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Preface

In real life, many processes of practical interest in engineering, biological systems, detection of diseases, and physics, among others, have the surface as a fundamental

element. They may involve molecular diffusion and reaction processes with creation

or annihilation of particles. For example, industrial and biochemical reaction can

have the reaction rate or adsorption of reagents limited by the mass transfer between the fluid phase and the catalyst surface. The heterogeneous reaction systems play an

important role in the industrial applications. They occur at the interface of different materials with reactants at different catalytic systems, e.g., gas–solid or liquid–solid. 

In biological systems, the surfaces, usually the membranes, are responsible for the

selectivity of particles by means of adsorption and desorption processes and, conse-

quently, the particles transfer from one region to the other. This dynamic cycle is

crucial for maintaining life, including simple diffusion, facilitated diffusion, osmosis, and active transport. 

These practical problems are usually modeled in terms of differential equations, 

even if in a simplified perspective. In general, they are tentatively connected with

Markovian or Debye relaxation processes. Differential equations play an important

role in describing both time and space dependent variables, usually resulting from

mass, energy, and momentum conservation laws. In addition, different aspects such

as the morphology of the surfaces, that is, fractal characteristics, interaction between particles, and memory effects have evidenced the limitations of the usual approach in describing the large variety of the experimental problems. Consequently, the doors

are open to invoke unusual, that is, non-Fickian diffusion and non-Debye relaxation

phenomena, which are typically characterized by a nonlinear time dependence of the

mean square displacement. 

There are some valuable conceptual and formal tools to handle an entire class

of problems like the ones outlined above. For instance, continuous-time random

walk, generalized Langevin equations, and fractional diffusion equation have been

successfully applied to a variety of contexts like kinetics of surfaces, molecular

diffusion in membrane cells, subdiffusion in thin membranes, and electrical response

of systems, in general, and electrolytic cells, in particular. 
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In all these situations, one of the main issues is just the abovementioned nonlinear

time dependence exhibited by the mean square displacement. In general, this depen-

dence may be used to characterize superdiffusive—commonly related, for example, 

to active transport—and subdiffusive behaviors—which may frequently be related

to the molecular crowding and fractal structure. 

The unusual or anomalous features briefly described above have challenged the

scientific community to investigate alternative approaches in order to provide suit-

able analysis and acceptable description of these phenomena. In this perspective, the purpose of this book is to present to the reader an introduction to the problems of

anomalous diffusion and anomalous relaxation, in general, focusing on their analyt-

ical solutions for several situations of formal and experimental importance in the

physics of condensed matter, chemistry, engineering, and biology. 

The book starts reviewing the usual mathematical tools to face boundary condi-

tions and initial value problems by means of the Green’s function method. The focus

of this preliminary part is the theory of integral transforms (Fourier, Laplace, Mellin) and the special functions (gamma and related functions), followed by a concise introduction to some special functions of the fractional calculus, like the Mittag–Leffler function, with its generalizations, the Wright function, the Meijer G−function, and

the H−function of Fox. 

In regard to the mathematical tools, an entire chapter is devoted to an introduction

to the elements of fractional calculus, emphasizing also some aspects of its historical development. A discussion about the significance and meaning of fractional calculus

in general is presented with didactic purposes. Some of the basic mathematical tools

needed to understand the rules for operating with the fractional derivatives and fractional differential equations are discussed in detail, in order to convey to the reader the essential techniques to be employed throughout of the book. 

In the first part of the book, also the main concepts necessary to investigate

the diffusion phenomena are extensively explained. It contains a short account of

the theories developed to handle their mathematical description, highlighting the

approaches of Einstein and Langevin. It deals with the random walk problem and

its connections with the diffusion processes, focusing on an elementary approach to

the classical random walks or random flights problem, followed by generalizations

recently proposed by us. The concepts of anomalous diffusion and of random walk

with space and time continuous, which are called continuous-time random walk, 

are investigated, presenting some formal aspects of the anomalous dynamics and

pointing toward recent extensions of these methods. 

The heart of the book is formed by the treatment of some fundamental problems

involving fractional diffusion equations in time as well as in the space variable. The solution for this kind of equations is particularly relevant in connection with the

description of anomalous diffusion and relaxation phenomena in several contexts. 

The treatments of the fractional diffusive problems and anomalous behavior, even

without using the tools of fractional calculus, are developed throughout the text. They are complemented by the original solution of several reaction-diffusion problems and

some fractional nonlinear diffusion equation in the presence of variable diffusion

coefficients, which may be dependent on space and time, and on external forces. 
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The essence of this book lies on putting together the main mathematical prop-

erties of the fractional calculus—focusing the diffusion equations—and a large

number of problems with potential or actual applications in real contexts. In this

sense, it is unique and has to be added to our preceding book,  Fractional Diffu-

 sion Equations and Anomalous Diffusion (Cambridge University Press, Cambridge, 2018). The similarity between the two books may be found only in the basic material dedicated to the mathematical methodology. These tools (integral transforms, 

special functions, and elements of fractional calculus)—a prerequisite to the whole

treatment—are mandatory in a self-contained monograph. They are here presented

and discussed in an entirely different perspective: The mathematical techniques are

exposed by means of more examples to serve to the students and researchers as a tool

to handle modern boundary value problems not only concerned with the subsequent

applications discussed in the book. 

For what concerns these applications, the book collects and promotes unprece-

dented ones dealing with diffusion problems and surface effects, like adsorption–

desorption processes, memory effects, reaction-diffusion equations and relaxation

in constrained structures—as the ones represented by comb-like models—which are

relevant in several different fields of pure and applied science. 

The topics covered by the book are of current interest and may be experimentally

applied. Some of these problems are open, requiring further developments in many

different directions. In this way as well, the book is intended to serve as a source of reference for graduates and researches working in applied mathematics, physics of

complex systems and fluids, condensed matter physics, statistical physics, chemical

and electrical engineering, among others. 

The starting point of this book was an advanced course delivered at the Graduate

Programs in mathematics and physics of Polytechnic of Turin, in the framework of a

Visiting Professor Program. The authors are in debt to many colleagues and students, 

who participated in the successive developments of the subject. We are grateful to

G. Barbero, M. Codegone, A. L. Alexe-Ionescu, A. Pelizzola, M. Pretti, A. Sapora, 

and A. Strigazzi (Torino); P. Pasini, C. Chiccoli, and F. Mainardi (Bologna), for

extremely encouraging discussions in the last years. The friendship and the seminal

works of Francesco Mainardi in the field of fractional calculus are always an

inspiration for us. It is our pleasure to thank the scientific collaboration of

H. V. Ribeiro, R. S. Zola, A. A. Tateishi, M. A. F. dos Santos, R. S. Mendes, 

L. C. Malacarne, S. Picoli Jr., M. Jauregui, V. G. Guimarães, and M. Fernandes

(Maringá); D. Marin, L. M. S. Guilherme, M. Fuziki, M. A. Ribeiro, A. Novatski, and

A. S. M. de Castro (Ponta Grossa); F. W. Tavares and P. M. Ndiaye (Rio de Janeiro); 

L. R. da Silva (Natal); R. Rossato, C. A. R. Yednak, and R. T. Teixeira-Souza

(UTFPR); T. Sandev and I. Petreska (Skopje). We thank Richard Magin (Chicago), 

M. K. Lenzi (Curitiba), and Michely P. Rosseto (Maringá), who read and commented

on preliminary versions of the manuscript, offering valuable suggestions; special

thanks to Michely for the invaluable help with the figures. We are thankful to

DISAT—Dipartimento di Scienza Applicata e Tecnologia—Politecnico di Torino

(Italy), CNPq—National Institute of Science and Technology for Complex Systems

(INCT-SC, Rio de Janeiro), and Complex Fluids (INCT-FCx, São Paulo), and the

xii
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Brazilian agencies Capes (Brasília) and Fundação Araucária (Curitiba), for partial

financial support. Finally, we express our gratitude to our friends and colleagues

of Politecnico di Torino, Istituto Nazionale di Fisica Nucleare—Sezione Bologna, 

and Dipartimento di Fisica dell’Università della Calabria (Rende) for the fruitful

collaboration and kind hospitality during our visits in the last decades. 

The final version of this book was prepared during the pandemic period of COVID-

19. We have been reclusive and working online; outside, hundreds of thousands of

workers died. We dedicate this modest work to their memories expecting better times

to come.  Requiescant in pace. 

Maringá, Brazil

Luiz Roberto Evangelista

Ponta Grossa, Brazil

Ervin Kaminski Lenzi
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Integral Transforms
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Fourier transform of  f (x), { x ∈ R}

 Fc{  f (x);  k} =  Fc(k) = ˜ fc(k)  Cosine Fourier transform of  f (x), { k ∈ R+}

 Fs{  f (x);  k} =  Fs(k) = ˜ fs(k)  Sine Fourier transform of  f (x), { k ∈ R+}

 L{  f (t);  s} =  F(s) = ¯ f(s)

Laplace transform of  f (t), { t ∈ R| t >  0}

 M{  f (t);  s} =  FM(s)

Mellin transform of  f (t), { t ∈ R| t >  0}

Special Functions of Fractional Calculus

E α(z)

Mittag–Leffler function, { (α, z) ∈ C}

E α,β(z)

Generalized (two-parameter) Mittag–Leffler function, 

{ (α, β) ∈ C}

 γ

E α,β(z)

Generalized (three-parameter) Mittag–Leffler function, 

{ (α, β, γ ) ∈ C}
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G m,n(z)
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H−function of Fox
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Generalized H−function of Fox

 E , [ A: C] ,F, [ B,D]

M ν(z)

Mainardi function (M-Wright function)  ν ∈ C

W (α;  β;  z)

Wright function  (α, β) ∈ C

Fractional Operators

 c  D α [  f (t )]

Riemann–Liouville fractional derivative of  f (t)

 t

 c D− α [  f (t )] =

[  f (t)]

Riemann–Liouville fractional integral of  f (t)

 t

 c I α

 t

 C Dα[  f (t)]

Caputo fractional derivative of  f (t)

 c

 t

 R F Dα[  f (x)]

Riesz–Feller fractional derivative of  f (x)

 c

 x

 RW Dα[  f (x)]

Riesz–Weyl fractional derivative of  f (x)

 c

 x

 μ,ν

 c Dt

[  f (t)]

Composite fractional operator

−∞  Dα,λ[  f (x)]

Tempered fractional derivative

 x
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Chapter 1

Integral Transforms and Special

Functions

Abstract This chapter provides the essential mathematical tools to be used in the subsequent chapters, and is intended to make the book as self-contained as possible. 

The first part of the chapter is dedicated to review some useful properties of the

integral transforms of Fourier and Laplace, illustrating their applicability with a few examples of physical problems. The second part of the chapter reviews some basic

properties of the gamma and related functions. In connection with these special

functions, we introduce the definition of the mathematical Mellin transform, with a

short discussion on the Mellin-Barnes integral representation, to be used later on to face the problems of fractional diffusion. The last part of the chapter is dedicated

to a concise introduction to some special functions of the fractional calculus, like

the Mittag-Leffler function, with its generalizations, the Wright function, the Meijer G–function, and the H−function of Fox. 

1.1

Integral Transforms

The mathematical transformation of a function,  f (t), into another function,  F(s), by means of an integration of the product of  f (t)  and a kernel  K (t, s)  may be implemented by the operator

 t 2



 T {  f (t);  s} :=  F(s) =

 K (t, s) f (t)dt. 

(1.1)

 t 1

This equation defines an  integral transform  of  f (t). The choice of a particular kernel defines a particular transform. Initially, we consider the Fourier and Laplace transforms, which are frequently used as a valuable tool in tackling physical problems

formulated in terms of differential equations subject to specified boundary condi-

tions. 
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 1.1.1

 Fourier Transform

The integral equation

∞



 F{  f (x);  k} :=  F(k) =

 eikx f (x)dx, x ∈ R and  k ∈ R , 

(1.2)

−∞

is the  Fourier transform  of the integrable complex-valued function  f (x)  of one real variable into the complex-valued function  F (k)  of a real variable. It was proposed by Jean-Baptiste Joseph Fourier (1768–1830) in connection with the integral theorem [1]

∞



∞



 f (x) = 1

 f (y)dy

cos  k(x −  y)dk, 

(1.3)

2 π −∞

−∞

rewritten by Augustin-Louis Cauchy (1789–1857) in the form [2]:

∞



∞



 f (x) = 1

 dk

 d yeik(y− x) f (y), 

(1.4)

2 π −∞ −∞

that, if we use the definition (1.2), yields

∞



 F−1{ F(k);  x} :=  f (x) = 1

 e− ikx F (k)dk, 

(1.5)

2 π −∞

which defines the  inverse Fourier transform  of  F (k). In subsequent chapters, to avoid multiplying the number of symbols to denote the Fourier transform and its inverse, 

when necessary, we adopt the notation:



 f (k) =  F{  f (x);  k} and  F−1{ 

 f (k);  x} =  f (x). 

The results (1.2) and (1.5), stating the existence of the Fourier transform and its inverse, respectively, will be employed throughout this book without a detailed investigation of the criteria for their validity. A more rigorous treatment of this aspect of the problem can be found in the general references. For our purposes, it is enough

to mention that a preliminary step to prove the Fourier integral theorem is the very

useful Parseval formula:

∞



∞



| F(k)|2 dk =

|  f (x)|2 dx, 

(1.6)

−∞

−∞
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which requires that |  f (x)|2 be integrable (in the Lebesgue sense) in the interval (−∞ , ∞ ). This means that  f (x)  belongs to  L 2 in the interval  (−∞ , ∞ )  and, then, a



 F (k, a) =

 f (x)eikx dx

(1.7)

− a

converges in the mean to the function  F (k)  as well as

 a



 f (x, a) = 1

 F (k)e− ikx dk

(1.8)

2 π − a

converges in the mean to  f (x)  as  a → ∞. These convergences are necessary conditions to establish the validity of the Fourier integral theorem [3]. 

In general, the convolution of a function  f (t)  and another function  g(t), denoted by  ( f ∗  g)(t), is defined by the operator (actually, an integral transform):

∞



 ( f ∗  g)(t) :=

 f (t −  τ)g(τ )dτ. 

(1.9)

−∞

The term  faltung (German for  folding) is sometimes used to characterise (1.9) because the argument of  f  is “folded”  (t −  τ)  with respect to  τ [3]. 

The  Fourier convolution operator  of two functions  f (x)  and  g(x)  is defined as

∞



 ( f ∗  g)(x) =  f ∗  g =

 f (x −  τ)g(τ )dτ, x ∈ R , 

(1.10)

−∞

and has the commutative property  f ∗  g =  g ∗  f . If it is assumed that the Fourier transforms of  f (x)  and  g(x)  exist, being, respectively, denoted by  F(k)  and  G(k), then the Fourier transform of the convolution (1.10) may be obtained as follows:

⎡

⎤

∞



∞



 F{ ( f ∗  g)(x);  k} =

 eikx ⎣

 f (x −  τ)g(τ )dτ ⎦  dx

−∞

−∞

⎡

⎤

∞



∞



=

 d z ⎣

 f (z)g(τ )dτ ⎦  eik(z+ τ)

−∞

−∞

∞



∞



=

 f (z)eikzdz

 g(τ )eikτ dτ

−∞

−∞

=  F(k)G(k), 

(1.11)

4
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upon using  x =  z +  τ . We notice that the Fourier transform of the convolution is the product of the two transforms. This relation is exceedingly useful in dealing

with integral equations of integer or arbitrary order, as discussed in Chap. 4 and exemplified by subsequent applications thorough the whole book. Conversely, given

the product of transforms,  F (k)G(k), it is possible to demonstrate that

∞



 F−1{ F(k)G(k);  x} =

 f (x −  τ)g(τ )dτ. 

(1.12)

−∞

Another exceedingly useful property of the Fourier transform regards the transform

of the derivatives of a function  f (x). Using this property, it is possible to convert not only the derivatives in an intractable differential equation but also the boundary values into terms of an algebraic equation that can be easily solved. This strategy is efficient in obtaining solutions in the transformed space (usually, the  k−space). To complete the operation, it is necessary to invert the transformed solution, that is, to come back to the  x−space. 

Consider the Fourier transform of the first derivative as follows:





∞



 F d f (x); 

 d f (x)

 k

=

 eikx d x

 d x

 d x

−∞

∞

∞



=  eikx f (x) −  ik

 f (x)eikx dx

−∞

−∞

= − ik F(k), 

(1.13)

where an integration by parts has been performed. Following the same procedure, 

the Fourier transform of the  n−derivative of  f (x)  may be shown to be F dn f (x);  k =  (− ik)n F(k), 

 n ∈ N0 . 

(1.14)

 d xn

In deriving (1.14), we have assumed that





 d p f (x)

lim

= 0 , 

 p = 0 ,  1 , . . . , n − 1 . 

 x→±∞

 d x p

When the physical problem is defined in the interval 0  < x < ∞, the sine- and cosine-Fourier transforms of the function  f (x), denoted, respectively, by  Fs(k)  and Fc(k), may be the more appropriate tool to deal with it. They are defined as:

∞



 Fs{  f (x);  k} =

 f (x)  sin  (kx) dx, 

 k ∈ R+ , 

(1.15)

0
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and

∞



 Fc{  f (x);  k} =

 f (x)  cos  (kx) dx, 

 k ∈ R+ . 

(1.16)

0

The Fourier transform is a linear operator, as can be easily demonstrated. Suppose

 f (x) =  a g(x) +  b h(x), with  (a, b) ∈ C. Its Fourier transform is

∞



 F{ a g(x) +  b h(x);  k} =

[ a g(x) +  b h(x)]  eikx dx

−∞

∞



∞



=  a

 g(x)eikx dx +  b

 h(x)eikx dx

−∞

−∞

=  a G(k) +  b H(k). 

(1.17)

A simple scaling property involving the Fourier transform may be demonstrated as

follows. Consider the Fourier transform of  f (ax), for  a >  0, use the transformation y =  ax, and rewrite it as:

∞



∞





 k

 f (ax)eikx dx = 1

 f (y)ei(k/a)ydy = 1  F

 . 

(1.18)

 a

 a

 a

−∞

−∞

This result establishes the  scaling law  for the Fourier transform:



 k

 f (ax) ←→ 1  F

 , 

 a >  0 , 

(1.19)

 a

 a

which is useful in searching the inverses of the Fourier transformed solutions of

space-time differential equations [4]. The Fourier transform and its basic properties summarized above will be employed as an essential tool in handling several problems

in the book. 

As a first and prototypal application to the diffusion problems, we anticipate a

little the matter and consider here, as a specific example, the problem illustrated in

Fig. 1.1. The physical system is a narrow pipe filled with water. At time  t = 0, a certain amount of salt is introduced into the pipe at a point  x 0 (distant from both ends of the pipe). The salt diffuses and its concentration can be calculated at subsequent instants. If this concentration is denoted by  ρ(x, y, z, t), in the present case it reduces to  ρ(x, t)  because the cross section of the pipe may be neglected. We assume that at t = 0, the quantity  M  of the substance is concentrated in the vicinity of point  x =  x 0, such that [5]:

 ρ(x,  0 ) =  M δ(x −  x 0 ), 

(1.20)

 A

6
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Fig. 1.1 A portion of salt is

introduced into a narrow, 

infinitely long pipe

(−∞  < x < ∞) filled with

water, at some point  x 0

 x

0

 x 0

where  A  is the transverse area of the pipe and  δ(x)  is the Dirac’s delta distribution, which permits to achieve normalization by imposing furthermore that

∞



 ρ(x, t)Adx =  M. 

(1.21)

−∞

Since the pipe is unbounded along  x, the boundary conditions may be expressed as: lim  ρ(x, t) =  ρ(±∞ , t) = 0 . 

(1.22)

 x→±∞

The diffusion problem is now formulated in terms of searching for solutions of a

differential equation, namely, the diffusion equation

 ∂ρ(x, t)

 ∂ 2 ρ(

=

 x, t)

 D

 , t ∈  ( 0 , ∞ ), x ∈  (−∞ , ∞ ), 

(1.23)

 ∂t

 ∂x 2

where  D >  0 is the diffusion coefficient, for specified boundary and initial conditions, given by (1.22) and (1.20), respectively. The derivation and physical meaning of Eq. (1.23) will be discussed in more details in Chap. 2. 

As pointed out before, one powerful way to handle boundary-value problems con-

cerning unbound system is to use integral transforms. We thus use the Fourier trans-

form in our boundary-value problem to find  ρ(x, t)  satisfying the conditions (1.20)

and (1.22). We assume that the transform of the searched solution exists and may be written as:

1.1 Integral Transforms

7



 ρ(k, t) =  F{ ρ(x, t);  k}

∞



=

 ρ(x, t)eikxdx. 

(1.24)

−∞

The partial derivative of 

 ρ(k, t)  is simply given by:

 ∂

 ρ(k, t)

 ∂

=

 F{ ρ(x, t);  k}

 ∂t

 ∂t∞

 ∂ρ(

=

 x, t) eikxdx. 

(1.25)

 ∂t

−∞

Now, using the property of the transform of a derivative, Eq. (1.14), for  n = 2, we obtain





 ∂ 2 ρ(

 F

 x, t) ;  k = − k 2 ρ(k,t)

(1.26)

 ∂x 2

in such a way that also the diffusion equation (1.23) may be transformed to become





 ∂

 ∂ 2 ρ(

 F{ ρ(

 x, t)

 x, t);  k} =  DF

;  k

(1.27)

 ∂t

 ∂x 2

or, using previous results, 

 ∂

 ρ(k, t) = − Dk 2 ρ(k,t). 

(1.28)

 ∂t

The solution of Eq. (1.28) has the simple form:



 ρ(k, t) = 

 ρ(k,  0 )e− Dk 2 t. 

(1.29)

It is supposed that, in (1.29), 

 ρ(k,  0 )  represents the Fourier transform of the initial

condition, Eq. (1.20). Thus, 







 ρ(

 M

 k,  0 ) =  F{ ρ(x,  0 );  k} =  F

 δ(x −  x 0 );  k =  M F{ δ(x −  x 0 );  k} . (1.30) A

 A

To go on further, we recall some properties of the Dirac delta function, which is a

distribution having the integral representation

∞



 δ(x −  x 0 ) = 1

 e− ik(x− x 0 )dk. 

(1.31)

2 π −∞

8
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This expression may be “justified” if we use the Fourier integral theorem. We recall

here that, from the Fourier transform and its inverse, defined above, in general, we

have:

∞



∞



 F (k) =

 eikx f (x)dx  and  f (x) = 1

 e− ikx F (k)dx. 

2 π

−∞

−∞

Thus, we may write

⎡

⎤

∞



∞



 f (x) = 1

 e− ikx ⎣

 eiky f (y)dy⎦  dk

2 π −∞

−∞

⎡

⎤

∞



∞



=

 f (y) ⎣ 1

 e− ik(x− y)dk⎦  d y

2 π

−∞

−∞

∞



=

 f (y)δ(x −  y)dy

−∞

=  f (x), 

(1.32)

which holds if the representation (1.31) is assumed. In addition, we notice the validity of the property:

∞



 f (x)δ(x −  a)dx =  f (a), 

(1.33)

−∞

for every well-behaved  f (x). This illustrates a filtering property of the delta function. 

In particular, for  f (x) = 1, one easily deduces another fundamental property, namely

∞



 δ(x)dx = 1 , 

(1.34)

−∞

which means that the Dirac delta function may be interpreted as a distribution enclosing a unit area. Loosely speaking, we may notice that  δ(x)  is not an ordinary function, because it can be defined according to the procedure:



 δ(

∞ , x =  a, 

 x −  a) =

0 , x =  a, 

(1.35)

such that

∞



 δ(x −  a)dx = 1 . 

−∞
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Instead to use (1.35), it is possible to treat this distribution as arising from some limiting process. Of particular importance for our treatment of the diffusion phenomenon

is the Gaussian distribution

 g(x) =

1



 e− (x− a) 2 / 2 (x) 2  , 

(1.36)

2 π(x) 2

satisfying the normalisation requirement:

∞



 g(x)dx = 1 , 

(1.37)

−∞

as can be easily checked, and having a width  x. If  x → 0, the distribution tends to be highly localized at  x =  a, that is, it becomes infinitely high and infinitesimally thin such that the area it encloses continues to be unit. This may be symbolically

represented by the limiting procedure:



1

∞ , x =  a, 

lim 

 e− (x− a) 2 / 2 (x) 2 =

 x→0

2 π(x) 2

0 , x =  a, 

(1.38)

as stated in (1.35). In view of these useful properties of the delta function, its Fourier transform may be written as

∞



 F{ δ(x −  x 0 );  k} =

 δ(x −  x 0 )eikxdx, 

(1.39)

−∞

which, using (1.31), becomes

⎡

⎤

∞



∞



 F{ δ(x −  x

⎣ 1

⎦

0 );  k} =

 e− ik (x− x 0 )dk

 eikx d x

2 π

−∞

−∞

⎡

⎤

∞



∞



=

⎣ 1

 e− ix(k− k)d x⎦  eik x 0  dk

2 π

−∞

−∞

∞



=

 eik x 0  δ(k −  k)dk

−∞

=  eikx 0 . 

(1.40)

10
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Coming back to our diffusion problem, we finally obtain the Fourier transform of

the initial condition in (1.30) as:



 ρ(k,  0 ) =  M eikx 0 , 

(1.41)

 A

which allow us to write the solution in the Fourier space, Eq. (1.29), in the form: ρ(k, t) =  M e− Dk 2 t+ ikx 0 . 

(1.42)

 A

The final step to obtain the solution is to determine the inverse Fourier transform. 

Following the definition, we have to evaluate

∞



 ρ(x, t) = 1



 ρ(k, t)e− ikxdk

2 π −∞

∞



=  M eDtk 20

 e− Dt(k− k 0 ) 2  dk,  with  k 0 =  i(x 0 −  x) . 

2 π A

2 Dt

−∞

(1.43)

Since

∞



 π

 e− ax 2  d x =

 , 

 a

−∞

we finally obtain



 ρ(

1

 x, t) =  M

 e− (x− x 0 ) 2 / 2 (x) 2  , 

(1.44)

 A

2 π(x) 2

with

 (x) 2 =   (x) 2 =   x 2 −   x 2 = 2 Dt

(1.45)

being the mean square displacement of the Gaussian distribution. The solution obvi-

ously satisfies the condition

lim  ρ(x, t) → 0 . 

 x→±∞

We notice also that for large times, that is,  t → ∞, the distribution becomes increasingly wider and vanishingly small, keeping a unit area. On the contrary, for  t → 0, we recover the initial distribution, (1.20), because, in view of the property stated in (1.38), we may write
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 M

1

lim

 e− (x− x 0 ) 2 / 2 (x) 2 =  M δ(x −  x

 

0 ). 

(1.46)

 x→0  A

2 π(x) 2

 A

This important result characterizes the  normal diffusion process. 

The mean square displacement represents the smearing out of a substance by

diffusion. As we discuss in Chap. 2, the diffusive process may be characterized in general as

 (x) 2 ∝  tν, 

(1.47)

with the case  ν = 1 being the normal one, whereas the cases  ν <  1 (subdiffusion) and  ν >  1 (superdiffusion) characterize the  anomalous diffusive behavior. 

 1.1.2

 Laplace Transform

This particular integral transform was invented by the French mathematician Pierre-

Simon Laplace (1749–1827) and systematically developed by the British physicist

Olivier Heaviside (1850–1925). As the Fourier transform (of which it may be faced

as a special case), it enables one to solve many problems dealing with differential

and integral equations that describe physical processes. 

The  Laplace transform  of a function  f (t)  of a real variable  t ∈ R+ is defined as

∞



 L{  f (t);  s} :=  F(s) =

 e− st f (t)dt, 

 s ∈ C . 

(1.48)

0

It is a linear transformation as the Fourier transform, that is, if  h(t) =  a f (t) +  b g(t), with  (a, b) ∈ C, then

∞



 L{ h(t);  s} :=  H(s) =

 e− st [ a f (t) +  b g(t)]  dt

0

∞



∞



=  a

 e− st f (t)dt +  b

 e− st g(t)dt

0

0

=  a L{  f (t);  s} +  b L{ g(t);  s}

=  a F(s) +  b G(s), 

(1.49)

which is a familiar property of integrals. Thus, implicit in the demonstration is present also another property, for  a ∈ C:

 L{ a f (t);  s} =  aL{  f (t);  s} . 

(1.50)

12
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As an example, consider the function  f (t) =  eat , with  a >  0. Its Laplace transformation is

∞







 L eat;  s =

 e− (s− a)t dt =

1

 , 

 s > a. 

(1.51)

 s −  a

0

If  s ≤  a, the transform does not exist because the integral in (1.51) diverges. This simple example permits us to add an important comment on the existence of the

Laplace transform [6]. We may state that the Laplace transform of  f (t)  exists if it is of exponential order, in the sense that

|  f (t)| ≤  Meat, 

(1.52)

for constants  M,  a, and  L, such that  t ≥  L, that is, the function  f (t)  must not grow faster than a certain exponential function when  t → ∞. If, in addition, it is required that the integral

 b



|  f (t)| dt

0

exists for any  b >  0, then we may write

∞



 b



∞



|  f (t)e− st| dt =

|  f (t)e− st| dt +

|  f (t)e− st| dt

0

0

 b

 b



∞



≤

|  f (t)| dt +

 e− st |  f (t)| dt

(1.53)

0

 b

because 0  < e− st ≤ 1. Thus, 

∞



 b



∞



|  f (t)e− st| dt ≤

|  f (t)| dt +  M

 e− (s− a)t dt

(1.54)

0

0

 b

since we have assumed that  f (t)  is of exponential order as in (1.52). The first integral in (1.54) exists by assumption; the second one is finite for  s > a, as stated in (1.51). 

In conclusion, the integral

∞



 f (t)e− st dt

0

1.1 Integral Transforms
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converges absolutely because the integral

∞



|  f (t)e− st| dt

0

converges. 

Another feature influencing the existence of this integral transform is the pres-

ence of singularities in  f (t). Consider, for instance, a typical power-law behavior represented by the function

 f (t) =  tα, 

 α ∈ C . 

(1.55)

Its Laplace transform is given by

∞







 (α +

 L

1 )

 t α;  s =

 t αe− st dt =

 ,  (s) >  0 , 

(1.56)

 sα+1

0

where  (z)  is the gamma function to be defined in Sect. 1.2, in which we show that it has simple poles at  z = − n, with  n ∈ N0. Thus, for the particular case in which α =  n, Eq. (1.56) becomes





 (

 L

 n + 1 )

 t n;  s =

 , 

 (s) >  0 , 

(1.57)

 sn+1

and is not defined for  n = −1 , −2 , . . . . It is instead perfectly sound for  n = 0, that is, it yields the Laplace transform of a constant  k:

 L{

1

 k;  s} =  k , 

 (s) >  0 . 

(1.58)

 s

Let us now introduce the Laplace convolution operator of two functions  f (t)

and  g(t)  given in R+ = { x ∈ R| x >  0}. We start from the definition of a convolution operator in general, Eq. (1.9), remembering that  f (t)  and  g(t)  are here causal functions and, as such, they should be strictly written, respectively, as

 f (t)H (t)

and

 g(t)H (t), 

(1.59)

where

0 , x <  0 , 

 H (x) = 1 , x ≥ 0 , 

(1.60)

14
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is the Heaviside step function. Thus, we may rewrite Eq. (1.9) as

∞



 ( f ∗  g)(t) =

 f (t −  x)H (t −  x)g(x)H (x)dx

−∞

∞



=

 f (t −  x)H (t −  x)g(x)dx

0

 t



=

 f (t −  x)g(x)dx, 

(1.61)

0

because  H (t −  x) = 0, if  x > t. The  Laplace convolution operator  of  f (t)  and  g(t) can be defined as

 t



 f ∗  g =  ( f ∗  g)(t) :=

 f (t −  τ)g(τ )dτ =  g ∗  f, 

(1.62)

0

which has also the commutative property. Its Laplace transform may be determined

as follows:

⎡

⎤

∞



∞



 L{ ( f ∗  g)(t);  s} =

 e− st ⎣

 f (t −  τ)H (t −  τ)g(τ )H (τ )dτ ⎦  dt

0

0

∞



∞



=

 g(τ )dτ

 e− st f (t −  τ)H (t −  τ)dt. 

(1.63)

0

0

To proceed, we introduce the change  u =  t −  τ ( du =  dt) in order to obtain, for the second integral in (1.63):

∞



∞



 e− st f (t −  τ)H (t −  τ)dt =

 e− s(u+ τ) f (u)H (u)du

0

− x

⎡

⎤

∞



= ⎣  e− su f (u)du⎦  e− sτ

0

=  e− sτ F(s). 

(1.64)

1.1 Integral Transforms

15

Substitution of (1.64) into (1.63) yields

⎡

⎤

∞



 L{ ( f ∗  g)(t);  s} = ⎣  e− sτ g(τ)dτ⎦  F(s) 0

=  F(s)G(s), 

(1.65)

stating that, as for the Fourier transform, the Laplace transform of the convolution

of two causal functions  f (t)  and  g(t)  is the product of their Laplace transforms, respectively,  F (s)  and  G(s). Conversely, we expect that the inverse Laplace transform of (1.65) yields

 L−1{ F(s)G(s);  t} =  ( f ∗  g)(t) =  (g ∗  f )(t) t



 t



=

 f (τ )g(t −  τ)dτ =

 g(τ ) f (t −  τ)dτ, 

(1.66)

0

0

which is a very important result in the theory of integral equations and in fractional calculus, as we will discuss in Chap. 4 and subsequent applications. 

Before proceeding, and to illustrate the usefulness of the Laplace transform of a

convolution, consider, as a first example, the object, 

 t



 g(t) =

1

 (t −  x)α−1  f (x)dx, t >  0 , α ∈ R+ , 

(1.67)

 (α)  0

that is the convolution of a given function  f (t)  with the kernel

 Kα(t) =  tα−1  , 

 α >  0 . 

(1.68)

 (α)

We remember that this definition holds only for causal functions, that is,  Kα(t) = 0, for  t <  0. From the property (1.65), we obtain:

 L{ g(t);  s} =  F(s)Kα(s), 

(1.69)

in which the Laplace transform  Kα(s)  is given by

∞



 L{

 t α−1

 Kα(t);  s} =

 e− st

 dt = 1  . 

(1.70)

 (α)

 sα

0
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Thus, we obtain



 t





 L

1

 (t −  x)α−1  f (x)dx;  s =  L{  f (t);  s} L{ K

 . 

(1.71)

 (α)

 α(t);  s} =  F (s)

 sα

0

This particular result is very important for the applications to be considered in this book, because it represents the Laplace transform of the Riemann-Liouville integral

operator, whose definition and main properties will be discussed in Chap. 4. 

Let us invoke, now, as a second example, an integral equation of the type

 t



 g(t) =  λ f (t) +

 f (τ )K (t −  τ)dτ, 

(1.72)

0

known as a  Volterra equation of the second kind, where  K (t, τ )  is again the integral kernel,  g(t)  is known and  f (t)  is to be found. In (1.72),  λ  is a constant. When  λ = 0, Eq. (1.72) becomes the  Volterra equation of first kind [3]. If we apply (1.65) to Eq. (1.72), it becomes a simple algebraic equation in the form:

 G(s) =  λF(s) +  F(s)K (s)  or  F(s) =

 G(s) . 

(1.73)

 λ +  K (s)

At this point, we have discovered what is the solution in the  s−domain, that is, we determine  F (s)  if we know the Laplace transforms  G(s)  and  K (s). In the next step to complete the solution, we have to come back to the  t−domain, with the help of the inverse transform. 

The  inverse Laplace transform  is defined for  t ∈ R+ by the expression γ + i∞



 L−1{ F(s);  t} = 1

 est F (s)ds, 

 γ =  (s) > σ, 

(1.74)

2 πi γ− i∞

where  σ  is the infimum of  s  values for which the Laplace integral (1.48) converges, and is called abscissa of convergence [7]. This integral is known as the Bromwich integral, sometimes known as the Fourier-Mellin integral. We postpone the discussion

of some technical details to evaluate this kind of integral until Sect. 1.2.1, where the Mellin transform will be defined, and Sect. 1.3.1, where the Mellin-Barnes integral representation will be introduced. An alternative notation for the Laplace transform

will be employed when necessary:

 L{  f (t);  s} =  f (s)  and  L−1{  f (s);  t} =  f (t). 
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The Laplace transform of a derivative of a function  f (t)  is given by





∞



 L d f (t); 

 d f

 s

=

 e− st

 dt

 dt

 dt

0

∞

∞



=  e− st f (t) +  s f (t)e− stdt

0

0

= −  f ( 0 ) +  s F(s), 

(1.75)

where an integration by parts has been carried out. Similarly, 





∞



 L d 2  f (t); 

 d 2  f

 s

=

 e− st

 dt

 dt  2

 dt  2

0

∞

∞



=

 d f

 d f

 e− st

+  s

 e− st dt

 dt 

 dt

0

0



= − d f  −  s f ( 0 ) +  s 2 F(s), 

(1.76)

 dt  0

and so on. In general, we have for the  k−derivative:





 k−1





 L dk f (t); 

 d(k− p−1 )

 s

=  sk F(s) −

 s p

 f (t)

 , 

(1.77)

 dt k

 dt (k− p−1 )



 p=0

 t=0

because we are assuming that

 d p f

lim

= 0 , 

 p = 0 ,  1 , . . . , k − 1 . 

(1.78)

 t→∞  dt p

Some additional properties of the Laplace transform may be obtained as follows. For

 a ≥ 0, and assuming  f (t)  as a causal function, that is,  f (t) →  f (t)H (t), we have

∞



∞



 f (t −  a)H (t −  a)e− st dt =

 f (x)H (x)e− s(x+ a)dx

0

− a

∞



=  e− sa

 f (x)e− sx dx, 

(1.79)

0

upon setting  x =  t −  a. The limits in the last integral have been changed to  ( 0 , ∞ ) in view of the properties of  H (t), given by Eq. (1.60). Thus, 
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 L{  f (t −  a);  s} =  e− sa F(s). 

(1.80)

Another property of the transform is the scaling, as we have also demonstrated for

the Fourier transform. Consider, for  a >  0, that

∞



∞







 x

 s

 f (at)e− st dt =

 f (x)e− s(x/a)d

= 1  F

 , 

(1.81)

 a

 a

 a

0

0

that is, 



 L{

 s

 f (at);  s} = 1  F

 . 

(1.82)

 a

 a

As an example, let us now obtain the Laplace transform of the function

 t



 g(t) =

 f (τ )dτ, 

0

which is the particular case of a convolution of  f (t)  with a constant function h(t −  τ) = 1. We notice that  g (t) =  f (t)  and  g( 0 ) = 0. Thus, t





 L g(t);  s =  L

 f (τ )dτ ;  s =  G(s)

(1.83)

0

However, from the property of the transform of the first derivative, Eq. (1.75), we know that

 G(s) = 1  g( 0 ) + 1  L{ g (t);  s} = 1  L{  f (t);  s} =  F(s) . 

(1.84)

 s

 s

 s

 s

Thus, Eq. (1.83) becomes

 t





 L

 f (x)dx;  s =  F(s) . 

(1.85)

 s

0

The Laplace transform of the Dirac delta function, introduced in Eq. (1.31), is simply

∞



 L{ δ(t);  s} =

 δ(t)e− stdt = 1 , 

 s ∈ C , 

(1.86)

0

where we have used the property (1.33). In addition, for the derivatives of the Dirac delta, we have
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 y

 s( y)

 m

 y 0

 dy

 dx

0

 x 0

 x

Fig. 1.2 A mass  m  under gravity slides down along a frictionless wire, whose figure is defined by s(y), such that  s( 0 ) = 0

∞



 L{ δ

 dk δ(t)

 k (t);  s} =

 e− st dt =  sk, s ∈ C and  k ∈ N . 

(1.87)

 dt k

0

Finally, we use the properties of Laplace transforms discussed in this section to

find a solution of a physical problem. We choose an integral equation, instead of a

differential equation, to search for the solution of the tautochrone problem, which is a problem of importance in the history of fractional calculus. Indeed, as we will discuss in more detail in Sect. 4.2, the solution proposed by Niels Henrik Abel (1802–1829) to the tautochrone problem involves the pioneering use of an integral operator of

arbitrary order, and is the first explicit solution known of an integral equation [8]. 

The problem may be formulated as follows. A particle of mass  m  is released from the rest at the position  y =  y 0 and slides under the influence of the gravity, along a frictionless wire, as depicted in Fig. 1.2. 

The problem is to determine the curve  s(y), followed by the particle, such that the time employed to slide down to the lowest point under gravity is independent of its

initial position ( x 0 , y 0) on the curve. If the mass is released from  y =  y 0  >  0, then its speed at  y  will be given by
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1

 ds  2

 m

=  mgy 0 −  mgy =  mg(y 0 −  y), 

(1.88)

2

 dt

from which we obtain:

 ds

 dt = ±

 ds

√

−→  dt = −

1

√

 d y, 

2 g(y 0 −  y)

2 g(y 0 −  y) dy

because  ds/dy >  0, but  dy/dt <  0. The time of descent is then y 0



1

 ds

 T (y 0 ) =

√

 d y. 

(1.89)

2 g(y 0 −  y) dy

0

We observe that (1.89) was obtained by invoking only the conservation of the mechanical energy, Eq. (1.88). It is an integral equation to be solved in order to get  f (y) =  ds/dy. Let us change a little the notation ( y 0 →  y, y →  z) to search for a curve  s(z)  such that



 y



 ds

2  gT (y) =

 (y −  z)−1 / 2

 d z =  k(y) = constant . 

 d z

0

The formal problem is then to find  f (z) =  ds/dz, given  k(y): y



 k(y) =

 f (z)(y −  z)−1 / 2 dz, 

(1.90)

0

which may be recognized as a convolution between  f (z)  and a kernel  K (y, z) =

 (y −  z)−1 / 2. Equation (1.90) is an integral equation for  f (z)  and may be solved by taking the Laplace transform of its both sides, obtaining

√

 k(y)

 π

=  F(s)

⇐⇒  F(s) =  c 1  , 

(1.91)

 s

 s 1 / 2

 s 1 / 2

√

where  c 1 =  k(y)/ π  is a constant. The inverse transform of  F(s)  is f (z) =  cz−1 / 2 , 

(1.92)

where  c  is another constant. Remember that  f (z) =  ds/dz  or  f (y) =  ds/dy. Thus, 1 / 2

 d x  2

 f (y) =  ds = 1 +

=  cy−1 / 2 . 

(1.93)

 d y

 d y
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By putting  y =  c 2 sin2 ( 1 / 2 θ), a short calculation yields x = 1  c 2 (θ + sin  θ)  and  y = 1  c 2 ( 1 − cos  θ), (1.94)

2

2

which are the parametric equations of a cycloid [6]. It is the same curve as the one arising in the problem of the  brachistochrone, which is a different problem, requiring to determine, for a particle like the one released from the rest in the gravitational field, what is the curve of “quickest descent”, that is, requiring to find the minimum time employed by the particle to arrive at the lowest point. 

 1.1.3

 The Cauchy Integral Formula

The Cauchy integral formula is a direct consequence of the Cauchy theorem. It is the

main tool in the application of the theory of analytical functions to other branches of mathematics and physics [3]. What’s more, it is an important starting point for the development of the fractional calculus, as we shall discuss in Chap. 4. 

In this section, we review some of the results to establish this important formula

and some of its consequences, and use them in a few selected examples to illustrate

some techniques of the complex integration. These techniques are usually employed

to obtain the inverses of the integral transforms of the solutions of physical problems. 

The Cauchy theorem is the central theorem of the theory of a complex variable. It

may be enunciated as follows [9]. 

Cauchy’s theorem: If  f (z)  is an analytic function, continuous within and on a smooth closed contour  C, then



 f (z)dz = 0 . 

(1.95)

 C

A function  f  of the complex variable  z  is  analytic (or  regular, or  holomorphic) at a point  z 0 if it has a derivative at each point in some neighborhood of  z 0. The function f (z) = 1 /z  is analytic at each nonzero point in the finite plane, but  f (z) = | z|2 is not analytic at any point because its derivative exists only at  z = 0 and not throughout any neighborhood. A function  f (z)  that is analytic at any point in the whole  z−plane, like the polynomial

 P(z) =  a 0 +  a 1 z +  a 2 z 2 + · · · +  anzn, n ∈ N0 , (1.96)

is called an  entire function. A  smooth curve  may be defined as the one composed of arcs which join on continuously, each arc having a continuous tangent. A closed

contour is thus a smooth curve. It can be described in a positive direction when tra-

versed in a counterclockwise direction with respect to the domain enclosed by it. The negative direction is the clockwise direction [3]. There is the converse of the Cauchy
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theorem, due to the Italian mathematician Giacinto Morera (1856–1909) that may

be enunciated as follows. 

Morera’s theorem: If  f (z)  is continuous and single-valued within a closed contour C, and if



 f (z)dz = 0

 C

for any closed contour within  C, then  f (z)  is analytic within  C. It serves as a tool to identify an analytical function and corresponds to the integral analogue of the

Cauchy-Riemann conditions, which require continuity of the derivatives of  f (z). 

Indeed, if a function  f (z)  is analytic at a given point, then its derivatives of all orders are also analytic functions at this point. 

These results dealing with the analyticity of  f (z)  and its derivatives are also part of the conceptual tool embodied by the Cauchy integral formula introduced below. 

Cauchy’s integral formula. It states that if  f (z)  is an analytical function inside and on the closed contour  C, and  z 0 is an arbitrary point inside  C, then [9]: f (z)

 f (z 0 ) = 1

 d z, 

(1.97)

2 πi

 z −  z 0

 C

where the integration has to be performed in the counterclockwise sense along  C, as shown in Fig. 1.3. If  z 0 is a point outside  C, then f (z)

 f (z 0 ) = 1

 d z = 0 . 

2 πi

 z −  z 0

 C

If  z 0 is a point on  C, the integral will have a Cauchy principal value, which corresponds to putting half of the point source inside  C  and half outside, in the following way [3]:

⎧



⎨ 1; if  z

 f (z)

0 within  C, 

2 πi f (z 0 ) =

 d z =

1 / 2; if  z 0 on  C (Principal Value)

(1.98)

 z −  z

⎩

0

0; 

if  z

 C

0 outside  C. 

Formula (1.97) implies that the values of a holomorphic function inside a disk are determined by the values of that function on the boundary of the disk. But it implies that if one knows the values of  f (z)  on some closed curve  C, then one can also compute the derivatives of  f (z)  inside the region bounded by  C, by means of an integral, namely, the Cauchy differential formula, defined for the  n th derivative of f (z), at  z =  x, as [9]:
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 y

 C

 C 0

 r 0

 z 0

 x

Fig. 1.3 A contour in the complex plane,  x =  (z)  and  y =  (z), for the integration defined in Eq. (1.97), when  z =  z 0.  C 0 is a positively oriented circle | z −  z 0| =  r 0, with  r 0 small enough that C 0 is interior to  C. The quotient  f (z)/(z −  z 0 )  is analytic between and on the contours  C 0 and C [9]



 f (z)

D n f (z

 d z, n ∈ N . 

(1.99)

 z

0 ) =  f (n)(z 0 ) =

 n! 

0

2 πi

 (z −  z 0 )n+1

 C

Since  n ∈ N, the integrand has a pole of order  n, as we shall discuss now. If there is some neighborhood of a singular point  z 0 of  f (z)  where  f (z)  is analytic, except the point  z 0 itself, this particular point is called an isolated singularity of  f (z). The already mentioned function  f (z) = 1 /z  is a typical example: the point  z = 0 is an isolated singularity of  f (z). However, the function

 f (z) =

 z + 1

 z 3 (z 2 + 1 )

has three isolated singular points, namely:  z = 0,  z =  i, and  z = − i. When  z 0 is an isolated singular point of  f (z), there is a positive number  R >  0 such that  f (z)  is analytic at each point for which 0  < | z −  z 0|  < R. In this domain, the function  f (z) may be represented by the Laurent series:
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∞



∞



 bn

 f (z) =

 an(z −  z 0 )n +

 ,  0  < | z −  z

 (

0|  < R, 

(1.100)

 z −  z 0 )n

 n=0

 n=1

where



 f (z)

 an = 1

 d z, n ∈ N0

2 πi

 (z −  z 0 )n+1

 C 1



 f (z)

 bn = 1

 d z, n ∈ N . 

(1.101)

2 πi

 (z −  z 0 )− n+1

 C 2

When  n = 1, 



 b 1 = 1

 f (z)dz

(1.102)

2 πi C

is the complex number which is the coefficient of 1 /(z −  z 0 )  in the series (1.100). It is called the residue of  f (z)  at the isolated singular point  z 0. 

The contour  C  indicated in the definition of  b 1 in Eq. (1.102) is represented in

Fig. 1.4. In Eq. (1.100), the part of the series containing negative powers of  (z −  z 0 ) is called the principal part of  f (z)  around  z =  z 0. Then

∞



 f (z) =

 b 1

+

 b 2

+ · · · +

 bm

+

 an(z −  z 0 )n, 

(1.103)

 z −  z 0

 (z −  z 0 ) 2

 (z −  z 0 )m

 n=0

for 0  < | z −  z 0|  < R, with  R >  0, where  bm = 0. The isolated singular point  z =  z 0

is then called a  pole  of order  m. Some simple examples are:

 f (z) =  z 2 − 2 z + 3 =

3

+ 2 +  (z − 2 )

(1.104)

 z − 2

 z − 2

has a simple pole ( m = 1) at  z = 2. Its residue is the coefficient  b 1 = 3; f (z) = sinh (z) = 1 + 1 + 1  z + 1  z 3 + · · ·  , | z|  >  0 . 

(1.105)

 z 4

 z 3

3!  z

5! 

7! 

It has a pole of order 3 ( m = 3) at  z = 0. Its residue is  b 1 = 1 / 6. 

The Cauchy integral formula is very useful to evaluate integrals. It may also

be used to obtain integral representations of functions which are discontinuous or

have discontinuous derivatives. We frequently encounters it in the Mellin-Barnes

representation of some special functions of the fractional calculus, to be discussed

in Sect. 1.3. The method to evaluate integrals is based on the calculus of residues. 

There is a fundamental theorem establishing the conceptual framework to develop

these applications, as we shall discuss now. 
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 z 0

0

 x

Fig. 1.4 A contour in the complex plane,  x =  (z)  and  y =  (z), illustrating the integration of the function  f (z)  defined in (1.102) in the presence of an isolated singularity at  z =  z 0. When  f (z) is analytic within and on  C, except at  z =  z 0, the radius  R  may be taken as arbitrarily small. The expansion (1.103) is thus valid when 0  < | z −  z 0|  < R

1.1.3.1

The Residue Theorem

If  f (z)  is analytic on and inside a closed contour  C, except for a finite number of poles (isolated singularities at  z =  a 1 , a 2 , . . . , an), which are all located inside  C, then



 n



 f (z)dz = 2 πi

Res  f (z =  ak), 

(1.106)

 C

 k=1

where Res  f (z =  z 0 )  stands for the residue of  f (z)  at the point  z =  z 0. This result is evidently demonstrated using the Cauchy theorem. When  f (z)  has not singularities inside and on  C, one readily obtains:



 f (z)dz = 0 , 

(1.107)

 C

as expected for an analytic function. Some practical methods to evaluate the residues are available. 
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The first one is the definition (1.102), which is rarely used but may be valuable if the primitive function of  f (z)  is known and has a branch point at  z =  z 0 [5]. 

The other method is the one already illustrated in the examples dealing with

Eqs. (1.104) and (1.105). For the case of a simple pole at  z =  z 0, we may use the formula:

Res  f (z 0 ) = lim [ (z −  z 0 ) f (z)]  . 

(1.108)

 z→ z 0

A simple example is the function below, having a simple pole at  z = 0:

 f (z) = tan  z

 z 2

Using (1.108), we obtain









tan  z

sin  z

1

Res  f (z 0 ) = lim  z

= lim

= 1 . 

 z→0

 z 2

 z→0

 z

cos  z

For the case of a pole of order  m, at  z =  z 0, the following formula holds: dm−1 



Res  f (z 0 ) =

1

lim

 (z −  z

 . 

(1.109)

 (

0 )m f (z)

 m − 1 )!  z→ z 0  dzm−1

As an example, we may evaluate the residue for  f (z) =  ez/z 4, which has a pole of order  m = 4 at  z = 0:





 d 3

 ez

Res  f ( 0 ) = 1 lim

 z 4

= 1 . 

3!  z→0  dz 3

 z 4

6

Finally, a very useful formula exists when  f (z)  may be written in the form: f (z) =  g(z) , 

 h(z)

with  g(z 0 ) = 0, and  h(z 0 ) = 0, that is,  z 0 is a simple pole. In this case, the residue is given by

Res  f (z =  z 0 ) =  g(z 0 ) , 

(1.110)

 h (z 0 )

because, in this case,  h (z 0 ) = 0. If we apply it to the example (1.104), we easily identify  g(z) =  z 2 − 2 z + 3 and  h(z) =  z − 2, with  h (z) = 1. Thus, Res  f (z = 2 ) =  g( 2 ) = 3 . 

 h ( 2 )
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To illustrate the use of some techniques described so far, we first consider a

physical problem dealing with the inhomogeneous Helmholtz equation, arising from

the separation of variables in the wave equation or in other contexts. We write it in the form:

∇2 ψ(x ) +  k 2 ψ(x ) = −4 πρ(x ), k ∈ R , (1.111)

where  ρ(x )  may represent a charge density in electrostatics or a given distribution function of x, subject to arbitrary Dirichlet (or Neumann) conditions on a boundary surface  S. To solve the problem, we construct the Green’s function of the stationary equation





∇2 +  k 2  G(x , x ) = −4 πG(x , x ). 

(1.112)

Once Eq. (1.112) is solved, the formal solution of Eq. (1.111) may be obtained in the form:



 ψ(x ) =

 G(x , x )ρ(x )dx . 

(1.113)

The solution of Eq. (1.112) is searched using the Fourier transform of a function of three variables,  G(q ), namely



 G(x , x ) =

1

 G(q )e− iq· (x−x )dq , (1.114)

 ( 2 π) 3

and uses the three dimensional version of the integral representation of the Dirac

delta function



 δ(x − x ) =

1

 e− iq· (x−x )dq . 

(1.115)

 ( 2 π) 3

Substitution of Eqs. (1.114) and (1.115) into Eq. (1.112) yields G(q ) =

4 π

(1.116)

 q 2 −  k 2

and the problem is solved in the q−space. The Green’s function (1.114) becomes 1

 G(x , x ) = 1

 e− iq· (x−x )dq . 

(1.117)

2 π 2

 q 2 −  k 2

The integration is carried on using a system of spherical coordinates in which r =

 (x − x )  is along the  z− axis such that

q ·  (x − x ) =  qr  cos  θ

⇐=  dq =  q 2 dq  sin  θdφ. 

(1.118)
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Using (1.118) in (1.117), the integration of the angular variables are easily performed, yielding

∞



 q





 G(r) = 1

 eiqr −  e− iqr dq, 

(1.119)

 i πr

 q 2 −  k 2

0

which, after changing  q → − q  in the second integral, becomes

∞



 q

 G(r) = 1

 eiqr dq. 

(1.120)

 i πr

 q 2 −  k 2

−∞

This integral on the real variable  q  will be evaluated using the techniques of residues. 

The integrand is singular at the poles  q = ± k. We modify these poles a little bit, rewriting them as  q = ± (k +  iε)  in the limit  ε → 0. This changes the wave vector to a complex quantity  q =  x +  iy, with  (x, y) ∈ R. To choose the contour  C  we consider that

 eiqr =  eixr e− yr

indicates that for  r >  0, the integral converges as  y → ∞. The contour  C  has to be closed in the upper-half complex  q− plane, as shown in Fig. 1.5a. 

In this case, we have



 R





 f (z)dz = lim

 f (x)dx +

 f (z)dz

 R→∞

 C

− R

 C+

= 2 πi  Res  f (z =  k +  iε). 

Using (1.110), we obtain



Res  f (z =  k +  iε) =  qeiqr 

= 1 eikr. 

2 q 

2

 q= k+ iε

Thus, 

 R





lim

 f (x)dx =  πie− ik− ε −

 f (z)dz

(1.121)

 R→∞− R

 C+

Since  ε → 0, when  R → ∞, we obtain

∞



 qeiqr dq =  iπeikr, r >  0 , 

(1.122)

 q 2 −  k 2

−∞
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 y

 C+

 k +  iε

 −R −k − iε

 R

 x

 y

 −R

 k +  iε

 R

 −k − iε

 x

 C−

Fig. 1.5 A contour  C  in the complex plane,  x =  (q)  and  y =  (q), illustrating the integration of the function defined in (1.120). The contour closes in the upper half-plane (a) in the positive sense ( r >  0) and (b) in the lower half-plane in the negative sense ( r <  0) because



 f (z)dz = 0 . 

 C+

This result is a consequence of the Jordan’s lemma, which reads as follows [5]. 

Jordan’s lemma: If  f (z)  converges uniformly to zero whenever  z  approaches infinity then



lim

 f (z) eiλz dz = 0 , 

(1.123)

 R→∞

 C

where  λ  is any positive number and  C  is the upper half of the circle | z| =  R. 

For  r <  0, the integral converges as  y → −∞. The contour  C  has to be closed in the lower-half complex  q− plane, as shown in Fig. 1.5b. Thus, 

30

1

Integral Transforms and Special Functions



 R





 f (z)dz = lim

 f (x)dx +

 f (z)dz

 R→∞

 C

− R

 C−

= −2 πi  Res  f (z = − k −  iε). 

In this case, we have

∞



 qeiqr dq = − iπe− ikr, r <  0 . 

(1.124)

 q 2 −  k 2

−∞

Combining (1.122) and (1.124), the Green’s function of the problem, Eq. (1.117), 

may be finally written as

 G± (x , x ) =  e± ik|x−x|  . 

(1.125)

|x − x|

At this point the problem is formally solved because  G± (x , x )  may be used in Eq. (1.113) to obtain  ψ(x )  for a given  ρ(x ). 

To proceed, we notice that a generalization of the Cauchy formula for the deriva-

tive (1.99) of order  n  to arbitrary order may be achieved by changing n ∈ N

=⇒  α ∈ R

and using again the Euler gamma function for  α! =  (α + 1 ). This gives (α + 1 )

 f (z)

D α f (z

 d z, α ∈ C . 

(1.126)

 z

0 ) =

0

2 πi

 (z −  z 0 )α+1

 C

This result plays an important role in defining an operator for the derivative of

arbitrary order or as commonly termed, of fractional order. However, the integrand

has not a pole when  α  is fractional but instead a  branch point. This requires a  branch cut  in the appropriate contour, as the one exhibited in Fig. 1.6, intended to illustrate the integration of the function [9]:

 f (x) =  x− γ ,  0  < γ <  1 , x >  0 . 

(1.127)

 x + 1

This example is proposed here to prepare the discussion of the fractional extension

of the Cauchy formula. In employing again the techniques of residues, we notice that

 f (z)  is analytical except at a simple pole in  z = −1, at the branch point  z = 0, and at the branch cut  θ = 0, as can be seen by writing

 z− γ =  (reiθ )− γ =  r− γ e− iγ θ , 

0  < θ <  2 π, 

 r >  0 . 
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 y

 C

 L 1

 C 0

 − 1

 r

 R

 x

0

 L 2

Fig. 1.6 A contour in the complex plane,  x =  (z)  and  y =  (z), illustrating the integration of the function  f (z)  defined in (1.127)

The integration of  f (z)  along the closed path exhibited in Fig. 1.6 may be performed along the arcs  C  and  C 0, of radius  R  and  r 0, respectively, the segments  L 1 and  L 2, with the radius specified, respectively, by  θ =  ε  and  θ = 2 π −  ε. Notice that, when θ = 0,  f (z)  becomes the integrand of the real, improper integral

∞

 x− γ

 I =

 d x, 

0  < γ <  1 . 

 x + 1

0

For  R >  1, and  r 0  <  1, with  ε >  0, this integration may be written as: I =

 f (z)dz +

 f (z)dz +

 f (z)dz +

 f (z)dz

 L 1

 C

 L 2

 C 0

= 2 πi  Res  f (z = −1 ) = 2 πie− iγπ, 

(1.128)

because

Res  f (z = −1 ) = lim  (z + 1 ) f (z) =  (−1 )− γ =  e− iγ π . 

 z→−1
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Along the segment  L 1, we write  z =  reiε  and  z− γ =  r− γ e− iγ ε; along  L 2, we have z =  rei( 2 π− ε) =  re− iε  and  z− γ =  r− γ e− iγ ( 2 π− ε). Thus, R



 r 0



 r − γ dr

 r − γ dr

 f (z)dz +

 f (z)dz =  eiε− iγ ε

+  e− iε− iγ( 2 π− ε)

 , 

 r eiε + 1

 r e− iε + 1

 L 1

 L 2

 r 0

 R

(1.129)

such that

⎡



⎤

 R

 x− γdx

lim ⎣

 f (z)dz +

 f (z)dz⎦ = 2 ie− iγ π  sin  γ π

 , 

(1.130)

 ε→0

 x + 1

 L 1

 L 2

 r 0

because the integrals and their coefficients are continuous functions of  ε  in  ε = 0

and, thus, both integrands coincide. To perform the integration along  C, we recall that  z =  Reiθ  and write



2 π− ε

 R− γe− iγθ(iReiθdθ)

I R = lim

 f (z)dz = lim

 ε→0

 ε→0

 Reiθ + 1

 C

 ε

2 π



=

 eiθ− iγ θ dθ

 i R 1− γ

 , 

 R >  1 , 

(1.131)

 Reiθ + 1

0

because the integrand is a continuous function of  θ  in the interval 0 ≤  θ ≤ 2 π  and the integral has a defined limit when  ε → 0. In addition, when we consider the limit R → ∞, we observe that

|I R| ≤ 2 π R R− γ

=⇒

lim I R → 0 . 

 R − 1

 R→∞

Analogously, to perform the integration along  C 0, we write  z =  r 0 eiθ  and ε



− γ

 r

 e− iγ θ (ir 0 eiθ dθ)

I

0

0 = lim

 f (z)dz = lim

 ε→0

 ε→0

 r 0 eiθ + 1

 C 0

2 π− ε

2 π



= −

 eiθ− iγ θ dθ

 ir  1− γ

 , 

0  < r

0

0  <  1 , 

(1.132)

 r 0 eiθ + 1

0

and recognize that the integral I0 exists when  ε → 0. When  r 0 → 0, we deduce that

|I0| ≤ 2 π r 1− γ

=⇒

lim |I0| → 0 . 

1 −  r  0

0

 r 0→0
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In conclusion, Eq. (1.128) is reduced to Eq. (1.130) which, in turn, yields R

 x− γdx

2 i e− iγ π  sin  γ π

= 2 πie− iγπ, 

(1.133)

 x + 1

 r 0

or, in the limits  R → ∞ and  r 0 → 0, 

∞

 x− γdx

 π

 I =

=

 , 

0  < γ <  1 . 

(1.134)

 x + 1

sin  γ π

0

Now, if we introduce  t =  ( 1 +  x)−1,  dt = − t 2 dx, the integral  I  in Eq. (1.134)

becomes:

1



 π

 B(γ ,  1 −  γ ) =

 t γ −1 ( 1 −  t)− γ dt =

 , 

0  < γ <  1 , 

(1.135)

sin  γ π

0

which is the beta function to be defined in Sect. 1.2. 

The integral transforms and their basic properties as well as the techniques of

integration in the complex plane sketched above will be employed along the book

to face the problems dealing with normal and anomalous diffusion behavior. They

will be completed in the sequence by an overview on those special functions more

frequently used to handle them. 

1.2

Gamma and Related Functions

The introduction of the gamma function in the analysis is due to Leonhard Euler

(1707–1783), who was preceded by some preliminary studies of John Wallis (1616–

1703) and James Stirling (1692–1770). The first works of Euler on this matter have

been developed during the years 1729 and 1730 [10, 11]. In a letter to Christian Goldbach (1690–1764), dated January 8, 1730, Euler proposed the definition of

an analytic function which has the property to interpolate the factorial whenever the argument of the function is an integer. The subject of the letter is the use of the integral calculus in the search for the general terms of the series 1 + 1 · 2 + 1 · 2 · 3 + etc. 

whose general term, according to Euler and written with his notation, is [12]:



 (− lt)ndt, 

(1.136)
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which, in today’s notation, should read:

1



 (z) =  (− ln  t)z−1 dt. 

(1.137)

0

A change of variable in the form  u = − ln  t  permits us to put Eq. (1.137) in the known form of the  gamma function  as

∞



 (z) =

 t z−1 e− t dt. 

(1.138)

0

The integral converges ∀ z ∈ C, with  (z) >  0. It exhibits the following properties: ( 1 ) = 1 and

 (z + 1 ) =  z(z). 

(1.139)

To prove Eq. (1.139), we integrate Eq. (1.138) by parts to obtain

∞



∞

∞



 (z + 1 ) =

 t ze− t dt = − tze− t  +  z tz−1 e− tdt 0

0

0

=  z(z). 

Inversion of Eq. (1.139) yields

 (

 (

 z + 1 )

 z) =

 , 

(1.140)

 z

from which we obtain  (−1 / 2 ) = −2 ( 1 / 2 ). By repeated application of Eq. (1.140), 

we may write:

 (

 (

 (

 (

 z + 1 )

 z + 2 )

 z + 3 )

 z) =

=

=

 . . . 

 z

 z(z + 1 )

 z(z + 1 )(z + 2 )

 (

=

 z +  n)

 , n ∈ N , 

(1.141)

 z(z + 1 )(z + 2 ) · · ·  (z +  n − 1 )

which is valid for any non null integer. There is also a definition of  (z), according to Euler [13] and Gauss [14], which reads:





 (

 n!  nz

 z) = lim

 , z /∈ Z− =  ( 0 , −1 , −2 , . . . ). 

0

 n→∞

 z(z + 1 )(z + 2 ) · · ·  (z +  n)

(1.142)

It is still valid for negative values of  z, except on the poles specified above. In Fig. 1.7, 

the behavior of  (z)  is exhibited in a typical plot containing some of these poles. 
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Fig. 1.7

 f (z) =  (z)  versus  z  illustrating its singular behavior for  z ∈ Z− =  ( 0 , −1 , −2 , . . . ) 0

Since these are simple poles,  z = 0 , −1 , −2 , · · · , that is,  z = −  p, with  p ∈ N, the residues, obtained using Eq. (1.108), are:

 Rp = Res  (n = −  p) = lim  (n +  p)(n)

 n→−  p

 (

=

 n +  p) [ (n +  p − 1 )(n +  p − 2 ) · · ·  n]

lim

 (n)

 n→−  p

[ (n +  p − 1 )(n +  p − 2 ) · · ·  n]

 (

 (

=

 n +  p + 1 )

1 )

lim

=

 n→−  p (n +  p − 1 )(n +  p − 2 ) · · ·  n (−1 )(−2 )(−3 ) · · ·  (− p)

 (−

=

1 )p . 

(1.143)

 p! 

Another useful relation discovered by Euler, called the  complement  or  reflection formula, is as follows:

 π

 (z)( 1 −  z) =

 , z /∈ Z0 =  ( 0 , ±1 , ± ,  2 , · · ·  ). 

(1.144)

sin  π z

It can be demonstrated by using a definition introduced by Karl Weierstrass (1815–

1897), which is

∞ 



1



=  zeγz

1 +  z

 e− z/p, z /

∈ Z− =  ( 0 , −1 , −2 , . . . ), 

(1.145)

 (z)

 p

0

 p=1
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where





 γ = lim 1 + 1 + · · · + 1 − ln  p = 0 .  5772156 , 

(1.146)

 p→∞

2

 p

is the Euler–Mascheroni constant [10]. Using Eq. (1.145), we may write:

∞ 



1

1



= − z 2

1 −  z 2

 . 

(1.147)

 (z) (− z)

 p 2

 p=1

From Eq. (1.140), we get

 (

 (−

1 −  z)

 z) = −

 z

in such a way that Eq. (1.147) yields:

1

1

= sin  πz , 

(1.148)

 (z) ( 1 −  z)

 π

because

∞





sin  π z =  π z

1 −  z 2

 . 

 p 2

 p=1

Some particular values of the gamma function may therefore be easily stated. For

 z = 1 / 2, 

√

 ( 1 / 2 ) =  π; 

(1.149)

for  z = 1 / 3, 

√

 (

3

1 / 3 )( 2 / 3 ) = 2 π

; 

3

for  z = 1 / 4, 

√

 ( 1 / 4 )( 3 / 4 ) =  π  2 , 

and so on. For future purposes in defining other related functions, let us obtain (1.149), 

but now using the definition (1.138). We may form the product

⎡

⎤ ⎡

⎤

∞



∞



 ( 1 / 2 ) 2 = ⎣  x 1 / 2−1 e− xdx⎦ ⎣  y 1 / 2−1 e− ydy⎦

0

0

∞

∞



=

 x−1 / 2  y−1 / 2 e− (x+ y)d xd y. 

(1.150)

0

0
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Now, put  x =  r  cos2  θ,  y =  r  sin2  θ, with 0 ≤  r < ∞ and 0 ≤  θ ≤  π/ 2, such that d xd y =  J drdθ, where the Jacobian is





 ∂(x, y)

 ∂x ∂x 

 J =

=   ∂r ∂θ 

 ∂(

 ∂

 ∂

 r, θ)

 y y  = 2 r  sin  θ  cos  θ. 

(1.151)

 ∂r ∂θ

Then, from (1.150), we finally get

 π/ 2



∞



√

 ( 1 / 2 ) 2 = 2

 dθ

 e− r dr =  π ⇐⇒  ( 1 / 2 ) =

 π. 

(1.152)

0

0

A useful property of the gamma function is expressed in terms of the Legendre

multiplication formula, written as [15]:





√ π

 (z) z + 1 =

 ( 2 z). 

(1.153)

2

22 z−1

Before proceeding, we remember that the gamma function is an extension of the

factorial function to real non null positive numbers, namely:

 (n + 1 ) =  n!  n ∈ N . 

(1.154)

This concept permits us to introduce the definition of the  binomial coefficients, usually written as



 m

 (

=

 m! 

=

 m + 1 )

 , m ≥  n, 

(1.155)

 n

 n!  (m −  n)! 

 (n + 1 )(m −  n + 1 )

such that



 m

= 0 , 

if

0 ≤  m ≤  n. 

(1.156)

 n

For arbitrary complex numbers, we have:



 α

 (α +

=

1 )

 , 

 α, β ∈ C . 

(1.157)

 β

 β!  (α −  β + 1 )

Finally, we quote without demonstrating important asymptotic formulas for  (x), with  x ∈ R, in the limit  x → ∞. The first one, 







 (

2 π

1

 x) =

 x x e− x  exp

−

1

+

1

−  . . . , 

(1.158)

 x

12 x

360 x 3

1260 x 5

38

1

Integral Transforms and Special Functions

is due to the mathematician James Stirling [16]; the second one, sometimes incorrectly called Stirling’s formula, 







 (

2 π

 x) =

 x x e− x  1 + 1 +

1

−

139

−

571

−  . . . , 

 x

12 x

288 x 2

51840 x 3

2488320 x 4

(1.159)

is due to Laplace; finally, the third one, more recently proposed, 





 x

 (

2 π

 x) =

 x x e− x  1 +

1

+

1

+

239

− −  . . . 

 , 

(1.160)

 x

12 x 2

1440 x 4

36880 x 6

is due to Nemes [17]. The starting point of these analysis may be found in the original results of Stirling and Abraham de Moivre (1667–1754) stated when  x  is an integer n, namely:

√

 (n + 1 ) =  n! ≈ 2 πnnne− n, 

 n → ∞ , 

(1.161)

such that

ln  n! ≈  n  ln  n −  n, 

 n → ∞ . 

(1.162)

The  incomplete gamma function  is defined as

 x



 γ (α, x) =

 e− t t α−1 dt, 

 (α) >  0 , x < ∞ . 

(1.163)

0

Since  x  is finite, we may expand the exponential part of the integrand term by term: x







∞



 γ (α, 

 t k

 x) =

 t α−1

 (−1 )k

 dt

 k! 

0

 k=0

∞



 x



 (−

∞

 (−

 (α)

=

1 )k

1 )k

 k

 t α+ k−1 dt =  xα

 xk

 k! 

 α

 k! 

 (α + 1 )k

 k=0

0

 k=0

=  xα

 α  1F1 (α;  α + 1; − x), 

(1.164)

in which

∞

 (α)k

1F1 (α;  γ ;  z) =

 zk , 

 γ /∈ Z− =  ( 0 , −1 , −2 , . . . ), 

 k!  (γ )

0

 k

 k=0
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is the  confluent hypergeometric function (Kummer function) [18–20], and (α +

 (α)

 k)

 k =

=  α(α + 1 ) · · ·  (α +  k − 1 )

(1.165)

 (α)

is the Pochhammer symbol [16]. The upper part of the incomplete gamma function is defined as:

∞



 (α, x) =

 t α−1 e− t dt =  (α) −  γ (α, x); 

(1.166)

 x

that is, as evident:

 γ (α, ∞ ) =  (α,  0 ) =  γ (α, x) +  (α, x) =  (α). 

(1.167)

The  psi  or  digamma function  is defined by the logarithm derivative of  (z)  as follows: ψ(z) =  d (z), 

 z ∈ C , 

(1.168)

 d z

such that, using the Weierstrass definition (1.145), we can demonstrate that





  (

∞



 ψ(

 z)

 z − 1

 z) =

= − γ +

 , z /∈ Z− . 

(1.169)

 (z)

 p(z +  p − 1 )

0

 p=1

We may also demonstrate that

 m−1



 ψ(

1

 z + 1 ) =  ψ(z) + 1 and  ψ(z +  m) =  ψ(z) +

 , m ∈ N . 

 z

 z +  k

 k=0

In general, for  n ≥ 1, we can differentiate the first of the previous equations to obtain: ψ

 n! 

 n (z + 1 ) =  ψn (z) +  (−1 )n

 , 

(1.170)

 zn+1

where

 ψn(z) =  dn+1 log [ (z)]

(1.171)

 d xn+1

is the  polygamma function. 

A function related to the gamma function, frequently occurring in the computation

of many definite integrals in problems dealing with fractional operators, is the  beta function (Euler integral of first kind) defined as
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1



 B(x, y) =

 t x−1 ( 1 −  t)y−1  dt,  (x) >  0 ,  (y) >  0 . 

(1.172)

0

This function was defined by Euler, in 1730, and received this name in a paper of

Jacques Binet (1786–1856), where we can read [21]:

The results I will expose in this Memory are mainly based on the properties of two functions intimately connected one with the other, and which are deserved the attention of the geometers: they are the defined integrals

1



∞



∞



 z p−1 d z

 zq−1 d z

 x p−1 d x( 1 −  x)q−1 =

=

 ( 1 +  z)p+ q

 ( 1 +  z)p+ q

0

0

0

and

1





∞



1

 p−1

log

 d x =

 z p−1 de− z

 x

0

0

where e represents the hyperbolic basis. I will call the first of these functions as  B( p, q); and for the second, I will adopt the notation  ( p)  proposed by Mr. Legendre. 

These two functions are connected also by means of the important formula:

 (x)(y)

 B(x, y) =

 , (x, y) /∈ Z− . 

(1.173)

 (x) +  (y)

0

This can be demonstrated by considering the product

∞

∞



 (x)(y) =

 e− (t+ τ)t x−1 τ y−1 dtdτ, 

0

0

and, after introducing the change of variables  t =  r  cos2  θ  and  τ =  r  sin2  θ, handling it as we have done with Eq. (1.150). We obtain, for instance, the useful representation: π/ 2



 B(x, y) = 2

 ( sin  θ) 2 y−1 ( cos  θ) 2 x−1  dθ. 

(1.174)

0

From Eq. (1.173), it follows the functional equation:

 B(x + 1 , y) =

 x(x)(y)

=

 x

 B(x, y). 

(1.175)

 (x +  y)(x +  y)

 x +  y
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The  incomplete beta function  is defined for  p >  0 and  q >  0, as x



 Bx ( p, q) =  B(x;  p, q) =

 t p−1 ( 1 −  t)q−1  dt,  0 ≤  x ≤ 1 . 

(1.176)

0

It may be used to define a beta distribution, in the form:

!  ( 1− x)q−1 xp−1

 P

 B( p,q)

 ,  0 ≤  x ≤ 1 , 

 p,q (x ) =

(1.177)

0 , 

elsewhere . 

A distribution of this kind finds applications in probability theory to model random

probabilities and proportions. It has two parameters and a rich variety of shapes (both parameters are shape parameters) [22]. 

Finally, we mention a connection between the gamma function and the Riemann

zeta function as follows. Consider the definition of the gamma function, Eq. (1.138), 

putting  t =  ku, with  k ∈ N, that is, 

∞



 (z) =  kz

 uz−1 e− kudu, 

(1.178)

0

which yields

∞



1 = 1

 uz−1 e− kudu. 

(1.179)

 kz

 (z)  0

To go on further, we form the summation:





∞



∞



∞

1



= 1

 uz−1

 e− ku du. 

 kz

 (z)

 k=1

0

 k=1

∞







= 1

1

 uz−1

− 1  du

 (z)

1 −  e− u

0

∞



= 1

 uz−1  du. 

(1.180)

 (z)

 eu − 1

0

The  Riemann zeta function  is defined as [23, 24]:

∞



 ζ(

1

 z) =

 , 

 (z) >  1 , 

(1.181)

 kz

 k=1
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and thus, from Eq. (1.180), we obtain

∞



 ζ(

 uz−1

 z) =

1

 du, 

 (z) >  1 . 

(1.182)

 (z)

 eu − 1

0

Using the properties of the gamma function, it is possible to build the following

 functional equation:







 π−

 z

 z − 1

1 / 2 

 ζ(z) =  π 1 / 2 (z−1 )

 ζ( 1 −  z)

(1.183)

2

2

and other equivalent forms [25]. Before proceeding with this short discussion on the special functions to be employed in the applications of fractional calculus, we

explore some properties of the gamma and related functions in connection with the

very useful Mellin transform. 

 1.2.1

 The Mellin Transform

The first occurrence of the transform is found in a memory of Riemann, in the

context of his studies of the zeta function [26–28]. The systematic formulation of the transformation and its inverse is due to the Finnish mathematician R. H. Mellin

(1854–1933). 

Let  f (t)  be a function of a real variable  t ∈ R+ locally integrable on  ( 0 , ∞ ). The Mellin transform  of  f (t)  is defined by

∞



 M{  f (t);  s} =  FM(s) =

 t s−1  f (t)dt, γ 1  <  (s) < γ 2 , 

(1.184)

0

when this integral converges. If the Mellin transform (1.184) exists, it exists in a vertical strip in the complex  s−plane, called strip of analyticity. This means that we have convergence at  t = 0 only if  (s)  is larger than a certain value, that is,  γ 1  >  0, and at  t = ∞, only if  (s)  is smaller than a certain value, that is,  γ 2  < ∞. Thus, the domain of analyticity of  FM (s)  is the infinite stripe  γ 1  <  (s) < γ 2 such that 1



∞



|  f (t)| tγ 1−1 dt < ∞ and

|  f (t)| tγ 2−1 dt < ∞ . 

0

1

The Mellin transform of the function  f (t) =  e− pt , with  p >  0, is
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∞



 M{ e− pt;  s} =  FM(s) =

 t s−1 e− pt dt =  p− s(s), 

(1.185)

0

which is analytic in the region defined by  (s) >  0, the half-plane of complex  s. For p = 1,  (s)  is the Mellin transform of  e− t . Consider then

∞



1



∞



 (s) =

 t s−1 e− t dt =

 t s−1 e− t dt +

 t s−1 e− t dt

0

0

1

∞



∞



 (−

=

1 )n

1

+

 t s−1 e− t dt, s /

∈ Z− . 

(1.186)

 n! 

 s +  n

0

 n=0

1

This demonstrates that the right-hand side of Eq. (1.186) is analytic for all  s =

0 , −1 , −2 , . . . . In practice, it provides the analytic continuation of  (s)  to complex values of  s  for which the original definition (1.138) did not make sense [29]. The analytically continued gamma function is thus holomorphic in the whole plane except

at the points  s = − n, with  n ∈ N0, where it has simple poles, as we have demonstrated in Sect. 1.2. 

We recall that the beta function may also be defined as

∞



 t s−1

 B(s, x) =

 dt,  (s) >  0 ,  (x) >  0 . 

(1.187)

 ( 1 +  t)s+ x

0

Then, 

∞



 B(s, x −  s) =

 t s−1 ( 1 +  t)− x dt

(1.188)

0

is the Mellin transform of the function  g(t) =  ( 1 +  t)− x . In particular, for  x = 1, 1



 M{ ( 1 +  t)−1;  s} =

 t s−1 ( 1 −  t)−1 dt

0

=  B(s,  1 −  s), 

0  <  (s) <  1 . 

(1.189)

The  inverse Mellin transform  is defined for  t ∈ R+ as

 γ + i∞



 f (t) =  M−1{ FM (s);  t} = 1

 FM (s)t− sdt, γ 1  < γ < γ 2 . 

(1.190)

2 πi γ− i∞

44

1

Integral Transforms and Special Functions

 y

|

|

| |

|
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 γ

Fig. 1.8 Contour of integration in the complex plane,  x =  (z)  and  y =  (z), relevant to Eq. (1.191). The poles of  (s)  are at left of the vertical line  (s) =  γ  and are given by  s = − n, with  n ∈ N0

The integration is performed along a vertical contour defined by  (s) =  γ , chosen so that all singularities of  FM (s)  are to the left of it. This makes part of what is called a Bromwich contour and poses a few challenging questions [25]. What is the value of  γ  to be used in the integration? What happens if this value is changed? Is the inverse unique? In what case is  f (t)  a function defined for all  t? 

To try to answer to these questions by means of a concrete example, consider the

inverse of  (s)  defined above as the Mellin transform of  f (t) =  e− t . We have: γ + i∞



 e− t =  M−1{ (s);  t} = 1

 (s)t− sdt, γ >  0 . 

(1.191)

2 πi γ− i∞

To evaluate the integral, we take the rectangular contour  C  with vertices  γ ±  i R

and − γ  ±  i R, with − N < γ   < − N + 1,  N ∈ N as shown in Fig. 1.8. 

We notice that the contour of integration can be shifted to the left and the integral will only pick up the values of the residues at each pole  s = − n, with  n ∈ N0. Having in mind the residue theorem discussed in Sect. 1.1.3, we may write
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 γ + i∞



 γ + i∞

 N −1





 (s)t− sds = 2 π i

 Rn +

 (s)t− sds, − N < γ   < − N + 1 , 

 γ − i∞

 n=0

 γ − i∞

(1.192)

where  Rn  is given by (1.143), that is, 





 (−1 )n

 Rn = lim  (s +  n)(s)t− s =

 t n. 

 s→− n

 n! 

Thus, the integral in (1.192) may be rewritten as

 γ + i∞



 γ + i∞

 N −1





 (−

 (

1 )n

 s)t− sds = 2 π i

 t n +

 (s)t− sds. 

(1.193)

 n! 

 γ −

 n=

 i ∞

0

 γ − i∞

The last integral represents the remainder in the Taylor expansion of  e− t  and can be shown to vanish in the limit  N → ∞ ( γ  → −∞), if we remember the asymptotic formulas (1.158)–(1.160) [25]. Thus, from Eq. (1.193), we obtain: γ + i∞



∞

1



 (

 t n

 s)t− sds =

 (−1 )n

=  e− t, 

(1.194)

2 πi

 n! 

 γ − i∞

 n=0

as expected. 

The  Mellin convolution operator  of two functions  f (u)  and  g(u), defined for x ∈ R+, is

∞





 x

 ( f ∗  g) (x) =  f ∗  g =

 f

 g(u) du =  g ∗  f. 

(1.195)

 u

 u

0

We expect that the Mellin transform of the Mellin convolution  f ∗  g  be the product of the Mellin transforms of  f (u)  and  g(u), as we have found for the Fourier and Laplace convolution. This can be easily demonstrated as follows [30]:

∞







 M{ (

 x

 f ∗  g)(x);  s} =  M

 f

 g(u) du ;  s

 u

 u

0

⎡

⎤

∞



∞





=

 x

 xs−1 ⎣

 f

 g(u) du ⎦  dx

 u

 u

0

0


⎡

⎤

∞



∞





=

 x

 g(u) ⎣

 xs−1  f

 d x⎦  du . 

(1.196)

 u

 u

0

0
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After introducing the change of variable  x =  yu  in the integral between the brackets, Eq. (1.196) becomes

∞



∞



 M{ ( f ∗  g)(x);  s} =

 g(u)us−1 du

 ys−1  f (y)dy

0

0

=  GM(s)FM(s). 

(1.197)

It is possible to obtain a relation between the Mellin transform and the Fourier

transform as follows. If we put  t =  ex , Eq. (1.184) can be written as

∞



∞



 FM (s) =

 f (ex )ex dx =

 g(z)eszdz, 

(1.198)

0

−∞

where  g(z) =  f (ex ). Now, we recall that the Fourier transform, defined in (1.2), 

becomes here:

∞



 G(k) =

 g(z)eikzdz. 

(1.199)

−∞

Comparing (1.199) and (1.198), we see that

 FM (s) =  G(− is). 

(1.200)

We could now rewrite the integrability condition for the Fourier transform, namely, 

the existence of the integral

∞



| g(z)|2 dz, 

(1.201)

−∞

to the requirement of the existence of the integral

∞



|

 d x

 f (x)|2

 , 

(1.202)

 x

−∞

as the integrability condition for the Mellin transform [3]. 

