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CHAPTER 0: ABOUT THIS BOOK

What this book is about

This book will take you through basic to advanced data structures and algorithms. Data structures define how data is arranged in memory for fast and efficient access. An algorithm is a finite set of unambiguous instructions to solve problems by manipulating various data structures. 

Designing an efficient algorithm is a very important skill that all software companies pursue. Most of the interviews for software companies are focused on knowledge of data structures and algorithms. 

Apart from knowing a programming language, you also need to have a good command of these key computer fundamentals to not only crack the interview but also excel in your jobs as a software engineer. 

Prerequisites

You should have a working knowledge of Kotlin programming language. You are not an expert in the Kotlin   language,   but   you   are   well   familiar   with   concepts   of   classes,   functions,   references,   and recursion. 

Who should take this course ? 

If you’re planning to pursue a career in the Kotlin language, get better at it and apply for a job, this book is best for you. If you can put a reasonable amount of time into this book by reading various concepts and solving the various problems on data structures, you can become an expert in data structures and algorithms. 

Code downloads

You can download the code of solved examples in the book from the author's GitHub repositories at

 https://GitHub.com/Hemant-Jain-Author/.   Hear   the   author   had   solved   examples   in   various programming languages like C, C++, C#, Java, Python, JavaScript, Swift, GoLang, Ruby, etc. 

End

It is highly recommended that you should read the problem statement, try to solve the problems by yourself and then only you should look into the solution to find the approach of this book. Practising more and more problems will increase your thinking capacity, and you will be able to handle unseen problems in an interview. We recommend you to practice all the problems given in this book, then solve more and more problems from online resources like  www.topcoder.com, www.careercup.com, 

https://leetcode.com/ etc. 
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CHAPTER 1: ALGORITHMS ANALYSIS

Introduction

An Algorithm is a finite set of unambiguous steps or instructions to solve a given problem. Knowledge of algorithms helps us to get desired results faster by applying the appropriate algorithm. We learn by experience. With experience, it becomes easy to solve new problems. By looking into various problem-solving algorithms or techniques, we begin to develop a pattern that will help us in solving similar problems. 

The properties of an algorithm are:

1. It takes zero or more inputs. 

2. It should produce one or more output. 

3. It should be Deterministic. It produces the same output if the same input is provided again. 

4. It should be Correct. It should be correct and able to process all the given inputs and provide the correct output. 

5. It should Terminate in a finite time. 

6. It should be Efficient. The algorithm should be efficient in solving problems. 

The complexity of an algorithm is the amount of Time or Space required by the algorithm to process the input and produce the output. 

There are two types of Complexity:

1. First is Time-Complexity, how much time is required by an algorithm to produce output for an input of size ‘n’. 

Time-Complexity is represented by function T(n) - time required versus the input size n. 

2. Second   is  Space-Complexity,   how   much   RAM   or   memory   that   an   algorithm   is   going   to consume to produce output for an input of size ‘n’. 

Space-Complexity is represented by function S(n) - memory used versus the input size n. 

Asymptotic Analysis or Asymptotic Notations

Calculating  the  running  time  of   any   algorithm   in   mathematical   units  of   computation   is  known   as Asymptotic Analysis. The efficiency of algorithms is calculated using asymptotic analysis, independent of the given data set or programming language. 

In most cases, we are interested in the order of growth of the algorithm instead of the exact time required for running an algorithm. This time is also known as Asymptotic Running Time. 

Big-O Notation

Definition: “f(n) is big-O of g(n)” or f(n) = O(g(n)), if there are two +ve constants c and n1 such that f(n)

≤ c g(n) for all n ≥ n1, 
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Big-O Notation

In other words, c g(n) is an upper bound for f(n) for all n ≥ n0. The function f(n) growth is slower than c g(n). For a sufficiently large value of input n, the (c.g(n)) will always be greater than f(n). 

Example : n^2 + n = O(n^2)

Omega-Ω Notation

Definition: “f(n) is omega of g(n)” or f(n)=Ω(g(n)) if there are two +ve constants c and n1 such that c g(n) ≤ f(n) for all n ≥ n1

In other words, c g(n) is the lower bound for f(n). Function f(n) growth is faster than c g(n) Find relationship of f(n) = nc and g(n) = cn

f(n) = Ω(g(n))

3
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Theta-Θ Notation

Theta-Θ Notation

Definition: “f(n) is theta of g(n).” or f(n) = Θ(g(n)) if there are three +ve constants c1, c2 and n1 such that c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ n1

Function g(n) is an asymptotically tight bound on f(n). Function f(n) grows at the same rate as g(n). 

Example: n^3 + n^2 + n = Ɵ(n^3) 

Example: n^2 + n = Ɵ(n^2) 

Find relationship of f(n) = 2n^2 + n  and g(n) = n^2 

f(n) = O(g(n))

f(n) = Ɵ(g(n))

f(n) = Ω(g(n))

Complexity analysis of algorithms

The complexity of an algorithm are analysed in three categories:

➢ Worst-Case  Complexity:  The worst-case complexity represents the maximum number of steps required to execute an algorithm. It provides us with the upper bound of an algorithm. Usually, we use this complexity to judge algorithm performance. 

➢ Best-Case   Complexity:The   best-case   complexity   represents   the   minimum   number   of   steps required to execute an algorithm. It provides us with the lower bound of an algorithm. 

➢ Average-Case Complexity:The average-case complexity represents the average number of steps required to execute an algorithm. We take the average of the steps executed in all the cases to calculate average-case complexity. 

Note: Worst-case complexity is used to find the guarantee in how much time some particular algorithm will finish. This is the most important time complexity.  If the type of complexity is not mentioned, then always consider Worst-Case time complexity. 
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Growth of functions

Let’s look at these growth rates of various functions. The size of the input is n. 

Constant Time, O(1)

An algorithm is said to run in constant time if the output is produced in constant time, regardless of the input size. 

Examples:

1 Accessing an nth element of an Array 

2 Push and pop of a stack. 

3 Add and remove from a queue. 

4 Accessing an element of Hash-Table. 

Linear Time, O(n)

An algorithm is said to run in linear time if the execution time of the algorithm is directly proportional to the input size. 

Examples:

1 Array operations like search element, find min, find max etc. 

2 Linked list operations like traversal, find min, find max etc. 

Note: If we need to traverse all the nodes of a data structure for some task, then complexity cant be less than O(n)

Logarithmic Time, O(log(n))

An algorithm is said to run in logarithmic time if the execution time of the algorithm is proportional to the logarithm of the input size. In each step of an algorithm, a significant portion (e.g. half portion) of the input is pruned/rejected out without traversing it. 

An example is the Binary search algorithm. We will read about this algorithm in this book. 

n.log(n) Time, O(n.log(n))

An algorithm is said to run in n*log(n) time if the execution time of an algorithm is proportional to the product of input size and logarithm of the input size. In these algorithms, each time the input is divided into half (or some proportion) and each portion is processed independently. 

Examples are Merge-Sort, Quick-Sort (average case), Heap-Sort etc. 
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Growth of functions

Quadratic Time, O(n^2)

An algorithm is said to run in quadratic time if the execution time of an algorithm is proportional to the square of the input size. In these algorithms, each element is compared with all the other elements. 

Examples are Bubble-Sort, Selection-Sort, Insertion-Sort

Exponential Time O(2^n)

In these algorithms, all possible subsets of elements of input data are generated. Its common example is the power set. 

Factorial Time O(n!)

In these algorithms,  all possible permutations of the elements of input data are generated. Finding permutations is a common example of factorial time. 

A list of commonly occurring algorithm Time Complexity in increasing order: Name

Notation

Constant

O(1)

Logarithmic

O(log(n))

Linear

O(n)

N.Log(N)

O(n.log(n))

Quadratic

O(n^2)

Polynomial

O(n^c)       c is a constant & c>1

Exponential

O(c^m)       c is a constant & c>1

Factorial  

O(n!)

N-Power-N

O(n^n)

The time taken by certain algorithms to run varies dramatically with the size of the input. Some algorithms take minutes or even seconds to run on huge input, whereas others may take days to complete their execution. To understand how the rate of growth changes with the size of the input in different functions, the following table presents the approximate number of steps required to run an algorithm:

Function Growth Rate (Approximate)

N

O(1)

O(log(n))

O(n)

O(n.log(n))

O(n^2)

O(n^3)

O(2^n)

10

1

3

10

30

102

103

103

102

1

6

102

6x102

104

106

1030

103

1

9

103

9x103

106

109

10300

104

1

13

104

13x104

108

1012

103000

105

1

16

105

16x105

1010

1015

1030000

106

1

19

106

19x106

1012

1018

10300000
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Deriving an Algorithm's Runtime Function

Deriving an Algorithm's Runtime Function

Constants

If any line of code is a statement with basic operations, e.g., comparisons, assignments, or reading a variable, they take constant time each. Thus, the time complexity of each statement is O(1). 

Loops

In loop, a repetition of a particular code for n times, where n is the size of the loop. Every statement inside the loop has a runtime of O(1). The running time of a loop is a product of the running time of the statement inside a loop and the number of iterations in the loop. Time Complexity is O(n) Nested Loops

The running time of a nested loops is a product of the running time of the statements inside the loop multiplied by a product of the size of all the loops. Time Complexity is O(n^c). Where c is the number of loops. For two loops, it will be O(n^2) 

Consecutive Statements

In this case, we add the running time of all the consecutive lines of code. 

If-Else Statement

In this case, either “if” will run or “else” will run. So, the block with larger runtime will be considered. 

Logarithmic Statement

In this case, each iteration will cut the input size into b pieces and consider one of the pieces for the next iteration. Time complexity in this situation will be O(logb(n)). 

Time Complexity Examples

Example 1.1: Single loop

fun fun1(n: Int): Int {

var m = 0

for (i in 0 until n) {

m += 1

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n):: " + fun1(100))

}

Output:

N = 100, Number of instructions in O(n)::100

Time Complexity: O(n), single loop takes linear time. 
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Example 1.2: Nested loops

fun fun2(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in 0 until n) {

m += 1

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^2):: " + fun2(100))

}

Output:

N = 100, Number of instructions in O(n^2)::10000

Time Complexity: O(n^2), two nested for loop, takes quadratic time. Both the “for” loop is executed n number of times, so the internal statement executed n^2 number of times. 

Example 1.3: Triple nested loops

fun fun3(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in 0 until n) {

for (k in 0 until n) {

m += 1

}

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^3):: " + fun3(100))

}

Output:

N = 100, Number of instructions in O(n^3)::1000000

Time Complexity: O(n^3), All the three nested loops run for n number of iterations. So the statement inside the innermost loop will run for n^3 number of times. 

Example 1.4: Triple nested loops

fun fun4(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in i until n) {

for (k in j+1 until n) {

m += 1

}

}
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}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^3):: " + fun4(100))

}

Output:

N = 100, Number of instructions in O(n^3)::166650

Time Complexity: Three nested loops each run for n number of times. The innermost statement will run for n^3 number of times. Time complexity is O(n^3) 

Example 1.5: Arithmetic Progression

fun fun5(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in 0 until i) {

m += 1

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^2):: " + fun5(100))

}

Output:

N = 100, Number of instructions in O(n^2)::4950

Time Complexity:  Statement inside inner loop executes for 1 time in first iteration then 2 times then 3

times and so on for n iterations. Total number of times the inner statement is executed = 1 + 2+ 3 +….. 

+ n. This series is an arithmetic progression, which sums to n(n+1)/2. So the final time complexity is O(n(n+1)/2) ignoring the constant factors, time complexity will be O(n^2).  

Example 1.6: Arithmetic Progression

fun fun6(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in i downTo 0) {

m += 1

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^2):: " + fun6(100))

}
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Output:

N = 100, Number of instructions in O(n^2)::5050

Time Complexity: The inner loop will run 1 time in the first iteration, then 2 times in the second iteration and so on. It is an arithmetic progression, so time complexity will be O(n^2). 

Example 1.7: Nested loops / Geometric Progression

fun fun7(n: Int): Int {

var m = 0

var i = n

while (i > 0) {

var j = 0

while (j < i) {

m += 1

j++

}

i /= 2

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n):: " + fun7(100))

}

Output:

N = 100, Number of instructions in O(n)::197

For nested loops, look for inner loop iterations. Time complexity will be calculated by looking into the inner loop. First, it will run for n number of times then n/2 and so on. (n+n/2 +n/4+n/8+n/16 ……) Time Complexity: O(n)

Example 1.8: Geometric Progression

fun fun8(n: Int): Int {

var m = 0

var i = 1

while (i <= n) {

var j = 0

while (j <= i) {

m += 1

j++

}

i *= 2

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n):: " + fun8(100))

}
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Output:

N = 100, Number of instructions in O(n)::134

Time Complexity: The inner loop will run for 1, 2, 4, 8,… n times in successive iteration of the outer loop. T(n) = O(1+ 2+ 4+ ….+n/2+n) = O(n)

Example 1.9: Double the iteration variable

fun fun9(n: Int): Int {

var m = 0

var i = 1

while (i < n) {

m += 1

i = i * 2

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(log(n)):: " + fun9(100))

}

Output:

N = 100, Number of inst in O(log(n))::7

In each iteration, i value is doubled. So the value of i after k iterations will be 2^k. 

2^k = n   ...Will be the condition at the time of exit. 

log(2^k) = log(n)   ….Taking log both sides. 

k = log(n)

Time Complexity: O(log(n))

Example 1.10: Half the iteration variable

fun fun10(n: Int): Int {

var m = 0

var i = n

while (i > 0) {

m += 1

i = i / 2

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(log(n)):: " + fun10(100))

}

Output:

N = 100, Number of instructions in O(log(n))::7

The initial value of i is n. In each iteration, the value of “i” is halved. 

So the value of i after k iterations will be n/2^k. 
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At the time of exit, n/ 2^k = 1  

n = 2^k // At the time of exit. 

log(2^k) = log(n)   // Taking log both sides. 

k = log(n)

Time Complexity: O(log(n))

Example 1.11: Consecutive Statements

fun fun11(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in 0 until n) {

m += 1

}

}

for (i in 0 until n) {

for (k in 0 until n) {

m += 1

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^2):: " + fun11(100))

}

Output:

N = 100, Number of instructions in O(n^2)::20000

These two groups of loops are consecutive, so their complexity will add up to form the final complexity of the program. 

Time Complexity: O(n^2) + O(n^2) = O(n^2) 

Example 1.12:

fun fun12(n: Int): Int {

var m = 0

for (i in 0 until n) {

for (j in 0 until Math.sqrt(n.toDouble()).toInt()) {

m += 1

}

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n^(3/2)):: " + fun12(100))

}

Output:

N = 100, Number of instructions in O(n^(3/2))::1000
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Time Complexity: Inner loop always runs for √n times. O(n * √n ) = O(n^3/2) Example 1.13: Multiple loops in O(n)

fun fun13(n: Int): Int {

var m = 0

var i = 0

var j = 0

while (i < n) {

while (j < n) {

m += 1

j++

}

i++

}

return m

}

// Testing code. 

fun main() {

println("N = 100, Number of instructions O(n):: " + fun13(100))

}

Output:

N = 100, Number of instructions in O(n)::100

Time Complexity: In this example, j is not initialised for every iteration. For i=0, the loop of j executes completely, making the value of j as n. But for the remaining values of i, the loop of j does not execute. 

So the time complexity in this case is O(n). 

Recursive Function

Recursion: A recursive function is a function that calls itself, directly or indirectly.  A recursive method consists of two parts: Termination Condition and Body (which includes recursive expansion). 

1 Termination Condition:  A recursive method always contains one or more terminating conditions. 

A condition in which a recursive method processes a simple case and does not call itself. 

2 Body (including recursive expansion): The main logic of the recursive method is contained in the body of the method. It also contains the recursion expansion statement that, in turn, calls the method itself. 

Three important properties of the recursive algorithm are:

1. A recursive algorithm must have a termination condition. 

2. A recursive algorithm must change its state, and shift state towards the termination condition. 

3. A recursive algorithm must be capable of calling itself. 

Note: The speed of a recursive program is slower because of stack overheads. If the same problem can be solved using an iterative solution (using loops), then we should prefer an iterative solution in place of recursion to avoid stack overhead. 

Note: Without termination conditions, the recursive method may run forever and consume full-stack memory. 
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Factorial

Problem: Given a value N find N!. Where N! = N* (N-1)…. 2*1. Use recursion to solve the problem. 

Example 1. 14: Factorial Calculation. 

fun factorial(i:Int):Int {

// Termination Condition

if (i <= 1) {

return 1

}

// Body, Recursive Expansion

return i * factorial(i - 1)

}

// Testing code. 

fun main() {

println("Factorial:" + factorial(5))

}

Output:

Factorial:120

Analysis: We calculate factorial(i) as i*factorial(i-1) recursively. 

Function F(n) calls F(n-1) 

T(n) =  T(n-1) + 1

T(n-1) = T(n-2) + 1

T(n-2) = T(n-3) + 1

T(n) = T(n-1) + 1 = (T(n-2) + 1) + 1 = T(n-2) + 2 = (T(n-3) + 1) + 2 = T(n-3) + 3

Similarly, for kth term T(n) =  T(n-k) + k

for base case (n-k) = 1   or  n – 1 = k

T(n) = T(1) + n -1 = n

Time Complexity is O(n) 

Print Base 16 Integers

Problem:  Given an integer in decimal form, print its hexadecimal form. Use recursion to solve the problem. 

Example 1.15: Generic print to some specific base method. 

fun printInt(numberInput:Int, base:Int) {

var conversion = "0123456789ABCDEF" 

var number = numberInput

var digit = conversion[number % base]

number = number / base

if (number != 0) {

printInt(number, base)

}

print(digit)

}
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// Testing code. 

fun main() {

var i = 1000

printInt(i, 16)

}

Output:

3E8

Analysis:

1 The base value is provided along with the number in the function parameter. 

2 The remainder of the number is calculated and stored in digits. 

3 If the number is greater than the base, then the number divided by the base is passed recursively as an argument to the print() method. 

4 The number will be printed higher-ordered first, then the lower order digits. 

Time Complexity is O(n), Where n is the number of digits. 

Tower of Hanoi

Problem: In the Tower of Hanoi, we are given three rods and N number of disks, initially all the disks are added to the first rod (the leftmost one) such that no smaller disk is under the larger one. The objective is to transfer the entire stack of disks from the first tower to the third tower (the rightmost one), moving only one disk at a time. Moving a larger disk onto a smaller one is not allowed. 

Solution: If we want to transfer N disks from source to destination tower. Let's consider the bottom-most disk, it is the largest disk so can not be placed to any other tower except the destination tower. 

Also, all the disks above the largest disk need to be placed in the temporary tower, then only the largest disk can be moved to the destination tower. So we move N-1 disks from source to temporary tower and then move the lowest Nth disk from source to destination. Then we will move N-1 disks from the temporary tower to the destination tower. 

Example 1.16: 

fun towerOfHanoi(num:Int, src:Char, dst:Char, temp:Char) {

if (num < 1) {

return

}
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towerOfHanoi(num - 1, src, temp, dst)

println("Move " + num + " disk from peg " + src + " to peg " + dst) towerOfHanoi(num - 1, temp, dst, src)

}

// Testing code. 

fun main() {

var num = 3

println("Moves involved in the Tower of Hanoi are:")

towerOfHanoi(num, 'A', 'C', 'B')

}

Output:

Moves involved in the Tower of Hanoi are:

Move 1 disk  from peg A to peg C

Move 2 disk  from peg A to peg B

Move 1 disk  from peg C to peg B

Move 3 disk  from peg A to peg C

Move 1 disk  from peg B to peg A

Move 2 disk  from peg B to peg C

Move 1 disk  from peg A to peg C

Analysis: 

Recurrence Relation: T(n) = 1  + 2T(n-1)

T(n-1) = 1 + 2*T(n-2)

T(n-2) = 1 + 2*T(n-3)

T(n) = 1 + 2*( 1 + 2*T(n-2)) = 1 + 2 + 4*T(n-2) = 1 + 2 + 4*( 1 + 2*(T(n-3)) = 1 + 2+ 22+ 23T(n-3) 

= 1 + 2 + 22  …. + 2nT(0) = 1(2n+1 – 1)/2 – 1 = 2n+1 – 1        // Geometric progression sum Time complexity will be O(2^n) ignoring the constants. 

Greatest Common Divisor (GCD)

Problem: Find the greatest common divisor of two numbers using recursion. 

Solution: There are many ways to find the greatest common divisor (GCD). We are using Euclid’s algorithm to find the GCD. The following are steps of Euclid’s algorithm:

1. If n = 0 then GCD(n, m) = m, and this is a termination condition. 

2. If m = 0 then GCD(n, m) = n, and this is a termination condition. 

3. Write n in the form of a quotient remainder n = mq + q. q is the quotient, and r is the remainder. 

4. Since GCD(n, m) = GCD(m, r), use the Euclidean Algorithm to find GCD(m , r). 

Example 1.17: 

fun gcd(m:Int, n:Int):Int {

if (m == 0) {

return n

}

if (n == 0) {

return m

}
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return gcd(n, m % n)

}

// Testing code. 

fun main() {

println("Gcd is:: " + gcd(5, 2)); 

}

Output:

Gcd is:: 1

Time-Complexity: O(Max(log(m), log(n))), Each step input is reduced by nearly half or more. 

Fibonacci number

Problem: Given N, find the Nth number in the Fibonacci series. 

Solution: Fibonacci numbers are calculated by adding the sum of the previous two numbers. 

Example 1.18:

fun fibonacci(n:Int):Int {

if (n <= 1) {

return n

}

return fibonacci(n-1) + fibonacci(n-2)

}

// Testing code. 

fun main() {

println(fibonacci(10)); 

}

Output:

55

Analysis: Recurrence Relation: T(n) =  1 + T(n-1) + T(n-2) 

T(n) =  1  + 2T(n-1)   // Approximately

T(n) = 1  + 2T(n-1)

T(n-1) = 1 + 2T(n-2)

T(n-2) = 1 + 2T(n-3)

T(n) = 1 + 2( 1 + 2T(n-2)) = 1 + 2 + 4T(n-2) = 1 + 2 + 4 ( 1 + 2(T(n-3)) = 1 + 2+ 22+ 23T(n-3) 

= 1 + 2 + 22  …. + 2nT(0) = 1(2n+1 – 1)/2 – 1 = 2n+1 – 1        // Geometric progression sum Time complexity is O(2^n), ignoring the constants. 

Note: - There is an inefficiency in the solution. We will look for a better solution in the coming chapters. 
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Complexities from Recurrence Relation

Example 1.19: Find complexity of the function with the following recurrence relation. 

T(n) = { 1  if n=0

 T ( n−  1)+1  if n>0

Solution:

T(n) = T(n-1) + 1

T(n-1) = T(n-2) + 1

T(n-2) = T(n-3) + 1

T(n) = ( T(n-2) + 1) + 1 = T(n-2) + 2 = (T(n-3) + 1) + 2 = T(n-3) + 3

T(n) = T(n-k) + k

base case when T(0) = 1, n-k = 0  => n = k

T(n) = T(0) + n = 1 + n

Time Complexity is O(n)

Example 1.20: Find complexity of the function with the following recurrence relation. 

T(n) = { 1  if n=0

 T( n−  1)+ n

 if n>0

Solution:

T(n) = T(n-1) + n

T(n-1) = T(n-2) + n

T(n-2) = T(n-3) + n

T(n) = ( T(n-2) + n) + n = T(n-2) + 2n = (T(n-3) + n) + 2n = T(n-3) + 3n

T(n) = T(n-k) + kn

base case when T(0) = 1, n-k = 0  => n = k

T(n) = T(0) + n*n = 1 + n^2

Time Complexity is O(n^2)

Example 1.21: Find complexity of the function with the following recurrence relation. 

T(n) = {1

 if n=0

 T ( n−  1)+log( n)  if n>0

Solution:

T(n) = T(n-1) + log(n)

T(n-1) = T(n-2) + log(n)   // for simplicity make log(n-1) as log(n) 

T(n-2) = T(n-3) + log(n)

T(n) = ( T(n-2) + log(n)) + log(n) = T(n-2) + 2log(n) = (T(n-3) + log(n)) + 2log(n) = T(n-3) + 3log(n) 18
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T(n) = T(n-k) + klog(n)

base case when T(0) = 1, n-k = 0  => n = k

T(n) = T(0) + n*log(n) = 1 + n.log(n)

Time Complexity is O(n.log(n))

Recurrence Relation 

Time-Complexity

T(n) = T(n-1) + 1

O(n)

T(n) = T(n-1) + n

O(n^2)

T(n) = T(n-1) + log(n)

O(n.log(n))

T(n) = T(n-c) + 1  , c is a constant

O(n) , complicity is not changed by c. 

T(n) = T(n-c) + b , c is a constant and b is a polynomial

O(n*b), generalised above 4 cases. 

Example 1.22: Find complexity of the function with the following recurrence relation. 

T(n) = { 1  if n=1

 T ( n/2)+ n

 if n>1

Solution:

T(n)  = T(n/2) + n

T(n/2)  = T(n/22) + (n/2)   // substituting n as n/2

T(n/22) = T(n/23) + (n/22)  // substituting n as n/22

T(n) = ( T(n/22) + (n/2) ) + n = T(n/22) + n/2 + n 

T(n) =  ( T(n/23) + (n/22) ) + n/2 + n = T(n/23) + n/22 + n/2 + n

T(n) = T(n/2^k) + n/2^(k-1) + …… + n/22 + n/2 + n

base case when n = 2^k, 

T(n) = T(1) + n/2^k-1  + …… + n/22 + n/2 + n

T(n) = T(1) + n * ( 1/2^(k-1)  + …… + 1/22 + 1/2 + 1 ) 

T(n) = 1 + n*2

Time Complexity is O(n)

Example 1.23: Find complexity of the function with the following recurrence relation. 

T(n) = {1

 if n=1

2 ∗T ( n/2)+ n if n>1

Solution:

T(n)  = 2 T(n/2) + n 

T(n/2)  = 2 T(n/22) + (n/2)   // substituting n as n/2

T(n/22) = 2 T(n/23) + (n/22)  // substituting n as n/22
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T(n) = 2 ( 2 T(n/22) + (n/2) ) + n = 22 T(n/22) + 2n 

T(n) =  22 ( 2 T(n/23) + (n/22) ) + 2n = 23T(n/23) + 3n

T(n) = 2^k.T(n/2^k) + kn

base case when n = 2^k, 

k = log(n)

T(n) = n*T(1) + k*n

T(n) = n + k*n = n + n*log(n) 

Time Complexity is O(n.log(n))

Example 1.24: Find complexity of the function with the following recurrence relation. 

T(n) = {1

 if n=0

2 ∗T ( n− 1)+1

 if n>0

Solution:

T(n) = 2 T(n-1) + 1

T(n-1) = 2T(n-2) + 1

T(n-2) = 2T(n-3) + 1

T(n) = 2( 2T(n-2) + 1) + 1 = 22T(n-2) + 2 + 1 = 22 (2T(n-3) + 1) + 2 + 1  = 23T(n-3) + 22 + 2 + 1  

T(n) = 2kT(n-k) + 2(k-1) + ….. +  22 + 2 + 1

base case when T(0) = 1, n-k = 0  => n = k

T(n) = 2nT(0) + 2(n-1) + ….. +  22 + 2 + 1 = 2n + 2(n-1) + ….. +  22 + 2 + 1 = 2(n+1) – 1  // GP

Time Complexity O(2^n)

Example 1.25: Find complexity of the function with the following recurrence relation. 

T(n) = { 1

 if n≤ 2

 T ( √ n)+1

 if n>2

Solution:

T(n) = T(n1/2) + 1

T(n1/2) = T( n1/4) + 1

T(n1/4) = T( n1/8) + 1

T(n) = T(n1/2) + 1 = (T( n1/4) + 1) + 1  = T( n1/4) + 2 = (T( n1/8) + 1) + 2 = T( n1/8) + 3

T(n) =  T(n1/2k) + k

for base case n,1/2k = 2 

(1/(2^k) ) * log(n)=  log2 = 1   // taking log. 

log(n) =  2^k

log(log(n)) = k log(2) = k   // taking log again. 

Time Complexity is O(log(log(n)))
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Master Theorem

The master theorem solves recurrence relations of the form: T(n) = a T(n/b) + f(n), Where a≥1 and b>1.  In this relation, “n” is the size of the input. "a" is the number of sub-problems in the recursion. 

“n/b” is the size of each sub-problem. "f(n)" is the cost of the division of the problem into sub-problems and merging the individual solutions of the sub-problems into the solution. 

It is possible to determine an asymptotic tight bound in these three cases: Case 1: When f(n) = O(nlogba-ε) and constant Є > 1, then the final time complexity is T(n) = O(nlogba) Case 2: When f(n) = Θ(nlogba.logkn) and constant k ≥ 0, then the final time complexity is T(n) = Θ(nlogba.logk+1n)

Case 3: When f(n) = Ω(nlogba+ε)  and constant Є > 1, then the final time complexity is T(n) = Θ(f(n)) Master theorem flow diagram

Example 1.26: In the case of Merge Sort. Its time complexity is T(n) = 2 T(n/2) + n Solution: In this example, a and b both equal to 2. So, logba = log22 = 1. 

Which means, f(n) = n = Θ(nlog22log0n). That means case 2 is applied and T(n) = Θ(nlog22log0+1n). 

So, its final time complexity will be T(n) = Θ(n.log(n))

Example 1.27: It is the case of Binary Search, Its time complexity is T(n) = T(n/2) + 1

Solution: In this example, a is equal to 1 and b is equal to 2. So, logba = log21 = 0 

Which means, f(n) = 1 =  Θ(nlog21log0n). That means case 2 is applied and T(n) = Θ(nlog21log0+1n). 

So, its final time complexity will be T(n) = Θ(log(n))
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Example 1.28: In the case of binary tree traversal, Its time complexity is T(n) = 2T(n/2) + 1

Solution: In this example, a is equal to 2 and b is also equal to 2. So, logba = log22 = 1  

Which means, f(n) =1 = O(nlog22 - 1). That means case 1 is applied and T(n) = Θ(nlog22). 

So, its final time complexity will be T(n) = Θ(n)

Example 1.29: T(n) = 2 T(n/2) + n^2

Solution: In this example, a is equal to 2 and b is also equal to 2. So, logba = log22 = 1 

Which means, f(n) = n^2 =  Ω(nlog22 + 1). That means case 3 is applied and T(n) = Θ(f(n)). 

So, its final time complexity will be T(n) = Θ(n^2)

Example 1.30: T(n) = 4 T(n/2) + n^2

Solution: In this example, a is equal to 4 and b is equal to 2. So, logba = log24 = 2. 

Which means, f(n) = n^2 = Θ(nlog24log0n). That means case 2 is applied and T(n) = Θ(nlog24log0+1n). 

So, its final time complexity will be T(n) = Θ(n^2 *  log n)

Example 1.31: T(n) = T(n/2) + 2n 

Solution: In this example, a is equal to 1 and b is equal to 2. So, logba = log21 = 0 

Which means, f(n) = 2n = Ω(nlog21 + 1). That means case 3 is applied and T(n) = Θ(f(n)). 

So, its final time complexity will be T(n)= Θ(n)

Example 1.32: T (n) = 16T (n/4) + n

Solution: In this example, a is equal to 16 and b is equal to 4. So, logba = log416 = 2. 

Which means, f(n) = n = O(nlog416 - 1). That means case 1 is applied and T(n) = Θ(nlog416). 

So, its final time complexity will be T(n)= Θ(n^2)

Example 1.33: T (n) = 2T (n/2) + n log n

Solution: In this example, a is equal to 2 and b is also equal to 2. So,  logba = log22 = 1

Which means, f(n) = n.log(n) = Θ(nlog22log1n ). That means case 2 is applied and T(n) = Θ(nlog22log1+1n). 

So, its final time complexity will be T(n) = Θ(n log2(n))

Example 1.34: T(n) = 2 T(n/4) + n0.5

Solution: In this example, a is equal to 2 and b is equal to 4. So, logba = log42 = 0.5 

Which means, f(n) = n0.5= Θ(nlog42log0n). That means case 2 is applied and T(n) = Θ(nlog42log0+1n). 

So, its final time complexity will be T(n) = Θ(n0.5 log(n))
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Example 1.35: T(n) = 2 T(n/4) + n0.49

Solution: In this example, a is equal to 2 and b is equal to 4. So, logba = log42 = 0.5  

Which means, f(n) = n0.49 = O(nlog42 – 0.01). That means case 1 is applied and T(n) = Θ(nlog42). 

So its final time complexity will be T(n) = Θ(n0.5) 

Example 1.36: T (n) = 3T (n/3) + √ n

Solution: In this example, a is equal to 3 and b is also equal to 3. So, logba = log33 = 1 

Which means, f(n) = n = O(nlog33 - 1/2). That means case 1 is applied and T(n) = Θ(f(n)) So, its final time complexity will be T(n) = Θ(n)

Example 1.37: T (n) = 3T (n/3) + n/2

Solution: In this example, a is equal to 3 and b is also equal to 3. So, logba = log33 = 1

Which means, f(n) = n = Θ(nlog33log0n). That means case 2 is applied and T(n) = Θ(nlog33log0+1n) So,  final time complexity will be T(n) = Θ(n.log(n))

Exercise

1 True or false

➢ 5 n + 10 n^2= O(n^2)

➢ n.log(n) + 4 n = O(n)

➢ log(n^2) + 4 log(log(n)) = O(log(n))

➢ 12.n1/2+ 3 = O(n^2)

➢ 3^n + 11.n^2 + n^20= O(2^n)

2 What is the best-case runtime complexity of searching an Array? 

3 What is the average-case runtime complexity of searching an Array? 

4 Given an array of positive numbers, you need to find the maximum sum under the constraint that no two elements should be adjacent. 
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Introduction

Theoretical knowledge of the algorithm is essential, but it is insufficient. When an interviewer asks the interviewee to solve a problem, then the interviewee can use our five-step approach to solve problems. 

If you master this technique, you will outperform the majority of applicants in interviews. 

Five steps for solving algorithm design questions are:

1. Constraints

2. Ideas Generation

3. Complexities analysis

4. Coding 

5. Testing

Constraints

Solving a technical question is not just about knowing the algorithms and designing a good software system. The interviewer is interested in seeing your approach to any given problem. Often, people make mistakes by failing to ask clarifying follow-up questions about a given problem. They make a lot of assumptions at once and start working with them. Before you start solving a problem, you need to collect a lot of missing information from your interviewer. 

In this step, you will write down all the problem’s constraints. Never attempt to solve a problem that isn’t completely defined. Interview questions are not like exam paper questions, where all the details about a problem are well-defined. The interviewer wants you to ask questions and clarify the problem during the interview. 

Suppose, when the interviewer says to write an algorithm to sort numbers. You need to ask the following clarifying question:

1. The first thing you need to know is what sort of data is being given. Assume the interviewer gives you the answer Integer. 

2. The size of the data is the second piece of information you need to know. If the input data is 100 integers or 1 billion integers, the algorithm is different. 

The basic guideline for the Constraints for an array of numbers:

1. How many numbers of elements are there in an array? 

2. What is the range of value in each element? What is the min and max value? 

3. What is the kind of data in each element? Is it an integer or a floating point? 

4. Does the array contain unique data or not? 
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The basic guideline for the Constraints for an array of strings:

1. How many total numbers of elements are there in the array? 

2. What is the length of each string? What is the min and max length? 

3. Does the array contain unique data or not? 

The basic guideline for the Constraints for a Graph

1. How many nodes are there in the graph? 

2. How many edges are there in the graph? 

3. Is it a weighted graph? What is the range of weights? 

4. Does the graph have directed edges, or undirected edges? 

5. Does the graph have a loop? 

6. Does the graph have a negative sum loop? 

7. Are there any self-loops in the graph? 

We will see in the graph chapter that depending upon the constraints the algorithm applied changes and so is the complexity of the solution. 

Idea Generation

We will cover a lot of theoretical knowledge in this book. It is impossible to cover all the questions, as new questions are created every day. Therefore, you should know how to handle new problems. Even if you know the solution to the problem asked by the  interviewer,  then also you need to have a discussion with the interviewer and try to reach the solution. You need to analyse the problem also because the interviewer may modify a question a bit, so the approach to solve it will vary. 

How to solve an unseen problem? The solution to this problem is to learn a lot, and the more you practice, the more you will be able to answer any unseen problem.  When you’ve solved enough problems, you’ll see a pattern in the questions and be able to answer unseen problems with ease. 

Following is the strategy that you need to follow to solve an unknown problem: 1. Try to simplify the task at hand. 

2. Try a few examples

3. Think of a suitable data structure. 

4. Think about similar problems that you have already solved. 

Try to simplify the task at hand

Let’s look into the following problem: Husbands and wives are standing at random in a line. Husbands have been numbered, H1, H2, H3 and so on. Wives have been numbered, W1, W2, W3 and so on. 

You need to arrange them so that H1 will stand first, followed by W1, then H2 followed by W2 and so on. 
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At first look, it looks complicated, but it is a simple problem. Try to find a relation to the final position. 

P(Hi) =  i * 2 – 1 and P(Wi) = i * 2

We are leaving an exercise for you to do something like Insertion-Sort for the rest of the algorithm, and you are done. 

Try a few examples

In the above problem, if you try the above problem with an example of three husband-wife pairs then you can get the same formula as shown in the previous section. Using more examples will also assist in solving the problem. 

Think of a suitable data-structure

It’s simple to figure out which data structure would be more appropriate for some specific problems. 

Throughout this book, we will see a variety of data structures. We must determine which data structure would best meet our requirements. 

Problem 1: If we want to find the minimum and maximum of a given sequence. 

Analysis: The heap is most likely the data structure we’re searching for. 

Problem 2: We are given a stream of data, at any time, we can be asked to tell the median value of the data, and maybe we can be asked to pop median data. 

Analysis: We may visualise a tree, maybe a balanced tree with the median at the root. Wait a minute! 

It’s not straightforward to ensure that the tree root is a median. We can’t get the median from a heap, although it can give us the minimum or maximum. What if we use two heaps, a max-heap and a min-heap? The max heap will hold the smaller values, while the min-heap will have the larger values. 

Furthermore, we will keep track of how many elements are in the heaps. It would help if you came up with the rest of the algorithm on your own. 

For every unseen problem, think about the data structures you know, and maybe one of them or some combination of them will solve your problem. Think about similar problems you have already solved. 

Problem 3: Given head pointers of two linked lists that intersect at some point. Find the point of intersection. However, in place of the end of the linked list to be a null pointer, there is a loop. 

Analysis: You know how to find the intersection point of two intersecting linked lists, and you know how to find if a linked list has a loop (three-pointer solution). Therefore, you can combine both solutions to solve the problem at hand. 

Complexities

Solving a problem is not just finding a correct solution. The solution should be fast and should have reasonable memory requirements. In the previous chapters, you learned about big-O notation. You should be able to perform Big-O analysis. If you believe the solution you have provided is not optimal and there is a better solution, then try to figure it out. 
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Complexities

Most interviewers expect that you should be able to find the Time and Space Complexity of the algorithms. You should be able to calculate the Time and Space Complexity quickly. Whenever you are solving any problem, you should find the complexity associated with it. From this, you would be able to choose the best solutions. In some problems there are some trade-offs between Space and Time Complexity, so you should know these trade-offs. Taking a little extra space will save you a lot of time and make your algorithm much faster. 

Coding 

At this stage, you have already captured all the constraints of the problem, suggested a few solutions, evaluated the complexities of those solutions and selected the one for final coding. Never begin coding without first discussing with the interviewer about constraints, Idea generation and complexity. 

We are used to writing code in an IDE like a Visual Studio. So several people struggle when asked to write code on a whiteboard or some blank sheet. Therefore, you should do some practice coding on a sheet of paper. You should think before coding because there is no back button on the sheet of paper. 

Always try to write modular code. Small functions need to be created so that the code is clean and managed. If there is a requirement for a swap function, just use this function and tell the interviewer that you will write it later. Everybody knows that you can write a swap function. 

Testing

You’re not done even if the code is written. It is essential to validate the code using a variety of small test  cases.  It  shows that  you understand the  importance  of  testing.  It  also  gives  the  interviewer confidence that you would not write a bug-ridden program. Once you have finished coding, you should go over the code line-by-line for some small test cases. This is to ensure that the code is functioning as intended. 

Following are some test cases to check: 

• Normal   test   cases:   These   are   the   positive   test   cases,   which   contain   the   most   common scenario, and the emphasis is on the functioning of the code’s base logic. 

For example, if we are solving some problems for a linked list, then this test may contain, what happens when a linked list with three or four nodes is given as input. Before declaring the code complete, you should always think about these test cases. 

• Edge cases: These are the test cases, which are used to test the boundaries of the code. 

Edge cases can help to make your code more robust. We must add checks in the code to handle edge cases. 

For example, we can generate edge cases with the same linked list algorithm to see how the code reacts when an empty list or only one node liar is passed. 

Note: Always follow these five steps, never jump to coding before doing constraint analysis, idea generation, and complexity analysis: At last, never miss the testing step. 
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Example

Let us suppose the interviewer asks you to give the best sorting algorithm. 

Some interviewees will directly jump to Quick-Sort O(n.log(n)). Oops, mistake! You need to ask many questions before beginning to solve this problem. 

Let’s look at these questions one by one. 

Question 1: What is the kind of data? Are they integers? 

Answer: Yes, they are integers. 

Question 2: How much data are we going to sort? 

Answer:  Maybe thousands. 

Question 3: What exactly is this data about? 

Answer: They store a person’s age

Question 4: What kind of data structure is used to hold this data? 

Answer: Data are given in the form of a list

Question 5: Can we modify the given data structure? And many, many more questions…

Answer: No, you cannot modify the data structure provided

So, we are all set to use the given information to make a perfect solution. From the first answer, we will know the type of data we are going to get is an integer. From the second answer, we can conclude that data size is limited. It’s only in some thousands. From the next answer, we can conclude that it’s age-related data. So we can assume that a person’s age will be between 1 to 150. And lastly, we know that data is in the form of a list and cannot change it. 

To summarise, we can use bucket sort to sort the data. Since the range is only 1-150, we only need an integer list of  150 elements. We don’t have to think about data overflow because the data is in thousands, and we get the solution in linear time. 

Summary

At this point, you know the process of handling unseen problems very well. In the coming chapter, we will be looking into various data structures and the problems they solve. It may be possible that the user cannot understand some portion of this chapter as knowledge of the rest of the book is needed, so they can reread this chapter after reading the rest of the data structures portion. A huge number of problems are solved in this book. However, it is recommended that you first try to solve them yourself and then look for the solution. Always think about the complexity of the problem. In the interview, interaction is the key to get the problem described completely and discuss your approach with the interviewer. 
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Abstract Data Type (ADT)

An abstract data type (ADT) is a logical description of the data and its operations. An ADT is known as a user’s point of view of data. An ADT is concerned about the possible values of data and interfaces exposed by it. An ADT is not concerned about the actual implementation of the data structure. 

For example, a user wants to store some integers and find their mean value. ADT for this data structure would have two functions, one for adding integers and another to get the mean value. ADT

for this data structure does not talk about how exactly it will be implemented. 

Data-Structure

Data   structures   are   concrete   representations   of   data   that   are   defined   from  the   perspective   of   a programmer. The data structure represents how data can be stored in memory. Each data structure has its own set of advantages and disadvantages. Depending on the type of problem, we choose the most appropriate data structure. 

For example, according to the question, we can store data in arrays, stack, queue, linked list, and many more. 

Note: - In this chapter, we will be studying various data structures and their API. So that the user can use them without knowing their internal implementation. 
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Kotlin Collection Framework

Kotlin programming language provides a Kotlin Collection Framework, which is a set of high quality, high-performance & reusable data structures and algorithms. 

The following advantages of using a Kotlin collection framework:

1. Programmers do not have to implement basic data structures and algorithms repeatedly. Thereby, it prevents the reinvention of the wheel. Thus, the programmer can devote more effort to business logic 

2. The Kotlin Collection Framework code is a well-tested, high quality, high-performance code. Using them increases the quality of the programs. 

3. Development cost is reduced as basic data structures and algorithms are implemented in the Collections framework. 

4. Easy to review and understand programs written by other developers, as most Kotlin developers use the Collection framework. In addition, the collection framework is well documented. 

Array

Arrays are the simplest data structures that store items of the same data type. 

Array ADT Operations

Below is the API of an array:

1. Adds an element at the kth position. Value can be stored in an array at the kth position in O(1) constant time. We just need to store value at arr[k]. 

2. Reading the value stored at the kth position. Accessing the value stored at some index in the array is also O(1) constant time. We just need to read the value stored at arr[k]. 

3. Substitution of value stored in kth position with a new value. 

4. Time complexity: O(1) constant time. 

Example 3.1:

fun main() {

val arr = IntArray(10)

for (i in 0..9) {

arr[i] = i

}

for (i in arr){  

print(" " + i)  

} 

}

Output:

0 1 2 3 4 5 6 7 8 9
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Application of Arrays

Applications of Arrays are:

1. Storing data in tabular format. 

2. Used in the creation of Matrices. Online ticket booking system in which seats are represented in the form of Matrices. 

3. Used   in   the   creation   of   various   higher   level   data   structures   like   Stacks,   Queues,   Heaps, HashTables etc. 

ArrayList implementation in Kotlin Collections

ArrayList<E> in Kotlin Collections is a data structure that implements the List<E>  interface,  which means that it can have duplicate elements in it. ArrayList is an implementation of a dynamic array that can grow or shrink as needed. (Internally the array is used when it is full, a bigger array is allocated and the old array values are copied to it.)

Example 3.2:

fun main() {

val al = ArrayList<Int>()

al.add(1) // add 1 to the end of the list

al.add(2) // add 2 to the end of the list

println("Array : $al")

println("Array Size : " + al.size)

println("Array IsEmpty : " + al.isEmpty())

al.removeAt(al.size - 1) // last element of array is removed. 

println("Array : $al")

al.removeLast() // last element of array is removed. 

println("Array IsEmpty : " + al.isEmpty())

}

Output:

Array : [1, 2]

Array Size : 2

Array IsEmpty : false

Array : [1]

Array IsEmpty : true

Linked List

Linked list is a dynamic data structure and memory is allocated at run time. The concept of linked list is not to store data contiguously. Nodes of linked list contain links that point to the next elements in the list. 
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Performance-wise, linked lists are slower than arrays because there is no direct access to linked list elements. A linked list is a useful data structure when we do not know the number of elements to be stored ahead of time. There are many types of linked lists: linear, circular, doubly, doubly circular etc. 

Linked list ADT Operations

Below is the API of the Linked list:

1. Insert(k)  will  insert an element at the start of the list. Just create a new element and move pointers. So that this new element becomes the first element of the list. This operation will take O(1) constant time. 

2. Delete() will delete an element at the start of the list. We just need to move one pointer. This operation will also take O(1) constant time. 

3. Print() will display all the elements of the list. Start with the first element and then follow the pointers. This operation will take O(N) time. 

4. Find(k) will find the position of the element with the value k. Start with the first element and follow the pointer until we get the value we are looking for or reach the end of the list. This operation will take O(N) time. 

5. IsEmpty() will check if the number of elements in the list is zero. Just check the head pointer of the list, if it is Null then the list is empty, otherwise not empty. This operation will take O(1) time. 

LinkedList implementation in Java Collections

LinkedList<E> in by Java Collections is a data structure that also implements the List<E> interface. 

Example 3.3:

import java.util.LinkedList

fun main() {

val ll = LinkedList<Int>()

ll.addFirst(2) // 2 is added to the list. 

ll.addLast(10) // 10 is added to last of the list. 

ll.addFirst(1) // 1 is added to first of the list. 

ll.addLast(11) // 11 is added to last of the list. 



println("Contents of Linked List: $ll")

ll.removeFirst()

ll.removeLast()

println("Contents of Linked List: $ll")

}

Output:

Contents of Linked List: [1, 2, 10, 11]

Contents of Linked List: [2, 10]
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Analysis: Values are added to the back and front of the linked list. Then the values stored in the linked list are printed. Then values are removed from the linked list from the front and back and again linked list content is printed to the screen. 

Stack

Stack   is   a   data   structure   that   follows   the   Last-In-First-Out   (LIFO)   principle.   This   means   that   the element that is added last will be removed first. 

Stack ADT Operations

Below is the API of the Stack:

1. Push(k) will add value k on the top of the stack. 

2. Pop() will remove an element from the top of the stack and return its value. 

3. Top() will return the value of the element on top of the stack. 

4. Size() will return the number of elements in the stack. 

5. IsEmpty() will tell us whether the stack is empty or not. It returns 1 if the stack is empty, else return 0. 

Note: All the above stack operations are implemented in O(1) time Complexity. 

Stack implementation in Java Collection

Stack is implemented by calling push and pop methods of the Stack <T> class. 

Example 3.4:

import java.util.Stack

fun main() {

val stack = Stack<Int>()

stack.push(1)

stack.push(2)

stack.push(3)

println("Stack : $stack")

println("Stack size : " + stack.size)

println("Stack pop : " + stack.pop())

println("Stack top : " + stack.peek())

println("Stack isEmpty : " + stack.isEmpty())

}
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Output:

Stack : [1, 2, 3]

Stack size : 3

Stack pop : 3

Stack top : 2

Stack isEmpty : false

Stack is also implemented by calling push and pop methods of the ArrayDeque<T> class. 

Queue

A queue is a data structure that follows the First-In-First-Out (FIFO) principle. The first element added to the queue first would be the first to be removed, and vice versa. 

Queue ADT Operations:

Below is the API of the Queue:

1. Add(K) will add element k at the end of the queue. 

2. Remove() will remove the first element at the front of the queue and return its value. 

3. Front() will return the value of the element at the front of the queue. 

4. Size() will return the number of elements in the queue. 

5. IsEmpty() will check whether the queue is empty or not. If it is empty then return 1, else return 0. 

Note: All the above queue operations are implemented in O(1) Time Complexity. 

Queue implementation in Kotlin Collection

ArrayDeque<T> is the class implementation of a doubly ended queue. If we use add(), removeFirst() and first() it will behave as a queue. (Moreover, if we use add(), removeLast() and last() it behaves as a stack.)

Example 3.5:

fun main() {

val que = ArrayDeque<Int>()

que.add(1)

que.add(2)

que.add(3)
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println("Queue : $que")

println("Queue size : " + que.size)

println("Queue peek : " + que.first())

println("Queue remove : " + que.removeFirst())

println("Queue isEmpty : " + que.isEmpty())

}

Output:

Queue : [1, 2, 3]

Queue size : 3

Queue peek : 1

Queue remove : 1

Queue isEmpty : false

Analysis: Values are added to the queue and printed to the screen. Since the queue is first-in-first-out, the values that are added first are the first to come out of the queue. 

Tree

A tree is a data structure that is organised in a hierarchy. Each element of the tree data structure is called a node. The top node of the tree is called the root node. Each node in a tree, except the root, has a parent node and zero or more child nodes. In the case of the last level of nodes, they have no child. They are called leaf nodes. Where you need to store hierarchical records, the tree is the most appropriate data structure to use. 

A binary tree is a type of tree in which each node has at most two children ( 0, 1, or 2 ) which are referred to as left child and right child. 

Binary Search Tree (BST)

A binary search tree (BST) is a binary tree in which nodes are ordered in the following way: 1. The key in the left subtree is less than or equal to the key in its parent node. 

2. The key in the right subtree is greater than the key in its parent node. 
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Binary Search Tree ADT Operations

Below is the API of the BST:

1. Insert(k) will insert an element k into the tree. 

2. Delete(k) will delete an element k from the tree. 

3. Search(k) will search a value k into the tree if it is present or not. 

4. FindMax() will find the maximum value stored in the tree. 

5. FindMin() will find the minimum value stored in the tree. 

The average time complexity of all the above operations on a binary search tree is O(log(n)), the case when the tree is balanced. The worst-case time complexity is O(n) when the tree is not balanced. 

TreeSet implementation in Java Collections

TreeSet<> is a class that implements the Set<> interface, which means that it stores unique elements. 

TreeSet<> is implemented using a red-black balanced binary search tree in Java Collections. Since TreeSet<> is implemented using a binary search tree, its elements are stored in sequential order. 

Example 3.6:

import java.util.TreeSet

fun main() {

// Create a tree set. 

val ts = TreeSet<String>()

// Add elements to the tree set. 

ts.add("Banana")

ts.add("Apple")

ts.add("Mango")

println(ts)

println("Apple present : " + ts.contains("Apple"))

println("Grapes present : " + ts.contains("Grapes"))

ts.remove("Apple")

println("Apple present : " + ts.contains("Apple"))

}

Output:

[Apple, Banana, Mango]

Apple present : true

Grapes present : false

Apple present : false

Note: TreeSet is implemented using a binary search tree so add, remove, and contain methods have logarithmic time complexity O(log(n)), where n is the number of elements in the set. 

TreeMap implementation in Kotlin Collection

A Map<> is an interface that maps keys to values. A TreeMap<> is an implementation of Map<> and is implemented using a red-black balanced binary tree so the key-value pairs are stored in sorted order. 
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Example 3.7:

import java.util.TreeMap

fun main() {

// create a tree map. 

val tm = TreeMap<String, Int>()

// Put elements into the map

tm.put("Apple", 40)

tm.put("Banana", 10)

tm.put("Mango", 20)

println("Size :: " + tm.size)

for (key in tm.keys) {

println(key + " cost : " + tm.get(key))

}

println("Apple present : " + tm.containsKey("Apple"))

println("Grapes present : " + tm.containsKey("Grapes")) tm.remove("Apple")

println("Apple present : " + tm.containsKey("Apple"))

}

Output:

Size :: 3

Apple cost : 40

Banana cost : 10

Mango cost : 20

Apple present : true

Grapes present : false

Apple present : false

Heap / Priority Queue

Heap is a data structure used to implement the priority queue. In a heap, the data is logically organised as a complete binary tree. A complete binary tree is a binary tree that is filled at all possible levels except the last level. The parent value of each node in a heap is greater (or smaller) than the value of its child nodes. 
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There are two types of heap data structure:

1. Max heap: Each node’s value should be less than or equal to the values of its children. 

2. Min heap: Each node’s value should be greater than or equal to the values of its children. 

Heap ADT Operations

Below is the API of the Heap:

1. Insert(k)  will  add a new element  k  to  the  heap.  The  time complexity of  this operation  is O(log(n))

2. Remove() will extract max for max heap case (or min for min heap case). The time complexity of this operation is O(log(n))

3. Heapify() will convert an array of numbers into a heap. This operation has a time complexity O(n) 

PriorityQueue implementation in Kotlin Collection

Min heap implementation of Priority Queue

Example 3.8:

import java.util.PriorityQueue

import java.util.Collections

fun main() {

val pq = PriorityQueue<Int>(); 

val arr = intArrayOf(1, 2, 10, 8, 7, 3, 4, 6, 5, 9)

for (i in arr) {

pq.add(i)

}

println("Heap : $pq")

while (pq.isEmpty() == false) {

print(" " + pq.remove())

}

}

Output

Heap : [1, 2, 3, 5, 7, 10, 4, 8, 6, 9]

1 2 3 4 5 6 7 8 9 10 
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Max heap implementation of Priority Queue. 

Example 3.9:

val pq = PriorityQueue<Int>(Collections.reverseOrder()); 

Output

Heap : [10, 9, 4, 6, 8, 2, 3, 1, 5, 7]

10 9 8 7 6 5 4 3 2 1

Hash Table

A Hash-Table is a data structure that maps keys to values. The hash table calculates the index of data in an array using a hash function. We use the Hash-Table when the number of key-value pairs stored is small relative to the number of possible keys. 

The process of storing data using a hash function is as follows: 

1. To store data, create an array of size M, referred to as a Hash-Table. 

2. Find a hash code of a key using a hash function. 

3. Take a module of hashcode by the size of Hash-Table to get the index where data will be stored. 

4. Finally, store this data in the appropriate index. 

The process of searching data in a Hash-Table using a hash function is as follows: 1. Using a hash function, we can generate a hash code for the key we’re looking for. 

39

Chapter 3: Abstract Data Type 

Hash Table

2. Take a modulo of hashcode by the hash table size to get the index of the table where data is stored. 

3. Finally, get the value from the index you calculated. 

Hash-Table Abstract Data Type (ADT) 

Below is the API of the Hash-Table: 

1. Insert(x) will add x to the hash table. 

2. Delete(x) will delete x from the hash table. 

3. Search(x) will search x in the hash table. 

The Hash-Table is a useful data structure for implementing a dictionary. The average time to search for an element in a Hash-Table is O(1). 

HashSet implementation of Kotlin Collections

HashSet   <>   is   a   class   that   implements   the   Set<>  interface,  which   means   that   it   stores   unique elements. HashSet <> is implemented using a hash table. Since HashSet<> is implemented using a hash table, its elements are not stored in sequential order. 

Example 3.10:

fun main() {

// Create a hash set. 

val hs = HashSet<String>()



// Add elements to the hash set. 

hs.add("Banana")

hs.add("Apple")

hs.add("Mango")

println(hs)

println("Apple present: " + hs.contains("Apple"))

println("Grapes present: " + hs.contains("Grapes"))

hs.remove("Apple")

println("Apple present: " + hs.contains("Apple"))

}

Output

[Apple, Mango, Banana]

Apple present: true

Grapes present: false

Apple present: false

LinkedHashSet implementation of Kotlin Collections

LinkedHashSet<>   is   a  class   that   implements   Set<>  interface,  which   means   that   it   stores   unique elements. LinkedHashSet<> is implemented using a hash table and a linked list. A LinkedList is used 40
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to preserve the order of elements based on insertion. Traversing the elements of the hash table is done in order of insertion. 

Example 3.11:

fun main() {

// Create a hash set. 

val hs = HashSet<String>()

// Add elements to the hash set. 

hs.add("Banana")

hs.add("Apple")

hs.add("Mango")

println("HashSet : $hs")

// Create a linked hash set. 

val lhs = LinkedHashSet<String>()

// Add elements to the linked hash set. 

lhs.add("Banana")

lhs.add("Apple")

lhs.add("Mango")

println("LinkedHashSet : $lhs")

}

Output

HashSet:: [Apple, Mango, Banana]

LinkedHashSet:: [Banana, Apple, Mango]

Comparison of various Set classes. 

TreeSet

HashSet

LinkedHashSet

Storage

Red-Black Tree

Hash Table

Hash Table with Linked List. 

Performance

Slower than HashSet, Fastest, constant 

More expensive than HashSet, 

O(log(N))

time

must maintain a linked list. 

Order of Iteration

Increasing Order

No order 

Order of insertion

guarantee

HashMap implementation in Kotlin Collection

A Map<> is a data structure that maps keys to values. A HashMap<> is an implementation of Map<> and is implemented using a hash table so the key-value pairs are not stored in sorted order. Map<> does not allow duplicate keys but values can be duplicated. 

Example 3.12:

fun main() {

// Create a hash map. 

val hm = HashMap<String, Int>()

// Put elements into the map

hm.put("Apple", 40)

hm.put("Banana", 10)

hm.put("Mango", 20)
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println("Size : " + hm.size)

for (key in hm.keys) {

println(key + " cost : " + hm.get(key))

}

println("Apple present : " + hm.containsKey("Apple"))

println("Grapes present : " + hm.containsKey("Grapes"))

}

Output

Size : 3

Apple cost : 40

Mango cost : 20

Banana cost : 10

Apple present : true

Grapes present : false

Comparison of various Set classes. 

TreeMap

HashMap

LinkedHashMap

Storage

Red-Black Tree

Hash Table

Hash Table with Linked List. 

Performance

Slower



than Fastest, constant time

More   expensive   than

HashMap, 

HashMap,   must   maintain   a

O(log(N))

linked list. 

Order of Iteration

Increasing Order of No order guarantee

Order of insertion

key

Endnote

This chapter has provided a brief introduction of the various data structures and their complexities. In the next chapters, we will study all these data structures in detail. If you know the interface of a data structure, you can use it to solve other problems without knowing its internal implementation. 
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Sorting is the process of arranging elements in ascending or descending order. For example, when we play cards, we sort cards by value so that we can find the required card easily. 

Another example, When we visit a library, the books are arranged into streams (Algorithms, Operating systems, Networking and so on). Sorting arranges data elements in a logical order to make searching simpler. It’s much easier to find a book we’re seeking when the books are arranged in appropriate indexing order. 

Sorting algorithms like Bubble-Sort, Insertion-Sort and Selection-Sort are easy to implement and work well with small input sets. However, they are inefficient for large datasets. Sorting algorithms like Merge-Sort, Quick-Sort and Heap-Sort are appropriate for sorting large datasets. However, they are overkill if we want to sort a small dataset. Some other algorithms are there to sort a huge data set that cannot be stored in memory completely, for which an external sorting technique is developed. 

Types of Sorting

Internal Sorting: All the elements can be read into memory at the same time, and sorting is performed in memory. 

1 Selection-Sort

2 Insertion-Sort

3 Bubble-Sort

4 Quick-Sort

5 Merge-Sort

External Sorting: In this type of sorting, the dataset is so big that it is impossible to load the whole dataset into memory, so sorting is done in chunks. 

1 Merge-Sort

Comparison Function

Before   we   start   a   discussion   of   the   various   algorithms   one   by   one.   First,   we   should   look   at   a comparison function that is used to compare two values. 

Less function will return true if value1 is less than value2, otherwise it will return false. 

fun less(value1: Int, value2: Int): Boolean {

return value1 < value2

}
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Greater function will return true if value1 is greater than value2, otherwise it will return false. 

fun greater(value1: Int, value2: Int): Boolean {

return value1 > value2

}

The value in various sorting algorithms is compared using one of the above functions, and it will be swapped depending upon the return value of these functions. If greater() comparison function is used, then sorted output will be in increasing order. On the other hand, if less() comparison function is used, then the resulting output will be in descending order. 

Bubble Sort

Bubble-Sort is the slowest algorithm for sorting used when the data set is small. It is easy to implement and   use.   In   Bubble-Sort,   we   compare   each   pair   of   adjacent   values.   We   want   to   sort   values   in increasing order, so if the  second value is less than the first value,  we swap these two values. 

Otherwise, we will go to the next pair. Thus, the largest value bubble to the end of the array. 

After the first pass, the largest value will be in the rightmost position. We will have N number of passes to get the array completely sorted. 

Example 4.1:

fun bubbleSort(arr: IntArray) {

val size = arr.size

var i = 0

while (i < size - 1) {

var j = 0

while (j < size - i - 1) {

if (greater(arr[j], arr[j + 1])) {

/* Swapping */

var temp = arr[j]

arr[j] = arr[j + 1]

arr[j + 1] = temp

}

j++

}

i++

}

}
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// Testing code. 

fun main() {

val array = intArrayOf(9, 1, 8, 2, 7, 3, 6, 4, 5)

bubbleSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8 9 

Analysis:

1. The outer loop represents the number of swaps that are done for the comparison of data. 

2. The inner loop is used for the comparison of data. In the first iteration, the largest value will be moved to the end of the array, in the second iteration the second-largest value will be moved before the largest value and so on. 

3. The   greater()   function   is   used   for  comparison,  which   means   when   the   value   of   the   first argument is greater than the value of the second argument then performs a swap. With this, we are sorting in increasing order. If we have, the less() function in place of greater() then the array will be sorted in decreasing order. 

Complexity Analysis: 

Each time the inner loop execute for (n-1), (n-2), (n-3) +..... + 3 + 2 + 1  =  O(n^2) Worst-case Modified (improved) Bubble-Sort

When there is no more swap in one pass of the outer loop, the array is already sorted. At this point, we should stop sorting. This sorting improvement in Bubble-Sort is particularly useful when we know that, except for a few elements, the rest of the array is already sorted. 

Example 4.2:

fun bubbleSort2(arr: IntArray) {

val size = arr.size

var swapped = 1

var i = 0

while (i < size - 1 && swapped == 1) {

swapped = 0

var j = 0

while (j < size - i - 1) {

if (greater(arr[j], arr[j + 1])) {

var temp = arr[j]

arr[j] = arr[j + 1]

arr[j + 1] = temp

swapped = 1

}

j++

}
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i++

}

}

By applying this improvement, the best-case performance of this algorithm is improved when an array is nearly sorted. In this case, we just need a single pass and the best-case complexity is O(n) Complexity Analysis:

Worst-case performance

O(n^2)

Average-Case performance

O(n^2)

Space Complexity

O(1) 

Modified: When the array is nearly sorted

O(n)

Stable Sorting

Yes

Insertion Sort

Insertion sort works similar to how we organise a deck of cards. We keep a sorted subarray. Each value is placed in the sorted subarray in its proper position so that the subarray remains sorted. 

Insertion-Sort Time Complexity is O(n^2) which is the same as Bubble-Sort but performs a better than bubble sort. 

Let’s look at the diagram of insertion sort and check how it works. 
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Example 4.3:

fun insertionSort(arr: IntArray) {

val size = arr.size

for (i in 1 until size) {

var temp = arr[i]

var j = i

while (j > 0 && greater(arr[j - 1], temp)) {

arr[j] = arr[j - 1]

j--

}

arr[j] = temp

}

}

// Testing code. 

fun main() {

val array = intArrayOf(9, 1, 8, 2, 7, 3, 6, 4, 5)

insertionSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8 9

Analysis: 

1. The outer loop is used to choose the value to be inserted into the sorted array on the left. 

2. The chosen value we want to insert is saved in a temp variable. 

3. The inner loop is doing the comparison using the greater() function. The values are shifted to the right until we find the proper position of the temp value, for which this iteration is performed. 

4. Finally, temp’s value is placed in its proper position. In each iteration of the outer loop, the length of the sorted array increases by one. When we exit the outer loop, the array is sorted. 

Complexity Analysis:

Worst-case time complexity 

O(n^2)

Best-Case time complexity 

O(n)

Average-Case time complexity 

O(n^2)

Space Complexity

O(1)

Stable sorting 

Yes

Selection Sort

Selection sort algorithm traverses the unsorted array and puts the largest value at the end. This process is repeated n-1 times. This algorithm also has quadratic time complexity, but it performs better than both bubble sort and insertion sort as fewer swaps are required in this approach. The sorted array is created backward in selection sort. 

Let’s look at the diagram of selection sort and check how it works. 
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Example 4.4:

fun selectionSort(arr: IntArray) { // sorted array created in reverse order. 

val size = arr.size

for (i in 0 until size - 1) {

var max = 0

for (j in 1 until (size - i)) {

if (arr[j] > arr[max]) {

max = j

}

}

var temp = arr[size - 1 - i]

arr[size - 1 - i] = arr[max]

arr[max] = temp

}

}

// Testing code. 

fun main() {

val array = intArrayOf(9, 1, 8, 2, 7, 3, 6, 4, 5)

selectionSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8 9 

Analysis: 

1. The outer loop decides the number of times the inner loop will iterate. For an input of N

elements, the outer loop will iterate the N number of times. 

2. The largest value is placed at the end of the array after each inner loop iteration. 

3. After all the iterations the array is sorted. The sorted array is created backwards. 

Complexity Analysis:

Worst-Case time complexity 

O(n^2)

Best-Case time complexity 

O(n^2)

Average-Case time complexity 

O(n^2)

Space Complexity

O(1)

Stable Sorting

No
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We can implement the same algorithm by creating the sorted array in the front of the array. Let’s look at the second algorithm by which we can implement selection sort. 

Example 4.5:

fun selectionSort2(arr: IntArray) { // sorted array created in forward direction val size = arr.size

for (i in 0 until size - 1) {

var min = i

for (j in i+1 until size) {

if (arr[j] < arr[min]) {

min = j

}

}

var temp = arr[i]

arr[i] = arr[min]

arr[min] = temp

}

}

Merge Sort

Merge-Sort uses Divide & Conquer technique to sort the input array. Merge sort recursively divides the input into two halves. The two halves are then sorted separately and finally combine the result into the final sorted output. The recursive step keeps on dividing the input into smaller pieces until the length of each piece becomes one. 

Let’s look at the diagram of merge sort. 
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Example 4.6:

fun mergeSort(arr: IntArray) {

val size = arr.size

val tempArray = IntArray(size)

mergeSortUtil(arr, tempArray, 0, size - 1)

}

fun mergeSortUtil(arr: IntArray, tempArray: IntArray, lowerIndex: Int, upperIndex: Int) {

if (lowerIndex >= upperIndex) {

return

}

val middleIndex = (lowerIndex + upperIndex) / 2

mergeSortUtil(arr, tempArray, lowerIndex, middleIndex)

mergeSortUtil(arr, tempArray, middleIndex + 1, upperIndex)

merge(arr, tempArray, lowerIndex, middleIndex, upperIndex)

}

fun merge(arr: IntArray, tempArray: IntArray, lowerIndex: Int, middleIndex: Int, upperIndex: Int) {

var lowerStart = lowerIndex

var upperStart = middleIndex + 1

var count = lowerIndex

while (lowerStart <= middleIndex && upperStart <= upperIndex) {

if (arr[lowerStart] < arr[upperStart]) {

tempArray[count++] = arr[lowerStart++]

} else {

tempArray[count++] = arr[upperStart++]

}

}

while (lowerStart <= middleIndex) {

tempArray[count++] = arr[lowerStart++]

}

while (upperStart <= upperIndex) {

tempArray[count++] = arr[upperStart++]

}

for (i in lowerIndex..upperIndex) {

arr[i] = tempArray[i]

}

}

// Testing code. 

fun main() {

val array = intArrayOf(3, 4, 2, 1, 6, 5, 7, 8)

mergeSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8
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Analysis: 

1. Time complexity of merge sort is O(n.log(n)) in all three cases (best, average, and worst) since it always divides the array into two halves and merges them in linear time. 

2. It requires an equal amount of additional space as the unsorted array. Hence, it is not at all recommended for searching large unsorted arrays. 

Complexity Analysis:

Worst-Case time complexity 

O(n.log(n))

Best-Case time complexity 

O(n.log(n))

Average-Case time complexity 

O(n.log(n))

Space Complexity

O(n)

Stable Sorting

Yes

Pros and Cons of Merge-sort Algorithm

Pros of Merge-sort Algorithm

Cons of Merge-sort Algorithm

1) Can be used to sort large-size arrays. 

1)   Consumes   extra   space.   Not   an   in-place   sorting

2) Can be used to sort linked-lists

algorithm. 

2) Used in External sorting. 

2) Even if the list is already sorted it will always take

4) Merge-sort is stable sorting. 

O(n.log(n)) time. 

3) Recursive algorithms are slower than iterative ones. 

External Sort (External Merge-Sort)

When data needs to be sorted is huge, and it is not possible to load it completely in memory (RAM), for such a dataset we use external sorting. Such data is sorted using the external Merge-Sort algorithm. 

1. First data is picked in chunks, and it is sorted in memory. Then this sorted data is written back to disk. The whole data is sorted in chunks using Merge-Sort. Now we need to combine these sorted chunks into final sorted data. 

2. We create queues for the data, which will read from the sorted chunks. Each chunk will have its queue. We will pop from these  queues,  and these queues are responsible for reading from the sorted chunks. Let us suppose we have K different chunks of sorted data, each of length M. 

3. The third step is using a Min-Heap, which will take input data from each of these queues. It will take one element from each queue. The minimum value is taken from the Heap and added to the final output. Then the queue from which this minimum value element is added to the heap will again be popped and one more element from this queue is added to the Heap. 

4. When the data is exhausted from some queue, that queue is removed from the input list. Finally, we will get sorted data coming out from the heap. We can optimise this process further by adding an output buffer, which will store data coming out of Heap and will do a limited number of the write operation in the final Disk space. 
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Note: No one will be asked to implement external sorting in an interview, but it is good to know about it. 

Quick Sort

Let’s look at the working of a quicksort algorithm. 

1. Quick Sort is a recursive algorithm. In each step, we select a pivot (let us say the first element of the array). 

2. Partition the array into two pieces, with all elements smaller than the pivot are moved to the left side and all elements larger than the pivot are moved to the right side of the array. To do this, we will follow the following steps. 

a) Select pivot as the first element in the array. 

b) Use two index variables, lower and upper. 

c) Set the lower index as the second element in the array and the upper index as the last element of the array. 

d) Increase lower index till value at lower index is less than the pivot. 

e) Then decrement the upper index till the value at the upper index is greater than the pivot. 

f) Then swap the value at lower and upper index. 

g) Repeat the above 3 steps till the upper index is greater than the lower index. 

h) In the end, swap value at pivot and upper index. 

3. Then we sort the left and right sub-array separately using recursion. 

4. When the algorithm returns, the whole array is sorted. 
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The below diagram demonstrates the partition step in quickSort. 

Example 4.7:

fun quickSort(arr: IntArray) {

quickSortUtil(arr, 0, arr.size - 1)

}

fun quickSortUtil(arr: IntArray, start: Int, stop: Int) {

if (stop <= start) return

val pivot = arr[start]

var lower = start 

var upper = stop

while (lower < upper) {

while (arr[lower] <= pivot && lower < upper) {

lower++

}

while (arr[upper] > pivot && lower <= upper) {

upper--

}

if (lower < upper) {

swap(arr, upper, lower)

}

}

swap(arr, upper, start) // upper is the pivot position

quickSortUtil(arr, start, upper - 1) // pivot -1 is the upper for left sub array. 

quickSortUtil(arr, upper + 1, stop) // pivot + 1 is the lower for right sub array

}

fun swap(arr: IntArray, first: Int, second: Int) {

val temp = arr[first]

arr[first] = arr[second]

arr[second] = temp

}
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// Testing code. 

fun main() {

val array = intArrayOf(3, 4, 2, 1, 6, 5, 7, 8, 10, 9)

quickSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8 9 10

Analysis: 

1. The space required by Quick-Sort is very less, only O(n.log(n)) additional space is required. 

2. quickSort is not a stable sorting technique. It can reorder elements with identical keys. 

Complexity Analysis:

Worst-Case time complexity 

O(n^2)

Best-Case time complexity 

O(n.log(n))

Average-Case time complexity 

O(n.log(n))

Space Complexity

O(n.log(n))

Stable Sorting

No

Best Case Analysis: The best case occurs when the partition process picks the median element as pivot which divides the array into two equal parts. 

Recurrence relation for the best case: T(n) = 2T(n/2) +O(n)

The solution of the above recurrence is O(n.log(n)). 

Worst Case Analysis: The worst case occurs when the pivot is not able to divide the array and each iteration it will just reduce the size of the array to be sorted by 1. This happens when all the elements in the array have values either greater or smaller than the pivot value. 

The worst occurs in the following cases. 

1) Array is already sorted in increasing order. 

2) Array is already sorted in decreasing order. 

Recurrence relation for the best case: T(n) = T(n-1) +O(n)

The solution of the above recurrence is O(n^2). 

Quick Select 

The quick select algorithm is used to find the element in an array that will be at the kth position if the array would have been sorted. Quick select is very similar to Quick-Sort in place of sorting the entire array, at each step of the algorithm, we concentrate on the part where the kth element is located and ignore the other half of the array. 
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Example 4.8:

fun quickSelect(arr: IntArray, k: Int): Int {

quickSelectUtil(arr, 0, arr.size - 1, k - 1)

return arr[k - 1]

}

fun quickSelectUtil(arr: IntArray, start: Int, stop: Int, k: Int) {

if (stop <= start) return

val pivot = arr[start]

var lower = start 

var upper = stop

while (lower < upper) {

while (arr[lower] <= pivot && lower < upper) {

lower++

}

while (arr[upper] > pivot && lower <= upper) {

upper--

}

if (lower < upper) {

swap(arr, upper, lower)

}

}

swap(arr, upper, start) // upper is the pivot position

if (k < upper) quickSelectUtil(arr, start, upper-1, k) // pivot -1 is the upper for left sub array. 

if (k > upper) quickSelectUtil(arr, upper+1, stop, k) // pivot + 1 is the lower for right sub array. 

}

fun swap(arr: IntArray, first: Int, second: Int) {

val temp = arr[first]

arr[first] = arr[second]

arr[second] = temp

}

// Testing code. 

fun main() {

val array = intArrayOf(3, 4, 2, 1, 6, 5, 7, 8)

print("value at index 5 is : " + quickSelect(array, 5))

}

Output:

value at index 5 is : 5

Complexity Analysis:

Worst-Case time complexity 

O(n^2)

Best-Case time complexity 

O(log(n))

Average-Case time complexity 

O(log(n))

Space Complexity

O(n.log(n))
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Counting Sort

Counting sort is the simplest and most efficient type of sorting. Counting sort has a strict requirement of a predefined range of data.  For example, we want to sort the number of people in each age group. 

We know that the age of people can vary between 0 and 130. We can directly store counts in an array of size 130. If we know the range of input, then sorting can be done using counting sort in O(n+k). 

Where n is the number of elements and k is the possible range, in the above example it is 130. 

Let’s look at the diagram of counting-sort. 

Example 4.9:

fun countSort(arr: IntArray, lowerRange: Int, upperRange: Int) {

val size = arr.size

val range = upperRange - lowerRange

val count = IntArray(range)

var i = 0

while (i < size) {

count[arr[i] - lowerRange]++

i++

}



i = 0

var j = 0

while (i < range) {

while (count[i] > 0) {

arr[j++] = i + lowerRange

count[i]--

}

i++

}

}

// Testing code. 

fun main() {

val array = intArrayOf(23, 24, 22, 21, 26, 25, 27, 28, 21, 21)

countSort(array, 20, 30)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

21 21 21 22 23 24 25 26 27 28
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Analysis: 

1. To store counts, we made a count array. 

2. The elements of the count array are set to 0. 

3. The index associated with the input array is increased. 

4. Finally, the information stored in the count array is saved in the array. 

Complexity Analysis:

Data structure

Array

Worst-Case performance

O(n+k)

Average-Case performance

O(n+k)

Worst-Case Space Complexity

O(k)

k - Number of distinct elements 

n - Total number of elements in the array. 

Radix Sort

Unlike merge-sort or quick-sort etc., Radix sort is a non-comparative sorting algorithm. The lower bound for the Comparison based sorting algorithm (Merge Sort, Quick-Sort etc.) is O(n.log(n)). If the range of values that need to be sorted is fairly small then Counting sort can be used. 

