatic ring 
substituents influence the sorption and desorption processes, since aromatic 
molecules are ubiquitous water pollutants [13]. The solubility of the molecule, the 
density of electrons in the aromatic ring, and pKa values have all been reported 
to impact the adsorption process [7, 14]. There is strong evidence supporting the 
importance of π − π interaction mechanisms, although the nature of the driving 
factors for the adsorption of aromatic compounds is still being elucidated. Through 
π − π interactions between the electrons of the aromatic ring and the electrons of 
the graphene layers, aromatic compounds (as neutral molecules) are adsorbed on the 
carbon surface [15]. The charge of phenolic aromatic compounds can be impacted 
by the pH of the solution, which in turn affects the electrostatic interactions between 
the adsorbent and the adsorbate [7]. 

This chapter addresses the application of various 2D carbon-based adsorbents for 
the sorption of aromatic compounds in water, highlighting challenges, merits and 
prospects.
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2 Monocyclic and Polycyclic Aromatic Hydrocarbons 
(MAHs and PAHs) 

Monocyclic aromatic hydrocarbons (MAHs) are made up of one aromatic ring, while 
polycyclic aromatic hydrocarbons (PAHs) are a fusion of two or more aromatic rings. 
Benzene, toluene, ethylbenzene, and xylenes (BTEX) are the most water-soluble 
aromatic hydrocarbons and are well-known environmental contaminants [16]. On the 
other hand, there are hundreds of distinct PAHs and their derivatives, but the United 
States Environmental Protection Agency (US EPA) has designated 16 of them as 
priority pollutants [6, 17]. They are frequently discovered in water bodies where there 
are nearby wood/coal processing, gas production, and crude oil exploration activities. 
Humans may be exposed to MAHs and PAHs through a variety of pathways, including 
air, water, food, and work-related exposures. However, contaminated water is one of 
the main routes of exposure [18, 19]. Due to the toxicological implications of PAH-
contaminated water, several studies have been carried out towards the remediation 
of PAH-polluted water globally based on adsorptive technologies. 

3 Adsorption of Selected MAHs and PAHs Using 
Graphene-Based Materials 

In 1995, the International Union of Pure and Applied Chemistry (IUPAC) adopted 
the term “graphene,” which had already been proposed in 1986. Two-dimensional 
(2D) graphene has hexagonally organized sp2 hybridized carbon atoms in a close-
packed crystal lattice structure that contains σ- and π-bonds [20]. Graphene has 
been synthesized in a variety of forms, including pristine graphene, graphene 
nanoshells, graphene oxide (GO), reduced graphene oxide (RGO), graphene quantum 
dots (GQDs), graphene wool (GW), graphene-based composites, and functionalized 
graphene [5, 21, 22]. Figure 1 presents a schematic illustration of the preparation 
of graphene-based materials with graphite as a precursor. Numerous scientific fields 
use graphene and its composites for a myriad of applications due to their thermal 
stability, large specific surface area, high tensile strength, thermal conductivity, chem-
ical resistance, flexibility, tunability and charge mobility [6, 23]. For water remedia-
tion objectives, such as the removal of MAHs and PAHs from water, graphene also 
serves as an effective adsorbent.

In general, the interaction mechanisms between MAHs, PAHs, and various forms 
of graphene in water follows second-order reaction kinetics (chemisorption) and are 
predominantly defined by partitioning and adsorption [6]. It is clear from the investi-
gations listed in Table 1 that the dosage, PAH concentration, reaction temperature, and 
solution ionic strength all have a significant influence on the efficiency of adsorption 
by various types of graphene. The absence of specific moieties in PAHs is respon-
sible for the minimal effect of pH variation [25, 26]. A study carried out on MAHs 
by Zhou and Zhang [27], employed a density-functional tight-binding approach
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Fig. 1 Representation of potential methods for synthesizing graphene and reduced graphene oxide. 
Adapted with modification from Rowley-Neale et al. [24]

to examine the adsorption of benzene derivatives containing various substituents 
onto graphene. The aromatic compounds with either an electrophile or an electron-
donating substituent showed stronger adsorption than benzene. Additionally, the 
strength of the adsorption depends on the magnitude of steric effects, and the elec-
tron transfer from graphene is influenced by the direction and quantity of H-atoms 
in the substituent. The stereo-electronic impact of the combination of substituent 
and the ringed structure of benzene has a significant impact on the region where the 
molecule interacts with graphene [27].

Due to the elimination of PAHs with a removal efficiency > 98%, as well as the 
flexibility and reusability associated with graphene wool (GW), it has a competitive 
edge over other graphene forms reported in Table 1. GW may be an excellent filtration 
medium and a useful polishing tool for water treatment because of its low density 
and high porosity. 

The removal of benzene, toluene, ethylbenzene, and xylene using adsorption 
methods was assessed in two studies (Table 1). Pourmand et al. [28] studied the 
adsorption of BTX by nanoporous graphene, while Azizi et al. [29]evaluated the 
adsorption of TEX by graphene oxide. Graphene was not as effective as nanoporous 
graphene at eliminating these monocyclic aromatic compounds. The surface area of 
graphene, which was reported to be 410.99 m2/g, was nearly 30 times larger than 
that of GO (12.41 m2/g), while its total pore volume, which was reported to be 1.07 
cm3/g, was roughly eight times larger than that of GO (0.13 cm3/g). However, the 
size of graphene pores (45–63 nm) was comparable to that of GO pores (43 nm). 
According to the analysis of the material, the adsorption maxima (qmax) of graphene 
for xylene and toluene was more than the adsorption maxima (qmax) of graphene 
oxide for these compounds. Graphene-based materials are emerging nanomaterials,
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Table 1 Comparison of different forms of graphene used for the removal of aromatic compounds 
in contaminated water 

Adsorbent Removal 
efficiency (%) 

Adsorption capacity References 

Graphene NR 1460 mg/g 
(1-napthalenesulfonic acid) 

Wu et al. [26] 

Graphene NR 206.00 mg/g 
(1-naphthylamine), 167 mg/ 
g (naphthalene), 152.82 mg/ 
g (1-naphthol) 

Ji et al. [30] 

Graphene nanosheets 
Graphene oxide 
Graphene SWNT 
Graphene MWNT 

NR 150.2 mg/g (phenanthrene), 
139.0 mg/g (biphenyl) 
127.4 mg/g (phenanthrene), 
92.9 mg/g (biphenyl) 
202.0 mg/g (phenanthrene), 
104.9 mg/g (biphenyl) 
37.1 mg/g (phenanthrene), 
915.5 mg/g (biphenyl) 

Apul et al. [31] 

Reduced graphene oxide 
(RGO) 

NR 5912 mg/g (naphthalene), 
183 mg/g (anthracene), 
979 mg/g (pyrene) 

Sun et al. [32] 

RGO/FeO.Fe3O4 composite NR 337.1 mg/g (naphthalene), 
408.1 mg/g 
(1-naphthylamine), 
389.3 mg/g (1-naphthol) 

Yang et al. [33] 

Graphene oxide/ brilliant 
blue (BBGO) 

72.7 – 93.2 349.0 mg/g 
(anthracenemethanol), 
447.4 mmol/g (fluoranthene) 

Zhang et al. 
[34] 

Graphene nanosheets – 126.0 mg/g (naphthalene), 
116 mg/g (phenanthrene), 
123 mg/g (pyrene) 

Wang et al. 
[35] 

Graphene oxide (GO) NR 3.67 mg/g (naphthalene), 
5.9 mg/g (phenanthrene), 
6.12 mg/g (pyrene) 

Graphene NR 24.1 mg/g (phenanthrene) Zhao et al. [36] 

Graphene-coated materials 
(GCMs) 