A very useful property of the Mellin transform is the displacement, obtained from

the transform of  tα f (t):

∞



 M{ tα f (t);  s} =

 f (t)ts+ α−1 dt =  M{  f (t);  s +  α} . 

(1.203)

0
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It can be used as a recurrence relation in connection with the Mellin transform of the derivative of  f (t), that is,  f ( 1 )(t) =  d f (t)/dt, as follows:

∞





 M{

 d f

 f ( 1 )(t);  s} =

 t s−1 dt

 dt

0

∞

∞



=  ts−1  f (t) −  (s − 1 ) f (t)ts−2 dt

0

0

= − (s − 1 )M{  f (t);  s − 1} . 

(1.204)

This result is valid if we assume that  f (t)  and  (s)  are such that the first term, when evaluated in the indicated extremes, vanishes. Then, the Mellin transform of the first derivative of  f (t)  is

 M{  f ( 1 )(t);  s} = − (s − 1 )M{  f (t);  s − 1} . 

(1.205)

For the second derivative, under the same conditions of the previous results, we may

write:

 M{  f ( 2 )(t);  s} =  (s − 1 )(s − 2 )FM(s − 2 ), (1.206)

such that, by recurrence, for the  n−derivate we may establish that

 (

 M{

 s)

 f (n)(t);  s} =  (−1 )n

 F

 (

 M (s −  n). 

(1.207)

 s −  n)

In contrast to Fourier and Laplace transformations, that were introduced to solve

physical problems, the Mellin transform arose in a purely mathematical context [25]

and finds a natural application in the problems with anomalous relaxation and diffu-

sion problems. 

Let us briefly discuss a simple useful application of the Mellin transform in solv-

ing important problems of mathematical physics. Consider the following diffusion

equation:





 ∂

 ∂

 ρ(x, t) =

 D| x|− θ ∂ ρ(r, t) , 

(1.208)

 ∂t

 ∂x

 ∂x

in which  D  is constant and  θ ∈ R. To solve it, we propose a solution in the form





|

 ρ(

 x|

 x, t) =

1

 P

 , 

 (t)

 (t)
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in order to transform the partial differential equation (1.208) into the two following ordinary differential equations:

[ (t)]1+ θ d (t) =  k

(1.209)

 dt





−  d

 d

 k

 (z P(z)) =  D

 D| z|− θ d P(z)

 , 

(1.210)

 d z

 d z

 d z

where  k  is a separation constant, related to the normalization condition. The solution 1

for the time-dependent equation is given by  (t) = [ ( 2 +  θ)kt] 2+ θ . For the equation related to the spatial variable, we may simplify it to

 d

 D

 P(z) = − kz| z| θ P(z), 

(1.211)

 d z

which, after applying the Mellin transform, becomes

 D(s − 1 )M{ P(z);  s − 1} =  kM{ P(z);  s + 1 +  θ}  , (1.212)

The solution for this equation is formally given by









 (

 s

2+ θ

 M{

2 +  θ)D

 s

 P(z);  s} =

1

 

 . 

(1.213)

2 +  θ

 k

2 +  θ

By performing the inverse of Mellin transform, we have

 γ + i∞





 s





1

 ( 2 +  θ)D  2+ θ

 s

 P(z) =

1

 dsz− s

 

(1.214)

2 +  θ  2 πi

 k

2 +  θ

 γ − i∞

 γ + i∞





− s

= 1

 kz 2+ θ

 ds

  (s) =  e−  kz 2+ θ

 ( 2+ θ)D . 

(1.215)

2 πi

 ( 2 +  θ)D

 γ − i∞

In view of the previous results, the solution of the diffusion equation (1.208) is expressed in terms of the stretched exponential in the form:





 ρ(x, t) =

1

exp −

 k| x|2+ θ

 . 

(1.216)

1

[ ( 2 +  θ)kt]

 (

2+ θ

2 +  θ) 2 k Dt

The problem is formally solved because, as stressed above, the constant  k  may be defined by the normalization of the probability distribution. 
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This section is dedicated to review some general aspects and useful properties of

special functions more strictly related to the fractional calculus. We restrict our

analysis to those special functions more frequently employed to express the solutions of the mathematical and physical problems arising in the description of diffusion and stochastic processes. 

 1.3.1

 The Functions of the Mittag-Leffler Type

The Mittag-Leffler type functions arise naturally in the solution of fractional order integral equations or fractional order differential equations. They can be found in

the investigation of the fractional generalizations of the kinetic equations, random

walks, Lévy flights, superdiffusive transports, and in the study of electrical response of complex fluids, in general [30, 31]. Due to their importance in these fractional applications, the classical Mittag-Leffler function was called the “queen function” of the fractional calculus [32]. It is reasonable to accept this kind denomination, but, by justice, the gamma function should be named as the “mother function” of the fractional calculus! The Mittag-Leffler functions present a characteristic that makes them well-tailored to the study of anomalous diffusion or relaxation processes, because

they interpolate between a purely exponential law and a power-like behavior [30]. 

In addition, their integral transforms are usually known, which makes them very

important also in solving differential equations, since the inverses are more easy to identify. For a detailed account of properties, generalization, and applications some important works may be consulted, starting perhaps with the recent survey made by

Haubold, Mathai, and Saxena [33], and references contained therein, followed by the extensive and up-to-date study of Mittag-Leffler functions, related topics, and

applications, organized by Gorenflo et al. [34] that also contains a concise but very informative historical overview. 

1.3.1.1

The Classical Mittag-Leffler Function

The Mittag-Leffler function was introduced in the beginning of the twentieth century

(between 1899 and 1905) by the Swedish mathematician Gösta Magnus Mittag-

Leffler, born on March 16, 1846, in Stockholm, and died on July 7, 1927. The

function was introduced in a series of five notes, starting with an investigation of the Laplace-Abel integral [35–39]. The one-parameter Mittag-Leffler function is defined by the series representation, convergent in the whole complex plane, as

∞



 zk

E α(z) =

 , z ∈ C , α ∈ C ,  (α) >  0 . 

(1.217)

 (αk + 1 )

 k=0
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It was originally introduced for one positive parameter  α, but soon was generalized with two complex parameters  α  and  β, by Wiman [40, 41]. It provides a simple generalization of the exponential function because of the substitution

 k! =  (k + 1 )

⇐⇒  (αk)! =  (αk + 1 ). 

Indeed, for  α = 1, Eq. (1.217) reduces to

∞



∞

 zk

 zk

E1 (z) =

=

=  ez. 

(1.218)

 (k + 1 )

 k! 

 k=0

 k=0

For  α = 2, we have

∞



∞

√

 zk

 ( z) 2 k

√

E2 (z) =

=

= cosh ( z), 

(1.219)

 ( 2 k + 1 )

 ( 2 k)! 

 k=0

 k=0

that is E2 (z 2 ) = cosh (z), etc. 

A particularly important case is the one for  α = 1 / 2, which can be written as

∞



 zk

E1 / 2 (z) =

=  ez 2erfc (− z), 

(1.220)

 (k/ 2 + 1 )

 k=0

where

erfc (z) = 1 − erf (z), 

 z ∈ C , 

(1.221)

is the  complementary error function, and

 z



erf (z) = 2

√

 e− u 2  du

(1.222)

 π  0

is the  error function [16]. This case has the asymptotic estimate [7]:

 π

E1 / 2 (z) ≈ 2 ez 2 , 

| z| → ∞; | arg (z)|  < , 

4

which may be obtained from the general expression for  n ∈ N:

⎡

⎤

 z







 n−1

 tk−1

E

⎣

⎦

1 /n (z) =  ezn

1 +  n

 e− tn

 dt

 , 

 n = 1 . 

 (k/n)

0

 k=1

In Fig. 1.9, a simple illustrative behavior of the exponential function  f (z) =  e− z  and E1 / 2 (− z)  is shown for comparative purposes. We notice that for large values of  z  the
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Fig. 1.9 Illustrative comparison between the behavior of  f (z) =  e− z (dashed) and  f (z) =

E1 / 2 (− z) (solid) showing the faster decay of the former as | z| → ∞

exponential decays faster than the Mittag-Leffler function, which presents instead a

slower power-law-like behavior, while for  z <  1 the converse is true. 

For  α >  0 and  z ∈ C, a Mellin-Barnes representation of the Mittag-Leffler function may be defined as follows [7]:

 γ + i∞

 (s)( 1 −  s)

E α(z) = 1

 (− z)− s ds, 

| arg (z)|  < π. 

(1.223)

2 πi

 ( 1 −  αs)

 γ − i∞

The path of integration separates all the poles at  s = − k, with  k ∈ N0, to the left and all the poles at  s =  n + 1, with  n ∈ N0, to the right. The proof of this lemma uses the Mellin-Barnes contour integral. 

Mellin-Barnes integrals have been discovered by Salvatore Pincherle (1853–1936)

in 1888. These integrals are based on the duality principle between linear differential equations and linear difference equations with rational coefficients. They have been

investigated by R. Mellin, in 1910, and have also been used in the development of

the theory of hypergeometric function by Ernest Barnes (1874–1953). In the year

1946, integrals of this kind were used by Meijer to introduce the G−function into

mathematical analysis. In 1961, Charles Fox (1897–1977) defined a new function

involving Mellin-Barnes integrals. It is the H−function of Fox, to be discussed in

Sect. 1.3.3. 

Now, if we want to evaluate the Mellin-Barnes integral giving E α(z)  in (1.223) we may proceed in a way similar to the one we described in some examples of Sect. 1.1.3. 
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Let us consider again that the poles of  (s)  may be given as  s = − ν, with  ν ∈ N0. 

Then using the same contour of Fig. 1.8, we may write directly

! 

∞





" 

 (s +  ν)(s)( 1 −  s)

E α(z) = 1

2 πi

lim

 (− z)− s

2 πi

 s→− ν

 ( 1 −  αs)

 ν=0

∞

 (−

 (ν +

=

1 )ν

1 ) (−1 )νzν

 ν!  ( 1 +  αν)

 ν=0

∞



=

 zν

 (αν + 1 )

 ν=0  



=

 ( 0 ,  1 )

H1 ,  1 − z 

 , 

(1.224)

1 ,  2

 ( 0 ,  1 ), ( 0 , α)

in which we have used Eq. (1.143). This result shows that the Mittag-Leffler function may be viewed as a special case of the H−function of Fox and, conversely, that this

function may also be defined in terms of a Mellin-Barnes representation. 

Equation (1.223) permits us to obtain the Mellin transform of the Mittag-Leffler function:

 (

 M{

 s)( 1 −  s)

E α(− t);  s} =

=  F

 (

 M (s), 

0  <  (s) <  1 , 

(1.225)

1 −  αs)

if we recognize that  FM (s)  here is the integrand in the inverse transform defined by (1.190). The most interesting properties of the Mittag-Leffler functions are associated with their asymptotic behavior as | z| → ∞. For instance, 

 N −1







 z− n

E α(z) = −

+  O(| z|− N ), | arg (− z)|  <  1 − 1 α π. (1.226) ( 1 −  αn)

2

 n=1

1.3.1.2

Generalized Mittag-Leffler Functions

The two-parameter function of the Mittag-Leffler type is defined as

∞



 zk

E α,β(z) =

 , z  and  β ∈ C ,  (α) >  0 . 

(1.227)

 (αk +  β)

 k=0

This function first appeared in the work of Wiman, who did not paid much attention to its extension [40]. It has been studied, among others, by Wiman [41], Agarwal [42], Humbert [43], Humbert and Agarwal [44], and independently by Dzherbashyan [45]. 

The basic properties are discussed in the reference works of Erdélyi [46] and Saxena et al. [47]. It is obtained by replacing 1 →  β  in the argument of the gamma function
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in the definition of E α(z), given by (1.217). Indeed, when  β = 1, it reduces to

∞



 zk

E α,  1 (z) =

= E

 (α

 α(z), 

(1.228)

 k + 1 )

 k=0

and when  α = 1 and  β = 1, we have

∞



 zk

E1 ,  1 (z) =

= E

 (

1 (z) =  ez . 

(1.229)

 k + 1 )

 k=0

The function E α,β(z)  has the following representation in terms of Mellin-Barnes integral:

 γ + i∞

 (s)( 1 −  s)

E α,β(z) = 1

 (− z)− s ds, 

| arg (z)|  < π. 

(1.230)

2 πi

 (β −  αs)

 γ − i∞

The integral may be evaluated in the same way as the one employed in Eq. (1.224), 

the only difference being the presence of  (β +  αν)  in the final result. Following the procedure sketched before, we obtain:

! 

∞





" 

 (s +  ν)(s)( 1 −  s)

E α,β(z) = 1

2 πi

lim

 (− z)− s

2 πi

 s→− ν

 (β −  αs)

 ν=0

∞



=

 zν

 (β +  αν)

 k=0  



=

 ( 0 ,  1 )

H1 ,  1 − z 

 , 

(1.231)

1 ,  2

 ( 0 ,  1 ), ( 1 −  β, α)

in which we have used again Eq. (1.143). In addition, we notice a connection with the H−function of Fox and also with the Mellin transform, because

 (

 M{

 s)( 1 −  s)

E α,β(− t);  s} =

 ,  0  <  (s) <  1 . 

(1.232)

 (β −  αs)

The asymptotic behavior for | z| → ∞ may be given as

 N







1

1

1

E α,β(z) = −

+  O

 , 

(1.233)

 (β −  αk) zk

 z N+1

 k=1

for  μ ≤ | arg (z)| ≤  π, with  πα/ 2  < μ <  min[ π, πα] . 

A generalization of the Mittag-Leffler function of  z ∈ C, involving the parameters α,  β, and  γ ∈ C, was proposed in the form [48]:
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∞



 γ

 (γ )kzk

E α,β(z) =

 k!  (β +  αk)

 k=0

∞



 (γ +

= 1

 k)zk

 ,  (α) >  0 ,  (β) >  0 . 

 (γ )

 (k + 1 )(αk +  β)

 k=0

(1.234)

For  γ = 1, it becomes E1 α,β(z) = E α,β(z); For  γ =  β = 1, it coincides with the classical Mittag-Leffler function: E1 α, (z) = E

1

 α(z). For  α = 1, it is connected with the

Kummer confluent hypergeometric function

∞



 (γ +  k)(β)

 γ

1F1 (γ ;  β ;  z) =

 zk =  (β) E

 (γ )(β +  k)(k + 1 )

1 ,β (z). 

(1.235)

 k=0

It is also possible to show that its Mellin transform is

 (

 M{  γ

 s)(γ −  s)

E α,β(− t);  s} = 1

 ,  0  <  (s) <  (γ ). 

(1.236)

 (γ ) (β −  αs)

 γ

When  α >  0, it is possible to express E α,β(z)  in terms of a Mellin-Barnes contour integral as done previously for E α,β(z)  and E α(z). It is

 c+ i∞



 γ

1

 (s)(γ −  s)

E α,β(z) = 1

 (− z)− sds,  (γ ) >  0 . 

(1.237)

2 πi (γ )

 (β −  αs)

 c− i∞

It is valid for  (z) >  0, | arg (− z)|  < π, and  c  is the vertical contour such that 0  < c <  (γ )  and it is assumed that the poles of  (s)  and  (γ −  s)  are separated by the contour. This permits us to evaluate the complex integral as we have done before. 

The poles at the left are the ones of  (s), that is,  s = − k,  k ∈ N0, while the poles at the right are the ones of  (γ −  s), that is,  s =  n +  γ , with  n ∈ N0. The integral in Eq. (1.237) can be evaluated as the sum of the residues at the poles on the left. We thus obtain

 c+ i∞



∞





1

 (s)(γ −  s)



 (

 (−

 s +  k)(s)(γ −  s)(− z)− s

 z)− sds =

lim

2 πi

 (β −  αs)

 s→− k

 (β −  αs)

 c− i∞

 k=0

∞

 (−

 (γ +

=

1 )k

 k) (− z)k

 k! 

 (β +  αk)

 k=0

∞



 (γ )

=  (γ )

 k

 zk

 (β +  αk) k! 

 k=0

=  (γ ) γ

E α,β(z), 

(1.238)
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 γ

in which we have used again Eq. (1.143). The function E α,β(z)  is a special case of the Wright hypergeometric function,  pψq(z), because





 (γ ) γ

 (γ,  1 )

E α,β(z) = 1 ψ 1  (β, α);  z , 

(1.239)

and is also a special case of the H−function of Fox:





 (γ ) γ

 ( 1 −  γ,  1 )

E



 α,β (− z) = H1 ,  1  z

 ,  (γ ) >  0 . 

(1.240)

1 ,  2

 ( 0 ,  1 ), ( 1 −  β, α)

 γ

A class of Laplace transform of E α,β(z)  is

 L{

 γ

 t β−1E α,β(atα);  s} =  s− β( 1 −  as− α)− γ , (1.241)

which, for  γ = 1, reduces to

 L{ tβ−1E α,β(atα);  s} =  s− β( 1 −  as− α)−1 . 

(1.242)

The above results are defined for  s ∈ C, with  (s) >  0;  a ∈ C, | as− α|  <  1,  (α) > 0, and  (β) >  0 and can be used as some kind of table to obtain specific results for the different values of the parameters [33]. A series of useful results dealing with the reducibility, differentiation, integral properties, as well as other integral transformations involving the generalized Mittag-Leffler function may be found in

the texts of Mathai and Haubold [49] and Gorenflo et al. [34] listed at the end of the book. 

 1.3.2

 The Wright Function

The Wright generalized hypergeometric function is defined as





∞



 (ap, Ap)

 p ψq (z) =  p ψq

 z   (

=

 c

 b

 n zn

 q , Bq )

 n=0

∞

# p (a

=

 j =1

 j +  n A j )

#

 zn , 

 q

(1.243)

 (b

 n! 

 n=0

 j =1

 j +  n B j )

with  (ai , b j ) ∈ C,  (Ai , B j ) ∈ R;  Ai , B j = 0,  i = 1 ,  2 , . . . , p;  j = 1 ,  2 , . . . , q, q



 p



 B j −

 A j > −1 . 

 j =1

 j =1
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This function is in proximity of the H−function of Fox, to be introduced in the next

section, but nearly all the Mittag-Leffler functions and their generalizations can be expressed in terms of it. The particular case





− −

W (α;  β;  z) =



0 ψ 1

 z   (β, α)

∞



=

 zk

 , (z, β) ∈ C , α > −1 , 

(1.244)

 k!  (αk +  β)

 k=0

is known as the Wright function. It was introduced and named after the British math-

ematician Edward Maitland Wright (1906–2005). The definition of this function was

originally connected with the investigations of Wright about the asymptotic behavior

of partitions, but recently it appeared in the investigation of partial differential equations of fractional order [50–52]. A detailed investigation of the role of this function, together with its applications and analytical properties, may be found in the work of Gorenflo et al. [53]. If  α > −1, the series in (1.244) is absolutely convergent for all z ∈  C  and is also an entire function. When  α = 0, we obtain

W ( 0 , β;  z) =  ez . 

(1.245)

 (β)

When  α = 1 and  β =  ν + 1, the Wright function may be expressed in terms of the Bessel function, J ν(z), and the modified Bessel function, I ν(z), respectively, as 2  ν

2  ν

W 1 , ν + 1; −  z 2

=

J ν(z)  and W 1 , ν + 1;  z 2

=

I ν(z). 

4

 z

4

 z

(1.246)

The time-fractional diffusion equation in the Caputo sense, which will be analyzed in Sect. 5.1, as a particular case of the space-time fractional diffusion equation, may be studied by using two functions originally introduced by F. Mainardi and named F ν(z) and M ν(z), for 0  < ν <  1, which are inter-related through F ν(z) =  νz  M ν(z) [54]. 

They are represented, respectively, as

∞

 (−

∞

 z)n

 (− z)n−1

F ν(z) =

= 1

 (νn + 1 )  sin (πνn)

(1.247)

 n!  (− νn)

 π

 n! 

 n=1

 n=1

and

∞



 (−

∞

 z)n

 (− z)n−1

M ν(z) =

= 1

 (νn)  sin (πνn). (1.248)

 n!  [− νn +  ( 1 −  ν)]

 π

 (n − 1 )! 

 n=1

 n=1

The M-Wright function, M ν(z), is also referred to as the Mainardi function and plays an important role in studying stochastic processes. It can be also related to the
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Mittag-Leffler function of one-parameter by means of the Laplace integral transform

as [55]:

∞



∞

 (− s)n

 e− st  M α(t) dt =

= E

 (α

 α(− s), 

0  < α <  1 . 

(1.249)

 n + 1 )

0

 n=0

It can be also proved that M1 /q(z)  satisfies the differential equation

 dq−1

 (−1 )q

M1 /q(z) +

 z M1 /q(z) = 0 , q ∈ N . 

(1.250)

 d zq−1

 q

The Wright function can also be represented in terms of the Mellin-Barnes contour

integral



 (s)

W (α, β;  z) = 1

 (− z)− s ds, 

(1.251)

2 πi

 (β −  αs)

 C

where  C  is the path of integration that separates all the poles at  s = − k  to the left, as in the preceding cases. The integral may be evaluated by using the residue theorem

as we have done, for instance, to obtain Eq. (1.192), such that



 (

∞

 s)

 (−

 (−

 (−

1 )k

1 )k zk

 z)− s ds = 2 πi

 , 

(1.252)

 (β −  αs)

 k! 

 (αk +  β)

 C

 k=0

which yields the result stated in Eq. (1.244). The representation (1.251) is helpful to obtain the Mellin transform of (1.244) as

 (

 M{

 s)

W (α, β;  z);  s} =

 , 

 (α) >  0 . 

(1.253)

 (β −  αs)

The Laplace transform of (1.244) is given in terms of the Mittag-Leffler function (1.227), that is, 

∞



 L{W (α, β; ± t);  s} =

 e− st  W (α, β; ± t)dt

0

∞



∞



 (±

=

1 )k

 e− st t k dt

 k!  (αk +  β)

 k=0

0

∞

 (±

= 1

 s−1 )k , 

(1.254)

 s

 (αk +  β)

 k=0
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which, in short, becomes:





 L{W (α, β; ± t);  s} = 1E α,β ±1  , 

 α >  0;  β ∈ C ,  (s) >  0 . (1.255)

 s

 s

For −1  < α <  0, it is possible to show that [53]:

 L{W (α, β; − t);  s} = E− α,β− α(− s). 

(1.256)

The asymptotic behavior of W (α, β;  z)  at infinity is given by







W (α, β;  z) =  a 0 (αz)( 1− β)/( 1+ α)  exp 1 + 1  (αz) 1 /( 1+ α)

 α

! 



" 

1 /( 1+ α)

×

1

1 +  O

 , z → ∞ , 

(1.257)

 z

for  z ∈ C, | arg (z)| ≤  π −  ε ( 0  < ε < π), and  a 0 = [2 π(α + 1 )]−1 / 2. For  α > −1, the Wright function is a particular case of the H−function of Fox, which will be

discussed in the next section, as

$



%

W (α, β;  z) = H1 0 − z −−

 , 

(1.258)

0 2

 ( 0 ,  1 ),( 1− β,α)

and can also be represented in terms of the generalized hypergeometric function [56]. 

When  α =  μ,  β =  ν + 1, and  z → − z, the function W (α, β;  z)  becomes

∞



1

 (− z)k

J μ

 ν (z) = W (α, ν + 1; − z) =

 , 

 (μk +  ν + 1 ) k! 

 k=0

which is known as the Bessel-Wright function, or the Wright generalized Bessel

function [7]. Finally, we may notice that for  α =  β = −1 / 2, and  z → − z, we have W − 1  , − 1 ; − z = 1

√  e− z 2 / 4 , 

2

2

 π

which, together with previous results, suggest that the Wright function is a general-

ization of the exponential and the Bessel functions. 

 1.3.3

 The H− Function of Fox

The H−function of Fox was introduced in 1961 by Charles Fox as a generalization

of the MacRobert’s E−function, the Wright function and the Meijer G−function
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[57–59]. It is of crucial importance in fractional calculus because it includes almost all the special functions of applied mathematics as particular cases and are very useful to treat several phenomena including anomalous diffusion in a unified and elegant

framework. The importance of this function is realized by the scientists, engineers and statisticians due to the vast potential of its applications in various fields of science and engineering. Since it can be regarded as the extreme generalization of the generalized hypergeometric function  p F q , beyond the G−function, we start our brief discussion with this function. 

1.3.3.1

The Meijer G−function

The G−function was introduced by Cornelis Simon Meijer (1904–1974) in 1936, 

using a series representation [60]. It is a general function including most of the known special functions as particular cases. A more recently used definition is [46, 61–64]:





 a

G m,n(z) = G m,n z  1 , a 2 , . . . , ap

 p,q

 p,q

 b 1 , b 2 , . . . , bq

$

% $

%



#

#

 m

 (b

 n

 j +  s)

 ( 1 −  aj −  s)

= 1

 j =1

 j =1

$

% $

%  z− sds, 

2 πi

#

#

 q

 ( 1 −  b

 p

 (a

 L

 j = m+1

 j −  s)

 j = n+1

 j +  s)

(1.259)

where  L  is a contour separating the poles of  (b j +  s),  j = 1 , . . . , m, from those of ( 1 −  aj −  s),  j = 1 , . . . , n. The simplified conditions for the existence of G m,n(z) p,q

are the following [58]:

(i)  q ≥ 1,  q > p, ∀ z = 0; 

(ii)  q ≥ 1,  q =  p, | z|  <  1; 

(iii)  p ≥ 1,  p > q, ∀ z = 0; 

(iv)  p ≥ 1,  p =  q, | z|  >  1. 

There are suitable contours to be chosen according to the poles of the gamma func-

tions in the numerator of (1.259). This aspect of the problem will be discussed in the next section, in connection with the definition of the H−function. Here, for illustrative purposes, we consider the particular case  m = 1,  n = 2,  p =  q = 2 corresponding to the condition (ii) above, that is, for | z|  <  1. 

We have to evaluate







1 ,  1

 ( 1 +  s)(− s) 2

G1 ,  2  z 

= 1

 z− s ds, 

(1.260)

2 ,  2

1 ,  0

2 πi

 ( 1 −  s)

 L
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Fig. 1.10 A possible contour of integration in the complex plane,  x =  (z)  and  y =  (z), for Eq. (1.260). The poles of  ( 1 +  s)  are on the left, where the contour will be closed because  a 1 =  a 2 = 1,  b 1 = 1, and  b 2 = 0. The poles of  ( 1 +  s)  are at  s = − k − 1, k = 0 ,  1 ,  2  . . .  whereas the poles of  (− s)  are at  s =  n,  n = 0 ,  1 ,  2 , . . .  as shown in

Fig. 1.10. Using the residue theorem, Eq. (1.106), we may write:



∞



 f (s)ds = 2 πi

Res  f (s = − k − 1 )

 L

 k=0

∞

 (−  (

=

1 )k

 k + 1 ) 2

2 πi

 k! 

 (k + 2 )

 k=0

∞

 (−

=

1 )k zk+1

2 πi

 , 

(1.261)

 k + 1

 k=0

which gives for Eq. (1.260) the particular result:





1 ,  1

G1 ,  2  z 

= log ( 1 +  z), | z|  <  1 . 

2 ,  2

1 ,  0
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Some cases may be written in terms of the integral representation [65] as follows. 







−−

 (b 1 +  s)

G1 ,  0  z 

= 1

 z− s ds, 

(1.262)

0 ,  2

 b 1 , b 2

2 πi

 ( 1 −  b 2 −  s)

 L

from which we obtain for  b 1 = 0 and  b 2 = 1 / 2, when  z →  z 2 / 4, 

√ 



1

 (s)

cos  z =

 π

 z−2  s ds, 

(1.263)

2 πi

4− s ( 1 / 2 −  s)

 L

as well as for  b 1 = 1 / 2 and  b 2 = 0, when  z →  z 2 / 4:

√ 



1

 ( 1 / 2 +  s)

sin  z =

 π

 z−2  s ds. 

(1.264)

2 πi

4− s ( 1 −  s)

 L

For  a 1 = 0, we have







 a

 (b 1 +  s)( 1 −  a 1 −  s)

G1 ,  1  z  1

= 1

 z− s ds. 

(1.265)

1 ,  2

 b 1 , b 2

2 πi

 ( 1 −  b 2 −  s)

 L

For  b 2 = 0, we have





 a

G1 ,  1  z  1

= 1

 (b

1 ,  1

 b

1 +  s)( 1 −  a 1 −  s)z− s ds. 

(1.266)

1

2 πi L

Other particular and useful results are:





G1 ,  0 − z  0 =  e− z, 

(1.267)

0 ,  1







1 −  α

G1 ,  1 − z 

=  (α)( 1 −  z)− α, 

(1.268)

1 ,  1

0

and





1

G1 ,  1 − z 

=  z . 

(1.269)

1 ,  1

1

1 −  z

Other elementary functions can be expressed in terms of G−functions [66]. The same is true for the H−function of Fox, as we shall discuss now. 
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1.3.3.2

The H−function of Fox

It is a generalization of the G−function, and is defined by means of the Mellin-Barnes type integral in the following manner:









 (a

 (a

H m,n(z) = H m,n z 

 p , . . . , A p )

= H m,n z  1 , A 1 ) . . . (ap, Ap)

 p,q

 p,q

 (b

 p,q



 q , . . . , Bq

 (b 1 , B 1 ) . . . (bq, Bq)

$

% $

%



#

#

 m

 (b

 n

 j +  B j s)

 ( 1 −  aj −  A js)

= 1

 j =1

 j =1

$

% $

%  z− sds, 

2 πi

#

#

 q

 ( 1 −  b

 p

 (a

 L

 j = m+1

 j −  B j s)

 j = n+1

 j +  A j s)

(1.270)

in which







 z− s = exp − s  log | z| +  i  arg (z) . 

The other parameters are  m, n, p, q ∈ N0, with 1 ≤  m ≤  q, 0 ≤  n ≤  p,  (Ai , B j ) ∈

R+,  (ai, bj) ∈ C;  i = 1 ,  2 , . . . , p  and  j = 1 ,  2 , . . . , q. The contours of integration L  are similar to the ones employed for the G−function. They have to be chosen in such a way to separate the poles of  (b j +  B j s), for  j = 1 ,  2 , . . . , m, from those of ( 1 −  aj −  A js), for  j = 1 ,  2 , . . . , n. In the special case in which  Ai = 1 and  Bj =

1, the H−function defined in (1.270) reduces to the G−function defined in (1.259). 

Due to the presence of  z− s  in the integrand, the H−function is, in general, multivalued, but it can be made single-valued on the Riemann surface of log (z)  by a suitable choice of the branch. 

In general, there are three possible choices for the contour  L. They are illustrated in Figs. 1.11, 1.12, and 1.13, for the particular case  m = 1,  n = 2, with Al =  B j = 1, which corresponds also to the limit in which the H−function reduces to the G−function. For the contour  L =  L−∞ illustrated in Fig. 1.11, the integral converges ∀ z = 0, if  p < q, and for | z|  <  1, if  p =  q = 1. For the contour  L =  L∞, as illustrated in the particular case of Fig. 1.12, the convergence is assured ∀ z = 0 if p > q, and for | z|  >  1, if  p =  q ≥ 1. Finally, for the contour illustrated in Fig. 1.13, 

the integral converges if  p +  q <  2 (m +  n)  and | arg (z)|  < m +  n − 1 / 2 ( p +  q)π, which are the existence conditions already discussed for the G−function. Likewise, 

the set of existence conditions for the H−function may be established in general by

introducing the quantities:

 q



 p



 μ =

 B j −

 A j

(1.271)

 j =1

 j =1

and

⎛

⎞ ⎛

⎞

 p



 q



 ν = ⎝

 A A j ⎠ ⎝

− Bj ⎠

 j

 B j

 , 

(1.272)

 j =1

 j =1
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 y

 x

Fig. 1.11 The contour  L =  L−∞ in the complex plane,  x =  (z)  and  y =  (z). It is a loop starting at −∞ +  iϕ 1 and terminating at −∞ +  iϕ 2, with −∞  < ϕ 1  < ϕ 2  < ∞. It embodies all the poles of (bj +  s), with  j = 1 ,  2 , . . . , m (  j = 1 in this particular example), because it follows the positive direction, and does not embody the poles of  ( 1 −  al −  s), with  l = 1 ,  2 , . . . , n ( l = 1 ,  2 in this example)

and are the following:

(i)  q ≥ 1,  μ >  0, ∀ z = 0; 

(ii)  q ≥ 1,  μ = 0, | z|  < ν−1; 

(iii)  p ≥ 1,  μ <  0, ∀ z = 0; 

(iv)  p ≥ 1,  μ = 0, | z|  > ν−1. 

As a generalization of the G−function, the H−function of Fox contains as particular

cases most of the special functions of applied mathematics. It embodies a class

of functions that is greater than the class of Mittag-Leffler functions, and may be

rewritten in the particular form







 ( 1 −  γ,  1 )

 γ

H1 ,  1 (− z) = H1 ,  1 − z 

=  (γ ) E

1 ,  2

1 ,  2

 ( 0 ,  1 ), ( 1 −  β, α)

 α,β (z). 

(1.273)

For  γ = 1, 







 ( 0 ,  1 )

H1 ,  1 (− z) = H1 ,  1 − z 

= E1

1 ,  2

1 ,  2

 ( 0 ,  1 ), ( 1 −  β, α)

 α,β (z) = E α,β (z); 

(1.274)
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 y

 x

Fig. 1.12 The contour  L =  L∞ in the complex plane,  x =  (z)  and  y =  (z), is a loop starting at ∞ +  iϕ 1 and terminating at ∞ +  iϕ 2, with −∞  < ϕ 1  < ϕ 2  < ∞. It embodies all the poles of ( 1 −  al −  s), with  l = 1 ,  2 , . . . , n ( l = 1 ,  2 in this particular example), because it follows the negative direction, and does not embody the poles of  (b j +  s), with  j = 1 ,  2 , . . . , m (  j = 1 in this example)

for  β =  γ = 1, 







 ( 0 ,  1 )

H1 ,  1 (− z) = H1 ,  1 − z 

= E1  (z) = E

1 ,  2

1 ,  2

 ( 0 ,  1 ), ( 0 , α)

 α,  1

 α,  1 (z) = E α(z); 

(1.275)

for  α =  β =  γ = 1, we finally obtain







 ( 0 ,  1 )

H1 ,  1 (− z) = H1 ,  1 − z 

= E

1 ,  2

1 ,  2

 ( 0 ,  1 ), ( 0 ,  1 )

1 (z) =  ez , 

(1.276)

which is also a very complicated manner to define the exponential function! 

There are many other special cases of interest. For instance, let us consider an

emblematic case:
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 y
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Fig. 1.13 Contour  L =  Liξ∞ in the complex plane,  x =  (z)  and  y =  (z), starts at a point ξ −  i∞ and terminates at  ξ +  i∞, in which  ξ ∈ R ( ξ = 0 in this particular example), such that the poles of  (b j +  s), with  j = 1 ,  2 , . . . , m (  j = 1 in this example) are separated from the poles of ( 1 −  al −  s), with  l = 1 ,  2 , . . . , n ( l = 1 ,  2 in this example) ( 1 −  z)− a = 1F0 (a; ;  z) 



= 1

 ( 1 −  a,  1 )

H1 ,  1 − z 

 (a)  1 ,  2

 ( 0 ,  1 ), ( 0 ,  1 )







= 1

1 −  a

G1 ,  1 − z 

 , 

(1.277)

 (a)  1 ,  2

0

which is also a particular case of the fundamental relation with the generalized

hypergeometric function [7, 67]:

 p  F q(a 1 , ···  ,ap;  b 1 , ···  ,bq ;  z)

# q (







 b



=

 j =1

 j )

#

−   ( 1 −  a 1 ,  1 ), . . . , ( 1 −  ap,  1 )

 p

H1 ,p

 z

 (a

 p,q+1

 ( 0 ,  1 ), ( 1 −  b

 j =1

 j )

1 ,  1 ), . . . , ( 1 −  bq ,  1 )

(1.278)

# q (







 b



=

 j =1

 j )

#

−  1 −  a 1 , . . . ,  1 −  ap

 . 

 p

G1 ,p

 z

 (a

 p,q+1

0 ,  1 −  b

 j =1

 j )

1 , . . . ,  1 −  bq
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 C

 θ

 L

ˆn

 m

 A

 B

 −m  sin  θ

 s

 m

 O

Fig. 1.14 The simple pendulum. The unit vector n is tangent to the arc length  s  between  O  and the instantaneous position of the particle in  B

To illustrate a usual context in which this formalism exhibits its generality, con-

sider the classical problem of a simple pendulum, that is, a point mass  m  attached to one end of a massless cord of length  L, and the other end fixed at a point  C  such that the system swings freely under gravity, as shown in Fig. 1.14. 

From Fig. 1.14, we easily deduce that

 O A =  OC −  AC =  L −  L  cos  θ =  L( 1 − cos  θ). 

(1.279)

Using the conservation of the energy, the total constant energy  E  is given by ds  2

 E =  mgL( 1 − cos  θ) + 1  m

 . 

(1.280)

2

 dt

Since  s =  Lθ, Eq. (1.280) becomes





 dθ  2

 E =  mgL( 1 − cos  θ) + 1  m L 2

 . 

(1.281)

2

 dt

Upon requiring that  dθ/dt = 0 at  θ =  θ 0, we deduce that  E =  mgL( 1 − cos  θ 0 ), and, then



 dθ = 2 g( cos θ − cos θ 0 ). 

(1.282)

 dt

 L
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Integration of (1.282) gives the period of oscillation,  T , as L

1

 θ 0

 T = 2 π

2F1

; 1; 1; sin2

 g

2 2

2









 θ



=

 L

0

 ( 1 / 2 ,  1 ), ( 1 / 2 ,  1 )

2

H1 ,  1 − sin2



 g

2 ,  2

2

 ( 0 ,  1 ), ( 0 ,  1 )









 θ



=

 L

0

1 / 2 ,  1 / 2

2

G1 ,  2 − sin2



 , 

(1.283)

 g
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in which we have used the useful and particular cases of Eq. (1.278), connecting the Gauss hypergeometric function with the H–function:
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 (a)(b)  2 ,  2

0 ,  1 −  c

Finally, let us recall the asymptotic behavior of the H−function of Fox, when  n = 0, which is given by [68]:

$ 

%





H m,  0  z  (aj,Aj) ∼  F zγ/μ  exp − μ(zν) 1 /μ

(1.285)

 p,q

 (bj,Bj)

for large | z|, uniformly on every closed sector contained in | arg (z)|  < μ π/ 2, where q



 p



 γ =

 b j −

 a j +  p −  q + 1

(1.286)
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 F =  ( 2 π)(q− p−1 )/ 2 νγ/μμ−1 / 2

 A

 j

 B j −1 / 2 . 

(1.287)

 j

 j

 j =1

 j =1

A similar behavior may be found in several other contexts as, for instance, in those

situations related to diffusion on fractals [69]. 

The asymptotic behavior for  n = 1 is different from the previous one and it may be characterized by power-laws, which can be connected with the Lévy distributions. 

For example, let us consider the following H−function of Fox:

$ 

 ) %

H1 ,  1  z  ( 1 ,  1 δ ),( 1 ,  12

 , 

(1.288)

2 ,  2

 ( 1 ,  1 ),( 1 ,  1  )

2

which can be used to represent a symmetric Lévy distribution [69], that is, 
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$ 

 ) %

 Lδ(z) = 1 H1 ,  1 | z|  ( 1 ,  1 δ ),( 1 ,  12

 . 

(1.289)

 δ| z| 2 ,  2

 ( 1 ,  1 ),( 1 ,  1  )

2

The asymptotic behavior of this H−function of Fox is given by

$ 







 ) %

∞



  ( 1 −  δn)

 n

H1 ,  1  z  ( 1 ,  1 δ ),( 1 ,  12
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− 1

 , 

2 ,  2

 ( 1 ,  1 ),( 1 ,  1  )

2

  ( 1 +  n)  −  δ n   1 +  δ n

 zδ

 n=1

2

2

(1.290)

for large | z|, which implies that  Lδ(z) ∼ 1 /| z|1+ δ. 

The references at the end of the book will provide more detailed information

on the mathematical tools whose properties we revised in this first chapter. After

a concise introduction to the concepts used in diffusion and stochastic processes, 

we revisit some of these tools in connection with a discussion on the elements of

fractional calculus in Chap. 4. 
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Chapter 2

Concepts in Diffusion and Stochastic


Processes

Abstract This chapter opens explaining the main concepts necessary to describe the diffusion phenomena. It contains a short account of the theories developed to

build their mathematical description, emphasizing the approaches of Einstein and

Langevin. The treatment of Einstein is extended and reformulated as a way to obtain

new nonlinear diffusion equations. This is done by exploring different functional

forms of the jumping probability. After presenting an elementary approach to arrive

at the Langevin equation, it is also extended, with the proposition of a pathway to

arrive at a generalized Langevin equation. This new formalism incorporates different

correlations, involving white and colored noises, and opens the possibility to find

some representative underlying diffusionlike equations. The procedure illustrates a

way to get fractional diffusion equations starting from a classical method to handle

the stochastic motion. The final part of the chapter is dedicated to a concise discussion of the concepts related to anomalous diffusion, the role of stochastic variables and

Lévy flights. 

2.1

Molecular Diffusion

In physics, the term diffusion—from the Latin  diffusio,  diffusionem, connected with the verb  diffundere, meaning “to scatter”, “to pour out”—is applied to molecular diffusion, that is, the random molecular motion by which matter is transported from

places of higher to places of lower concentrations [1]. Diffusion occurs in all forms of matter. 

In solids, the process is, in general, much slower than in liquids and gases. In

solids at elevated temperature it is an ubiquitous phenomenon and can be found in

metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials, 

among many others [2]. 

A classical illustrative experiment regards placing gold at the basis of a column

of liquid lead and observe that gold diffuses to the top of the column. In addition, 

if the lead is heated below the melting point of the metal, diffusion takes place at a much slower rate [3]. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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At any temperature above absolute zero, the walker molecules of a substance

move incessantly and at random, independently of each other. Frequent collisions

occur between particles, so that the path of a single particle is a zigzag one. However, an aggregation of diffusing particles has an observable drift, from places of higher

to places of lower concentration. For this reason, diffusion is known as a transport

phenomenon. 

In liquids, the usual illustration considers a tall cylinder whose lower part is filled with iodine solution; pure water is added on top of this solution in a manner that

carefully avoids convection and stirring. At first only the lower part of the vessel, containing the iodine, is colored, but then the color is observed to spread slowly. 

Thus the upper part becomes colored too, the intensity of the color decreasing from

bottom to top. After a long time, the entire interior of the cylinder will be uniformly colored. 

Diffusion is also a key biological process. A simple emblematic example is to

dissolve a sugar cube in a volume of pure water. The sugar molecules broken off

from the cube move away and randomly bounce around. As what can be observed in

iodine solution, after a time interval large enough the sugar molecules are observed

to be evenly distributed in the entire volume of water. 

A similar experiment may be carried out using salt or sugar in pure water along

a very long and thin tube, as illustrated in Fig. 1.1. This problem was analyzed in Sect. 1.1.1, serving as a prototype of a normal diffusive process to built a mathematical description of the phenomenon. 

In gases, the process is much more rapid than in liquids. One example may be found

when we consider a flask filled with air, in whose bottom a few drops of bromine is

placed. Bromine is visible by its brown (red) color and it will be distributed through the air in the flask, in the same way as iodine was through the liquid in the case

mentioned before. 

 2.1.1

 The Mean Square Displacement

The path traveled by a particle in the interval between two collisions is called free path. 

Since this differs from collision to collision, an average value, known as the mean free path, is used as the basis of calculation. The mean free path decreases with increasing concentration. The displacement is the distance between the original position of a

particle and its position after a certain period of time. The mean displacement is

zero since, in the absence of a difference in concentration, positive and negative

displacement are equally probable. For this reason, the mean square displacement is

introduced. It is a measure for the rate of diffusion. But it depends on time; thus, it is convenient to introduce another characteristic quantity, independent of time. This is the diffusion coefficient  D:

 x 2

 D =

 . 

(2.1)

2 t
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Normally, we write

 x 2 = 2 D t. 

(2.2)

The diffusion process is faster the greater is  D;  D, for certain systems, will increase with temperature since the mean square displacement increases with the mean velocity; the mean velocity increases with temperature. 

Transport Phenomena. Diffusion results from the random molecular motion, pro-

ducing transport of matter from places of higher to places of lower concentration. 

Heat conduction means that heat is transported from places of higher temperature

to places of lower temperature. Viscosity is equivalent to a transport of momentum

from places of higher velocity to places of lower velocity. The three transport phe-

nomena depend on some characteristic properties: mean velocity, mean free path, 

and mean square displacement. For this reason, the theoretical treatment of all these process will have much in common. 

Thermal Diffusion. As pointed out before, molecular diffusion for a homogeneous phase results in an overall migration of particles from positions of higher to positions of lower concentrations. Thus, the concentration gradient

∇ ρ(x, y, z, t)

(2.3)

may be regarded as the driving force for the diffusion. The role of the concentration gradient for the diffusion in general will be discussed in more details in Sect. 2.2, 

in connection with the work of Fick dealing with the mathematical solutions for the

problem. If a phase in which there is no concentration gradient is submitted to a

temperature gradient, there may also result a particle flux which in the case of a fluid mixture leads to a partial de-mixing: Soret effect (in liquids) [4, 5]. The heavier molecules generally will have a higher concentration near the cold wall and lighter

molecules near the hot wall. If we consider the arrangement for the case of ions and

conduction electrons in a binary liquid metal mixture in steady state (zero mass flux), then we observe that large and small ions have segregated on the cold and hot side, 

respectively [5]. 

2.2

Pioneering Studies on Diffusion Problems

The pioneering investigations of the diffusion process are usually attributed to the

Scottish chemist, Thomas Graham (1805–1869), starting with an important memory

appeared in 1829 [6] on gaseous diffusion. The work of Graham was preceded by the law of mixture, which was firstly developed by John Dalton (1766–1844), and

the subsequent careful measurements performed by Claude Berthollet (1748–1822). 

Graham carried out experiments on diffusion in a systematic way and, by measuring

the rate at which gases diffuse through a plug of plaster of Paris, he developed

the law now known as Graham’s law. This result states that “the diffusion rate of
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gases is inversely proportional to the square root of their densities”. Some of the

experimental data of gases obtained by Graham [7] has been used by James Clerk Maxwell (1831–1879) to determine (and to define) the diffusion coefficient of two

gases [8]. 

One decade before the work of Maxwell, a phenomenological theory of diffu-

sion had been proposed by the German physiologist Adolf Eugen Fick (1829–1901), 

who published in 1855 his first article in physics entitled  Über diffusion [9]. It consists mainly in the mathematical solution of the differential equation for different

boundary and initial conditions. The approach of Fick was inspired in the work of

the French mathematician, and prominent politician during the Revolution, Jean-

Baptiste Joseph Fourier, on heat conduction. The problem of heat diffusion in solid

bodies of different geometries (rectangle, annulus, sphere, cylinder, and prism) was

formulated by Fourier in terms of a differential equation. In formulating the mathe-

matical problem of the diffusion, Fick was guided by the preceding approach to the

heat conduction, as stated, obtaining the fundamental law for the diffusion current

in the form ( Fick’s second law) [9]:





 δy

 δ 2

 δ

= −

 y

 d Q y

 k

+ 1

 , 

(2.4)

 δt

 δx 2

 Q d x δx

which reduces to

 δy

 δ 2

= −

 y

 k

 , 

(2.5)

 δt

 δx 2

when  Q  is constant. In the preceding equations,  y(x)  is the concentration of a substance in each horizontal elementary stratum of a vertical recipient, whose cross

section is  Q, and  k  denotes a constant depending on the nature of the diffusing substance. Fick first stated that, in this arrangement, there is a flow of substance

from positions of higher to places of lower concentrations, resulting in a uniform

distribution of the substance through the system. In this way, he also stated that the amount of flow is proportional to the concentration difference between two points, 

and the constant of proportionality is the diffusion coefficient. This is known as the Fick’s first law. Equation (2.5) was solved by Fick in the stationary regime, that is, δy/δt = 0. Then the mathematical solution is a linear one, and he could check the results of a series of experiments performed in this regime. Empirically, the Fick’s

first law may be expressed as

 d y

 j = − D

 , 

(2.6)

 d x

in which  j  represents the diffusion flow or current per unit cross section of a substance in a mixture. It gives the amount of this substance passing perpendicularly through

a reference surface of unit area during unit time. It is possible to formulate the law independently of the particular system of coordinates as

j = − D∇  y, 

(2.7)
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that is, the vector j representing the diffusion current is in the opposite direction of the concentration gradient and is proportional to its absolute value. This is a general law, valid for gases and liquids, but also for solids. However, since the solids are

generally anisotropic,  D  is a second rank tensor such that j and ∇  y  have different directions. 

To fix the notation for the remaining of the book, we rewrite the Fick’s first law

as

 dρ

 j = − D

 , 

(2.8)

 d x

where, as we have seen before, the quantity

 dρ

 d x

denotes the rate of change of the concentration, now denoted by  ρ(x), in direction of the coordinate  x. We recall that the Fick law is valid for homogeneous phases (neglecting the difference in concentration of the diffusing substance). If the medium is not homogeneous, there may be a flow in the opposite direction, that is, from lower to higher concentration. The driving force

− dμ. 

 d x

is given in terms of chemical potential,  μ, having a reference value,  μ 0, which is constant. For a homogeneous phase, we have:

 μ =  μ 0 +  RT  log  ρ, 

(2.9)

in which  T  is the absolute temperature and  R  is the gas constant. The mean velocity is defined as

 v = −  dμ

 dμ

 u

= −  D

 , 

(2.10)

 d x

 RT d x

in which

 u =  D

(2.11)

 RT

is the mobility. Equation (2.11) is known as the Nernst-Einstein relation [10]. Thus the flux,  j , may be written as

 j =  ρ v = −  D ρ dμ , 

 RT

 d x

which, in view of Eq. (2.9), may be cast in the well known form of the first Fick’s law for one-dimensional systems, Eq. (2.8). 
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To go on further, we recall that the conservation of mass may be expressed math-

ematically as follows:

 ∂ j

 ∂ρ

= −

 , 

(2.12)

 ∂x

 ∂t

which is the continuity equation, expressing that the difference between the flow

that enters a volume element and the flow that leaves it is equal to the change of

concentration in this element. As before, it can be cast in a general form, independent of the system of coordinates, as:

 ∂ρ

∇ · j = −

 . 

(2.13)

 ∂t

Using Fick’s first law, Eq. (2.12) yields





 ∂ρ

 ∂

 ∂ρ

=

 D

(2.14)

 ∂t

 ∂x

 ∂x

or, for a constant  D, 

 ∂ρ

 ∂ 2 ρ

=  D

 , 

(2.15)

 ∂t

 ∂x 2

which is the  diffusion equation. In vector notation, we have:

 ∂ρ =  D∇ ·  (∇ ρ). 

(2.16)

 ∂t

Some special situations deserve attention. For a moment, we assume that  D  is constant, and examine the steady-state regime. It corresponds to the case in which there is no change in concentration, that is, 

 ∂ρ = 0 . 

 ∂t

This permits us to rewrite Eq. (2.15) as

 ∂ 2 ρ

 D

= 0 , 

 ∂x 2

whose solution has the simple form

 ρ(x) =  ρ 0 +  ρ 1 x, 

satisfying the obvious condition  ρ( 0 ) =  ρ 0, with  ρ 1 being a constant. In this case, Fick’s law may be integrated, because

2.3 Brownian Motion
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 ∂ρ

 j = − D

= constant , 

 ∂x

yielding

 j  = − D(ρ 1 −  ρ 2 )  or  j =  D (ρ

 

2 −  ρ 1 ) , 

in which    is the length of the system, that is, a diffusion length. Because steady-state may be realized in practice, these formulae may be useful to experimentally

determine the diffusion coefficient [11]. 

The extension of the experiments on diffusion to solid bodies was carried out

by William Chandler Roberts-Austen (1843–1902), a former assistant of Thomas

Graham [3]. The starting point was also to assume that the laws established by Fick for liquids apply to metals. In the experiments, Roberts-Austen measured the

diffusivity in precious metals like gold in liquid lead, platinum in liquid lead, and has also tempted to investigate a solid inter-diffusion, of gold into lead. The values thus obtained for the diffusion coefficient are comparable to modern ones [12]. 

2.3

Brownian Motion

The zigzag path taken by the particles suspended on a fluid, which characterizes

the diffusion process, was described by Robert Brown (1773–1858) in 1827. He

observed that an aqueous suspension of pollen of the herb  Clarkia pulchella  contained microscopic particles carrying out a continuous, haphazard zigzag movement. Before

him, the first observation of the phenomenon was reported by the Roman poet, Titus

Lucretius Carus (died about in 55 b.C.), in the poem  De rerum natura (On the Nature of Things). In Book 2, one can find a description of what was later named “Brownian

motion” [13]. 

The movements are performed by any tiny particle suspended in a liquid or in a

gas. Such chaotic movements are performed, for example, by particles of smoke in

still air. Investigations showed that the nature of Brownian movement depends on

the properties of the liquid and gas in which the particles are suspended, but does

not depend on the properties of the substance which the particles themselves consist

of [11]. 

The velocity of the Brownian movement of particles grows with increasing tem-

perature and with diminishing dimensions of the particles. All these laws can easily

be explained if we assume that the movements of the suspended particles appear

owing to impacts received by them from moving molecules of the liquid or gas

which they are in, as correctly interpreted by the poet Lucretius. 

Naturally, every particle is subjected to such impacts from all sides. Upon the

complete disorder of molecular movements, we could expect that the number of

impacts from one side and from the opposite direction is such that all of them should
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completely compensate one another, and the particles should remain stationary. This

is exactly what occurs if the particles are not too small. 

But when we have to do with microscopic particles (10−4 to 10−5 cm of diameter), 

matters are different. It only follows from the fact that molecular movements are

chaotic that on an average the number of impacts from different directions is the

same. Deviations from the average values, however, are inevitable in such a statistical system as a liquid or a gas. Such deviations from the average or mean values of

quantities which occur in a small volume or during a small interval of time are called fluctuations. 

The crucial point is that if a body of an ordinary size is in a liquid or a gas, 

the number of impacts from the molecules is so great that it is impossible to note

either separate impacts in or a random predominance of impacts in one direction over

impacts in other directions. For tiny particles, however, the total number of impacts is comparatively small so that the prevalence of the number of impacts first in one

direction and then in another one becomes noticeable. Owing to these fluctuations

of the number of impacts that the characteristic convulsive movements of suspended

particles are called Brownian movement. 

Brownian movement is not the movement of molecules. It only very clear reveals

the existence of chaotic molecular movement. It can be explained by the appearance

of a resultant force having a definite direction owing to a chance difference between the number of impacts of molecules against a particle from different directions. Since the fluctuations usually last only a short time, then the direction of the resultant will change very rapidly, and together with it the direction of the motion of the particles will change. This underlies the chaotic nature of Brownian movement which reflects

the chaotic nature of molecular motion [11]. 

To these qualitative aspects of the Brownian movement successful mathematical

approaches have been added at the beginning of the twentieth-century, as we shall

discuss now. 

 2.3.1

 The Works of Einstein, Smoluchowski, and Langevin

The work of Brown was preceded by the observations made by John T. Needham

(1713–1781) and F. Willhelm von Gleichen (1717–1783), but he was the first to

carry out detailed investigation of the phenomenon, proving that it is a characteristic of all microscopically small particles (and cannot be attributed to life in particles themselves). The quantitative theory of the translational Brownian movement was

developed independently by Einstein [14], Smoluchowski [15], and Paul Langevin

[16]. 
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2.3.1.1

Albert Einstein

The first paper dedicated by Albert Einstein (1879–1955) to the Brownian movement

was published in his  annus mirabilis  and reports on a first impressive result for the coefficient of diffusion of the suspended substance as

1

 D =  RT

 , 

(2.17)

 N  6 πk P

in which  P  is the radius of the spherical particle,  k  is the coefficient of viscosity of the surrounding liquid and  N  is the “actual number of molecules contained in a gram-molecule”, that is, the Avogadro’s number [14]. 

Let us briefly recall (rephrasing it) the formulation used by Einstein to explain the Brownian motion, which employs an equation similar to the following one [17]:

∞



 ρ(x, t +  τ) =

 ρ(x −  x , t)(x )dx , 

(2.18)

−∞

where  ρ(x, t)  is the number of particles per unit volume and  (x )dx is the probability of a particle moving from  x to  x +  dx during the time interval  τ , that is, it is a  jumping probability. This probability is normalized and symmetric, that is, 

∞



 (x )dx = 1 ,  with  (x ) =  (− x ). 

(2.19)

−∞

For a very small  τ , we can approximate  ρ(x, t +  τ)  present in Eq. (2.18) as follows:

 ∂ρ(

 ρ(

 x, t)

 x, t +  τ)   ρ(x, t) +  τ

 , 

(2.20)

 ∂t

and  ρ(x −  x )  in the integrand in the right-hand side may be expanded, for a distribution  (x )  which decays very fast, to second order terms in  x, yielding

 ∂ 2 ρ(

 ρ(

 x, t)

 x −  x , t) =  ρ(x, t) −  x  ∂ρ(x, t) +  x 2

+ · · ·  . 

(2.21)

 ∂x

2

 ∂x 2
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Thus, Eq. (2.18) may be rewritten as

∞



∞



 ∂

 ρ(x, t +  τ) =  ρ(x, t)

 (x )dx +

 ρ(x, t)

 x (x )dx

 ∂x

−∞

−∞

∞



 ∂ 2

+

 ρ(

 x 2

 x, t)

 (x )dx + · · ·

 ∂x 2

2

−∞

∞



 ∂ 2

=  ρ(

 x 2

 x, t) +

 ρ(x, t)

 (x )dx + · · ·  , 

(2.22)

 ∂x 2

2

−∞

∞

where we have used the normalization, Eq. (2.19), and deduced that −∞  x (x ) d x = 0, because  (x ) =  (− x ). By comparing Eqs. (2.20) and (2.22), one arrives at the diffusion equation:

 ∂

 ∂ 2

 ρ(x, t) =  D

 ρ(x, t), 

(2.23)

 ∂t

 ∂x 2

if one defines  D  as the second moment of the probability distribution, namely:

∞



 D = 1  x 2 ,  with  x 2 =

 x 2 (x )dx . 

(2.24)

2 τ

−∞

By assuming that for  t = 0 all the particles are at the origin, the solution of Eq. (2.23)

is

 ρ(x, t) =

 n

√

 e− x 2 / 4 Dt , 

(2.25)

4 π Dt

∞



in which  n =

 ρ(x, t)dx. The mean square displacement may be written as

−∞

∞



 (x −  x ) 2 =  x 2 = 1

 x 2  ρ(x, t)dx = 2 Dt. 

(2.26)

 n −∞

Combination of Eq. (2.26) with Eq. (2.17) yields 1

 N =  RT

 t, 

(2.27)

 x 2 3 πk P

which, as pointed out before, can be used to determine the Avogadro number, because

the quantities  x 2,  t,  P, and  k  can be measured. 

2.3 Brownian Motion

81

The French physicist Jean Baptiste Perrin (1870–1942) recognized the crucial

role played by the Brownian motion in the determination of the atomic structure of

matter. In a series of experiments, he succeeded to measure the Avogadro number

according to the Einstein predictions and the “crude average” of their results amounts to  N  64 × 1022 molecules/mole [18]. 

If we follow the Einstein’s approach, it is possible to obtain some nonlinear diffu-

sion equations [17]. This can be done, for instance, incorporating into the dispersal term a nonlinear dependence in the distribution, that is,   →  [ ρ(x, t), x]. Thus, the nonlinearity present in the dispersal term will also appear in the jumping probability, leading to memory effects over the diffusive process. 

Specifically, if we consider that   →   (ρ)(x ), then, extending Eq. (2.18), we may obtain

∞



 ρ(x, t +  τ) =

  [ ρ(x −  x , t)] ρ(x −  x , t)(x )dx

−∞

+ {1 −   [ ρ(x, t)]}  ρ(x, t). 

(2.28)

If we now take the limit  τ → 0 and  x → 0 in the previous set of equations, we get:

 ∂ρ(x, t)

 ∂ 2{  [ ρ(

=

 x, t)] ρ(x, t)}

 D

 , 

(2.29)

 ∂t

 ∂x 2

that is, a nonlinear diffusion equation, useful to describe a large class of problems, depending on the functional form of   [ ρ(x, t)]. 

Another relevant possibility occurs when the kernel  (x)  depends explicitly on ρ(x, t). In this case, the definition of the diffusion coefficient will be extended, that is, different from the previous one [19]. Equation (2.29) is equal to Eq. (2.23) for  (ρ) = 1 and, thus, yields a normal diffusion process. For   (ρ) =  ρν−1, we obtain the cases described by the following differential equations, knows as the porous

media equation [20]:

 ∂

 ∂ 2

 ρ(x, t) =  D

 ρν(x, t), 

 ν ∈ R . 

(2.30)

 ∂t

 ∂x 2

The diffusive term in Eq. (2.30) has a nonlinear dependence on the distribution ρ(x, t). 

Naturally, other expressions for   (ρ)  and  (x)  are also possible. In particular, different diffusive behaviors (one characterized by a normal and others by anomalous

diffusion) emerge for

  (ρ) = 1 +  αρν−1 +  βρμ−1 , 

 ν  and  μ ∈ R , 

where the parameters  α  and  β  control the influence of the nonlinear terms. This form of   (ρ)  has applications in the spatial distribution of dispersing animals [21, 22], 
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in overdamped motion of interacting particles [23], cell population growth [24], gas diffusion in coal [25], and diffusion in non-homogeneous media [26]. 

We further observe that  (x)  has a remarkable influence on the diffusion process, and its choice leads to significantly different behaviors of the respective solution. 

That is the case of frameworks related to spatial fractional-time derivatives, which

emerge when  (x)  is a power-law function. For instance, by considering

 (x) ∝

1

| x|1+ μ

in the linear case, we find some results in which fractional spatial derivatives are

present [27]. We postpone an extended discussion on the properties of fractional derivatives to Chap. 4, in which a detailed approach to the techniques of fractional calculus will be performed. 

Another possibility of extending the approach is to consider spatial or time depen-

dence or both in   . In this case, we can write Eq. (2.28) as

∞



 ρ(x, t +  τ) =

  [ x −  x , t;  ρ(x −  x , t)] ρ(x −  x , t)(x )dx

−∞

+  ( 1 −   [ x, t;  ρ(x, t)] ) ρ(x, t), 

(2.31)

in which   [ x, t;  ρ] =   [− x, t;  ρ]. In the limits  τ → 0 and  x → 0, Eq. (2.31) simplifies to

 ∂ρ(x, t)

 ∂ 2{  [

=

 x, t;  ρ(x, t)] ρ(x, t)}

 D

 . 

(2.32)

 ∂t

 ∂x 2

For the particular case in which

 δ

  [ x, t;  ρ(x, t)] =  ν | x|1− ηtδ−1 ρ(x, t)ν−1 , η

we rewrite Eq. (2.32) as follows:





 ∂

 δ ∂

 ∂

 ρ(x, t) =  D

| x|1− ηtδ−1

 ρ(x, t)ν . 

(2.33)

 ∂t

 η ∂x

 ∂x

It is worth remarking that Eq. (2.33) presents  fractal derivatives  in the space and time variables. These derivatives were first developed by Chen [28] and Liang et al. [29] from the fractal concept and can be considered as an alternative approach to the fractional derivatives [30]. To make this relationship clear, we observe that 1

 ∂

 ∂

 ∂

 ∂

≡

1

≡

 , 

(2.34)

 δtδ−1  ∂t

 ∂tδ  and  η| x| η−1  ∂x

 ∂xη
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which after applying to Eq. (2.33) yield





 ∂

 ∂

 ∂

 ρ(x, t) = D

 ρ(x, t)ν . 

(2.35)

 ∂tδ

 ∂x ∂xη

Before proceeding, we briefly recall the definitions of fractal derivative. In general, we have:

 ∂u =

 u(t 1 ) −  u(t)

lim

 , α >  0 . 

 ∂tα

 t 1→ t

 t α −  tα

1

A more generalized definition is given by:

 ∂uβ =

 uβ (t 1 ) −  uβ(t)

lim

 , α >  0 , β >  0 . 

 ∂tα

 t 1→ t

 t α −  tα

1

The essential difference of the fractal and the fractional derivatives lies in the former being a local operator, while the latter is a global operator. However, regardless of whether the fractal or the fractional derivative approach is used, the integer-order

derivative is simply a limiting case [28, 30]. Recent studies demonstrate that the fractal derivative models can be used to describe the anomalous diffusion process as

captured by diffusion-weighted magnetic resonance imaging in a fixed mouse brain. 

This is done by introducing the fractal derivative into the diffusion equation, yielding

 ∂

 ∂

 ∂

 ρ(x, t) =  D

 ρ(x, t), α >  0 , η >  0 , 

(2.36)

 ∂tα

 ∂xη ∂xη

as a way to model anomalous diffusion as measured by magnetic resonance imaging

and applied to the interrogation of biological tissues [31]. 

To proceed further, we notice that we can include memory effects in our previous

developments by considering a time dependence on    and modifying Eq. (2.31) as t



∞



 ρ(x, t +  τ) =  dt

 d x  [ x −  x , t;  ρ(x −  x , t )] ρ(x −  x , t )(x , t −  t ) 0

−∞

 t



+  ρ(x, t) −

  [ x, t;  ρ(x, t )] ρ(x, t )I (t −  t )dt , (2.37)

0

where

∞



 I (t) =

 (x, t)dx. 

−∞

As we have done before, we perform some expansions to obtain
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 t



 ∂ρ(x, t)

 ∂ 2 



=

 dt   D(t −  t )

  [ x, t;  ρ(x, t )] ρ(x, t ) , 

(2.38)

 ∂t

 ∂x 2

0

in which, now, 

∞



 D(t) = 1

 x 2 (x , t)dx . 

2 τ −∞

∞

If we consider that  (x, t) =  (x)ω(t), such that −∞  (x)dx = 1, we find  D(t) =

 D I (t)  and Eq. (2.38) simplifies to

 t



 ∂ρ(x, t)

 ∂ 2 



=  D

 dt   I (t −  t )

  [ x, t;  ρ(x, t )] ρ(x, t ) . 

(2.39)

 ∂t

 ∂x 2

0

The time-dependent function  I (t)  may be chosen to determine the type of memory present in Eq. (2.39), in addition to the memory effects related to the nonlinear term. The role of memory effects on diffusion and, specifically, in connection with

adsorption phenomena will be discussed in Chap. 6. 

2.3.1.2

M. Smoluchowski

The works of the Polish physicist Marian Smoluchowski (1872–1917) on the Brow-

nian motion were developed in close relation to experiment and contributed to the

consolidation of the atomic view of matter [15]. This approach describes the evolution of the concentration  W  of Brownian particles of radius  r  and mass  M  suspended in a viscous fluid with viscosity  η  and subject to an external force per unit mass F

by means of the equation [32]:





 ∂W = ∇ ·  D∇ W − F W , 

(2.40)

 ∂t

 β

where

 D =  kB T

and  β = 6 πrη , 

(2.41)

 β

 M

in which  kB  is the Boltzmann constant. In the absence of external forces, the fundamental solution of Eq. (2.40) is





 (x − x0 ) 2

 W (x , t|x0 ,  0 ) =

1

exp

 . 

(2.42)

 ( 4 π Dt) 3 / 2

4 Dt
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In this framework, we may introduce the conditional probability for  t ( t > τ >  0), expressed as the probabilities for the arbitrary displacements from x0 to x (0 to  τ ) and from x to x ( τ  to  t), as



W (x , t|x0 ,  0 ) =

 dxW (x , t|x , τ ) W (x , τ |x0 ,  0 ). 

(2.43)

In Eq. (2.43) the displacements are assumed independent, that is, like in Einstein’s theory, the process is considered Markovian. In this perspective, the drift-diffusion Eq. (2.40) may be interpreted as governing the diffusion of probability, being known as Smoluchowski equation [33]. It can be obtained from the Fokker-Planck equation, which is an equation of motion for the distribution function of a fluctuating variable. 

Its general form, for one variable  x  and a distribution function W (x, t), is





 ∂ W (x, t)

 ∂

 ∂ 2

= −

 D( 1 )(x) +

 D( 2 )(x)  W (x, t), 

(2.44)

 ∂t

 ∂x

 ∂x 2

where  D( 2 )(x) >  0 is the diffusion coefficient and  D( 1 )(x)  is the drift coefficient. 

Equation (2.44) is a linear second-order partial differential equation of parabolic type and may be view as a diffusion equation with an additional first-order derivative with respect to  x. It is also known in the mathematical literature as a forward Kolmogorov equation [34]. 

We notice that Eq. (2.40) can be rewritten as a continuity equation. In one-dimension, it reads:

 ∂W(x, t)

 ∂

+  J = 0 , 

(2.45)

 ∂t

 ∂x

where the probability current density is

 ∂W(x, t)

 J = − D

+  F(x, t)W(x, t). 

(2.46)

 ∂x

If we combine Eqs. (2.45) and (2.46), it is possible to demonstrate that the normalization condition is satisfied:

∞







 ∂

 ∂W(x, t)

∞

 W (x, t)dx =  D

−  F(x, t)W(x, t)

= 0 , 

(2.47)

 ∂t

 ∂x

−∞

−∞

∞



when  W (±∞ , t) → 0, that is, 

 W (x, t)dx = constant. 

−∞
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2.3.1.3

Paul Langevin

In 1908, Paul Langevin (1872–1946), a French physicist, proposed a very different

but successful description of Brownian motion by applying Newton’s second law to

a representative Brownian particle [16, 35]. 

A simplified way to handle the problem in the spirit of the Langevin approach is

to start from the resultant force [11] mentioned in Sect. 2.3. If we denote it by F, we have to take into account that there is also a friction force, say f, acting oppositely to the force F. This friction force may be written as

f = 6 πη Pv , 

(2.48)

in which  η  is the coefficient of internal friction of the liquid (gas), v is the velocity of the particle whose radius is  P (just to keep the Einstein’s notation in this context). 

The classical equation of motion of the particle is

 m ¨r = F − 6 πη Pv . 

(2.49)

Along the  x−axis, we have

 m ¨ x =  Fx − 6 πη P ˙ x, 

(2.50)

such that  x = 0 and  x 2 = 0. We may rewrite (2.50) as (just multiplying it by  x): mx ¨ x =  x Fx − 6 πη P x ˙ x

(2.51)

or, as





1

 d 2 x 2

 d x  2

 d

 m

−  m

= −3 πηP x 2 +  x Fx. 

(2.52)

2

 dt  2

 dt

 dt

Equation (2.52) holds for any particle. It also holds for the mean values of the quantities in it if averaging is performed for a sufficiently great number of particles. 

Hence, 





1

 d 2 x 2

 d x  2

 d

 m

−  m

= −3 πηP  x 2 +  x Fx . 

(2.53)

2

 dt  2

 dt

 dt

We may assume that











 d x  2

2

2

=

 d y

=

 d z

 , 

 dt

 dt

 dt

which permits us to write





2



 d x

v2 = 1

 . 

3

 dt
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In addition, we assume also that





 x Fx = 0 , 

a condition known as “white noise”, that is, the fluctuations are random. Using the

previous results, we may rewrite Eq. (2.53) in the form:

1

 d 2 x 2



 d

 m

− 1 m v 2 = −3 πηP  x 2 . 

(2.54)

2

 dt  2

3

 dt

Now, we recall that the mean kinetic energy of a Brownian particle may be expressed

by means of the equipartition theorem:

1

1

 mv2 = 3  kB T  or

 mv2 =  kB T. 

2

2

3

Thus, if we put  y =  d x 2 /dt, Eq. (2.54) finally acquires the form: 1

 d y

 m

+ 3 πηPy =  kBT, 

(2.55)

2

 dt

whose solution, satisfying the initial condition  y( 0 ) = 0, may be easily found as y =  kB T

1 −  e− 6 πηP t

 m

 . 

(2.56)

3 πη P

Some estimates are in order now. Let us assume that  P ≈ 10−6 m = 10−4 cm,  η ≈

10−2 (cgs), and  ρ ≈ 1 (cgs). These values yield

 m =  ρ × volume ≈  (  4  π P 3 )ρ ≈ 4 × 10−4 g

3

and

6 πη P ≈ 4 × 106 s−1 . 

 m

Even if the time interval between two consecutive observations of a Brownian particle is rather small, we may consider that

 e− 6 πηP t

 m

→ 0 . 

It is then possible to deduce that the solution (2.56) reduces to y =  d  x 2 ≈  kB T

 dt

3 πη P
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or, finally, that

 x 2 ≈  kBT t, 

(2.57)

3 πη P

which is the same result obtained by Einstein (with  η =  k  and  R =  N kB), stated in Eq. (2.27), indicating the normal diffusive behavior. 

In the next section, we investigate a generalized Langevin equation in presence

of an additive noise characterized by the mixture of the usual white noise and an

arbitrary one. This scenario exhibits a rich classes of diffusive processes, as the ones whose noise correlation functions are governed by power-laws, exponentials, and

Mittag-Leffler functions. 

2.4

Generalized Langevin Equation

We start by considering two additive noises in the Langevin equation: a white noise

and another one with the correlation function given by a power-law [36]. 

After that, we consider a very general noise, where a perturbative like approach

is employed when the noise is viewed as the sum of two others, being one of them

a white noise. By using this development, the sum of a white and a Mittag-Leffler

correlated noises is also investigated. In addition, we obtain a diffusionlike equation corresponding to the generalized Langevin equation and, by means of the mean square

displacement, we show that these approaches are equivalent when long time scales

are considered [37]. These results may be connected to fractional diffusion equations [38–41], situations characterized by a finite collision time, and non-Markovian processes. 

Let us start our analysis by considering a generalized Langevin equation in the

absence of a deterministic field. For this case, it can be expressed in the following form [36]:

 t



¨ x(t) +

 dt  ζ(t −  t ) ˙ x(t ) =  ξ(t), 

(2.58)

0

which is a nonlocal equation, where the mass is considered unitary (without loss of

generality),  ζ(t −  t )  is the dissipative memory kernel related to a frictional force, and  ξ(t)  is a random force (noise source) with zero mean ( ξ(t) = 0). If the system described by Eq. (2.58) is in thermal equilibrium (the case considered here), the relationship between these microscopic forces is given by the fluctuation-dissipation theorem [42]:

 ξ(t)ξ(t ) =  C(| t −  t| ) =  kBT ζ(| t −  t| ), (2.59)

where  C(| t −  t| )  is the noise correlation function. For a white noise (uncorrelated noise), the correlation function is given by a Dirac delta function and for colored

noises (correlated noise) it may be expressed, for example, in terms of exponen-
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tial functions [43], power-laws [44] and Mittag-Leffler functions [45, 46]. For these cases, it should be mentioned that considering power-laws, exponentials, or Mittag-Leffler functions satisfying the fluctuation-dissipation theorem implies that the dissipative term will contain these functions as the kernel. This means that  ζ(t)  will be given in terms of these functions, as shown by Eqs. (2.58) and (2.59), which have been recently considered as a singular (fractional differential operators) as well as a nonsingular integro-differential operator [47–50]. Moreover, one notices that Eq. (2.58), 

in presence of a magnetic field, could be used to extend the Bloch equation [51]. In this framework, a generalized Bloch equation was considered to analyze the relaxation

in cartilage matrix components and native cartilage [52, 53]. The Langevin equation has also been considered in different contexts such as laser-cooled atoms [54], living biological systems [55], reflecting walls [56], heat transfer [57], active Brownian motion [58], cancer cell migration [59], among others. 

Aiming at the investigation of some aspects of Eq. (2.58), that is, the behavior of its solutions, and how it is possible to get different diffusive behaviors from it, subjected to the initial conditions  x( 0 ) =  x 0 and ˙ x( 0 ) =  v 0, we first consider the sum of two distinct random forces, that is, 

 ξ(t) =  αξ(t) +  βη(t), 

 (α, β) ∈ R , 

(2.60)

where  ξ(t)  and  η(t)  are stochastic variables with zero mean and correlation functions given by [60, 61]

 ξ(t)ξ(t ) = A δ(t −  t ) , 

(2.61)

 η(t)η(t ) =

B

 , 

(2.62)

| t −  t| γ

with  ξ(t)η(t ) = 0, where A and B are nonnegative parameters and 0  < γ <  1. In order to satisfy the fluctuation-dissipation theorem, we have

 α 2 ξ(t)ξ(t ) +  β 2 η(t)η(t ) =  kBT ζ(| t −  t| ). 

(2.63)

Note that the Eq. (2.58) is linear for  x(t). However, the linearity does not hold for the noise, that is, the solution of Eq. (2.58) with Eq. (2.60) is not equal to the sum of the solutions for  ξ(t) =  αξ(t)  and  ξ(t) =  βη(t)  considered separately. 

In addition, Eqs. (2.61) and (2.62) incorporated in Eq. (2.63) yield a mixture of the normal and the anomalous cases. A direct consequence of this mixture is

the presence of different diffusive regimes depending on the time scale considered. 

Similar choices have been applied to describe the single-file diffusion [62–64] and can be used to investigate the electrical response of the systems characterized by

different diffusive regimes [1]. 

In the present analysis dealing with diffusive processes and Langevin equations, 

we have to solve Eq. (2.58) and to investigate the mean square displacement related to the variable  x. To do this, we apply the Laplace transform to Eqs. (2.58) and (2.63)
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to simplify our calculations. Therefore, we obtain





 x(s) = [ s +  ζ (s)] x 0 +  v 0  G(s) +  ξ(s)G(s) , (2.64)

with

 G(s) =

1

(2.65)

 s 2 +  sζ (s)

and

 α 2

 β 2

 ζ (

A

B

 s) = A + B sγ −1 ,  A =

 ,  and B =

 . 

(2.66)

 kB T

 kB T

The inverse Laplace transform of Eq. (2.64) yields

 t



 t



 x(t) =  x(t) +  α

 dt  ξ(t )G(t −  t ) +  β

 dt  η(t )G(t −  t ) , 

(2.67)

0

0

with  x(t) =  v 0 G(t) +  x 0 and the inverse Laplace transform of  G(s)  given by

∞



 t



 n ( 



 G(t) =

−B t 3− γ  E  n) −A t , 

(2.68)

  ( 1 +  n)



 α, 

 β

 n=0

where

 α = 1, 

 β = 2 +  ( 2 −  γ ) n, and E α,β (x)  is the generalized Mittag-Leffler function, defined by Eq. (1.227). The presence of its derivative of the order  n, that is, (

E  n) (



 α, 

 β x) ≡  dn  E

 d xn 

 α, 

 β (x)

in  G(t)  indicates that the relaxation is not the normal one. This feature can be verified by analyzing the asymptotic limit of  G(t), which yields a power-law behavior instead of an exponential one. 

By using these equations, it is possible to find the behavior of the mean square

displacement for the  x  variable. After some calculations, we obtain [46]

 t



 σ  2 (t) = 2

 dt  G(t ) −  G 2 (t), 

(2.69)

 x

0

with  kB T = 1 (without loss of generality). The time-dependent behavior obtained from Eq. (2.69) provides information about the spreading of the system governed by Eq. (2.58). It is an evidence of the presence of different diffusive regimes. The behavior of Eq. (2.69) is
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 σ 2 ≈ 2A  t 3 +  ( 3 −  γ )  2B t 4− γ , 

(2.70)

 x

3

  ( 5 −  γ )

for short times, that is, 



3 1 / 3

 t < 

; 

A





 σ 2 ≈ 2 t  E

− B  t 1− γ , 

(2.71)

 x

2 ,  1− γ

A

A

for intermediate times, that is, 





1 /( 1− γ)

3 1 / 3  < 

A

 t < 

; 

A

 ( 1 +  γ ) B

and

 σ 2 ≈

2 tγ

 , 

(2.72)

 x

  ( 1 +  γ )  B

for long times, that is, 



1 /( 1− γ)

A

 t < ∞ . 

 ( 1 +  γ ) B

These asymptotic limits show us that the spreading of the solution has different

diffusive behaviors. 

In Fig. 2.1, we illustrate the behavior of  σ  2 (t)  obtained from Eq. (2.69) as well x

as these two asymptotic expansions. Note also that the first term in Eq. (2.70) is not governed by the values of  γ  if 0  < γ <  1, in contrast with Eq. (2.71) which has a strong dependence on  γ . The behavior obtained for Eq. (2.70) is the same as the one found in the usual context, that is, in the absence of non white noise (B = 0), when

a short time is considered. 

In Fig. 2.2, we consider A  >  B in order to highlight the presence of the intermediate regime governed by the usual white noise. This figure also shows that the system

may present different diffusive regimes depending on the noises incorporated into

the Langevin equation. 

The crossover time,  tc, between the different regimes can be estimated from the mean square displacement by analyzing the asymptotic results. The first crossover

time occurs at

√3

 tc ∼ A
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Fig. 2.1 The time behavior of the variance obtained from Eq. (2.69) with  γ = 0 .  5, A = 0 .  1 and B = 1 is illustrated by the solid line. The dotted line is the asymptotic expansion for short times and the dashed line for long times. Modified with permission from Tateishi et al. [36]. Copyright (2012) by the American Physical Society

and the second one at



1 /( 1− γ)

A

 tc ∼ 



 . 

  ( 1 +  γ )  B

Other forms of Eq. (2.61) or Eq. (2.62) yield different diffusive processes related to different diffusive regimes. To see this, we consider an arbitrary dependence such that

 η(t)η(t ) = B Y (| t −  t| ) , 

(2.73)

where  Y (| t| )  is a time-dependent function which has a defined Laplace transform, Y (s). In general,  Y (| t| )  enables us to connect Eq. (2.73) with correlation functions governed by exponentials, power-law, Mittag-Leffler, and other functions depending
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Fig. 2.2 Trend of the variance from Eq. (2.69) versus  t  for  γ = 0 .  5, A = 10, and B = 1 is illustrated. 

The other lines are used to evidence the diffusive regimes yielded by Eq. (2.69). Modified with permission from Tateishi et al. [36]. Copyright (2012) by the American Physical Society on the process considered. The main change produced in the previous results, by

considering Eq. (2.73) instead of Eq. (2.62), is in Eq. (2.65). After some calculations using Eq. (2.73), we have

 G(s) =

1



 , 

(2.74)

 s 2 +  s  A + B Y (s)

which has as inverse Laplace transform





∞



 t



 (−B )n

 ( 



 G(t) = 1 1 −  e−A t +

 dt  t   n+1E  n) −A t  n(t −  t ), A

  ( 1 +  n)

1 ,  2

 n=1

0

(2.75)
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where

 t



 tn



 t 2



 n(t) =

 dtnY (t −  tn)

 dtn−1 Y (tn −  tn−1 ) · · ·

 dt 1 Y (t 2 −  t 1 )Y (t 1 ). 

0

0

0

(2.76)

The above procedure may be viewed as a way to investigate Langevin equations

with very arbitrary noises. This conclusion follows from the fact that any noise

can be decoupled into a sum of two others such that one of them is a white noise. 

Furthermore, the above developments in series obtained by means of the inverse

Laplace transform may be viewed as a kind of perturbative approach, where the non

white noise is treated as a perturbation to the white one. This series is not an usual perturbation expansion about the white noise; however, for B sufficiently small the

sum in Eq. (2.75) could be truncated at a given order in B as occurs in the standard perturbation series to obtain an approximated solution. 

As a further example of Eq. (2.73), in addition to Eq. (2.62), we consider





| t| γ

 Y (| t| ) = 1 E

−

 , 

 τγ γ

 γ

 τγγ

in which  τγ  is a characteristic time. This is a common way to describe memory effects and non-Markovian dynamics [45, 46] which, after its substitution into Eq. (2.75), 

yields





∞



 t



 (−B )n

 G(t) = 1 1 −  e−A t +

 dt  t   n+1 e−A t  n(t −  t ), (2.77) A

  ( 1 +  n)

 n=1

0

with











 

 (n)

 n (t ) =  t n

E (n)

−  tγ +  tγ  E

−  tγ

(2.78)

 τn

 γ,ν

 γ,ν+ γ

 γ

 τγγ

 τγγ

 τγγ

and  ν = 1 +  ( 1 −  γ )n. The regimes and the influence of the noise on the solution obtained for the generalized Langevin equation in this case can be evidenced by

analyzing the asymptotic behaviors for short and long times of Eq. (2.77). It is possible to show that





2

 G(t) ≈  t − 1 A t 2 + 1

A  τ γ

 t  3 , 

(2.79)

2

6 τ γ

 γ − B

 γ

for short times, and

2.4 Generalized Langevin Equation

95

∞



1



 n ( 



 G(t) ≈  t

−B t 2− γ  E  n) −A t , 

(2.80)

  ( 1 +  n)

1 ,ν

 n=0

for long times, with  ν = 2 +  ( 1 −  γ )n. For short times, the relaxation process is not dominated by  γ  values. On the other hand, the effect of  γ  on the system is evidenced when  t → ∞. 

 2.4.1

 Derivation of a Diffusionlike Equation

Let us now derive a generalized diffusionlike equation associated with the generalized Langevin equation based on the approach proposed by Khan and Reynolds [37]. 