Counting sort is a linear time sorting algorithm that sorts in O(n+k) time when elements are in the range from 1 to k. If the range is not small then Radix sort can be used. Radix Sort is used when there is a constant 'd' such that all  values are max d digit numbers. 

In Radix sort a list of integers are sorted based on digits of numbers. Sorting is performed digit by digit, sort starting from least significant digit to most significant digit. Radix sort uses counting sort as a subroutine to sort according to a single digit. 

Input, unsorted Array: 100, 49, 65, 91, 702, 29, 4, 55

Sorting by least significant digit (1s place): 100, 091, 702, 004, 065, 055, 049, 029 

Sorting by next digit (10s place): 100, 702, 004, 029, 049, 055, 065, 091 

Sorting by the most significant digit (100s place): 004, 029, 049, 055, 065, 091, 100, 702 

Diagram demonstrates various steps of Radix Sort. 
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Example 4.10:

fun radixSort(arr: IntArray) {

val n = arr.size

val m = getMax(arr, n)

// Counting sort for every digit. 

// The dividend passed is used to calculate current working digit. 

var div = 1

while (m / div > 0) {

countSort(arr, n, div)

div *= 10

}

}

fun getMax(arr: IntArray, n: Int): Int {

var max = arr[0]

for (i in 1 until n) if (max < arr[i]) max = arr[i]

return max

}

fun countSort(arr: IntArray, n: Int, dividend: Int) {

val temp: IntArray = arr.clone()

val count = IntArray(10)

// Store count of occurrences in count array. 

// (number / dividend) % 10 is used to find the working digit. 

for (i in 0 until n) count[temp[i] / dividend % 10]++

// Change count[i] so that count[i] contains 

// number of elements till index i in output. 

for (i in 1..9) count[i] += count[i - 1]

// Copy content to input arr. 

for (i in n - 1 downTo 0) {

val index = temp[i] / dividend % 10

arr[count[index] - 1] = temp[i]

count[index]--

}

}

// Testing code. 

fun main() {

val array = intArrayOf(100, 49, 65, 91, 702, 29, 4, 55)

radixSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

4 29 49 55 65 91 100 702

Complexity Analysis:

Let us suppose the total number of elements that need to be sorted is n, the largest value is k and the number is of base b. The total number of iterations will be the number of digits in the largest value which is logb(k). The numbers are sorted according to digits in each iteration using counting sort. Each iteration cost will be O(n+b). Total complexity of algorithm is O((n+b) * logb(k)). 
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Considering the number of digits is 64 for an integer and the base is 10. These two values become constant. Time complexity will be O((n + 10)*64) so ignoring constant time complexity will be O(n). 

Data structure

Array

Best-Case performance

O(n)

Worst-Case performance

O(n)

Average-Case performance

O(n)

Space Complexity

O(n)

n - Total number of elements in the array. 

Heap Sort

In Heap-Sort we will store data in Heap data structure which will always give data in sorted order. 

Heap-Sort we will study in the Heap chapter. 

Complexity Analysis:

Data structure

Array

Worst-Case performance

O(n.log(n))

Average-Case performance

O(n.log(n))

Worst-Case Space Complexity

O(1)

Tree Sorting

In Tree-Sorting data is stored in a Binary Search Tree data structure. An In-Order traversal of the Binary Search Tree produces data in increasing order. We will study the Binary Search Tree in Tree chapter. 

Complexity Analysis:

Worst-Case time complexity 

O(n^2)

Best-Case time complexity 

O(n.log(n))

Average-Case time complexity 

O(n.log(n))

Space Complexity

O(n)

Stable Sorting

Yes

Shell Sort

Shell sort is an improvement on insertion sort. Insertion sort is not efficient when elements of the unsorted array are widely placed, which means they are far from their sorted position (e.g. reverse sorted array).  In a widely placed array, the number of shifts are more. 
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Shell sort reduces the number of shifts by dividing the array into sub-arrays of intervals/gaps. Then performing insertion sort on the sub-array. The process is repeated by reducing the gap size by half till the gap size is zero. By doing this change, the number of comparisons increases but the number of shifts decreases. 

Example 4.11:

fun shellSort(arr: IntArray) {

val n = arr.size

// Gap starts with n/2 and half in each iteration. 

var gap = n / 2

while (gap > 0) {

// Do a gapped insertion sort. 

var i = gap

while (i < n) {

val curr = arr[i]

// Shift elements of already sorted list

// to find right position for curr value. 

var j: Int

j = i

while (j >= gap && greater(arr[j - gap], curr)) {

arr[j] = arr[j - gap]

j -= gap

}

// Put current value in its correct location

arr[j] = curr

i += 1

}

gap /= 2

}

}
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// Testing code. 

fun main() {

val array = intArrayOf(36, 32, 11, 6, 19, 31, 17, 3)

shellSort(array)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

3 6 11 17 19 31 32 36 

Time Complexity:

Data structure

Array

Best-Case performance

O(n.log(n))

Worst-Case performance

O(n^2)

Average-Case performance

O(n.log(n))

Space Complexity

O(1)

Bucket Sort

Bucket sort is mainly useful when input is uniformly distributed over a range. In Bucket Sort, the input array elements are divided into several groups called buckets. Each bucket is filled with a specific range of elements. The elements inside each bucket are sorted separately using any other sorting algorithm. Finally, the elements of the buckets are combined to get a final sorted array.  

Example 4.12:

// Allowed values from 0 to maxValue. 

fun bucketSort(arr: IntArray, maxValue: Int) {

val numBucket = 5

bucketSortUtil(arr, maxValue, numBucket)

}

fun bucketSortUtil(arr: IntArray, maxValue: Int, numBucket: Int) {

val length = arr.size

if (length == 0) return

61

Chapter 4: Sorting

Bucket Sort

val bucket: ArrayList<ArrayList<Int>> = ArrayList<ArrayList<Int>>(numBucket)

// Create empty buckets

for (i in 0 until numBucket) 

bucket.add(ArrayList<Int>())



val div: Int = Math.ceil(maxValue.toDouble() / numBucket).toInt()

// Add elements into the buckets

for (i in 0 until length) {

if (arr[i] < 0 || arr[i] > maxValue) {

println("Value out of range.")

return

}

var bucketIndex = arr[i] / div

// Maximum value will be assigned to last bucket. 

if (bucketIndex >= numBucket) 

bucketIndex = numBucket - 1

bucket.get(bucketIndex).add(arr[i])

}

// Sort the elements of each bucket. 

for (i in 0 until numBucket) {

Collections.sort<Int>(bucket.get(i))

}

// Populate output from the sorted subarray. 

var index = 0

var count: Int

for (i in 0 until numBucket) {

val temp: ArrayList<Int> = bucket.get(i)

count = temp.size

for (j in 0 until count) {

arr[index++] = temp.get(j)

}

}

}

// Testing code. 

fun main() {

val array = intArrayOf(1, 34, 7, 99, 5, 23, 45, 88, 77, 19, 91, 100) val maxValue = 100

bucketSort(array, maxValue)

for (i in array.indices) {

print(array[i].toString() + " ")

}

}

Output:

1 5 7 19 23 34 45 77 88 91 99 100

Generalised Bucket Sort

There are cases when the elements falling into a bucket are not unique but are in the same range. 

When we want to sort an index of a name, we can use the pointer bucket to store names. 
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The buckets are already sorted, and the elements inside each bucket can be kept sorted by using an Insertion-Sort algorithm. We are leaving this generalised bucket sort implementation to the reader of this book. A similar data structure will be defined in the coming chapter of Hash-Table using separate chaining. 

Stable Sorting

A sorting  algorithm  is stable if two elements with identical key values appear in the same order in sorted output as they do in unsorted input. Stable sorting algorithms guarantee that elements with identical keys will not be reordered. 

Comparisons of the various sorting algorithms. 

Below is the comparison of various sorting algorithms:

Sort

Average 

Best Time

Worst Time

Space

Stable

Time

Bubble Sort

O(n^2)

O(n^2)

O(n^2)

O(1)

Yes

Modified 

O(n^2)

O(n)

O(n^2)

O(1)

Yes

Bubble Sort

Selection Sort O(n^2)

O(n^2)

O(n^2)

O(1)

No

Insertion Sort O(n^2)

O(n)

O(n^2)

O(1)

Yes

Heap Sort

O(n.log(n))

O(n.log(n))

O(n.log(n))

O(1)

No

Merge Sort

O(n.log(n))

O(n.log(n))

O(n.log(n))

O(n)

Yes

Quick Sort

O(n.log(n))

O(n.log(n))

O(n^2)

O(n) Worst-Case

No

O(log(n))average case

Counting Sort O(n)

O(n)

O(n)

O(k)

Yes

Bucket Sort

O(n+k)

Yes, if the 

O(n+k)

O(n+k)

O(n^2)

underlying 

sort is stable. 
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Radix Sort

O(n)

O(n)

O(n)

O(n)

No

Shell Sort

O(n.log(n))

O(n.log(n))

O(n^2)

O(1)

No

Selection of Best Sorting Algorithm

No sorting algorithm is perfect. Each of them has its own pros and cons. Let us discuss them one by one:

Quick-Sort: This algorithm is used when a stable sort isn’t required, and average-case performance is more important than worst-case performance. We choose quick sort when the data is random. The Average-Case time complexity of Quick-Sort is O(n.log(n)) and the worst-case time complexity is O(n^2). Space Complexity of Quick-Sort is O(log(n)) auxiliary storage, which is stack space used in recursion. 

Merge-Sort: Merge-Sort is used when you need a stable sort and a time complexity of O(n.log(n)). 

Merge-Sort is slower than Quick-Sort because a lot of copy is involved in the merge step. There are two uses of merge-sort:

• First to merge two sorted linked lists

• Second merge-sort is used in external sorting. 

Heap-Sort: When you do not need a stable sort, and you care more about worst-case performance than average-case performance. It is guaranteed to be O(n.log(n)), and using O(1) auxiliary space, means you will not unpredictably run out of memory on very large inputs. 

Insertion-Sort: When we need a stable sort and input size is guaranteed to be small, such as the base case of a Quick-Sort or Merge-Sort. The worst-case time complexity is  O(n^2). It has a very small constant factor multiplied to calculate the actual time taken. Therefore, for smaller  input  sizes,  it performs better than Merge-Sort or Quick-Sort. It is also useful when the data is already sorted. In this case, its running time is O(n). 

Bubble-Sort: Where we know the data is nearly sorted. Say only two elements are out of place. Then in one pass, Bubble Sort will make the data sorted and in the second pass, it will see everything is sorted and then exit. Only takes 2 passes of the array. 

Selection-Sort: Best, Worst & Average Case running time all are O(n^2). It is only useful when you want to do something quickly. They can be used when you are just doing some prototyping. 

Counting-Sort: When you are sorting data within a limited range. 

Radix-Sort: When log(N) is significantly larger than K, where K is the number of radix digits. 

Bucket-Sort: When your input is more or less uniformly distributed. 
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Problems based on sorting

Partition 0 and 1

Problem: Given an array containing 0s and 1s. Write an algorithm to sort the array so that 0s come first, followed by 1s. Also, find the minimum number of swaps required to sort the array. 

First solution: Start from both ends, the left will store the start index and the right will store the end index. Traverse left forward till we have 0s value in the array. Then traverse right backwards till we have 1s in the end. Then swap the two and follow the same process till left is less than right. 

Example 4.13:

fun partition01(arr: IntArray, size: Int): Int {

var left = 0

var right = size - 1

var count = 0

while (left < right) {

while (arr[left] == 0) left += 1

while (arr[right] == 1) right -= 1

if (left < right) {

swap(arr, left, right)

count += 1

}

}

return count

}

// Testing code. 

fun main() {

val arr = intArrayOf(0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1)

partition01(arr, arr.size)

printArray(arr, arr.size)

}

Output:

[ 0 0 0 0 0 0 1 1 1 1 1 1 ]

Time complexity looks like a quadratic (loop inside a loop) but it is linear or O(n). As at each iteration of the inner loop, either the left is increasing or the right is decreasing. Once left is equal or greater than right, the loops stop.  Therefore, in total, the inner loops combined run for N number of times. 

Partition 0, 1 and 2

Problem: Given an array containing 0s, 1s and 2s. Write an algorithm to sort the array so that 0s come first, followed by 1s and then 2s in the end. 

First solution: You can use a counter for 0s, 1s and 2s. Then replace the values in the array. This will take two passes. What if we want to do this in a single pass? 

Example 4.14:

fun partition012_(arr: IntArray, size: Int) {

var zero = 0

var one = 0
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var two = 0

for (i in 0 until size) {

if (arr[i] == 0) {

zero += 1

} else if (arr[i] == 1) {

one += 1

} else {

two += 1

}

}

var index = 0

while (zero > 0) {

arr[index++] = 0

zero -= 1

}

while (one > 0) {

arr[index++] = 1

one -= 1

}

while (two > 0) {

arr[index++] = 2

two -= 1

}

}

// Testing code. 

fun main() {

val arr2 = intArrayOf(0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 0, 1)

partition012(arr2, arr2.size)

printArray(arr2, arr2.size)

}

Output:

[ 0 0 0 0 0 1 1 1 1 1 2 2 ]

Second solution:  The basic approach is to use three indices. First left, second right and third to traverse the array.  Index left starts from 0, Index right starts from N-1. We traverse the array whenever we find a 0 we swap it with the value at start and increment start. And whenever we find a 2 we swap this value with right and decrement right. When traversal is complete, and we reach the right, then the array is sorted. 

Example 4.15:

fun partition012(arr: IntArray, size: Int) {

var left = 0

var right = size - 1

var i = 0

while (i <= right) {

if (arr[i] == 0) {

swap(arr, i, left)

i += 1

left += 1

} else if (arr[i] == 2) {

swap(arr, i, right)
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right -= 1

} else {

i += 1

}

}

}

Time complexity is linear or O(n). 

Range Partition

Problem:  Given an array of integers and a range. Write an algorithm to partition the array so that values smaller than the range come to the left, then values under the range follow with values greater than the range. 

First solution: The basic approach is to use three indices. First left, second right and third to traverse the array.  Index left starts from 0, Index right starts from N-1. We traverse the array whenever we find a value lower than range, we swap it with the value at start and increment start. And whenever we find a value greater than range, we swap this value with right and decrement right. When traversal is complete, we have the array partitioned about range. 

Example 4.16:

fun rangePartition(arr: IntArray, size: Int, lower: Int, higher: Int) {

var start = 0

var end = size - 1

var i = 0

while (i <= end) {

if (arr[i] < lower) {

swap(arr, i, start)

i += 1

start += 1

} else if (arr[i] > higher) {

swap(arr, i, end)

end -= 1

} else {

i += 1

}

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4, 18, 5, 17, 6, 16, 7, 15, 8, 14, 9, 13, 10, 12, 11)

rangePartition(arr, arr.size, 9, 12)

printArray(arr, arr.size)

}

Output:

[ 1 2 3 4 5 6 7 8 10 12 9 11 14 13 15 16 17 18 ]

Time complexity is linear or O(n). 
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Minimum swaps

Problem: Find the minimum number of swaps required to bring all elements less than the given value together at the start of the array. 

First solution: Use a quick sort technique by taking two indexes, one from the start and another from the end and try to use the given value as a key. Count the number of swaps, that is the answer. 

Example 4.17:

fun minSwaps(arr: IntArray, size: Int, `val`: Int): Int {

var swapCount = 0

var first = 0

var second = size - 1

var temp: Int

while (first < second) {

if (arr[first] <= `val`) first += 1 

        else if (arr[second] > `val`) second -= 1 

        else {

temp = arr[first]

arr[first] = arr[second]

arr[second] = temp

swapCount += 1

}

}

return swapCount

}

//Testing code

fun main() {

val array = intArrayOf(1, 2, 3, 4, 18, 5, 17, 6, 16, 7, 15, 8, 14, 9, 13, 10, 12, 11)

println("minSwaps " + minSwaps(array, array.size, 10))

}

Output:

minSwaps:: 3

Time complexity is linear or O(n). 

Absolute Sort 

Problem: Sort array according to the absolute difference from the given value. 

Solution: Any sorting algorithms can be used to solve this problem. We are using BubbleSort. The only change is comparing functions more. Which will take another field ref. 

Example 4.18:

fun absGreater(value1: Int, value2: Int, ref: Int): Boolean {

return java.lang.Math.abs(value1 - ref) > java.lang.Math.abs(value2 - ref)

}

fun absBubbleSort(arr: IntArray, size: Int, ref: Int) {

for (i in 0 until size - 1) {

for (j in 0 until size - i - 1) {
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if (absGreater(arr[j], arr[j + 1], ref)) swap(arr, j, j + 1)

}

}

}

// Testing code. 

fun main() {

val array = intArrayOf(9, 1, 8, 2, 7, 3, 6, 4, 5)

val ref = 5

absBubbleSort(array, array.size, ref)

printArray(array, array.size)

}

Output:

[ 5 6 4 7 3 8 2 9 1 ]

Time complexity is linear or O(n). 

Equation Sort

Problem: Sort array according to the equation A.X2. 

Solution:  Any   sorting   algorithms   can   be   used   to   solve   this   problem   also.   The   only   change   is comparing functions more. Which will take another field A. 

Example 4.19:

fun eqGreater(value1: Int, value2: Int, A: Int): Boolean {

return A * value1 * value1 > A * value2 * value2

}

Separate even and odd numbers in List

Problem: Given an array of even and odd numbers, write a program to separate even numbers from odd numbers. 

First solution: allocate a separate list, then scan through the given list, and fill even numbers from the start and odd numbers from the end. 

Example 4.20:

fun separateEvenAndOdd(data: IntArray, size: Int) {

var left = 0

var right = size - 1

val aux = IntArray(size)

for (i in 0 until size) {

if (data[i] % 2 == 0) {

aux[left] = data[i]

left++

} else if (data[i] % 2 == 1) {

aux[right] = data[i]

right--

}

}

for (i in 0 until size) data[i] = aux[i]

}
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// Testing code. 

fun main() {

val array = intArrayOf(9, 1, 8, 2, 7, 3, 6, 4, 5)

separateEvenAndOdd(array, array.size)

printArray(array, array.size)

}

Output:

[ 8 2 6 4 5 3 7 1 9 ]

Second solution: The algorithm is as follows. 

1. Initialise the two variables, left and right. Variable left=0 and right= size-1. 

2. Keep increasing the left index until the element at that index is even. 

3. Keep decreasing the right index until the element at that index is odd. 

4. Swap the number at the left and right index. 

5. Repeat steps 2 to 4 until the left is less than the right. 

Example 4.21:

fun separateEvenAndOdd2(data: IntArray, size: Int) {

var left = 0

var right = size - 1

while (left < right) {

if (data[left] % 2 == 0) left++ 

        else if (data[right] % 2 == 1) right-- 

        else {

swap(data, left, right)

left++

right--

}

}

}

Time complexity is linear or O(n). 


Array Reduction

Problem:  Given an array of positive elements. You need to perform a reduction operation. In each reduction operation, the smallest positive element value is picked and all the elements are subtracted by that value. You need to print the number of elements left after each reduction process. 

Input: [5, 1, 1, 1, 2, 3, 5]

Output: 4

Solution: Sort the input array. The total number of reductions is equal to the number of distinct elements. Every index of the input array on which the value of the element is increasing will give the number of elements after each reduction operation, which is (size - index) value. 

Example 4.22:

fun arrayReduction(arr: IntArray, size: Int) {

Arrays.sort(arr)

var count = 1

var reduction = arr[0]

for (i in 0 until size) {

if (arr[i] - reduction > 0) {
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reduction = arr[i]

count += 1

}

}

println("Total number of reductions: $count")

}

// Testing code. 

fun main() {

val arr = intArrayOf(5, 1, 1, 1, 2, 3, 5)

arrayReduction(arr, arr.size)

}

Output:

Total number of reductions: 4

Time complexity: O(n.log(n)). O(n.log(n)) required for sorting. 

Merge Array

Problem: Given two sorted arrays. Sort the elements of these arrays so that the first half of sorted elements will lie in the first array and the second half lies in the second array. Extra space allowed is O(1). 

Solution: The first array will contain a smaller part of the sorted output. We traverse the first array. 

Always compare the value of the first array with the first element of the second array. If the first array value is smaller than the first element of the second array, we iterate further. If the first array value is greater than the first element of the second array. Then copy the value of the first element of the second array into the first array. And insert the value of the first array into the second array in sorted order. The second array is always kept sorted, so we need to compare only its first element. 

Time complexity is O(M*N) where M is the length of the first array and N is the length of the second array. 

Example 4.23:

fun merge(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int) {

var index = 0

var temp: Int

while (index < size1) {

if (arr1[index] <= arr2[0]) {

index += 1

} else {

// always first element of arr2 is compared. 

temp = arr1[index]

arr1[index] = arr2[0]

arr2[0] = temp

index += 1

// After swap arr2 may be unsorted. 

// Insertion of the element in proper sorted position. 

for (i in 0 until size2 - 1) {

if (arr2[i] < arr2[i + 1]) break

temp = arr2[i]

arr2[i] = arr2[i + 1]

arr2[i + 1] = temp

}
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}

}

}

// Testing code. 

fun main() {

val arr1 = intArrayOf(1, 5, 9, 10, 15, 20)

val arr2 = intArrayOf(2, 3, 8, 13)

merge(arr1, arr1.size, arr2, arr2.size)

printArray(arr1, arr1.size)

printArray(arr2, arr2.size)

}

Output:

[ 1 2 3 5 8 9 ]

[ 10 13 15 20 ]

Check Reverse

Problem: Given an array of integers, find if reversing a sub-array makes the array sorted. 

Solution: In this algorithm start and stop are the boundaries of a reversed subarray whose reversal makes the whole array sorted. Find the starting index from which the sub-array is reversed. Then check if the sub-array when reversed will fit properly in the array. The subarray end has a value greater than the value before the sub-array. Subarray start has a value less than the value of the element after sub-array. Check if the rest of the array after the sub-array is sorted. 

Example 4.24:

fun checkReverse(arr: IntArray, size: Int): Boolean {

var start = -1

var stop = -1

for (i in 0 until size - 1) {

if (arr[i] > arr[i + 1]) {

start = i

break

}

}

if (start == -1) return true

for (i in start until size - 1) {

if (arr[i] < arr[i + 1]) {

stop = i

break

}

}

if (stop == -1) return true

// increasing property

// after reversal the sub array should fit in the array. 

if (arr[start - 1] > arr[stop] || arr[stop + 1] < arr[start]) return false for (i in stop + 1 until size - 1) {

if (arr[i] > arr[i + 1]) {

return false

}

}
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return true

}

// Testing code. 

fun main() {

val arr1 = intArrayOf(1, 2, 6, 5, 4, 7)

println(checkReverse(arr1, arr1.size))

}

Output:

true

Time complexity is linear or O(n). 

Union Intersection Sorted 

Problem: Given two unsorted arrays, find the union and intersection of these two arrays. 

Solution: Sort both the arrays. Then traverse both the array, when we have common elements, we add it to intersection list and union list, when we have uncommon elements then we add it only to the union list. 

Example 4.25:

fun unionIntersectionSorted(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int)

{    var first = 0

var second = 0

val unionArr = IntArray(size1 + size2)

val interArr = IntArray(Math.min(size1, size2))

var uIndex = 0

var iIndex = 0

while (first < size1 && second < size2) {

if (arr1[first] == arr2[second]) {

unionArr[uIndex++] = arr1[first]

interArr[iIndex++] = arr1[first]

first += 1

second += 1

} else if (arr1[first] < arr2[second]) {

unionArr[uIndex++] = arr1[first]

first += 1

} else {

unionArr[uIndex++] = arr2[second]

second += 1

}

}

while (first < size1) {

unionArr[uIndex++] = arr1[first]

first += 1

}

while (second < size2) {

unionArr[uIndex++] = arr2[second]

second += 1

}

printArray(unionArr, uIndex)

printArray(interArr, iIndex)

}
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fun unionIntersectionUnsorted(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int) {

Arrays.sort(arr1)

Arrays.sort(arr2)

unionIntersectionSorted(arr1, size1, arr2, size2)

}

// Testing code. 

fun main() {

val arr1 = intArrayOf(1, 11, 2, 3, 14, 5, 6, 8, 9)

val arr2 = intArrayOf(2, 4, 5, 12, 7, 8, 13, 10)

unionIntersectionUnsorted(arr1, arr1.size, arr2, arr2.size)

}

Output:

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ]

[ 2 5 8 ]

Time complexity is O(n.log(n)). O(n.log(n)) required for sorting. 

Rotating an array by K positions. 

Problem: Given an Array, you need to rotate its elements K number of times. For example, an Array

[10,20,30,40,50,60] rotate by 2 positions to [30,40,50,60,10,20]

Example 4.26:

fun rotateArray(a:IntArray, n:Int, k:Int) {

reverseArray(a, 0, k - 1)

reverseArray(a, k, n - 1)

reverseArray(a, 0, n - 1)

}

fun reverseArray(a:IntArray, start:Int, end:Int) {

var i = start

var j = end

while (i < j) {

var temp = a[i]

a[i] = a[j]

a[j] = temp

i++

j--

}

}

// Testing code. 

fun main() {

var arr = intArrayOf(1, 2, 3, 4, 5, 6)

rotateArray(arr, arr.size, 2)

printArray(arr, arr.size)

}

Output:

[ 3 4 5 6 1 2 ]
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Analysis:

1. The rotating list is done in two parts. In the first part, we first reverse elements of the list first half and then the second half. 

1,2,3,4,5,6,7,8,9,10  =>  5,6,7,8,9,10,1,2,3,4

1,2,3,4,5,6,7,8,9,10  =>  4,3,2,1,10,9,8,7,6,5  =>  5,6,7,8,9,10,1,2,3,4

2. Then we reverse the whole list there by completing the whole rotation. 

3. First reversal of the two parts of list is done in O(n) time and the final list reversal is also done in O(n) so the total time complexity of this algorithms is O(n)

Array wave form

Problem: Given an array, arrange its elements in wave form such that odd elements are lesser than its neighbouring even elements. 

First solution: Compare even index values with their neighbour odd index values and swap if the odd index is not smaller than the even index. By doing this we will create local minima at various odd indexes at positions 1, 3, 5 etc. 

Example 4.27:

fun WaveArray2(arr:IntArray) {

var size = arr.size

var i = 1

while (i < size) {

if ((i - 1) >= 0 && arr[i] > arr[i - 1]) {

swap(arr, i, i - 1)

}

if ((i + 1) < size && arr[i] > arr[i + 1]) {

swap(arr, i, i + 1)

}

i += 2

}

}

// Testing code. 

fun main() {

var arr = intArrayOf(8, 1, 2, 3, 4, 5, 6, 4, 2)

WaveArray(arr)

printArray(arr, arr.size)

}

Output:

[ 8 1 3 2 5 4 6 2 4 ]

Time Complexity: O(n)

Second solution: Sort the array, then swap ith and i+1th index value, so the array will form a wave. 

Since the array is sorted in increasing order. Swapping indexes (0&1), (2&3), (4&5) etc. will make local minima at 1, 3, 5 etc. 

Example 4.28:

fun WaveArray(arr:IntArray) {

var size = arr.size

Arrays.sort(arr)

75

Chapter 4: Sorting

Problems based on sorting

var i = 0

while (i < size - 1) {

swap(arr, i, i + 1)

i += 2

}

}

Time Complexity: O(n)

Index Array

Problem: Given an array of size N, containing elements from 0 to N-1. All values from 0 to N-1 are present in the array and if they are not there then -1 is there to take its place. Arrange values of the array so that value i is stored at arr[i]. 

Input: [8, -1, 6, 1, 9, 3, 2, 7, 4, -1]

Output: [-1, 1, 2, 3, 4, -1, 6, 7, 8, 9]

First solution: For each index value, pick the element and then put it into its proper destination index position. If some other value is stored in the destination index, then those values are also kept at the proper position. When all the indexes are processed, then we will get an index array. 

Example 4.29:

fun indexArray(arr:IntArray, size:Int) {

for (i in 0 until size) {

var curr = i

var value = -1

/* swaps to move elements in proper position. */

while (arr[curr] != -1 && arr[curr] != curr) {

var temp = arr[curr]

arr[curr] = value

curr = temp

value = curr

}

/* check if some swaps happened.*/

if (value != -1) {

arr[curr] = value

}

}

}

// Testing code. 

fun main() {

var arr = intArrayOf(8, -1, 6, 1, 9, 3, 2, 7, 4, -1)

var size = arr.size

indexArray2(arr, size)

printArray(arr, size)

}

Output:

[ -1 1 2 3 4 -1 6 7 8 9 ]

Time Complexity: O(n), it looks like quadratic time complexity, but the inner loop traverses elements only once. Once inner loop elements are processed, then the elements at that position will be either that index value or it will contain -1.  
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Second solution: For each index, we will pick the value at an index. If the value is not at its proper position, then we replace it with the element which is at its proper position. When we repeat this for all the indexes, we get an index array. 

Example 4.30:

fun indexArray2(arr:IntArray, size:Int) {

var temp:Int

for (i in 0 until size) {

while (arr[i] != -1 && arr[i] != i) {

/* swap arr[i] and arr[arr[i]] */

temp = arr[i]

arr[i] = arr[temp]

arr[temp] = temp

}

}

}

Time Complexity:  O(n), it looks like quadratic time  complexity,  but the inner loop swaps elements once no matter how many times the outer loop runs. Once inner loop elements are processed, then the elements at that position will be either that index value or it will contain -1. 

Sort 1toN 

Problem: Given an array of length N. It contains unique elements from 1 to N. Sort the elements of the array. 

First solution: For each index value, pick the element stored at that index. If the value stored in the index is in its proper position, then process for another index. If the value stored at the index is not at its proper  position,  then put it into its proper position. If some other element is in its destination position, then pick it and repeat the process. 

Example 4.31:

fun sort1toN(arr:IntArray, size:Int) {

var curr:Int

var value:Int

var next:Int

for (i in 0 until size) {

curr = i

value = -1

/* swaps to move elements in proper position. */

while (curr >= 0 && curr < size && arr[curr] != curr + 1) {

next = arr[curr]

arr[curr] = value

value = next

curr = next - 1

}

}

}

// Testing code. 

fun main() {

var arr = intArrayOf(8, 5, 6, 1, 9, 3, 2, 7, 4, 10)

var size = arr.size

sort1toN2(arr, size)
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printArray(arr, size)

}

Output:

[ 1 2 3 4 5 6 7 8 9 10 ]

Time Complexity: O(n), it looks like quadratic time complexity, but the inner loop traverses elements only one. Once inner loop elements are processed, then the elements at that position will be either that index value or it will contain -1.  

Second solution: For each index, we will pick the value at that index and swap it with the element which is stored at its position of the index value. 

Example 4.32: Swapping the elements 

fun sort1toN2(arr:IntArray, size:Int) {

var temp:Int

for (i in 0 until size) {

while (arr[i] != i + 1 && arr[i] > 1) {

temp = arr[i]

arr[i] = arr[temp - 1]

arr[temp - 1] = temp

}

}

}

Time Complexity:  O(n), it looks like quadratic time  complexity,  but the inner loop swaps elements once no matter how many times the outer loop runs. Once inner loop elements are processed, then the elements at that position will be either that index value or it will contain -1. 

Maximum Minimum Array 

Problem: Given a sorted array, rearrange it in maximum-minimum form. 

Input: [1, 2, 3, 4, 5, 6, 7], Output: [7, 1, 6, 2, 5, 3, 4]

First solution: Using an auxiliary array, create a copy of the input array. The auxiliary array is also sorted in increasing order. Traverse from start and end of the auxiliary array, and put these values in the input array in alternate order. 

Example 4.33:

fun MaxMinArr(arr:IntArray, size:Int) {

var aux = Arrays.copyOf(arr, size)

var start = 0

var stop = size - 1

for (i in 0 until size) {

if (i % 2 == 0) {

arr[i] = aux[stop]

stop -= 1

} else {

arr[i] = aux[start]

start += 1

}

}

}
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// Testing code. 

fun main() {

var arr = intArrayOf(1, 2, 3, 4, 5, 6, 7)

var size = arr.size

MaxMinArr(arr, size)

printArray(arr, size)

}

Output:

[ 7 1 6 2 5 3 4 ]

Time Complexity: O(n), Space Complexity: O(n). 

Second solution:  Without using any auxiliary array. Reverse the array from index 0 to N, by this largest value will come at the front. Then reverse the array from index 1 to N. Then reverse the array from index 2 to N and so on. Use reverse array operation on the array and change the array as follows: 1, 2, 3, 4, 5, 6, 7

7, 6, 5, 4, 3, 2, 1

7, 1, 2, 3, 4, 5, 6

7, 1, 6, 5, 4, 3, 2

7, 1, 6, 2, 3, 4, 5

7, 1, 6, 2, 5, 4, 3

7, 1, 6, 2, 5, 3, 4

Example 4.34:

fun ReverseArr(arr:IntArray, startInput: Int, stopInput:Int) {

var start = startInput

var stop = stopInput

while (start < stop) {

swap(arr, start, stop)

start += 1

stop -= 1

}

}

fun MaxMinArr2(arr:IntArray, size:Int) {

for (i in 0 until (size - 1)) {

ReverseArr(arr, i, size - 1)

}

}

Time Complexity: O(n^2), Space Complexity: O(1). 

Max Circular Sum

Problem: Given an array, you need to find the maximum sum of arr[i]* i for all elements such that you can rotate the array. 

Solution: We will find sum currValue = Σarr[i]*i & sumAll = Σarr[i] for all the elements. Then if we want to make a rotation by making the last element as first. So the new value of the currValue can be obtained by adding sumAll to it and then subtracting the last value arr[n-1]*(n-1) from it. The maximum currValue is stored as the final maxValue. 
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Example 4.35:

fun maxCircularSum(arr:IntArray, size:Int):Int {

var sumAll = 0

var currvar = 0

var maxvar:Int

for (i in 0 until size) {

sumAll += arr[i]

currvar += (i * arr[i])

}

maxvar = currvar

for (i in 1 until size) {

currvar = (currvar + sumAll) - (size * arr[size - i])

if (currvar > maxvar) {

maxvar = currvar

}

}

return maxvar

}

// Testing code. 

fun main() {

var arr = intArrayOf(10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

println("MaxCirculrSm: " + maxCircularSum(arr, arr.size))

}

Output:

MaxCirculrSum: 290

Time Complexity: O(n), Space Complexity: O(1). 

Exercise

1. In a given text file, print the words with their frequency. Now print the kth word in terms of frequency. 

Hint:

➢ The first solution maybe you can use the sorting and return the kth element. 

➢ The second solution: You can use the kth element quick select algorithm. 

➢ Third solution: You can use Hashtable or Trie to keep track of the frequency. Use Heap to get the Kth element. 

2. In given K input streams of numbers in sorted order. You need to make a single output stream, which contains all the elements of the K streams in sorted order. The input streams support ReadNumber() operation and output streams support WriteNumber() operation. 

Hint:

➢ Read the first number from all the K input streams and add them to a Priority Queue. 

(Nodes should keep track of the input stream; data added to the PQ is value & stream id.)

➢ Dequeue one element at a time from PQ and put that element to the output stream, Read the input stream number and from the same input stream add another element to PQ. 

➢ If the stream is empty, just continue

➢ Repeat until PQ is empty. 
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3. In given K sorted Lists of fixed length M. Also, given a final output list of length M*K. Give an efficient algorithm to merge all the arrays into the final list, without using any extra space. 

Hint: You can use the end of the final list to make PQ. 

4. How will you sort 1 PB numbers? 1 PB = 1000 TB. 

5. What will be the complexity of the above solution? 

6. Any other improvement can be done on the question 3 solution if the number of CPU cores is eight. 

7. In a given integer list that supports three functions findMin(), findMax(), findMedian(). Sort the array. 

8. In a given pile of patient files of High, mid and low priority. Sort these files such that higher priority comes first, then mid and last low priority. 

Hint:  Use Bucket sort. 

9. Write pros and cons of Heap-Sort, Merge-Sort and Quick-Sort. 

10. In a given rotated-sorted list of N integers. (The array was sorted, then it was rotated some arbitrary number of times.) If all the elements in the array were unique, find the index of some value. 

Hint:  Modified binary search 

11. In problem 9, what if there are repetitions allowed, and you need to find the index of the first occurrence of the element in the rotated-sorted list. 

12. Merge two sorted lists into a single sorted list. 

Hint:  Use the merge method of Merge-Sort. 

13. Given an array containing 0’s and 1’s, sort the array such that all the 0’s come before 1’s. 

14. Given an array of English characters, sort the array in linear time. 

15. Write a method to sort an array of strings so that all the anagrams are next to each other. 

Hint:-

➢ Loop through the array. For each word, sort the characters and add them to the hashtable with keys as sorted words and values as the original words. At the end of the loop, you will get all anagrams as the value to a key (which is sorted by its constituent chars). 

➢ Iterate over the hashmap, print all values of a key together, and then move to the next key. 

➢ Space Complexity: O(n), Time Complexity: O(n)

16. Given an array, sort elements in the order of their frequency. 

Hint: First, the frequency of various elements of the array is calculated by adding it to a HashTable. Then sorting of the new data structures with value and key is done. The sorting function first gives preference to frequency, then value. 
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Introduction

Searching is the process of finding an item in a collection of items. The item may be a keyword in a file, a record in a database, a node in a tree or a value in an array etc. 

Why Searching? 

Imagine you are in a library with millions of books. You want to get a specific book with a specific title. 

How will you find it? You will search the book in the section of the library, which contains the books whose name starts with the initial letter of the desired book. Then you continue matching with a whole book title until you find your book. (By doing this small heuristic method, you have reduced the search space by a factor of 26, considering we have an equal number of books whose titles begin with a particular char.)

Similarly, computers store lots of information and to retrieve this information efficiently, we need very efficient searching algorithms. To make searching efficient, we keep the data in some proper order. If you keep the data organised in proper order, it is easy to search for the required value or key. For example, keeping the data in sorted order is one of the ways to organise data. 

Different Searching Algorithms

1. Linear Search – Unsorted Input

2. Linear Search – Sorted Input

3. Binary Search (Sorted Input)

4. String Search: Tries, Suffix Trees, Ternary Search. 

5. Hashing and Symbol Tables

Linear Search  or Sequential Search – Unsorted Input

When elements of an array are not ordered or sorted, and we want to search for a value, we need to scan the full list until we find the desired value. This kind of algorithm is known as an unordered linear search. The major problem with this algorithm is less performance or high Time Complexity in the Worst-Case. 

Example 5.1:

fun linearSearchUnsorted(arr: IntArray, size: Int, value: Int): Boolean {

for (i in 0 until size) {

if (value == arr[i]) {

return true

}

}

return false

}
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// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 7, 9, 25, 30)

println(linearSearchUnsorted(first, 7, 8))

println(linearSearchUnsorted(first, 7, 25))

}

Output:

false

true 

Analysis:

1. Since we have no idea about the data stored in the array, or if the data is not sorted, then we must sequentially search the array one by one. 

2. If we find the value which we are looking for, we return true. 

3. Else, we return the index false in the end, as we did not find the value we are looking for. 

4. The first element may be the one we are looking for, so the Best-Case time complexity is O(1) 5. The element which we are searching for maybe the last one, so time complexity will be O(n). In the average case, the middle element will be the one which we are searching for, so also the time complexity will be O(n/2) ignoring the constant term. Average-Case time complexity will be O(n)

Time Complexity: O(n). As we need to traverse the complete list in the Worst-Case. Worst-Case is when your desired element is at the last position of the array. Here, ‘n’ is the size of the array. 

Space Complexity: O(1). No extra memory is used to allocate the array. 

Linear Search – Sorted 

If elements of the array are sorted either in increasing order or in decreasing order, searching for the desired element will be much more efficient than an unordered linear search. In many cases, we do not need to traverse the complete list. If the array is sorted in increasing order. We can traverse it from the beginning and when we encounter a value greater than the key, we stop searching further and declare that   the   key   is   not   present   in   the   array.   This   is   how   this   algorithm   saves   time   and   improves performance. 

Example 5.2:

fun linearSearchSorted(arr: IntArray, size: Int, value: Int): Boolean {

for (i in 0 until size) {

if (value == arr[i]) {

return true

} else if (value < arr[i]) {

return false

}

}

return false

}
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Time Complexity: O(n). As we need to traverse the complete list in the Worst-Case. Worst-Case is when your desired element is at the last position of the sorted list. However, in the average case, this algorithm is more efficient even though the growth rate is the same as unsorted. 

Space Complexity: O(1). No extra memory is used to allocate the array. 

Binary Search

How do we search for a word in a dictionary? In general, we go to some approximate page (mostly middle) and start searching from that word. If we see the word that we are searching is on the same page, then we are done with the search. Else, if we see that alphabetically the word we are searching for is in the first half, then we reject the second half and vice versa. We apply the same procedure repeatedly until we find the desired keyword. The Binary Search algorithm also works in the same way. 

The binary search algorithm is used to find a specific value in the sorted array. At each step, we look at the middle index. If the item at the middle index is the same as the desired one, it is returned. 

Otherwise, the middle value is larger or smaller than the value we are looking for. If our desired value is smaller, we confine our search space to the left half of the array and ignore the right half and vice versa. We will be pruning half of the search space at each stage, making this algorithm more efficient than the linear search algorithm. 

Note: Binary search requires the array to be sorted, otherwise binary search cannot be applied. 

Example 5.3: Binary Search Algorithm - Iterative Way

fun binarySearch(arr: IntArray, size: Int, value: Int): Boolean {

var low = 0

var high = size - 1

var mid: Int

while (low <= high) {

mid = (low + high) / 2

if (arr[mid] == value) {

return true

} else if (arr[mid] < value) {

low = mid + 1

} else {

high = mid - 1

}

}

return false

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 7, 9, 25, 30)

println(binarySearch(first, 7, 8))

println(binarySearch(first, 7, 25))

}
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Output:

false

true 

Analysis:

1. Since we have data sorted in increasing order, we can search efficiently by applying binary search. At each step, we reduce our search space by half. 

2. At each step, we compare the middle value with the value we are searching for. If the mid-value is equal to the value we are searching for, then we return the middle index. 

3. If the value is smaller than the middle value, we search the left half of the array. 

4. If the value is greater than the middle value, then we search the right half of the array. 

5. If we find the value we are looking for then true is returned, otherwise false is returned. 

6. Best-Case time complexity will be O(1). 

7. The Worst-Case and Average-Case Time complexity of this algorithm is O(log(n)). 

Time Complexity: 

Recurrence Relation: T(n) = T(n/2) + 1 for n > 1

T(n)= 1 if n <= 1

T(n/2) = T(n/22) + 1        // Substitution

T(n/22) = T(n/23) + 1        // Substitution

T(n) => T(n/2) + 1 =>  (T(n/22) + 1 ) + 1 = T(n/22) + 2 => (T(n/23) + 1) + 2  =>  T(n/23) + 3

Similarly  T(n) = T(n/2^k) + k

for base case n/2^k   = 1

2^k = n  

k = log(n)    // Taking log both sides to find k total number of steps. 

T(n) = T(1) + k = 1 + log(n)

Time complexity : O(log(n))

Space Complexity: O(1)

Binary Search implementation using recursion

Problem: Given an array of integers in increasing order, you need to find if some value is present in the array using recursion. 

Example 5.4: Binary search implementation using recursion. 

fun binarySearchRec(arr: IntArray, size: Int, value: Int): Boolean {

val low = 0

val high = size - 1

return binarySearchRecUtil(arr, low, high, value)

}
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fun binarySearchRecUtil(arr: IntArray, low: Int, high: Int, value: Int): Boolean {

if (low > high) {

return false

}

val mid = (low + high) / 2

return if (arr[mid] == value) {

true

} else if (arr[mid] < value) {

binarySearchRecUtil(arr, mid + 1, high, value)

} else {

binarySearchRecUtil(arr, low, mid - 1, value)

}

}

Analysis: Similar iterative solution we have already seen. Now let us look into the recursive solution of the same problem. In this solution, we are dividing the search space in half and discarding the rest. 

This solution is very efficient as at each step we are rejecting half the search space/list. 

Time Complexity: O(log(n)). Space Complexity: O(log(n)) for system stack in recursion. 

Fibonacci Search

Given a sorted array arr[], we need to find if some element x is present in the array or not. 

Fibonacci   Search  is   a   comparison-based   algorithm   that   uses   Fibonacci   numbers   to   search   an element in a sorted array. Fibonacci Numbers are recursively defined as F(n) = F(n-1) + F(n-2), F(0) = 0, and F(1) = 1. 

Fibonacci Search is just like Binary Search but in place of dividing the interval using division by 2. 

Fibonacci   Search   uses   addition   and   subtraction.   The   division   operation   may   be   costly   on   some computers. 

Algorithm: Let us suppose we are searching x in a sorted array arr[]. 

1. We first find the smallest Fibonacci number which is greater than the size of the array arr[]. 

2. Let us call that fibonacci number as fibN and the fibonacci numbers before it as fibNMn2 (fibN

minus 2) and fibNMn1(fibN minus 1). Such that fib0+fib1 = fib2. 

3. We use the fibNMn2 index for the comparison. 

4. If the value in arr[] at index fibNMn2 is the same as x, then we will return true. 

5. If the value in arr[] at index fibNMn2 is greater than x, then we search in the left part. This step is performed by moving the three Fibonacci variables two Fibonacci down. By doing this, the search space is reduced to approximately one-third of the previous search space. 

6. Else if the value in arr[] at index fibNMn2 is less than x, then we search in the right part. This step is performed by moving the three Fibonacci variables one Fibonacci down. The lower index of  the search is moved to fibNMn2. By doing this,  the search space is reduced to approximately two-third of the previous search space. 

7. There might be a single element remaining for comparison. Check if   arr[low + fibNMn2] is equal to x. 
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Example 5.5:

fun fibonacciSearch(arr: IntArray, size: Int, value: Int): Boolean {

/* Initialize fibonacci numbers */

var fibNMn2 = 0

var fibNMn1 = 1

var fibN = fibNMn2 + fibNMn1

while (fibN < size) {

fibNMn2 = fibNMn1

fibNMn1 = fibN

fibN = fibNMn2 + fibNMn1

}

var low = 0

while (fibN > 1) { // fibonacci series start with 0, 1, 1, 2

val i: Int = Math.min(low + fibNMn2, size - 1)

if (arr[i] == value) return true else if (arr[i] < value) {

fibN = fibNMn1

fibNMn1 = fibNMn2

fibNMn2 = fibN - fibNMn1

low = i

} else { // for feb2 <= 1, these will be invalid. 

fibN = fibNMn2

fibNMn1 = fibNMn1 - fibNMn2

fibNMn2 = fibN - fibNMn1

}

}

return if (arr[low + fibNMn2] == value) true else false

}

Time complexity: O(log(n)), either 1/3 or 2/3 of the search space is ignored in each iteration. 

How is sorting useful in Selection Algorithms? 

Selection problems can be converted into sorting problems. Once the array is sorted, it is easy to find the minimum / maximum (or desired element) from the sorted list. The method ‘Sorting and then selecting’ is inefficient for selecting a single element, but it is efficient when many selections need to be made from the array. It is because only one initial expensive sort is needed, followed by many cheap selection operations. 



For example, if we want to get the maximum element from an array. After sorting the array, we can simply return the last element from the array. What if we want to get the second maximum? Now, we do not have to sort the array again, and can return the second last element from the sorted list. 

Similarly, we can return the kth maximum element by just one scan of the sorted list. 

So,   with   the   above   discussion,   sorting  is   used  to   improve  performance.   In   general,   this  method requires O(n.log(n)) (for sorting) time. 
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Problems in Searching

Sum Array

Problem: Write a method that will return the sum of all the integer array elements, given array as an input argument. 

Example 5.6:

fun SumArray(arr:IntArray):Int {

var size = arr.size

var total = 0

for (index in 0 until size) {

total = total + arr[index]

}

return total

}

// Testing code. 

fun main() {

var arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9)

println("Sum of values in array:" + SumArray(arr))

}

Output:

Sum of all the values in array: 45

Analysis: All the elements of the array are traversed and added. Finally, the result is returned. 

Since all the elements are required to be traversed at least once. So Best Case, Average Case, and Worst-Case all have the same time complexity of O(n). 

First Repeated element in the array

Problem: Given an unsorted list of n elements, find the first element, which is repeated. 

First solution:   Exhaustive search or Brute force; for each element in the list, find if there is some other element with the same value. This is done using two loops, the first loop to select the elements and the second loop to find their duplicate entries. 

Time Complexity is O(n^2) and Space Complexity is O(1) 

Example 5.7:

fun firstRepeated(arr: IntArray, size: Int): Int {

for (i in 0 until size) {

for (j in i + 1 until size) {

if (arr[i] == arr[j]) {

return arr[i]

}

}

}
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return 0

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 3, 9, 1, 30)

println(firstRepeated(first, first.size))

}

Output:

1

Second solution: Using Hash-Table, we can keep track of the number of times an element came into the array. The first scan just populates the Hashtable. The second scan just looks at the occurrence of the elements in the Hashtable. If the occurrence is more than one for some element, then we have our solution, which is the first repeated element. 

Example 5.8:

fun firstRepeated2(arr: IntArray, size: Int): Int {

val hm: HashMap<Int, Int> = HashMap<Int, Int>()

for (i in 0 until size) {

if (hm.containsKey(arr[i])) hm.put(arr[i], 2) else hm.put(arr[i], 1)

}

for (i in 0 until size) {

if (hm.get(arr[i]) == 2) {

return arr[i]

}

}

return 0

}

Hash-Table insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) for maintaining hash. 

Print duplicates in an array

Problem: Given an array of n numbers, print the duplicate elements in the array. 

First solution:   Exhaustive search or Brute force; for each element in the list, find if there is some other element with the same value. This is done using two loops, the first loop to select the element and the second loop to find its duplicate entry. 

Example 5.9:

fun printRepeating(arr: IntArray, size: Int) {

print("Repeating elements are ")

for (i in 0 until size) {

for (j in i + 1 until size) {

if (arr[i] == arr[j]) {

print(" " + arr[i])
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}

}

}

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 3, 9, 1, 30)

printRepeating(first, first.size)

}

Output:

Repeating elements are :  1 3

Time Complexity is O(n^2) and Space Complexity is O(1) 

Second solution: Sorting; Sort all the elements in the array and after this in a single scan, we can find the duplicates. 

Example 5.10:

fun printRepeating2(arr: IntArray, size: Int) {

Arrays.sort(arr)

print("Repeating elements are ")

for (i in 1 until size) {

if (arr[i] == arr[i - 1]) {

print(" " + arr[i])

}

}

}

Sorting algorithms take O(n.log(n)) time, and a single scan takes O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Third solution: Using Hash-Table, we can keep track of the elements we have already seen, and we can find the duplicates in just one scan. 

Example 5.11:

fun printRepeating3(arr: IntArray, size: Int) {

val hs: HashSet<Int> = HashSet<Int>()

print("Repeating elements are ")

for (i in 0 until size) {

if (hs.contains(arr[i])) {

print(" " + arr[i])

} else {

hs.add(arr[i])

}

}

}
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Hash-Table insert and find operations take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) 

Fourth solution: Counting, this solution is only possible if we know the range of the input. If we know that, the elements in the array are in the range 0 to n-1. We can reserve an array of length n call it counter and when we see an element, we can increase its corresponding count. In just one single scan, we know the duplicates. If we know the range of the elements, then this is the fastest way to find the duplicates. 

Example 5.12:

fun printRepeating4(arr: IntArray, size: Int, range: Int) {

val count = IntArray(range)

var i: Int

i = 0

while (i < size) {

count[i] = 0

i++

}

print("Repeating elements are ")

i = 0

while (i < size) {

if (count[arr[i]] == 1) {

print(" " + arr[i])

} else {

count[arr[i]]++

}

i++

}

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 3, 9, 1, 30)

printRepeating4(first, first.size, 50)

}

Output:

Repeating elements are :  1 3

The counting solution just uses an array so inserting and finding takes constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity for creating a count list is also O(n) Remove duplicates in an integer list 

Problem: Remove duplicate in an integer list. 

First solution:  Sorting, Steps are as follows:

1. Sort the array. 

2. Take two references. A subarray will be created with all unique elements starting from 0 to the first   reference   (The   first   reference   points   to   the   last   index   of   the   subarray).   The   second 91
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reference iterates through the array from 1 to the end. Unique numbers will be copied from the second reference location to the first reference location, and the same elements are ignored. 

Time Complexity calculation: 

Time to sort the array = O(n.log(n)). Time to remove duplicates = O(n). 

Overall Time Complexity = O(n.log(n)). 

No additional space is required, so Space Complexity is O(1). 

Example 5.13:

fun removeDuplicates(array: IntArray, size: Int): IntArray {

var j = 0

Arrays.sort(array)

for (i in 1 until size) {

if (array[i] != array[j]) {

j++

array[j] = array[i]

}

}

return Arrays.copyOf(array, j + 1)

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 3, 5, 3, 9, 1, 30)

val ret = removeDuplicates(first, first.size)

for (i in ret.indices) {

print(ret[i].toString() + " ")

}

}

Output:

1 3 5 9 30 

Second solution: Use a Hash Table to keep track of the elements already visited. Create an output array and add unique elements to it and also add that value to the hash table. 

Time Complexity is O(n) and Space Complexity is O(n) for a hash table. 

Example 5.14:

fun removeDuplicates2(arr: IntArray, size: Int): IntArray {

val hm: HashMap<Int, Int> = HashMap<Int, Int>()

var j = 0

for (i in 0 until size) {

if (!hm.containsKey(arr[i])) {

arr[j] = arr[i]

j++

hm.put(arr[i], 1)

}

}

return Arrays.copyOf(arr, j)

}

Other solutions to the previous problems can also be used to solve this problem. 
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Find the missing number in an array

Problem: In a given list of n-1 elements, which are in the range of 1 to n. There are no duplicates in the array. One of the integers is missing. Find the missing element. 

First solution:  Exhaustive search or Brute force, for each value in the range 1 to n, find if there is an element in the range that is not present in the list. This is done using two loops, the first loop to select values in the range 1 to n and the second loop to find if this element is in the array or not. If we do not find the value, then this is the missing value. 

Time Complexity is O(n^2) and Space Complexity is O(1) 

Example 5.15:

fun findMissingNumber(arr: IntArray, size: Int): Int {

var i: Int

var j: Int

var found : Int

i = 1

while (i <= size) {

found = 0

j = 0

while (j < size) {

if (arr[j] == i) {

found = 1

break

}

j++

}

if (found == 0) {

return i

}

i++

}

return Int.MAX_VALUE

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9)

println(findMissingNumber(first, first.size))

}

Output:

6

Second solution: Sorting; Sort all the elements in the array and after this in a single scan, we can find the duplicates. 

Sorting algorithms takes O(n.log(n)) time and a single scan takes O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.16:

fun findMissingNumber2(arr: IntArray, size: Int): Int {

Arrays.sort(arr)
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for (i in 0 until size) {

if (arr[i] != i + 1) return i + 1

}

return size

}

Third solution: Using Hash-Table Set; we can keep track of the elements we have already seen, and we can find the missing element in just one scan. 

Set insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) 

Example 5.17:

fun findMissingNumber3(arr: IntArray, size: Int): Int {

val hm: HashMap<Int, Int> = HashMap<Int, Int>()

for (i in 0 until size) hm.put(arr[i], 1)

for (i in 1..size) if (!hm.containsKey(i)) return i return Int.MAX_VALUE

}

Fourth solution: Counting, we know the range of the input, so counting will work. As we know that, the elements in the array are in the range 0 to n. We can reserve an array of length n and when we see an element, we can increase its count. In just one single scan, we know the missing element. 

Counting solution just uses an array so insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity for creating a count list is also O(n) Example 5.18:

fun findMissingNumber4(arr: IntArray, size: Int): Int {

val count = IntArray(size + 1)

Arrays.fill(count, -1)

for (i in 0 until size) count[arr[i] - 1] = 1

for (i in 0..size) if (count[i] == -1) return i + 1

return Int.MAX_VALUE

}

Fifth solution: You can modify the given input list. Modify the given input list in such a way that in the next scan you can find the missing element. 

When you scan through the array. When at index “index”, the value stored in the array will be arr[index]

so add the number “n + 1” to arr[ arr[ index]]. Always read the value from the array using a reminder operator “%”. When you scan the array for the first time and modify all the values. Then in one single scan you can see if there is some value in the array which is smaller than “n+1” that index is the missing number. 

In this solution, the array is scanned two times. The Time Complexity of this algorithm is O(n). Space Complexity is O(1) 
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Example 5.19:

fun findMissingNumber6(arr: IntArray, size: Int): Int {

for (i in 0 until size) {

// len(arr)+1 value should be ignored. 

if (arr[i] != size + 1 && arr[i] != size * 3 + 1) {

// 1 should not become (len(arr)+1) so multiplied by 2

arr[(arr[i] - 1) % size] += size * 2

}

}

for (i in 0 until size) if (arr[i] < size * 2) return i + 1

return Int.MAX_VALUE

}

Sixth solution:  Summation formula to find the sum of n numbers from 1 to n. Subtract the values stored in the array, and you will have your missing number. 

The Time Complexity of this algorithm is O(n). Space Complexity is O(1) 

Example 5.20:

fun findMissingNumber5(arr: IntArray, size: Int): Int {

var sum = 0

// Element value range is from 1 to size+1. 

for (i in 1 until size + 2) sum += i

for (i in 0 until size) sum -= arr[i]

return sum

}

Seventh solution: XOR approach to find the sum of n numbers from 1 to n. XOR the values stored in the array, and you will have your missing number. 

The Time Complexity of this algorithm is O(n). Space Complexity is O(1) 

Example 5.21:

fun findMissingNumber7(arr: IntArray, size: Int): Int {

var i: Int

var xorSum = 0

// Element value range is from 1 to size+1. 

i = 1

while (i < size + 2) {

xorSum = xorSum xor i

i++

}

// loop through the array and get the XOR of elements

i = 0

while (i < size) {

xorSum = xorSum xor arr[i]

i++

}

return xorSum

}

Note: The same problem can be asked in many forms (sometimes you must perform xor of the range): 1 There are numbers in the range of 1-n out of which all appear a single time, but there is one that appears two times. 

2 All the elements in the range 1-n are appearing 16 times, and one element appears 17 times. 

Find the element that appears 17 times. 
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Missing Values 

Problem: Given an array, find the maximum and minimum value in the array, and also find the values in range minimum and maximum that are absent in the array. 

First solution: Brute force approach, traverse the array, find the minimum and maximum value. Then find values from minimum to maximum in the array. The time complexity of this solution will be O(n^2) Example 5.22:

fun missingValues(arr: IntArray, size: Int) {

var max = arr[0]

var min = arr[0]

for (i in 1 until size) {

if (max < arr[i]) max = arr[i]

if (min > arr[i]) min = arr[i]

}

var found: Boolean

for (i in min + 1 until max) {

found = false

for (j in 0 until size) {

if (arr[j] == i) {

found = true

break

}

}

if (!found) print(i.toString() + " ")

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(11, 14, 13, 17, 21, 18, 19, 23, 24)

val size = arr.size

missingValues(arr, size)

}

Output:

12 15 16 20 22

Second solution: Sorting approach, we can sort the given array. Then traverse the whole array and print the missing values. The time complexity of this solution will be O(n.log(n)) for sorting and traversal will take O(n) so the overall time complexity is O(n.log(n)). 

Example 5.23:

fun missingValues2(arr: IntArray, size: Int) {

Arrays.sort(arr)

var value = arr[0]

var i = 0

while (i < size) {

if (value == arr[i]) {

value += 1

i += 1
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} else {

print("$value ")

value += 1

}

}

}

Third solution: Hashtable approach, we can traverse the array and insert its elements in a hashtable. 

Also, in this single traversal, we can find the smallest and largest value in the array. Now find if the values between minimum and maximum are present in the hashtable. If such values are not present, then print those values. 

The time complexity of this algorithm is O(n). Space complexity is O(n) for a hashtable. 

Example 5.24:

fun missingValues3(arr: IntArray, size: Int) {

val ht: HashSet<Int> = HashSet<Int>()

var minVal = 999999

var maxVal = -999999

for (i in 0 until size) {

ht.add(arr[i])

if (minVal > arr[i]) minVal = arr[i]

if (maxVal < arr[i]) maxVal = arr[i]

}

for (i in minVal until maxVal + 1) {

if (ht.contains(i) == false) {

print(i.toString() + " ")

}

}

}

Odd Count Element

Problem: Given an array in which all the elements appear an even number of times except one, which appears an odd number of times. Find the element which appears an odd number of times. 

First solution:  XOR approach, XOR all the elements of the array the elements which appear even number of times will cancel themselves. Finally, we will get the number we are searching for. 

The Time Complexity of this algorithm is O(n). Space Complexity is O(1) 

Example 5.25:

fun oddCount(arr: IntArray, size: Int) {

var xorSum = 0

for (i in 0 until size) {

xorSum = xorSum xor arr[i]

}

println("Odd values: $xorSum")

}

// Testing code. 

fun main() {

val arr = intArrayOf(10, 25, 30, 10, 15, 25, 15)
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val size = arr.size

oddCount(arr, size)

}

Output:

Odd values: 30

Second solution: Use a Hashtable to keep track of frequency. Then traverse the Hashtable to find the odd number of times the element appears. 

The Time Complexity of this algorithm is O(n). Space Complexity is O(n) 

Example 5.26:

fun oddCount2(arr: IntArray, size: Int) {

val hm: HashMap<Int, Int> = HashMap<Int, Int>()

for (i in 0 until size) {

if (hm.containsKey(arr[i])) hm.remove(arr[i]) else hm.put(arr[i], 1)

}

print("Odd values: ")

for (key in hm.keys) print("$key ")

println()

println("Odd count is :: " + hm.size)

}

Odd Count Elements

Problem: Given an array in which all the elements appear an even number of times except two, which appear an odd number of times. Find the elements which appear an odd number of times in O(n) time complexity and O(1) space complexity. 

Solution:

1. Since the space complexity required is O(1) so we cannot use Hashtable. 

2. We know that when we xor all the elements of an array, then the even number of appearing elements will cancel themselves out. So, we have the sum of the two values we are searching for. 

3. If we can divide the array elements into two groups such that these two values go in different groups and then xor the values in these groups, then we can get these values separately. 

4. As shown in the algorithm below, the rightmost set bit is used to separate these two elements. 

Example 5.27:

fun oddCount3(arr: IntArray, size: Int) {

var xorSum = 0

var first = 0

var second = 0

val setBit: Int

/*

* xor of all elements in arr[] even occurrence will cancel each other. sum will

* contain sum of two odd elements. 

*/

for (i in 0 until size) xorSum = xorSum xor arr[i]
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/* Rightmost set bit. */

setBit = xorSum and (xorSum - 1).inv()

/*

* Dividing elements in two group: Elements having setBit bit as 1. Elements

* having setBit bit as 0. Even elements cancelled themselves if group and we

* get our numbers. 

*/

for (i in 0 until size) {

if (arr[i] and setBit != 0) first = first xor arr[i] else second = second xor arr[i]

}

println("Odd values: $first $second")

}

// Testing code. 

fun main() {

val arr2 = intArrayOf(10, 25, 30, 10, 15, 25, 15, 40)

val size2 = arr2.size

oddCount3(arr2, size2)

}

Output:

Odd values: 30 40

Sum Distinct

Problem: Given an array of size N, the elements in the array may be repeated. You need to find the sum of distinct elements of the array. If there is some value repeated continuously, then they should be added once. 

Example 5.28:

fun sumDistinct(arr: IntArray, size: Int) {

var sum = 0

Arrays.sort(arr)

for (i in 0 until size - 1) {

if (arr[i] != arr[i + 1]) sum += arr[i]

}

sum += arr[size - 1]

println("Sum : $sum")

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 1, 1, 4, 5, 6)

val size = arr.size

sumDistinct(arr, size)

}

Output:

Sum : 21

Analysis: Sort the input array. Duplicate values will come adjacent.  Create a sum variable and add only those values to it which are not equal to its next value. 
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The Time Complexity of this algorithm is O(n). Space Complexity is O(1)

Min Absolute Sum

Problem: In the given list of integers, both +ve and -ve. You need to find the two elements such that their sum is closest to zero. 

First solution: Exhaustive search or Brute force; for each element in the array, find the other element whose value when added will give minimum absolute value. This is done using two loops, the first loop to select the element and the second loop to find the element that should be added to it so that the absolute of the sum will be minimum or close to zero. 

Time Complexity is O(n^2) and Space Complexity is O(1) 

Example 5.29:

fun minAbsSumPair(arr: IntArray, size: Int) {

var l: Int

var r: Int

var minSum: Int

var sum: Int

var minFirst: Int

var minSecond: Int

// Array should have at least two elements

if (size < 2) {

println("Invalid Input")

return

}

// Initialisation of values

minFirst = 0

minSecond = 1

minSum = Math.abs(arr[0] + arr[1])

l = 0

while (l < size - 1) {

r = l + 1

while (r < size) {

sum = Math.abs(arr[l] + arr[r])

if (sum < minSum) {

minSum = sum

minFirst = l

minSecond = r

}

r++

}

l++

}

println("Minimum sum elements are : " + arr[minFirst] + " , " + arr[minSecond])

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, -10, 3, 2, -6, 8, 9, 6)

minAbsSumPair2(first, first.size)

}
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Output:

Minimum sum elements are : -6 , 6

Second solution: Sorting is used. 

The steps are as follows:

1. Sort all the elements in the array. 

2. Take two variable firstIndex = 0 and secondIndex = size -1

3. Compute sum = arr[firstIndex]+arr[secondIndex]

4. If the sum is equal to 0 then we have the solution

5. If the sum is less than 0 then we will increase first

6. If the sum is greater than 0 then we will decrease the second

7. We repeat the above process 3 to 6 until we get the desired pair or we get first >= second Time complexity is O(n.log(n)) for sorting and O(n) for comparison. 

Total time complexity: O(n.log(n))

Example 5.30:

fun minAbsSumPair2(arr: IntArray, size: Int) {

var l: Int

var r: Int

var minSum: Int

var sum: Int

var minFirst: Int

var minSecond: Int

// Array should have at least two elements

if (size < 2) {

println("Invalid Input")

return

}

Arrays.sort(arr)

// Initialisation of values

minFirst = 0

minSecond = size - 1

minSum = Math.abs(arr[minFirst] + arr[minSecond])

l = 0

r = size - 1

while (l < r) {

sum = arr[l] + arr[r]

if (Math.abs(sum) < minSum) {

minSum = Math.abs(sum)

minFirst = l

minSecond = r

}

if (sum < 0) {

l++

} else if (sum > 0) {

r--

} else {

break
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}

}

println("Minimum sum elements are : " + arr[minFirst] + " , " + arr[minSecond])

}

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Find Pair in an array

Problem: Given an array of n numbers, find two elements such that their sum is equal to “value” 

First solution:  Exhaustive search or Brute force, for each element in the list find if there is some other element, which sums up to the desired value. This is done using two loops, the first loop is to select the element and the second loop is to find another element. 

Time Complexity is O(n^2) and Space Complexity is O(1) 

Example 5.31:

fun findPair(arr: IntArray, size: Int, value: Int): Boolean {

for (i in 0 until size) {

for (j in i + 1 until size) {

if (arr[i] + arr[j] == value) {

println("The pair is : " + arr[i] + ", " + arr[j])

return true

}

}

}

return false

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9, 6)

findPair(first, first.size, 8)

}

Output:

The pair is : 1, 7

Second solution: Sorting, Steps are as follows:

1. Sort all the elements in the array. 

2. Take two variables, first and second. Variable first= 0 and second = size -1

3. Compute sum = arr[first]+arr[second]

4. If the sum is equal to the desired value, then we have the solution

5. If the sum is less than the desired value, then we will increase the first 6. If the sum is greater than the desired value, then we will decrease the second 7. We repeat the above process until we get the desired pair or we get first >= second Sorting algorithms takes O(n.log(n)) time and a single scan takes O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 
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Example 5.32:

fun findPair2(arr: IntArray, size: Int, value: Int): Boolean {

var first = 0

var second = size - 1

var curr: Int

Arrays.sort(arr)

while (first < second) {

curr = arr[first] + arr[second]

if (curr == value) {

println("The pair is : " + arr[first] + ", " + arr[second]) return true

} else if (curr < value) {

first++

} else {

second--

}

}

return false

}

Third solution: Using Hash-Table; we can keep track of the elements we have already seen, and we can find the pair in just one scan. 

1. For each element, insert the value in Hashtable. Let’s say the current value is arr[index]

2. If value - arr[index] is in the Hashtable then we have the desired pair. 

3. Else, proceed to the next entry in the array. 

Hash-Table insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) 

Example 5.33:

fun findPair3(arr: IntArray, size: Int, value: Int): Boolean {

val hs: HashSet<Int> = HashSet<Int>()

for (i in 0 until size) {

if (hs.contains(value - arr[i])) {

println("The pair is : " + arr[i] + ", " + (value - arr[i])) return true

}

hs.add(arr[i])

}

return false

}

Fourth solution: Counting approach, this approach is only possible if we know the range of the input. 

If we know that, the elements in the array are in the range 0 to n. We can reserve an array of length n and when we see an element, we can increase its count. In place of the Hashtable in the above approach, we will use an array and will find out the pair. 

The counting approach just uses an array so insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity for creating a count list is also O(n) Example 5.34:

fun findPair4(arr: IntArray, size: Int, range: Int, value: Int): Boolean {

val count = IntArray(range + 1)

Arrays.fill(count, 0)
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for (i in 0 until size) {

if (count[value - arr[i]] > 0) {

println("The pair is : " + arr[i] + ", " + (value - arr[i])) return true

}

count[arr[i]] += 1

}

return false

}

Find the Pair in two Lists

Problem: Given two lists X and Y. Find a pair of elements (xi, yi) such that xi∈X and yi∈Y where xi+yi

= value. 

First solution:  Exhaustive search or Brute force search; loop through element xi of X and see if you can find (value – xi) in Y. This is done using two loops, the first loop is to select an element from X and the second loop is to find its corresponding value in Y. 

Time Complexity is O(n^2) and Space Complexity is O(1) 

Example 5.35:

fun findPairTwoLists(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int, value: Int): Boolean {

for (i in 0 until size1) {

for (j in 0 until size2) {

if (arr1[i] + arr2[j] == value) {

println("The pair is : " + arr1[i] + ", " + arr2[j])

return true

}

}

}

return false

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9, 6)

val second = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9, 6)

findPairTwoLists(first, first.size, second, second.size, 8)

}

Output:

The pair is : 1, 7

Second solution: Sorting; Sort all the elements in the second list Y. For each element of X, you can see if that element is there in Y by using binary search. 

Sorting algorithms take O(m.logm) and searching will take O(n.logm) time. Time Complexity is O(n.logm) or O(m.logm) and Space Complexity is O(1)

Example 5.36:

fun findPairTwoLists2(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int, value: Int): Boolean {

Arrays.sort(arr2)

for (i in 0 until size1) {
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if (binarySearch(arr2, size2, value - arr1[i])) {

println("The pair is : " + arr1[i] + ", " + (value - arr1[i])) return true

}

}

return false

}

Third solution: Sorting, Steps are as follows:

1. Sort the elements of both X and Y in increasing order. 

2. Take the sum of the smallest element of X and the largest element of Y. 

3. If the sum is equal to the value, we got our pair. 

4. If the sum is smaller than the value, take the next element of X

5. If the sum is greater than the value, take the previous element of Y

Sorting algorithms take O(n.log(n)) + O(m.logm) for sorting and searching will take O(n+m) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.37:

fun findPairTwoLists3(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int, value: Int): Boolean {

var first = 0

var second = size2 - 1

Arrays.sort(arr1)

Arrays.sort(arr2)

while (first < size1 && second >= 0) {

var curr = arr1[first] + arr2[second]

if (curr == value) {

println("The pair is : " + arr1[first] + ", " + arr2[second]) return true

} else if (curr < value) {

first++

} else {

second--

}

}

return false

}

Fourth solution: Using Hash-Table, Steps are as follows:

1. Scan through all the elements in the array Y and insert them into Hashtable. 

2. Now scan through all the elements of list X, let us suppose the current element is xi to see if you can find (value - xi) in the Hashtable. 

3. If you find the value, you got your pair. 

4. If not, then go to the next value in the array X. 

Hash-Table insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) 

Example 5.38:

fun findPairTwoLists4(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int, value: Int): Boolean {

val hs: HashSet<Int> = HashSet<Int>()
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for (i in 0 until size2) hs.add(arr2[i])

for (i in 0 until size1) {

if (hs.contains(value - arr1[i])) {

println("The pair is : " + arr1[i] + ", " + (value - arr1[i])) return true

}

}

return false

}

Fifth solution: Counting; this approach is only possible if we know the range of the input. Same as Hashtable implementation, just use a simple list in place of Hashtable and you are done. 

The counting approach just uses an array so insertion and finding take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity for creating a count list is also O(n) Example 5.39:

fun findPairTwoLists5(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int, range: Int, value: Int): Boolean {

val count = IntArray(range + 1)

Arrays.fill(count, 0)

for (i in 0 until size2) count[arr2[i]] = 1

for (i in 0 until size1) {

if (count[value - arr1[i]] != 0) {

println("The pair is : " + arr1[i] + ", " + (value - arr1[i])) return true

}

}

return false

}

Find Difference Pair

Problem: In an array of positive integers, find a pair whose absolute value of the difference is equal to a given value. 

First solution: Brute force, find all the possible pairs and find if the absolute value of their difference is equal to the given value. Time complexity will O(n^2)

Example 5.40:

fun findDifference(arr: IntArray, size: Int, value: Int): Boolean {

for (i in 0 until size) {

for (j in i + 1 until size) {

if (Math.abs(arr[i] - arr[j]) == value) {

println("The pair is : " + arr[i] + " & " + arr[j]) return true

}

}

}

return false

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9, 6)
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findDifference(first, first.size, 6)

}

Output:

The pair is:: 1 & 7

Second solution: Using sorting, the performance can be improved by sorting the array. We take two indexes from the start of the array at index 0, call them first and second. When the difference of values is less than the desired value then we increase the second index or if the difference is greater than the desired   value  then  increase   the   first   index.   Time   complexity   is   O(n.log(n))  which   is   for   sorting operations. 

Example 5.41:

fun findDifference2(arr: IntArray, size: Int, value: Int): Boolean {

var first = 0

var second = 0

var diff: Int

Arrays.sort(arr)

while (first < size && second < size) {

diff = Math.abs(arr[first] - arr[second])

if (diff == value) {

println("The pair is : " + arr[first] + " & " + arr[second]) return true

} else if (diff > value) first += 1 else second += 1

}

return false

}

Find Min Diff 

Problem: Given an array of integers, find the element pair with minimum difference. 

First   solution:  you   can   always   pick   two   elements,   find   differences   between   them,   and   find   the elements with a minimum difference using two loops and comparing each pair. Time complexity is O(n^2)

Example 5.42:

fun findMinDiff(arr: IntArray, size: Int): Int {

var diff = Int.MAX_VALUE

for (i in 0 until size) {

for (j in i + 1 until size) {

val value: Int = Math.abs(arr[i] - arr[j])

if (diff > value) diff = value

}

}

return diff

}

// Testing code. 

fun main() {

val second = intArrayOf(1, 6, 4, 19, 17, 20)

println("findMinDiff : " + findMinDiff(second, second.size))

}
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Output:

findMinDiff : 1

Second solution: This performance can be improved by sorting the array. Since we need a minimum sum, the pair which we are searching for is adjacent to each other. Time complexity is O(n.log(n)) Example 5.43:

fun findMinDiff2(arr: IntArray, size: Int): Int {

Arrays.sort(arr)

var diff = Int.MAX_VALUE

for (i in 0 until size - 1) {

if (arr[i + 1] - arr[i] < diff) diff = arr[i + 1] - arr[i]

}

return diff

}

Minimum Difference Pair 

Problem: Given two arrays, find a minimum difference pair such that it should take one element from each array. 

First solution: Brute force solution, you can always pick two elements, one from the first array and another   from   the   second   array.   Then   find   their   difference   to   find   the   minimum   difference.   Time complexity is O(nm)

Example 5.44:

fun minDiffPair(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int): Int {

var diff = Int.MAX_VALUE

var first = 0

var second = 0

for (i in 0 until size1) {

for (j in 0 until size2) {

val value: Int = Math.abs(arr1[i] - arr2[j])

if (diff > value) {

diff = value

first = arr1[i]

second = arr2[j]

}

}

}

println("The pair is :: $first & $second")

println("Minimum difference is :: $diff")

return diff

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 4, 3, 2, 7, 8, 9, 6)

val second = intArrayOf(6, 4, 19, 17, 20)

minDiffPair(first, first.size, second, second.size)

}

Output:

The pair is :: 4 & 4

Minimum difference is :: 0
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Second solution: This performance can be improved by sorting the arrays. Since we need a minimum difference pair. We will pick one element from the first array and find its difference from one element from the second array. If the difference is negative then we will increase the index of the first array and if the difference is positive then we will increase the index of the second array. Time Complexity is O(n.log(n) + mlogm) for sorting and O(n+m) for comparison. 

Total time complexity: O(n.log(n) + mlogm)

Example 5.45:

fun minDiffPair2(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int): Int {

var minDiff = Int.MAX_VALUE

var i = 0

var j = 0

var first = 0

var second = 0

var diff: Int

Arrays.sort(arr1)

Arrays.sort(arr2)

while (i < size1 && j < size2) {

diff = Math.abs(arr1[i] - arr2[j])

if (minDiff > diff) {

minDiff = diff

first = arr1[i]

second = arr2[j]

}

if (arr1[i] < arr2[j]) i += 1 else j += 1

}

println("The pair is :: $first & $second")

println("Minimum difference is :: $minDiff")

return minDiff

}

Closest Pair 

Problem: Given an array of positive integers and a number. You need to find a pair in an array whose sum is closest to the given number. 