80 1.74 mg/g (phenanthrene) Yang et al. [37] 

Graphene wool 98.5–99.9 5 mg/g (phenanthrene), 
20 mg/g (pyrene) 

Adeola and 
Forbes [15] 

GO-iron oxide NR 285.7 mg/g 
(1-naphthylamine), 
228.4 mg/g (1-naphthol) 

Yang et al. [38]

(continued)
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Table 1 (continued)

Adsorbent Removal
efficiency (%)

Adsorption capacity References

RGO-iron oxide NR 303.0 mg/g 
(1-naphthylamine), 
243.2 mg/g (1-naphthol) 

Graphene oxide NR 11.3 mg/g (toluene), 
13.6 mg/g (ethylbenzene), 
14.0 mg/g (xylene) 

Azizi et al. 
[29] 

Nanoporous graphene NR 118.8 mg/g (benzene), 
123.5 mg/g (toluene), 
125.4 mg/g (xylene) 

Pourmand 
et al. [28] 

N-Doped RGO 40–90 5.77 mg/g (anthracene), 
9.29 mg/g 
(2-methylanthraquinone) 

Song et al. [23] 

NR: Not Reported

as a result, a methodical and scientific approach must be used to better understand 
their stability, durability, mechanical qualities, and toxicity. 

4 Adsorption of Selected MAHs and PAHs Using Carbon 
Nanotubes 

Carbon nanotubes (CNTs) are a 2D nanomaterial with cylindrically-shaped hollow 
graphitic layers. Multi-walled and single-walled carbon nanotubes (MWCNTs and 
SWCNTs, repectively) are the two forms of carbon nanotubes that are widely 
discussed (Fig. 2) [39]. Numerous techniques for creating carbon nanotubes have 
been investigated since their discovery in 1991 (MWCNTs) and 1993 (SWCNTs), 
respectively [40]. SWCNTs, double-walled carbon nanotubes (DWCNTs), and 
MWCNTs have been made using arc-evaporation of graphite electrodes, pyrol-
ysis of organic molecular precursors, laser ablation, electrochemical methods, vapor 
phase decomposition and chemical vapor deposition (CVD) of carbon-containing 
molecules [41, 42]. CNTs contain contaminants and may cause harm when utilized 
in their pristine form (after preparation). However, their toxicity may be signifi-
cantly reduced when they are purified and surface-functionalized, making them suit-
able substrates for various applications. Additionally, it has been demonstrated that 
continuous CNT fibers offer a suitable means of avoiding the potential issue of CNT 
leaching [40].

The physicochemical properties and structures of selected monocyclic aromatic 
compounds (MAH) are presented in Table 2. Lu et al.  [43] reported the fabrication 
of CNTs using the catalytic chemical vapor deposition technique and its applica-
tion as an adsorbent for the removal of selected monocyclic aromatic compounds
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Fig. 2 Structure of carbon nanotubes according to the number of walls. (A) SWCNTs according 
to their chirality (zigzag, armchair, and chiral), (B) DWCNTs and (C) MWCNTs with multiple 
overlapping shells. Adapted from Tilmaciu and Morris [40]

(benzene, toluene, ethylbenzene, and p-xylene) in contaminated water (Fig. 3). Pris-
tine CNTs were modified using oxidation with H2SO4, HNO3, and NaOCl, and the 
surface composition of CNTs was altered, resulting in CNTs that adsorb more BTEX. 
Following the nitric acid-oxidized CNTs and the sulfuric acid-oxidized CNTs, the 
NaOCl-oxidized CNTs exhibited the largest improvement in BTEX adsorption. The 
interactivity between the surface carboxylic groups of CNTs and the aromatic ring
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Table 2 Basic physicochemical properties of the selected monocyclic aromatic hydrocarbons 
(MAHs) 

Hydrocarbon Molecular 
structure 

Molecular 
formula 

LogKow Sw Mw Bp 

Benzene C6H6 2.17 1790 78.11 80 

Ethylbenzene C6H5C2H5 3.15 170 106.16 136 

p-Xylene C6H4(CH3)2 3.15 162 106.16 138.3 

Toluene C6H5CH3 2.69 526 92.14 110.6 

Log Kow: octanol–water partition coefficient, Sw: water solubility (mg/L), Mw: molecular weight 
(g/mol), Bp: boiling point (ºC). Cited from PubChem 

Fig. 3 Illustration of adsorption of BTEX onto oxidized CNTs. Adapted with permission Lu et al. 
[43], Copyright 2008, Elsevier

of BTEX is considered to be primarily responsible for the adsorption mechanism of 
BTEX via CNTs. The NaOCl-oxidized CNTs out performed several different types 
of carbon and silica based adsorbents [43]. 
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In a recent study, the role of humic acid (used as a model for natural organic matter) 
on the ability of MWCNTs to adsorb selected aromatic compounds was investigated 
[44]. In batch adsorption tests, toluene and ethylbenzene adsorption from aqueous 
solution onto multi-walled carbon nanotubes in the presence of various humic acid 
concentrations were evaluated. According to the findings, ethylbenzene and toluene 
had the highest MWCNT adsorption rates of 72 mg/g and 35 mg/g, respectively, in 
an aqueous solution devoid of humic acid. The two main models of the adsorption 
process were the pseudo-second-order kinetic model and the Langmuir isotherm 
model. When studies were conducted using MWCNT pre-loaded with humic acid 
from 0 to 30%, the adsorption capacity of MWCNTs decreased from 14 mg/g to 8 mg/ 
g for toluene and from 25 mg/g to 10 mg/g for ethyl benzene [44]. This decrease 
in adsorption capacity as a result of the presence of NOM is similar to what was 
reported by Adeola and Forbes [13], for pyrene interaction with graphene wool in 
the presence of NOM. Thus the presence of particulate or dissolved NOM in water 
often negatively impacts the adsorption capacity of carbon-based materials. Table 3 
presents a summary of various CNTs utilized for the removal of MAHs. 

As a result of superior sorption potential and ease of retrieval, magnetic carbon 
nanotubes have attracted significant interest as adsorbents for the treatment of water 
containing organic contaminants [50]. Three main groups of CNT-based magnetic 
composites have been identified: (i) CNT-metal nanocomposites, (ii) CNT-metal 
oxide nanocomposites, and (iii) CNT-mixed metal oxide nanocomposites. Iron and

Table 3 Comparison of different forms of carbon nanotubes used for remediation of selected 
aromatic compounds in contaminated water 

Carbon nanotubes Maximum adsorption capacity, qe (mg/g) References 

Benzene Toluene Ethylbenzene p-Xylene 

MWCNT (NaOCl) 36.2 Chen et al. [45] 

SWCNT (NaOCl) 60.1 103.2 Wibowo et al. [46] 

SWCNT (HNO3) 85.5 Chin et al. [47] 

SWCNT 77.5 Chin et al. [47] 

MWCNT 31.15 54.94 Abedi et al. [44] 

MWCNT (H2SO4) 42.6 36.7 78.4 Lu et al. [43] 

MWCNT (HNO3) 105.7 160.8 108.9 Lu et al. [43] 

MWCNT (HCl) 45.0 60.0 148.0 Lu et al. [43] 

MWCNT (NaOCl) 247.87 279.81 413.8 Lu et al. [43] 

MWCNT (KOH) 99.52 339.37 278.28 Yu et al. [48] 

MWCNT (NaOCl) 99.47 112.19 Yu et al. [48] 

MWCNT 23.28 92.71 44.15 Yu et al. [48] 

MWCNT (O3 and 
NaOCl) 

16.6 Anjum et al. [49] 

MWCNT (HNO3 and 
NaOCl) 

59.48 103.40 Anjum et al. [49] 
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iron oxide nanoparticles are the main contributors to magnetism in these nanocom-
posites. Even CNT-based composites without any additional metal or metal oxide 
components show magnetic properties [51], as a result of the inclusion of metal cata-
lysts during CNT production (i.e., iron) to catalyse the chemical vapour deposition 
(CVD) process used to synthesize CNTs [52]. 