We start by considering the following generalized Kramers equation for the joint

probability density function  ρ(x, v;  t) [37, 65]:







 t





 ∂

 ∂

 ∂

+  v

 ρ(x, v;  t) = −

 ρ(x, v;  t)

 ζ(t −  t ) v(t )dt

 ∂t

 ∂x

 ∂v

0

 t



 ∂ 2

+

 dt  ξ(t)ξ(t )

 ∂v 2 0



 t





×  δ[ v(t) −  v] exp

 ζ(u)du

 , 

(2.81)

 τ

which is equivalent to the generalized Langevin equation [65]. To proceed, we investigate how to build a diffusionlike equation from Eq. (2.81), involving only the spatial variable. From Eq. (2.81), we obtain the following equations:

 ∂W

 ∂

+

 (Wv) = 0

(2.82)

 ∂t

 ∂x

and

 t



 ∂

 ∂

 (Wv) +

 (Wv 2 ) +

 ζ(t −  t )(Wv)dt = 0 , 

(2.83)

 ∂t

 ∂x

0

in which

∞



 W (x, t) =

 ρ(x, v, t)dv, 

−∞
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∞



 W v =

 vρ(x, v, t)dv, 

−∞

and

∞



 W v 2 =

 v 2 ρ(x, v, t)dv

−∞

Equation (2.82) is, formally, a continuity equation and it can be found by integrating Eq. (2.81) with respect to  v. Equation (2.83) is obtained after multiplying Eq. (2.81)

by  v  and integrating it with respect to  v. By eliminating  W v  from Eq. (2.82) and Eq. (2.83), we obtain the following diffusionlike equation:

 t



 ∂ 2 W

 ∂

 ∂ 2

+

 ζ(

 W

 t −  t )

 dt  =

 (Wv 2 ). 

(2.84)

 ∂t 2

 ∂t

 ∂x 2

0

Depending on the expression of  ζ(t)  and the time scale considered, this equation may be connected to fractional diffusion equations [38, 40] and fractional diffusion equation of distributed order [66], among many other possibilites. For instance, Eq. (2.84) can be viewed as an extension of the Cattaneo equation, to be introduced in Sect. 5.1. It can be related to processes involving finite collision time, which are not present in the normal diffusion equation. 

The usual diffusion equation is an approximation valid only on time scales which

are large compared to the time scale at which the diffusion-causing collisions takes

place. One of the most striking non-physical properties of the standard (usual) dif-

fusion equation is the infinite velocity of the propagation of the information [67]. 

Inclusion of a finite collision frequency in the system may create additional diffi-

culties to tackle the problem; approximations have to be implemented. An approx-

imation which makes the problem more tractable was discussed by Bourret [68]

and may involve an integral equation similar to Eq. (2.84) with a correlation function in the kernel [69]. Moreover, Eq. (2.84) may also be connected to essentially non-Markovian problems [70–72]. 

Using Eq. (2.84), a generalized diffusionlike equation related to the generalized Langevin equation with two additive noises can be obtained when Eqs. (2.61), (2.63)

and (2.73) are considered. It is given by

 t



 ∂ 2 W

 ∂

 ∂

 ∂ 2

+

 W

 W

A

+ B

 dt   Y (| t −  t| )

=

 (Wv 2 ). 

(2.85)

 ∂t 2

 ∂t

 ∂t

 ∂x 2

0

Equation (2.85) presents different diffusive regimes depending on the time scale considered, similarly to what happens with the Cattaneo equation [73–75]. These different behaviors can be verified by analyzing the mean square displacement (or
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the second moment depending on the initial condition) which is a measure of the

spreading of the system. With this purpose, by multiplying Eq. (2.85) by  x 2 and integrating it with respect to  x  variable, we have

 t



 d 2 

 d

 x 2 (t) + A

 x 2 (t) + B

 dt   Y (| t −  t| ) d  x 2 (t) = 2 v 2 (t), (2.86)

 dt  2

 dt

 dt 

0

where

∞



 x 2 (t) =

 x 2 W d x

−∞

and

∞

∞



 v 2 (t) =

 v 2 ρ(x, v, t)dvdx. 

−∞ −∞

To obtain  x 2 we need to know the time dependence of  v 2. However, we are interested in the asymptotic behavior of Eq. (2.85) for long times, that is, when it can be connected to a fractional diffusion equation of distributed order for a suitable choice of  Y (t). In order to handle the problem, we approximate  v 2 to a constant, that is,  v 2 ≈  D. Applying the Laplace transform with  x( 0 ) = 0, it is possible to obtain  x 2, the second moment from Eq. (2.86), and, consequently, the mean square displacement  σ  2. After some calculations, we obtain

 x





∞



 n

 σ

 Y (s)

2 (s) =

2 D

−B

 , 

(2.87)

 x

 s(s + A )

 s + A

 n=0

with the inverse Laplace transform being given by





∞



 t





 (−





 σ

1

B )n

2 =

 (

2 D

1 −  e−A t +

 dt  t   n+1E  n) −A t  

 , 

 x

 n (t −  t  )

A

  ( 1 +  n)

1 ,  2

 n=1

0

(2.88)

where  n(t)  was defined in Eq. (2.76). Equations (2.75) and (2.88) exhibit relaxation processes governed by the generalized Mittag-Leffler function, which, for long times, yields the same time behavior obtained for the Langevin equation. 

To verify this feature, we consider the case characterized by

 Y (| t| ) =

B

 , 

| t −  t| γ
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Fig. 2.3 Comparison of the variance behavior in time from Eqs. (2.69) and (2.89), with  γ = 0 .  5, A = 0 .  1, B = 1, and and  D = 1. The dotted line is the result of the diffusion like equation approach and the straight line is the prediction of the generalized Langevin equation approach. Modified with permission from Tateishi et al. [36]. Copyright (2012) by the American Physical Society which was solved in the previous section. By substituting this function into Eq. (2.86), 

we obtain

∞





 n

 σ

 t  2

2 =

 (

2 D

− B t 2− γ  E  n) (−A t), 

(2.89)

 x

 ( 1 +  n)

 α,β

 n=0

where  α = 1 and  β =  n( 1 −  γ ) + 3. 

In Fig. 2.3, we compare this result with the one found in the generalized Langevin equation approach by plotting Eq. (2.69) and Eq. (2.89). As we can see, this figure demonstrates a good agreement between Eqs. (2.69) and (2.89) when long times are considered as expected from the previous discussion. 
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The asymptotic limits for Eq. (2.89) are





 σ  2 ∼ 2 v 2 t 2 1 − A t , 

 x

3

for short times, 

 σ  2 ∼ 2 v 2 t , 

 x

A t

for intermediate times, and

 σ 2 ∼ 2 v 2 tγ , 

 x

 ( 1 +  γ ) B

for long times. Note that Eqs. (2.69) and (2.89) are proportional to  t  for intermediate times and to  tγ  for long times when B  <  A. This fact is a consequence of the power-law relaxation of the system, which is evidenced by the presence of the generalized

Mittag-Leffler functions. 

2.5

Anomalous Diffusion: Basic Concepts

As we have seen before, the Brownian motion is characterized by a diffusion packet

that is initially concentrated at a point and takes later the Gaussian form, whose width grow in time as  t 1 / 2, characterizing what we called normal diffusion. This behavior can be predicted in a simplified way by means of scaling arguments. If we look at

the diffusion equation for a constant diffusion coefficient, that is

 ∂ρ(x, t)

 ∂ 2 ρ(

=

 x, t)

 D

 , 

 ∂t

 ∂x 2

we may notice that the square of the position scales linearly with  t  and we may expect that

 x 2 ∼  t. 

Similarly, if we look at a space-time fractional equation, whose properties will be

discussed in Sect. 5.1, in the form

 ∂γ ρ(x, t)

 ∂αρ(

=

 x, t)

 D

 , 

 ∂tγ

 ∂xα

we may expect that

 x 2 ∼  t 2 γ/α. 
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Thus, in general terms, we may expect that for 2 γ =  α  we have to deal with a normal diffusion. However, when 2 γ < α  the subdiffusion process are relevant and, similarly, for 2 γ > α  the process under investigation is superdiffusive. These anomalous behaviors are experimentally found in several areas of science as, for

instance, in thermal resistance effects [76], lithium-ion capacitors [77], diffusion of protons in Y-doped  Ba Zr O 3 perovskite oxide [78], nanoparticle surface diffusion in LCTEM [79], and water diffusion in polysaccharide interpenetrating hydrogels [80]; 

thus, before proceeding, it is useful to briefly summarize some of their general fea-

tures. 

 2.5.1

 Superdiffusion

Two decades after the pioneering works on Brownian diffusion, the English mathe-

matician (but also physicist and meteorologist) Lewis Fry Richardson (1881–1953)

obtained empirical data in contradiction with normal diffusion. In 1926, he proposed

a non-Fickian diffusion equation to treat the phenomenon on the eddies of the free

atmosphere [81]. The solution obtained by Richardson represents a process in which at  t = 0 all neighbors in a cloud are indefinitely close, and as time proceeds they spread out continually. From his analysis, one deduces that  x(t) = 0 and

 x 2 ∝  t 3 , 

(2.90)

indicating that the mean square displacement in the phenomenon of turbulence points

towards a more rapid diffusive regime, that is, a  superdiffusion process. Superdiffusion is an anomalous diffusive process. This means that the diffusive packet has

a width following a law different from the one of normal diffusion. In general, 

for superdiffusion,  x 2 ∝  tα, with  α >  1. In the framework of the homogeneous Markovian process, when the characteristic function of the spatial distribution of the diffusive substance, 

∞





 P(k, t) =  eikx(t) =

 eikx P(x, t)dx, 

(2.91)

−∞

obeys the equation:

 ∂ 

 P(k, t) = − c| k| α  P(k,t), c >  0 , 

(2.92)

 ∂t

an anomalous distribution may be found [82]. For simplicity, let us illustrate this behavior by considering a diffusion packet initially concentrated at a point, that is, P(x,  0 ) =  δ(x). The solution of Eq. (2.92) may be written as P(k, t) =  e− c| k| αt . 

(2.93)
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This is the characteristic function of the  α−stable Lévy distribution, and the stochastic processes themselves are the Lévy flights. 

 2.5.2

 Lévy Flights

The preceding ideas are part of a more general framework and can be used to establish some basic concepts to deal with anomalous behavior in stochastic processes. For the

probability density function of a stochastic process  P(x), the characteristic function P(y)  is defined by means of the Fourier transform of the probability density function as

∞





 P(y) =

 P(x)eiyx dx. 

(2.94)

−∞

By performing the inverse Fourier transform, we obtain the probability density func-

tion:

∞



 P(x) = 1



 P(y)e− iyx dy. 

(2.95)

2 π −∞

An entire class of stable distributions described by the most general form of a char-

acteristic function exists [83]. They can be defined as follows:





 π

ln 

 P(y) =  iμy −  γ | y| α  1 −  iβ y  tan

 α , α = 1 , 

(2.96)

| y|

2

and





2

ln 

 P(y) =  iμy −  γ | y| 1 +  iβ y

ln | y|  , α = 1 , 

(2.97)

| y|  π

where 0  < α ≤ 2,  γ  is a positive scaling factor,  μ  is any real number and  β  is an asymmetry parameter between −1 and 1. The analytical form of the Lévy stable

distribution is known only for a few values of  α  and  β. For symmetric stable distributions,  β = 0 and if the distributions have zero mean (first moment),  μ = 0. The characteristic function for the Gaussian distribution is a special case of Lévy stable distribution with  α = 2,  β = 0, and  μ = 0, assuming the form (again!): P(y) =  e− γ | y|2 , 

(2.98)

where  γ =  σ  2 / 2 is the positive scale factor. The symmetric stable Lévy distribution with zero mean, of index  α  and scale factor  γ  is the inverse Fourier transform:

102

2

Concepts in Diffusion and Stochastic Processes

∞



 P Lévy (x) = 1

 e− γ | y| α  cos (yx)dy. 

(2.99)

 π  0

If we assume that  γ = 1, and look at the asymptotic approximation valid for large values of | x|, we obtain:

 ( 1 +  α)  sin (πα/ 2 )

 P Lévy (| x| ) ∼

∼ | x|− ( 1+ α), 

(2.100)

 π| x|1+ α

that is, we find that it has a power-law behavior. We also find that | x| q diverges for  q ≥  α, when  α <  2. It follows, in particular, that all Lévy stable processes with α <  2 have infinite variance [84]. Since the variance of this distribution diverges, there is the possibility that long jumps occurs, as occurs in Lévy flights. 

Lévy flights are stochastic processes characterized by the occurrence of extremely

long jumps, so that their trajectories are not continuous anymore. The lengths of these jumps are distributed according to the Lévy stable statistics with a power-law tail and divergence of the second moment. They can be employed to capture the behavior

of several systems (see, for instance, Refs. [85–89]. They are Markovian processes whose individual jumps have lengths distributed with a probability density function

 λ(x), decays according to the law

 λ(x) ≈ | x|−1− α,  0  < α <  2 . 

(2.101)

The trajectories may also be self-similar which connects them with fractals. 

 2.5.3

 Subdiffusion

The presence of sub-diffusive process may be discussed briefly in connection with the work of H. Scher and E. W. Montroll (1916–1983), who studied a system involving

amorphous solids for which they tried to describe the transport phenomena [90, 91]. 

The charge carriers in these materials tend to be trapped by local defects and then

released by thermal fluctuations [1, 92]. 

For these systems, it is possible to find for the mean square displacement:

 x 2 ∝  tα,  0  < α <  1 , 

(2.102)

that is, a fractional time dependence, implying that the charge carriers diffuse in time in a nonlinear way and slower than in the normal diffusion process, which is a typical subdiffusive behavior. We notice that this kind of behavior has been detected in a

variety of problems, including zeolites [93], heterogeneous media with stochastic resetting [94], and fractures in porous media [95]. 
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A more sophisticated example of anomalous diffusive behavior may be found in

the diffusion on a fractal object of dimension  ν, embedded in a space of dimension  d, in which is defined a probability at time  t  to be within a hyper-spherical shell between r  and  r +  dr  centered on some origin lying on the fractal. A detailed analysis of the process [96, 97] shows that



2

 r  2 (t) =  Aθ,ν(k)t  2+ θ , 

(2.103)

where  k  is related with the electrical conductivity of the material and  θ > ν ∈ R

is a parameter connected with the diffusion coefficient accounting for the inhomo-

geneities of the medium. Expression (2.103) shows that for  θ >  0, the process is subdiffusive whereas for −2  < θ <  0 the superdiffusive behavior is obtained. 

A natural and powerful way to face anomalous diffusive problems is to tackle

them using fractional diffusion equations. The diffusive process illustrated above

was studied by means of a normal diffusion equation in which the diffusion coef-

ficient is instead radius dependent according to the law  D(r) ∝  r− θ . In general, anomalous diffusion behavior may also be found in systems described by normal

diffusion equations but subjected to some constraints imposed by the boundary con-

ditions or surface effects. After discussing the elements of the fractional calculus, in the next chapter, the remaining of this book will explore anomalous diffusion and

relaxation behavior of several representative systems with or without using the tools of the fractional calculus to show the omnipresence of these phenomena in scientific

problems. 
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Chapter 3

Random Walks

Abstract This chapter deals with the random walk problem and its connections

with the diffusion processes. Its first part is dedicated to an elementary approach

to the classical random walks or random flights problem. Then, a generalization of

the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-

Planck equation), is investigated, creating the conditions to discuss the central limit theorem and a kind of its generalization. In practice, we deal with a generalization

of the simplest random walk, that is, the one of a free particle walking a given

distance in a positive or negative direction at each step of time, via a nonlinear

Markov chain obtained from the porous media equation. Subsequently, the concepts

of anomalous diffusion and of those random walks with space and time continuous, 

which are called continuous-time random walk, are reviewed, focusing some formal

aspects of the anomalous dynamics and pointing towards recent extensions of these

methods. It is shown that the continuous-time random walk can be formulated in

order to obtain reaction-diffusion equations. These equations describe the evolution

of several species undergoing anomalous diffusion, with reactions governed by linear

mean-field equations. We discuss also a theory for the intermittent continuous-time

random walk and Lévy walks, in which the particles are stochastically reset to a

given position at the end of each step of renewal, with a given resetting rate. The link between the formalisms of normal and anomalous diffusion is discussed, motivating

the application of the fractional calculus to the whole approach on which the book

is based. 

3.1

Elementary Approach

In this section, we discuss the basic concept of a random walk. It was proposed by Karl Pearson (1857–1936), who was also interested in describing the mosquito infestation

in a forest. He wanted to know the distribution of mosquitos after many steps had been taken by them [1–3]. The proposition of the problem may be done by considering a particle that undergoes a sequence of displacements r1 , r2 , . . . , r i , . . . ,  each of which having a magnitude and a direction independent of all the preceding ones, and

asking what is the probability  W (R )dR that, after  N  displacements, the coordinates
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of the particle lie in the interval R and R +  dR. The probability distribution that the displacement r i  lies between r i  and r i +  dr i  is assumed as known a priori [4]. 

Subsequently, we consider those random walks which are space and time continuous, 

frequently referred to as continuous-time random walks. They are based on the idea

that the lengths of jumps as well as the time elapsed between these jumps are not

constant and are connected by some kind of probability distribution function. 

The problem of Pearson may be rephrased in a simplified one-dimensional ver-

sion as follows [5]. A walker may move randomly to the left or to the right, with independent steps of equal lengths  l. After  N  steps, what is the probability the walker is found at the position  x =  ml, in which  m  is a number such that − N ≤  m ≤  N ? 

Let  p  be the probability that a step is to the right and  q = 1 −  p  the probability the step is to the left. Thus, a certain sequence of events (sequence of  N  steps) such that  n 1 is to the right and  n 2 to the left may be defined as:

 p . . . p

 . . . q . . . q

 . . . =  pn 1 qn 2 , 

(3.1)

 n 1  times

 n 2  times

with

 N =  n 1 +  n 2 , m =  n 1 −  n 2 = 2 n 1 −  N. 

(3.2)

The number of ways of ordering  N  different objects is, obviously,  N ! However, in the present case, not all the situations are distinguishable! Indeed,  n 1 of them are equal (which are the steps to the right) as well as equal are the  N −  n 1 others (the steps to the left). Thus, in  N  steps, the number of distinct possibilities that  n 1 steps be to the right and  n 2 be to the left is

 N !  . 

(3.3)

 n 1!  n 2! 

We may determine the probability that, in  N  steps,  n 1 be to the right and  n 2 to the left by multiplying the previous number by the probability of each step, namely, 

 WN (n 1 ) =

 N !  pn 1 qn 2

 n 1!  n 2! 

=

 N ! 

 pn 1  q N− n 1  . 

(3.4)

 n 1!  (N −  n 1 )! 

Therefore, 



 N

 WN (n 1 ) =

 pn 1  q N− n 1  , 

(3.5)

 n 1
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which is the binomial distribution. Indeed, we may consider that







 (

 N

 N

 N

 x +  y)N =  x N +

 x N−1  y +

 x N−2  y 2 + · · · +

 y N

1

2

 N

 N



=

 N ! 

 xk y N− k

(3.6)

 k!  (N −  k)! 

 k=0

is the famous Newton’s binomial formula, which is defined in terms of the binomial

coefficients introduced in Eq. (1.155). We notice,  en passant, that N



 N



 N ! 

 WN (n 1 ) =

 pn 1  q N− n 1

 n 1!  (N −  n 1 )! 

 n 1=0

 n 1=0

=  (p +  q)N = 1 , 

(3.7)

that is, the distribution is normalized to the unity. With these ingredients in mind, we are able to answer to the above question. Using Eq. (3.2), we may write n 1 = 1  (N +  m)  and  n 2 = 1  (N −  m). 

(3.8)

2

2

Consequently, the probability the walker (or the particle) be found at the position

 x =  ml  after  N  steps, denoted here as  PN (m), will be given by PN (m) =  WN (n 1 )

=

 N ! 

 p(N+ m)/ 2 q(N− m)/ 2 . 

(3.9)

[ (N +  m)/ 2]![ (N −  m)/ 2]! 

We are now ready to calculate some averages and other important quantities. The

mean value is given by

 N



 N





 N ! 

 n 1 =

 n 1 WN (n 1 ) =

 n 1

 pn 1  qn 2

 n 1!  n 2! 

 n 1=0

 n 1=0





 ∂

 N



=

 N ! 

 p

 pn 1  qn 2

 ∂p

 n 1!  n 2! 

 n 1=0

 ∂

=  p

 (p +  q)N =  N p. 

(3.10)

 ∂p

On the other hand, since  N =  n 1 +  n 2 and  N  =  N , we have  n 2 =  N q. To calculate the dispersion, we consider that  (n 1 ) 2 =  n 2 −  n 1

12. Thus, 
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 N





 N ! 

 n 2 =

 n 2

 pn 1  qn 2

1

1  n 1!  n 2! 

 n 1=0







 ∂

 ∂ N



=

 N ! 

 p

 p

 pn 1  qn 2

 ∂p

 ∂p

 n 1!  n 2! 

 n 1=0

=  pN +  N(N − 1 )p 2 . 

(3.11)

From the above results, we obtain:

 (n 1 ) 2 =  pN +  N(N − 1 )p 2 −  p 2 N 2 =  N pq. 

(3.12)

The standard deviation becomes:





 σ =  (n 1 ) 2 =  N pq. 

(3.13)

We may conclude that

 σ

lim

≈  N−1 / 2 → 0 . 

(3.14)

 N →∞  n 1

In a similar manner, we can calculate  (m) 2. Since we know that  m =  n 1 −  n 2 =

2 n 1 −  N , then  m 2 =  ( 2 n 1 −  N ) 2. Simple calculations allow us to conclude that (m) 2 = 4 (n 1 ) 2

= 4 N pq. 

(3.15)

Let us now explore the behavior of the distribution when  N  1. From Eq. (3.4), 

we observe that

 n 1 = 0 →  WN ( 0 ) =  p 0 q N

→



0

 N →∞

 n 1 =  N →  WN (N ) =  pN

→



0 . 

(3.16)

 N →∞

This indicates that  WN (n 1 )  has a maximum, which we call  n∗. To proceed, we 1

consider ln  WN (n 1 )  instead of  WN (n 1 )  because it varies slowly. We know that  n 1 =

 p N . We may thus suppose that the maximum will be great if  N  is great. In this case, the function will be practically continuous in the variable  n 1, that is, 

| W(n 1 + 1 ) −  W(n 1 )|   W(n 1 ). 

(3.17)

From Eq. (3.4), we may write:

ln  W (n 1 ) = ln  N ! − ln  n 1! − ln (N −  n 1 )! +  n 1 ln  p +  (N −  n 1 )  ln  q (3.18)

3.1 Elementary Approach

113

and, using the Stirling approximation, Eq. (1.162), rewrite:

ln  W (n 1 ) ≈  N  ln  N −  N −  n 1 ln  n 1 +  n 1 −  (N −  n 1 )  ln (N −  n 1 )

+ N −  n 1 +  n 1 ln  p +  N  ln  q −  n 1 ln  q. 

(3.19)

Now, to find the maximum, we calculate

 d [ln  W(n 1 )]

 dn

 n 1= n 1∗ = [− ln  n 1 − 1 + ln (N −  n 1 ) + 1 + ln  p − ln  q ] n= n∗1

1

= 0 , 

(3.20)

which yields

 n∗ =  pN =  n

1

1 . 

(3.21)

The next step is to expand the distribution in Taylor series around the maximum  n∗, 1

namely:





 d 2

ln  W = ln  W (n∗ ) + 1

ln  W (n

 (n

 ) 2 + · · ·  , 

(3.22)

1

1 )

1 −  n∗

2!  dn 2

1

1

 n 1= n∗1

which, after some simple calculations, may be written as:

ln  W ≈ ln  W (n∗ ) −

1

 (n

 ) 2 , 

(3.23)

1

1 −  n∗

2 N pq

1

or

 W =  W (n∗ )e− (n 1− n 1 ) 2 / 2 Npq, (3.24)

1

which is the  Gaussian distribution (again!). To normalize it, we impose that

 N

 WN(n 1 ) = 1 , 

(3.25)

 n 1=0

which, for  N → ∞, may be rewritten as

∞



 W (n∗ )e− (n 1− n∗ ) 2 / 2 Npq

1

 dn

1

1 = 1 . 

(3.26)

−∞

Therefore, 

 WG(n 1 ) =

1



 e−[ n 1− <n 1 > ]2 / 2 <(n 1 ) 2 >, (3.27)

2 π (n 1 ) 2

because  < n 1  > =  n∗ =  N p  and  < (n

1

1 ) 2  > =  N pq . 
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Let us go back to the random walk problem with a new ingredient. Instead to

consider each step as having a length  l, we will assume that the displacement, at any step, has a random value,  si , and will occur with a probability  λ(si )dsi , that is, λ(si)dsi

is the probability that the  i  th step has a length lying in the interval  si →  si +  dsi . It is a  jumping probability. At this point, the fundamental question to be answered is the following: After  N  steps, what is the probability to find the walker between the positions  x  and  x +  dx? 

To answer it, first of all we notice that the displacement, after  N  steps, is given by N



 x =

 si . 

(3.28)

 i =1

Thus, it follows that:

 N



 N



 x =

 si =

 si =  N s , 

 i =1

 i =1

and, in addition, that



 x =  N

 sλ(s)ds. 

In this framework, we may write

 N



 N



 N



 x =

 si −

 si =

 si −  N  s

 i =1

 i =1

 i =1





such that  σ  2 =  (x) 2 will be given by



 σ  2 =  N (s) 2 λ(s)ds. 

(3.29)

Let us now calculate the probability  P(x)dx  to find the walker between  x  and x +  dx  after  N  steps. Since the steps are statistically independent, one gets:

∞



∞



 P(x)dx =

 λ(s 1 )ds 1  . . . 

 λ(sN )dsN , 

(3.30)

−∞

−∞
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provided that

 N



 x < 

 si < x +  dx. 

 i =1

This means that the integration has to be performed with this constraint. To evaluate it, we use again the Dirac’s delta to write

∞







 N



 N



 P(x)dx =

 λ(sj)dsj δ(x −

 si )dx . 

(3.31)

−∞  j=1

 i =1

Equation (3.31) may be written in the form:

∞



∞





 N





 N



 i k

 si

 P(x)dx = 1

 λ(sj)dsj

 dke

 i =1

 e− ikx d x, 

2 π −∞  j=1

−∞

or

⎡

⎤

∞



∞



∞



 P(x) = 1

 dke− ikx ⎣

 λ(s

⎦

1 )eiks 1  ds 1

 λ(s 2 )eiks 2 ds 2  . . . 

2 π −∞

−∞

−∞

⎡

⎤

∞



∞



 N

= 1

 dke− ikx ⎣

 λ(s)eiksds⎦  , 

(3.32)

2 π −∞

−∞

or, finally, 

∞



 P(x) = 1

 Q N (k)e− ikx dk, 

(3.33)

2 π −∞

which is the answer to our problem. An important result may be obtained when we

consider the limit  N → ∞ in the previous expression. Since

∞



 Q(k) =

 dseiks λ(s), 

(3.34)

−∞

we notice that when | k|  1,  Q(k) → 0, that is, the integrand oscillates very fast. 

Thus, the relevant contribution to the integral comes from the points around  k = 0. 

For this reason, we may expand the integrand as follows:
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∞







 (iks) 2

 Q(k) ≈

 λ(s)  1 +  iks +

+ · · ·  ds

1! 

2! 

−∞

∞



∞



∞



 (

=

 λ(

 i k) 2

 s)ds +  ik

 sλ(s)ds +

 s 2 λ(s)ds + · · ·

2

−∞

−∞

−∞

= 1 +  ik s − 1 k 2 s 2 + · · ·  . 

2

We may write

 Q N (k) =  eN  ln  Q(k) =  eN  ln[1+ ik s− k 2 s 2 / 2+··· ] , and, taking into account that for  x  1, ln ( 1 +  x) ≈  x −  x 2 / 2 +  O(x 3 ), we obtain ln 1 +  ik s − 1  k 2 s 2 + · · · ≈  ik s − 1  k 2  (s) 2  . 

2

2

From the above results, it follows that:





 Q N (k) =  ei Nk s− Nk 2  (s) 2  / 2 . 

(3.35)

It is then possible to rewrite the probability density as

∞







 P(x) = 1

 ei(N s− x)k− N (s) 2  k 2 / 2 dk. 

2 π −∞





To simplify, we introduce the quantities  σ  2 =  N (s) 2 ,  a =  σ  2 / 2 and  b = − i x

+  i N s, in order to obtain

∞



 P(x) = 1

 dke− ak 2+ bk

2 π −∞

 π

= 1

 eb 2 / 4 a, 

2 π

 a

or, finally, 

 P(x) =

1

√

 e− (x− μ) 2 / 2 σ  2  , 

(3.36)

2 π σ

in which  μ ≡  N  s. This is a very general result. Indeed, it is a consequence of the so-called  Central Limit Theorem, which describes the behavior of sums of random (stochastic) variables. 
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 3.1.1

 Stochastic Variables

In probability or statistics, a  random variable  or  stochastic variable (also called aleatory variable)  Y  is typically a variable whose values depend on outcomes of a random phenomenon. In many cases,  Y  is real-valued. A simple example may be

built from the problem of random walk discussed in Sect. 3.1. Consider an imaginary playoff consisting in a single step of a random for which a real-valued random variable Y  is such that

1 ,  if c = right , 

 Y (c) = 0 ,  if  c = left , 

(3.37)

for the case of a successful step to the right paying a symbolic amount of  y = 1. The probability function (also called probability mass function in the case of discrete

variables) associated to  Y  is defined as

1 ,  if  y = 1 , 

 f

2

 Y (y) =

1  ,  if  y = 0 . 

(3.38)

2

For the case of continuous stochastic variables, they admit probability distribution

functions. When this occurs, the characteristic function is the Fourier transform of

the this probability density function, as we shall discuss now. 

In the case of a scalar random variable  Y , the  characteristic function  is defined as the expected value of  eikY , with  k ∈ R, that is

∞







 fY (k) = E  eikY =

 eiky pY (y)dy. 

(3.39)

−∞

This means that if a random variable  Y  has a probability density function  pY (y), then the characteristic function is its Fourier transform. For the particular case of two independent stochastic variables  Y 1 and  Y 2, we have

 fY

 (k) =  f (k) f (k). 

1 + Y 2

 Y 1

 Y 2

Armed with these simple definitions, let us consider a sum of  N  independent

stochastic variables,  Xi , such that

 N



 N



 YN = 1

 (xi −  x ) =

 Xi

 N i=1

 i =1

represents the deviation from the average of  N  statistically independent measurements of a stochastic variable  x. The characteristic function of the stochastic variable Xi = 1 /N (xi −  x )  is defined as [6]
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∞



 f X (k, N ) =

 ei (k/N) (xi − x ) P(x

 i

 i ) d xi , 

(3.40)

−∞

where  P(xi )  is the probability associated to the stochastic variable  xi . For large values of  N  and finite variance, the integrand may be expanded to give

 k 2 



 f X (k, N ) ≈ 1 − 1

 x 2 −  x 2  , 

(3.41)

 i

2  N  2

when high-order terms can be neglected. Since for independent random variables the

characteristic function of their sum is the product of their characteristic functions, the characteristic function of the variable  YN  may be written as

 fY (k) =  f (k) ·  f (k) . . . f

 (k)

 N

 X 1

 X 2

 X N







 N

≈

 k 2

1 − 1

 x 2 −  x 2 + · · ·

→  e− k 2 σ 2 / 2 N

 x

as  N → ∞ , 

2  N  2

(3.42)





where  σ  2 =  x 2 −  x and the identity lim

 x

 n→∞ ( 1 +  x /n)n =  ex  has been used. 

The probability distribution associated to the variable  yN  is

∞





 N

 PyN (x) → 1

 eikx fx (k) dk =

 e− N x 2 / 2 σx 2  , 

(3.43)

2 π

2 πσx 2

∞

when  N → ∞. Notice that the explicit form of  P(x)  was not required if we assume that it has finite moments. In this general case, the average of a large number of

statistically independent measurements of  x  will be a Gaussian whose centre is in

√

 x and whose standard deviation is  ( 1 / N)σx. 

In the simple analysis discussed above, we have shown that the limiting behavior of

the probability of the composition of successive aleatory steps in a random walk when the number of steps is very large is directly related to the central limit theorem [7–9]. 

We reinforce the idea that this theorem states that the limiting distribution of the sum of independent random variables is a Gaussian [9, 10]. This fact has been illustrated in the simple random walk discussed here where the steps are independent and of

the same length. The probability of finding the walker in a certain position, after

taking a determined number of steps, corresponds to a binomial distribution, which, 

in agreement with the central limit theorem, approximates to a Gaussian distribution

when the number of steps is sufficiently large [5, 9]. 

Starting from a random walk (discrete case) with steps that are independent and

of equal length, we can obtain a normal diffusion process (continuous case) when we

let the number of steps to increase without bound. This diffusion process is governed by a linear Fokker-Planck equation, whose solution is the Gaussian distribution. This
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means that obtaining a diffusion process as the continuous limit of a random walk can be visualized as a verification of the central limit theorem. Conversely, starting from a normal diffusion process, governed by a Fokker-Planck equation whose solution

is a Gaussian distribution, we can employ a discretization process in order to obtain a random walk. This random walk will be such that the distribution of the position

of the walker after taking a determined number of steps converges to the solution of

the Fokker-Planck equation, namely the Gaussian distribution, when the number of

steps tends to infinity. Thus, we generate a random walk that verifies the central limit theorem. 

Generalizations of the central limit theorem that consider weak relaxation of the

basic hypothesis of independence (weak dependence) are available in the litera-

ture [9, 11, 12]. More recently, some results concerning the central limit theorem have been obtained for strongly correlated situations [13–15] (see also [16–18]) in contexts related to nonextensive statistical mechanics [19, 20]. For instance, when the usual statistical mechanics does not give a good description of the thermodynamical equilibrium state, it was verified, by using numerical simulations, that a system with long-range interactions leads to a strong violation of the central limit theorem [21–24]. Moreover, there are many situations where the diffusive-like process of particles in a medium is not the usual one and is commonly described in terms of

phenomenological anomalous diffusion equations. These equations have solutions

which are different from the Gaussian distribution. 

The next section will be dedicated to analyze the arising of nonlinear Fokker-

Planck equations in connection with generalizations of the random walk concept

discussed above. 

3.2

Random Walks: Nonlinear Fokker-Planck Equations

In this section, we study a generalized random walk, by starting from a nonlinear

diffusion equation (or nonlinear Fokker-Planck equation) [25]. Clearly, this random walk will show strong correlations since the distribution of the position of the walker after taking a large number of steps will approximate the solution of the nonlinear

Fokker-Planck equation, which is not the Gaussian distribution. We will then verify

a kind of generalization of the central limit theorem. 

Before proceeding, we reformulate the random walk problem discussed in

Sect. 3.1 in terms of a particle performing one-dimensional successive steps, each of length  a  and time interval  τ , with equal waits. The equation for the probabilities is Pn+1 (m) = 1  Pn(m + 1 ) + 1  Pn(m − 1 ), 

(3.44)

2

2

where  Pn(m)  is the probability of finding the particle in position  x =  m a  at time t =  n τ  with  (m, n) ∈ N. As it is known, when the initial condition is to find the particle localized in a given position  m, that is
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 P 0 (m) =  δm,  0 , 

(3.45)

Equation (3.44) leads to the binomial distribution, Eq. (3.9), here rewritten as n

 n! 

 P







 n (m) = 1

= 1

 , 

(3.46)

2 n

 n− m

2 n n− m !  n+ m ! 

2

2

2

where  m  is odd (even) if  n  is odd (even) and | m| ≤  n;  Pn(m) = 0 for other values of  m. 

If the variables  n 1 =  (n +  m)/ 2 and  n 2 =  (n −  m)/ 2 are employed, the distribution given in Eq. (3.46) reduces to the usual form of the binomial distribution, 1  n

 Pn(n 1 ) =

 n! 

 . 

(3.47)

 n 1!  n 2! 

2

We may now use the approximations

 ∂ Pn(m)   Pn+ b(m) −  Pn(m)  and

 ∂n

 b

 ∂ 2  Pn(m)   Pn(m +  c) − 2 Pn(m) +  Pn(m −  c) (3.48)

 ∂m 2

 c 2

for large  n  and | m| with  b = 1 and  c = 1, to rewrite the random walk Eq. (3.44) as the linear Fokker-Planck equation (usual diffusion one)

 ∂ Pn(m)

 ∂ 2

 ∂ρ(

 ∂ 2 ρ(

= 1

 Pn(m)

 x, t)

 x, t)

or

=  D

 , 

(3.49)

 ∂n

2

 ∂m 2

 ∂t

 ∂x 2

with  x =  am,  t =  τ n,  ρ(x, t) =  Pn(m)/a  and  D =  a 2 / 2 τ . The solutions of these equations that have probabilistic interpretation, with  P 0 (m) =  δm,  0 ,  or  ρ(x,  0 ) =

 δ(x), are given by

exp (−  m 2  )

exp (−  x 2  )

 P

2 n

4 D t

 n (m) =

√

or  ρ(x, t) = √

 . 

(3.50)

2 πn

4 π D t

Both expressions are related to the Gaussian distribution, defined by

exp[−  (x− μ) 2 ]

 g(μ, σ ;  x) =

2 σ  2

√

 , 

(3.51)

2 πσ

where  μ  and  σ  are respectively the mean and the variance of the distribution. For instance, from the last expression in Eq. (3.50), we have

√

 ρ(x, t) =  g( 0 ,  2 Dt;  x). 

(3.52)
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We note that, starting from the random walk equation (3.44) and using the approximations given in Eq. (3.48), we obtain the linear Fokker-Planck equation (3.49). So, we went from a discrete case to a continuous one. Consistently, the distribution given in Eq. (3.46) should converge to the Gaussian distribution given in Eq. (3.50) when the number of steps  n  in the random walk increases without bound. This actually happens by virtue of the central limit theorem. Indeed, this can be verified directly from Eq. (3.46) by using Stirling’s formula, Eq. (1.161). Thus, the mentioned procedure can be seen as a verification of the central limit theorem. Conversely, starting from Eq. (3.49) and using the discretizations given in Eq. (3.48) we can obtain an equation of a random walk, e.g., we can obtain Eq. (3.44). This random walk will be such that the distribution of the position of the walker after taking a determined number of steps converges to the solution of the Fokker-Planck equation (3.50) when the number of steps tends to infinity. Proceeding in this way, we generate a random

walk that verifies the central limit theorem. 

There are anomalous diffusive processes where Eq. (3.49) does not give the correct description. Generalizations of Eq. (3.49) that preserve linearity have been made by the introduction of a diffusion coefficient which depends on time and space [26], spatial fractional derivatives (Lévy diffusion) [27–29] and a combination of them [30, 

31]. These anomalous cases and many others may be viewed as a limit of Pn+1 (m) =

 pn(m, s) Pn(m +  s)

(3.53)

 s

where the sum covers all possible states and  pn(m, s)  is the probability of moving from the position  m +  s  to the position  m  at the  (n + 1 )-th step. When the process is continuous in time, the master equation must be considered instead of Eq. (3.53). 

Moreover, Eq. (3.53) may be written in the usual form



 Pn+1 (m) =

 Tn(m, m ) Pn(m ) , 

(3.54)

 m

where  Tn(m, m ) =  pn(m, m −  m). The recursive application of Eq. (3.53) naturally leads to a generalization of the binomial distribution given in Eq. (3.46) since, using pn(m, s) = 1  δs,  1 + 1  δs, −1

2

2

and the initial condition Eq. (3.45), one recovers Eqs. (3.44) and (3.46). This expression for the transition probabilities  pn(m, s)  is the simplest one related to Eq. (3.49)

for large  n. Other expressions basically may arise as convenient discretizations of the derivatives in Eq. (3.49). 
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 3.2.1

 Nonlinear Random Walk

In addition to linear diffusions, there are anomalous diffusive situations that involve nonlinearities. For instance, the porous media equation [32], already introduced in Sect. 2.3.1.1, 

 ∂ρ(x, t)

 ∂ 2[ ρ(

=

 x, t)] ν

 D

 , 

(3.55)

 ∂t

 ∂x 2

where  ν  is a real parameter, plays an important role in this scenario; for instance, in the discussion of percolation of gases through porous media ( ν ≥ 2 [33]), thin saturated regions in porous media ( ν = 2 [34]), thin liquid films spreading under gravity ( ν = 4 [35]), radiative heat transfer by Marshak waves ( ν = 7 [36]), solid-onsolid model for surface growth ( ν = 3 [32]), among others (see also [37]). Moreover this nonlinear equation was firstly investigated as a Fokker-Planck one in connection with Tsallis statistics by Plastino and Plastino [38], and several others [39–46]. In particular, a nonlinear master equation that may be used to reobtain the nonlinear

Fokker-Planck equation was proposed [47]. Related to the last equation, generalized Block [48] (with its path integral solution) and von Neumann [49] equations were also investigated. The solution of Eq. (3.55), that generalizes the usual Gaussian solution given in Eq. (3.50), is written in terms of a  q-Gaussian distribution as ρ(x, t) =

 Nq

−

 N q−1

 q

 x 2

 , 

(3.56)

 t  1 /( 3− q)  exp q

2 ( 3 −  q)Dqt 2 /( 3− q)

where  q = 2 −  ν,  Dq =  ( 2 −  q)D, 

exp  x = [1 +  ( 1 −  q)x]1 /( 1− q)

 q

is the  q-exponential function, and

⎧

& 

' 

⎪ %

2 /( 3− q)

⎪

1

⎪

 

⎪

 q−1

 q−1

⎪

& 

' 

if 1  < q <  3

⎪

⎨

2 ( 3− q)π Dq   3− q

2 (q−1 )

%

 N

1

 q = ⎪

for  q = 1

(3.57)

⎪ 4 πD

⎪

⎪

& 

' 

⎪ %

2 /( 3− q)

⎪

   5−3 q

⎩

1− q

2 ( 1− q)

& 

' 

for  q <  1

2 ( 3− q)π Dq   2− q

1− q

is the normalization factor (if  q ≥ 3 the normalization integral diverges). Notice that the nonlinear logarithmic equation corresponds to  q = 2 and that using  Dq  finite instead of  D  is more convenient [50]. 

Following the line of reasoning of the previous section, it is possible to obtain a

simple nonlinear random walk from the nonlinear Fokker-Planck equation (3.55) by considering a discrete version of the spatial derivatives. For instance, we have
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 Pn+1 (m) = 1 [ Pn(m + 1 )] ν + 1 [ Pn(m − 1 )] ν − [ Pn(m)] ν +  Pn(m). 

(3.58)

2

2

In fact, as in the linear case (3.49) (for large  n  and | m|), this equation is formally approximated by

 ∂ Pn(m)

 ∂ 2[

= 1

 Pn(m)] ν , 

(3.59)

 ∂n

2

 ∂m 2

and when  ρ =  ρ(x, t) =  Pn(m)/a,  x =  am, and  t =  τ n  are used, Eq. (3.55) is recovered with  D =  a 1+ ν/( 2 τ). Note that Eq. (3.58) reduces directly to the usual one, Eq. (3.44), when  ν = 1; generalizes the simplest random walk, and goes in the direction of Eq. (3.55) for long time. For  ν = 1, the solution of Eq. (3.58) with the initial condition  P 0 (m) =  δm,  0 will approximate the solution of the nonlinear Fokker-Planck Eq. (3.55), given in Eq. (3.56). This can be seen as a verification of a generalized central limit theorem that involves a  q-Gaussian distribution [13]. Before we continue with our line of reasoning, we mention that another point of view, based on

Eq. (3.49) and its associated stochastic differential equation, has been employed to discuss a random walk [51]. 

A more general framework than that of Eq. (3.58) is to consider the random walk described by



 Pn+1 (m) =

 pn(m, s)[ Pn(m +  s)] ν − [ Pn(m)] ν +  Pn(m) , (3.60)

 s

where, in this case,  pn(m, s)  is again a quantity related to the probability of moving from the position  m +  s  to the position  m  at the  (n + 1 )-th step. By choosing  pn(m, s) conveniently, a large class of equations that mix nonlinearities, spatial and time-dependent diffusion coefficients, and spatial fractional derivatives may be obtained

as a limiting case. 

We note that the dynamics generated by Eq. (3.60) may preserve the normalization of the probabilities. Indeed, we have









 Pn+1 (m) =

 pn(m, s)[ Pn(m +  s)] ν −

[ Pn(m)] ν +

 Pn(m)

 m

 m

 s

 m

 m







=

 pn(m, m −  m)[ Pn(m )] ν −

[ Pn(m)] ν +

 Pn(m) . 

 m

 m

 m

 m

(3.61)



If  pn(m, m −  m)[ Pn(m )] ν ≥ 0 for any  m  and  m, p(m, m −  m) = 1 for any  m, 

 m





and

[ P

 P

 m

 n (m)] ν  and

 m

 n (m)  are finite then we can change the order of the sum-



mation in the first term of the right hand side of Eq. (3.61) and obtain P

 m

 n+1 (m) =

 P

 m

 n (m). We see from Eq. (3.60) that  Pn (m)  is certainly non-negative if each initial probability  P 0 (m)  is also non-negative and − Pn(m)ν +  Pn(m) ≥ 0, which leads to  ν ≥ 1. Therefore, we restrict our discussion to the case  ν ≥ 1 which is compatible with the examples of anomalous diffusion cited in the first paragraph of this section. 
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Let us consider that the quantities  pn(m, s)  do not depend on the position  m, that is,  pn(m, s) =  pn(s)  for any  m. Defining the expected values e n(sk) =

 sk pn(s)  and E (α)(mk) =

 mk [ P

 n

 n (m)] α , 

 s

 m

which contains the usual one, E (mk), as the particular case  α = 1, it follows from Eq. (3.60) that



 (ν)

E1 (mw) =

 mw p 0 (s)[ P 0 (m +  s)] ν − E  (mw) + E

0

0 (mw )

 m

 s

 ... 

(3.62)



 (ν)

E n(mw) =

 mw pn−1 (s)[ Pn−1 (m +  s)] ν − E

 (mw) + E

 n−1

 n−1 (mw) . 

 m

 s

Adding these equations yields

 n−1



 n−1



E n(mw) = E0 (mw) −

E (ν)(mw) +

 mw p

 u

 u (s)[  Pu (m +  s)] ν

 u=0

 u=0  m

 s

 n−1



 n−1



= E0 (mw) −

E (ν)(mw) +

 (m −  s)w p

 u

 u (s)[  Pu (m )] ν . 

 u=0

 u=0  m

 s

(3.63)

Using the binomial theorem, we obtain

E n(mw) = E0 (mw)

 n−1



 w





 w n−1





−

E (ν)(mw) +

 (−1 )k

 sk p

 m w− k [ P

 u

 u (s)

 u (m )] ν

 k

 u=0

 k=0

 u=0

 s

 m

(3.64)

and, therefore, 

 w





 w n−1



E n(mw) = E0 (mw) +

 (−1 )k

e u(sk)E (ν)(mw− k) . 

(3.65)

 k

 u

 k=1

 u=0

In particular, for  w = 1 and  w = 2, one has, respectively, 
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 n−1



E n(m) = E0 (m) −

e u(s)E (ν)( 1 )  and

 u

 u=0

(3.66)

 n−1



 n−1



E n(m 2 ) = E0 (m 2 ) − 2

e u(s)E (ν)(m) +

e

 ( 1 ) . 

 u

 u (s 2 )E (ν)

 u

 u=0

 u=0

If one considers Eq. (3.58) then  pn(s) =  (δs,  1 +  δs, −1 )/ 2 and e u( 1 ) = 1, e u(s) = 0, e u(s 2 ) = 1, e u(s 3 ) = 0, and so on. Moreover, E0 (m) = E0 (m 2 ) = 0 since  P 0 (m) =

 δm,  0. Thus, using these facts, we obtain E n(m) = 0 and

 n−1



 n−1



E n(m 2 ) =

E (ν)( 1 ) =

[ P

 u

 u (m)] ν . 

(3.67)

 u=0

 u=0  m

For  ν ≥ 1, we have [ Pn(m)] ν ≤  Pn(m)  and, consequently, E n(m 2 ) ≤  n. Thus, the case  ν ≥ 1 is consistent with a subdiffusive regime. We also have in this case that E (ν)(m 2 ) =

 m 2[ P

 m 2  P

 n

 n (m)] ν ≤

 n (m) = E n (m 2 ) , 

(3.68)

 m

 m

which implies that E (ν)(m 2 ) ≤  n. Finally, we see from Eq. (3.67) that, for  ν = 1, we n

obtain E n(m 2 ) =  n, recovering the variance of the simple random walk. 

The solution of the simplest random walk given in Eq. (3.46) becomes equal to zero for  m  odd (even) when  n  is even (odd). This fact does not occur for  n >  1 when ν >  1, but its signature can be identified for  ν  close to 1 and  n  not so large. Thus, these facts justify using the term “formally” when obtaining Eqs. (3.49) and (3.59)

from Eqs. (3.44) and (3.58), respectively. In order to get rid of the null probabilities in the solution of the simple random walk ( ν = 1), given in Eq. (3.46), we will consider the distribution

(





 Pn(m) = 1  Pn(m) +  Pn−1 (m) . 

2

We could have considered, for instance, the arithmetic mean of  n  values; however our choice is the simplest one. Figure 3.1 shows (

 Pn(m)  for  ν = 1 compared with the

Gaussian distribution given in Eq. (3.50) and also exhibits the corresponding standard deviation. Analogous illustrations are shown in Fig. 3.2 for the case  ν = 1 .  5. We have chosen to represent  σ  1+ ν  versus  n  in the panels (B) of Figs. 3.1 and 3.2 since, from Eq. (3.56), we verify that  σ ∝  n 1 /( 1+ ν). 

 3.2.2

 Generalized Random Walks

Before we conclude this section, we would like to remark that the introduction of

the nonlinear Markov framework, as represented by Eq. (3.60), proposed in connec-
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Fig. 3.1 (a) Scaled probability distribution,  P (m ) =  n 2 (

 Pn(m), versus scaled position,  m =

 n−2 m, for the usual random walk  (ν = 1 ). The continuous line is the Gaussian distribution given in Eq. (3.50) and the solid squares represent the probabilities (

 Pn(m)  after 30 times steps, that is, 

 n = 30. (b) The dependence on  n  of a power of the standard deviation,  σ  2, for the usual case (ν = 1 ). Modified from Mendes et al. [25]. Copyright © 2017 R. S. Mendes et al. Open access article distributed under the Creative Commons Attribution License

Fig. 3.2 (a) Scaled probability distribution,  P (m ) =  n 1+ ν (

 Pn(m), versus scaled position,  m =

 n−1− ν m, for the nonlinear random walk with  ν = 1 .  5. The continuous line is the  q-Gaussian distribution given in Eq. (3.56) with  q = 2 −  ν  and the solid circles represent the probabilities (

 Pn(m)  after 30 times steps, that is,  n = 30. (b) The dependence on  n  of a power of the standard deviation,  σ  1+ ν, for the nonlinear case with  ν = 1 .  5. Modified from Mendes et al. [25]. Copyright

© 2017 R. S. Mendes et al. Open access article distributed under the Creative Commons Attribution License

tion with the nonlinear Fokker-Planck equation, may be extended to other kind of

generalized random walks. 

We briefly indicate two contexts. First, a very general nonlinear Markov process

may be described by



 Pn+1 (m) =

 Tn(m, m , { Pn(k)} ) Pn(m ) , 

(3.69)

 m

where  Tn(m, m , { Pn(k)} )  is the transition probability from  m-state to  m-state and may depend on the probabilities  Pn(k)’s. 

If the transition matrices  Tn  do not depend on the  Pk’s, the usual case given in Eq. (3.54) is recovered. In addition, if

 Tn(m, m , { Pn(k)} ) =  pn(m, m −  m)Pn(m )ν−1
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for  m =  m  and

 Tn(m, m, { Pn(k)} ) = [  pn(m,  0 ) − 1] Pn(m)ν−1 + 1 , one obtains Eq. (3.60). 

Since in this context  Tn(m, m , { Pn(k)} )  has the status of probability, one has for all  n,  m  and  m that



 Tn(m, m , { Pn(k)} ) ≥ 0 and

 Tn(m, m , { Pn(k)} ) = 1 . 

(3.70)

 m



This equality is a consequence of the normalization condition

 P

 m

 n (m) = 1. Fur-

thermore, when there is a stationary distribution  P(m), it must satisfy the equation P(m) =

 Tn(m, m , { P(k)} ) P(m ) . 

(3.71)

 m

Rather than discussing further general properties of a nonlinear Markov chain, we

conclude with an extension related to the porous media Eq. (3.55). According to the central limit theorem, the distribution of the random variable  y =  n− γ

 n

 x

 i =1  i , 

where  γ = 1 / 2 and  xi  are independent and identically distributed random variables with null expectation and finite variance, converges to the Gaussian distribution

 p(y) =  ( 2 π)−1 / 2 exp (− y 2 / 2 )  as  n → ∞. 

On the other hand, when one looks for generalizations of the central limit theorem, 

several possibilities may be considered going from  γ = 1 / 2 to non-Gaussian probability distributions. In fact, in addition to the previous discussion about the nonlinear Fokker-Planck equation (3.55), several other situations could be considered. A very general illustrative possibility is to consider a diffusion coefficient that depends on space and time, spatial fractional derivatives and nonlinearities; for instance, 





 ∂ Pn(m)

 ∂

 ∂μ−1

=

 Pn(m)ν

 D

(3.72)

 ∂n

 ∂m

 ∂| m| μ−1

with  D ∝  nα| m| β ( t =  τ n  and  x =  am). Instead of considering the discrete version of Eq. (3.72) and analyzing the random walk as in the previous section, we conclude our discussion with the following observation on the exponent  γ . Noting that the normalization condition for  P  implies  P ∼ 1 /m (via dimensional analysis), Eq. (3.72)

leads to the scaling law  m ∼  nγ  with

 γ =

1 +  α

 . 

(3.73)

 μ +  ν −  β − 1

In addition to the normal diffusion ( μ = 2,  ν = 1, and  α =  β = 0), where  γ = 1 / 2, this expression contains several relevant particular cases. For example, the Richardson diffusion [26] ( μ = 2,  ν = 1, and  α = 0) has  γ = 1 /( 2 +  β), Lévy diffusion
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[27–29] ( α = 0,  ν = 1, and  β = 0) leads to  γ = 1 /μ  and porous media diffusion [33]

( μ = 2,  α = 0, and  β = 0) exhibits  γ = 1 /( 1 +  ν). 

The random walk analyzed here generalizes the simplest one (that one of a free

particle walking a given distance in a positive or negative direction at each step of time) via a nonlinear Markov chain obtained from the porous media equation [25]. 

3.3

Continuous-Time Random Walk

We consider now those random walks with space and time continuous, which are

frequently referred to as continuous-time random walk. This concept was introduced

in 1965 by Montroll and Weiss [52]. It describes a stochastic process in which the key concept is the waiting time distribution, that is, it assumes that each step of the walker is characterized by a waiting time and a displacement or a jump. A simple

example is the one in which a walker that is stationary for a time, called just the

waiting time, may or may not jump to another position according to some jump

probability distribution  ψ(x, t), in the one-dimensional case. 

The continuous-time random walks are based on the idea that the length of a

jump as well as the time elapsed between these jumps are not constant and are

connected with some kind of probability distribution function [53, 54]. The  waiting time distribution  is defined as:

+∞



 ω(t) =

 ψ(x, t) dx, 

(3.74)

−∞

and the quantity  ω(t)dt  gives the probability for a waiting time lying in the interval between  t  and  t +  dt. Likewise, the  jump length distribution  is defined as

+∞



 λ(x) =

 ψ(x, t) dt, 

(3.75)

0

and the quantity  λ(x)dx  represents the probability that a jump length lies in the interval between  x  and  x +  dx. Since  ψ(x, t)  is a joint probability distribution of jump length and waiting time, these variables involving position and time may be

not independent. 

The simplest case is the one in which they are independent random variables and

the  decoupled  form of the joint probability distribution holds, that is, 

 ψ(x, t) =  ω(t)λ(x), 

(3.76)

which is easily exemplified by the case of a particle located at a given position

that, after some time interval  not connected with its actual position, jumps with a
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probability distribution function  λ(x)  with no temporal influence anymore [55]. If instead the waiting time distribution and the jump length distribution are coupled, a jump of certain length may involve a time cost or, vice versa, in a given time span, 

the walker can only travel a given distance. 

To describe the different kinds of continuous-time random walks it is useful to

define a  characteristic time,  τ , in the form:

∞



 τ =  t =

 dt t ω(t)

(3.77)

0

and a jump length variance, 

∞



 σ 2 =  x 2 =

 d x x 2 λ(x). 

(3.78)

−∞

According to the distribution being considered, these quantities may be finite or

not. Since the length of the steps is a continuous quantity, it may be even zero. To

a deeper analysis of this aspect of the problem, suppose we are interested in the

 transition probability η(x, t)  that the particle arrives at the position  x  in the time interval between  t  and  t +  dt  in terms of the transition probability  η(x , t )  that the particle being at  x in a given time  t will move to the position required. In the present case, the length of each step may assume continuous values in such a manner that the

point  x may be located on the right or on the left of  x. Furthermore, the waiting time at  x may assume values ranging from zero to infinity, according to the probability distribution function assumed. 

In this framework, a continuous-time random walk process can be described by

means of an appropriate generalized master equation, via a set of Langevin equations, or by means of an equation accounting for the possibility of memory effects in the

formalism, that is

+∞



 t



 η(x, t) =

 d x

 dt  η(x , t )ψ(x −  x , t −  t ) +  δ(x)δ(t). 

(3.79)

−∞

0

We underline that this relation is obtained by summing over all the positions  x that make possible a displacement to the point  x  together with a summation over all the possible waiting times multiplied by the probability distribution function of a step

of length  x −  x with a waiting time  t −  t, represented by  ψ(x −  x , t −  t ). 

In short, Eq. (3.79) connects the probability distribution function  η(x, t)  of just having arrived at position  x  at time  t, with the event of having just arrived at  x at time  t,  η(x , t ). The second term of Eq. (3.79) represents the initial condition for the random walk. Consequently, the probability distribution  ρ(x, t)  of being at point x  at time  t  is given by
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 t



 ρ(x, t) =

 dt  η(x, t )(t −  t ), 

(3.80)

0

in which we have introduced the probability that, after a given waiting time, the

particle will remain at the same position,  (t). If we consider that the probability that the particle will jump a length  x  in a given interval between  t  and  t +  dt  is given

)  t

by

 ω(t )dt the following relations hold:

0

 t



 t



 (t) +

 ω(t ) dt = 1 or  (t) = 1 −

 ω(t ) dt , 

(3.81)

0

0

which may be interpreted as a cumulative probability. 

The next step is the substitution of Eq. (3.79) into Eq. (3.80) which, after changing the order of integration and promoting a change of variable, yields [56]

∞



 t



 ρ(x, t) =

 d x

 dt  ρ(x, t )ψ(x −  x , t −  t ) +  (t)δ(x). 

(3.82)

−∞

0

To proceed, we apply the Laplace transform to the temporal variable in Eq. (3.82)

and use the convolution theorem in order to obtain

∞



 ρ(x, s) =

 dtρ(x, t)e− st

0

∞



=

 d x ρ(x , s)ψ(x −  x , s) +  (s)δ(x). 

(3.83)

−∞

Likewise, the Fourier transform of Eq. (3.83), together with the convolution theorem, yields

∞



(

 ρ(k, s) =

 d xρ(x, s)e− ikx

−∞

= (

 ρ(k, s)(

 ψ(k, s) +  (s). 

(3.84)

From the Laplace transform of Eq. (3.81), we obtain

 (s) = 1 −  ω(s), 

(3.85)

 s
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which, when used in (3.84), yields

(

 ρ(

1

 k, s) = 1 −  ω(s)

 . 

(3.86)

 s

1 − (

 ψ(k, s)

(

By suitably choosing  ψ(k, s)  it is possible to relate the preceding equations to several kinds of diffusive processes, as we discuss in the next section. The idea is to show, without many mathematical details, how the different possibilities for the jump-length and waiting-time distributions may be connected with diffusion equations

underlying the process. In particular, some expressions for these distributions are

associated to the presence of anomalous diffusion and, at the same time, with the

possibility to describe these processes in terms of diffusion equation of fractional

order. 

 3.3.1

 Different Diffusive Regimes

The normal diffusive process may be obtained from this formalism by considering

that the probability distribution function is decoupled, that is,  ψ(x, t) =  λ(x)ω(t), (

and by choosing properly  ψ(k, s). In this particular case, its Fourier-Laplace trans-

(

form is  ψ(k, s) = (

 λ(k)ω(s). What’s more, we notice that the normal diffusion has a

variance in the sense that the second moment is finite and the average of the waiting time distribution is defined [57]. These features allow us to approximate the jumping probability and the waiting time distributions functions by considering the limiting

case  x → ∞ and  t → ∞, which corresponds, respectively, to  k → 0 and  s → 0. In this limit, these quantities may be approximated, respectively, as

( λ(k) ≈ 1 −  k 2  σ 2 +  O(k 4 )

(3.87)

2

and

 ω(s) ≈ 1 −  sτ +  O(s 2 ). 

(3.88)

By using Eqs. (3.88) and (3.87) in Eq. (3.86), we obtain (

 ρ(k, s) ≈

1

 . 

(3.89)

 s +  σ 2

2 τ k 2

To appreciate the meaning of (3.89) in the context of normal diffusion, we consider the diffusion equation, Eq. (1.23), in one-dimension in the space-time domain as

 ∂

 ∂ 2

 ρ(x, t) =  D

 ρ(x, t), 

(3.90)

 ∂t

 ∂x 2
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subjected to the initial condition  ρ(x,  0 ) =  δ(x). We also assume that the diffusing particle may not be found very far from the starting point even at very large time, that is,  ρ(x → ±∞ , t) = 0. After some calculations, we deduce that the Fourier-Laplace transform of Eq. (3.90) leads to

(

 ρ(k, s) =

1

 , 

(3.91)

 s +  Dk 2

which coincides with Eq. (3.89), provided that  D =  σ  2 /( 2 τ), as defined in Eq. (2.24). 

Before proceeding, we notice that the waiting time distribution defined in Eq. (3.88)

is an approximation to the complete solution

 ω(s) =

1

 . 

(3.92)

1 +  sτ

We notice also that these equations are responsible for a short-tailed behavior. 

A long-tailed behavior for  ω(s)  may be obtained by considering, for instance, a waiting time distribution in the form:

 ω(s) ≈ 1 −  (sτγ )γ +  O(s 2 γ ),  0  < γ <  1 . 

(3.93)

We may also consider a mixing between long- and short-tailed behavior, in the form

 ω(s) ≈ 1 − [ sτ +  (sτγ )γ ] , 

taking into account that that the characteristic time,  τ , is the time scale to determine if the behavior is normal or anomalous. Thus, this kind of approach is a natural way

to consider the possibility of having different diffusive regimes. 

A typical and still more general choice for the waiting time distribution may be

given by

 ω(s) =

1

 . 

(3.94)

1 +  sτ +  (sτγ )γ

This distribution has two different behaviors which are evidenced by considering  s →

0 (t → ∞ )  and  s → ∞ (t → 0 ). For the first case, the behavior of  ω(s)  is essentially governed by

 ω(s) =

1

 , 

(3.95)

1 +  (sτγ )γ

which has the following inverse Laplace transform:

 γ−





1

 ω(

 t

 t ) = 1

E

−  tγ , 

(3.96)

 τγ

 γ,γ

 γ

 τγ

 τγγ
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where the two-parameter Mittag-Leffler function appears in connection with the

short-tailed behavior. For the other limit, the behavior of  ω(s)  is essentially governed by

 ω(s) =

1

 , 

(3.97)

1 +  sτ

whose inverse Laplace transform is

 ω(t) = 1  e− t/τ , 

(3.98)

 τ

which defines a typical Poisson process. 

In the general case, the inverse Laplace transform of Eq. (3.94) is

∞











 τγ

 n

 ω(

1

 γ

 (

 t ) = 1

 t  1− γ

E  n)

−  t , α = 1 , β = 1 −  γ n, 

(3.99)

 τ

 n! 

 τ

 α,β

 τ

 n=0

 (

and E  n)

 α,β (x)  is the  n-th derivative of the two-parameter Mittag-Leffler function. It is then possible to relate the diffusive process described by a waiting time distribution of the kind defined by Eq. (3.99) with a corresponding diffusion equation. For future purposes, we register here that this equation may be expressed as

 ∂

 ∂γ

 ∂ 2

 τ ρ(x, t) +  τγ

 ρ(x, t) =  D

 ρ(x, t),  0  < γ <  1 . 

(3.100)

 ∂t

 γ ∂tγ

 ∂x 2

We notice in Eq. (3.100) a time derivative of order  γ  in the second term of the left-hand side. This is an example of a differential operator of fractional order, as is commonly called a differential operator of arbitrary order  γ . The properties of these operators are the subject of Chap. 4 dedicated to the fractional calculus. 

A final remark regards the possibility of extending the analysis sketched above

by considering those waiting time distributions in the form

 ω(s) =

1

 , 

(3.101)

1 +  sτ +  (s)

in which  (s)  is the Laplace transform of a generic time-dependent function  (t). 

A distribution of this kind is associated to a system exhibiting different diffusive

behaviors according to the specific expression considered for  (s). The inverse Laplace transform of Eq. (3.101) may be obtained in the form:
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∞



 t

 n 

 ω(t) = 1  e− t/τ + 1

− 1

 dt  (t −  t )ne− (t− t )/τ

 τ

 τ

 τ

 n=0

0

 t



 tn



×

 dtn(t −  tn)

 dtn−1 (tn −  tn−1 ) . . . 

0

0

 t 3



 t 2



×

 dt 2 (t 3 −  t 2 )

 dt 1 (t 2 −  t 1 ). 

0

0

(3.102)

The diffusionlike equation related to this form of the waiting time distribution is

given by

 t



 ∂γ

 ∂ 2

 (t −  t )

 ρ(x, t )dt =  D

 ρ(x, t), 

(3.103)

 ∂tγ

 ∂x 2

0

in which

 t



 (t) =  τδ(t) +   (t),  with   (t) =

 (t )dt . 

0

If we consider an initial condition of the type  ρ(x,  0 ) =  δ(x), the calculations for the second moment are simplified and yield:

∞



 t

 n 

 x 2 = 2 D + 2 D

− 1

 dt  (t −  t )ne− (t− t )/τ

 τ

 τ

 τ

 n=0

0

 t



 tn



×

 dtn(t −  tn)

 dtn−1 (tn −  tn−1 ) . . . 

0

0

 t 3



 t 2

×

 dt 2 (t 3 −  t 2 )

 dt 1 (t 2 −  t 1 ), 

0

0

(3.104)

which, for  (s) = 0, reduces to the square root displacement relevant to the normal diffusion; for  (s) = 0, a large class of anomalous diffusion may be found in these systems. 

For completeness, we investigate the changes produced by modifying only the


jumping probability,(

 λ(k), in order to incorporate, for instance, a long-tailed behavior, 

while keeping the waiting time distribution given by Eq. (3.92). A typical change is represented by the expression

3.3 Continuous-Time Random Walk

135

( λ(k) ≈ 1 −  Dμ(k)| k| μ, 

(3.105)

which is responsible for two behaviors, one of them governed by a Gaussian distribu-

tion and the other one by a Lévy distribution. In this case, the underlying diffusionlike equation is given by

 ∂

 ∂ 2

 ∂μ

 τ ρ(x, t) =  D

 ρ(x, t) +  D

 ρ(x, t). 

(3.106)

 ∂

 μ

 t

 ∂x 2

 ∂| x| μ

The more general case is represented by

( λ(k) = 1 −  Dk 2 −  Dμ| k| μ, 

(3.107)

where (

 Dμ(k)  is the Fourier transform of a spatial dependent function that admits it. 

For this general case, the diffusion equation is given by

∞



 ∂

 ∂ 2

 τ ρ(x, t) =  D

 ρ(x, t) +

 D

 ∂

 μ(x −  x )ρ(x , t)d x . 

(3.108)

 t

 ∂x 2

−∞

Finally, another possibility to model situations with different diffusive regimes, 

by using the continuous-time random walk approach, is to consider simultaneous

changes to the waiting time distribution and jumping probability. One significant

example could be obtained from the waiting time distribution

 ω(s) =

1

 , 

(3.109)

1 +  sτ +  sγ −1 (s)

together with a jumping probability given by (

 λ(k) = 1 − (

 Dμ(k). This set of random

variables has a corresponding diffusionlike equation in the form:

 t



∞



 ∂

 ∂γ

 ρ(x, t) +

 (t −  t)

 D

 ∂

 γ ρ(x, t )dt =

 μ(x −  x)ρ(x −  x, t)d x, 

(3.110)

 t

 ∂t

0

−∞

which may exhibit different diffusive regimes according to the specific forms of the

functions  (t),  Dμ(x)  and  γ . 

Since memory effects underlying a continuous-time random walk are implicitly

considered by the differential operators, the versatility of the fractional formalism is mainly related to two remarkable features. First, this formalism handles very well

the physical requirements of a system by dealing with boundary conditions and

external forces in a simple manner. Second, it takes advantage of traditional tools

from mathematical physics and statistics for obtaining exact expressions to describe

complex systems with anomalous behaviors. For instance, in the following fractional

differential equation
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 ∂ ρ(x,t) =

 (F

 ∂

0D1− α

 t { ρ(x , t )} ) , 

(3.111)

 t

 t

where

 ∂ 2

 ∂

 Ft{ ρ(x, t)} =  D

 ρ(x, t) −

[ F(x, t)ρ(x, t)] , 

 ∂x 2

 ∂x

the unusual relaxation can be associated with a continuous-time random walk where

the waiting time distribution is a power-law. This process is also strictly related to the Riemann-Liouville fractional operator [58]

 t



 d

 ρ(x, t )

0D1− α ρ(x , t ) =

1

 dt  , 

(3.112)

 t

  (α) dt

 (t −  t ) 1− α

0

where 0  < α <  1 is the  fractional order exponent (or the  anomalous exponent), a quantity that can be interpreted as an index of memory in empirical systems [59]. The fractional operator is also responsible for introducing a nonlinear time dependence

in the mean square displacement of the system [53]. Thus, a large class of complex phenomena can be effectively described by extending the standard differential operator to a non-integer order [60–69]; indeed, as pointed out by West [70], the fractional calculus provides a suitable framework to deal with complex systems. 

 3.3.2

 Linear Reaction Dynamics

The continuous-time random walk can also be formulated in order to obtain reaction-

diffusion equations to describe the evolution of  n  species undergoing anomalous diffusion with reactions governed by linear mean-field equations [71]

 ∂ρ =  Rρ, 

(3.113)

 ∂t

where  R  is a constant reaction rate matrix and  ρ  is a vector of species concentration, that is the extension of a concentration of a single species:

 ρ(x, t) ( 1 species ) =⇒  ρ(x, t) (n  species )

To proceed, we assume that  ψ(x, t) =  λ(x)ω(t), that is, a decoupled jump-length and waiting-time distributions. In this framework, Eq. (3.79) becomes

∞



 t



 η(x, t) =

 λ(x −  x )

 ω(t −  t )eR(t− t )η(x , t )dt dx +  δ(t)η(x,  0 ), (3.114)

−∞

0
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where we have promoted the extension:

 η(x, t) ( 1 species ) =⇒  η(x, t) (n  species ). 

The corresponding probability  ρ(x, t)  of being at  x  at some time  t  is the extension of Eq. (3.80), that is, 

 t



 ρ(x, t) =

 (t −  t )eR(t− t )η(x, t )dt . 

(3.115)

0

The change in the concentrations due to reactions is taken into account through the

matrix exponential, which operates on those walkers that have arrived at earlier times t  and then survived without jumping for a  t −  t according to the survival probability (t −  t ), defined in Eq. (3.81). By multiplying Eqs. (3.114) and (3.115) by  e− Rt and combining them, we arrive, respectively, at:

∞



 t



 e− Rt η(x, t) =  e− Rt δ(t)η(x,  0 ) +

 λ(x −  x )

 ω(t −  t )e− Rt η(x , t )dt dx , 

−∞

0

(3.116)

and

 t



 e− Rt ρ(x, t) =

 (t −  t )e− Rt η(x, t )dt , 

(3.117)

0

where the matrix property

 e− Rt eR(t− t ) =  e− Rt

has been used. To obtain the final form of a master equation, we use the Laplace

transform [72] to write

∞



 t



 e− Rt ρ(x, t) =  (t)ρ(x,  0 ) +

 λ(x −  x )

 ω(t −  t )e− Rt ρ(x , t )dt dx , 

−∞

0

(3.118)

which, by multiplying by  eRt , becomes

∞



 t



 ρ(x, t) =  (t)eRtρ(x,  0 ) +

 λ(x −  x )

 ω(t −  t )eR(t− t )ρ(x , t )dt dx . 

−∞

0

(3.119)

This formalism will be recalled in Sect. 7.1.2 to investigate the diffusion of two different species in a semi-infinite medium considering the presence of linear reaction terms. The dynamics for these species will be considered as governed by fractional
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diffusion equations underlying the continuous-time random walk sketched above. 

The description will be carried out in connection with the presence of adsorption-

desorption boundary conditions at the surface. 

 3.3.3

 Coupled Jump-Length and Waiting-Time Distributions

We consider now an illustrative calculation for the mean square displacement when

the distribution  ψ(r , t)  is coupled. A suitable function describing the probability of making a step of length r in the time interval between  t  and  t +  dt  is as follows [56]:

 ψ(r , t) =  Cr− μδ(r −  tν), μ, ν ∈ R , (3.120)

where  r  and  t  are coupled and  C  is a constant. This distribution favors steps of arbitrary length, but long steps are penalized by requiring more time to be performed. 

We notice that the total transition probability in this time interval is formally given by



 ω(t) =

 ψ(r , t) = (

 ω(k = 0 , t), 

(3.121)

r

which corresponds to our definition of waiting time. In the present case, this proba-

bility may be defined as



 ω(t) =

 dr ψ(r , t), 

(3.122)

 r ∗

where we have indicated a lower cut-off  r ∗ for the potentially divergent integral. In a  d-dimensional space, the element of volume is given by

 d V =  dr =  Adrd−1 dr, Ad = constant , 

(3.123)

and, thus, 

∞



 ω(t) =  C Ad

 r d−1 r − μδ(r −  tν)dr =  ctν(d− μ−1 ), (3.124)

0

where  c =  C Ad  is another constant. This expression can be used to calculate the characteristic time as

∞



**∞

 τ =

 t  2− ν(μ− d+1 )

 t ω(t)dt =  c

*  , 

(3.125)

2 −  ν(μ −  d + 1 ) *0

0

which can be finite only if  ν(μ −  d + 1 ) >  2. The Laplace transform of  ω(t)  is
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∞



 ω(s) =  c

 t ν(d− μ−1 )e− st dt =  c[1 −  ν(d −  μ − 1 )]

1

 . 

(3.126)

 s 1− ν(d− μ−1 )

0

Since we require that  ω(s = 0 ) (t → ∞ ) = 1, Eq. (3.126) implies that ν(μ −  d + 1 ) >  1 . 

(3.127)

If, in addition,  ν(μ −  d + 1 ) >  2, then  τ  is finite. To obtain the Fourier-Laplace transform (

 ω(k , s)  we may proceed as follows. Invoking the limit k  0, we may form the difference

∞



∞



(





 ω(k , s) −  ω(s) =

 dt e− st

 dr  eik·r − 1  ψ(r , t)

0

 r ∗

∞



∞







≈

 dt e− st

 dr  i k · r − 1  k 2 r 2  ψ(r , t) 2

0

 r ∗

∞

∞



≈ − k 2 c

 drr − μ+ d−1+2 δ(r −  tν)est dt

0

0

∞



= − k 2  c

 t − ν(μ− d+1−2 )e− st dt = − k 2  c I (s), (3.128)

0

where the integral  I (s)  may or may not exist, according to the values of the parameters. When  τ  is finite, we have seen from Eq. (3.88) that  ω(s) ≈ 1 −  sτ . Then, for ν(μ −  d − 1 ) >  1, the integral  I (s)  exists and we may write (

 ψ(k , s) ≈ 1 −  sτ −  C 1 k 2 , 

(3.129)

where  C 1 is a constant. This case corresponds to the Brownian behavior because the same result may be obtained multiplying (

 λ(k), given by Eq. (3.87), by  ω(s), given

by Eq. (3.88). Then, we may write

 r 2 (t) ≈  t. 

(3.130)

For  ν(μ −  d − 1 ) <  1,  I (s)  diverges for  s = 0. It converges for  s >  0, giving (

 ψ(k , s) −  ω(s) ≈ − k 2 sν(μ− d−1 )−1 , (3.131)

which, using Eq. (3.88), yields
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(

 ψ(k , s) ≈ 1 −  sτ −  C 1 k 2 sν(μ− d−1 )−1 . 

(3.132)

We notice that the last term (which is the first one in  k 2) involves the product  k 2 sγ , with  γ =  ν(μ −  d − 1 ) − 1, thus reflecting the coupling between the waiting-time and the jump-length distribution. From Eq. (3.86), we may write

(

 ρ(k , s) ∝

 s− ν(μ− d−1 )+1

 , 

(3.133)

 τs− ν(μ− d−1 )+2 +  C 1 k 2

which yields

 r 2 (t) ∝  t− ν(μ− d−1 )+2 . 

(3.134)

If  τ  is infinite, then from Eq. (3.125) we deduce that  ν(μ −  d + 1 ) <  2, implying that

 ω(s) ≈ 1 −  Csν(μ− d+1 )−1 . 

(3.135)

On the other hand, from Eq. (3.126),  ω( 0 )  exists only if  ν(μ −  d − 1 ) >  1. Thus, (

 ρ(k , s) ∝ 1 −  Csν(μ− d+1 )−1 −  C 1 k 2 , (3.136)

which corresponds to

 r 2 (t) ∝  tν(μ− d+1 )−1 , 

(3.137)

that is, to a subdiffusive process. In general, keeping  ν  fixed while varying  μ

and  d  between large values, that is,  μ −  d + 1  2 /ν  and large values, that is, μ −  d + 1  2 /ν, the system passes from regions of Brownian to regions of anomalous behavior, covering turbulent and chaotic behavior. 

 3.3.4

 Intermittent Continuous-Time Random Walk

In this section, we present a theory for the intermittent continuous-time random walk and Lévy walks, in which the particles are stochastically reset to a given position

at the end of each step of renewal, with a given resetting rate [73]. These kind of intermittent stochastic processes are widely observed in the natural world. The

paradigmatic example is the search for a target in a crowd; if one cannot find it all the time, then the efficient way is to go back the process again. The description of these processes may find application in ecology [74–80] and scaled Brownian motion with stochastic resetting in which the time between two resetting follows exponential or

power-law distribution [81, 82]. 

The presentation here will follow closely the paper of Zhou et al. [73] in which the resetting events are treated as occurring with a constant resetting rate at the end of each renewal step. 

3.3 Continuous-Time Random Walk

141

3.3.4.1

Continuous-Time Random Walk—Stochastic Resetting

We start by considering the existence of a waiting time  ω(τ ), that is, the particles will wait for some time  τ  and then jump some length  l, with probability  λ(l). After finishing a step, the particle will be reset to a given position  xr  with a resetting rate r ∈ [0 ,  1], which in this way happens at the end of each renewal step. 

In the present approach, the initial position can also be reset, that is, the process will partially start from a starting position and partially from the resetting position xr  after a resetting event at the beginning. 

Let us introduce the probability distribution function of being just arrived at the

position  x  in the time  t, which is an extension of Eq. (3.79) in the case of decoupled waiting time and jump-length probabilities. The notation is changed as follows:

 η(x, t) ( no resetting ) =⇒  h(x, t) ( resetting ). 

The desired probability is

∞



 t



 h(x, t) =  ( 1 −  r)

 λ(l)dl

 ω(τ)h(x −  l, t −  τ)dτ

−∞

0

∞

+ rδ(x −  xr)

 h(x, t)dx +  ( 1 −  r)δ(x −  x 0 )δ(t), (3.138)

−∞

where, in principle,  x 0 =  xr . In Eq. (3.138), the first term represents the particle transition from position  (x −  l)  at time  (t −  τ)  to  x  at time  t  without resetting with the probability  ( 1 −  r); the third term represents a similar process: the transition from the initial position  x 0 at time  t = 0 to a position  x  at time  t. The second term is peculiar to the resetting process and represents the probability that the resetting takes place is  r  and at the renew moment the resetting can happen at any point. When the resetting happens the presence of  δ(x −  xr )  accounts for the fact that the particle will be reset to position  xr . The next step is also to extend the meaning of Eq. (3.80):

This means that the probability distribution  ρ(x, t)  of being at point  x  at time  t  for the waiting first process will be given by

 t



 ρ wait (x, t) =

 dτ h(x, t −  τ)(τ), 

(3.139)

0

in which we have introduced the probability that, after a given waiting time, the

particle will remain at the same position, that is, the survival probability,  (τ ), defined as

∞



 (τ) =

 ω(τ )dτ . 

(3.140)

 τ
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We obtain now the Fourier and Laplace transform of Eq. (3.138), which becomes in the transformed space  x →  k  and  t →  s:

∞



( h(k,s) =  ( 1 −  r)( λ(k)ω(s)( h(k,s) +  re− ikxr h(x, s)dx +  ( 1 −  r)e− ikx 0 , 

−∞

(3.141)

in which

( h(k,s) =  F{ h(x,s);  k} , h(x,s) =  L{ h(x,t);  s} . 

We notice that in Eq. (3.141)

∞



∞



 h(x, t)dx =

 η(x, t)dx, 

−∞

−∞

in which

∞



 η(x, t) =

 λ(l)ω(τ)η(x −  l, t −  τ)dldτ +  δ(x −  x 0 )δ(t) (3.142)

−∞

is the probability distribution of the process without resetting of just arriving at  x at time  t, as stated in Eq. (3.79). The Fourier and Laplace transform of Eq. (3.142)

yield

( η(k, s) =

 e− ikx 0

 . 

(3.143)

1 −(

 λ(k)ω(s)

Thus, we may calculate

∞



∞





∞



 h(x, s)dx =  L

 h(x, t)dx;  s =

 η(x, s)dx = ( η(k = 0 , s), 

−∞

−∞

−∞

which, in view of (3.143), yields

∞



 h(x, s)dx =

1

 . 

(3.144)

1 −  ω(s)

−∞

Substitution of Eq. (3.144) into Eq. (3.141) yields ( h(k,s) =  re− ikxr[1 −  ω(s)]−1 +  ( 1 −  r)e− ikx 0  . 

(3.145)

1 −  ( 1 −  r)(

 λ(k)ω(s)
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In the Fourier-Laplace space, Eq. (3.139) may be written as

∞





(

 ρ

 (

 ω(τ )

= 1 −  ω(s), 

wait  k, s) =  (s)(

 h(k, s), (s) =  L

 dτ ;  s

 s

 τ

where we have used Eq. (3.140). Using (3.145), we obtain: (

 ρ

 (

 r − ikxr +  ( 1 −  r)[1 −  ω(s)] e− ikx 0  . 

wait  k, s) = 1

(3.146)

 s

1 −  ( 1 −  r)(

 λ(k)ω(s)

In the limit  r → 0, Eq. (3.146) reduces to

(

 ρ

 (

 e− ikx 0

 . 

wait  k, s) = 1 −  ω(s)

(3.147)

 s

1 −(

 λ(k)ω(s)

When  r = 1, we obtain

(

 ρ

 (

⇐=  ρ(

wait  k, s) =  e− i kxr

 x, t) =  δ(x −  xr ). 

(3.148)

 s

Before proceeding, we may check that the probability distribution given by Eq. (3.146)

is normalized. We evaluate

∞







 ρ(

1

 x, t)dx =  L−1{(

 ρ

 (

; 

=

wait  k = 0 , s);  t } =  L−1

 t

1 , (

 λ(k = 0 ) = 1 , 

 s

−∞

(3.149)

which demonstrates that the probability distribution function of the waiting first

process is normalized, as required. If, instead, we were interested in determining the probability distribution function of jump first—that is, the particle makes a jump first and then waits for a period of time  τ , and, finally, resets to the position  xr  with the probability  r , we have to consider that

∞



 t



 ρ jump (x, t) =

 dl

 (τ)λ(l)h(x −  l, t −  τ)dτ. 

(3.150)

−∞

0

Again, using the Fourier-Laplace transform with respect to  x  and  t, respectively, and utilizing Eq. (3.144), we obtain

(

 ρ

 (

jump  k, s) = (

 λ(k)(s)( h(k, s)

( λ(

=

 k) re− ikxr +  ( 1 −  r)[1 −  ω(s)] e− ikx 0  , (3.151)

 s

1 −  ( 1 −  r)(

 λ(k)ω(s)
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which still satisfies the normalization condition and, when  r = 0, reduces to (

(

 λ( [

 ρ

 (

 k)  1 −  ω(s)] e− ikx 0  , 

jump  k, s) =

(3.152)

 s

1 −(

 λ(k)ω(s)

which corresponds to the expression for the ordinary jump first continuous-time

random walk. In addition, when  r = 1, 

(

(

 λ(

 ρ

 (

 k)

jump  k, s) =

 e− ikxr =⇒  ρ jump (x, t) =  λ(x −  xr ). 

(3.153)

 s

Let us consider, now, the stationary density which should be a uniform distribution

when the particle moves in a bounded area, in absence of an external potential. This

stationary density may be obtained as

 ρ st (x) = lim  ρ(x, t) = lim  sρ(x, s). 

(3.154)

 t→∞

 s→0

From Eq. (3.146), related to the waiting first process, we have





(

 ρ st  (

 r e− ikxr +  ( 1 −  r)[1 −  ω(s)] e− ikx 0

 k, s) = lim

wait

 s→0

1 −  ( 1 −  r)(

 λ(k)ω(s)

=

 r e− ikxr

 . 