First solution: Brute force, for each pair find their sum and get its absolute difference from the given value. This can be done using two loops. Time complexity is O(n^2)

Example 5.46:

fun closestPair(arr: IntArray, size: Int, value: Int) {

var diff = 999999

var first = -1

var second = -1

var curr: Int

for (i in 0 until size) {

for (j in i + 1 until size) {

curr = Math.abs(value - (arr[i] + arr[j]))

if (curr < diff) {

diff = curr

first = arr[i]

second = arr[j]

}

}
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}

println("closest pair is :: $first $second")

}

// Testing code. 

fun main() {

val first = intArrayOf(10, 20, 3, 4, 50, 80)

closestPair(first, first.size, 47)

}

Output:

closest pair is :: 3 50

Second solution:  Sorting, the performance of the above solution can be improved by sorting the array. Since we need a pair whose sum is closest to the given value. We start two indexes, one from the start and the other from the end. Add these two index values and call it current. If the current sum is greater than the given value then decreases the end index and if the current sum is smaller than the value then we increase the start index. 

Time complexity is O(n.log(n)) for sorting and O(n) for searching pairs. So overall Time complexity is O(n.log(n)) 

Example 5.47:

fun closestPair2(arr: IntArray, size: Int, value: Int) {

var first = 0

var second = 0

var start = 0

var stop = size - 1

var diff: Int

var curr: Int

Arrays.sort(arr)

diff = 9999999



while (start < stop) {

curr = value - (arr[start] + arr[stop])

if (Math.abs(curr) < diff) {

diff = Math.abs(curr)

first = arr[start]

second = arr[stop]

}

if (curr == 0) {

break

} else if (curr > 0) {

start += 1

} else {

stop -= 1

}

}

println("closest pair is :: $first $second")

}

Sum of Pair Equal to Rest Array 

Problem:  Given an array, find if there is a pair whose sum is equal to the sum of the rest of the elements of the array. 
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Solution: Sort the array. Sum all the elements of the array, called this value total. Find a pair in the sorted array whose sum is total/2. Total time complexity is O(n.log(n)). 

Example 5.48:

fun sumPairRestArray(arr: IntArray, size: Int): Boolean {

var total: Int

var low: Int

var high: Int

var curr: Int

val value: Int

Arrays.sort(arr)

total = 0

for (i in 0 until size) total += arr[i]

value = total / 2

low = 0

high = size - 1

while (low < high) {

curr = arr[low] + arr[high]

if (curr == value) {

println("Pair is :: " + arr[low] + " " + arr[high])

return true

} else if (curr < value) low += 1 else high -= 1

}

return false

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 2, 4, 8, 16, 15)

println(sumPairRestArray(first, first.size))

}

Output:

Pair is :: 8 15

true

Zero-Sum Triplets

Problem: Given an array of integers, you need to find a triplet whose sum is 0. 

First solution: Brute force, for each triplet find their sum. This can be done using three loops. Time complexity is O(n^3)

Example 5.49:

fun zeroSumTriplets(arr: IntArray, size: Int) {

for (i in 0 until size - 2) {

for (j in i + 1 until size - 1) {

for (k in j + 1 until size) {

if (arr[i] + arr[j] + arr[k] == 0) println("Triplet:: " + arr[i] + 

" " + arr[j] + " " + arr[k])

}

}

}

}
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// Testing code. 

fun main() {

val first = intArrayOf(0, -1, 2, -3, 1)

zeroSumTriplets(first, first.size)

}

Output:

Triplet:: 0 -1 1 

Triplet:: 2 -3 1 

Second solution: We can increase performance by sorting. Sort the given array. Select an element from the array in a loop, and then find the other two values such that their sum is negative of the first value. 

Time complexity is O(n^2)

Example 5.50:

fun zeroSumTriplets2(arr: IntArray, size: Int) {

var start: Int

var stop: Int

Arrays.sort(arr)

for (i in 0 until size - 2) {

start = i + 1

stop = size - 1

while (start < stop) {

if (arr[i] + arr[start] + arr[stop] == 0) {

println("Triplet :: " + arr[i] + " " + arr[start] + " " + 

arr[stop])

start += 1

stop -= 1

} else if (arr[i] + arr[start] + arr[stop] > 0) stop -= 1 else start +=

1        }

}

}

Find Triplet

Problem: Given an array of integers, you need to find a triplet whose sum is equal to the given value. 

First solution: Brute force, for each triplet find their sum. This can be done using three loops. Time complexity is O(n^3)

Example 5.51:

fun findTriplet(arr: IntArray, size: Int, value: Int) {

for (i in 0 until size - 2) for (j in i + 1 until size - 1) for (k in j + 1 

until size) {

if (arr[i] + arr[j] + arr[k] == value) println("Triplet :: " + arr[i] + " " 

+ arr[j] + " " + arr[k])

}

}
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// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 15, 6, 9, 8)

findTriplet(first, first.size, 22)

}

Output:

Triplet :: 1 15 6

Triplet :: 5 9 8

Second solution:  We can increase performance by sorting. Sort the given array. Select the first element from the array in a loop, and then find two other values such that the sum of all three is equal to the given value. Time complexity is O(n^2)

Example 5.52:

fun findTriplet2(arr: IntArray, size: Int, value: Int) {

var start: Int

var stop: Int

Arrays.sort(arr)

for (i in 0 until size - 2) {

start = i + 1

stop = size - 1

while (start < stop) {

if (arr[i] + arr[start] + arr[stop] == value) {

println("Triplet ::" + arr[i] + " " + arr[start] + " " + arr[stop]) start += 1

stop -= 1

} else if (arr[i] + arr[start] + arr[stop] > value) stop -= 1 else start += 1

}

}

}

A+B = C Triplet

Problem: Given an array of integers, you need to find a triplet such that the sum of two elements of the triplet is equal to the third value. We need to find a triplet (A, B, C) such that A+B = C. 

First solution: Brute force approach, for each triplet, find if constraint A+B=C satisfies. This can be done using three loops. Time complexity is O(n^3)

Example 5.53:

fun abcTriplet(arr: IntArray, size: Int) {

for (i in 0 until size - 1)

for (j in i + 1 until size)

for (k in 0 until size) {

if (k != i && k != j && arr[i] + arr[j] == arr[k])

println("abcTriplet:: " + arr[i] + " " + arr[j] + " " + arr[k])

}

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 15, 6, 9, 8)
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abcTriplet(first, first.size)

}

Output:

abcTriplet:: 1 5 6

abcTriplet:: 1 8 9

abcTriplet:: 6 9 15

Second solution: We can increase performance by sorting. Sort the given array in decreasing order. 

Select the first element from the array in a loop, and then find the other two values such that the sum of these two is equal to the first value. 

Time complexity is O(n^2)

Example 5.54:

fun abcTriplet2(arr: IntArray, size: Int) {

var start: Int

var stop: Int

Arrays.sort(arr)

for (i in 0 until size) {

start = 0

stop = size - 1

while (start < stop) {

if (arr[i] == arr[start] + arr[stop]) {

println("abcTriplet:: " + arr[start] + " " + arr[stop] + " " + 

arr[i])

start += 1

stop -= 1

} else if (arr[i] < arr[start] + arr[stop]) stop -= 1 else start += 1

}

}

}

Smaller than triplets Count

Problem: Given an array of integers, you need to find a triplet such that the sum of elements of the triplet is less than the value. We need to find triplets (A, B, C) such that A+B+C < value. 

First solution: Brute force, for each triplet find if constraint A+B+C < value satisfies. This can be done using three loops. Time complexity is O(n^3)

Example 5.55:

fun smallerThenTripletCount(arr: IntArray, size: Int, value: Int) {

var count = 0

for (i in 0 until size - 1)

for (j in i + 1 until size)

for (k in j + 1 until size)

if (arr[i] + arr[j] + arr[k] < value)

count += 1

println("smallerThenTripletCount:: $count")

}

// Testing code. 

fun main() {

val first = intArrayOf(-2, -1, 0, 1)
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smallerThenTripletCount(first, first.size, 2)

}

Output:

smallerThenTripletCount:: 4

Second solution:  We can increase performance by sorting. Sort the given array. Select the first element from the array in a loop, and then find two other values such that the sum of all three is less than the given value. Time complexity is O(n^2)

Example 5.56:

fun smallerThenTripletCount2(arr: IntArray, size: Int, value: Int) {

var start: Int

var stop: Int

var count = 0

Arrays.sort(arr)

for (i in 0 until size - 2) {

start = i + 1

stop = size - 1

while (start < stop) {

if (arr[i] + arr[start] + arr[stop] >= value) stop -= 1 else {

count += stop - start

start += 1

}

}

}

println("smallerThenTripletCount:: $count")

}

Arithmetic progression triplet 

Problem: Given a sorted array, find all Arithmetic progression triplets possible. 

Solution: The input array is sorted. We will traverse the array from index 1 to n-2 this will be the middle element of the AP. Then we will find the first and third elements of the AP,  which are at the left and right of the middle value. Time complexity O(n^2)

Example 5.57:

fun apTriplets(arr: IntArray, size: Int) {

var i: Int = 1

var j: Int

var k: Int

while (i < size - 1) {

j = i - 1

k = i + 1

while (j >= 0 && k < size) {

if (arr[j] + arr[k] == 2 * arr[i]) {

println("AP Triplet:: " + arr[j] + " " + arr[i] + " " + arr[k]) k += 1

j -= 1

} else if (arr[j] + arr[k] < 2 * arr[i]) k += 1 else j -= 1

}

i++
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}

}

// Testing code. 

fun main() {

val arr = intArrayOf(2, 4, 10, 12, 14, 18, 36)

apTriplets(arr, arr.size)

}

Output:

AP Triplet:: 2 10 18

AP Triplet:: 10 12 14

AP Triplet:: 10 14 18

Geometric Progression Triplet

Problem: Given a sorted array, find all geometric progression triplets possible. 

Solution: The input array is sorted. We will traverse the array from index 1 to n-2 this will be the middle element of the GP. Then we will find the first and third elements of the GP, which are at the left and right of the middle value. Time complexity O(n^2)

Example 5.58:

fun gpTriplets(arr: IntArray, size: Int) {

var i: Int = 1

var j: Int

var k: Int

while (i < size - 1) {

j = i - 1

k = i + 1

while (j >= 0 && k < size) {

if (arr[j] * arr[k] == arr[i] * arr[i]) {

println("GP Triplet:: " + arr[j] + " " + arr[i] + " " + arr[k]) k += 1

j -= 1

} else if (arr[j] + arr[k] < 2 * arr[i]) k += 1 else j -= 1

}

i++

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 4, 8, 16)

gpTriplets(arr, arr.size)

}

Output:

GP Triplet:: 1 2 4

GP Triplet:: 2 4 8

GP Triplet:: 1 4 16

GP Triplet:: 4 8 16
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Number of Triangles 

Problem:  Given an array of positive integers representing edges of triangles. Find the number of triangles that can be formed from these elements representing sides of triangles. For a triangle, the sum of two edges is always greater than the third edge. 

Input:  [1, 2, 3, 4, 5]

Output: 3,    Corresponds to (2, 3, 4) (2, 4, 5) (3, 4, 5)

First solution: Brute force solution, by picking all the triplets and then checking if the triangle property holds. Time Complexity is O(n^3)

Example 5.59:

fun numberOfTriangles(arr: IntArray, size: Int): Int {

var j: Int

var k: Int

var count = 0

var i: Int = 0

while (i < size - 2) {

j = i + 1

while (j < size - 1) {

k = j + 1

while (k < size) {

if (arr[i] + arr[j] > arr[k]) count += 1

k++

}

j++

}

i++

}

return count

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4, 5)

println(numberOfTriangles(arr, arr.size))

}

Output:

3

Second solution: This solution takes advantage of one simple property. In a sorted array, If the sum of arr[i] & arr[j] is greater than arr[k] then the sum of arr[i] & arr[j+1] is also greater than arr[k]. This improvement makes the time complexity of this algorithm as O(n^2)

Example 5.60:

fun numberOfTriangles2(arr: IntArray, size: Int): Int {

var j: Int

var k: Int

var count = 0

Arrays.sort(arr)

var i: Int = 0
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while (i < size - 2) {

k = i + 2

j = i + 1

while (j < size - 1) {

/*

* if sum of arr[i] & arr[j] is greater arr[k] then sum of arr[i] & 

* arr[j + 1] is also greater than arr[k] this make algo O(n2)

*/

while (k < size && arr[i] + arr[j] > arr[k]) k += 1

count += k - j - 1

j++

}

i++

}

return count

}

Find max, appearing element in an array

Problem: In a given list of n numbers, find the element, which appears the maximum number of times. 

First solution:  Exhaustive search or Brute force; for each element in the array, find how many times this value appears in the array. Keep track of the maxCount and when some element count is greater than maxCount then update the maxCount. This is done using two loops, the first loop to select the element and the second loop to count the occurrence of that element. 

Time Complexity is O(n^2) and Space Complexity is O(1)

Example 5.61:

fun getMax(arr: IntArray, size: Int): Int {

var max = arr[0]

var maxCount = 1

for (i in 0 until size) {

var count = 1

for (j in i + 1 until size) {

if (arr[i] == arr[j]) {

count++

}

}

if (count > maxCount) {

max = arr[i]

maxCount = count

}

}

return max

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 30, 5, 13, 9, 31, 5)

println(getMax(first, first.size))

}

Output:

5
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Second solution: Sorting; Sort all the elements in the array. In a single scan, we can find the counts. 

Sorting algorithms takes O(n.log(n)) time and a single scan takes O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.62:

fun getMax2(arr: IntArray, size: Int): Int {

var max = arr[0]

var maxCount = 1

var curr = arr[0]

var currCount = 1

Arrays.sort(arr) // Sort(arr,size); 

for (i in 1 until size) {

if (arr[i] == arr[i - 1]) {

currCount++

} else {

currCount = 1

curr = arr[i]

}

if (currCount > maxCount) {

maxCount = currCount

max = curr

}

}

return max

}

Third solution: Counting, this approach is possible only if we know the range of the input. If we know that, the elements in the array are in the range 0 to n-1. We can traverse an array of length n and when we see an element, we can increase its count. In just one single scan, we know the duplicates. If we know the range of the elements, then this is the fastest way to find the max count. 

The counting approach just uses a list so to increase count takes constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity for creating a count list is also O(n) Example 5.63:

fun getMax3(arr: IntArray, size: Int, range: Int): Int {

var max = arr[0]

var maxCount = 1

val count = IntArray(range)

for (i in 0 until size) {

count[arr[i]]++

if (count[arr[i]] > maxCount) {

maxCount = count[arr[i]]

max = arr[i]

}

}

return max

}

Majority element in an array

Problem:  In a given array of n elements. Find the majority element, which appears more than n/2

times. Return 0 in case there is no majority element. 
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First solution: Exhaustive search or Brute force, for each element in the array, find how many times its value appears in the array. Keep track of the maxCount and when some element count is greater than maxCount then update the maxCount. This is done using two loops, the first loop to select the element and the second loop to count the occurrence of that element. If the final maxCount is greater than n/2 we have a majority, otherwise we do not have any majority. 

Time Complexity is O(n^2) + O(1) = O(n^2) and Space Complexity is O(1) 

Example 5.64:

fun getMajority(arr: IntArray, size: Int): Int {

var max = 0

var count = 0

var maxCount = 0

for (i in 0 until size) {

for (j in i + 1 until size) {

if (arr[i] == arr[j]) {

count++

}

}

if (count > maxCount) {

max = arr[i]

maxCount = count

}

}

return if (maxCount > size / 2) {

max

} else {

0

}

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 5, 13, 5, 31, 5)

println(getMajority(first, first.size))

}

Output:

5

Second solution: Sorting all the elements in the array. If there is a majority, then the middle element at the index n/2 must be the majority number. So, just a single scan can be used to find its count and see if the majority is there or not. 

Sorting algorithms take O(n.log(n)) time and single scans take O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.65:

fun getMajority2(arr: IntArray, size: Int): Int {

val majIndex = size / 2

val candidate: Int

Arrays.sort(arr)

candidate = arr[majIndex]

var count = 0
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for (i in 0 until size) {

if (arr[i] == candidate) {

count++

}

}

return if (count > size / 2) {

arr[majIndex]

} else {

Int.MIN_VALUE

}

}

Third solution: This is a cancellation approach (Moore’s Voting Algorithm) if all the elements stand against the majority and each element is cancelled with one element of majority, if there is a majority the majority prevails. 

1. Set the first element of the array as the majority candidate and Initialise the count to be 1. 

2. Start scanning the array. 

o If we get some element whose value is the same as a majority candidate, then we increase the count. 

o If   we   get   an   element   whose   value   is   different   from   the   majority   candidate,   then   we decrement the count. 

o If the count becomes 0, that means we have a new majority candidate. Make the current candidate as majority candidate and reset the count to 1. 

o In the end, we will have the only probable majority candidate. 

3. Now scan through the array once again to see if that candidate we found above has appeared more than n/2 times. 

The counting approach just scans the throw list two times. Time Complexity is O(n) time. Space Complexity for creating a count list is also O(1) 

Example 5.66:

fun getMajority3(arr: IntArray, size: Int): Int {

var majIndex = 0

var count = 1

val candidate: Int

var i: Int = 1

while (i < size) {

if (arr[majIndex] == arr[i]) {

count++

} else {

count--

}

if (count == 0) {

majIndex = i

count = 1

}

i++

}

candidate = arr[majIndex]

count = 0

i = 0
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while (i < size) {

if (arr[i] == candidate) {

count++

}

i++

}

return if (count > size / 2) {

arr[majIndex]

} else {

0

}

}

Is Majority

Problem: Given a sorted array, find if there is a majority and find the majority element. 

First solution: Using brute force traversal of the array, we can find the number of occurrences of the middle element in the array. If the number of occurrences is not greater than or equal to the ceiling of count/2 then there is no majority. 

Time complexity is O(N)

Example 5.67:

fun isMajority(arr: IntArray, size: Int): Boolean {

var count = 0

val mid = arr[size / 2]

for (i in 0 until size) if (arr[i] == mid) count += 1

return if (count > size / 2) true else false

}

// Testing code. 

fun main() {

val arr = intArrayOf(3, 3, 3, 3, 4, 5, 10)

println(isMajority(arr, arr.size))

}

Output:

true

Second solution: Since the array is sorted, our first thought should be binary search. We can find the probable majority of the candidates at the size/2 location. Then we need to find its first occurrence in the sorted array, say it index i. Then once we have index i then if the majority exists then the element at index i+n/2 also has a value the same as the majority candidate. 

Time complexity is O(log(n))

Example 5.68: Using binary search method. 

fun firstIndex(arr: IntArray, size: Int, low: Int, high: Int, value: Int): Int {

var mid = 0

if (high >= low) mid = (low + high) / 2

/*

* Find first occurrence of value, either it should be the first element of the

* array or the value before it is smaller than it. 

*/
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return if ((mid == 0 || arr[mid - 1] < value) && arr[mid] == value) mid else if (arr[mid] < value) firstIndex(arr,size,mid+1,high,value) else firstIndex(arr, size, low, mid - 1, value)

}

fun isMajority2(arr: IntArray, size: Int): Boolean {

val majority = arr[size / 2]

val i = firstIndex(arr, size, 0, size - 1, majority)

/*

* we are using majority element form array so we always get some valid index. 

*/

return if (i + size / 2 <= size - 1 && arr[i + size / 2] == majority) true else false

}

Find a median of an array

Problem: In an unsorted list of numbers of size n, if all the elements of the array are sorted, then find the element, which lies at the index n/2. 

First solution: Sort the array and return the element in the middle. 

Sorting algorithms takes O(n.log(n)). 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.69:

fun getMedian(arr: IntArray, size: Int): Int {

Arrays.sort(arr)

return arr[size / 2]

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 6, 6, 6, 6, 6, 6, 7, 8, 10, 13, 20, 30) println(getMedian(first, first.size))

}

Output:

6

Second   solution:  Use   the   quickSelect   algorithm.   Find   the   n/2   element   using   the   quickSelect algorithm. 

Example 5.70:

fun getMedian2(arr: IntArray, size: Int): Int {

quickSelectUtil(arr, 0, size - 1, size / 2)

return arr[size / 2]

}

The Average-Case time complexity of this algorithm will be O(n) 

Find maxima in a bitonic list

Problem:  A bitonic list  comprises  an increasing  sequence  of  integers immediately followed  by  a decreasing sequence of integers. 
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First solution: Sequential search, traverse through the array and find a point at which the next value is less than the current value. This is the maxima and returns this value. 

Example 5.71:

fun searchBitonicArrayMax(arr: IntArray, size: Int): Int {

for (i in 0 until size - 2) {

if (arr[i] > arr[i + 1]) return arr[i]

}

println("error not a bitonic array")

return 0

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 10, 13, 20, 30, 8, 7, 6)

println(searchBitonicArrayMax(first, first.size))

}

Output:

30

Second solution: Binary search method, since the elements are sorted in some order, we should go for an algorithm similar to binary search. The steps are as follows:

1. Take two variables for storing start and end indexes. Variable start=0 and end=size-1 

2. Find the middle element of the array. 

3. See if the middle element is the maxima. If yes, return the middle element. 

4. Alternatively, if the middle element is in the increasing part, then we need to look at mid+1 and end. 

5. Alternatively, if the middle element is in the decreasing part, then we need to look at the start and mid-1. 

6. Repeat steps 2 to 5 until we get the maxima. 

Example 5.72:

fun searchBitonicArrayMax2(arr: IntArray, size: Int): Int {

var start = 0

var end = size - 1

var mid = (start + end) / 2

var maximaFound = 0

if (size < 3) {

println("error")

return 0

}

while (start <= end) {

mid = (start + end) / 2

if (arr[mid - 1] < arr[mid] && arr[mid + 1] < arr[mid]) { // maxima maximaFound = 1

break

} else if (arr[mid - 1] < arr[mid] && arr[mid] < arr[mid + 1]) { // 

increasing

start = mid + 1
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} else if (arr[mid - 1] > arr[mid] && arr[mid] > arr[mid + 1]) { // 

decreasing

end = mid - 1

} else {

break

}

}

if (maximaFound == 0) {

println("error not a bitonic array")

return 0

}

return arr[mid]

}

Note: - This algorithm works with strictly increasing then decreasing bitonic array. If there are repetitive values then this algorithm will fail. 

Search element in a bitonic list 

Problem:  A bitonic list  comprises  an increasing  sequence  of  integers immediately followed  by  a decreasing sequence of integers. Find an element in a bitonic list. 

Solution: To search an element in a bitonic list:

1. Find the index or maximum element in the array. By finding the end of increasing part of the array, using binary search. 

2. Once we have the maximum element, search the given value in increasing part of the array using binary search. 

3. If the value is not found in the increasing part, search the same value in the decreasing part of the array using binary search. 

Example 5.73:

fun searchBitonicArray(arr: IntArray, size: Int, key: Int): Int {

val max = findMaxBitonicArray(arr, size)

val k = binarySearch(arr, 0, max, key, true)

return if (k != -1) k else binarySearch(arr, max + 1, size - 1, key, false)

}

fun findMaxBitonicArray(arr: IntArray, size: Int): Int {

var start = 0

var end = size - 1

var mid: Int

if (size < 3) {

println("error")

return -1

}

while (start <= end) {

mid = (start + end) / 2

if (arr[mid - 1] < arr[mid] && arr[mid + 1] < arr[mid]) { // maxima return mid

} else if (arr[mid - 1] < arr[mid] && arr[mid] < arr[mid + 1]) { // 

increasing

start = mid + 1

} else if (arr[mid - 1] > arr[mid] && arr[mid] > arr[mid + 1]) { // 

decreasing
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end = mid - 1

} else {

break

}

}

println("error")

return -1

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 10, 13, 20, 30, 8, 7, 6)

println(searchBitonicArray(first, first.size, 7))

}

Output:

7

Occurrence counts in sorted List

Problem: Given a sorted list arr[] find the number of occurrences of a number. 

First solution:  Brute force, Traverse the array and in linear time we will get the occurrence count of the number. This is done using one loop. 

Time Complexity is O(n) and Space Complexity is O(1) 

Example 5.74:

fun findKeyCount(arr: IntArray, size: Int, key: Int): Int {

var count = 0

for (i in 0 until size) {

if (arr[i] == key) {

count++

}

}

return count

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 10, 13, 20, 30, 8, 7, 6)

println(findKeyCount(first, first.size, 6))

}

Output:

1

Second solution: Since we have a sorted list, we should think about some binary search. 

1. First, we should find the first occurrence of the key. 

2. Then we should find the last occurrence of the key. 

3. Take the difference between these two values and you will have the solution. 
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Example 5.75:

fun findFirstIndex(arr: IntArray, start: Int, end: Int, key: Int): Int {

val mid: Int

if (end < start) {

return -1

}

mid = (start + end) / 2

if (key == arr[mid] && (mid == start || arr[mid - 1] != key)) {

return mid

}

return if (key <= arr[mid]) {

findFirstIndex(arr, start, mid - 1, key)

} else {

findFirstIndex(arr, mid + 1, end, key)

}

}

fun findLastIndex(arr: IntArray, start: Int, end: Int, key: Int): Int {

if (end < start) {

return -1

}

val mid = (start + end) / 2

if (key == arr[mid] && (mid == end || arr[mid + 1] != key)) {

return mid

}

return if (key < arr[mid]) {

findLastIndex(arr, start, mid - 1, key)

} else {

findLastIndex(arr, mid + 1, end, key)

}

}

fun findKeyCount2(arr: IntArray, size: Int, key: Int): Int {

val firstIndex: Int

val lastIndex: Int

firstIndex = findFirstIndex(arr, 0, size - 1, key)

lastIndex = findLastIndex(arr, 0, size - 1, key)

return lastIndex - firstIndex + 1

}

Stock purchase-sell 

Problem: In a given list, in which nth element is the price of the stock on an nth day. You are asked to buy once and sell once, on what date you will be buying and at what date you will be selling to get maximum profit. 

Or

In a given list of numbers, you need to maximise the difference between two numbers, such that you can subtract the number, which appears before from the number that appears after it. 

First solution: Brute force; for each element in the array, find another element whose difference is maximum or for which profit is maximum. This is done using two loops, the first loop to select by date index and the second loop to find its selling date entry. 
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Example 5.76:

fun maxProfit(stocks: IntArray, size: Int): Int {

var maxProfit = 0

var buy = 0

var sell = 0

for (i in 0 until size - 1) {

for (j in i + 1 until size) {

if (maxProfit < stocks[j] - stocks[i]) {

maxProfit = stocks[j] - stocks[i]

buy = i

sell = j

}

}

}

println("Purchase day is " + buy + " at price " + stocks[buy]) println("Sell day is " + sell + " at price " + stocks[sell]) return maxProfit

}

// Testing code. 

fun main() {

val first = intArrayOf(10, 150, 6, 67, 61, 16, 86, 6, 67, 78, 150, 3, 28, 143) println("Profit is " + maxProfit(first, first.size))

}

Output:

Purchase day is 2 at price 6

Sell day is 10 at price 150

Profit is 144

Time Complexity is O(n^2) and Space Complexity is O(1) 

Second solution: Another clever solution is to keep track of the smallest value seen so far from the start. At each point, we can find the difference and keep track of the maximum profit. This is a linear solution. 

Time Complexity is O(n) time. Space Complexity for creating a count list is also O(1) Example 5.77:

fun maxProfit2(stocks: IntArray, size: Int): Int {

var buy = 0

var sell = 0

var curMin = 0

var maxProfit = 0

for (i in 0 until size) {

if (stocks[i] < stocks[curMin]) {

curMin = i

}

var currProfit = stocks[i] - stocks[curMin]

if (currProfit > maxProfit) {

buy = curMin

sell = i

maxProfit = currProfit

}

}

println("Purchase day is " + buy + " at price " + stocks[buy]) 128
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println("Sell day is " + sell + " at price " + stocks[sell]) return maxProfit

}

Find the median of two sorted Lists. 

Problem: Given two sorted lists. Find the median of the arrays if they are combined to form a bigger list.  

First solution: We need to Keep track of the index of both the arrays, say the indexes are i and j. 

Keep increasing the index of the array whichever has a smaller value. Use a counter to keep track of the elements that we have already traced. Once the count is equal to half of the combined length of two lists, we have our median. 

Time Complexity is O(n) and Space Complexity is O(1) 

Example 5.78:

fun findMedian(arrFirst: IntArray, sizeFirst: Int, arrSecond: IntArray, sizeSecond: Int): Int {

val medianIndex = (sizeFirst + sizeSecond + (sizeFirst + sizeSecond) % 2) / 2

// ceiling function. 

var i = 0

var j = 0

var count = 0

while (count < medianIndex - 1) {

if (i < sizeFirst - 1 && arrFirst[i] < arrSecond[j]) {

i++

} else {

j++

}

count++

}

return if(arrFirst[i] < arrSecond[j]) arrFirst[i] else arrSecond[j]

}

// Testing code. 

fun main() {

val first = intArrayOf(1, 5, 6, 6, 6, 6, 6, 6, 7, 8, 10, 13, 20, 30) val second = intArrayOf(1, 5, 6, 6, 6, 6, 6, 6, 7, 8, 10, 13, 20, 30) println(findMedian(first, first.size, second, second.size))

}

Output:

6

Search 01 List

Problem: In the given list of 0’s and 1’s in which all the 0’s come before 1’s. Write an algorithm to find the index of the first 1. 

Or

You are given an array which contains either 0 or 1, and they are in sorted order Ex. a [] = {0, 0, 0, 1, 1, 1, 1}, How will you count no of 1's and 0's? 

129

Chapter 5: Searching 

Problems in Searching

First solution: Linear Search, we can always find the index of the first 1 in the array using traversal. 

Time Complexity is O(n) and Space Complexity is O(1) 

Example 5.79:

fun search01(arr: IntArray, size: Int): Int {

for (i in 0 until size) if (arr[i] == 1) return i return -1

}

// Testing code. 

fun main() {

val first = intArrayOf(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)

println(search01(first, first.size))

}

Output:

8

Second solution:  Binary Search, since the array is sorted using binary search to find the desired index. 

Time Complexity is O(log(n)) and Space Complexity is O(1) 

Example 5.80:

fun binarySearch01(arr: IntArray, size: Int): Int {

return if (size == 1 && arr[0] == 1) 0

else binarySearch01Util(arr, 0, size - 1)

}

fun binarySearch01Util(arr: IntArray, start: Int, end: Int): Int {

if (end < start) {

return -1

}

val mid = (start + end) / 2

if (1 == arr[mid] && 0 == arr[mid - 1]) {

return mid

}

return if (0 == arr[mid]) binarySearch01Util(arr, mid + 1, end) else binarySearch01Util(arr, start, mid - 1)

}

Find the index of max value in a Rotated array

Problem: Given a sorted list S of N integer. S is rotated an unknown number of times. Find the index of the largest element in the array. 

First solution: Linear Search, we can always find the index of the first 1 in the array using traversal. 

Time Complexity is O(n) and Space Complexity is O(1) 

Example 5.81:

fun rotationMax(arr: IntArray, size: Int): Int {

for (i in 0 until size - 1)

if (arr[i] > arr[i + 1]) return arr[i]

return -1

}
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// Testing code. 

fun main() {

val first = intArrayOf(34, 56, 77, 1, 5, 6, 6, 8, 10, 20, 30, 34)

println(rotationMax(first, first.size))

}

Output:

77

Second solution:  Since the array is sorted, we can use a modified binary search to find the element. 

Time Complexity is O(log(n)) and Space Complexity is O(1) 

Example 5.82:

fun rotationMaxUtil(arr: IntArray, start: Int, end: Int): Int {

if (end <= start) {

return arr[start]

}

val mid = (start + end) / 2

if (arr[mid] > arr[mid + 1]) return arr[mid]

return if (arr[start] <= arr[mid]) rotationMaxUtil(arr,mid+1,end) else rotationMaxUtil(arr, start, mid - 1)

}

fun rotationMax2(arr: IntArray, size: Int): Int {

return rotationMaxUtil(arr, 0, size - 1)

}

Count Rotation

Problem: Given a rotated array, find the count of rotation. 

Solution: Find the index of the max value in the rotated array. (maxIndex + 1) % size is the number of rotations. 

Example 5.83:

fun countRotation(arr: IntArray, size: Int): Int {

val maxIndex = findRotationMaxUtil(arr, 0, size - 1)

return (maxIndex + 1) % size

}

fun findRotationMaxUtil(arr: IntArray, start: Int, end: Int): Int {

/* single element case. */

if (end <= start) return start

val mid = (start + end) / 2

if (arr[mid] > arr[mid + 1]) return mid

return if (arr[start] <= arr[mid]) findRotationMaxUtil(arr,mid+1,end) /* 

increasing part. */  

else findRotationMaxUtil(arr, start, mid - 1)

}

// Testing code. 

fun main() {

val first = intArrayOf(34, 56, 77, 1, 5, 6, 6, 8, 10, 20, 30, 34)

println(countRotation(first, first.size))

}
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Output:

3

Search in sorted rotated List

Problem: Given a sorted list S of N integer. S is rotated an unknown number of times. Find an element in the array. 

First solution: Linear Search, we can always find the value in the array using traversal. 

Time Complexity is O(n) and Space Complexity is O(1) 

Example 5.84:

fun searchRotateArray(arr: IntArray, size: Int, key: Int): Int {

for (i in 0 until size - 1) if (arr[i] == key) return i return -1

}

// Testing code. 

fun main() {

val first = intArrayOf(34,56,77,1,5,6,6,6,6,6,6,7,8,10,13,20,30)

println(searchRotateArray(first, first.size, 20))

}

Output:

15

Second solution:  Since the array is sorted, we can use a modified binary search to find the element. 

Time Complexity is O(log(n)) and Space Complexity is O(1) 

Example 5.85:

fun binarySearchRotateArrayUtil(arr: IntArray, start: Int, end: Int, key: Int): Int

{    if (end < start) {

return -1

}

val mid = (start + end) / 2

if (key == arr[mid]) {

return mid

}

return if (arr[mid] > arr[start]) {

if (arr[start] <= key && key < arr[mid]) {

binarySearchRotateArrayUtil(arr, start, mid - 1, key)

} else {

binarySearchRotateArrayUtil(arr, mid + 1, end, key)

}

} else {

if (arr[mid] < key && key <= arr[end]) {

binarySearchRotateArrayUtil(arr, mid + 1, end, key)

} else {

binarySearchRotateArrayUtil(arr, start, mid - 1, key)

}

}

}
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fun binarySearchRotateArray(arr: IntArray, size: Int, key: Int): Int {

return binarySearchRotateArrayUtil(arr, 0, size - 1, key)

}

Minimum Absolute Difference Adjacent Circular Array

Problem: Given an array of integers, find the minimum absolute difference of adjacent elements in this array, considering this is a circular array in which the last and first elements are also adjacent. 

Solution: Traverse the array and find the difference of the adjacent  elements,  and  use a modular operator to consider the first element and last element as adjacent. 

Example 5.86:

fun minAbsDiffAdjCircular(arr: IntArray, size: Int): Int {

var diff = 9999999

if (size < 2) return -1

for (i in 0 until size)

diff = Math.min(diff, Math.abs(arr[i] - arr[(i + 1) % size]))

return diff

}

// Testing code. 

fun main() {

val arr = intArrayOf(5, 29, 18, 51, 11)

println(minAbsDiffAdjCircular(arr, arr.size))

}

Output:

6

Transform List 

Problem: How would you swap elements of an array like [a1 a2 a3 a4 b1 b2 b3 b4] to convert it into

[a1 b1 a2 b2 a3 b3 a4 b4]? 

Solution:  

1. First swap elements in the middle pair

2. Next swap elements in the middle two pairs

3. Next swap elements in the middle three pairs 

4. Iterate n-1 steps. 

Example 5.87:

fun swapch(arr: CharArray, first: Int, second: Int) {

val temp = arr[first]

arr[first] = arr[second]

arr[second] = temp

}

fun transformArrayAB(arr: CharArray, size: Int) {

val N = size / 2

var i: Int = 1

var j: Int

133

Chapter 5: Searching 

Problems in Searching

while (i < N) {

j = 0

while (j < i) {

swapch(arr, N - i + 2 * j, N - i + 2 * j + 1)

j++

}

i++

}

}

// Testing code. 

fun main() {

val str: CharArray = "aaaabbbb".toCharArray()

transformArrayAB(str, str.size)

println(str)

}

Output:

abababab

Check if two Lists are permutation of each other 

Problem: In given two integer lists; You must check whether they are permutations of each other. 

First solution: Sorting; Sort all the elements of both the arrays and compare each element of both the arrays from beginning to end. If there is no mismatch, return true. Otherwise, false. 

Sorting algorithms takes O(n.log(n)) time and comparison takes O(n) time. 

Time Complexity is O(n.log(n)) and Space Complexity is O(1) 

Example 5.88:

fun checkPermutation(array1: CharArray, size1: Int, array2: CharArray, size2: Int): Boolean {

if (size1 != size2) {

return false

}

Arrays.sort(array1)

Arrays.sort(array2)

for (i in 0 until size1) {

if (array1[i] != array2[i]) {

return false

}

}

return true

}

// Testing code. 

fun main() {

val str1: CharArray = "aaaabbbb".toCharArray()


val str2: CharArray = "bbaaaabb".toCharArray()

println(checkPermutation(str1, str1.size, str2, str2.size))

}

Output:

true
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Second solution: Hash-Table (Assumption: No duplicates). 

1. Create a Hash-Table for all the elements of the first list. 

2. Traverse the other list from beginning to end and search for each element in the Hash-Table. 

3. If all the elements are found in, the Hash-Table returns true, otherwise returns false. 

Example 5.89:

fun checkPermutation2(arr1: CharArray, size1: Int, arr2: CharArray, size2: Int): Boolean {

if (size1 != size2) return false

val hm: HashMap<Char, Int> = HashMap<Char, Int>()

for (i in 0 until size1) {

if (hm.containsKey(arr1[i])) {

hm.put(arr1[i], hm.get(arr1[i])!! + 1)

} else hm.put(arr1[i], 1)

}

for (i in 0 until size2) {

if (hm.containsKey(arr2[i]) && hm.get(arr2[i]) != 0) {

hm.put(arr2[i], hm.get(arr2[i])!! - 1)

} else return false

}

return true

}

Hash-Table insert and find take constant time O(1) so the total time complexity of the algorithm is O(n) time. Space Complexity is also O(n) 

Time Complexity = O(n) (For creation of Hash-Table and look-up), 

Space Complexity = O(n) (For creation of Hash-Table). 

Third Solution: If they are permutations, then their length should be the same. Create a count[] array of   length   256(Different   characters   possible).   For   characters   of   the   first   string,   increment   its corresponding ASCII location. And for characters of the second string, decrement their corresponding ASCII location. If both the strings are permutations of each other, all the entries of the count[] array should be 0. 

Example 5.90:

fun checkPermutation3(array1: CharArray, size1: Int, array2: CharArray, size2: Int): Boolean {

if (size1 != size2) {

return false

}

val count = IntArray(256)

for (i in 0 until size1) {

count[array1[i].code]++

count[array2[i].code]--

}

for (i in 0 until size1) {

if (count[i] != 0) {

return false

}

}
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return true

}

Time complexity: O(n), where n is the number of characters in the text. 

Searching for an element in a 2d sorted array 

Problem: In a given 2-dimensional list. Each row and column is sorted in ascending order. How would you find an element in it? 

Solution: The algorithm works as:

1. Start with the element at the last column and the first row

2. If the element is the value we are looking for, return true. 

3. If the element is greater than the value we are looking for, go to the element in the previous column but in the same row. 

4. If the element is less than the value we are looking for, go to the element in the next row but in the same column. 

5. Return false, if the element is not found after reaching the element of the last row of the first column. Condition (row < r && column >= 0) is false. 

Example 5.91:

fun findElementIn2DArray(arr: Array<IntArray>, r: Int, c: Int, value: Int): Boolean

{    var row = 0

var column = c - 1

while (row < r && column >= 0) {

if (arr[row][column] == value) {

return true

} else if (arr[row][column] > value) {

column--

} else {

row++

}

}

return false

}

Time-Complexity O(N). 

Arithmetic progression

Problem:  Given an array of N integers, you need to find if array elements can form an Arithmetic progression. 

First solution: Arithmetic relations can be found only by sorting the elements. Then traversing that AP

exists. Time complexity will O(n.log(n)) for sorting

Example 5.92:

fun isAP(arr: IntArray, size: Int): Boolean {

if (size <= 1) return true

Arrays.sort(arr)

val diff = arr[1] - arr[0]
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for (i in 2 until size) {

if (arr[i] - arr[i - 1] != diff) return false

}

return true

}

// Testing code. 

fun main() {

val arr = intArrayOf(20, 25, 15, 5, 0, 10, 35, 30)

println(isAP(arr, arr.size))

}

Output:

true

Second solution: We can find the first and second-lowest elements of the array in a single traversal. 

By this, we can find the first value of AP and the increment value of AP. We traverse values in the input array and add them to the hashtable. Finally, we have the first element of AP and difference, so we can test that all the elements are in HashTable. 

Time complexity is O(n) and space complexity is O(n) for a hashtable. 

Example 5.93:

fun isAP2(arr: IntArray, size: Int): Boolean {

var first = 9999999

var second = 9999999

var value: Int

val hs: HashSet<Int> = HashSet<Int>()

for (i in 0 until size) {

if (arr[i] < first) {

second = first

first = arr[i]

} else if (arr[i] < second) second = arr[i]

}

val diff = second - first

for (i in 0 until size) {

if (hs.contains(arr[i])) return false

hs.add(arr[i])

}

for (i in 0 until size) {

value = first + i * diff

if (!hs.contains(value)) return false

}

return true

}

Third solution: We can solve this problem in O(n) time and O(1) space. We find the first and second-lowest elements of the array in a single traversal. Now we will traverse the array again and will put each element into its proper position by swapping. Index of each element will be (value – first) / diff. 

We will keep the count also so that we can find duplicate values too. 
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Example 5.94:

fun isAP3(arr: IntArray, size: Int): Boolean {

var first = 9999999

var second = 9999999

val count = IntArray(size)

for (i in 0 until size) {

if (arr[i] < first) {

second = first

first = arr[i]

} else if (arr[i] < second) second = arr[i]

}

val diff = second - first

for (i in 0 until size) {

var index = (arr[i] - first) / diff

if (index > size - 1 || count[index] != 0) return false count[index] = 1

}

for (i in 0 until size) {

if (count[i] != 1) return false

}

return true

}

Balance Point

Problem: Given an array, you need to find a balance point or balance index. An index is a balanced index if the element in the left of it and elements in the right of it have the same sum. 

Solution: Create two sets first and second. Sum all the elements from index 1 to size-1 in seconds. 

One by one add elements to the first set and remove them from the second set. 

Time complexity is O(n)

Example 5.95:

fun findBalancedPoint(arr: IntArray, size: Int): Int {

var first = 0

var second = 0

for (i in 1 until size) second += arr[i]

for (i in 0 until size) {

if (first == second) {

return i

}

if (i < size - 1) {

first += arr[i]

second -= arr[i + 1]

}

}

return -1

}

// Testing code. 

fun main() {

val arr = intArrayOf(-7, 1, 5, 2, -4, 3, 0)
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println(findBalancedPoint(arr, arr.size))

}

Output:

3

Find Floor and Ceil

Problem: Given a sorted array, you need to find the ceiling or floor of an input value.  A Ceil is the value in an array that is just greater than the given input value. A floor is a value in an array that is just smaller than the given input value. 

Solution: Since the array is sorted, the floor and ceiling can be found by binary search type algorithm. 

Time complexity will be O(log(n))  Using binary search we try to find the value if the value is found then it is floor and ceil both. If the value is not  found,  then we try to find the number which is just smaller than the given key for the floor. And will try to find the number which is just greater than the given key to find the ceil. 

Example 5.96:

fun findFloor(arr: IntArray, size: Int, value: Int): Int {

var start = 0

var stop = size - 1

var mid: Int

while (start <= stop) {

mid = (start + stop) / 2

/*

* search value is equal to arr[mid] value.. search value is greater than 

* mid index value and less than mid+1 index value. value is greater than

* arr[size-1] then floor is arr[size-1]

*/

if (arr[mid] == value || arr[mid] < value && (mid == size - 1 || arr[mid + 

1] > value)) return arr[mid] 

else if (arr[mid] < value) start = mid + 1 

else stop = mid - 1

}

return -1

}

fun findCeil(arr: IntArray, size: Int, value: Int): Int {

var start = 0

var stop = size - 1

var mid: Int

while (start <= stop) {

mid = (start + stop) / 2

// search value is equal to arr[mid] value.. search value is less than mid 

// indexvalue and greater than mid-1 index value. value is less than arr[0]

// then ceil is arr[0]

if (arr[mid] == value || arr[mid] > value && 

(mid == 0 || arr[mid - 1] < value)) return arr[mid] 

else if (arr[mid] < value) start = mid + 1 

else stop = mid - 1

}

return -1

}
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// Testing code. 

fun main() {

val arr = intArrayOf(2, 4, 8, 16)

println("Floor :  " + findFloor(arr, arr.size, 5))

println("Ceil :  " + findCeil(arr, arr.size, 5))

}

Output:

Floor :  4

Ceil :  8

Closest Number 

Problem:  Given a sorted array and a number. You need to find the element in the array which is closest to the given number. 

Solution: Since the array is sorted, we can perform a binary search. 

Example 5.97:

fun closestNumber(arr: IntArray, size: Int, num: Int): Int {

var start = 0

var stop = size - 1

var output = -1

var minDist = Int.MAX_VALUE

var mid: Int

while (start <= stop) {

mid = (start + stop) / 2

if (minDist > Math.abs(arr[mid] - num)) {

minDist = Math.abs(arr[mid] - num)

output = arr[mid]

}

if (arr[mid] == num) break 

else if (arr[mid] > num) stop = mid - 1 

else start = mid + 1

}

return output

}

// Testing code. 

fun main() {

val arr = intArrayOf(2, 4, 8, 16)

println(closestNumber(arr, arr.size, 9))

}

Output:

8

Frequency Counts

Problem:  Given an array of size N, which contain integers from 1 to N.  Elements can appear any number of times. Print frequency of all elements in the array also print the frequency of the missing elements as 0
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Input:  [1, 2, 2, 2, 1]

Output: (1 : 2) (2 : 3) 

First solution: Use a Hashtable to keep track of the value and its frequency. Traverse in the range and keep on printing the values. 

Example 5.98:

fun frequencyCounts(arr: IntArray, size: Int) {

val hm: HashMap<Int, Int> = HashMap<Int, Int>()

for (i in 0 until size) {

if (hm.containsKey(arr[i])) {

hm.put(arr[i], hm.get(arr[i])!! + 1)

} else {

hm.put(arr[i], 1)

}

}

for (key in hm.keys) print("(" + key + " : " + hm.get(key) + ") ")

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 2, 2, 1)

frequencyCounts(arr, arr.size)

}

Output:

(1 : 2) (2 : 3)

Second solution: Using sorting, we can sort the array first, then we can traverse the array and print the element and its frequency. 

Example 5.99:

fun frequencyCounts2(arr: IntArray, size: Int) {

Arrays.sort(arr)

var count = 1

for (i in 1 until size) {

if (arr[i] == arr[i - 1]) count++ else {

print("(" + arr[i - 1] + " : " + count + ") ") count = 1

}

}

print("(" + arr[size - 1] + " : " + count + ") ")

}

Third solution:  Using an auxiliary array, now since we have data in the range 1 to N, so  an extra auxiliary array can be used to keep track of frequency. While traversing the input array, we found a value V then its corresponding index in the auxiliary array will be (V-1), since array indexing starts from 0. 

Example 5.100:

fun frequencyCounts3(arr: IntArray, size: Int) {

val aux = IntArray(size + 1)

for (i in 0 until size) {

aux[arr[i]] += 1
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}

for (i in 0 until size + 1) {

if (aux[i] > 0) {

print("(" + i + " : " + aux[i] + ") ")

}

}

}

Fourth solution: Now solve this problem in linear time, without using any extra space. We have to look carefully to see if this problem provides us with extra information regarding the range of values from 1 to N. 

Traverse the input array if we find a value V, its corresponding index value in the array is (V - 1).  If the value at index (V-1) has a valid value in the range (1 to N), then we copy that value to our traversal index and then mark the value at index (V-1) as -1. If the value of the array at  index (V-1) is not in range, then we decrease it by 1. Now we can print the absolute value to the output. 

Example 5.101:

fun frequencyCounts4(arr: IntArray, size: Int) {

var index: Int

for (i in 0 until size) {

while (arr[i] > 0) {

index = arr[i] - 1

if (arr[index] > 0) {

arr[i] = arr[index]

arr[index] = -1

} else {

arr[index] -= 1

arr[i] = 0

}

}

}

for (i in 0 until size) if (arr[i] != 0) print("(" + (i + 1) + " : " + 

Math.abs(arr[i]) + ") ")

}

K Largest Elements 

Problem: Given an array of integers of size N, you need to print k largest elements in the array in the order in which they appear in the array. 

First solution: Sort the array and again find the kth largest element. Scan the array and print all the elements which have values greater than or equal to the kth largest element. 

Example 5.102:

fun kLargestElements(arrIn: IntArray, size: Int, k: Int) {

val arr = IntArray(size)

for (i in 0 until size) arr[i] = arrIn[i]

Arrays.sort(arr)

for (i in 0 until size) {

if (arrIn[i] >= arr[size - k]) {

print(arrIn[i].toString() + " ")

}
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}

}

// Testing code. 

fun main() {

val arr = intArrayOf(10, 50, 30, 60, 15)

kLargestElements(arr, arr.size, 2)

}

Output:

50 60 

Second solution:

First, copy the array into another array. Then using quick-select find the Kth elements in the array. 

Then scan the original array and print all the elements which have values greater than or equal to k. 

O(N) for quick-select and O(N) for a scan. 

Example 5.103:

fun kLargestElements2(arrIn: IntArray, size: Int, k: Int) {

val arr = IntArray(size)

for (i in 0 until size) arr[i] = arrIn[i]

quickSelectUtil(arr, 0, size - 1, size - k)

for (i in 0 until size) {

if (arrIn[i] >= arr[size - k]) {

print(arrIn[i].toString() + " ")

}

}

}

Note: Quick Select algorithms, closely related to quick sort, both of these algorithms we had seen in the sorting chapter. 

Note: There is a catch in the above solutions. The number of values printed may be more than K so make sure they are exactly k. 

Fix Point

Problem: Given a sorted array of integers, you need to find the fix point. Fix point is an index of an array in which the index and value are the same.  

First solution: Brute force approach, traverse the array to find a fixed point. Time complexity is O(n) Example 5.104 : linear search method 

fun fixPoint(arr: IntArray, size: Int): Int {

for (i in 0 until size) {

if (arr[i] == i) return i

} 

return -1 /* fix point not found so return invalid index */

}
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// Testing code. 

fun main() {

val arr = intArrayOf(-10, -2, 0, 3, 11, 12, 35, 51, 200)

println(fixPoint(arr, arr.size))

}

Output:

3

Second solution: Since the array is sorted, we should think about a binary sort algorithm. 

Example 5.105 : Binary search method

fun fixPoint2(arr: IntArray, size: Int): Int {

var low = 0

var high = size - 1

var mid: Int

while (low <= high) {

mid = (low + high) / 2

if (arr[mid] == mid) return mid 

else if (arr[mid] < mid) low = mid + 1 

else high = mid - 1

}

return -1 /* fix point not found so return invalid index */

}

Subarray Sums

Problem: Given an array of positive integers, you need to find if there is some range in the array such that if we add all the elements in that range, then it becomes equal to the given value. 

Solution: We will keep two indexes start and end indicating the start and end of the subarray whose sum we will compare with the given value. If the subarray sum is larger than the given value, then we will ignore the first element pointed by the start index. If the subarray sum is smaller than the given value, then we will include one more element to it. 

Example 5.106:

fun subArraySums(arr: IntArray, size: Int, value: Int) {

var start = 0

var end = 0

var sum = 0

while (start < size && end < size) {

if (sum < value) {

sum += arr[end]

end += 1

} else {

sum -= arr[start]

start += 1

}

if (sum == value) {

print("(" + start + " to " + (end - 1) + ") ")

}

}

}
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// Testing code. 

fun main() {

val arr = intArrayOf(15, 5, 5, 20, 10, 5, 5, 20, 10, 10)

subArraySums(arr, arr.size, 20)

println()

}

Output:

(0 to 1) (3 to 3) (4 to 6) (7 to 7) (8 to 9) 

Time complexity: O(n)

Maximum contiguous subarray sum

Problem: Given an array of positive and negative integers, find the contiguous subarray whose sum is maximum.. 

Solution: Kadane’s Algorithm, traverse the array and keep track of the sum of all positive contiguous segments of the array. For each element, we will find if adding this element to the subarray sum will give a positive or a negative value. If the  subarray  sum becomes  negative,  then we will ignore this element and make the subarray sum 0. Repeat this process till all the elements are observed. We will keep track of the maximum and finally return it. 

Example 5.107: find maximum contiguous subarray sum. 

fun maxConSub(arr: IntArray, size: Int): Int {

var currMax = 0

var maximum = 0

for (i in 0 until size) {

currMax += arr[i]

if (currMax < 0) currMax = 0

if (maximum < currMax) maximum = currMax

}

println(maximum)

return maximum

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, -3, 4, 5, -10, 6, 7)

maxConSub(arr, arr.size)

}

Output:

13

Maximum contiguous subarray sum (A-B)

Problem:  Given an array A of integers and  an array  B of integers, find  the maximum  contiguous subarray in A, such that it does not contain elements in B. 

First Solution: Kadane’s Algorithm is modified by using a HashTable to solve this problem. All the elements of B in the hashtable and while making the sub-array keep track that those values are not in the hash-table. 
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Example 5.108:

fun maxConSubArr(A: IntArray, sizeA: Int, B: IntArray, sizeB: Int): Int {

var currMax = 0

var maximum = 0

val hs: HashSet<Int> = HashSet<Int>()

for (i in 0 until sizeB) hs.add(B[i])

for (i in 0 until sizeA) if (hs.contains(A[i])) currMax = 0 else {

currMax = currMax + A[i]

if (currMax < 0) currMax = 0

if (maximum < currMax) maximum = currMax

}

println(maximum)

return maximum

}

// Testing code. 

fun main() {

val arr2 = intArrayOf(1, 2, 3, 4, 5, -10, 6, 7, 3)

val arr3 = intArrayOf(1, 3)

maxConSubArr(arr2, arr2.size, arr3, arr3.size)

}

Output:

13

Time complexity: O(M + N). 

Second Solution: Sort array B. Binary search is used to find if some element is present in B. 

Example 5.109:

fun maxConSubArr2(A: IntArray, sizeA: Int, B: IntArray, sizeB: Int): Int {

Arrays.sort(B)

var currMax = 0

var maximum = 0

for (i in 0 until sizeA) {

if (binarySearch(B, sizeB, A[i])) currMax = 0 else {

currMax = currMax + A[i]

if (currMax < 0) currMax = 0

if (maximum < currMax) maximum = currMax

}

}

println(maximum)

return maximum

}

Time complexity: O(MlogM + NlogM)  For sorting and then for searching each element. 

Rain Water 

Problem: Given an array of N non-negative integers. Each element of the array represents a bar of histogram. Considering that each bar is one unit wide. You need to find how much water can be accommodated in the structure. 
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For example: [4, 0, 1, 5] will contain 7 units of water. 

Solution: This problem can be solved very easily if we can find how much water a particular bar of unit width can contain. Water contained at ith index = minimum (maximum length in left, maximum length in right) – length ith bar. 

Example 5.110:

fun rainWater(arr: IntArray, size: Int): Int {

val leftHigh = IntArray(size)

val rightHigh = IntArray(size)

var max = arr[0]

leftHigh[0] = arr[0]

for (i in 1 until size) {

if (max < arr[i]) max = arr[i]

leftHigh[i] = max

}

max = arr[size - 1]

rightHigh[size - 1] = arr[size - 1]

for (i in size - 2 downTo 0) {

if (max < arr[i]) max = arr[i]

rightHigh[i] = max

}

var water = 0

for (i in 0 until size) water += Math.min(leftHigh[i], rightHigh[i]) - arr[i]

println("Water : $water")

return water

}

// Testing code. 

fun main() {

val arr = intArrayOf(0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1)

rainWater(arr, arr.size)

}

Output:

Water: 6

Time complexity: O(N)

Further optimization on the above problem in a single  iteration,  the water is calculated along with leftMax and rightMax calculation. 
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Example 5.111:

fun rainWater2(arr: IntArray, size: Int): Int {

var water = 0

var leftMax = 0

var rightMax = 0

var left = 0

var right = size - 1

while (left <= right) {

if (arr[left] < arr[right]) {

if (arr[left] > leftMax) leftMax = arr[left] else water += leftMax - 

arr[left]

left += 1

} else {

if (arr[right] > rightMax) rightMax = arr[right] else water += rightMax

- arr[right]

right -= 1

}

}

println("Water : $water")

return water

}

Array Index Max Diff 

Problem: Given an array arr[], find maximum distance of index j and i, such that arr[j] > arr[i]

First solution: Brute force, for each index call it i find index j such that arr[j] > arr[i]. We will need two loops, one to select index i and another to traverse index i+1 to the size of the array. 

Example 5.112:

fun arrayIndexMaxDiff(arr: IntArray, size: Int): Int {

var maxDiff = -1

var j: Int

for (i in 0 until size) {

j = size - 1

while (i < j) {

if (arr[i] <= arr[j]) {

maxDiff = Math.max(maxDiff, j - i)

break

}

j -= 1

}

}

return maxDiff

}

// Testing code. 

fun main() {

val arr = intArrayOf(33, 9, 10, 3, 2, 60, 30, 33, 1)

println("arrayIndexMaxDiff : " + arrayIndexMaxDiff(arr, arr.size))

}

Output:

ArrayIndexMaxDiff : 7
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Time Complexity: O(n^2), Space Complexity: O(1). 

Second solution:   Pre-processing and creating an auxiliary array. Array rightMax[] will store the maximum value to the right of the given index. Start traversing the input arrays arr[] for each index i we try to find the maximum value of index j such arr[i] <= rightMax[j]. For all values of i and j, till arr[i] <=

rightMax[j] we will increase the value of j. When arr[i] > rightMax[j] then increases the value of i since we will not get any other solution from the current position of i. Also, with the increase in the value of i, we don’t need to reconsider the value of j less than the current value of j as we are searching for a better solution. If some better solution  exists,  then it must be with some bigger value of j. In each iteration, either i is increasing or j is increasing, so we will get a solution in linear time. 

Example 5.113:

fun arrayIndexMaxDiff2(arr: IntArray, size: Int): Int {

val rightMax = IntArray(size)

rightMax[size - 1] = arr[size - 1]

for (i in size - 2 downTo 0) rightMax[i] = Math.max(rightMax[i + 1], arr[i]) var maxDiff = -1

var i = 0

var j = 1

while (i < size && j < size) {

if (arr[i] <= rightMax[j]) {

if (i < j) maxDiff = Math.max(maxDiff, j - i)

j = j + 1

} else {

i = i + 1

}

}

return maxDiff

}

Time Complexity: O(n), Space Complexity: O(n). 

Find the largest sum contiguous subarray. 

Problem: Given an array of positive and negative integers, find a contiguous sub-array. Whose sum (sum of elements) is maximum. 

Example 5.114:

fun maxSubArraySum(a: IntArray, size: Int): Int {

var maxSoFar = 0

var maxEndingHere = 0

for (i in 0 until size) {

maxEndingHere = maxEndingHere + a[i]

if (maxEndingHere < 0) {

maxEndingHere = 0

}

if (maxSoFar < maxEndingHere) {

maxSoFar = maxEndingHere

}

}
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return maxSoFar

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, -2, 3, 4, -4, 6, -4, 3, 2)

println("Max sub array sum : " + maxSubArraySum(arr, 9))

}

Output:

Max sub array sum : 10

Analysis:

1. Maximum subarray in an Array is found in a single scan. We keep track of the global maximum sum so far and the maximum sum, which include the current element. 

2. When we find that the global maximum value so far is less than the maximum value containing the current value, we update the global maximum value. 

3. Finally, return the global maximum value. 

4. Time complexity is O(n). 

Max Path Sum

Problem: Given two arrays in increasing order, you need to find the maximum sum by choosing a few consecutive elements from one array then a few elements from another array. The element switching can happen at transition points only when the element value is the same in both arrays. 

arr1 = [12, 13, 18, 20, 22, 26, 70]

arr2 = [11, 15, 18, 19, 20, 26, 30, 31]

Max Sum elements: 11, 15, 18, 19, 20, 22, 26, 70

Max Sum: 201

Solution: We will traverse both the array arr1[] and arr2[] using index variables i and j respectively. We will store the sum of arr1[] elements in the sum1 variable and store the sum of arr2[] elements in sum2

till we reach the transition point. At the transition point, we will keep the bigger value among sum1 and sum2 and add it to the final result. At the transition point, both sum1 and sum2 are reset to 0. We will follow this process till both the arrays are traversed completely. 

Example 5.115:

fun maxPathSum(arr1: IntArray, size1: Int, arr2: IntArray, size2: Int): Int {

var i = 0

var j = 0

var result = 0

var sum1 = 0

var sum2 = 0

while (i < size1 && j < size2) {

if (arr1[i] < arr2[j]) {

sum1 += arr1[i]

i += 1

} else if (arr1[i] > arr2[j]) {

sum2 += arr2[j]

j += 1
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} else {

result += Math.max(sum1, sum2)

result = result + arr1[i]

sum1 = 0

sum2 = 0

i += 1

j += 1

}

}

while (i < size1) {

sum1 += arr1[i]

i += 1

}

while (j < size2) {

sum2 += arr2[j]

j += 1

}

result += Math.max(sum1, sum2)

return result

}

// Testing code. 

fun main() {

val arr1 = intArrayOf(12, 13, 18, 20, 22, 26, 70)

val arr2 = intArrayOf(11, 15, 18, 19, 20, 26, 30, 31)

println("Max Path Sum : " + maxPathSum(arr1, arr1.size, arr2, arr2.size))

}

Output:

Max Path Sum : 201

Time Complexity: O(n), Space Complexity: O(n). 

Exercise

1. In a given list of n elements, write an algorithm to find three elements in an array whose sum is a given value. 

Hint: Try to do this problem using a brute force approach. Then try to apply the sorting approach along with a brute force approach. Time Complexity is O(n^2) 

2. In a given list of –ve and +ve numbers, write a program to separate –ve numbers from the +ve numbers. 

3. In a given list of 1’s and 0’s, write a program to separate 0’s from 1’s. 

4. In a given list of 0’s, 1’s and 2’s, write a program to separate 0’s, 1’s and 2’s. 

5. In   a   given   list   whose   elements   are   monotonically   increasing   with   both   negative   and   positive numbers. Write an algorithm to find the point at which the list becomes positive. 
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6. In a sorted list, find a number. If found then return the index if not found then insert it into the array. 

7. Find max and min in the sorted & rotated list. 

8. Find kth Smallest Element in the Union of Two Sorted Lists

9. Find the 2nd largest number in an array with minimum comparisons. Suppose you are given an unsorted list of n distinct elements. How will you identify the  second-largest  element with the minimum number of comparisons? 

Hint: 

➢ First solution: Find the largest element in the array. Then replace the last element with the largest element. Then search the second-largest element in the remaining n-1 elements. 

The total number of comparisons is: (n-1) + (n-2) 

➢ Second solution: Sort the array and then give the (n-1) element. This approach is still more inefficient. 

➢ Third solution: Using priority queue / Heap; in this approach, we will study the heap chapter. 

Use the buildHeap() function to build a heap from the array. This is done in n comparisons. 

Arr[0] is the largest number, and the greater among arr[1] and arr[2] is the second largest. 

➢ The total number of comparisons are: (n-1) + 1 = n

10. In a given list of n elements, we need to find the first repeated element. Which of the following methods will work for us? If a method works, then implement it. 

Hint: When the order in which elements appear in input is important, we cannot use sorting. 

➢ Brute force exhaustive search. 

➢ Use Hash-Table to keep an index of the elements and use the second scan to find the element. 

➢ Sorting the elements. 

➢ If we know the range of the element then we can use counting techniques. 
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CHAPTER 6: LINKED LIST

Introduction

Let us suppose we have an array that contains the following five elements 1, 2, 4, 5, 6. We want to insert a new element with the value “3” in-between “2” and “4”. In the array, we cannot do it so easily. 

We need to create another array that is long enough to store the current values and one more space for “3”. Then we need to copy these elements in the new space. This copy operation is inefficient. To remove this inefficiency in addition, a new data linked list is used. 

Linked List

The linked list is a list of items, called nodes. Nodes have two parts, the value part and the link part. 

The value part is used to store the data. The value part of the node can be a basic data type as an integer, or it can be some other data type like a structure. The link part is a pointer, which is used to store the addresses of the next element in the list. 

The various parts of the linked list: 

1 Head: Head is a pointer that holds the address of the first node in the linked list. 

2 Nodes: Items in the linked list are called nodes. 

3 Value: The data that is stored in each node of the linked list. 

4 Link: The link part of the node is used to store the reference of another node. We will use “next” 

and “prev” to store addresses of next or previous nodes. 

Types of Linked list

There are different types of linked lists. The main difference among them is how their nodes are connected. We will discuss singly linked list, doubly linked list, circular linked list and doubly circular linked list. 
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Singly Linked List

A singly linked list is made up of nodes. Each node has two parts, the first part is the data and the second part is the link that has a reference to the next node in the linked list. The link portion of the last node contains the value null. The beginning of the list is called “Head” which points to the first node of the linked list. 

Note: In a singly linked list we can only traverse in a single direction as each node has reference to the next node. 

Let us look at the Node. The Value part of the node is of type integer, but it can be some other data type. The link part of the node is named as Link in the below diagram. 

Example 6.1: Singly Linked List class

class LinkedList {



class Node(var value: Int, var next: Node? = null ) private var head: Node? = null

private var size = 0

val isEmpty: Boolean

get() = size == 0

fun size(): Int {

return size

}

fun peek(): Int {

if (isEmpty) throw IllegalStateException("EmptyListException") return head!!.value

}

// Other Methods. 

}

The various basic operations that we can perform on linked lists: 

1. Insert an element in the list, this operation is used to create a linked list. 

2. Print various elements of the list. 

3. Search for an element in the list. 

4. Delete an element from the list. 

5. Reverse a linked list. 
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For a singly linked list, we should always test these three test cases: 

1. Zero element / Empty linked list. 

2. One element / Single node case. 

3. General case. 

One node and zero node cases are used to test boundary cases. It is always mandatory to take care of these cases before submitting code. 

Insert element in a linked list

An element can be inserted into a linked list in various orders. Some example cases are mentioned below:

1 Insertion of an element at the start of linked list

2 Insertion of an element at the end of linked list

3 Insertion of an element at the Nth position in a linked list

4 Insert element in sorted order in a linked list

Insert an element at the Head

Problem: Insert an element at the start of the linked list. 
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Example 6.2:

fun addHead(value: Int) {

head = Node(value, head)

size++

}

Analysis:

1. We need to create a new node with the value passed to the function as an argument. 

2. The next pointer of the new node will point to the head of the linked list or null in case the list is empty. 

3. The newly created node will become the head of the linked list. 

Time Complexity: O(1). 

Insertion of an element at the end

Problem: Insertion of an element at the end of linked list

Example 6.3:

fun addTail(value: Int) {

val newNode = Node(value, null)

var curr = head

if (head == null) {

head = newNode

}

while (curr!!.next != null) {

curr = curr.next

}

curr.next = newNode

}

Analysis: 

1. A new node is created, and the value is stored inside it and stores the null value to its next pointer. 

2. If the list is empty, then this new node will become the head of the linked list. 

3. If the list is not empty, then we must traverse to the end of the list. 

4. Finally, a new node is added to the end of the list. 

Time Complexity: O(n). 

Note: This operation is inefficient as each time you want to insert an element you have to traverse to the end of the list. Therefore, the complexity of the creation of the list is O(n^2). So to make it efficient, we must keep track of the last element by keeping a tail pointer. Therefore, if it is required to insert an element at the end of the linked list, then we will keep track of the tail reference also. 
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Traversing Linked List

Problem: Print various elements of a linked list

Example 6.4:

fun print() {

var temp = head

while (temp != null) {

print(temp.value.toString() + " ")

temp = temp.next

}

println()

}

Analysis: We will traverse the list and print the value stored in nodes. The list is traversed by making head pointing to its next. 

Time Complexity: O(n). 

Testing code for list creation and printing the list. 

Example 6.5: Test code for linked list creation, adding value at head and printing elements. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

println("Size : " + ll.size())

println("Size : " + ll.findLength())

println("Is empty : " + ll.isEmpty)

println("Peek : " + ll.peek())

}

Output:

3 2 1 

Size : 3

Is empty : false

Peek : 3

Analysis: 

➢ A new instance of the linked list is created. Elements are added to the start of the list by calling the addHead() function. 

➢ Finally, all the content of the list is printed to screen by calling the print() function. 

Sorted Insert

Problem: Insert an element in sorted order in the linked list given head pointer 157

[image: Image 35]

[image: Image 36]

[image: Image 37]

Chapter 6: Linked List

Singly Linked List

Example 6.6:

fun sortedInsert(value: Int) {

val newNode = Node(value, null)

var curr = head

if (curr == null || curr.value > value) {

newNode.next = head

head = newNode

return

}

while (curr!!.next != null && curr.next!!.value < value) {

curr = curr.next

}

newNode.next = curr.next

curr.next = newNode

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.print()

}

Output:

1 1 2 2 3 3
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Analysis: 

1. A new empty node of the linked list is created. And initialised by storing an argument value into its value. Next of the node will point to null. 

2. If the list is empty or if the value stored in the first node is greater than the newly created node value. Then this newly created node will be added to the start of the list. And the head needs to be modified. 

3. In all other cases, we iterate through the list to find the proper position where the node can be inserted to keep the list sorted. 

4. Finally, the node will be added to the list. 

Time Complexity: O(n). 

Search Element in a Linked-List

Problem: Search element in a linked list. Given a head pointer and value. Returns 1 if the value found in the list, else returns 0. 

Example 6.7:

fun search(data: Int): Boolean {

var temp = head

while (temp != null) {

if (temp.value == data) return true

temp = temp.next

}

return false

}

Analysis: 

1. We will iterate through the list using a loop. 

2. The value of each element of the list is compared with the given value. If a value is found, then the function will return true. 

3. If the value is not found, then false will be returned from the function in the end. 

Time Complexity: O(n). 

Note: Search in a single linked list can only be done in one direction. Since all elements in the list have reference to the next item in the list. Therefore, the traversal of linked lists is linear. 

Delete the First element in a linked list. 

Problem: Delete element at the head of the linked list. 
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Example 6.8:

fun removeHead(): Int {

if (isEmpty) throw IllegalStateException("EmptyListException") val value = head!!.value

head = head!!.next

size--

return value

}

Analysis: 

➢ First, we need to check if the list is already empty. If empty, then return. 

➢ If the list is not empty, then the head of the list will store the reference of the next node of the current head. 

Time Complexity: O(1). 

Delete a node from the linked list given its value. 

Problem: Delete the first node whose value is equal to the given value. 
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Example 6.9:

fun deleteNode(delValue: Int): Boolean {

if (isEmpty) throw IllegalStateException("EmptyListException") if (delValue == head!!.value) {

head = head!!.next

size--

return true

}

var temp = head    

while (temp!!.next != null) {

if (temp.next!!.value == delValue) {

temp.next = temp.next!!.next

size--

return true

}

temp = temp.next

}

return false

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(1)

ll.addHead(2)

ll.addHead(1)

ll.addHead(3)
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ll.print()

println("deleteNode : " + ll.deleteNode(2))

ll.print()

}

Output:

3 1 2 1 2 1 

deleteNode : true

3 1 1 2 1 

Analysis: 

1. There are two cases, the first case when the node that needs to be deleted is the first node and the second case when the node that needs to be deleted is not the first node in the list. When the node that needs to be deleted is the first node, then the head of the linked list will be modified. In other cases, it will not modify. 

2. First, we check if the first node is the node with the value we are searching for, then the head of the list will point to the next reference of the current head. 

3. In other cases, we will traverse the link list using a while loop and try to find the node that needs to be deleted. If the node is found then, we will point its previous node next points to the node next to the node we want to remove. 

Time Complexity: O(n). 

Delete all occurrences of a particular value in the linked list. 

Problem: Delete all the nodes whose value is equal to the given value. 

Example 6.10:

fun deleteNodes(delValue: Int): Boolean {

var currNode = head

var nextNode: Node? 

var found = false

while (currNode != null && currNode.value == delValue) { /* first node */

head = currNode.next

currNode = head

found = true

}

while (currNode != null) {

nextNode = currNode.next

if (nextNode != null && nextNode.value == delValue) {

currNode.next = nextNode.next

found = true

} else {

currNode = nextNode

}

}

return found

}
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// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(1)

ll.addHead(1)

ll.addHead(3)

ll.print()

println("deleteNode : " + ll.deleteNode(2))

ll.print()

println("deleteNodes : " + ll.deleteNodes(1))

ll.print()

}

Output:

3 1 1 2 1 

deleteNodes : true

3 2 

Analysis: 

➢ In the first while loop, we will remove all the nodes that are at the front of the list, which have values equal to the value we want to delete. In this, we need to update the head of the list. 

➢ In the second while loop, we will remove all the nodes that are not at the beginning of the list and have a value equal to the value we want to delete. Remember that we are not returning; we traverse till the end of the list. 

Time Complexity: O(n). 

Delete a single linked list 

Problem: Given a linked list, delete all the elements of list. 

Example 6.11:

fun deleteList() {

head = null

size = 0

}

Analysis: We just need to mark the head of the list as null. The list nodes will be freed by the garbage collector. Also set the size of list as 0. 

Time Complexity: O(n). 

Reverse a linked list. 

Problem: Reverse a singly linked List iteratively using three Pointers 163
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Example 6.12:

fun reverse() {

var curr = head

var prev: Node? = null

var next: Node? 

while (curr != null) {

next = curr.next

curr.next = prev

prev = curr

curr = next

}

head = prev

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.reverse()

ll.print()

}

Output:

3 2 1 

1 2 3 

Analysis: The list is iterated. Make the next variable point to the next of the current node. Make the next of the current node point to the previous node. Make prev as the current node and curr as the next node. 

Time Complexity: O(n). 

Recursively Reverse a singly linked list

Problem: Reverse a singly linked list using Recursion. 

Example 6.13:

fun reverseRecurseUtil(currentNode: Node?, nextNode: Node?): Node? {

if (currentNode == null) return null

if (currentNode.next == null) {

currentNode.next = nextNode

return currentNode

}

val ret = reverseRecurseUtil(currentNode.next, currentNode)

currentNode.next = nextNode

return ret

}
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fun reverseRecurse() {

head = reverseRecurseUtil(head, null)

}

Analysis: 

1. ReverseRecurse() function will call a reverseRecurseUtil() function to reverse the list and the pointer returned by the reverseRecurseUtil will be the head of the reversed list. 

2. The current node will point to the nextNode that is the previous node of the old list. 

Time Complexity: O(n). 

Note: A linked list can be reversed using two solutions, the First solution is by using three-pointers. 

The Second solution is using recursion; both are linear solutions, but a three-pointer solution is more efficient. 

Remove duplicates from the linked list

Problem: Remove duplicate values from the linked list. The linked list is sorted, and it contains some duplicate values, you need to remove those duplicate values. (You can create the required linked list using SortedInsert() function)

Example 6.14:

public void removeDuplicate() {

Node curr = head; 

while (curr != null) {

if (curr.next != null && curr.value == curr.next.value) {

curr.next = curr.next.next; 

} else {

curr = curr.next; 

}

}

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.print()

ll.removeDuplicate()

ll.print()

}

Output:

1 1 2 2 3 3 

1 2 3
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Analysis:  Traverse the list, if there is a node whose value is equal to its next node’s value, then the current node next will point to the next of next node. The whole list is processed, and the repeated values are removed from the list. 

Time Complexity: O(n). 

Copy List Reversed

Problem: Copy the content of the linked list in another linked list in reverse order. If the original linked list contains elements in order 1,2,3,4, the new list should contain the elements in order 4,3,2,1. 

Example 6.15:

fun copyListReversed(): LinkedList {

var tempNode: Node? = null

var tempNode2: Node? 

var curr = head

while (curr != null) {

tempNode2 = Node(curr.value, tempNode)

curr = curr.next

tempNode = tempNode2

}

val ll2 = LinkedList()

ll2.head = tempNode

return ll2

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val l3 = ll.copyListReversed()

l3.print()

}

Output:

3 2 1 

1 2 3 

Analysis: Traverse the list and add the node value to the head of the new list. Since the list is traversed in the forward direction and each node is added to the head of the new list, the new list is formed in reverse of the original list. 

Time Complexity: O(n). 

Copy the content of the given linked list into another linked list

Problem: Copy the content of the given linked list into another linked list. If the original linked list contains elements in order 1,2,3,4, the new list should contain the elements in order 1,2,3,4. 
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Example 6.16:

fun copyList(): LinkedList? {

val ll2 = LinkedList()

if (head == null)

return ll2



var curr: Node? = head        

var headNode: Node? = Node(curr!!.value, null)

var tailNode: Node? = headNode

curr = curr.next

while (curr != null) {

var tempNode = Node(curr.value, null)

tailNode!!.next = tempNode

tailNode = tempNode

curr = curr.next

}



ll2.head = headNode

return ll2

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val l2 = ll.copyList()

l2.print()

}

Output:

3 2 1 

3 2 1 

Analysis: Traverse the list and add the node’s value to the new list, but this time always at the end of the list. Another pointer tailNode is used to keep track of the end of the list. Since the list is traversed in the forward direction and each node’s value is added to the end of the new list. Therefore, the formed list is the same as the given list. 

Time Complexity: O(n). 

Compare List

Problem: Compare the values of two linked lists given their head pointers. 

Example 6.17: Recursive Solution 

fun compareList(ll: LinkedList): Boolean {

return compareList(head, ll.head)

}
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fun compareList(head1: Node?, head2: Node?): Boolean {

if (head1 == null && head2 == null) 

return true 

else if (head1 == null || head2 == null || head1.value != head2.value) return false 

else 

return compareList(head1.next, head2.next)

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val l2 = ll.copyList()

l2.print()

println("compareList : " + ll.compareList(l2))

}

Output:

3 2 1 

3 2 1 

compareList: true

Analysis: 

1. The list is compared recursively. Moreover, if we reach the end of the list and both the lists are null. 

Then both the lists are equal and so return true. 