The adsorption of low molecular weight aromatic compounds from water has 
been accomplished using iron-impregnated MWCNTs with Fe3O4 adsorbed on the 
exterior walls of the MWCNTs [51]. Due to the inclusion of Fe3O4 nanoparticles, 
the composite has greater adsorption effectiveness than pure MWCNTs. Polycyclic 
aromatic hydrocarbons (PAHs) have been sorbed from aqueous solution using a 
magnetic N-doped CNT nanocomposite. To develop undoped carbon nanotubes, 
the nanomaterial was made utilizing (i) ethylene and iron catalyst, and (ii) acetoni-
trile and nitrogen. These procedures result in CNTs that contain both N-doped and 
undoped components [51, 53]. These N-doped amphiphilic CNTs exhibit great effec-
tiveness for the sorption of various PAH pollutants due to their extremely hydrophobic 
surface and they can easily diffuse in any aqueous matrix because of the N-containing 
hydrophilic regions (Fig. 4). After adsorption, a straightforward magnetic separation 
can be used to separate the CNTs from the medium with ease. These magnetic 
CNTs demonstrated greater extraction efficiency for the ten low molecular weight 
PAHs tested, as compared to conventional PDMS fibers [54]. The potential to adjust 
the surface characteristics of the CNTs by regulating the doping process allows for 
the development of specialized materials for the adsorption of numerous additional 
organic contaminants. This is arguably the most interesting aspect of this field of 
research and opens the door to promising applications.

5 Conclusion and Recommendations 

Graphene- and carbon nanotube-based materials are useful adsorbents for the elimi-
nation of aromatic organic compounds in polluted water bodies. To effectively deploy 
these materials on a full scale for environmental remediation, there is still much 
work that has to be done. Many of the reported studies did not account for natu-
rally occurring substances found in water bodies, such as natural organic matter 
(NOM) and metals in surface waters, while assessing sorption processes. Rather, 
they were restricted to studying how adsorbent physicochemical properties influ-
ence the sorption performance. According to a few studies, the presence of NOM and 
metals dramatically affects the adsorption efficiency obtained for targeted aromatic 
organic compounds due to competitive sorption onto the sorbent’s active sites. There-
fore, future studies should take into account a deeper investigation as to how these 
competitive processes may affect adsorption efficiencies. 

Physicochemical aspects and solution chemistry of aqueous media, which 
includes pH, adsorbent dosage, initial contaminant concentration, and temperature, 
among others, require in-depth analysis. Statistical analysis and the design of trials 
for process optimization are necessary for method validation. Future research should
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Fig. 4 Adsorption of 16 polycyclic aromatic hydrocarbons by carbon nanotubes. NA = Naphtha-
lene, AcPY = Acenaphthene, AcP = Acenaphthylene, FL = Fluorene, PHEN = Phenanthrene, Ant 
= Anthracene, FLUR = Fluoranthene, PY = Pyrene, BaA = Benzo[a]anthracene, CHRY = Chry-
sene, BbF = Benzo[b]fluoranthene, BkF = Benzo[k]fluoranthene, BaP = Benzo[a]pyrene, IcdP 
= Indeno[1,2,3-cd]pyrene, dBAn = Dibenz[a,h]anthracene, BPe = Benzo[g,h,i]perylene. Adapted 
with permission from Menezes et al. [54], copyright 2015 Elsevier

use statistical methods for process optimization to assess the relative significance of 
specific variables and both cooperative and competitive interactions. More in-depth 
research is required in connection with aromatic compounds to comprehend how 
variation in molecular structure may influence the sorption processes. 

In some cases, harmful chemicals are used in the production of adsorbents when it 
comes to the synthesis of graphene, carbon nanotubes, and their derivatives. There-
fore, it is necessary to create eco-friendly and sustainable processes for making 
such carbon-based adsorbents. The development of commercially viable industrial 
processes for material preparation with specific features, such as a defined number of 
layers and structural quality, remains one of the primary challenges in the synthesis 
of graphene and carbon nanotubes. 

To assess the toxicity of synthesized adsorbents, it is essential to be aware of 
the toxicity of the precursors for the synthesis of carbon-based materials. Without 
this understanding, procedures could be used that increase the potential threat to the 
environment and human health. Furthermore, there is currently limited knowledge on 
the biocompatibility and ecotoxicity of graphene and carbon nanotubes, and none of 
the research reported investigated the toxicity of adsorbents with respect to biological 
organisms. Therefore, in order to fill these knowledge gaps, future research should 
concentrate on evaluating the ecotoxicity of graphene and carbon nanotubes, and the 
potential impact of their application in water treatment on the larger ecosystem. 

One major consideration when deciding on the technology to be utilized is the cost 
of carrying out environmental restoration operations. Sorbents produced from cheap 
materials, but with high removal efficiency are generally always chosen because 
they improve the cost and efficiency of the water treatment process. To ensure the
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economic sustainability of using these adsorbents in wastewater treatment plants or 
household water purification, a cost–benefit analysis of the usage of advanced carbon 
nanomaterials for the removal of aromatic contaminants must be carried out. It should 
be emphasized that none of the studies that were included in this chapter reported 
on operational costs, as they were proof of concept, laboratory-scale investigations. 
The viability of the scale-up of these emerging technologies has thus not been fully 
elucidated. 
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Abstract Water deterioration and the scarcity of pure drinking water are the long-
haul global problems faced by humanity. To keep the aquatic environment clean, 
toxic organic and inorganic contaminants must be removed from the water bodies. 
Even in micromolar concentrations, these contaminants can harm the environment 
and human health. The salinity levels of seawater are steadily rising due to global 
warming and climate change, which reduce the amount of freshwater available for 
domestic and industrial purposes. The water treatment technique not only has to 
eliminate the pollutants but also significantly desalinate the water. Carbon nanoma-
terials such as graphene, carbon nanotubes, fullerenes, graphene, graphitic carbon 
nitride and nanodiamonds are excellent materials for water purification due to 
their antifouling property, self-cleaning properties, easy modification, large specific 
surface area, high chemical stability, porosity and simplicity of regeneration and 
reusability. This chapter presents a comprehensive overview of the state-of-the-art 
carbon nanomaterials, including significant recent and past advancements and plans 
for their application in water treatment.
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Keywords Carbon nanotubes · Fullerenes · Nanodiamonds · Graphene ·
Graphene oxides 

1 Introduction 

An exponential increase in the global population has increased the demand for pure 
water. Water pollution is a global crisis since it has a significant influence on aquatic 
ecosystems, food quality parameters and human health [1]. Over the past few decades, 
concentration of pollutants such as drugs, dyes, heavy metals and pesticides has 
increased considerably in the water resources. Contaminants often originate from 
industries, domestic activities, hospitals and farms [2]. The significant difference in 
freshwater availability and usage has led to significant growth in water purification. 
The development of cutting-edge water filtration technology and public awareness 
campaigns would help in overcoming the obstacles in highly populated countries 
like China and India [1].
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Material science plays a vital role in cleaning environmental pollutants and 
finding suitable solutions for water purification methods. Much attention has 
been paid to nanotechnology methods to address water purification around the 
globe [3]. Nanomaterials are excellent materials for water purification due to their 
unique physical and chemical properties namely small size, large surface area, high 
porosity, high catalytic activity and reactivity, hydrophobicity, ease of isolation 
and regeneration [4]. Nanotechnology has significantly improved conventional 
wastewater treatment methods namely filtration, coagulation, flocculation, reverse 
osmosis, distillation and sorption. 