(3.155)

1 −  ( 1 −  r)(

 λ(k)

From Eq. (3.151), relevant to the jump first process, we obtain





(

 ρ st  (k, s) = lim ( λ(k)re− ikxr +  ( 1 −  r)[1 −  ω(s)] e− ikx 0

jump

 s→0

1 −  ( 1 −  r)(

 λ(k)ω(s)

=

 r(

 λ(k)e− ikxr . 

(3.156)

1 −  ( 1 −  r)(

 λ(k)

To proceed further, one should consider particular forms of the jump length density, 

( λ(k). 

3.3.4.2

Lévy Walk—Stochastic Resetting

For the Lévy walk, there is no concept of waiting first or jump first process. The

formalism presented here refers to the Lévy walk with a stochastic resetting rate  r to the position  xr , and the velocity,  v, of each step is a constant, whereas its walking time is  τ  with the density  ω(τ ). At the end of each step, the stochastic resetting happens. At this point, the particle has a chance to change the direction. 

Let  h(x, t)  be the probability density function of the particle just arriving at position  x  at time  t  and having a chance to change the direction. It may be here
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defined as we have done with Eq. (3.138), that is, 

∞



∞



 h(x, t) =  ( 1 −  r)

 ψ(y, τ)h(x −  y, t −  τ)dτdy +  rδ(x −  xr)

 h(x, t)dx

−∞

−∞

+ ( 1 −  r)δ(x −  xr)δ(t), 

(3.157)

in which

 ψ(y, τ) = 1 δ(| y| −  vτ)ω(τ). 

2

Let  ρ(x, t)  be the probability density function of the particle staying at position  x  at time  t. It may be defined here as

∞



 t



 ρ(x, t) =

 (y, τ)h(x −  y, t −  τ)dτdy, 

(3.158)

−∞ 0

in which

 (y, τ) = 1 δ(| y| −  vτ)(τ), 

2

with  (τ )  being the survival probability defined in Eq. (3.140) having in mind also Eq. (3.81). We now proceed as before. First we obtain the Fourier-Laplace transforms of Eq. (3.158):

∞



( h(k,s) =  ( 1 −  r)( ψ(k,s)( h(k,s) +  re− ikxr h(x, s)dx +  ( 1 −  r)e− ikx 0 , (3.159)

−∞

where

(

 ψ(k, s) = 1 [ ω(s +  ikv) +  ω(s −  ikv)]  . 

2

For the Lévy walk without the stochastic resetting, the density of particles just arriving at position  x  at time  t  in the Fourier-Laplace space is [83]: ( η(k, s) =

 e− ikx 0

 . 

(3.160)

1 − 1 [ ω(s +  ikv) +  ω(s −  ikv)]

2

Thus, it may be proved that

∞



∞



 h(x, s)dx =

 η(x, s)dx = ( η(k = 0 , s) =

1

 . 

(3.161)

1 −  ω(s)

−∞

−∞
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Now, we use Eq. (3.161) to rewrite Eq. (3.159) as ( h(k,s) =  re− ikxr [1 −  ω(s)]−1 +  ( 1 −  r)e− ikx 0  . 

(3.162)

1 −  ( 1 −  r)(

 ψ(k, s)

The Fourier-Laplace transform of Eq. (3.158) is

(

 ρ(k, s) = (

 (k, s)( h(k, s), 

(3.163)

where

(





 (k, s) = 1  (s +  ikv) +  (s −  ikv) . 

2

The survival probability has the Laplace transform:

 (s) = 1 −  ω(s). 

 s

Collecting previous results, the probability density function of the Lévy walk with

stochastic resetting and resetting rate  r  may be represented in the Fourier-Laplace space as follows:



+

, 

(

 (s +  ikv) +  (s −  ikv) re− ikxr [1 −  ω(s)]−1 +  ( 1 −  r)e− ikx 0

 ρ(k, s) =

 , 

2 −  ( 1 −  r) [ ω(s +  ikv) +  ω(s −  ikv)]

(3.164)

which still satisfies the normalization condition. 

These are the fundamental equations to be used to describe continuous-time ran-

dom walks and Lévy walks with stochastic resetting. Particular forms of waiting

time density  ω(τ )  and jump length  λ(l)  should be used according to the nature of the process to be investigated. 

In Chaps. 8 and 9, the basic tools presented in this section will be employed in connection with the problems formulated in terms of the comb model, in which a

system essentially diffuses in a structure consisting of a “backbone” and “branches”, and found many applications to investigate anomalous diffusive processes. 
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Chapter 4

Elements of Fractional Calculus

Abstract This chapter is devoted to introducing the elements of fractional calculus, emphasizing some aspects of the historical development of the concepts of differentiation and integration of arbitrary order. A discussion about the significance and meaning of fractional calculus, in general, is presented with didactic purposes. Some essential mathematical tools needed to understand the rules for operating with fractional

derivatives and fractional differential equations are discussed in detail. This overview is intended to provide general guidance on the operators more often used in the

last decades. The approach emphasizes the construction of the Riemann-Liouville, 

Grünwald-Letnikov, and Caputo operators, presenting some space-fractional deriva-

tives. The developments presented in this chapter build the mathematical tools to

understand the applications considered in other chapters. They mainly describe frac-

tional differential operators that emerge in different approaches related to stochastic processes. 

4.1

Introduction

The term fractional calculus has been used (as a misnomer) for the theory of integra-

tions and derivatives of arbitrary order. It can be thus interpreted as a generalization of ordinary differentiation and integration to arbitrary non-integer orders. It is now a commonplace to start an exposition of the rudiments of fractional calculus by asking

for a meaning to the expression

 d 1 / 2  f (x) , 

(4.1)

 d x 1 / 2

because it was just the question asked by Guillaume François Antoine, marquis

de L’Hôpital (1661–1704), to the great mathematician and philosopher Gottfried

Wilhelm Leibniz (1646–1716) the founder of the differential calculus [1]. 
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pagebreaThe question—as well as the answer—raises important issues as, for

instance, how to get a meaning to these objects. For example, if the first derivative of a function gives us the slope of that function at a given point, what would be the geometrical meaning of a half derivative (that is, of a derivative of order 1/2)? If we insist in considering the half order, we may ask which operator must be used twice

to obtain the first derivative? 

In searching answers to these equations, it may be helpful to consider at least two

ways to interpret the expression

 f (n)(x) =  dn f (x) . 

 d xn

The first way is the usual one, and comes from ordinary calculus:  f (n)(x) is the function we get when we repeatedly differentiate f (x) n times.  Using the Newton quotient, we have

 f (x) −  f (x −  x)

 f ( 1 )(x) =  d f (x) = lim

 . 

(4.2)

 d x

 x→0

 x

In this classic definition of the “left” derivative, the new function  f ( 1 )(x), which is the first derivative of  f (x) (the derivative of integer order  n = 1), is obtained using the point  x  at which the derivative is being evaluated and a neighbor point on the left, x −  x, assuming the continuity of  f (x)  in the limiting procedure  x −  x →  x, when  x → 0. This definition implies that the value of the ordinary derivative at a point  x  depends only on that point, which means also that it is a  local  property. 

The second way is also known but it is less obvious. We may interpret the expres-

sion

 dn f (x) =  dn [  f (x)] = D n f (x)

(4.3)

 d xn

 d xn

 x

as representing an operator D n  whose action on the function  f (x)  is specified by the x

parameter  n. 

In this second perspective, the question posed by L’Hôpital to Leibniz should be

rephrased to something sounding like “what is the behavior of the operator D n  when x

 n  is not an integer?” That is the perspective adopted here. We interpret differentiation and integration as transformations taking  f (x)  and turning it in a new function. In this way as well, we search for an operator that continuously transforms  f (x)  into its  n-derivative or antiderivative, even when  n  is not an integer. 

This chapter on fractional calculus is intended to introduce the reader to some of

the ideas that make the subject so fascinating and useful. 
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4.2

Early Definitions

A derivative of arbitrary order was briefly mentioned (perhaps for the first time as

such) in 1819, in the book of Sylvestre François Lacroix (1765–1843), from which an

explicit formula for a fractional derivative may be obtained [2]. The central argument may be summarized as follows (using a today’s notation). Let, for instance,  y =  xm; when  n  is an integer, one has for any arbitrary  m ∈ N:

 dn y =  dn(xm) =  m(m − 1 ) . . . (m −  n + 1 )xm− ndxn (

=

 m + 1 ) xm− ndxn, n ∈ N . 

(4.4)

 (m −  n + 1 )

If we put  m = 2 and  n = 1, then we obtain

 d 1 (x 2 ) = 2 x dx, 

as expected. Now, we may consider  m = 1 and  n = 1 / 2 and try to answer to the original question. We obtain:

 ( 2 )

√

 d 1 / 2 x =

 x 1 / 2 d x 1 / 2 = 2

√

 x d x, 

(4.5)

 ( 3 / 2 )

 π

which, apart from a constant, may be compared with the result reported by Leibniz, 

in his letter dated September 30, 1695, to L’Hôpital [1]:

√

Thus it follows that  d 1 / 2 x  will be equal to  x

 d x :  x. 

The result obtained by Lacroix may be put in the usual form as:

√

 d 1 / 2 x = 2  x

√  . 

(4.6)

 d x 1 / 2

 π

Consider, now,  n = 1 / 2 and  m = 0, that is,  y =  x 0 = 1. In this case, Eq. (4.4) yields a surprising result:

 d 1 / 21

 (

=

1 ) x−1 / 2 = 1

√

= 0 . 

(4.7)

 d x 1 / 2

 ( 1 / 2 )

 πx

The Lacroix derivative of a constant is not zero, as one expects if one tries to keep the usual meaning of the derivative. This “strange” result shows that fractional derivatives have many special and ever counter-intuitive properties. As pointed out before, the

result could also be interpreted as stating that the action of the operator D1 / 2 on the x

function  f (x) = 1 produces a function of  x, defined in (4.7). This is an indication that it is possible to search for another ways to define a fractional derivative, provided that each definition at least approaches the one of the ordinary derivative in the integer order limit, that is, 
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lim D α f (x) = D n f (x), n = 0 ,  1 ,  2 , . . . , 

 α→

 x

 x

 n

where D n  is the usual operator, for  n ∈ N. A simple way to obtain an answer to the x

question of L’Hôpital, represented by the search for a meaning of (4.1), may start with the usual definition of a derivative, Eq. (4.2), rewritten here as: f (x) −  f (x −  x)

D x f (x) = lim

 , 

(4.8)

 x→0

 x

having in mind that, if it is possible to use the operator D x  in the form below, when x → 0, 

 e− x D x f (x) ≈  ( 1 −  x D x ) f (x) ≈  f (x −  x), (4.9)

then we may easily check also that [3]:





1 −  e− x D x

D x f (x) = lim

 f (x). 

(4.10)

 x→0

 x

The next step could be done trying a natural extension of Eq. (4.10) as: m

1 −  e− x D x

D m f (x) = lim

 f (x), 

 x

 x→0

 x



=

1

lim

1 −  me− x D x + 1  m(m − 1 )e−2 x D x − · · ·

 f (x), 

 x→0  (x)m

2! 

(4.11)

for  m ∈ N, such that, in general, 

 m





 (−1 )k m

D m f (x) = lim

 f (x −  kx), 

 x

 x→0

 (x)k k

 k=0

where the binomial coefficients , defined by Eq. (1.155), are here written as: m

=  m(m − 1 ) . . . (m −  k + 1 )

 m

with

= 1 , k ∈ N . 

(4.12)

 k

 k! 

0

The above expressions were introduced with the understanding that the limit  x → 0

exists in the usual sense. At this point, one is tempted to consider in (4.11) the provocative case  m = 1 / 2 (relaxing for a while the condition of integer  m) to obtain: 1

D1 / 2  f (x) = lim √

1 − 1  e− x D x + 1  e−2 x D x − · · ·

 f (x), 

 x

 x→0

 x

2

8

and also relaxing the case of positive  m  to  m = −1, to obtain

4.2 Early Definitions

155







D−1 = lim

1 +  e− x D +  e−2 x D x +  e−3 x D x + · · ·  x , (4.13)

 x

 x→0

which permits us to write

∞





D−1  f (x) = lim

 e− kx D x f (x) x

 x

 x→0  k=0





∞



= lim

 f (x −  kx)x

 x→0  k=0

 x



=

 f (t)dt. 

(4.14)

−∞

In Eq. (4.14), a Riemann integral has been associated with the action of the operator D−1 on the function  f (x)  with an uncomfortable −∞ as a lower limit [3]. To put x

this association on more firm grounds, we contact it with a general formula defining

a fractional integral and also (eventually) a fractional derivative as follows. We first discretize the interval

 x =  x −  c , N → ∞ , x → 0 , x > c, c >  0 , N

and rewrite (4.14) as

 x



D−1  f (x) =

 f (t)dt

 x

 c

 N −1







=

 x −  c

 x −  c

lim

 f

 x −  k

 , 

 N →∞

 N

 N

 k=0

and, then, we try to extend the procedure to all operators, by assuming that

 N −1



 m

D m ∼

1

 e− kx D x , m ∈ N , 

 x

 (x)m

 k

 k=0

 N x= x− c

and, therefore, that
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 N

 m N −1



 m

 x −  c

D m f (x) = lim

 (−1 )k

 f

 x −  k

 x

 N →∞

 x −  c

 k

 N

 k=0









 m N −1



 (

=

 N

 m + 1 )

 x −  c

lim

 (−1 )k

 f

 x −  k

 . 

 N →∞

 x −  c

 (k + 1 )(m + 1 −  k)

 N

 k=0

(4.15)

This procedure yields (4.15) as a sound definition of a  derivative  of  f (x)  of order  m, integer, positive. But we were interested firstly in an integral. What if  m  is negative? 

In this case, we know that





− m

−

 (

=  m(− m − 1 )(− m − 2 ) . . . (− m −  k + 1 ) =  (−

 m +  k − 1 )! 

1 )k

 k

 k! 

 k!  (m − 1 )! 

 (

=  (−

 k +  m)

1 )k

 . 

 (k + 1 )(m)

Then, from Eq. (4.15) we define an integral of order  m, integer, positive, as: N −1





 x −  c m

1

 (m +  k)

 x −  c

D− m f (x) = lim

 f

 x −  k

 . (4.16)

 x

 N →∞

 N

 (m)

 (k + 1 )

 N

 k=0

 N x= x− c

The presence of the gamma function in Eqs. (4.15) and (4.16) opens the possibility to extend these definitions to the derivatives and integrals of non-integer orders, by replacing  m  with some non-integer  α >  0. This construction will be used in Sect. 4.5

to define the Grünwald-Letnikov operators of arbitrary order. 

To proceed further, let us come back and revisit some early historical attempts

to introduce operators of arbitrary order. In 1822, Jean-Baptiste Joseph Fourier pre-

sented an applicable definition of fractional operator starting from the differential coefficient of arbitrary order [4]. The main steps of the argument, again using a today’s notation and (anachronistically) the Dirac delta function, may be sketched

as follows. We consider the original definition of Fourier inversion theorem:

∞



∞



 f (x) = 1

 f (y)dy

cos  p(x −  y)dp, 

(4.17)

2 π −∞

−∞

and change it as done by Cauchy as [5]:
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⎡

⎤

∞



∞



 f (x) =

 f (y) ⎣ 1

 e− ip(x− y)d p⎦  d y

2 π

−∞

−∞

∞



=

 f (y)δ(x −  y)dy, 

(4.18)

−∞

where

∞



 δ(x −  y) = 1

[cos  p(x −  y) −  i  sin  p(x −  y)]  dp

2 π −∞

∞



= 1

 eip(x− y)d p

(4.19)

2 π −∞

is the integral representation of the Dirac delta function, defined in Eq. (1.31). To calculate the derivative of order  m ∈ N of a function  f (x), we may write:

⎡

⎤

∞



∞



 dm f (x) =

 f (y) ⎣ 1

 (ip)me− ip(x− y)dp⎦  dy, 

 d xm

2 π

−∞

−∞

⎡

⎤

∞



∞



=

 (ip)me− ipx ⎣ 1

 f (y)eipydy⎦  dp

2 π

−∞

−∞

∞



=  ei π m

2

 F ( p) pme− ipx dp, 

(4.20)

−∞

in which

∞



 F ( p) = 1

 f (y)eipydy

2 π −∞

is the Fourier transform of  f (y), as defined in Eq. (1.2). The idea behind this derivation is that the number  m ∈ N, which enters the second member of the definition (4.20), can be viewed as an arbitrary quantity, positive or negative. Thus, by changing  m →  μ, where  μ ∈ R, we may arrive at a definition for a derivative of arbitrary order as:

∞



 dμ f (x) =  ei πμ

2

 F ( p) pμe− ipx dp, μ ∈ R . 

(4.21)

 d xμ

−∞
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This definition is not restricted to a power function as the one of Lacroix; it applies to any “well-behaved” function. 

In Sect. 1.1.2, we have solved the integral equation arising in the tautochrone or isochrone problem using the techniques of Laplace transform. In 1823, Abel solved

the problem by using a fractional integration of order  α = 1 / 2 [6] and, in 1826, extended the approach to  α ∈  ( 0 ,  1 ) [7]. His approach may be outlined as follows. 

The formal problem was formulated in such a way that one has to find  f (z) =  ds/dz, given  k(y) =  k  in Eq. (1.90), rewritten here for simplicity: y



 f (z)

 k(y) =  k =

 d z. 

(4.22)

 (y −  z) 1 / 2

0

Now, we proceed in a different manner, multiplying both sides of (4.22) by

√

1 / ( 1 / 2 ) = 1 / π  in order to obtain

 y



 k

=

1

 f (z)

 d z

 ( 1 / 2 )

 ( 1 / 2 )

 (y −  z) 1 / 2

0

= 0I1 / 2 [  f (z)]  , 

(4.23)

 z

whose right-hand side we can recognize (better: we define!) as a semi-integral opera-

tor, that is, a fractional integral operator of order 1 / 2, represented by the symbol 0I1 / 2. 

 z

If this is true, to cancel the “semi-operator”, we have just to take the “semi-derivative” 

of each side of (4.23), that is, 





 d 1 / 2





0I1 / 2 [  f (z)]

= D1 / 2 0I1 / 2 [  f (z)] =  f (z), 

 d z 1 / 2

 z

 z

 z

which, by using the result of Lacroix (4.7), yields:

 f (z) =

 k

√  . 

(4.24)

 π z

From these results, we deduce that the answer to the tautochrone problem is

√

 ds = 2 g T(y 0 )

√  . 

 d y

 π

 y

Integrating the above equation, using the condition  s( 0 ) = 0, we obtain: T (y

2

0 )

 s(y) = 2 2  g

 y 1 / 2 , 

(4.25)

 π
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which is the cycloid sketched in Fig. 1.2, as shown by Abel in connection with this problem of finding the path followed by the particle in order the time of sliding down be independent of the initial height [6]. 

In summary, to solve the tautochrone problem, in the pioneering Abel perspective, 

we have to determine  f (z), which consists in computing the fractional derivative of a constant  k. In the paper of Abel, it is not clear that if he used the Lacroix or its own results. Subsequently, in the paper of 1826, Abel provided the solution for the

integral equation [7]:

 y



 f (z)

 k(y) =

 d z, y > c,  0  < α <  1 . 

(4.26)

 (y −  z)α

 c

In practice, Abel used the operators that nowadays are ascribed to Riemann and

Liouville, preceding them by at least one decade [8]. For future purposes, let us formalize a little bit more the previous results, considering the  Abel fractional integral equation of first kind, defined as:

 t



 g(τ )

0I α g(t ) =

1

 dτ =  f (t),  0  < α <  1 . 

(4.27)

 t

 (α)

 (t −  τ) 1− α

0

Equation (1.90) is a particular case of Eq. (4.27), for  α = 1 / 2. As we have seen above, Eq. (4.27) may be solved in terms of a fractional derivative in the form: 0D α

 g(t) =  g(t) =

 f (t), 

(4.28)

 t

0I α

 t

0D α

 t

where we have also introduced the symbol 0D α  to denote a derivative of arbitrary t

order  α  in the variable  t. A notation of this kind was introduced by the mathematician Harold Thayer Davis (1892–1974) [9] and will be recalled later to discuss the meaning of the left subscript, which is not obvious in a derivative. 

In Eq. (4.28), we have supposed that 0D α  exists (even if we have not discovered t

its form until now!) and is the left-inverse of the operator 0I α, that is, 

 t

0D α

= 1 , 

(4.29)

 t  0I α

 t

where 1 is the identity operator. A solution for (4.27) may be now searched by using the Laplace transform and the convolution theorem, Eq. (1.65):

 t





 (

L

 t −  τ)α−1  g(τ)dτ;  s =  F(s), 

(4.30)

 (α)

0

which, as we have seen in Eq. (1.71), gives
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 G(s) =

 F (s)

 F (s) ←→  G(s) =  s

 , 

(4.31)

 sα

 s 1− α

where, evidently, 

 F (s) = L{  f (t);  s} and  G(s) = L{ g(t);  s} . 

(4.32)

We thus solve the problem by getting the inverse Laplace transform from (4.31), in the form:





 t



 F (s)

 d

 f (τ )

 g(t) = L−1  s

;  t = 1

 dτ. 

(4.33)

 s 1− α

 (α) dt

 (t −  τ)α

0

We emphasize that the problem was solved without considering a specific form of the

fractional derivative operator, but only requiring its existence with the property (4.29). 

It is also possible to extend the case of Eq. (4.27) to  α >  0. To do this, we recognize that if  m − 1  < α < m, with  m ∈ N, then we still have 0I α g(t ) =  f (t ), 

(4.34)

 t

but we have to invoke the semi-group property of I α, namely

 t

 c  I α

=

=

 , α, β ≥ 0 , c ∈ R . 

(4.35)

 x c  I β

 x

 c  I α+ β

 x

 c I β

 x c  I α

 x

This relation may be easily proved in general as follows. Consider

 x



 f (t)

 c  I β f (x ) =

1

 dt, 

(4.36)

 x

 (β)

 (x −  t) 1− β

 c

which can be rewritten as

 t



 β

 f (u)

 c  I t f (t ) =

1

 du, 

(4.37)

 (β)

 (t −  u) 1− β

 c

where we have changed  t →  u  and  x →  t. Now, we form again the product: x



 t



1

 dt

 f (u)du

 c  I α

 f (x) =

1

 . 

(4.38)

 x

 c I β

 x

 (α) (β)

 (x −  t) 1− α

 (t −  u) 1− β

 c

 c

By changing the order of integration, we arrive at
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 x



 t



1

 dt

 c  I α

 f (x) =

1

 f (u)du

 . 

(4.39)

 x

 c  I β

 x

 (α) (β)

 (x −  t) 1− α(t −  u) 1− β

 c

 c

We introduce a new variable  s, such that

 t =  u +  s(x −  u) ←→  dt =  (x −  u)ds, for which when  t =  u,  s = 0; for  t =  x,  s = 1. Thus, Eq. (4.39) may be written as x



1



1

 (x −  u)ds

 c  I α

 f (x) =

1

 f (u)du

 x

 c  I β

 x

 (α) (β)

 (x −  u) 1− α( 1 −  s) 1− α(x −  u) 1− βs 1− β

 c

0

 x



1



= 1

1

 f (u)du

 sβ−1 ( 1 −  s)α−1 ds

 (α) (β)

 (x −  u) 1− α− β

 c

0

 x



=  B(α, β)

 f (u)du

 (α)(β)

 (x −  u) 1− α− β

 c

 x



=

1

 f (u)du

=

 f (x), 

(4.40)

 (α +  β)

 (

 c  I α+ β

 x −  u) 1− α− β

 x

 c

where we have used the definition (1.172) for the incomplete beta function : 1



 (α)(β)

 B(α, β) =

 sβ−1 ( 1 −  s)α−1 ds =

 . 

(4.41)

 (α +  β)

0

This explicit solution found by Abel to the isochrone problem led to the first explicit and conscious solution of an integral equation. 

Joseph Liouville (1809–1882) dedicated a series of papers published between

1833 and 1855 to problems solved with the aid of integral equations. Liouville was

also the first to attempt a comprehensive treatment of the fractional calculus, writing eight papers on the subject in the period from 1832 and 1836, and a short note in

1855 [10]. He mentions the previous works of Euler, Lacroix, Laplace and Fourier, but not the work of Abel [11]:

The first idea of calculating differentials with arbitrary indices belongs to Leibniz. Euler then wrote a few pages on this subject that Mr. Lacroix recalls in his great treatise on differential calculations. There are also three or four lines related to it in the Laplace book on probabilities. Finally, Fourier, in his analytical theory of heat, indicates a general formula which he regards as suitable for transforming into double definite integrals the differentials with arbitrary indices. But the geometers I have just mentioned were only concerned with this matter in passing, and have not deepened the theory. 
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The theory was called by him as “des différentielles à indices quelconques” (dif-

ferentials with arbitrary indices) and his proposal starts from the consideration of

development of functions in series of exponentials [11]:

It seems to me impossible to acquire an exact and complete idea of the differentials with arbitrary indices, without making use of the development of functions in series of exponentials. This development leads to the definition that I gave in another paper, and which I will recall in a few words. 

The idea is to extend the expression for the derivatives of order  n ∈ N, D neax , to x

derivatives of arbitrary order, such that:

D αea x =  aαea x , α ∈ R . 

(4.42)

 x

Since the right-hand side makes sense for any real number, it may be used also

as a definition in the left-hand side [10]. The original argument of Liouville is as follows [11]:



Let  y  be a function of  x  and

 Am emx  its exponential development, I denote as the derivative



of  y  of order  μ  the quantity  dμ y/dxμ  the new function

 Am eμx mμ, obtained from  y

multiplying each term of its development by the power  μ  of the corresponding exponent. 

Whatever  μ  be, positive or negative, as desired, integer or fractional, or irrational or even imaginary. 

We may be easily convinced of the above results, since we know that

D1  eλx =  d eλx =  λeλx , 

 x

 d x

D2  eλx =  d 2  eλx =  λ 2 eλx , 

 x

 d x 2

 ... 

D n eλx =  dn eλx =  λneλx , 

 x

 d xn

and we may ask why do not try to give a meaning to

√

√

D1 / 2 eλx =  λ 1 / 2 eλx  or D 2 eλx =  (λ)  2 eλx ? 

 x

 x

According to Liouville, we can also introduce an integral of order − μ  to be defined as:

− μ





 yd x− μ =

 Ameμx mμ. 

 m

Thus, we may proceed by recognizing that









1

 eλx = D1 D−1 eλx = D1

 eλx

 x

 x

 x

 λ
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that is, 



D−1 eλx = 1  eλx =

 eλx d x, 

 x

 λ

as well as









D−2 eλx = D−1 D−1 eλx = D−1

 eλx d x =

 eλx d x. 

 x

 x

 x

 x

This procedure suggests that D− α  could represent an integral of arbitrary order, as x

introduced before:

D− α = I α. 

 x

 x

In this regard, Liouville proved some important relations as, for instance [12]:

 μ



∞



 F (x)dxμ =  d− μ F(x) =

1

 F (x −  α)αμ−1 dα, 

(4.43)

 d x− μ

 (−1 )μ(μ)  0

or, equivalently, 

 μ



∞



 F (x 2 )(dx 2 )μ =

1

 F (x 2 +  α 2 )α 2 μ−1 dα. 

(4.44)

 (−1 )μ(μ)  0

For what concerns the fractional derivative, in the same paper we find the formula

([B] in [12]):

∞



 dμ F (x) =

1

 dn F (x +  α) αp−1 dα, μ =  n −  p. 

(4.45)

 d xμ

 (−1 )p(p)

 d xn

0

Along the same lines, Liouville succeeded in establishing a definition of a fractional derivative for  f (x) =  x− a,  x >  0 and  a >  0. To follow his reasonings, consider the simple case  f (x) =  x−1. According to Liouville, one has [12]:



 dμ

1

 (−

=

1 )μ(μ + 1 ) . 

 d xμ

 x

 x 1+ μ

In a similar manner, for  f (x) =  x− n, with  n ∈ N, one obtains [12]: dμ

1


=  (−1 )μ (μ +  n). 

(4.46)

 d xμ

 xn

 xn+ μ
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To obtain a general case, we may recall the definition of the gamma function, 

Eq. (1.138), as:

∞



 I =

 ua−1 e− xudu, a >  0 , u >  0 . 

0

The substitution  t =  xu  yields

∞



 I =  x− a

 ta−1 e− t dt =  x− a(a)

0

and, thus, the integral formula:

∞



 x− a =

1

 ua−1 e− xudu. 

 (a)  0

Application of the operator D α  on both sides of the expression above, using (4.42), 

 x

yields

∞



 (−1 )α

D α x− a =

 ua+ α−1 e− xudu. 

 x

 (a)  0

Changing again  t =  xu, we finally obtain:

 (−1 )α(a +  α)

D α x− a =

 x− a− α, 

(4.47)

 x

 (a)

which is the extension of Eq. (4.46) to any  a >  0. The presence of the term  (−1 )α =

 e− i(π/ 2 )α  suggests the need to include complex numbers in the theory. 

In 1847, a young George Friedrich Bernhard Riemann (1826–1866), working

in a paper to be published ten years after his death, deduced an expression for the

fractional integral of order  α  of a given function  f (x). It reads as x



 c  D− α f (x ) =

1

 (x −  t)α−1  f (t)dt +  ψ(x), 

(4.48)

 x

 (α) c

in which  ψ(x)  is present because of the ambiguity of the lower limit of integration, c. This is connected with the idea of a complementary function, which comes from the work of Liouville [13]. To understand better the necessity of this complementary function, we notice that the addition of exponents in the operators





 c  D− μ

 f (x) =

 f (x)

(4.49)

 x

 c  D− α

 x

 c  D− (μ+ α)

 x
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is valid only because  c  is the same for both integrals, that is,  ψ(x)  has to be added just in case these limits are not the same as, for instance, in the expression

 c  D− μ

 f (x). 

 x

 c D− α

 x

Let us illustrate the problem with a simple example: the derivative (in the Liouville sense) of order  α  of a function  f (x)  is





∞



∞



∞



 (m + 1 )

D α f (x) = D α

 a

=

 a

 xm =

 a

 xm− α. 

 x

 x

 m x m

 m  D α

 x

 m (m −  α + 1 )

 m=0

 m=0

 m=0

(4.50)

From (4.42), we have:

D αex =  ex . 

(4.51)

 x

Since

∞

1

 ex =

 xm , 

 m! 

 m=0

from (4.50), we easily obtain

∞



 xm− α

 Dαex =

=  ex. 

(4.52)

 (m −  α + 1 )

 m=0

We notice that Eqs. (4.51) and (4.52) do not match. The reason for this contradiction is that we probably used two different limits of integration. Indeed, in the simple

derivation above the limits (that is, the left subscript) have not been specified. 

The same problem can be better illustrated using an example treated originally

by Liouville [13]:

∞

cos ax

 π

 d x =

 e− a, a >  0 . 

(4.53)

1 +  x 2

2

0

If we calculate

⎡

⎤

∞

cos ax

 π

 π

D μ ⎣

 d x⎦ =

D μe− a =

 e− a(−1 )μ +  ψ(x), 

(4.54)

 a

1 +  x 2

2

 a

2

0

where

 ψ(x) =  A +  Ba +  Ca 2 + · · · +  K an, 

with  A,  B,  C, …, as unknown constants, then we obtain:

∞







cos  ax −  μ π xμ

 π

 I =

2

 d x =

 e− a +  A +  Ba +  Ca 2 + · · · +  K an, 

(4.55)

1 +  x 2

2

0
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because



 π 

D μ[cos (ax)] =  (−1 )μxμ  cos  ax −  μ

 . 

 a

2

We may consider Eq. (4.55) in two cases. 

I. If  μ >  0, but  μ 2  <  1, we put  ax =  θ  and, then, Eq. (4.55) becomes

∞







∞







cos  ax −  μ π xμ

cos  θ −  μ π θμ

 I =

2

 d x =  a 1− μ

2

 dθ. 

(4.56)

1 +  x 2

 a 2 +  θ 2

0

0

If  a → ∞, the right-hand side of Eq. (4.56) shows that  I = 0, if  μ > −1 or 1 −  μ <  2. In this case, we have to put  A = 0,  B = 0,  C = 0, …,  K = 0. Then

∞







cos  ax −  μ π xμ

 π

2

 d x =

 e− a. 

(4.57)

1 +  x 2

2

0

II. If  μ = −1 or −2  < μ < −1, the integral in Eq. (4.56) diverges. Then, we may write:

∞







1

cos  ax −  μ π xμ

 π

2

 d x =

 e− a +  A +  B +  Ca + · · · +  K an−1 . 

 a

1 +  x 2

2 a

 a

0

(4.58)

When  a → ∞, we have to impose that  B = 0,  C = 0, …,  K = 0. It remains only

 π

 δ =

 e− a +  A = 0 . 

2 a

 a

Thus, 

∞







cos  ax −  μ π xμ

 π

2

 d x =

 e− a +  A, 

(4.59)

1 +  x 2

2

0

from which, if we put  a = 0, we find

∞







 π

cos  μ π xμ

 A = −

+

2

 d x, 

(4.60)

2

1 +  x 2

0

which allows us to conclude that:

∞











cos  ax −  μ π − cos  μ π

 xμ

 π 



2

2

 d x =

 e− a − 1  . 

(4.61)

1 +  x 2

2

0
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According to Liouville, the theorem of the complementary functions immedi-

ately yields the integral of the equation

 dμ ψ = 0

 d xμ

in a very general form, as

 ψ =  A +  Bx +  Cx 2 + · · · +  K xn, 

in which the constants are indefinite. According to him, this result establishes a

crucial difference between dealing with differential equations of arbitrary indices

or with the ordinary differential equations [13]. Anyway, the problem was not solved by Liouville or by Riemann and the existence of this complementary

function gave rise to a “longstanding controversy” in the newborn field of math-

ematics dedicated to the fractional calculus [14]. Nevertheless, a definition of a Riemann-Liouville integral (and also of a Riemann-Liouville derivative) was

achieved after the work of a number of people, and some of these works will be

briefly revisited in the next section. 

4.3

The Riemann-Liouville Operators

An important starting point of these efforts leading to a successful definition of an integral or a derivative of arbitrary order was the Cauchy integral formula. In 1869, Nikolay Yakovlevich Sonin (1849–1915) made an important step towards solving

the problem with the ambiguities in the definition of a fractional operator just using the Cauchy integral formula for derivatives discussed in Sect. 1.1.3 [15]. 

Aleksey Vasilievich Letnikov (1837–1888), also using the Cauchy integral for-

mula, extended the ideas of Sonin [16]. Paul Mathieu Hermann Laurent (1841–1908) used a contour as an open circuit on a Riemann surface, known as Laurent loop [17], instead of a closed circuit as used by Sonin and Letnikov. Letnikov proposed a fractional derivative in a form which coincides with the Riemann formula if one neglects

the “complementary function”, even if he did not know the work of Riemann, pub-

lished only later, as mentioned before. In the paper of Laurent, a Cauchy integral

formula for complex-valued analytical functions was used. He mentions the very

important step represented by the work of Letnikov in 1874 [18], affirming that “the definition of M. Letnikov is more general than the one of Liouville, it also gives the same results whenever the latter gives precise results”. Then, he adds [17]: I propose a new definition of the derivative, which basically comes back to that of Mr. 

Letnikoff, but which is more immediately accessible to calculations, in the sense that it directly provides the expression of the derivative that we need. 

Today, the Riemann-Liouville fractional integral or Riemann-Liouville integral of

arbitrary order  α  is defined as:
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 x



 f (t)

 c D− α f (x ) =

1

 dt,  (α) >  0 . 

(4.62)

 x

 (α)

 (x −  t) 1− α

 c

The essence of the Riemann-Liouville derivative was pointed out in the above men-

tioned work of Laurent. In the first part of his paper, he underlines that the derivative of order −  p (  p >  0) of the function  f (x), proposed by Letnikov, is the value of the integral:

 x



1

 f (z)(x −  z)p−1 dz, 

 (p) x 0

and is such that, when  p <  0,  it is defined as a derivative of integer order of a derivative of negative order, that is, of an integral [17]. This is an important step towards establishing a useful and sound definition of a fractional derivative, as given by (4.62). 

Let us consider, first, a way to obtain a useful formula for the fractional integration of  f (x)  in the interval (0 , x) written in terms of one or more integration steps, appropriately changing the interval of integration [19]. Using the notation of the Cauchy integral formula, we may write for the first integration

 x



 f (−1 )(x) =

 f (t)dt. 

0

A second integration will be then

 x

 t 2



 x



 t 2



 f (−2 )(x) =

 f (t 1 )dt 1 dt 2 =

 dt 2

 f (t 1 )dt 1 , 

0

0

0

0

which means that  t 2 ∈ [0 , x] and  t 1 ∈ [0 , t 2]. The region of integration is illustrated in Fig. 4.1a. If we now interchange the order of integration, we have: x

 x



 x



 x



 x



 f (−2 )(x) =

 f (t 1 )dt 2 dt 1 =

 f (t 1 )dt 1

 dt 2 =

 f (t 1 )(x −  t 1 )dt 1

0

 t 1

0

 t 1

0

 x



=

 f (t)(x −  t)dt

0

which corresponds to the region  t 2 ∈ [ t 1 , x] and  t 1 ∈ [0 , x], as shown in Fig. 4.1b. 

Using a similar procedure, we eventually obtain:
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 t 2

 t 2

 x

 x

a

b

 t 1

 t 2

 t 1

 t 1

Fig. 4.1 Region of integration to illustrate the arguments of successive integrations underlying the definition Eq. (4.62) in the case of  α =  n ∈ N

 x



 f (−3 )(x) =

1

 f (t)(x −  t) 2 dt, 

1 × 2 0

and

 x



 f (−4 )(x) =

1

 f (t)(x −  t) 3 dt. 

1 × 2 × 3 0

In general, if the integration is performed  n  times, we easily obtain

 x



 f (− n)(x) = 0D− n f (x) =

1

 f (t)(x −  t)n−1 dt. 

 x

 (n − 1 )! 0

When the integer  n  is replaced by an arbitrary  α, for an interval  (c, x) ( x > c), we obtain the definition (4.62) of a Riemann-Liouville integral of arbitrary order. When c = 0, we recover the definition of Riemann, Eq. (4.48), without the complementary function; when  c → −∞, it is possible to recover the first definition of Liouville for the class of functions  f (x) =  x− a. 

To obtain the derivative of order  α  of the function  f (x), continuous in the interval (c, x), we may proceed as indicated by the remark of Laurent, mentioned before. Let us write  α =  k −  p, where  k ∈ N, such that
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 c  D α f (x ) =

 f (x) =

 f (x)

 x

 c  D k−  p

 x

 c  D kx c D−  p

 x

⎡

⎤

 x



=  dk ⎣ 1

 (x −  t)p−1  f (t)dt⎦

 d xk

 (p) c ⎡

⎤

 x



=

1

 dk ⎣  (x −  t)k− α−1  f (t)dt⎦

 (k −  α) dxk c

⎡

⎤

 x



=

1

 dk ⎣

 f (t)

 dt ⎦  , 

(4.63)

 (k −  α) dxk

 (x −  t)α+1− k

 c

in which  k  is the smallest integer greater than  α  and 0  < p =  k −  α <  1, with  c D k =

 x

 dk /dxk  being the usual derivative. Then, it is clear that the fractional derivative of arbitrary order  α  may be interpreted as the derivative of positive integer order of a derivative of negative non-integer order, which is an integral of arbitrary non-integer order. 

Accordingly, the operator

⎡

⎤

 x



 dk ⎣

 f (t)

⎦

 c D α f (x ) =

1

 dt

 , k ∈ N , 

(4.64)

 x

 (k −  α) dxk

 (x −  t)α+1− k

 c

for  α =  k −  p  is the definition of the Riemann-Liouville fractional derivative to be used hereafter. 

A concise, alternative way, to face the problem of using the definition of an

integral or arbitrary order to obtain a definition of a derivative of arbitrary order may be sketched as follows. We start with the Riemann-Liouville integral defined from

the Cauchy integral formula, as before:

 x



 c  I α f (x ) =

1

 (x −  t)α−1  f (t)dt. 

(4.65)

 x

 (α) c

Notice that  α  may be complex, with the real part strictly positive, that is,  (α) > 0. We assume for a moment that  α ∈ R. The definition (4.65) has the following properties:





 d 



 c  I α

 f (x) =

 f (x)  and

 f (x) =

 f (x). 

 x

 c  I β

 x

 c  I α+ β

 x

 c  I α+1

 c  I α

 d x

 x

 x

One is then tempted to assume that the fractional derivative could be easily defined

as

 c D α f (x ) =

 f (x). 

 x

 c  I− α

 x
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One of the problems with this identification is that the gamma function is not defined for zero or negative integers. Anyway, we may follow a procedure inspired in this

idea with some caution. We notice that for  n ∈ N, we surely write:

 dn 



 c  I n f (x ) =  f (x ), 

 d xn

 x

that is, taking  n  times the derivative of a function  f (x)  after integration it  n  times is equivalent to the identity operator, as stated in (4.29). With this result in mind, we expect to find a fractional derivative operator such that





 c  D α

 f (x) =  f (x). 

 x

 c  I α

 x

An operator that can be constructed is





 c  D α f (x ) =  d  α

 f (x) , 

 x

 c  I α− α

 d x α

 x

with  α being the ceiling function, which gives the smallest integer greater or equal to  α (that is, one has to consider the next integer). Some examples are:

2 = 2 ,  2 .  1 = 3 ,  2 .  9 = 3 ,  3 .  1 = 4 ,  etc. 

This permits us to write the operator defined in (4.64) as follows:

⎡

⎤

 x



 d α ⎣

 f (t)

⎦

 c D α f (x ) =

1

 dt

 , 

(4.66)

 x

 ( α −  α) dx α

 (x −  t)α− α+1

 c

which is the  left  Riemann-Liouville fractional derivative. In principle, it is possible to introduce also a  right  Riemann-Liouville fractional derivative, to be defined as:

⎡

⎤

 c



 dk

 f (t)

 R  D α f (x) =

1

⎣

 dt ⎦  . 

(4.67)

 c

 x

 (k −  α) dxk

 (x −  t)α+1− k

 x

If we deal with time derivatives, in the  left  Riemann-Liouville fractional operator the state of a physical system depends on its state at previous times, whereas the  right Riemann-Liouville fractional derivative should be such that the state of a system at

a given time would depend on the future, expected, states. This concept introduces

causality problems in its use but is not formally forbidden. This explains the frequent application of the  left  Riemann-Liouville operator in dealing with physical systems and, specially, with memory effects. Indeed, systems with memory effects can be very

difficult to model and analyze with classical differential equations, but the fractional derivatives can be very useful to investigate them. In the perspective of Augustine of
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Hippo (354 AD–430 AD), we should not properly speak of past, present and future as

such but rather of a presence of past things (memory), of a presence of present things (perception), and of a presence of future things (expectation)1. In this perspective, we could associate three definitions of fractional derivative to each one of these

manifestations of the present. The left Riemann-Liouville (past), the usual (present) and the right Riemann-Liouville (future) ones. We mention it for completeness, but

we are not concerned with the potential physical applicability of  R D α. 

 c

 x

Once a definition of the derivative and of integral of arbitrary order is established, it is useful to evaluate the action of 0D± α f (x), when  f (x) =  xa,  a >  0, for illustrative x

purposes. We start with the integration:

 x



0D− α x a =

1

 (x −  t)α−1 tadt. 

(4.68)

 x

 (α)  0

If we put  u =  t/x,  dt =  xdu, then (4.68) becomes: 1



0D− α x a =

1

 (x −  ux)α−1 (ux)axdu

 x

 (α)  0

1



= 1  xα+ a ( 1 −  u)α−1 uadu, 

(4.69)

 (α)

0

where

1



 (

 (

 a + 1 )(α)

1 −  u)α−1 uadu =  B(a + 1 , α) =

 . 

 (α +  a + 1 )

0

Thus, 

 (a + 1 )

0D− α x a =

 xa+ α. 

(4.70)

 x

 (a +  α + 1 )

For what concerns the derivative, we may write

 x



 dk

 ta

0D α x a =

1

 dt. 

(4.71)

 x

 (k −  α) dxk

 (x −  t)α+1− k

0

The same substitution performed before yields:

1 A. Augustine,  The Confessions of Saint Augustine, Translated by E. B. Pusey (Edward Bouverie). 

The original text reads:  Sed fortasse proprie diceretur:  tempora sunt tria,  praesens de praeteritis, praesens de praesentibus, praesens de futuris. Sunt enim haec in anima tria quaedam et alibi ea non video, praesens de praeteritis memoria, praesens de praesentibus contuitus, praesens de futuris expectatio https://www.gutenberg.org/files/3296/3296-h/3296-h.htm. 
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 dk 

1



0D α x a =

1

 xa− α+ k

 ua( 1 −  u)k−1− αdu

 x

 (k −  α) dxk

0

 (





=

 a + 1 )

 dk

 xa− α+ k

 (a + 1 +  k −  α) dxk

 (

 (

=

 a + 1 )

 a + 1 +  k −  α) xa− α. 

(4.72)

 (a + 1 +  k −  α) (a −  α + 1 )

Finally, we have

 (a + 1 )

0D α x a =

 xa− α. 

(4.73)

 x

 (a + 1 −  α)

As an emblematic example, consider  a = 0 and  α = 1 / 2. This means that  k = 1 and p = 1 / 2. Using the Riemann-Liouville formula, we obtain:

0D1 / 2 ( 1 ) =

 ( 1 ) =

 ( 1 )

 x

0D1−1 / 2

 x

0D−1 / 2

 x

 x



=

1

 d

 (x −  t)−1 / 2 × 1  dt

 ( 1 / 2 ) dx  0  

=

1

 d

2 x 1 / 2 =

1

√

 , 

(4.74)

 ( 1 / 2 ) dx

 πx

which coincides with Eq. (4.7), that is, the fractional derivative of Lacroix. 

It is also useful to evaluate the Laplace transform of the Riemann-Liouville integral operator, defined in Eq. (4.65), here rewritten as:

 t



0D− α f (t ) =

 f (t) =

1

 (t −  τ)α−1  f (τ)dτ,  (α) >  0 . 

(4.75)

 t

0I α

 t

 (α)  0

Applying the Laplace transform, we have:





⎡

⎤

∞



 t



L

⎣ 1

⎦

0D− α f (t );  s

=

 e− st

 (t −  τ)α−1  f (τ)dτ dt

 t

 (α)

0

0

⎡

⎤

∞



 t

 (

=

 t −  τ)α−1

 e− st ⎣

 f (τ )dτ ⎦  dt

 (α)

0

0

∞







=

 t α−1

 e− st

∗  f (t) dt. 

(4.76)

 (α)

0
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In Eq. (4.76), we recognize the Laplace transform of a convolution. Thus, using the Laplace convolution theorem, Eq. (1.65), we may write:











L

 t α−1

0D− α f (t );  s

= L

;  s  L  f (t);  s , 

 t

 (α)

from which we obtain the very useful result:





L 0D− α f (t);  s =  s− α F(s). 

(4.77)

 t

For what concerns the Riemann-Liouville fractional derivative, Eq. (4.64), rewritten here (for  c = 0) as

⎡

⎤

 t



 dk ⎣

 f (τ )

⎦

 c  D α f (t ) =

1

 dτ , 

(4.78)

 t

 (k −  α) dtk

 (t −  τ)α+1− k

0

its Laplace transform becomes:





⎡

⎤

∞



 t



L

⎣

1

 dk

 f (τ )

⎦

0D α f (t );  s

=

 e− st

 dτ dt

 t

 (k −  α) dtk

 (t −  τ)α+1− k

0

0

∞







=

 dk

−

 e− st

 p

 dt, 

(4.79)

 dt k  0D t

 f (t)

0

where  α =  k −  p, with  k =  α being the first integer greater than  α  such that  k −

1  < α < k  and 0  < p <  1. We know from Eq. (1.77) that for  k ∈ N, we have: k−1





L  dk

 dk− l−1

 f (t);  s =  sk F(s) −

 sl

 f (t)

 . 

(4.80)

 dt k

 dt k− l−1

 l=0

 t=0

From Eq. (4.79), we then have:









 k−1





L

 dk− l−1

− (k− α)

0D α f (t );  s

=  sk sk F(s) −

 sl

 t

 dt k− l−1 0D t

 f (t)

 l=0

 t=0

 k−1





=

 dα− l−1

 sk− α F (s) −

 sl

 f (t)

 . 

(4.81)

 dt α− l−1

 l=0

 t=0

Now, putting  l →  (l − 1 ), we finally obtain:
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 k







L

 dα− l

0D α f (t );  s

=  sk− α F(s) −

 sl−1

 f (t)

 . 

(4.82)

 t

 dt α− l

 l=1

 t=0

We notice that the initial conditions are stated in terms of the fractional derivatives, that is, 





 dα− l f (t)

 . 

(4.83)

 dt α− l

 t=0

4.4

The Grünwald-Letnikov Operators

Let us now revisit the definitions of a derivative of order  m ∈ N introduced in Eq. (4.15) as well as the corresponding definition of an integral of order  m ∈ N in Eq. (4.16). It is possible to relate these operators with the ones of Riemann-Liouville. 

We have seen before that

 x



 c  D− m f (x ) =

1

 (x −  t)m−1  f (t)dt, m ∈ N . 

 x

 (m) c

Now, consider the quantities





1 − 1  x +  c ∼  x, k = 0

 t

 N

 N

 k =  x −  (k + 1 ) x −  c =

 N

 c, 

 k =  N − 1 , 

(4.84)

such that  t =  tk+1 −  tk = − (x −  c)/N . For the particular case  m = 2, we have N −1







 c  D−2  f (x ) = lim

 (x −  t

 t

 (− t)

 x

 k ) f

 k −  x

 N →∞

 N

 k=0

 x



=  (x −  t) f (t)dt. 

(4.85)

 c

In the general case ( m = 3 ,  4 ,  5 , . . . ) we eventually demonstrate that
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 x



 x 2



 x+ n

 c  D− m f (x ) =

· · ·

 f (t)dtdx

 x

2 d x 3  . . . d xn

 c

 c

 c









 m

 N −1

 (

=

 x −  c

1

 k +  m)

 x −  c

lim

 f

 x −  k

 N →∞

 N

 (m)

 (k + 1 )

 N

 k=0

 x



= 1

 (x −  t)m−1  f (t)dt, m ∈ N . 

(4.86)

 (m) c

A “natural” extension to arbitrary order  α  could be:





 N −1





 x −  c α

1

 (k +  α)

 x −  c

 c D− α f (x ) = lim

 f

 x −  k

 x

 N →∞

 N

 (α)

 (k + 1 )

 N

 k=0

 x



= 1

 (x −  t)α−1  f (t)dt, α ∈ R . 

(4.87)

 (α) c

Notice that we obtain, again, the Riemann-Liouville definition. For computational

purposes, sometimes, it is convenient to consider the object:

 x



 c  D− α f (x ) =

1

 (x −  t)α−1  f (t)dt, α ∈ N , 

 x

 (α) c

and to promote integrations by parts. We may write

⎡



⎤

 x

 x



⎣



⎦

 c  D− α =

1

−  f (t)(x −  t) + 1

 (x −  t)α f  (t)dt

 x

 (α)

 α



 α

 c

 c

 x



=  f (c)(x −  c)α +

1

 (x −  t)α f  (t)dt. 

(4.88)

 (α + 1 )

 (α + 1 ) c

If we proceed this way, after  n  integrations by parts, we may write:

 n





 x



 f (k)(c)(x −  c)α+ k

 c  D− α =

+

1

 (x −  t)α+ n f (n+1 )(t)dt, 

 x

 (α +  k + 1 )

 (α +  n + 1 )

 k=0

 c

(4.89)

which is meaningful if we assume that  f (t)  is continuous with its  (n + 1 )  derivatives in the interval [ c, x]. 
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In summary, we define also the following form for the  integral operator of arbi-

 trary order α, defined by the Grünwald construction, as

 n



 x



 f (k)(c)(x −  c)α+ k

 c  D− α f (x ) =

+

1

 (x −  t)α+ n f (n+1 )(t)dt, 

 x

 (α +  k + 1 )

 (α +  n + 1 )

 k=0

 c

(4.90)

as well as the  derivative operator of arbitrary order α

 n



 x



 f (k)(c)(x −  c)− α+ k

 c  D α f (x ) =

+

1

 (x −  t)− α+ n f (n+1 )(t)dt. 

 x

 (− α +  k + 1 )

 (− α +  n + 1 )

 k=0

 c

(4.91)

For  c = 0 and  n = 0, we obtain

 x



0D α f (x ) =

 f ( 0 )(x)− α +

1

 (x −  t)− α f ( 1 )(t)dt. 

(4.92)

 x

 (− α + 1 )

 (− α + 1 )  0

In the particular case in which  f (x) =  xa, with  a >  0, we obtain: x



 (a + 1 )

0D α x a =

1

 (x −  t)− αata−1 dt =

 xa− α, 

(4.93)

 x

 ( 1 −  α)

 (a −  α + 1 )

0

as expected. 

4.5

The Caputo Operator

In 1967, Caputo introduced a new definition of a fractional derivative, which is

connected with the fractional Riemann-Liouville integral and differential operators, 

now known as Caputo fractional derivative [20]. The simplest way to introduce it is to consider certain properties of the operator  c D α  on  f (x). If  n =  p +  α,  α ∈ R, x

0  < p <  1, and  n ∈ N, that is,  n =  α is the smallest integer greater than  α, we may write:

 c  D α f (x ) =

 f (x) =

 f (x)

 x

 c  D n−  p

 x

 c  D n

 x c  D−  p

 x





=  c D− p

 f (x) =

 f (n)(x) . 

 x

 c D n

 x

 c I  p

 x

Thus, using the Riemann-Liouville integral operator, introduced in Eq. (4.62), we obtain:
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 x



CD α f (x) = 1

 (x −  t)p−1  f (n)(t)dt

 c

 x

 (p) c

 x



=

1

 f (n)(t)

 dt, n − 1  < α < n, 

(4.94)

 (n −  α)

 (x −  t)α+1− n

 c

which permits us to interpret the Caputo derivative of a function  f (x)  as being equal to the Riemann-Liouville integral of the  n th-derivative of the function  f (x). The relation between these operators may be detailed as follows [8]. For simplicity (but the results are general anyway) we consider  c = 0 to apply this formalism to the time variable, but we keep the notation as before (that is, in what follows one may

consider  x  as our time variable). We start from Eq. (4.62) defining the Riemann-Liouville integral of order  α:

 x



0D− α f (x ) =

 f (x) =

1

 (x −  t)α−1  f (t)dt, α >  0 . 

(4.95)

 x

0I α

 x

 (α)  0

For the existence of the integral (4.95), it is sufficient that  f (x)  is locally integrable in R+ and for  x → 0 behaves like O (x− ν), with  ν < α. From Eq. (4.35), we have 0I α

=

=

 , α, β >  0 , 

 x  0I β

 x

0I α+ β

 x

0I β

 x  0I α

 x

and

 (γ + 1 )

0I α (x γ ) =

 xγ + α, γ > −1 . 

(4.96)

 x

 (γ + 1 +  α)

The fractional derivative of order  α >  0, in the Riemann-Liouville sense, is the operator 0D α  which is the left-inverse of the Riemann-Liouville integral of order  α

 x

(in analogy with the ordinary derivative), that is, 

0D α

= 1 , α >  0 . 

 x  0I α

 x

For  m ∈ N, such that when  m − 1  < α < m, we can write: 0D α f (x ) =

 f (x) . 

(4.97)

 x

0D m

 x

0I m− α

 x

Then, using







0D α

 f (x) =

 f (x)

 x  0I α

 x

0D m

 x  0I m− α

 x

0I α

 x







= 0D m

 f (x)

 x  0I m

 x

0I− α

 x

0I α

 x

= 1 · [1  f (x)] =  f (x), 

(4.98)
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we rewrite the relation (4.97) in the form:









 dm

1

 x

 f (t)dt

 , m − 1  < α < m, 

 d xm

 (m− α)  0  (x− t)α+1− m

0D α f (x ) =

(4.99)

 x

 dm f (x), 

 α =  m. 

 d xm

This defines the Riemann-Liouville derivative operator of arbitrary order. As stated

before, the fractional derivative of order  α, in the Caputo sense, is defined as the operator whose action is

CD α f (x) =

 f (x), m − 1  < α < m, 

0

 x

0I m− α

 x

0D m

 x

or, which is the same:





1

 x

 f (t)dt

 , 

C

 m − 1  < α < m, 

D α f (x) =

 (m− α)  0  (x− t)α+1− m

(4.100)

0

 x

 dm f (x), 

 α =  m. 

 d xm

Summing up, when the order is not integer, the two fractional derivatives differ in that the standard derivatives of order  m  does not generally commute with the fractional integral. 

The Caputo derivative requires higher regularity conditions of  f (x)  than the Riemann-Liouville derivative. The properties of the left-inverse derivative may be

helpful to investigate a little bit the relation between the two operators. We recall that from the Cauchy integral formula we may write

 x



0I α f (x ) =

1

 (x −  t)n−1  f (t)dt, x >  0 , n ∈ N . 

 x

 (n − 1 )! 0

Thus, we expect that if 0D α f (x)  is the left-derivative, then

 x

0D n

 f (x) =  f (x) =⇒

= 1 . 

 x  0I n

 x

0D n

 x  0I n

 x

Unless  f (x)  vanishes at  x = 0 with the first  (n − 1 )  derivatives, in general, we have 0I n

 f (x) =  f (x). 

 x  0D n

 x

Consider, now





 x



 dn

0I n

 f (x) =

1

 (x −  t)n−1

 f (t)dt. 

 x

0D n

 x

 (n − 1 )! 

 dt n

0

Again, by integration by parts, we may put
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⎡

⎤







 x

 x



⎣  f (n−1 )(t) 

⎦

0I n

 f (x) =

1

+  (n − 1 ) (x −  t)n−2  f (n−1 )(t)dt

 x

0D n

 x

 (n − 1 )!  (x −  t) 1− n  0

0

= −  xn−1  f (n−1 )( 0 ) −  xn−2  f (n−2 )( 0 ) (n − 1 )! 

 (n − 1 )! 

 x



 (

+  n − 1 )(n − 2 ) (x −  t)n−3  f (n−2 )(t)dt. 

(4.101)

 (n − 1 )! 

0

After  n − 1 integration by parts, we eventually obtain:





 n−1



0I n

 f (x) =  f (x) −

 f (k)( 0 ) xk . 

(4.102)

 x

0D n

 x

 k! 

 k=0

The Caputo operator, defined already for  α =  n −  p =  α −  p, may be shown to be such that:





 dn

CD α f (x) =

 f (x) =

 f (x)

0

 x

0D−  p+ n

 x

0D−  p

 x

 d xn









= 0I p

 f (x) =

 f (x)

 x

0D n

 x

0I n− α

 x

0D n

 x





= 0I− α

 f (x) . 

(4.103)

 x

0I n

 x  0D n

 x

Substitution of Eq. (4.102) into Eq. (4.103) yields: n−1



 n−1



CD α f (x) =

 f (x) −

 f (k)( 0 ) xk

=

 f (x) −

 f (k)( 0 ) xk . 

0

 x

0I− α

 x

0D α

 k! 

 x

 k! 

 k=0

 k=0

Therefore, a relation between the Caputo and the Riemann-Liouville derivatives may

be established as follows:

 n−1

 f (k)( 0 )xk− α

CD α f (x) =

 f (x) −

 , n − 1  < α < n, 

(4.104)

0

 x

0D α

 x

 (k −  α + 1 )

 k=0

which, when 0  < α <  1, yields

CD α f (x) =

[  f (x) −  f ( 0 )]

0

 x

0D α

 x

= 0D α f (x) −  f ( 0 )x− α , 

(4.105)

 x

 ( 1 −  α)

where we have used Eq. (4.96). We notice that, from the above equation, Caputo and Riemann-Liouville operators coincide for the functions such that  f ( 0 ) = 0. 

What if  f (x) =  k = constant? 
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From Eq. (4.96), we obtain:

 ( 1 )

0D α (kx  0 ) =  k

 x− α. 

(4.106)

 x

 ( 1 −  α)

Substitution of Eq. (4.106) into Eq. (4.105) yields: ( 1 )

CD α(kx 0 ) =  k

 x− α −  f ( 0 )x− α = 0 , 

(4.107)

0

 x

 ( 1 −  α)

 ( 1 −  α)

because, evidently,  f ( 0 ) =  k. We deduce that the Caputo derivative has the relevant property of being zero when applied to a constant and, in general, to any power function of non-negative integer degree less than  m  if  m − 1  < α < m. These conclusions are general, and holds for the operator CD α. 

0

 x

The main advantage of the Caputo approach is that the initial conditions for

fractional differential equations with Caputo derivative take on the same form as for integer-order differential equations, that is, contain the limit values of integer-order derivatives of unknown functions at the limit  x =  c, namely:



 f (k)(x)

=  b

 x= c

 k , 

 k = 0 ,  1 ,  2 , . . . , 

that is, the initial or the boundary conditions may be written as derivatives of integer order. This point can be better understood if we consider the Laplace transform of

the Caputo operator. Since  α =  k −  p, with  k =  α being the first integer greater than  α  such that  k − 1  < α < k  and 0  < p <  1, we may write: t



 f (k)(τ )

C

−

D α f (t) = CD  p+ k

 dτ. 

(4.108)

0

 t

0

 t

 f (t) =

1

 (k −  α)

 (t −  τ)α+1− k

0

Then, the Laplace transform becomes:













L

− p+ k

− p dk

0D α f (t );  s

= L

= L

 f (t);  s

 t

0D t

 f (t);  s

0D t

 dt k

⎡

⎤

∞



 t



=

 dk

 e− st ⎣

1

 (t −  τ)p−1

 f (τ )⎦  dt. 

(4.109)

 (p)

 dτ k

0

0

We obtain the Laplace transform of the convolution:
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∞







L

 t p−1

0D α f (t );  s

=

 e− st

∗  dk f (t) dt

 t

 (p)

 dt k

0 



= L  t p−1 ∗  dk f (t);  s

 (p)

 dt k







= L  t p−1 ; 

 dk f (t)

 s  L

;  s . 

(4.110)

 (p)

 dt k

Since we know that





L  t p−1 ;  s =  s− p

(4.111)

 (p)

and





 k−1







L  dk f (t); 

 dl f (t)

 s

=  sk F(s) −

 sk− l−1

 , 

(4.112)

 dt k

 dtl

 l=0

 t=0

remembering that  p =  k −  α, from Eq. (4.110) the Laplace transform of the Caputo fractional derivative of order  α  is





 k−1





L

 dl f (t)

 C  D α f (t);  s =  sα F(s) −  sα−1

 s− l

 . 

(4.113)

0

 t

 dtl



 l=0

 t=0

As underlined before, we notice that the initial condition is given in terms of the

integer derivatives of the function  f (t). 

If we put now  c = −∞ in the Riemann-Liouville derivative, then it becomes

⎡

⎤

 x



 f (t)

−∞D α f (x) =  dm ⎣

1

 dt ⎦

 x

 d xm

 (m −  α)

 (x −  t)α+1− m

−∞

 x



=

1

 f (m)(t)

 dt

 (m −  α)

 (x −  t)α+1− m

−∞

=

C

−∞ D α f (x), 

 m − 1  < α < m. 

(4.114)

 x

In this limit, both definitions become equal provided that  f (x)  and its derivatives have a reasonable behavior when  x → ∞, that is,  f (k)(−∞ ) → 0, for  k = 0 ,  1 , . . . , n −

1, with  n =  α. This is a very important property from the physical point of view because to consider stationary processes is now permitted as, for instance, in the

response of the fractional order dynamical systems to a periodic signal, required in

the impedance problems [21], in the wave propagation in continuous media, etc. 

As a final remark, we highlight the properties of interpolation between integer-

order derivatives exhibited by the proposed formulas for the fractional derivatives

we are dealing here. We start from the Caputo derivative:
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 x



 f (m)(t)

CD α f (x) =

1

 dt, m − 1  < α < m. 

(4.115)

 c

 x

 (n −  α)

 (x −  t)α+1− m

 c

After an integration by parts, Eq. (4.115) becomes:

 x



 (x −  c)(n− α)

CD α f (x) =

 f (n)(c) +

1

 (x −  t)n− α f (n+1 )(t)dt. 

 c

 x

 (n −  α + 1 )

 (n −  α + 1 ) c

Thus, when  α →  n, we obtain:





 x



lim CD α f (x) =  f (n)(c) +

 f (n+1 )dt =  f (n)(x), 

 α→

 c

 x

 n

 c

as expected. 

4.6

Some Space-Fractional Derivatives

A generic linear pseudo-differential operator A, acting with respect to the variable

 x ∈ R, is defined by means of the Fourier transform as:





∞



F A  f (x);  k =

 eikx  A  f (x)dx =  A(k)F(k), 

(4.116)

−∞

where  F (k)  is the Fourier transform of  f (x)  and





 A(k) = A e− ikx eikx

(4.117)

is the  symbol  of A. In this framework, the fractional Riesz-Feller derivative of order α  and skewness  θ  is defined in such a way that its Fourier transform is [22]:





∞







F RF

RF

 θ  D α f (x);  k

=

 eikx

 f (x) dx, 

 x

 θ  D αx

−∞

= − ψθα(k)F(k), k ∈ R , 

(4.118)

where

 ψθα(k) = | k| αei( sign k)θ π 2  ,  0  < α ≤ 2 , | θ| ≤ min  (α,  2 −  α). 

(4.119)
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As pointed out above, the quantity − ψθα(k)  is called the symbol of the Riesz-Feller fractional derivative and is connected with the logarithm of the characteristic function of the Lévy distribution, defined by Eqs. (2.96) and (2.97) as [23]: π

ln  

 P(y) =  iμy −  ν| y| α  1 −  iθ y  tan

 α , α = 1 , 

(4.120)

| y|

2

and





2

ln  

 P(y) =  iμy −  ν| y| 1 +  iθ y

ln | y|  , α = 1 , 

(4.121)

| y|  π

where 0  < α ≤ 2,  ν  is a positive scaling factor,  μ  is any real number and  θ  is an asymmetry parameter between −1 and 1. The allowed region for the parameters  α

and  θ  forms the so-called Feller-Takayasu diamond in the plane  α −  θ, with vertices in the points (0,0), (1,1), (1,−1), (2,0). 

For the applications to be discussed in this book, we consider hereafter the case

 θ = 0, such that RFD α  is defined as the pseudo-differential operator with symbol 0

 x

−| k| α = − (k 2 )α/ 2. Thus, from the general property





F RFD α f (x);  k = −| k| α F(k), k ∈ R , 

(4.122)

 c

 x

using



 α/ 2

RFD α f (x) = − −  d 2

=  dα f (x)

(4.123)

0

 x

 d x 2

 d| x| α

we obtain the following particular Fourier transform:





F

 dα

 f (x);  k = −| k| α F(k), k ∈ R ,  0  < α <  2 , (4.124)

 d| x| α

when we define the Riesz derivative in the form [24]:

∞



 dα

 f (x +  y) − 2  f (x) +  f (x −  y)

 f (x) =  ( 1 +  α)  sin (απ/ 2 )

 d y. 

 d| x| α

 π

 y 1+ α

0

(4.125)

The case  α = 2 corresponds to the usual second order derivative. For  α = 1, the operator is related to the Hilbert transform  x  H  f (x)  as follows:
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∞



 d

 f (y)

 f (x) = − 1

 d y

 d| x|

 π

 x −  y

−∞

= −  d [ x H  f (x)]  , 

(4.126)

 d x

where

∞

 f (y)

 x  H  f (x ) = 1

 d y = H ( f )(y). 

(4.127)

 π

 x −  y

−∞

When 1  < α <  2 and  θ = 0 the operator may be written as [25]:

⎧

 (

⎨



∞



1 +  α)

 π

 f (x +  y) −  f (x)

RF

 θ  D α f (x) =

 (α +  θ)

 x

 π

⎩sin

2

 y 1+ α

0

⎫



 π  ∞



⎬

+

 f (x −  y) −  f (x)

sin  (α −  θ)  2

 y 1+ α

⎭  , 

(4.128)

0

for 0  < α <  2 and | θ| ≤ min{ α,  2 −  α}. 

Let us consider, again, the Riemann-Liouville integral operator, now with  c →

−∞. From Eq. (4.62), we have

 x



−∞D− α f (x) =

1

 (x −  t)α−1  f (t)dt,  0  < α <  1 . 

(4.129)

 x

 (α)−∞

We know that





∞



L  xα−1 ; 

 xα−1

 s

=

 e− sx

 d x =  s− α. 

(4.130)

 (α)

 (α)

0

Now, if we put  s = − ik, with  k ∈ R, we have to evaluate the integral:

∞



 xα−1

 I =

 eikx

 d x, 

(4.131)

 (α)

0

which converges for 0  < α <  1. In addition, we consider the following “causal” 

function:

1

 h+ (x) =

 (α) xα−1 , x >  0 , 

0 , 

 x ≤ 0 , 

(4.132)
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whose Fourier transform is such that





∞



∞



F  h+ (x);  k =

 h+ (x)eikx dx =

 h+ (x)e− (− ik)x dx

−∞

0





= L

1

 xα−1; − ik =  (− ik)− α. 

(4.133)

 (α)

To proceed, we use this result to rewrite the Riemann-Liouville fractional integral

operator as:

0



 x



−∞D− α f (x) =

 dτ h

 dτ h

 x

+ (x −  τ) f (τ ) +

+ (x −  τ) f (τ )

−∞

0

 x



=

 dτ h+ (x −  τ) f (τ ) =  h+ (x) ∗  f (x), 

(4.134)

0

in which we recognize a Laplace convolution. Thus, by using Eq. (1.10), we may write









F −∞D− α f (x);  k = F  h

 x

+ (x) ∗  f (x);  k







= F  h+ (x);  k  F  f (x);  k , 

(4.135)

in order to obtain the Fourier transform of the Riemann-Liouville operator ( c →

−∞)





F −∞D− α f (x);  k =  (− ik)− α F(k). 

(4.136)

 x

Sometimes, we use a fractional  derivative operator  defined in such a way that: F RW

−∞D α f (x);  k

=  (− ik)α F(k)

(4.137)

 x

and it is called the Riesz-Weyl operator [26]. It may be written in such a way that the imaginary unit is omitted:





F RW

−∞D α f (x);  k

= −| k| α F(k). 

(4.138)

 x

An operator of this kind is very helpful in some applications because its Fourier

transform is simple, does not requiring the initial values. 
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An explicit form for this operator could be built from the definition of the Riemann-

Liouville fractional derivative as:

 x



RW

−∞D α f (x) =

1

 f (t)(x −  t)− α−1 dt,  (α) <  0 , 

(4.139)

 x

 (− α) −∞

for which some suitable branch of  (−1 )− α  has to be specified to perform the integration. Anyway, for our purposes, it is enough to define the operator just by means

of its Fourier transform, as in Eq. (4.138). 

In the foregoing sections we presented some of the mathematical tools to be used

in the remaining part of this book. The overview dedicated to fractional calculus

was intended to provide only a general guidance on the operators more often used

in the last decades. To explore some applications of these tools, in the next sections we present a selection of relevant problems dealing with applications to investigate anomalous diffusion and relaxation behavior by means of fractional diffusion

equations. 
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Chapter 5

Fractional Anomalous Diffusion

Abstract In this chapter, we discuss the general problem of fractional diffusion equation in connection with the anomalous behavior. We consider first the fundamental solution for the space-time fractional diffusion equation involving the Caputo operator in the time derivatives and the Riesz–Feller operator in the space derivative. 

The solution of the Cauchy problem can be expressed in terms of a Mellin–Barnes

representation for the Green’s function. Subsequently, we discuss the more general

case of the space-time diffusion equation involving composite fractional time deriva-

tive together with the Riesz–Feller space fractional derivative. Finally, we investigate diffusive phenomena governed by fractional diffusion equation in the presence of a

spatial dependent diffusion coefficient and external forces. These problems are cho-

sen here to illustrate the broadness of the application of statistical mechanics tools and the fractional formalism discussed in the previous chapters. 

5.1

A Space-Time Fractional Diffusion Equation

In this section, we consider, in a simplified manner, a more general problem, deal-

ing with both space and time fractional derivatives [1]. Specifically, we consider a diffusion equation in which the time derivative is replaced by the fractional operator of Caputo, Eq. (4.94), whose definition we recall here for commodity: t



 ∂β f (t) =

 f (m)(τ )

 C

 β

D

 dτ, m − 1  < β ≤  m, (5.1)

 ∂tβ

0

 t f (t ) =

1

 (m −  β)

 (t −  τ)β+1− m

0

and the second order space derivative will be replaced by a fractional Riesz–Feller

derivative defined by Eq. (4.123) in such a way that its Fourier transform is F

 dα

 f (x);  k = −| k| α F(k), k ∈ R ,  0  < α <  2 , (5.2)

 d| x| α

as stated in Eq. (4.124). 
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We thus consider the following space-time fractional diffusion equation following

closely the approach of Mainardi et al. [1]:

 ∂βρ(x, t)

 ∂α

=  D

 ρ(x, t), t >  0 , −∞  < x < ∞ , 

(5.3)

 ∂tβ

 ∂| x| α

for 0  < α <  2 ,  0  < β ≤ 2. Other situations related to the fractional diffusion equations can be found, for example, in Refs. [2–5]. For simplicity, we assume  D = 1 in order to solve the following Cauchy problem:

 ρ(x,  0 ) =  ϕ(x), x ∈ R ,  and  ρ(±∞ , t) = 0 , t >  0 , (5.4)

where  ϕ(x)  is a given function. If 1  < β ≤ 2, we would have to add the condition:



 ∂ρ(



 ρ

 x, t) 

 t (x ,  0 ) =

= 0 . 

(5.5)

 ∂t

 t=0

The solution of Eq. (5.3) will have the form:

∞



 ρα,β(x, t) =

 Gα,β(x , t)ϕ(x −  x )dx , 

(5.6)

−∞

where  Gα,β(x, t)  is a solution of Eq. (5.3), for  ϕ(x) =  δ(x), which is the Green’s function of the Cauchy problem. The Fourier transform of the Riesz–Feller operator

and the Laplace transform of the Caputo time fractional derivative permit us to rewrite Eq. (5.3) as:

− | k| α

 Gα,β(k, s) =  sβ 

 Gα,β(k, s) −  sβ−1 , 

(5.7)

because we know from Eq. (4.113) that





 m−1



L  C β

D

=  sβ F(s) −

 sβ−1− k f (k)( 0 ), m − 1  < β ≤  m. 

(5.8)

0

 t f (t );  s

 k=0

From Eq. (5.7), we easily obtain:



 Gα,β(k, s) =

 sβ−1

 , 

(5.9)

 sβ + | k| α

which is the Green’s function of the problem in the Fourier–Laplace space. To obtain

the desired solution  Gα,β(x, t)  we have to invert both transforms, which is not a very easy task. However, we may start by inverting the Laplace transform. To do this, we

recognize that
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L E β(ctβ);  s =  sβ−1  ,  (s) > | c|1 /β, c ∈ C ,  0  < β ≤ 2 , (5.10)

 sβ −  c

where E β(z)  is the Mittag-Leffler function of order  β  already defined by Eq. (1.217). 

Thus, after inverting Eq. (5.9), we obtain:

 Gα,β(k, t) = E β(−| k| αtβ), k ∈ R , t ≥ 0 . 

(5.11)

As we have seen before, the Mittag-Leffler function admits a Mellin–Barnes repre-

sentation as in Eq. (1.223), that is, 

 γ + i∞

 (s)( 1 −  s)

E β(z) = 1

 (− z)− sds, 

(5.12)

2 πi

 ( 1 −  βs)

 γ − i∞

where the integration is over a left-hand loop accounting for the left-hand poles of

 (s), that is,  s = 0 , −1 , −2 , . . . = − n,  n ∈ N. From the residue theorem discussed in Sect. 1.1.3, we may write the integral in (5.12) as the series (1.217) defining the Mittag-Leffler function. 

It is convenient to remember here that the Mellin transform is defined as:

∞



M{  f (r);  s} =  FM(s) =

 f (r)rs−1  dr, 

(5.13)

0

and its inverse as:

 γ + i∞



M−1{ FM(s);  r} =  f (r) = 1

 FM (s)r− sds, 

(5.14)

2 πi γ− i∞

which permits us to identify

 (s)( 1 −  s)

 FM (s) =  ( 1 −  βs)

as the Mellin transform of E β(− r). 

Now, let us explore a simple scaling property involving the transforms of Fourier

and Laplace. We recall that the Fourier transform of  f (ax), for  a >  0, has the following scaling law, stated in Eq. (1.19):





 k

 k

 f (ax) ←→ 1  F

= 1 

 f

 , a >  0 , 

(5.15)

 a

 a

 a

 a
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and a similar law holds for the Laplace transform, Eq. (1.82), 





 s

 s

 f (bt) ←→ 1  F

= 1  f

 , b >  0 . 

(5.16)

 b

 b

 b

 b

We notice that the right-hand side of Eq. (5.11) is of the kind  F (k/a)  if we identify a =  t− β/α. Thus, 





 k

 k

 F

= 

 f

←→  a f (ax), 

(5.17)

 a

 a

or

E α(−| k| αtβ) ←→  t− β/α Kα,β(x/tβ/α), 

(5.18)

in such a way the that fundamental solution of our problem, that is, for  ρα,β(x,  0 ) =

 δ(x), should be:

 ρα,β(x, t) =  t− β/α Kα,β(x/tβ/α), 

0  < β ≤ 2 ,  0  < α ≤ 2 . 

(5.19)

A very meaningful result may be obtained without knowing the precise form of

 Kα,β(x/tβ/α). Indeed, if we put  p =  x/tβ/α, we may form the quantity:

∞



 x 2 =

 p 2 t  2 β/αt − β/α Kα,β( p)(dptβ/α) =  t 2 β/α Mα,β, (5.20)

−∞

where

∞



 Mα,β =

 p 2  Kα,β( p)dp. 

(5.21)

−∞

From Eq. (5.20), we may conclude, in general, that for 2 β < α  there is subdiffusion; for 2 β > α, superdiffusion, and for 2 β =  α  the diffusion is the normal one, if  Mα,β

exists. Similar analysis for a large class of diffusion-like equations may be found in Ref. [6]. 

What we have discovered until now is that the fundamental solution of our problem

is Eq. (5.19), which we rewrite as:





 ρ

 x

 α,β (x, t) =

1  Kα,β

 , 

(5.22)

 t β/α

 t β/α

and we know that the function  Kα,β(x)  is the inverse Fourier transform of the Mittag-Leffler function:

∞



 Kα,β(u) = 1

 e− iku E β(−| k| α)dk. 

(5.23)

2 π −∞
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In the particular case 0  < α <  2,  β = 1, the solution is





 ρ

 x

 α,  1 (x, t) =

1  Lα

 , 

(5.24)

 t  1 /α

 t  1 /α

where

∞



 Lα(u) = 1

 e− iku−| k| α dk

(5.25)

2 π −∞

is the Lévy distribution distribution already found in Eq. (2.99). 

The case  α = 2 and 0  < β <  1 corresponds to the solution:





 ρ

 x

2 ,β (x , t ) =

1 M β/ 2

 , 

(5.26)

2 tβ/ 2

 t β/ 2

expressed in terms of the M-Wright function, M ν, which, as we have seen before, is also referred to as the Mainardi function and plays an important role in studying

stochastic process. 

Finally, the case  α = 2 and  β = 1 gives the standard diffusion equation, and the Cauchy problem is solved by:

 ρ

1

2 ,  1 (x , t ) =

1

√  e− x 2 /( 4 t)

 t  1 / 2 2  π





= 1

 x

 g

 , 

(5.27)

 t  1 / 2

 t  1 / 2

where

 g (u) =

1

√  e− u 2 / 4 . 

(5.28)

2  π

In the general case, we have to solve the space-time fractional diffusion equation

written as [1, 7, 8]:

 R F

 β

 θ  D αρ(x, t) =  C  D  ρ(x, t), 

−∞  < x < ∞ , t ≥ 0 , 

(5.29)

 x

0

 t

where the real parameters are restricted as follows:

0  < α ≤ 2 , 

| θ| ≤ min  (α,  2 −  α),  0  < β ≤ 2 . 

(5.30)

The Green’s function may be expressed in terms of the H-function of Fox, starting

from its general Mellin–Barnes integral representation for  x >  0:

 γ + i∞



1

 (s/α)( 1 −  s/α)( 1 −  s) xs ds

 Kα,β(x) = 1

 . 

 αx  2 πi

 ([ (α −  θ)/ 2 α] s)( 1 − [ (α −  θ)/ 2 α] s)( 1 −  (β/α)s) γ − i∞

(5.31)
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The relevant cases below are obtained as particular cases of the above solution:

1. neutral diffusion:

0  < α =  β <  2, | θ| ≤ min  (α,  2 −  α); 

2. normal diffusion:

 α = 2,  β = 1, | θ| = 0; 

3. space-fractional diffusion:

0  < α <  2,  β = 1, | θ| ≤ min  (α,  2 −  α); 4. time-fractional diffusion:

 α = 2, 0  < β <  2, | θ| ≤ min = 0. 

Before analyzing the spatial and time fractional diffusion equation of distributed

order, we consider the fractional diffusion equation with a time dependence on the

diffusion coefficient. To do this, we follow the developments presented by Garra et

al. [9], which considers the following equation:

 ∂β

 ∂α

 ρ(x, t) =  ηt 2 η−1

 ρ(x, t), 

(5.32)

 ∂tβ

 ∂| x| α

with  β ∈  ( 0 ,  1], 0  < α <  2, 0  < η <  1, and the initial condition  ρ(x,  0 ) =  δ(x). 

Equation (5.32) has also been investigated elsewhere [10–12]. In order to obtain the solution of this equation, we may apply the Fourier transform, which yields

 ∂β  ρ(k,t) = − ηt 2 η−1| k| α ρ(k,t), 

(5.33)

 ∂tβ

subjected to the condition 

 ρ(k,  0 ) = 1. The previous equation can be solved in terms

of the generalized three-index Mittag-Leffler function, which was first introduced by Kilbas and Saigo [13–15], and is defined as

∞

 k−1

 (α( jm +  l) + 1 )

E α,m,l(z) = 1 +

 zk

 , z ∈ R , 

(5.34)

 (α( jm +  l + 1 ) + 1 )

 k=1

 j =0

where  α, m, l ∈ R such that  α, m >  0 and  α( jm +  l) = Z−. In fact, by using this function, as follows, it is possible to define the function





 f (t) = E β,  1+  γ

 λtβ+ γ

 β , γβ

∞



 k−1

 (β

=

 k

 j +  γ j +  γ + 1 )

1 +

 λtβ+ γ

 , 

(5.35)

 (β j +  γ j +  γ +  β + 1 )

 k=1

 j =0

which is a solution of the Cauchy problem

 ∂β f (t) =  λtγ f (t), 

(5.36)

 ∂tβ
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for  t ≥ 0 , β ∈  ( 0 ,  1] , γ > − β  and  f ( 0 ) = 1. Applications of this result can be found in Ref. [16]. Thus, the solution of Eq. (5.33) is given by Eq. (5.35), that is, ρ(k, t) = E β, 

− η| k| αtβ+2+ η−1  , 

(5.37)

1+ 2 η−1

 β ,  2 η−1

 β

and, consequently, the solution for Eq. (5.32) will be

∞







 ρ(x, t) = 1

 e− ikx  E

− η| k| αtβ+2+ η−1  dk. 

(5.38)

2 π

 β,  1+ 2 η−1

 β ,  2 η−1

 β

−∞

The space-time fractional diffusion equation may be generalized further by con-

sidering time fractional diffusion equations of distributed orders in general [17] and investigating the diffusive regimes which can be handled with them. These equations

may be formally written, for example, as

1



 ∂γ

 dγ p(γ )

 ρ(x, t) =  RF ρ(x, t), 

(5.39)

 ∂tγ

 θ  D αx

0

where  p(γ )  is a distribution function of  γ  defined such that

1



 dγ p(γ ) = 1 , 

(5.40)

0

and the operator considered is the Caputo’s one, here implemented as follows:

 ∂γ ρ(

 γ

 x, t) ≡  C  D { ρ(x, t)}

 ∂tγ

 t 0

 t

 t



 ρ(k)(

=

1

 x, t)

 dt

 , 

  (k −  γ )

 (t −  t) 1− γ+ k

 t 0

(5.41)

with 0  < k ≤ 1 and  ρ(k)(x, t)  representing, as before, the  k th derivative. Since Eq. (5.39) exhibits the presence of fractional time operator of distributed order, depending on the form of  p(γ ), it can account for several diffusive regimes in the system. Simple diffusive cases can be re-obtained by a suitable choice of  p(γ ). 

Some examples are the usual one, obtained for  p(γ ) =  Aδ(γ − 1 ), or the pure time-fractional case, obtained for  p(γ ) =  Bδ(γ −  γ ), and a very significant case obtained by assuming that  p(γ ) =  Aδ(γ − 1 ) +  Bδ(γ −  γ ), which represents a superposition of a normal and an anomalous diffusive regime, where  A  and  B  play the role of characteristic times:
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 ∂ρ(x, t)

 ∂γ ρ(x, t)

 ∂ 2 ρ(x, t)

 A

+  B

=  D

 , 

(5.42)

 ∂t

 ∂tγ

 ∂x 2

such that  A  should be dimensionless, while the dimension of  B  is  tγ −1. Indeed, a very special case is obtained as an equation of hyperbolic type , if we freely assume γ = 2, that is, by relaxing the range of the values of  γ ,  A = 1 and  B =  τ, where  τ

is a characteristic time related to the medium in which the particles are diffusing and

√

 c =

 D/τ  is the velocity of the bulk variations of density. This becomes the famous equation [18]:

 ∂ 2 ρ(

 ∂ρ(

 ∂ 2 ρ(

 τ

 x, t) +

 x, t) =

 x, t)

 D

 , 

(5.43)

 ∂t 2

 ∂t

 ∂x 2

proposed by Cattaneo in 1948, having a new term with respect to the usual diffusion

equation and changing the Fourier equation into a hyperbolic one, in order to account for a solution describing propagation of the density variations with a finite velocity. 