2. The list is compared recursively. If either one of the lists is empty or the value of corresponding nodes is unequal, then the lists are not equal and the compareList() function will return false. 

3. Recursively calls a compare list function for the next node of the current nodes. 

Example 6.18: Iterative Solution

fun compareList2(ll2: LinkedList?): Boolean {

var head1 = head

var head2 = ll2!!.head

while (head1 != null && head2 != null) {

if (head1.value != head2.value) 

return false

head1 = head1.next

head2 = head2.next

}

return if (head1 == null && head2 == null) true else false

}

Analysis: 

1. Traverse both the list in a loop and at any point if the values of both the nodes of the list are not equal then return false that they are not equal lists. 
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2. If in the end, both the lists are completely traversed then return true else return false if any one of them have some untraversed elements. 

Time Complexity: Both solutions have the same O(n) time complexity. 

Find Length

Problem: Find the length of the given linked list. 

Example 6.19:

fun findLength(): Int {

var curr = head

var count = 0

while (curr != null) {

count++

curr = curr.next

}

return count

}

Analysis: The length of the linked list is found by traversing the list until we reach the end of the list. 

Time Complexity: O(n). 

Nth Node from Beginning

Problem: Find Nth node from the beginning

Example 6.20:

fun nthNodeFromBeginning(index: Int): Int {

if (index > size() || index < 1) 

return Int.MAX_VALUE

var count = 0

var curr = head

while (curr != null && count < index - 1) {

count++

curr = curr.next

}

return curr!!.value

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

println(ll.nthNodeFromBeginning(2))

}
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Output:

2

Analysis: Nth node can be found by traversing the list N-1 number of times and then returning the node. If the list does not have N elements, then the function returns null. 

Time Complexity: O(K) if we are searching the kth node from start. 

Nth Node from End

Problem: Find Nth node from the end in a singly linked list. 

Example 6.21:

fun nthNodeFromEnd(index: Int): Int {

val size = findLength()

val startIndex: Int

if (size != 0 && size < index) {

return Int.MAX_VALUE

}

startIndex = size - index + 1

return nthNodeFromBeginning(startIndex)

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

println(ll.nthNodeFromEnd(2))

}

Output:

2

Analysis: First, find the length of the list, then the nth node from the end will be (length – nth +1) node from the beginning. 

Time Complexity: O(n). 

Example 6.22:

fun nthNodeFromEnd2(index: Int): Int {

var count = 1

var forward = head

var curr = head

while (forward != null && count <= index) {

count++

forward = forward.next

}
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if (forward == null) 

return Int.MAX_VALUE

while (forward != null) {

forward = forward.next

curr = curr!!.next

}

return curr!!.value

}

Analysis: The second solution is to use two pointers one is N steps/nodes ahead of the other when the forward pointer reaches the end of the list then the backward pointer will point to the desired node. 

Time Complexity: O(n). 

Loop Detect

Problem: Find if there is a loop in a linked list. If there is a loop, then return true and if there is no loop found, then return false. 

Solutions: There are many ways to find if there is a loop in a linked list: First solution: User some map or hash-table

1. Traverse through the list. 

2. If the current node is not there in the Hash-Table, then insert it into the Hash-Table. 

3. If the current node is already in the Hashtable then we have a loop. 

Example 6.23:

fun loopDetect(): Boolean {

var curr = head

val hs: HashSet<Node> = HashSet<Node>()

while (curr != null) {

if (hs.contains(curr)) {

println("loop found")

return true

}

hs.add(curr)

curr = curr.next

}

println("loop not found")

return false

}
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Second solution: Slow pointer and fast pointer approach (SPFP), we will use two pointers, one will move 2 steps at a time and another will move 1 step at a time. If there is a loop, then both will meet at a point. 

Example 6.24:

fun loopDetect2(): Boolean {

var slowPtr: Node? 

var fastPtr: Node? 

fastPtr = head

slowPtr = fastPtr

while (fastPtr!!.next != null && fastPtr.next!!.next != null) {

slowPtr = slowPtr!!.next

fastPtr = fastPtr.next!!.next

if (slowPtr === fastPtr) {

println("loop found")

return true

}

}

println("loop not found")

return false

}

Analysis: 

➢ The list is traversed with two pointers, one is a slow pointer and another is a fast pointer. The slow pointer always moves one step. A fast pointer always moves two steps. If there is no loop, then control will come out of the while loop. So, return false. 

➢ If there is a loop, then there comes a point in a loop where the fast pointer will come and try to pass a slow pointer, and they will meet at a point. When this point arrives, we come to know that there is a loop in the list. So, return true. 

Time Complexity: O(n). 
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Third solution: Reverse list loop detect approach, if there is a loop in a linked list, then the reverse list function will give the head of the original list as the head of the new list. 

Example 6.25: Find if there is a loop in a linked list. Use a reverse list approach. 

fun reverseListLoopDetect(): Boolean {

val tempHead = head

reverse()

if (tempHead === head) {

reverse()

println("loop found")

return true

} else {

reverse()

println("loop not found")

return false

}

}

Analysis: 

1. Store pointer of the head of the list in a temp variable. 

2. Reverse the list 

3. Compare the reversed list head pointer to the current list head pointer. 

4. If the head of the reversed list and the original list are the same, then reverse the list back and return true. 

5. If the head of the reversed list and the original list are not the same, then reverse the list back and return false. Which means there is no loop. 

Time Complexity: O(n). 

Note: Both SPFP and Reverse List approaches are linear, but still in the SPFP approach, we do not require modification of the linked list, so it is preferred. 

Loop Type Detect

Problem: Find if there is a loop in a linked list. If there is no loop, then return 0, if there is loop return 1, if the list is circular then 2. Use a slow pointer fast pointer approach. 

Solution: Modifying the above two-pointer solution. If the loop is not found, then there is no loop. If the loop is found then there are two cases: first, the loop is at the start of the list or second, the loop is at some other node other than the start. We will add one more check to see if the fast pointer is passing through the head node, this will give us the check for the circular list loop case or the start of the list loop case. 
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Example 6.26:

fun loopTypeDetect(): Int {

var slowPtr: Node? 

var fastPtr: Node? 

fastPtr = head

slowPtr = fastPtr

while (fastPtr!!.next != null && fastPtr.next!!.next != null) {

if (head === fastPtr.next || head === fastPtr.next!!.next) {

println("circular list loop found")

return 2

}

slowPtr = slowPtr!!.next

fastPtr = fastPtr.next!!.next

if (slowPtr === fastPtr) {

println("loop found")

return 1

}

}

println("loop not found")

return 0

}

Time Complexity: O(n). 

Remove Loop

Problem: Given there is a loop in the linked list remove the loop. 

Solution: 

1. Loop through the list by two pointers, one fast pointer and one slow pointer. A fast pointer jumps two nodes at a time and a slow pointer jumps one node at a time. The point where these two pointers intersect is a point in the loop. 

2. If that intersection point is the head of the list, this is a circular list case, and you need to again traverse through the list and make the node before the head point to null. 

3. In the other case, you need to use two pointer variables: one starts from the head and another starts   from   the   intersection   point.   They   both   will   meet   at   the   point   of   the   loop.   (You   can mathematically prove it ;) ) Make the next pointer of the node before the intersection point as null. 

Example 6.27:

fun loopPointDetect(): Node? {

var slowPtr: Node? 

var fastPtr: Node? 

fastPtr = head

slowPtr = fastPtr

while (fastPtr!!.next != null && fastPtr.next!!.next != null) {

slowPtr = slowPtr!!.next

fastPtr = fastPtr.next!!.next

if (slowPtr === fastPtr) {

return slowPtr
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}

}

return null

}

fun removeLoop() {

val loopPoint : Node? = loopPointDetect() ?: return

var firstPtr = head

if (loopPoint === head) {

while (firstPtr!!.next !== head) firstPtr = firstPtr!!.next

firstPtr!!.next = null

return

}

var secondPtr : Node?= loopPoint

while (firstPtr!!.next !== secondPtr!!.next) {

firstPtr = firstPtr!!.next

secondPtr = secondPtr!!.next

}

secondPtr!!.next = null

}

// Testing code. 

fun makeLoop() {

var temp = head

while (temp != null) {

if (temp.next == null) {

temp.next = head

return

}

temp = temp.next

}

}

// Testing code. 

fun main() {

val ll = LinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.makeLoop()

ll.loopDetect()

ll.loopTypeDetect()

ll.removeLoop()

ll.loopDetect()

}

Output:

3 2 1 

loop found

circular list loop found

loop not found

Time Complexity: O(n), all operations are linear. 
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Find Intersection

Problem: In a given two-linked list that meets at some point, find that intersection point. 

Solution: Find the length of both lists. Find the difference in length of both lists. Increment the longer list by diff steps, and then increment both the lists and get the intersection point. 

Example 6.28:

fun findIntersection(lst2: LinkedList): Node? {

val head2 = lst2.head

var l1 = 0

var l2 = 0

var tempHead = head

var tempHead2 = head2

while (tempHead != null) {

l1++

tempHead = tempHead.next

}

while (tempHead2 != null) {

l2++

tempHead2 = tempHead2.next

}

var diff: Int

tempHead = head

tempHead2 = head2

if (l1 < l2) {

val temp = tempHead

tempHead = tempHead2

tempHead2 = temp

diff = l2 - l1

} else {

diff = l1 - l2

}

while (diff > 0) {

tempHead = tempHead!!.next

diff--

}

while (tempHead !== tempHead2) {

tempHead = tempHead!!.next

tempHead2 = tempHead2!!.next

}

return tempHead

}

176

Chapter 6: Linked List

Singly Linked List

Time Complexity: O(n). 

Adding two polynomials using Linked List

Problem: Given two polynomial numbers represented by a linked list with nodes containing coefficient and power. Write a function that adds these lists by adding the coefficients which have the same powers. 

6x^2 + 5x^1 + 4  +  3x^3 + 2x^1 + 1  => 3x^3 + 6x^2 + 7x^1 + 5

Solution: We will traverse both the lists p1 and p2, there are three cases in which if p1 is null or p1

power is lower than p2 then we will create an another node with p2 power and coefficient add then add it to p1. If p2 is null or p2 power is lower than p1 then we will traverse p1 to next of p1. If p1 and p2

both are not null and their power of the element is the same, then add their coefficient and traverse both of them to their next node. 

Example 6.29:

class Polynomial internal constructor(coeffs: IntArray? = null, pows: IntArray? = 

null, size: Int = 0) {

class Node internal constructor(var coeff: Int, var pow: Int, var next: Node? =

null)

var head: Node? = null

var tail: Node? = null

init {

for (i in 0 until size) {

var temp = Node(coeffs!![i], pows!![i])

if (head == null) {

tail = temp

head = tail

} else {

tail!!.next = temp

tail = tail!!.next

}

}

}

fun add(poly2: Polynomial): Polynomial {

var p1 = head

var p2 = poly2.head

var temp: Node? = null

val poly = Polynomial()

while (p1 != null || p2 != null) {

if (p1 == null || (p2 != null && p1.pow < p2.pow)) {

temp = Node(p2!!.coeff, p2.pow)

p2 = p2.next

} else if (p2 == null || p1.pow > p2.pow) {

temp = Node(p1.coeff, p1.pow)

p1 = p1.next

} else if (p1.pow == p2.pow) {

temp = Node(p1.coeff + p2.coeff, p1.pow)

p1 = p1.next

p2 = p2.next

}
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if (poly.head == null) {

poly.tail = temp

poly.head = poly.tail

} else {

poly.tail!!.next = temp

poly.tail = poly.tail!!.next

}

}

return poly

}

fun print() {

var curr = head

while (curr != null) {

print(curr.coeff.toString() + "x^" + curr.pow)

if (curr.next != null) print(" + ")

curr = curr.next

}

println()

}

}

// Testing code. 

fun main() {

val c1 = intArrayOf(6, 5, 4)

val p1 = intArrayOf(2, 1, 0)

val s1 = c1.size

val first = Polynomial(c1, p1, s1)

first.print()

val c2 = intArrayOf(3, 2, 1)

val p2 = intArrayOf(3, 1, 0)

val s2 = c2.size

val second = Polynomial(c2, p2, s2)

second.print()

val sum = first.add(second)

sum.print()

}

Output:

6x^2 + 5x^1 + 4x^0

3x^3 + 2x^1 + 1x^0

3x^3 + 6x^2 + 7x^1 + 5x^0

Doubly Linked List

A Doubly Linked list is made up of nodes. Each node in a doubly-linked list is made up of three parts, the first part is data and the other two are references to other nodes of the linked list. These references are called prev and next. The previous pointer of the node will point to the node before it, and the next pointer will point to the node next to the given node. The beginning of the list is called “Head” which points to the first node of the linked list. 

Note: In a doubly-linked list we can traverse in both directions as we have reference to both previous and next nodes. 
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Let us look at the Node.  The value part of the node is of type integer, but it can be of some other data type. The two link pointers are prev and next. 

Example 6.30: Doubly Linked List node struct. 

class DoublyLinkedList {

private class Node(val value: Int, var next: Node?, var prev: Node?) private var head: Node? = null

private var tail: Node? = null

private var size = 0

val isEmpty: Boolean

get() = size == 0



fun size(): Int {

return size

}

/* Other methods */

}

Basic operations of Linked List

The basic operation of a linked list requires traversing a linked list. Various operations that we can perform on linked lists, many of these operations require list traversal: 

1. Insert an element in the list, this operation is used to create a linked list. 

2. Print various elements of the list. 

3. Search for an element in the list. 

4. Delete an element from the list. 

5. Reverse a linked list. 

Search in a doubly linked list can only be done in one direction. Since all elements in the list have reference to the next item in the list. Therefore, the traversal of linked lists is linear. 

In the doubly linked list, below are a few cases that we need to keep in mind while coding: 1. Zero element case (head will be modified)

2. One element case (head can be modified)

3. The first element (head can be modified)

4. General case
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Note: Any program that is likely to change head pointer is to be passed as a double reference, which is pointing to head pointer. 

Search List

Problem: Search a value in a linked list. 

Solution: Traverse the list, same as done in the singly linked list. 

Delete List

Problem: Free all elements of the linked list

Solution: Same as done in singly-linked lists.  

Print list

Problem: Print all the elements of the linked list. 

Solution: Traverse the list and print the value of each node in the doubly linked list is the same as done in the singly linked list. 

Find Length

Problem: Find the number of elements in a linked list. 

Solution: Traverse the list and find its length in a doubly-linked list is the same as done in a singly linked list. 

Compare Lists

Problem: Compare two linked lists. 

Solution:  Traverse both the lists and compare in doubly linked lists is the same as done in  singly-linked lists. 

Insert at Head

Problem: Insert node at the start of the linked list. 
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Example 6.31:

fun addHead(value: Int) {

var newNode = Node(value, null, null)

if (size == 0) {

head = newNode

tail = head

} else {

head!!.prev = newNode

newNode.next = head

head = newNode

}

size++

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

println("size : " + ll.size())

println("isEmpty : " + ll.isEmpty)

}

Output:

3 2 1 

size : 3

isEmpty : false 

Analysis: Inserting in a doubly-linked list is similar to inserting in a singly linked list. 

1. Create a node and assign null to the prev pointer of the node. 

2. If the list is empty, then the tail and head will point to the new node. 

3. If the list is not empty, then the prev of the head will point to newNode and the next of newNode will point to head. Then the head will be modified to point to newNode. 
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Time Complexity: O(1). 

Sorted Insert

Problem: Insert elements in the linked list in sorted order. 

Example 6.32: Sorted insert increasing order. 

fun sortedInsert(value: Int) {

val temp = Node(value, null, null)

var curr = head

if (curr == null) { // first element

head = temp

tail = temp

return

}

if (head!!.value > value) { // at the beginning

temp.next = head

head!!.prev = temp

head = temp

return

}
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while (curr!!.next != null && curr.next!!.value < value) { // traversal curr = curr.next

}

if (curr.next == null) { // at the end

tail = temp

temp.prev = curr

curr.next = temp

} else { // all other

temp.next = curr.next

temp.prev = curr

curr.next = temp

temp.next!!.prev = temp

}

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.print()

}

Output:

1 2 3 

Analysis: 

1. We need to consider only the element case first. In this case, both head and tail will modify. 

2. Then, we need to consider the case when the head will be modified when a new node is added to the beginning of the list. 

3. Then, we need to consider general cases

4. Finally, we need to consider the case when the tail will be modified. 

Time Complexity: O(n). 

Remove Head 

Problem: Remove the head node of the linked list. 

Example 6.33:

fun removeHead(): Int {

if (isEmpty) throw IllegalStateException("EmptyListException") val value = head!!.value

head = head!!.next

if (head == null) 

tail = null 

else 

head!!.prev = null

size--

return value

}

183

[image: Image 57]

[image: Image 58]

[image: Image 59]

Chapter 6: Linked List

Doubly Linked List

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeHead()

ll.print()

}

Output:

3 2 1 

2 1 

Analysis: 

1. If the list is empty, then we do not do anything. 

2. The Head will point to the next of the head. If now the head is not null, then its prev will point to null. 

3. Update the list so that its head will point to the second node. 

Time Complexity: O(1). 

Delete a node 

Problem: Delete node with the given value in a linked list
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Example 6.34:

fun removeNode(key: Int): Boolean {

if (isEmpty) throw IllegalStateException("EmptyListException") // empty list var curr : Node? = head

if (curr!!.value == key) { // head is the node with value key. 

head = head!!.next

size--

if (head != null) 

head!!.prev = null 

else 

tail = null // only one element in list. 

return true

}

while (curr!!.next != null) {

if (curr.next!!.value == key) {

curr.next = curr.next!!.next

if (curr.next == null) // last element case. 

tail = curr 

else 

curr.next!!.prev = curr

size--

return true

}

curr = curr.next

}

return false

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeNode(2)

ll.print()

}

Output:

3 2 1 

3 1 

Analysis: Traverse the list and find the node that needs to be removed. Then remove it and adjust the next pointer of the node before it and the prev pointer of the node next to it. 
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Time Complexity: O(n). 

Remove Duplicate

Problem: Consider the list is sorted and remove the repeated value nodes of the list. 

Example 6.35:

fun removeDuplicate() {

var curr = head

while (curr != null) {

if (curr.next != null && curr.value == curr.next!!.value) {

curr.next = curr.next!!.next

if (curr.next != null) curr.next!!.prev = curr else tail = curr

} else {

curr = curr.next

}

}

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.sortedInsert(1)

ll.sortedInsert(2)

ll.sortedInsert(3)

ll.print()

ll.removeDuplicate()

ll.print()

}

Output:

1 1 2 2 3 3 

1 2 3 

Analysis: 

1. Head can never be modified. 

2. Find the node that has the same value as the previous node. Remove this node by pointer adjustment for it. 

Time Complexity: O(n). 

Reverse a doubly linked List iteratively

Problem: Reverse elements of doubly linked list iteratively. 

Example 6.36:

fun reverseList() {

var curr = head

var tempNode: Node? 

while (curr != null) {

tempNode = curr.next
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curr.next = curr.prev

curr.prev = tempNode

if (curr.prev == null) {

tail = head

head = curr

return

}

curr = curr.prev

}

return

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.reverseList()

ll.print()

}

Output:

3 2 1 

1 2 3 

Analysis: Traverse the list. Swap the next and prev. Then traverse to the direction curr. Prev, which is next before the swap. If you reach the end of the list, then set head and tail. 

Time Complexity: O(n). 

Copy List Reversed

Problem: Copy the content of the list into another list in reverse order. 

Example 6.37:

fun copyListReversed(): DoublyLinkedList {

val dll = DoublyLinkedList()

var curr = head

while (curr != null) {

dll.addHead(curr.value)

curr = curr.next

}

return dll

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()
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val l3 = ll.copyListReversed()

l3.print()

}

Output:

3 2 1 

1 2 3

Analysis: 

1. Traverse through the list  and copy  the  value  of the nodes into  another list by calling the addHead() function. 

2. Since the new nodes are added to the head of the list, the new list formed has nodes ordered reversed, thereby making a reverse list. 

Time Complexity: O(n). 

Copy List

Problem: Copy the content of the list into another in the same order. 

Example 6.38:

fun copyList(): DoublyLinkedList {

val dll = DoublyLinkedList()

var curr = head

while (curr != null) {

dll.addTail(curr.value)

curr = curr.next

}

return dll

}

// Testing code. 

fun main() {

val ll = DoublyLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val l2 = ll.copyList()

l2.print()

}

Output:

3 2 1 

3 2 1

Analysis: 

1. Traverse through the list  and copy  the  value  of the nodes into  another list by calling the addTail() function. 

2. Since the new nodes are added to the tail of the list, the new list formed has nodes ordered the same as the original list. 

Time Complexity: O(n). 
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Circular Linked List

A circular linked list is made up of nodes. Each node has two parts, the first part is the data and the second part is the link that has a reference to the next node in the linked list. The link portion of the last node contains the address of the first node. A circular linked list is like a singly linked list, except that the last node points to the first node of the list. 

Note: In a circular linked list, we can insert at the end and remove nodes at the head in constant time. 

These two operations efficiencies make it appropriate for use as a queue. 

Example 6.39: Circular Linked List node. 

class CircularLinkedList {

private class Node(val value: Int, var next: Node?) private var tail: Node? = null

private var size = 0

val isEmpty: Boolean

get() = size == 0



fun size(): Int {

return size

}

fun peek(): Int {

if (isEmpty) throw IllegalStateException("EmptyListException") return tail!!.next!!.value

}

/* Other methods */

}

Analysis: In the circular linked list, nodes are just like a singly linked list. The last element node next always points to the first node of the list. 

Insert element in front

Problem: Add an element to the head of the circular linked list. 
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Example 6.40:

fun addHead(value: Int) {

val temp = Node(value, null)

if (isEmpty) {

tail = temp

temp.next = temp

} else {

temp.next = tail!!.next

tail!!.next = temp

}

size++

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

}

Output:

3 2 1

Analysis: 

1. First, we create a node with a given value and its next pointing to null. 

2. If the list is empty, then the tail of the list will point to it. In addition, the next node will point to itself

3. If the list is not empty, then the next of the new nodes will be next to the tail. In addition, the tail next will start pointing to the new node. 

4. Thus, the new node is added to the head of the list. 

5. The demo program creates an instance of CircularLinkedList. Then add some value to it and finally print the content of the list. 

Time Complexity: O(1). 

Print the content of the list

Problem: Print all the elements of a circular linked list. 
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Example 6.41:

fun print() {

if (isEmpty) {

println("Empty List.")

return

}

var temp = tail!!.next

while (temp !== tail) {

print(temp!!.value.toString() + " ")

temp = temp.next

}

println(temp!!.value)

}

Analysis: In a circular list, the end of the list is not there, so we cannot check with null. In place of null, the tail is used to check the end of the list. 

Time Complexity: O(n). 

Insert an element at the end

Problem: Insert an element at the end of the circular linked list. 
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Example 6.42:

fun addTail(value: Int) {

val temp = Node(value, null)

if (isEmpty) {

tail = temp

temp.next = temp

} else {

temp.next = tail!!.next

tail!!.next = temp

tail = temp

}

size++

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addTail(1)

ll.addTail(2)

ll.addTail(3)

ll.print()

}

Output:

1 2 3

Analysis: Adding nodes at the end is the same as adding at the beginning. We just need to modify the tail pointer in place of the head pointer. 

Time Complexity: O(1). 

Search element in the list

Problem: Search value in a circular linked list. 

Example 6.43:

fun search(data: Int): Boolean {

var temp = tail

for (i in 0 until size) {
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if (temp!!.value == data) 

return true

temp = temp.next

}

return false

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

println(ll.search(2))

}

Output:

true

Analysis: Iterate through the list to find if the value is there or not. 

Time Complexity: O(n). 

Remove element in the front

Problem: Remove the first element of the linked list. 

Example 6.44:

fun removeHead(): Int {

if (isEmpty) throw IllegalStateException("EmptyListException") val value = tail!!.next!!.value

if (tail === tail!!.next) 

tail = null 

else 

tail!!.next = tail!!.next!!.next

size--

return value

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeHead()

ll.print()

} Output:

3 2 1

2 1
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Analysis: 

1. If the list is empty, then return. 

2. If the next node of the tail is the same as the tail, then it is a single node case. Mark tail as null. 

3. If it is not a single node case, then point the tail node next to the second node from the head. 

Time Complexity: O(1). 

Remove a node given its value

Problem: Delete a node with a given value in a circular linked list Example 6.45:

fun removeNode(key: Int): Boolean {

if (isEmpty) throw IllegalStateException("EmptyListException") var curr = tail!!.next

val head = tail!!.next

if (curr!!.value == key) { // head and single node case. 

if (curr === curr.next) // single node case

tail = null 

else  // head case

tail!!.next = tail!!.next!!.next

return true

}

var prev = curr

curr = curr.next

while (curr !== head) {

if (curr!!.value == key) {
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if (curr === tail) 

tail = prev

prev!!.next = curr.next

return true

}

prev = curr

curr = curr.next

}

return false

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeNode(2)

ll.print()

}

Output:

3 2 1

3 1

Analysis: Find the node that needs to be removed. The only difference is that while traversing the list, the end of the list is tracked by the tail pointer in place of null. If the node that needs to be removed is other than the tail node, then the tail node pointer is not modified. If the node that needs to be removed is a tail node, then the tail node pointer of the list will be modified. 

Time Complexity: O(n). 

Delete List

Problem: Delete a circular linked list. 

Example 6.46:

fun deleteList() {

tail = null

size = 0

}

Analysis: The tail of the list is marked as null. The various nodes of list will be free using garbage collection. 

Time Complexity: O(n). 

Copy circular linked-list reversed

Problem: Copy a circular linked list in reversed order. 

Solution: A new empty circular list is created. The given circular list is traversed and all its elements value is added to the new list by calling the addHead() function. This will create a reverse list. 
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Example 6.47:

fun copyListReversed(): CircularLinkedList {

val cl = CircularLinkedList()

if (tail == null) {

return cl

}

var curr = tail!!.next

val head = curr

if (curr != null) {

cl.addHead(curr.value)

curr = curr.next

}

while (curr !== head) {

cl.addHead(curr!!.value)

curr = curr.next

}

return cl

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val ll3 = ll.copyListReversed()

ll3.print()

}

Output:

3 2 1

1 2 3

Time Complexity: O(n). 

Copy circular linked list

Problem: Copy a circular linked list. 

Solution: A new empty circular linked list is created. The input list is traversed and the value of its various elements are added to the new list by calling the addTail() function. By doing this, a copy of the given list is created. 

Example 6.48:

fun copyList(): CircularLinkedList {

val cl = CircularLinkedList()

if (tail == null) {

return cl

}

var curr = tail!!.next

val head = curr

if (curr != null) {

cl.addTail(curr.value)

curr = curr.next

}
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while (curr !== head) {

cl.addTail(curr!!.value)

curr = curr.next

}

return cl

}

// Testing code. 

fun main() {

val ll = CircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

val ll2 = ll.copyList()

ll2.print()

}

Output:

3 2 1

3 2 1

Time Complexity: O(n). 

Doubly Circular list

A Doubly Circular Linked list is made up of nodes. Each node in a doubly-linked list is made up of three parts, the first part is data and the other two are references to other nodes of the linked list.  These references are called prev and next. The previous pointer of the node will point to the node before the current node, and the next pointer will point to the node next to the current node. The beginning of the list is called “Head” which points to the first node of the linked list. The prev of the first node points to the last node. The next of the last nodes points to the first node. 

In the doubly linked list, we have the following cases: 

1 Zero element case. 

2 Only element. 

3 General case

4 Avoid using recursion solutions, it makes life harder

Example 6.49: Doubly Circular Linked List class. 

class DoublyCircularLinkedList {

private class Node(val value: Int, var next: Node?, var prev: Node?) private var head: Node? = null

private var tail: Node? = null

private var size = 0
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val isEmpty: Boolean

get() = size == 0



fun size(): Int {

return size

}

/* Other methods */

}

Analysis: The node of the doubly circular linked list is the same as the node of the doubly linked list. 

The only difference is that the previous pointer of the first node points to the last node of the list, and the next pointer of the last node points to the first node of the list. 

Delete List

Problem: Free a linked list. 

Solution: Delete list is the same as given in the circular linked list. 

Search Value

Problem: Search a value in a doubly circular linked list. 

Solution: The algorithm for searching a value in a doubly circular linked list is the same as a circular linked list. 

Print List 

Problem: Print all the elements of the linked list. 

Solution: The algorithm to print the content of the doubly circular list is the same as given in a circular linked list. 

Insert Node at head

Problem: Insert value at the front of the list. 

Example 6.50:

fun addHead(value: Int) {

val newNode = Node(value, null, null)

if (size == 0) {

head = newNode

tail = head

newNode.next = newNode

newNode.prev = newNode

} else {

newNode.next = head

newNode.prev = head!!.prev

head!!.prev = newNode

newNode.prev!!.next = newNode

head = newNode

}

size++

}
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// Testing code. 

fun main() {

val ll = DoublyCircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

println(ll.size())

println(ll.isEmpty)

}

Output:

3 2 1 

size : 3

false

Analysis: 

1. A new node is created and if the list is empty then head and tail will point to it. The newly created newNode next and prev also point to newNode. 

2. If the list is not empty, then the pointers are adjusted and a new node is added to the front of the list. Only the head needs to be changed in this case. 

3. Size of the list has increased by one. 

Time Complexity: O(1). 

Insert Node at the tail

Problem: Insert value at the end of a linked list. 

Example 6.51:

fun addTail(value: Int) {

val newNode = Node(value, null, null)

if (size == 0) {

tail = newNode

head = tail

newNode.next = newNode

newNode.prev = newNode

} else {

newNode.next = tail!!.next

newNode.prev = tail

tail!!.next = newNode

newNode.next!!.prev = newNode

tail = newNode

}

size++

}

// Testing code. 

fun main() {

val ll = DoublyCircularLinkedList()

ll.addTail(1)

ll.addTail(2)

ll.addTail(3)

ll.print()

}
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Output:

1 2 3

Analysis: 

1. A new node is created and if the list is empty then head and tail will point to it. The newly created newNode’s next and prev also point to newNode. 

2. If the list is not empty, then the pointers are adjusted and a new node is added to the end of the list. Only the tail needs to be changed in this case. 

3. The size of the list has increased by one. 

Time Complexity: O(1). 

Remove Head node

Problem: Remove node at the head of a doubly circular linked list 

Example 6.52:

fun removeHead(): Int {

if (size == 0) throw IllegalStateException("EmptyListException") val value = head!!.value

size--

if (size == 0) {

head = null

tail = null

return value

}

val next = head!!.next

next!!.prev = tail

tail!!.next = next

head = next

return value

}

// Testing code. 

fun main() {

val ll = DoublyCircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeHead()

ll.print()

}

Output:

3 2 1

2 1

Analysis:  Remove nodes in a doubly circular linked list is just the same as removing nodes in a circular linked list. Just a few extra pointers need to be adjusted. 

Time Complexity: O(1). 
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Remove Tail node

Problem: Remove the tail node of a linked list. 

Example 6.53:

fun removeTail(): Int {

if (size == 0) throw IllegalStateException("EmptyListException") val value = tail!!.value

size--

if (size == 0) {

head = null

tail = null

return value

}

val prev = tail!!.prev

prev!!.next = head

head!!.prev = prev

tail = prev

return value

}

// Testing code. 

fun main() {

val ll = DoublyCircularLinkedList()

ll.addHead(1)

ll.addHead(2)

ll.addHead(3)

ll.print()

ll.removeTail()

ll.print()

}

Output:

3 2 1

3 2

Analysis: In case of empty list return. In the case of a single node case, the head and tail will store null. In other cases, the next of the second last node will point to the head, the previous of the head will point to the second last node. 

Time Complexity: O(1). 

Skip List

The worst case search time for a linked list is O(n). Even if the list elements are sorted then also we can only linearly traverse the list. On the other hand if we have a sorted array, we can apply the Binary Search method for searching by reducing the search space by half at each comparison. By using Skip List we can get a similar benefit. We create multiple layers so that we can skip multiple nodes. 
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The lowest layer of the skip list is a commonly sorted linked list, and the higher layers of the skip list contain less and less elements. The higher layers are like an "express train" where the many stops are skipped. And the lowest layer is like a “Local train” which will stop at each and every station. 

Definition: The skip list is a probabilistic data structure which uses probability to build multiple layers over a sorted linked list. Each additional layer of links contains fewer elements, but no new elements. 

Skip List Basic Operations are: Search, Insert and Delete. 

1. Search : The search operation is used to search a particular node in a skip list. 

function Search(list, key)

p = top-left node in list

while (p.below != null)       //Scan down

p = p.below

while (key >= p.next)      //Scan forward

p = p.next

return p

2. Insertion : It is used to add a new node to a particular location in a specific situation. 

function Insert(list, key, value)

// Create update array

local update[0...MaxLevel+1]

x = list.header

// Populate update array to find 

// the position of the new node at each level. 

for i = (list.level - 1) downto 0

while x.forward[i] != Null and x.forward[i].key < key x = x.forward[i]

update[i] = x

// Key already present so just update value. 

if x.forward[0] != Null and x.forward[0].key = key

x.forward[0].value = value

return; 

// Level of the new node is created. If level is increased then 

// header will be the start of a new level list. 

lvl = randomLevel()
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if lvl > list.level

for i = list.level to (lvl - 1)

update[i] = list.header

list.level = lvl

// New nodes are created and linked at each level. 

x = makeNode(key, value, lvl)

for i = 0 to lvl

x.forward[i] = update[i].forward[i]

update[i].forward[i] = x

3. Deletion : It is used to delete a node in a specific situation. 

function Delete(list, key)

local update[0..MaxLevel+1]

x = list.header

for i = (list.level - 1) downto 0 do

while x.forward[i] != Null and x.forward[i].key < key x = x.forward[i]

update[i] = x

x = x.forward[0]

if x.key = key

for i = 0 to list.level-1

if update[i].forward[i] ≠ x 

break

update[i].forward[i] = x.forward[i]

free(x)

while list.level > 0 and list.header.forward[list.level] = Null list.level = list.level - 1

Average Case

Worst Case

Search 

O(log(n))

O(n)

Insert

O(log(n))

O(n)

Delete

O(log(n))

O(n)

Uses of Linked List

Applications of Linked List are:

1. Used to implement various data structures like Stack, Queue, Hashtable, Graph etc. 

2. Next and Previous function in photo viewer. Doubly linked list is used in photo viewers. We can go from the current picture to previous or next. 

3. Next and Previous track in music player. A doubly circular linked list is used in the music player. 

We can play the previous or next song. And once the whole list of songs is played, it starts again at the beginning. 
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1 Insert an element at the kth position from the start of the linked list. Return true if success and if the list is not long enough, then return -1. 

Hint: Take a pointer of head and then advance it by K steps forward, and inserts the node. 

2 Insert an element at the kth position from the end of the linked list. Return true if success and if the list is not long enough, then return -1. 

Hint: Take a pointer to the head and then advance it by K steps forward.  Take another pointer and then advance both simultaneously, so that when the first pointer reaches the end of a linked list, then the second pointer is at the point where you need to insert the node. 

3 Consider there is a loop in a linked list, write a program to remove the loop if there is a loop in this linked list. 

4 In the above SearchList program return, the count of how many instances of the same value are found else if the value is not found then return 0. For example, if the value passed is “4”. 

The elements in the list are 1,2,4,3 & 4. The program should return 2. 

Hint: In place of return true in the above program, increment a counter and then return its value. 

5 Given two linked list head-pointers, they meet at some point and need to find the point of intersection. However, in place of the end of both the linked list to be a null pointer, there is a loop. 

6 If a linked list having a loop is given. Count the number of nodes in the linked list 7 We were supposed to write the complete code for the addition of polynomials using Linked Lists. This takes time if you do not have it by heart, so revise it well. 

8 In given two linked lists. We must find whether the data in one is reverse that of data in another. 

No extra space should be used, and traverse the linked lists only once. 

9 Find the middle element in a singly linked list. Tell the complexity of your solution. 

Hint:- First solution: Find the length of the linked list. Then find the middle element and return it. 

Second solution: Use two pointers, one will move fast and another will move slow, make sure you handle border cases properly. (Even length and odd length linked list cases.) 10 Print list in reverse order. 

11 In a huge linked list, you are given a pointer to some middle node. Write a program to remove this node. 
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Hint:  Copy the values of the next node to the current node. Then remove the next node. 

12 In a linked list, you are given a pointer to some middle node and node next to it. Write a program to remove this middle node. 

Hint:  Copy the values of the next node to the current node. Then remove the next node. 

13 Given a special list, whose nodes have  an extra  pointer random which  points  to some other node in the linked list. Create another list that is a copy of the given list. Also, make sure that a random pointer is also allocated to the respective node in the new list. 

Hint: Traverse the list and go on adding nodes to the list, which have the same value but have random pointer points to null. Now traverse the modified list again. Let us call the node, which was already present in the list as an old node and the node, which is added as a new node. 

Find the random pointer node pointed to by the old  node,  and assign its next node to the random pointer of the new node. Follow this procedure for all the nodes. Finally, separate the old and new nodes. The list formed by new nodes is the desired list. 

14 Modify the AddHead() function of LinkedList such that below operation is allowed. 

LinkedList ll = new LinkedList(); 

ll.AddHead(1).AddHead(2).AddHead(3); 
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Stack is a basic  data structure that organises data in a  last-in-first-out(LIFO)  manner.  The last element inserted in a stack will be the first to be removed from it. 

The real-life analogy of the stack is “stack of plates”. Imagine a stack of plates in a dining area. 

Everybody takes a plate from the top of the stack. As a result, the next plate becomes available to be picked. Stack allows you to access only the top element. The element that is at the bottom of the stack is the one that stays there for the longest time. 

Computer science also has the common example of a stack. A function call stack is a good example of a   stack.   Function   main()   calls   function   foo()   and   then   foo()   calls   bar().   These   function   calls   are implemented using stack. First, bar() exists, then foo() and then finally main(). 

As we navigate from web page to web page, the URL of web pages are kept in a stack, with the current page URL at the top. If we click the back button, then each URL entry is popped one by one. 

The Stack Abstract Data Type

Stack abstract data type is defined as a data structure, which follows LIFO or last-in-first-out for the elements added to it. 

The stack should support the following operations:

1 Push():  Adds a single element at the top of the stack 

2 Pop():  Removes a single element from the top of a stack. 

3 Top():  Reads the value of the top element of the stack (does not remove it) 4 isEmpty(): Returns 1 if stack is empty otherwise return 0. 

5 Size(): Returns the number of elements in a stack. 
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Push: Add value to the top of a stack 

Pop: Remove the top element of the stack and return it to the caller function. 

The stack can be implemented using an array or a linked list. 

1. When stack is implemented using arrays, its capacity is fixed. 

2. In the case of a linked list, there is no such limit on the number of elements it can contain. 

When a stack is implemented, using an array, the top of the stack is managed using an index variable called top. 

When a stack is implemented using a linked list, push() and pop() are implemented using insert at the head of the linked list and remove from the head of the linked list. 

Stack using array

Problem: Implement a stack using a fixed length array. 

Example 7.1: Stack implementation using array

class Stack constructor(s: Int = 1000) {

private var capacity: Int

private var data: IntArray

private var top = -1


init {

data = IntArray(s)

capacity = s
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}

/* Other methods */

}

isEmpty is true if stack is empty or false in all other cases. 

val isEmpty: Boolean

get() = top == -1

size() function returns the number of elements in the stack. 

fun size(): Int {

return top + 1

}

The print() function will print the elements of the array. 

fun print() {

for (i in top downTo 0) {

print(data[i].toString() + " ")

}

println()

}

push() function to append value to the data. 

fun push(value: Int) {

if (top + 1 == capacity) {

throw IllegalStateException("StackOverflowException")

}

top++

data[top] = value

}

In the pop() function, first it will check that the stack is not empty. Then it will pop the value from the data array and return it. 

fun pop(): Int {

if (isEmpty) {

throw IllegalStateException("StackEmptyException")

}

val topVal = data[top]

top--

return topVal

}

top() function returns the value of stored in the top element of stack (does not remove it) fun top(): Int {

if (isEmpty) {

throw IllegalStateException("StackEmptyException")

}

return data[top]

}

Testing code for stack. 

fun main() {

val s = Stack()

s.push(1)
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s.push(2)

s.push(3)

s.print()

println(s.pop())

println(s.pop())

}

Output:

3 2 1

32

Analysis:

1. The stack object is declared and initialised. 

2. push() and pop() functions are used to add and remove values to the stack. 

Time   Complexity:   Push(),   Pop(),   Top(),   Size()   and   IsEmpty()   all   these   operations   have   time complexity of O(1). 

StackPrint() function has a time complexity of O(n). 

Stack using array with memory management

Problem: Create a stack using an array, but the memory of the array needs to be managed. When the stack is full its capacity is doubled. Also, when the number of elements falls below capacity/2, the capacity of the stack is halved. Also, we do not want to let the capacity of the stack below the initially allocated size. We can define min length when the stack is created. 

Analysis:  The Stack struct contains four fields. “Top” which is the index of the topmost element, a pointer “data” that will point to dynamically allocated memory. “Size” which is used to store the size of the stack and “capacity” which is the capacity of the stack. 

Push and pop functions are implemented next. All the other functions like, isEmpty(), size() and top() will remain the same. 

Push function growing capacity implementation

Implementing push() function of the stack such that when the stack is filled, then double the capacity of the stack. 

Example 7.2:

fun push2(value: Int) {

if (top + 1 == capacity) {

println("Size doubled.")

val newData = IntArray(capacity * 2)

java.lang.System.arraycopy(data, 0, newData, 0, capacity)

data = newData

capacity = capacity * 2

}

top++

data[top] = value

}
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Analysis:

1. We are doubling the max capacity variable of the stack. 

2. Size of the memory is reallocated to a bigger value in this line. All the data on the stack is copied into the new location. 

3. Finally, the data is pushed into the increased capacity stack. 

Pop function reducing capacity implementation

Implementing pop() function such that when count of elements in  stack fall below capacity/2 the capacity of the stack is reduced. 

Example 7.3:

class Stack constructor(s: Int = 1000) {

private var capacity: Int

private var data: IntArray

private var top = -1

private val minCapacity : Int // for dynamic stack

init {

data = IntArray(s)

capacity = s

minCapacity = s // for dynamic stack

}

/* Other methods */

}

fun pop2(): Int {

if (isEmpty) {

throw IllegalStateException("StackEmptyException")

}

val topVal = data[top]

top--

if (top + 1 < capacity / 2 && capacity > minCapacity) {

println("Size halved.")

capacity = capacity / 2

val newData = IntArray(capacity)

java.lang.System.arraycopy(data, 0, newData, 0, capacity)

data = newData

}

return topVal

}

Analysis: The size of the stack is checked if it goes below half of the capacity and is greater than the minimum size. The capacity of the stack is divided by 2 and memory is reallocated to point to half size memory. 

Stack using linked list

Problem: Stack can be implemented using a linked list. Push() adds elements at the head of the list and Pop() removes elements from the head of the list. 
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Example 7.4: Implement stack using a linked list. 

class StackLL {

private class Node(val value: Int, var next: Node?) private var head: Node? = null

private var length = 0

fun size(): Int {

return length

}

val isEmpty: Boolean

get() = length == 0

fun peek(): Int {

if (isEmpty) {

throw IllegalStateException("StackEmptyException")

}

return head!!.value

}

fun push(value: Int) {

head = Node(value, head)

length++

}

fun pop(): Int {

if (isEmpty) {

throw IllegalStateException("StackEmptyException")

}

val value = head!!.value

head = head!!.next

length--

return value

}

fun print() {

var temp = head

while (temp != null) {

print(temp.value.toString() + " ")

temp = temp.next

}

println()

}

}

// Testing code. 

fun main() {

val s = StackLL()

s.push(1)

s.push(2)

s.push(3)

s.print()

println(s.pop())

println(s.pop())

}
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Output:

3 2 1 

32

Analysis: 

1. Stack implemented using a linked list is simply insertion and deletion at the head of a singly linked list. 

2. In the Push() function, memory is created for one node. Then the value is stored into that node. 

Finally, the node is inserted at the beginning of the list. 

3. In the Pop() function, the head of the linked list starts pointing to the second node. And the value of the first node is returned. 

Time Complexity: Push(), Pop(), and IsEmpty() all these operations have time complexity of O(1). 

Print() function has a time complexity of O(n). 

Stack implementation in Kotlin Collection

Stack is implemented by calling push and pop methods of  Stack<T> class. 

Example 7.5:

import java.util.Stack

fun main() {

val stack = Stack<Int>()

stack.push(1)

stack.push(2)

stack.push(3)

println("Stack : $stack")

println("Stack size : " + stack.size)

println("Stack pop : " + stack.pop())

println("Stack top : " + stack.peek())

println("Stack isEmpty : " + stack.isEmpty())

}

Output:

Stack : [1, 2, 3]

Stack size : 3

Stack pop : 3

Stack top : 2

Stack isEmpty : false

Analysis:

1. Value 1, 2 and 3 are added to the stack using push() function. Then the stack is printed. 

2. Stack top is returned using top() function. 

3. Size of stack is returned using size() function. 

4. Function is isEmpty() return true if stack is empty else return false. 

5. Function pop() is used to remove top element of the stack. 
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System stack and function Calls

Function calls are implemented using a stack called system stack. When a method is called, the current execution is stopped and the control goes to the called function. After the called function exits /

returns, the execution resumes from the point at which the execution was stopped. 

To get the exact point at which execution should be resumed, the address of the next instruction is stored in the system stack. When the function call completes, the address at the top of the stack is taken out. 

Example 7.6: Function call flow

fun function2() {

println("fun2 line 1")

}

fun function1() {

println("fun1 line 1")

function2()

println("fun1 line 2")

}

// Testing code. 

fun main() {

println("main line 1")

function1()

println("main line 2")

}

Output:

main line 1

fun1 line 1

fun2 line 1

fun1 line 2

main line 2

Analysis:

1. This program starts with the main() function. 

2. The first statement of main() will be executed. This will print “main line 1” as output. 

3. Then statement function1() is called. Before control goes to function1() then the next instruction that is the address of the next line is stored in the system stack. 

4. Control goes to function1() function. 

5. The first statement inside function1() is executed, this will print “fun1 line 1” to output. 

6. function2() is called from function1(). Before control goes to the function2() address of the next instruction, that is the address of the next line is added to the system stack. 

7. Control goes to the function2() function. 

8. “fun2 line 1” is printed to the screen. 

9. When   function2()   exits,   control   comes   back   to   function1().   Then   the   program   reads   the   next instruction from the stack, and the next line is executed and prints “fun1 line 2” to screen. 

10. When fun1 exits, control comes back to the main function. Then the program reads the next instruction from the stack and executes it and finally “main line 2” is printed to screen. 
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Points to remember:

1. Functions are implemented using a stack. 

2. When a function is called, the address of the next instruction is pushed into the stack. 

3. When a function is finished, the address of the execution is taken out of the stack. 

Problems in Stack

Sorted Insert

Problem: Given a stack whose elements are sorted, write a function that will insert elements in sorted order. With highest at the top and lowest at the bottom. 

Solution: Pop elements from the stack till the top of the stack is greater than the current value. Then add the current value to the stack  and then add the popped elements to the stack again.  Time complexity O(n)

Example 7.7:

fun sortedInsert(stk: Stack<Int>, element: Int) {

val temp: Int

if (stk.isEmpty() || element > stk.peek()) 

stk.push(element) 

else {

temp = stk.pop()

sortedInsert(stk, element)

stk.push(temp)

}

}

// Testing code. 

fun main() {

val stk: Stack<Int> = Stack<Int>()

stk.push(1)

stk.push(3)

stk.push(4)

println(stk)

sortedInsert(stk, 2)

println(stk)

}

Output:

[1, 3, 4]

[1, 2, 3, 4]

Sort Stack

Problem: Given a stack, sort elements such that the largest value is at the top. 

First   solution:    Recursively   call   sortStack()  function.   Then   call   the   sortedInsert()   function   inside recursion to make the stack sorted. Time complexity is O(n^2). 
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Example 7.8:

fun sortStack(stk: Stack<Int>) {

val temp: Int

if (stk.isEmpty() == false) {

temp = stk.pop()

sortStack(stk)

sortedInsert(stk, temp)

}

}

// Testing code. 

fun main() {

var stk: Stack<Int> = Stack<Int>()

stk.push(3)

stk.push(1)

stk.push(4)

stk.push(2)

println(stk)

sortStack(stk)

println(stk)

}

Output:

[3, 1, 4, 2]

[1, 2, 3, 4]

Second solution:  Same problem can be solved iteratively by using another stack stk2. We use a stack stk2 which will store elements always in sorted order. Each time, a new element is popped from the original input stack and gets added to the new stack. Time Complexity is O(n^2) Example 7.9:

fun sortStack2(stk: Stack<Int>) {

var temp: Int

val stk2: Stack<Int> = Stack<Int>()

while (stk.isEmpty() == false) {

temp = stk.pop()

while (stk2.isEmpty() == false && stk2.peek() < temp) stk.push(stk2.pop())

stk2.push(temp)

}

while (stk2.isEmpty() == false) 

stk.push(stk2.pop())

}

Bottom Insert

Problem: Given stack, write a function to insert an element at the bottom of the stack. 

Solution:   Pop elements from the stack recursively till it is empty. Once empty then insert the input value in the stack. Then again put the popped values back to the stack. Time complexity is O(n) Example 7.10:

fun bottomInsert(stk: Stack<Int>, element: Int) {

val temp: Int
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if (stk.isEmpty()) stk.push(element) else {

temp = stk.pop()

bottomInsert(stk, element)

stk.push(temp)

}

}

// Testing code. 

fun main() {

val stk: Stack<Int> = Stack<Int>()

stk.push(1)

stk.push(2)

stk.push(3)

println(stk)

bottomInsert(stk, 4)

println(stk)

}

Output:

[1, 2, 3]

[4, 1, 2, 3]

Reverse Stack 

Problem: Given a stack, reverse its elements. 

First solution: Using recursion, in a recursion pop element from stack and use bottomInsert function to add them at the bottom. Finally, the whole stack will be reversed. Time complexity is O(n^2) Example 7.11:

fun <T> reverseStack(stk: Stack<T>) {

if (stk.isEmpty()) {

return

} else {

val value: T = stk.pop()

reverseStack<T>(stk)

bottomInsert(stk, value)

}

}

// Testing code. 

fun main() {

val stk: Stack<Int> = Stack<Int>()

stk.push(1)

stk.push(2)

stk.push(3)

stk.push(4)

println(stk)

reverseStack<Int>(stk)

println(stk)

}

Output:

[ 1 2 3 4 ]

[ 4 3 2 1 ]
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Second solution: let’s solve the problem using a queue. Pop all the elements of the stack and insert them into a queue. Then remove elements from the queue and insert them into the stack. As a result, stack elements will be reversed. Time complexity is O(n). 

Example 7.12:

fun reverseStack2(stk: Stack<Int>) {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

while (stk.isEmpty() == false) que.add(stk.pop())

while (que.isEmpty() == false) stk.push(que.remove())

}

Reverse K Element in a Stack 

Problem: Given an integer k and a stack, reverse the k elements from the top of the stack. 

Solution: Create a queue, pop k elements from the stack and add them to the queue. Then remove these elements from the queue and push them back to the stack. Top k elements of the stack will be reversed. Time complexity is O(n)

Example 7.13:

fun reverseKElementInStack(stk: Stack<Int>, k: Int) {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

var i = 0

while (stk.isEmpty() == false && i < k) {

que.add(stk.pop())

i++

}

while (que.isEmpty() == false) stk.push(que.remove())

}

// Testing code. 

fun main() {

val stk: Stack<Int> = Stack<Int>()

stk.push(1)

stk.push(2)

stk.push(3)

stk.push(4)

println(stk)

reverseKElementInStack(stk, 2)

println(stk)

}

Output:

[ 1 2 3 4 ]

[ 1 2 4 3 ]

Reverse Queue

Problem: Reverse elements of a queue. 
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Solution: Remove all the elements of the queue and push them to the stack till the queue is empty. 

Then pop elements from the stack and add them to the queue. Finally, all the elements of the queue are reversed. Time complexity is O(n)

Example 7.14:

fun reverseQueue(que: ArrayDeque<Int>) {

val stk: Stack<Int> = Stack<Int>()

while (que.isEmpty() == false) stk.push(que.remove())

while (stk.isEmpty() == false) que.add(stk.pop())

}

// Testing code. 

fun main() {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

que.add(1)

que.add(2)

que.add(3)

println(que)

reverseQueue(que)

println(que)

}

Output:

[ 1 2 3 ]

[ 3 2 1 ]

Reverse K Element in a Queue 

Problem: Reverse first K elements in a queue. 

Solution: Use a stack, remove first K elements from the queue and push them into the stack. Then pop the element from the stack and add them to the queue. The K elements are reversed, but they are added to the end of the queue. So, we need to bring those elements at the start of the queue by removing the elements at the front and adding them at the back of the queue. Time complexity is O(n) Example 7.15:

fun reverseKElementInQueue(que: ArrayDeque<Int>, k: Int) {

val stk: Stack<Int> = Stack<Int>()

var i = 0

var diff: Int

var temp: Int

while (que.isEmpty() == false && i < k) {

stk.push(que.remove())

i++

}

while (stk.isEmpty() == false) {

que.add(stk.pop())

}

diff = que.size - k

while (diff > 0) {

temp = que.remove()

que.add(temp)
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diff -= 1

}

}

// Testing code. 

fun main() {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

que.add(1)

que.add(2)

que.add(3)

println(que)

reverseKElementInQueue(que, 2)

println(que)

}

Output:

[1, 2, 3]

[2, 1, 3]

Two stacks using single array

Problem: How to implement two stacks using one single array. 

Solution: First stack is used by adding to the left and removing elements from the left. Second stack is used by adding to the right and removing elements from the right. Push and pop of both the stack has a time complexity of O(1). 

Example 7.16:

class TwoStack {

private val MAX_SIZE = 50

var top1: Int

var top2: Int

var data: IntArray

init {

top1 = -1

top2 = MAX_SIZE

data = IntArray(MAX_SIZE)

}

fun push1(value: Int) {

if (top1 < top2 - 1) {

data[++top1] = value

} else {

print("Stack is Full!")

}

}

fun push2(value: Int) {

if (top1 < top2 - 1) {

data[--top2] = value

} else {

print("Stack is Full!")

}

}
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fun pop1(): Int {

if (top1 >= 0) {

return data[top1--]

} else {

print("Stack Empty!")

}

return -999

}

fun pop2(): Int {

if (top2 < MAX_SIZE) {

return data[top2++]

} else {

print("Stack Empty!")

}

return -999

}

}

// Testing code. 

fun main() {

val st = TwoStack()

st.push1(1)

st.push1(2)

st.push1(3)

st.push2(4)

st.push2(5)

st.push2(6)

println("stk1 pop: " + st.pop1())

println("stk1 pop: " + st.pop1())

println("stk2 pop: " + st.pop2())

println("stk2 pop: " + st.pop2())

}

Output:

stk1 pop: 3

stk1 pop: 2

stk2 pop: 6

stk2 pop: 5

Analysis: Same list is used to implement two stacks. The first stack is filled from the beginning of the array and the second stack is filled from the end of the array. Overflow and underflow conditions need to be taken care of carefully. 

Balanced Parenthesis

Problem:  Write a program to check balanced symbols (such as  {},  (),  []). The closing symbol should be matched with the most recently seen opening symbol. e.g. {()} is legal, {()({})} is legal, but {((} and {(}) are not legal. 

Example 7.17:

fun isBalancedParenthesis(expn: String): Boolean {

val stk: Stack<Char> = Stack<Char>()

for (ch in expn.toCharArray()) {
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when (ch) {

'{', '[', '(' -> stk.push(ch)

'}' -> if (stk.pop() != '{') {

return false

}

']' -> if (stk.pop() != '[') {

return false

}

')' -> if (stk.pop() != '(') {

return false

}

}

}

return stk.isEmpty()

}

// Testing code. 

fun main() {

val expn = "{()}[]" 

val value = isBalancedParenthesis(expn)

println("isBalancedParenthesis: $value")

}

Output:

isBalancedParenthesis : true

Analysis: 

1. Traverse the input string. When we get an opening parenthesis, we push it into the stack. When we get a closing parenthesis then we pop a parenthesis from the stack and compare if it is the corresponding closing parenthesis. 

2. We return false if there is a mismatch of parenthesis. 

3. If at the end of the whole string traversal, we reach the end of the string and the stack is empty then we have balanced parenthesis. 

Max Depth Parenthesis

Problem:  Given   a   balanced   parenthesis   expression,   you   need   to   find   the   maximum   depth   of parenthesis. For example, in (), maximum depth is 1 and in ((()))(), maximum depth is 3. 

First solution: Create a stack, when we get opening parenthesis then we insert it to the stack and increase depth counter. When we get a closing parenthesis, then we pop the opening parenthesis from the stack and decrease the depth counter. We keep track of depth to find maximum depth. 

Example 7.18:

fun maxDepthParenthesis(expn: String, size: Int): Int {

val stk: Stack<Char> = Stack<Char>()

var maxDepth = 0

var depth = 0

var ch: Char

for (i in 0 until size) {

ch = expn[i]

if (ch == '(') {

stk.push(ch)
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depth += 1

} else if (ch == ')') {

stk.pop()

depth -= 1

}

if (depth > maxDepth) 

maxDepth = depth

}

return maxDepth

}

// Testing code. 

fun main() {

val expn = "((((A)))((((BBB()))))()()()())" 

val size = expn.length

println("Max depth parenthesis is " + maxDepthParenthesis(expn, size))

}

Output:

Max depth parenthesis is 6

Second solution:   We do not need to find if the expression is balanced or not. It is given that it is balanced, so we don’t need a stack as shown in the previous solution. 

Example 7.19:

fun maxDepthParenthesis2(expn: String, size: Int): Int {

var maxDepth = 0

var depth = 0

var ch: Char

for (i in 0 until size) {

ch = expn[i]

if (ch == '(') 

depth += 1 

else if (ch == ')') 

depth -= 1



if (depth > maxDepth) 

maxDepth = depth

}

return maxDepth

}

Longest Continuous Balanced Parenthesis

Problem: Given a string of opening and closing parentheses, you need to find the length of the longest substring that has balanced parentheses. 

Solution: Traverse through the list of parentheses and add the current index to the stack when  an opening parenthesis is observed. When a closing parenthesis is observed, then pop from the stack. 

And then find the length of continuous parenthesis by subtracting the popped value with the current index. By doing this we will get balanced  parenthesis,  but it may not be the largest. Because this method will consider two balanced substrings with equal number of opening parenthesis and closing parenthesis as different strings, even though they are continuous. 
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To avoid the above issue we will also add -1 to the stack. The lowest value stored in the stack is on an index less than the probable balanced parenthesis. When the number of closing parenthesis is more than the number of the opening parenthesis. Then at that point, the index before the probable longest balanced parenthesis string is the index of the unbalanced closing parenthesis. 

Example 7.20:

fun longestContBalParen(string: String, size: Int): Int {

val stk: Stack<Int> = Stack<Int>()

stk.push(-1)

var length = 0

for (i in 0 until size) {

if (string[i] == '(') stk.push(i) else {

stk.pop()

if (stk.size != 0) 

length = Math.max(length, i - stk.peek()) else stk.push(i)

}

}

return length

}

// Testing code. 

fun main() {

val expn = "())((()))(())()(()" 

val size = expn.length

println("longestContBalParen " + longestContBalParen(expn, size))

}

Output:

longestContBalParen 12

Reverse Parenthesis

Problem:  How   many   reversals   will   be   needed   to   make   an   unbalanced   expression   to   balanced expression. 

Input: ”)(())(((“

Output: 3

Input: “)(((“

Output: 3

Solution:

1. First, the parenthesis, which is already balanced, doesn’t need to be flipped, so they are first removed. If all the parenthesis which are balanced are removed, then we will have the parenthesis of the form …)))((((…. 

2. Let’s name the total number of open parenthesis as OpenCount and the total number of closed parenthesis as CloseCount. 

3. When OpenCount is even, then CloseCount is also even. Their half-element reversal will make the expression balanced. 

4. When OpenCount is odd and CloseCount is also odd, then once you have to perform OpenCount/2

and CloseCount/2 reversals. You will be left with )(, which needs 2 more reversals, so the formula is derived from this. 

Total number of reversal = math.ceil (OpenCount / 2.0) + math.ceil(CloseCount/2.0) 223
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Example 7.21:

fun reverseParenthesis(expn: String, size: Int): Int {

val stk: Stack<Char> = Stack<Char>()

var openCount = 0

var closeCount = 0

var ch: Char

if (size % 2 == 1) {

println("Invalid odd length $size")

return -1

}

for (i in 0 until size) {

ch = expn[i]

if (ch == '(') 

stk.push(ch) 

else if (ch == ')') { 

if (stk.size != 0 && stk.peek() == '(') 

stk.pop() 

else 

stk.push(')')

}    

}

while (stk.size != 0) {

if (stk.pop() == '(') 

openCount += 1 

else 

closeCount += 1

}

return Math.ceil(openCount / 2.0).toInt() + Math.ceil(closeCount / 2.0).toInt()

}

// Testing code. 

fun main() {

val expn2 = ")(())(((" 

val size = expn2.length

val value = reverseParenthesis(expn2, size)

println("Reverse Parenthesis is : $value")

}

Output:

Reverse Parenthesis is : 3

Find Duplicate Parenthesis

Problem: Given an expression, you need to find duplicate or redundant parentheses in it. Redundant parentheses are those parenthesis pairs that do not change the outcome of expression. 

Solution: A parenthesis pair is redundant if it contains 0 or 1 element between them. The algorithm works by adding all the elements except ) to the stack. When we get a ) at that point, we find its corresponding pair and count all the elements between this pair. If the number of elements is 0 or 1, then we have a redundant parenthesis. 

Example 7.22:

fun findDuplicateParenthesis(expn: String, size: Int): Boolean {

val stk: Stack<Char> = Stack<Char>()

var ch: Char

var count: Int
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for (i in 0 until size) {

ch = expn[i]

if (ch == ')') {

count = 0

while (stk.size != 0 && stk.peek() != '(') {

stk.pop()

count += 1

}

if (count <= 1) 

return true

} else 

stk.push(ch)

}

return false

}

// Testing code. 

fun main() {

val expn = "(((a+b))+c)" 

val size = expn.length

val value = findDuplicateParenthesis(expn, size)

println("Duplicate Found : $value")

}

Output:

Duplicate Found : true

Print Parenthesis Number

Problem: Given an expression, number each parenthesis pair such that for each pair, the opening and closing parenthesis have the same number. 

Example:

Input: '(((a+(b))+(c+d)))' 

Output: [1, 2, 3, 4, 4, 3, 5, 5, 2, 1]

Solution: A stack is used to keep track of the parenthesis count. And a count variable is used to keep track of the count of the current opening parenthesis. Traverse the string and when we get an opening parenthesis, then we add the count to the stack and output. And increase count by one. When we get a closing parenthesis, we will pop its corresponding opening parentheses and add it to the output. 

Example 7.23:

fun printParenthesisNumber(expn: String, size: Int) {

var ch: Char

val stk: Stack<Int> = Stack<Int>()

var output = String()

var count = 1

for (i in 0 until size) {

ch = expn[i]

if (ch == '(') {

stk.push(count)

output += count

output += " " 

count += 1

} else if (ch == ')') {

output += stk.pop()
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output += " " 

}

}

println("Parenthesis Count :: $output")

}

// Testing code. 

fun main() {

val expn1 = "(((a+(b))+(c+d)))" 

printParenthesisNumber(expn1, expn1.length)

}

Output:

Parenthesis Count :: 1 2 3 4 4 3 5 5 2 1 

Infix, Prefix, and Postfix Expressions

Infix Expression  : When we have an algebraic expression like A + B, we know that variable A is added to variable B. This type of expression is called infix expression because the operator + is there between operand A and operand B. 

Now consider another infix expression, A + B * C. In the expression, there is a problem of operator precedence. What operation will be performed first: + or *. Are A and B added first, and then the result is multiplied with C? Alternatively, B and C are multiplied first, and then the result is added to A. This makes the expression ambiguous. To deal with this ambiguity, we define the precedence rule or use parentheses to remove ambiguity. 

So, if we want to multiply B and C first and then add the result to A. Then the same expression can be written unambiguously using parentheses as A + (B * C). On the other hand, if we want to add A and B

first and then the sum will be multiplied by C, we will write it as (A + B) * C. Therefore, we need parenthesis in the infix expression to make the expression unambiguous. 

Infix expression: In this notation, we place operators in the middle of the operands. 

< Operand > < Operator > < Operand > 

Prefix expressions: In this notation, we place operators at the beginning of the operands. 

< Operator > < Operand > < Operand > 

Postfix expression: In this notation, we place operators at the end of the operands. 

< Operand > < Operand > < Operator > 

Infix Expression

Prefix Expression

Postfix Expression

A + B

+ A B

A B +

A + (B * C)

+ A * B C

A B C * +

(A + B) * C

* + ABC

A B + C *

Why do we need such unnatural prefix or postfix expressions when we already have infix expressions that work for us? 
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The   answer   is   that   infix   expressions   are   ambiguous,   and   they   need   parenthesis   to   make   them unambiguous. While postfix and prefix notations do not need any parenthesis. 

Infix-to-Postfix Conversion

Problem: Write a function to convert infix expression to postfix expression. 

Solution: 

1 Print operands in the same order as they arrive. 

2 If the stack is empty or contains a left parenthesis “(” on top, we should push the incoming operator in the stack. 

3 If the incoming symbol is a left parenthesis ”(”, push left parenthesis in the stack. 

4 If the incoming symbol is a right parenthesis “)”, pop from the stack and print the operators until you see a left parenthesis “(”. Discard the pair of parentheses. 

5 If the precedence of the incoming symbol is higher than the precedence of the operator at the top of the stack, then push it to the stack. 

6 If the incoming symbol has equal precedence compared to the top of the stack, use association. If the association is left to right, pop and print the symbol at the top of the stack and then push the incoming operator. If the association is right to leave, then push the incoming operator. 

7 If the precedence of the incoming symbol is lower than the precedence of the operator on the top of the stack, then pop and print the top operator. Then compare the incoming operator against the new operator at the top of the stack. 

8 At the end of the expression, pop and print all operators on the stack. 

Example 7.24:

fun precedence(x: Char): Int {

if (x == '(') {

return 0

}

if (x == '+' || x == '-') {

return 1

}

if (x == '*' || x == '/' || x == '%') return 2

return if (x == '^') {

3

} else 4

}

fun infixToPostfix(expn: String): String {

var output = "" 

val out: CharArray = infixToPostfix(expn.toCharArray())

for (ch in out) {

output = output + ch

}

return output

}

fun infixToPostfix(expn: CharArray): CharArray {

val stk: Stack<Char> = Stack<Char>()

var output = "" 

var out: Char

for (ch in expn) {

if (ch <= '9' && ch >= '0') {
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output = output + ch

} else {

when (ch) {

'+', '-', '*', '/', '%', '^' -> {

while (stk.isEmpty() == false && precedence(ch) <= 

precedence(stk.peek())) {

out = stk.pop()

output = "$output $out" 

}

stk.push(ch)

output = "$output " 

}

'(' -> stk.push(ch)

')' -> while (stk.isEmpty() == false) {

out = stk.pop()

if(out != '(') 

output = "$output $out " 

else

break

}

}

}

}

while (stk.isEmpty() == false) {

out = stk.pop()

output = "$output$out " 

}

return output.toCharArray()

}

// Testing code. 

fun main() {

val expn = "10+((3))*5/(16-4)" 

val value = infixToPostfix(expn)

println("Infix Expn: $expn")

println("Postfix Expn: $value")

}

Output:

Infix Expn: 10+((3))*5/(16-4)

Postfix Expn: 10 3 5 * 16 4 - / + 

Infix-to-Prefix Conversion

Problem: Write a function to convert infix expression to postfix expression. 

Solution: 

1. Reverse the given infix expression. 

2. Replace '(' with ')' and ')' with '(' in the reversed expression. 

3. Now, apply infix to the postfix subroutine already discussed. 

4. Reverse the generated postfix expression, and this will give the required prefix expression. 

Example 7.25:

fun infixToPrefix(expn: String): String {

var arr: CharArray = expn.toCharArray()

reverseString(arr)
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replaceParenthesis(arr)

arr = infixToPostfix(arr)

reverseString(arr)

return String(arr)

}

fun replaceParenthesis(a: CharArray) {

var lower = 0

val upper = a.size - 1

while (lower <= upper) {

if (a[lower] == '(') {

a[lower] = ')' 

} else if (a[lower] == ')') {

a[lower] = '(' 

}

lower++

}

}

fun reverseString(expn: CharArray) {

var lower = 0

var upper = expn.size - 1

var tempChar: Char

while (lower < upper) {

tempChar = expn[lower]

expn[lower] = expn[upper]

expn[upper] = tempChar

lower++

upper--

}

}

// Testing code. 

fun main() {

val expn = "10+((3))*5/(16-4)" 

val value = infixToPrefix(expn)

println("Infix Expn: $expn")

println("Prefix Expn: $value")

}

Output:

Infix Expn: 10+((3))*5/(16-4)

Prefix Expn:  +10 * 3 / 5 - 16 4

Postfix Evaluate

Problem: Write a function to evaluate a postfix expression. Such as:  expression “1 2 + 3 4 + *” gives output 21 

Example 7.26:

fun postfixEvaluate(expn: String?): Int {

val stk: Stack<Int> = Stack<Int>()

val tokens: Scanner = Scanner(expn)

while (tokens.hasNext()) {

if (tokens.hasNextInt()) {

stk.push(tokens.nextInt())

} else {
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val num1: Int = stk.pop()

val num2: Int = stk.pop()

val op: Char = tokens.next().get(0)

when (op) {

'+' -> stk.push(num1 + num2)

'-' -> stk.push(num1 - num2)

'*' -> stk.push(num1 * num2)

'/' -> stk.push(num1 / num2)

}

}

}

tokens.close()

return stk.pop()

}

// Testing code. 

fun main() {

val expn = "6 5 2 3 + 8 * + 3 + *" 

val value = postfixEvaluate(expn)

println("Result after Evaluation: $value")

}

Output:

Result after Evaluation: 288

Analysis:

1 Create a stack to store values or operands. 

2 Scan through the given expression and do the following for each element:

➢ If the element is a number, then push it into the stack. 

➢ If the element is an operator, then pop values from the stack. Evaluate the operator over the values and push the result into the stack. 

3 When the expression is scanned completely, the number in the stack is the result. 

Stack Based Rejection Method

Stack Based Rejection  technique is used when processing data following a specific property of rejection. That value at some index can be used to reject some other values that are processed before it. The values that are rejected are those values, which are unimportant for the rest of the processing. 

Below examples of “Stock Span Problem”, “Get Max Rectangular Area in a Histogram” “Stock Analyst Problem” etc. are a few of its examples. 

Stock Span Problem

Problem: In a given list of daily stock prices in an array A[i].  Find the span of the stocks for each day. 

A span of stock is the maximum number of days for which the price of stock was lower than that day. 

Or

Given a histogram, find the number of consecutive bars in the left of the current bar that have values less than the current bar. 
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First solution: Brute force, two loops are used. Outer loop to select the bar / elements in histogram. 

The inner loop is used to find the count of consecutive bars smaller to the current bar.  

Example 7.27:

fun stockSpanRange(arr: IntArray): IntArray {

val SR = IntArray(arr.size)

SR[0] = 1

for (i in 1 until arr.size) {

SR[i] = 1

var j: Int = i - 1

while (j >= 0 && arr[i] >= arr[j]) {

SR[i]++

j--

}

}

return SR

}

// Testing code. 

fun main() {

val arr = intArrayOf(6, 5, 4, 3, 2, 4, 5, 7, 9)

var value = stockSpanRange(arr)

print("stockSpanRange : ")

for (`val` in value) print("$`val` ")

}

Output:

StockSpanRange : 1 1 1 1 1 4 6 8 9

Time complexity:  O(n^2), length of each bar, is compared with the bars before it. 

Second solution: In the above algorithms for each bar, we are comparing the length of bars before it. 

If somehow, we can get the index of the bar that is before the current bar and is having length greater than the current bar. Let us suppose the index of this hypothetical bar is M and the index of the current bar is N then the stock span range will be (N – M). By using a stack such index can be obtained by doing some bookkeeping. 

Let us call the stock input array as “arr”. Create a stack to store index value and add value 0 to it. Then traverse the values in the stock input array. Let's call the current index we are analysing as “curr”, the index at the top of  the stack  is “top”. For each value of the stock  input,  arr[curr] is compared with arr[top]. If the value arr[curr] is less than or equal to arr[top] then add curr to the stack. If the value of 231
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arr[curr] is greater than arr[top] then start popping values from stack till arr[curr] > arr[top]. Then add curr to the stack. Store stock range to SR[curr] = curr – top. Repeat this process for all the index of input array and SR array will be populated. 

Example 7.28:

fun stockSpanRange2(arr: IntArray): IntArray {

val stk: Stack<Int> = Stack<Int>()

val SR = IntArray(arr.size)

stk.push(0)

SR[0] = 1

for (i in 1 until arr.size) {

while (!stk.isEmpty() && arr[stk.peek()] <= arr[i]) {

stk.pop()

}

SR[i] = if (stk.isEmpty()) i + 1 else i - stk.peek()

stk.push(i)

}

return SR

}

For each value in the input array, an index is added to the stack only once, and that index can be taken out of the stack only once. Each comparison operation leads to either adding a value to the stack or taking a value out of the stack. Therefore, if there are n elements in an array then at most there will be 2n comparisons, so this algorithm is linear. 

Time complexity is O(n), space complexity will also be O(n) for stack. 

Get Max Rectangular Area in a Histogram 

Problem:  In the given histogram of rectangle bars of each one unit wide. Find the maximum area rectangle in the histogram. 

First solution: Brute force approach. We use two loops to find the desired greatest area. First loop to find the right boundary of a rectangle and then another inner loop to find the left boundary of the rectangle. This approach has time complexity of O(n^2)

Example 7.29:

fun getMaxArea(arr: IntArray): Int {

val size = arr.size

var maxArea = -1

var currArea: Int

var minHeight : Int

for (i in 1 until size) {
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minHeight = arr[i]

for (j in i - 1 downTo 0) {

if (minHeight > arr[j]) {

minHeight = arr[j]

}

currArea = minHeight * (i - j + 1)

if (maxArea < currArea) {

maxArea = currArea

}

}

}

return maxArea

}

// Testing code. 

fun main() {

val arr = intArrayOf(7, 6, 5, 4, 4, 1, 6, 3, 1)

var value = getMaxArea(arr)

println("getMaxArea :: $value")

}

Output:

getMaxArea :: 20

Second solution: Using Stack

➢ Create a stack that contains indexes in increasing order. 

➢ When a current index value is smaller than the values at the top of the stack, the current index is added to the stack. 

➢ When a current index value is smaller than the values at the top of the stack, the stack is popped till the top value is less than the current index value. 

➢ The value that is popped out from the stack will contribute to creating a rectangle. The height of rectangle is arr[top] and width will be “i” if stack is empty and is  i-stk[-1]-1

Time complexity is O(n)

Example 7.30:

fun getMaxArea2(arr: IntArray): Int {

val size = arr.size

val stk: Stack<Int> = Stack<Int>()

var maxArea = 0

var top: Int

var topArea: Int

var i = 0

while (i < size) {

while (i < size && (stk.isEmpty() || arr[stk.peek()] <= arr[i])) {

stk.push(i)

i++

}

while (!stk.isEmpty() && (i == size || arr[stk.peek()] > arr[i])) {

top = stk.peek()

stk.pop()

topArea = arr[top] * if (stk.isEmpty()) i else i - stk.peek() - 1

if (maxArea < topArea) {

maxArea = topArea

}
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}

}

return maxArea

}

Stock Analyst Problem

Problem: A stock analyst had approached you to write a program to find stock hike points in some stocks. A stock hike point is the value of stock that is greater than all its previous values. You are provided stock price in an infinite stream, with the most recent value first (in terms of time, the data is provided in reverse order.). 

For example, in stock values are [20, 19, 10, 21, 40, 35, 39, 50, 45, 42], stock hike points values are 20, 21, 40 and 50 but the data is provided in reverse order. 

Solution:

1 If data is provided in order of old value first then new values. Then this can be done in linear time, just by using a single variable to store the maximum value so far. However, in our problem, data is provided in reverse order. 

2 When we are processing some value at that time, we do not know if it will become a hike point. 

3 We will use a stack to store the data. We read input from the stream; if the value at the top of the stack is smaller than the input value, then we pop the value from the stack until the value at the top of the stack is smaller than the input value. Then we add the input value to the stack. 

4 If the value at the top of the stack is greater than the input value, then we add the input value to the stack. At the end, the content of the stack is stock hike points. 

5 Time complexity of this solution is O(n) 

Example 7.31:

fun stockAnalystAdd(stk: Stack<Int>, value: Int) {

while (!stk.isEmpty() && stk.peek() <= value) stk.pop()

stk.push(value)

}

// Testing code. 

fun main() {

val arr = intArrayOf(20, 19, 10, 21, 40, 35, 39, 50, 45, 42)

val stk: Stack<Int> = Stack<Int>()

for (i in arr.indices.reversed()) stockAnalystAdd(stk, arr[i]) println(stk)

}

Output:

[ 50 40 21 20 ]

Next Larger Element

Problem: Function to print the next larger element of each element of the array. 