The special catenation feature of carbon allowed it to establish covalent bonds with 
other carbon atoms in the sp, sp2, and sp3 hybridization states, resulting in a variety of 
carbon structures [5]. Carbonous materials are abundantly available in nature in the 
form of coal, graphite and diamond [6]. Countless new varieties of carbon nanoma-
terials (CNs) have been invented and are currently used in the purification of water. 
Examples of CNs include carbon nanotubes (CNTs), graphene and its variations, 
carbon nanofibers, nanodiamonds (NDs), fullerenes and nanoporous carbons [7]. 
Their distinctive layered and hollow architectures make it possible to interact with a 
variety of organic molecules. These include stacking interactions, hydrogen bonds, 
Van der Waals forces, hydrophobic interactions and electrostatic forces [8]. 

Fouling is the fundamental issue with conventional membranes. CN membranes, 
which exhibit adequate rejection, high permeability and low operating pressure, have 
been attempted to replace conventional membranes. For instance, by incorporating 
oxidized multi-walled carbon nanotubes (O-MWCNT) and graphene oxide (GO) 
into a polyether sulfone substrate via a phase inversion technique, Behdarvand et al. 
(2021) created a novel class of thin-film nanocomposite (TFN) membrane. Addi-
tionally, thin-film composite (TFC) membranes without CNs were created for better 
comparison. The TFN/O-MWCNTs and TFN/GO membranes showed 54% and 35% 
improvement in water permeability and exhibited better filtration behaviour than the 
TFC membrane [9]. 

This chapter will focus on the application of advanced, green CNs for the cleansing 
of aqueous contaminants and impurities from aquatic environments. 

2 Purification of Water Using Carbon Nanotubes 

An integrated electrochemical filtering system for the degradation of aqueous 
microcontaminants was developed by Zheng et al. (2012) employing composites of 
CNT and nanoscale zero-valence copper (nZVC). The nZVC-CNT filter eliminated 
all traces of congo red when the pH was neutral. They noticed a combination of 
radical and nonradical reaction pathways that together contributed to the decompo-
sition of congo red. According to the mechanism, the CNT’s carbonyl group and its 
electrophilic oxygen functioned as electron donors and acceptors to produce •OH 
and 1O2, as illustrated in Fig. 1. As a result, an integrated electrochemical filtering 
system having CNT offers the technology that can effectively remove pollutants [10].
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Fig. 1 Radical and nonradical pathway of electrochemical nZVC-CNT filter [10] 

For the on-site, real-time, quantitative detection of p-cresol in the wastewater, Zhao 
et al. (2021) created a new and stable biosensor. A screen-printed carbon electrode 
was modified using CNTs made from debris that had been trapped with laccase 
to create the biosensor which displayed great levels of repeatability, stability and 
reusability. Even with the interference of metal ions and organic compounds, the 
designed biosensor was effectively used to detect p-cresol in wastewater. Figure 2 
shows the detection of p-cresol before and after Fenton degradation by biosensor [11].

A lot of effort has been paid to the development of super hydrophilic, under-
water superoleophobic oil/water separation material because of their effective anti-
fouling qualities. By using a one-step thermal chemical vapour deposition tech-
nique, Yin et al. (2021) created inorganic carbon nanotube stainless steel meshes 
(CNT@SSMs), which exhibit super hydrophilic-underwater superoleophobic quali-
ties as illustrated in Fig. 3. Small pore sizes in CNT@SSMs enabled a high-water flux 
of 10,639 Lm−2h−1 that successfully separated oily wastewater with a rejection ratio 
of > 98.89%. It exhibits exceptional flame resistance, strong chemical stability and 
outstanding flexibility. In addition, these super-wetting CNT@SSMs membranes are 
potential candidates for the treatment of risky oily wastes as well as for the actual 
use of water purification [12].

Oztekin and Sponza (2023) developed CNT/TiO2 hybrid fibres and investigated 
the photocatalytic removal of 4-chloro-2-methylphenoxyacetic acid (MCPA), an 
endocrine disruptor, from several water bodies and effluent from the herbicide 
production line. Different CNT/TiO2 volume ratios like 8%, 10%, 15% and 20% 
were used for the photocatalytic removal of MCPA. The elimination effectiveness 
of MCPA was reported to be 100% for 10 vol% CNT/TiO2, 55% for TiO2 fibre and 
15% for TiO2 nanoparticles which shows the addition of CNT improves the removal 
efficacy [13]. 

A catalytic CNT membrane for KMnO4 activation towards efficient micropol-
lutant degradation was thoughtfully created by Wang X et al. (2023). Under ideal
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Fig. 2 Real-time quantification and monitoring of p-cresol by biosensor [11]

Fig. 3 Preparation of CNT@SSMs and application over oil/water separation [12]

conditions, a single-pass mode may remove >70% of sulfamethoxazole (SMX). The 
toxicity evaluation’s findings indicated that the intermediates from SMX breakdown 
had lower toxicity. Additionally, the KMnO4/CNT system had excellent reusability 
and CNT could maintain a long-lasting reactivity, serving as a green method for 
the remediation of micropollutants in an environmentally friendly way. Hence, the 
KMnO4/CNT system can serve as an efficient CN for water purification [14].
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Perfluorooctanesulfonic acid (PFOS), is categorised as a chemically stable anthro-
pogenic micropollutant, which contaminates the majority of the aquatic environment 
globally. To remove PEOS, Zakaria et al. (2023) created a brand-new hybrid hydrogel 
bead using a combination of sodium alginate, β-cyclodextrin and multi-walled CNTs 
(SA-β-CD/CNTs) having a surface area of 193.73 m2/g. The addition of CNTs to SA-
β-CD hydrogel increased its maximum PFOS adsorption capacity by 91.6%. Subse-
quently, the manufactured hybrid hydrogel bead could be employed again without 
an obvious decrease in the removal efficiency [15]. 

3 Purification of Water Using Fullerenes 

A discrete soccer ball-shaped molecular structure made up of at least 60 carbon 
atoms joined by single or double bonds is known as fullerenes. Fullerenes are being 
utilised in a wide range of applications, including medication and gene delivery, 
photosensitizers, organic photovoltaics, antioxidants, biopharmaceuticals and diag-
nostics [6]. Fullerenes have been employed in water purification to eliminate a wide 
range of pollutants, because of their greater surface area, sleek look, diminutive 
size and hierarchical structures. The high prevalence of adsorption of contaminants 
through π-π interactions is caused by the numerous π electrons in the inner and 
outer layers of spheres. Surface functionalization can boost a fullerene’s capability 
of absorption [7, 16]. 

Elessawy et al. (2019) developed an innovative systematic way that only requires 
one step to create functionalized magnetic fullerene nanocomposite (FMFN) through 
catalytic heat decomposition of polyethene terephthalate bottle waste as illustrated 
in Fig. 4. The surface area of FMFN is relatively high and has both micro- and 
mesopores active sites. High surface area and porosity, hydrogen bonds, electrostatic 
interactions and π- π electron donor–acceptor interactions of FMFN play a key role 
in the effective elimination of ciprofloxacin (CIP) [17, 18]. 

Fig. 4 Preparation of FMFN and its interactions with pollutants [17, 18]
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4 Purification of Water Using Nanodiamonds 

NDs are the carbon allotropic residue produced as a result of explosions of trinitro-
toluene. NDs have excellent levels of biocompatibility, a compact, narrow size distri-
bution and ease in surface modification and bioconjugation. NDs are comparable to 
bulk diamonds in terms of optical and mechanical properties, they are also stable 
in severe environmental conditions and have high thermal conductivity, rigidity, 
Young’s modulus and refractive index. The diamond core’s chemical inertness makes 
it feasible for many functional groups to be bounded readily, either by covalent or 
non-covalent attachment. NDs could be used to produce therapeutic agents, antiviral 
and antibacterial medications, gene therapy, innovative medical equipment and tissue 
scaffolds because of their unique features [6, 7]. 