In this framework, due to the finite velocity propagation of the solution in a confined sample, one expects that a non-monotonic behavior of the density of particles at the

surface may be found for suitable values of the parameters entering the model [19]. 

We will deal with this important problem of the finite velocity propagation in the

next chapter (see Sect. 6.2.1). 

The fundamental solution of the fractional diffusion equation of distributed order

in time (intended to describe subdiffusion processes) has been discussed in detail by Mainardi and Pagnini [20], using a Mellin–Barnes integral representation. 

5.2

Generalized Space-Time Fractional Diffusion Equation

In this section, a generalization of the fractional diffusion equation combining effects of subdiffusion and Lévy flights is discussed. Use is made of a composite fractional

operator that combines Riemann–Liouville and Caputo ones to build a framework

in which more complex processes may be handled. The presentation is based on the

results of the work of Tomovski et al. [21] and is carried out here also to illustrate the applications of the mathematical tools discussed in the preceding chapters. 

We focus on the formal solutions of the problem of the diffusion equation con-

taining a composite time fractional operator, with and without a singular term, and

on the fractional moments obtained for each situation. 

 5.2.1

 Composite Time Fractional Operator

The starting point is the study of the following generalized space-time fractional

diffusion equation
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 μ,ν

 ∂α

0D

 ρ(

 ρ(

 t

 x, t) =  Kμ,α

 x, t), t >  0 , −∞  < x < ∞ , 

(5.44)

 ∂| x| α

where 0  < μ ≤ 1, 0  < ν ≤ 1, and 0  < α ≤ 2. The composite fractional operator is defined as







 μ,ν

 ν( 1− μ)

 d

 ( 1− ν)( 1− μ)

 c  D

 , 

 t

 f (t) =  c I t

 c  I

(5.45)

 dt

 t

 f (t)

in which

 t



 μ

 f (τ )

 c I t f (t ) =

1

 dτ, t > c,  (μ) >  0 , 

(5.46)

 (μ)

 (t −  τ) 1− μ

 c

is the Riemann–Liouville integral operator of order  μ >  0 already introduced in Eq. (4.65) and reproduced here for commodity. In Eq. (5.44),  Kμ,α  is the generalized diffusion coefficient whose dimensions are measured in units of m α/s μ. The solution of Eq. (5.44) has to satisfy the boundary conditions

 ρ(±∞ , t) = 0 , 

 t >  0 , 

(5.47)

and the initial condition:





 (



1− ν)( 1− μ)



0I

 ρ(

=

 t

 x, t) 

 g(x), −∞  < x < ∞ , 

(5.48)

 t=0

for a given  g(x). To solve the problem, we remember that the Laplace transform of the composite operator is as follows:





L{  μ,ν

 ( 1− ν)( 1− μ)



0D

 . 

 t

 f (t);  s} =  sμ L{  f (t);  s} −  sν(μ−1 )  0I t f (t) 

(5.49)

 t=0

On the other hand, the Fourier transform of the spatial operator was defined in

Eq. (4.125), that is, 





F

 dα

 f (x);  k = −| k| α F(k), k ∈ R . 

(5.50)

 d| x| α

Applying the Laplace transform and the Fourier transform to Eq. (5.44), we obtain R(k, s) =

 s− ν( 1− μ)



 g(k), 

(5.51)

 sμ + | k| α Kμ,α

where



 R(k, s) = F {L { ρ(x, t);  s} ;  k} and 

 g(k) = F { g(x);  k}  . 
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To go on further, we invoke Eq. (1.242), defining the Laplace transform of the Mittag-Leffler function, which reads:

∞







L  tβ−1E α,β(± atα);  s =

 e− s t t β−1E α,β(± atα)dt

0

=  sα− β ,  (s) > | a|1 /α, 

(5.52)

 sα ∓  a

and use it to find the inverse Laplace transform of Eq. (5.51). We thus obtain R(k, t) =  t− ( 1− ν)( 1− μ) E μ,  1− ( 1− ν)( 1− μ)(− Kμ,α| k| αtμ) g(k). 

(5.53)

If we now apply the inverse of the Fourier transform to Eq. (5.53), we obtain

∞



 ρ(x, t) = 1

 t − ( 1− ν)( 1− μ) E μ,  1− ( 1− ν)( 1− μ)(− Kμ,α| k| αtμ) g(k)e− ikx dk, (5.54)

2 π −∞

which is the formal solution of Eq. (5.44), subjected to the boundary conditions

(5.47) and the initial condition (5.48), for the parameters 0  < μ <  1, 0 ≤  ν ≤ 1, and 0  < α ≤ 2. The integral in Eq. (5.54) may be evaluated if we recognize that for the initial condition  g(x) =  δ(x), since



 g(k) = F { g(x);  k} = 1 , 

with the help of Eq. (5.53), Eq. (5.54) becomes ρ(x, t) = 1  t− ( 1− ν)( 1− μ)

 π∞









×



cos  kx  H1 ,  1  K

 ( 0 ,  1 )

 dk, 

(5.55)

1 ,  2

 μ,α| k| αtμ ( 0 ,  1 ),(( 1− ν)( 1− μ),μ) 0

which is indeed the inverse cosine Fourier transform of 

 R(k, t). This integral may

be expressed as [22]:

 ρ(x, t) = 1  t− ( 1− ν)( 1− μ)

 α| x|



|



×

 x|



 )

H2 ,  1

 ( 1 ,  1 α ),( 1− ( 1− ν)( 1− μ),μα),( 1 ,  12

 . 

3 ,  3



1 /α (

 )

 K

1 ,  1 ),( 1 ,  1

 μ,αtμ

 α ),( 1 ,  12

(5.56)
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A particular result can be obtained for  α = 2, which corresponds to the solution





|



 ρ(

 x|



 )

 x, t) = 1  t− ( 1− ν)( 1− μ) H1 ,  0 



 ( 1− ( 1− ν)( 1− μ),μ 2

 . 

(5.57)

2| x|

1 ,  1

1 / 2  ( 1 ,  1 )

 Kμ,  2 tμ

Other two important limits are the case corresponding to the Riemann–Liouville time

fractional derivative, obtained for  ν = 0 from the solution (5.56):





|



 ρ(

 x|



 )

 x, t) = 1  t− ( 1− μ)  H2 ,  1

 ( 1 ,  1 α ),(μ,μα),( 1 ,  12

 , 

(5.58)

 α|





 x|

3 ,  3

1 /α (

 )

 K

1 ,  1 ),( 1 ,  1

 μ,αtμ

 α ),( 1 ,  12

and the case of the Caputo time fractional derivative ( ν = 1), which reads





|



 ρ(

 x|



 )

 x, t) = 1 H2 ,  1

 ( 1 ,  1 α ),( 1 ,μα),( 1 ,  12

 . 

(5.59)

 α|





 x| 3 ,  3

1 /α (

 )

 K

1 ,  1 ),( 1 ,  1

 μ,αtμ

 α ),( 1 ,  12

If  μ =  ν = 1, 0  < α ≤ 2, we obtain just the solution of the diffusion equation with only space fractional derivative:





|



 ρ(

 x|



 )

 x, t) = 1 H1 ,  1

 ( 1 ,  1 α ),( 1 ,  12

 , 

(5.60)

 α|





 x| 2 ,  2

1 /α (

 )

 K

1 ,  1 ),( 1 ,  12

1 ,α t

which is Eq. (1.289) corresponding to a closed-form representation of a Lévy stable law. In addition, if we use  α = 2 in Eq. (5.60), then we obtain the solution of the classical diffusion equation





|



 x 2

 ρ(

 x|



 )

 x, t) = 1 H1 ,  0 

 ( 1 ,  12

=

1



 e  4 K 1 ,  2 t , 

(5.61)

2| x| 1 ,  1

 (

 K

1 ,  1 )

1 ,  2 t

4 π K 1 ,  2 t

which is the traditional Gaussian distribution. 

Useful results are obtained if we consider the fractional moments, defined as:

∞



| x| ξ = 2

 xξ ρ(x, t)dx, 

 ξ >  0 . 

(5.62)

0

For the solution corresponding to the initial condition with  g(x) =  δ(x), we obtain π ξ

| x| ξ = 2  t− ( 1− ν)( 1− μ)(K

2





 . 

 α

 μ,αtμ)ξ/α

 ( 1 +  ξ)  sin

   1 −  ( 1 −  ν)( 1 −  μ) +  μ

 π

 α ξ  sin  α ξ (5.63)

When  μ = 1, we have
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 π ξ

| x| ξ = 2  (K

2

 . 

(5.64)

 α

1 ,α t )ξ/α ( 1 +  ξ)  sin

 ( 1 +  ξ

 π

 α )  sin  α ξ

The case  ξ → 2 and  α → 2 yields

lim | x| ξ  =

2

 Kμ, 

 ξ→

2 t μ− ( 1− ν)( 1− μ). 

(5.65)

2

  [1 +  μ −  ( 1 −  ν)( 1 −  μ)]

Thus, if  ν = 0, we obtain

lim | x| ξ  =

2

 Kμ, 

 ξ→

2 t −1+ μ. 

(5.66)

2

 ( 2 μ)

If  ν = 1, we have

lim | x| ξ  =

1

 Kμ, 

 ξ→

2 t μ. 

(5.67)

2

 ( 1 +  μ)

Since 0  < μ <  1, the cases represented by (5.66) and (5.67) predict anomalous diffusion behavior. For  μ = 1, Eq. (5.64) yields the linear time dependence of the mean square displacement, that is, | x|2 = 2 K 1 ,  2 t. 

 5.2.2

 Fractional Diffusion Equation: Singular Term

It is possible to obtain analytical solutions also for the equation

 μ,ν

 ∂α

0D

 ρ(

 ρ(

 , 

 t

 x, t) =  Kμ,α

 x, t) +  δ(x)

 t − β

 t >  0 , −∞  < x < ∞ , 

 ∂| x| α

 ( 1 −  β)

(5.68)

where  β >  0 and the boundary conditions and the initial condition are again given by Eqs. (5.47) and (5.48), respectively. The procedure is the same as before. Applying the Laplace transform with respect to the variable  t  and the Fourier transform with respect to the variable  x, we obtain



 R(k, s) =

 s− ν( 1− μ)



 g(k) +

 sβ−1

 . 

(5.69)

 sμ + | k| α Kμ,α

 sμ + | k| α Kμ,α

In addition to Eq. (5.51), we now have the second term of the right-hand side because, from Eq. (1.70), we have







F  δ(

 t − β

 x) L

;  s ;  k =  sβ−1 . 

(5.70)

 ( 1 −  β)

Thus, the inverse Laplace transform of Eq. (5.69) yields
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 R(k, t) =  t− ( 1− ν)( 1− μ) E μ,  1− ( 1− ν)( 1− μ)(− Kμ,α| k| αtμ) g(k)

+  t− (β− μ) E μ,  1− (β− μ)(− Kμ,α| k| αtμ). 

(5.71)

Finally, the inverse Fourier transform may be obtained for the boundary conditions

and the initial condition, yielding

∞



 ρ(x, t) = 1

 t − ( 1− ν)( 1− μ) E μ,  1− ( 1− ν)( 1− μ)(− Kμ,α| k| αtμ) g(k)e− ikx dk

2 π −∞







+  t− (β− μ)



 )

H2 ,  1  μ

 ( 1 ,  1 α ),( 1− (β− μ),μα),( 1 ,  12  , α| x|

3 ,  3

 α (x, t) ( 1 ,  1 ),( 1 ,  1 α ),( 1 ,  1 ) 2

(5.72)

which is the formal solution of the problem for 0  < μ <  1, 0 ≤  ν ≤ 1, 0  < α ≤ 2, where we have introduced the quantity:

|

 μ

 x|

 α (x, t) = 

 . 

1 /α

 Kμ,αtμ

If we particularize for the case  g(x) =  δ(x), then Eq. (5.72) becomes ρ(



 )

 x, t) = 1  t− ( 1− ν)( 1− μ) H2 ,  1  μ

 ( 1 ,  1 α ),( 1− ( 1− ν)( 1− μ),μα),( 1 ,  12

 α| x|

3 ,  3

 α (x, t) ( 1 ,  1 ),( 1 ,  1 α ),( 1 ,  1 ) 2







+  t− (β− μ)



 )

H2 ,  1  μ

 ( 1 ,  1 α ),( 1− (β− μ),μα),( 1 ,  12  . 

(5.73)

 α| x|

3 ,  3

 α (x, t) ( 1 ,  1 ),( 1 ,  1 α ),( 1 ,  1 ) 2

Again, it is instructive to obtain the composite time fractional solution, with the usual spatial derivative of second order, that is,  α = 2. For this case, Eq. (5.73) yields ρ(



 )

 x, t) = 1  t− ( 1− ν)( 1− μ) H1 ,  0  μ(x, t)  ( 1− ( 1− ν)( 1− μ), μ 2

 , 

2| x|

1 ,  1

2

 ( 1 ,  1 )







+  t− (β− μ)



 )

H1 ,  0  μ(x, t)  ( 1− (β− μ), μ 2

 . 

(5.74)

2| x|

1 ,  1

2

 ( 1 ,  1 )

If, instead, we consider  g(x) = 0, the general solution Eq. (5.72) becomes ρ(



 )

 x, t) =  t− (β− μ)  H2 ,  1  μ

 ( 1 ,  1 α ),( 1− (β− μ),μα),( 1 ,  12  . 

(5.75)

 α| x|

3 ,  3

 α (x, t) ( 1 ,  1 ),( 1 ,  1 α ),( 1 ,  1 ) 2

Finally, the fractional moments, defined by Eq. (5.62), may be obtained for the solution Eq. (5.73), that is, when  g(x) =  δ(x)  as
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 π ξ

| x| ξ = 2  t− ( 1− ν)( 1− μ)(K

2



 α

 μ,αtμ)ξ/α

 ( 1 +  ξ)  sin

 ( 1 −  ( 1 −  ν)( 1 −  μ) +  μ

 π

 α ξ)  sin  α ξ



 π ξ

+ 2  t− (β− μ)(K

2

 . 

(5.76)

 α

 μ,αtμ)ξ/α

 ( 1 +  ξ)  sin

 ( 1 −  (β −  μ) +  μ

 π

 α ξ)  sin  α ξ

This summarizes the formal solutions obtained for the diffusion equation expressed

in terms of a composite time fractional operator and a fractional spatial derivative. 

This combined approach is very general and, as illustrated in a few cases, some

other useful particular results may be obtained by suitable choices for the boundary

conditions and other parameters [21]. 

5.3

Tempered Fractional Diffusion Equation

Now, we analyze an extension of the diffusion equation by incorporating, for com-

pleteness, a tempered fractional operator for the spatial variable. To do this, we follow the developments presented in Ref. [23]. Thus, we start by considering the following diffusion equation [23]:

 ∂β





 ρ(x, t) +  K

 ρ(x, t) = 0 , x ∈ R , t >  0 , 

(5.77)

 ∂

 β,α

−∞D α,λ

 t β

 x

for the fractional orders 0  < α ≤ 1 and 0  < β ≤ 1. The operator for the time variable is the Caputo derivative of order  β ∈  ( 0 ,  1 ). For the spatial variable, we consider the following tempered fractional derivative [24, 25]:

∞



 α

 f (x) −  f (x −  y)

−∞D α,λ f (x) =

 (α)  sin  απ

 e− λy  d y, 

(5.78)

 x

 π

 yα+1

0

where 0  < α <  1 and  λ ≥ 0 is the so-called damping parameter. Note that in the limit λ → 0 the classical left-sided Riemann–Liouville fractional derivative is obtained, that is, 

 x



d

 f (y)

−∞  Dα f (x) =

1

 x

 ( 1 −  α)  d x

 (x −  y)α  d y,  0  < α <  1 . 

(5.79)

−∞

For  α = 1, Eq. (5.78) yields the first order differential operator, that is, −∞D1 ,λ f (x) =

 x

 f  (x). Equation (5.78) can also be defined in the Riemann–Liouville sense as follows:
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 x



d

 eλy f (y)

−∞D α,λ f (x) =

 e− λx

 x

 ( 1 −  α)  d x

 (x −  y)α  d y −  λα f (x), 

(5.80)

−∞

with 0  < α <  1. The Fourier transform of the tempered fractional operator is given by









F −∞D α,λ f (x);  k =  (λ +  ik)α −  λα F(k),  0  < α ≤ 1 . 

(5.81)

 x

This relation can be conveniently derived based on representation (5.80) that can be also written in the form

d 



−∞D α,λ f (x) =  e− λx

 eλx ·  ( f ∗  g)(x) −  λa f (x)

 x

d x

=  (λ +  ∂x) ( f ∗  g)(x) −  λa f (x), 

(5.82)

where

 g(x) =  e− λx x− α

 θ(x) , 

 ( 1 −  α)

in which  θ(x)  is the Heaviside step function and ∗ denotes the convolution operator. 

Applying Fourier transform in Eq. (5.78) to tempered fractional derivative (5.82)

results in





F −∞D α,λ f (x);  k =  (λ +  ik)F(k)G(k) −  λa F(k)

 x





=  (λ +  ik)α −  λα F(k). 

(5.83)

Following Ref. [23], we consider Eq. (5.77) with  Kβ,α = 1 and  ρ(x, t) →  G(x, t), subject to the following initial and boundary conditions:





 G x,  0+ =  δ(x), 

lim  G(x, t) = 0 , 

(5.84)

| x|→∞

where  G(x, t)  denotes Green’s function of the Cauchy problem. Applying the Fourier transform to Eq. (5.77) we obtain the following initial value problem:

 ∂β









 G(k, t) +  (λ +  ik)α −  λα G(k, t) = 0 , G k,  0+ = 1

(5.85)

 ∂tβ

which has as solution





 G(k, t) = E β (λα −  (λ +  ik)α) tβ , 

(5.86)

where E β(z)  is the Mittag-Leffler function. It can be seen that  G(k = 0 , t) = 1, 

∞

which implies the correct normalization −∞  G(x, t) d x = 1. It can also be shown that  G(x, t)  is non-negative and, consequently, interpreted as a spatial probability density function. By means of the inverse Fourier transform, the following integral
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representations for the fundamental solution holds [23]:

⎧

⎫

⎨ ∞







⎬

 G(x, t) =  e− λx 

E

 λα −  rαe− iαπ tβ e− rx  d r

 π

⎩

 β

⎭  , 

(5.87)

0

for  α < β  and

⎧

⎫

∞



 α

⎨

⎬

 t e− λx





 G(x, t) =



E

 λα −  rβe− iβπ xα e− rt  d r , 

(5.88)

 β

 α

 x π

⎩

⎭

0

for  β > α. The case  β =  α  implies that

⎧

⎫

⎨ ∞



∞



 (λ

⎬

 t )αn





 G(x, t) =  e− λx  Im

E (n) − kαe− iαπ e− kx/t  d k , 

(5.89)

 πt

⎩

 n! 

 α

⎭

 n=0

0

where E (n)

 α (x)  is the  nt h  derivative of the Mittag-Leffler function. 

5.4

Fractional Diffusion Equation in Heterogeneous Media

We now focus our discussion on the fractional diffusion equation in heterogeneous

media in a  d-dimensional case [26]. We consider an extension of the diffusion equation which takes into account a fractional time operator and a spatial dependence on

the diffusion coefficient in the form

D (r) =  Dr− η, 

 η > −1 . 

(5.90)

The problem is formulated in such a way that we may consider different types of

fractional time derivatives in a single, unified approach. The fractional diffusion

equation to be investigated for the free case and in the presence of external forces

may be written as

 ∂ ρ(r,t) = F

 ∂

K {∇ · [D (r )∇  ρ(r, t )]} − FK {∇ · [F (r )ρ (r, t )]}  , (5.91)

 t

in which D (r)  is given by Eq. (5.90), where  D  is a generalized diffusion coefficient and  ρ(r, t)  is the distribution of probabilities related to the quantity of particles present in the bulk. Furthermore, F (r , t)  is an external force applied to the system, and is defined as





 kη

F (r , t) =

r −  kr , k ∈ R , 

(5.92)

 r  2+ η
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being connected with the potential





 k

 kη

 V (r) =

 r  2 −

 ( 1 −  r− η). 

2

 η

The second term of the potential is an extension of the logarithmic potential and

FK{· · · } is the fractional operator, defined as

 t



 ∂

FK{ ρ(x, t)} =

 dt  K (t −  t )ρ(x, t ), 

(5.93)

 ∂t  0

where K (t)  defines the operator to be used and, consequently, the type of memory effect to be considered, that is, the kernel that might present short- or long-tailed behavior. For instance, the case

K (t) ∝  tα−1 , 

0  < α <  1 , 

(5.94)

characterized asymptotically by a power-law behavior, corresponds to the well-

known Riemann–Liouville fractional differential operator. An exponential kernel

such as

K (t) ∝  e− at , 

 a ∈ R , 

(5.95)

may be related to a resetting process [27], as we have discussed in Sect. 3.3.4.1. 

Further possibilities for the kernel K (t)  have been recently employed; for instance, the kernel

K (t) ∝ E α (− atα) , 

with E α(z)  being the Mittag-Leffler function, may be related to a situation characterized by fractional time derivative of distributed order [27]. For a particular kernel K (t), we observe that the Riemann–Liouville fractional derivative presents a singularity at the origin ( t = 0), while other kernels may be non-singular at the origin. 

These different kernels K (t)  have been employed in the investigation of many problems in several contexts such as anomalous diffusion [28–30], reaction diffusion problems [31], viscoelasticity [32], auto-catalytic chemical system [33], and fading-out diffusivity [34], among others. 

We focus our attention here on the solutions of the previous fractional diffusion

equation. The idea is to analyze the behavior resulting from the spatial inhomo-

geneities produced by the diffusion coefficient, when external forces are present. 

Indeed, the influence of the external force on the behavior of the solutions is also analyzed and, in particular, it is shown that stationary solutions may be found, depending on the values of  η,  kη, and  k. 
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Before proceeding, we first establish the boundary conditions used to obtain the

solution and, after that, the particular cases to be analyzed. The boundary conditions used to solve Eq. (5.91) are

lim  ρ(r, t) = 0 and lim  ∂r ρ(r, t) = 0 , 

(5.96)

 r →∞

 r →0

which assume that the particles diffuse in a free space with radial symmetry. In this framework, we first investigate the solutions for Eq. (5.91) in the absence (free case) and, after that, in the presence of the external force introduced above. 

 5.4.1

 Free Case

By means of integral transforms, it is possible to obtain analytical solutions for

Eq. (5.91), when it is subjected to the boundary conditions (5.96). To do this, we use the eigenfunctions of the Sturm–Liouville problem related to the following partial

differential equation:





∇ ·  r− η∇ χ(r ) = − k 2 χ(r ). 

(5.97)

The solution for this equation obeying the boundary conditions

lim  χ(r, k) = 0 and lim  ∂r χ(r, k) = 0

(5.98)

 r →∞

 r →0


is given by





1  ( 2+ η)

 χ(

1

2 kr  2

 r, k) =  r ( 2− d+ η)

2

J ν

 , 

(5.99)

 ( 2 +  η)

where  ν =  d/( 2 +  η) − 1 and J ν(x)  is the Bessel function [28]. By using the eigenfunction defined by Eq. (5.99), it is possible to expand  ρ(r, t)  and to show that, for the free case, the solution for Eq. (5.91) can be written as follows:

∞



∞



 ρ(r, t) =

 dkχ(r, k)

 ρ(k, t)  and 

 ρ(k, t) = 2 k

 drr d−1 χ(r, k)ρ(r, t), 

2 +  η

0

0

(5.100)

with 

 ρ(k, t)  being determined by Eq. (5.91) and the initial condition  ρ(r,  0 ) =  ϕ(r). 

Substitution of Eq. (5.100) into Eq. (5.91) yields for ρ(k, t)  the following equation:

 ∂  ρ(k,t) = − k 2 D F

 ∂

K{

 ρ(k, t)} , 

(5.101)

 t

whose solution, in the Fourier–Laplace domain, may be given by
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 ϕ(

 ρ(

 k)

 k, s) =

 . 

(5.102)

 s +  sk 2  D K (s)

The solution in the time-domain depends on the choice of the kernel K (s), which is related to the fractional operator defined above by Eq. (5.93). 

In order to analyze different situations in a single approach, containing all the

particular cases mentioned before, we consider a kernel K (t)  such that its Laplace transform is

K (s) =

K



 , 

(5.103)

 sγ sβ +  α

which corresponds to a mixing of these kernels, where K is a normalization factor. 

In fact, the Riemann–Liouville fractional operator is recovered for  γ +  β <  1 with α = 0, the case corresponding to an exponential kernel is obtained for  γ = 0 with β = 1, and a Mittag-Leffler kernel is obtained for  γ = 1 −  β. Other values of the parameter  γ  and  β  leads to different kernels, but in order to the solution of Eq. (5.102)

be non-negative these parameters should be such that  α >  0, 0 ≤  γ ≤ 1, and 0  < β +  γ ≤ 1 [35]. 

To evaluate the influence of the kernel given by Eq. (5.103) on the spreading of the system, we may analyze the behavior of the second moment when Eq. (5.103) is considered in Eq. (5.102) by taking the initial condition

 δ(

 ϕ(

 r )

 r ) =

and  η = 0

 r d−1

into account. The result is





 r 2 = 2 d D K tγ+ β E β,  1+ γ+ β − αtβ , (5.104)

where E γ,β(x)  is the two-parameter Mittag-Leffler function, which, as we have discussed in Sect. 1.3.1, has as particular case the Mittag-Leffler function defined as E γ,  1 (x) = E γ (x). The asymptotic behavior obtained from Eq. (5.104) for long times is  r 2 ∼  tγ , since

E γ,β(− x) 

1





 x(β −  γ )

for  x  1, and, for short times, is  r 2 ∼  tγ + β (see Fig. 5.1). We observe a rich class of diffusive processes which may initially be characterized by a superdiffusion, then subdiffusion or a normal diffusion, depending on the values of the parameters

 γ  and  β. For long enough times, the behavior of the distribution is characterized by the parameter  γ ; it may exhibit a stationary state if  γ = 0, with  β = 1. This situation is observed in resetting processes [27], where the solution for long times is time independent and the diffusion equation may be written in terms of the integro-differential operators. 
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Fig. 5.1  R 2 =  r 2 /  2K Dd  versus  t  for different values of  γ  and  β, with  α = 1. The dashed–

dotted line corresponds to the case  γ = 1 / 2, with  β = 1 / 2. The dashed–line is the case  γ = 1 / 2, with  β = 1 / 3. The solid line is the case  γ = 0, with  β = 1 / 2. Straight lines work as eye guides for the asymptotic behavior. Modified with permission from Lenzi et al. [26]. © Copyright 2019 IOP

Publishing

When  η = 0, Eq. (5.91) in absence of external forces also admits a direct formulation in terms of random walks. To do this, following the developments of Sect. 3.3, 

we may consider the balance equation [30]:

 t





 q(r , t) =  δd(r )δ(t) +

 dt 

 ddr  ψ(r − r , t −  t )q(r , t ), (5.105)

0

V

which relates the probability density function  q(r , t)  of just having arrived at position r, at time  t, with the event of having just arrived at r, at time  t,  q(r , t ), where  ψ(r , t) is also a (kernel) probability density function. To avoid confusing the notation, only in
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this section we denote by  q(r , t)  the quantity already denoted by  η(r , t)  in Eq. (3.79). 

The first term of Eq. (5.105) denotes the initial condition of the random walk, here, for simplicity, chosen to be  δd(r ). Consequently, the probability density function ρ(r , t)  of being in r, at time  t, is given by

 t



 ρ(r , t) =

 dt  (t −  t )q(r , t), 

(5.106)

0

that is, it denotes the probability of arrival at that position just at time  t, and not having moved since them. The latter is the cumulative probability, defined as

 t



 (t) = 1 −

 dt  ω(t ), 

(5.107)

0

where  ω(t)  is the waiting time distribution related to the probability density function ψ(r , t)  in the same way as we have defined it in Sect. 3.3. 

After some calculations, we conclude that the waiting time distribution for this

case is given by

∞



 t



 t 3



 ω(t) = K (t) +

 (−1 )n

 dtn K (t −  tn) · · ·

 dt 2K (t 3 −  t 2 )

 n=1

0

0

 t 2



×

 dt 1K (t 2 −  t 1 ) K (t 1 ), 

(5.108)

0

with





K (t) = K tγ + β−1E β,δ − αtβ ,  0  < γ <  1 ,  0  < β <  1 . 

Before proceeding, we notice that Eq. (5.108) can be simplified further to

! 



" 

 ω(

 ( 0 ,  1 )

 t ) = K tδ−1H1 ,  1  αtβ 

1 ,  2

 ( 0 ,  1 ), ( 1 −  δ, β)

∞



! 



" 

 (−



+

K tδ)n

 (− n,  1 )

K tδ−1

H1 ,  1  αtβ 

 , 

(5.109)

  ( 1 +  n)  1 ,  2

 ( 0 ,  1 ), ( 1 −  ( 1 +  n)δ, β)

 n=1

where  δ =  γ +  β, and we have introduced the H-function of Fox, defined by Eq. (1.270), remembering its particular relation with the generalized Mittag-Leffler function, 

! 

" 

 ( 0 ,  1 )

E



 γ,β (− x) = H1 ,  1  x

 . 

1 ,  2

 ( 0 ,  1 ), ( 1 −  β, γ )
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Fig. 5.2  ω(t)  versus  t  for different values of  γ  and  β. The dashed–dotted line corresponds to γ = 1 / 3, with  β = 1 / 2. The dashed–line is the case  γ = 1 / 2, with  β = 0. The solid line is the case γ = 1 / 2, with  β = 1 / 3. The curves were drawn for K = 1 and  α = 1. Straight lines work as eye guide for the asymptotic behavior. Modified with permission from Lenzi et al. [26]. © Copyright 2019 IOP Publishing

Figure 5.2 illustrates the behavior of the waiting time distribution by taking different values of  γ  and  β  into account. It also shows that the asymptotic behavior is governed by the  γ  values, that is,  ω(t) ∼ 1 /t 1+ γ  for long times. After applying the inverse Laplace transform to Eq. (5.102), the solution for the diffusion equation with fractional operator defined by kernel (5.103) can be written as



 ρ(k, t) = 

 ϕ(k)

 (k, t), 

(5.110)

with 

 (k, t) = 

  1 (k, t) +  α

  2 (k, t), where
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∞













  1 (k, t) = E δ −K Dk 2 tδ +

 (− αtβ)n E n+1

 γ + β,β

−K Dk 2 tγ+ β

 n+1

 n=1

! 



" 

=

 ( 0 ,  1 )

H1 ,  1 K Dk 2 tδ 

1 ,  2

 ( 0 ,  1 ), ( 0 , δ)

∞



! 



" 

 (− α



+

 t β )n

 (− n,  1 )

H1 ,  1 K Dk 2 tδ 

(5.111)

 ( 1 +  n)  1 ,  2

 ( 0 ,  1 ), (− nβ, δ)

 n=1

and

∞













  2 (k, t) =  tβ E δ,  1+ β −K Dk 2 tγ+ β +  tβ

 (− αtβ)n E n+1

 δ, 

−K Dk 2 tγ+ β

1+ ( 1+ n)β

 n=1

! 



" 

=

 ( 0 ,  1 )

 t β  H1 ,  1 K Dk 2 tδ 

1 ,  2

 ( 0 ,  1 ), (− β, δ)

∞



! 



" 

 (− α



+

 t β )n

 (− n,  1 )

 tβ

H1 ,  1 K Dk 2 tδ 

 , 

(5.112)

 ( 1 +  n)  1 ,  2

 ( 0 ,  1 ), (− β −  nδ, δ)

 n=1

where

∞



! 

" 

 (δ)



 k

 xk

 ( 1 −  δ,  1 )

E δ



 γ,β (x) =

= 1H1 ,  1  x

(5.113)

 (γ k +  β) k! 

 δ  1 ,  2

 ( 0 ,  1 ), ( 1 −  β, γ )

 k=0

is the three parameter Mittag-Leffler function and it is also related to the  n th derivative of the generalized Mittag-Leffler function as follows [36]:

 (

E  n)

 γ,β (x) =  n! E n+1

 γ,β+ γ (x), 

 n ∈ N . 

(5.114)

 n

By using Eq. (5.100), the solution can be written as follows:

∞



∞



 ρ(r, t) = 2

 dr  r  d−1 ϕ(r )

 dkkχ(r , k)χ(r, k)

 (k, t)

2 +  η  0

0

∞



=

 dr  r  d−1 ϕ(r )G(r, r , t), 

(5.115)

0

with  G(r, r , t) =  G 1 (r, r , t) +  αG 2 (r, r , t), in which the Green’s function G(r, r , t)  is given by
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∞



 G(r, r , t) =

2

 dkkχ(r , k)χ(r, k) 1 (k, t)

2 +  η  0



∞



1

 (− α

= 2 +  η

 ( 2− d+ η)

 t )n

 rr  2

 h 11 (r, r, t) +

 h 12 (r, r , t), (5.116)

 r  2+ η

  ( 1 +  n)

 n=1

where

⎡









⎤

2+ ν ,  1 ; 2− ν ,  1

⎢  



2

2

 r

2+ η



−−;  ( 0 ,  1 )

⎥

 h

⎢  r



⎥

11 (r, r  , t ) = H1 ,  0 ,  1 ,  1 ,  1

2 , [0:1] ,  0 , [0:2] ⎣  ( 2+ η) 2K Dtδ 

−−; −−

⎦

 r  2+ η







 ν ,  1 ; − ν ,  1 ;  ( 0 ,  1 ), ( 0 , δ)

2

2

and

⎡









⎤

2+ ν ,  1 ; 2− ν ,  1

⎢  



2

2

 r

2+ η



−−;  (− n,  1 )

⎥

 h

⎢  r



⎥

12 (r, r  , t ) = H1 ,  0 ,  1 ,  1 ,  1

2 , [0:1] ,  0 , [0:2] ⎣  ( 2+ η) 2K Dtδ 

−−; −−

⎦  . 

 r  2+ η







 ν ,  1 ; − ν ,  1 ;  ( 0 ,  1 ), (− nβ, δ)

2

2

In a similar way, the Green’s function  G 2 (r, r , t)  may be written as

∞



 G 2 (r, r , t) =

2

 dkkχ(r , k)χ(r, k) 2 (k, t)

2 +  η  0







∞



 n

1

− αtβ

= 2 +  η

 ( 2− d+ η)

 t β rr  2

 h 21 (r, r , t) +

 h 22 (r, r , t), 

 r  2+ η

  ( 1 +  n)

 n=1

(5.117)

where

⎡









⎤

2+ ν ,  1 ; 2− ν ,  1

⎢  



2

2

 r

2+ η



−−;  ( 0 ,  1 )

⎥

 h

⎢  r



⎥

21 (r, r  , t ) = H1 ,  0 ,  1 ,  1 ,  1

2 , [0:1] ,  0 , [0:2] ⎣  ( 2+ η) 2K Dtδ 

−−; −−

⎦

 r  2+ η







 ν ,  1 ; − ν ,  1 ;  ( 0 ,  1 ), (− β, δ)

2

2

and

⎡









⎤

2+ ν ,  1 ; 2− ν ,  1

⎢  



2

2

 r

2+ η



−−;  (− n,  1 )

⎥

 h

⎢  r



⎥

22 (r, r  , t ) = H1 ,  0 ,  1 ,  1 ,  1

2 , [0:1] ,  0 , [0:2] ⎣  ( 2+ η) 2K Dtδ 

−−; −−

⎦  . 

 r  2+ η







 ν ,  1 ; − ν ,  1 ;  ( 0 ,  1 ), (− β −  nδ, δ) 2

2
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In the preceding expressions, we have introduced the function

⎡ 

⎤

 (ε 1 , ω 1 ), . . . , (εE, ωE)

⎢ 

 x   (a

⎥

H L,M,M 1 ,N,N 1

⎢  1 , α 1 ), . . . , (aA, αA);  (c 1 , γ 1 ), . . . , (cC, γC) ⎥

 E , [ A: C] ,F, [ B,D] ⎣  y 

 (ξ

⎦  , (5.118)

1 ,  1 ), . . . , (ξF , F )

 (b 1 , β 1 ), . . . , (bB, βB);  (d 1 , δ 1 ), . . . , (dC, δD) which is the generalized H-function of Fox [37, 38] (see Fig. 5.3). From this general solution it is possible to recover some particular cases, which can be related to different fractional differential operators. One of them, for  β = 0 and  α = 0, corresponds to using the Riemann–Liouville fractional operator. In this case, the previous Green’s function can be simplified, yielding

1 ( 2− d+ η)

 G(r, r , t) = 2 +  η rr 2

 h(r, r , t), 

(5.119)

 r  2+ η

in which

⎡









⎤

2+ ν ,  1 ; 2− ν ,  1

⎢  



2

2

 r

2+ η



−−;  ( 0 ,  1 )

⎥

 h(r, r , t) = H1 ,  0 ,  1 ,  1 ,  1

⎢  r



⎥

2 , [0:1] ,  0 , [0:2]⎣  ( 2+ η) 2K Dtδ 

−−; −−

⎦  . 

 r  2+ η







 ν ,  1 ; − ν ,  1 ;  ( 0 ,  1 ), ( 0 , δ)

2

2

For the case corresponding to an exponential kernel, that is, K (t) ∝  e− αt , which implies considering  γ = 0 and  β = 1, we obtain for the Green’s function: t



 G(r, r , t) =  G usual (r, r , t)e− αt +  α

 dt  e− αt  G usual (r, r , t )dt , (5.120)

0

with



! 

" 

1  (



2+ η− d) −  r 2+ η+ r 2+ η

2

1  ( 2+ η)

 G

2

 (

2

usual (r, r  , t ) =

1

 rr 

 e

2+ η) 2  D K t  I ν

 rr 

 , 

2 D K t

 ( 2 +  η) 2 D K t

(5.121)

where I ν(z)  is the Bessel function of modified argument [28]. Equation (5.121)

corresponds to the Green’s function for the standard diffusion equation, when a

spatial dependence on the diffusion coefficient is considered. Equation (5.120) has a stationary solution, in contrast to the first and second cases. It is given by

⎧ 







1

 α  

⎨

 ( 2+ η)

 ( 2+ η)

1  (

I

 a r  2

K

 a r  12

 r < r , 

2+ η− d)

 ν

 ν

 G(r, r , t) =

 rr  2









 , 

 D K

⎩

1

I

 ( 2+ η)

 ( 2+ η)

 ν a r  12

K ν a r  2

 r   < r

(5.122)
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Fig. 5.3  ρ(r, t)  versus  r  for different times with  γ =  β = 1 / 2, for K = 1,  D = 1, and  α = 1. The solid– and dashed–lines correspond, respectively, to  t = 0 .  1 and  t = 1. The dashed–dotted line corresponds to  t = 2. Modified with permission from Lenzi et al. [26]. © Copyright 2019 IOP

Publishing

in which

)  α

 a =

2

 . 

2 +  η

 D K

The asymptotic behavior for  r → ∞ is

1  ( 2+ η)

 ( 2+ η)

 G(r, r , t) ∼  (rr )  1  ( 2+ η−2 d)

2

− r 12

 )

4

 e− a (r

 , 

(5.123)

with  r   < r, which for  η = 0 and  d = 1 essentially recovers the one dimensional result [27]. 
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 5.4.2

 External Force

To proceed further, we analyze the influence of the external force on the spreading

of the system. We start our discussion by considering the external force applied to

the system, given by Eq. (5.92). The corresponding fractional diffusion equation to be considered now is



! 



" 

 ∂







 ρ(r , t) = F ∇ ·  Dr− η∇ ρ(r , t) + F

∇ ·

 kr −  kη r  ρ(r , t)

 . 

 ∂

K

K

 t

 r  2+ η

(5.124)

This differential equation has a stationary solution for the normal case and, also, for the Riemann–Liouville fractional derivative. For these cases, it is given by

 ρ(

 kη

r , t) ∝  r D e−  k

2+ η r  2+ η . 

The time-dependent solution, by taking the previous boundary conditions and the

initial condition  ρ(r,  0 ) =  ϕ(r)  into account, is

! 

"  ξ

 ρ(

 k

 k

 kη

 r, t) =

 r D

 ( 2 +  η)D

 D

∞



∞

 (

×

1 +  n)

 e−  k

2+ η r  2+ η

 drr d−1 ϕ(r)

 p

  (

 n (r ) pn (r )en (t ), 

1 +  n +  ξ )

0

 n=0

(5.125)

with









 en(t) = E δ − ( 2 +  η)nk K tγ + β +  αtβ E δ,  1+ β − ( 2 +  η)nk K tδ

∞

 (− α







+

 t β )n

 (

E  n)

− ( 2 +  η)nk K tδ

  ( 1 +  n)

 δ,  1− nγ

 n=1





+  α

 (

 t β  E  n)

 δ, 

− ( 2 +  η)nk K tδ . 

(5.126)

1+ β− nγ

where





 k

 (d D +  kη)

 pn(r) = L ξ

 r  2+ η

and  ξ =

 , 

 n

2 +  η

[ ( 2 +  η)D] − 1

with L α (x)  denoting the associated Laguerre polynomials. The behavior predicted n

by Eq. (5.125) is illustrated in Fig. 5.4 for different values of  η  and  kη. For  η = 0 and the initial condition  ϕ(r) =  δ(r)/rd−1, the second moment is
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Fig. 5.4  ρ(r, t)  versus  r  for

different values of  η  and  kη

and K k = 1,  D = 1, 

 γ =  β = 1 / 2,  kη = 1, 

 r  = 1, and  α = 1. (a)

Considers  kη = 0 and (b)

shows the behavior for

 kη = 0. Modified with

permission from Lenzi et al. 

[26]. © Copyright 2019 IOP

Publishing

*





+









∞

−

 n

2 k K tδ







 (

 r  2 = 2K  Dd +  k

 n)

 η tδ

E β,  1+ δ − αtβ +

E

− αtβ

 , 

  ( 1 +  n) β,  1+ δ+ nγ

 n=1

(5.127)

whose behavior is depicted in Fig. 5.5. For  k = 0, Eq. (5.127) reduces to Eq. (5.104), 

which was obtained for the free case. Thus, depending on the choice of the param-

eters present in the diffusion equation, different diffusive behaviors can be found, 

including anomalous diffusion processes. 

5.5

Heterogeneous Media and Fractional Spatial Operator

Let us extend the results presented in the previous section by generalizing the defi-

nition of the fractional spatial derivative. To do this, we also extend the definition of the Fourier transform as follows:
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Fig. 5.5  R 2 =  r 2 /  2K  Dd +  kη , given by Eq. (5.127), versus  t  for different values of  γ  and  β, k = 1,  α = 1, and K = 1. The dotted–line is the case  γ = 1 / 5,  β = 1 / 2. The solid–line is the case γ =  β = 1 / 2. The dashed–line is the case  γ = 1 / 2 and  β = 1 / 3. We have also added straight lines as a guide to the behavior of the second moment, for two of them, for short times. For long times, the solution has a stationary behavior. Modified with permission from Lenzi et al. [26]. © Copyright 2019 IOP Publishing

∞



F d,η { ρ(r, t);  k} =

 drr d−1 χη(r, k)ρ(r, t) = 

 ρ(k, t), 

(5.128)

0

∞



F −1

 dkkd−1 χ

 d,η { ρ(k, t );  r } =

 η(r, k)

 ρ(k, t) =  ρ(r, t). 

(5.129)

0

Note that Eqs. (5.128) and (5.129) correspond to the integral transform given in Eq. (5.100) written in a symmetric form in terms of
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 χ

 (

2

2− d

 ( 2+ η)

 η(r, k) =  (kr )  12

 f + η)  J ν

 (kr) 12

 , 

(5.130)

 η

2 +  η

with  νη =  d/( 2 +  η) − 1 and  d  represents the dimension of the system which may be noninteger. By using this definition, we extend Eq. (5.50) defining an operator in terms of Eqs. (5.128) and (5.129) as follows: F d,η ∇ μηρ(r, t);  k ≡ − kμ+ η

 ρ(k, t). 

(5.131)

This extension of the spatial operator to a  d-dimensional space involves a mixing of two important features of the physical system being described. One of them is related to the (long-tailed) Lévy distributions, labeled by the parameter  μ  that accounts for the order of the fractional derivative; the other one is related to the spatial heterogeneity of the media, labeled by the parameter  η  in the present case. The fractional case of order  μ  is obtained when  η = 0 and the normal diffusive case is obtained when μ = 2 and  η = 0. 

We analyze now the solutions of a space-time fractional diffusion when the spa-

tial operator given by Eq. (5.131) is considered. The equation to be solved is the following:

 ∂β ρ(r,t) =  D∇ μ

 ∂tβ

 η ρ(r, t), 

(5.132)

for an arbitrary initial condition. Equation (5.132) unifies Eqs. (5.3) and (5.91) and brings the possibility of considering heterogeneity and Lévy distributions in the same approach for investigation of a stochastic process. By applying the integral transform given by Eqs. (5.128) and (5.129) to Eq. (5.132), we obtain

 ∂β  ρ(k,t) = − Dkμ+ η ρ(k,t), 

(5.133)

 ∂tβ

which implies that







 ρ(k, t) = 

 ρ(k,  0 ) E β − Dkμ+ ηtβ , 

(5.134)

where E (z)  is the Mittag-Leffler function. After applying the inverse integral transform to Eq. (5.134), we obtain

∞



 ρ(r, t) =  dξξd−1 ρ(ξ,  0 )

0

∞







×  dkkd−1 χη(r, k)χη(ξ, k) E β − Dkμ+ ηtβ . 

(5.135)

0

Equation (5.135) may be written in terms of a generalized H-function of Fox as follows:

5.5 Heterogeneous Media and Fractional Spatial Operator

219

∞



 ρ(r, t) =

 dξξ d−1 G(r, ξ, t), 

(5.136)

0

with

∞







 G(r, ξ, t) =

 dkkd−1 χη(r, k)χη(ξ, k) E β − Dkμ+ ηtβ

(5.137)

0

 (

=

2 +  η) 2

 (rξ) 1 ( 2− d+ η)

2

 (μ +  η)r 2+ η⎡











⎤

2+ νη ,  1 ; 2− νη ,  1

⎢ 



 ξ  2+ η 

2

2

⎥

×

⎢



−−;  (

⎥

H1 ,  0 ,  1 ,  1 ,  1

⎢  r



0 ,  2+ η

 μ+ η )

⎥

2 , [0:1] ,  0 , [0:2] ⎣  β  2+ η

 Dt μ+ η



−−; −−

⎦

 r  2+ η

 ν  



 η ,  1 ; − νη ,  1 ;  ( 0 ,  2+ η

2

2

 μ+ η ), ( 0 , β  2+ η

 μ+ η )

2+ η

and  D =  ( 2 +  η) 2  D μ+ η . Figures 5.6 and 5.7 exhibit three instantaneous of the spatial distribution predicted by Eq. (5.135) for different values of the parameters  β,  η, and μ  with the initial condition  ρ(r,  0 ) =  δ(r)/rd−1. The solution for this particular case is

 ρ(r, t) =

2 +  η





(5.138)

 (μ +  η) df rdf

2+ η

⎡









⎤



1 ,  1

 ,  1 , β

×

⎢

 r

 μ+ η

 μ+ η

H2 ,  1







⎦  . 

2 ,  3 ⎣ 

1   df

 (

 μ+ η 

 ,  1 ,  1

 ,  1 ,  1

2 +  η)  2 (μ+ η)

2+ η

 Dμ,ηtβ

2+ η , 

1

2+ η

 μ+ η

2+ η

In Fig. 5.6a the focus lies on the role of the heterogeneity played by  η; in Fig. 5.1b

the focus is on the order of the spatial derivative  μ. In both case, we observe a long-tailed behavior which is more conspicuous because the order of the spatial derivative is high,  μ = 3 / 2, and it is also enhanced by changing the values of  η  as a measure of the importance of the heterogeneity. 

In Fig. 5.7a the focus lies on the role of the fractional coefficient  β  entering the time-derivative. The distributions exhibit again a long-tailed behavior with a large

width. In Fig. 5.7b the order of the time-derivative is fixed,  β = 5 / 6, and the focus lies on the order of the spatial derivative  μ. In both cases, we observe a long-tailed behavior which is more conspicuous because the order of the spatial derivative is

high,  μ = 3 / 2, and it is also enhanced by changing the values of  η  as a measure of the importance of the heterogeneity. 
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Fig. 5.6  ρ(r, t)  versus  r  for different values of  η  and  μ, when  β = 1: (a)  μ = 3 / 2 and (b)  η = 1. 

The curves were drawn for  d = 3 and  Kμηtμ+ η = 1, in arbitrary units We remark that the problem is formally solved and particular situations may

be tackled according to the initial and boundary conditions used to describe the

stochastic process. The solution given by Eq. (5.135) may be used to modeling sub-, normal or superdiffusion processes, depending on the choice of the parameters  β,  η, and  μ. 

5.6

Time Derivative Operators: A Comparison

In this section, we discuss the use of new different time derivative operators, as the one of Caputo–Fabrizio and Atangana–Baleanu, which, differently from the well-known

Riemann–Liouville operator, are defined by non-singular memory kernels aiming at

a generalization of the usual diffusion equation. By analyzing the corresponding frac-
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Fig. 5.7 (a)  ρ(r, t)  versus  r  for different values of  β, with  μ = 3 / 2,  η = 1, and  d = 3 / 2 for Kμ,ηtμ+ η = 1, in arbitrary units. (b) The same for different times, with  β = 5 / 6,  μ = 3 / 2, and 1

 η = 1, when  d = 3 / 2 and  t =  t /K μ+ η

 μ,η , in arbitrary units

tional diffusion equations within the continuous-time random walk framework, we

obtain waiting time distributions characterized by exponential, stretched exponen-

tial, and power-law functions, as well as a crossover between two behaviors. From

the mean square displacement, we found crossovers between usual and confined

diffusion, and between usual and subdiffusion [27]. 

Recently, researchers have made and promoted remarkable progress toward

improving experimental techniques for investigating diffusive processes, mainly

illustrated by the developments in the single-particle tracking technique [39–42]. 

Such improvements yield novel insights into transport properties of biological sys-

tems [43–45] and nanomaterials [46–48], where the high-resolution of the experiments has found different diffusive behaviors depending on the time scale. In this

context, an important question is whether other forms of the differential opera-

tors (replacing the Riemann–Liouville one) such as those recently-proposed with
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non-singular kernels [49–54] are suitable to describe the aforementioned situations. 

To answer to this question, we investigate an one-dimensional diffusive process

described by the diffusion equation





 ∂

 ∂ 2

 ρ(x, t) =  D F  α

 ρ(x, t) , 

(5.139)

 ∂t

 t

 ∂x 2

where  D  denotes here a generalized diffusion coefficient. This equation is also subjected to the free diffusion boundary conditions  ρ(±∞ , t) = 0 and to the initial condition  ρ(x,  0 ) =  ϕ(x). The operator in Eq. (5.139) is defined as t



 ∂

F  α { ρ(x, t)} =

 ρ(x, t ) K (t −  t )dt , 

(5.140)

 t

 ∂t  0

in order to consider situations with singular and non-singular kernels in a unified

way. It is worth noting that K (t) =  δ(t)  recovers the usual diffusion equation. 

A diffusive model represented by Eqs. (5.139) and (5.140) has been recently called as a nonlocal structural derivative model and has been applied to describe ultraslow

diffusion in solids [55]. In this perspective, the operator F  α  defined by means of t

Eq. (5.140) is called nonlocal structural derivative, and K (t)  becomes the structural function in the convolution, which can quantify the memory and the long-range

correlation in the diffusion process. 

For those processes in which the mean square displacement is a stretched loga-

rithmic function, we have

 x 2 (t) ∼  ( ln  tα)λ, 

where  λ  is a growth rate, that is, a characteristic exponent of diffusion velocity, it was shown that [56]

 λα

K (t) =

 ( ln  tα)λ−1 . 

 t

Similarly, when







 λ

 x 2 (t) ∼ E−1

 α (t)

 , 

in which E−1

 α (t)  is the inverse of the Mittag-Leffler function, we obtain





! 

"−1

 λ−1  d E α(t)

K (t) =  λ  E−1

 α (t)

 . 

 dt

To extend the approach for comparative purposes, we consider three different

forms for the kernel K (t). The first one is the power-law:

K (t) =  tα−1  , 

(5.141)

  (α)
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which corresponds to the well-known Riemann–Liouville fractional operator [57]

for 0  < α <  1. The second one is an exponential





 α t

K (t) =  b  exp −

 , b ∈ R , 

(5.142)

1 −  α

which corresponds to the operator of Caputo–Fabrizio [34, 49, 58]. The ratio  α/( 1 −

 α)  maps the time from the range [0 , ∞] to the range [0 ,  1] [49, 58]. 

Finally, the third one is





 α tα

K (t) =  b  E α −

 , 

(5.143)

1 −  α

where E α(. . . )  is the Mittag-Leffler function. This kernel corresponds to the operator of Atangana–Baleanu [53]. Further possibilities for the kernel K (t)  are discussed by Gómez-Aguilar et al. [51]. We observe that the Riemann–Liouville operator has a singularity at the origin ( t = 0), while the recently-proposed Caputo–Fabrizio and Atangana–Baleanu are non-singular operators [49–54]. In the previous definitions, the parameter  b  is a normalization constant and  α  is the fractional order exponent. 

Our main goal here is just to verify if these proposed “different” operators modify

the fractional diffusion equation and what are the effect of these operators on the

underlying diffusive properties of a system modeled by this equation, without enter-

ing the details of their rigorous mathematical foundations (see, for example, Refs. 

[59–62]). 

 5.6.1

 Diffusion and Time Derivative Operators

We start by noticing that the solution of the fractional diffusion equation (5.139) in the Fourier–Laplace space is





 ϕ(

 ρ(

 k)

 k, s) =

 , 

(5.144)

 s +  s D K (s)k 2

where 

 ρ(k, s)  is the Fourier–Laplace transformation of the probability distribution ρ(x, t). This result can be related to different situations depending on the transformed kernel K (s). 

Within the continuous-time random walk formalism and by following the works

of Meztler and Klafter [29], we can show that the waiting time  ω(t)  and the jump λ(x)  probability distribution associated with Eq. (5.139) are (in the Fourier–Laplace space)

 ω(s) = K (s)/τ

(5.145)

1 + K (s)/τ
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and

 λ(k) = 1 −  k 2 Dτ  and  λ(x) ∼  e− x 2 /( 2 Dτ) 2 , (5.146)

where  τ  is a characteristic waiting time of the underlying continuous-time random walk. We observe that the jump probability distribution is characterized by a Gaussian asymptotic behavior and thus has a finite characteristic jump length, regardless of

the choice for the kernel K (t). On the other hand, the inverse Laplace transform of the waiting time distribution is given by

 t



∞



 t

 n 

 ω(t) = 1

 dt  K (t ) +

− 1

 dt

 τ

 τ

 n  K (t −  tn ) · · ·

0

 n=1

0

 t 4



 t 2



×

 dt 3K (t 4 −  t 3 )

 dt 1K (t 2 −  t 1 ) K (t 1 ), 

(5.147)

0

0

yielding different situations that depend on K (t). The choice K (t) =  δ(t)  leads to usual diffusion and an exponential distribution for the waiting times

 ω(t) = 1  e− t/τ . 

(5.148)

 τ

For the fractional operator of Riemann–Liouville, we find





 ω(t) = 1  tα−1E

− 1  tα , 

(5.149)

 τ

 α,α

 τ

where E α,α(z)  is the generalized Mittag-Leffler function, defined in Eq. (1.227), 

whose asymptotic behavior is described by a power-law,  ω(t) ∼ 1 /t 1+ α  for  t → ∞. 

For the Atangana–Baleanu operator, whose kernel is given by Eq. (5.143), the waiting time distribution is given by

∞



 ξ

 ηγ

 ω(

 b γ

 e− ηb( 1− α)t/τ

 t ) =

sin  (πγ )

 dη

 , (5.150)

 πτ

 ( 1 −  η) 2 + 2 ξ ( 1 −  η) ηγ  cos  (πγ ) +  η 2 γ

0

where  γ = 1 −  α  and  ξ =  αb/τ . This expression is such that for short times we have a stretched exponential, that is, 





! 

" 

 α

 α

 ω(

 t α

 t α

 t ) ∼ E α −

∼ exp −

 , 

(5.151)

1 −  α

 ( 1 −  α) (α)
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Fig. 5.8 Changes in the waiting time distribution  ω(t)  caused by the different forms of the kernel K (t)  defining the fractional operator of Eq. (5.140) for  τ = 1 and  α = 1 / 2. The different curves correspond the  ω(t)  when choosing the kernels of Riemann–Liouville (Eq. 5.141), Atangana–Baleanu (Eq. 5.143), and the usual (Brownian motion) case [K (t) =  δ(t)]. We note that the asymptotic behavior of  ω(t)  is a power-law for the kernels of Riemann–Liouville and Atangana–Baleanu, that is,  ω(t) ∼ 1 /t 1+ α. In the usual case, we have an exponential behavior. Modified from Tateishi et al. [27]. Copyright © 2017 Tateishi, Ribeiro and Lenzi. Open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)

while for long times we have the same power-law behavior of the Riemann–

Liouville operator. Thus, the Atangana–Baleanu operator yields a crossover between

a stretched exponential and a power-law distribution. 

In the case of the Caputo–Fabrizio operator, the connection with the continuous-

time random walk is more complex and not compatible with its standard interpreta-

tion. As we shall discuss later on, the diffusion equation associated with this operator is connected to a diffusive process with stochastic resetting [63, 64], where the waiting time distribution is exponential. 

Figure 5.8 depicts the behavior of the waiting time distribution  ω(t)  for the different kernels previously-discussed. For long times, we confirm that the operator of

Riemann–Liouville and the derivative of Atangana–Baleanu yield the same power-

law decay for  ω(t). We further note that the Atangana–Baleanu derivative yields a non-divergent  ω(t), an interesting feature that is not observed for the singular kernel of Riemann–Liouville. 

We now focus on finding the formal solutions for the diffusion equation (5.139)

when considering the three different operators. These solutions are obtained by per-

forming the inverse of Fourier and Laplace transforms of the 

 ρ(k, s)  expressed in

Eq. (5.144), where the Laplace transform of the kernel K (t)  appears. In the well-known case of the Riemann–Liouville fractional operator [29], we have K (s) =  s− α

(5.152)

and consequently
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∞



 ρ(x, t) =

 d x G(x −  x , t)ϕ(x ), 

(5.153)

−∞

where the Green’s function is

! 

" 

|



 x|



 )

 G(x, t) = 1 H1 ,  0 √

 ( 1 ,α 2

 , 

(5.154)

2| x| 1 ,  1

 ( 1 ,  1 )

 D t α

in which the H-function of Fox is present again. Having found the probability dis-

tribution, we can show that the mean square displacement is

, 

-

 (x) 2 =  (x −  x ) 2 = 2 D tα , 

(5.155)

 ( 1 +  α)

which corresponds to the typical case of anomalous diffusion, where  α <  1 represents subdiffusion and  α → 1 recovers the usual diffusion. The time-dependent behavior of a typical probability distribution  ρ(x, t) (with  α = 1 / 2) is shown in

Fig. 5.9a. We observe that the Riemann–Liouville operator leads to a tent-shaped distribution, whose tails are longer than the Gaussian distribution of the usual diffusion (Fig. 5.9d). Figure 5.10 shows the corresponding behavior for mean square displacement of Eq. (5.155), which is a power-law function of the time  t  with an exponent  α. For the Caputo–Fabrizio operator, the Laplace transform of the kernel in Eq. (5.143) is

K (s) =

 b



 , 

(5.156)

 s +  α

1− α

which, when substituted into Eq. (5.144), yields







 s +  α



 ϕ(k)

 ρ(k, s) =

1− α



 . 

(5.157)

 s s +  α

1− α +  Dbk 2

By performing the inverse Fourier and Laplace transforms, we have

∞



 t



∞



 α

 ρ(x, t) =

 d x G(x −  x , t)ϕ(x ) +

 dt 

 d x G(x −  x , t )ϕ(x ), 

1 −  α

−∞

0

−∞

(5.158)

where the Green’s function is

 G(x, t) =

 e−  αt

1− α

√

 e−  x 2

4 Dbt , 

(5.159)

4 π Dbt

A typical shape of this distribution is shown in Fig. 5.9b. We observe that this distribution is very similar to a Gaussian for short times, and exhibits a tent-shape for long
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Fig. 5.9 Changes in the profile of probability distribution  ρ(x, t)  caused by the different time operators, for  ϕ(x) =  δ(x),  α = 1 / 2, and  D b = 1. The plots show a typical shape of  ρ(x, t)  for different values of  t  when considering the operator of Riemann–Liouville (panel a), the Caputo–

Fabrizio derivative (panel b), the Atangana–Baleanu derivative (panel c), and the usual case (panel d). The dashed line in panel (b) indicates the stationary solution in the Caputo–Fabrizio case (Eq. 5.160). Modified from Tateishi et al. [27]. Copyright © 2017 Tateishi, Ribeiro and Lenzi. 

Open-access article distributed under the terms of the Creative Commons Attribution License (CC

BY)

times. However, differently from the distribution obtained for the Riemann–Liouville

operator [Eqs. (5.153) and (5.154)], the distribution obtained from Eqs. (5.158) and

(5.159) displays a stationary behavior for  t → ∞, that is, 

∞



 ρ(x, t → ∞ ) ∼

 d x ϕ(x )e−  α| x− x|

 ( 1− α)D b , 

(5.160)

−∞

a result that corresponds to confined diffusion. Figure 5.9b also shows this stationary solution (dashed line)—we observe that the shape of  ρ(x, t)  is practically constant for  t  5 in that case. This behavior also appears in the mean square displacement (x) 2 = 2 D b ( 1 −  α)  1 −  e−  αt

1− α

 , 

(5.161)

 α

which behaves linearly in time for short times and saturates in 2 D b ( 1 −  α)/α  for long times. Figure 5.10 illustrates this crossover, a common feature of systems where diffusion is confined or hindered [44, 65]. The same crossover between usual and
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Fig. 5.10 Changes in the evolving behavior of the mean square displacement  (x) 2 caused by the different time operators, for  α = 1 / 2 and  D b = 1. The curves show  (x) 2 versus  t  when considering the operator of Riemann–Liouville (Eq. 5.155), the Caputo–Fabrizio derivative (Eq. 5.161), the Atangana–Baleanu derivative (Eq. 5.172), and the usual case [ (x) 2 ∝  t]. The Atangana–Baleanu derivative shows a crossover between normal (for short times) and subdiffusion (for long time). 

In the Caputo–Fabrizio case, the diffusion is normal for short times and saturates for long times. 

Modified from Tateishi et al. [27]. Copyright © 2017 Tateishi, Ribeiro and Lenzi. Open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) confined diffusion is observed in simulations of diffusion with immobile obstacles

or obstacles moving according to an Ornstein-Uhlenbeck process [66, 67]. 

An intriguing feature of the diffusion equation with the Caputo–Fabrizio operator

is that it can be related to a diffusion with stochastic resetting [68]. Indeed, we find out that the diffusion equation (5.139) with the kernel of Eq. (5.143) can be rewritten as

 t



 ∂

 ∂ 2

 α

 ρ(x, t) =  D b

 ρ(x, t) −

 D b

 dt  e−  α

1− α (t − t  ) ∂  2  ρ(x , t  ). 

(5.162)

 ∂t

 ∂x 2

1 −  α

 ∂x 2

0

This equation is essentially the same obtained by Hristov [50] when analyzing a heat diffusion equation with non-singular memory. Also, by integrating both sides of the

diffusion equation (5.139), we obtain

 t



 D b

 dt  e−  α

1− α (t − t  ) ∂  2  ρ(x , t  ) =  ρ(x , t ) −  ϕ(x ), (5.163)

 ∂x 2

0

which, after substituting into Eq. (5.162), yields

 ∂

 ∂ 2

 α

 ρ(x, t) =  D b

 ρ(x, t) −

 ∂t

 ∂x 2

1 −  α [ ρ(x, t) −  ϕ(x)]  . 

(5.164)
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Equation (5.164) with  ϕ(x) =  δ(x −  x 0 )  is the same obtained by Evans and Majumdar [68] when studying a random walker whose position is redefined to the position x 0 with a rate  r =  α/( 1 −  α). Thus, the fractional exponent  α  in the diffusion equation of Caputo–Fabrizio can be related to a well-defined physical quantity (resetting rate). 

The mean square displacement of Eq. (5.161) is analogous to results obtained from a random walk description of a diffusive process with stochastic resetting, subjected to an exponential waiting time distribution [63, 64]. As discussed in these works, a suitable continuous-time random walk formulation is established by considering a

density of particles  η(x, t)  whose dynamics is governed by

 t



∞



 η(x, t) =  δ(t)δ(r) +  rδ(x) dt

 d xω(t )η(x, t −  t )

0

−∞

 t



∞



+  ( 1 −  r) dt

 d x ψ(x , t ) η(x −  x , t −  t ) (5.165)

0

−∞

when particles start the random walk at the origin ( x = 0) with

 t



∞



 ρ(x, t) =

 (t )η(x, t −  t )dt and  (t) =

 ω(t )dt . 

0

 t

In Eq. (5.165),  r  is a resetting rate,  ψ(x, t)  is the joint distribution of jump-length and waiting-time, as usual in the formalism of the continuous-time random walk, 

discussed in Sect. 3.3. 

By considering  λ(x)  Gaussian and  ω(t)  exponentially distributed, we can show that this formalism leads to Eq. (5.164). The diffusion equation with the Caputo–

Fabrizio operator leads to the same waiting time distribution of the usual diffusion, that is, an exponential. 

Finally, for the Atangana–Baleanu operator, the Laplace transform of the kernel

in Eq. (5.143) is

K (s) =

 bsα−1



 , 

(5.166)

 sα +  α

1− α

which substituted into Eq. (5.144) yields







 sα +  α



 ϕ(k)

 ρ(k, s) =

1− α



 , 

(5.167)

 sα s +  α

1− α s 1− α +  Dbk 2

that is, the solution for the diffusion equation (5.139) in the Fourier–Laplace space. 

By evaluating the inverse Fourier and Laplace transforms, we obtain
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∞



 ρ(x, t) =

 d x G(x −  x , t)ϕ(x )

−∞

 t



∞



 α

+

 dt 

 d x ϕ(x )G(x −  x , t ), 

(5.168)

 (α)( 1 −  α)

 (t −  t ) 1− α

0

−∞

where the Green’s function is





∞

−  α n

! 



" 

 x 2 

 G(x, t) =

 e−  x 2

4 D b t

√

+ 1

1− α

 t nα H2 ,  0

 ( 1+ αn,  1 ),( 1 ,  1 ) , (5.169)

2 ,  2

 ( 1 ,  2 ),( 1+ n,  1 )

4 π D b t

| x|

 ( 1 +  n)

 D b t

 n=1

where we notice again the presence of the H-function of Fox. We can also show that

for | x| → ∞, Eq. (5.169) is approximated by

 G(x, t) ≈

1

√

 e−  f (x,t), 

(5.170)

4 π D b t

where





 α

1− α

 x 2

 f (x, t) =

 x 2

+

 t α

 . 

(5.171)

4 D b t

1 −  α

4 D b t

A typical behavior of the distribution  ρ(x, t)  for this operator is shown in Fig. 5.9c. 

Similarly to the Caputo–Fabrizio operator, the profile of  ρ(x, t)  resembles a Gaussian for short times, while exhibits a tent-shape for long times. However, the distribution does not have a stationary solution for the Atangana–Baleanu operator. This crossover between two behaviors for  ρ(x, t)  is also present in Eq. (5.171), and can be better quantified by analyzing the mean square displacement. We have





 α

 (x) 2 = 2 D b t E α,  2 −

 t α

 , 

(5.172)

1 −  α

where E α,  2 (. . . )  is the generalized Mittag-Leffler function, defined in Eq. (1.227). 

By considering the asymptotic limits of this function, we can show that  (x) 2 ∼  t for short times, and  (x) 2 ∼  t 1− α  for long times. 

This crossover between usual and subdiffusion is present in several biological

systems [69–73] and is also illustrated in Fig. 5.10 for  α = 1 / 2. A similar situation appears in simulations of diffusion with obstacles moving according to a usual random walk [66, 67], where the same crossover between usual and subdiffusion with α = 1 / 2 is observed. Crossovers between diffusive regimes can also be described by generalized Langevin equations [74] and fractional (with the Riemann–Liouville operator) Kramers equations [75], among other approaches [76, 77]. 

The usual Langevin equation [78] predicts a crossover between ballistic and usual diffusion, which has been experimentally observed only in 2011 [79]. However, the
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diffusion equation in terms of these new operators lead to these crossovers without

explicitly considering external forces, inertial effects, and reaction terms. The fractional diffusion equation with the Atangana–Baleanu operator can be further related

to fractional derivatives of distributed order as proposed by Caputo [80, 81] and worked out in Refs. [76, 77], that is, 

1



 ∂ν

 ∂ 2

 dν p(ν)

 ρ(x, t) =  D

 ρ(x, t), 

(5.173)

 ∂tν

 ∂x 2

0

where  p(ν)  is the distribution of the fractional order exponent  ν  and t



 ∂ν

 ∂

 ρ(

 dt 

 x, t) =

1

 ρ(x, t )

(5.174)

 ∂tν

  ( 1 −  ν)

 (t −  t )ν ∂t

0

is the fractional time derivative of Caputo. Indeed, by substituting the kernel of

Eq. (5.143) into Eq. (5.139) and taking the Laplace transform, we have s 1− α

 ∂ 2

 sρ(x, s) −  ρ(x,  0 ) =  D b

 ρ(x, s), 

(5.175)

 s 1− α +  α ∂ x 2

1− α

which can be rewritten as

 α

 ∂ 2

 sρ(x, s) −  ρ(x,  0 ) +

 s− α [ sρ(x, s) −  ρ(x,  0 )] =  D b

 ρ(x, s). (5.176)

1 −  α

 ∂x 2

By calculating the inverse Laplace transform of the previous equation, we find

 t



 ∂

 α

 ∂

 ∂ 2

 ρ(

 dt 

 x, t) +

 ρ(x, t ) =  D b

 ρ(x, t), (5.177)

 ∂t

 (α)( 1 −  α)

 (t −  t ) 1− α ∂t

 ∂x 2

0

which can also be written as

 ∂

 α

 ∂ 1− α

 ∂ 2

 ρ(x, t) +

 ρ(x, t) =  D b

 ρ(x, t). 

(5.178)

 ∂t

1 −  α ∂t 1− α

 ∂x 2

We note that Eq. (5.178) is a special case of Eq. (5.173) with α

 p(ν) =  δ(ν − 1 ) +

 δ(ν +  α − 1 ). 

1 −  α

Analogously to results reported here, the solutions of Eq. (5.178) are also characterized by two diffusive regimes [76, 77]. 
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 5.6.2

 Predicted Distributions: A Balance

The changes occurring in the fractional diffusion equation when the classical

Riemann–Liouville fractional operator is replaced by the recently-proposed deriva-

tives of Caputo–Fabrizio and Atangana–Baleanu are summarized in Table 5.1. Within the context of the continuous-time random walk, we verified that these new operators

modify the behavior of the waiting-time distribution. In the Caputo–Fabrizio case, 

we found that the waiting-time distribution is described by an exponential distri-

bution; while the Atangana–Baleanu operator yields a distribution that decays as a

stretched exponential for short times and as a power-law (with the same exponent of

the Riemann–Liouville operator) for long times. 

We have shown the exact solutions of the fractional diffusion equation and the

time dependence of the mean square displacement when considering these different

fractional operators. The results obtained above reveal that these new operators lead to non-Gaussian distributions and different diffusive regimes depending on the time

scale. 

For the Caputo–Fabrizio operator, the probability distribution  ρ(x, t)  displays a stationary state as well as saturated diffusion for long times. This is a remarkable

feature because the diffusion equation is solved without external forces and subjected to the free diffusion boundary conditions. 

For the Atangana–Baleanu operator, we found a crossover between two diffusive

regimes: a usual for short times and a sub-diffusive for long times, a feature observed in several empirical systems. By properly manipulating the diffusion equations, it is possible to demonstrate that the results obtained with these “new operators” could

be connected with other diffusive models. The fractional diffusion equation with

the Caputo–Fabrizio operator recovers a diffusive process with stochastic resetting, 

where the fractional order exponent is directly related to the resetting rate. Also, the equation with the Atangana–Baleanu operator can be associated with a fractional

diffusion equation with derivatives of distributed order. These results thus suggest

Table 5.1 Summary of the changes caused by the different fractional operators on the diffusion equation (5.139)

Operator

Waiting time

Mean square

Probability

distribution

displacement

distribution

Fractional

Power-law

Power-law and

Non-Gaussian

Riemann–Liouville

scale-invariant

Caputo–Fabrizio

Exponential

Crossover from usual

Crossover from

to confined diffusion

Gaussian to


non-Gaussian with

steady state

Atangana–Baleanu

Crossover from

Crossover from usual

Crossover from

stretched exp. to

to subdiffusion

Gaussian to

power-law

non-Gaussian

References
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that these new operators may be a simple and efficient way of incorporating dif-

ferent memory effects, opening new possibilities for modeling and investigating the

anomalous diffusive processes, in a phenomenological perspective, regardless their

mathematical meaning. 
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Chapter 6

Adsorption Phenomena and Anomalous

Behavior

Abstract This chapter deals with illustrative problems involving anomalous diffusion behavior in connection with adsorption phenomena at the interface between a

solid and a fluid phase. The kinetic balance equations at the interface are of Lang-

muir’s type and their generalizations, which are mostly developed using memory

kernels and also considering reversible and irreversible reactions. In these contexts, the emergence of anomalous behavior is found even when the diffusion equations

governing the bulk behavior are not fractional. In these cases, the interfaces allow

for physisorption as well as Chemisorption by incorporating those kernels which

are localized or not in time. For completeness, applications dealing with fractional

diffusion equations or fractional kinetic equations are also handled to evidence the

potentiality of this formalism to describe the interplay between anomalous relaxation methods and interfacial behavior. 

6.1

Kinetic Equation: Normal and Fractional

In this section, we consider a cell in the shape of a slab with a bulk phase formed by a liquid in contact with solid phases represented by the surface, as shown in Fig. 6.1. In this kind of geometry, the bulk density of particles is denoted by  ρ(x, t)  because the problem is spatially one-dimensional, with  x  being the Cartesian coordinate normal to the surfaces. The surfaces, placed at  x = ± d/ 2, are assumed as adsorbing–desorbing ones. The dynamics of the adsorption phenomena at this interface is governed by

a phenomenological kinetic equation expressed in terms of appropriate adsorption–

desorption rates [1]. 

In the usual Langmuir approximation for the adsorption–desorption phenomena

occurring at the interface of two different media, the kinetic equation usually states that the time variation of the surface density of adsorbed particles at a given surface, σ =  σ (t), depends on the bulk density of particles just in front of this surface,  f (t) =

 ρ(± d/ 2 , t), and on the surface density of particles already sorbed (see Fig. 6.1) [2]. 

This can be represented by the simple equation in the time domain:

 dσ(t) =  κ f (t) − 1  σ(t), 

(6.1)

 dt

 τ
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Fig. 6.1 A typical sample in the shape of a slab of thickness  d  limited by two identical adsorbing surfaces. The bulk density of particles is  ρ(x, t),  f (t) =  ρ(± d/ 2 , t)  is the density of particles in front of the adsorbing surfaces, and  σ(t)  is the actual surface density of adsorbed particles in which  κ  and  τ  are the adsorption coefficient and the desorption time, respectively. 

In the Laplace domain, the solution of Eq. (6.1) can be found as

 κτ

 σ (s) =

 f (s), 

(6.2)

1 +  sτ

where

 σ(s) =  L{ σ(t);  s} and  f (s) =  L{  f (t);  s} , and the property of the Laplace transform of a derivative (1.75) has been used. 

If we assume that the initial surface density of adsorbed particles is zero, that is, σ(t ≤ 0 ) = 0, Eq. (6.2) yields the solution for the density of adsorbed particles. The solution in the time domain can formally be obtained by determining the inverse

Laplace transform of Eq. (6.2) or by a direct integration of Eq. (6.1), that is, t



 σ(t) =  κτ

 dt  1  e− (t− t )/τ f (t ). 

(6.3)

 τ

−∞

After an integration by parts, Eq. (6.3) can also be written as

⎧

⎫

⎨

 t



⎬

 σ(t) =  κτ ⎩  f (t) −  dt e− (t− t )/τ d f (t ) dt 

⎭  , 

(6.4)

−∞

indicating that the effective density of particles close to the surface is formed by two terms. The first term is connected with the adsorption of the particles in the first layer close to the surface; the second term accounts for the desorption processes whose

relaxation times follow a simple exponential behavior. We notice that this is nothing but an integral version of the kinetic equation, Eq. (6.1), but, by rewriting it in this way, we may also identify the last term of the right side as an integro-differential

operator. Using the notation introduced in Sect.4.1, we can rewrite Eq. (6.4) as
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−∞D t f (t) −  f (t) = 1  σ (t), 

(6.5)

 κτ

with

 t



−∞D t f (t) =

 dt  e− (t− t )/τ d f (t ). 

(6.6)

 dt 

−∞

Equation (6.6) may be seen as an integro-differential operator, whose kernel in the differential operator is of the exponential type. This is not the main concern here, 

but we underline that a detailed discussion about the integro-differential operators’

memory effects and the connection with fractional calculus may be found in the

recent literature [3–7]. The exponential behavior is anyway expected here because it is related to the type of relaxation encompassed by Eq. (6.1), which is essentially a Debye relaxation, but other types of relaxations [8–15] can be associated with different operators, in the spirit of the discussion carried out in Sect. 5.6. To see this, one observes that the solution given by Eq. (6.3) may be formally written as [16]:

∞



 σ(

1

 t ) =  κτ

 e− u/τ f (t −  u) du, 

(6.7)

 τ

0

where the quantity  ( 1 /τ )  exp (− u/τ )  plays the role of a response function related to the differential operator present in the relaxation equation. A straightforward

generalization of Eq. (6.7) may be proposed by changing

1  e− u/τ −→  φ(u), 

 τ

that is, 

∞



 σ(t) =  K

 φ(u) f (t −  u) du, 

(6.8)

0

in which  K =  κτ  represents a typical adsorption length connected with the range of the effective forces responsible for the adsorption process [17], and  φ(u)  may assume a very general profile, where different types of relaxation processes could

be accounted for. This procedure can be considered as a natural way to incorporate

other relaxation mechanisms to the description of the interfacial behavior in these

adsorption–desorption systems of Langmuir’s type. 

A possible different way to tackle the complex behavior behind these relaxation

phenomena, in which the effective adsorption parameters may incorporate a fre-

quency dependence, is to generalize the kinetic equation by using fractional calculus

[1]. A very useful procedure is to assume that the adsorption–desorption phenomenon is governed by a general kinetic equation, written in terms of a fractional derivative of order  ν <  1, in the form
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 τν−  dνσ(t)

1

=  κ f (t) − 1  σ (t), 

(6.9)

0

 dt ν

 τ

where  τ 0 is an intrinsic time, connected with an internal dynamics. If  ν = 1, Eq. (6.9)

obviously reduces to Eq. (6.1). To solve the problem in the time-domain we may choose to represent the fractional operator in Eq. (6.9) as the Caputo’s one [18], defined by Eq. (4.94) and here rewritten as

 t



 dν σ(t)

 σ(n)(

=

1

 t  )dt  , n − 1  < ν < n, 

(6.10)

 dt ν

 (n −  ν)

 (t −  t )ν+1− n

0

which reduces to the usual derivative if  ν =  n, with  n ∈ N, as we have discussed in Sect. 4.5. This fractional operator has been applied throughly in physics because it makes the process of working with differential equations of fractional order similar

to the method employed for usual differential equation, as demonstrated by its role

in the investigation of the relaxation processes [19]. 

A formal solution of a problem represented by a generalized kinetic equation as

Eq. (6.9) may be found in terms of the H−function of Fox or the two parameter Mittag-Leffler function [20, 21]. To demonstrate this, let us consider this problem for a moment, using the common notation for the fractional operator:

 dν σ(t) =  C D νσ(t). 

(6.11)

 dt ν

 c

 t

For simplicity, we assume  τ =  τ 0, and rewrite the kinetic equation (6.9) as: σ(t) −  K f (t) = − τνC D νσ (t). 

(6.12)

 c

 t

Saxena et al. [20, 21] consider, instead, the following fractional  integral  kinetic equation of order  ν:

 σ(t) −  K f (t) = − τν 0D− νσ (t), 

(6.13)

 t

when  τ >  0,  ν >  0 and  f (t)  is an integrable function in the interval [0 , b], where b >  0. In Eq. (6.13), the Riemann–Liouville fractional integral of order  ν  is defined as in Eq. (4.62), namely, 

 t



0D− ν σ(t ) =

1

 (t −  u)ν−1 σ (u)du. 

(6.14)

 t

 (ν)  0

For the integral equation (6.13), the solution found is

6.1 Kinetic Equation: Normal and Fractional

241

 t









 σ(



 t ) =  τ K

H1 ,  1  τ ν(t −  u)ν  (−1 /ν,  1 )

 f (u)du, 

(6.15)

1 ,  2

 (−1 /ν,  1 ),( 0 ,ν)

0

that is, it is given in terms of the H−function of Fox, defined in Sect. 1.3.3. In the case we are considering here,  ν <  1. This means that the integral

 t



 (t −  u)− ν−1 σ(u)du, 

(6.16)

 c

appearing in Eq. (6.14), does not diverge if  σ ( 0 ) = 0 as required by the initial conditions. Thus, the solution of our problem for the fractional  differential  kinetic equation may be obtained from Eq. (6.15) just by changing  ν  to − ν, namely t











 σ (

1 /ν,  1 )

 t ) =  τ K

H1 ,  1  τ − ν(t −  u)− ν 

 σ (u)du. 

(6.17)

1 ,  2

1 /ν,  1 ),( 0 , − ν)

0

In addition, this particular H−function of Fox may be connected with the two or

three-parameters Mittag-Leffler function and the problem is formally solved. 

To explore this connection with illustrative purposes, let us tackle the problem

using the techniques of Laplace transform of integral operators, introduced in Chap. 4, 

to solve Eq. (6.12) (with  c = 0). We may write it as

 L{ τνC D νσ(t);  s} =  K L{  f (t);  s} −  L{ σ (t);  s} , (6.18)

0

 t

which, after using Eq. (4.113), may be put in the form:

−  τνsνσ(s) +  τνsν−1 σ( 0 ) =  σ(s) −  K f (s), (6.19)

yielding

 τν

 σ(

 sν−1

 s) =  K f (s) +

 σ ( 0 ). 

(6.20)

1 +  (sτ)ν

1 +  (sτ)ν

The next step is to find the inverse Laplace transform of  σ (s). Consider, first, that:









∞



 k

 L−

1

1

1

1

;  t =  L−1

− 1

;  t

1 +  (sτ)ν

 τν

 τν

 sνk+ ν

 k=0

∞



 k

= 1

− 1

 t νk t ν−1

 τν

 τν

 (νk +  ν)

 k=0

 ν

=  tν−1

−  t

 , 

(6.21)

 τν  E ν,ν

 τ
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where we have used the following results:

∞

1



= 1

1

1

 ν = 1

 (−1 )k

1 +  (sτ)ν

 (sτ)ν  1 + 1

 (sτ)ν

 (sτ)k

 sτ

 k=0

and





 L−

1

1

;  t =  tνktν−1  . 

 sνk+ ν

 (ν +  kν)

The second term in (6.20) may be rewritten as

 τν

∞

 sν−1



 σ(

1

0 ) =  σ ( 0 )

 (−1 )k

 s− νk−1 . 

1 +  (sτ)ν

 τνk

 k=0

Thus, its inverse Laplace transform reads





∞



∞



 L−

1

1

1

 σ( 0 )

 (−1 )k

 s− νk−1;  t

=  σ( 0 )

 (−1 )k

 L−1{ s− νk−1;  t}

 τνk

 τνk

 k=0

 k=0

∞



=  σ(

1

 t νk

0 )

 (−1 )k τνk ( 1 +  νk)

 k=0   ν

=  σ(

 t

0 ) E ν −

 . 

(6.22)

 τ

The final solution of the problem will be given by

 ν

 t



 ν−



1

 ν 

 σ (

 t

 t 

 t

 t ) =  σ( 0 ) E ν −

+  K τ

 dt   f (t −  t )

E

−

 , 

 τ

 τ

 ν,ν

 τ

0

(6.23)

where the last term comes from the convolution of the first term in Eq. (6.20), in the form:

 K F (s) =  K f (s)g(s), 

1 +  (sτ)ν

with  g(s)  obtained from Eq. (6.21). The solutions (6.17) and (6.23) coincide when we invoke the condition  σ( 0 ) = 0 and the equivalence between the H−function of Fox and the Mittag-Leffler function for this particular set of parameters. 