First Solution: Brute force approach, for each index we can traverse the array indexes right to it to find a larger value. Time complexity is O(n^2)
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Example 7.32:

fun nextLargerElement(arr: IntArray, size: Int) {

val output = IntArray(size)

var outIndex = 0

var next: Int

for (i in 0 until size) {

next = -1

for (j in i + 1 until size) {

if (arr[i] < arr[j]) {

next = arr[j]

break

}

}

output[outIndex++] = next

}

for (`val` in output) 

print("$`val` ")

println()

}

// Testing code. 

fun main() {

val arr = intArrayOf(13, 21, 3, 6, 20, 3)

val size = arr.size

nextLargerElement(arr, size)

}

Output:

21 -1 6 20 -1 -1

Second Solution: Let us suppose we are processing elements of an array. The elements which are less than ith element does not have the largest element on the right of ith index. So, we can say the elements which are left of the ith element and which are less the ith element are independent of the elements at the index higher than ith. So, a stack-based reduction method applies. 

1. Create an empty stack. This stack contains index of elements that have value in decreasing order. 

2. We will traverse through the input array. 

3. If the top of the stack is smaller than the current element, then pop from the stack and mark its next larger element as the current index. We will pop from the stack and repeat this process until the value of the index at the top of the stack is greater than the current value. 

4. When we process the input  array,  then for those indexes for which we have the next largest element is populated. 

5. The indexes which are present in the stack do not have any next largest element, so we should mark those indexes in the output array as -1. 

Example 7.33:

fun nextLargerElement2(arr: IntArray, size: Int) {

val stk: Stack<Int> = Stack<Int>()

val output = IntArray(size)

var index : Int

var curr: Int

for (i in 0 until size) {

curr = arr[i]

// stack always have values in decreasing order. 
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while (stk.isEmpty() == false && arr[stk.peek()] <= curr) {

index = stk.pop()

output[index] = curr

}

stk.push(i)

}

// index which dont have any next Larger. 

while (stk.isEmpty() == false) {

index = stk.pop()

output[index] = -1

}

for (`val` in output) 

print("$`val` ")

println()

}

Next Smaller Element

Problem: Function to print the next smallest element of each element of the array. 

First Solution: Brute force approach, for each index we can traverse the array indexes right to it to find a smaller value. Time complexity is O(n^2)

Example 7.34:

fun nextSmallerElement(arr: IntArray, size: Int) {

val output = IntArray(size)

Arrays.fill(output, -1)

for (i in 0 until size) {

for (j in i + 1 until size) {

if (arr[j] < arr[i]) {

output[i] = arr[j]

break

}

}

}

for (`val` in output) print("$`val` ")

println()

}

// Testing code. 

fun main() {

val arr = intArrayOf(13, 21, 3, 6, 20, 3)

val size = arr.size

nextSmallerElement(arr, size)

}

Output:

3 3 -1 3 3 -1

Second Solution:  Let us suppose we are processing elements of an array. The elements that are greater than ith element do not have a smaller element on the right of ith index. Therefore, we can say the   elements   which   are   left   of   the   ith   element   and   which   are   greater   than   the   ith   element   are independent of the elements at the index higher than ith. So, a stack-based reduction method applies. 
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Example 7.35:

fun nextSmallerElement2(arr: IntArray, size: Int) {

val stk: Stack<Int> = Stack<Int>()

val output = IntArray(size)

var curr: Int

var index: Int

for (i in 0 until size) {

curr = arr[i]

// stack always have values in increasing order. 

while (stk.isEmpty() == false && arr[stk.peek()] > curr) {

index = stk.pop()

output[index] = curr

}

stk.push(i)

}

// index which dont have any next Smaller. 

while (stk.isEmpty() == false) {

index = stk.pop()

output[index] = -1

}

for (`val` in output) 

print("$`val` ")

println()

}

Next Larger Element Circular

Problem: Function to print the next larger element of each element of the circular array. 

Input: [6, 3, 9, 8, 10, 2, 1, 15, 7]

Output: [9, 9, 10, 10, 15, 15, 15, -1, 9]

First Solution: Brute force approach, let us suppose the number of elements in the array is n. For each index, we will traverse the (n-1) number of nodes (in circular manner) to find a larger value. Time complexity is O(n^2)

Example 7.36:

fun nextLargerElementCircular(arr: IntArray, size: Int) {

val output = IntArray(size)

Arrays.fill(output, -1)

for (i in 0 until size) {

for (j in 1 until size) {

if (arr[i] < arr[(i + j) % size]) {

output[i] = arr[(i + j) % size]

break

}

}

}

for (`val` in output) 

print("$`val` ")

println()

}

// Testing code. 

fun main() {

val arr = intArrayOf(6, 3, 9, 8, 10, 2, 1, 15, 7)

nextLargerElementCircular(arr, arr.size)
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}

Output:

9 9 10 10 15 15 15 -1 9

Second Solution: The solution of this problem is the same as the Next Largest Element problem. The only difference is that (2n – 1) nodes are traversed. As for each node, the farthest node that has its effect is at max (n-1) distance apart. Therefore, total (n + n -1) nodes are traversed. Time Complexity of stack-based reduction process is O(n)

Example 7.37:

fun nextLargerElementCircular2(arr: IntArray, size: Int) {

val stk: Stack<Int> = Stack<Int>()

var curr: Int

var index: Int

val output = IntArray(size)

for (i in 0 until 2 * size - 1) {

curr = arr[i % size]

// stack always have values in decreasing order. 

while (stk.isEmpty() == false && arr[stk.peek()] <= curr) {

index = stk.pop()

output[index] = curr

}

stk.push(i % size)

}

// index which dont have any next Larger. 

while (stk.isEmpty() == false) {

index = stk.pop()

output[index] = -1

}

for (`val` in output) 

print("$`val` ")

println()

}

Find Celebrity Problem

Problem: At a party, there is a possibility that a celebrity has visited it. A celebrity is a person who does not know anyone in the party, and everyone in the party knows a celebrity. You want to find a celebrity at the party. You can ask only one question DoYouKnow(X, Y), which means to X you can ask only one question” Do you know Y?”. X will answer the question as yes or no. 

First solution:  brute force approach, you can traverse the guest one by one and ask them if they know the other guest one by one. If you find a guest who does not know anyone, then you have a probable candidate. If the guest is known to all other guests, then he is a celebrity. 

This is an inefficient solution with time complexity of O(n^2) 

Example 7.38:

fun isKnown(relation: Array<IntArray>, a: Int, b: Int): Boolean {

return if (relation[a][b] == 1) true else false

}
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fun findCelebrity(relation: Array<IntArray>, count: Int): Int {

var i: Int = 0

var j: Int

var cel : Boolean

while (i < count) {

cel = true

j = 0

while (j < count) {

if (i != j && (!isKnown(relation, j, i) || isKnown(relation, i, j))) {

cel = false

break

}

j++

}

if (cel == true) return i

i++

}

return -1

}

// Testing code. 

fun main() {

val arr = arrayOf(

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(1, 0, 0, 1, 0), 

intArrayOf(0, 0, 1, 1, 1), 

intArrayOf(0, 0, 0, 0, 0), 

intArrayOf(1, 1, 0, 1, 1)

)

println("Celebrity : " + findCelebrity(arr, 5))

}

Output:

Celebrity : 3

Second solution: Use stack, 

1. We add the entire guest list index from 1 to N in a stack. We take two index values out of the stack and store them in two variables: first and second. 

2. If the guest at index first knows the guest at index second, then first is not a celebrity, so copy second to first. Else, if the guest at index first does not know guest second, then second is not a celebrity. 

3. In both cases pop another element from the stack and mark it second. 

4. In each comparison, one value is rejected. 

5. In the end first will contain the probable celebrity. 

6. Then we need to check that the celebrity candidate is known by all the other guests. 

7. Time-complexity : O(n)

Example 7.39:

fun findCelebrity2(relation: Array<IntArray>, count: Int): Int {

val stk: Stack<Int> = Stack<Int>()

var first : Int

var second : Int

for (i in 0 until count) {

stk.push(i)

}
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first = stk.pop()

while (stk.size != 0) {

second = stk.pop()

if (isKnown(relation, first, second)) first = second

}

for (i in 0 until count) {

if (first != i && isKnown(relation, first, i)) return -1

if (first != i && isKnown(relation, i, first) == false) return -1

}

return first

}

Third solution: let us suppose we have a guest list as [g1, g2, g3, g4 …]. We take two index counters, namely the first and second. The first is assigned 0 value and the second is assigned 1 value. 

We will ask the guest at index first if he knows the guest at index second. If the answer is yes, then we make first = second and second = second + 1 (guest at first index is not a celebrity.). If the answer is no, then we make second = second + 1 (guest at index second is not a celebrity.). In the end, we will have a probable celebrity at the first index. Then check that the guest at the first index is known by all the other guests. Time-complexity : O(n)

Example 7.40:

fun findCelebrity3(relation: Array<IntArray>, count: Int): Int {

var first = 0

var second = 1

for (i in 0 until count - 1) {

if (isKnown(relation, first, second)) first = second

second = second + 1

}

for (i in 0 until count) {

if (first != i && isKnown(relation, first, i)) return -1

if (first != i && isKnown(relation, i, first) == false) return -1

}

return first

}

Depth-First Search with a Stack

In a depth-first search, we traverse down a path until we get a dead-end; then we backtrack by popping a stack to get an alternative path. 

➢ Create a stack

➢ Create a start point

➢ Push the start point onto the stack

➢ While (value searching is not found and the stack is not empty)

➢ Pop the stack

➢ Find all possible points after the one which we just tried

➢ Push these points onto the stack
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Uses of Stack

1 Where LIFO functionality is required. 

2 Undo and Redo functions in a text editor. 

3 Back and Forward function in web browser. 

4 Grammar checking such as Parenthesis matching 

5 Expression conversion (like infix to postfix etc.)

6 Postfix evaluation of an expression. 

7 Function calls are implemented using the system stack. 

8 Depth-first search of trees and graphs. 

Exercise

1 Find if a given string is a palindrome or not using a stack. A palindrome is a sequence of characters that is the same backwards or forward. 

E.g. “AAABBBCCCBBBAAA”, “ABA” & “ABBA” 

Hint: Push characters to the stack until the half-length of the string. Then pop these characters and then compare. Make sure you take care of the odd length and even length. 

2 Min stack Problem: Design a stack in which we can get the minimum value in the stack should also work in O(1) Time Complexity. 

Hint:  Keep two stacks, one will be a general stack, which will just keep the elements. The second will keep the min value. 

➢ Push: Push an element to the top of stack1. Compare the new value with the value at the top of stack2. If the new value is smaller, then push the new value into stack2. Or push the value at the top of the stack2 to itself once more. 

➢ Pop: Pop an element from the top of stack1 and return. Pop an element from the top of stack2 too. 

➢ Min: Reads from the top of the stack2, this value will be the min. 

3 Converting Decimal Numbers to Binary Numbers using the stack data structure. 

Hint: store reminders into the stack and then print the stack. 

4 Convert an infix expression to a prefix expression. 

Hint: Reverse the given expression, apply infix to postfix, and then reverse the expression again. 

Step 1. Reverse the infix expression. 

5^E+D*) C^B+A (

Step 2. Make Every '(' as ')' and every ')' as '(' 

5^E+D*(C^B+A)

Step 3. Convert an expression to postfix form. 

Step 4. Reverse the expression. 

+*+A^BCD^E5 

5 Write an HTML opening tag and closing tag-matching program. 

Hint: parenthesis matching. 

6 Write a function that will transform Postfix to Infix Conversion
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7 Write a function that will transform Prefix to Infix Conversion

8 Write a palindrome matching function, which ignores characters other than the English alphabet and digits. String "Madam, I'm Adam." should return true. 

9 At a party, there is a possibility that a stranger has visited it. A stranger is a person who is not known by anyone and who doesn't know anyone. You want to find a stranger at the party. You can ask only one question DoYouKnow(X, Y), which means to X you can ask only one question” Do you know Y?”. X will answer the question as yes or no. 
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Introduction

A Queue is a data structure that organises items in a first-in-first-out (FIFO) manner. The first element, added to the queue, will be the first to be removed. It is also known as "first-come-first-served". 

The real-life analogy of queue is a typical line in which we all participate from time to time. 

1. We waited in a line at the railway reservation counter. 

2. We wait in the cafeteria line. 

3. We wait in a queue when we call some customer-care. 

The elements, which are at the front of the queue, are the ones that stayed in the queue for the longest time. 

In computer science, some typical examples of queues are:

➢ Print command: When we issue a print command from our office to a single printer, the print tasks are lined up in a printer queue. The print command that is issued first will be printed before the next commands in line. 

➢ Operating system: The operating system uses different queues to control process scheduling. 

Processes are added to the processing queue, which is used by an operating system for various scheduling algorithms. 

➢ Graph traversals: The breadth-first traversal of graphs use queue data structure. 

The Queue Abstract Data Type

Queue abstract data type is defined as a data structure whose instance follows FIFO or first-in-first-out for the elements added to it. 

The queue should support the following operations:

➢ queueAdd(): The Add() function adds a single element at the back of a queue. 

➢ queueRemove(): The Remove() function removes a single element from the front of a queue. 

➢ queueIsEmpty(): The isEmpty() function returns 1 if the queue is empty. It returns 0 if the queue is not empty. 

➢ queueSize(): The size() function returns the number of elements in a queue. 

243

[image: Image 82]

Chapter 8: Queue

Queue Using Array

Queue Using Array

To implement a queue using an array, create an array arr of size N and take two variables front and back, both of which are initialised to 0. Initially, the size of the queue is 0. Add() function is used to add an element at the end of the queue using the back variable. The remove() function is used to remove elements from the front of the queue using the front variable.  The back variable is incremented when a new value is added to the queue, and the back variable is incremented when the value is deleted from the queue. The modular operator is used to get the next value of the back and front variable to make the array behave like a circular array. 

Example 8.1:

class Queue constructor(private val capacity: Int = 1000) {

private val data: IntArray

private var size = 0

var front = 0

var back = 0

val isEmpty: Boolean

get() = size == 0

fun size(): Int {

return size

}

init {

data = IntArray(capacity)

}

fun add(value: Int): Boolean {

if (size >= capacity) {

println("Queue is full.")

return false

} else {

size++

data[back] = value

back = ++back % capacity

}

return true

}
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fun remove(): Int {

val value: Int

if (size <= 0) {

println("Queue is empty.")

return Int.MIN_VALUE

} else {

size--

value = data[front]

front = ++front % capacity

}

return value

}

fun print() {

if (size == 0) {

print("Queue is empty.")

return

}

var temp = front

print("Queue is : ")

for (s in 0 until size) {

print(data[temp].toString() + " ")

temp = (temp + 1) % capacity

}

println()

}

}

// Testing code. 

fun main() {

val que = Queue()

que.add(1)

que.add(2)

que.add(3)

println("isEmpty : " + que.isEmpty)

println("size : " + que.size())

println("Queue remove : " + que.remove())

println("Queue remove : " + que.remove())

}

Output:

isEmpty : false

size : 3

Queue remove : 1

Queue remove : 2

Queue Using Circular Linked List

A queue is implemented using a circular linked list. The advantage of using a circular linked list is that we can get head and tail nodes in constant time. When we want to insert an element to the queue, we add elements to the tail. When we need to delete an element from a queue, we delete it from the head of the list. 
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Example 8.2:

class QueueLL {

private class Node(val value: Int, var next: Node?) private var tail: Node? = null

private var size = 0

val isEmpty: Boolean

get() = size == 0

fun size(): Int {

return size

}

fun print() {

if (size == 0) {

print("Queue is empty.")

return

}

var temp = tail!!.next

print("Queue is : ")

for (i in 0 until size) {

print(temp!!.value.toString() + " ")

temp = temp.next

}

println()

}



fun peek(): Int {

if (isEmpty) throw IllegalStateException("StackEmptyException") val value: Int

if (tail === tail!!.next) 

value = tail!!.value 

else 

value = tail!!.next!!.value

return value

}

}

Add

Enqueue into a queue using a circular linked list. Nodes are added to the end of the linked list. The below diagram indicates how a new node is added to the list. The tail is modified whenever a new value is added to the queue. 
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Example 8.3:

fun add(value: Int) {

val temp = Node(value, null)

if (tail == null) {

tail = temp

tail!!.next = tail

} else {

temp.next = tail!!.next

tail!!.next = temp

tail = temp

}

size++

}

Analysis: The add() operation adds one element at the end of the Queue (circular linked list). 

Remove

Dequeue operation is done by deleting the head node. The next node of the tail node is the head node. 

The tail node next will point to the next of the head nodes. Free memory of the deleted node. And return its value. 
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Example 8.4:

fun remove(): Int {

if (size == 0) throw IllegalStateException("StackEmptyException") var value : Int

if (tail === tail!!.next) {

value = tail!!.value

tail = null

} else {

value = tail!!.next!!.value

tail!!.next = tail!!.next!!.next

}

size--

return value

}

// Testing code. 

fun main() {

val que = QueueLL()

que.add(1)

que.add(2)

que.add(3)

println("isEmpty : " + que.isEmpty)

println("size : " + que.size())

println("Queue remove : " + que.remove())

println("Queue remove : " + que.remove())

}

Output:

isEmpty : false

size : 3

Queue remove : 1

Queue remove : 2

Analysis: Remove operation removes the first node from the start of the queue (circular linked list). 

Problems in Queue

Queue using a stack

Problem: How to implement a queue using a stack. You can use multiple stacks. 

Solution: We can use two stacks to implement a queue. 

1. Enqueue Operation: new elements are added to the top of the first stack. 

2. Dequeue Operation: elements are popped from the second stack. When the second stack is empty then all the elements of the first stack are popped one by one and pushed into the second stack. 
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Example 8.5:

class QueueUsingStack {

private val stk1: Stack<Int> 

private val stk2: Stack<Int> 

init {

stk1 = Stack<Int>()

stk2 = Stack<Int>()

}

fun add(value: Int) {

stk1.push(value)

}

fun remove(): Int {

var value: Int

if (stk2.isEmpty() == false) {

return stk2.pop()

}

while (stk1.isEmpty() == false) {

value = stk1.pop()

stk2.push(value)

}

return stk2.pop()

}

}

// Testing code. 

fun main() {

val que = QueueUsingStack()

que.add(1)

que.add(2)

que.add(3)

println("Queue remove : " + que.remove())

println("Queue remove : " + que.remove())

}

Output:

Queue remove : 1

Queue remove : 2 

Analysis:  All add() happens to stack 1. When remove() is  called,  removal happens from stack 2. 

When stack 2 is empty, then stack 1 is popped and pushed into stack 2. This popping from stack 1 and pushing into stack 2 revert the order of retrieval, thereby making queue behaviour out of two stacks. 

Time complexity is O(1) on average, elements are added to the first stack only once. They are taken to the second stack only once and taken out using pop operation. 

Stack using a Queue

Problem: Implement stack using a queue. 

First Solution: use two queues

Push: add new elements to queue1. 
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Pop: while the size of queue1 is bigger than 1. Push all items from queue 1 to queue 2 except the last item. Switch the name of queue 1 and queue 2. Then return the last item. 

Push operation is O(1) and Pop operation is O(n)

Example 8.6:

class Stack {

var que1: ArrayDeque<Int> = ArrayDeque<Int>()

var que2: ArrayDeque<Int> = ArrayDeque<Int>()

var size = 0

fun push(value: Int) {

que1.add(value)

size += 1

}

fun pop(): Int {

var value = 0

var s = size

while (s > 0) {

value = que1.first()

que1.removeFirst()

if (s > 1) que2.add(value)

s--

}

val temp: ArrayDeque<Int> = que1

que1 = que2

que2 = temp

size -= 1

return value

}

}

// Testing code. 

fun main() {

val stk = Stack()

stk.push(1)

stk.push(2)

stk.push(3)

println("Stack pop : " + stk.pop())

println("Stack pop : " + stk.pop())

}

Output:

Stack pop : 3

Stack pop : 2

Second Solution: This same can be done using just one queue. 

Push: add the element to the queue. 

Pop: find the size of the queue. If the size is zero, then return an error. Else, if the size is positive, then remove size- 1 elements from the queue and again add to the same queue. At last, remove the next element and return it. 

Push operation is O(1) and Pop operation is O(n)
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Example 8.7:

fun push(value: Int) {

que1.add(value)

size += 1

}

fun pop2(): Int {

var value = 0

var s = size

while (s > 0) {

value = que1.first()

que1.removeFirst()

if (s > 1) que1.add(value)

s--

}

size -= 1

return value

}

Breadth-First Search with a Queue

In breadth-first search, we explore all the nearest nodes first by finding all possible successors and adding them to a queue. 

Solution: 

1. Create a queue

2. Create a start point

3. Enqueue the start points onto the queue

4. while (value searching not found, and the queue is not empty)

➢ Dequeue from the queue

➢ Find all possible paths from the dequeued point. 

➢ Enqueue these paths in the queue

Josephus problem

Problem: N people are standing in a queue waiting to be executed. The counting begins at the front of the queue. In each step, k number of people are removed and again added one by one from the queue. Then the next person is executed. The execution proceeds around the circle until only the last person remains, who will be free. Find that position where you want to stand and gain your freedom. 

Solution: 

➢ Just insert an integer for 1 to k in a queue. (corresponds to k people)

➢ Define a Kpop() function such that it will remove and add the queue k-1 times and then remove one more time. (This man is dead.)

➢ Repeat the second step until the size of the queue is 1. 

➢ Print the value in the last element. This is the solution. 

Example 8.8:

fun josephus(n: Int, k: Int): Int {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

for (i in 0 until n) que.add(i + 1)

while (que.size > 1) {

for (i in 0 until k - 1) {

que.add(que.peek())
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que.remove()

}

que.remove() // Kth person executed. 

}

return que.peek()

}

// Testing code. 

fun main() {

println("Position : " + josephus(11, 5))

}

Output:

Position : 8

Circular tour

Problem:  There are N number of petrol pumps in a circular path. Each petrol pump has a limited amount of petrol. You are given the amount of petrol each petrol pump has and the distance from the next petrol pump. Find if there is a circular tour possible to visit all the petrol pumps. 

First Solution: Find all the possible paths starting from different petrol pumps. 

For each petrol pump, we will add (net petrol available – net petrol needed to reach its next petrol pump.). While iterating the pumps if we can find a path with petrol value always positive then it is the path which we are searching. Otherwise, find another path by selecting another starting point. 

Time complexity is O(n^2)

Example 8.9:

fun circularTour(arr: Array<IntArray>, n: Int): Int {

for (i in 0 until n) {

var total = 0

var found = true

for (j in 0 until n) {

total += arr[(i + j) % n][0] - arr[(i + j) % n][1]

if (total < 0) {

found = false

break

}

}

if (found) return i

}

return -1

}

// Testing code. 

fun main() {

val tour = arrayOf(intArrayOf(8, 6), intArrayOf(1, 4), intArrayOf(7, 6)) println("Circular Tour : " + circularTour(tour, 3))

}

Output:

Circular Tour : 2
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Second  Solution:    There   is   inefficiency  in   the   above  problem.   Net   petrol  calculations   are  done repeatedly for the same node. If we had started from the ith pump and got a negative value of net petrol after visiting kth petrol pump. Then we can find the net petrol value starting from the i+1th pump and ending to the kth pump in constant time by subtracting the petrol value of the ith pump. 

So, when we are traversing the array of pumps, we go on adding an index of pumps to the array. 

When we get a positive value of net petrol, then we go on adding the next petrol pump and keep track of net petrol. When we get a negative net petrol value, then we remove the starting pump ID from the queue and do the needed calculation on the net petrol. Once a value is added to the queue, we don’t need to do more calculations for it. So, this solution is linear. Time complexity is O(N). 

Example 8.10:

fun circularTour2(arr: Array<IntArray>, n: Int): Int {

val que: java.util.ArrayDeque<Int> = java.util.ArrayDeque<Int>() var nextPump = 0

var prevPump: Int

var count = 0

var petrol = 0

while (que.size != n) {

while (petrol >= 0 && que.size != n) {

que.add(nextPump)

petrol += arr[nextPump][0] - arr[nextPump][1]

nextPump = (nextPump + 1) % n

}

while (petrol < 0 && que.size > 0) {

prevPump = que.remove()

petrol -= arr[prevPump][0] - arr[prevPump][1]

}

count += 1

if (count == n) 

return -1

}

return if (petrol >= 0) que.remove() else -1

}

Convert XY

Problem: Given two values X and Y. You need to convert X to Y by performing various steps. In a step, we can either multiply 2 on the value or subtract 1 from it. 

Solution: Breadth-first traversal (BFS) of the possible values that can be generated from the source value is done. The various values that can be generated are added to the queue for BFS. In addition, the various values are added to the map to keep track of the values already processed.  Each value is added to the queue only once so the time complexity of this algorithm is O(n). 

Example 8.11:

fun convertXY(src: Int, dst: Int): Int {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

val arr = IntArray(100)

var steps = 0

var index = 0

var value: Int

que.add(src)

253

Chapter 8: Queue

Problems in Queue

while (que.size != 0) {

value = que.remove()

arr[index++] = value

if (value == dst) {

return steps

}

steps++

if (value < dst) que.add(value * 2) else que.add(value - 1)

}

return -1

}

// Testing code. 

fun main() {

println("Steps count : " + convertXY(2, 7))

}

Output:

Steps count : 3

The maximum value in Sliding Windows

Problem: Given an array of integers, find the maximum value in all the sliding windows of length k. 

Input: 11, 2, 75, 92, 59, 90, 55 and k = 3

Output: 75, 92, 92, 92, 90

First Solution: Brute force approach, run loop for all the indexes of an array. Inside a loop run another loop of length k, find the maximum of this inner loop and display it to the screen. This time complexity is O(NK). 

Example 8.12:

fun maxSlidingWindows(arr: IntArray, size: Int, k: Int) {

for (i in 0 until size - k + 1) {

var max = arr[i]

for (j in 1 until k) {

max = java.lang.Math.max(max, arr[i + j])

}

print("$max ")

}

println()

}

// Testing code. 

fun main() {

val arr = intArrayOf(11, 2, 75, 92, 59, 90, 55)

maxSlidingWindows(arr, 7, 3)

}

Output 

75 92 92 92 90 

Second Solution: 

1. We traverse the input array and add the index values to a queue. 

2. When the index added to the queue is out of range, then we remove them from the queue. 
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3. We are searching for maximum value so those values which are in the queue and which are less than the value of the current index will be of no use, so we will pop them from the queue. 

4. So  the maximum   value  of   the  window  is always present   at  the index  que[0]  so  they  will  be displayed. 

Note: Problems that involve sliding windows are solved efficiently using a doubly ended queue. 

Example 8.13:

fun maxSlidingWindows2(arr: IntArray, size: Int, k: Int) {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

for (i in 0 until size) {

// Remove out of range elements

if (que.size > 0 && que.peek() <= i - k) 

que.remove()

// Remove smaller values at left. 

while (que.size > 0 && arr[que.peekLast()] <= arr[i]) que.removeLast()

que.add(i)

// Largest value in window of size k is at index que[0]

// It is displayed to the screen. 

if (i >= k - 1) 

print(arr[que.peek()].toString() + " ")

}

println()

}

Minimum of Maximum Values in Sliding Windows

Problem:  Given an array of integers, find the minimum of all the maximum values in the sliding windows of length k. 

Input: 11, 2, 75, 92, 59, 90, 55 and k = 3

Output: 75

Solution: Same as the above problem. You will keep track of the minimum of all the maximum values in sliding windows too. 

Example 8.14:

fun minOfMaxSlidingWindows(arr: IntArray, size: Int, k: Int): Int {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

var minVal = 999999

for (i in 0 until size) {

// Remove out of range elements

if (que.size > 0 && que.peek() <= i - k) 

que.remove()

// Remove smaller values at left. 

while (que.size > 0 && arr[que.peekLast()] <= arr[i]) que.removeLast()

que.add(i)

// window of size k

if (i >= k - 1 && minVal > arr[que.peek()]) 

minVal = arr[que.peek()]

}
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println("Min of max is : $minVal")

return minVal

}

// Testing code. 

fun main() {

val arr = intArrayOf(11, 2, 75, 92, 59, 90, 55)

minOfMaxSlidingWindows(arr, 7, 3)

}

Output 

Min of max is : 75

Maximum of Minimum Values in Sliding Windows

Problem:  Given an array of integers, find the maximum of all the minimum values in the sliding windows of length k. 

Input: 11, 2, 75, 92, 59, 90, 55 and k = 3

Output:  59, as minimum values in sliding windows are [2, 2, 59, 59, 55]

Solution: Same as the above problem. You will keep track of the minimum of all the maximum values in sliding windows too. 

Example 8.15:

fun maxOfMinSlidingWindows(arr: IntArray, size: Int, k: Int) {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

var maxVal = -999999

for (i in 0 until size) {

// Remove out of range elements

if (que.size > 0 && que.peek() <= i - k) 

que.remove()

// Remove smaller values at left. 

while (que.size > 0 && arr[que.peekLast()] >= arr[i]) que.removeLast()

que.add(i)

// window of size k

if (i >= k - 1 && maxVal < arr[que.peek()]) 

maxVal = arr[que.peek()]

}

println("Max of min is : $maxVal")

}

// Testing code. 

fun main() {

val arr = intArrayOf(11, 2, 75, 92, 59, 90, 55)

maxOfMinSlidingWindows(arr, 7, 3)

}

Output:

Max of min is : 59

First Negative Sliding Windows 

Problem: Given an array of integers, find the first negative of all the values in the sliding windows of length k. 
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Input: Arr = [13, -2, -6, 10, -14, 50, 14, 21], k = 3

Output:  [-2, -2, -6, -14, -14, NAN]

Solution:  We will create a queue. Only those indices are added to the queue which has negative values. Pop those values which are out of the range of the window. 

Example 8.16:

fun firstNegSlidingWindows(arr: IntArray, size: Int, k: Int) {

val que: ArrayDeque<Int> = ArrayDeque<Int>()

for (i in 0 until size) {

// Remove out of range elements

if (que.size > 0 && que.peek() <= i - k) 

que.remove()

if (arr[i] < 0) 

que.add(i)

// window of size k

if (i >= k - 1) {

if (que.size > 0) 

print(arr[que.peek()].toString() + " ") 

else 

print("NAN")

}

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(3, -2, -6, 10, -14, 50, 14, 21)

firstNegSlidingWindows(arr, 8, 3)

}

Output:

-2 -2 -6 -14 -14 NAN

Rotten Fruit

Problem: Given that, fruits are arranged in a 2-dimensional grid. Among which few fruits are rotten. 

The empty slots are represented by 0, fresh fruits are represented by 1 and the rotten fruits are represented by 2. In one day, a rotten fruit rotates adjacent fruits that come to its contact. You need to find the maximum number of days in which the fruits of the whole grid will rot. 

First solution: Using DFS / Recursion, each fruit can rot at max 4 other fruits that are adjacent to it. 

Traverse all the elements that are in the input grid. If the element is rotten fruit with value 2 then process that element. Check all the four adjacent elements, if those elements are not empty slots and are in the range of the grid. Keep track of how many days it takes to rot some fruit, starting from the rotten fruit. If we get a better day's solution then we will process the node further, else we backtrack. 

Time-complexity is O(T * 4^RC), T is the total number of rotten fruits at the start, 4 is the branching factor and from each branch, we will explore all the cells of the crate which are in total RC. The total number of nodes of a tree with 4 branching factors and height will be (4RC+1 -1) ignoring the constants we will get (4^RC). This is an exponential time complexity solution. 
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Example 8.17:

fun rottenFruitUtil(arr: Array<IntArray>, maxCol: Int, maxRow: Int, currCol: Int, currRow: Int, traversed: Array<IntArray>, day: Int) {

val dir = arrayOf(intArrayOf(-1, 0), intArrayOf(1, 0), intArrayOf(0, -1), intArrayOf(0, 1))

var x: Int

var y: Int

for (i in 0..3) {

x = currCol + dir[i][0]

y = currRow + dir[i][1]

if (x >= 0 && x < maxCol && y >= 0 && y < maxRow && traversed[x][y] > day +

1 && arr[x][y] == 1) {

traversed[x][y] = day + 1

rottenFruitUtil(arr, maxCol, maxRow, x, y, traversed, day + 1)

}

}

}

fun rottenFruit(arr: Array<IntArray>, maxCol: Int, maxRow: Int): Int {

val traversed = Array(maxCol) { IntArray(maxRow) }

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

traversed[i][j] = Int.MAX_VALUE

}

}

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

if (arr[i][j] == 2) {

traversed[i][j] = 0

rottenFruitUtil(arr, maxCol, maxRow, i, j, traversed, 0)

}

}

}

var maxDay = 0

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

if (arr[i][j] == 1) {

if (traversed[i][j] == Int.MAX_VALUE) return -1

if (maxDay < traversed[i][j]) maxDay = traversed[i][j]

}

}

}

return maxDay

}

// Testing code. 

fun main() {

val arr = arrayOf(

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(2, 1, 0, 1, 0), 

intArrayOf(0, 0, 0, 2, 1), 

intArrayOf(0, 2, 0, 0, 1), 

intArrayOf(1, 1, 0, 0, 1)

)
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println("rottenFruit : " + rottenFruit(arr, 5, 5))

}

Output:

rottenFruit : 3 

Second solution: Using BFS, We had a queue to store all the locations of rotten fruits. Then we will perform BFS by taking one element out of the queue and processing it. When processing an element taken out of the queue, all its branches or adjacent fruit locations are again inserted at the end of the queue. By doing this, those nodes which are closer to the rotten fruits are processed before the far nodes. This is an efficient algorithm with time complexity O(RC). 

Example 8.18:

class Fruit internal constructor(var x: Int, var y: Int, var day: Int) fun rottenFruit2(arr: Array<IntArray>, maxCol: Int, maxRow: Int): Int {

val traversed = Array(maxCol) {

BooleanArray(maxRow)

}

val dir = arrayOf(intArrayOf(-1, 0), intArrayOf(1, 0), intArrayOf(0, -1), intArrayOf(0, 1))

val que: ArrayDeque<Fruit> = ArrayDeque<Fruit>()

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

traversed[i][j] = false

if (arr[i][j] == 2) {

que.add(Fruit(i, j, 0))

traversed[i][j] = true

}

}

}

var max = 0

var x: Int

var y: Int

var day: Int

var temp: Fruit

while (!que.isEmpty()) {

temp = que.peek()

que.pop()

for (i in 0..3) {

x = temp.x + dir[i][0]

y = temp.y + dir[i][1]

day = temp.day + 1

if (x >= 0 && x < maxCol && y >= 0 && y < maxRow && arr[x][y] != 0 && traversed[x][y] == false) {

que.add(Fruit(x, y, day))

max = java.lang.Math.max(max, day)

traversed[x][y] = true

}

}

}

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

if (arr[i][j] == 1 && traversed[i][j] == false) {

return -1

}
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}

}

return max

}

Steps of Knight

Problem: Given a chessboard and a knight start position. You need to find the minimum number of steps required to move a knight from the start position to the final position. 

First Solution: DFS, Each knight can go to 8 other positions. Find the positions which are not already visited with less number of steps and are in the range of the chessboard. Perform DFS traversal of the chessboard. If we get a better solution for some nodes then only we process it further, if we already have a better solution then we backtrack. 

Time-complexity will be O(8^(n^2)) since 8 is the branching factor and from each branch, we will explore all the cells of the board which are in total n^2. This is an exponential time complexity solution. 

Example 8.19:

fun stepsOfKnightUtil(size: Int, currCol: Int, currRow: Int, traversed: Array<IntArray>, dist: Int) {

val dir = arrayOf(intArrayOf(-2, -1), intArrayOf(-2, 1), 

intArrayOf(2, -1), intArrayOf(2, 1), intArrayOf(-1, -2), 

intArrayOf(1, -2), intArrayOf(-1, 2), intArrayOf(1, 2))

var x: Int

var y: Int

for (i in 0..7) {

x = currCol + dir[i][0]

y = currRow + dir[i][1]

if (x >= 0 && x < size && y >= 0 && y < size && traversed[x][y] > dist+1){

traversed[x][y] = dist + 1

stepsOfKnightUtil(size, x, y, traversed, dist + 1)

}

}

}

fun stepsOfKnight(size: Int, srcX: Int, srcY: Int, dstX: Int, dstY: Int): Int {

val traversed = Array(size) { IntArray(size) }

for (i in 0 until size) {

for (j in 0 until size) {

traversed[i][j] = Int.MAX_VALUE

}

}

traversed[srcX - 1][srcY - 1] = 0

stepsOfKnightUtil(size, srcX - 1, srcY - 1, traversed, 0)

return traversed[dstX - 1][dstY - 1]

}

// Testing code. 

fun main() {

println(stepsOfKnight(20, 10, 10, 20, 20))

}
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Output:

8

Second Solution: BFS, We had taken a queue to store the start location of the knight. Then we will perform BFS by taking one element out of the queue and processing it. When processing an element taken out of the queue, all its branches or 8 different cells are inserted at the end of the queue. By doing this, those nodes which are closer to the starting location of the knight are processed before the far cells. This is an efficient algorithm with time complexity O(N^2), where N is the size of the board. 

Example 8.20:

class Knight internal constructor(var x: Int, var y: Int, var cost: Int) fun stepsOfKnight2(size: Int, srcX: Int, srcY: Int, dstX: Int, dstY: Int): Int {

val traversed = Array(size) { IntArray(size) }

val dir = arrayOf(intArrayOf(-2, -1), intArrayOf(-2, 1), intArrayOf(2, -1), intArrayOf(2, 1), intArrayOf(-1, -2), intArrayOf(1, -2), 

intArrayOf(-1, 2), intArrayOf(1, 2))

val que: ArrayDeque<Knight> = ArrayDeque<Knight>()

for (i in 0 until size) {

for (j in 0 until size) {

traversed[i][j] = Int.MAX_VALUE

}

}

que.add(Knight(srcX - 1, srcY - 1, 0))

traversed[srcX - 1][srcY - 1] = 0

var x: Int

var y: Int

var cost: Int

var temp: Knight

while (!que.isEmpty()) {

temp = que.peek()

que.pop()

for (i in 0..7) {

x = temp.x + dir[i][0]

y = temp.y + dir[i][1]

cost = temp.cost + 1

if (x>=0 && x<size && y>=0 && y<size && traversed[x][y] > cost) {

que.add(Knight(x, y, cost))

traversed[x][y] = cost

}

}

}

return traversed[dstX - 1][dstY - 1]

}

Distance nearest fill

Problem: Given a matrix 2D array, with some cells filled by 1 and other 0. You need to create a 2D

array that will contain the minimum distance of each 0 elements to any one of the cells with a value of 1. Manhattan distance is considered. 
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First Solution: DFS, Grid-based traversal using DFS is performed to find the nearest fill. We create a 2-dimensional traversed array to keep track of distance. For each node traverse all nodes accessible from it. A node is traversed if it is in the range of the grid and has a distance less than the previous distance. 

Time-complexity will be O(4^RC) since 4 is the branching factor and from each branch, we will explore all the elements of the crate which are in total RC. This is an exponential time complexity solution. 

Example 8.21:

fun distNearestFillUtil( arr: Array<IntArray>?, maxCol: Int, maxRow: Int, currCol: Int, currRow: Int, 

traversed: Array<IntArray>, dist: Int ) { // Range check

var x: Int

var y: Int

val dir = arrayOf(intArrayOf(-1, 0), intArrayOf(1, 0), intArrayOf(0, -1), intArrayOf(0, 1))

for (i in 0..3) {

x = currCol + dir[i][0]

y = currRow + dir[i][1]

if (x >= 0 && x < maxCol && y >= 0 && y < maxRow && traversed[x][y] > dist 

+ 1) {

traversed[x][y] = dist + 1

distNearestFillUtil(arr, maxCol, maxRow, x, y, traversed, dist + 1)

}

}

}

fun distNearestFill(arr: Array<IntArray>, maxCol: Int, maxRow: Int) {

val traversed = Array(maxCol) { IntArray(maxRow) }

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

traversed[i][j] = Int.MAX_VALUE

}

}

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

if (arr[i][j] == 1) {

traversed[i][j] = 0

distNearestFillUtil(arr, maxCol, maxRow, i, j, traversed, 0)

}

}

}

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

print(traversed[i][j].toString() + " ")

}

println()

}

}

// Testing code. 

fun main() {

val arr = arrayOf(

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(1, 1, 0, 1, 0), 

intArrayOf(0, 0, 0, 0, 1), 
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intArrayOf(0, 0, 0, 0, 1), 

intArrayOf(0, 0, 0, 0, 1)

)

distNearestFill(arr, 5, 5)

}

Output:

0 1 0 0 1

0 0 1 0 1

1 1 2 1 0

2 2 2 1 0

3 3 2 1 0

Second Solution: BFS, We had taken a queue to store all the cells with 1 value. Then we will perform BFS by taking one element out of the queue and processing it. When processing an element taken out of the queue, all its branches or adjacent cells are again inserted at the end of the queue. By doing this, those nodes which are closer to the nodes with 1 are processed before the far nodes. This is an efficient algorithm with time complexity O(RC), where R is the number of rows and C is the number of columns. 

Example 8.22:

class Node internal constructor(var x: Int, var y: Int, var dist: Int) fun distNearestFill2(arr: Array<IntArray>, maxCol: Int, maxRow: Int) {

val traversed = Array(maxCol) { IntArray(maxRow) }

val dir = arrayOf(intArrayOf(-1, 0), intArrayOf(1, 0), intArrayOf(0, -1), intArrayOf(0, 1))

val que: ArrayDeque<Node> = ArrayDeque<Node>()

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

traversed[i][j] = Int.MAX_VALUE

if (arr[i][j] == 1) {

que.add(Node(i, j, 0))

traversed[i][j] = 0

}

}

}

var x: Int

var y: Int

var dist: Int

var temp: Node

while (!que.isEmpty()) {

temp = que.peek()

que.pop()

for (i in 0..3) {

x = temp.x + dir[i][0]

y = temp.y + dir[i][1]

dist = temp.dist + 1

if (x >= 0 && x < maxCol && y >= 0 && y < maxRow && traversed[x][y] > dist) {

que.add(Node(x, y, dist))

traversed[x][y] = dist

}

}

}
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for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

print(traversed[i][j].toString() + " ")

}

println()

}

}

Largest island

Problem: Given a map represented by a 2D array. 1s are land and 0s are water. You need to find the largest landmass. The largest landmass has the largest number of 1s. 

Solution: The largest island is found by doing DFS traversal of neighbouring nodes of a current node. 

The largest island of the current node is the sum of the largest island of all the neighbouring nodes + 1

(for the current node). 

Time-complexity will be O(RC), we will explore all the cells of the grid and once a cell is traversed then it will not be traversed again. 

Example 8.23:

fun findLargestIslandUtil(arr: Array<IntArray>, maxCol: Int, maxRow: Int, currCol: Int, currRow: Int, traversed: Array<BooleanArray>): Int {

val dir = arrayOf(intArrayOf(-1, -1), intArrayOf(-1, 0), intArrayOf(-1, 1), intArrayOf(0, -1), intArrayOf(0, 1), intArrayOf(1, -1), 

intArrayOf(1, 0), intArrayOf(1, 1))

var x: Int

var y: Int

var sum = 1

for (i in 0..7) {

x = currCol + dir[i][0]

y = currRow + dir[i][1]

if (x >= 0 && x < maxCol && y >= 0 && y < maxRow && traversed[x][y] == 

false && arr[x][y] == 1) {

traversed[x][y] = true

sum += findLargestIslandUtil(arr, maxCol, maxRow, x, y, traversed)

}

}

return sum

}

fun findLargestIsland(arr: Array<IntArray>, maxCol: Int, maxRow: Int): Int {

var maxVal = 0

val traversed = Array(maxCol) {

BooleanArray(

maxRow

)

}

for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

traversed[i][j] = false

}

}
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for (i in 0 until maxCol) {

for (j in 0 until maxRow) {

if (arr[i][j] == 1) {

traversed[i][j] = true

var currVal = findLargestIslandUtil(arr, maxCol, maxRow, i, j, 

traversed)

if (currVal > maxVal) 

maxVal = currVal

}

}

}

return maxVal

}

// Testing code. 

fun main() {

val arr = arrayOf(intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(1, 0, 0, 1, 0), 

intArrayOf(0, 1, 1, 1, 1), 

intArrayOf(0, 1, 0, 0, 0), 

intArrayOf(1, 1, 0, 0, 1))

println("Largest Island : " + findLargestIsland(arr, 5, 5))

}

Output:

Largest Island : 12

Uses of Queue

Applications of Queue are:

1. Where FIFO functionality is required

2. Printer has its queue to schedule various print commands. 

3. Scheduling of shared resources in the operating system. 

4. Multiprogramming tasks. 

5. Message queue of a messaging service.  

6. Breadth-first search (BFS) of trees and graphs. 

Exercise

1. Implement a queue using dynamic memory allocation, such that the implementation should follow the following constraints. 

➢ The user should use memory allocation from the heap using a new operator. In this, you need to take care of the max value in the queue. 

➢ Once you are done with the above exercise, you can test your queue. Then you can add some more complexity to your code. In the add() function when the queue is full, in place of printing, 

“Queue is full” you should allocate more space using a new operator. 

➢ Once you are done with the above exercise. Now in the remove function, once you are below half of the capacity of the queue, you need to decrease the size of the queue by half. You should add one more variable  “min”  to the queue so that you can track what is the original 265
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value capacity passed to the initialization() function. Moreover, the capacity of the queue will not go below the value passed in the initialization. 

2. Implement the below function for the queue:

➢ IsEmpty: This is left as an exercise for the user. Take a variable, which will take care of the size of a queue if the value of that variable is zero, isEmpty should return true. If the queue is not empty, then it should return false. 

➢ Size: Use the size variable to be used under the size function call. The size() function should return the number of elements in the queue. 

3. Implement stack using a queue. Write a program for this problem. You can use just one queue. 

4. Write a program to Reverse a stack using queue

5. Write a program to Reverse a queue using stack

6. Write a CompStack() function which takes a pointer to two stacks as an argument and returns true or false depending upon whether all the elements of the stack are equal or not. You are given isEqual(int, int) which will compare and return true if both values are equal and 0 if they are different. 

7. Given two values X and Y. You need to convert X to Y by performing various steps. In a step, we can either multiply 2 to the value or subtract 1 from it. You need to display the number of steps and the path. To reach 3 from 1, the path will be [1, 2, 4, 3] and the number of steps will be 3. 

Hint: Create an array to keep track of the number of steps and another array to keep track of parent value. 

8. The number of islands: Given a map represented by a 2D array. 1s are land and 0s are water. You need to find several islands. An island is a landmass formed by a group of connected 1s. 

Hint: Solve this problem in the same way you had solved the above largest island problem. 

9. Snake and Ladder Problem: Given a snake and ladder board, which starts with 1 and ends at 100. 

You need to find the minimum number of dice throws required to reach the 100th cell from the 1st cell. There is a list of snakes’ coordinates provided and a list of ladder coordinates provided as pairs. 

Hint: create a dice count array of length 100. Processing each cell starts from 1st to 100th. Each cell has 6 outcomes. Which changes with the presence of snakes and ladders. Use BFS or DFS

and reach your destination. 

10. Rat in Maze: Given a maze, NxN matrix of 0’s and 1’s. A rat has to find a path from source maze[0]

[0] to destination maze[N-1][N-1]. A rat can move in any direction ( left, right, up and down). A rat can move only in unblocked cells with cell value 1. Return the shortest path and its length. 
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Introduction

A tree is a non-linear data structure, which is used to represent the hierarchical relationship between a parent node and a child node. Each node in the tree is connected to another node by  directed edges. 

Why do we use trees? Linear data structures like an array, linked list etc. have a drawback of linear time for searching an element. 

Example 1: Tree in a team of some manager

Example 2: Tree in a file system

Terminology in tree

The basic tree terminologies are as follows:

Node: It is a fundamental element of a tree. Each node has data and two pointers that may point to null or its children. 
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Edge: It is also a fundamental part of a tree, which is used to connect two nodes. 

Root: The root of the tree is the only node without incoming edges. It is the top node of a tree. 

Leaf: A leaf node is a node that has no children. 

Path: A path is an ordered list of nodes that are connected by edges. 

Height of node: It is the number of edges on the longest path between the node to a leaf node. 

Height of tree: It is the number of edges on the longest path between the root and a leaf node. 

Parent: A node is said to be a parent node if it has outgoing edges to other nodes. 

Child: A node that has incoming edges from some other node is said to be the child of that node. 

Sibling: Nodes that are children of the same parent are called sibling nodes. 

Ancestor: A node is said to be an ancestor node if it is reachable while moving from child to parent. 

Level or Depth of a node: The level of a node is the number of edges on the path from the root node to that node. For example, the level of root is 0 and levels of left and right children of root is 1. 
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Binary Tree

A binary tree is a type tree in which each node has at most two children (0, 1 or 2), which are referred to as the left child and the right child. Below is a node of the binary tree with "a" stored as data and whose left child (lChild) and whose right child (rchild) both points to null. 

Example 9.1: Binary tree class and its methods. 

class Tree (var root: Node? = null) {

class Node (var value: Int, var left: Node? = null, var right: Node? = null)

/* Other methods */

}

A binary tree whose nodes contain data from 1 to 10 is given below:

In the rest of the book, the binary tree will be represented as below:

The properties of a binary tree are as follows:

1 The maximum number of nodes on level i of a binary tree is 2i, where i >= 0

2 The maximum number of nodes in a binary tree of height k is 2^(k+1) - 1, where k >= 0

3 There is exactly one path from the root to any nodes in a tree. 

4 A tree with N nodes has exactly N-1 edges connecting these nodes. 

5 The height of a complete binary tree of N nodes is log2N. 
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Types of Binary trees

Complete binary tree

In a complete binary tree, every level except the last one is completely filled. All nodes on the left are filled first, then the right one. A binary heap is an example of a complete binary tree. 

Full (Strictly or Proper) binary tree

The full binary tree is a binary tree in which each node has exactly zero or two children. 

Perfect binary tree

The perfect binary tree is a type of full binary tree in which each non-leaf node has exactly two child nodes. All leaf nodes have identical path lengths and all possible node slots are occupied Right skewed binary tree

A binary tree in which either each node is has a right child or no child (leaf) is called a right-skewed binary tree
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Left skewed binary tree

A binary tree in which either each node is has a left child or no child (leaf) is called a Left skewed binary tree

Height-balanced Binary Tree

A height-balanced binary tree is a binary tree such that the left & right subtrees for any given node differ in height by max one. AVL tree and RB tree are examples of height-balanced trees. 

Note: Each complete binary tree is a height-balanced binary tree 
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Problems in Binary Tree

Create a Complete binary tree

Problem: Create a complete binary tree from values given as an array. 

Solution: To create a complete binary tree, we will fill the elements in the tree level-wise starting from level 0. 

The steps of creating a complete binary tree are as follows:

• Insert the first element present in the array (index i = 0) as the root node at level 0 of the tree. 

• Calculate left child as 2 * i + 1 and add it in the left subtree of the root. 

• Calculate right child as 2 * i + 2 and add it in the right subtree of the root. 

• Recursively, apply these steps for left and right subtree nodes. 

Example 9.2:

fun createCompleteBinaryTree(arr: IntArray) {

root = createCompleteBinaryTree(arr, 0)

}

fun createCompleteBinaryTree(arr: IntArray, start: Int): Node {

val size = arr.size

val curr = Node(arr[start])

val leftIndex = 2 * start + 1

val rightIndex = 2 * start + 2

if (leftIndex < size) curr.left = createCompleteBinaryTree(arr, leftIndex) if (rightIndex < size) curr.right = createCompleteBinaryTree(arr, rightIndex) return curr

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printPreOrder()

}

Output:

1 2 4 8 9 5 10 3 6 7

Complexity Analysis: This is an efficient algorithm for creating a complete binary tree. 

Time Complexity:  O(n), Space Complexity: O(n) 

Pre-Order Traversal

Problem: Perform Pre-Order Traversal of a binary tree. 

Solution: In pre-order traversal, the node is visited / traversed first, then its left child (or left subtree), and then its right child (or right subtree) are printed. This approach is followed recursively for each node in the tree until we reach the leaf node. 
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Example 9.3:

fun printPreOrder() {

printPreOrder(root)

println()

}

private fun printPreOrder(node: Node?) { /* pre order */

if (node != null) {

print(node.value.toString() + " ")

printPreOrder(node.left)

printPreOrder(node.right)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printPreOrder()

}

Output:

1 2 4 8 9 5 10 3 6 7

Time Complexity: O(n), Space Complexity: O(n) 

Note: If there is an algorithm, in which all nodes are traversed, then complexity cannot be less than O(n). When there is a large portion of the tree, which is not traversed, then complexity reduces. 

Post-Order Traversal

Problem: Perform Post-Order Traversal of a binary tree. 

Solution: In post-order traversal, a node’s left child is visited / traversed first, then its right child, and then the value stored in the current  node  is printed. This approach is followed recursively for each node in the tree until we reach the leaf node. 
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Example 9.4:

fun printPostOrder() {

printPostOrder(root)

println()

}

private fun printPostOrder(node: Node?) { /* post order */

if (node != null) {

printPostOrder(node.left)

printPostOrder(node.right)

print(node.value.toString() + " ")

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printPostOrder()

}

Output: 

8 9 4 10 5 2 6 7 3 1 

Time Complexity: O(n), Space Complexity: O(n) 

In-Order Traversal

Problem: Perform In-Order Traversal of a binary tree. 

Solution: In In-Order traversal, the left child (or left subtree) of a node is visited / traversed first, then the node itself, and then finally its right child (or right subtree) is traversed. This approach is followed recursively for each node in the tree until we reach the leaf node. 

Note: The output of the In-Order traversal of BST is a sorted list in increasing order. 
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Example 9.5:

fun printInOrder() {

printInOrder(root)

println()

}

private fun printInOrder(node: Node?) { /* In order */

if (node != null) {

printInOrder(node.left)

print(node.value.toString() + " ")

printInOrder(node.right)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printInOrder()

}

Output: 

8 4 9 2 10 5 1 6 3 7 

Time Complexity: O(n), Space Complexity: O(n) 

Note: Pre-Order, Post-Order, and In-Order traversal are meant for all binary trees. They can be used to traverse any kind of binary tree. 

Level order traversal / Breadth First traversal

Problem:  Write code to implement level order traversal of a tree. Such that nodes at depth k are printed before nodes at depth k+1. 
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Solution: Level order traversal or Breadth-First traversal of a tree is done using a queue. At first, the root node pointer is added to a queue. The traversal of the tree is done until the queue is empty. When we traverse the tree, we first remove an element from the queue, print the value stored in that node and then its left child and right child will be added to the queue. 

Example 9.6:

fun printBreadthFirst() {

val que: ArrayDeque<Node> = ArrayDeque<Node>()

var temp: Node

if (root != null) que.add(root)

while (que.isEmpty() == false) {

temp = que.remove()

print(temp.value.toString() + " ")

if (temp.left != null) que.add(temp.left)

if (temp.right != null) que.add(temp.right)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printBreadthFirst()

}

Output:

1 2 3 4 5 6 7 8 9 10

Time Complexity: O(n), Space Complexity: O(n) 

Print Depth First without using the recursion/system stack. 

Problem: Perform a depth-first search of a binary tree without using recursion. 

Solution: Depth-first traversal of the tree is done by using the system stack recursion. However, the same  can  be   implemented  by  using  a  stack  data  structure  as  well.  In  the  beginning,   root   node reference is added to the stack. The whole tree is traversed until the stack is empty. In each iteration, 276
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an element is popped from the stack, its value is printed to the screen. Then the right child and then the left child of the node is added to the stack. The following code demonstrates the latter approach. 

Example 9.7:

fun printDepthFirst() {

val stk: Stack<Node> = Stack<Node>()

var temp: Node

if (root != null) stk.push(root)

while (stk.isEmpty() == false) {


temp = stk.pop()

print(temp.value.toString() + " ")

if (temp.left != null) stk.push(temp.left)

if (temp.right != null) stk.push(temp.right)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printDepthFirst()

}

Output:

1 3 7 6 2 5 10 4 9 8

Time Complexity: O(n), Space Complexity: O(n)



Print Level Order Line by Line

Problem: Perform level order traversal of a binary tree, such that the levels are printed line by line. 

First Solution: We will use two queues to perform level order traversal. Alternatively, we will process queues and put the children of elements of the queue into another queue so that when each level is processed, we can print the output in different lines. 

Example 9.8:

fun printLevelOrderLineByLine() {

val que1: ArrayDeque<Node> = ArrayDeque<Node>()

val que2: ArrayDeque<Node> = ArrayDeque<Node>()

var temp: Node? 

if (root != null) que1.add(root)

while (que1.size != 0 || que2.size != 0) {

while (que1.size != 0) {

temp = que1.remove()

print(temp.value.toString() + " ")

if (temp.left != null) que2.add(temp.left)

if (temp.right != null) que2.add(temp.right)

}

println("")

while (que2.size != 0) {

temp = que2.remove()
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print(temp.value.toString() + " ")

if (temp.left != null) que1.add(temp.left)

if (temp.right != null) que1.add(temp.right)

}

println()

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printLevelOrderLineByLine()

}

Output:

1 

2 3 

4 5 6 7 

8 9 10 

Second solution: We can solve this problem using a single queue. Let us suppose at any time we have all the nodes of the kth level present in a queue. We can find the count of these elements. We can process elements from the queue count number of times and add their children to the queue. Then we can print a new line. At this point, we have all the nodes at the k+1 level. Start with adding root nodes as the first level to the queue and follow the steps mentioned above. 

Example 9.9:

fun printLevelOrderLineByLine2() {

val que: ArrayDeque<Node> = ArrayDeque<Node>()

var temp: Node? 

var count : Int

if (root != null) que.add(root)

while (que.size != 0) {

count = que.size

while (count > 0) {

temp = que.remove()

print(temp.value.toString() + " ")

if (temp.left != null) que.add(temp.left)

if (temp.right != null) que.add(temp.right)

count -= 1

}

println()

}

}

Print Spiral Tree

Problem: Given a binary tree, print the nodes breadth-first in spiral order. 

Solution: Stacks are last in first out, so two stacks are used to process each level alternatively. The nodes are added and processed in such an order that nodes are printed in spiral order. 
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Example 9.10:

fun printSpiralTree() {

val stk1: Stack<Node> = Stack<Node>()

val stk2: Stack<Node> = Stack<Node>()

var temp: Node

if (root != null) stk1.push(root)

while (stk1.size != 0 || stk2.size != 0) {

while (stk1.size != 0) {

temp = stk1.pop()

print(temp.value.toString() + " ")

if (temp.right != null) stk2.push(temp.right)

if (temp.left != null) stk2.push(temp.left)

}

while (stk2.size != 0) {

temp = stk2.pop()

print(temp.value.toString() + " ")

if (temp.left != null) stk1.push(temp.left)

if (temp.right != null) stk1.push(temp.right)

}

}

println()

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printSpiralTree()

}

Output:

1 2 3 7 6 5 4 8 9 10

Nth Pre-Order

Problem: Given a binary tree, print the value of nodes that will be at the nth index when the tree is traversed in pre-order. 

Solution: We keep track of our indexes using a counter. Since we want to print the node that is at the nth index when we traverse the tree in pre-order, therefore, we will increment the counter as soon as we find a non-empty node. When the counter becomes equal to the index, we print the value and return the nth pre-order index node. 

Example 9.11:

fun nthPreOrder(index: Int) {

val counter = intArrayOf(0)

nthPreOrder(root, index, counter)

}

private fun nthPreOrder(node: Node?, index: Int, counter: IntArray) {

if (node != null) {

counter[0]++

279

Chapter 9: Tree

Problems in Binary Tree

if (counter[0] == index) {

println(node.value)

}

nthPreOrder(node.left, index, counter)

nthPreOrder(node.right, index, counter)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.nthPreOrder(2)

}

Output:

2

Time Complexity: O(n), Space Complexity: O(n) 

Nth Post-Order

Problem: Given a binary tree, print the value of nodes that will be at the nth index when the tree is traversed in post-order. 

Solution: We keep track of index using a counter. Since we want to print the node that is at the nth index when we traverse the tree in post-order, we will increment the counter after the left child and the right child traversals. When the counter becomes equal to the index, we print the value and return the nth post-order index node. 

Example 9.12:

fun nthPostOrder(index: Int) {

val counter = intArrayOf(0)

nthPostOrder(root, index, counter)

}

private fun nthPostOrder(node: Node?, index: Int, counter: IntArray) {

if (node != null) {

nthPostOrder(node.left, index, counter)

nthPostOrder(node.right, index, counter)

counter[0]++

if (counter[0] == index) {

println(node.value)

}

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.nthPostOrder(2)

}
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Output:

9

Time Complexity: O(n), Space Complexity: O(n) 

Nth In Order

Problem: Given a binary tree, print the value of nodes that will be at the nth index when the tree is traversed in In-order. 

Solution: We keep track of our index using a counter. Since we want to print the node that is at the nth index when we traverse the tree in in-order, therefore, we will increment the counter after the left child traversal but before the right child traversal. When the counter becomes equal to the index, we print the value and return the nth in-order index node. 

Example 9.13:

fun nthInOrder(index: Int) {

val counter = intArrayOf(0)

nthInOrder(root, index, counter)

}

private fun nthInOrder(node: Node?, index: Int, counter: IntArray) {

if (node != null) {

nthInOrder(node.left, index, counter)

counter[0]++

if (counter[0] == index) {

println(node.value)

}

nthInOrder(node.right, index, counter)

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.nthInOrder(2)

}

Output:

4

Time Complexity: O(n), Space Complexity: O(1) 

Print all the paths

Problem: Given a binary tree, print all the paths from the roots to the leaf. 

Solution: We will use a stack and follow the depth-first approach. Whenever we traverse a node, we add that node to the stack. When we reach a leaf, we print the whole stack (from the root node to that leaf node). When we return from the function, we remove the element that was added to the stack when we entered this function. 
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Example 9.14:

fun printAllPath() {

val stk: Stack<Int> = Stack<Int>()

printAllPathUtil(root, stk)

}

private fun printAllPathUtil(curr: Node?, stk: Stack<Int>) {

if (curr == null) return

stk.push(curr.value)

if (curr.left == null && curr.right == null) {

println(stk)

stk.pop()

return

}

printAllPathUtil(curr.right, stk)

printAllPathUtil(curr.left, stk)

stk.pop()

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.printAllPath()

}

Output:

[1, 3, 7]

[1, 3, 6]

[1, 2, 5, 10]

[1, 2, 4, 9]

[1, 2, 4, 8]

Time Complexity: O(n), Space Complexity: O(n) 

Number of Nodes

Problem: Find the total number of nodes in a binary tree. 

Solution: We find the number of nodes in a binary tree by summing, the number of nodes in the right child / subtree, and the number of nodes in the left child/ subtree. And adding 1 to this sum. 

Example 9.15:

fun numNodes(curr: Node? = root): Int {

return if (curr == null) 0 else 1 + numNodes(curr.right) + numNodes(curr.left)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.numNodes())

}
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Output:

10

Time Complexity: O(n), Space Complexity: O(n) 

Sum of All nodes in a BT

Problem: Given a binary tree, find the sum of values of all the nodes of it. 

Solution: We will calculate the sum of nodes by recursion. First, the sumAllBT() function will return the sum of all the nodes in the left subtree and then the nodes in the right subtree. Finally, we will add the value of the current node to this sum and return the final sum. 

Example 9.16:

fun sumAllBT(curr: Node? = root): Int {

return if (curr == null) 0 

           else curr.value + sumAllBT(curr.left) + sumAllBT(curr.right)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.sumAllBT())

}

Output:

55

Number of Leaf nodes

Problem: Given a binary tree, find the number of leaf nodes in it. 

Solution: We will calculate the total number of leaf nodes in the tree by adding the number of leaf nodes in the right child/subtree with the number of leaf nodes in the left child/subtree. 

Example 9.17:

fun numLeafNodes(curr: Node? = root): Int {

return if (curr == null) 0

else if (curr.left == null && curr.right == null) 1 

else numLeafNodes(curr.right) + numLeafNodes(curr.left)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.numLeafNodes())

}
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Output:

5

Time Complexity: O(n), Space Complexity: O(n) 

Number of Full Nodes in a BT 

Problem: Given a binary tree, find the count of full nodes in it. A full node has non-null left and right children. 

Solution: A full node is a node that has both left and right children. We will recursively traverse the whole tree and will increase the count of full nodes as we find them. 

Example 9.18:

fun numFullNodesBT(curr: Node? = root): Int {

if (curr == null) return 0

var count = numFullNodesBT(curr.right) + numFullNodesBT(curr.left)

if (curr.right != null && curr.left != null) count++

return count

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.numFullNodesBT())

}

Output:

4

Search value in a Binary Tree

Problem: Search for a particular value in the binary tree. 

Solution: To find if a value exists in a binary tree, we use the exhaustive search algorithm. First, the value in the current node is compared with our key. If it matches, we end our search. If it doesn’t, we recursively look for the key in the left and right subtrees. We stop when we find our desired key in the tree or if the tree is traversed completely without finding the key then return 0. 

Example 9.19:

fun searchBT(value: Int): Boolean {

return searchBTUtil(root, value)

}

fun searchBTUtil(curr: Node?, value: Int): Boolean {

return if (curr == null) false

else if (curr.value == value || searchBTUtil(curr.left, value) || 

searchBTUtil(curr.right,value)) true 

else false

}
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// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.searchBT(9))

}

Output:

true

Find Max in Binary Tree

Problem: Given a binary tree, find the maximum value in it. 

Solution: We will solve this problem by recursively traversing the nodes of the binary tree. First, we will find the respective maximum values in the left and right subtree of a node then we will compare these values with the value of the current node. Finally, we will return the largest of these three values. 

Example 9.20:

fun findMaxBT(curr: Node? = root): Int {

if (curr == null) return Int.MIN_VALUE

var max = curr.value

val leftmax = findMaxBT(curr.left)

val rightmax = findMaxBT(curr.right)

if (leftmax > max) max = leftmax

if (rightmax > max) max = rightmax

return max

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.findMaxBT())

}

Output:

10

Tree Depth

Problem: Given a binary tree, find its depth. 

Solution: We find the depth of a tree by recursively traversing the left and right child of the root. At each level of traversal, the depth of both left and right children is calculated. The greater depth among the left and right children is added by one (which is the depth of the current node). Finally, this value is returned. 

Example 9.21:

fun treeDepth(curr: Node? = root): Int {
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return if (curr == null) 0 else {

val lDepth = treeDepth(curr.left)

val rDepth = treeDepth(curr.right)

if (lDepth > rDepth) lDepth + 1 else rDepth + 1

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.treeDepth())

}

Output:

4

Time Complexity: O(n), Space Complexity: O(n) 

Maximum Length Path in a BT/ Diameter of BT

Problem: Given a binary tree, find the maximum length path in it. 

Solution: To find the diameter of the binary tree, we need to find the depth of the left child and right child. Then these two depth values are added and incremented by one to get the maximum length path (diameter candidate) which contains the current node. Then we will find the max length path in the left child subtree. We will also find the max length path in the right child subtree. Finally, we will compare the three values and return the maximum value among them. This value will be the diameter of the Binary tree. 

Example 9.22:

fun maxLengthPathBT(curr: Node? = root): Int { // diameter

var max: Int

val leftPath: Int

val rightPath: Int

val leftMax: Int

val rightMax: Int

if (curr == null) return 0

leftPath = treeDepth(curr.left)

rightPath = treeDepth(curr.right)

max = leftPath + rightPath + 1

leftMax = maxLengthPathBT(curr.left)

rightMax = maxLengthPathBT(curr.right)

if (leftMax > max) max = leftMax

if (rightMax > max) max = rightMax

return max

}

// Testing code. 

fun main() {

val t = Tree()
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val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.maxLengthPathBT())

}

Output:

6

Copy Tree

Problem: Given a binary tree, copy its value in another binary tree. 

Solution:  The copy of a tree is generated by copying the nodes of the input tree, at each level of traversal, to the output tree. At each level of traversal, a new node is created and in this node, the value of the input tree node is copied. The left subtree is copied recursively and then a pointer to a new subtree is returned, which will then be assigned to the left child pointer of the current new node. 

Similarly, this process is followed for the right subtree. This way, the tree is copied at the end. 

Example 9.23:

fun copyTree(): Tree {

val tree2 = Tree()

tree2.root = copyTree(root)

return tree2

}

private fun copyTree(curr: Node?): Node? {

return if (curr == null) null else {

val temp: Node = Node(curr.value)

temp.left = copyTree(curr.left)

temp.right = copyTree(curr.right)

temp

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

val t2 = t.copyTree()

t2.printInOrder()

}

Output:

8 4 9 2 10 5 1 6 3 7

Time Complexity: O(n), Space Complexity: O(n) 

Copy Mirror Tree

Problem:  Given a binary tree, copy its value to create another tree, which is a mirror image of the original tree. 
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Solution: A mirror image copy of a tree is created the same way as the copy of a tree is created. The only difference here is that in place of the left child pointing to the tree that is formed by the left child traversal of the input tree, this time the left child points to the tree formed by the right child traversal of the input tree. Similarly, the right child points to the tree formed by the traversal of the left child of the input tree. 

Example 9.24:

fun copyMirrorTree(): Tree {

val tree2 = Tree()

tree2.root = copyMirrorTree(root)

return tree2

}

private fun copyMirrorTree(curr: Node?): Node? {

return if (curr == null) null else {

val temp: Node = Node(curr.value)

temp.right = copyMirrorTree(curr.left)

temp.left = copyMirrorTree(curr.right)

temp

}

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

val t3 = t.copyMirrorTree()

t3.printInOrder()

}

Output:

7 3 6 1 5 10 2 9 4 8

Time Complexity: O(n), Space Complexity: O(n) 

Identical

Problem: The two trees are said to be identical if, at each level, the value in the respective node is equal. 

Example 9.25:

fun isEqual(T2: Tree): Boolean {

return isEqualUtil(root, T2.root)

}

private fun isEqualUtil(node1: Node?, node2: Node?): Boolean {

return if (node1 == null && node2 == null) true else if (node1 == null || node2 == null) false else isEqualUtil(node1.left, node2.left) && isEqualUtil(node1.right, node2.right) && node1.value == node2.value

}

// Testing code. 

fun main() {
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val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

val t2 = t.copyTree()

println(t.isEqual(t2))

}

Output:

true

Time Complexity: O(n), Space Complexity: O(n) 

Free Tree

Problem: Given a binary tree, free all its nodes. 

Solution: Root will be assigned to null. The tree nodes will be removed by garbage collector. 

Example 9.26:

fun free() {

root = null

}

Time Complexity: O(n), Space Complexity: O(logn), for recursion. 

Is Complete Tree

Problem:  Given a binary tree, find if it is a complete tree. The tree is complete if it is filled at all possible levels except the last level. The last level is filled from left to right. 

First Solution: We will perform breadth-first traversal of the tree using a queue. Since in a complete tree, if we get a node that does not have a left child then it cannot have a right child too. And, if we find a node that does not have any child, then no other node in breadth-first traversal can have any child. 

Example 9.27:

fun isCompleteTree(): Boolean {

val que: ArrayDeque<Node> = ArrayDeque<Node>()

var temp: Node? 

var noChild = 0

if (root != null) que.add(root)

while (que.size != 0) {

temp = que.remove()

if (temp.left != null) {

if (noChild == 1) return false

que.add(temp.left)

} else noChild = 1

if (temp.right != null) {

if (noChild == 1) return false

que.add(temp.right)

} else noChild = 1

}

return true

}
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// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.isCompleteTree())

}

Output:

true

Second Solution: We can solve this problem through recursion by treating the given tree like a heap. 

If we consider that parent’s location is index then the left child location should be at 2*index+1 and the right child location should be at 2*index+2. If it is true for every node then we have a complete tree. 

Example 9.28:

fun isCompleteTreeUtil(curr: Node?, index: Int, count: Int): Boolean {

return if (curr == null) return true 

else if (index > count) false 

else isCompleteTreeUtil(curr.left, index * 2 + 1, count)

&& isCompleteTreeUtil(curr.right, index * 2 + 2, count)

}

fun isCompleteTree2(): Boolean {

val count = numNodes()

return isCompleteTreeUtil(root, 0, count)

}

Is a Heap

Problem: Given a binary tree, find if it represents a Min-Heap. 

To see if a tree is a heap, we need to check two conditions:

1) It is a complete tree. 

2) The Value of a parent node is smaller than or equal to its left and right child. 

First Solution: We need to find if the given tree is complete and heap parent-child property is followed (parent nodes have a value less than or equal to its children) then this tree represents a Min Heap. 

The isComleteTree() function call takes linear time, so is the isHeap() function. Therefore, the total time complexity is O(n). The whole tree is traversed three times, first to find the total number of elements in the tree, second to find if it is a complete tree and finally for testing the heap property. 

Example 9.29:

fun isHeapUtil(curr: Node?, parentValue: Int): Boolean {

return if (curr == null) true

else if (curr.value < parentValue) false 

else isHeapUtil(curr.left, curr.value) && isHeapUtil(curr.right,curr.value)

}
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fun isHeap(): Boolean {

val infinite = -9999999

return isCompleteTree() && isHeapUtil(root, infinite)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

println(t.isHeap())

}

Output:

true

Second Solution: We can combine isCompleteTree and isHeapUtil function inside a single function. 

Example 9.30:

fun isHeapUtil2(curr: Node?, index: Int, count: Int, parentValue: Int): Boolean {

return if (curr == null) true

else if (index > count) return false

else if (curr.value < parentValue) false 

else isHeapUtil2(curr.left, index * 2 + 1, count, curr.value)

&& isHeapUtil2(curr.right, index * 2 + 2, count, curr.value)

}

fun isHeap2(): Boolean {

val count = numNodes()

val parentValue = -9999999

return isHeapUtil2(root, 0, count, parentValue)

}

Iterative Pre-order

Problem: Given a binary tree, without using recursion, perform pre-order traversal of the tree. 

Solution: In place of using the system stack in recursion, we can traverse the tree using the stack data structure. 

Example 9.31:

fun iterativePreOrder() {

val stk: Stack<Node> = Stack<Node>()

var curr: Node

if (root != null) stk.add(root)

while (stk.isEmpty() == false) {

curr = stk.pop()

print(curr.value.toString() + " ")

if (curr.right != null) stk.push(curr.right)

if (curr.left != null) stk.push(curr.left)

}

println()

}
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// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createCompleteBinaryTree(arr)

t.iterativePreOrder()

}

Output:

1 2 4 8 9 5 10 3 6 7 

Time Complexity: O(n), Space Complexity: O(n) 

Binary Search Tree (BST)

A binary search tree (BST) is a binary tree in which nodes are ordered in the following way:

➢ The key in the left subtree is less than the key in its parent node. 

➢ The key in the right subtree is greater than the key in its parent node. 

➢ No duplicate key is allowed. 

Before moving forward, let us keep the following points in our mind. 

1. There can be two separate key and value fields in the tree node. However, for simplicity, we are considering value as the key. All problems in the binary search tree are solved using this supposition that the value in the node is key for the tree. 

2. Since a binary search tree is a binary tree, therefore, all the algorithms of a binary tree (covered in the previous chapter) are applicable to a binary search tree. 

Problems in Binary Search Tree (BST)

Create a binary search tree from a sorted array

Problem: Create a binary tree from an array of values in sorted order. 
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Solution: Since the elements in the array are in sorted order, we want to create a binary search tree in which left subtree nodes have values less than the current node, and right subtree nodes have values greater than the value of the current node. We will have to find the middle node to create a current node and send the rest of the array to construct the left and right subtree. 

Example 9.32:

fun createBinarySearchTree(arr: IntArray) {

root = createBinarySearchTree(arr, 0, arr.size - 1)

}

private fun createBinarySearchTree(arr: IntArray, start: Int, end: Int): Node? {

if (start > end) return null

val mid = (start + end) / 2

val curr = Node(arr[mid])

curr.left = createBinarySearchTree(arr, start, mid - 1)

curr.right = createBinarySearchTree(arr, mid + 1, end)

return curr

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

t.printInOrder()

}

Output:

1 2 3 4 5 6 7 8 9 10 

Insertion

Below is a step by step tree after inserting nodes in the order. Nodes with keys 6,4,2,5,1,3,8,7,9,10 are inserted in a tree. 
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Solution:  The smaller values are added to the left child subtree of the current node, and greater values are added to the right child subtree of the current node. 

Example 9.33:

fun insert(value: Int) {

root = insert(root, value)

}

private fun insert(node: Node?, value: Int): Node {

if (node == null) {

return Node(value, null, null)

} else if (node.value > value) {

node.left = insert(node.left, value)

} else {

node.right = insert(node.right, value)

}
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return node

}

// Testing code. 

fun main() {

val t = Tree()

t.insert(6)

t.insert(4)

t.insert(2)

t.insert(5)

t.insert(1)

t.insert(3)

t.insert(8)

t.insert(7)

t.insert(9)

t.insert(10)

t.printInOrder()

}

Output:

1 2 3 4 5 6 7 8 9 10  

Time Complexity: O(n), Space Complexity: O(n) 

Find Node

Problem: Find the node with the value given. 

Solution: In a BST, the value greater than the current node value will always be present in the right subtree,  and  the  value  smaller  than   the   current  node  will   always  be  present  in  the  left   subtree. 

Therefore, we can find our desired key value by traversing the left and right subtree iteratively. 

Example 9.34:

fun find(value: Int): Boolean {

var curr = root

while (curr != null) {

curr = if (curr.value == value) {

return true

} else if (curr.value > value) {

curr.left

} else {

curr.right

}

}

return false

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println(t.find(3))

println(t.find(16))

}
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Output:

true

false

Time Complexity: O(n), Space Complexity: O(1) 

Find Min

Problem: Find the node with the minimum value. 

Solution: The leftmost child of the tree will be the node with the minimum value. We will iteratively traverse from root to its left child until we hit the leftmost node. 

Example 9.35:

fun findMin(): Int {

var node: Node? = root ?: return Int.MAX_VALUE

while (node!!.left != null) {

node = node.left

}

return node.value

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println(t.findMin())

}

Output:

1 

Example 9.36:

fun findMinNode(curr: Node?): Node? {

var node: Node? = curr ?: return null

while (node!!.left != null) {

node = node.left

}

return node

}

Time Complexity: O(n), Space Complexity: O(1) 
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Find Max

Problem: Find the node in the tree with the maximum value. 