The adsorption of the azo dyes sulfasalazine (SSZ) and acid orange 7 (AO7) 
onto the surface of the NDs was investigated by Wang et al. (2012). For AO7 and 
SSZ, NDs showed corresponding adsorption capabilities of 1288 and 925 mmol/kg 
in wastewater. The adsorption was significantly influenced by hydrogen bonding as 
well as electrostatic interactions between the NDs and the azo molecules [19]. 

On thermally oxidised NDs, Molavi et al. (2018) reported the selective adsorption 
of the organic dyes methylene blue (MB) and methyl orange (MO). Due to the 
NDs’ reduced zeta potential caused by thermal oxidation, MB was successfully and 
preferentially adsorbed to the oxidised NDs rather than MO. A blue aqueous solution 
containing MO was left behind after 16 min when untreated NDs were utilised as an 
adsorbent for a combination of MB and MO in polluted water as shown in Fig. 5 [20]. 

Fig. 5 Adsorption difference between oxidized NDs and unoxidized NDs [20]
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5 Purification of Water Using Carbon Dots 

The newest member of the nanocarbon family, carbon dots (CDs), has attracted a lot 
of interest in a variety of applications, including fluorescent probes, biosensing, drug 
delivery, bioimaging and photovoltaic devices, because of their exceptional optical 
properties, high chemical stability, high dispersibility and low toxicity. Different 
methods have been devised to add functional groups to the surface of CDs to enhance 
the adsorption capabilities [7]. 

Yao et al. (2017) examined the removal efficiency of U(VI) ions using layered 
double oxides (LDO) and LDO/CDs nanocomposite, which were prepared using 
a conventional calcination method in an inert atmosphere. In comparison to LDO 
(237.6 mg/g), LDO/CDs nanocomposites showed improved U(VI) uptake adsorption 
capability (354.2 mg/g). Since there are oxygen functions and a lot of surface area, 
this is the latter case [21]. 

6 Purification of Water Using Carbon Quantum Dots 

Small fluorescent carbon nanoparticles having a diameter of less than 10 nm are 
known as carbon quantum dots (CQDs). A subtype of carbon quantum dots called 
graphene quantum dots (GQDs) is often generated from graphene or graphene oxide. 
Quantum dots made of carbon and graphene exhibit outstanding physical–chemical 
characteristics, including sturdy chemical stability, low cytotoxicity, a multitude of 
edge functionalization sites and elevated surface areas, which have attracted atten-
tion from several sectors, including wastewater treatment, sensor and membrane 
fabrication [2]. 

Mendes et al. (2016) reported on the efficacy of N-doped CQDs and TiO2 for the 
photooxidation of nitrogen oxide (NOx) pollutants under UV and UV–visible light 
irradiation. Using a hydrothermal process, TiO2/NCQD was synthesized and demon-
strated enhanced photocatalytic activity compared to pure TiO2, with an increase 
of 36.3% in NO photooxidation and 16.8% in selectivity. Improved TiO2/NCQD 
photocatalytic activity was greatly aided by NCQD’s enhancing charge transfer, slow 
recombination process and high absorption of visible light [22]. Similarly, rhodamine 
B was photodegraded using CQDs/CdS photocatalysts which was synthesized 
hydrothermally by Liu et al. (2013) [23]. Alizarin red S (ARS) was photodegraded 
by Kaur et al. (2016) with the help of a CQDs/ZnS photocatalyst, which exhibits 
enhanced photocatalytic activity of 89% removal of ARS, which is 1.4 times greater 
than pure ZnS (63%) under comparable visible-light irradiation conditions [24]. The 
photooxidation of ARS by a CQDs/ZnS photocatalyst is represented in Fig. 6.

Like above, GQDs have also been used in the photocatalytic removal of organic 
contaminants from the environment. As promising peroxidase-mimic nano catalytic 
systems for the elimination of phenolic chemicals, CNs made of GQDs and Fe3O4 

NPs were prepared by Wu et al. (2014). In comparison to individual Fe3O4
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Fig. 6 Photooxidation mechanism of ARS by a CQDs/ZnS [24]

NPs (22-fold higher) and GQDs (25-fold higher), the as-prepared GQDs/Fe3O4 

nanocomposite showed comparable or superior catalytic capabilities [25]. 
According to a study by Yan et al. (2016), N-GQDs-BiVO4/g-C3N4-Z scheme 

heterojunctions have higher photocatalytic activity than BiVO4/g-C3N4 for degrading 
antibiotic pollutants like oxytetracycline, tetracycline (TC) and CIP. The as-prepared 
heterojunction showed impressive photocatalytic efficiency, degrading 91.5% of TC 
in 30 min [26]. 

7 Purification of Water Using Graphene 

Graphene is indeed the key structural component of various carbon allotropes, 
including zero-dimensional fullerenes, one-dimensional CNTs and three-
dimensional graphite as shown in Fig. 7 [6]. Due to graphene’s hydrophobicity, it 
was converted into reduced graphene oxide (rGO) and GO via a variety of chemical 
oxidation and reduction processes for the water purification process. Graphene in its 
highly oxidised form, referred to as GO, contains functional groups like hydroxyl, 
carboxyl, carbonyl and epoxy, while rGO is usually generated by chemical reduction 
of GO with a suitable reducing agent and exfoliating it. Since most of the functional 
groups on the surface of GO and GO-based materials comprise oxygen-containing 
functional groups, these functional groups can be exchanged for other functional 
groups using simple and direct chemical processes. This alteration enhances their 
competence to remove pollutants from water [27].

For the adsorption of phenanthrene and 1-naphthol in the water sample, Wang et al. 
(2019) synthesised rGO which displays a 99% removal capacity. The hydrophobic 
attraction, π-π interaction and H-bonding between graphene sheets and water 
pollutants could be to attribute for this enhanced removal efficacy [28].
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Fig. 7 Different constitutes of graphene [6]

Pharmaceutical contaminants are effectively treated with graphene-based adsor-
bents. They can also be used to remove radionuclides and heavy metals from wastew-
ater. Jones et al. (2017) synthesized a multipurpose chitosan-attached plasmonic Au 
nanoparticle conjugated GO architecture-based 3D porous membrane for the supply 
of fresh water. To effectively separate pharmaceutical contaminants from methicillin-
resistant Staphylococcus aureus (MRSA) in contaminated water and to kill MRSA, 
the 3D porous membrane was used as a novel CN. A highly porous chitosan-Au 
NPs GO membrane is easily able to trap MRSA bacteria, confirming that the MRSA 
superbug was destroyed utilising a produced porous membrane [29]. 

To remove target pharmaceutical pollutants from municipal wastewater being 
treated by an anaerobic membrane bioreactor (AnMBR), Casabella-Font et al. 
(2023) evaluated the effects of adding various GO concentrations. The target antibi-
otics diclofenac (DCF), naproxen (NPX), roxithromycin (ROX), sulfamethoxa-
zole (SMX), triclosan (TCL), trimethoprim (TMP) and metronidazole (MTR) were 
removed more effectively with the addition of GO. As a result, antibiotic elimination 
might be improved and their environmental release could be decreased by adding 
GO to AnMBR [30]. 