The results presented above are relevant to the description of the adsorption–

desorption process governed by a kinetic equation in the Langmuir perspective, that

is, the actual time dependence of the surface density of particles is formed by the

difference between the density of adsorbed particles in the bulk close to the surface and the density of desorbed particles at a certain rate, characterized by a relaxation time,  τ . 

6.1 Kinetic Equation: Normal and Fractional
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An alternative approach formulates the problem in terms of a kinetic equation

with a derivative of fractional order as a way to generalize the mathematical description of the adsorption process at the interface. This approach has been shown to be

a natural way to incorporate a frequency dispersion in the values of the parameters

effectively governing the process [1], and has shown to be helpful to interpret experimental results, thus offering powerful theoretical tools to tackle this important class of problems. 

An analysis of this kind is relevant to investigate non-Debye relaxation behavior

in a complex fluid containing ions and confined by adsorbing surfaces [1, 22], as we briefly discuss now. 

 6.1.1

 Electrical Impedance in Liquid Crystals

The interplay between surface and memory effects in the adsorption–desorption

process of ionic impurities are remarkable in the experimental results measured for

the electrical impedance of a nematic liquid crystals sample, for instance [23]. 

The system, in the shape of a slab of thickness  d, as the one shown in Fig. 6.1, is submitted to an external periodic potential of small amplitude,  V 0, in the form V (t) =  V 0 eiωt , 

where  ω  is the circular frequency of the applied voltage. The presence of an external voltage produces a perturbation of the distribution of the ions in the fluid, in the

sense that it remains globally neutral, but can be locally charged. Thus, there is

an electrical potential profile across the sample,  V (x, t), such that at the limiting surfaces it becomes:





 V

± d , t = ±  V 0  eiωt. 

(6.24)

2

2

The fundamental equations of the problem are the equation of continuity for the

density of positive  α = + and negative  α = − ion, in the form:

 ∂

 ∂

 ρ

 jα

(6.25)

 ∂ α(x, t) = −

 t

 ∂x

and the Poisson equation

 ∂ 2  V(x,t) = − q[ ρ

 ∂

+ (x, t) −  ρ− (x, t)] , 

(6.26)

 x 2

 ε

where  q  is the electrical charge of the ions,  ε  is the dielectric coefficient of the medium, and  jα(x, t)  are the density of currents of positive and negative ions, defined as:
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 ∂ρα

 ∂V

 jα(x, t) = − Dα

±  q ρ

 , 

(6.27)

 ∂

 α

 x

 kB T

 ∂x

where  Dα  is the diffusion coefficient for positive and negative ions. 

When adsorption–desorption phenomenon is considered at the limiting surfaces, 

the boundary conditions on the density of currents may be established in terms of

kinetic equations like Eq. (6.1), that is, 









 jα ±  d , t = ±  d σα ±  d , t , 

(6.28)

2

 dt

2

with













 d σα ± d ,t =  κρα ± d ,t − 1  σα ± d ,t . 

(6.29)

 dt

2

2

 τ

2

Thus, for each type of ion we have to solve two coupled partial differential equa-

tions, formed from the set of Eqs. (6.25), (6.26) and (6.27), to obtain  ρα(x, t)  and V (x, t), subjected to the boundary conditions (6.24), (6.28) and (6.29). These are the fundamental equations of the Poisson–Nernst–Planck (PNP) model [22]. 

A possible extension of this formalism considers that the adsorption–desorption

phenomenon of the ions may be governed by a kinetic equation in the form [23]





 t



 τν dν σα(t) =  κτρα ± d , t −

K α(t −  t )σα(t )dt , 

(6.30)

 dt ν

2

−∞

which is a further generalization of Eq. (6.9). A kernel K α(t)  was introduced to account for further memory and surface effects on the bulk system. It is present in

the desorption term mainly to account for memory effects eventually connected with

the effective roughness (or porosity characteristics) of the electrodes actually used in the experiments. It is expected that this effect leads to a unusual, that is, an anomalous relaxation process at the interface, as it is indeed experimentally observed [23]. 

In the presence of an small ac applied voltage, the bulk variation of the density of

charged particles behaves harmonically. In this case, one notices that in the Laplace domain (here, the frequency domain) the actual density of adsorbed particles of type

 α  has the form:

 κτ

 σ

 f (ω)

 α(ω) =

 , 

(6.31)

 (iωτ)ν +  K α(iω)

in which

 t



 K α(iω) =  e− iωt

 dt  eiωt K α(t −  t )

(6.32)

−∞

6.2 Anomalous Diffusion in Complex Fluids

245

is the transformed kernel. Two remarks are in order here. The first one is the pres-

ence of the fractional exponent  ν  indicating an anomalous relaxation. In a pure phenomenological perspective, the value of this coefficient 0  < ν <  1 may be established from the experimental data, by means of an adequate fitting process. The

second one regards the form of the kernel K α(t), which is immediately connected with a surface effect on the whole response of the system, and can also be, in a certain sense, chosen from the experimental data. 

An extensive treatment of the impedance response problem in electrolytic cells

has been carried out for the PNP usual model [2] as well as for possible extensions of PNP model to the fractional calculus [22], where anomalous diffusion and relaxation behavior are considered in detail. 

6.2

Anomalous Diffusion in Complex Fluids

In this section, we investigate the solutions of a generalized diffusion equation in a semi-infinite system limited by an adsorbing–desorbing surface. The general bulk

equation embodies different diffusive regimes, like those described by the Catta-

neo equation or the ones arising from a fractional equation in connection with an

anomalous diffusion. The kinetic equation describing the processes on the surface

incorporates non-Debye relaxations which can be used to model non-exponential

relaxations commonly found in biological or fractal systems. The solutions will be

obtained by using the Green’s function approach and exhibit a rich class of normal

and anomalous behavior, which include diffusion of and in biological materials, dif-

fusion in porous media and several industrially applied separation process, among

many others [24]. 

 6.2.1

 Diffusion and Surface Dynamics

The medium is defined in the non-negative region of the  x-direction with the

adsorbing–desorbing surface located at the origin, as in Fig. 6.2. The diffusion of the particles will be governed by a generalized evolution equation in the bulk and, in the vicinity of the surface, adsorption–desorption processes may occur, usually described in terms of a kinetic equation. The bulk diffusion of particles is here described in

terms of the following equation:





 ∂

 ∂ 2

 ρ(x, t) =  Fα

 ρ(x, t) , 

(6.33)

 ∂t

 t

 ∂x 2

where  ρ(x, t)  is the density of particles and the fractional operator  Ft {· · · } is now defined as follows:
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Fig. 6.2 An adsorbing

surface (solid phase) in

contact with a reservoir of

particles (bulk), 

characterized by a density of

particles,  ρ(x, t)

⎧

⎫

⎨  t



⎬

 Fα{ ρ(x, t)} =

 dt  K (t −  t )ρ(x, t )

 t

0D1− α

 t

⎩

⎭  . 

(6.34)

0

This operator can be viewed as a further generalization of the one introduced in

Eq. (5.140) because, instead of using the first order time derivative, in Eq. (6.34), 

0D1− α {· · · } is the Riemann–Liouville operator defined by Eq. (4.64), with 0  < α ≤

 t

1, and the kernel K (t)  is related to memory effects in the bulk, which may not be suitably described by fractional differential operators, such as, for instance, the phase velocity. Other operators [25–27] have been used to extend diffusion equations. The operator

 t



K i (t −  t )ρ(x, t ) dt

(6.35)

0

has been considered by Sokolov [26] for identifying memory kernels that lead to nonnegative solutions, and others for which this condition is not guaranteed. The cases

analyzed here verify the necessary conditions for obtaining non-negative solutions

[28, 29]. 

For this reason, we are considering, in the same approach, effects that require

modifications in the normal diffusion equation and could be connected to different

diffusive regimes in a system. For example, the fractional diffusion equation and

the Cattaneo equation are particular cases of Eq. (6.34), if we assume the kernel K (t) ∝  δ(t), with 0  < α <  1, and the kernel K (t) ∝  e− t/τ ( τ  is a relaxation time

[30]), with  α = 1, respectively. The last expression for the kernel connects Eq. (6.33)

with the Cattaneo equation and describes persistent motion for short times, that is, 

 t   τ , and Brownian motion for long times, that is,  t    τ . 

It is also instructive to recall that Eq. (6.33) can be derived from the continuous-time random walk approach, depending on the kernel, by considering a suitable

choice for the probability density function related to the dynamics of the walkers [31, 

32]. For a suitable (well behaved) kernel K (t)  essentially related to diffusion pro-
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cesses, e.g., kernel related to power-laws or fractional time derivatives of distributed order, we may consider the continuous-time random walk approach with a separable

probability density function as stated in Eq. (3.76), that is,  ψ(x, t) =  λ(x)ω(t). The starting point is the balance equation [31], 

∞



 t



 η(x, t) =  ϕ(x)δ(t) +

 d x

 dt  ψ(x −  x , t −  t )η(x , t ), (6.36)

−∞

0

which relates  η(x, t), the probability density function of just having arrived at position x  at time  t, with the probability density function  η(x , t )  of having just arrived at  x at time  t, for the initial condition  ρ(x,  0 ) =  ϕ(x). By using Eq. (6.36) and Eqs. (3.80)

and (3.81), it is possible to relate Eq. (6.33) with the continuous-time random walk approach by considering







 s 1− γ  K (s)/ σ  2 τ

 λ(k) = 1 −  σ 2 k 2 and  ω(s) =



 ,  0  < γ <  1 , 

 s +  s 1− γ  K (s)/ σ  2 τ

where  σ  2 τ  is a constant. Evidently, K (s) =  L{K (t);  s} is the Laplace transformed kernel. 

For the kernels related to the Cattaneo equation, that is, a persistent random

walk, we may follow an approach that considers arbitrary density functions [33, 34]. 

Indeed, as mentioned before, the exponential form

 e− t/τ

K (t) =  K

 , 

(6.37)

 τ

with  α = 1 in Eqs. (6.33) and (6.34), introduces a finite phase velocity in the propagation of the density variations of the system that is crucial in describing fast processes such as, for example, shock waves in rigid heat conductors and diffusion processes

in crystalline solids [30]. 

Another possible form of the kernel is given by the power-law behavior

 t γ −1

K (t) =  K

 , 

(6.38)

 (γ )

for  α = 1, which can be connected to anomalous diffusion, that is, an anomalous spreading of the particles in the system, represented by the unusual exponent in the

time dependence of the mean square displacement. 

It is also possible to consider a mixing of different kernels, in the form, 

 t γ −1  e− t/τ

K (t) =  K

 , 

(6.39)

 (γ ) τ
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which combines the previous cases described above and opens the possibility to

handle many different diffusing processes in a wide variety of systems. This happens

because the values of the parameters  α  and the functional form of the kernel K (t)  have a direct influence on the spreading of the system, thus leading to either anomalous

diffusion or diffusion in different regimes which may be characterized by crossover

times among them. 

Let us analyze an example to render concrete these aspects of the processes. For

the free diffusion such that  ρ(±∞ , t) = 0, with  ρ(x,  0 ) =  δ(x), the mean square displacement is formally given by





 σ 2 (t) =  (x −  x ) 2

 f

 t



=

2

 dt  (t −  t )α K (t ), 

(6.40)

  ( 1 +  α)  0

where  f  stands for “free” diffusion. Figure 6.3 illustrates the behavior of Eq. (6.40)

when the previous kernel, Eq. (6.39), is considered for different values of  α,  γ , and τ. Figure 6.3a is calculated with  α = 1 .  0 (normal diffusion for  τ = 0 .  0), and the case with  γ = 0 .  0 and  γ = 0 .  3 are compared with the normal diffusive case. Figure 6.3b

uses  α = 0 .  5 (which, for  τ = 0, results in fractional diffusion) for the same values of  γ , and compared to fractional diffusion. Both figures show a pronounced effect for short times, as a consequence of the Cattaneo equation, while the fractional

differential operator governs the behavior for long times. 

The surface effects strongly influence the bulk properties and, consequently, the

behavior of the systems where the diffusion happens [35]. In general, these effects produced by the surfaces stem from the interplay of their morphology and chemical

properties. We couple these effects with the diffusion process by means of the bound-

ary conditions. They will connect the kinetic processes of the adsorption–desorption

occurring in the vicinity of the surface with the diffusion equation governing the bulk behavior. 

To mathematically state the problem, we consider Eq. (6.33) subjected to the boundary conditions





 ∂



 Fα

 ρ(x, t) 

=  d C

 t

 ∂

 s (t ), 

(6.41)

 x



 dt

 x=0

which connects the flux through the surface with the time variation of the surface

density of particles,  Cs(t), due to the processes undergone by the particles in the vicinity and





 ∂



 F



 t

 ρ(x, t)

= 0 , 

(6.42)

 ∂x

 x=∞

which accounts for the behavior of the system very far from the surface. Thus, the

surface will change the spreading of the system, in contrast with the free diffusion
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Fig. 6.3 The mean square

displacement from Eq. (6.40)

versus  t (with  t =  t/τ  and

 K  =  K τ ) in Eq. (6.39) for

different values of  α,  γ , and

 τ. In (a), it is shown the

behavior of Eq. (6.40), for

 α = 1 .  0, while in (b) the

case  α = 0 .  5 is illustrated. 

The dotted line was obtained

by considering  γ = 0 .  3 in

both figures. Modified with

permission from Tavares et

al. [24]. © 2020 Elsevier

B.V. All rights reserved

case. The processes occurring on the surface will be governed by the kinetic integral equation

 t





 C



 s (t ) =  C (t ) +

 dt  κ(t −  t ) ρ(x, t )

 , 

(6.43)

 x=0

0

where  C(t)  can be related to an arbitrary initial condition and the kernel  κ(t)  is related to the kinetic aspects displayed on the surface, as in Eq. (6.7). 

The results expected to be obtained here represent an extension, to a broad sce-

nario, of the ones already obtained [27, 36, 37], because different dynamical processes on the surface can be incorporated to the description. Particular forms of the kernel in Eq. (6.43) could be  κ(t) = constant and  κ(t) =  (k/τ )  exp  (− t/τ ), where k  is a constant. 

The constant kernel describes a reaction process of the particles with the surface, 

when the surface adsorbs (absorbs) the particles and there is not desorption. The

second one can be related to an adsorption–desorption process with a characteristic

time  τ . It can be directly related to a kinetic process of first-order, as the ones described by Eq. (6.1), that is, 

 d Cs(t) =  kρ( 0 ,t) − 1 Cs(t), 

(6.44)

 dt

 τ
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where, as before,  kτ  may be interpreted as the thickness that defines the region of interaction between the surface and the bulk, in which the particles in front of the

surface can be adsorbed. Other functional forms of  κ(t)  may also be used, opening to us the doors to deal with different kinetic processes. For example, the case

 t



 κ(t) =

 dt  ζ(t ) e− (t− t )/τ , 

(6.45)

 τ

0

with  ζ(t) =  k(t) −  κ( 0 )δ(t), implies considering the underlying kinetic equation t



 d Cs(t) =  dt k(t )ρ( 0 ,t ) − 1 Cs(t), (6.46)

 dt

 τ

0

with a kernel  k(t)  representing some type of memory effect, that is, a term accounting for the presence of an anomalous process like a non-Debye relaxation. From the

previous results, it is also possible to show that

∞



 Cs(t) +

 d xρ(x, t) = constant , 

(6.47)

0

where the first term of the left-hand side is connected with the particles on the surface whereas the second term is connected with the particles dispersed in the bulk. It is also remarkable that Eq. (6.41) may be modified in order to describe problems characterized by the injection of particles into the system or by reaction-diffusion processes at the interface, if one incorporates appropriate terms into Eq. (6.33) governing the diffusive process in the bulk, as we will discuss in Chap. 7. 

 6.2.2

 Time-Dependent Solutions

Let us focus our attention on the time-dependent solutions of Eq. (6.33), when the previous boundary conditions are considered. We start by recalling that the initial

condition of the system is given by  ρ(x,  0 ) =  ϕ(x)  and  Cs( 0 ) =  C( 0 ) = constant, in order to be able to cover a general situation characterized by the presence of a

substance in the bulk, on the surface or a situation in which the particles are somehow distributed in bulk and surfaces. 

The adsorption–desorption processes depend on the characteristics presented by

the surface and on the kernel K (t)  related to the memory effects in the bulk. We employ again the Green’s function approach and the Laplace transform method to

obtain the solution of Eq. (6.33). This standard but useful strategy enables us to
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incorporate to the solution, in a suitable way, the contributions coming from the

boundary conditions, given by Eqs. (6.41) and (6.42). 

Within the Green’s function approach, the solution for the bulk density of particles, ρ(x, t), in the present case, is given by

∞



 t



 ρ(x, t) =

 d x ϕ(x )G(x, x;  t) −

 dt  G( 0 , x;  t −  t ) d Cs(t ), 

(6.48)

 dt 

0

0

where the Green’s function is defined by the equation:





 ∂

 ∂ 2

 G(x, x;  t) −  Fα

 G(x, x;  t ) =  δ(x −  x )δ(t), 

(6.49)

 ∂t

 t

 ∂x 2

obeying the initial condition  G(x, x;  t) = 0, for  t <  0, and the boundary condition





 ∂



 ∂



 G(x, x;  t)

=

 G(x, x;  t)

= 0 . 

(6.50)

 ∂x



 ∂x



 x=0

 x=∞

The solution of Eq. (6.49), subjected to the previous conditions, can be found in the Laplace space by considering an arbitrary time dependence for K (t). It is given by







−  sα | x− x|

−  sα | x+ x|

 G(x, x;  s) =

1



 e

K (s)

+  e  K (s)

 , 

(6.51)

2  s  K (s)/sα

where K (s)  and  G(x, x;  s)  are, respectively, the Laplace transforms of K (t)  and G(x, x;  t ), that is, K (s) =  L{K (t);  s} and  G(x, x;  s) =  L{ G(x, x , t);  s}. 

To find the inverse Laplace transform for an arbitrary kernel requires cumbersome

calculations. For this reason, before applying the Laplace transform, it is better to choose the time dependence of K (t). We consider two behaviors for the fractional operator by selecting two different pairs of K (t)  and  α. The first one is the power-law kernel, Eq. (6.38), with  α = 1, and the second one is the exponential kernel, Eq. (6.37), with  α = 1. 

For the power-law case, the inverse Laplace transform yields











 , α+ γ )

 , α+ γ )

 G(x, x;  t) =

1

√

 H  1 ,  0  

2

+  H 1 ,  0  

2

 , 

1 ,  1

−| ( 1−  α+ γ

2

 ( 0 ,  1 )

1 ,  1

+| ( 1−  α+ γ

2

 ( 0 ,  1 )

4 π K tα+ γ

(6.52)

where we have used the H−function of Fox, defined in Sect. 1.3.3, and, for compactness, introduced the quantities:

|

 

 x ±  x|

± = √

 . 

 K t α+ γ
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Figure 6.4a illustrates the behavior of Eq. (6.52) for different values of  α =  α +  γ , where considerable change in the distribution occurs as different values of  α are used. Note that Eq. (6.52) was obtained by using the result











 L−1



 s− αe− asσ ;  t =  tα−1H1 ,  0  at− σ  (α,σ) . 

(6.53)

1 ,  1

 ( 0 ,  1 )

For the exponential kernel, Eq. (6.37), we have

 G(x, x;  t) =  G 1 (x −  x;  t) +  G 1 (x +  x;  t), (6.54)

with







 τ



1

 G 1 (x;  t) = 1

 e−  t 2 τ  I0

 t  2 −  τ  2  θ (t −  τx )

4

 K

2 τ

 x



" 



⎧

! 

⎫

 τ

⎨

I

1

⎬

1

 t  2 −  τ  2 x

+

2 τ

 e−  t 2 τ

 δ (t −  τx) +  t

! 

 θ (t −  τx) , (6.55)

4 K

⎩

2 τ

 t  2 −  τ  2

⎭

 x

where  θ(x)  is the Heaviside function defined in Eq. (1.60), I n(x)  is the modified Bessel function, and

 τ

 τx =

| x| . 

(6.56)

 K

Figure 6.4b illustrates Eq. (6.54) for different values of  τ . The effect of the finite phase velocity on the spreading of the distribution is very pronounced. This is made

clear by observing the substantial change in the distribution that is caused by small increments on  τ . We recall that Eq. (6.55) was obtained by using the results [38]:



! 

" 

 t



! 

" 

 L−

1

1

√

 F

 s 2 −  a 2 ;  t =

 dt   f (t ) I0  a t 2 −  t 2  , 

(6.57)

 s 2 −  a 2

0

and



! 

" 

 t



! 

" 

 L−

 s

 dt 

1

√

 F

 s 2 −  a 2 ;  t =  f (t) +  at

√

 f (t ) I1  a t 2 −  t 2

 s 2 −  a 2

 t  2 −  t 2

0

(6.58)

where  L−1 { F (s) ;  t} =  f (t). Both Eqs. (6.52) and (6.54) recover the standard result (x −  x ) 2

 (x +  x ) 2

 G(x, x;  t) =

1

√

exp −

+ exp −

 , 

(6.59)

4 π K t

4 K t

4 K t
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Fig. 6.4 (a)  x G(x, x , t)  versus  x/x from Eq. (6.52) is shown for different values of  α (where, α =  α +  γ

1 /(α+ γ )

), with  t =  x 2 /K

 / 2. (b)  x G(x, x , t)  versus  x/x from Eq. (6.54) is shown for different values of  τ =  x 2 /K τ , with  t = 50 τ . Modified with permission from Tavares et al. 

[24]. © 2020 Elsevier B.V. All rights reserved

by taking into account, for each case, appropriate limits. It is possible to demonstrate that Eq. (6.52), for  α +  γ = 1, and Eq. (6.54), for  t    τ , yield Eq. (6.59). 

To illustrate the difference between the various solutions and the broadness of

the equation presented here, Fig. 6.5 exhibits the Green’s function behavior for the usual case, Eq. (6.59), the fractional diffusion case, Eq. (6.52), and the Cattaneo case, Eq. (6.54), to highlight the influence of each kernel on the spreading of the distribution. By using the previous result, in the Laplace space we have:

∞



 ρ( 0 , s) =

1



 d x G(x,  0;  s)ϕ(x), 

(6.60)

1 +

 sα/ K (s)κ(s)  0
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Fig. 6.5 Comparison of the trends of the Green’s functions obtained in Fig. 6.4a, b with the standard one. The solid line corresponds to  α = 1, with the exponential kernel and  τ  =

 c

0 .  1. The dashed

line, to  α = 0 .  5, with the power-law kernel. The dashed-dotted line is the standard case, with t =  x 2 /( 2 K ). Modified with permission from Tavares et al. [24]. © 2020 Elsevier B.V. All rights reserved

which implies that

∞



 κ(s)

 Cs(s) =



 d x G(x,  0;  s)ϕ(x). 

(6.61)

1 +

 sα/ K (s)κ(s)  0

Thus, the behavior of the adsorbed particles, that is, the ones represented by the

density  Cs(t), depends on the specific forms of  κ(s)  and K (s). From the preceding results, it is also possible to show that

∞



 κ(s)

 S(s) = 1 −



 d x G(x,  0;  s)ϕ(x), 

(6.62)

 s

1 +

 sα/ K (s)κ(s)  0

where

∞



 S(t) =

 d xρ(x, t)

(6.63)

0

represents the survival probability, which is connected with the quantity of substance present in the bulk, as discussed in Sect. 3.3. Considering, for simplicity, that the surface kernels is given by  κ(t) =  κ = constant, the inverse Laplace transform of Eq. (6.61) yields:
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 t



∞



 Cs(t) =

 dt  (t −  t )

 d x G(x,  0;  t )ϕ(x), 

(6.64)

0

0

with

√

√

" 

 (t) =  K tα−1E α,α −  K tα/κ

(6.65)

for K (s) =  K /sγ , that is, K (t)  is given by Eq. (6.38), where  α =  ( 1 +  γ )/ 2 and E α,β(x)  is the two-parameter Mittag-Leffler function, defined in Eq. (1.227). In order to obtain Eq. (6.65), we have used the result [39]: L−

 sα− β

1

; 

 (

 t

=

1

 t αk+ β−1E  k)

 (sα +  a)k+1

 ( 1 +  k)

 α,β (− atα) , 

(6.66)

 (

where E  k)

 α,β (x)  is the  k th derivative of the two-parameter Mittag-Leffler function, defined in Eq. (5.114), that is, 

 (

E  k)

 α,β (x) =  dk  E α,β (x). 

 dt k

For K (s) =  K /( 1 +  τ s), that is, the Laplace transform of Eq. (6.37), and by using the result [38]:

! 

" 

 t



! 

" 

 L−1  F

 s 2 −  a 2 ;  t =  f (t) +  a

 dt   t   f (t  )

√

I1  a t 2 −  t 2  , 

(6.67)

 t  2 −  t 2

0

we have

⎡

 t



! 

⎤

 (

1

 t ) =  e−  t 2 τ ⎣  f (t) + 1

 dt   t   f (t  )

√

I

⎦

1

 t  2 −  t 2

 , 

(6.68)

2 τ

 t  2 −  t 2

2 τ

0

with



'   (

 K

 K

 t

 f (t) =

exp −

 . 

(6.69)

 τ

 τ

 κ

Equation (6.64) is illustrated in Fig. 6.6, by considering the previous cases, that is, the different kernels and the values of the parameter  α, Eqs. (6.65) and (6.68). 

In Fig. 6.6a, we show the case represented by the Cattaneo equation for different values of  τ . For long times, it recovers the usual behavior, as expected. In contrast, the fractional case is shown in Fig. 6.6b, where the relaxation process is slower than the normal one and the curves follow different behaviors for long times. For both cases, 
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Fig. 6.6 (a)  Cs (t )  versus





 t  =  K /x 2  t  when the

kernel is K (t) =  K e− t/τ /τ , 

for different  τ  and





 τ =  K/x 2  τ c, where

 κ =  κ/x. (b)  Cs(t )  versus

 t  (with

 t  =  (K /x 2 ) 1 /(α+ γ )t) when

the kernel is

K (t) =  K tγ −1 / (γ )  with

 α +  γ =  α  <  1 and

 κ/x = 1. Modified with

permission from Tavares et

al. [24]. © 2020 Elsevier

B.V. All rights reserved

 Cs(t) → 0 when  t → ∞, which implies that the substance is initially adsorbed and, after some time, is desorbed from the surface to the bulk. 

By using the preceding results, we obtain the mean square displacement for the

processes described above:

 σ 2 (t) =  x 2 (t) − [1 +  Cs(t)]  x 2 (t), (6.70)

with

 t



 t



 x 2 =  x 2 +  σ 2 (t) − 1

 dt  (t −  t )α−1

 dt  K (t −  t )C

 f

  (α)

 s (t  )

(6.71)

0

0

and

 t



 t



 x =  x + 1

 dt  (t −  t )α−1

 dt  K (t −  t )ρ( 0 , t ). 

(6.72)

  (α)  0

0

Equation (6.70), together with Eqs. (6.71) and (6.72), shows how the mean square displacement depends on surface effects. Figure 6.7a, b illustrate the behavior of
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Fig. 6.7 (a)  σ  2 (t )/x 2

versus  t (with





 t  =  K /x 2  t) for the

exponential kernel, 

Eq. (6.37), and different

values of  τ  and





 τ =

 τ

 c

 K /x 2

, with

 κ =  κ/x. (b)  σ 2 (t )/x 2

versus  t (with

 t  =  (K /x 2 ) 1 /(α+ γ )t) for the

power-law kernel, Eq. (6.38), 

with  α +  γ =  α  <  1 and

 κ/x = 1. Modified with

permission from Tavares et

al. [24]. © 2020 Elsevier

B.V. All rights reserved

Eq. (6.70) for the cases previously analyzed. In Fig. 6.7a, it is possible to observe that, for short times, the Cattaneo and the standard cases have a different behavior, and, for long times, exhibit the same behavior. In Fig. 6.7b, the fractional case is illustrated for different values of  κ  in order to highlight the influence of the surface on the fractional case and different regimes of diffusion. From these figures, we

observe that, for short times, 

 σ  2 (t) ≈  σ 2 (t), 

 f

where  σ f (t)  is defined by Eq. (6.40), and the same for long times, if  Cs(t) → 0 for t → ∞. For the cases discussed before, we have

 σ 2 (t) ∼  t 1+ γ  and  σ 2 (t) ∼  t

in the asymptotic limit of  t → ∞. 

In the approach presented in this section, we started from a general diffusion

equation, which simultaneously combines ordinary diffusion, fractional diffusion, 

and the Cattaneo equation, with a kinetic equation capable of describing several

adsorption–desorption dynamics, including memory effects. The model presented

here can be applied to situations that go far beyond ordinary diffusion in the presence of simple adsorption kinetics. Indeed, such non-ordinary cases are in the limelight

258

6

Adsorption Phenomena and Anomalous Behavior

of scientific attention since they can be used to describe anomalous situations where molecular crowding [40, 41], traps [42], diffusion through distinct geometries [43]

and many others are present. This is often the case of diffusion in porous [44] and biological media [45, 46]. Furthermore, the model can also combine phase velocity, from the Cattaneo equation, and distinct surface dynamics, as it is the case in several adsorption processes such as chemisorption and physisorption [35, 47], often used in the separation process aiming at industrial applications [48, 49]. In the next section we consider a simple strategy to handle these processes in a simplified context. 

6.3

Memory Kernels

In this section, we investigate a confined isotropic fluid containing dispersed neutral particles when the limiting surfaces undergo different dynamics for the adsorption–

desorption phenomena, having in mind experiments dealing with suitably aligned

liquid-crystalline systems [37]. 

The focus of the theoretical investigation is to consider different non-singular

kernels in the kinetic equations at the walls, where the specific choice of the kernel is done to account for the relative importance of physisorption or chemisorption

processes. By means of a relatively simple mathematical model, we can show that

even a small difference in the adsorption–desorption rate of one surface (relative to the other) can drastically affect the behavior of the whole system. The surface and

bulk densities and the dispersion are calculated when several problems are considered and anomalous-like behaviors are found, even without using fractional calculus. 

 6.3.1

 Chemisorption and Physisorption Processes

We consider a sample in the shape of slab containing an isotropic fluid with neutral

particles. It is assumed that the only direction relevant to the particles diffusion is x, being the limiting surfaces located at  x = 0 (surface 1) and  x =  d (surface 2), as shown in Fig. 6.8. The bulk density  ρ(x, t)  is governed by the normal diffusion equation

 ∂ρ

 ∂ 2 ρ

=  D

 , 

(6.73)

 ∂t

 ∂x 2

where  D  is the diffusion coefficient of the medium, as usual. The surface densities of particles at  x = 0 and  x =  d  are denoted by  σ 1 and  σ 2, respectively. The kinetic equations governing the boundaries are [47, 50]:

[image: Image 10]
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Fig. 6.8 Schematic representation of the system studied here. The diffusing species are represented by full dots. The left surface can chemically bond the particles (chemisorption, shown by the hollow dots) and the right surface adsorbs by means of physisorption. Adapted from Guimarães et al. [37], with permission from The Royal Society of Chemistry

 t



 dσ 1 (t) =  κ 1 ρ( 0 ,t) − K1 (t −  t )σ 1 (t )dt , dt

0

 t



 dσ 2 (t) =  κ 2 ρ(d,t) − K2 (t −  t )σ 2 (t )dt , (6.74)

 dt

0

where  κi , with  i = 1 ,  2, are parameters connected with the adsorption phenomena, being related to a characteristic adsorption time  τκi =  d/ 2 κi , and K i (t) ( i = 1 ,  2) are kernels that govern the adsorption–desorption phenomena depending on the specific

form of function. 

As discussed in Sect. 6.1, we may interpret Eq. (6.74) as simply stating that the time variation of the surface density of adsorbed particles depends on the bulk

density of particles just in front of the adsorbing surface, and on the surface density of particles already adsorbed. In fact, it is possible to connect the phenomenological Eq. (6.74) with microscopic parameters representing the van der Waals interaction between the particles and the surfaces [51]. The presence of the kernel dictates the nature of the adsorption phenomena [47]. A kernel like K i (t)  has been used in several contexts to explore non-Debye relaxation, yielding a non-trivial behavior description and allowing for different or combined effects in a single kinetic equation [47, 52, 

53]. 

Two kinetic equations, one for each surface, are used here to show that the presence

of the kernels is connected with specific dynamics of the system. They account for

the possibility that the time to adsorb a particle may depend on the previous state
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of the particle, thus adding short or long-range memory effects that can be related, 

for example, to the energy loss during the collision with the surface in a previous

adsorption–desorption process. 

Since the bulk density of particles is allowed to fluctuate, a condition stating the

conservation of the number of particles has to be imposed, that is, 

 d



 σ 1 (t) +  σ 2 (t) +

 ρ(x, t)dx =  ρ 0 d, 

(6.75)

0

where  ρ(x,  0 ) =  ρ 0. In what follows, the Laplace transform method will be applied to solve Eq. (6.73), which becomes

 d 2

 D

 ρ(x, s) =  sρ(x, s) −  ρ(x,  0 ), 

(6.76)

 d x 2

where we have used the property of the Laplace transform of a derivative, Eq. (1.75), 

that is





 L{ ρ(

 dρ(x, t)

 x, t);  s} =  ρ(x, s)  and  L

;  s =  sρ(x, s) −  ρ(x,  0 ). 

(6.77)

 dt

We recall here these elementary results of Chap. 1 just to render clearer the subsequent treatment, which will only be sketched along its main lines. 

The solution of Eq. (6.76) may be written as









 ρ

 ρ(

0

 s

 s

 x, s) =

+  A(s)  sinh

 x

+  B(s)  cosh

 x

 . 

(6.78)

 s

 D

 D

Furthermore, from Eq. (6.74), we obtain

 sσ  1 (s) −  σ 1 ( 0 ) =  κ 1 ρ( 0 , s) −  K  1 (s)σ  1 (s), sσ  2 (s) −  σ 2 ( 0 ) =  κ 2 ρ(d, s) −  K  2 (s)σ  2 (s), (6.79)

where  σ i (s) =  L { σi (t);  s},  K i (s) =  L {K i (t);  s}, for  i = 1 and 2, and we assume hereafter that  σi ( 0 ) = 0. By combining Eqs. (6.78) and (6.79) with the condition on the current densities, namely, 

 j 1 (t) =  j ( 0 , t) =  dσ 1 (t)  and  j 2 (t) =  j (d, t) =  dσ 2 (t) , (6.80)

 dt

 dt

where, from the Fick’s law, Eq. (2.8), 

 ∂ρ(x, t)

 j (x, t) = − D

 , 

(6.81)

 ∂x
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the parameters  A(s)  and  B(s)  may be found. Let us present a brief description on how this can be done. We start by placing Eq. (6.78) in Eq. (6.79), to get κ B(s) +  ρ 0

 σ

1

 s

1 (s) =

(6.82)

 K  1 (s) +  s

and

)

! 

! 

*

 κ A(s)  sinh  d s +  B(s)  cosh  d s +  ρ 0

 σ

1

 D

 D

 s

2 (s) =

 . 

(6.83)

 K  1 (s) +  s

The condition on the current stated in Eq. (6.80) implies that



 dρ(x, t) 

 D



=  dσ 1 (t), 

(6.84)

 d x



 dt

 x=0

or, in the Laplace space, 



 dρ(x, s) 

 D



=  sσ 1 (s), 

(6.85)

 d x

 x=0

which allows us to write  A(s)  in terms of  B(s). Then,  B(s)  can be calculated by using the current defined in at  x =  d  or, which is entirely equivalent, the conservation of the number of particles, stated by Eq. (6.75). Once  A(s)  and  B(s)  are calculated, we come back to Eqs. (6.82) and (6.83) to write  σ  1 (s)  and  σ  2 (s), respectively, as

 

 

 σ

1 (s)

2 (s)

1 (s) =

and  σ  2 (s) =

 , 

(6.86)

 s F (s)

 s F (s)

where









 

 s

 s

 s

1 (s) =  κ 1 ρ

 κ 2 s[cosh  d

− 1] +  D

 α 2 sinh  d

 , 

 D

 D

 D









 

 s

 s

 s

2 (s) =  κ 2 ρ

 κ 1 s[cosh  d

− 1] +  D

 α 1 sinh  d

 , 

(6.87)

 D

 D

 D





 s

 s

 F (s) =

sinh  d

 (Dα 1 α 2 +  κ 1 κ 1 s)

 D

 D



+

 s

 s  cosh  d

 (κ 1 α 1 +  κ 1 , α 2 ), 

(6.88)

 D

and

 α 1 =  s +  K  1 (s)  and  α 2 =  s +  K  2 (s). 
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Now, in order to proceed and find the two surface densities, we need to obtain the

inverse Laplace transform, which is possible only when the two transformed kernels, 

 K  1 (s)  and  K  2 (s), are known. 

The first case we will focus corresponds to two surfaces presenting a  chemisorption process, that is, 

 K  1 (s) = 1

and

 K

 . 

(6.89)

 τ

2 (s) = 1

1

 τ 2

The inverse is calculated via the Bromwich integral in the complex plane. As we

have discussed in Sect. 1.1.2, this integral may be calculated using the residue theory, which requires finding only the poles of the function. We notice that Eq. (6.86) have the same denominator and, therefore, the same poles. By examination, one finds a

simple pole in  s = 0, while the others are found when  F(s) = 0, that is, s

 s

sinh  d

 (Dα 1 α 2 +  κ 1 κ 1 s)

(6.90)

 D

 D



+

 s

 s  cosh  d

 (κ 1 α 1 +  κ 1 α 2 ) = 0 . 

 D

The roots of Eq. (6.90) are found when we make  s = − β 2, with  n ∈ N, and replacing n

the kernels  K  1 (s)  and  K  2 (s). We also consider the kernels K

" 

1 (s) = 1

and

 K

 . 

(6.91)

 τ

2 (s) =

1



1

 s + 1 τ τ 2 τa

 a

The functions  σ 1 (t)  and  σ 2 (t)  in the time-domain are given as a sum of the residues in each pole. We recall that the residues in  s = 0 and  s = − β 2, are calculated by n

taking the following limits [54]:

)

*

Res (s = 0 ) = lim  sσ i (s)ets

(6.92)

 s→0

)

*

Res (s = − β 2 ) = lim

 (s +  β 2 )σ

 , 

 n

 n

 i (s)ets

 s→− β 2 n

where  i = 1 or  i = 2 and  n ∈ N. 

The calculation of  ρ(x, t)  and, consequently, of  (x) 2, follows a similar procedure. From Eq. (6.78), and once  A(s)  and  B(s)  are known, one can write the following equation:
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 ρ(z, s) = 1

 ρ 0

 s

) ! *  

! 

) ! *

) ! *

cosh  z

 s

 κ α

 s  sinh  d

 s

+  α

 d

 s

−

 D

2

1 +  κ 1

 D

 D

2 κ 1 cosh

 D

!  s F(s)

 D

) ! * 



) ! *



! 

) ! *

 κ

 z

 s

 κ

cosh  d

 s

− 1 +  α

 s  sinh  d

 s

+ 1 sinh

 D

2 s

 D


2  D

 D

 D

 , 

 s F (s)

(6.93)

which has a straightforward inversion. The first term 1 /s  has a simple Laplace inver-

√

sion. The second term is a convolution of the function 1 / s/D  and a function whose denominator is the same as the ones in Eq. (6.86), and, therefore, requires identical procedure for calculating the inverse. The same applies to the third term of Eq. (6.93). 

Just as for the surface densities, the calculation depends on the choice of the kernels, but it follows the procedures explained before. Nonetheless, after the inversion of

Eq. (6.93), we end up with two series summed, resulting in a long equation, which, anyway, may be manipulated by symbolic softwares. 

The whole procedure permits us to conclude that, in the Laplace space, the surface

densities will be given by

)

! 

! 

*

 κ

 C

 d

 s

+  κ

 d

 s

−  κ

 σ

 i ρ 0

1 (s)  sinh

 D

 j s  cosh

 D

 j s

 i (s) =

! 

! 

! 

 , 

(6.94)

 s

 s  sinh  d

 s

 C

 d

 s

 C

 D

 D

2 (s) +  s  cosh

 D

3 (s)

with

√

 C 1 (s) =

 s D[ σ j (s) +  s] , 

 C 2 (s) =  D[ K  1 (s) +  s][ K  2 (s) +  s] +  κ 1 κ 2 s, C 3 (s) =  κ 2[ K  1 (s) +  s] +  κ 1[ K  2 (s) +  s] , where  j = 1, when  i = 2 (z =  d), and  j = 2, when  i = 1 (z = 0 ). Equation (6.94)

shows that the densities of particles at one surface depend on the dynamics of

adsorption–desorption that is happening on the other surface. In order to obtain

the solutions  σi (t), the inverse Laplace transform of Eq. (6.94) must be calculated. 

This can be done only when K i (t)  are given. 

6.3.1.1

Chemisorption Processes

We first address the case where both surfaces present a pure chemisorption process; 

however, each surface has its own adsorption and desorption times, which means



 t

K i (t) = 1  δ

 , i = 1 and 2 , 

(6.95)

 τ 2

 τ

 i

 i

264

6

Adsorption Phenomena and Anomalous Behavior

where  τi  is a parameter connected to the desorption time. In this case, we are assuming that the molecule on the surface has lost the memory of the preceding state. For this reason, the kernel is a localized function of the time [47, 55]. As underlined above, the inversion can be performed with the Bromwich integral in the complex plane with the

residue technique [54]. The residue is calculated at each pole, which means finding the zeros in the denominator of Eq. (6.94). From Eq. (6.78),  ρ(x, t)  can be obtained, because Eq. (6.94) has the same poles of Eq. (6.78) and may be used in the calculation. 

6.3.1.2

Chemisorption and Physisorption Processes

We shall consider, now, the case where each surface has a different mechanism. To

accomplish this task, we fix



 t

K1 (t) = 1  δ

and K

 e−  tτa , 

(6.96)

 τ 2

 τ

2 (t ) =

1

 (τ

1

1

2 τa )

where  τa  is a characteristic time, that is, a new phenomenological parameter entering the description of the adsorption–desorption phenomena. Usually, a kernel like the

second one in Eq. (6.96) is used to describe “memory”, as it is done in the theory of dielectrics, in which the relaxation depends on the previous state. It has also

been used in the context of adsorption–desorption to describe the memory of the

system in general. Indeed, this kernel incorporates a memory effect in the adsorption–

desorption phenomena by assuming that during a time  τa  the particle being adsorbed retains some knowledge of its preceding state. To account for this phenomenon, the

proposed kernel has a nonzero width in time, that is, it introduces a time delay in the desorption rate. The physical reasons for this behavior can be understood as follows: the molecules in the bulk have an amount of energy, so that, when they are adsorbed

in the walls at the surface, the energy is still rather large and, for this reason, they are desorbed soon, loosing part of the energy. 

This phenomenon continues to happen until the energy lost by the particle is

such that a steady state is reached, after a characteristic time  τa. Thus, the system studied in this framework can be interpreted as having one surface treated to present chemisorption and the opposite surface treated to present physisorption. 

We use the solution of Eq. (6.79) to obtain the root mean square displacement (x) 2 =  (x −  x ) 2. As we learn from Sect. 2.1.1, it is an important parameter because it is a measure of the spread of the distribution about its average value, used to characterize the time-dependent diffusion coefficient,  D(t) =  (x) 2 / 2 t, which changes with time [56]. For the problem studied here, it is directly affected by the surfaces, since immobilization by adsorption of the particles happens as they explore the media. 

To understand the whole picture, some remarks are in order. A system where the

model presented here can be directly applied is in the surface control of dye adsorp-

tion, crucial in liquid crystal systems where photo-alignment is needed, such as for

optical processing and storage. In these dye doped liquid crystal systems, the dyes
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may be adsorbed-desorbed whether there is light irradiation or not. The latter, called dark adsorption, is rather slow while adsorption in the presence of irradiation is a

much faster phenomenon [57]. During irradiation, one substrate receives light while the other remains dark; thus, the dynamics of the two substrates are completely different. This problem was theoretically explored by considering diffusing dyes in a potential field created near the surfaces by Van-der-Waals and electrostatic interactions and the specific parameters of liquid crystals such as orientational and translational order parameter. It is found that, during irradiation of one surface, the kinetics of adsorbed dyes at one surface differs from the other as we have found here analytically [58]. 

Another remarkable application for the model we are discussing is the adsorp-

tion onto Janus grains [59]. These particles can be spherical, cylindrical or disk-like nanoparticles whose surfaces are treated to present two or more physical-chemical

properties. When studied via Monte Carlo simulations [60], the adsorption of polyelectrolyte chains onto charged Janus nanospheres were found to change when par-

ticle size and screening length of the electrolyte varied. In addition, the behavior

encountered differ from uniform spheres, and applications in biological systems

such as for the complexation of non-homogeneously charged proteins may be found. 

The model presented here incorporates the key ideas behind such phenomena, and

may be extended by solving the set of fundamental equations in spherical coordinates

to get analytical results of Janus spheres adsorbing neutral particles. A further extension is to consider charged particles connecting the model with the Poisson equation

having in mind the study of the electrical response of insulating fluids containing

ions [22], along the lines sketched in Sect. 6.1.1. 

The mathematical formalism discussed in this section is also important for several

soft matter and chemical physics systems since inhomogeneities, in general, are

difficult to eliminate in experimental situations. There may be variation in adsorption energies, for example, resulting from different crystal planes, cracks, edges and lattice defects accessible by the diffusing particles [61]. Even if some simplifications have to be implemented to render the mathematical problem treatable by classical methods, 

as we have done above, the introduction of memory kernels and different mechanism

for the adsorption–desorption processes enhance the usefulness of the approach to

deal with experimental problems deserving a more complete description. 

To illustrate the usefulness of the mathematical formalism, we use a simple, well

known model [62] to explore now some general characteristics of the diffusion and adsorption–desorption of neutral particles in a medium with periodically varying

diffusion coefficient. 

 6.3.2

 Confined Systems: Periodically Varying Medium

The presence of a modulation in the diffusive behavior of the particles closely resembles the structure of a layered material such as the modulated liquid-crystalline structure as the chiral nematic phase [63]. Chiral nematics self-organize in a helical shape
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that repeats itself within a length called pitch. They may be viewed as composed of

pseudolayers [63], and are great candidates for several optical and photonic applications [64, 65]. In chiral nematics, photo-induced diffusion during polymerization has been used to control the pitch [66] and to regulate molecular diffusion [43]. Furthermore, diffusion of chiral dopants has been studied in connection with transport

and technological applications [67], to differentiate chirality [68–70] and for optical sensing of organic vapor [71]. 

To analytically investigate these system is a hard task, mainly if we include mem-

ory effects during the adsorption–desorption process [47, 53]. The particle distributions in the bulk and at the substrates have to be calculated in terms of the physical parameters governing the system, and the variance or the mean square displacement

allows us to explore the existence of different diffusive regimes. 

A simple mathematical model can be formulated as follows [72]. We consider a sample in the shape of slab where particles are allowed to diffuse through a liquid (see Fig. 6.1). For simplicity, we assume the liquid is isotropic, but is spatially modulated, so the diffusion coefficient periodically changes in space. We also assume that the

only relevant coordinate is the  x  axis in the Cartesian frames, and the sample is limited by substrates located at  x = ± d/ 2, so the thickness of the sample is  d. In this situation, the density of particles in the bulk,  ρ(x, t), obeys the diffusion equation:





 ∂ρ

 ∂

 ∂ρ

=

 D(x)

 , 

(6.97)

 ∂t

 ∂x

 ∂x

where  D(x)  represents the spatially varying diffusion coefficient. We may consider that  D(x) =  D[1 +  α  cos (kx)], where  D  is the average (over space) diffusion coefficient,  α  is the amplitude of the variation (0 ≤  α <  1 )  and  k  is the wavenumber, so it controls the number of  π-turns the diffusion coefficient has across the cell. In this simple approach, such modulation can be understood as the natural periodicity

that occurs in chiral nematic liquid crystals when diffusion takes place parallel to

the helical axis [73]. One possibility is to consider that, initially, all the particles are placed in the center of the sample, that is,  ρ(x, t = 0 ) =  ρ 0 δ(x), where  ρ 0 is the total number of particles and  δ(x)  is the Dirac delta function. Once the particles arrive at the substrates, they may be adsorbed and desorbed. The density of adsorbed particles

is given by  σ(t), and obeys the following kinetic equation

 t



 dσ =  κρ(± d/ 2 ,t) − K (t −  t )σ(t )dt . 

(6.98)

 dt

0

Equation (6.98) is a simple balance equation, which may be viewed as a linearization of the Langmuir dynamics, identical to Eq. (6.74). Thus, we may recall that the parameter  κ  is connected with the rate of adsorption while K (t)  is a function that governs the desorption process. In a simple case, in which the kernel is a localized

function of time, as in Eq. (6.95), it may be connected with a chemisorption process whose desorption parameter is  τ [47]. 
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A different situation is obtained when the kernel is a non-localized function of

time, as in Eq. (6.96), which represents a memory effect (measured by the memory time  τa) in the adsorption–desorption phenomena and it may be connected with the physisorption process. To proceed, in addition to Eqs. (6.97) and (6.98), we have to invoke again the conservation of the number of particles at any time, given by

 d/ 2



2 σ +

 ρ(x, t)dz =  ρ 0 d, 

(6.99)

− d/ 2

which also implies that



 ∂



 D(x)

 ρ(x, t)

= ±  d σ (t). 

(6.100)

 ∂x



 dt

 x=± d/ 2

The set of Eqs. (6.97), (6.98) and (6.99) or (6.100) has analytical solutions only for  D =constant. This is not the case here, in which a spatially varying diffusion constant is being considered. In this more general case, the set of equations has to be solved numerically and the results have shown that changing from a medium without

modulation to a modulated medium causes a great impact in the adsorption curves, 

which are more pronounced in adsorption processes with longer memory (typically

occurring in physisorption processes) [47, 53, 72]. 

It is also clear that the bulk modulation is important during the spreading of

particles, that is, the dynamical process, affecting both bulk and surface distributions. 

The distributions eventually reach the same equilibrium state, independently of the

existence of any bulk modulation. 

To understand the role played by the bulk modulation and surface parameters on

the diffusive regimes inside this confined system, it is helpful to calculate the mean square displacement, given by  (x) 2 =  (x −  x ) 2. It is important to notice that the model presented here is a simplification made to capture some important features of confined modulated materials, such as smectic and cholesteric liquid crystals and other lamellar systems. In the recent years, several functional smart controlled

materials have been produced. Among them, for example, several phototunable and

thermaltunable cholesterics [74–77] have been made to be applied in a myriad of applications, most of which between confining walls. It is only natural to assume that, upon tuning the modulation, for example, by changing the pitch of cholesteric materials, one may expected changes in the diffusion properties as the ones reported here. 

Indeed, it is likely that by controlling the spatially changing diffusion coefficient, one can produce systems to be studied in the laboratory where diffusive regimes can

be fabricated and controlled on demand. In any case, this kind of approach provides

a framework to understand diffusive regimes in limited systems, which have direct

connection with many systems of interest, including and definitely beyond the use

in liquid crystal devices, biological systems such as occurring in diffusion through

living cells and cell membrane [78], among many others. 
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Chapter 7

Reaction-Diffusion Problems

Abstract In this chapter, we start by investigating the adsorption-desorption phenomenon followed by a reaction process that may occur on a surface in contact with

a system composed of two different kinds of particles, 1 and 2. We consider that

generalized diffusion equations govern the diffusion of particles of the system in

the bulk. Depending on the conditions required to describe the bulk dynamics, these

generalized equations may also be related to the fractional diffusion equations. The

processes on the surface are also assumed to be related to linear kinetic equations with memory effects, which may be connected to an unusual (or non-Debye) relaxation. 

In this approach, we may obtain the behavior of the quantities on the surface, where

the processes are present, and in the bulk. Subsequently, we consider the diffusion

and reaction processes when surfaces do not limit the system as in the first case, thus obtaining a rich class of behaviors and connecting the processes with the continuous time random walk approach. Furthermore, we also consider the diffusion and

reaction processes by incorporating a finite phase velocity into the bulk equations. 

7.1

Diffusion and Kinetics

Let us start our discussion by defining the region where the particles are diffusing [1]. 

It is a semi-infinity medium with a surface located at the origin, where the particles 1 and 2 (species or substances) may be adsorbed, desorbed, or both, as the one

illustrated in Fig. 6.2. The particles absorbed, that is, which are removed from the system, by the surface may also react and promote the formation of the other particle. 

For simplicity, we treat the diffusion as one dimensional along the  x-direction, with the particles in the bulk governed by the fractional diffusion equations [2]





 ∂

 ∂ 2

 ρ

 ρ

 , 

(7.1)

 ∂  1 (x, t) =  K 1  Fα 1

1 (x , t )

 t

 t

 ∂x 2
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and





 ∂

 ∂ 2

 ρ

 ρ

 , 

(7.2)

 ∂  2 (x, t) =  K 2  Fα 2

2 (x , t )

 t

 t

 ∂x 2

for 0  < x < ∞. In Eqs. (7.1) and (7.2),  K 1 and  K 2 are the generalized diffusion coefficients related to the particles 1 and 2, respectively. The quantities  ρ 1 (x, t)  and ρ 2 (x, t)  represent the density of each particles present in the bulk and  Fαi {· · · }

 t

in

Eqs. (7.1) and (7.2) is the operator

 t



 ∂

 Fαi { ρ

 t

 i (x , t )} =

 dt  K

 ∂

 i (t −  t  )ρi (x , t  ), 

(7.3)

 t

0

where K i (t)  defines the fractional operator to be considered or the memory effect related to the system under analysis. It is the extension of the operator defined in

Eq. (5.140) to the case of two diffusing species. Indeed, hereafter  i = 1 stands for species 1 and  i = 2 for species 2, to simplify the notation. 

For example, the case characterized by the power-law as in Eq. (6.38), that is, K i (t) =  tαi−1

(7.4)

  (αi)

corresponds to the well-known Riemann-Liouville fractional operator for 0  < αi < 1, and

1



K i (t) =

 dαi p(αi ) tαi−1

(7.5)

  (αi)

0

yields fractional operators of distributed order, where  p(αi )  is a distribution related to the fractional parameter  αi , as in Eq. (5.39). Another possible functions for the kernels are, for example, the exponentials [3] or Mittag-Leffler functions [4]. Typical situations with these functions are given by

K i (t) =  N (αi ) e− αit

(7.6)

and

K i (t) =  N (αi )  E α (− α

 i

 i t αi ) , 

(7.7)

where  αi =  αi /( 1 −  αi ). In Eqs. (7.6) and (7.7),  N (αi )  is a normalization factor and E α(x)  is the Mittag-Leffler function defined in Eq. (1.217), which is asymptotically governed by a power-law, that is, E α(x) ∼ 1 /x. 

These choices for K i (t)  show that the Riemann-Liouville operator has a singularity at the origin ( t = 0), while the others are non-singular operators [3–8], and may also involve different regimes of diffusion as discussed in Sect. 5.6. 
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On the surface, we consider that the processes are governed by the following

equations:



 t



 ∂



 K



1

 Fα 1 { ρ

=  d C (t) +

 k

 ∂

1 (x , t )}

 s

11 (t −  t  )ρ 1 ( 0 , t  )dt 

 x

 t



 dt

1

 x=0

0

 t



−

 k 12 (t −  t )ρ 2 ( 0 , t )dt

(7.8)

0

and



 t



 ∂



 K



2

 Fα 2 { ρ

=  d C (t) +

 k

 ∂

2 (x , t )}

 s

22 (t −  t  )ρ 2 ( 0 , t  )dt 

 x

 t



 dt

2

 x=0

0

 t



−

 k 21 (t −  t )ρ 1 ( 0 , t )dt , 

(7.9)

0

where  k 11 (t),  k 12 (t),  k 21 (t), and  k 22 (t)  are related to the rate of particles absorbed and released by the surface. 

In these equations,  Cs (

 (

1  t )  and  Cs  2  t )  represent the density of particles on the surface which are adsorbed or desorbed. For the adsorption and desorption processes

on the surface, we assume that they may be modeled by the following equations:

 t



 Cs (

 κ

1  t ) =  C 0 ,  1 (t ) +

1 (t −  t  )ρ 1 ( 0 , t  )dt 

(7.10)

0

and

 t



 Cs (

 κ

2  t ) =  C 0 ,  2 (t ) +

2 (t −  t  )ρ 2 ( 0 , t  )dt  . 

(7.11)

0

In Eqs. (7.10) and (7.11),  ρ 1 ( 0 , t)  and  ρ 2 ( 0 , t)  are the bulk densities of species 1

and 2 just in front of the surface, respectively. The kernel  κi (t), with  i = 1 and 2, is connected to the adsorption-desorption phenomena. For instance, the kernel

 κ 

 κi(t) =

 e− t/τ

 τ

may be related to the kinetic equation
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 d Cs (t) =  κτρi( 0 ,t) −  Csi(t), i = 1 and 2 , 

(7.12)

 dt

 i

for a suitable  C 0 ,i (t), as we have discussed in connection with Eq. (6.46). 

Another expressions of  κi (t)  imply different kinetic equations governing the processes on the surface, such as the case

 γ−



1

 γ 

 κ

 t

 t

 i (t ) =  κ

E

−

 , 

(7.13)

 τ

 γ,γ

 τ

where the generalized Mittag-Leffler function defined in Eq. (1.227) has been used. 

The kernel given by Eq. (7.13) is connected to the fractional kinetic equation τγ dγ Cs (t) =  κτρi( 0 , t) −  Cs (t), 

(7.14)

 dt γ

 i

 i

where the fractional operator in the Caputo’s sense is defined as follows:

 t



 dγ

 C 

 s (t )

 C

 i

 s (t ) =

1

 dt

 , 

(7.15)

 dt γ

 i

  ( 1 −  γ )

 (t −  t)γ−1

0

for 0  < γ <  1, with

 (t)

 C 

 s (t ) ≡  dCs i

 i

 dt

corresponding to the first order time derivative. 

As usual, Eqs. (7.10) and (7.11) state that the time variation of the density of particles on the surface depends on the bulk density of particles just in front of

the surface, and on the surface density of particles already sorbed. They may be

considered extensions of the usual kinetic equations (Langmuir approximation) in

the integral form to situations characterized by unusual relaxations, that is, non-

Debye relaxation processes for which a non-exponential behavior of the densities

can be obtained, depending on the mathematical expression of the kernels [9–11]. 

The underlying physical motivation of the time-dependent rate coefficients can be

related with the fractal nature, low-dimensionality or macromolecular crowding of

the medium, and even with the anomalous molecular diffusion. From a phenomeno-

logical point of view, the choice of the kernels of the Eqs. (7.10) and (7.11) can be related to surface irregularities [12], which are important for adsorption–desorption, to diffusion, to catalysis processes, and to microscopic parameters representing the

van der Waals interaction between the particles and the surfaces. 

Finally, we mention that Eqs. (7.8) and (7.9) are coupled with Eqs. (7.10)

and (7.11) in such a way that processes occurring in one side for each species modify the dynamics of the other side. The searched solutions are also subjected to the

homogeneous boundary conditions
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 ∂xρ 1 (∞ , t) = 0 and  ∂xρ 2 (∞ , t) = 0 . 

(7.16)

By using the boundary conditions Eq. (7.16), it is possible to analyze the behavior of the particles in the bulk, that is, how the changes on the distribution of one species influence the distribution of other species. After performing some calculations, we

have

⎡

⎤

∞



 t



 d ⎣  ρ

⎦

1 (x , t )d x +  Cs (t )

=  k 12 (t −  t )ρ 2 ( 0 , t )dt

 dt

1

0

0

 t



−  k 11 (t −  t )ρ 1 ( 0 , t )dt

(7.17)

0

and

⎡

⎤

∞



 t



 d ⎣  ρ

⎦

2 (x , t )d x +  Cs (t )

=  k 21 (t −  t )ρ 1 ( 0 , t )dt

 dt

2

0

0

 t



−  k 22 (t −  t )ρ 2 ( 0 , t )dt , (7.18)

0

where some terms, like  k 11 (t)  or  k 22 (t), imply a withdrawn of the particles from the bulk, whereas other terms, like  k 12 (t)  or  k 21 (t), are related to the releasing of particles from the surface to the bulk. 

For the particular case  k 11 (t) =  k 21 (t) =  k 1 (t)  and  k 22 (t) =  k 12 (t) =  k 2 (t), it is possible to demonstrate that

⎡

⎤

⎡

⎤

∞



∞



 d ⎣  ρ

⎦

⎣

⎦

1 (x , t )d x +  Cs (t )

= −  d

 ρ 2 (x, t)dx +  Cs (t) , (7.19)

 dt

1

 dt

2

0

0

which implies

∞



∞



 Cs (

 (

 ρ

 ρ

1  t ) +  Cs  2  t ) +

2 (x , t )d x +

1 (x , t )d x = constant  . 

(7.20)

0

0

Equation (7.20) is a direct consequence of the conservation of the total number of particles present in the system. Equation (7.19) also shows that the mass (number of particles) variation of the species 1 is connected to the corresponding variations of the species 2. Indeed, the negative signal shows that the variation of the concentration of particles related to one species (gain or loss) produces an opposite variation on the
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concentration of other species. As expected, the set of Eqs. (7.10) to (7.20) covers a general scenario from which some specific situations can be investigated. 

Let us consider the special case characterized by the initial conditions:

 ρ 1 (x,  0 ) =  ϕ 1 (x), ρ 2 (x,  0 ) =  ϕ 2 (x),  and  Cs (

 (

1 0 ) =  Cs  2 0 ) = 0 , 

(7.21)

with

∞



∞



 d x ρ 1 (x,  0 ) = 1 and

 d x ρ 2 (x,  0 ) = 1 . 

0

0

These conditions indicate that the particles are initially in the bulk. The equations previously presented can be solved by using the Laplace transform and the Green’s

function approach in order to simplify the calculations. By applying the Laplace

transform to Eqs. (7.1) and (7.2), we obtain, respectively, 

 ∂ 2

 K  1 (s)

 ρ (x, s) =  sρ (x, s) −  ρ

 ∂

1 (x ,  0 ), 

(7.22)

 x 2 1

2

and

 ∂ 2

 K  2 (s)

 ρ (x, s) =  sρ (x, s) −  ρ

 ∂

2 (x ,  0 ), 

(7.23)

 x 2 2

2

with

 K  1 (s) =  sϕ (

 (

1  s)K 1

and  K  2 (s) =  sϕ 2  s)K 2 , 

(7.24)

where  ϕ (

 (

 i s) =  L{ ϕi (x );  s} and  ρi x , s) =  L{ ρi (x , t );  s}. To proceed further, in the Laplace domain, the boundary conditions can be written as



 ∂







 K



2 (s)

 ρ (x, s)

=  s κ

 ρ ( 0 , s) −  k

 ( 0 , s) (7.25)
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1 (s) +  k 11 (s)

12 (s)ρ

 x  1



1

2

 x=0

and
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 K



2 (s)

 ρ (x, s)

=  s κ

 ρ ( 0 , s) −  k

 ( 0 , s), (7.26)

 ∂

2 (s) +  k 22 (s)

21 (s)ρ

 x  2



2

1

 x=0

where

 ∂xρ (∞ , 

 (∞ , 

1

 s) = 0 and  ∂x ρ 2

 s) = 0 , 

(7.27)

with  κi (s) =  L{ κi (t);  s} and  ki j (s) =  L{ ki j (t);  s}. The solutions for these equations can be found by using the Green’s function approach, and they are given by
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∞



 ρ (

1  x , s) = −

 G 1 (x, x;  s)ϕ 1 (x )dx

0





+  G 1 (x,  0;  s) ω 1 (s)ρ (

 (

1 0 , s) −  k 12 (s)ρ 2 0 , s)

(7.28)

and

∞



 ρ (

2  x , s) = −

 G 2 (x, x;  s)ϕ 2 (x )dx

0





+  G 2 (x,  0;  s) ω 2 (s)ρ (

 (

 , 

2 0 , s) −  k 21 (s)ρ 1 0 , s)

(7.29)

with

 ωi(s) =  sκi(s) +  kii(s). 

(7.30)

The Green’s functions related to each species of particles are the solutions of the

following equations:

 ∂ 2

 K i (s)

 G

 ∂

 i (x , x ;  s) −  s Gi (x , x ;  s) =  δ(x −  x  ) (7.31)

 x 2

subjected to the boundary conditions





 ∂





 x Gi (x , x ;  s)

= 0 and  ∂

= 0 . 

(7.32)

 x=0

 x Gi (x , x ;  s) x→∞

After performing some calculations, we can show that the Laplace transformed

Green’s functions are given by

√

√



 G

 s/K i (s)| x− x|

 s/K i (s)| x+ x|

 i (x , x ;  s) = −

1



 e−

+  e−

 . (7.33)

2  s K i (s)

In Eqs. (7.28) and (7.29), the first term promotes the spreading of the initial condition and the other terms represent the influence of the surface on the diffusive process. 

From these equations, we can show that





 ρ (

 

1 0 , s) = − (s)

2 (s) I  1 (s) +  k 12 (s)

 I  2 (s)



(7.34)

 s K  1 (s)

and





 ρ (

 

 , 

2 0 , s) = − (s)

1 (s) I  2 (s) +  k 21 (s)

 I  1 (s)



(7.35)

 s K  2 (s)
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where

 (s) =

1





 , 

(7.36)

  1 (s) 2 (s) −  k 21 (s)k 12 (s)/ s K  1 (s)K  2 (s) with

 ω

 

 i (s)

 i (s) = 1 + 

(7.37)

 s K i (s)

and

∞



 I i (s) =

 d x Gi ( 0 , x;  s)ϕi (x ). 

(7.38)

0

These equations are helpful to determine the survival probability

∞



 Si (t) =

 d xρi (x, t), 

0

which is related to the quantity of substance (species 1 and 2) present in the bulk. By performing some calculations, we obtain, for each species, 





 S 1 (s) = 1 1 −  ω 1 (s)ρ ( 0 , s) +  k 12 (s)ρ ( 0 , s) , (7.39)

 s

1

2

and





 S 2 (s) = 1 1 −  ω 2 (s)ρ ( 0 , s) +  k 21 (s)ρ ( 0 , s) , (7.40)

 s

2

1

which completes the basic mathematical tool needed to pursue the analysis, where

 Si (s) =  L{ Si (t);  s}. 

 7.1.1

 Reversible Linear Reaction

We analyze now some particular cases encompassed in the previous calculations. One

of them is obtained when  κ 1 (t) = 0 and  κ 2 (t) = 0, that is, in the absence of adsorption process at the surface, with  k 11 (t) =  k 21 (t) =  k 1 (t)  and  k 22 (t) =  k 12 (t) =  k 2 (t). It describes the situation in which the particles 1 and 2 are absorbed by the surface to produce the reaction process 1  2, where each substance promotes the formation

of the other one which is released to the bulk. This process on the surface is typical of a reversible reaction. The distributions related to each species can be written as follows:
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∞



 ρ (

1  x , s) = −

 d x G 1 (x, x;  s)ϕ 1 (x )

0

√





−

 sG 1 (x,  0 , s)

√





 k 1 (s)I  1 (s) −  k 2 (s)I  2 (s) , 

 s +  k 1 (s)/ K  1 (s) +  k 2 (s)/ K  2 (s) (7.41)

and

∞



 ρ (

2  x , s) = −

 d x G 2 (x, x;  s)ϕ 2 (x )

0

√





−

 sG 2 (x,  0 , s)

√





 k 2 (s)I  2 (s) −  k 1 (s)I  1 (s) . 

 s +  k 1 (s)/ K  1 (s) +  k 2 (s)/ K  2 (s) (7.42)

The survival probability, related to the quantity of each species of particle present in the bulk, is given by



√ 





 s k 1 (s)I  1 (s) −  k 2 (s)I  2 (s)

 S 1 (s) = 1 1 + √





(7.43)

 s

 s +  k 1 (s)/ K  1 (s) +  k 2 (s)/ K  2 (s) and



√ 





 s k 2 (s)I  2 (s) −  k 1 (s)I  1 (s)

 S 2 (s) = 1 1 + √





 , 

(7.44)

 s

 s +  k 1 (s)/ K  1 (s) +  k 2 (s)/ K  2 (s) which implies that

 S 1 (t) +  S 2 (t) = constant . 

Equations (7.43) and (7.44) for the particular assumption  K i (s) =  K (s), with ϕi(x) =  δ(x −  x ), for  i = 1 ,  2, can be simplified to



√

√



 k

 s/K (s)| x|

 s/K (s)| x|

1 (s)e−

 S 1 (s) = 1 − 1 

−

 k 2 (s)e−



 , 

 s

 s

 s K (s) +  k 1 (s) +  k 2 (s)

 s K (s) +  k 1 (s) +  k 2 (s)

(7.45)

and
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√

√



 k

 s/K (s)| x|

 s/K (s)| x|

2 (s)e−

 S 2 (s) = 1 − 1 

−

 k 1 (s)e−



 . 

 s

 s

 s K (s) +  k 1 (s) +  k 2 (s)

 s K (s) +  k 1 (s) +  k 2 (s)

(7.46)

For the general results represented by Eqs. (7.41)–(7.44), we consider different time dependencies for  K (s),  k 1 (s), and  k 2 (s)  to perform the inverse Laplace transform. 

The first choice to be considered is

1

 t αi −1

 K i (s) =  Ki

⇐⇒ K i(t) =  Ki

 , 

 sαi

 (αi)

with  k 1 (s) =  k 1, because  k 1 (t) =  k 1 δ(t), and  k 2 (s) =  k 2, because  k 2 (t) =  k 2 δ(t). As pointed out before, this time dependence for the diffusion coefficient corresponds to the Riemann-Liouville fractional time operator in the diffusion equation. Thus, the

Green’s function is given by







|



 x −  x| 

 , αi )

 G RL (x, x;  t) = −

1

√

H1 ,  0

√

 ( 1− αi 2 2

 i

4 K

1 ,  1

 ( 0 ,  1 )

 i t αi

 Ki tαi





|



+

 x +  x| 

 , αi )

H1 ,  0

√

 ( 1− αi 2 2

 , 

(7.47)

1 ,  1

 K

 ( 0 ,  1 )

 i t αi

where we have used the H−function of Fox. By means of some calculations, we

obtain the asymptotic behavior for this case in the form



 α

 α

 i −1

2− αi

 G RL (x, x;  t) ∼ −

1

√

√

| x −  x|

 i

4 ( 2 −  αi )π Ki tαi

4 Ki tαi











|

2

2− α

×

 x −  x|

 i

exp −

 αi √ Kitαi









|

2

2− α

+

 x +  x|

 i

exp −

 αi √

 , 

(7.48)

 Ki tαi

where



 α  α



 α

2 −  αi

 i

 i /( 2− αi )

 i =

 . 

2

2

Equation (7.48) shows that the asymptotic behavior is characterized by a stretched-like exponential behavior, but for  α = 1 the usual result is recovered. In this framework, Eqs. (7.45) and (7.46) in the time-domain are, respectively, 
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 t













 dt 



 γ

| x| 

 )

 S 1 (t) = 1 −  (k 1 −  k 2 )

√

E α −  kt

√

 t −  t

H1 ,  0 √

 (σ,α 2

1 ,  1

 ( 0 ,  1 )

 K t  1+ γ

 K

 K t  α

0

(7.49)

and

 S 2 (t) = 2 −  S 1 (t), 

with  kt =  k 1 +  k 2 and  σ =  ( 1 −  α)/ 2. For the Caputo-Fabrizio operator, where Ki

 K i (s) =

 , 

(7.50)

 sαi +  αi

with 

 Ki =  Ni Ki  and  Ni =  N (αi ), the Green’s function is given by





−  (x− x ) 2

−  (x+ x ) 2

 GC F (x, x;  t) = −

1



 eαi t  e

4 

 Ki t

+  e  4 Kit

 i

4 

 Ki t

 t







−

−  (x− x ) 2

−  (x+ x ) 2

 dt   e− αi t



 e

4 

 Ki t

+  e  4 Kit  . 

(7.51)

4 

 Ki t

0

The previous equation, obtained when the Caputo-Fabrizio time operator is employed

in the diffusion equation, presents a time independent behavior for long times. In the asymptotic limit of  t → ∞, we have







−  αi |

 α

 x− x|

−

 i | x+ x|

 GC F (x, x;  t) →  GC F (x, x ) = −

1



 e



 K



 i

+  e Ki

 , 

 i

 st,i

2



 Ki

(7.52)

which is a steady-state solution. 

The relaxation process exhibited by each one of these Green’s functions shows

the main difference among these differential operators, when employed to describe

a diffusive process. In fact, the Caputo-Fabrizio operator yields, as shown above, a

steady-state, in contrast to the other operators considered here. This feature may be related to the resetting process, associated with this operator, as discussed in Sect. 5.6. 

The Atangana-Baleanu differential operator considered here introduces different

diffusive regimes on the spreading of the system [13], because this operator was related to a fractional time derivative of distributed order. For this case, in the Laplace domain, we have

 sαi

 K i (s) = 

 K 

 , 

(7.53)

 i sαi +  αi

and, after some calculations, the Green’s function is found to be
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∞

 (− α





 i )n

 (− )

 (+ )

 G AB (x, x;  t) = −

 tnαi G

 (x, x , t) +  G

 (x, x , t) , (7.54)

  ( 1 +  n)

 A B

 A B

 n=0

with

⎧
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⎨

 (± )
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 (x, x , t) =

1



⎣| x ±  x|



| ( 1 / 2+ nαi,  1 / 2 )⎦

 A B
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1 ,  1

 ( 0 ,  1 )

4 

 K  t αi



 K  t αi

 i
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⎤⎫

⎬

+

+ ( 1+ n)α

 )

 t αi −1 H1 ,  0 ⎣ | x ±  x|



| ( 12

 i ,  1

2

⎦  . 

(7.55)

1 ,  1



 ( 0 ,  1 )

⎭

 K  t αi

 i

Figure 7.1 illustrates the behavior of the Green’s function by taking into account a power-law kernel related to the Riemann-Liouville fractional operator. In Fig. 7.2, we consider an exponential kernel for the diffusion equations. In contrast to the Riemann-Liouville case, this kernel is not singular at the origin and yields a stationary solution for long times, as show in Fig. 7.3. Figure 7.4 compares the Green’s function obtained when these operators are employed with the operator of integer order, that is, the usual one. 

 7.1.2

 Irreversible Linear Reaction

In this section, we investigate the diffusion of two different species in a semi-infinite medium considering the presence of linear reaction terms. The dynamics for these

species is governed by fractional diffusion equations. We also consider the presence of an adsorption-desorption boundary condition. The solutions for this system are found

in terms of the H−function of Fox. The behavior of the mean square displacement

reveals the presence of a rich class of diffusion processes. As we have discussed

in Sect. 6.3, the problem we shall face here shows in detail how the surface effects modify the bulk dynamics and promote an anomalous diffusion in the system. 

7.2

Fractional Diffusion of Two Species

To deal with reaction processes in the context of the anomalous diffusion, several

works have raised the question about the suitable extension of a diffusive model to

be implemented when reaction terms are incorporated [14–18]. A formulation was proposed where the authors considered the fractional operator only acting on the

diffusive term [19]. However, this formulation may yield an unrealistic solution. A similar attempt was made, without success [20], in addition to other ways of extending the fractional diffusion equation to reaction contexts [21, 22]. To overcome possible
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Fig. 7.1 Trend of the Green’s function of Eq. (7.47) for different values of  αi , with  i = 1 ,  2. The curves were drawn for  Ki tαi /x 2 = 1. Modified from Lenzi and Lenzi [1]. Copyright © 2020 CRC

Press

Fig. 7.2 Trend of the Green’s function of Eq. (7.47) for different values of  α, using, for illustrative purposes,  Ki t/x 2 = 1. Modified from Lenzi and Lenzi [1]. Copyright © 2020 CRC Press
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Fig. 7.3 The Green’s function of Eq. (7.51) for different values of  t. It was drawn for  Ki t/x 2 =  t and  αi = 1 / 2. Modified Lenzi and Lenzi [1]. Copyright © 2020 CRC Press Fig. 7.4 Comparison of the Green’s functions of Eqs. (7.47) and (7.51) with the usual one for αi = 1 / 2, when  Ki = 1 and  x = 1. Modified from Lenzi and Lenzi [1]. Copyright © 2020 CRC

Press
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unrealistic problems, a mesoscopic formulation based on continuous-time random

walk was proposed, yielding some satisfactory results and, consequently, working as

a guide to incorporate reaction terms in the fractional diffusion equations [23–25]. 

In this framework, the presence of linear reaction terms [24] yields



 ∂

 ∂ 2 



 ρ(x, t) =  K e− kt D1− α

 ekt ρ(x, t)

−  kρ(x, t), 

(7.56)

 ∂t

0

 t

 ∂x 2

where  ρ(x, t)  represents a density function of a certain species,  K  is the diffusion coefficient, and  k  is related to the reaction process present in the bulk, 0D α  is the t

Riemann-Liouville fractional derivative defined by Eq. (4.64), here rewritten, for commodity, as

 t



 d

 dt 

0D α f (t ) =

1

 f (t ), 

(7.57)

 t

 (α) dt

 (t −  t ) 1− α

0

for 0  < α <  1, whereas, as discussed in Sect. 4.3, when  α = 1 the standard form of the differential operator of first order is recovered. Equation (7.56) was also generalized to the case of  N  species by taking into account linear reaction terms, where solutions for the cases with two species in a reversible 1  2 and irreversible process 1 → 2 were obtained [23]. 

Our aim is to analyze the solutions of these processes governed by fractional

diffusion equations for the two species, in a semi-infinite space as the one illustrated in Fig. 6.2, that is,  x ≥ 0, with adsorption-desorption boundary conditions, where a irreversible process of the kind 1 → 2 is present in the bulk. We consider the

following equations [26]:





 ∂

 ∂ 2

 ρ(x, t) =  eR t

K  e−R t ρ(x, t) + R  ρ(x, t), 

(7.58)

 ∂

0D1− α

 t

 t

 ∂x 2

and the boundary conditions





 ∂



 e− kt K



1 0D1− α

 ekt ρ

= − φ(t); 

(7.59)

 t

 ∂

1 (x , t )

 x

 x=0



 ∂



 K



2

 ρ

= 0 , 

(7.60)

 ∂

2 (x , t )

 x

 x=0

where  φ(t)  may be chosen to represent a given adsorption-desorption process. In Eq. (7.58),  ρT (x, t) = [ ρ 1 (x, t), ρ 2 (x, t)] is related to the numbers of species present in the bulk, whereas R and K are, respectively, the matrices









− k  0

 K

R =

and K =

1

0

 . 

(7.61)

 k  0

0  K 2
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The results obtained from Eq. (7.58) have been used to investigate biological systems [27, 28]. They have also been applied to analyze experimental results of fluorescence recovery after photobleaching (FRAP) in biological systems [29], which is an experimental method widely used to explore binding interactions in cells in

vitro and in vivo [30]. The results obtained from Eq. (7.58) subjected to Eqs. (7.59)

and (7.60) are helpful to explain how the processes present on the surface and in the bulk (reaction) influence the dynamic of the species present in the system, as we shall discuss now. 

7.3

Subdiffusion and Linear Reaction

Let us focus our attention on the solutions of Eq. (7.58) for the two species, by considering that initially in the bulk one of the species is present and the other is absent, that is, 

 ρ 1 (x, t = 0 ) =  δ(x)  and  ρ 2 (x, t = 0 ) = 0 . 

This way we may analyze how the reaction process influences the spreading of the

species 1 and the production of the species 2, as well as the surface effects on both. 

We can rewrite Eq. (7.58) as a set of two coupled equations as follows:





 ∂

 ∂ 2

 ρ

 ekt

 ρ

−  kρ

 ∂  1 (x, t) =  e− kt K 1 0D1− α

1 (x , t )

1 (x , t )

(7.62)

 t

 t

 ∂x 2

and
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 ∂ 2

 ρ

+  kρ

 ∂  2 (x, t) =  K 2 0D1− α

[ ρ 1 (x, t) +  ρ 2 (x, t)]

1 (x , t )

 t

 t

 ∂x 2



 ∂ 2

−  K 1  e− kt  0D1− α ekt

 ρ

 t

 ∂

1 (x , t )

 x 2





 ∂ 2

−  (K 2 −  K 1 )  0D1− α ekt

 ρ

 . 

(7.63)

 t

 ∂

1 (x , t )

 x 2

These equations are coupled by the reaction term: the fact that  k = 0 and  K 1 =

 K 2 corresponds to a particular case worked out before [23]. This set of equations subjected to the boundary conditions given by Eqs. (7.59) and (7.60) can be solved using the cosine-Fourier transform, defined by Eq. (1.16), whose inverse is defined as

∞

$

%



 F−1  f (ω, t);  x = 2

 dω  cos (ωx) f (ω, t), 

(7.64)

 c

 π  0
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and the Laplace transform and its inverse, defined in Sect. 1.1.2. Applying these integral transforms to Eqs. (7.62) and (7.63), after promoting the following changes of variables

 χ(t) =  φ(t)ekt,  1 (x, t) =  ρ 1 (x, t)ekt,  and  P(x, t) =  ρ 1 (x, t) +  ρ 2 (x, t), (7.65)

we obtain





 P(ω, s) =

1

cos (ωl) +  (K 2 −  K 1 )s 1− αω 2

  (ω, s)

 s +  K

1

2 s 1− α ω 2



+

 K 2 s 1− α

 φ(s) −  (K 2 −  K 1 )  1  χ(s) , 

(7.66)

 K 1 (s +  k) 1− α

 K 1

and



  (ω, s) =

1

1

[cos (ωl) +  χ(s)]

(7.67)

 s +  K 1 s 1− αω 2

for the initial conditions

 ρ 1 (x,  0 ) =  δ(x −  l)  and  ρ 2 (x,  0 ) = 0 , where  χ(s) =  L{ χ(t);  s}. In addition, in the Fourier-Laplace space we are using  (ω, 



 s) =  F

 P(ω, s) =  F

1

 c { L{  1 (x , t );  s};  ω}

and

 c{ L{  P (x , t );  s};  ω} . 

After finding the inverse Fourier transform of Eqs. (7.66) and (7.67), we obtain, respectively, 

√
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√

+

1

√

1

 e−  sα/K 2 x (K 2 −  K 1 )

− 1  φ(s)

 s

 K 2 /sα

 K 2

 K 1



∞



+  K 2 s 1− α

 φ(s)

−

 d x

 K 2 −  K 1

√

 ( 1 −  s) (x , s) ×

 K

1

1 (s +  k) 1− α

2 s K 2  K 2 /sα

0

√

√



×  e−  sα/K 2| x− x| +  e−  sα/K 2| x+ x|

(7.68)

and
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√
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(7.69)

Thus, by means of the Laplace integral transform, we obtain for the species 1
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(7.70)
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For the species 2, we may use the equation  ρ 2 (x, t) =  P(x, t) −  ρ 1 (x, t), where

& 











' 

 K 1



 , α )



 , α )

 P(x, t) =

1

√

H1 ,  0  −  ( 1−  α 2 2

+ H1 ,  0  +  ( 1− α 2 2

4 K

1 ,  1

 l

 ( 0 ,  1 )

1 ,  1

 l

 ( 0 ,  1 )

1 t α K 2

∞



 t











 ∂

−



 , α )

 d x

 dt  K  H1 ,  0  −  ( 1−  α 2 2

1 −

 

1 ,  1

 x

 ( 0 ,  1 )

 ∂

1 (x  , t  )

 t 

0

0

∞



 t












 ∂

−



 , α )

 d x

 dt  K  H1 ,  0  +  ( 1−  α 2 2

1 −

 

1 ,  1

 x

 ( 0 ,  1 )

 ∂

1 (x  , t  )

 t 

0

0

 t









+

 dt 

 x

√



 , α )

H1 ,  0 √

 ( 1− α 2 2  (t −  t ), 

(7.71)
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(7.72)
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where, for compactness, we have introduced the following quantities:

|
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In Eqs. (7.70) and (7.71), we have again the presence of H−function of Fox, whose properties we have discussed in Sect. 1.3.3, which may be faced as a track for anomalous behavior. 

As a matter of fact, we recall that the asymptotic behavior of this function in these equations is essentially characterized by stretched exponentials. As expected, after

some calculations, we obtain
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(7.73)

By using these results, we may obtain the survival probabilities

∞



∞



 S 1 (t) =

 ρ 1 (x, t) dx  and  S 2 (t) =

 ρ 2 (x, t) dx, 

(7.74)

0

0

which are related to the quantity of each species in the bulk. For species 1, we have t



 S 1 (t) =  e− kt +  e− kt

 dt  ekt  φ(t ), 

(7.75)

0

and, for the species 2, 
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(7.76)

 K 1

0

It is instructive to analyze the previous results in a situation characterized by a surface with a variable flux  φ(t) =  κe− t/τ  for the species 1. The constant  κ  is related to the rate of adsorption of the particles at the surface from the bulk and the parameter  τ

represents a characteristic time, as usual in this process. From these equations, we

observe that for  κ = 0 the survival probability  S 1 (t)  decreases exponentially, that is, S 1 (t) =  e− kt , with the production of the species 2 given by  S 2 (t) = 1 −  e− kt . The case  κ >  0 and  k = 0 is characterized by the absence of reaction with a flux through the surface in contact with the bulk. The behavior of  S 1 (t)  and  S 2 (t)  is illustrated in

Fig. 7.5 for different conditions, represented by the different values of the parameters. 
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Fig. 7.5 Survival probabilities from Eqs. (7.39) and (7.40) versus  t  for different contexts. In (a), the solid, dashed-dotted, and dashed lines correspond to the case  κ = 1, with  τ = 1 / 3;  κ = 0, with τ = 1; and  κ = 1 / 2, with  τ = 1, respectively. In all cases, we have used, for illustrative purposes, k = 1. In (b), the dashed line corresponds to the case  k = 1,  κ = 1,  τ = 1 / 3, and  K 1 = 2 K 2. The dotted line represents  k = 1,  κ = 0,  τ = 1, and  K 1 =  K 2. The solid line is for  k = 1,  κ = 1 / 2, τ = 1, and  K 1 =  K 2. Modified from Santos et al. [26]. Copyright © 2017 Maike A. F. dos Santos et al. Open access article distributed under the Creative Commons Attribution License Let us now focus our attention on the time dependence of the mean square displacement  (x) 2 =  (x −  x ) 2. Figure 7.6 shows the behavior of  (x) 2 for the species 1, when Eqs. (7.70) and (7.71) are considered. For initial times, it is characterized by a power-law,  (x) 2 ∝  tα, whereas for long times, it decreases exponentially. In this case, we have

 (x) 2 ∼

2 K 1 tαe− kt

 , 

(7.77)

1

 ( 1 −  τk)(α + 1 )

in the asymptotic limit of long times. The behavior exhibited by the species 2 for

long times is different from the one exhibited by species 1. It is characterized in
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Fig. 7.6 The mean square displacement for the species 1 versus  t, when  K 1 = 1 and  k = 0 .  1. In (a), the dashed-dotted line corresponds to  κ = 1, with  τ = 1, and the dashed line to  κ = 0. In (b), the dashed-dotted line is the case  κ = 1 and  τ = 1 whereas the dashed line corresponds to  κ = 0. 