Solution: Rightmost node of the tree will be the node with the maximum value. 

Example 9.37:

fun findMax(): Int {

var node: Node? = root ?: return Int.MIN_VALUE

while (node!!.right != null) {

node = node.right

}

return node.value

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println(t.findMax())

}

Output:

10

Example 9.38:

fun findMaxNode(curr: Node?): Node? {

var node: Node? = curr ?: return null

while (node!!.right != null) {

node = node.right

}

return node

}

Time Complexity: O(n), Space Complexity: O(1) 

Is tree a BST

Problem: Find is a given binary tree is a binary search tree. 
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First solution: At each node, we will check whether the max value of the left subtree is smaller than the value of the current node and the min value of the right subtree is greater than the current node. If these conditions are fulfilled, then the given binary tree is a BST. 

Example 9.39:

fun isBST3(curr: Node? = root): Boolean {

return if (curr == null) true

else if (curr.left != null && findMaxNode(curr.left)!!.value > curr.value) false

else if (curr.right != null && findMinNode(curr.right)!!.value <= 

curr.value) false 

else isBST3(curr.left) && isBST3(curr.right)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println("IsBST : " + t.isBST())

}

Output:

IsBST : true

Time Complexity: O(n), Space Complexity: O(n) 

Although the above solution is correct, it is inefficient, as the same tree nodes are traversed many times. 

Second solution: A better solution will be the one in which we will traverse each node only once. This can be done by narrowing the range. To do so, we will use the IsBST() function, which takes the max and min range of the values of the nodes. The initial value of min and max would be the minimum and maximum values of the integer(for simplicity, we are taking -999999 and 999999). 

Example 9.40:

fun isBST(curr: Node? = root, min: Int = Int.MIN_VALUE, max: Int = Int.MAX_VALUE): Boolean {

return if (curr == null) true

else if (curr.value < min || curr.value > max) false else isBST(curr.left, min, curr.value) && isBST(curr.right, curr.value, max)

}

Time Complexity: O(n), Space Complexity: O(n) for stack. 

Third solution:  Yet another easier approach for the above-mentioned method will be the  in-order traversal of nodes and see if we are getting a strictly increasing sequence. 

Example 9.41:

fun isBST2(curr: Node? = root, count: IntArray = IntArray(1)): Boolean { /* in order traversal */

if (curr == null) return true
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if (!isBST2(curr.left, count)) return false

if (count[0] > curr.value) return false

count[0] = curr.value

if (!isBST2(curr.right, count)) return false

return true

}

Time Complexity: O(n), Space Complexity: O(n) for stack

Delete Node

Problem: Remove the node x from the binary search tree, reorganise nodes of the binary search tree to maintain its necessary properties. 

We have three cases for deleting a node. For simplicity the node that needs to be deleted is x. 

Case 1: node x has no children. Just delete it (i.e. Change parent node so that it does not point to x) Case 2: node x has one child. Splice out x by linking x’s parent to x’s child Case 3: node x has two children. Splice out the x’s successor and replace x with x’s successor When the node to be deleted has no children

This is a trivial case, in which we directly remove the node by returning null. 

When the node to be deleted has only one child. 

In this case, we return the child of the node. 

We want to remove nodes with a value of 9. The

node has only one child. 

The right child of the parent of a node with value 9

that is the node with value 8 will point to the child

node of the node with value 9. i.e. node with value

10. 
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Finally, a node with  the  value  of  9  is removed

from the tree. 

When the node to be deleted has two children. 

We want to delete nodes with value 6, which have

two children. 

We have found the minimum value node of the

right subtree of the node with a value of 6. 

The minimum of  value is copied to the node with

a value of 6. 
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Delete node with minimum value 7 is called over

the right subtree of the node. 

Finally, the value 6 is removed from the tree. 

Example 9.42:

fun deleteNode(value: Int) {

root = deleteNode(root, value)

}

private fun deleteNode(node: Node?, value: Int): Node? {

if (node != null) {

if (node.value == value) {

if (node.left == null && node.right == null) {

return null

} else if (node.left == null) {

return node.right

} else if (node.right == null) {

return node.left

}

val minNode = findMinNode(node.right)

val minValue = minNode!!.value

node.value = minValue

node.right = deleteNode(node.right, minValue)

} else {

if (node.value > value) {

node.left = deleteNode(node.left, value)

} else {

node.right = deleteNode(node.right, value)

}

}

}

return node

}

// Testing code. 

fun main() {

val t = Tree()

t.insert(2)

t.insert(1)

t.insert(3)

t.insert(4)

println("Before delete operation.")

t.printInOrder()

t.deleteNode(2)

println("After delete operation.")

t.printInOrder()

}
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Output:

Before delete operation. 

1 2 3 4 

After delete operation. 

1 3 4 

Time Complexity: O(n), Space Complexity: O(n) 

Least Common Ancestor

Problem:  In a binary search tree T. The least common ancestor between two nodes n1 and n2 is defined as the lowest node in T that has both n1 and n2 as descendants. Or if n1 is the ancestor of n2, then n1 itself is the least common ancestor. You are given two values and need to find the LCA of both of the values. 

Solution: Consider the two values are first and second. The first is smaller than the second. Go on traversing the tree till we have one of the following cases: 

1. When the first is the ancestor of the second, then the first is the LCA. 

2. When the second is the ancestor of the first, then the second is the LCA. 

3. Both first and second are on different sides of some node, that node is the LCA. 

Example 9.43:

fun lcaBST(first: Int, second: Int): Int {

val result: Int

result = if (first > second) lcaBST(root, second, first) else lcaBST(root, first, second)

if (result == Int.MAX_VALUE) println("lca does not exist") else println("lca is

: $result")

return result

}

private fun lcaBST(curr: Node?, first: Int, second: Int): Int {

if (curr == null) {

return Int.MAX_VALUE

}

if (curr.value > second) {

return lcaBST(curr.left, first, second)

}

if (curr.value < first) {

return lcaBST(curr.right, first, second)

}

return if (find(first) && find(second)) curr.value else Int.MAX_VALUE

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

t.lcaBST(3, 4)

t.lcaBST(1, 4)

t.lcaBST(10, 4)

}
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Output:

lca is : 3

lca is : 2

lca is : 5

Print Tree nodes which are in Range

Problem: Print only those nodes of the tree whose value is in the given range. 

Solution: We can print the nodes in the given range by traversing the tree in in-order and checking if the current value is inside the given range. 

Example 9.44:

fun printInRange(min: Int, max: Int) {

printInRange(root, min, max)

println()

}

private fun printInRange(root: Node?, min: Int, max: Int) {

if (root == null) return

printInRange(root.left, min, max)

if (root.value >= min && root.value <= max) print(root.value.toString() + " ") printInRange(root.right, min, max)

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

t.printInRange(4, 7)

}

Output:

4 5 6 7

Trim the Tree nodes which are Outside Range

Problem: Given a binary search tree and a range as min, max. We need to delete all the nodes of the tree that are out of this range. 

Solution: Traverse the tree post-order, and each node that is having a value outside the range will be deleted. All the deletion will happen from the inside out, so we do not have to care about the children of a node as if they are out of range then they have already deleted themselves. 

Example 9.45:

fun trimOutsideRange(min: Int, max: Int) {

trimOutsideRange(root, min, max)

}

private fun trimOutsideRange(curr: Node?, min: Int, max: Int): Node? {

if (curr == null) return null

curr.left = trimOutsideRange(curr.left, min, max)
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curr.right = trimOutsideRange(curr.right, min, max)

return if (curr.value < min) curr.right

else if (curr.value > max) curr.left

else curr

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

t.trimOutsideRange(4, 7)

t.printInOrder()

}

Output:

4 5 6 7

Find Ceil and Floor value inside BST given key

Problem: In a given tree and a value, we need to find the floor value in a tree that is smaller than the given value and need to find the ceiling value in the tree which is bigger. For a given value we aim to find ceiling and floor value as close as possible. 

Solution:  We will use search in BST to find the ceil and floor of a value in a BST. When we are searching for ceil, if we find any value greater than the given input, we save this value as a probable value. We narrow down our search for a value much closer to our input value. This algorithm takes O(log(n)) time if BST is balanced. Similarly, we can find a floor too. 

Example 9.46:

fun ceilBST(`val`: Double): Int {

var curr = root

var ceil = Int.MIN_VALUE

while (curr != null) {

if (curr.value.toDouble() == `val`) {

ceil = curr.value

break

} else if (curr.value > `val`) {

ceil = curr.value

curr = curr.left

} else {

curr = curr.right

}

}

return ceil

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println(t.ceilBST(5.5))

}
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Output:

6

Example 9.47:

fun floorBST(`val`: Double): Int {

var curr = root

var floor = Int.MAX_VALUE

while (curr != null) {

if (curr.value.toDouble() == `val`) {

floor = curr.value

break

} else if (curr.value > `val`) {

curr = curr.left

} else {

floor = curr.value

curr = curr.right

}

}

return floor

}

// Testing code. 

fun main() {

val t = Tree()

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

t.createBinarySearchTree(arr)

println(t.floorBST(5.5))

}

Output:

5

Is a BST Array

Problem: Given an array of integers, you need to find if it represents a PreOrder traversal of a binary search tree. 

Solution: In PreOrder traversal <Root><Left child><Right child>. Once we have a value greater than the root value, then we are in the Right child subtree. So, all the nodes that will come will have values greater than the root value. 

Example 9.48:

fun isBSTArray(preorder: IntArray): Boolean {

val size = preorder.size

val stk: Stack<Int> = Stack<Int>()

var value: Int

var root = -999999

for (i in 0 until size) {

value = preorder[i]

// If value of the right child is less than root. 

if (value < root) return false

// First left child values will be popped

// Last popped value will be the root. 

while (stk.size > 0 && stk.peek() < value) root = stk.pop() 305
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// add current value to the stack. 

stk.push(value)

}

return true

}

// Testing code. 

fun main() {

val arr1 = intArrayOf(5, 2, 4, 6, 9, 10)

val arr2 = intArrayOf(5, 2, 6, 4, 7, 9, 10)

println(isBSTArray(arr1))

println(isBSTArray(arr2))

}

Output:

true

false

Segment Tree

A segment tree is a binary tree that is used to make multiple range queries and range updates in an array. 

Examples of problems for which Segment Tree can be used are:

1. Finding the sum of all the elements of an array in a given range of index 2. Finding the maximum value of the array in a given range of the index. 

3. Finding   the  minimum   value   of   the   array   in   a   given  range   of   indexes  (also  known   as   Range Minimum Query problem)

Let us consider a simple problem: Given an array of N numbers. You need to perform the following operations:

1. Update any element in the array

2. Find the maximum in any given range (i, j)

First Solution: 

Updating: Just  update  the element in the array, a[i] =x. Finding maximum in the range (i,  j), by traversing through the elements of the array in that range. 

Time Complexity of Update is O(1) and of Finding is O(n)

Second approach: Keep another array that will store the prefix sum.  Value at “ith” index is the sum of the first “I” elements of the input array. 

Input array

1

2

3

4

5

6

7

8

9

10

11

Prefix sum array

1

3

6

10

15

21

28

36

45

55

66

By this approach, prefix sum will be given in constant O(1) time. But the update of one element at the

“ith” index will update all the elements after the “ith” index in the prefix sum array. So the update will 306
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take O(n) time. This approach will be helpful if the prefix sum calculations are frequent, but an update is rare. 

Third Solution:  The above solutions  are  good. However, can we have good performance for both update and range queries. The answer is yes. We can do both the operations in O(log(n)) where n is the size of the array. This we can do using a segment tree. 

Let us suppose we are given an input array A = {1, 8, 2, 7, 3, 6, 4, 5}. Moreover, the below diagram will represent the segment tree formed corresponding to the input array A. 

Properties of Segment Tree:

1. A segment tree is a binary tree. 

2. Each node in a segment tree represents an interval in the array. 

3. The root of the tree represents the whole array. 

4. Each leaf node represents a single element. 

Example 9.49:

class rangeMaxST(input: IntArray) {

var segArr: IntArray

var n: Int

init {

n = input.size // Height of segment tree. 

val x: Int = Math.ceil(Math.log(n.toDouble()) / Math.log(2.0)).toInt()

//Maximum size of segment tree

val max_size: Int = 2 * Math.pow(2.0, x.toDouble()).toInt() - 1

segArr = IntArray(max_size) // Allocate memory for segment tree

constructST(input, 0, n - 1, 0)

}

fun constructST(input: IntArray, start: Int, end: Int, index: Int): Int {

// Store it in current node of the segment tree and return

if (start == end) {

segArr[index] = input[start]

return input[start]

}

// If there are more than one elements, then traverse left and right

// subtrees and store the minimum of values in current node. 

val mid = (start + end) / 2
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segArr[index] = max(constructST(input, start, mid, index * 2 + 1), 

constructST(input, mid + 1, end, index * 2 + 2)

)

return segArr[index]

}

fun max(first: Int, second: Int): Int {

return if (first > second) first else second

}

/* Other methods */

}

Analysis: 

➢ Segment  tree  is created using an  array.  The  number  of  nodes that  are  required  to create a segment tree is (2*n – 1) if n is a power of 2. else it will be 2*(power of 2 bigger than n) – 1/. This is calculated using below steps. 

int x = (int) (Math.ceil(Math.log(n) / Math.log(2))); 

int max_size = 2 * (int) Math.pow(2, x) – 1; 

➢ Function constructST is used to populate the various elements of the segment tree. 

Example 9.50:

fun getMax(start: Int, end: Int): Int {

// Check for error conditions. 

if (start > end || start < 0 || end > n - 1) {

println("Invalid Input.")

return Int.MIN_VALUE

}

return getMaxUtil(0, n - 1, start, end, 0)

}

fun getMaxUtil(segStart: Int, segEnd: Int, queryStart: Int, queryEnd: Int, index: Int): Int {

if (queryStart <= segStart && segEnd <= queryEnd) // complete overlapping case. 

return segArr[index]

if (segEnd < queryStart || queryEnd < segStart) // no overlapping case. 

return Int.MIN_VALUE

// Segment tree is partly overlaps with the query range. 

val mid = (segStart + segEnd) / 2

return max(getMaxUtil(segStart, mid, queryStart, queryEnd, 2 * index + 1), getMaxUtil(mid + 1, segEnd, queryStart, queryEnd, 2 * index + 2)

)

}

Analysis: Function getMax() is used to perform range query. If the range of nodes segStart and segEnd are inside the query range, then the max of the node is returned. In case of no overlap, MIN

Value is returned so that it will not contribute to the final answer. In case of partial overlap, both left and right child queries are performed, and their result is combined to get the final result. 

Example 9.51:

fun update(ind: Int, valu: Int) {

if (ind < 0 || ind > n - 1) { // Check for error conditions. 

println("Invalid Input.")

return
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}

updateUtil(0, n - 1, ind, valu, 0) // Update the values in segment tree

}

// Always min inside valid range will be returned. 

fun updateUtil(segStart: Int, segEnd: Int, ind: Int, valu: Int, index: Int): Int {

// Update index lies outside the range of current segment. 

// So minimum will not change. 

if (ind < segStart || ind > segEnd) return segArr[index]

// If the input index is in range of this node, then update the

// value of the node and its children

if (segStart == segEnd) {

return if (segStart == ind) { // Index value need to be updated. 

segArr[index] = valu

valu

} else {

segArr[index] // index value is not changed. 

}

}

val mid = (segStart + segEnd) / 2

// Current node value is updated with min. 

segArr[index] = max(updateUtil(segStart, mid, ind, valu, 2 * index + 1), 

updateUtil(mid + 1, segEnd, ind, valu, 2 * index + 2))

return segArr[index] // Value of diff is propagated to the parent node. 

}

Analysis:

1. If the index which needs to be modified is outside the segStart and segEnd range, then it will not change the segment. And the min value of the segment will be returned. 

2. In case the index that needs to be modified is found, then the value of that index is updated. 

3. In all the other cases that binary tree both left and right subtree are traversed for modification. 

Example 9.52: Testing code

fun main() {

val arr = intArrayOf(1, 8, 2, 7, 3, 6, 4, 5)

val tree = rangeMaxST(arr)

println("Max value in the range(1, 5): " + tree.getMax(1, 5))

println("Max value in the range(2, 7): " + tree.getMax(2, 7))

println("Max value of all the elements: " + tree.getMax(0, arr.size - 1)) tree.update(2, 9)

println("Max value in the range(1, 5): " + tree.getMax(1, 5))

println("Max value of all the elements: " + tree.getMax(0, arr.size - 1))

}

Output:

Max value in the range(1, 5): 8

Max value in the range(2, 7): 7

Max value of all the elements: 8

Max value in the range(1, 5): 9

Max value of all the elements: 9

Analysis: In the given array the max between index range 1 and 5 is 8. Similarly, the max between index 2 and 7 is 7. Value at the index 2 is modified to 9 so the max in the range 1 and 5 become 9. 
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A Binary Indexed Tree or Fenwick Tree is a data structure that helps compute prefix sums efficiently. 

Problem statement: Given an array, you need to find the prefix sum for ith index.  The ith  prefix sum of a given array is the sum of the first “i” elements of the array. Given an array, you should be able to perform updates and calculate prefix sum effectively. 

First approach: Find the prefix sum by iterating through the various elements of the array and adding them to get the sum. In this naive  approach,  updating the array will take O(1) time but prefix sum calculation will take O(n) time. This approach will work with a lot of updates but few prefix sum calculations. 

Second approach: Keep another array that will store the prefix sum.  Value at “ith” index is the sum of the first “I” elements of the input array. 

Input array

1

2

3

4

5

6

7

8

9

10

11

Prefix sum array

1

3

6

10

15

21

28

36

45

55

66

By this approach, prefix sum will be given in constant O(1) time. But the update of one element at the

“ith” index will update all the elements after the “ith” index in the prefix sum array. So the update will take O(n) time. This approach will be helpful if the prefix sum calculations are frequent, but the updates are rare. 

Third approach: When many updates and many prefix sum calculations are there, then Binary Index Tree or Fenwick Tree are used. (Segment trees can also be used in this scenario, Fenwick trees are easy to implement  and consume  less space than segment trees). Using Fenwick  Tree,  both the operations will take O(log(n)) time. 

The Binary Index tree is implemented using a one-dimensional array. Let's call the array BIT[]. Each element in a BIT[] stores the sum of some elements of the input array. If the size of the input array is n, then the size of the Fenwick tree array is n+1. Index 0 of BIT[] is a dummy node and does not store any information. 

Each index in BIT[] represents a vertex in the tree. Each element of the BIT[] contains a sum of some range of elements in the input array. The prefix sum is calculated by combining the values by moving up from child to parent. The index of the parent vertex is calculated by resetting the least significant set bit of the child index. 

Input array Arr[] values stored in Fenwick array BIT[]

Index 1

2

3

4

5

6

7

8

9

10

11

BIT

Arr[1] Arr[1]

Arr[3] Sum of

Arr[5]

Arr[5]

Arr[7 Sum of

Arr[9]

Arr[9]

Arr[11]

Array

+

Arr[1] to

+

]

Arr[1]   to

+

Arr[2]

Arr[4]

Arr[6]

Arr[8]

Arr[10]
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BIT[] array stores a partial sum, but which elements?. Let “i” be the index of the BIT[] array. The least significant set bit of “i” is reset and calls this new number “j”. So the BIT[] array at index “I” will store the sum of input array Arr[] from index “j+1” to “I”. 

Let us suppose we went to find the value stored in BIT[] at index I = 6, Binary representation of 6 is (0110)2. Reset the least significant set bit we will get j = (0100)2 which is j = 4. So BIT[6] will store 5 & 6

index values. BIT[6] = Arr[5] + Arr[6]

Similarly, for an index “i” which is a power of 2. There will be only one set bit. After resetting that set bit we will get 0. So BIT[] at index “i” will store the sum of the first “i” elements of the input array. 

We need the least significant set bit to do various updates in the binary index tree. The least significant set bit in a number “i” can be calculated by (i & -i)

Let the binary representation of the number “i” be x1y, where x consists of 0’s and 1’s. y is all 0’s. 

-i = 2’s complement of index = (x1y)’ + 1 = x’0y’ + 1 = x’0(0….0)’ + 1 = x’0(1...1) + 1 = x’1(0…0) = x’1y i & (-i) = x1y & x’1y = (0…0)1(0…0), only the least significant set bit of “i” is set. Both x and xàre Complements and y is all zeros. Calculating the prefix sum from BIT[] array. Prefix sum is calculated by adding partial sum at BIT[] at the queried index and all its parent indexes. The parent index is calculated by resetting the least significant set bit. 

Prefix sum index 11 or (1101)2

= BIT[(1101)2] + BIT[(1100)2] + BIT[(1000)2]

= BIT[11] + BIT[10] + BIT[8]

= Arr[11] + (Arr[9] + Arr[10]) + (Arr[1] to Arr[8]) 

The parent index is calculated using bit manipulation. 

Each element contains the sum of the values since its parent in the tree. The index of the parent vertex is calculated by resetting the least significant set bit of the child index. 

ParentIndex = Index - (Index & (-Index))
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Time complexities: 

➢

Populating the BIT[] array will take O(n) time. 

➢

Update and prefix sum calculation will take O(log(n)) time. Which is in the worst-case equal to the total number of bits needed to represent the largest index. 

Example 9.53:

class BinaryIndexTree internal constructor(arr: IntArray) {

var BIT: IntArray

var size: Int

init {

size = arr.size

BIT = IntArray(size + 1)

// Populating bit. 

for (i in 0 until size) update(i, arr[i])

}

fun set(arr: IntArray, index: Int, value: Int) {

val diff = value - arr[index]

arr[index] = value

// Difference is propagated. 

update(index, diff)

}

private fun update(indx: Int, value: Int) {

// Index in bit is 1 more than the input array. 

var index = indx

index = index + 1

// Traverse to ancestors of nodes. 

while (index <= size) {

// Add val to current node of Binary Index Tree. 

BIT[index] += value

// Next element which need to store val. 

index += index and -index

}

}

// Range sum in the range start to end. 

fun rangeSum(start: Int, end: Int): Int {

// Check for error conditions. 

if (start > end || start < 0 || end > size-1) {

println("Invalid Input.")

return -1

}

return prefixSum(end) - prefixSum(start-1)

}

// Prefix sum in the range 0 to index. 

fun prefixSum(indx: Int): Int {

var index = indx

var sum = 0

index = index + 1
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// Traverse ancestors of Binary Index Tree nodes. 

while (index > 0) {

// Add current element to sum. 

sum += BIT[index]

// Parent index calculation. 

index -= index and -index

}

return sum

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

val tree = BinaryIndexTree(arr)

println("Sum of elements in range(0, 5) : " + tree.prefixSum(5)) println("Sum of elements in range(2, 5) : " + tree.rangeSum(2, 5))

// Set fourth element to 10. 

tree[arr, 3] = 10

// Find sum after the value is updated

println("Sum of elements in range(0, 5) : " + tree.prefixSum(5))

}

Output:

Sum of elements in range(0, 5) : 21

Sum of elements in range(2, 5) : 18

Sum of elements in range(0, 5) : 27

Analysis: 

1 Function prefixSum() calculates prefix sum by adding queries index value and all its parent index values. 

2 Function update() is used to propagate the changed value to all the nodes which contain that particular element. 

3 Function set() is used to update the original Arr[] and also propagate differences to the BIT[]

using update() function. 

4 Function rangeSum() will calculate range query by calling two prefixSum(). 

AVL Tree

An AVL Tree is a height-balanced binary search tree(BST). An AVL tree is a binary search tree (BST) with an additional property that it is a balanced tree. The difference between the height of the left and right subtree of every node differs in height by at most one. The difference between the left and right subtree of every node in the tree is either -1, 0 or +1. In an AVL tree, every node maintains extra information known as height. 

Example 9.54:

class AVLTree(var root: Node? = null) {

class Node(var data: Int, var left: Node?, var right: Node?) {

var height = 0

}
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fun height(n: Node?): Int {

return n?.height ?: -1

}

fun getBalance(node: Node?): Int {

return if (node == null) 0 

else height(node.left) - height(node.right)

}

fun printTree() {

printTree(root, "", false)

println()

}

private fun printTree(node: Node?, indentIn: String, isLeft: Boolean) {

var indent = indentIn

if (node == null) return

if (isLeft) {

print(indent + "L:")

indent += "|  " 

} else {

print(indent + "R:")

indent += "   " 

}

println(node.data.toString() + "(" + node.height + ")") printTree(node.left, indent, true)

printTree(node.right, indent, false)

}

}

Analysis: Adding or removing a node from an AVL tree may make the AVL tree unbalanced. Such violations of AVL balance property are corrected by rotations. Let us assume that the insertion of a new   node   converts   a   previously   balanced   AVL   tree   into   an   unbalanced   tree.   Since   the   tree   is previously balanced and a single new node is added to it, the unbalanced maximum difference in height will be 2. 

Therefore, in the bottom-most unbalanced node there are only four cases:

1 Left-Left case, the new node is the left child of its parent, which is the left child of the grandparent. 

2 Left-Right   case,   the   new   node   is   the   right   child   of   its  parent,  which   is   the   left   child   of  the grandparent. 

3 Right-Left   case,     the  new   node   is  the  left   child  of   its  parent,  which   is  the   right   child  of   the grandparent. 

4 Right-Right case, the new node is the right child of its  parent,  which is the right child of the grandparent. 

Left Rotation to fix Right-Right case

The left rotation is performed by rotating nodes arranged anti-clockwise. 

Let us consider the following insertion to understand left rotation. Insert 1, 2 and 3 to the tree. 
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Example 9.55: Function to left rotate subtree rooted with x

fun leftRotate(x: Node?): Node? {

val y = x!!.right

val T = y!!.left

// Rotation

y.left = x

x.right = T

// Update heights

x.height = max(height(x.left), height(x.right)) + 1

y.height = max(height(y.left), height(y.right)) + 1

// Return new root

return y

}

Right Rotation to fix Left-Left case(LL Case)

The right rotation is performed by rotating nodes arranged clockwise. 

Let us consider the following insertion to understand left rotation.  Insert 3, 2 and 1 to the tree. 

Example 9.56: Function to right rotate subtree rooted with x

fun rightRotate(x: Node?): Node? {

val y = x!!.left

val T = y!!.right
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// Rotation

y.right = x

x.left = T

// Update heights

x.height = max(height(x.left), height(x.right)) + 1

y.height = max(height(y.left), height(y.right)) + 1

// Return new root

return y

}

Left-right rotation to fix Left-Right case

The Left-Right rotation is a left rotation followed by a right rotation. In this rotation, the lower two nodes first perform anti-clockwise left rotation followed by clockwise right rotation for the above two nodes. 

Let us consider the following insertion to understand left rotation. Insert 3, 1 and 2

Example 9.57 : Function to left then right rotate subtree rooted with x fun leftRightRotate(x: Node): Node? {

x.left = leftRotate(x.left)

return rightRotate(x)

}

Right-Left rotation to fix Right-Left case(RL case)

The Right-Left rotation is the right rotation followed by the left rotation. In this rotation, the lower two nodes first perform clockwise right rotation followed by anti-clockwise left rotation for the above two nodes. 

Let us consider the following insertion to understand left rotation. Insert 1, 3 and 2
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Example 9.58 : Function to right then left rotate subtree rooted with x fun rightLeftRotate(x: Node): Node? {

x.right = rightRotate(x.right)

return leftRotate(x)

}

Operations on AVL Tree

AVL tree is a binary search tree. So all the operations of traversal and search of binary search trees are applicable on the AVL tree; the only difference is in the insert() and delete() operation, which can create the tree unbalanced. 

Insertion in AVL Tree 

In an AVL tree, the insertion operation is performed as follows:

➢ Insert the new element into the tree using Binary Search Tree insertion. 

➢ After insertion, check the Balance Factor of every node. 

➢ If the Balance Factor of every node is 0 or 1 or -1 then done else go to the next step. 

➢ If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is unbalanced. In this case, perform a suitable Rotation to make it balanced. There are four cases(LL case, LR case, RL case and RR case) that need to be considered to make it balanced. 

In an AVL tree, the insertion operation has O(log(n)) time complexity. 

Example 9.59:

fun insert(data: Int) {

root = insert(root, data)

}

private fun insert(node: Node?, data: Int): Node? {

if (node == null) return Node(data, null, null) if (node.data > data) {

node.left = insert(node.left, data)

} else if (node.data < data) {

node.right = insert(node.right, data)

} else { // Duplicate data not allowed

return node

}

node.height = max(height(node.left), height(node.right)) + 1

val balance = getBalance(node)

if (balance > 1) {

if (data < node.left!!.data) // Left Left Case

{

return rightRotate(node)

}

if (data > node.left!!.data) // Left Right Case

{

return leftRightRotate(node)

}

}

if (balance < -1) {

if (data > node.right!!.data) // Right Right Case

{

return leftRotate(node)

}
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if (data < node.right!!.data) // Right Left Case

{

return rightLeftRotate(node)

}

}

return node

}

Deletion in AVL Tree

In an AVL tree, the deletion operation is performed as follows:

1. Delete an element from the tree is performed using standard Binary Search Tree deletion. 

2. After   deletion,   traverse   up   and   check   the  Balance   Factor  of   every   node.   If   found   any unbalanced node then perform the next step. 

3. If the Balance Factor of any node is other than 0 or 1 or -1 then that tree is unbalanced. In this case, perform a suitable Rotation to make it balanced. There are four cases(LL case, LR case, RL case and RR case) that need to be considered to make it balanced. 

Example 9.60:

fun delete(data: Int) {

root = delete(root, data)

}

private fun delete(node: Node?, data: Int): Node? {

if (node == null) return null

if (node.data == data) {

if (node.left == null && node.right == null) {

return null

} else if (node.left == null) {

return node.right // no need to modify height

} else if (node.right == null) {

return node.left // no need to modify height

} else {

val minNode = findMin(node.right)

node.data = minNode!!.data

node.right = delete(node.right, minNode.data)

}

} else {

if (node.data > data) {

node.left = delete(node.left, data)

} else {

node.right = delete(node.right, data)

}

}

node.height = max(height(node.left), height(node.right)) + 1

val balance = getBalance(node)

if (balance > 1) {

if (data >= node.left!!.data) { // Left Left Case 

return rightRotate(node)

}

if (data < node.left!!.data) { // Left Right Case

return leftRightRotate(node)

}

}
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if (balance < -1) {

if (data <= node.right!!.data) // Right Right Case 

{

return leftRotate(node)

}

if (data > node.right!!.data) // Right Left Case

{

return rightLeftRotate(node)

}

}

return node

}

Time Complexity of deletion is O(log(n))

Example 9.61

fun main() {

val t = AVLTree()

t.insert(1)

t.insert(2)

t.insert(3)

t.insert(4)

t.insert(5)

t.insert(6)

t.insert(7)

t.insert(8)

t.printTree()

t.delete(5)

t.printTree()

}

Output:

R:4(3)

L:2(1)

|  L:1(0)

|  R:3(0)

R:6(2)

L:5(0)

R:7(1)

R:8(0)

R:4(2)

L:2(1)

|  L:1(0)

|  R:3(0)

R:7(1)

L:6(0)

R:8(0)

Red-Black Tree

The Red-Black tree contains its data, left and right children like any other binary tree. In addition to this, its node also contains an extra bit of information that represents colour which can either be red or black. The red-Black tree also contains a specialised type of node called null nodes. Null nodes are 319
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pseudo nodes that exist at the leaf of the tree and are black. All internal nodes have their data associated with them. 

A red-Black tree has the following properties:

➢ The root of the tree is black. 

➢ Every leaf node (null node) is black. 

➢ Two red nodes can’t have a parent-child relationship. 

➢ Every path from a node to a descendant leaf contains the same number of black nodes. 

The first three properties are self-explanatory. The fourth property states that, from any node in the tree to any leaf (null node), the number of black nodes must be the same. In the above figure, from the root node to the leaf node (null node) the number of black nodes is always three nodes. 

Like the AVL tree, red-black trees are also self-balancing binary search trees. Whereas the balance property of an AVL tree has a direct relationship between the heights of left and right subtrees of each node. In red-black trees, the balancing property is governed by the four rules mentioned above. Adding or removing a node from a red-black tree may violate the properties of a red-black tree. The red-black properties are restored through recolouring and rotation. Insert, delete, and search operations have a time complexity of O(log(n)). 

Example 9.62:

class RBTree {

private var root: Node? 

private val NullNode: Node

class Node(var data: Int, var left: Node?) {

var right : Node? = left

var parent : Node? = left

var colour : Boolean = true // true for red colour, false for black colour

// New node are red in colour. 

}

init {

NullNode = Node(0, null)

NullNode.colour = false

root = NullNode

}
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// To check whether node is of colour red or not. 

fun isRed(node: Node?): Boolean {

return if (node == null) false else node.colour == true

}

fun printTree() {

printTree(root, "", false)

println()

}

private fun printTree(node: Node?, inde: String, isLeft: Boolean) {

var indent = inde

if (node === NullNode) return

if (isLeft) {

print(indent + "L:")

indent += "|  " 

} else {

print(indent + "R:")

indent += "   " 

}

println(node!!.data.toString() + "(" + node.colour + ")") printTree(node.left, indent, true)

printTree(node.right, indent, false)

}

/* Other methods */

}

Insertion in RED BLACK Tree

In a Red-Black Tree, every new node must be inserted with the colour RED. The insertion operation in Red-Black Tree is similar to the insertion operation in BST. After every insertion operation, we need to check all the properties of the Red-Black Tree. If all the properties are not satisfied, then we perform rotations and recolouring to restore its Red Black Tree properties.  The new node inserted is always Red, so the property that is mostly violated is two consecutive reds. 

The insertion operation in the Red-Black tree is performed using the following steps: STEP 1, Insert the new node according to BST insertion with the new node colour as Red. 

STEP 2, If the newly inserted node is the root node then colour it black and exit. 

STEP 3, If the parent of the new node is Black, then exit. 

STEP 4, If the parent of the new node is  Red  and uncle (sibling of the parent) colour is  Red,  then perform recolouring. Make grandparent red and both parent and uncle colour as black. 

STEP 5, If the parent of the new node is Red and uncle colour is Black or null, then make suitable rotations and recolour it. 

The below diagram shows STEP 4, recolouring in a case when the parent and uncle of the new node are Red. 
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Left Rotation to fix Right-Right case (RR Case)

The left rotation is performed by rotating nodes arranged anti-clockwise. 

Example 9.63 :  Function to left rotate subtree rooted with x

fun leftRotate(x: Node?): Node? {

val y = x!!.right

val T = y!!.left

// Rotation

y.parent = x.parent

y.left = x

x.parent = y

x.right = T

if (T !== NullNode) T!!.parent = x

if (x === root) {

root = y

return y

}

if (y.parent!!.left === x) y.parent!!.left = y 

else y.parent!!.right = y

// Return new root

return y

}

Right Rotation to fix Left-Left case(LL Case)

The right rotation is performed by rotating nodes arranged clockwise. 

Example 9.64 : Function to right rotate subtree rooted with x

fun rightRotate(x: Node?): Node? {

val y = x!!.left

val T = y!!.right

// Rotation

y.parent = x.parent

y.right = x

x.parent = y

x.left = T
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if (T !== NullNode) T!!.parent = x

if (x === root) {

root = y

return y

}

if (y.parent!!.left === x) y.parent!!.left = y 

else y.parent!!.right = y

// Return new root

return y

}

Left-right rotation to fix Left-Right case(LR Case)

The Left-Right rotation is a left rotation followed by a right rotation. In this rotation, the lower two nodes first perform anti-clockwise left rotation followed by clockwise right rotation for the above two nodes. 

Example 9.65

fun leftRightRotate(node: Node?): Node? {

node!!.left = leftRotate(node.left)

return rightRotate(node)

}

Right-Left rotation to fix Right-Left case(RL case)

The Right-Left rotation is a right rotation followed by a left rotation. In this rotation, the lower two nodes first perform clockwise right rotation followed by anti-clockwise left rotation for the above two nodes. 

Example 9.66 

fun rightLeftRotate(node: Node?): Node? {

node!!.right = rightRotate(node.right)

return leftRotate(node)

}

Below is the diagram to show Step 5, rotation is performed followed by recolouring. 
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Example 9.67:

fun insert(data: Int) {

root = insert(root, data)

val temp = find(data)

fixRedRed(temp)

}

private fun insert(nd: Node?, data: Int): Node? {

var node = nd

if (node === NullNode) {

node = Node(data, NullNode)

} else if (node!!.data > data) {

node.left = insert(node.left, data)

node.left!!.parent = node

} else if (node.data < data) {

node.right = insert(node.right, data)

node.right!!.parent = node

}

return node

}

fun fixRedRed(x: Node?) {

// if x is root colour it black and return

if (x === root) {

x!!.colour = false

return

}

if (x!!.parent === NullNode || x!!.parent!!.parent === NullNode) {

return

}

// Initialize parent, grandparent, uncle

val parent = x!!.parent

val grandparent = parent!!.parent

val uncle = uncle(x)

var mid: Node? = null

if (parent.colour == false) {

return

}

// parent colour is red. gp is black. 

if (uncle !== NullNode && uncle!!.colour == true) {

// uncle and parent is red. 

parent.colour = false

uncle.colour = false

grandparent!!.colour = true

fixRedRed(grandparent)

return

}

// parent is red, uncle is black and gp is black. 

// Perform LR, LL, RL, RR

if (parent === grandparent!!.left && x === parent.left) { // LL

mid = rightRotate(grandparent)

} else if (parent === grandparent!!.left && x === parent.right) { // LR

mid = leftRightRotate(grandparent)

} else if (parent === grandparent!!.right && x === parent.left) { // RL

mid = rightLeftRotate(grandparent)
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} else if (parent === grandparent!!.right && x === parent.right) { // RR

mid = leftRotate(grandparent)

}

mid!!.colour = false

mid.left!!.colour = true

mid.right!!.colour = true

}

private fun uncle(node: Node?): Node? {

// If no parent or grandparent, then no uncle

if (node!!.parent === NullNode || node!!.parent!!.parent === NullNode) return null

return if (node!!.parent === node!!.parent!!.parent!!.left) // uncle on right node!!.parent!!.parent!!.right else  // uncle on left

node!!.parent!!.parent!!.left

}

Deletion in Red Black Tree

In an RB tree, the deletion operation is performed as follows:

1 Delete an element from the tree using standard Binary Search Tree deletion. In BST deletion, we always delete  a leaf  node or one child node. As for the 2 child  nodes,  data of inorder successor is copied, and we recursively call it's delete. 

2 If the deleted node is red, then the Red-Black property will not be violated. 

3 If the deleted node is black. Then deleted nodes may cause reduced black node count in one of the paths from the root to leaf. 

4 To fix violated properties of Red-Black Tree, suitable Rotation and Recolour is performed. 

Steps to fix the RB Tree after deletion of black node:

1. Let's call the deleted node “y”. Child of the deleted node as “x”. Sibling of deleted nodes as “s”. 

2. Case 1: If the child of the deleted node is red.  Make the colour of the child as black and black node count will be restored. 

3. Case 2: When the sibling of the deleted node is black and at least one of the sibling children is red. In this there are 4 different combinations:

• Case 2(a): When the sibling “s” of the deleted node “y” is black. Sibling “s”  is the left child of the parent, and the sibling’s left child is red. This is a Left-Left configuration, so perform right rotation. Then change the colour of the child to black.  This case is shown in the below diagram. 
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• Case 2(b): Mirror image of the above case. Sibling “s” is the right child of its parent and its right child is red. Right-Right configuration so performs the left rotation. Then change the colour of the child to black. Black node count property will be restored. 

• Case 2(c): When sibling “s” of deleted node “y” is black. Sibling “s” is the left child of its parent   and  its   right   child  is  red.   This   is   a  Left-Right  configuration,  so   left   rotation followed by right rotation is performed. The child node is coloured black. 

• Case 2(d): When sibling “s” of deleted node “y” is black. Sibling “s” is the right child of its parent and its left child is red. Then Right-Left configuration so right rotation followed by left rotation is performed. Child node colour is changed to black. 

326

[image: Image 138]

Chapter 9: Tree

Red-Black Tree



4. Case 3: When the sibling of the deleted node is black and both of its children are black or null node (which is also black). Make siblings red and recursively add black colour to the parent. If the parent was red then it would become black. If the parent was black it would become double black. If the parent is root then we make the root node as black and exit. 

5. Case 4: When sibling “s” of deleted node “y” is red. Rotation is performed to bring siblings up. 

Then recolour the sibling and parent. 

• Sibling “s” is the left child of a parent. This is a Left-Left configuration so perform right rotation. 

• Sibling “s” is the right child of a parent. This is a Right-Right configuration so perform left rotation. 

• Rotation is performed and parent and sibling colours are swapped. After rotation one of Case 2(a), 2(b), 2(c), 2(d) or Case 3 will be applied. 

• In the below diagram case, the sibling is the right child of the parent so left rotation is performed. Parent and sibling colours are swapped. After rotation and recolouring case 3 is applied. 
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Example 9.68:

fun delete(data: Int) {

delete(root, data)

}

private fun delete(nd: Node?, key: Int) {

var node = nd

var z: Node? = NullNode

val x: Node? 

var y: Node? 

while (node !== NullNode) {

if (node!!.data == key) {

z = node

break

} else if (node.data <= key) {

node = node.right

} else {

node = node.left

}

}

if (z === NullNode) {

println("Couldn't find key in the tree")

return

}

y = z

var yColour = y!!.colour

if (z!!.left === NullNode) {

x = z!!.right

joinParentChild(z, z.right)

} else if (z!!.right === NullNode) {

x = z!!.left

joinParentChild(z, z.left)

} else {
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y = minimum(z!!.right)

yColour = y!!.colour

z.data = y.data

joinParentChild(y, y.right)

x = y.right

}

if (yColour == false) {

if (x!!.colour == true) {

x.colour = false

return

} else {

fixDoubleBlack(x)

}

}

}

private fun fixDoubleBlack(x: Node?) {

if (x === root) // Root node. 

return

val sib = sibling(x)

val parent = x!!.parent

if (sib === NullNode) {

// No sibling double black shifted to parent. 

fixDoubleBlack(parent)

} else {

if (sib!!.colour == true) {

// Sibling colour is red. 

parent!!.colour = true

sib.colour = false

if (sib.parent!!.left === sib) {

// Sibling is left child. 

rightRotate(parent)

} else {

// Sibling is right child. 

leftRotate(parent)

}

fixDoubleBlack(x)

} else {

// Sibling colour is black

// At least one child is red. 

if (sib.left!!.colour == true || sib.right!!.colour == true) {

if (sib.parent!!.left === sib) {

// Sibling is left child. 

if (sib.left !== NullNode && sib.left!!.colour == true) {

// left left case. 

sib.left!!.colour = sib.colour

sib.colour = parent!!.colour

rightRotate(parent)

} else {

// left right case. 

sib.right!!.colour = parent!!.colour

leftRotate(sib)

rightRotate(parent)

}

} else {

// Sibling is right child. 
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if (sib.left !== NullNode && sib.left!!.colour == true) {

// right left case. 

sib.left!!.colour = parent!!.colour

rightRotate(sib)

leftRotate(parent)

} else {

// right right case. 

sib.right!!.colour = sib.colour

sib.colour = parent!!.colour

leftRotate(parent)

}

}

parent.colour = false

} else {

// Both children black. 

sib.colour = true

if (parent!!.colour == false) fixDoubleBlack(parent) else parent.colour = false

}

}

}

}

private fun sibling(node: Node?): Node? {

// sibling null if no parent

if (node!!.parent === NullNode) return null

if (node!!.parent!!.left === node) 

return node!!.parent!!.right 

else 

return node!!.parent!!.left

}

private fun joinParentChild(u: Node?, v: Node?) {

if (u!!.parent === NullNode) {

root = v

} else if (u === u!!.parent!!.left) {

u!!.parent!!.left = v

} else {

u!!.parent!!.right = v

}

v!!.parent = u!!.parent

}

private fun minimum(nd: Node?): Node? {

var node = nd

while (node!!.left !== NullNode) {

node = node!!.left

}

return node

}

// Testing code. 

fun main() {

val tree = RBTree()

tree.insert(1)

tree.insert(2)

tree.insert(3)
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tree.insert(4)

tree.insert(5)

tree.insert(7)

tree.insert(6)

tree.insert(8)

tree.insert(9)

tree.printTree()

tree.delete(4)

tree.printTree()

}

Output:

R:4(false)

L:2(true)

|  L:1(false)

|  R:3(false)

R:6(true)

L:5(false)

R:8(false)

L:7(true)

R:9(true)

R:5(false)

L:2(true)

|  L:1(false)

|  R:3(false)

R:7(true)

L:6(false)

R:8(false)

R:9(true)

Splay Tree

A Splay tree is a self-adjusting binary search tree with the additional property that recently accessed elements are quick to access again. It performs basic operations such as insertion,  look-up, and removal in O(log(n)) amortized time. 

Elements of the tree are rearranged so that the recently accessed element is placed at the top of the tree. When an element is searched then we use standard BST search and then use rotation to bring the element to the top. 

Average-Case

Worst Case

Space complexity

O(n)

O(n)

Time complexity search

O(log(n))

Amortized O(log(n))

Time complexity insert

O(log(n))

Amortized O(log(n))

Time complexity delete

O(log(n))

Amortized O(log(n))

Example 9.69:

class SPLAYTree( var root: Node? = null ) {

class Node(var data: Int, var left: Node?, var right: Node?, var parent: Node? 

= null) 
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fun printTree() {

printTree(root, "", false)

println()

}

private fun printTree(node: Node?, ind: String, isLeft: Boolean) {

var indent = ind

if (node == null) return

indent += if (isLeft) {

print(indent + "L:")

"|  " 

} else {

print(indent + "R:")

"   " 

}

println(node.data)

printTree(node.left, indent, true)

printTree(node.right, indent, false)

}

// Function to right rotate subtree rooted with x

fun rightRotate(x: Node): Node? {

val y = x.left

val T = y!!.right

// Rotation

y.parent = x.parent

y.right = x

x.parent = y

x.left = T

if (T != null) T.parent = x

if (y.parent != null && y.parent!!.left === x) y.parent!!.left =

y else if (y.parent != null && y.parent!!.right === x) y.parent!!.right

= y

// Return new root

return y

}

// Function to left rotate subtree rooted with x

fun leftRotate(x: Node): Node? {

val y = x.right

val T = y!!.left

// Rotation

y.parent = x.parent

y.left = x

x.parent = y

x.right = T

if (T != null) T.parent = x

if (y.parent != null && y.parent!!.left === x) y.parent!!.left =

y else if (y.parent != null && y.parent!!.right === x) y.parent!!.right

= y

// Return new root

return y

}
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fun parent(node: Node?): Node? {

return if (node == null || node.parent == null) null else node.parent

}

fun splay(nd: Node?) {

var node = nd

var parent: Node? 

var grand: Node? 

while (node !== root) {

parent = parent(node)

grand = parent(parent)

if (parent == null) { // rotations had created new root, always last condition. 

root = node

} else if (grand == null) { // single rotation case. 

node = if (parent.left === node) {

rightRotate(parent)

} else {

leftRotate(parent)

}

} else if (grand.left === parent && parent.left === node) { // Zig Zig case. 

rightRotate(grand)

node = rightRotate(parent)

} else if (grand.right === parent && parent.right === node) { // Zag Zag case. 

leftRotate(grand)

node = leftRotate(parent)

} else if (grand.left === parent && parent.right === node) { //Zig Zag case. 

leftRotate(parent)

node = rightRotate(grand)

} else if (grand.right === parent && parent.left === node) { // Zag Zig case. 

rightRotate(parent)

node = leftRotate(grand)

}

}

}

fun find(data: Int): Boolean {

var curr = root

while (curr != null) {

curr = if (curr.data == data) {

splay(curr)

return true

} else if (curr.data > data) {

curr.left

} else {

curr.right

}

}

return false

}

fun insert(data: Int) {

val newNode = Node(data, null, null)

if (root == null) {
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root = newNode

return

}

var node = root

var parent: Node? = null

while (node != null) {

parent = node

node = if (node.data > data) {

node.left

} else if (node.data < data) {

node.right

} else {

splay(node) // duplicate insertion not allowed but splaying for it. 

return

}

}

newNode.parent = parent

if (parent!!.data > data) {

parent.left = newNode

} else {

parent.right = newNode

}

splay(newNode)

}

fun findMinNode(curr: Node?): Node? {

var node: Node? = curr ?: return null

while (node!!.left != null) {

node = node.left

}

return node

}

fun delete(dt: Int) {

var data = dt

var node = root

var parent: Node? = null

var next: Node? = null

while (node != null) {

if (node.data == data) {

parent = node.parent

if (node.left == null && node.right == null) {

next = null

} else if (node.left == null) {

next = node.right

} else if (node.right == null) {

next = node.left

}

if (node.left == null || node.right == null) {

if (node === root) {

root = next

return

}

if (parent!!.left === node) {

parent!!.left = next

} else {

parent!!.right = next

}
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if (next != null) next.parent = parent

break

}

val minNode = findMinNode(node.right)

data = minNode!!.data

node.data = data

node = node.right

} else if (node.data > data) {

parent = node

node = node.left

} else {

parent = node

node = node.right

}

}

splay(parent) // Splaying for the parent of the node deleted. 

}

fun printInOrder() {

printInOrder(root)

println()

}

private fun printInOrder(node: Node?) /* In order */ {

if (node != null) {

printInOrder(node.left)

print(node.data.toString() + " ")

printInOrder(node.right)

}

}

}

// Testing code. 

fun main() {

val tree = SPLAYTree()

tree.insert(5)

tree.insert(4)

tree.insert(6)

tree.insert(3)

tree.insert(2)

tree.insert(1)

tree.insert(3)

tree.printTree()

println("Value 2 found: " + tree.find(2))

tree.delete(2)

tree.delete(5)

tree.printTree()

}

Output:

R:3

L:2

|  L:1

R:6

L:4

|  R:5
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Value 2 found: true

R:4

L:3

|  L:1

R:6

Note: Unlike the AVL tree, the splay tree is not guaranteed to be height-balanced. What is guaranteed is that the total cost of the entire series of accesses will be cheap. 

B Tree

As we had already seen various types of binary trees for searching, insertion and deletion of data in the main memory.  However, these data structures are not appropriate for huge data that cannot fit into the main memory, the data that is stored in the disk. 

A B-tree is a self-balancing search tree that allows searches, insertions, and deletions in logarithmic time. The B-tree is a tree in which a node can have multiple children. Unlike self-balancing binary search trees, the B-tree is optimised for systems that read and write entire blocks (page) of data. The read-write operation from the disk is very slow as compared with the main memory. The main purpose of B-Tree is to reduce the number of disk accesses. The node in a B-Tree has a huge number of pointers to the children nodes. Thereby reducing the size of the tree. While accessing data from a disk, it makes sense to read an entire block of data and store it into a node of a tree. B-Tree nodes are designed such that the entire block of data (page) fits into it.  It is commonly used in databases and file systems. 

B-Tree of minimum degree d has the following properties:

1. All the leaf nodes must be at the same level. 

2. A B-tree defines a degree ‘d’. The value of ‘d’ is the disk size. 

3. All nodes except the root must have at least (ceiling)([d-1]/2) keys and a maximum of d-1 keys. 

The root may contain a minimum of 1 key. 

4. If the root node is a non-leaf node, then it must have at least 2 children. 

5. A non-leaf node with N keys must have an (N+1) number of children. 

6. All the key values within a node must be in Ascending Order. 

7. All keys of a node are sorted in ascending order. The child between two keys, K1 and K2

contain all keys in the range from K1 and K2. 

B-Tree

Average-Case

Worst Case

Space complexity

O(n)

O(n)

Time complexity search

O(log(n))

O(log(n))
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Time complexity insert

O(log(n))

O(log(n))

Time complexity delete

O(log(n))

O(log(n))

Insertion

To insert a new value takes the following steps:

1 Use search to find the leaf node on which new value will be added. 

2 Add a new value to this node in the appropriate place among the values already present in the node. 

3 If the number of values after the addition of the new value is less than max, then we are done. 

4 If the number of values after addition is equal to max, then the node is split into three parts. 

The first median index is calculated. The nodes at the left of the median are made left child. 

The nodes at the right of the median are added to another node. The median value is added to the parent as a key. Then the newly created node makes another child of the parent by doing the appropriate shifting. 

5 If after the median is added to the parent and parent node has less than the max number of allowed keys, then we are done. 

6 If after the median is added to the parent and parent node has reached the max number of allowed keys, then again it is split into three. This process is repeated until the root itself has reached the max. 

7 If a root has max nodes, then it is again split, and its median will become the new root. 

Below are the steps of the creation of B-Tree by adding value from 1 to 7. 

1

Insert 1 to the tree. 

Stable

2

Insert 2 to the tree. 

Stable

3

Insert 3 to the tree. 

Intermediat

e

4

The   new   node   is   created   and   data   is Stable

distributed. 

5

Insert 4 to the tree. 

Stable

6

Insert 5 to the tree. 

Intermediat

e
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7

The node is created and data is distributed. 

Stable

8

Insert 6 to the tree. 

Stable

9

Insert 7 to the tree. New node is created and Intermediat

data is distributed. 

e

10

After rearranging the intermediate node, still, Intermediat

another  intermediate node  has  more  keys e

than the maximum number of allowed keys. 

11

A   new   node   is   created   and   data   is Stable

distributed.   The   height   of   the   tree   has

increased. 

Note: 2-3 trees is a B-tree of degree three. 

Deletion

To delete a new value takes the following steps:

1 Search for the value that needs to be deleted. 

2 If the value is in a leaf node, then delete it from the node. 

➢ If the number of values is less than minimum, then rebalancing is performed. 

➢ If a deficient node’s left sibling has extra values, then the value of the parent is added to the deficient node and the last value of the left sibling is added to the parent. This makes the tree balanced. 

➢ If a deficient node’s right sibling has extra value, then the value of the parent is added to the deficient node and the first value of the right sibling is added to the parent. This makes the tree balanced. 

➢ If both immediate siblings of a deficient node have a minimum number of elements, then merge with the left or right sibling. This makes the tree balanced. 

3 If the deleted value is from an internal node. 

➢ If the left child has more than the minimum number of elements, then copy the last element to the root. This makes the tree balanced. 
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➢ If the right child has more  than the minimum number of  elements,  then copy the first element to the root. This makes the tree balanced. 

➢ If both the right and left child have a minimum number of elements. Then merge both the children. This leads to the removal of one of the keys from the parent node. This can make the parent node with the number of elements less than the minimum number of elements. 

➢ If the parent has at least a minimum number of elements, then we are done. 

➢ If the parent has less than the minimum number of elements, so again step 3 will be applied. This merging and rebalancing can continue till the root. 

➢ The merging and rebalancing lead to the root, and if the root has no elements then the root will point to the first child of the root. 

1

Node with value 5 is deleted. Node is a leaf

node,   and  it   contains   more   than   the

minimum number of values in leaf node, so

5 is deleted and done. 

2

We want to delete value 4. It is a leaf node

but has a minimum number of keys, so it will

borrow from the left cousin. 

3

Now we want to delete 3. It is a leaf node

and has a minimum number of  keys,  so it

will borrow from the right cousin. 

4

Now we want to delete 6. It is in leaf nodes, 

and leaf nodes contain a minimum number

of keys. And it can't borrow from its left or

right cousin, so it will merge with any of the

available cousins. In our case, our cousin

left. 
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5

Now we want to delete 7. It is inside a non-

leaf node. Its left child has more than the

minimum   number   of  keys,  so   7   will   be

replaced by in-order predecessor 2. And 2

will be deleted from the left sub-tree. 

6

Now we want to delete 11. It is inside a non-

leaf   node.   Its   left   child   has   a   minimum

number of keys. Its right child has more than

the minimum number of keys. So 11 will be

replaced by in-order successor 12. And 12

is deleted from the right subtree. 

7

Now we want to delete 12. The left and right

child of 12 contains the minimum number of 

keys. So they will be merged and then 12 is 

removed. 

8

Now we want to delete 2. The right and left 

children have a minimum number of keys, 

so merge will happen. 

9

After the merge, the parent node will have 

less than the minimum number of keys. 

Then it will try to borrow a key from its 

sibling. But siblings also have a minimum 

number of keys. So the parent will be 

merged. 

(Intermediate state)
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10

This creates again an empty root node. So 

the root will point to the first child of the root 

node. 

(Intermediate state)

11

Btree after root rearrangement. 

B+ Tree

B+ Tree is a variant of B-Tree. The B+ Tree stores record only at the leaf nodes. The internal nodes store keys. These keys are used for insertion, deletion, and search. The rules of splitting and merging of nodes are the same as B-Tree. 

b-order B+ tree

Average-Case

Worst Case

Space complexity

O(n)

O(n)

Time complexity search

O(logb(n))

O(logb(n))

Time complexity insert

O(logb(n))

O(logb(n))

Time complexity delete

O(logb(n))

O(logb(n))

Below is the B+ Tree created by adding value from 1 to 5. 

1

Value 1 is inserted into the leaf node. 

2

Value 2 is inserted into the leaf node. 

3

Value 3 is inserted into the leaf node. Content of the leaf node

passed the maximum number of elements. Therefore, the node is

split and an intermediate/key node is created. 

4

Value 4 is further inserted into the leaf node. Which further splits

the leaf node. 
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5

Value 5 is added to the leaf node. The number of nodes in the leaf

passed the maximum number of nodes limit that it could contain, 

so it is divided into 2. One more key is added to the intermediate

node, which also makes it pass the maximum number of nodes it

can contain, and finally divided, and a new node is created. 

Threaded Binary Tree

Binary trees have a lot of wasted space. If the tree has n elements then it will have n+1 null pointers. 

These null pointers memory can be used to get faster inorder traversal of trees. These pointers store reference to the next node in an inorder traversal. These linkages are called thread in the Threaded Binary Tree. To know if a pointer is an actual link or a thread, a boolean flag is kept for each pointer A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a link (thread) to its inorder successor. And every node that does not have a left child has a link to its inorder predecessor. 

Advantages of using Threaded Binary Tree:

1 Threading in the TBT makes inorder traversal of trees faster. 

2 Inorder traversal of TBT is done using a single loop, It avoids recursion, which uses the system stack and consumes a lot of memory and time. 

Threaded Tree traversal:

1. Mark the root of the tree as the current node. 

2. Traverse to the left most node of the current node. Print it. 

3. Follow the right thread of the node. Print it. And continue. 

4. Follow the right child of the node. And go to step 2. 
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function inOrder(n)

function leftMost(cur)

cur = leftmost(n)

if cur == null

while cur != null

return null

print cur

if cur.rThread

while cur.left != null 

cur = cur.right

cur = cur.left

else

cur = leftmost(cur.right)

return cur

Uses of Trees

Applications of Trees are:

1. Implementing the directory and file system

2. Used in decision-making in games like chess. 

3. Parsing of XML expressions uses trees. 

4. Parsing syntax of programming language in compilers. 

Exercise

1. Construct a tree given its in-order and pre-order traversal strings. 

o inorder: 1 2 3 4 5 6 7 8 9 10 

o pre-order: 6 4 2 1 3 5 8 7 9 10

2. Construct a tree given its in-order and post-order traversal strings. 

o inorder: 1 2 3 4 5 6 7 8 9 10 

o post-order: 1 3 2 5 4 7 10 9 8 6

3. Write a delete node function in the Binary tree. 

4. Write a function print depth-first in a binary tree without using system stack Hint:  you may want to keep another element to tree nodes, like the visited flag. 

5. Check whether a given Binary Tree is a Perfect binary tree or not. The perfect binary tree- is a type of full binary tree in which each non-leaf node has exactly two child nodes. 

6. Isomorphic: two trees are isomorphic if they have the same shape, it does not matter what the value is. Write a program to find if two given trees are isomorphic or not. 

7. Check whether a given Binary Tree is Complete or not.In a complete binary tree, every level except the last one is filled. All nodes on the left are filled first, then the right one. 
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8. Check whether a given Binary Tree is a Full/ Strictly binary tree or not. The full binary tree is a binary tree in which each node has zero or two children. 

9. Check whether a given Binary Tree is a Height-balanced Binary Tree or not. A height-balanced binary tree is a binary tree such that the left & right subtrees for any given node differ in height by not more than one

10. The worst-case runtime Complexity of building a BST with n nodes

o O(n^2)

o O(n * log n)

o O(n)

o O(log(n))

11. The worst-case runtime Complexity of insertion into a BST with n nodes is o O(n^2)

o O(n * log n)

o O(n)

o O(log(n))

12. The worst-case runtime Complexity of a search of a value in a BST with n nodes is: o O(n^2)

o O(n * log n)

o O(n)

o O(log(n))
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13. Which of the following traversals always gives the sorted sequence of the elements in a BST? 

o Preorder

o Ignored

o Postorder

o Undefined

14. The height of a Binary Search Tree with n nodes in the worst case? 

o O(n * log n)

o O(n)

o O(log(n))

o O(1)

15. Try to optimise the above solution to give a DFS traversal without recursion using some stack or queue. 

16. This is an open exercise for the readers. Every algorithm that is solved using recursion (system stack) can also be solved using a user-defined or library defined stack. So, try to figure out all algorithms that use recursion and try to figure out how you will do this using a user-defined stack. 


17. In a binary tree, print the nodes in zigzag order. In the first level, nodes are printed in the left to right order. In the second level, nodes are printed in right to left and the third level again in the order left to right. 

Hint:  Use two stacks. Pop from the first stack and push into another stack. Swap the stacks alternatively. 

18. Find the nth smallest element in a binary search tree. 

Hint:  Nth inorder in a binary tree. 

19. Find the floor value of the key that is inside a BST. 

20. Find the Ceil value of the key, which is inside a BST. 
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Introduction

A Priority-Queue, also known as heap, is a variant of the queue. Items are removed from the beginning of the queue. However, in a Priority-Queue, the logical ordering of objects is determined by their priority. The highest priority item is at the front of the Priority-Queue. When you add an item to the Priority-Queue, the new item moves to its proper position according to its priority. A Priority-Queue is a very important data structure. Priority-Queue is used in various graph algorithms like Prim’s Algorithm and Dijkstra’s algorithm. Priority-Queue is also used in the timer implementation etc. 

A Priority-Queue is implemented using Heap. A Heap data structure is an array of elements that can be observed as a complete binary tree. 

A heap is a binary tree that satisfies the following properties:

1. The tree is a complete binary tree. A heap is a complete binary tree, so the height of the tree with N nodes is always O(log(n)). 

2. Heap satisfies the heap ordering property. In max-heap, the parent’s value is greater than or equal   to   its   children's   value.   In   min-heap,   the   parent’s   value   is   less   than   or  equal   to   its children's value. 

A heap is not a sorted data structure and can be regarded as partially ordered. As you can see in the picture, there is no relationship among nodes at any given level, even among the siblings. 

Heap is implemented using an array. Moreover, because the heap is a complete binary tree, the left child of a parent (at position x) is the node that is found in position (2x+1) in the array. Similarly, the right child of the parent is at position (2x+2) in the array. To find the parent of any node in the heap, we can simply divide. In a given index y of a node, the parent index will be (y-1)/2. 
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Parent-Child relationship in heap array. 

Types of Heap

There are two types of heap and the type depends on the ordering of the elements. The ordering can be done in two ways: Min-Heap and Max-Heap. 

Max-Heap

Max-Heap: the value of each node is less than or equal to the value of its parent, with the largest-value element at the root. 

Max-Heap Operations

Insert

O(log(n))

DeleteMax

O(log(n))

Remove 

O(log(n))

findMax   

O(1)

Min-Heap

Min-Heap: the value of each node is greater than or equal to the value of its parent, with the minimum-value element at the root. 

Use it whenever you need quick access to the smallest item because that item will always be at the root of the tree or the first element in the array. However, the remainder of the array is kept partially sorted. Thus, instant access is only possible for the smallest item. 

347

[image: Image 175]

Chapter 10: Priority Queue / Heaps
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Min-Heap Operations

Insert

O(log(n))

DeleteMin

O(log(n))

Remove

O(log(n))

findMin

O(1)

Heap ADT Operations

The basic operations of the binary heap are as follows:

Binary Heap

Creates a new empty binary heap

O(1)

Insert

Adding a new element to the heap

O(log(n))

DeleteMax

Deletes the maximum element from the heap. 

O(log(n))

findMax

Finds the maximum element in the heap. 

O(1)

isEmpty

Returns true if the heap is empty else return false

O(1)

Size

Returns the number of elements in the heap. 

O(1)

BuildHeap 

Builds a new heap from the array of elements

O(log(n))

Operation on Heap

Before  looking  in  detail  at   how   to   Initialise  a  heap,   add  or  remove  elements  into  it   we   need  to understand two important operations involved in the heap. These operations are used to restore heap order property when a single element is out of its position. 

There are two cases are:

1. When a node (parent node) is not following heap property with its children. This is resolved by the procolateDown()  operation,  in which the parent node value is swapped with one of the child values and heap property is restored recursively. 

2. When a node (child node)  is not following heap property with its parent. This is resolved by percolateUp()  or  bubbleUp()  operation, in which child node value is swapped with parent node value and heap property is restored recursively. 
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Example 10.1: Below is the code of percolateUp and percolateDown operation. 

private fun percolateDown(parent: Int) {

val lChild = 2 * parent + 1

val rChild = lChild + 1

var child = -1

if (lChild < size) {

child = lChild

}

if (rChild < size && compare(arr, lChild, rChild)) {

child = rChild

}

if (child != -1 && compare(arr, parent, child)) {

val temp = arr[parent]

arr[parent] = arr[child]

arr[child] = temp

percolateDown(child)

}

}

private fun percolateUp(child: Int) {

val parent = (child - 1) / 2

if (parent >= 0 && compare(arr, parent, child)) {

val temp = arr[child]

arr[child] = arr[parent]

arr[parent] = temp

percolateUp(parent)

}

}

Heap is represented using a class. The following elements of heap class are: 1. “arr” is used to store heaps. 

2. “size”, which is the number of elements in the heap. 

3. “compare” will be used to create Min-Heap or Max-Heap

Example 10.2: 

class Heap {

private var size : Int // Number of elements in Heap

private var arr : IntArray // The Heap array

var isMinHeap: Boolean

constructor(isMin: Boolean) {

arr = IntArray(32) // Initial capacity is 32

size = 0

isMinHeap = isMin

}

fun compare(arr: IntArray, first: Int, second: Int): Boolean {

return if (isMinHeap) arr[first] - arr[second] > 0 // Min heap compare else arr[first] - arr[second] < 0 // Max heap compare

}

fun isEmpty(): Boolean {

return size == 0

}
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fun length(): Int {

return size

}

fun peek(): Int {

if (isEmpty()) {

throw IllegalStateException()

}

return arr[0]

}

// Other Methods. 

}

Analysis: Empty heap is created by creating an empty array. Since the heap is empty, we do not need any heapify operations. 

1. isEmpty() function returns true if the heap is empty or else returns false. 

2. size() function returns the number of elements in the heap. 

3. peek() function will return the highest priority element from the heap without deleting it. 

Create Heap from an array

Heapify is an important algorithm for converting an array into heap. 

The various steps are:

1. Values are present in the array. 

2. Starting from the middle of the array, move down towards the start of the array. At each step, compare parent value with its left child and right child. In addition, restore the heap property by shifting the parent value with its largest-value child. Such that the parent value will always be greater than or equal to the left child and the right child. 

3. For all elements from the middle of the array to the start of the array. We make comparisons and shift until we reach the leaf nodes of the heap. 

Given an array as input to create a heap function. 

The value of index i is compared with the value of

its children nodes that are at index ( i*2 + 1 ) and (

i*2 + 2 ). Middle of list N/2, that is index 3, is

compared with index 7. If the children node value

is greater than the parent node, then the value will

be swapped. 
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Similarly, the value of index 2 is compared with

indexes 5 and 6. The largest of all the values is 7

and will be swapped with the value at index 2. 

Similarly, the value of index 1 is compared with

index 3 and 4 The largest of all the values is 8

which will be swapped with the value of index 1. 

The   percolate   down   function   is   used   to

subsequently   adjust   the   value   replaced   in   the

previous   step   by   comparing   it   with   its   children

nodes. 

Now the value of index 0 is compared with index 1

and 2. 8 is the largest value, so it is swapped with

the value at index 0. 
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The   percolate   down   function   is   used   to   further

compare   the   value   at   index   1   with   its   children

nodes at index 3 and 4. 

In the end, a Max-Heap is created. 

Example 10.3: Creating heap from input array. 

constructor(array: IntArray, isMin: Boolean) {

size = array.size

arr = array

isMinHeap = isMin

// Build Heap operation over array

for (i in size / 2 downTo 0) {

percolateDown(i)

}

}

Analysis: Heap can be initialised by passing an array to it. Heapify() function is called over the array to make it heap. 

Time Complexity of the build heap is O(N). The number of comparisons is related to the height of the node. Total number of comparison will be represented as: (1*n/4) + (2*n/8)+ (3*n/16)……((h-1)*1) == N

Where “h” is the height of the heap. 

Enqueue / add

1. Add the new element at the end of the array. This keeps the values as a complete binary tree, but it might no longer be a  heap,  since the new element might have a value greater than its parent’s value. 

2. Swap the new element with its parent until it has a value greater than its parent’s value. 
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3. Step 2 will be terminated when the new element reaches the root or when the new element's parent has a value greater than or equal to the new element's value. 

Let us take an example of the Max-Heap created in the above example. 

Let us take an example by inserting an element with the value of 9 to the heap. The element is added to the end of the Heap array. Now the value will be percolated up by comparing it with the parent. The value is added to index 8 and its parent will be (N-1)/2 = index 3. 

New value 9 was added to the end of the array. 

Since   the   value   9   is   greater   than   4   it   will   be

swapped with it. 

Percolate up is used, and the value is moved up

until heap property is satisfied. 
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Now the value of index 1 is compared with index 0

and to satisfy heap property it is further swapped. 

Now, finally, the Max-Heap is created by inserting

a new node. 

Example 10.4:

fun add(value: Int) {

if (size == arr.size) {

doubleSize()

}

arr[size++] = value

percolateUp(size - 1)

}

private fun doubleSize() {

val old = arr

arr = IntArray(arr.size * 2)

System.arraycopy(old, 0, arr, 0, size)

}

Analysis: We check if the heap is full. In case when the heap is already full, then we create another array of twice capacity. Copy the content of the heap into it. Then add the new element to the heap, and then use the percolateUp() operation to restore the heap property. 

The time complexity of insertion in heap is O(log(n))
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Dequeue / remove

➢ Copy the value at the root of the heap to the variable that will be used to return that value. 

➢ Copy the last element of the heap to the root, and then reduce the size of the heap by 1. This element is called the "out-of-place" element. 

➢ Restore heap property by swapping the out-of-place element with its greatest-value child. Repeat this process until the out-of-place element reaches a leaf, or it has a value that is greater or equal to all its children. 

➢ Return the answer that was saved in Step 1. 

Value   at   the   start   and   end   of   the   heap   are

swapped.   Heap   size   is   reduced   by   one.   Heap

property   is  disturbed,  so   we   need   to   percolate

down by comparing nodes with its children nodes

and restoring heap property. 

Percolate down is continued by comparing with its

children nodes. 

Percolate down
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Percolate down Complete

Example 10.5:

fun remove(): Int {

if (isEmpty()) {

throw IllegalStateException()

}

val value = arr[0]

arr[0] = arr[size - 1]

size--

percolateDown(0)

return value

}

Analysis: the Value at the top of the heap is swapped with the value at the end of the heap array. The size of the heap is reduced by one and percolateDown is called to restore heap property. 

The time complexity of removing elements from the heap is O(log(n)). 

Traversal in Heap

Heaps are not designed to traverse (to find some element) or print content of heap,. They are made to get   min   or   max   elements   quickly.   Still,   if   you   want   to   traverse   a  heap,  just   traverse   the   array sequentially. Time Complexity of traversal is linear O(n). 

Example 10.6:

fun print() {

print("Heap : ")

for (i in 0 until size) {

print(arr[i].toString() + " ")

}

println()

}

// Testing code. 

fun main() {

val hp = Heap(true)

hp.add(1)

hp.add(6)

hp.add(5)
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hp.add(7)

hp.add(3)

hp.add(4)

hp.add(2)

hp.print()

while (!hp.isEmpty()) 

print(hp.remove().toString() + " ")

}

Output:

Heap : 1 3 2 7 6 5 4 

1 2 3 4 5 6 7 

Deleting Arbiter element from Min-Heap

Again, the heap is not designed to delete an arbitrary element, still if you want to do so. Find the element by linear search in the Heap array. Replace it with the value stored at the end of the Heap value. Reduce the size of the heap by one. Compare the newly inserted value with its parent. If its value is smaller than the parent value, then percolate up. Else if its value is greater than its left and right child then percolate down. Time Complexity is O(n), for searching. 

Example 10.7:

fun delete(value: Int): Boolean {

for (i in 0 until size) {

if (arr[i] == value) {

arr[i] = arr[size - 1]

size -= 1

percolateUp(i)

percolateDown(i)

return true

}

}

return false

}

PriorityQueue implementation in Kotlin Collection

Min heap implementation of Priority Queue

Example 10.8:

import java.util.PriorityQueue

fun main() {

val pq = PriorityQueue<Int>()

val arr = intArrayOf(1, 2, 10, 8, 7, 3, 4, 6, 5, 9)

for (i in arr) {

pq.add(i)

}

println("Heap : $pq")

while (pq.isEmpty() == false) {

print(" " + pq.remove())

}

}
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Output

Heap : [1, 2, 3, 5, 7, 10, 4, 8, 6, 9]

1 2 3 4 5 6 7 8 9 10 

Max heap implementation of Priority Queue. 

Example 10.9:

val pq = PriorityQueue<Int>(Collections.reverseOrder()); 

Output

Heap : [10, 9, 4, 6, 8, 2, 3, 1, 5, 7]

10 9 8 7 6 5 4 3 2 1

Heap Sort

1. Use   the   create   heap   function   to   build   a   Max-Heap   from   the   given   list   of   elements.   This operation will take O(N) time. 

2. Swap the max value at the root of the heap and the value to the end of the heap at location arr[size-1]. Reduce the heap size by 1. 

3. Restoration,   this   element   at   the   root   of   the  heap   is   "out-of-place"   element.   Restore   heap property by swapping the out-of-place element with its greatest-value child. Repeat this process until the out-of-place element reaches a leaf, or it has a value that is greater or equal to all its children

4. Repeat this operation 2 and 3 until there is just one element in the heap. 

Let us take an example of the heap that we had already created at the start of the chapter. Heapsort is an algorithm that starts by creating a heap of the given list, which is done in linear time. Then at each step, the head of the heap is swapped with the end of the heap and the heap size is reduced by 1. 

Then percolate down is used to restore the heap property. Moreover, the same is done multiple times until the heap contains just one element. Total Time-complexity O(n.log(n)) Max-Heap is created from the input array. 
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The maximum value, which is the first element of

the Heap array, is swapped with the last element of

the array. Now the largest value is at the end of the

array. Then we will reduce the size of the heap by

one. 

Since 2 is at the top of the heap. Its heap property

is lost. We will use the Percolate down function to

regain the heap property. 

Percolate down continued. 

Heap property is regained. 
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We will copy the first element of the heap array to

the second last position.  The size  of the heap is

further reduced by one. 

Heap property is lost. Perform percolate down to

regain heap property. 

Percolate down continued. 

Heap property regained. 
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Swap  first and  the  last  value in  the  heap  array. 

Reduce the size of the heap. 

Percolate down. 

Heap property regained. 

Swap the first and last element of the heap array. 

Reduce the size of the heap by one. 
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Heap property lost so Percolate down. 

Swap the first and last value stored in the Heap

array. Reduce the size of the heap by one. 

End

Example 10.10:

fun heapSort(array: IntArray, inc: Boolean) {

// Create max heap for increasing order sorting. 

val hp = Heap(array, !inc)

for (i in array.indices) {

array[array.size - i - 1] = hp.remove()

}

}

// Testing code. 

fun main() {

val a2 = intArrayOf(1, 9, 6, 7, 8, 2, 4, 5, 3)

heapSort(a2, true)

for (i in a2.indices) {

print(a2[i].toString() + " ")

}

println()

val a3 = intArrayOf(1, 9, 6, 7, 8, 2, 4, 5, 3)

heapSort(a3, false)

for (i in a3.indices) {

print(a3[i].toString() + " ")

}

}

Output:

1 2 3 4 5 6 7 8 9 

9 8 7 6 5 4 3 2 1
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Data structure

List

Worst-case time complexity 

O(n.log(n))

Best-Case time complexity 

O(n.log(n))

Average-Case time complexity 

O(n.log(n))

Space Complexity

O(1)

Time complexity analysis: Building the heap of the input array takes O(n) time and each element removal and adding to the end of the heap takes O(log(n)). So, the total time complexity will be O(n) +

O(n.log(n)). The final time complexity of this sorting is O(n.log(n))

Note: Heap-Sort is not a Stable sort and does not require any extra space for sorting an array. 

Problems in Heap

Kth Smallest

Problem: Given an unsorted array, find the kth smallest value. 

First   Solution:  Sort   the   given   array   and   then   give   the   value   at   index   K-1.   Time   complexity   is O(n.log(n)). 

Example 10.11:

fun kthSmallest(arr: IntArray, k: Int): Int {

Arrays.sort(arr)

return arr[k - 1]

}

// Testing code. 

fun main() {

val arr = intArrayOf(8, 7, 6, 5, 7, 5, 2, 1)

println("Kth Smallest :: " + kthSmallest(arr, 3))

}

Output:

Kth Smallest :: 5

Second solution: Create a min-heap from the array, call DeleteMin() operation K times and the last operation will give Kth smallest value. Time Complexity O(n.log(n))

Example 10.12:

fun kthSmallest2(arr: IntArray, size: Int, k: Int): Int {

val pq: PriorityQueue<Int> = PriorityQueue<Int>()

for (i in 0 until size) pq.add(arr[i])

for (i in 0 until k - 1) pq.remove()

return pq.peek()

}

Third Solution: Max-Heap, Create Max-Heap from the first k elements of the array. Traverse the rest of the elements of the array. If the top value of the heap is greater than the array element, then remove the top value and add the array element to the heap. If the top value is less than the array element, 363
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then ignore the array  element. Perform this step till  all the elements  are traversed. Kth  smallest element is at the top of the heap. Total time complexity is O(n.logk). 