Kumar et al. (2023) purpose of the study was to prepare a new boron oxide deco-
rated nitrogen-rich reduced graphene oxide (B2O3/N-rGO) using a solvothermal 
method for photocatalytic CIP degradation. According to the findings, the B2O3/N-
rGO significantly improved photocatalytic performance by 98% towards the degrada-
tion of CIP when exposed to visible light. The developed B2O3/N-rGO photocatalyst 
seems to have the potential to be used for environmental applications [31].
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8 Purification of Water Using Graphitic Carbon Nitride 

Graphite-like planes of C and N atoms make up the fundamental structure of graphitic 
carbon nitride (g-C3N4). The presence of nitrogen atoms in graphite makes it more 
attractive for various applications which include solar cells, sensors, energy storage 
and photocatalysis. The reduced band gap of g-C3N4 makes it a popular choice for 
solar radiation photocatalysis. The surface of g-C3N4 has many functional groups 
and electron-rich N atoms, which creates active sites for the adsorption of hazardous 
contaminants [16]. 

Yang et al. [32] successfully developed biochar-coupled Fe3O4@SiO2/TiO2/g-
C3N4 using conventional sol–gel and calcination techniques. The composites effec-
tively eliminated 91.88% hazardous high concentration TC using •OH because of the 
large specific surface area, improved visible light responsiveness and the addition of 
magnetic nanoparticles in coupled Fe3O4@SiO2/TiO2/g-C3N4. Intriguingly, in the 
combined TC/Cr (VI) polluted water, a synergistic photocatalytic effect was found, 
leading to massively increased removal of Cr (VI). All of these analysis shows that the 
catalyst was an effective photocatalyst for the removal of TC/Cr (VI) contaminated 
water [32]. 

To adsorb a variety of cationic (MB, azure B, acriflavine and safranin O) and 
anionic (rhodamine B, eosin Y and MO) dyes, Zhang et al. (2016) developed a g-C3N4 

hydrogel (h-CN). With an astounding 99% adsorption efficiency, h-CN preferentially 
adsorbed the cationic dyes due to the surface charge. The removal of cationic dyes 
from combinations of cationic and anionic contaminants might be made easier by 
h-CN [33]. 

Zhang et al. [34] examined the photocatalytic remediation capabilities of g-C3N4, 
TiO2-graphene aerogel (TiO2-GA) and g-C3N4-TiO2-GA nanohybrid. In compar-
ison to TiO2-GA and g-C3N4, g-C3N4-TiO2-GA successfully absorbed 96.5% of MB 
dye from an aqueous medium due to impregnation of g-C3N4 between TiO2 and GA 
which increases the material’s porosity and adsorption. g-C3N4 is an environmen-
tally beneficial adsorbent for removing water contaminants because of its graphitic 
properties, low cost and good mechanical, chemical and thermal stabilities [34]. 

9 Conclusion 

The unexpected, unprecedented discoveries have led to rapid progress in technolog-
ical applications. The unique structure of carbon-based nanomaterials shows supe-
rior electronic, optoelectronic, mechanical and chemical performance. The carbon 
nanomaterials including fullerenes, NDs and CDs have significantly contributed to 
water purification. Various properties such as high surface area, presence of a large 
number of functional groups and simple surface modification of CNM have improved 
the efficiency of water purification.
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Mathematical Modeling of Nonlinear 
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Abstract In this article, the nonlinear vibrations of single-walled carbon nanotubes 
were discussed. The governing equations of each layer are connected with those of 
its neighboring layers via the Van der Waals interlayer forces. By comparing the 
new results to those from earlier research, the effects of changes in the geomet-
rical parameters of the nanotubes and the material constants of the elastic media 
around them on the vibration characteristics are studied. The variational iteration 
technique (VIM), the Adomian decomposition method (ADM), and the new homo-
topy perturbation method are compared. These strategies are solid and effective for 
resolving various linear and nonlinear differential equations that can appear in various 
branches of research and engineering. Also contrasting with numerical simulations 
are our results. The answers derived using these three methods and a numerical solu-
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1 Introduction 

The rapid development of nanotechnology has increased interest in this field of 
study among scientists and researchers. Nanomaterials have dominated numerous 
scholarly studies due to their exceptional mechanical, physical, and chemical prop-
erties. Modern nanoelectronics, nanodevices, and nanocomposites utilise them as 
the essential components. Carbon nanotubes (CNT) are materials whose remark-
able mechanical strength has gathered much attention. In 1991, Iijima discovered 
CNTs which emerged as the new branch of knowledge in the materials science. 
Even though they are minimal and light, they have very high Young’s modulus in 
the axial direction. CNTs are unquestionably eligible to be the novel materials in the 
twenty-first-century. The vibration of CNTs is significant because of its various nano-
mechanical devices, including oscillators, charge detectors, field emission devices, 
and sensors. The issue of these nanomaterials’ vibration has received much attention 
from researchers. However, most studies on the vibration of multi-walled carbon 
nanotubes (MWNTs) have been limited to the linear regime, and there have been 
fewer works on the nonlinear vibration of these materials. 

Nonlinear differential equations are used to model many scientific issues in carbon 
nanotubes. It is generally known that when non-Newtonian fluids are considered, 
finding exact solutions to these nonlinear boundary values are challenging. Numerical 
and analytical techniques are applied to solve this nonlinear problem. However, 
numerical approaches are comparatively time-consuming and challenging because 
of stability and convergence issues. The homotopy analysis method (HAM) [1], the 
variational iteration method (VIM) [2–7], the new homotopy perturbation method 
(NHPM) [8, 9], and the Adomian decomposition method (ADM) [10–15] are  the  
some of the numerous analytical techniques developed in the last ten years to solve 
nonlinear problems. Numerous numerical works have been compared with various 
analytical methodologies (Table 1).

The nonlinear vibrations of single-walled carbon nanotubes embedded in an 
elastic medium have been estimated in this study using VIM, NHPM, and ADM. 
Siddiqui and Farooq recently compared the approaches of variational iteration and 
Adomian decomposition for resolving nonlinear thin film flow problems [16]. These 
techniques produce the answer in a convergent series with beautifully computed 
components. These analytical techniques also avoid the complications offered by 
other pure numerical techniques [17–20]. These findings show that the suggested 
analytical techniques offer the powerful mathematical tool for handling the sizable 
class of linear and nonlinear differential equations in engineering and chemical 
sciences.
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Table 1 Recent contributions to the theoretical modeling of the comparison of analytical and 
Numerical solutions of two or three methods 

Publication Name of equation Modeling method 
(HPM, HAM, ADM, 
etc.) 

Author(s) Reference 

A. M. Wazwaz Journal of 
Computational and 
Applied Mathematics 
207 (2007) 129–136 

Homogeneous and 
nonhomogeneous 
advection problem 

ADM and VIM 

D. D. Ganjiet al. International Journal 
of Science & 
Technology 2 (2) 
(2007) 179–188 

Generalized 
Hirota–Satsuma 
coupled Kdv 
equation 

VIM and ADM 

M. S. H. Chowdhury 
et al. 

Communications in 
Nonlinear Science and 
Numerical Simulation 
14 (2009) 371–378 

The temperature 
distribution along a 
straight Fin equation 

HPM and HAM 

D. D. Ganji et al. Walailak 
Journal of Science 
&Technology 11 (7) 
(2014) 593–609 

Three-dimensional 
flow of a Walter’s B 
fluid in vertical 
channel 

ADM, HPM and VIM 

Elaf Jaafar Ali et al. Journal of Basrah 
Researches (Sciences) 
37(2011) 1817–2695 

Extraordinary 
differential equation 

HPM and VIM 

E. Babolian et al. Journal of Applied 
Sciences, (2012) 
1812–5654 

Nonlinear 
differential equations 

HPM and ADM 

Jamshad Ahmad et al. International Journal 
of Basic Sciences & 
Applied Research.3 (3) 
(2014) 173–179, 

Cubic nonlinear 
schrödinger equation 

LDM and ADM 

K. R. Raslan1 et al. General Mathematics 
Notes 20 (2) (2014) 
125–135 2219–7184 

Improved modified 
Kortweg-de varies 
equation 

ADM and VIM 

Malihe Bagheri et al. The Journal of 
Mathematics and 
Computer Science 5 
(4) (2012) 288–296 

Volterra and 
Feredholm integral 
equations 

DTM and HPM 

Muhammad Shakil 
et al. 