The straight lines are used to highlight the asymptotic behavior for short times, which for  α = 1 is normal whereas for  α = 1 is anomalous. Modified from Santos et al. [26]. Copyright © 2017 Maike A. F. dos Santos et al. Open access article distributed under the Creative Commons Attribution License

the asymptotic limit of  t → ∞ by a power-law,  (x −  x ) 2 ∝  tα, for  k = 0 (see

Fig. 7.7). This is essentially the same behavior as the one obtained for the fractional case in the absence of reaction term. In both Figs. 7.6 and 7.7, we have also added straight lines to highlight the behaviors exhibited during the spreading of the species. 

It is remarkable that Fig. 7.7b shows three different regimes for the second species. 
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Fig. 7.7 The mean square displacement for the species 2 versus  t. In (a), the dotted line corresponds to  K 1 =  K 2 = 1,  κ = 1,  τ = 1 and  k = 0 .  01. The dashed line to  K 1 =  K 2 = 1, with  κ = 0, and the solid line is the case  K 1 = 1,  K 2 = 3 .  5,  κ = 1, and  τ = 1, with  k = 0 .  01. In (b), the dotted line is the case  κ = 1 and the solid line corresponds to  κ = 0, respectively. The curves were drawn for  K 1 =  K 2 = 1,  τ = 1, and  k = 10−2. The straight lines are to evidence the different behavior of the mean square displacement. Modified from Santos et al. [26]. Copyright © 2017 Maike A. F. 

dos Santos et al. Open access article distributed under the Creative Commons Attribution License In Fig. 7.8, we have shown that the behavior for intermediate times exhibited by the mean square displacement depends on parameters values. The difference between

the dotted and the dashed lines is the value of  k  which, in this case, shows a direct influence on the behavior of  (x) 2 for intermediate times, before the system reaches 2

the asymptotic behavior. 

Another remarkable behavior present in these systems is illustrated in Fig. 7.9, 

where plateaus may be exhibited in some time intervals due to the boundary condi-

tions considered for the species 1. The plateau for this species indicates that, during this time interval, the flux by the surface related to species 1 is essentially in equi-
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Fig. 7.8 The mean square displacement for the species 2 versus  t  for  α = 1 .  0. The solid line corresponds to  k = 10−2 and the dashed line is the case  k = 10−3. The curves were drawn for K 1 =  K 2 = 1,  κ = 1, and  τ = 1. The dotted lines are used to highlight the different behaviors of the mean square displacement. Modified from Santos et al. [26]. Copyright © 2017 Maike A. F. dos Santos et al. Open access article distributed under the Creative Commons Attribution License librium with the reaction process in the bulk, yielding a stationary state for the

distribution related to this species while the species 2 is produced. 

In summary, the coupling of the diffusion equations by means of the reaction term

shows a direct consequence on the spreading of two species. This feature is exhibited by the behavior of the mean square displacement obtained from the Eqs. (7.62) and

(7.63) for the species 1 and 2, which yields an anomalous diffusion for both. In particular, for the species 2, different diffusive behaviors are present. The intermediate behavior exhibited by the mean square displacement before reaching the asymptotic

limit depends on the values of the parameters present in Eq. (7.58). The survival probability is shown to depend on the form of the boundary conditions, that is,  φ(t), which is directly proportional to the flux of particles through the surface. 

296

7

Reaction-Diffusion Problems

Fig. 7.9 The mean square displacement for species 1 versus  t, when different boundary conditions are used. In (a), the dashed-dotted line corresponds to  κ = 1 with  τ = 104 and the solid line to κ = 0. To draw these curves we used  K 1 = 1 and  k = 1. In (b), the dashed-dotted line is for  κ = 1, with  τ = 106, and the solid line considers  κ = 0. The straight lines are also used here to highlight the different behaviors of the mean square displacement. Modified from Santos et al. [26]. Copyright

© 2017 Maike A. F. dos Santos et al. Open access article distributed under the Creative Commons Attribution License

7.4

Hyperbolic Diffusion Equation with Reaction Terms

In this section, still seeking for the effect of finite propagation speeds in a system with two reacting species, we investigate diffusing and reacting particles governed

by a hyperbolic diffusion equation, that is, the Cattaneo equation, which describes

a diffusion process with finite propagation velocity, in the presence of a constant

external field and reaction terms [31]. These reaction terms are linear and may be
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related to irreversible and reversible processes, including memory effects, depending on the values of the reaction rates. 

As stressed before, diffusion phenomena occur in nearly every area of research, 

from astronomy [32] to biophysics [33] and economy [34]. There are several examples of processes involving simultaneous diffusion and chemical reaction, such as

in engineering [35], biological systems [36], chemistry [37], and physics [38–40]. 

Reaction-diffusion systems have attracted great attention in recent years and have

been studied in a wide variety of biological and chemical systems [41–44]. They often present complex behavior and display challenging phenomena as, for instance, 

pattern formation, moving fronts, and oscillations [45–47]. Solutions for diffusion-reaction systems have been explored analytically [39], numerically [48], and, more recently, by means of convolutional neural networks [49]. In general, the above mentioned phenomena are described in terms of differential equations, more specifically, by using the so-called diffusion equation [50], based on the Fick’s law, that connects the time-dependent movement of particles to the concentration gradients

occurring in the sample. As is well known, the usual diffusion equation presupposes

the infinite speed of propagation [51]. In order to address this serious issue, Cattaneo [51] proposed a model in which the finite speed of propagation is taken into account by considering the history of the concentration gradient. Thus, the Cattaneo

equation has a deeper physical meaning when compared to the one based on the

Fick’s law. The Cattaneo equation has been ever since applied in several studies

such as in a binary fluid mixture [52], adsorption–desorption phenomena of neutral particles [53], systems with finite domain [54], and biological and ecological systems [55, 56]. Even anomalous transport processes were studied with a generalized Cattaneo equation, where short-time behaviors are not observed with anomalous

diffusion equations [57]. 

 7.4.1

 Diffusion-Reaction Processes

Let us start our discussion concerning the diffusion-reaction process outlined above

by considering a system, for simplicity, in one dimension, where particles diffuse in an isotropic fluid. In this system, as we have done in the preceding sections, we also assume the presence of two species, 1 and 2, with the bulk dynamics governed by

the following equations:

 ∂ ρ

 ∂  1 (x, t) + ∇ · J1 (x, t) =  R 1 (ρ 1 , ρ 2 ) (7.78)

 t

and

 ∂ ρ

 ∂  2 (x, t) =  R 2 (ρ 1 , ρ 2 ), 

(7.79)

 t
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where  ρ 1 (x, t)  and  ρ 2 (x, t)  are the concentrations of species 1 and 2, respectively, and J1 (x, t)  is the current density associated to species 1. Equation (7.78) is the continuity equation with a reaction term,  R 1 (ρ 1 , ρ 2 ), and Eq. (7.79) is a kinetic equation, or a continuity equation, with a reaction term,  R 2 (ρ 1 , ρ 2 ), in absence of current density. These equations show that the species 1 may diffuse in the bulk

following the gradient of concentration (current density) but the diffusion of species 2 occurs only by means of a reaction process. The reaction terms,  R 1 and  R 2, in this system of equations, may describe an irreversible or a reversible process, or both, 

depending on the relative rates connected with the reaction process. 

The current density, J1 (x, t), is defined as follows:

 ∂

 τ J

 ∂  1 (x, t) + J1 (x, t) = − D∇ ρ 1 (x, t) + F ρ 1 (x, t), (7.80)

 t

where  D  is the diffusion coefficient of species 1,  τ  is a relaxation time, related to the finite phase velocity, and |F| = const is an external field, along the direction  x. 

The solutions of the above equations are subjected to the free boundary conditions, 

that is, 

lim  ρ

 ρ

|

1 (x , t ) = 0

and

lim

2 (x , t ) = 0 . 

 x|→∞

| x|→∞

The initial conditions for the concentrations of species 1 and 2 are

 ρ 1 (x,  0 ) =  ϕ 1 (x), ∂tρ 1 (x, t)|

=

 t=0

0 ,  and  ρ 2 (x,  0 ) =  ϕ 2 (x), 

where  ϕ 1 (x)  and  ϕ 2 (x)  are given functions of the spatial coordinates. 

To start our analysis about the Eqs. (7.78) and (7.79), we assume that the reaction processes are governed by the following equations:

 t



 R 1 (ρ 1 , ρ 2 ) = − k 11 ρ 1 (x, t) +

 k 12 (t −  t )ρ 2 (x, t)

(7.81)

0

and

 t



 R 2 (ρ 1 , ρ 2 ) =  k 21 ρ 1 (x, t) −

 dt  k 22 (t −  t )ρ 2 (x, t ), 

(7.82)

0

where the kernels  k 12 (t)  and  k 22 (t)  can be connected with memory effects and intermediate reactions processes which can occur in the system [58]. By using Eqs. (7.81)

and (7.82), we first consider the case  k 12 (t) ∝  δ(t)  and  k 22 (t) ∝  δ(t). Subsequently, we analyze an arbitrary situation by taking memory effects into account. 

Let us analyze, by means of these equations, the influence of the reaction process

on the diffusion of each species by tackling the first condition, that is, 

 R 1 (ρ 1 , ρ 2 ) = − k 11 ρ 1 (x, t) +  k 12 ρ 2 (x, t) (7.83)
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and

 R 2 (ρ 1 , ρ 2 ) =  k 21 ρ 1 (x, t) −  k 22 ρ 2 (x, t). 

(7.84)

Depending on the values of the reaction rates,  k 11,  k 12,  k 21, and  k 22, an irreversible, (1 → 0) and (or) (2 → 0), or a reversible, (1  2), process may be accounted for by

Eqs. (7.83) and (7.84). For example, irreversible processes for one or both species take place if one considers that | k 11|  > | k 12|, with  k 11  >  0 and  k 12  >  0, and | k 22|  > | k 21|, with  k 21  >  0 and  k 22  >  0. A reversible process may be described by | k 11| = | k 21|, 

| k 22| = | k 12|, with  k 11  >  0,  k 22  >  0,  k 12  >  0, and  k 21  >  0, among other possibilities. 

It is also possible to consider  Ri  explicitly depending on  x  and  t, that is,  Ri =

 Ri(ρ 1 , ρ 2;  x, t), for  i = 1 ,  2. 

To accomplish this task, we combine Eqs. (7.80) and (7.78) to obtain the equation governing the behavior of  ρ 1 (x, t)  in the bulk for the species 1 as





 ∂ 2

 ∂

 ∂

 τ

 ρ

1 −  τ

 R

 ρ

 ∂

1 (x , t ) +

1 (ρ 1 , ρ 2 )

1 (x , t ) =  D∇ 2 ρ 1 (x , t )

 t  2

 ∂ρ 1

 ∂t 



 ∂

− F · ∇ ρ 1 (x, t) +  τR 2 (ρ 1 , ρ 2 )

 R

+  R

 ∂ρ

1 (ρ 1 , ρ 2 )

1 (ρ 1 , ρ 2 ). 

2

(7.85)

The presence of three terms in Eq. (7.85) are due to a finite phase velocity included in the description of the processes. Normal diffusion-reaction processes are expected to be recovered in the limit  τ → 0. Substitution of Eqs. (7.83) and (7.84) into Eqs. (7.85)

and (7.79) yields, respectively, 

 ∂ 2

 ∂

 τ

 ρ

 ρ

 ∂

1 (x , t ) +  ( 1 +  τ k 11 )

1 (x , t )

 t  2

 ∂t

=  D∇2 ρ 1 (x, t) − F · ∇ ρ 1 (x, t) −  (k 11 −  τk 12 k 21 )ρ 1 (x, t)

+  (k 12 −  τk 12 k 22 )ρ 2 (x, t)

(7.86)

and

 ∂ ρ

 ∂  2 (x, t) =  k 21 ρ 1 (x, t) −  k 22 ρ 2 (x, t). 

(7.87)

 t

Before starting the search for solutions to the previous equations, we may perform

some preliminary calculations by assuming the absence of external force, that is, 

when F = 0. We consider furthermore a reversible process characterized by  k 11 =

 k 21, with  k 11  >  0 and  k 21  >  0, and  k 22 =  k 12, with  k 12  >  0 and  k 22  >  0. We remark that the process so described may also be considered as diffusion with pauses, that

is, while the particles diffuse on a substrate, part of them can be immobilized at a

rate proportional to the concentration of particles free to diffuse, which, after some time, is switched to a moving, that is, a diffusive state. 
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In this framework, the previous equations can be rewritten, respectively, as fol-

lows:

 ∂ 2

 ∂

 τ

 ρ

 ρ

 ∂

1 (x , t ) +  ( 1 +  τ k 11 )

1 (x , t )

 t  2

 ∂t

 ∂

=  D∇2 ρ 1 (x, t) −  ( 1 −  τk 22 ) ρ

 ∂  2 (x, t)

(7.88)

 t

and

 ∂ ρ

 ∂  2 (x, t) =  k 11 ρ 1 (x, t) −  k 22 ρ 2 (x, t). 

(7.89)

 t

In order to solve Eqs. (7.88) and (7.89) for arbitrary initial conditions, we use the integral transforms of Laplace and Fourier which, after some calculations, yield the

following system of equations:





 D

 s s + 1 +  k

+

 k 2 

 ρ (k, s)

 τ

11

 τ

1













+ 1 −

1

 k

 s 

 ρ (k, s) =  s + 1 +  k



 ϕ

−  k



 ϕ

 τ

22

2

 τ

11

1 (k) +

 τ

22

2 (k)

(7.90)

and

[ s +  k



22] 

 ρ (

 ρ (

2  k, s) −  k 11

1  k, s) = 

 ϕ 2 (k), 

(7.91)

where 

 ρ (

 i k, s) =  F { L{ ρi (x , t );  s};  k} and ϕi =  F{ ϕi(x);  k}. The solutions for this

set of equations, in the Fourier-Laplace space, are given by







 ρ (

 (

1 −

 (

1  k, s) = 

 p 1  k, s)

 ϕ 1 (k) +

 k

 k p k, s)

 ϕ

 τ

22

22

2

2 (k)

(7.92)

and



 ρ (



 ϕ



 ρ (

2  k, s) =

1

2 (k) +

 k 11

 k, s), 

(7.93)

 s +  k

1

22

 s +  k 22

with







 s +  k 1 p (s +  k 22 )

 p (







1  k, s) =

(7.94)

 s s +  k 1 p +  (D/τ ) k 2  (s +  k 22 ) +  ( 1 /τ −  k 22 )k 11 s and





 p (k, s)

 p (

1





 , 

2  k, s) =

(7.95)

 s +  k 1 p (s +  k 22 )
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where  k 1 p = 1 /τ +  k 11. To find the inverse integral transforms of Eqs. (7.92) and

(7.93), we first consider a series expansion of Eq. (7.94) as follows:

∞







 n

 p (

 (

 (−

 (

 (

 , 

1  k, s) = 

 p 01  k, s) +

 k 2 mk 11 )n p 02  k, s) − 

 p 03  k, s)

(7.96)

 n=1

where

 p (





 , 

01  k, s) =

 s +  k 1 p

(7.97)

 s s +  k 1 p +  (D/τ ) k 2

 p (





 , 

02  k, s) =

1

(7.98)

 s s +  k 1 p +  (D/τ ) k 2

and

 p (

 (

03  k, s) =

 k 22

 p

 k, s), 

(7.99)

 s +  k

02

22

with  k 2 m = 1 /τ −  k 22. After finding the inverse Laplace and Fourier transforms, Eq. (7.96) becomes

∞



∞



 t



 p 1 (x, t) =  p 01 (x, t) +

 (− k 2 mk 11 )n

 d xn

 dtn p 04 (x −  xn, t −  tn) · · ·

 n=1

−∞

0

∞



 t 2



×

 d x 1

 dt 1  p 04 (x 2 −  x 1 , t 2 −  t 1 ) p 01 (x 1 , t 1 ), (7.100)

−∞

0

where

 p 04 (x, t) =  p 02 (x, t) −  p 03 (x, t), 

with

(  τ

 p

 t

01 (x , t ) = 1

 e−  k 1 p

2

 θ (t −  τx) { δ (t −  τx)

2

 D

⎡





⎫

I

 k 1 p





⎤⎬

1

 t  2 −  τ  2 x

+  k 1 p ⎣

2

 k 1 p

 t



+ I

⎦

0

 t  2 −  τ  2

2

 x

 t  2 −  τ  2

2

⎭  , 

 x

(7.101)

(





 τ



 k 1 p

 p

 t

02 (x , t ) = 1

 θ (t −  τx) e− k 1 p 2 I0

 t  2 −  τ  2  , 

(7.102)

2

 D

2

 x
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and

 t



 p 03 (x, t) =  k 22

 dt  e− k 22 (t− t ) p 02 (x, t ), (7.103)

0

where  θ(t)  is the Heaviside step function, defined in Eq. (1.60), and  I 0 (x)  and  I 1 (x) are the modified Bessel functions [59]. 

For the Eq. (7.95), after inversion of the integral transforms, we have

∞



∞



 t



 .. 

 p

 . 

2 (x , t ) =  p 02 (x , t ) +

 (− k 2 mk 11 )n

 d xn

 dtn p 04 (x −  xn, t −  tn)

 n=1

−∞

0

∞



 t



×

 d x 1

 dt 1  p 04 (x −  x 1 , t 2 −  t 1 ) p 02 (x 1 , t 1 ) (7.104)

−∞

0

With the help of previous results,  ρ 1 (x, t)  and  ρ 2 (x, t)  are given, respectively, by

∞



∞



 ρ 1 (x, t) =

 d x  p 1 (x −  x , t)ϕ 1 (x ) +  k 2 mk 22

 d x  p 2 (x −  x , t)ϕ 2 (x )

−∞

−∞

(7.105)

and

 t



 ρ 2 (x, t) =  ϕ 2 (x)e− k 22 t +  k 22

 dt  e− k 22 (t− t )ρ 1 (x, t ), 

(7.106)

0

in such a way that the problem is now formally solved. The curves representing these

solutions are shown in Fig. 7.10 for several values of  t  when we assume that species 1 is initially Gaussian distributed, that is, 

 ϕ 1 (x) =

1

√

 e− x 2 /( 4 σ  2 )  and  ϕ 2 (x) = 0 . 

(7.107)

4 πσ  2

It may be of interest to note here that the amount of species 1 decreases while the

amount of species 2 increases over time, during the diffusion process. 

From these results, the mean square displacements become

 σ 2 (t) =  (x −  x

 i

 i ) 2 i , 
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Fig. 7.10  ρ  (x, t)  and  ρ  (x, t)  versus  x/x, where  ρ

 τk 2  /Dρ (x, t),  x =  D/τk 2 , 

1

2

 i (x , t ) =

11

 i

11

and  t =  k 11 t, with  t = 1 / 2. The curves were drawn for  ϕ 1 (x)  and  ϕ 2 (x), given by Eq. (7.107) for σ 2 = 0 .  1, 1 /(k 11 τ) = 0 .  05, and  k 11 /k 22 = 1 / 2, in arbitrary units. Modified with permission from E. K. Lenzi, M. K. Lenzi, R. S. Zola, and L. R. Evangelista, J. Stat. Mech.: Theory and Experiment, Volume 11, 113205 (2020). © Copyright 2019 IOP Publishing

Fig. 7.11  σ  2 (

 (

 (

 (

1  t )  and  σ  2

2  t )  versus  t , where  σ  ,  2  t ) =  σ  2  t )/ D

 i

1

 i  and  t  =  k 11 t . The curves were

drawn for the same assumptions of Fig. 7.10. Modified with permission from E. K. Lenzi, M. K. 

Lenzi, R. S. Zola, and L. R. Evangelista, J. Stat. Mech.: Theory and Experiment, Volume 11, 113205

(2020). © Copyright 2019 IOP Publishing

for the distributions  ρi (x, t), where  i = 1 ,  2. They are illustrated in Fig. 7.11 by considering the same initial condition used in Fig. 7.10. For short times, both distributions present an anomalous diffusion, and, for long times, the normal diffusion is

recovered. For intermediate times, the reaction terms play an important role, modify-
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ing the spreading of these particles. The distribution, for the particular case  k 22 = 0, is given by

∞



 ρ 1 (x, t) =

 d x ϕ 1 (x )Y 1 (x −  x , t), 

(7.108)

−∞

with

(  τ

 Y

 t

1 (x , t ) = 1

 e−  k 1 p

2

 θ (t −  τx) { δ (t −  τx)

2

 D

⎡





⎫

I

 k 1 m





⎤⎬

1

 t  2 −  τ  2 x

+ 1 ⎣

2

 k 1 m

 k

⎦

1 m t



+  k 1 p I0

 t  2 −  τ  2

 , 

2

 x

 t  2 −  τ  2

2

⎭

 x

(7.109)

where  k 1 m = |1 /τ −  k 11|. This case is illustrated in Fig. 7.12 for different times. The distribution  ρ 2 (x, t)  is obtained by integrating Eq. (7.109) over time, which is the same as

 t



 ρ 2 (x, t) =

 dt  ρ 1 (x, t ). 

0

In the presence of a drifting term, Eqs. (7.90) and (7.91) can be written, respectively, as













1

 D

 F

 s + 1 +  k

+

+  k

 k

 k 2 +  i

 k 

 ρ (k, s)

 τ

11

 τ

12

11 +

 τ

 τ

1









− 1 −  k

 k 

 ρ (k, s) =  s + 1 +  k



 ϕ

 τ

12

12

2

 τ

11

1 (k)

(7.110)

and

 (s +  k



22 )

 ρ (

 ρ (

2  k, s) −  k 21

1  k, s) = 

 ϕ 2 (k). 

(7.111)

Following the procedure employed to solve Eqs. (7.90) and (7.91), the solutions for Eqs. (7.110) and (7.111) are obtained, respectively, as ρ (

 (

1 −

 (

1  k, s) = 

 p 3  k, s)

 ϕ 1 (k) +

 k

 k p k, s)

 ϕ

 τ

12

21

4

2 (k)

(7.112)

and



 ρ (



 ϕ



 ρ (

2  k, s) =

1

2 (k) +

 k 21

 k, s), 

(7.113)

 s +  k

1

22

 s +  k 22
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√

Fig. 7.12  ρ 1 (x, t)  and  ρ 2 (x, t)  versus  x/x, where  ρi (x, t) =

 τk 2  /Dρ (x, t),  x =  k

 τ/D, 

11

 i

11

and  t =  k 11 t. The curves were drawn for the same values of Fig. 7.11. Modified with permission from E. K. Lenzi, M. K. Lenzi, R. S. Zola, and L. R. Evangelista, J. Stat. Mech.: Theory and Experiment, Volume 11, 113205 (2020). © Copyright 2019 IOP Publishing

with













)  



 k 11

 D

 F

 p 3 (k, s) =  s +  k 1 p (s +  k 22 )

 s s +  k 1 p +

−  k

+

 k 2 +  i

 k

 τ

12 k 21

 τ

 τ







+

1 −  k

 k

(7.114)

 τ

21

21 k 12 /(s +  k 22 )

and





 p (k, s)

 p (

1





 . 

4  k, s) =

(7.115)

 s +  k 1 p (s +  k 22 )
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By finding the inverse Laplace and Fourier transforms, Equation (7.96) yields

∞



∞





 t



 n

 p 3 (x, t) =  q 1 (x, t) +

− k 12 , −

 d xn

 dtnq 4 (x −  xn, t −  tn) · · ·

 n=1

−∞

0

∞



 t 2



×

 d x 1

 dt 1 q 4 (x 2 −  x 1 , t 2 −  t 1 )q 1 (x 1 , t 1 ), (7.116)

−∞

0

where  k 12 , − = 1 /τ −  k 12, and

 q 4 (x, t) =  q 2 (x, t) −  q 3 (x, t), 

with

(  τ

 F

 q

 t

 x

1 (x , t )= 1

 e−  k 1 p

2

 e  2 D θ (t −  τx ) { δ (t −  τx )

2

 D

⎡





⎫

I

 kF



⎤⎬

1

 t  2 −  τ  2 x

+ 1 ⎣

2

 kF

 k

⎦

 F t



+  k 1 p I0

 t  2 −  τ  2

 , 

2

 x

 t  2 −  τ  2

2

⎭

 x

(7.117)

(





 τ



 F

 kF

 q

 t

 x

2 (x , t ) = 1

 θ (t −  τx) e− k 1 p 2  e  2 D  I0

 t  2 −  τ  2  , 

(7.118)

2

 D

2

 x

 t



 q 3 (x, t) =  k 22

 dt  e− k 22 (t− t ) p 02 (x, t ), (7.119)

0

and

(

 kF =

 k 2 −  F 2  ,  for  k

 . 

1  p

1  p > 

 F

√

 Dτ

 Dτ

For what concerns 

 p (

4  k, s), from the inverse of Laplace and Fourier transforms, we

obtain

∞



∞





 t



 n

 p 4 (x, t) =  q 2 (x, t) +

− k 12 , −

 d xn

 dtnq 4 (x −  xn, t −  tn) · · ·

 n=1

−∞

0

∞



 t 2



×

 d x 1

 dt 1 q 4 (x 2 −  x 1 , t 2 −  t 1 )q 2 (x 1 , t 1 ). 

(7.120)

−∞

0
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Consequently, the formal solution of the problem for this case is

∞



∞



 ρ 1 (x, t) =

 d x  p 3 (x −  x , t)ϕ 1 (x ) +  k 2 mk 21

 d x  p 4 (x −  x , t)ϕ 2 (x )

−∞

−∞

(7.121)

and

 t



 ρ 2 (x, t) =  ϕ 2 (x)e− k 22 t +  k 21

 dt  ek 22 (t− t )ρ 1 (x, t ), 

(7.122)

0

where  k 2 m = |1 /τ −  k 22|. 

As we have done before, we consider now a particular solution of the previous

equations when  k 12 = 0 and  k 21 = 0. The solution is again given by Eq. (7.108), but now with  Y 1 (x, t)  defined as follows:

(  τ

 F

 Y

 t

 x

1 (x , t )= 1

 e−  k 1 p

2

 e  2 D θ (t −  τx ) { δ (t −  τx )
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⎤⎬

1

 kF, −  t 2 −  τ  2 x

+ 1 ⎣

 kF, −

 k

⎦

 F, − t



+  k 1 p I0

 t  2 −  τ  2

 , 

2

 x

 t  2 −  τ  2

2

⎭

 x

(7.123)

where

(

 kF, − =

 k 2 −  F 2  ,  for  k

 , 

1 m

1 m > 

 F

√

 Dτ

 Dτ

with  k 1 m = |1 /τ −  k 11|. 

For what concerns the distributions when a drifting force is applied, the curves

are shown dislocated, as in Fig. 7.13. In Fig. 7.14, the behavior of the mean square displacement for the same system is shown for different values of  k 1 τ . For  k 1 m =

 F/(Dτ), we have

(  τ

 F

 Y

 t

 x

1 (x , t ) = 1

 k 1 pe−  k 1 p 2  e  2 D θ (t −  τx ) . 

(7.124)

4

 D

In all these cases, we observe an interplay between the reaction and the drift terms

characterizing the dynamics of the system. 

Let us consider the reaction terms by taking the memory effects into account, 

that is, 
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Fig. 7.13  ρ 1 (x, t)  and  ρ 2 (x, t)  versus  x/x, where  ρi (x, t) =

 τk 2  /Dρ (x, t),  x =  D/τk 2 , 

11

 i

11



and  t =  k 11 t. The curves were drawn for 1 /(k 11 τ) = 0 .  05,  F = 10  τ k 2  /D, and the initial con-11

ditions  ϕ 1 (x) =  δ(x)  and  ϕ 2 (x) = 0, in arbitrary units. Modified with permission from E. K. Lenzi, M. K. Lenzi, R. S. Zola, and L. R. Evangelista, J. Stat. Mech.: Theory and Experiment, Volume 11, 113205 (2020). © Copyright 2019 IOP Publishing

 t



 R 1 (ρ 1 , ρ 2;  t) = − k 11 ρ 1 (x, t) +

 k 12 (t −  t )ρ 2 (x, t )

(7.125)

0

and

 t



 R 2 (ρ 1 , ρ 2;  t) =  k 21 ρ 1 (x, t) −

 k 22 (t −  t )ρ 2 (x, t ). 

(7.126)

0
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Fig. 7.14  σ  2 (

 (

 (

 (

1  t )  and  σ  2

2  t )  versus  t , where  σ  ,  2  t ) =  σ  2  t )/ D

 i

1

 i  and  t  =  k 11 t . The curves were



drawn for  F = 10  τ k 2  /D,  ϕ

11

1 (x ) =  δ(x )  and  ϕ 2 (x ) = 0, in arbitrary units. Modified with permission from E. K. Lenzi, M. K. Lenzi, R. S. Zola, and L. R. Evangelista, J. Stat. Mech.: Theory and Experiment, Volume 11, 113205 (2020). © Copyright 2019 IOP Publishing

In this framework, the diffusion equation to be solved is

 ∂ 2

 ∂

 ∂

 τ

 ρ

 ρ

 R

 ∂

1 (x , t ) +

1 (x , t ) −

1 (ρ 1 , ρ 2 ) =  D∇ 2 ρ 1 (x , t )

 t  2

 ∂t

 ∂t

− F · ∇ ρ 1 (x, t) +  R 1 (ρ 1 , ρ 2 ). 

(7.127)

After some calculations, we may rewrite Eq. (7.127) as follows:
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 ∂ 2

 ∂

 τ

 ρ

 ρ

 ∂

1 (x , t ) +  ( 1 +  τ k 11 )

1 (x , t )

 t  2

 ∂t

 t



 ∂

+  k 11

 dt   K (t −  t )ρ

 ∂

1 (x , t  ) =  D∇ 2 ρ 1 (x , t ) − F · ∇  ρ 1 (x , t ), t

0

(7.128)

with





1 −  τ k 22 (s)

 K (t) =  L−1

;  t , 

 s +  k 22 (s)

where, for simplicity, we assume that the initial conditions are  ρ 1 (x,  0 ) =  ϕ 1 (x), ρ 2 (x,  0 ) = 0, and  k 12 (s) =  k 22 (s), with  k 11 =  k 21, which implies a reversible process with memory effects. 

For the particular case,  k 22 (s) = const, Eq. (7.128) yields

 ∂ 2

 ∂

 τ

 ρ

 ρ

 ∂

1 (x , t ) +  ( 1 +  τ k 11 )

1 (x , t )

 t  2

 ∂t

 t



 ∂

+  ( 1 −  τk 22 )k 11

 dt  e− k 22 (t− t )ρ

 ∂

1 (x , t  ) =  D∇ 2 ρ 1 (x , t ) − F · ∇  ρ 1 (x , t ), t

0

(7.129)

which shows that the reversible process, described by Eq. (7.89), introduces an additional relaxation process to the standard Cattaneo equation, in terms of an integro-

differential operator with an exponential kernel. This integro-differential operator

can be identified with the Caputo-Fabrizio operator, which is defined as [4, 13, 60]

 t







 α

 C F  D α [ ρ

 dt  exp

 (t −  t ) ρ

0

 t

1 (x , t )] =  N (α)

1 (x , t  ), 

(7.130)

1 −  α

1 −  α

0

where the normalization function is such as  N ( 0 ) = 1 and  N ( 1 ) = 1 [61, 62]. 

For the case with the drift term, Eqs. (7.90) and (7.91) can be written, respectively, as











 k





11

 D

 F

 s s +  k



1  p

+

 s K (s) +

 k 2 +  i

 k ρ (k, s) =  s +  k



 ϕ

 τ

 τ

 τ

1

1  p

1 (k)

(7.131)

and



 ρ (



 ρ (

2  k, s) =

 k 21

1  k, s). 

(7.132)

 s +  k 22 (s)
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Following the procedure employed to solve Eqs. (7.90) and (7.91), the solutions for Eqs. (7.131) and (7.132) are obtained, respectively, as ρ (

 (

1  k, s) = 

 pK k, s)

 ϕ 1 (k)

(7.133)

and



 ρ (



 ρ (

2  k, s) =

 k 21

1  k, s), 

(7.134)

 s +  k 22 (s)

with







 s +  k 1 p

 p (

$ 





% . 

 K k, s) =

 s s +  k

 k 11

 D

 F

1  p

+  τ sK(s) +  τ k 2 +  i τ k

(7.135)

After the inversion of the Laplace and Fourier transforms, Equation (7.135) may be put in the form

∞



∞





 t



 n

 pK (x, t) =  q 1 (x, t) +

− k 12 , −

 d xn

 dtnqK (x −  xn, t) · · ·

 n=1

−∞

0

∞



 t 2



×

 d x 1

 dt 1 qK (x 2 −  x 1 , t 2 −  t 1 )q 1 (x 1 , t 1 ), (7.136)

−∞

0

with

 t



 qK (x, t) =

 dt   K (t −  t )q 1 (x, t )

(7.137)

0

and

∞



 t



 tn



 K (t) = 1 −  τ I 22 (t) +

 (−1 )n

 dtn I 22 (t −  tn)

 dtn−1  I 22 (tn −  tn−1 ) · · ·

 n=1

0

0

 t 3



 t 2



×

 dt 2  I 22 (t 3 −  t 2 )

 dt 2  I 22 (t 2 −  t 1 ) [1 −  τ I 22 (t 1 )]  , 0

0

(7.138)
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where

 t



 I 22 (t) =

 dt  k 22 (t ). 

0

Thus, the distribution  ρ 1 (x, t)  can be found through the equation

∞



 ρ 1 (x, t) =

 d x  pK (x −  x , t)ϕ 1 (x ). 

−∞

For  ρ 2 (x, t), we have

 t



 ρ 2 (x, t) =  k 21

 dt   K 2 (t)ρ 1 (x, t −  t ), 

(7.139)

0

with

∞



 t



 tn



 K 2 (t) = 1 +

 (−1 )n

 dtn I 22 (t −  tn)

 dtn−1  I 22 (tn −  tn−1 ) · · ·

 n=1

0

0

 t 3



 t 2



×

 dt 2  I 22 (t 3 −  t 2 )

 dt 2  I 22 (t 2 −  t 1 ). 

(7.140)

0

0

We are now ready to analyze the spreading when memory effects are taken into

account by investigating the behavior of the mean square displacement. For F = 0, without loss of generality, the mean square displacement for each species, in the

Laplace domain, is given by





2 D s +  k

 σ 2 (

1  p

 s) =

 , 

(7.141)

1





2

 s s +  k 1 p +  s (k 11 /τ ) K (s)

for the species 1, and





2 Dk

 s +  k

 σ 2 (

21

1  p

 s) =

 , 

(7.142)

2







 (

2

 s +  k 22 (s)) s s +  k 1 p +  s (k 11 /τ ) K (s) for the species 2. From these results, we show that for  k 22 (s) →  k 22 (s) = constant, for  s → 0 (or  t → ∞),  σ  2 (t) ∼  t  and  σ  2 (t) ∼  t, for the reversible process discussed 1

2

above combining reaction terms with memory effects. 

The reaction terms considered in the analysis may be thus related to an irre-

versible or a reversible process, depending on the values of the rate reactions in the
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fundamental equations. This problem may also be related to diffusion process with

pauses, where one species diffuses on a substrate with traps, which may immobilize

the diffusing species, and, after some time, switch it to the moving state. 

A remarkable aspect of this relevant problem is that the reaction processes intro-

duce an integro-differential operator in the Cattaneo equation. This additional term

depends on the reaction process considered, which, for the particular case worked

out in this section, has an exponential kernel and, in turn, may be related to integro-differential operators [4, 13]. The behavior of the mean square displacement shows that the system is initially characterized by an anomalous diffusion process, which, 

for long times, becomes a normal diffusion process. Some particular meaningful

cases, obtaining the analytical solutions of the problem when a drift term and mem-

ory effects ares present, demonstrate how the diffusion-reaction is influenced by the external force or reaction processes with memory. 
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Chapter 8

Relaxation Under Geometric Constraints

I: Classical Processes

Abstract In this and the next chapter, we shall examine the relaxation behavior of classical and quantum systems under geometric constraints represented by structures

known as comb models. These models with fractional time derivatives are a reason-

able abstraction for systems in which the interplay between temporal and spatial

disorders is present. The results provide theoretical knowledge about the importance

of interaction between geometrical restrictions and memory effects on anomalous

diffusion. This chapter focuses the anomalous diffusion process emerging in classical systems, also taking into account the presence of reaction-diffusion processes at the interfaces. A generalization of the comb model is analyzed as a tool to account for

annealed and quenched disorder. The crossover between different diffusive regimes

and its physical explanations point towards possible applications to some experimen-

tal contexts involving anisotropic diffusion and biophysical systems. 

8.1

Introduction

Various differential and integral operators of fractional order, including also higher generalizations, have been studied along this book [1–4]. As we have seen, some of these operators usually represent a convolution integral where the memory kernel

is of power-law, distributed order, exponential, Mittag-Leffler, tempered or a more

general form. Part of their interesting and useful properties, like memory effects

and non-local character, have been discussed in the preceding applications. Indeed, 

different phenomena of anomalous diffusion and non-exponential relaxation have

been shown to be successfully described via those operators [3, 5–7]. The continuous-time random walk theory for processes with long-tailed waiting time probability and

jump length probability density functions were shown to lead to different space-time

fractional diffusion equations [5, 7]. 

The comb model is of particular importance in the context of anomalous diffu-

sion. It has emerged from studies of percolation threshold and diffusion on fractal

structures [8–11], where a geometric constraint is present during the diffusive process. In this model, the system essentially diffuses through a structure consisting of a “backbone” and “branches”. Thus, it can be considered as a simplified description

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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of the fractal geometry of percolation clusters, where the backbone represents the

large bond and branches are the remaining bonds or “dangling ends” of percolation

clusters. 

To explore part of this rich problem, this section is dedicated to different classical problems related to the comb model, focusing on hybrid comb models, presence

of reaction terms, different comb-like structures describing quenched disorder, and

fractional operators accounting for annealed disorder. 

8.2

The Comb Model

We start the discussion concerning the comb model and its extensions by briefly

reviewing some of its main properties [12]. The comb model retains essential properties of diffusion on fractals, with the advantage of providing exact results on such complicated systems. It has also been used in several physical contexts in connection with the random walk approaches as well as in view of its intrinsic quenched

disorder. 

It is a model characterized by a two-dimensional diffusion equation in which the

diffusive term in the, e.g.,  x−direction, is multiplied by a Dirac delta function  δ(y), in the form

 ∂

 ∂ 2

 ∂ 2

 ρ(x, y;  t) =  D

 ρ(x, y;  t) +  δ(y)D

 ρ(x, y;  t), 

(8.1)

 ∂

 y

 x

 t

 ∂y 2

 ∂x 2

with  Dx  and  Dy  being the diffusion coefficients associated to the  x- and  y-directions, respectively. 

The presence of the delta function in the  x-direction is provided to assure that the diffusion only occurs over the backbone structure for  y = 0. On the other hand, the diffusion in the  y-direction creates the branched structures; a walker can only leave a branch or access other branches by returning to the backbone structure. The geometrical restrictions in Eq. (8.1) mimic all features of early comb models, including subdiffusive behavior in the backbone. Normally, we can show that the diffusion

through the backbone structure can be expressed in terms of a fractional diffusion

equation with the index 1 / 2, which implies that the mean square displacement obeys the law

 (x −  x ) ∼  t 1 / 2 , 

characterizing a subdiffusion process [12–15]. This implies that the trapping times over the branches are also equivalent to a power-law behavior in the waiting-time

distributions of a continuous-time random walk. 

The diffusion through the backbone is also described by a time-fractional diffusion

equation with exponent  αx = 1 / 4 in a three-dimensional comb structure and  αx =

1 / 2 N  for the  N −dimensional case [13]. Extensions of Eq. (8.1) have been used to obtain a fractional diffusion equation with an absorbent term and a linear external
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force [16] as well as to deal with generalized fractal structures in the backbone and branches (namely, the fractal comb model) [17–20]. 

To proceed further, we will discuss a generalized comb model intended to explore

some unusual transport properties arising in connection with quenched and annealed

disorder, providing some exact solutions exhibiting anomalous diffusive behav-

ior [21]. 

8.3


Quenched and Annealed Disorder Mechanisms

in Comb-Models

We analyze a generalized comb model which includes different fractional time-

derivative operators in the diffusion terms, that is, 









 ∂

 ∂ 2

 ∂ 2

 ρ(x, y;  t) =  F

 D

 ρ(x, y;  t) +  δ(y)F

 D

 ρ(x, y;  t) , (8.2)

 ∂

 t,y

 y

 t,x

 x

 t

 ∂y 2

 ∂x 2

where  Ft,i {· · · } is an operator defined by the time derivative of a convolution of ρ(x, y;  t)  and a memory kernel K i(t) ( i ∈ { x, y}), as the one defined in Eq. (5.140)

and here rewritten as

 t



 ∂

 Ft,i[ ρ(x, y;  t)] =

 ρ(x, y;  t ) K

 ∂

 i (t −  t  ) dt  . 

(8.3)

 t

0

The use of fractional derivatives in front of spatial operators is motivated by a possible connection with the linear-response theory [22]. The memory kernel can also be connected with the waiting-time distribution of continuous-time random walk and

represents a coarse-grained description of the randomness of the environment. The

comb model has recently been worked out by taking into account different aspects of

its formulation, as discussed, for instance, in Suleiman et al. [23], Lenzi et al. [24], Sandev et al. [25], Wang et al. [26], Domazetoski et al. [27]. 

Specifically, the kernel of the time-convoluted operator represents a density mem-

ory (a property of a collection of trajectories) and not a trajectory memory [28]. A derivation of this integro-differential operator and the physical meaning of the memory kernel are given by Sokolov and Klafter [29]. Different operators have been used to extend diffusion equations in this perspective [30–32]. For instance, the operator t



 f (x, y;  t ) K i (t −  t ) dt

0

was considered by Sokolov for identifying memory kernels that yield non-negative

solutions (safe ones) and those for which this condition is not guaranteed (dangerous
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ones) [31]. As we have discussed in Sec. 5.6, operators of this kind have been used to built nonlocal structural derivative model and have been applied to describe ultraslow diffusion in solids [33]. Here, we have changed the notation again just to emphasize the peculiarities of the memory kernel in connection with the direction along which

the diffusion occurs. 

We underline that the memory kernels K i (t)  define the integro-differential operators in Eq. (8.2) and establish a connection with fractional time-derivative operators. 

In this formulation, Eq. (8.3) represents a unified approach for a broad class of situations where either singular or non-singular kernels describe different relaxation

processes, as we have also pointed out in Sec. 5.6. Moreover, distinct kernels for the x- and  y-directions yield anisotropic diffusion. Equations (8.2) and (8.3) recover the usual comb model, represented by Eq. (8.1), when

K x (t) = K y(t) = 1 . 

In the standard case, there are no memory kernels, and geometrical restrictions of the comb-like structure are the only mechanism tied to the anomalous diffusion [18, 34]. 

Different choices for K x (t)  and K y(t)  imply extending the comb model to different contexts that combine quenched and annealed disorders. 

One possibility is to consider the power-law functions, such as

K i (t) =  tαi−1  , 

(8.4)

  (αi)

which are directly related to the Riemann-Liouville fractional operator [35] for 0  < αi <  1, as we have extensively discussed in Chap. 6, because this fractional operator has been used to investigate several physical contexts, like the ones related to anomalous diffusion [36–38]. 

Another possibility is to assume an exponential behavior for the kernels [39–43]





K i (t) =  N (α )  exp − α  t , 

(8.5)

 i

 i

where  N (α )  is a normalization constant with  α =  α

 i

 i

 i /( 1 −  αi ) [40, 44, 45], also discussed in Chap. 6 in view of the remarkable feature of this exponential kernel concerning its connection with resetting processes [45]. 

If we combine Eqs. (8.2), (8.3), and (8.5), then we find

 ∂

 ∂ 2

 ∂ 2

 ρ(x, y;  t) =  D

 ρ(x, y;  t) +  δ(y)D

 ρ(x, y;  t)

 ∂

 y

 x

 t

 ∂y 2

 ∂x 2

− ˜ α [ ρ(x, y, t) −  ϕ(x, y)]  , 

(8.6)

where  αx =  αy = ˜ α  and  ϕ(x, y)  is the initial condition. Actually, Eq. (8.6) extends the standard expressions used to analyze resetting processes by including a geometric constraint between the  x- and  y-directions. 
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One more possibility for the kernel is of the type

K α (t) ∝ E  (− αtαi ) , 

 i

 αi

in which we have used the Mittag-Leffler function, defined in Eq. (1.217), with constant parameters  αi  and  α. This kernel is particularly helpful because its behavior interpolates the power-law and exponential cases and has been recently associated

with fractional-time derivatives of distributed order [45]. All these non-singular kernels have also been used to investigate different class of problems such as diffu-

sion [45], heat processes [46], groundwater flow [47], and electrical circuits [48], among others. 

We now focus on the solutions of Eq. (8.2) in the Fourier-Laplace domain by using the Green’s function approach. After obtaining formal solutions, we analyze

particular cases related to the previous kernels. We solve Eq. (8.2) subjected to the initial condition

∞



∞



 ρ(x, y,  0 ) =  ϕ(x, y)  with

 d x

 d y ϕ(x, y) = 1 , 

−∞

−∞

where  ϕ(x, y)  is thus a normalized given function. We further assume usual boundary conditions, namely

 ρ(±∞ , y;  t) = 0 and  ρ(x, ±∞;  t) = 0 . 

This assumption of unlimited boundary conditions is to avoid possible effects of

confinement in a limited domain, making more explicit the impact of geometrical

restrictions and fractional operators on the spreading behavior. 

The solutions of Eq. (8.2) may be obtained first assuming the existence of the Laplace transform  L { ρ(x, y;  t);  s} =  ρ(x, y;  s), in such a way that it becomes

 ∂ 2

 ∂ 2

 sρ(x, y;  s) −  ϕ(x, y) =  sDy(s)

 ρ(x, y;  s) +  δ(y)sD

 ρ(x, y;  s), (8.7)

 ∂

 x (s)

 y 2

 ∂x 2

where  Dy(s) =  Dy K y(s)  and  Dx (s) =  Dx  K x (s), with K i (s) =  L{K i (t);  s}. 

The next step it to apply the Fourier transform  F { ρ(x, y;  s);  kx } = 

 ρ(kx, y;  s), 

to the  x−variable of Eq. (8.7), to obtain the following equation sD





 y (s) d  2  ρ(kx , y;  s) −  s  1 −  δ(y)Dx (s)k 2  ρ(kx , y;  s) = −

 ϕ(kx, y). 

(8.8)

 d y 2

 x

With the tools of the Green’s function approach, the solution for Eq. (8.8) can be found and it is given by
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∞





 ρ(kx, y;  s) = −

 d y 

 ϕ(kx, y )

 G(kx , y, y;  s) , 

(8.9)

−∞



where the Green’s function  G(kx , y, y;  s)  is the solution of







 sDy(s) d 2  G(kx , y, y;  s) −  s +  δ(y)sDx (s)k 2  G(kx , y, y;  s) =  δ(y −  y ), d y 2

 x

(8.10)



subjected to the condition  G(kx , ±∞ , y;  s) = 0. After some calculations, we can show that the solution for Eq. (8.10) is

−

1

√

| y− y|



 Dy (s)

 Dx(s)k 2 − 1

√

| y|

 G(k

 x

 Dy (s)

 x , y, y;  s) = −  e



− 

 e

 G(kx ,  0 , y;  s), (8.11)

2 s Dy(s)

2  Dy(s)

where

−

1

√

| y|



 Dy (s)

 G(k





 x ,  0 , y;  s) =

 e



(8.12)

 s Dx (s)k 2 + 2  D

 x

 y (s)

represents the propagator for the backbone structure (at  y = 0). The term  Dy(s)  in Eq. (8.12) indicates that the backbone diffusion explicitly depends on the diffusion occurring along the branches; in other words, memory effects on branches directly

affect the diffusion on the backbone. 

The Green’s function related to Eq. (8.10) subjected to previous boundary condition is thus given by



−

1

√

| y− y|

 G(k

 Dy (s)

 x , y, y;  s) = −

1



 e

2 s Dy(s)

 D

+

 x (s)k 2

1

−

1

√

 (|

 x





 y|+| y| )

 e

 Dy (s)

 Dx(s)k 2 + 2  D

2 s D

 x

 y (s)

 y (s)





= −

1



−

1

√

| y− y|

−

1

√

 (| y|+| y| )

 e

 Dy (s)

−  e Dy(s)

2 s Dy(s)

−

1



−

1

√

 (| y|+| y| )



 e Dy(s)

 . 

(8.13)

 s  2  Dy(s) +  Dx (s)k 2 x

The inverse Fourier transform along the  x-direction, that is,  F−1 {

 ρ(kx, y;  t);  x} =

 ρ(x, y;  t),  may be found, and Eq. (8.13) becomes
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 δ(x)

− | y− y|

√

−

1

√

 (| y|+| y| )

 G(x, y, y;  s) = −



 e

 Dy (s) −  e

 Dy (s)

2 s Dy(s)

√

2

 Dy (s)

−

1



−

| x| −

1

√

 (| y|+ y| )



 e

 Dx (s)

 e

 Dy (s)

 . (8.14)

2 s  2 Dx (s) Dy(s)

The result in Eq. (8.14) is completely general and can be used to describe different diffusive processes depending on the kernel of the integro-differential operator. For example, for the simple cases

K x (s) = 1

and K y(s) = 1  , 

 sαx

 sαy

the inverse Laplace transform of Eq. (8.14) is





 G(x, y, y;  t) = − δ(x) G( 1 )

 α (| y −  y| , t) −  G( 1 )(| y| + | y| , t) y

 αy

 t



−

 dt   Gα (| x| ,t −  t )G( 2 )(| y| + | y| ,t ), (8.15)

 t 

− ,α+

 αy

0

where





|



 y|



 , αy )

 G( 1 )

2

 α (y, t) =

1



H1 ,  0



 ( 1− αy 2

 , 

(8.16)

 y

 (

2  D

1 ,  1

0 ,  1 )

 y t αy

 Dytαy





|



 y| + | y| 

 )

 G( 2 )

 α (y, t) = 1 H1 ,  0



 ( 0 ,αy 2

 , 

(8.17)

 y

 t

1 ,  1

 D

 ( 0 ,  1 )

 y t αy

⎡ 

⎤

2  D



 y t αy



 Gα

 (x, t) =

1



H1 ,  0 ⎣

| x|  ( 1− α+ ,α− ) ⎦  , (8.18)

− ,α+



1 ,  1

 D

 ( 0 ,  1 )

2 2 D

 x t αx

 x

 Dytα+

with

 α± =  αx/ 2 ±  αy/ 4 . 

By the way, we register again the presence of the H−function of Fox as a premise

for anomalous behavior. 

Another particular case, when  α =  α =  α  and

 x

 y

K x (s) = K y(s) =

1

 , 

 s +  α

corresponds to the solution
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 t







− | y− y|2

−  (| y|+| y| ) 2

 G(x, y, y;  t) = − δ(x)

 dt   k(t, t )

 e− αt



 e  4 Dyt −  e

4 Dy t

4 π Dyt

0

 t



 t









1



4

−

4 Dy

 ,  1 )

 dt   dt 

 k(t, t )





H1 ,  0

| x|  ( 14 4

 G( 3 )

1 ,  1

 ( 3 ,  1 )

 α (| y| + | y| , t −  t ), 

8 D

 D

 D 2 t 

 x

4

4

0

0

 x t 

 y t 

(8.19)

where

− | y|2

 G( 3 )

4 D

 α (y, t) =

1



| y| e

 y t , 

(8.20)

4 π Dyt 3

with

 k(t, t ) =  α +  δ(t −  t )  and  Dx(y) =  Dx(y) N (α). 

Differently from Eq. (8.15), Eq. (8.19) has a stationary solution, that is, a time-independent solution in the following sense:

lim  G(x, y, y;  t) =  G st (x, y, y )

 t→∞

given by

 α

√

√

−

 α | y− y|

−

 α (| y|+| y| )

 G

 Dy

 Dy

st  (x , y, y ) = −

 δ(x) e

−  e

4 Dy



√





 α α

√

2 α

 Dy

 α

−



−

−

 (| y|+| y| )

 e

 Dx

 α | x| e

 Dy

 . 

(8.21)

8 Dx

 Dy

This result is obtained from an arbitrary condition where

lim K x (s) = const and lim K y(s) = const , 

(8.22)

 s→0

 s→0

which implies





lim  s G(x, y, y;  s) =  G st (x, y, y ). 

 s→0

In this stationary limit, the solution in Eq. (8.9) is

∞



∞



 ρ st (x, y) =

 d x

 d y  ϕ(x , y )G st (x −  x , y, y ). 

(8.23)

−∞

−∞

[image: Image 13]
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Fig. 8.1 Profile of the stationary distribution obtained from Eq. (8.23) with the Green’s function of Eq. (8.21). For illustrative purposes, we consider the initial condition Eq. (8.24), where  σx =  σy =



√

1 / 5, 

 α/Dy = 1, and  α/Dx = 1 (in arbitrary units). Modified with permission from Tateishi et al. [21]. Copyright (2020) by the American Physical Society

Fig. 8.1 illustrates the behavior of Eq. (8.9) when considering the Green’s function of Eq. (8.21) for

 ϕ(x, y) ∝ 1  e− x 2 /σ 2− y 2 /σ 2

 x

 y . 

(8.24)

 σxσy

The mean square displacement also carries information about the medium struc-

ture. We thus use the previous results to investigate how the mean square displacement in each direction changes under those different conditions. To do so and avoid transient behaviors related to the initial position of the walkers, we consider the initial condition  ϕ(x, y) =  δ(x)δ(y). Under these assumptions, the mean square displacement in the Laplace domain for each direction is





 D

 σ 2 (

 y (s)

 s) =  (y −  y ) 2 = 2

(8.25)

 y

 s

and





 D

 σ 2 (

 x (s)

 s) =  (x −  x ) 2 = 

 . 

(8.26)

 x

 s Dy(s)

Equations (8.25) and (8.26) show that the mean square displacement in the  y-direction depends only on its memory kernel, while the mean square displacement in the  x-

direction depends on both memory kernels. These features naturally emerge in the

time-domain; indeed, by calculating the inverse Laplace transform, we find

 t



 t



 D

 σ  2 (

 x

 t ) = 2

 dt   D

 (t) = 

 dt   ζ

 y

 y (t  )

and  σ  2 x

 D

 x,y (t  )

 y

0

0
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where

⎧

⎫

⎨

⎬

 ζ

K x (s)

 x,y (t ) =  L−1



; 

 . 

⎩

 t ⎭

(8.27)

K y(s)

These dependencies are a direct consequence of the comb structure and are somehow

related to previous results [49] in which the authors have simulated fractional Brownian walks on a comb-like structure and reported that memory effects (associated with

Hurst exponents) in  x-direction do not affect the diffusive behavior in the  y-direction; but, in the backbone, they found a nontrivial interplay between long-range memories

in  x- and  y-directions. 

We now consider the behavior of the system in each direction. To do so, we note

that the Green’s function for the probability distribution function along the backbone, 

∞



 G 1 (x, t) =

 d y ρ(x, y, t), 

−∞

satisfies the following generalized diffusion equation

 t



 ∂

 Dx ∂

 ∂ 2

 G



 dt   ζ

 G

 ∂

1 (x , t ) =

 x,y (t −  t  )

1 (x , t  ). 

(8.28)

 t

2  D ∂

 ∂

 y

 t

 x 2

0

Similarly, the corresponding generalized diffusion equation for the Green’s function

along the branches, 

∞



 G 2 (y, t) =

 d x ρ(x, y, t), 

−∞

is

 t



 ∂

 ∂

 ∂ 2

 G

 dt  K

 G

 ∂

2 (y, t ) =  Dy

 y (t −  t  )

2 (y, t  ). 

(8.29)

 t

 ∂t

 ∂y 2

0

These two forms suggest that both Eqs. (8.28) and (8.29) have similar mathematical properties. We can verify that the probability distribution functions  G 1 (x, t)  and G 2 (y, t)  are non-negative if: 1 / sζ

 (

 x,y s)  and 1 / s K  y (s)  are completely monotone

functions [50, 51]; and 1 /ζ

 (

 x,y s)  and 1 / K  y (s)  are Bernstein functions. Moreover, 

we can further verify that Eqs. (8.28) and (8.29) fulfill the Nyquist theorem, and consequently, their solutions are thermodynamically sound [22]. 

To investigate the interplay between mechanisms of annealed (memory kernels)

and quenched (comb-like structure) disorders, we start by considering several def-

initions for the fractional time operators. For the sake of comparison, it is worth

remembering that ordinary derivatives (usual comb model) imply
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K x (t) = K y(t) =  δ(t), 

that in turn lead to [12]

 σ 2 (t) ∝  t  and  σ 2 (t) ∝  t 1 / 2 . 

 y

 x

We first consider the Riemann-Liouville operator, yielding the kernels

K α (s) ∝ 1

and K  (s) ∝ 1  , 

0  < α

 x

 α

 x <  1 , 

0  < αy <  1 . 

 sα

 y

 x

 sαy

These memory kernels are related to the Green’s function given by Eq. (8.15), and their corresponding mean square displacements are

%

& 

 σ

 t αy

2 (t) = 2 D

 s− αy−1;  t = 2 D

and

(8.30)

 y

 y L−1

 y ( 1 +  αy)

 D

%

& 

 D

 σ

 t αx − αy/ 2

2 (

 x

 x

 t ) = 

 L−1  s− αx+ αy/ 2−1;  t = 

 . 

(8.31)

 x

 D

 (

 y

 Dy

1 +  αx −  αy/ 2 )

Equation (8.30) shows that the diffusion in branches is independent of the backbone dynamics; it only depends on its memory effects. However, the mean square displacement in the backbone depends on memory effects in both directions, as shown

in Eq. (8.31). By imposing the conditions of non-negativity to the corresponding solution, we find that  αx > αy/ 2. To better understand this condition, let us examine some limiting cases. 

When  αx = 1 (ordinary derivative in the backbone) and 0  < αy <  1 (memory effects in the branches), the backbone diffusion is enhanced if 1 / 2  <  1 −  αy/ 2  <  1. 

This result is intriguing and counter-intuitive because, as the branches act like traps, we could initially presume that the slower the diffusion in the branches, the more

subdiffusive is the diffusion on the backbone; but quite the opposite happens. When

the spread over the branches is subdiffusive, the walkers stay closer to the backbone and their probability of returning to the backbone increases, enhancing the diffusion in the  x-direction. This phenomenon is related to the so-called “subdiffusion paradox” 

reported in cell environments [52–54]. Although subdiffusion reduces the exploration area, it increases the likelihood of walkers to stay close to specific targets [55, 56]. 

In contrast, for 1 / 2  < αx <  1 (memory effects in the backbone) and  αy = 1 (ordinary derivative in the branches), the spread in the backbone is even more subdiffusive if 0  < αx − 1 / 2  <  1 / 2. Thus, the backbone subdiffusion is governed by the interplay of two mechanisms: the trapping in the branches and the memory effects in

the backbone. Furthermore, an essential feature of Eqs. (8.30) and (8.31) is scale invariance, that is, the effects of geometrical restrictions and memory effects are the same in all time-scales. This last behavior is illustrated in Fig. 8.2 for  αx = 1 and αy = 1 (solid line). 
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Fig. 8.2 The mean square displacement  σ  2 x  versus  t  for different kernels. The solid line refers to subdiffusion when K x (s) ∝ 1 /sαx  and K y(s) ∝ 1 /sαy , where we have chosen  Dx / Dy =

1,  αx = 1, and  αy = 1. The dot-dashed line corresponds to normal diffusion obtained as the asymptotic behavior for K x (s) ∝ 1 /sαx  and K y(s) ∝ 1 / s +  α y , where, for simplicity, we have chosen  Dx / Dy N (αy) = 1,  αx = 1, and  αy = 1. The dashed line corresponds to K x (s) ∝

1 /(s +  αx ), with K y(s) ∝ 1 /(s +  αy) (the case with stationary state), where we have chosen N (αx )Dx / Dy N (αy) = 1,  αx = 1, and  αy = 1. Modified with permission from Tateishi et al. 

[21]. Copyright (2020) by the American Physical Society

As a second example, we investigate an anisotropic case characterized by different

memory kernels for  x  and  y  directions. We maintain the same power-law kernel for the backbone, that is, 

1

K α (s) ∝ 1  ,  for

≤  α

 x

 x <  1 , 

 sαx

2

to ensure non-negative solutions, and consider an exponential memory kernel, that

is, again, 

 αy

K α (s) ∝

1

 ,  with  α =

and 0  < α

 y

 y <  1 , 

 s +  α

 y

1 −  α

 y

 y

for the branches. These choices correspond to the Riemann-Liouville fractional oper-

ator in the  x-direction and the Caputo-Fabrizio operator in the  y-direction, respectively. Under these conditions, we find the mean square displacements
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' 

(





 σ

 s−1

 D

2 (

 y

 t ) = 2 D

;  t = 2

1 −  e− α  ty

and

(8.32)

 y

 y L−1

 s +  α

 α

 y

 y

' 

(

 D

 σ

 s− αx −1

2 (

 x

 t ) = 

 L−1

;  t

 x





 D

−1 / 2

 y

 s +  α y

 D

=

 x



−

 t α

1 / 2

 x −1 / 2 E

 (− αyt), 

(8.33)

 D

1 ,αx +1 / 2

 y

where E δα,β(z)  is the three-parameter Mittag-Leffler function, defined in Eq. (1.234). 

For the calculations of Eqs. (8.32) and (8.33) we have used the results established in Eq. (1.241) (see also [57]):

%

& 

 L tβ−1E δα,β(− νtα);  s =  sαδ− β , 

 (s) > | ν|1 /α. 

(8.34)

 (sα +  ν)δ

Equation (8.32) shows the isolated effects of the exponential memory kernel. We notice that the exponential term approaches zero for long times, and the mean square

displacement thus reaches a plateau of saturation. This behavior describes a confined (localized, restricted, or corralled) diffusion, where  α can be associated with a y

saturation rate, and the asymptotic value of the mean square displacement represents

the magnitude of the confinement region. Mean square displacements having the

general form of Eq. (8.32), that is, 

 σ  2 (t) =  A∞ ( 1 −  e− ξt), 

(8.35)

are well-known to emerge in Ornstein-Uhlenbeck processes [58] and restricted diffusion confined within reflecting boundaries [59]. However, the restricted diffusion observed here occurs without external forces or finite boundary conditions, a remarkable feature of the Caputo-Fabrizio operator [45]. 

The confined diffusion observed in Eq. (8.35) suggests a relationship between the exponential kernels and stationary states (stochastic localization phenomena). 

Indeed, the same equation emerges in the work of Méndez and Campos [60], where a continuous-time random walk model for diffusion with resetting (walkers return

to the origin with a resetting probability  r ) was proposed. A connection between fractional diffusion equations with the Caputo-Fabrizio operator and diffusion with

stochastic resetting was also established [45]. Méndez and colleagues [61] also studied a continuous-time random walk model on a comb structure subjected to a bias

parameter on the branches, where Eq. (8.35) appears as an asymptotic behavior for the backbone diffusion when the walker is biased to stay along the branches. It was

verified that normal diffusion emerges on the backbone when a fractional Brownian

motion with long-range anti-persistent correlations occurs on the branches [49]. By studying a minimal random walk model with infinite memory (walkers preferentially
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return to previously visited sites), Boyer and Solis-Salas [62] established a connection between long-range memory and stationary states of mean square displacement

and demonstrated how to infer memory strength use in animals (monkeys). 

In this context, we can verify whether the relation between the Caputo-Fabrizio

operator and confined diffusion is valid for the comb model from the evolution of

Eq. (8.33). To do so, we calculate the asymptotic limits of Eqs. (8.32) and (8.33) for short- and long-times, that is, 



 σ

 α

2 (

 t, 

 t → 0 , 

 t ) ∼ 2 D

 y

 y

 y

1 , 

 t → ∞ ,  and

(8.36)

' 

 D

 tαx −1 / 2

 σ 2 (

 x

 t ) ∼ 

 (αx +1 / 2 ) , 

 t → 0 , 

 x

 D

 tαx

 y

 (αx +1 ) , 

 t → ∞ . 

(8.37)

In previous calculations, we use the formula [63, 64], also introduced in Eq. (1.234)

defining the three-parameter Mittag-Leffler function, that is, 

∞

)

 (δ +  k)

 (− z)− n

E δα,β(− z) =  z− δ

 , 

(8.38)

 (δ)

 (β −  α(δ +  n))

 n! 

 k=0

for 0  < α <  2 and  z → ∞, from which we find the asymptotic behavior E δα,β(− tα) 

 t − αδ

 , t → ∞ . 

(8.39)

 (β −  αδ)

Equations (8.36) and (8.37) show that Brownian motion governs the branches dynamics at short-times, promoting enhanced subdiffusion in the backbone with

0  < α − 1 / 2  <  1 / 2 and  α = 1 (as discussed earlier). In the long-time limit, a sta-x

 y

tionary state emerges in the branches, and the backbone dynamics only depends on

its power-law memory kernel. 

There is a crossover from subdiffusion,  σ  2 (t) ∝  t 1 / 2, to Brownian diffusion, x

 σ 2 (t) ∝  t, when  α

 x

 x = 1 (dot-dashed blue line in Fig. 8.2). We thus find an intriguing result where the interplay between geometrical restriction and memory effects

(mechanisms associated with subdiffusion) produces usual Brownian motion. Simi-

lar behavior also emerges for power-law memory kernels when  αx → 1 and  αy → 0, for suitable combinations of Hurst exponents in fractional Brownian motions over

a comb structure [49], and without memory effects when the branches of the comb are finite [65–67]. However, the results of Eqs. (8.36) and (8.37) are obtained with no memory effects in the  x-direction and the stationary state is a consequence of the exponential memory kernel valid for 0  < α  <  1. 

 y

The crossover is an essential feature of this model and provides insights into the

time scale that each mechanism of subdiffusion is most relevant. As we already dis-

cussed, the dynamics in short-times is the same as the usual comb model; therefore, 

subdiffusion is caused by geometrical restrictions. On the other hand, the exponential
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memory kernel produces a dynamics similar to a random walk with a high proba-

bility of returning to the origin. Since the backbone is at the origin, walkers along the branches tend to stay confined near the backbone because of memory effects, 

which in turn produces Brownian diffusion on the backbone. The memory effects

along the branches thus dominate longer time scales. This interpretation is some-

how in agreement with the results on anisotropic diffusion of entangled biofilaments

already reported [68], where the authors have written: “The physical reason is that linear macromolecules become transiently localized in directions transverse to their

backbone but diffuse with relative ease parallel to it.” 

They obtained an empirical mean square displacement ∼  t 0 .  2 for the transversal direction and a mean square displacement ∼  t 0 .  9 for the parallel direction of such macromolecules. Liang Hong and co-workers also reported a gradual crossover from

subdiffusion to Brownian diffusion on the mobility of water molecules on protein

surfaces [69]. They further argued that a broad distribution of trapping times causes the subdiffusion; however, water molecules start jumping to the empty sites as the

trappings become occupied, resulting in the Brownian diffusion. 

We can further investigate the effects of exponential memory kernels simultane-

ously acting on the backbone and branches, that is, 

K α (s) ∝

1

and K  (s) ∝

1

 . 

 x

 α

 s +  α

 y

 s +  α

 x

 y

These memory kernels are related to the Green’s functions given by Eqs. (8.19) and

(8.21), where  α =  α =  α  is also a condition ensuring the non-negativity of the x

 y

corresponding solution. If the interpretation of the exponential memory kernel is

valid, stationary states are expected to emerge even in the backbone dynamics. This

hypothesis is corroborated by Fig. 8.1 and by the results for mean square displacement









 σ

 s−1

 D

2 (

 y

 t ) = 2 D

;  t = 2

1 −  e− αt

and

(8.40)

 y

 y L−1

 s +  α

 α

√



√ 

 σ

 s +  α

1

2 (t) =  Dx



 L−1

;  t =  Dx



√ erf

 αt , 

(8.41)

 x

 D

 α

 y

 s(s +  α)

 Dy

where erf (x)  is the error function, defined in Eq. (1.222). These results show that the behavior on both directions reaches a stationary state for long times, that is,  σ  2 (t) y

and  σ  2 (t)  approach a constant plateau when  t → ∞. 

 x

Figure 8.2 shows the behavior of  σ  2 (t)  for different time scales (dashed line). 

 x

Once again, a crossover characterizes the backbone dynamics and the system evolves

from subdiffusion to confined diffusion (stationary state). The quenched mechanism

dominates at short-time scales and the annealed mechanism predominates in the

long-run. Confined diffusion on both  x  and  y  directions has been experimentally observed in the crowded environment of living cells such as in lateral diffusion of

membrane receptors [59] and diffusion of protein aggregates in live  E. coli  cells [70]. 
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8.4

Generalized Fractal Structure of Backbones

We now focus on generalizing the quenched disorder mechanism of the comb model, 

Eq. 8.2, by changing its geometrical restrictions. Instead of multiplying the diffusion term in the  x-direction by a single delta function  δ(y), we consider a multiplication

*

by

 δ(y −  l

 l

 j )  to obtain an infinite number of backbones, where the position

 j ∈ Sν

of the backbones  l j ( j = 1 ,  2 , . . . )  belong to a fractal set  Sν  with fractal dimension 0  < ν <  1. These geometrical restrictions characterize a fractal grid [18–20], as illustrated in Fig. 8.3 for the one-third Cantor set ( ν  0 .  631) at the third step of the iteration. Under these conditions, the diffusion equation for the fractal comb model

is









 ∂

 ∂ 2

)

 ∂ 2

 ρ(x, y;  t) =  F

 D

 ρ(x, y;  t) +

 δ(y −  l

 D

 ρ(x, y;  t) . 

 ∂

 t,y

 y

 j )Ft,x

 x

 t

 ∂y 2

 ∂x 2

 l j ∈ Sν

(8.42)

We proceed by defining the generalized diffusion equation governing the dynamics

on the backbones. By applying the Laplace transform to Eq. (8.42), we have

 ∂ 2

 sρ(x, y;  s) −  ϕ(x, y) =  sDy K y(s)

 ρ(x, y;  s)

 ∂y 2

)

 ∂ 2

+

 δ(y −  l j)sDx K x(s)

 ρ(x, y;  s). 

 ∂x 2

 l j ∈ Sν

(8.43)

By following the procedures already applied [19] and considering a suitable initial condition, we may represent the probability distribution function as

⎡

⎤

|

 ρ(

 y|

 x, y;  s) =  f (x, s)  exp ⎣− 

⎦  . 

(8.44)

 Dy K y(s)

The exponential term carries information about the diffusion in the branches. From

Eq. (8.44), we find a relation for the probability distribution of the  x-direction in the Laplace domain, that is, 



 G 1 (x;  s) = 2  Dy K y(s) f (x, s). 

(8.45)
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Fig. 8.3 Example of a fractal comb structure. The one-third Cantor set (at the third step of construction) provides the rule to locate the backbones perpendicularly to the  y-axis. The location of the branches is distributed continuously along the backbones, that is, walkers access the branches through any position on the backbones. This spatial configuration characterizes a fractal grid. Modified with permission from Tateishi et al. [21]. Copyright (2020) by the American Physical Society On the other hand, we also have

∞



 G 1 (x, t) =

 d y ρ(x, y, t)

−∞

and by integrating Eq. (8.43), we find

 ∂ 2 )

 sG 1 (x;  s) −  (x) =  sDx  K x (s)

 ρ(x, y =  l

 ∂

 j ;  s), 

(8.46)

 x 2  lj∈ Sν

+ ∞

where  (x) = −∞  dy ϕ(x, y), and  ρ(x, y =  l j;  s)  represents the probability distribution function for the backbone in the position  l j . The summation

)  ρ(x, y =  lj;  s)

 l j ∈ Sν

can be formally replaced by integration to fractal measure  μν ∼  lν, where

)  δ(l − lj) → 1  lν−1

 (ν)

 l j ∈ Sν

is the fractal density [71], that is, 

 dμν =

1  lν−1  dl. 

 (ν)
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Therefore, from Eqs. (8.44) and (8.45), we obtain

⎡

⎤

)

)

|

 ρ(

 l j |

 x, y =  l

⎣

⎦

 j ;  s) =

 f (x, s)  exp − 

 l

 D

 j ∈ Sν

 l j ∈ Sν

 y  K  y (s)

∞



=

−

 l

√

 f (x, s)  1

 dl lν−1 e

 Dy  K y (s)

 (ν)  0









=

 ν/ 2

− 1− ν

 f (x, s) D

2

 y  K  y (s)

=

1

K

 G

1− ν

 y (s)

1 (x ;  s). 

2 D  2

 y

(8.47)

We observe in Eq. (8.47) that the power-law exponents of the diffusion coefficient and memory kernel of  y-direction contains all information about the fractal structure of backbones. Hence, by using the result of Eq. (8.47) in Eq. (8.46), we find Dx

K x (s)

 ∂ 2

 sG 1 (x;  s) −  (x) =

 s

 G

1− ν



1− ν ∂

1 (x ;  s). 

(8.48)

2 D  2

2

 x 2

 y

K y(s)

The inverse Laplace transform of Eq. (8.48) yields the generalized diffusion equation

⎛

⎞

 t



 ∂

 ∂ 2

 G

⎝  Dx ⎠  ∂

 dt   η(t −  t )

 G

 ∂

1 (x ;  t ) =

1 (x ;  t  ), 

(8.49)

 t

1− ν

 ∂

 ∂

2 D  2

 t

 x 2

 y

0

where the memory kernel  η(t)  depends on both annealed and quenched disorder

mechanisms, as given by

⎧

⎫

⎨

⎬

 η(

K x (s)

 t ) =  L−1

; 

 . 

⎩



 t

(8.50)

1− ν

⎭

K

2

 y (s)

By using Eq. (8.49), we obtain the general expression for the mean square displacement of a comb structure related to the fractal dimension 0  < ν <  1 in the Laplace domain, that is, 

⎛

⎞

' 

(

 σ

K

2 (

 x (s)

 t ) = 2 ⎝  Dx ⎠  L−1

;  t . 

(8.51)

 x

1− ν

2 D  2

 s[K

 y

 y (s)] 1− ν

2

We note again that probability distributions along the backbones structure should

be non-negative; therefore:
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1− ν

1

K

2

=

 y (s)

 sη(s)

 s K x (s)

should be a completely monotone function, and



1− ν

1

K

2

=

 y (s)

 η(s)

K x (s)

should be a Bernstein function. 

To investigate the isolated effects of geometrical restrictions of the fractal grid, 

we consider the case K x (t) = K y(t) = 1 (that is, K x (s) = K y(s) = 1 /s) where the mean square displacement recovers preceding results [18], that is, 

⎛

⎞





 D

1+ ν

 σ

 s−1

 t  2

2 (

 x

 t ) = 2 ⎝  Dx ⎠  L−1

;  t = 2



 . 

(8.52)

 x

1− ν

1− ν

2 D  2

 s 1− 1− ν

2

2

   1 + 1+ ν

 y

2 Dy

2

The power-law behavior

 σ 2 (

1+ ν

 t )   t  2

 x

indicates a scale invariance, and because the exponent depends on  ν, we infer that the fractal grid affects the spreading dynamics in all time scales. 

The overall effect is a subdiffusive dynamics with 1 / 2  < ( 1 +  ν)/ 2  <  1; however, the subdiffusion in a fractal grid is faster than the usual comb model, that

is,  σ  2 (t)   t 1 / 2, corresponding to  ν = 0 in our case [12]. This behavior occurs x

because the set of backbones increases the possibilities of diffusion in the  x-

direction. For example, a fractal grid with  ν  0 .  631 (the one-third Cantor set) implies  σ  2 (t)   t 0 .  816. Moreover, Eq. (8.52) connects the anomalous diffusion expo-x

nent with the fractal dimension of the backbone structure, a result that was experi-

mentally observed in diffusion in porous and structurally inhomogeneous media [72]. 

One example of the interplay between this generalized geometrical restriction and

the effect of memory kernels is given by K x (s) = K y(s) = 1 /sα. This choice yields a fractional diffusion equation for a fractal grid given by

⎡

⎤

 ∂

 ∂ 2

)

 ∂ 2

 ρ(x, y;  t) =  D 1− α ⎣ D

 ρ(x, y;  t) +  D

 δ(y −  l

 ρ(x, y;  t)⎦  , 

 ∂

 y

 x

 j )

 t

 t

 ∂y 2

 ∂x 2

 l j ∈ Sν

(8.53)

and whose mean square displacement is

⎛

⎞

⎛

⎞

0

1

 α+ ν

 σ

2

2 (t) = 2 ⎝  Dx ⎠  L−1  s− α+ ν −1

2

;  t = 2 ⎝  Dx ⎠  t

 , 

(8.54)

 x

1− ν

1− ν

 α+ ν

2 D  2

2

 

 y

2 Dy

2

336

8

Relaxation Under Geometric Constraints I: Classical Processes

In Eq. (8.53), D1− α {· · · } is the Riemann-Liouville operator defined by Eq. (4.64), 

 t

with 0  < α ≤ 1. The power-law exponent  (α +  ν)/ 2 is associated with the two anomalous diffusion mechanisms: memory effects (related to  α) and the fractal structure restriction (given by  ν). The interplay between these mechanisms produces subdiffusive regimes between the limit cases of restricted and Brownian diffusion, 

that is, 0  < (α +  ν)/ 2  <  1. The case of a single backbone ( ν = 0) yields σ 2 (t)   tα/ 2 , 

 x

as already reported [73]. From the general formula of Eq. (8.51), we further conclude that the mean square displacement along the  x-direction is stationary (case of localization) if



1− ν

K

2

 x (s) ∝ K  y (s)

 , 

and that normal diffusion along the  x-direction occurs for



1− ν

K

2

 x (s) ∝  s−1 K  y (s)

 . 

A remarkable feature of these conditions is that both memory kernels must have the

same effects of geometrical restrictions. 

The calculations shows that the generalized comb models account for annealed and

quenched disorder mechanisms. These comb models with fractional time-derivative

operators are a reasonable abstraction for systems where the interplay between tem-

poral and spatial disorders is present. For these hybrid models, the role of different memory kernels for the backbone and branch structures, as well as the fractal generalization of the geometrical restrictions are important. In this framework, general solutions for the diffusion propagator and the mean square displacement in terms

of these memory kernels are obtained. With these solutions, particular cases based

on the temporal evolution of the mean square displacement and inferred time scales

associated with each disorder mechanism can be obtained. These results thus provide

theoretical knowledge about the importance of the interactions between geometrical

restrictions and memory effects on anomalous diffusion. 

The behaviors obtained from these models are consistent with other theoretical and

experimental results. In its usual form, the comb model is a subdiffusive model with

 σ 2 ∝  t 1 / 2. However, depending on the memory kernels and number of backbones x

(single or fractal set), the generalized comb models also describe restricted diffusion, Brownian diffusion, and display a crossover from subdiffusion to these situations. 

For power-law memory kernels, the mean square displacement is scale-invariant

and the diffusive regime depends on the values of memory exponents 0  < αx <  1

and 0  < αy <  1 with  αx > αy/ 2. Scale invariance is also a feature of the fractal grid structure of backbones. In this case, there is an enhancement of the diffusion

(when compared with the usual comb model) and the anomalous exponent depends

on the fractal dimension, 1 / 2  < ( 1 +  ν)/ 2  <  1. By including power-law memory effects on the fractal grid, we obtained an anomalous exponent 0  < (α +  ν)/ 2  <  1

with  α =  αx =  αy. Overall, these results from the generalized comb models are
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consistent with simulations of fractal Brownian motion [49] and a biased continuous-time random walk model [61] on comb-like structures. 

When the memory kernel acting on the branches is exponential, the behavior of

the mean square displacement in the  y-direction is similar to those found in diffusion with explicit confinement (external forces or limited boundaries) or having a bias to return to the origin. The spread in the branches thus follows Brownian diffusion for

short-time scales and becomes confined near to the backbone for long times. Because

of this high probability of returning to the backbone, the long-time behavior in  x-

direction only depends on its memory kernel. The overall effect of an exponential

kernel is a crossover between diffusive regimes. This crossover occurs from subdif-

fusion to Brownian diffusion when walkers have no memory in the backbone. Thus, 

we observed that the interplay between two subdiffusion mechanisms (geometrical

restrictions and memory effects) may lead to the usual Brownian motion. 

This crossover and its physical explanation also appear consistent with experimen-

tal results of anisotropic diffusion of entangled biofilaments [68] and the mobility of water molecules on protein surfaces [69]. On the other hand, when an exponential memory kernel acts on the backbone, a crossover from subdiffusion to confined

diffusion can be obtained. This result also appears consistent with the mean square

displacement observed in lateral diffusion of membrane receptors [59] and diffusion of protein aggregates in live  E. coli  cells [70]. Moreover, we found that the confinement effects of exponential memory kernels are independent of the parameters  α y and  α . 

 x

In spite of its simplicity, the generalized comb model may have an important

role in the statistical mechanics of disordered media. This model can be used as a

simple explanation for unusual transport properties caused by quenched disorder or to annealed disorder. It also has the advantage of providing exact solutions related to sub-and superdiffusive behaviors. The comb models are also relevant for investigating

the interplay between temporal and spatial disorder mechanisms and for describing

crossovers from subdiffusion to confined or Brownian diffusion. 

8.5

Comb-Model and Reaction Diffusion

In this section, we analyze the behavior of the system governed by Eq. (8.1) when reaction terms are incorporated. We start by considering an irreversible reaction

process, that is, the particles are removed from the system. This feature implies

considering the following equation:

 ∂

 ∂ 2

 ∂ 2

 ∂

 ρ(x, y;  t) =  D

 ρ(x, y;  t) +  δ(y)D

 ρ(x, y;  t) −

 Y (x, y;  t)

(8.55)

 ∂

 y

 x

 t

 ∂y 2

 ∂x 2

 ∂t

and

 ∂ Y(x, y;  t) =  k(x, y)ρ(x, y;  t), 

(8.56)

 ∂t
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where  Y (x, y;  t)  is related to the particle which is removed from the system and k(x, y)  is the rate connected with this process. In this context, we consider first k(x, y) =  kxy +  kx δ(y)  and  k(x, y) =  kxy +  k 0 δ(y)δ(x). 

These cases incorporate irreversible processes on the branches and in the backbone

structure. Note that depending on the sign of  kxy,  kx  and  k 0, they may represent a source or a sink term. Subsequently, we consider the diffusion subjected to a

reversible reaction process, that is, 

 ∂ Y(x, y;  t) =  k

 ∂

 f ρ(x , y;  t ) −  kbY (x , y;  t ), 

(8.57)

 t

where the rates  k f  and  kb  are related to the forward and backward reactions, respectively. For these cases, we obtain exact solutions in terms of the Green’s function

approach and show a rich class of behaviors which can be related to anomalous

diffusion. 

8.6

Diffusion and Reaction

We consider now the solutions for the comb model when reaction terms are

present [74]. To analyze the case  k(x, y) =  kxy +  kx δ(y), which corresponds to analyze reaction processes in the branches and in the backbone structure, as mentioned

before, we consider the following boundary conditions:

 ρ(±∞ , y;  t) =  ρ(x, ±∞;  t) = 0 and  Y (±∞ , y;  t) =  Y (x, ±∞;  t) = 0 , together with the initial conditions:

 ρ(x, y; 0 ) =  ϕ(x, y)  and  Y (x, y; 0 ) = 0 . 

In order to find the solution and perform the analysis for this case, we use integral transforms and the Green’s function approach. 