Example 10.13:

fun kthSmallest3(arr: IntArray, size: Int, k: Int): Int {

val pq: PriorityQueue<Int> = 

PriorityQueue<Int>(Collections.reverseOrder<Int>())

for (i in 0 until size) {

if (i < k) pq.add(arr[i]) else {

if (pq.peek() > arr[i]) {

pq.add(arr[i])

pq.remove()

}

}

}

return pq.peek()

}

Product of K smallest elements

Problem: Given an array of positive elements. Find products of k minimum elements in an array. 

First   solution:  Sorting,   Sort   the   array   and   find   products   of   first   K   elements.   Sorting   will   take O(n.log(n))   time.   And   then   finding   the   product   will   take   O(n)  time,  so   total   time   complexity   is O(n.log(n)). 

Example 10.14:

fun kSmallestProduct(arr: IntArray, k: Int): Int {

Arrays.sort(arr)

var product = 1

for (i in 0 until k) product *= arr[i]

return product

}

// Testing code. 

fun main() {

val arr = intArrayOf(8, 7, 6, 5, 7, 5, 2, 1)

println("Kth Smallest product:: " + kSmallestProduct(arr, 3))

}

Output:

Kth Smallest product:: 10

Second solution: Min-Heap, Create min-heap from the array. Then pop K elements from the heap and find their product. Heapify will take O(n) time. Pop elements from the heap take O(log(n)) time. K

elements are popped from the heap. So total time complexity is O(k.log(n)) Example 10.15:

fun kSmallestProduct2(arr: IntArray, size: Int, k: Int): Int {

val pq: PriorityQueue<Int> = PriorityQueue<Int>()

var i = 0

var product = 1

while (i < size) {

pq.add(arr[i])
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i++

}

i = 0

while (i < size && i < k) {

product *= pq.remove()

i += 1

}

return product

}

Third solution:  Max-Heap, Max-Heap of size K can be created from the first K elements. Then traverse the rest of the array if the value at  the top  of the array is greater than the current value traversed. Then pop from the heap and then add the current value to the heap. Repeat this process till all the elements of the array are traversed. In the end, the heap contains the K minimum values, then finds their product. 

Example 10.16:

fun kSmallestProduct4(arr: IntArray, size: Int, k: Int): Int {

val pq: PriorityQueue<Int> = 

PriorityQueue<Int>(Collections.reverseOrder<Int>())

for (i in 0 until size) {

if (i < k) pq.add(arr[i]) else {

if (pq.peek() > arr[i]) {

pq.add(arr[i])

pq.remove()

}

}

}

var product = 1

for (i in 0 until k) {

product *= pq.remove()

}

return product

}

Fourth solution: Quick select method, this method is the bi-product of the quick select method to find the kth element of an array. Run the quick select method to find the kth element of an array. The value at the left of the kth index is less than the value at the kth index. Find the product of the first k element. 

Average-Case time complexity of this solution is O(n). 

Example 10.17:

fun kSmallestProduct3(arr: IntArray, size: Int, k: Int): Int {

quickSelectUtil(arr, 0, size - 1, k)

var product = 1

for (i in 0 until k) product *= arr[i]

return product

}

K Largest in a Stream

Problem: There are billions of integers coming out of a stream. How would you determine the largest k numbers? 
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Solution: Large K numbers can be found by using a Heap. In this case, we will create a min-heap. 

1 First, from the first k integers of the input stream, build a min-heap. 

2 Then for each coming integer, compare if it is greater than the top of the min-heap. 

3 If not greater than the top of the heap, then look for the next integer. 

4 If greater than the top of the heap, then remove the top min value from the min-heap, insert the new value to the heap. 

5 Repeat the process for all the elements of the stream. At any time you have the largest k values in your heap. 

6 This solution will take O(logk) time for every insert operation. If in total n elements are observed then Time-complexity will be O(nlogk)

Is Min-Heap

Problem: In the given list, find if it represents a Binary Min-Heap Solution: The Min-Heap property we are going to check is that the value of the parent index is always less than or equal to its children index. Time-complexity O(n) 

Example 10.18:

fun isMinHeap(arr: IntArray, size: Int): Boolean {

var lchild: Int

var rchild: Int

// last element index size - 1

for (parent in 0 until size / 2 + 1) {

lchild = parent * 2 + 1

rchild = parent * 2 + 2

// heap property check. 

if (lchild < size && arr[parent] > arr[lchild] || rchild < size && arr[parent] > arr[rchild]) return false

}

return true

}

// Testing code. 

fun main() {

val arr4 = intArrayOf(1, 2, 3, 4, 5, 6, 7, 8)

println("isMinHeap :: " + isMinHeap(arr4, arr4.size))

}

Output:

isMinHeap :: true

Is Max-Heap

Problem: In the given list, find if it represents a binary Max-Heap Solution: The Max-Heap property we are going to check is that the value of the parent index is always greater than or equal to its children index. Time-complexity O(n)

Example 10.19

fun isMaxHeap(arr: IntArray, size: Int): Boolean {

var lchild: Int

366

Chapter 10: Priority Queue / Heaps

Problems in Heap

var rchild: Int

// last element index size - 1

for (parent in 0 until size / 2 + 1) {

lchild = parent * 2 + 1

rchild = lchild + 1

// heap property check. 

if (lchild < size && arr[parent] < arr[lchild] || rchild < size && arr[parent] < arr[rchild]) return false

}

return true

}

// Testing code. 

fun main() {

val arr3 = intArrayOf(8, 7, 6, 5, 7, 5, 2, 1)

println("isMaxHeap :: " + isMaxHeap(arr3, arr3.size))

}

Output:

isMaxHeap :: true

Analysis: If each parent value is greater than its children value, then heap property is true. We will traverse from the start to half of the array and compare the value of the index node with its left child and right child node. 

Nearly sorted array

Problem:  Given a nearly sorted array, in which an element is at max k units away from its sorted position. 

First solution: If you use sorting, then it will take O(n.log(n)) time Arrays.sort(arr); 

Second solution: There is one algorithm by which it can be done in O(NlogK) time. 

➢ You can create a Min-Heap of size K+1 from the first K+1 elements of the input array. 

➢ Create an empty output array. 

➢ Pop an element from the heap and store it into an output array. 

➢ Push the next element from the array to the heap. 

➢ Repeat these processes 3 and 4 till all the elements of the array are consumed, and the heap is empty. 

➢ In the end, you have sorted the array. 

Example 10.20:

fun sortK(arr: IntArray, size: Int, k: Int) {

val pq: PriorityQueue<Int> = PriorityQueue<Int>()

var i = 0

while (i < k) {

pq.add(arr[i])

i++

}

var index = 0

i = k
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while (i < size) {

arr[index++] = pq.remove()

pq.add(arr[i])

i++

}

while (pq.size > 0) {

arr[index++] = pq.remove()

} 

}

// Testing code. 

fun main() {

val k = 3

val arr = intArrayOf(1, 5, 4, 10, 50, 9)

val size = arr.size

sortK(arr, size, k)

for (i in 0 until size) print(arr[i].toString() + " ")

}

Output:

1 4 5 9 10 50

Get Median function

Problem: Give a data structure that will provide a median of given values in constant time. 

Solution: We will use two heaps, one Min-Heap and another Max-Heap. Max-Heap will contain the first half of the data and Min-Heap will contain the second half of the data. Max-Heap will contain the smaller half of the data and its max value that is at the top of the heap will be the median contender. 

Similarly, the Min-Heap will contain the larger values of the data and its min value that is at its top will contain the median contender. We will keep track of the size of heaps. Whenever we insert a value to the heap, we will make sure that the size of two heaps differs by max one element, otherwise, we will pop one element from one and insert it into another to keep them balanced. 

Example 10.21

class MedianHeap {

internal var minHeap: PriorityQueue<Int> 

internal var maxHeap: PriorityQueue<Int> 

init {

minHeap = PriorityQueue<Int>()

maxHeap = PriorityQueue<Int>(Collections.reverseOrder())

}

fun getMedian() : Int{

if (maxHeap.size == 0 && minHeap.size == 0)

return Integer.MAX_VALUE

if (maxHeap.size == minHeap.size)

return (maxHeap.peek() + minHeap.peek()) / 2

else if (maxHeap.size > minHeap.size)

return maxHeap.peek()

else

return minHeap.peek()
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}

// Other Methods. 

fun insert(valueIn: Int) {

var value = valueIn

if (maxHeap.size == 0 || maxHeap.peek() >= value) {

maxHeap.add(value)

} else {

minHeap.add(value)

}

// size balancing

if (maxHeap.size > minHeap.size + 1) {

value = maxHeap.remove()

minHeap.add(value)

}

if (minHeap.size > maxHeap.size + 1) {

value = minHeap.remove()

maxHeap.add(value)

}

}

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 9, 2, 8, 3, 7, 4, 6, 5, 1)

val hp = MedianHeap()

for (i in arr) {

hp.insert(i)

println("Median after insertion of " + i + " is  " + hp.getMedian())

}

}

Output:

Median after addition of 1 is 1 

Median after addition of 9 is 5 

Median after addition of 2 is 2 

Median after addition of 8 is 5 

Median after addition of 3 is 3 

Median after addition of 7 is 5

Time-complexity:

Add() operation takes O(log(n)) time. GetMedian() operation takes O(1) constant time. 

Binomial Heap

A binomial heap is a specific implementation of the heap data structure. Binomial heap is a collection of binomial trees that are linked together where each tree  follows the  heap property. In a binomial heap, there are either one or zero binomial trees of order k. A binomial tree of order k has 2^k elements. 
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A Binary Heap merge() operation requires adding both the heap in a single array and then performing heapify() operation over them which takes linear time or O(n).  Binomial heaps allow efficient merging of heaps which takes O(log(n)) time. 

Comparison of Efficiency

Binary

Binomial

Insert

O(lg n)

O(lg n)

Minimum

Θ(1) 

O(lg n)

Extract-Min

Θ(lg n)

O(lg n)

Union

Θ(n) 

O(lg n)

Decrease-Key 

Θ(lg n)

O(lg n)

Delete

Θ(lg n)

O(lg n)

Binomial Tree

A binomial tree Bk is an ordered tree defined recursively. 

1 B0 consists of a single node. 

2 For k ≥ 1, Bk is a pair of Bk−1 trees, where the root of one Bk−1 becomes the leftmost child of the other. 

Properties of Binomial Trees Bk for all integers k ≥ 0 :

1 Bk has 2^k nodes. 

2 Bk has height k. 

3 For i = 0, . . . , k, Bk has exactly kCi = k! / ( i! * (k-i)! ) nodes at depth i. 

4 The children of the root of binomial tree Bk of degree k are Bk−1, Bk−2, · · · , B0 from left to right. 
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Min-Heap Binomial Tree or Max-Heap Binomial Tree

A Min-Heap Binomial Tree is a Binomial Tree that obeys the Min-Heap property. i.e. the parent node is smaller than or equal to its children nodes. Similarly, a Max-Heap Binomial Tree is a Binomial Tree that obeys the max-heap property i.e. the parent node is larger than or equal to its children nodes. 

Binomial Tree Node

Information stored in each node are following: 

1 Key field to store key. 

2 Degree  field to store degree of the  binomial  tree. 

Which is also the number of children. 

3 Parent  pointer   which  points  to   the   parent  of   the

node. 

4 Child pointer which points to the leftmost child node. 

5 Sibling  pointer   which   points   to   the   right-sibling

node. 

Binomial Heap Implementation

A Binomial Heap is a set of Binomial Trees where each Binomial Tree follows the Min Heap property. 

And there can be at most one Binomial Tree of any degree. 
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Binomial heaps can be implemented by using linked lists to store the root nodes of binomial trees. 

Each node stores information about the parent pointer, right sibling pointers, leftmost child pointer, the number of children it has(degree) , and its key. 

A binomial heap H is a set of binomial trees that satisfies the following binomial-heap properties: 1 Each binomial tree in H is min-heap-ordered (or max-heap ordered) such that the key of a node is less than or equal to the key of its children. 

2 For any non-negative integer k, there is at most one (either 0 or 1) binomial tree in H whose root has degree k. 

3 The number of trees in in binomial heap are less then  l⌊og2n +

⌋ 1. 

4 The height of binomial heap is less than  l⌊og2n . 

⌋

Operations on Binomial Heaps 

1. Creation of a new Binomial Heap: We create a heap object H with H.head = null. 

2. Search for the minimum key: Iterate the root list and find the minimum key root node. The cost is O(log(n)) because there are O(log(n)) heaps, in each tree the minimum is located at the root. 

function BinomialHeapMinimum(H)

y = null

x = H.head

min = ∞

while x != null

do if x.key < min

then min = x.key

y = x

x = x.sibling

return y

3. Uniting two Binomial Heaps: BinomailHeapUnion(H1, H2 ) creates and returns a new heap that contains all the nodes of heaps H1 and H2. BinomailHeapUnion() procedure has two steps: 

• In the first step, simply merge two binomial heaps H1 and H2 into a single heap H in non-decreasing order of degree of binomial trees. Step 1 in the below diagram shows this step. 

There might be multiple binomial trees of the same degree. 

• In the second step, we need to make sure that at most one binomial tree of any order.  If two binomial trees are of the same degree then merge them to create a higher degree tree. 

We traverse the list of merged roots, we keep track of three-pointers, previous, current and sibling of current. There can be the following 4 cases when we traverse the list of roots. 

• Case 1: Orders of current and it’s sibling are not same, we simply move ahead. 

• Case 2: Order of current, its sibling and its sibling’s sibling are same then also move ahead. 

• Case 3: Order of current is same as sibling and the key of current is smaller than or equal to the key of it’s sibling, then make sibling as a leftmost child of current. 

• Case 4: Order of current is same as sibling and the key of current is greater than the key of it’s sibling, then make current node as a leftmost child of sibling. 
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function BinomailHeapUnion(H1, H2):

H = CreateBinomialHeap()

H.head = BinomailHeapmerge(H1, H2)

if H.head == null:

return H

prev = null

curr = H.head

sibling = curr.sibling

while sibling != null:

# Case 1 and 2

        if curr.degree != sibling.degree or 

( sibling.next != null and sibling.next.degree == curr.degree ):

prev = curr

curr = sibling

else :

if curr.key <= sibling.key: #Case 3:sibling becomes child of 

curr. 

curr.sibling = sibling.sibling

left = curr.leftchild

curr.leftchild = sibling

sibling.sibling = left

sibling.parent = curr

else : # Case 4: curr becomes a child of a sibling. 

if prev == null:

H.head = sibling

else:

prev.sibling = sibling

left = sibling.leftchild
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sibling.leftchild = curr

curr.parent = sibling

curr.sibling = left

# Sibling became a new root. 

curr = sibling

sibling = curr.sibling # propagation step. 

return H

4. Removal of the minimum value root of a tree: Find the minimum value root node tree T in the heap and remove T from heap. Then Create another heap H0 consisting of the children of T. In the end uniter H0 to H. 

5. Insertion of a node: Suppose we wish to insert a node x into a binomial heap H. We create a single node heap H0 consisting of single node x and unite H and H0 . 

function BinomialHeapInsert(H, x)

H2 = CreateBinomialHeap()

x.parent = null

x.leftchild = null

x.sibling = null

x.degree = 0

H2.head = x

H = BinomailHeapUnion(H, H2)

6. Decreasing value of a key: We decrease the key and then keep exchanging the keys upward until the heap property is restored. 

Operation

Running Time

Insert

O(1)

Remove

O(log(n))

Find Min

O(1)

Extract Min

O(log(n))

Decrease Key O(log(n))

Merge

O(log(n))

Fibonacci Heap

A fibonacci heap is a data structure that consists of a collection of trees which follow min heap property. All tree roots are connected using a doubly circular linked list. Fibonacci Heap maintains a pointer to the minimum value root node. All tree roots are connected so all of them can be accessed using single linked list traversal. 

Fibonacci heap is similar to the binomial heap but has a faster amortized running time than binomial heap.   Binomial   heaps   merge   heaps   immediately   but   Fibonacci   heaps   wait   to   merge   until   the ExtractMin() function is called. 
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Properties of fibonacci heap:

➢ All trees in the fibonacci heap follow min heap property. 

➢ Trees do not have strict requirements of 2^k nodes as in binomial heap. 

➢ Roots of the tree in the fibonacci heap are unordered but are connected by a doubly circular list. 

➢ Each node has a degree which is the number of children of that node. 

➢ Nodes have a mark element which indicates whether their child has been removed or not. 

➢ Nodes can have zero or any number of children. 

Pointers representation of fibonacci heap. 

Operations on Fibonacci Heap:

1. Creating Empty Heap: Empty heap is created. Number of elements is set to 0 and min is set to null. 

function MakeFibonacciHeap()

H = CreateFibonnacciHeap()

H.n = 0

H.min = Null

return H

2. Find Minimum: Min pointer points to the minimum value node, so finding the minimum is simple and can be done in O(1) time. 

function FibonacciHeapMinimum(H)

return H.min
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3. Merge Heaps: Merging is performed by concatenating root lists of the two heaps. Min value of both the heaps are compared and whichever is small will be made min of the combined heap. 

Merge operation takes O(1) time. 

function FibonacciHeapUnion(H1,H2)

Concatenate the root list of H2 into H1

if (H1.min = Null) or (H2.min != Null and H2.min.key < H1.min.key) H1.min = H2.min

H1.n = H1.n + H2.n

free H2

return H1

4. Insert Node: Inserting node into an already existing heap. Create a new node for the element. 

If the heap is empty or the value of the new node is smaller than the min then set min of the heap to the new node. 

function FibonacciHeapInsert(H, x)

x.degree = 0

x.parent = Null

x.child = Null

x.left = x

x.right = x

mark = FALSE



concatenate the root x into root list of H

if H.min = Null or x.key < H.min.key

H.min = x

H.n = H.n + 1

5. Extract Min: This is one of the most important of Fibonacci Heap. Heap rearranging (consolidate) is delayed until extract min. Consolidation occurs when heap properties are violated, for example, if two heaps have the same order, the heaps must be adjusted to prevent this. 

Deleting the minimum element is done in three steps. The node is removed from the root list and min points to the next root in the root list. The min node’s children are added to the root list. 

Finally, consolidate the trees so that there are no trees with the same orders. Delaying consolidation saves time. 

function FibonacciHeapExtractMin(H)

z = H.min

if z != Null

for each child x of z

x.parent = Null

add x to the root list of H

remove z from the root list of H

if z = z.right

H.min = Null

else 

H.min = z.right

Consolidate(H)
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H.n = H.n - 1

return z

function FibonacciHeapLink(H, y, x)

remove y from the root list of H

make y a child of x

x.degree = x.degree + 1

y.mark = FALSE

function Consolidate(H)

for i=0 to MaxDegree(H)

A[i] = Null

for each root w in the root list of H

x = w

d = x.degree

while A[d] != Null

y = A[d]

if x.key > y.key

swap x & y

FibonacciHeapLink(H, y, x)

A[d] = Null

d = d+1

A[d] = x

if (H.min = Null) or (H.min.key > x.key)

H.min = x

6. Decreasing a Key : The key value of the desired node is decreased. Following operations are performed. 

DecreaseKey() Operation

➢ The node x be the node whose value is decreased and its new value will be k. 

➢ The parent y of x. If y is not null and the key of parent is greater then key of x. Then call Cut(x) and CascadingCut(y) functions are called subsequently. 

➢ If the key of x is smaller than the key of min, then mark x as min. 

function FibonacciHeapDecreaseKey(H, x, k)

if k > x.key

error "new key is greater than current key" 

x.key = k

y = x.parent

if y  != Null and x.key < y.key

Cut(H, x, y)

CascadingCut(H,y)

if x.key < H.min.key

H.min = x

Cut(x,y) operation

➢ Remove x from its parent y. And add x to the root list. 

➢ Mark x as false. 
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function Cut(H,x,y)

Remove x from the child list of y, decrementing y.degree

Add x to the root list of H

x.parent = Null

x.mark = FALSE

CascadingCut(y) operation

➢ If the parent z of y is not null then follow the following steps. 

➢ If y is unmarked, then mark y. 

➢ Else, call Cut(y, z), to cut y from its parent z. And CascadingCut(z) cascades z, which is the parent of y. 

function CascadingCut(H,y)

z =   y.parent

if z  != Null

if y.mark = FALSE

y.mark = TRUE

else

Cut(H, y, z)

CascadingCut(H, z)

7. Delete a Key : The key value of the desired node is decreased to minus infinity. Followed with extract min which is removing the node with minus infinity. 

function FibonacciHeapDelete(H,x)

FibonacciHeapDecreaseKey(H,x,-infinity)

FibonacciHeapExtractMin(H)

Operation

Amortized Running Time

Insert

O(1)

Remove

O(log(n))

Find Min

O(1)

Extract Min

O(log(n))

Decrease Key

O(1)

Merge

O(1)

Uses of Heap

1. Heapsort:   One   of   the   best   sorting   methods   is   in-place   and   log(N)  time   complexity   in   all scenarios. 

2. Selection algorithms: Finding the min, max, both the min and max, median, or even the kth largest element can be done in linear time (often constant time) using heaps. 

3. Priority Queues: Heap Implemented priority queues are used in graph algorithms like Prim’s Algorithm and Dijkstra’s algorithm. A heap is a useful data structure when you need to remove the object with the highest (or lowest) priority. Schedulers, timers
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4. Graph algorithms (BFS): By using heaps as internal traversal data structures, the run time will be reduced by polynomial order. Examples of such problems are Prim's minimal 5. Because of the lack of pointers, the operations are faster than a binary tree. In addition, some more complicated heaps (such as binomial) can be merged efficiently, which is not easy to do for a binary tree. 

Exercise

1. What is the worst-case runtime Complexity of finding the smallest item in a min-heap? 

2. Find max in a min-heap. 

Hint:  normal search in the complete list. There is one more optimization, you can search from the mid of the array at index N/2

3. What is the worst-case time complexity of finding the largest item in a min-heap? 

4. What is the worst-case time complexity of deleteMin in a min-heap? 

5. What is the worst-case time complexity of building a heap by insertion? 

6. Is a heap, a full or complete binary tree? 

7. What is the worst time runtime Complexity of sorting an array of N elements using heapsort? 

8. In given sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9

o Draw a binary Min-heap by inserting the above numbers one by one

o Also, draw the tree that will be formed after calling Dequeue() on this heap 9. In given sequence of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9

o Draw a binary Max-heap by inserting the above numbers one by one

o Also, draw the tree that will be formed after calling Dequeue() on this heap 10. In a given sequence of numbers: 3, 9, 5, 4, 8, 1, 5, 2, 7, 6. Construct a Min-heap by calling the CreateHeap function. 

11. Show an array that would be the result after the call to deleteMin() on this heap 12. In the given list: [3, 9, 5, 4, 8, 1, 5, 2, 7, 6]. Apply heapify over this to make a min-heap and sort the elements in decreasing order? 

13. In Heap-Sort once a root element has been put in its final position, how much time does it take to reheapify the array so that the next removal can take place? In other words, what is the Time Complexity of a single element removal from the heap of size N? 

14. What do you think the overall Time Complexity for heapsort is? Why do you feel this way? 

15. Find Kth largest in an unsorted array using Max-Heap. 
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Hint: Create a Max-Heap from the input array. Then we call remove() operation K-1 times, and the element at the top of the heap is kth largest. Time Complexity O(n.log(n)) 16. Find Kth largest in an unsorted array using Min-Heap. 

Hint: Create a Min-Heap from the first K elements of the input array. Then for the rest of the elements of the array. Compare array elements with the top of the heap. If the top value is less than the array element, then remove the top value and add the array element to the heap. If the top value is greater than the array element, then ignore the array element. Perform these steps till all the array elements are traversed. Time Complexity O(NlogK)

17. Given an array, print the larger half of the array when it will be sorted. 

Hint:-

◦ First solution: Sorting, Sort the array and then print the larger half of the array. Sorting will take O(n.log(n)) time. And then printing the larger half will take O(n)  time,  so total time complexity is O(n.log(n)). 

◦ Second solution: Min-Heap, Create min-heap from the array. Then pop the first half n/2

elements from the heap and find the rest part. Pop elements from the heap take O(log(n)) time.   Elements   are   popped   n/2   times   from   the   heap.   So   the   total   time   complexity   is O(n.log(n)). 

◦ Third   solution:  Min-Heap,   Create   min-heap   from   the   first   n/2   elements   of   the   array. 

Traverse the rest of the elements of the array. If the top value of the heap is less than the array element, then remove the top value and add the array element to the heap. If the top value is greater than the array element, then ignore the array element. Perform this step till all the elements are traversed. Total time complexity is O(n.log(n)). 

◦ Fourth solution: Quick select method, run quick select method to find the middle element of  the  array.  The  values  at the right half  of  the  array will be  greater than the middle element’s value. Finally, print the value at the middle and right of it. The Average-Case time complexity of this solution is O(n). 

18.  Given two heaps, you need to merge them to create a single heap. 

Hint: There is no single solution for this. Let us suppose the size of the bigger heap is N and the size of the smaller heap is M. 

If both heaps are comparable in size, then put both  heap  arrays in the same bigger List. 

Alternatively, in one of the arrays if they are big enough, then apply CreateHeap() function which will take theta(N+M) time. 

If M is much smaller than N then add() each element of M list one by one to the N heap. This will take O(Mlog(n)) time in the worst case and O(M) in the Best-Case. 
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Introduction

In the searching chapter, we have gone through various searching techniques. Consider the problem of searching for a value in an array. If the array is not sorted then we have no other option, but to look into each element one by one, so the searching time complexity will be O(n). If the array is sorted, then we can search the value in O(log(n)) logarithmic time using binary search. 

What if it is possible to get the location/index of the value we are looking for in the array by a magic function that returns the index in constant time?  We can directly go into that location and see whether the value we are searching for is present or not in O(1) constant time. The hash function works just like that, of course, there is no magic involved. 

Hash-Table

A Hash-Table is a data structure that maps keys to values. Each position of the Hash-Table is called a slot. The Hash-Table uses a hash function to calculate an index of an array. We use the Hash-Table when the number of keys is small relative to the number of possible keys. 

The process of storing data using a hash table is as follows:

1. Create an array of size M to store data; this array is called a Hash-Table. 

2. Find a hash code of data by passing it through the hash function. 

3. Take a module of hashcode by the size of Hashtable to get the index of the table where data will be stored. 

4. Finally, store this data in the designated index. 
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The process of searching a value in Hash-Table using a hash function is as follows: 1. Find a hash code of the key we are searching for by passing it through the hash function. 

2. Take a module of hashcode by the size of Hashtable to get the index of the table where the value is stored. 

3. Finally, retrieve the value from the designated index. 

Hash-Table Abstract Data Type (ADT)

ADT of Hash-Table contains the following functions:

1 Insert(x), add x to the data set. 

2 Delete(x), delete x from the data set. 

3 Search(x), search x in the data set. 

Hash Function

A hash function is a function that generates an index in a table for a given key. An ideal hash function that generates a unique index for every key is called the perfect hash function. 

Example 11.1: Most simple hash function

fun computeHash(key: Int): Int {

return key % tableSize

}

There are many hash functions. The above function is a very simple hash function. Various hash generation logic will be added to this function to generate a better hash. 

Collisions

When a hash function generates the same index for the two or more different keys, the problem is known as the collision. Ideally, a hash function should return a unique address for each key, but practically it is not possible. 

Properties of a good hash function

1 It should provide a uniform distribution of hash values. A non-uniform distribution increases the number of collisions and the cost of resolving them. 

2 Choose a hash function, which can be computed quickly and returns values within the range of the Hash-Table. 

3 Choose a hash function with a good collision resolution algorithm that can be used to compute alternative indexes if the collision occurs. 

4 Choose a hash function, which uses the necessary information provided in the key. 

5 It should have a high load factor for a given set of keys. 
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Load Factor

Load factor = (Maximum Allowed Number of elements in Hash-Table) / Hash-Table size Based on the above definition, the Load factor is a measure of how many elements a hash table can contain before its capacity is increased. When the number of elements exceeds the product of load factor and current capacity, the hash table is rehashed. Normally the hash table size is doubled in this case. For example, if the load factor is 0.8 and hash table capacity is 1000 then we can add 800

elements to Hashtable without rehashing it. 

Collision Resolution Techniques

Hash collisions are practically unavoidable when hashing a large number of keys. Techniques that are used to find the alternate location in the Hash-Table is called collision resolution. There are several collision resolution techniques to handle the collision in hashing. 

The most common and widely used techniques are:

1 Open addressing

2 Separate chaining

Hashing with Open Addressing

When using linear open addressing, the Hash-Table is represented by a one-dimensional array with indices that range from 0 to the table size-1. 

One method of resolving collisions is to look into a Hash-Table and find another free slot to hold the value that has caused  the collision. A simple way is to move from one  slot to another in some sequential order until we find a free space. This collision resolution process is called Open Addressing. 

Linear Probing

In Linear Probing, we try to resolve the collision of an index of a Hash-Table by sequentially searching the HashTable free location. Let us assume if k is the index retrieved from the hash function. If the kth index is already filled, then we will look for (k+1) %M, then (k+2) %M and so on. When we get a free slot, we will insert the data into that free slot. 

Example 11.2: The resolver function of linear probing

fun resolverFun(index: Int): Int {

return index

}

Quadratic Probing

In   Quadratic   Probing,   we   try   to   resolve   the   collision   of   the   index   of   a   Hash-Table   by   quadratic increasing the search index of free location. Let us assume if k is the index retrieved from the hash 383
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function. If the kth index is already filled, then we will look for (k+1^2) %M, then (k+2^2) %M and so on. 

When we get a free slot, we will insert the data into that free slot. 

Example 11.3: The resolver function of quadratic probing

fun resolverFun2(index: Int): Int {

return index * index

}

Note: Table size should be a prime number to prevent early looping it should not be too close to 2powN

Linear Probing implementation

The Hash table struct consists of an array that is used to store data and another array flag that is used to track if some slot is occupied or not. It also contains the size of the array. 

Example 11.4: Below is Hash-Table class and its constructor function. 

class HashTableLP(private val tableSize: Int) {

var Key: IntArray

var Value: IntArray

var Flag: IntArray

companion object {

private val EMPTY_VALUE = -1

private val DELETED_VALUE = -2

private val FILLED_VALUE = 0

}



init {

Key = IntArray(tableSize + 1)

Value = IntArray(tableSize + 1)

Flag = IntArray(tableSize + 1){EMPTY_VALUE}

}

/* Other Methods */

}

Example 11.5: Below is hash code generation and collision resolution function. 

fun computeHash(key: Int): Int {

return key % tableSize

}

fun resolverFun(index: Int): Int {

return index

}

When the hash index is already occupied, the resolver function is used to get a new index. 

Example 11.6

fun add(key: Int, value: Int): Boolean {

var hashValue = computeHash(key)
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for (i in 0 until tableSize) {

if (Flag[hashValue] == EMPTY_VALUE || Flag[hashValue] == DELETED_VALUE) {

Key[hashValue] = key

Value[hashValue] = value

Flag[hashValue] = FILLED_VALUE

return true

}

hashValue += resolverFun(i)

hashValue %= tableSize

}

return false

}

fun add(value: Int): Boolean {

return add(value, value)

}

add() function is used to add values to the hash table. The first hash is calculated. Then we try to place that value in the Hash-Table. We look for empty nodes or lazy deleted nodes to insert values. In case the insert did not succeed, we try a new location using a resolver function. 

Example 11.7:

fun find(key: Int): Boolean {

var hashValue = computeHash(key)

for (i in 0 until tableSize) {

if (Flag[hashValue] == EMPTY_VALUE) {

return false

}

if (Flag[hashValue] == FILLED_VALUE && Key[hashValue] == key) {

return true

}

hashValue += resolverFun(i)

hashValue %= tableSize

}

return false

}

fun get(key: Int): Int {

var hashValue = computeHash(key)

for (i in 0 until tableSize) {

if (Flag[hashValue] == EMPTY_VALUE) {

return -1

}

if (Flag[hashValue] == FILLED_VALUE && Key[hashValue] == key) {

return Value[hashValue]

}

hashValue += resolverFun(i)

hashValue %= tableSize

}

return -1

}

find() function is used to search key in the hash table. And get() is used to find the value corresponding to the given key. The first hash is calculated. Then we try to find that value in the Hash-Table. We look for over desired values or empty nodes. In case we find the value that we are looking for, then we 385
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return that value or in case it is not found we return -1. We use a resolver function to find the next probable index to search. 

Example 11.8:

fun remove(key: Int): Boolean {

var hashValue = computeHash(key)

for (i in 0 until tableSize) {

if (Flag[hashValue] == EMPTY_VALUE) {

return false

}

if (Flag[hashValue] == FILLED_VALUE && Key[hashValue] == key) {

Flag[hashValue] = DELETED_VALUE

return true

}

hashValue += resolverFun(i)

hashValue %= tableSize

}

return false

}

remove() function is used to delete values from a Hashtable. We do not delete the value, we just mark that value as DELETED_NODE. Same as the insert and search, we use resolverFun to find the next probable location of the key. 

Example 11.9:

fun print() {

print("Hash Table contains ::")

for (i in 0 until tableSize) {

if (Flag[i] == FILLED_VALUE) {

print("(" + Key[i] + "=>" + Value[i] + ") ")

}

}

println()

}

// Testing code. 

fun main() {

val ht = HashTableLP(1000)

ht.add(1, 10)

ht.add(2, 20)

ht.add(3, 30)

ht.print()

println("Find key 2 : " + ht.find(2))

println("Value at key 2 : " + ht.get(2))

ht.remove(2)

println("Find key 2 : " + ht.find(2))

}

Output:

Hash Table contains ::(1=>10) (2=>20) (3=>30) 

Find key 2 : true

Value at key 2 : 20

Find key 2 : false
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Print function prints the content of the hash table. The main function demonstrates how to use a hash table. 

Hashing with separate chaining

Another method for collision resolution is based on the idea of putting the keys that collide in a linked list. This method is called separate chaining. To speed up the search we keep the linked list sorted. 

Separate Chaining implementation

Example 11.10: Below is a separate chaining implementation of hash tables. 

class HashTableSC {

inner class Node( val key: Int, val value: Int, var next: Node?) var listArray: Array<Node?> 

private val tableSize = 512

init {

listArray = arrayOfNulls(tableSize)

}

private fun computeHash(key: Int): Int { // division method

return key % tableSize

}

fun add(key: Int, value: Int) {

val index = computeHash(key)

listArray[index] = Node(key, value, listArray[index])

}

fun add(value: Int) {

add(value, value)

}

fun remove(key: Int): Boolean {

val index = computeHash(key)

var nextNode: Node? 

var head: Node? = listArray[index]

if (head != null && head.key == key) {

listArray[index] = head.next

return true

}
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while (head != null) {

nextNode = head.next

if (nextNode != null && nextNode.key == key) {

head.next = nextNode.next

return true

} else {

head = nextNode

}

}

return false

}

fun print() {

print("Hash Table contains ::")

for (i in 0 until tableSize) {

var head: Node? = listArray[i]

while (head != null) {

print("(" + head.key + "=>" + head.value + ") ") head = head.next

}

}

println()

}

fun find(key: Int): Boolean {

val index = computeHash(key)

var head = listArray[index]

while (head != null) {

if (head.key == key) {

return true

}

head = head.next

}

return false

}

fun get(key: Int): Int {

val index = computeHash(key)

var head = listArray[index]

while (head != null) {

if (head.key == key) {

return head.value

}

head = head.next

}

return -1

}

}

// Testing code. 

fun main() {

val ht = HashTableSC()

ht.add(1, 10)

ht.add(2, 20)

ht.add(3, 30)

ht.print()

println("Find key 2 : " + ht.find(2))

println("Value at key 2 : " + ht.get(2))
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ht.remove(2)

println("Find key 2 : " + ht.find(2))

}

Output:

Hash Table contains :: (1=>10) (2=>20) (3=>30) 

Find key 2 : true

Value at key 2 : 20

Find key 2 : false

Note: It is important to note that the size of the table should be such that all the slots in the table will eventually be occupied. Otherwise, part of the table will be unused. It is suggested that the table size should be a prime number for better distribution of keys. 

Set implementation of Kotlin Collections

Set is used to store unique elements. Set is implemented using a hash table. Set class HashSet<>  is implemented using a hash table, its elements are not stored in sequential order. 

Example 11.11:

fun main() {

// Create a hash set. 

val hs = HashSet<String>()



// Add elements to the hash set. 

hs.add("Banana")

hs.add("Apple")

hs.add("Mango")

println(hs)

println("Apple present: " + hs.contains("Apple"))

println("Grapes present: " + hs.contains("Grapes"))

hs.remove("Apple")

println("Apple present: " + hs.contains("Apple"))

}

Output

[Apple, Mango, Banana]

Apple present: true

Grapes present: false

Apple present: false

Dictionary implementation in Kotlin Collection

A HashMap<>  is a data structure that maps keys to values. It uses a hash table, so the key-value pairs are not stored in sorted order. Dictionaries do not allow duplicate keys, but values can be duplicated. 
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Example 11.12:

fun main() {

// Create a hash map. 

val hm = HashMap<String, Int>()

// Put elements into the map

hm.put("Apple", 40)

hm.put("Banana", 10)

hm.put("Mango", 20)

println("Size : " + hm.size)

for (key in hm.keys) {

println(key + " cost : " + hm.get(key))

}

println("Apple present : " + hm.containsKey("Apple"))

println("Grapes present : " + hm.containsKey("Grapes"))

}

Output

Size : 3

Apple cost : 40

Mango cost : 20

Banana cost : 10

Apple present : true

Grapes present : false

Problems in Hashing

Anagram solver

Problem: Find if two strings are anagrams, an anagram is a word or phrase formed by reordering the letters of another word or phrase. 

Solution: Two words are anagrams if they are of the same size and their characters are the same. 

First, check if both are of the same size. Then traverse the first string and add the character count to the hashtable. Then traverse the second string and subtract the character count in the hashtable. If traversing the second string, if we don’t find the character in the hashtable or if the count is zero we don’t have an anagram. If the second string is traversed completely but still no mismatch is found, then we have an anagram. Time-complexity O(n), n is the size of the string. 

Example 11.13:

fun isAnagram(str1: CharArray, str2: CharArray): Boolean {

val size1: Int = str1.size

val size2: Int = str2.size

if (size1 != size2) return false

val hm: HashMap<Char, Int> = HashMap<Char, Int>()

for (ch in str1) {

hm.put(ch, hm.getOrDefault(ch, 0) + 1)

}
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for (ch in str2) {

val value = hm.getOrDefault(ch, 0)

if (value == 0)

return false

else

hm.put(ch, value - 1)

}

return true

}

//Testing code. 

fun main() {

val first: CharArray = "hello".toCharArray()

val second: CharArray = "elloh".toCharArray()

val third: CharArray = "world".toCharArray()

println("isAnagram : " + isAnagram(first, second))

println("isAnagram : " + isAnagram(first, third))

}

Output:

isAnagram : true

isAnagram : false

Remove Duplicate

Problem: Remove duplicates in an array of numbers. 

Solution: A new output string is created. The input string is traversed and its characters are added to the hashtable. If some character is not in the hashtable then it is added to the hashtable and the output string. If some character is already in the hashtable then it is ignored. Time-complexity O(n) Example 11.14:

fun removeDuplicate(str: CharArray): String {

val hs: HashSet<Char> = HashSet<Char>()

var out = String()

for (ch in str) {

if (hs.contains(ch) == false) {

out += ch

hs.add(ch)

}

}

return out

}

//Testing code. 

fun main() {

val first: CharArray = "hello".toCharArray()

println(removeDuplicate(first))

}

Output:

helo
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Find Missing

Problem: Given an array of integers, you need to find the missing number in the array. 

Solution: All the elements in the array are added to a HashTable. All the integers from start to end of the given range are searched in a hashtable. If a missing element is found, then its value is returned. 

Time-complexity O(n)

Example 11.15:

fun findMissing(arr: IntArray, start: Int, end: Int): Int {

val hs: HashSet<Int> = HashSet<Int>()

for (i in arr) {

hs.add(i)

}

for (curr in start..end) {

if (hs.contains(curr) == false) return curr

}

return Int.MAX_VALUE

}

//Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 5, 6, 7, 8, 9, 10)

println(findMissing(arr, 1, 10))

}

Output:

4

Print Repeating

Problem: Given an array of integers, print the repeating integers in the array. 

Analysis: All the values are added to the hash table. If we find some value that is already in the hash table, then that is the repeated value. Time-complexity O(n)

Example 11.16:

fun printRepeating(arr: IntArray) {

val hs: HashSet<Int> = HashSet<Int>()

print("Repeating elements are:")

for (ele in arr) {

if (hs.contains(ele)) print(" $ele") else hs.add(ele)

}

}

//Testing code. 

fun main() {

val arr1 = intArrayOf(1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 1)

printRepeating(arr1)

}
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Output:

Repeating elements are : 4 1

Print First Repeating

Problem: It is the same as the above problem in that we need to print the first repeating number. Care should be taken to find the first repeating number. It should be the one number that is repeating. For example, 1, 2, 3, 2, 1. The answer should be 1 as it is the first number, which is repeated. 

Solution:  The hashtable will keep a count of the values in the array. Now traverse the array again and see if the count is more than one. The first value whose count is more than 1 is the first repeating value. 

Time-complexity O(n)

Example 11.17:

fun printFirstRepeating(arr: IntArray) {

val size: Int = arr.size

val hs: HashSet<Int> = HashSet<Int>()

var firstRepeating = Int.MAX_VALUE

var i: Int = size - 1

while (i >= 0) {

if (hs.contains(arr[i])) {

firstRepeating = arr[i]

}

hs.add(arr[i])

i--

}

println("First Repeating number is : $firstRepeating")

}

//Testing code. 

fun main() {

val arr1 = intArrayOf(1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 1)

printFirstRepeating(arr1)

}

Output:

First Repeating number is : 1

Uses of  Hash-Table

Applications of Hash Table are:

1. Hash tables are commonly used in algorithms where fast data lookup is required. 

2. HashTables are used in symbol trees for compilers

3. In some databases, data is stored in hash tables as key-value pairs. 
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1. Design a number (ID) generator system that generates numbers between 0-99999999 (8-digits). 

The system should support two functions:

➢ int getNumber(); 

➢ boolean requestNumber(); 

getNumber() function should find out a number that is not assigned, then mark it as assigned and return that number. requestNumber() function checks the number if it is assigned or not. If it is assigned returns false, else marks it as assigned and returns true. 

2. In a given large string, find the most occurring words in the string. What is the Time Complexity of the above solution? 

Hint:-

➢ Create a Hashtable which will keep track of <word, frequency> 

➢ Iterate through the string and keep track of word frequency by inserting into Hash-Table. 

➢ When we have a new word, we will insert it into the Hashtable with frequency 1. For all repetitions of the word, we will increase the frequency. 

➢ We can keep track of the most occurring words whenever we are increasing the frequency we can see if this is the most occurring word or not. 

Time Complexity is O(n) where n is the number of words in the string and Space Complexity is the O(m) where m is the unique word in the string. 

3. In the above question, what if you are given the whole work of OSCAR WILDE, the most popular playwrights in the early 1890s. 

Hint:- 

➢ Who knows how many books are there, let us assume there  are a  lot and we cannot put everything in memory. First, we need a Streaming Library so that we can read section by section in each document. Then we need a tokenizer that will give words to our program. In addition, we need some sort of dictionary. Let us say we will use HashTable. 

➢ What you need is - 1. A streaming library tokenizer, 2. A tokenizer 3. A hashmap Method: 

1. Use streamers to find a stream of the given words 

2. Tokenize the input text

3. If the stemmed word is in a hash map, increment its frequency count else add a word to hash map with frequency 1

➢ We can improve the performance by looking into parallel computing. We can use map-reduce to solve this problem. Multiple nodes will read and process multiple documents. Once they are done with their processing, then we can do the reduced operation by merging them. 

4. In the above question, what if we want to find the most common PHRASE in his writings. 

Hint: - We can keep <phrase, frequency> Hash-Table and do the same process of the 2nd and 3rd problems. 
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5. Write a hashing algorithm for strings. 

Hint:  Use Horner's method

fun hornerHash(key: CharArray, tableSize: Int): Int {

val size: Int = key.size

var h: Int = 0

var i: Int = 0

while (i < size) {

h = (32 * h + key[i].code) % tableSize

i++

}

return h

}

6. Pick   two   data   structures   to   use   in   implementing   a   Map.   Describe   lookup,   insert,   &   delete operations. Give time & Space Complexity for each. Give pros & cons for each. 

Hint:-

Linked List

Balanced Search Tree (RB Tree)

Insert is O(1)

Insert is O(log(n))

Delete is O(1)

Delete is O(log(n))

Lookup is O(1) auxiliary and O(N) worst 

Lookup is O(log(n))

case. 

Pros: Fast inserts and deletes, can be used  Pros: Reasonably fast inserts/deletes and for any data type. 

lookups. 

Cons: Slow lookups. 

Cons: Data needs to have order defined 

on it. 
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Introduction

A Graph is represented by ordered pair G where G = (V, E), where V is a finite set of points called Vertices and E is a finite set of Edges.  Each edge is a pair (u, v) where u, v ∈ V. 

The graph data structure consists of the following two components:

1. A finite set of nodes is called vertices. 

2. A finite set of pairs of vertices called edges. Edges are connected between two vertices. 

Some real-world examples of graphs are:

1. Google Maps: Various locations can be represented as Vertices of Graph and paths between them are represented by Edges of Graph. Graph theory algorithms are used to suggest  the shortest and quickest path between two locations. 

2. Facebook Friend Suggestion: Each user profile is represented as vertices of graphs and their friend relationship is represented by the edges of  the Graph. In graph theory, algorithms are used for friend suggestions. 

3. Topology Sorting: Topology sorting is a method to find sequences in which some events need to be performed to complete some task by looking into the dependency of various events on each   other.   For   example,   a   sequence   of   classes   that   we   take   to   become   a   graduate   in computer science. Or a sequence of steps that we take to become ready for jobs daily 4. Transportation Network:  The map of airlines is represented as a Graph. Various airports are represented as nodes of the graph and if there is a non-stop flight from airport u and airport v then in the graph there is an edge from node u to node v. You may want to go from one location to another, through graph theory algorithms we can compute a shortest, quickest or cheapest path from source to destination. 

The flight connection between major cities of India can also be represented by the graph given below. 

Each city is represented as vertices, and flight between cities is represented as edges. 
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Graph Terminology

Undirected Graph: An Undirected Graph is a graph in which edges have no directions. Here the edges of the graph are two ways. An edge (x, y) is identical to an edge (y, x). 

Directed Graph or Digraph: A Directed Graph is a graph in which edges have a direction. Here the edges of the graph are one way. An edge (x, y) is not identical to an edge (y, x). 

Weighted Graph: A Graph is weighted if its edges have some value or weight associated with them. 

Unweighted Graph: A Graph in which edges do not have any weight associated with them. 
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Path: A Path is a sequence of edges between two vertices. The length of a path is defined as the sum of the weight of all the edges in the path. 

Simple Path: A path with distinct vertices is called a simple path. 

Adjacent Vertex: Two vertices u and v are adjacent if there is an edge whose endpoints are u and v. 

In the below graph:  V = {V1, V2, V3, V4, V5, V6, V7, V8, V9} 

E = ( (v1, v0, 1), (v2, v1, 2), (v3, v2, 3), (v3, v4, 4), (v5, v4, 5), (v1, v5, 6), (v2, v5, 7), (v3, v5, 8), (v4, v5, 9) )

The in-degree of a vertex v, denoted by indeg(v) is the number of incoming edges to the vertex v. 

The out-degree of a vertex v, denoted by outdeg(v) is the number of outgoing edges of a vertex v. 

The degree of a vertex v, denoted by deg(v) is the total number of edges whose one endpoint is v. 

deg(v) = Indeg (v) + outdeg (v)

In the above graph: deg(V4) =3, indeg(V4) =2 and outdeg(V4) =1

A Cycle is a path that starts and ends at the same vertex and includes at least one vertex. 

An edge is a Self-Loop if two if its two endpoints coincide. This is a form of a cycle. 

Cyclic Graph: A Graph that has one or more cycles is called a Cyclic Graph. 
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Acyclic Graph: A Graph that has no cycle is called an Acyclic Graph. 

Directed Acyclic Graph / DAG: A directed graph that does not have any cycle is called Directed Acyclic Graph. 

Reachable: A vertex v is Reachable from vertex u or u reaches v, if there is a path from u to v. In an undirected graph if v is reachable from u then u is reachable from v. However, in a directed graph it is possible that u reaches v but there is no path from v to u. 

Connected Graph: A graph is Connected if for any two vertices there is a path between them. 

Strongly Connected Graph: A directed graph is strongly connected if each pair of vertices u and v, there is a path from u to v and a path from v to u. 

Strongly Connected Components: A directed graph may have different sub-graphs that are strongly connected. These sub-graphs are called strongly connected components. 

Weakly Connected Graph: A directed graph is weakly connected if  each pair of vertices u and v, there is a path from u to v or a path from v to u. 

Complete Graph: A graph is complete if any vertex is connected by an edge to all the other vertices of the graph. A complete graph has a maximum number of edges. For an undirected graph of n vertices, the total number of edges will be n(n-1)/2 and for a directed graph the total number of edges will be n(n-1). 

A  Sub-Graph  of a graph G is a graph whose vertices and edges are a subset of the vertices and edges of G. 
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A Spanning Sub-Graph of G is a graph that connects all the vertices of G. 

A Forest is a graph without cycles. 

A Tree is a connected graph with no cycles. There is only one simple path between any two vertices u and v. If we remove any edge of a tree, it becomes a forest. 

A Spanning tree of a graph is a tree that connects all the vertices of the graph. Since a Spanning-Tree is a tree, it should not have any cycle. 

A Hamiltonian path is a path in which every vertex is visited exactly once with no repeats, it does not have to start and end at the same vertex. 

A Hamiltonian circuit is a Hamiltonian Path such that there is an edge from its last vertex to its first vertex. A Hamiltonian circuit is a circuit that visits every vertex exactly once, and it must start and end at the same vertex. 

An Eulerian Path is a path in the graph that visits every edge exactly once. 
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An Eulerian Circuit is an Eulerian Path, which starts and ends on the same vertex. Or the Eulerian Circuit is a path in the graph that visits every edge exactly once, and it starts and ends on the same vertex. 

Graph Representation

The two are the most common way of representing a graph are:

1 Adjacency Matrix

2 Adjacency List

Adjacency Matrix

Adjacency Matrix is a two-dimensional matrix of size V rows and V columns, where V is the number of vertices in a graph. An adjacency matrix is represented using a V x V size two-dimensional array. 



Let us suppose the array is “adj”, so the node adj[i][j] corresponds to the edge from vertex i to vertex j. 

If adj[i][j] is not zero, then it means that there is a path from vertex i to vertex j. For an unweighted graph, the values in the array are either 0 for no path or 1 for a path. But in the case of a weighted graph, the value in the matrix indicates the cost/weight of a path from vertex i to j. 

In the above graph, each node has a weight of 1, so the adjacency matrix has just 1s or 0s. If the edges are of different weights, then that weight will be filled in the matrix. 

Example 12.1: adjacency matrix representation of a graph

class GraphAM internal constructor(var count: Int) {

var adj: Array<IntArray> 

init {

adj = Array(count) { IntArray(count) }

}

fun addDirectedEdge(src: Int, dst: Int, cost: Int = 1) {

adj[src][dst] = cost

}

fun addUndirectedEdge(src: Int, dst: Int, cost: Int = 1) {

addDirectedEdge(src, dst, cost)

addDirectedEdge(dst, src, cost)

}
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fun print() {

for (i in 0 until count) {

print("Vertex $i is connected to : ")

for (j in 0 until count) {

if (adj[i][j] != 0) print(j.toString() + "(cost: "+adj[i][j]+")")

}

println()

}

}

/* Orther methods */

}

// Testing code. 

fun main() {

val gph = GraphAM(4)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(2, 3)

gph.print()

}

Output:

Vertex 0 is connected to : 1(cost: 1) 2(cost: 1) 

Vertex 1 is connected to : 0(cost: 1) 2(cost: 1) 

Vertex 2 is connected to : 0(cost: 1) 1(cost: 1) 3(cost: 1) 

Vertex 3 is connected to : 2(cost: 1) 

Analysis: 

1. In the constructor of graphs of N vertices, a NxN size of two-dimensional array adj is created. 

2. The AddDirectedEdge function is used to add a directed edge from source to destination by setting the adj[source][destination] field of the adj array as one. 

3. The   AddUndirectedEdge   function   is   used   to   add   an   undirected   edge.     It   calls   the AddDirectedEdge function twice to join source and destination both ways. 

Complexity Analysis:

1. The space complexity of Adjacency Matrix representation is O(n^2) because a two-dimensional array is created. 

2. The time complexity of the search is O(1). To find if there is an edge from vertex u to vertex v can be done in constant time. 

Pros and cons of the adjacency matrix

Pros of adjacency matrix: 

➢ Queries if there is an edge from vertex ‘u’ to vertex ‘v’ it takes O(1) time. 

➢ Removing an edge takes O(1) time. 

Cons of adjacency matrix: 

➢ Space complexity is O(n^2). 

➢ Even if the graph is sparse (with few edges), space complexity remains the same. 

➢ Adding a new vertex takes O(n^2) time. 
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Sparse Matrix: In a huge graph, each node is connected to a few nodes. So most of the places in the adjacency matrix remain empty. Such a matrix is called a sparse matrix. In most real-world problem’s adjacency matrix is not a good choice for sore graph data. 

Adjacency List

A more space-efficient way of storing graphs is an adjacency list. An adjacency list is an array of linked lists. Each list element corresponds to an edge of the Graph. The size of the array is equal to the number of vertices in the graph. Let the array be Arr[]. An entry Arr[k] corresponds to the Kth vertex and is a list of vertices directly connected to the kth vertex. The weights of edges can be stored in nodes of linked lists. 

The adjacency list helps us to represent a sparse graph. An adjacency list representation also allows us to find all the vertices that are directly connected to any vertex by just one link list scan. In all our programs, we are going to use the adjacency list to store the graph. 

Example 12.2: adjacency list representation of a graph

class Graph(var count: Int) {

private class Edge(var src: Int, var dest: Int, var cost: Int) : Comparable<Edge> {

override operator fun compareTo(other: Edge): Int {

return cost - other.cost

}

}

private val Adj: LinkedList<LinkedList<Edge>> 

var INF = 9999

init {

Adj = LinkedList<LinkedList<Edge>>()

for (i in 0 until count) {

Adj.add(LinkedList<Edge>())

}

}

public fun addDirectedEdge(source: Int, dest: Int, cost: Int = 1) {

val edge = Edge(source, dest, cost)

Adj.get(source).add(edge)

}

public fun addUndirectedEdge(source: Int, dest: Int, cost: Int = 1) {

addDirectedEdge(source, dest, cost)

addDirectedEdge(dest, source, cost)

}

fun print() {

for (i in 0 until count) {
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val ad: LinkedList<Edge> = Adj.get(i)

print("Vertex $i is connected to : ")

for (adn in ad) {

print(adn.dest.toString() + "(cost: " + adn.cost + ") ")

}

println()

}

}

/* Other methods */

}

// Testing code. 

fun main() {

val gph = Graph(4)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(2, 3)

gph.print()

}

Output:

Vertex 0 is connected to : 1(cost: 1) 2(cost: 1) 

Vertex 1 is connected to : 0(cost: 1) 2(cost: 1) 

Vertex 2 is connected to : 0(cost: 1) 1(cost: 1) 3(cost: 1) 

Vertex 3 is connected to : 2(cost: 1) 

Analysis: 

1. In the constructor of graphs of N vertices, an array of lists of size N is created. 

2. addDirectedEdge() function is used to add a directed edge from source to destination by adding a tuple (destination, cost) to the corresponding vertex list. 

3. addUndirectedEdge()   function   is   used   to   add   an   undirected   edge.   It   calls   addDirectedEdge() function twice to join source and destination both ways. 

Complexity Analysis:

The space Complexity of Adjacency list is O(E+V), to create a vertex array and to store edges from each vertex.  The time  complexity of search if there is an edge from vertex u to vertex v is done in outdegree(u). We need to traverse the neighbours list of vertex u. In the worst case, it can be O(E) Graph traversals

Traversal is the process of exploring a graph by examining all its edges and vertices. The Depth-first search (DFS) and Breadth-first search (BFS) are the two algorithms used to traverse a graph. These same algorithms can also be used to find some node in the graph, find if a node is reachable etc. 

A list of some of the problems that are solved using graph traversal are:

1. Determining a path from vertex u to vertex v, or report an error if there is no such path. 

2. Given a starting vertex s,  find  the minimum number of edges from vertex s to all the other vertices of the graph. 

3. Testing if a graph G is connected. 
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4. Finding a spanning tree of a Graph. 

5. Find if there is some cycle in the graph. 

Depth First Traversal

We start the DFS algorithm from the starting point and go into the depth of the graph until we reach a dead-end and then move up to the parent node (Backtrack).   In DFS, we use stack to get the next vertex to start a search. Alternatively, we can use recursion (system stack) to do the same. 

The Depth First Traversal of a graph is like the Depth First Traversal of a tree. The only difference is that graphs may contain cycles (trees do not have cycles). So, while traversing, we may come back to the same node again. To avoid processing the same node again, we use a Boolean visited array. 

Below diagram demonstrates DFS traversal. 
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Stack-based implementation of DFS

Algorithm steps for DFS:

1. Push the starting node in the stack. 

2. Loop until the stack is empty. 

3. Pop node from the stack call this node current. 

4. Process the current node. //Print, etc. 

5. Traverse all the child nodes of the current node and push them into the stack. 

6. Repeat steps 3 to 5 until the stack is empty. 

Example 12.3: Stack based implementation of DFS. 

fun dfsStack(source: Int, target: Int): Boolean {

val visited = BooleanArray(count)

val stk: Stack<Int> = Stack<Int>()

stk.push(source)

visited[source] = true

while (stk.isEmpty() == false) {

val curr: Int = stk.pop()

val adl: LinkedList<Edge> = Adj.get(curr)

for (adn in adl) {

if (visited[adn.dest] == false) {

visited[adn.dest] = true

stk.push(adn.dest)

}

}

}

return visited[target]

}

// Testing code. 

pfun main() {

val gph = Graph(8)

gph.addUndirectedEdge(0, 3)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(1, 4)

gph.addUndirectedEdge(2, 5)

gph.addUndirectedEdge(3, 6)

gph.addUndirectedEdge(6, 7)
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gph.addUndirectedEdge(5, 7)

gph.addUndirectedEdge(4, 7)

println("Path between 0 & 6 : " + gph.dfsStack(0, 6))

}

Output:

Path between 0 & 6 : true

Complexity Analysis:

1. The time complexity of the DFS algorithm when the graph is represented as an adjacency list is O(V+E) where V is the total number of vertices and E is the total number of edges in the graph. 

2. When the graph is represented as an adjacency matrix the time complexity of algorithms is O(V2). We need to traverse adjacent vertices of a vertex, which is efficient in the graph when it is represented by an adjacency list. 

Recursion based implementation of DFS

Algorithm steps for DFS

1. In the DFS() function, create a visited array to keep track of visited nodes. 

2. In the DFS() function, the source node is passed as the current node to the DFSRec() recursion function. 

3. All the nodes which are visited from index nodes are further passed to DFSRec() function as recursion. 

4. This recursion will return to the DFS() function when all the nodes which are visited from the source are visited. Finally, we can find if the target is visited or not by looking into the visited array. 

Example 12.4

fun dfs(source: Int, target: Int): Boolean {

val visited = BooleanArray(count)

dfsUtil(source, visited)

return visited[target]

}

fun dfsUtil(index: Int, visited: BooleanArray) {

visited[index] = true

val adl: LinkedList<Edge> = Adj.get(index)

for (adn in adl) {

if (visited[adn.dest] == false) dfsUtil(adn.dest, visited)

}

}Complexity Analysis:

1. The time complexity of the DFS algorithm when the graph is represented as an adjacency list is O(V+E) where V is the total number of vertices and E is the total number of edges in the graph. 

2. When the graph is represented as  an adjacency matrix the time complexity of algorithms becomes O(V2). 

Breadth First Traversal

In the BFS algorithm, a graph is traversed in a layer-by-layer fashion. The graph is traversed, closer to the starting point. The queue is used to implement BFS. 
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Breadth-First Traversal of a graph is like Breadth-First Traversal of a tree. The only difference is that graphs may contain cycles (trees do not have cycles). So, while traversing, we may come back to the same node again. To avoid processing the same node again, we use a Boolean visited array. 

Algorithm steps for BFS

1. Push the starting node into the Queue. 

2. Loop until the Queue is empty. 

3. Remove a node from the queue inside a loop, and call this node current. 

4. Process the current node. Like print, search etc. 

5. Traverse all the child nodes of the current node and push them into the Queue. 

6. Repeat steps 3 to 5 until the Queue is empty. 

The below diagram demonstrates Graph Breadth First Traversal. 
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Example 12.5:

fun bfs(source: Int, target: Int): Boolean {

val visited = BooleanArray(count)

val que: LinkedList<Int> = LinkedList<Int>()

que.add(source)

visited[source] = true

while (que.isEmpty() == false) {

val curr: Int = que.remove()

val adl: LinkedList<Edge> = Adj.get(curr)

for (adn in adl) {

if (visited[adn.dest] == false) {

visited[adn.dest] = true

que.add(adn.dest)

}

}

}

return visited[target]

}

// Testing code. 

fun main() {

val gph = Graph(8)

gph.addUndirectedEdge(0, 3)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(1, 4)

gph.addUndirectedEdge(2, 5)

gph.addUndirectedEdge(3, 6)

gph.addUndirectedEdge(6, 7)

gph.addUndirectedEdge(5, 7)

gph.addUndirectedEdge(4, 7)

println("Path between 0 & 6 : " + gph.bfs(0, 6))

}

Output:

Path between 0 & 6 : true
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Complexity Analysis: A runtime analysis of DFS and BFS traversal is O(V+E) time, where V is the number of edges reachable from the source node and E is the number of edges in the graph. 

DFS & BFS based problems

Directed Acyclic Graph and Topological Sort

A Directed Acyclic Graph (DAG) is a directed graph with no cycle. A DAG represents a relationship, which is more general than a tree. Below is an example of DAG, this is how someone becomes ready for work. There are N other real-life examples of DAG such as courses selection to be a graduate from college. 

A topological sort is a method of ordering the nodes of a directed graph in which nodes represent activities and the edges represent dependency among those tasks. For topological sorting to work it is required that the graph should be a DAG which means it should not have any cycle. Just use DFS to get topological sorting. 

Solution: Topology sort uses DFS traversal of a topology graph. We use stack to store topology sort. 

In the topology graph, children nodes are dependent on the parent node. So first all the children of a node are added to the stack, then only the parent node is added to the stack. By doing this the parent node is above the child node. Or dependent nodes are lower in stack than the parent nodes. Run the above example to understand this algorithm. 

Example 12.6:

fun dfsUtil2(index: Int, visited: BooleanArray, stk: Stack<Int>) {

visited[index] = true

val adl: LinkedList<Edge> = Adj.get(index)
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for (adn in adl) {

if (visited[adn.dest] == false) dfsUtil2(adn.dest, visited, stk)

}

stk.push(index)

}

fun topologicalSort() {

val stk: Stack<Int> = Stack<Int>()

val visited = BooleanArray(count)

for (i in 0 until count) {

if (visited[i] == false) {

dfsUtil2(i, visited, stk)

}

}

print("Topological Sort::")

while (stk.isEmpty() != true) {

print(" " + stk.pop())

}

}

// Testing code. 

fun main() {

val gph = Graph(9)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(1, 2)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(1, 4)

gph.addDirectedEdge(3, 2)

gph.addDirectedEdge(3, 5)

gph.addDirectedEdge(4, 5)

gph.addDirectedEdge(4, 6)

gph.addDirectedEdge(5, 7)

gph.addDirectedEdge(6, 7)

gph.addDirectedEdge(7, 8)

gph.topologicalSort()

}

Output:

Topological Sort:: 1 4 6 3 5 7 8 0 2

Time-Complexity: O(V+E), V is the number of vertices and E is the number of edges. 

The topology sort algorithm is a DFS algorithm with a stack. So time complexity is the same as DFS. 

Determining a path from vertex u to vertex v

Problem: Find if there is a path from vertex u to vertex v. 

Solution: If there is a path from vertex u to vertex v then when we perform DFS from vertex u we will visit vertex v. 

Example 12.7:

fun pathExist(source: Int, dest: Int): Boolean {

val visited = BooleanArray(count)

dfsUtil(source, visited)
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return visited[dest]

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(3, 4)

gph.addDirectedEdge(1, 4)

println("PathExist :: " + gph.pathExist(0, 4))

}

Output:

PathExist :: true

Complexity Analysis: Time Complexity same as DFS for adjacency list implementation of the graph it is O(V+E) and for adjacency matrix implementation it is O(V2)

Count All Path DFS

Problem: Given a source vertex and a destination vertex, find all the possible paths from source to destination. 

Solution:  Perform DFS traversal of a graph starting from source vertex and count all the paths to reach the destination. We will keep a visited[] array to make sure that in a path, the same node is not considered twice. 

Example 12.8:

fun countAllPathDFS(visited: BooleanArray, source: Int, dest: Int): Int {

if (source == dest) {

return 1

}

var count = 0

visited[source] = true

val adl: LinkedList<Edge> = Adj.get(source)

for (adn in adl) {

if (visited[adn.dest] == false) {

count += countAllPathDFS(visited, adn.dest, dest)

}

}

visited[source] = false

return count

}

fun countAllPath(src: Int, dest: Int): Int {

val visited = BooleanArray(count)

return countAllPathDFS(visited, src, dest)

}

// Testing code. 

fun main() {

val gph = Graph(5)
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gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(3, 4)

gph.addDirectedEdge(1, 4)

println("Path Count : " + gph.countAllPath(0, 4))

}

Output:

Path Count : 3

Complexity Analysis: If the graph is completely connected, then in that case N! different paths are possible and traversed in DFS. So time complexity will be O(N!). 

Print All Path

Problem: Print all the paths from a source vertex to the destination vertex. 

Solution:  Perform DFS traversal of a graph starting from source vertex and count all the paths to reach destination vertex. We will keep a visited[] array to make sure that in a path, the same node is not considered twice. The path is stored in the stack path. When the destination is found, then the path is printed. 

Example 12.9:

fun printAllPathDFS(visited: BooleanArray, source: Int, dest: Int, path: Stack<Int>) {

path.push(source)

if (source == dest) {

println(path)

path.pop()

return

}

visited[source] = true

val adl: LinkedList<Edge> = Adj.get(source)

for (adn in adl) {

if (visited[adn.dest] == false) printAllPathDFS(visited, adn.dest, dest, path)

}

visited[source] = false

path.pop()

}

fun printAllPath(src: Int, dest: Int) {

val visited = BooleanArray(count)

val path: Stack<Int> = Stack<Int>()

printAllPathDFS(visited, src, dest, path)

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 3)
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gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(3, 4)

gph.addDirectedEdge(1, 4)

gph.printAllPath(0, 4)

}

Output:

[0, 1, 3, 4]

[0, 1, 4]

[0, 2, 3, 4]

Root Vertex

Problem: Find Root vertex in a graph. The root vertex is the vertex, which has a path to all the other vertices in a graph. If there are multiple root vertices, then return any one of them. 

Solution: You need to return the top node of the stack in topology sort. When DFS traversal is called for some node, then this node visited index will be set and all the other nodes which are dependent on it or have path from current node will also be marked as their visited index set. If we find some nodes whose visited index is not set means the previous node is not the root vertex and this new node may be the root vertex. We traverse through the nodes and try to find the root vertex. 

Example 12.10:

fun rootVertex(): Int {

val visited = BooleanArray(count)

var retVal = -1

for (i in 0 until count) {

if (visited[i] == false) {

dfsUtil(i, visited)

retVal = i

}

}

print("Root vertex is :: $retVal")

return retVal

}

// Testing code. 

fun main() {

val gph = Graph(7)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(4, 1)

gph.addDirectedEdge(6, 4)

gph.addDirectedEdge(5, 6)

gph.addDirectedEdge(5, 2)

gph.addDirectedEdge(6, 0)

gph.rootVertex()

}

Output:

Root vertex is :: 5
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Time-Complexity: O(V+E), V is the number of vertices and E is the number of edges. Once a vertex is traversed, it is not traversed again. 

Transitive Closure

Problem: Given a directed graph, construct a transitive closure matrix or reachability matrix. Vertex v is reachable from vertex u if there is a path from u to v. The transitive closure of a graph G is a graph G’, which contains the same set of vertices as G and whenever there is a path from vertex u to vertex v in G there is an edge from u to v in G’. 

Solution: We create a two-dimensional array tc[][] and assign all it to zero. Perform DFS traversal of the graph for all the vertices as source vertex. If there is a path from source u to some vertex v, we will mark tc[u][v] as 1. The constraint in this problem is that if we had considered some destination vertex v then we will not consider it again. Further DFS traversal of some nodes is done only when tc[u][v] is 0. 

Example 12.11:

fun transitiveClosureUtil(source: Int, dest: Int, tc: Array<IntArray>) {

tc[source][dest] = 1

val adl: LinkedList<Edge> = Adj.get(dest)

for (adn in adl) {

if (tc[source][adn.dest] == 0) transitiveClosureUtil(source, adn.dest, tc)

}

}

fun transitiveClosure(): Array<IntArray> {

val tc = Array(count) { IntArray(count) }

for (i in 0 until count) {

transitiveClosureUtil(i, i, tc)

}

return tc

}

// Testing code. 

fun main() {

val gph = Graph(4)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(1, 2)

gph.addDirectedEdge(2, 0)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(3, 3)

val tc = gph.transitiveClosure()

for (i in 0..3) {

for (j in 0..3) print(tc[i][j].toString() + " ")

println()

}

}

Output:

1 1 1 1 

1 1 1 1 

1 1 1 1 

0 0 0 1 
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Complexity Analysis: DFS traversal is called for all the V vertices. In this DFS a node is processed only once when tc[u][v] is 0. So the total time complexity will be O(V*(V+E)). 

BFS Level Node

Problem: Perform BFS traversal of the graph. Along with the nodes, also print their distance from the starting source vertex. 

Solution: We want to find the distance from the source vertex, so  BFS is used as near nodes are traversed first, then far nodes. We create a queue and store the source vertex into it. We also want to keep track of the distance, so we can keep distance in the queue. Or we can keep a level[] array which will keep track of the distance from the source vertex. Perform BFS traversal, those nodes which are not   traversed   will   only   be   added   to   the   queue.  Whenever  a   node   is   added   to   the  queue,  its corresponding distance from the source node is also updated in the level[] array. Time-Complexity will be O(V+E). 

Example 12.12:

fun bfsLevelNode(source: Int) {

val visited = BooleanArray(count)

val level = IntArray(count)

visited[source] = true

val que: LinkedList<Int> = LinkedList<Int>()

que.add(source)

level[source] = 0

println("Node  - Level")

while (que.isEmpty() == false) {

val curr: Int = que.remove()

val depth = level[curr]

val adl: LinkedList<Edge> = Adj.get(curr)

println("$curr - $depth")

for (adn in adl) {

if (visited[adn.dest] == false) {

visited[adn.dest] = true

que.add(adn.dest)

level[adn.dest] = depth + 1

}

}

}

}

// Testing code. 

fun main() {

val gph = Graph(7)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(0, 4)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(2, 5)

gph.addUndirectedEdge(3, 4)

gph.addUndirectedEdge(4, 5)

gph.addUndirectedEdge(4, 6)

gph.bfsLevelNode(1)

}
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Output:

Node  - Level

1 - 0

0 - 1

2 - 1

4 - 2

5 - 2

3 - 3

6 - 3 

BFS Distance

Problem: Find the distance between source and destination vertex in a Graph. 

Solution: We want to find the distance from the source vertex, so  BFS is used as near nodes are traversed  first,  then far nodes. Perform BFS traversal of the graph starting from source vertex and keep track of distance of adjacent nodes before adding them to the queue. If we find the destination vertex, then return its distance from the source vertex. And if the destination vertex is not reachable, then return -1. Time-Complexity will be O(V+E). 

Example 12.13:

fun bfsDistance(source: Int, dest: Int): Int {

val visited = BooleanArray(count)

val que: LinkedList<Int> = LinkedList<Int>()

que.add(source)

visited[source] = true

val level = IntArray(count)

level[source] = 0

while (que.isEmpty() == false) {

val curr: Int = que.remove()

val depth = level[curr]

val adl: LinkedList<Edge> = Adj.get(curr)

for (adn in adl) {

if (adn.dest == dest) {

return depth + 1

}

if (visited[adn.dest] == false) {

visited[adn.dest] = true

que.add(adn.dest)

level[adn.dest] = depth + 1

}

}

}

return -1

}

// Testing code. 

fun main() {

val gph = Graph(7)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(0, 2)

gph.addUndirectedEdge(0, 4)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(2, 5)
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gph.addUndirectedEdge(3, 4)

gph.addUndirectedEdge(4, 5)

gph.addUndirectedEdge(4, 6)

println("BfsDistance(1 & 6) : " + gph.bfsDistance(1, 6))

}

Output:

BFSDistance(1 & 6) : 3 

Find cycles in a Directed Graph. 

Problem: Given a directed graph, find if there is a cycle in the Graph. In a single traversal, if some node is traversed twice, then there is a cycle. 

First Solution: We need to perform DFS traversal for all the nodes. Those nodes which are traversed should not be traversed again. Keeping track of visited vertices is enough to find cycles in directed graphs. 

Example 12.14:

fun isCyclePresentDFS(index: Int, visited: BooleanArray, marked: IntArray): Boolean

{    visited[index] = true

marked[index] = 1

val adl: LinkedList<Edge> = Adj.get(index)

for (adn in adl) {

val dest = adn.dest

if (marked[dest] == 1) 

return true

if (visited[dest] == false) 

if (isCyclePresentDFS(dest, visited, marked)) 

return true

}

marked[index] = 0

return false

}

fun isCyclePresent() : Boolean {

val visited = BooleanArray(count)

val marked = IntArray(count)

for (index in 0 until count) {

if (!visited[index]) 

if (isCyclePresentDFS(index, visited, marked)) 

return true

}

return false

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(3, 4)

println("isCyclePresent : " + gph.isCyclePresent())
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gph.addDirectedEdge(4, 1)

println("isCyclePresent : " + gph.isCyclePresent())

}

Output:

isCyclePresent : false

isCyclePresent : true

Complexity Analysis: Time Complexity same as DFS for adjacency list implementation of the graph it is O(V+E) and for adjacency matrix implementation it is O(V2)

Second Solution: Find if there is a cycle in a graph using the colour method. 

In the colour method, the initially visited array is assigned the value “white” which means that nodes are not visited. When we visit a node, we mark its colour as “Grey”. Nodes that are currently in the visited path remain “Grey” when all the connected nodes are traversed, and then the colour is changed to “Black”. If a node that is marked “Grey” is visited again, then there is a cycle in that path. 

Example 12.15: Cycle detection using colouring method. 

fun isCyclePresentDFSColour(index: Int, visited: IntArray): Boolean {

visited[index] = 1 // 1 = grey

var dest: Int

val adl: LinkedList<Edge> = Adj.get(index)

for (adn in adl) {

dest = adn.dest

if (visited[dest] == 1) // "Grey":

return true

if (visited[dest] == 0) // "White":

if (isCyclePresentDFSColour(dest, visited)) return true

}

visited[index] = 2 // "Black" 

return false

}

fun isCyclePresentColour(): Boolean {

val visited = IntArray(count)

for (i in 0 until count) {

if (visited[i] == 0) // "White" 

if (isCyclePresentDFSColour(i, visited)) return true

}

return false

}

Complexity Analysis: Time Complexity same as DFS for adjacency list implementation of the graph it is O(V+E) and for adjacency matrix implementation it is O(V2)

Find the cycle in an Undirected Graph. 

Problem: Find if there is a cycle in an undirected graph. 

First Solution: We need to perform DFS traversal for all the nodes. Those nodes which are traversed should not be traversed again. But keeping track of visited vertices is enough to find cycles in  a directed graph. But in an undirected graph, the edges are bidirectional, so there is always a reverse path from child to the parent node. So this reverse path also needs to be ignored. 
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Example 12.16:

fun isCyclePresentUndirectedDFS(index: Int, parentIndex: Int, visited: BooleanArray): Boolean {

visited[index] = true

var dest: Int

val adl: LinkedList<Edge> = Adj.get(index)

for (adn in adl) {

dest = adn.dest

if (visited[dest] == false) {

if (isCyclePresentUndirectedDFS(dest, index, visited)) 

return true

} else if (parentIndex != dest) 

return true

}

return false

}

fun isCyclePresentUndirected(): Boolean {

val visited = BooleanArray(count)

for (i in 0 until count) {

if (visited[i] == false && isCyclePresentUndirectedDFS(i, -1, visited)) return true

}

return false

}

// Testing code. 

fun main() {

val gph = Graph(6)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(3, 4)

gph.addUndirectedEdge(4, 2)

gph.addUndirectedEdge(2, 5)

println("Cycle Presen : " + gph.isCyclePresentUndirected())

gph.addUndirectedEdge(4, 1)

println("Cycle Presen : " + gph.isCyclePresentUndirected())

}

Output:

Cycle Present : false

Cycle Present : true

Complexity Analysis: Time Complexity same as DFS for adjacency list implementation of the graph it is O(V+E) and for adjacency matrix implementation it is O(V2)

Second Solution: A Disjoint-Set Data Structure is a data structure that keeps track of a number of disjoint or non-overlapping sets. 

In a union-find algorithm, we have two operations to maintain disjoint sets: 1. Find: To find the set in which a particular element is present. This can be used  to  find if elements are in the same set. 