International Journal 
of Research in 
Applied, Natural and 
Social Sciences 
(Impact: Ijranss) 1 (3) 
( 2013) 37–48 

Nonlinear wave 
equation, 
klein–gordon 
equation 

ADM and HPM 

A. M. Siddiqui et al. Applied Mathematical 
Sciences, 6 (99) (2012) 
4911–4919 

Thin film flow ADM and VIM

(continued)
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Table 1 (continued)

Publication Name of equation Modeling method
(HPM, HAM, ADM,
etc.)

Author(s) Reference

N. Shawagfeh et al. Applied Mathematics 
Letters 17 (2004) 
323–328 

Ordinary differential 
equations 

ADM and RKM 

S. Abbasbandy et al. Applied Mathematics 
and Computation173 
(1) (2006) 493–500 

Non-singular 
integral equations 

ADM and HPM 

S. Abbasbandy et al. Chaos, Solitons & 
Fractals 31 (1) (2007) 
257–260 

Blasius equation ADM and HPM 

S. Abbasbandy et al. Applied Mathematics 
and Computation 172 
(1) (2006) 431–438 

Nonlinear equations MHPM and ADM 

A. Sadighi and D. D. 
Ganji 

International Journal 
of Nonlinear Sciences 
and Numerical 
Simulation 7 (4) 
(2006) 411–418 
2191–0294 

Generalized 
nonlinear boussinesq 
equation 

HPM and VIM 

A. M. Wazwaz et al. Kybernetes, 40 (9) 
(2010) 1305–1318 

Lane-emden 
equations 

ADM and VIM 

Sunil Kumar et al. Applied Mathematics 
and Computation 293 
(2016) 508–522 

Parabolic singularly 
perturbed differential 
equation 

FDM, ADM, MSI 
And TGM 

Z. A. Firoozjae et al. American Journal of 
Applied Mathematics 
3 (3) (2015) 90–94 

Nonlinear partial 
differential equations 

DQM and ADM

2 Theory  

Consider the SWNT of length l, Young’s modulus E, density, cross-sectional area A, 
and cross-sectional inertia moment I, embedded in an elastic medium with material 
constant k. The nonlinear vibration equation for this carbon nanotube (CNT) is in 
the following form [1]: 

d2W 

dt2 
+

(
π 4 E I  

ρ Al4 
+ 

k 

ρ A

)
W + 

π 4 E 
4ρl4 

W 3 = 0, (1)
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Using the following dimensionless variables 

r = 
/

I 

A 
, x = 

W 

r 
, Wl = 

π 2 

l2 

/
E I  

ρ A 
, wk =

/
k 

ρ A 
(2) 

The Eq. (1) can be transformed to the following dimensionless nonlinear vibration 
equation. 

d2x 

dτ 2 
+ ax + bx3 = 0, (3) 

where 

a = 
w2 
b 

ω2 
, b = 

aw2 
1 

ω2 
(4) 

in which α = 0.25 and wb =
/
w2 
l + w2 

k , is the linear free vibration frequency. 
The initial and boundary conditions are 

x(0) = X, ẋ(0) = 0. (5) 

3 Analytical Expression of Nonlinear Vibration Equation 

The dimensionless non-linear Eq. (3) defines the initial value problem. The varia-
tional iteration method [2–7], the new homotopy perturbation method [8, 9], and the 
Adomian decomposition method [10–15] give the approximate solutions of the non-
linear Eq. (3). Using these three methods, we can obtain the analytical expressions 
of the vibration of a string as follows: 

x(τ ) =X − (4aX  + b3 X3) 
τ 2 

2 
− 

(a + bX2) 
24 

(aX  − 3b3 X3)τ 4 −
(

(b3 X3)(a + bX2)2 

40

)
τ 6 

+
(

(b3 X3)(a + bX2)3 

448

)
τ 8 (6) 

The analytical expression of vibration using NHPM is, 

x(τ ) = −  
b 

a 
+

((
b 

a 
+ X

)
cos

(√
aτ

))
(7) 

The analytical expression of vibration using ADM is,
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Table 2 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 1, b = 0.5 and x(0) = 0.5 
a = 1, b = 0.1 Initial value X = 0.5 
τ Numerical 

simulation 
VIM 
Equation (6) 

Error (%) NHPM 
Equation (7) 

Error (%) ADM 
Equation (8) 

Error (%) 

0 0.5000 0.5000 0.00 0.5000 0.00 0.5000 0.00 

0.1 0.4974 0.4975 0.02 0.4974 0.00 0.4974 0.00 

0.2 0.4878 0.4898 0.41 0.4896 0.37 0.4896 0.37 

0.3 0.4771 0.4772 0.02 0.4766 0.1 0.4767 0.08 

0.4 0.4595 0.4597 0.04 0.4587 0.17 0.4588 0.15 

0.5 0.4373 0.4376 0.07 0.436 0.3 0.4361 0.27 

0.6 0.4106 0.411 0.1 0.4087 0.46 0.409 0.39 

0.7 0.3798 0.3803 0.13 0.3771 0.71 0.3776 0.58 

0.8 0.3451 0.3458 0.2 0.3416 1.01 0.3425 0.75 

0.9 0.3069 0.3079 0.33 0.3024 1.47 0.3039 0.98 

1 0.2656 0.2713 2.15 0.2644 0.45 0.2667 0.41 

Average error (%) 0.32 Average error (%) 0.46 Average error (%) 0.36 

x(τ ) = X − 
τ 2 

2 
(aX  + bX3 ) + 

τ 4 

24 
(aX  + bX3 )(a + 3bX2 ) (8) 

4 Numerical Simulation 

The non-linear differential Eq. (3) for the given initial and boundary conditions 
is being solved numerically. The function pdex, which is a function of solving the 
initial-boundary value problems, is used to solve this equation in the two-dimensional 
differential equation solver and Grapher V 1.0 software. These analytical expressions 
of vibration are compared with simulation results for various kinetic parameters in 
Tables 1, 2, 3, 4, 5, 6 and 7. A satisfactory agreement is noted.

5 Discussion and Conclusions 

The new and straightforward mathematical formulas for dimensionless SWNT vibra-
tion for all parameter values are given in Eqs. 6–8. Figures 1, 2, 3 and 4 shows how the 
vibration of an SWNT varies in dimensionless time for different parameter values. 
For all parameter values, it can be seen from the figures that the dimensionless 
vibration of SWNT decreases from its initial value. Using a nonlinear initial value 
in single-walled carbon nanotubes, we have shown how VIM, NHPM, and ADM 
could be used to achieve approximative analytical solutions. As a result, it is found
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Table 3 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 0.01, b = 1 and  x(0) = 0.5 
a = 0.01, b = 1 Initial value X = 0.5 
τ Numerical 

simulation 
VIM 
Equation (6) 

Error (%) NHPM 
Equation (7) 

Error (%) ADM 
Equation (8) 

Error (%) 