By applying the Laplace transform on the temporal variable  t ( L{ ρ(x, y;  t);  s} =

 ρ(x, y;  s)  and the Fourier transform on the  x−variable ( F{ ρ(x, y;  t);  px} =



 ρ(px, y;  t), the transformed  ρ(x, y;  t)  satisfies the following equation

 ∂ 2

%





& 

 D





 y

 ρ(p

 s +  k

 k

 δ(y) ρ(p

 ∂

 x , y;  s) −

 x y +

 x +  Dx p 2

 x , y;  s) = 

 ϕ(px, y), 

 y 2

 x

(8.58)
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where the solution is given by

∞





 ρ(px, y;  s) =

 d y

 G( px , y, y;  s)

 ϕ(px, y ), 

−∞

with the Green’s function obtained from the equation

 ∂ 2





 D





 y

 G( p

 s +  k

 G( p

 ∂

 x , y, y;  s) −

 x y

 x , y, y;  s)

 y 2





−  kx +  Dx p 2  δ(y)

 G( p

 x

 x , y, y;  s) =  δ(y −  y ), 

(8.59)



subjected to the boundary condition  G( px , ±∞ , y;  s) = 0. By means of a standard procedure [75], it is possible to solve the previous equation and to show that the solution is given by



−  s+ kxy | y− y|



 Dy

 G( px , y, y;  s) = −  e

2  (s +  kxy)Dy  s+ kxy

−

 kx +  Dx p 2 x



−

| y|

 e

 Dy

 G( px ,  0 , y;  s)

(8.60)

2  (s +  kxy)Dy

and, consequently, 



−  s+ kxy | y|



 Dy

 G( px ,  0 , y;  s) = −

 e



 . 

(8.61)

2  (s +  kxy)Dy +  kx +  Dx p 2 x

By substituting Eq. (8.61) in Eq. (8.60), we obtain the Green’s function in the Fourier-Laplace space as









−  s+ kxy |

 s+ k

 y− y|

−

 x y (| y|+| y| )

 G( p

 Dy

 Dy

 x , y, y;  s) = −

1



 e

−  e

2  (s +  kxy)Dy



−  s+ kxy

 D

 (| y|+| y| )

 y

−

 e



 . 

(8.62)

2  (s +  kxy)Dy +  kx +  Dx p 2 x

Applying the inverse Laplace and Fourier transforms, we thus obtain

340

8

Relaxation Under Geometric Constraints I: Classical Processes





− | y− y|2

−  (| y|+| y| ) 2

 G(x, y, y;  t) = − δ(x) e− kxyt



 e  4 Dyt −  e

4 Dy t

4 πDyt

∞

)



 t



|

 n

−

 y| + | y|

 dt  t  n/ 2

 e− kxyt

−  kx

√



 ( 1 +  n)



4 D

 n=0

 x

8 D

 D

0

 x t 

 y t 







1



−  (| y|+| y| ) 2

4

4 Dy (t− t )

×

4 Dy

+1 ,  1 )

 e

H1 ,  0

| x|  (n 2 4 4



 , (8.63)

1 ,  1

 D 2 t

 ( 0 ,  1 )





 x

3

4 π Dy (t −  t )

written in terms of the H− function of Fox. 

We are now able to obtain the mean square displacement and the quantity of

particles present in the system. For the mean square displacement in each direction, 

taking into account the initial condition  ϕ(x, y) =  δ(x)δ(y), we have 2



3

 D √

 

 t

2

 x

 (

 x =  (x −  x ) 2 = √

 te− k

1 )

 x y t  E

− kx

 D

1

 D

 x

2

2

 y

2



3

 D √

=

 x

 t

√

 te− kxyt  E2

− kx

 , 

 D

1  ,  3

 D

 x

2

2

2

 y

(8.64)

and

2



3

 

 t

2  y =  (y −  y ) 2 = 2 Dyte− kxyt E1 , − kx

 , 

2

(8.65)

2

2

 Dy

 γ

where E α,β(z)  and E α,β(z)  are the generalized Mittag-Leffler functions, defined, (

respectively, in Eqs. (1.227) and (5.113), and E  n) α,β (x)  is the  nth  derivative, which

can be related with the three parameter Mittag-Leffler function as we have done in

Eq. (5.114). 

Figure 8.4 shows the behavior of the mean square displacement related to the previous equations. In Fig. 8.4a, we consider  kxy  and  kx  constants and non-negative, that is,  kxy >  0 and  kx >  0, which implies that the mean square displacement for these directions for short times behaves as

√

  2 x ∼  t  and   2 y ∼  t, 

and decreases for long times as follows:

√

  2 x ∼  e− kxyt

√

and   2  y ∼

 te− kxyt , 

 t
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Fig. 8.4 The mean square displacements obtained from Eqs. (8.64) and (8.65) versus  t, when  Dx =



 Dy = 1, for different values of  kxy  and  kx . (a)  kxy = 1 and  kx = 1. (b)  kxy = 1 and  kx = −2  kxy. 

Modified with permission from Marin et al. [74]. © 2020 Elsevier B.V. All rights reserved where we have invoked the asymptotic behavior of the three parameter Mittag-Leffler

function, that is, for  z → ∞ [64]. 

 γ

E α,β(− z) ∼  z− γ , 

In Fig. 8.4b, we consider  kxy >  0 and  kx <  0, which implies that is in the branches where the particles are absorbed, in contrast to the backbone structure. The effect of this difference of signs is evidenced by the behavior of the mean square displacement. 

For short times, its behavior for each direction is characterized by

√

  2 x ∝  t  and   2 y ∝  t. 
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For long times, we have

  2 x ∝  t  and   2 y ∝ constant , 

which is different from the standard problem [76] where the reaction terms are absent. 

Now, we use the following asymptotic behavior of the three parameter Mittag-Leffler

function [64]

 γ

 γ − β

E α,β(z) ∼  z α ez 1 /α, z → ∞ , 

from which we have









 κ 2

 κ 2

  2 x ∝  t  exp

 x

−  k

 x

 x y

 t

and   2  y ∝ exp

−  kxy t , 

4  Dy

4 Dy



where  κx = − kx >  0. Therefore, for  κx = − kx = 2  kxyDy  one observes normal diffusion along the backbone and a stationary behavior along the fingers of the comb. 

This result also shows that the particles undergo a normal diffusion in the  x-direction whereas in the  y-direction the behavior is the stationary one. 

To go on further, we consider the comb model in presence of the reaction term

 k(x, y) =  kxy +  k 0 δ(x)δ(y). In this framework, Eq. (8.55) may be written in the Laplace domain, as follows:





 ∂ 2

 ∂ 2





 Dy

+  δ(y)D

 ρ(x, y;  s) −  s +  k

 ρ(x, y;  s)

 ∂

 x

 x y

 y 2

 ∂x 2

−  k 0 δ(x)δ(y)ρ(x, y;  s) =  ϕ(x, y). (8.66)

The solution for this equation can be found by using the procedure employed above. 

Thus, the Green’s function, connected to Eq. (8.66), is given by





 ∂ 2

 ∂ 2





 Dy

+  δ(y)D

 G(x, x , y, y;  s) +  s +  k

 G(x, x , y, y;  s)

 ∂

 x

 x y

 y 2

 ∂x 2

+  k 0 δ(x)δ(y)G(x, x , y, y;  s) =  δ(y −  y )δ(x −  x ) (8.67)

and subjected to the previous boundary conditions. In order to solve this equation, 

we apply Fourier transform on the  x  and  y  variables, indicated, respectively, by F{ G(x, x , y, y , t);  px} = 

 G( px , x , y, y , t)

and

 F{ G(x, x , y, y , t);  py} =

4

 G(x, x , py, y , t)  and, similarly,  F−1{

 G( px , x , y, y , t);  x} =  G(x, x , y, y , t)  and F−1{4

 G(x, x , py, y , t);  y} =  G(x, x , y, y , t), which yields:
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4



 G( px , x , py, y , s) = −  e− ipx x e− ipy y

−

1

 s +  kxy +  Dy p 2

 s +  k

 y

 x y +  Dy p 2 y





×  D



 x p 2  G ( p

 . (8.68)

 x

 x , x  ,  0 , y , s) +  k 0  G( 0 , x  ,  0 , y , s) Obtaining the inverse Fourier transform in the  y−variable and after some calculations, we eventually arrive at



−  s+ kxy | y|



 Dy

 G( px , x ,  0 , y , s) = −

 e− ipx x  e



2  (s +  kxy)Dy +  Dx p 2 G

 x

 y ( 0 , s +  kx y )

−

 k 0



 G( 0 , x ,  0 , y , s), 

(8.69)

2  (s +  kxy)Dy +  Dx p 2 x

with



−

 s | y|

 G

 Dy

 y (y, s) =

1



 e

(8.70)

2  s Dy

and, consequently, 



2  (s +  kxy)Dy

 G( 0 , x ,  0 , y , s) = −





 k 0 + 2 2 Dx (s +  kxy)Dy



√

× − 2  (

 e

 D

 s+ k

 x

 x y )| x  |  G y(y , s +  kxy). 

(8.71)

Substitution of these results into Eq. (8.68) yields the following equation: G(x, x , y, y , s) = − δ(x −  x ) G y(y −  y , s +  kxy) −  G y(| y| + | y| , s +  kxy) s+ kxy

−

−

 (| y|+| y| )

 G

 Dy

 x (x −  x  , s +  kx y )e



−  s+ kxy

 D

 (| y|+| y| )

 y

−

 k 0 e





 Gx (| x| + | x| , s +  kxy), 

(8.72)

 k 0 + 2 2 Dx (s +  kxy)Dy

where



√

−

2

 D

 G

 D

 y s| x |

 x (x , s) =

1





 e

 x

 . 

(8.73)

8 Dx sDy

Applying the inverse of Laplace transform, we obtain
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(8.74)
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 . 
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 D 2

 ( 0 ,  1 )

8 D

 t

 x

 x t

 Dyt

Let us consider the last case, which is characterized by reversible process. Dif-

ferently from the previous case, this problem implies considering that the kinetic

process is governed by Eq. (8.57). This kinetic equation for the reaction process implies that

 t



 Y (x, y, t) =  k f

 dt  e− kb(t− t )ρ(x, y, t ), 

(8.76)

0

when the initial condition  Y (x, y,  0 ) = 0 is considered. By replacing this result in Eq. (8.55) we obtain

 t



 ∂

 ∂

 ∂ 2

 ρ(x, y;  t) +  k

 dt  e− kb(t− t )ρ(x, y, t ) =  D

 ρ(x, y;  t)

 ∂

 f

 y

 t

 ∂t

 ∂y 2

0

 ∂ 2

+  δ(y)Dx

 ρ(x, y;  t), 

(8.77)

 ∂x 2

which is a comb model in the presence of two different relaxation processes. 

One of them is related to the standard differential operator and the another one

is an integro-differential operator with an exponential in the kernel of the inte-

gral. 
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It should be pointed out that the presence of this integro-differential operator is a consequence of the form considered for Eq. (8.57), which for this case has a solution in terms of an exponential kernel. Another choice for Eq. (8.57) such as, for example, t



 ∂ Y(x, y;  t) =  k

 dt  k

 ∂

 f ρ(x , y;  t ) −

 b (t −  t  )Y (x , y;  t  ), 

(8.78)

 t

0

leads us to a different form for Eq. (8.77), which will depend on the choice performed for  kb(t). In particular, Eq. (8.78) implies that

 t



 ∂

 ∂

 ∂ 2

 ρ(x, y;  t) +  k

 dt   K (t −  t )ρ(x, y, t ) =  D

 ρ(x, y;  t)

 ∂

 f

 y

 t

 ∂t

 ∂y 2

0

 ∂ 2

+  δ(y)Dx

 ρ(x, y;  t), 

(8.79)

 ∂x 2

where





1

 K (t) =  L−1

;  t , 

 s +  kb(s)

which, for the particular case  kb(s) = constant, recovers Eq. (8.77). In order to find the solution for this case, we continue employing the procedure of using integral

transforms and the Green’s function approach. 

The Green’s function related to Eq. (8.77), in the Laplace domain, is given by





 ∂ 2

 ∂ 2





 Dy

+  δ(y)D

 G(x, x , y, y , s) −  s +  k(s) G(x, x , y, y , s)

 ∂

 x

 y 2

 ∂x 2

=  δ(x −  x )δ(y −  y ), 

(8.80)





where  k(s) =  sk f / s +  kb(s) . By means of the Laplace and Fourier transform (twice), we may find that the Green’s function is given by

4



 G( px , x , py, y , s) = −

1

 s +  k(s) +  Dy p 2 y





×

4

 e− ipx x  e− ipy y +  Dx p 2 G( 0 , x , p (8.81)

 x

 y , y , s)

and, consequently, after some calculations, we obtain
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4

0



 G( px , x , py, y , s) = −
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 e− ipx x  e− ipy y

 s +  k(s) +  Dy p 2 y

(

 D





−

 x p 2

 x

 G y | y| , s +  k(s)

 . (8.82)

1 +  Dx p 2 G

 x

 y [0 , s +  k(s)]

In order to obtain the inverse Fourier and Laplace transforms of the previous equa-

tions, we analyze each term of Eq. (8.82). The first term to be considered is (px, s) =

1





2
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where  kt =  k f +  kb. The inverse Laplace transform of the previous equation is 2
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(8.84)
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 t 

 , (8.85)

2

2

2

0

where





 (t) =

1

√

 e− kbt −  e− ktt , 

2 t

 πt

in which I n(x)  is the Bessel function of modified argument. The inverse Fourier transform of the previous equation is given by
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the inverses Fourier and Laplace transforms yield
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Fig. 8.5 The mean square

displacements according to

Eqs. (8.92) (a) and (8.93)

(b), for  k f = 1,  Dy = 1, and

 Dx = 1. The dashed line

corresponds to  kb = 3 k f  and

the solid line to  kb = 10 k f . 

Modified with permission

from Marin et al. [74]. ©

2020 Elsevier B.V. All rights

reserved

After performing the inverse Laplace and Fourier transforms, these results allows us

to write Eq. (8.82) as follows:









 G(x, x , y, y , t) = − δ(x −  x )  | y −  y| , t −   | y| + | y| , t t









−

 dt   | x −  x| , t −  t   | y| + | y| , t  . 

(8.91)

0

From the equation for the last case, it is possible to obtain the mean square

displacement for the directions  x  and  y. For the  x-direction, we have t



 D





 

 dt 

2

 x

 x =  (x −  x ) 2 = 

√ 1 − 2 k

 e− (kb+ k f )t  ξ(t −  t ), (8.92)

 πD

 f t 

 y
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0
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with











 ξ(
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 kb

 t ) =  e− 1  k

2  b t

 ( 1 +  kbt) I0

 t

+  kbt I1

 t

 . 

2

2

For the  y-direction, we have















  2 y =  (y −  y ) 2 = 2 Dy  2 kbk f  1 −  e− ktt +  ktt k 2 +  k 2  e− ktt . 

 k 3

 b

 f

 t

(8.93)

√

From these equations, by means of a simple analysis it can be shown that   2 x ∼

 t

and   2  y ∼  t  for short and long times, which are typical of the standard comb model for each direction. This result is in agreement with the scenario characterized by the reversible process described by Eqs. (8.55) and (8.57), which implies the existence of changes in intermediate times. 

Figure 8.5 shows the behavior of the mean square displacement for Eqs. (8.92)

and (8.93) by considering different values of  kb  and  k f . 

The case of a reversible process has shown that it may be similar to considering

a fractional diffusion equation with distributed order or diffusion equations with

different fractional operators, depending on the reaction terms of the reaction process. 

The behavior for small and for long times exhibit the same time dependence (see

Fig. 8.5). For intermediate times, the behavior has been essentially governed by the reaction process as shown in Fig. 8.5. This feature evidences that for long times the particles essentially behaves as in the standard comb model with effective diffusion

coefficients. 

Indeed, comb models have been investigated for description of anomalous diffu-

sion in low-dimensional percolation clusters [12, 77], and have been generalized to different fractal structures [61, 78, 79]. Recently, it has been shown that the theoretical models of anomalous diffusion in fractal grid and mesh structures [18, 20]

describe very well the anomalous diffusion in porous structurally inhomogeneous

media [72]. Possible experimental contexts for the results presented here may be related to polymerization and propagation in a spiny dendrites in comb-like geometries [80–82]. These results can also be relevant in analyzing reaction-diffusion in porous media with dead pores (closed pores). 
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Chapter 9

Relaxation Under Geometric Constraints

II: Quantum Processes

Abstract This chapter deals with the description of constrained motion in connection with the Schrödinger equation with the help of the comb model. Exact solutions

are obtained to investigate the time evolution of the initial conditions and the asymptotic behavior in two-, three-, and non-integer dimensions as a tool to handle the

anomalous spreading of the wave function and the anomalous behavior of the under-

lying diffusive process. The problem of quantum confinement in non-integer dimen-

sions is addressed by solving the Schrödinger equation with an adequate Laplacian

in which a confining feature is inserted as a geometric constraint. The chapter ends

by treating the interplay between fractal dimensions and geometrical constraints as

a way to model complex anomalous dynamics emerging in anisotropic and confined

quantum systems. 

9.1

Introduction

The fractional Schrödinger equation is also an example of application of the fractional operators [1–9]. Fractional quantum mechanics has been successfully applied to describe nonlocal quantum phenomena, attracting much attention for years. The

space fractional derivatives in quantum mechanics were introduced by means of

the Feynman propagator for non-relativistic particles. Unlike the space fractional

derivatives, the application of the time fractional derivatives in quantum theory is still a matter of debate. It has been discussed that simple time-fractional generalization

of the Schrödinger equation is not possible by using the Wick rotation of time, as in the case of Fokker-Planck equation. However, time fractional derivatives emerge in

the description of dynamics of a quantum system interacting with the environment

leading to partial quantum information lost. 

The analysis of quantum motions under geometric constraints, represented by

comb structures, leads to time fractional Schrödinger equation [1, 10]. It has been shown that the time fractional Schrödinger equation is an analogous description

of the quantum motion in an effective complex potential, and a formal effective

description of diffusive wave transport in complex inhomogeneous media [11]. Let

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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us analyze this kind of problem with a simple approach dealing with constrained

quantum motion with the help of the comb model using the Schrödinger equation

with a  δ-potential. 

9.2

Constrained Quantum Motion in  δ−Potential

In this section, we obtain exact solutions for the Schrödinger equation with a  δ-

potential and investigate the time evolution of the initial conditions and asymptotic behavior of this solutions illustrating the usefulness of the mathematical tools to

handle the anomalous behavior also in this kind of quantum processes [12]. 

We start by obtaining the solution via the Green’s function approach to the

following Schrödinger equation in the presence of  δ-potential energy function: V (x) =  Vδ(x), 





 ∂

2  ∂ 2

 ı 

 ψ(x, y, t) =  δ(y) l −

+  V (x) ψ(x, y, t)

 ∂t

2 M ∂ x 2

(9.1)

2  ∂ 2

−

 ψ(x, y, t), 

2 M ∂y 2

with the initial condition

 ψ(x, y,  0 ) =  ϕ(x, y), 

(9.2)

and zero boundary conditions at infinities, that is, 

 ∂

 ψ(x, y, t) = 0 and

 ψ(x, y, t) = 0 , q = { x, y} = {±∞ , ±∞} , 

(9.3)

 ∂q

as a generalization of the Green’s function approach for solving the one-dimensional

Schrödinger equation with  δ-potential [13, 14], where  l, introduced in Eq. (9.1), 

has dimension of length, that is, [ l] =  L  and is used for dimensional purposes since

[ δ(y)] =  L−1. 

We will also show that a generalized integral operator with the Mittag-Leffler func-

tion in the memory kernel appears in the solution of the two-dimensional Schrödinger

equation, Eq. (9.1). The Dirac delta potentials are special cases of point interactions [15, 16] and have been considered in several situations such as to explain the band gap formation in crystal structures [17], in the description of the interaction between weakly interacting bosons [18], to approximate the scattering and reflection amplitudes of an arbitrary potential [19], among others. The delta function  δ(y) means that the quantum motion of the particle along the  x-direction is allowed only at  y = 0. Such a constrained motion of the particle is on the so-called comb structure, as we have discussed in the preceding chapter. 
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The time fractional Schrödinger equation with Caputo fractional derivative can

be obtained by projection of the two-dimensional  (x, y)  comb dynamics, described by Eq. (9.1) with  V = 0, on the one-dimensional configuration space [1, 2]. 

To solve Eq. (9.1), we start by writing the equation for the Green’s function related to it, which is given by

 ∂

 ı 

 G(x, y, t) −  HG(x, y, t) =  i δ(x −  x )δ(y −  y )δ(t −  t ), (9.4)

 ∂t

with the operator  H  defined as





2  ∂ 2

 HG(x, y, t) = − δ(y) l

−  V (x) G(x, y, t)

2 M ∂ x 2

(9.5)

2  ∂ 2

−

 G(x, y, t). 

2 M ∂y 2

To proceed, let us first perform the Laplace transform

 L{ G(x, y, t);  s} =  G(x, y, s)

and, then, the Fourier transforms with respect to  x  and  y, respectively, as F{ G(x, y, t);  kx} = 

 G(kx , y, t)  and  F{ G(x, y, t);  ky} = 

 G(x, ky, t), 

such that





 G =  F{ F{ L{ G(x, y, t);  s};  kx };  ky} . 

After applying the Fourier-Fourier-Laplace transform to Eq. (9.4), we may simplify the previous equation for the Green’s function, obtaining









 sG(kx , ky, s) +  ı  k 2 G(kx , ky, s) =  e− ikx x e− iky y e− st 2 M y

(9.6)

−  ı



 l k 2 G(kx ,  0 , s) −  ıV lG( 0 ,  0 , s), 

2 M

 x



from which it is possible to obtain





1

 G(kx , ky, s) =

 e− iky y  e− ikxx e− st −  ıVl

 G( 0 ,  0 , s)

 s +  ı  k 2

 s +  ı  k 2

2 M

 y

2 M

 y

−  ı

 l k 2 x



 G(kx ,  0 , s). 

(9.7)

2 M s +  ı  k 2

2 M

 y

In Eq. (9.7), the two last terms on the right side with a Green’s function dependence show the influence of the geometric constraint, that is, the restriction to the prop-
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agation of the initial condition on a backbone structure, and the delta potential at

the origin. By obtaining the inverse Fourier transform with respect to  ky, from the previous equation we deduce that



√



2 M

2 Ms

 G(kx , y, s) = 1

 e−

 ı  | y− y| e− ikx x  e− st

2

 ı  s



√





− 1 2 M

2 Ms

 ı 



 e−

 ı  | y|

 l k 2 G(kx ,  0 , s) +  ıV l G( 0 ,  0 , s) , 

2

 ı  s

2 M

 x



(9.8)

and, thus, 



√





2 M

1

2 Ms

 G(kx ,  0 , s) = 1



 e−

 ı  | y| e− ikx x  e− st −  ı V l G( 0 ,  0 , s) . 

2

 ı  s



1 +

 ı   l k 2

2 Ms  2  x

(9.9)

Now, from the inverse Fourier transform with respect to  kx , we obtain



3

2 Ms

√

√

4

2

2 Ms

 G(x,  0 , s) =

1

√

 e−

 ( 2 Ms

 l

 ı   )  14 | x − x | e−

 ı  | y| e− st

2 s  2 l

 ı 



3

√

4

−  ıV

 l

2 Ms

2

 e−

 ( 2 Ms

 l

 ı   )  14 | x |  G( 0 ,  0 , s), 

(9.10)

2  s

2

 ı 

and, consequently, 



3

2 M

√

√

4

 e− st

2

2 Ms

 G( 0 ,  0 , s) =

1

√



 ( 2 Ms



 e−

 l

 ı   )  14 | x | e−

 ı  | y| . 

2 2 l

 ı 

3

1

 s

 l

2 M

4  ı V

4 + 12

2

 ı 



(9.11)

From Eqs. (9.9) and (9.11), we get



√2 Ms



2 M e− st  e−

 ı  | y|

 G(kx ,  0 , s) = 1



2

 ı  s  1 +  ı  l k 2

2 Ms  2  x

⎡





√

⎤

3

2  (  2 Ms

4

 l

 ı   )  14 | x |

× ⎣

 l

2 M

 e−

 e− ikx x −  ıV



⎦  , (9.12)

2

2

 ı 

3

1

 s

 l

2 M

4  ı V

4 + 12

2

 ı 
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that is, 



3

2 Ms

√

4

2 Ms

 G(x,  0 , s) =

1

√

 e−

 ı  | y| e− st

2 s  2 l

 ı 

⎡

√

⎤

√



3

2  (  2 Ms

4

 l

 ı   )  14  (| x |+| x | )

× ⎣

2

 l

2 M

 e−

 e−

 ( 2 Ms

 l

 ı   )  14 | x − x | −  ı V



⎦  . 

2

2

 ı 

3

1

 s

 l

2 M

4  ı V

4 + 12

2

 ı 



(9.13)

Equation (9.13) shows the influence of the geometric constraint and the delta potential on the Green’s function, which promotes the propagation of the initial condition

related to the  x-direction. The propagation of the wave packet along the  y-direction is also influenced by the constraint and the potential, as we will discuss below, after finding the general solution for Eq. (9.1). 

Substitution of Eqs. (9.12) and (9.11) into (9.7) yields





√





2 Ms

 G(kx , ky, s) =

 e− ikx x  e− st  e− ikyy −  e−  ı | y| +

 e− ikx x



 e− st

 s +  ı  k 2

 ı   l

2 M

 y

1 +

 k 2

2 Ms  2  x

√2 Ms

 ı  | y|

×  e−

−  ıVl

1

1



 G( 0 ,  0 , s). 

(9.14)

 s +  ı  k 2

 s +  ı  k 2

 ı   l

2 M

 y

2 M

 y  1 +

 k 2

2 Ms  2  x

Inverting the Fourier transform (on the  kx  and  ky  variables), Eq. (9.14) becomes M

√

√

2 Ms

2 Ms

 G(x, y, s) =

 e−

 ı  | y− y| −  e−

 ı   (| y|+| y| )

 δ(x −  x )e− st

2 ı  s  3 √

4

+

1



 M

2 Ms

√

 e−

 ı  | y| e− st

2  l

 s

2 ı 

√

√

√



×

2 Ms

2

2

 e−

 ( 2 Ms

 ( 2 Ms

 ı  | y| e−

 l

 ı   )  14 | x − x | +  ı Vl e−

 l

 ı   )  14 | x |  G( 0 ,  0 , s) . 



(9.15)

The inverse Laplace transform of Eq. (9.15), for  t > t, yields M

 G(x, y, t) =

 e−  M | y− y|

 (| y|+| y| )

2 ı  t

−  e−  M

2 ı  t

 δ(x −  x )

2 ı π t



⎡

⎤

3

 t



4

+ 1

 M

√

⎣ (x −  x , | y| + | y| , t) +  ıVl dt (x, y, t −  t )G( 0 ,  0 , t )⎦  , 2  l

2 ı 

0

(9.16)
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where

3 

 G( 0 ,  0 , t) = 1

√

2 M

4

 (x , y , t)

2 2 l

 ı 









3

 t



3



− ıV l  2 M  4

 dt E

 l

2 M

4

1

− ıV

 t  14  (x , y , t −  t ) , 

2

2

 ı 

 ,  1

4

4

2

2

 ı 

0  t 34

(9.17)

and



 t









1





4

1

 (

 M

 dt 

2

2 M

 ,  1

 x, y, t) =

| y| e−  My 2

2 ı  (t− t )  H1 ,  0

| x|  4 4

 , 

2 πi

 (

1 ,  1



 t −  t )  3

 ( 0 ,  1 )

2  t  3

 l

 ı  t

4

0

(9.18)

in which we found again the H−function of Fox and the two-parameter Mittag-Leffler

function E α,β(z), whose Laplace transform is given by Eq. (5.52). 

To obtain the Green’s function (9.16) from (9.15) we have also used the following Laplace transform formula:





 L−

 a

 (ρ, σ)

1{ s− ρe− asσ ;  t} =  tρ−1H1 ,  0



 . 

(9.19)

1 ,  1

 t σ   ( 0 ,  1 )

9.3

Time Evolution and Asymptotic Behavior

The previous results enable us to analyze several problems related to the time evolu-

tion of an initial condition subjected to a geometric constraint and a delta potential. To proceed further, we first consider a situation for which the wave function is initially strongly localized at the origin, that is, 

 ψ(x, y,  0 ) =  δ(x)δ(y), 

for illustrative purposes. We consider the behavior of the Green’s function (or prop-

agator) for each direction, in order to obtain the changes produced on the spreading

of the initial condition by the constraints imposed to the system and the Dirac delta potential. For this initial condition, we restrict, for simplicity, our discussion to the Green’s function. Thus, by integrating Eq. (9.4) with respect to  y, for the Green’s function

∞



 G 1 (x, t) =

 d y G(x, y, t)

−∞
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in the  (kx , s)-space and, without loss of generality, by taking  x = 0 and  t = 0 into account, we find



 G 1 (kx , s) = 



 G(kx ,  0 , s)

=

1

1







 . 

(9.20)

3

1

1

 s

 l

2 M

4

 ı 

4

 s  4 +  ıV

 s 1 / 2 +  l

 k 2

2

2

 ı 

2

2 M

 x

This equation can also be obtained from Eq. (9.14) by taking into account the previous considerations. The inverse Fourier transform of Eq. (9.20) yields 2 M  1 / 4

1

√2

 G

 ( 2 Ms

1 (x , s) =

1

√

 e−  l ı  ) 14 | x| . (9.21)

2 sl

 ı 

3 / 4

 s 1 / 4 +  ıV

 l

2 M

2

2

 ı 

Finally, by the inverse Laplace transform of the Green’s function, we find











1



1





2 M

4

2

2 M

4

1 ,  1

 G

4 4

1 (x , t ) =

1

√

 Eω

 t −3 / 4H1 ,  0

| x|

 (t), 

1 ,  1



2 l

 ı 

0+; 1  ,  1

4

2

 l

 ı  t

 ( 0 ,  1 )

(9.22)

with



3 / 4

 ω = − ıV l  2 M

 , 

2

2

 ı 

where  (Eω

 a+;  α,β ϕ)(t )  is a generalized integral operator defined as [20, 21]: t







 (Eω

 dt   (t −  t )β−1E

 ω(t −  t )α ϕ(t ). 

(9.23)

 a+;  α,β ϕ)(t ) =

 α,β

 a

Figure 9.1 illustrates the behavior of the  G 1 (x, t)  for the cases  V = 0 and  V = 0. 

To go on further, we analyze the asymptotic behavior of the Green’s function

 G 1 (x, t)  in the short and long time limits in order to obtain its asymptotic behavior in each one of these cases and determine how is governed the propagation of the

initial condition. For the short time limit, that is,  t → 0 ( s → ∞), we obtain from the previous equation









1





1



2 M

4

2

2 Ms

4

 G 1 (x, t)  1

√

 L−1  s−34 exp −

| x| ;  t

2 l

 ı 

 l

 ı 









1



1






4

4

3

= 1

√

2 M

2

2 M

 ,  1

H1 ,  0

| x|  4 4

 , 

(9.24)

1 ,  1



2 l

 ı  t

 l

 ı  t

 ( 0 ,  1 )
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Fig. 9.1 Real and imaginary parts and the modulus of  G 1 (x, t). (a) Illustrates the influence of the potential on the behavior of the Green’s function. (b) Comparison of the problems with (dashed lines) and without (solid lines) the potential, that is, the cases  V = 0 and  V = 0, respectively. 

√

For illustrative purposes, we assume

2 /l( 2 M/ )  14 = 1,  t = 1 / 2, and [ Vl/( 4 )] ( 2 M/ )  12 = 1. 

Modified with permission from Sandev et al. [12]. © 2019 Elsevier B.V. All rights reserved which essentially corresponds to the case in the absence of the potential, that is, the propagation of the initial condition for initial times is not influenced by the potential. 

For the long time limit, that is,  t → ∞ ( s → 0), we obtain
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1



 ı 

3 / 4

1

2

2 Ms

4

 G 1 (x, t)  2

 L−1 √ exp −

| x| ;  t

 ı Vl

2 M

 s

 l

 ı 













3 / 4

1

4

1

= 2

 ı 

1

2

2 M

 ,  1

H1 ,  0

| x|  2 4

 , 

(9.25)

 ı Vl

2 M

 t  1 / 2 1 ,  1

 l

 ı  t

 ( 0 ,  1 )

which is different from the result obtained in the limit of short times due to the

influence of the potential. In addition, the case of zero potential energy ( V = 0) yields the known result [10]:



 G 1 (kx , s) =

 s−1 / 2



 , 

(9.26)

 s 1 / 2 +  l

 ı   k 2

2

2 M

 x

which, after obtaining the inverse of Laplace and Fourier transforms, becomes









1



1





 l

2 M

4

2

2 M

4

3 ,  1

 G

4 4

1 (x , t ) = 1

H1 ,  0

| x|

 . 

(9.27)

2

2

 i  t

1 ,  1

 l

 ı  t

 ( 0 ,  1 )

By using the Green’s function given by Eq. (9.16) it is possible to analyze the behavior of system when it is not initially localized, that is, when the probability

density function has an initial shape. The general solution for this case is given by

⎧

∞



⎨ ∞







 V

3

4

 ψ

 l

2 M

 x (x , t ) =

 d yψ(x, y, t) = ⎩  dx ψx(x ,  0 )G 1 (x −  x ,t) −  i √

2 2 l

 i 

−∞

−∞

⎫

 t



! 

" ∞



⎬

×

 dt 

E 1

 ω(t −  t ) 14

 d x ψx (x ,  0 )G 1 (| x| + | x| , t ) . 

(9.28)

 (

 ,  1

 t −  t )  1 4 4

⎭

4

0

−∞

This point is illustrated in Fig. 9.2, which shows the behavior of the  ψx (x, t)  for the initial condition  ψx (x,  0 ) =  e−| x|. 

The integration of Eq. (9.1) with respect to  x  gives the Green’s function

∞



 G 2 (y, t) =

 G(x, y, t) dx, 

−∞

which, in the Fourier-Laplace space, is given by



1

 G 2 (ky, s) = 



 G(kx = 0 , ky, s) =

 s 1 / 4



 . 

(9.29)

3 / 4

 s 1 / 4 +  ıV

 l

2 M

 s +  ı  k 2

2 M

 y

2

2

 ı 
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√

Fig. 9.2 Real and imaginary parts and the modulus of  ψx (x, t), when 2 /l( 2 M/ )  14 = 1,  t = 1 / 2, and [ Vl/( 4 )] ( 2 M/ )  12 = 1. Modified with permission from Sandev et al. [12]. © 2019 Elsevier B.V. All rights reserved

From the inverse Fourier transform, it follows that







2 M

 s−1 / 4

2 M

 G 2 (y, s) = 1



exp −

 s 1 / 2| y|  , 

(9.30)

2

 ı 

3 / 4

 s 1 / 4 +  ıV

 l

2 M

 ı 

2

2

 ı 

and, thus, by the inverse Laplace transform, we finally obtain











2 M

2 M | y|   ( 0 ,  1 / 2 )

 G



2 (y, t ) = 1

 Eω

 t −1H1 ,  0

 (t). (9.31)

2

 ı 

0+;1 / 4 ,  1 / 2

1 ,  1

 ı   t 1 / 2   ( 0 ,  1 )

Figure 9.3 illustrates the behavior of the Eq. (9.31). Similarly to the previous case analyzed above for the  x−coordinate, we may also obtain the asymptotic behavior of the Green’s function  G 2 (y, t)  in order to analyze, for this case, its influence on the system. For the short time limit, we have:



& 



' 



2 M

1

2 Ms

 M

 G

 y 2

2 (y, t )  1

 L−1 √ exp −

| y| ;  t =

 e−  M

2 ı  t

 , 

2

 ı 

 s

 ı 

2 πı t

(9.32)

which implies that, for short times, the evolution of the system is governed by the

usual dynamics. In the other limit, that is, for long times, the asymptotic behavior of the Green’s function is given by
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Fig. 9.3 Real and imaginary parts and the modulus of  G 2 (y, t), when [ V/( 2 )] 2 /l( 2 M/ )  34 = 1, t = 1 / 2, and  (M/ )  12 = 1. Modified with permission from Sandev et al. [12]. © 2019 Elsevier B.V. 
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(9.33)

2  ı V

2 M

3

1 ,  1



 t

 ( 0 ,  1 )

4

 ı  t

which is different from the previous one obtained in the limit of short times, by

evidencing it for the  y-direction, that is, the time evolution of the system, under these conditions, presents a unusual behavior for some times due to the presence of the

potential. We note that in the free-particle case (potential  V = 0), from Eq. (9.29) a known result is obtained [10]:



 G 2 (ky, s) =

1

 , 

(9.34)

 s +  ı  k 2

2 M

 y

which, after inverting the Laplace and Fourier transforms, becomes

 M

 G

 y 2

2 (y, t ) =

 e−  M

2 ı  t

 , 

(9.35)

2 πı t

typical of a standard time evolution. 

Let us now consider a non-localized initial condition as we have done for the

 x-coordinate. In this case,  ψy(y, t)  is given as follows:
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√

Fig. 9.4 Real and imaginary parts and the modulus of  ψy(y, t), when [ V/( 2 )] 2 /l( 2 M/ )  34 = 1, t = 1 / 2, and  (M/ )  12 = 1. Modified with permission from Sandev et al. [12]. © 2019 Elsevier B.V. 

All rights reserved
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 y (y, t ) =

 d xψ(x, y, t) =

 d y G 2 (y −  y , t)ψy(y ,  0 ) −  ıV

2

2

 ı 

−∞

−∞

⎧

⎫

⎨ ∞



 t







⎬

×
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 ω(

 . 

⎩  dy ψy(y ,  0 )

E 1

 t −  t )  14  G 2 (| y| + | y| , t ) (

 ,  1

 t −  t )  1 4 4

⎭

4

−∞

0

(9.36)

Figure 9.4 illustrates Eq. (9.36) in order to show the spatial behavior of the solution for the initial condition  ψy(y,  0 ) =  e−| y|. 

In this exact analytical treatment of a two-dimensional Schrödinger equation for

constrained motion of a particle along a channel, in the presence of a  δ-potential, we have focused particular situations for each direction. To sum up, it may be underlined that the geometric constraint has a direct influence on the  x-direction, whereas for the  y-direction, the effect of the geometric constraint is verified for  V = 0; when V = 0, a usual Green’s function is obtained. 

9.4

Time-Dependent Schrödinger Equation in 3D

In this section, we consider a quantum motion governed by the time-dependent

Schrödinger equation on a three dimensional (3D) comb structure, deriving the cor-

responding fractional Schrödinger equations for the reduced probability density func-
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tions [22]. This is done by projecting the three dimensional comb dynamics into the two- and one-dimensional configuration space. This approach exemplifies another

physical system where fractional calculus emerges. The tracks of the underlying

anomalous behavior are identified in the closed-form solutions of the corresponding

equations for the reduced probability density functions, which are expressed in terms of the H−function of Fox, by using the Green’s function approach. 

 9.4.1

 3D Constrained Quantum Model

We consider a more physical example of three-dimensional quantum motion under

geometric constraints, which leads to a fractional form of the corresponding equations for the reduced probability density functions. Namely, we consider a quantum system, 

constrained on a three dimensional comb structure [23–25] (see Fig. 9.5), modeled by a Schrödinger equation of the form





 ∂

2

 ∂ 2

 ∂ 2

 ∂ 2

 ı 

 ψ(x, y, z, t) = −

 δ(y)δ(z) l

+  δ(z) l

+

 ψ(x, y, z, t), 

 ∂

 y lz

 z

 t

2 M

 ∂x 2

 ∂y 2

 ∂z 2

(9.37)

satisfying the following initial condition

 ψ(x, y, z, t = 0 ) =  δ(x −  x )δ(y −  y )δ(z −  z ), (9.38)

and the boundary conditions at infinity set to zero, extending Eq. (9.3), that is, 

 ∂

 ψ(x, y, z, t) = 0 and

 ψ(x, y, z, t) = 0 , q = { x, y, z} = {±∞ , ±∞ , ±∞} . 

 ∂q

(9.39)

Geometric constraints are achieved by inserting the  δ-functions, restricting the motion along the  x-direction only at  y =  z = 0, introducing  δ(y)δ(z)  in front of the second spatial derivative with respect to  x, whilst the  δ-function  δ(z)  in front of the second spatial derivative with respect to the  y-variable means that the motion along the  y-direction is allowed only at  z = 0. 

As before, the parameters  ly  and  lz  are introduced for dimensional purposes only, 

[ ly] = [ lz] =  L, since [ δ(y)] = [ δ(z)] =  L−1. Therefore, this three-dimensional comb structure can be considered as a construction of a comb on the fingers of

the comb. Diffusion in three-dimensional combs has been investigated by several

authors (see for example [26–28]) and crossover between normal and anomalous diffusion was successfully described in the frameworks of these models [29–31]. 

Equation (9.37), analyzed here, is in fact a generalization of the standard Schrödinger equation for a two-dimensional comb, that have been extensively studied [1, 2, 10]. Possible applications of such models in realistic systems are suggested by a sketch of a comb-like molecular structure, that illustrates a class of comb-like

[image: Image 15]
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Fig. 9.5 (a) Ideal three dimensional comb structure, together with the orientation of Cartesian axes. 

(b) An illustration of a comb-like polymeric structure. The atomic arrangement given in the right panel creates comb-like potential, whilst in the left panel, the same molecular structure is displayed in a tube frame to show the comb-like features in a more obvious manner. Reprinted from Petreska et al. [22], with the permission of AIP Publishing

copolymers, provided in Fig. 9.5b. Modeling of the transport properties of comb-like copolymers and more complex molecular networks is of crucial importance for a

vast number of technological and biophysical processes [32, 33]. 

 9.4.2

 Green’s Function and Schrödinger Equation

Let us find the Green’s function by solving Eq. (9.37) subjected to the previous boundary conditions, Eq. (9.39), that is

 ∂

 G(x, y, z, t) = 0 and

 G(x, y, z, t) = 0 , q = { x, y, z} = {±∞ , ±∞ , ±∞} . 

 ∂q

(9.40)

To simplify the notation, we use hereafter the symbol “

 G” to indicate the Fourier

transform with respect to any of the spatial variables, that is,  F{ G(x, y, z, t);  kx } =



 G(kx , y, z, t),  F{ G(x, y, z, t);  ky} = 

 G(x, ky, z, t), and  F{ G(x, y, z, t);  kz} = 

 G

 (x, y, kz, t). 

To proceed, we first perform the Laplace transform with respect to time,  t, and, after, the Fourier transform with respect to  z, in order to obtain
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! 

" 



2

 ∂ 2

 ı   sGz(x, y, kz, s) −  δ(x −  x )δ(y −  y )e− ikzz = −

 ly lz δ(y)

 G(x, y,  0 , s)

2 M

 ∂x 2

2

 ∂ 2

2

−



 lz

 G(x, y,  0 , s) +

 k 2  Gz(x, y, kz, s). 

(9.41)

2 M

 ∂y 2

2 M z

Now, we may apply the Fourier transform also with respect to the variables  x  and  y, yielding

! 

" 



2



 ı   sGxyz(kx , ky, kz, s) −  e− ikx x e− iky y e− ikzz =

 ly lz k 2 Gx (kx ,  0 ,  0 , s)

2 M

 x

2

2

+





 lz k 2 Gxy(kx , ky,  0 , s) +

 k 2  Gxyz(kx , ky, kz, s). 

2 M

 y

2 M z

(9.42)

The formal solution of Eq. (9.42) can be written as follows



 Gxyz(kx , ky, kz, s) =  e− ikx x e− iky y e− ikzz Gz,  3 (kz, s)

−  i



 ly lz k 2 Gx (kx ,  0 ,  0 , s)

 Gz,  3 (kz, s)

2 M

 x

−  i



 lz k 2 Gxy(kx , ky,  0 , s)

 Gz,  3 (kz, s), 

(9.43)

2 M

 y

where



 Gz,  3 (kz, s) =

1

 , 

(9.44)

 s +  i  k 2

2 M

 z

which corresponds to the Green’s function of a free particle in one dimension and, 

in particular, 

∞

∞







 G 3 (kz, s) =

 d y d x Gz(x, y, kz, s), 

−∞ −∞

that is, as we will discuss in the next section, it may represent a reduced distribution. 

After applying the inverse Fourier transform to Eq. (9.44) with respect to the  kz variable, we obtain

 M √2 Ms

 G 3 (z, s) =

 e−

 i  | z| , 

(9.45)

2 i  s

and, consequently, after inverting the Laplace transform, we obtain

 M

 G

 z 2

3 (z, t ) =

 e−  M

2 ı  t

 . 

(9.46)

2 πı t
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This result shows that the Green’s function related to the reduced distribution in

this direction promotes an usual spreading of the wave packet, characterized by a

Gaussian distribution. 

By applying the inverse Fourier transform, with respect to the  z−variable, to Eq. (9.43), we obtain the following equation:





 Gxy(kx , ky, z, s) =  e− ikx x e− iky y  G 3 (z −  z , s) −  i  ly lz k 2 G(kx ,  0 ,  0 , s)G 3 (z, s) 2 M

 x

−  i



 lz k 2 Gxy(kx , ky,  0 , s)G 3 (z, s), 

(9.47)

2 M

 y





which enables us to relate  Gxy(kx , ky,  0 , s)  with  Gx (kx ,  0 ,  0 , s)  as follows Gxy(kx , ky,  0 , s) =  e− ikx x e− iky y  G 3 (z , s) G y,  2 (ky, s)

−  i



 ly lz k 2 Gx (kx ,  0 ,  0 , s)Gz,  3 ( 0 , s) G y,  2 (ky, s), (9.48)

2 M

 x

with



 G y,  2 (ky, s) =

1 

 . 

(9.49)

1 +  i  l

 M

 k 2

2 M z

2 i  s

 y

 r

Note that Eq. (9.49) is related to the reduced distribution  G

 (k

 y,  2

 y , s)  by the equation



 r

 G y,  2 (ky, s) =  sG (k

 y,  2

 y , s)

and, as it will be shown in the next section, it satisfies a fractional differential equation. 

This implies that the spreading of the solution in this direction is not usual as occurs in the  z−direction. 

In order to obtain  G(kx ,  0 ,  0 , s), we may apply the Fourier transform to Eq. (9.48)

and use the result









1



1

 Ms

4

 Ms

4

 G 2 (y, s) =

exp −2

| y|  , 

(9.50)

2 i  l 2

2 i  l 2

 z

 z

which corresponds to the inverse Fourier transform of Eq. (9.49). By following this procedure, we can show that



 Gx (kx , y,  0 , s) =  e− ikx x  G 3 (z , s)G 2 (y −  y , s)

−  i



 ly lz k 2 Gx (kx ,  0 ,  0 , s)G 3 ( 0 , s)G 2 (y, s). 

(9.51)

2 M

 x

9.4 Time-Dependent Schrödinger Equation in 3D

371

After some calculations, we also obtain



 Gx (kx ,  0 ,  0 , s) =  e− ikx x  G 3 (z , s)G 2 (y , s) Gx,  1 (kx , s), 

(9.52)

with



 Gx,  1 (kx , s) =

1



 , 

(9.53)

1 +  ly

 lz

 i   k 2

2

2

2 Ms

 x

 r

which is related to the reduced distribution  G

 (k

 x,  1

 x , s)  by the equation



 r

 Gx,  1 (kx , s) =  sG (k

 x,  1

 x , s). 

By inverting the Fourier transform, it becomes





⎡

⎤

1



1

 Ms

8

 Ms

8

 G

⎣

⎦

1 (x , s) =

exp −2

| x|  . 

(9.54)

2 i  l 2 l 4

2 i  l 2 l 4

 z y

 z y

By substituting these results in Eq. (9.41), we obtain





 Gxy (kx , ky , z, s) =  e− ikx x  e− iky y  G 3 (z −  z , s) −  G 3 (| z| + | z| , s)

⎡



⎤

− 2

2 Ms

+  e− ikx x ⎣ e− iky y 

 G

 lz

 i  | y| 

⎦

2 (ky , s) −  e

 G 2 (ky, s) G 3 (| z| + | z| , s)



− 2

2 Ms

+  e− ikx x e

 lz

 i  | y|  G 3 (| z| + | z| , s)

 Gx,  1 (kx , s)

 G y,  2 (ky, s), 

(9.55)

which, after inversion of the integral transforms, becomes

(

)

 G(x, y, z, t) =  δ(x −  x )δ(y −  y ) G 3 (z −  z , t) −  G 3 (| z| + | z| , t) (

)

+  δ(x −  x ) (| y −  y| , | z| + | z| , t) −  (| y| + | y| , | z| + | z| , t) t









+

 dt 

  |

2 M(| z|+| z | ) 2

 y| + | y| , | x −  x| , t | z| + | z|  e i (t− t ) , (t −  t ) 32

0

(9.56)
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where  (y, z, t)  and  (y, x, t)  are determined by the following equations 5  t









4

 α



 (

 M

 dt 

 y

 ( 1 ,  1 )

 y, z, t) =

1

√

| z| e−  Mz 2

2 i  (t− t )  H1 ,  0

| y|  4 4

 , 

 π





 l

3

1 ,  1

 ( 0 ,  1 )

 z

2 i 

 t   (t −  t ) 2 4

 t  14

0

(9.57)

and



118

 (

 M

 y, x, t) =

1



1

 π 2 l 2 l 3 4 2 i

 y z

 t















 α



 α



×

 dt 

 y

 ( 0 ,  1 )

 x

 ( 1 ,  1 )

H1 ,  0

| y| 

4

H1 ,  0

| x|  8 4

 , 

1 ,  1



1 ,  1



 t  (t −  t )  7

 ( 0 ,  1 )

 ( 0 ,  1 )

8

 t  14

 (t −  t ) 18

0

(9.58)

with



1



1

8

4

 α

 M

 M

 x = 2

 , αy = 2

 . 

2 i  l 2 l 4

2 i  l 2

 z y

 z

We underline again the presence of the H−function of Fox as an indication of the

effects of the constrained motion on the spreading of the wave function. 

 9.4.3

 Reduced Green’s Functions and Fractional Derivatives

We analyze the reduced probability density function along all three directions for the initial condition (9.38), with  x =  y =  z = 0, in order to obtain the time-dependent equation related to each distribution and, consequently, analyze the influence of the geometric constraint imposed by the comb model on the wave packet spreading. 

Following the procedure employed in the previous section, we start by applying the

Laplace and Fourier transforms, to obtain

! 

" 



2

 ∂ 2

 ı   sGz(x, y, kz, s) −  δ(x)δ(y) = −

 ly lz δ(y)

 G(x, y,  0 , s)

2 M

 ∂x 2

2

 ∂ 2

2

−



 lz

 G(x, y,  0 , s) +

 k 2  Gz(x, y, kz, s). 

2 M

 ∂y 2

2 M z

(9.59)

For the case  kz = 0, it follows that
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 ∂ 2

 ı   sGz(x, y,  0 , s) −  δ(x)δ(y) = −

 ly lz δ(y)

 G(x, y,  0 , s)

2 M

 ∂x 2

2

 ∂ 2

−

 lz

 G(x, y,  0 , s). 

(9.60)

2 M

 ∂y 2

We rearrange Eq. (9.59) to get





 ∂ 2

 Gz(x, y, kz, s) =

2 M/(ı )

 δ(x)δ(y) +  ı  ly lz δ(y)

 G(x, y,  0 , s)

2 Ms/(ı ) +  k 2

2 M

 ∂x 2

 z



 ∂ 2

+  ı  lz

 G(x, y,  0 , s) . 

2 M

 ∂y 2

(9.61)

The inverse Fourier transform of Eq. (9.61) with respect to  kz  yields 2 M

− 2 Ms

 ∂ 2

 G(x, y, z, s) = 1

 s−1 / 2  e

 ı  | z|

 δ(x)δ(y) +  ı  ly lz δ(y)

 G(x, y,  0 , s)

2

 ı 

2 M

 ∂x 2



 ∂ 2

+  ı  lz

 G(x, y,  0 , s) , 

2 M

 ∂y 2

(9.62)

from which it follows that

2 M

 G(x, y,  0 , s) = 1

 s 1 / 2 

 Gz(x, y,  0 , s). 

(9.63)

2

 ı 

By integrating Eq. (9.37) with respect to  z, we find that the Green’s function

∞



 Gr (x, y, t) =

 d z G(x, y, z, t)

12

−∞

in the Laplace space is

 r

 G (x, y, s) = 

 G

12

 z (x , y,  0 , s). 

(9.64)

Finally, for the probability distribution function  G 12 (x, y, s)  we obtain

! 



 (

 r

 ı  ) 1+1 / 2  s 1 / 2  G (x, y, s) −  s−1 / 2  δ(x)δ(y) 12





2

 ∂ 2

 ∂ 2

= − lz √

 δ(

 r

 y) ly

+

 G (x, y, s), 

2

12

2 M

 ∂x 2

 ∂y 2

(9.65)
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which, by the inverse Laplace transform yields the fractional Schrödinger equation

on a two-dimensional comb, that is, 





 ∂ 1 / 2

2

 ∂ 2

 ∂ 2

 (ı ) 1+1 / 2

 Gr (x, y, t) = − lz √

 δ(y) l

+

 Gr (x, y, t). 

 ∂

 y

 t  1 / 2

12

2

12

2 M

 ∂x 2

 ∂y 2

(9.66)

In Eq. (9.66), 

 t



 ∂α f (t) =

1

 dt   (t −  t )− α d f (t ). 

(9.67)

 ∂tα

 ( 1 −  α)

 dt 

0

is the Caputo fractional derivative of order 0  < α <  1, defined in Eq. (4.94). Therefore, the fractional Schrödinger equation on a two-dimensional comb (9.66), which has been already considered [10], naturally appears by projection of a quantum motion in three-dimensional comb structure on to two-dimensional space, which

may be understood as a physical interpretation of the fractional Schrödinger equa-

tion on a comb. 

Following the same approach as in [10], we can solve Eq. (9.66). For the reduced probability distribution function along the  x-direction, 

∞



 Gr (x, t) =

 d y Gr (x, y, t), 

1

12

−∞

we obtain the following fractional Schrödinger equation with Caputo fractional

derivative of order 1 / 4:



 ∂ 1 / 4

2  ∂ 2

 (

 lz

 ı  ) 1+3 / 4

 Gr (x, t) = − ly

√

 Gr (x, t). 

(9.68)

 ∂t 1 / 4 1

2

2 4

1

2 M ∂ x 2

For the reduced probability distribution function along the  y-direction, 

∞



 Gr (y, t) =

 d x Gr (x, y, t), 

2

12

−∞

we also find time fractional Schrödinger equation with Caputo time fractional deriva-

tive of order 1 / 2 of the following form:

 ∂ 1 / 2

2  ∂ 2

 (ı ) 1+1 / 2

 Gr (y, t) = − lz √

 Gr (y, t). 

(9.69)

 ∂t 1 / 2 2

2

2

2 M ∂ y 2
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The solutions of Eqs. (9.68) and (9.69) are also given in terms of the H−function of Fox, that is, 

⎡

⎤

⎢



| x|

 ( 1 ,  1 / 8 ) ⎥

 Gr (x, t) = 1 H1 ,  0 ⎢ 



⎥

1

2| x| 1 ,  1 ⎣



 ( 1 ,  1 ) ⎦  , 

(9.70)
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 lz  4  ı   t

2

2

2 M

and

⎡

⎤

⎢



| y|

 ( 1 ,  1 / 4 ) ⎥

 Gr (y, t) = 1 H1 ,  0 ⎢ 



⎥

2

2| y| 1 ,  1 ⎣



 ( 1 ,  1 ) ⎦  , 

(9.71)

 lz

 ı   t

2

2 M

respectively. Equations (9.70) and (9.71) exhibit an anomalous relaxation, which can be verified by taking into account the asymptotic limit characterized by a non-Gaussian behavior. In fact, in this limit these equations have the asymptotic behavior defined as follows
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8

 α

1
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(9.72)
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and





⎡

⎤

1

1
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2
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2  α 2

3
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 αy

 Gr (y, t) ∼

1

√
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(9.73)
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1

3 π

 t  2 | y|

4

4

 t  3

At the end we note that the probability distribution function

∞

∞



 Gr (z, t) =

 d y d x G(x, y, t)

3

−∞ −∞

can be easily obtained by integration over both variables  x  and  y  in Eq. (9.61). Thus, r

 G (k

 , 

(9.74)

3

 z , s) =

2 M/(ı )

2 Ms/(ı ) +  k 2 z

from which the normal Schrödinger equation

 ∂

2  ∂ 2

 ı 

 Gr (z, t) = −

 Gr (z, t)

(9.75)

 ∂t  3

2 M ∂z 2 3
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"1 / 8

Fig. 9.6 Trends of Eqs. (9.70), (9.71), and (9.76), for 2  M/  2 l 2

=

 z l  4

 y

1 and  t = 10 in (a); 





1 / 4

2  M/  2 l 2

=

 z

1 and  t = 10 in (b); and  (M/( 2 )) 1 / 2 = 1 and  t = 1 in (c). Modified from Petreska et al. [22], with the permission of AIP Publishing

is obtained, having the correspondent solution in the form

 M

 Gr (z, t) =

 e−  M z 2

2 ı  t

 . 

(9.76)

3

2 πı t

Figure 9.6 illustrates the behavior of the reduced Green’s functions obtained for each variable of position. 

The analysis carried out above indicates that the anomalous dynamics in quantum

systems can be well modeled by a fractional Schrödinger equation in a comb-like

potential. A result of this kind may give a hint for possible applications of such a

model to describe charge transfer in the vicinity of comb-like copolymers, going

beyond the classical picture and grasping also the quantum-mechanical features of

the behavior of the particles. 

9.5 Time-Dependent Schrödinger Equation in Non-integer Dimensions
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9.5

Time-Dependent Schrödinger Equation in Non-integer

Dimensions

In dealing with quantum particles, for example electrons, which behave differently

in one, two and three dimensions, the question about their behavior in fractal or noninteger dimensions naturally arises. Therefore, confinement of quantum particles in

non-integer dimensions drags much of researchers’ attention nowadays and, very

recently, a fractal shape with a dimension of 1.58 was built out of electrons by using a quantum simulator, defining arrays of artificial atoms by controlled positioning of carbon monoxide molecules on Cu (111) surface [34]. 

Various fractal and anisotropic media have been investigated so far, such as poly-

mers, nanoporous materials, molecular assemblies, as well as plasmonic systems, 

and it was shown that fractal property emerges in the behavior of the particles at

the quantum level [35–38]. From the theoretical point of view, there is no unique framework for treatment of quantum confinement in non-integer dimensions. Analysis on fractal approach, fractional-differential continuum model, fractional-integral continuum model, fractional space and non-integer-dimensional space are some of

the possible approaches [39–45]. Non-integer dimensional spaces have been used to model electromagnetic fields and waves in fractal media [46], to model propagation of transverse magnetic mode and scattering from an electromagnetic conducting strip

in a non-integer dimensional dielectrics [47–49], to describe anomalous diffusion of fluid momentum in media with fractal porosity [50], to name but a few. 

In this section, we discuss a theoretical model, based on a generalized Schrödinger

equation, to study the behavior of a constrained quantum system in non-integer, 

lower than two-dimensional space [51]. The non-integer dimensional space is formed as a product space  X ⊗  Y , comprising  x-coordinate with a Hausdorff measure of dimension  α 1 =  D − 1 (1  < D <  2) and  y-coordinate with the Lebesgue measure of dimension of length ( α 2 = 1). Geometric constraints are set at  y = 0. We address the problem of quantum confinement in non-integer dimensions, by solving the

Schrödinger equation with an adequate Laplacian in non-integer-dimensional space

and inserting the confining feature as a geometric constraint in the Laplacian itself. 

In the paper by Stillinger [52], the axiomatic basis for non-integer dimensional space was proposed, and the time-dependent Schrödinger equation in non-integer

dimensions was studied. Palmer and Stavrinou deriving the Cartesian non-integer

generalization of the Laplacian operator, came to the connection with Stillinger’s

results of the following form [53]:



 ∂ 2

 ∂

 ∂ 2

∇2 =

+  D − 2

+

 , 

(9.77)

 ∂x 2

 x

 ∂x

 ∂y 2

in which 1  < D = 1 +  ν <  2, that is, 0  < ν <  1, which means that the  x-coordinate has Hausdorff measure of dimension  α 1 =  ν (0  < ν =  D − 1  <  1), and  y-coordinate has Lebesgue measure of dimension  α 2 = 1. In Palmer and Stavrinou [53], the Laplacian operator is defined by
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 ∂ 2

 α

 ∂

 ∂ 2

 α

 ∂

∇2 =

+ 1 − 1

+

+ 2 − 1

 , 

 ∂x 2

 x

 ∂x

 ∂y 2

 y

 ∂y

in which 0  < α 1 ,  2 ≤ 1, and the total spatial dimension of the system equals  D =

 α 1 +  α 2, 1  < D ≤ 2. In our case we consider  α 1 =  ν,  α 2 = 1, and thus  ν + 1 =  D. 

Integration in this space reads [52, 53]





 f (x, y) dμ(x) dμ(y) ∼

 f (x, y) | x| D−2  dx dy. 

The form (9.77) obviously corresponds to lower than two-dimensional space, whilst for  D = 2 the standard two-dimensional Laplacian in Cartesian coordinates is

obtained. The corresponding time-dependent Schrödinger equation, for a quantum

motion along the  x-direction, constrained at  y = 0, becomes









 ∂

2

 ∂ 2

 ∂

 ∂ 2

 ı 

 ψ(x, y, t) = −

 δ(y) l

+  D − 2

+

 ψ(x, y, t). 

 ∂t

2 M

 ∂x 2

 x

 ∂x

 ∂y 2

(9.78)

We emphasize that the case with  D = 2 yields the quantum motion in comb-like

structure extensively studied [1, 2, 10, 54], and was extended to problems with potential energy function [12]. 

Lately, the non-integer dimensional space has been successfully employed to

investigate the optical spectra and excitonic properties of anisotropic systems and

quantum wells, where the non-integer dimension is related to the degree of con-

finement of the system [55–58]. Subtle quantum many-body interactions, such as electron-phonon coupling within a polaron approximation, are described by map-ping the “polaron plus quantum well” system into a fractional-dimensional bulk

where the polaron behaves in an unconfined fashion [57]. 

In the present approach, the three-dimensional space is reduced by a quantity that

depends on the potential well width and the Bohr radius of the three-dimensional

exciton, reflecting the degree of confinement of the real system. This is an example of how the application of non-integer-dimensional space enables analytical treatment

of a very complex many-body problem. The equations of motion were derived for

a non-integer dimensional system of  n-spatial coordinates, and this approach was applied to an effective description of anisotropic and confined systems [53]. The model proposed here introduces geometric constraints along with the non-integer

dimension in the generalized Laplacian itself and can be considered as an alternative of the previously utilized approaches. 
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 9.5.1

 Marginal Probability Density Functions

Let us solve Eq. (9.78), assuming that the particle starts its motion from the coordinate origin, which is comprised in the initial condition of the form

 ψ(x, y,  0 ) =

1

 δ(x)δ(y), 

| x| D−2

which is such that





 ψ(x, y,  0 ) | x| D−2  dx dy =

 δ(x) δ(y) dx dy = 1 . 

In addition, we impose zero boundary conditions at infinity, that is, 

 ∂

 ψ(x, y, t) = 0 and

 ψ(x, y, t) = 0 , q = { x, y} ,  for  x = ±∞ , y = ±∞ . 

 ∂q

For solving this equation, we apply Laplace transform to obtain

 s ψ(x, y, s) −

1

 δ(x)δ(y)

| x| D−2





 ∂ 2

 ∂

 ∂ 2

=  δ(

 ı 

 D − 2

 y) l

+  ı

 ψ(x, y, s) +  ı

 ψ(x, y, s). 

2 M ∂ x 2

2 M

 x

 ∂x

2 M ∂y 2

(9.79)

Applying the Fourier transform with respect to  y, for the corresponding solution in the frequency domain, we obtain



 s ψ(x, ky, s) −

1

 δ(x)

| x| D−2





 ∂ 2

 ∂

=

 ı 

 D − 2



 l

+  ı

 ψ(x, y = 0 , s) −  ı  k 2 ψ(x, ky, s). 

2 M ∂ x 2

2 M

 x

 ∂x

2 M y

(9.80)

By integration of the Eq. (9.79) over  y, we find an equation for the marginal probability density function, 

∞



 G 1 (x, t) =

 ψ(x, y, t) dy, 

−∞
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in the form





 ı   ∂ 2

 D − 2  ∂

 s G 1 (x, s) −

1

 δ(x) =  l

+  ı

 ψ(x, y = 0 , s), 

| x| D−2

2 M ∂ x 2

2 M

 x

 ∂x

(9.81)

from which it follows that



 ψ(x, ky = 0 , s) =  G 1 (x, s). 

We rearrange Eq. (9.80) as follows

! 

" 

 ı   ∂ 2

 D−2  ∂



 l

+  ı

 ψ(x, y = 0 , s)

 ψ(

1

2 M ∂ x 2

2 M

 x

 ∂x

 x, ky, s) =

1

 δ(x) +

 , 

 s +  ı  k 2 | x| D−2

 s +  ı  k 2

2 M

 y

2 M

 y

(9.82)

from which, by inverting the Fourier transform, it is obtained



√

 ψ(

 ı 

2 Ms

 x, y, s) = −  ı M

 e−

 ı  | y|



2 Ms









 ∂ 2

 ∂

×

1

 δ(

 ı 

 D − 2

 x) +  l

+  ı

 ψ(x, y = 0 , s) . 

| x| D−2

2 M ∂ x 2

2 M

 x

 ∂x

(9.83)

Therefore, 



 ψ(

 M

 x, y = 0 , s) =

2 ı  s









 ∂ 2

 ∂

×

1

 δ(

 ı 

 D − 2

 x) +  l

+  ı

 ψ(x, y = 0 , s) , 

| x| D−2

2 M ∂ x 2

2 M

 x

 ∂x

(9.84)

that is, 







 ∂ 2

 ∂

−  ı  l

−  ı  l D − 2

+ 2 ı s ψ(x, y = 0 , s) =

1

 δ(x). (9.85)

2 M ∂ x 2

2 M

 x

 ∂x

 M

| x| D−2

From Eq. (9.85) we conclude that it is invariant under changes of the sign of  x, so it describes both cases,  x <  0 and  x >  0. From Eqs. (9.83) and (9.85) it follows that

√

 ψ(

2 Ms

 x, y, s) =  e−

 ı  | y|  ψ(x , y = 0 , s). 

(9.86)
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Note also that the marginal probability density function reads

2 ı

 G 1 (x, s) =

 s−1 / 2  ψ(x, y = 0 , s), 

(9.87)

 M

and therefore, Eq. (9.85) can be written in the following form





 ∂ 1 / 2

2

 ∂ 2

 ∂

 (ı ) 1+1 / 2

 G

√

−  D − 2

 G

 ∂

1 (x , t ) = −  l

1 (x , t ), 

(9.88)

 t  1 / 2

2

2 M

 ∂x 2

 x

 ∂x

where  ∂ 1 / 2 /∂t 1 / 2 is the Caputo fractional derivative of order 1/2. Therefore, we find that the Green’s function along the backbone satisfies the time fractional Schrödinger equation in non-integer dimension, which appears due to the constrained quantum

motion of the particle. 

We present now two different approaches for solving the equation for the marginal

probability density function  G 1 (x, t). 

First of all, we solve the inhomogeneous Eq. (9.85). For this purpose, we use the eigenfunctions related to equation





1

 ∂ | x| α ∂ ϕ(x,k = − k 2 ϕ(x,k

|

 x )

 x ), 

(9.89)

 x| α ∂ x

 ∂x

 x

where  α =  D − 2. The corresponding solutions, which satisfy the boundary conditions considered in the previous section, are given by

 ϕ+ (x, kx) = | x|3− D 2 J−3− D (kx| x| ) ,  and (9.90)

2

 ϕ

−1

− (x, kx ) =  x| x| 3− D

2

J 3− D (kx | x| ) , 

(9.91)

2

where 3 −  D >  0 and J α(x)  is the Bessel function. The signs + and − in Eqs. (9.90)

and (9.91) refer to even and odd eigenfunctions, respectively. By using these eigenfunctions, and defining  ψ(x, y = 0 , s) =  ψ(x, s), it is possible to write the solution in terms of an integral transform as follows:

∞



! 

" 

 ψ(



 x, s) =

 kx ψ+ (kx, s)ϕ+ (x, kx) + 

 ψ− (kx, s)ϕ− (x, kx) dkx, 

(9.92)

0

where

∞





 ψ± (kx, s) = 1

 ϕ± (x, kx)ψ(x, s)| x| D−2  dx. 

(9.93)

2−∞
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By substituting Eq. (9.92) in Eq. (9.85) and using the orthogonality condition of the eigenfunctions, we obtain



 ı   l



2 ı  s 

− 3− D

 k 2 ψ

 ψ



 k  2

 x

 , 

(9.94)

2 M x + (kx , s) +

 M

+ (kx , s) =

1

 D−1

2

 D−1

2

   2



and  ψ− (kx, s) = 0. Therefore, we find

− 3− D



2

 ψ

 kx

+ (kx , s) =

1   

 . 

(9.95)

 D−1

2

 D−1

2

 

2 ı  s

2

+  ı l k 2

 M

2 M

 x

The function  ψ(x, s)  then becomes

⎛

⎞

∞



 D−1

2

 ψ(

 x

 x, s) =

1  | x|3− D 2 J

 (k

⎝

 k



⎠  dk

 D−1

− 3− D

 x | x | )

 x , 

2

 D−1

2

2

 

2 ı  s

2

+  ı l k 2

0

 M

2 M

 x

(9.96)

from which it follows for the reduced Green’s function

⎛

⎞

∞



| x|3− D 2

 D−1

 G

2

⎝

 s−1 / 2

⎠

1 (x , s) =





 k

 (k



 dk

 D−1

 x

J− 3− D

 x | x | )

 x . 

2

 D−1

2

2

 

 M ı   l

2

 s 1 / 2 +

 k 2

0

2 ı  2 M x

(9.97)

The inverse Laplace transform yields

∞









| x|3− D 2

 D−1

 ı 

 G

2

1 (x , t ) =





 k

 (k

−  l

 t  1 / 2 k 2

 dk

 D−1

 x

J− 3− D

 x | x | )  E1 / 2

 x

 x

2

 D−1

2

2

 

2

2 M

2

0

⎡ 





⎤

|

1 / 2 | 

=  x|2− D



1

1

2 M

 x|  ( 1 ,  1  )

H2 ,  0 ⎣



4

⎦  , (9.98)

  D−1 2| x| 1 ,  2

2 l

 ı 

 t  1 / 4   ( 1 ,  1  ), ( D−1  ,  1  )

2

2

2

2

where we have applied the Hankel transform of the H−function of Fox [60]. 

Let us check the result for  D = 2. Substituting  D = 2 in Eq. (9.98), we obtain
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⎡ 



⎤

1 / 2



1

2 M

| x|   ( 1 ,  1 )

 G

⎣



4

⎦

1 (x , t ) =

1

√

H2 ,  0

2  π| x| 1 ,  2

2 l

 ı 

 t  1 / 4   ( 1 ,  1  ), (  1  ,  1  )

2

2

2

⎡

⎤

⎢



|



⎥

= 1

 x|

 ( 1 ,  1 / 4 )

H1 ,  0 ⎢ 



⎥

2| x| 1 ,  1 ⎣



 ( 1 ,  1 ) ⎦  , 

(9.99)

 l

 ı   t

2

2 M

which is exactly the same as the reduced probability density function in case of

two-dimensional Schrödinger equation on a comb structure [10], as discussed in Sect. 9.3. 

Let us now show that the marginal probability density function along the fingers

satisfies the normal Schrödinger equation. From Eqs. (9.86) and (9.97) we have



√

 ψ(

 M

2 Ms

 x, y, s) =

 s 1 / 2  e−

 ı  | y|  G 1 (x , s). 

(9.100)

2 ı 

By integration of both sides of Eq. (9.100) over the coordinate  x  in the non-integer space, for the marginal probability density function along the fingers, 

∞



 G 2 (y, s) =

 ψ(x, y, s) | x| D−2  dx, 

−∞

we get

∞



 G 2 (y, s) = 2

 ψ(x, y, s) x D−2  dx

0



√

∞





√

=

 M

2 Ms

 M

2 Ms

2

 s 1 / 2  e−

 ı  | y|

 G 1 (x, s) x D−2  dx =

 e−

 ı  | y| , 

2 ı 

2 ı  s

0

(9.101)

where we have applied the Mellin transform of the H−function, namely [54]:





∞



 (a

 d x xξ−1H m,n ax 

 p , A p )

=  a− ξ θ(− ξ), 

(9.102)

 p,q

 (b

0

 q , Bq )

with  θ(− ξ)  defined in relation (1.270). This Green’s function is the solution of the normal Schrödinger equation

 ∂

2  ∂ 2

 ı 

 G

 G

 ∂

2 (y, t ) = −

2 (y, t ). 

(9.103)

 t

2 M ∂y 2
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As a second approach, let us first solve the homogeneous part of Eq. (9.85)







 ∂ 2

 ∂

−  ı  l

−  ı  l D − 2

+ 2 ı s ψ(x, y = 0 , s) = 0 , 

(9.104)

2 M ∂ x 2

2 M

 x

 ∂x

 M

which is a Lommel-type equation [59]







2

 β 2 −  ν 2 α 2

 z (y) + 1 − 2 β  z (y) +

 aα xα−1

+

 z(y) = 0 . (9.105)

 y

 y 2

Its solution has the form





 z(y) =  yβ Z ν ayα  , 

(9.106)

such that we have

⎛  



⎞

1 / 2

 ψ(

2

2 Ms

 x, y = 0 , s) = | x| ( 3− D)/ 2Z (

⎝

⎠

3− D)/ 2

 ı

| x|

 l

 ı 

⎛ 



⎞

1 / 2

= |

2

2 Ms

 x| ( 3− D)/ 2K (

⎝

⎠

3− D)/ 2

| x|  , 

(9.107)

 l

 ı 

where Z ν(ı z) =  C 1I ν(z) +  C 2K ν(z); I ν(z)  and K ν(y)  are the modified Bessel functions [60]. The function K ν(z)  satisfies the zero boundary conditions at infinity. Since the modified Bessel function is related to the H−function of Fox as [54]







 z 2 

 z a

H2 ,  0



= 2

K

0 ,  2

 ν (z), 

(9.108)

4   ( a+ ν ,  1 ), ( a− ν ,  1 )

2

2

2

the solution becomes







|



 ψ(

 x| ( 3− D)/ 2

1

2 Ms

 x, y = 0 , s) =

H2 ,  0

 x 2 

 . (9.109)

2

0 ,  2

2 l

 ı 

 ( 3− D,  1 ), (−3− D,  1 )

4

4

The series representation of  Kν(z)  is given by





 (ν)  

 z − ν

K ν(z) 

1 +

 z 2

+  . . . 

2

2

4 ( 1 −  ν)





 (− ν)   ν

+

 z

1 +

 z 2

+  . . . , z → 0 , ν /∈  Z. (9.110)

2

2

4 (ν + 1 )
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The next step is to solve the inhomogeneous Lommel equation, represented by

Eq. (9.85). To accomplish this task, we use the function

 f (| x| , s) = C (s) ψ(| x| , y = 0 , s) = C (s) ψ(ζ, y = 0 , s), in which  ψ(ζ, y = 0 , s)  is given by (9.109),  ζ = | x|, and C (s)  is a function which depends on  s. Therefore, 

 ∂

 ∂

 ∂

 f (ζ, s) =

 f (ζ, s) dζ =

 f (ζ, s), 

 ∂

[2 θ(x) − 1]

 x

 ∂ζ

 d x

 ∂ζ

and





 ∂

 ∂

 ∂ 2

 ∂

 f (ζ, s) =

 f (ζ, s) + 2 δ(x)

 f (ζ, s), 

 ∂

[2 θ(x) − 1]

[2 θ(x) − 1]2

 x

 ∂ζ

 ∂ζ  2

 ∂ζ

where  θ(x)  is the Heaviside step function, defined in (1.60). By exchanging these relations in Eq. (9.85), all the terms cancel except those in front of the  δ-functions on both sides of the equation. Since  δ(x)  is different from zero only at  x = 0, that is,  ζ = 0, we find



 ∂



−  ı l

2

C (s) ζ D−2

 f (ζ, s)

= 1 . 

(9.111)

2 M

 ∂ζ

 ζ=0

From the series representation (9.110) for C (s)  we obtain 5+ D

2 M

8

C (s) =

1  

 s− 3− D

8

 . 

(9.112)

 ( 2 l) 1+ D

 D−1

4

 

 ı 

2

Therefore, the marginal probability density function (9.87) becomes 1+ D

1

2 M

4

 G 1 (x, s) =

1





| x|3− D 2  s−7− D 8

  D−1

2 l

 ı 

2









×

1

2 M

 H  2 ,  0

 x 2 s 1 / 2 

 . 

(9.113)

0 ,  2

2 l

 ı 

 ( 3− D,  1 ), (−3− D,  1 )

4

4

From the inverse Laplace transform of the H−function of Fox [54]:













 L−

 (

 a

 (

1

 a

 a

 s− ρ  H m,n asσ 

 p , A p )

=  tρ−1H m,n

 p, Ap), (ρ, σ) , 

 p,q

 (b

 p+1 ,q



 q , Bq )

 t σ (bq , Bq )

(9.114)
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Fig. 9.7 Real and imaginary

parts of Eq. (9.115) versus  x

for different values of  D, 

√

when 1 /( 2 l)  2 M/ = 1

and  t = 1 / 2, in arbitrary

units. Modified with

permission from Petreska et

al. [51]. © 2020 Elsevier

B.V. All rights reserved

we finally obtain



1+ D

1

2 M

4

 G 1 (x, t) =

1





2   D−1

2 l

 ı 

2

⎡ 





⎤

|

1 / 2 | 

×  x|3− D 2

1

2 M

 x|  (  7− D ,  1  )

H2 ,  0 ⎣

8

4

⎦

1+ D

1 ,  2



 t

 ( 3− D ,  1 ), (−3− D ,  1 )

8

2 l

 ı 

 t  1 / 4

4

2

4

2

⎡ 





⎤

|

1 / 2 | 

=  x|2− D



1

1

2 M

 x|  ( 1 ,  1  )

H2 ,  0 ⎣



4

⎦  . 

  D−1 2| x| 1 ,  2

2 l

 ı 

 t  1 / 4   ( 1 ,  1  ), ( D−1  ,  1  )

2

2

2

2

(9.115)

This result has already been obtained by using the first approach. Figure 9.7 illustrates the behavior of the real and imaginary part of Eq. (9.115) for different values of  D. 

 9.5.2

 Constrained Diffusion in Non-integer Dimensions

The results obtained for the Schrödinger equation can be transformed to those for

the diffusion equation in non-integer dimensions on a comb, namely, 
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 ∂

 ∂ 2

 ∂

 ∂ 2

 ψ(x, y, t) =  δ(y) D

+  D − 2

 ψ(x, y, t) +  D

 ψ(x, y, t), 

 ∂

 x

 y

 t

 ∂x 2

 x

 ∂x

 ∂y 2

(9.116)

by simply exchanging

 ı 

 ı 

 l

→  Dx  and

→  Dy. 

2 M

2 M

Therefore, the solution is given by

⎡  



⎤

|

1 / 2

 x|2− D

1

 D



 y

| x|  ( 1 ,  1 )

 G

⎣



4

⎦

1 (x , t ) =



1 H2 ,  0

 . (9.117)

  D−1 2| x| 1 ,  2

2  D

 t  1 / 4   ( 1 ,  1  ), ( D−1  ,  1  )

2

 x

2

2

2

Let us now analyze the diffusive behavior of the particle by calculating the mean

square displacement

∞

0

1



 x 2 (t) = 2

 x 2  G 1 (x, t) x D−2  dx. 

0

We have

⎡

⎤

∞



0

1



1 / 2



1

 D



 y

| x|  ( 1 ,  1 )

 x 2 (t) =

1





 x  H2 ,  0 ⎣



4

⎦  dx

  D−1

1 ,  2

2  D

 t  1 / 4   ( 1 ,  1  ), ( D−1  ,  1  )

2

 x

2

2

2

0

 D

=  ν

 x



 t  1 / 2  , 

(9.118)

 D (

 y

3 / 2 )

0

1

from which we conclude that it has the same time behavior,  x 2 (t) ∼  t 1 / 2, as in the case of two-dimensional comb ( D = 2, that is,  ν = 1) [54], but the constant is multiplied by  ν, 0  < ν <  1. Obviously, for  ν = 0 there is no diffusion along  x-

direction, since in this case the motion is only along  y-direction. 

For an arbitrary initial condition, it is also possible to find a solution by using the eigenfunction defined by Eqs. (9.90) and (9.91). In particular, the solution can be written as

∞







 ψ(x, y, t) =

 k



 x

 ψ+ (kx, y, t)ϕ+ (x, kx) + 

 ψ− (kx, y, t)ϕ− (x, kx) dkx, (9.119)

0

where 

 ψ± (kx, y, t)  are determined by the equation
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 ∂ 

 ∂ 2

 ψ

 D 

 ψ



 ψ

 ∂ ± (kx, y, t) = − δ(y) k 2  x ± (kx, y, t) +  Dy

± (kx , y, t), (9.120)

 t

 x

 ∂y 2

which is subjected to the boundary condition 

 ψ± (kx, ±∞ , t) = 0 and the initial

condition

∞





 ψ± (kx, y,  0 ) = 1

 ϕ± (kx, x)ψ(x, y,  0 )| x| D−2 dx. 

2−∞

In order to solve Eq. (9.120), we may use the Fourier transform on the variable  y, yielding

 ∂  ψ

 D 

 ψ

 D 

 ψ

 ∂ ± (kx, ky, t) = −  k 2  x ± (kx,  0 , t) −  k 2  y ± (kx, ky, t), (9.121)

 t

 x

 y

with a solution given by

 t





 ψ

 D

 D

± (k

 y t

 y (t − t   )

 x , ky , t ) = 

 ψ± (kx, ky,  0 )e− k 2 y

−  k 2 D

 dt  

 ψ

 . 

 x

 x

± (kx ,  0 , t )e− k 2 y

0

(9.122)

After some calculations, we obtain

∞





 D

 ψ

 x

± (kx ,  0 , t) =

 d y 

 ψ± (kx, y ,  0 )Gy(y , t) −  k 2 x

2 Dy

−∞

2

 t





∞



×

 dt 

 t 

√ E1 ,  1 −1 k 2 D

 d y 

 ψ

 x

 x

± (kx , y ,  0 )G y(y , t −  t ), 

 t  2 2

2

 D y

0

−∞

(9.123)

where

 G y(y, t) =

1



 e− y 2 /( 4 Dyt). 

4 πDyt

By substituting Eq. (9.123) in Eq. (9.119), we obtain

∞







 ψ(x, y, t) =

 d y ψ(x, y ,  0 ) G y(y −  y , t) −  G y(| y| + | y| , t)

−∞

∞



∞



+

 d y

 d x| x| D−2 ψ(x , y ,  0 )G(x, x , y, y , t), (9.124)

−∞

−∞

[image: Image 16]
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Fig. 9.8 Trend of  ψ(x, y, t)  as stated in Eq. (9.124) for  t = 1 and  D = 1 .  5, when  Dx / Dy = 1

and  Dy = 1, in arbitrary units. Modified with permission from Petreska et al. [51]. © 2020 Elsevier B.V. All rights reserved

with





 G(x, x , y, y , t) = | x x| ν | y| + | y|

 t



− | y|2+| y|2





4 Dy (t− t )

×

 dt 

 e



 Gx, + (x, x , t ) +  x x  Gx, − (x, x , t ) , 4  πD

| xx|

 y (t −  t  ) 3

0

(9.125)

where  ν =  ( 3 −  D)/ 2 and  Gx, ± (x, x , t)  is defined in terms of the generalized H−function of Fox [61] as follows:

⎡











⎤

2∓ ν

2± ν

2

 ,  1 ; 

 ,  1

⎢  x



2

2

−−;  ( 0 ,  1 )

⎥

 G

⎢

 x √



⎥

 x, ± (x , x  , t ) =

1 H1 ,  0 ,  1 ,  1 ,  1

| x|2 2 , [0:1] ,  0 , [0:2] ⎣  D



⎦  . 

 x

 t

√



−−; −−











2

 Dy x 2  ∓ ν ,  1 ; ± ν ,  1 ;  ( 0 ,  1 ),  1 ,  1

2

2

2

2

(9.126)

Figure 9.8 illustrates Eq. (9.124) for the initial condition δ(

 ψ

 y)

 x (x , y,  0 ) =

 e− x 2 /σ  2  , 

2 σ D−1  [ (D − 1 )/ 2]
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Fig. 9.9  ψx (x, t)  versus  x

for different values of  D, as

predicted by Eq. (9.124). 

The curves were drawn for



 Dx / Dy = 1 and  t = 1, in

arbitrary units. Modified with

permission from Petreska et

al. [51]. © 2020 Elsevier

B.V. All rights reserved

with  σ = 0 .  1, which is normalized, that is, 

∞



∞



 d y

 d x | x| D−2 ψ(x, y,  0 ) = 1 . 

−∞

−∞

Figure 9.9 illustrates the behavior of the reduced distribution  ψx (x, t)  obtained from Eq. (9.124), that is, 

∞



 ψx(x, t) =

 d y ψ(x, y, t), 

−∞

for different values of  D  for the initial condition

∞



 ψx(x,  0 ) =

 d y ψ(x, y,  0 ). 

−∞

The behavior of  ψx (x, t)  exhibited in Fig. 9.9 differs from the Gaussian distribution observed in the standard diffusion, as a consequence of the geometric constraints

between different directions,  x  and  y. 

The results presented above are of particular interest for modelling of complex

anomalous dynamics that emerge in anisotropic and confined quantum systems, 

where the inherent fractal dimensions in fact introduce geometric constraints. Adding the Dirac-delta term in the Laplacian, which actually restricts the motion along one

of the mutually perpendicular directions, only at a specific position, at one hand, and considering the non-integer generalization, on the other, could be a useful strategy

in treating the interplay between fractal dimensions and geometrical constraints. 
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