0 0.5000 0.5000 0.00 0.5000 0.00 0.5000 0.00 

0.1 0.4994 0.4993 0.02 0.4993 0.02 0.4993 0.02 

0.2 0.4974 0.4974 0.00 0.4973 0.02 0.4974 0.00 

0.3 0.4941 0.4941 0.00 0.494 0.02 0.4941 0.00 

0.4 0.4897 0.4897 0.00 0.4894 0.06 0.4895 0.04 

0.5 0.484 0.4843 0.06 0.4841 0.02 0.4837 0.06 

0.6 0.4771 0.4786 0.31 0.4761 0.21 0.4767 0.08 

0.7 0.4691 0.4708 0.36 0.4675 0.34 0.4685 0.13 

0.8 0.46 0.4631 0.67 0.4576 0.52 0.4593 0.15 

0.9 0.4496 0.4559 1.40 0.4463 0.73 0.4502 0.13 

1 0.4388 0.4479 2.07 0.4351 0.84 0.4391 0.07 

Average error (%) 0.45 Average error (%) 0.25 Average error (%) 0.06 

Table 4 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 1, b = 0.1 and x(0) = 0.8 
a = 1, b = 0.1 Initial value X = 0.8 
τ Numerical simulation VIM Error (%) NHPM Error ADM Error (%) 

0 0.8000 0.8000 0.00 0.8000 0.00 0.8000 0.00 

0.1 0.7957 0.7959 0.03 0.7959 0.03 0.7959 0.03 

0.2 0.783 0.7837 0.09 0.7836 0.08 0.7836 0.08 

0.3 0.762 0.7635 0.20 0.7633 0.17 0.7633 0.17 

0.4 0.7329 0.7356 0.37 0.7352 0.31 0.7352 0.31 

0.5 0.6962 0.7002 0.57 0.6995 0.47 0.6995 0.47 

0.6 0.6521 0.6578 0.87 0.6566 0.69 0.6567 0.71 

0.7 0.6012 0.6088 1.26 0.607 0.96 0.6073 1.01 

0.8 0.5441 0.5538 1.78 0.5511 1.29 0.5517 1.40 

0.9 0.4815 0.4895 1.66 0.4896 1.68 0.4907 1.91 

1 0.4139 0.4353 5.17 0.4299 3.87 0.4316 4.28 

Average error (%) 
1.09 

Average error 
(%) 0.87 

Average error (%) 
0.88
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Table 5 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 1, b = 0.1 and x(0) = 1 
a = 1, b = 0.1 Initial value X = 1 
τ Numerical 

simulation 
VIM 
Equation (6) 

Error (%) NHPM 
Equation (7) 

Error (%) ADM 
Equation (8) 

Error (%) 

0 0.1000 0.1000 0.00 0.1000 0.00 0.1000 0.00 

0.1 0.9945 0.9949 0.04 0.9944 0.01 0.9944 0.01 

0.2 0.9781 0.9797 0.16 0.9776 0.05 0.9777 0.04 

0.3 0.9509 0.9544 0.37 0.9499 0.11 0.95 0.09 

0.4 0.9135 0.9195 0.66 0.9114 0.23 0.9118 0.19 

0.5 0.8661 0.8801 1.62 0.8627 0.39 0.8636 0.29 

0.6 0.8094 0.828 2.30 0.8041 0.65 0.8122 0.35 

0.7 0.7442 0.7677 3.16 0.7435 0.09 0.7469 0.36 

0.8 0.671 0.6999 4.31 0.66 1.64 0.6739 0.43 

0.9 0.5909 0.6255 5.86 0.5846 1.07 0.5944 0.59 

1 0.5047 0.5454 8.06 0.4943 2.06 0.5096 0.97 

Average error (%) 2.41 Average error (%) 0.57 Average error (%) 0.31 

Table 6 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 1, b = 0.01 and x(0) = 1 
a = 1, b = 0.01 Initial value X = 1 
τ Numerical 

simulation 
VIM 
Equation (6) 

Error (%) NHPM 
Equation (7) 

Error (%) ADM 
Equation (8) 

Error (%) 

0 0.1000 0.1000 0.00 0.1000 0.00 0.1000 0.00 

0.1 0.9949 0.995 0.01 0.995 0.01 0.995 0.01 

0.2 0.9798 0.9799 0.01 0.9799 0.01 0.9799 0.01 

0.3 0.9549 0.9549 0.00 0.9549 0.00 0.9549 0.00 

0.4 0.9203 0.9203 0.00 0.9203 0.00 0.9203 0.00 

0.5 0.8764 0.8764 0.00 0.8764 0.00 0.8764 0.00 

0.6 0.8237 0.8237 0.00 0.8237 0.00 0.8237 0.00 

0.7 0.7675 0.7628 0.61 0.7628 0.61 0.7628 0.61 

0.8 0.6941 0.6914 0.39 0.6941 0.00 0.6941 0.00 

0.9 0.6184 0.6234 0.81 0.6185 0.02 0.6185 0.02 

1 0.5366 0.5421 1.02 0.5367 0.02 0.5367 0.02 

Average error (%) 0.26 Average error (%) 0.06 Average error (%) 0.06
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Table 7 Comparison of various analytical results with numerical results for vibration x(τ ) when  
a = 0.4, b = 0.8 and x(0) = 1 
a = 0.4, b = 0.8 Initial value X = 1 
τ Numerical 

simulation 
VIM 
Equation (6) 

Error (%) NHPM 
Equation (7) 

Error ADM 
Equation (8) 

Error (%) 

0 0.1000 0.1000 0.00 0.1000 0.00 0.1000 0.00 

0.1 0.994 0.9954 0.14 0.9939 0.01 0.9951 0.11 

0.2 0.9762 0.9815 0.54 0.9757 0.05 0.9781 0.19 

0.3 0.9471 0.9585 1.20 0.9461 0.11 0.9495 0.25 

0.4 0.9074 0.9268 2.14 0.9058 0.18 0.9103 0.32 

0.5 0.8581 0.8867 3.33 0.8561 0.23 0.8614 0.38 

0.6 0.8003 0.8385 4.77 0.7985 0.22 0.8046 0.54 

0.7 0.7353 0.7825 6.42 0.735 0.04 0.7416 0.86 

0.8 0.6641 0.7191 8.28 0.6747 1.60 0.6679 0.57 

0.9 0.5879 0.6483 10.27 0.6065 3.16 0.5998 2.02 

1 0.5077 0.5783 13.91 0.54 6.36 0.5465 7.64 

Average error (%) 4.64 Average error (%) 
1.09 

Average error (%) 1.17

that these methods are particularly effective in resolving numerous nonlinear issues 
that can arise in various scientific and engineering fields. The error rate is less than 
4.66 for all approaches. However, in some locations, one method’s error percentage 
is higher than the other two techniques due to the nonlinear differential equations’ 
coefficients and initial conditions. 

Fig. 1 Plot of dimensionless vibration x(τ ) versus dimensionless time τ for various values of the 
parameter, a, b and initial values X = 0.5 and X = 0.8 using Eqs. (6–8)
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Fig. 2 Plot of dimensionlessvibration x(τ ) versus dimensionless time τ for various values of the 
parameter, a, b and initial value X = 1 using Eqs. (6–8) 

Fig. 3 Plot of dimensionless vibration x(τ ) versus dimensionless time τ for various value of the 
parameter, a, b and initial value X = 1 using Eqs. (6–8) 

Fig. 4 Plot of 
dimensionlessvibration x(τ ) 
versus dimensionless time τ 
for various value of the 
parameter, a, b and initial 
value X = 1 using Eqns. 
(6–8)
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ADM requires the evaluation of the Adomian polynomials, which generally 
requires time-consuming algebraic operations, while VIM requires the evalua-
tion of the Lagrangian multiplier. Adomian polynomials must be used with ADM 
for nonlinear terms, which requires additional research. The analytical results are 
obtained using ADM and VIM throughout the three iterations. However, NHPM got 
the analytical data after just one round. Therefore, the accuracy of the approaches 
depends on the parameters included in the differential equations and the beginning 
and boundary conditions of the presented problems, in addition to the iteration. 
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