2. Union: To join two sets into a single set. 
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Create a list of edges of the input graph. Traverse the edges and find if the two endpoints of edges are in the same or different set. If they are in the different set, then this edge does not create a cycle and then those sets should be merged  (which is  analogous  to the two different  groups  of vertices are joined using this current edge.). If we find that both the two ends of the edge are in the same set then this means that if this edge is included then it will create a cycle. 

Find() function will find the root node or first element of a set in  which a particular  element is present. 

Union() function will merge roots of two sets to make a single set by making one parent of another. 

Time-complexity: O(VE), find() function can take linear time. 

Example 12.17:

fun find(parent: IntArray, idx: Int): Int {

var index = idx

var p = parent[index]

while (p != -1) {

index = p

p = parent[index]

}

return index

}

fun union(parent: IntArray, x: Int, y: Int) {

parent[y] = x

}

// Using flags[][] array, if considered edge x to y, 

// then ignore edge y to x. 

fun isCyclePresentUndirected2(): Boolean {

val parent = IntArray(count){-1}

val edge: LinkedList<Edge> = LinkedList<Edge>()

val flags = Array(count) {BooleanArray(count)}

for (i in 0 until count) {

val ad: LinkedList<Edge> = Adj.get(i)

for (adn in ad) {

// In flags array, if considered edge x to y, then ignore edge y to x. 

if (flags[adn.dest][adn.src] == false) {

edge.add(adn)

flags[adn.src][adn.dest] = true

}

}

}

for (e in edge) {

val x = find(parent, e.src)

val y = find(parent, e.dest)

if (x == y) {

return true

}

union(parent, x, y)

}

return false

}
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Third Solution: This solution is also based on Disjoint-Set Data Structure. In the previous solution, the sets which are created may be of disproportionate size. Some sets are very big and others are too small because of which a find() operation  takes  place in linear  time. But if we can make this  set reference as a balanced tree, then find() operation will be efficient. 

A Sets data structure is defined with elements parent and rank. Where the parent is used to refer to the parent of a node in sets and rank is used to represent hierarchy. 

Union() function is used to join sets, such that the child is the parent of the set with higher rank. If the parent rank is less than the child, then promote the parent rank. This function takes the root node of two sets as input and combines them. 

Create a list of edges of the input graph. Traverse the edges and find if the two endpoints of edges are in the same or different set. If they are in a different set, then this edge does not create a cycle and then those sets should be merged (which is analogues to the two different groups of vertices that are joined using this current edge.). If we find that both the two ends of the edge are in the same set then this means that if this edge is included then it will create a cycle. 

Time-complexity: O(E*logV), find() function will take logV time as the tree of V will be balanced. 

Example 12.18

fun isCyclePresentUndirected3(): Boolean {

val sets = arrayOfNulls<Sets>(count)

for (i in 0 until count) sets[i] = Sets(i, 0)

val edge: LinkedList<Edge> = LinkedList<Edge>()

val flags = Array(count) {

BooleanArray(

count

)

}

for (i in 0 until count) {

val ad: LinkedList<Edge> = Adj.get(i)

for (adn in ad) {

// Using flags[][] array, if considered edge x to y, 

// then ignore edge y to x. 

if (flags[adn.dest][adn.src] == false) {

edge.add(adn)

flags[adn.src][adn.dest] = true

}

}

}

for (e in edge) {

val x = find(sets, e.src)

val y = find(sets, e.dest)

if (x == y) {

return true

}

union(sets, x, y)

}

return false

}
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Transpose Graph

Problem: Transpose of a Graph G is a graph G’ that has the same set of vertices, but the direction of edges is reversed. 

Solution: Create an empty graph G’ with the same number of nodes as the input graph G. Traverse the various nodes of the input graph G. If there is an edge v to u in input graph G then add an edge u to v in the new graph G’. Return new graph G’. 

Example 12.19:

fun transposeGraph(): Graph {

val g = Graph(count)

for (i in 0 until count) {

val adl: LinkedList<Edge> = Adj.get(i)

for (adn in adl) {

val dest = adn.dest

g.addDirectedEdge(dest, i)

}

}

return g

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(1, 3)

gph.addDirectedEdge(3, 4)

gph.addDirectedEdge(4, 1)

val gReversed = gph.transposeGraph()

gReversed.print()

}

Output:

Vertex 0 is connected to : 

Vertex 1 is connected to : 0(cost: 1) 4(cost: 1) 

Vertex 2 is connected to : 0(cost: 1) 

Vertex 3 is connected to : 1(cost: 1) 2(cost: 1) 

Vertex 4 is connected to : 3(cost: 1) 

Complexity Analysis: Time Complexity for adjacency list implementation of the graph is O(V+E) and for adjacency matrix implementation it is O(V2)

Test if an undirected graph is connected. 

Problem: Given an undirected graph, find if it is a connected graph. 

Solution: Start from any vertex if we can visit all the other vertices using DFS or BFS then the graph is connected. 
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Example 12.20:

fun isConnectedUndirected(): Boolean {

val visited = BooleanArray(count)

dfsUtil(0, visited)

for (i in 0 until count) {

if (visited[i] == false) return false

}

return true

}

//Testing Code

fun main() {

val gph = Graph(6)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(3, 4)

gph.addUndirectedEdge(4, 2)

gph.addUndirectedEdge(2, 5)

println("isConnectedUndirected:: " + gph.isConnectedUndirected())

}

Output:

isConnectedUndirected:: true

Complexity Analysis: Time Complexity same as DFS for adjacency list implementation of the graph it is O(V+E) and for adjacency matrix implementation it is O(V2)

Strongly Connected Graph

A directed graph is strongly connected if for each pair of vertices u and v, there is a path from u to v and a path from v to u. 

To prove that the graph is a connected graph,  we need to prove two conditions as true for anyone vertex:

1. The first  condition, that every vertex can be visited from some vertex u. Or every vertex is reachable from vertex u. 

2. The second condition, that vertex u is reachable from every other vertex. 

First conditions can be verified by doing a DFS from some vertex u. We need to check that all the vertices of the graph are visited.   The second condition can be verified by first creating a transpose graph G’. Then perform DFS over G’ from vertex u. If all other vertices are visited from vertex u in graph G’. It means that vertex u is reachable from all the vertices of the original graph G. 

Kosaraju’s Algorithm to find if the graph is connected based on DFS: 1. Create a visited array of size V, and Initialise all vertices in the visited array as False. 

2. Choose any vertex and perform a DFS traversal of the graph. For all visited vertices, mark them visited by setting their values as True in the visited array. 

3. If DFS traversal does not mark all vertices as True, then return false. 

4. Find transpose or reverse of the graph

5. Repeat steps 1, 2 and 3 for the reversed graph. 

6. If DFS traversal marks all the vertices as True, then return true. 
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Example 12.21:

fun isStronglyConnected(): Boolean {

val visited = BooleanArray(count)

dfsUtil(0, visited)

for (i in 0 until count) {

if (visited[i] == false) {

return false

}

}

val gReversed = transposeGraph()

for (i in 0 until count) {

visited[i] = false

}

gReversed.dfsUtil(0, visited)

for (i in 0 until count) {

if (visited[i] == false) {

return false

}

}

return true

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(1, 2)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(3, 0)

gph.addDirectedEdge(2, 4)

gph.addDirectedEdge(4, 2)

println("IsStronglyConnected:: " + gph.isStronglyConnected())

}

Output:

IsStronglyConnected:: true

Time Complexity: O(V+E), for two times doing DFS traversal. 

Strongly Connected Components

Strongly Connected Components: A directed graph may have different sub-graphs that are strongly connected. These sub-graphs are called strongly connected components. In the below graph the whole graph is not strongly connected but its two sub-graphs are strongly connected components. 
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Algorithm to find Strongly Connected Component

➢ Create an empty stack, do DFS traversal on graph G. Call DFS for adjacent vertices, and push them into the stack. 

➢ Reverse the graph G to get a new graph G’

➢ Perform the DFS traversal on the graph G’ by picking vertices from the top of the stack. 

➢ Each strongly connected component is traversed in one single iteration. 

Example 12.22:

fun stronglyConnectedComponent() {

val visited = BooleanArray(count)

val stk: Stack<Int> = Stack<Int>()

for (i in 0 until count) {

if (visited[i] == false) 

dfsUtil2(i, visited, stk)

}

val gReversed = transposeGraph()

for (i in 0 until count) {

visited[i] = false

}

val stk2: Stack<Int> = Stack<Int>()

while (stk.isEmpty() == false) {

val index: Int = stk.pop()

if (visited[index] == false) {

stk2.clear()

gReversed.dfsUtil2(index, visited, stk2)

println(stk2)

}

}

}

// Testing code. 

fun main() {

val gph = Graph(7)

gph.addDirectedEdge(0, 1)

gph.addDirectedEdge(1, 2)

gph.addDirectedEdge(2, 0)

gph.addDirectedEdge(2, 3)

gph.addDirectedEdge(3, 4)

gph.addDirectedEdge(4, 5)

gph.addDirectedEdge(5, 3)

gph.addDirectedEdge(5, 6)

gph.stronglyConnectedComponent()

}

Output:

[1, 2, 0]

[4, 5, 3]

[6]

Time Complexity: O(V+E), for two times doing DFS traversal. 




Minimum Spanning Tree (MST)

A Spanning Tree of a graph G is a tree that contains all the vertices of the Graph. 
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A Minimum Spanning Tree is a spanning tree whose sum of length/weight of edges is as minimal as possible. 

For example, if you want to set up communication between a set of cities, then you may want to use the least amount of wire possible. MST can be used to find the network path and wire cost estimate. 



Prim’s Algorithm for MST

Prim’s algorithm grows a single tree T, one edge at a time, until it becomes a spanning tree. 

We Initialise T with zero edges and U with a single node. Where T is spanning tree edges set and U is spanning tree vertex set. 

At each step, Prim’s algorithm adds the smallest value edge with one endpoint in U and the other not in us. Since each edge adds one new vertex to U, after n − 1 additions, U contains all the vertices of the spanning tree and T becomes a spanning tree. 

// Returns the MST by Prim’s Algorithm

// Input: A weighted connected graph G = (V, E)

// Output: Set of edges comprising a MST

function Prim(G)

T = {}

Let r be any vertex in G

U = {r}

for i = 1 to |V| - 1 do

e = minimum-weight edge (u, v)

With u in U and v in V-U

U = U + {v}

T = T + {e}

return T

Prim’s Algorithm uses a priority queue to get the closest next vertex, The algorithm starts with adding a dummy node source to the source to the queue. The nodes of the queue are taken one at a time. Then that node is processed and the nodes that are visited by it are added to the queue. The queue is a priority queue, so it will always give a node with the least weight. If the node that is popped out of the queue includes some new node, then that node is marked as visited, else that edge is ignored. 
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Example 12.23: Prims algorithm implementation for adjacency list representation of graph. 

fun primsMST() {

val previous = IntArray(count){-1}

val dist = IntArray(count){Int.MAX_VALUE} // infinite

val visited = BooleanArray(count)

var source = 0

dist[source] = 0

previous[source] = source

val queue: PriorityQueue<Edge> = PriorityQueue<Edge>(100) var node = Edge(source, source, 0)

queue.add(node)

while (queue.isEmpty() != true) {

node = queue.peek()

queue.remove()

visited[source] = true

source = node.dest

val adl: LinkedList<Edge> = Adj.get(source)

for (adn in adl) {

val dest = adn.dest

val alt = adn.cost

if (dist[dest] > alt && visited[dest] == false) {

dist[dest] = alt

previous[dest] = source

node = Edge(source, dest, alt)

queue.add(node)

}

}

}

// printing result. 

var sum = 0

var isMst = true

var output = "Edges are " 

for (i in 0 until count) {

if (dist[i] == Int.MAX_VALUE) {

output += "($i, Unreachable) " 

isMst = false

} else if (previous[i] != i) {

output += "(" + previous[i] + "->" + i + " @ " + dist[i] + ") " 

sum += dist[i]

}

}

if (isMst) {

println(output)

println("Total MST cost: $sum")

} else println("Can't get a Spanning Tree")

}

// Testing code. 

fun main() {

val gph = Graph(9)

gph.addUndirectedEdge(0, 1, 4)

gph.addUndirectedEdge(0, 7, 8)

gph.addUndirectedEdge(1, 2, 8)

gph.addUndirectedEdge(1, 7, 11)

gph.addUndirectedEdge(2, 3, 7)

gph.addUndirectedEdge(2, 8, 2)

gph.addUndirectedEdge(2, 5, 4)
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gph.addUndirectedEdge(3, 4, 9)

gph.addUndirectedEdge(3, 5, 14)

gph.addUndirectedEdge(4, 5, 10)

gph.addUndirectedEdge(5, 6, 2)

gph.addUndirectedEdge(6, 7, 1)

gph.addUndirectedEdge(6, 8, 6)

gph.addUndirectedEdge(7, 8, 7)

gph.primsMST()

}

Output:

Edges are : (0->1 @ 4) (5->2 @ 4) (2->3 @ 7) (3->4 @ 9) (6->5 @ 2) (7->6 @ 1) (0->7 @ 8) (2->8 @ 2) 

Total MST cost: 37

Time complexity is O((E + V) log V) where V vertices and E edges of the graph. 

Example 12.24: Prims algorithm implementation for adjacency matrix representation of graph. 

fun primsMST() {

val previous = IntArray(count){-1}

val dist = IntArray(count){Int.MAX_VALUE}

val visited = BooleanArray(count)

var source = 0

dist[source] = 0

previous[source] = source

val queue: PriorityQueue<Edge> = PriorityQueue<Edge>(100) var node = Edge(source, source, 0)

queue.add(node)

while (queue.isEmpty() != true) {

node = queue.peek()

queue.remove()

source = node.dest

visited[source] = true

for (dest in 0 until count) {

val cost = adj[source][dest]

if (cost != 0) {

if (dist[dest] > cost && visited[dest] == false) {

dist[dest] = cost

previous[dest] = source

node = Edge(source, dest, cost)

queue.add(node)

}

}

}

}

// printing result. 

var sum = 0

var isMst = true

var output = "Edges are " 

for (i in 0 until count) {

if (dist[i] == Int.MAX_VALUE) {

output += "($i, Unreachable) " 

isMst = false

} else if (previous[i] != i) {

output += "(" + previous[i] + "->" + i + " @ " + dist[i] + ") " 

sum += dist[i]
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}

}

if (isMst) {

println(output)

println("Total MST cost: $sum")

} else println("Can't get a Spanning Tree")

}

Time complexity is O(V^2) where V vertices of the graph. 

Kruskal’s Algorithm

Kruskal’s Algorithm repeatedly chooses the smallest-weight edge that does not form a cycle. 

Sort the edges in non-decreasing order of cost: c (e1) ≤ c (e2) ≤ · · · ≤ c (em). 

Set T to be the empty tree. Add edges to the tree one by one, if it does not create a cycle. 

// Returns the MST by Kruskal’s Algorithm

// Input: A weighted connected graph G = (V, E)

// Output: Set of edges comprising a MST

function Kruskal(G)

Sort the edges E by their weights

T = { }

while |T | + 1 < |V | do

e = next edge in E

if T + {e} does not have a cycle then

T = T + {e}

return T

A  Disjoint-Set data structure  is a data structure that keeps track of a number of disjoint or non-overlapping sets. 

In a union-find algorithm, we have two operations to maintain disjoint sets: 1. Find: To find the set in which a particular element is present. This can be used to find if elements are in the same set. 

2. Union: To join two sets into a single set. 

Create a list of edges of the input graph. Traverse the edges and find if the two endpoints of edges are in the same or different set. If they are in the different set, then this edge does not create a cycle and then those sets should be merged (which is analogous to the two different groups of vertices are joined using this current edge.). If we find that both the two ends of the edge are in the same set then this means that if this edge is included then it will create a cycle. 

Find() function will find the root or first element of a set in which a particular element is present. 

Union() function will merge the roots of two sets to make a single set. 

Example 12.25:

class Sets internal constructor(var parent: Int, var rank: Int)

// root element of set

fun find(sets: Array<Sets?>, idx: Int): Int {

var index = idx

var p = sets[index]!!.parent

while (p != index) {

index = p
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p = sets[index]!!.parent

}

return index

}

// consider x and y are roots of sets. 

fun union(sets: Array<Sets?>, x: Int, y: Int) {

if (sets[x]!!.rank < sets[y]!!.rank) sets[x]!!.parent =

y else if (sets[y]!!.rank < sets[x]!!.rank) sets[y]!!.parent = x else {

sets[x]!!.parent = y

sets[y]!!.rank++

}

}

fun kruskalMST() {

//Different subsets are created. 

val sets = arrayOfNulls<Sets>(count)

for (i in 0 until count) sets[i] = Sets(i, 0)

// Edges are added to array and sorted. 

var E = 0

val edge = arrayOfNulls<Edge>(100)

for (i in 0 until count) {

val ad: LinkedList<Edge> = Adj.get(i)

for (adn in ad) {

edge[E++] = adn

}

}

Arrays.sort(edge, 0, E - 1)

var sum = 0

var output = "Edges are " 

for (i in 0 until E) {

val x = find(sets, edge[i]!!.src)

val y = find(sets, edge[i]!!.dest)

if (x != y) {

output += "(" + edge[i]!!.src + "->" + edge[i]!!.dest + " @ " + 

edge[i]!!.cost + ") " 

sum += edge[i]!!.cost

union(sets, x, y)

}

}

println(output)

println("Total MST cost: $sum")

}

Time-complexity: The time complexity of the above program is O(ElogV). E times loop is executed and find() takes logV time for V number of vertices. 

Euler path and Euler Circuit

Eulerian Path is a path in the graph that visits every edge exactly once. 

Eulerian Circuit is an Eulerian Path, which starts and ends on the same vertex. Or Eulerian Circuit is a path in the graph that visits every edge exactly once, and it starts and ends on the same vertex. 
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Problem: A graph is called Eulerian if there is an Euler circuit in it. A graph is called Semi-Eulerian if there is an Euler Path in the graph. If there is no Euler path possible in the graph, then it is called Non-Eulerian. Check if the graph is Eulerian, Semi-Eulerian or Non-Eulerian. 

Solution: A graph is Eulerian if all the edges have an even number of edges in it. A graph is Semi-Eulerian if it has exactly two vertices with an odd number of edges or an odd degree. In all other cases, the graph is Non-Eulerian. 

Example 12.26:

fun isEulerian(): Int {

// Check if all non - zero degree nodes are connected

if (isConnected() == false) {

println("graph is not Eulerian")

return 0

}

var odd = 0 // Count odd degree

val inDegree = IntArray(count)

val outDegree = IntArray(count)

var adl: LinkedList<Edge> 

for (i in 0 until count) {

adl = Adj.get(i)

for (adn in adl) {

outDegree[i] += 1

inDegree[adn.dest] += 1

}

}

for (i in 0 until count) {

if ((inDegree[i] + outDegree[i]) % 2 != 0) {

odd += 1

}

}

return if (odd == 0) {

println("graph is Eulerian")

2

} else if (odd == 2) {

println("graph is Semi-Eulerian")

1

} else {

println("graph is not Eulerian")

0

}

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(1, 0)

gph.addDirectedEdge(0, 2)

gph.addDirectedEdge(2, 1)

gph.addDirectedEdge(0, 3)

gph.addDirectedEdge(3, 4)

gph.isEulerian()

gph.addDirectedEdge(4, 0)
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gph.isEulerian()

}

Output:

graph is Semi-Eulerian

graph is Eulerian

Shortest Path Algorithms in Graph

Single-Source Shortest Path for an unweighted Graph. 

Problem: Given an unweighted graph G= (V, E), where V is the set of vertices and E is the set of edges. Find the shortest path from a given source vertex ‘s’ to all the vertices of V. 

Solution: 

1. First, the starting point source is added to a queue. 

2. Breadth-first traversal is performed

3. Nodes that are closer to the source are traversed first and processed. 

4. Time-complexity will be O(V+E), the total number of times the inner loop will be executed will be E which is the total number of edges in the graph. 

Example 12.27:

fun shortestPath(source: Int) {

var curr: Int

val distance = IntArray(count)

val path = IntArray(count)

for (i in 0 until count) {

distance[i] = -1

path[i] = -1

}

val que: java.util.Queue<Int> = LinkedList<Int>()

que.add(source)

distance[source] = 0

path[source] = source

while (que.isEmpty() == false) {

curr = que.remove()

val adl: LinkedList<Edge> = Adj.get(curr)

for (adn in adl) {

if (distance[adn.dest] == -1) {

distance[adn.dest] = distance[curr] + 1

path[adn.dest] = curr

que.add(adn.dest)

}

}

}

printPath(path, distance, count, source)

}

fun printPathUtil(previous: IntArray, source: Int, dest: Int): String {

var path = "" 
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if (dest == source) path += source else {

path += printPathUtil(previous, source, previous[dest])

path += "->$dest" 

}

return path

}

fun printPath(previous: IntArray, dist: IntArray, count: Int, source: Int) {

var output = "Shortest Paths: " 

for (i in 0 until count) {

if (dist[i] == 99999) output += "($source->$i @ Unreachable) " else if (i ! 

= previous[i]) {

output += "(" 

output += printPathUtil(previous, source, i)

output += " @ " + dist[i] + ") " 

}

}

println(output)

}

// Testing code. 

fun main() {

val gph = Graph(9)

gph.addUndirectedEdge(0, 1)

gph.addUndirectedEdge(0, 7)

gph.addUndirectedEdge(1, 2)

gph.addUndirectedEdge(1, 7)

gph.addUndirectedEdge(2, 3)

gph.addUndirectedEdge(2, 8)

gph.addUndirectedEdge(2, 5)

gph.addUndirectedEdge(3, 4)

gph.addUndirectedEdge(3, 5)

gph.addUndirectedEdge(4, 5)

gph.addUndirectedEdge(5, 6)

gph.addUndirectedEdge(6, 7)

gph.addUndirectedEdge(6, 8)

gph.addUndirectedEdge(7, 8)

gph.shortestPath(0)

}

Output:

Shortest Paths: (0->1 @ 1) (0->1->2 @ 2) (0->1->2->3 @ 3) (0->7->6->5->4 @ 4) (0->7->6->5 @ 3) (0->7->6 @ 2) (0->7 @ 1) (0->7->8 @ 2) Dijkstra’s algorithm / Single Source Shortest path with positive weighted graph Problem: Given a weighted graph G= (V, E), where V is the set of vertices and E is the set of edges. 

Where all the edges E of the graph are non-negative. Find the shortest path from a given source vertex

‘s’ to all the vertices of V. 

Solution: Dijkstra’s algorithm is used for a single-source shortest path problem for weighted edges with no negative weight. Dijkstra’s algorithm is like a prim's algorithm. It maintains a set of nodes for which the shortest path is known. 
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The algorithm starts by keeping track of the distance of each node and its parents. All the distance is set to infinite in the beginning as we do not know the actual path to the nodes and parents of all the vertices are set to null. All the vertices are added to a priority queue (min-heap implementation) Each step algorithm takes one vertex from the priority queue (which will be the source vertex in the beginning). Then update the distance list corresponding to all the adjacent vertices. When the queue is empty, then we will have the distance and a parent list fully populated. 

// Solves SSSP by Dijkstra’s Algorithm

// Input: A weighted connected graph G = (V, E)

// with no negative weights, and source vertex v

// Output: The length and path from s to every v

function Dijkstra(G, s)

for each v in V do

D[v] = infinite    // Unknown distance

P[v] = null    //unknown previous node

add v to PQ    //adding all nodes to priority queue

D[source] = 0 // Distance from source to source

while (PQ is not empty)

u = vertex from PQ with smallest D[u]

remove u from PQ

for each v adjacent from u do

alt = D[u] + length (u, v)

if alt < D[v] then

D[v] = alt

P[v] = u

return D[], P[]

Note: Dijkstra’s algorithm does not work for graphs with negative edge weight. 

Note: Dijkstra’s algorithm applies to both undirected and directed graphs. 

Example 12.28: Dijkstra’s algorithm for adjacency list implementation of graph. 

fun dijkstra(source: Int) {

val previous = IntArray(count)

val dist = IntArray(count)

val visited = BooleanArray(count)

Arrays.fill(previous, -1)
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Arrays.fill(dist, 99999) // infinite

dist[source] = 0

previous[source] = source

val queue: PriorityQueue<Edge> = PriorityQueue<Edge>(100) var edge = Edge(source, source, 0)

queue.add(edge)

var curr: Int

while (queue.isEmpty() != true) {

edge = queue.peek()

queue.remove()

curr = edge.dest

visited[curr] = true

val adl: LinkedList<Edge> = Adj.get(curr)

for (adn in adl) {

val dest = adn.dest

val alt = adn.cost + dist[curr]

if (alt < dist[dest] && visited[dest] == false) {

dist[dest] = alt

previous[dest] = curr

edge = Edge(curr, dest, alt)

queue.add(edge)

}

}

}

printPath(previous, dist, count, source)

}

// Testing code. 

fun main() {

val gph = Graph(9)

gph.addUndirectedEdge(0, 1, 4)

gph.addUndirectedEdge(0, 7, 8)

gph.addUndirectedEdge(1, 2, 8)

gph.addUndirectedEdge(1, 7, 11)

gph.addUndirectedEdge(2, 3, 7)

gph.addUndirectedEdge(2, 8, 2)

gph.addUndirectedEdge(2, 5, 4)

gph.addUndirectedEdge(3, 4, 9)

gph.addUndirectedEdge(3, 5, 14)

gph.addUndirectedEdge(4, 5, 10)

gph.addUndirectedEdge(5, 6, 2)

gph.addUndirectedEdge(6, 7, 1)

gph.addUndirectedEdge(6, 8, 6)

gph.addUndirectedEdge(7, 8, 7)

gph.dijkstra(0)

}

Output:

Shortest Paths: (0->1 @ 4) (0->1->2 @ 12) (0->1->2->3 @ 19) (0->7->6->5->4 @ 21) (0->7->6->5 @ 11) (0->7->6 @ 9) (0->7 @ 8) (0->1->2->8 @ 14) Time complexity is O((E + V) log V) where V vertices and E edges of the graph. 
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Example 12.29: Dijkstra’s algorithm for adjacency matrix implementation of graph. 

fun dijkstra(source: Int) {

val previous = IntArray(count){-1}

val dist = IntArray(count){Int.MAX_VALUE}

val visited = BooleanArray(count)

dist[source] = 0

previous[source] = source

val queue: PriorityQueue<Edge> = PriorityQueue<Edge>(100) var node = Edge(source, source, 0)

queue.add(node)

while (queue.isEmpty() != true) {

node = queue.peek()

queue.remove()

val src = node.dest

visited[src] = true

for (dest in 0 until count) {

val cost = adj[src][dest]

if (cost != 0) {

val alt = cost + dist[src]

if (dist[dest] > alt && visited[dest] == false) {

dist[dest] = alt

previous[dest] = src

node = Edge(src, dest, alt)

queue.add(node)

}

}

}

}

printPath(previous, dist, count, source)

}

Time complexity is O(V^2) where V vertices of the graph. 

Bellman Ford Algorithm / Single source shortest path with negative weights graph Problem: Given a weighted graph G= (V, E), where V is the set of vertices and E is the set of edges. 

Where the edges E of the graph can be negative but no negative weight cycle. Find the shortest path from a given source vertex ‘s’ to all the vertices of V. 

Solution: Bellman Ford algorithm is used to find a single source shortest path to all the other vertices in a graph with a negative edge but no negative weight cycle. A negative weight cycle is a cycle whose total weight is negative. In this algorithm, the distance of all the vertices is assigned to  ∞  and the source vertex distance is assigned as 0. Then V-1 passes (passes also called relaxation) over all the edges and the distance to the destination is updated for each vertex. We can stop the algorithm if a pass / relaxation does not modify the distance to any of the vertices. 

If there is a change in weight of the distance after the V-1 pass (relaxation) then we have a negative cycle in the graph. 

Time complexity is O(V.E), where V is the number of vertices and E is the total number of edges. 
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Example 12.30:

fun bellmanFordShortestPath(source: Int) {

val distance = IntArray(count)

Arrays.fill(distance, 99999) // infinite

val path = IntArray(count)

Arrays.fill(path, -1)

distance[source] = 0

path[source] = source

// Outer loop will run (V-1) number of times. 

// Inner for loop and while loop runs combined will

// run for Edges number of times. 

// Which make the total complexity as O(V*E)

for (i in 0 until count - 1) {

for (j in 0 until count) {

val adl: LinkedList<Edge> = Adj.get(j)

for (adn in adl) {

val newDistance = distance[j] + adn.cost

if (distance[adn.dest] > newDistance) {
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distance[adn.dest] = newDistance

path[adn.dest] = j

}

}

}

}

printPath(path, distance, count, source)

}

// Testing code. 

fun main() {

val gph = Graph(5)

gph.addDirectedEdge(0, 1, 3)

gph.addDirectedEdge(0, 4, 2)

gph.addDirectedEdge(1, 2, 1)

gph.addDirectedEdge(2, 3, 1)

gph.addDirectedEdge(4, 1, -2)

gph.addDirectedEdge(4, 3, 1)

gph.bellmanFordShortestPath(0)

}

Output:

Shortest Paths: (0->4->1 @ 0) (0->4->1->2 @ 1) (0->4->1->2->3 @ 2) (0->4 @ 2) All Pairs Shortest Paths / Floyd Warshall Algorithm

Problem: Given a weighted graph G= (V, E), where V is the set of vertices and E is the set of edges. 

Where the edges E of the graph can be negative. Find the shortest path between all the pairs of vertices u, v є V. 

Solution: Floyd Warshall Algorithm can be used to find the shortest path between all the pairs of vertices in a graph if the graph does not contain a negative weight cycle. If the graph contains a negative-weight cycle, then it reports a negative cycle too. It compares all the possible paths between each pair of vertices in the graph. 

Create an output matrix same as the given cost matrix of the graph. After that, the output matrix will be updated with all vertices as the intermediate vertex. When we had selected vertex k as intermediate vertex, then we had already selected all the previous vertices from 0 to k-1 as intermediate vertices. 

DistK [i, j] = minimum ( DistK-1[i, j] , DistK-1 [i, k] + DistK-1 [k, j] ) All the diagonals of the distance matrix dist[i][i] are set to 0 in the start. If we find a better path from i to i. Which means two things: that there is a cycle and the cycle  has a negative weight. 

The time complexity of this algorithm is O(V^3), where V is the number of vertices in the graph. 

Example 12.31:

fun floydWarshall() {

val V = count

val dist = Array(V) { IntArray(V) }

val path = Array(V) { IntArray(V) }

val INF = 99999

for (i in 0 until V) {

for (j in 0 until V) {
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dist[i][j] = INF

if (i == j) path[i][j] = 0 else path[i][j] = -1

}

}

for (i in 0 until V) {

val adl: LinkedList<Edge> = Adj.get(i)

for (adn in adl) {

path[adn.src][adn.dest] = adn.src

dist[adn.src][adn.dest] = adn.cost

}

}

for (k in 0 until V) { // Pick intermediate vertices. 

for (i in 0 until V) { // Pick source vertices one by one. 

for (j in 0 until V) { // Pick destination vertices. 

// If we have a shorter path from i to j via k. 

// then update dist[i][j] and  and path[i][j]

if (dist[i][k] + dist[k][j] < dist[i][j]) {

dist[i][j] = dist[i][k] + dist[k][j]

path[i][j] = path[k][j]

}

}

// dist[i][i] is 0 in the start. 

// If there is a better path from i to i and is better path then 

// we have a -ve cycle. 

if (dist[i][i] < 0) {

println("Negative-weight cycle found.")

return

}

}

}

printSolution(dist, path, V)

}

private fun printSolution(cost: Array<IntArray>, path: Array<IntArray>, V: Int) {

print("Shortest Paths : ")

for (u in 0 until V) {

for (v in 0 until V) {

if (u != v && path[u][v] != -1) {

print("(")

printPath2(path, u, v)

print(" @ " + cost[u][v] + ") ")

}

}

}

println()

}

private fun printPath2(path: Array<IntArray>, u: Int, v: Int) {

if (path[u][v] == u) {

print("$u->$v")

return

}

printPath2(path, u, path[u][v])

print("->$v")

}
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// Testing code. 

fun main() {

val gph = Graph(4)

gph.addDirectedEdge(0, 0, 0)

gph.addDirectedEdge(1, 1, 0)

gph.addDirectedEdge(2, 2, 0)

gph.addDirectedEdge(3, 3, 0)

gph.addDirectedEdge(0, 1, 5)

gph.addDirectedEdge(0, 3, 10)

gph.addDirectedEdge(1, 2, 3)

gph.addDirectedEdge(2, 3, 1)

gph.floydWarshall()

}

Output:

Shortest Paths : (0->1 @ 5) (0->1->2 @ 8) (0->1->2->3 @ 9) (1->2 @ 3) (1->2->3 @ 4) (2->3 @ 1) 

Hamiltonian Path

A Hamiltonian path is a path in which every vertex is visited exactly once with no repeats, it does not have to start and end at the same vertex. 

The Hamiltonian path is a Np-Complete problem, so the only solution is possible using backtracking, which starts from a vertex s and tries all adjacent vertices recursively. If we do not find the path, then we backtrack and try other vertices. 

Solution:   Backtracking   Approach,  finding  all   the   possible   paths   is   the   graph   that   satisfies   the hamiltonian path conditions. In a hamiltonian path, the node which is added should not be added again. A path[] array will be created to store path[]. And an added[] array is used to keep track of the elements already added to the path. If we find a path that is of length equal to the number of vertices, we have our solution. 

Time-complexity: O(N!), All possible paths are traversed, so the total number of paths will be N!. 

Example 12.32:

fun hamiltonianPathUtil(path: IntArray, pSize: Int, added: IntArray): Boolean {

// Base case full length path is found

if (pSize == count) {

return true

}

for (vertex in 0 until count) {

// There is an edge from last element of path and next vertex

// and the next vertex is not already included in the path. 

if ((pSize == 0 || adj[path[pSize - 1]][vertex] == 1) && added[vertex] == 

0) {

path[pSize] = vertex

added[vertex] = 1

if (hamiltonianPathUtil(path, pSize + 1, added)) 

                return true // backtracking

added[vertex] = 0
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}

}

return false

}

fun hamiltonianPath(): Boolean {

val path = IntArray(count)

val added = IntArray(count)

if (hamiltonianPathUtil(path, 0, added)) {

print("Hamiltonian Path found :: ")

for (i in 0 until count) print(" " + path[i])

println("")

return true

}

println("Hamiltonian Path not found")

return false

}

// Testing code. 

fun main() {

val count = 5

val gph = GraphAM(count)

val adj = arrayOf(

intArrayOf(0, 1, 0, 1, 0), 

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(0, 1, 0, 0, 1), 

intArrayOf(1, 1, 0, 0, 1), 

intArrayOf(0, 1, 1, 1, 0))

for (i in 0 until count) for (j in 0 until count) if (adj[i][j] == 1) gph.addDirectedEdge(i, j, 1)

println("hamiltonianPath : " + gph.hamiltonianPath())

val gph2 = GraphAM(count)

val adj2 = arrayOf(

intArrayOf(0, 1, 0, 1, 0), 

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(0, 1, 0, 0, 1), 

intArrayOf(1, 1, 0, 0, 0), 

intArrayOf(0, 1, 1, 0, 0))

for (i in 0 until count) for (j in 0 until count) if (adj2[i][j] == 1) gph2.addDirectedEdge(i, j, 1)

println("hamiltonianPath :  " + gph2.hamiltonianPath())

}

Output:

Hamiltonian Path found ::  0 1 2 4 3

hamiltonianPath : true

Hamiltonian Path found ::  0 3 1 2 4

hamiltonianPath :  true
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Hamiltonian Circuit

A Hamiltonian circuit is a Hamiltonian Path such that there is an edge from its last vertex to its first vertex. A Hamiltonian circuit is a circuit that visits every vertex exactly once and it must start and end at the same vertex. 

Solution:   Backtracking   Approach,   find   all   the   possible  paths   that  satisfy   the   hamiltonian   path conditions and the path should also satisfy one more condition that there should be a path from the last node of the Hamiltonian path to the first element.. In a hamiltonian path, the node which is added should not be added again. A path[] array will be created to store path[]. And an added[] array is used to keep track of the elements already added to the path. If we find a path that is of length equal to the number of vertices and there is a path from the last node to the first, then we have our solution. 

Time-complexity: O(n!)

Example 12.33:

fun hamiltonianCycleUtil(path: IntArray, pSize: Int, added: IntArray): Boolean {

// Base case full length path is found

// this last check can be modified to make it a path. 

if (pSize == count) {

return if (adj[path[pSize - 1]][path[0]] == 1) {

path[pSize] = path[0]

true

} else false

}

for (vertex in 0 until count) {

// there is a path from last element and next vertex

if (pSize == 0 || adj[path[pSize - 1]][vertex] == 1 && added[vertex] == 0) 

{            path[pSize] = vertex

added[vertex] = 1

if (hamiltonianCycleUtil(path, pSize + 1, added)) return true

// backtracking

added[vertex] = 0

}

}

return false

}

fun hamiltonianCycle(): Boolean {

val path = IntArray(count + 1)

val added = IntArray(count)

if (hamiltonianCycleUtil(path, 0, added)) {

print("Hamiltonian Cycle found :: ")

for (i in 0..count) print(" " + path[i])

println("")

return true

}

println("Hamiltonian Cycle not found")

return false

}

}
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// Testing code. 

fun main() {

val count = 5

val gph = GraphAM(count)

val adj = arrayOf(

intArrayOf(0, 1, 0, 1, 0), 

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(0, 1, 0, 0, 1), 

intArrayOf(1, 1, 0, 0, 1), 

intArrayOf(0, 1, 1, 1, 0)

)

for (i in 0 until count) for (j in 0 until count) if (adj[i][j] == 1) gph.addDirectedEdge(i, j, 1)

println("hamiltonianCycle : " + gph.hamiltonianCycle())

val gph2 = GraphAM(count)

val adj2 = arrayOf(

intArrayOf(0, 1, 0, 1, 0), 

intArrayOf(1, 0, 1, 1, 0), 

intArrayOf(0, 1, 0, 0, 1), 

intArrayOf(1, 1, 0, 0, 0), 

intArrayOf(0, 1, 1, 0, 0)

)

for (i in 0 until count) for (j in 0 until count) if (adj2[i][j] == 1) gph2.addDirectedEdge(i, j, 1)

println("hamiltonianCycle :  " + gph2.hamiltonianCycle())

}

Output:

Hamiltonian Cycle found ::  0 1 2 4 3 0

hamiltonianCycle : true

Hamiltonian Cycle not found

hamiltonianCycle :  false

Travelling Salesman Problem (TSP)

Problem: The travelling salesman problem tries to find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it started. 

Or

Given a weighted connected graph G= (V, E) where V are the vertices and E are the edges. Since the graph   is   fully  connected,  there   are   multiple   hamiltonian   circuits.   We   need   to   find   the   shortest Hamiltonian Circuit in a graph. A cycle that passes through all the vertices of the graph exactly once. 

function TSP

Select a city

MinTourCost = infinite

for (All permutations of cities) do

if(LengthOfPathSinglePermutation < MinTourCost)

MinTourCost = LengthOfPath

Total number of possible combinations = (n-1)!, Cost for calculating the path: Θ(n) So the total time complexity finding the shortest path: Θ(n!)
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It is an NP-Hard problem and there is no efficient algorithm to find its solution. Even if some path is given as a solution, it is equally hard to verify that this is a correct solution or not. 

Example 12.34:

fun tspUtil( graph: Array<IntArray>, n: Int, path: IntArray, pSize: Int, pCost: Int, visited: BooleanArray, ansIn: Int, ansPath: IntArray): Int {

var ans = ansIn

if (pCost > ans) return ans

val curr = path[pSize - 1]

if (pSize == n) {

if (graph[curr][0] > 0 && ans > pCost + graph[curr][0]) {

ans = pCost + graph[curr][0]

for (i in 0..n) ansPath[i] = path[i % n]

}

return ans

}

for (i in 0 until n) {

if (visited[i] == false && graph[curr][i] > 0) {

visited[i] = true

path[pSize] = i

ans = tspUtil(graph, n, path, pSize + 1, pCost + graph[curr][i], 

visited, ans, ansPath)

visited[i] = false

}

}

return ans

}

fun tsp(graph: Array<IntArray>, n: Int): Int {

val visited = BooleanArray(n)

val path = IntArray(n)

val ansPath = IntArray(n + 1)

path[0] = 0

visited[0] = true

var ans = Int.MAX_VALUE

ans = tspUtil(graph, n, path, 1, 0, visited, ans, ansPath)

println("Path length : $ans")

print("Path : ")

for (i in 0..n) print(ansPath[i].toString() + " ") return ans

}

// Testing code. 

fun main() {

val n = 4

val graph = arrayOf(

intArrayOf(0, 10, 15, 20), 

intArrayOf(10, 0, 35, 25), 

intArrayOf(15, 35, 0, 30), 

intArrayOf(20, 25, 30, 0))

tsp(graph, n)

}

Output:

Shortest Path weight: 80

Shortest Path: 0 1 3 2 0 

445

Chapter 12: Graphs

Uses of Graph algorithms

Uses of Graph algorithms

Applications of Graph algorithms are:

1. Maps are represented by Graph. 

2. GPS navigation uses shortest path algorithms like Dijstra algorithm. 

3. Social networks like Facebook, Instagram etc. used graphs to represent connections between profiles. 

4. Path finding algorithms are used in Robotics, Video Games etc. 

5. Spanning Tree algorithms are used to set up communication networks in graphs of nodes. 

6. Finding if a path exists between two vertices can be done using BFS or DFS. 

7. Given a starting vertex u, finding the minimum number of edges from vertex s to all the other vertices of the graph is done using BFS. 

8. Testing if a graph G is connected can be done using BFS or DFS. 

9. Finding if there is a cycle in the graph or checking if a given graph is a tree is done using DFS. 

10. Topological Sorting is done using DFS. 

11. Strongly connected components or graphs in directed graphs are done using DFS. 

Exercise

1. In   the   various   path-finding   algorithms,   we   have   created   a   path   array   that   just   stores   the immediate parent of a node, and prints the complete path for it. 

2. All the functions are implemented as if the graph is represented by an adjacency list. Write all those functions for graph representation as adjacency matrices. 

3. In a given start string, end string and a set of strings, find if there exists a path between the start string and end string via the set of strings. 

4. A   path   exists   if   we   can   get   from   the   start   string   to   end   the   string   by   changing   (no addition/removal) only one character at a time. The restriction is that the new string generated after changing one character has to be in the set. 

Start: "cog"      End: "bad" 

Set: ["bag", "cag", "cat", "fag", "con", "rat", "sat", "fog"] 

One of the paths: "cog" -> "fog" -> "fag" -> "bag" -> "bad" 
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Introduction

String in C language is an array of characters. We use string algorithms in so many tasks, when we are using some copy-paste, some string replacement, and some string search. When we are using some dictionary program, we are using string algorithms. When we are searching something in google, we are passing some information that is also a string and that will be further converted and processed by google. 

Note: This chapter is very important for the interview point of view as many interview problems are from this chapter. 

String Matching

Every word-processing program has a search function in which you can search all occurrences of any word in a long text file. For this, we need string-matching algorithms. 

Problem: Search a pattern of length m in a given text of length n. Where m < n. 

Approach 1: Brute Force Search

The brute force search algorithm will check the pattern at all possible values of “i” in the text where the value of “i” ranges from 0 to n-m. The pattern is compared with the text, character by character from left to right. When a mismatch is detected, then the pattern is compared by shifting the compare window by one character. 

Example 13.1:

fun bruteForceSearch(txt: String, ptn: String): Int {

val text: CharArray = txt.toCharArray()

val pattern: CharArray = ptn.toCharArray()

val n = text.size

val m = pattern.size

var i = 0

while (i <= n - m) {

var j = 0

while (j < m && pattern[j] == text[i + j]) {

j++

}

if (j == m) {

return i

}

i++

}

return -1

}

// Testing code. 

fun main() {

val st1 = "hello, world!" 
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val st2 = "world" 

println("BruteForceSearch return : " + bruteForceSearch(st1, st2))

}

Output:

Using BruteForceSearch pattern found at index : 7

The time complexity of the algorithm is O(m*n), we get the pattern at the end of the text or we do not get the pattern at all. 

Approach 2: Robin Karp Algorithm

The Robin-Karp algorithm is somewhat like the brute force algorithm, in which the pattern is compared to each portion of the text of length m. Instead of comparing patterns, character by character its hash code is compared. The hash code of the pattern is compared with the hash code of the text window. 

We try to keep the hash code as unique as possible. So that when hashcode matches, then the text should also match. 

The two features of a good hash code are:

1. The collision should be excluded as much as possible. A collision occurs when the hashcode matches, but the pattern does not. 

2. The hash code of text must be calculated in constant time. 

In this algorithm, the hash code of some window is calculated from the hash code of the previous window in constant time. At the start, the hash value of the text of length m is calculated. We compare its hash code with the hash code of the pattern string. To get the hash code of the next window, we exclude one character and include the next character. The portion of text that needs to be compared moves as a window of characters. For each window, calculation of hash is done in constant time, one member leaves the window and a new number enters the window. 

Multiplication by 2 is the same as left shift operation. Multiplication by 2m-1 is the same as left shift m-1

times. If the pattern is “m” character long. Then, when we want to remove the leftmost character from the hash, we will subtract its ASCII value multiplied by 2m-1. We shift the whole hash calculation by multiplying it by 2. Finally, the hash value of the new window is calculated by adding the ASCII value of the rightmost element of this window. We do not want to do large multiplication operations, so modular operations with a prime number are used. 

Example 13.2:

fun robinKarp(txt: String, ptn: String): Int {

val text: CharArray = txt.toCharArray()

val pattern: CharArray = ptn.toCharArray()

val n = text.size

val m = pattern.size

val prime = 101

var powm = 1

if (m == 0 || m > n) {

return -1

}

var i = 0

while (i < m - 1) {

powm = (powm shl 1) % prime

i++
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}

var TextHash = 0

var PatternHash = 0

i = 0

while (i < m) {

PatternHash = ((PatternHash shl 1) + pattern[i].code) % prime

TextHash = ((TextHash shl 1) + text[i].code) % prime

i++

}

i = 0

var j: Int

while (i <= n - m) {

if (TextHash == PatternHash) {

j = 0

while (j < m) {

if (text[i + j] != pattern[j]) {

break

}

j++

}

if (j == m)

return i

}

TextHash = ((TextHash - text[i].code * powm shl 1) + text[i + m].code) % 

prime

if (TextHash < 0) {

TextHash = TextHash + prime

}

i++

}

return -1

}

The time complexity of the algorithm is O(n). 

Approach 3: Knuth Morris Pratt Algorithm

There is an inefficiency in the brute force method of string matching. After a shift of the pattern, the brute force algorithm forgot all the information about the previously matched symbols. This is because of which its worst-case time complexity is O(mn). 

The  Knuth-Morris-Pratt  algorithm makes  use  of  this  information that   is  computed  in the  previous comparison. It never compares the whole text. It uses preprocessing of the pattern. The preprocessing takes O(m) time and the whole algorithm time-complexity is O(n)

Preprocessing step: we try to find the border of the pattern at a different prefix of the pattern. 

A prefix is a string that comes at the beginning of a string. 

A proper prefix is a prefix that is not the complete string. Its length is less than the length of the string. 

A suffix is a string that comes at the end of a string. 

A proper suffix is a suffix that is not a complete string. Its length is less than the length of the string. 

A border is a string that is both a proper prefix and a proper suffix. 
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Example 13.3:

private fun kmpPreprocess(pattern: CharArray, ShiftArr: IntArray) {

val m = pattern.size

var i = 0

var j = -1

ShiftArr[i] = -1

while (i < m) {

while (j >= 0 && pattern[i] != pattern[j]) {

j = ShiftArr[j]

}

i++

j++

ShiftArr[i] = j

}

}

We have two, loop outer loop for the text and inner loop for the pattern when we have matched the text and pattern mismatch, we shift the text such that the widest border is considered and then the rest of the pattern matching is resumed after this shift. If again a mismatch happens then the next mismatch is taken. 

Example 13.4:

fun kmp(txt: String, ptn: String): Int {

val text: CharArray = txt.toCharArray()

val pattern: CharArray = ptn.toCharArray()

val n = text.size

val m = pattern.size

val ShiftArr = IntArray(m + 1)

kmpPreprocess(pattern, ShiftArr)

var i = 0

var j = 0

while (i < n) {

while (j >= 0 && text[i] != pattern[j])

j = ShiftArr[j]

i++

j++
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if (j == m) {

return i - m

}

}

return -1

}

Problem: Use the same KMP algorithm to find the number of occurrences of the pattern in a text. 

Example 13.5:

fun kmpFindCount(txt: String, ptn: String): Int {

val text: CharArray = txt.toCharArray()

val pattern: CharArray = ptn.toCharArray()

val n = text.size

val m = pattern.size

val ShiftArr = IntArray(m + 1)

kmpPreprocess(pattern, ShiftArr)

var i = 0

var j = 0

var count = 0

while (i < n) {

while (j >= 0 && text[i] != pattern[j]) {

j = ShiftArr[j]

}

i++

j++

if (j == m) {

count++

j = ShiftArr[j]

}

}

return count

}

// Testing code. 

fun main() {

val st3 = "Only time will tell if we stand the test of time" 

println("Frequency of time is : " +  kmpFindCount(st3, "time"))

}

Output:

Frequency of 'time' is : 2

Dictionary / Symbol Table

A symbol table is a mapping between a string (key) and a value that can be of any type. A value can be an integer such as occurrence count, dictionary meaning of a word and so on. Dictionaries can be implemented in various ways. We will be studying the Binary Search Tree of strings, Hash-Table, Tries and Ternary Search Tree. 

Binary Search Tree (BST) for Strings

Binary Search Tree (BST) is the simplest way to implement a symbol table. A simple strcmp() function can be used to compare two strings. If all the keys are random and the tree is balanced, then an 451
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average key lookup can be done in O(log(n)) time. Below is an implementation of a binary search tree to store a string as a key. This will keep track of the occurrence count of words in a text. 

Example 13.6:

class StringTree {

class Node(var value: String? = null, var lChild: Node? = null, var rChild: Node? = null )

var root: Node? = null



fun print(curr: Node? = root) /* pre order */ {

if (curr != null) {

print("Value is :: " + curr.value!!)

print(curr.lChild)

print(curr.rChild)

}

}

fun add(value: String) {

root = add(root, value.lowercase())

}

private fun add(cur: Node?, value: String): Node {

var curr = cur

if (curr == null)

return Node(value)

val compare = curr.value!!.compareTo(value)

if (compare == 1) curr.lChild = add(curr.lChild, value)

else if (compare == -1) curr.rChild = add(curr.rChild, value) return curr

}

fun find(value: String): Boolean {

return find(root, value.lowercase())

}

private fun find(curr: Node?, value: String): Boolean {

if (curr == null)

return false

val compare = curr.value!!.compareTo(value)

if (compare == 0)

return true

else {

if (compare == 1) return find(curr.lChild, value)

else return find(curr.rChild, value)
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}

}

fun freeTree() {

root = null

}

}

// Testing code. 

fun main() {

val tt = StringTree()

tt.add("banana"); 

tt.add("apple"); 

tt.add("mango"); 

println("Apple Found : " + tt.find("apple")); 

println("Banana Found : " + tt.find("banana")); 

println("Grapes Found : " + tt.find("grapes")); 

}

Output:

Apple Found : true

Banana Found : true

Grapes Found : false

Hash Table

The Hash-Table is another data structure that can be used for symbol table implementation. Below the Hash-Table diagram, we can see the name of that person is taken as key, and their meaning is the value of the search. The first key is converted into a hash code by passing it to the appropriate hash function. Inside the hash function, the size of the Hash-Table is also passed, which is used to find the actual index where values will be stored. Finally, the value, which is the meaning  of the name, is stored in the Hash-Table. Hash-Table has an excellent lookup of O(1). 
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Note: Implementation of hashtable in hashtable chapter. 

Let us suppose we want to implement auto-complete the box feature of Google search. When you type some string to search in google search, it proposes some complete string even before you have done typing. BST cannot solve this problem, as related strings can be in both the right and left subtree. 

The Hash-Table is also not suited for this job. One cannot perform a partial match or range query on a Hash-Table. The hash function transforms a string into a number. Moreover, a good hash function will give a distributed hash code even for partial strings and there is no way to relate two strings in a HashTable. 

Trie and Ternary Search tree are a special kind of tree that solves partial match and range query problems efficiently. 

Trie

Trie is a tree, in which we store only one character at each node. The final key-value pair is stored in the leaves. Each node has R children, one for each possible character. For simplicity purposes, let us consider that the character set is 26, corresponding to different characters of English alphabets. 

Trie is an efficient data structure. Using Trie, we can search the key in O(M) time. Where M is the maximum string length. Trie is also suitable for solving partial match and range query problems. 

Example 13.7:

class Trie {

inner class Node() {

var isLastChar : Boolean = false

var child: Array<Node?>  = arrayOfNulls(CharCount)

}
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var root: Node? = null

private val CharCount = 26

init {

root = Node() // first node with dummy value. 

}

fun add(str: String?): Node? {

return if (str == null) root

else add(root, str.lowercase(), 0)

}

private fun add(nd: Node?, str: String, index: Int): Node {

var curr = nd

if (curr == null) {

curr =  Node()

}

if (str.length == index) curr.isLastChar = true

else curr.child[str[index] - 'a'] = add(curr.child[str[index] - 'a'], str, index + 1)

}

return curr

}

fun remove(str: String?) {

if (str != null) remove(root, str.lowercase(), 0)

}

private fun remove(curr: Node?, str: String, index: Int) {

if (curr == null) return

if (str.length == index) {

if (curr.isLastChar) {

curr.isLastChar = false

}

return

}

remove(curr.child[str[index] - 'a'], str, index + 1)

}

fun find(str: String?): Boolean {

return if (str == null) false

else find(root, str.lowercase(), 0)

}

private fun find(curr: Node?, str: String, index: Int): Boolean {

return if (curr == null) {

false

} else if (str.length == index) {

curr.isLastChar

} else find(curr.child[str[index] - 'a'], str, index + 1)

}

}

// Testing code. 

fun main() {

val tt = Trie()

tt.add("banana"); 
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tt.add("apple"); 

tt.add("mango"); 

println("Apple Found : " + tt.find("apple")); 

println("Banana Found : " + tt.find("banana")); 

println("Grapes Found : " + tt.find("grapes")); 

}

Output:

Apple Found : true

Banana Found : true

Grapes Found : false

Ternary Search Tree

Tries have a very good search performance of O(M) where M is the maximum size of the search string. 

However, tries have a very high space requirement. In every node, Trie contains pointers to multiple nodes, which are pointers corresponding to possible characters of the key.  To avoid this high space requirement, Ternary Search Trie (TST) is used. 

A TST avoids the heavy space requirement of traditional Trie, keeping many of its advantages. In a TST, each node contains a character, an end of the key indicator and  three pointers. The three pointers are corresponding to the current char held by the node(equal), characters less than and characters greater than. 

The Time Complexity of the ternary search tree operation is proportional to the height of the ternary search tree. In the worst case, we need to traverse up to 3 times the length of the largest string. 

However, this case is rare. Therefore, TST is a very good solution for implementing Symbol Table, Partial match and range query. 
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Example 13.8:

class TST {

class Node(var data : Char, var left: Node? = null, var equal: Node? = null, var right: Node? = null, var isLastChar: Boolean = false) var root: Node? = null

fun add(word: String) {

root = add(root, word.lowercase(), 0)

}

private fun add(cur: Node?, word: String, index: Int): Node {

var curr = cur

if (curr == null)

curr = Node(word[index])

if (word[index] < curr.data)

curr.left = add(curr.left, word, index)

else if (word[index] > curr.data)

curr.right = add(curr.right, word, index)

else {

if (index < word.length - 1)

curr.equal = add(curr.equal, word, index + 1)

else

curr.isLastChar = true

}

return curr

}

private fun find(curr: Node?, word: String, index: Int): Boolean {

return if (curr == null) false

else if (word[index] < curr.data) find(curr.left, word, index) else if (word[index] > curr.data) find(curr.right, word, index) else if (index == word.length - 1) curr.isLastChar 

else find(curr.equal, word, index + 1)

}

fun find(word: String): Boolean {

return find(root, word.lowercase(), 0)

}

}

// Testing code. 

fun main() {

val tt = TST()

tt.add("banana"); 

tt.add("apple"); 

tt.add("mango"); 

println("Apple Found : " + tt.find("apple")); 

println("Banana Found : " + tt.find("banana")); 

println("Grapes Found : " + tt.find("grapes")); 

}

Output:

Apple Found : true

Banana Found : true

Grapes Found : false
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Order Matching

Problem: In a given long text string and a pattern string, find if the characters of the pattern string are in the same order in the text string.  E.g. Text String: ABCDEFGHIJKLMNOPQRSTUVWXYZ  Pattern string: JOST

Solution: Traverse through the text string, keep a pattern index. If we find a character of pattern same as the text string, then increment the pattern index. Pattern index is equal to the pattern length, then returns true. If the text string is completely traversed and the pattern is not found completely, then return false. 

Example 13.9:

fun matchPattern(src: String, ptn: String): Boolean {

val source = src.toCharArray()

val pattern = ptn.toCharArray()

val sourceLen = source.size

val patternLen = pattern.size

var iPattern = 0

var iSource = 0

while (iSource < sourceLen) {

if (source[iSource] == pattern[iPattern]) {

iPattern++

}

if (iPattern == patternLen) {

return true

}

iSource++

}

return false

}

// Testing code. 

fun main() {

println(matchPattern("harrypottermustnotgotoschool", "pottergo"))

}

Output:

true

Time complexity: O(n), where n is the length of a text string. 

ASCII to Integer Conversion

Problem: Write a function that takes an integer as an ASCII char list and converts it into an int. 

Solution: Characters of the input string are traversed, and their ASCII value is subtracted by the ASCII value of 0. The value needs to be multiplied by 10 each time we want to include one more digit. 

Example 13.10:

fun myAtoi(str: String): Int {

var value = 0
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val size = str.length

for (i in 0 until size) {

val ch = str[i]

value = (value shl 3) + (value shl 1) + (ch - '0')

}

return value

}

// Testing code. 

fun main() {

println(myAtoi("1000"))

}

Output:

1000

Time complexity: O(n), where n is the length of an ASCII string. 

Unique Characters

Problem:  Write a function that will take a string as input and return true if it contains all unique characters, else returns false. 

Solution: An array bitArray[] to mark if some character is traversed. Traversed the input string if some character is traversed, then mark it in bitArray[]. If some character came a second time, then return false. If not repetition of character happened then return true. 

Example 13.11:

fun isUniqueChar(str: String): Boolean {

val bitarr = IntArray(26)

var index: Int

for (i in 0..25) {

bitarr[i] = 0

}

val size = str.length

for (i in 0 until size) {

val c = str[i]

if ('A' <= c && 'Z' >= c) {

index = c - 'A' 

} else if ('a' <= c && 'z' >= c) {

index = c - 'a' 

} else {

println("Unknown Char!")

return false

}

if (bitarr[index] != 0) {

println("Duplicate detected!")

return false

}

bitarr[index] += 1

}

println("No duplicate detected!")

return true

}
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// Testing code. 

fun main() {

isUniqueChar("aple")

isUniqueChar("apple")

}

Output:

No duplicate detected! 

Duplicate detected! 

Time complexity: O(n), where n is the number of characters in the input text. 

ToUpper 

Problem:  Write   a   function   to   convert   small   case   characters   of   English   alphabets   to   large   case characters.  

Solution: If the character is a lower case character, then subtract 32 from its ASCII value to get its corresponding upper case. 

Example 13.12:

fun toUpper(s: Char): Char {

if (s.code >= 97 && s.code <= 97 + 25) {

return (s.code - 32).toChar()

}

return s

}

Time complexity: O(1). 

ToLower

Problem:  Write   a   function   to   convert   large   case   characters   of   English   alphabets   to   small   case characters. 

Solution: If the character is an upper case character, then  add 32  to its ASCII value to get  its corresponding lower case. 

Example 13.13:

fun toLower(s: Char): Char {

if (s.code >= 65 && s.code <= 65 + 25) {

return (s.code + 32).toChar()

}

return s

}

Time complexity: O(1). 

Palindrome Check

Problem: Find if the string is a palindrome or not

460

Chapter 13: String Algorithms

Problems in String

Solution: Index i is used to traverse the string forward. Index j is used to traverse the string backwards from the end. If j is less than i which means we found the corresponding characters and string is a palindrome. 

Example 13.14:

fun isPalindrome(str: String): Boolean {

var i = 0

var j = str.length - 1

while (i < j && str[i] == str[j]) {

i++

j--

}

if (i < j) {

println("String is not a Palindrome")

return false

} else {

println("String is a Palindrome")

return true

}

}

// Testing code. 

fun main() {

isPalindrome("hello")

isPalindrome("oyo")

}

Output:

String is not a Palindrome

String is a Palindrome

Time Complexity is O(n) and Space Complexity is O(1)

String Compare function

Problem: Write a function strcmp() to compare two strings. The function return values should be:

➢ The return value is 0 indicates that both first and second strings are equal. 

➢ The return value is negative; it indicates that the first string is less than the second string. 

➢ The return value is positive; it indicates that the first string is greater than the second string. 

Solution: Traverse  both the strings till both  the characters of the string  are the same or one  is traversed completely. If both strings are completely traversed, then return 0. If string one is ended, then return -1. If string two is ended, then return 1. Else, return the difference of the ASCII value of the character of both the strings. 

Example 13.15:

fun myStrcmp(a: String, b: String): Int {

var index = 0

val len1 = a.length

val len2 = b.length

var minlen = len1

if (len1 > len2) {

minlen = len2

}
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while (index < minlen && a[index] == b[index]) {

index++

}

return if (index == len1 && index == len2) {

0

} else if (len1 == index) {

-1

} else if (len2 == index) {

1

} else {

a[index] - b[index]

}

}

// Testing code. 

fun main() {

println(myStrcmp("apple", "appke"))

println(myStrcmp("apple", "apple"))

println(myStrcmp("apple", "appme"))

}

Output:

10-1

Time complexity: O(n), where n is the length of a smaller string. 

Reverse String

Problem: Reverse all the characters of a string. 

Solution: Traverse from forward and backward and keep on swapping the characters. In the end, the string is reversed. 

Example 13.16:

fun reverseString(str: String): String {

val a = str.toCharArray()

reverseStringUtil(a)

return a.joinToString("")

}

fun reverseStringUtil(a: CharArray) {

var lower = 0

var upper = a.size - 1

var tempChar: Char

while (lower < upper) {

tempChar = a[lower]

a[lower] = a[upper]

a[upper] = tempChar

lower++

upper--

}

}
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// Testing code. 

fun main() {

println(reverseString("apple"))

}

Output:

elppa

Time complexity: O(n), where n is the number of characters in the input string. 

Reverse Words

Problem: Reverse order of words in a sentence. 

Solution: Call reverse string on each of the words in the string. Then call the reverse string on the complete string. 

Example 13.17:

fun reverseStringUtil(a: CharArray, start: Int, stop: Int) {

var lower = start

var upper = stop

var tempChar: Char

while (lower < upper) {

tempChar = a[lower]

a[lower] = a[upper]

a[upper] = tempChar

lower++

upper--

}

}

fun reverseWords(str: String): String {

val a = str.toCharArray()

val length = a.size

var lower = 0

var upper = -1

for (i in 0..length) {

if (i == length || a[i] == ' ') {

reverseStringUtil(a, lower, upper)

lower = i + 1

upper = i

} else {

upper++

}

}

reverseStringUtil(a, 0, length - 1)

return a.joinToString("")

}

// Testing code. 

fun main() {

println(reverseWords("hello world"))

}
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Output:

world hello

Time complexity: O(n), where n is the number of characters in the input string. 

Print Anagram

Problem: Given a string as a character list, print all the anagrams of the string. 

Solution: At each level of recursion, every element is positioned at the first position and the rest of the   array   is   passed   recursively   to   produce   permutation   of   the   rest   part.   When   one   element   is completely processed, then put it back to its original position. 

Example 13.18:

fun printAnagram(str: String) {

printAnagram(str.toCharArray(), 0, str.length)

}

fun printAnagram(arr: CharArray, i: Int, length: Int) {

if (length == i) {

println(arr)

return; 

}

var temp : Char

for (j in i until length) {

temp = arr[i] // Swap

arr[i] = arr[j]

arr[j] = temp

printAnagram(arr, i+1, length)



temp = arr[i] // Swap

arr[i] = arr[j]

arr[j] = temp

}

}

// Testing code. 

fun main() {

printAnagram("123")

}

Output:

123

132

213

231

321

312

Time complexity: O(n!), where n is the number of characters in the input string. 
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1. In a given string, find the longest substring without repeating characters. 

2. The function memset() copies ch into the first 'n' characters of the string 3. Serialise a collection of strings into a single string, and deSerialise the string into that collection of strings. 

4. Write a smart input function, which takes 20 characters as input from the user. Without cutting some words. 

User input: “Harry Potter must not go” 

First 20 chars: “Harry Potter must no” 

Smart input: “Harry Potter must” 

5. Write a code that finds if a string is a palindrome, and it should return true for the below inputs too. 

Stella won no wallets. 

No, it is open in one position. 

Rise to vote, Sir. 

Won't lovers revolt now? 

6. Write an ASCII to integer function, which ignores the non-integral character and gives the integer. For example, if the input is “12AS5” it should return 125. 

7. Write code that would parse a Bash brace expansion. 

Example: the expression "(a, b, c) d, e" and would give output all the possible strings: ad, bd, cd, e 

8. In a given  string,  write a function to return the length of the longest substring with unique characters

9. Replace all occurrences of "a" with "the" 

10. Replace all occurrences of %20 with ' '. 

E.g. Input: www.Hello%20World.com   Output: www.Hello World.com 11. Write an expansion function that will take an input string like "1..5,8,11..14,18,20,26..30"  and will print "1,2,3,4,5,8,11,12,13,14,18,20,26,27,28,29,30" 

12. Suppose you have a string like "Thisisasentence". Write a function that would separate these words. Moreover, will print the whole sentence with spaces. 

13. Given three strings str1, str2 and str3. Write a complement function to find the smallest subsequence in str1 which contains all the characters in str2 but not those in str3. 

14. In given two strings A and B, find whether any anagram of string A is a substring of string B. 

For eg: If A = xyz and B = afdgzyxksldfm then the program should return true. 
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15. In a given string, find whether it contains any permutation of another string. For example, given

"abcdefgh" and "ba", the function should return true, because "abcdefgh" has substring "ab", which is a permutation of the given string "ba". 

16. In a given algorithm that removes the occurrence of “a” by “bc” from a string? The algorithm must be in place. 

17. In the given string "1010101010" in base2 convert it into a string with base4. Do not use any extra space. 

18. In the Binary Search tree to store strings, the delete() function is not implemented, implement it. 

19. If you implement the delete() function, then you need to make changes in the find() function. Do the needful. 
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Introduction

In real life, when we are asked to do some work, we try to correlate it with our experience and then try to solve it. Similarly, when we get a new problem to solve. We first try to find the similarity of the current problem with some problems for which we already know the solution. Then solve the current problem and get our desired result. 

This method provides the following benefits:

1. It provides a template for solving a wide range of problems. 

2. It provides us with an idea of the suitable data structure for the problem. 

3. It helps us in analysing the space and Time Complexity of algorithms. 

In the previous chapters, we have used various algorithms to solve different kinds of problems. In this chapter, we will read about various techniques for solving algorithmic problems. 

Various Algorithm design techniques are:

1. Brute Force

2. Greedy Algorithms

3. Divide-and-Conquer

4. Dynamic Programming

5. Backtracking

Brute Force Algorithm

In the Brute-Force approach, while solving any problem, all the possible solutions are generated. From these solutions, we pick the best and feasible solution which satisfies the given requirements. These methods are time-consuming and slow as we are generating various solutions which do not satisfy the requirements. 

Brute Force is a straightforward approach to solving a problem based on the problem statement. It is one of the easiest approaches to solve a problem. It is useful for solving small size dataset problems. 

Some examples of brute force algorithms are:

1 Bubble-Sort

2 Selection-Sort

3 Sequential search in an array

4 Computing pow(a, n) by multiplying a, n times. 

5 String matching
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Greedy Algorithm

In the Greedy Algorithm approach, the problem is solved through a sequence of steps. At each step, a choice is made which is locally optimal. Greedy algorithms are generally used to solve optimization problems. 

Note: Greedy algorithms do not always give optimal solutions. 

Some examples of greedy algorithms are:

1 Minimal spanning tree: Prim’s algorithm, Kruskal’s algorithm

2 Dijkstra’s algorithm for single-source shortest path problem

3 A greedy algorithm for the Knapsack problem

4 The coin exchange problem

5 Huffman trees for optimal encoding

Divide and Conquer

The Divide-and-Conquer  algorithm  approach  involves  three steps. First, the given problem is divided   into   various   smaller   sub-problems.   Second,   these   smaller   sub-problems   are   solved independently. Finally, the result of these sub-problems is combined to get the final result. 

Examples of divide-and-conquer algorithms:

1. Merge-Sort algorithm (using recursion)

2. quickSort algorithm (using recursion)

3. Computing the length of the longest path in a binary tree (using recursion) 4. Computing Fibonacci numbers (using recursion)

5. Closest Pair between a given list of 2d points. 

6. Quick-hull

7. Computing pow(a, n) by calculating pow(a, n/2) using recursion. 

8. Searching in BST

9. Graph traversal algorithms (DFS and BFS)

Dynamic Programming

While solving problems using the Divide-and-Conquer method, there may be a case when recursively sub-problems can result in the same computation being performed multiple times. In other  words, when there are identical subproblems that arise repeatedly in a recursion. 

Dynamic programming is used to avoid the requirement of repeated calculation of the same subproblem in a recurrence relation. In this method, we usually store the result of sub-problems in a table and refer  to that table to  find if we have already calculated the solution of sub-problems before calculating it again. 

Examples:

1. Fibonacci numbers are computed by iteration. 

2. Warshall’s algorithm for transitive closure, implemented by iterations

3. Floyd’s algorithms for all-pairs shortest paths
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Backtracking

In the Backtracking approach, In each step of creating an answer, it is checked if this step satisfies the given conditions. If it does satisfy constraints, then continue generating subsequent solutions. 

If constraints are not  satisfied,  then we backtrack one step to check for another solution. The way backtracking works is that we build up a solution step-by-step. Sometimes we realise that our current state isn’t going to get us to the desired solution, in which case we ‘backtrack’ by going back a few steps. So we just undo the last few steps until our desired criteria are again met, and continue building our solution by making different choices this time. 

Conclusion

Usually, a given problem can be solved using several methods; however, it is not wise to settle for the first method that comes to our mind. Some methods result in a much more efficient solution than others do. 

For example, the Fibonacci numbers are calculated recursively (decrease-and-conquer approach) and computed by iterations (dynamic programming). In the first case, the complexity is O(2^n),  and in the other case, the complexity is O(n). 

Another example, consider sorting based on the Insertion-Sort and basic bubble sort. For almost sorted files, Insertion-Sort will give almost linear complexity, while bubble sort sorting algorithms have quadratic complexity. 

So, the most important question is how to choose the best method? 

First, you should understand the problem statement. 

Second, by knowing various problems and their solutions. 
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In the  Brute-Force  approach, while solving any  problem,  all the possible solutions are generated. 

From these solutions, we pick the best and feasible solution which satisfies the given requirements. 

These methods are time-consuming and slow as we are generating various solutions which do not satisfy the requirements. 

Brute Force is a straightforward approach to solving a problem based on the problem statement. The algorithm relies completely on computation power and tries each and every combination.  It is one of the easiest approaches to solve a problem. It is useful for solving small size dataset problems. In most cases, other algorithm techniques can be used to get a better solution to the same problem. 

For example, imagine you have a 3-digit number lock. You forgot its combination now you will try each and every combination from 000 to 999. One of the combinations will open the lock. Here you had used a brute force method to open your lock. In the worst case, 1000 combinations need to be tested. 

Some examples of brute force algorithms are:

1 Bubble-Sort

2 Selection-Sort

3 Sequential search in an array

4 Computing pow (a, n) by multiplying a, n times. 

5 String matching

6 Exhaustive search

7 Knapsack

8 Assignment problems

Problems in Brute Force Algorithm

Bubble Sort

Given an array, we need to sort the elements of the array in ascending order. In Bubble-Sort, adjacent elements of the array are compared and are exchanged if they are out of order. This  scanning  is performed n number of times to make the whole array sorted. 

// Problem: Sorts a given list using Bubble Sort Algorithm

// Input: An array A[0..n-1] of order-able elements 

// Output: The array A[0..n-1] sorted in ascending order 

function BubbleSort(A[0..n-1]) 

sorted = false

while sorted is false do 

sorted = true 

for j = 0 to n-2 do 

if A[j] > A[j + 1] then 

swap A[j] and A[j + 1] 

sorted = false
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Time Complexity is Θ(n^2) 

 Note: Executable code is given in the Sorting chapter. 

Selection Sort

The entire given list of N elements is traversed to find its smallest element and exchange it with the first element. Then, the array is traversed again to find the second element and exchange it with the second element. After N-1 passes, the array will be completely sorted. 

//Problem: Sorts a given list using Selection Sort Algorithm

//Input: An array A[0..n-1] of order-able elements

//Output: The array A[0..n-1] sorted in ascending order

function SelectionSort (A[0..n-1])

for i = 0 to n-2 do

min = i

for j = i+1 to n-1 do

if A[j] < A[min] then

min = j

swap A[i] and A[min]

Time Complexity is Θ(n^2) 

 Note: Executable code is given in the Sorting chapter. 

Sequential Search

Given an unsorted array, you need to find some value in it. The algorithm compares consecutive elements of a given list with a given search keyword until either a match is found or the array is exhausted. 

//Problem: Find a particular value in an array. 

//Input: An array A[0..n-1] and value K

//Output: Index of the K in array or -1

function SequentialSearch (A[0..n], K)

i = 0 

While A[i] not equal K do 

i = i + 1

if i < n then

return i 

else

return -1

Worst-case time complexity is Θ(n). 

Note: Executable code is given in the Searching chapter. 
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Computing pow (a, n)

Computing an (a > 0, and n is a non-negative integer) based on the definition of exponentiation. 

N-1 multiplications are required in the brute force method. 

// Problem: Find A Power N. 

// Input: A real number A and an integer N = 0

// Output: A^N

function pow(A, N)

result = 1

for i = 1 to N do

result = result * A

return result

The algorithm requires Θ(n)

String Matching

Given a string T and another string P, you need to find if T contains P. A brute force string matching algorithm takes two inputs, the first text T consists of n characters and a pattern P consists of m characters (m<=n). The algorithm starts by comparing the pattern with the beginning of the text. Each character of the pattern is compared to the corresponding character of the text. The comparison starts from left to right until all the characters are matched, or a mismatch is found. The same process is repeated until a match is found. Each time the comparison starts from one position to the right. 

//Input: An array T[0..n-1] of n characters representing a text

// an array P[0..m-1] of m characters representing a pattern

//Output: The position of the first character in the text that starts the 

// first matching substring if the search is successful and -1 otherwise. 

function BruteForceStringMatch (T[0..n-1], P[0..m-1])

for i = 0 to n-m do

j = 0

while j < m and P[j] = T[i + j] do

j = j + 1

if j = m then 

return I

return -1

In the worst case, the algorithm is O(mn). 

Note: Executable code is given in the String chapter. 
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Closest Pair Brute Force Algorithm

The closest-pair problem is to find the two closest points in a set of n points in a 2-dimensional space. 

A brute force implementation of this problem computes the distance between each pair of distinct points and finds the smallest distance pair. 

// Find the closest points using brute force approach

// Input: An array P of n >= 2 points

// Output: The closest pair

function BruteForceClosestPair(P)

dmin = infinite

for i = 1 to n-1 do

for j = i + 1 to n do

d = (xi - xj)2 + (yi - yj)2 

if d < dmin then

dmin = d

imin = i

jmin = j

return imin, jmin

Example 15.01:

fun closestPairBF(arr: Array<IntArray>): Double {

val n = arr.size

var dmin = Double.MAX_VALUE

var d: Double

for (i in 0 until n - 1) {

for (j in i + 1 until n) {

d = Math.sqrt(

((arr[i][0] - arr[j][0]) * (arr[i][0] - arr[j][0])

+ (arr[i][1] - arr[j][1]) * (arr[i][1] - arr[j]

[1])).toDouble()

)

if (d < dmin) {

dmin = d

}

}

}

return dmin

}

// Testing code. 

fun main() {

val arr = arrayOf( intArrayOf(648, 896), intArrayOf(269, 879), intArrayOf(250, 922), intArrayOf(453, 347), intArrayOf(213, 17))

println("Smallest distance is:" + closestPairBF(arr))

}

Output:

Smallest distance is:47.01063709417264

Time Complexity is Θ(n^2) 
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Note:- We will look for a more efficient solution using the divide-and-conquer method in the coming chapter. 

Exhaustive Search

Exhaustive search is a brute force approach applied to combination problems. 

In an exhaustive search, we generate all the possible combinations. At each step, we try to find if the combinations satisfy the problem constraints. Either, we get the desired solution, which satisfies the problem constraint, or there is no solution. 

Examples of exhaustive search are:

➢ Knapsack problem

➢ Assignment problem

0/1 Knapsack Problem

Given an item with cost C1, C2,..., Cn, and volume V1, V2,..., Vn and knapsack of capacity Vmax, find the most valuable (max ∑Cj) that fits in the knapsack (∑Vj  ≤ Vmax). 

The solution is one of the subsets of the set of objects taking 1 to n objects at a time, so the Time complexity is O(2^n). 

function KnapsackBruteForce(objects)

MaxProfit = 0

for (All permutations of objects) do

CurrProfit = sum of cost of objects selected

if(MaxProfit < CurrProfit)

MaxProfit = CurrProfit

Store the current set of objects selected

print the max profit objects selected

return MaxProfit

Note:  Executable code is in the Dynamic Programming Chapter where we will further discuss this problem in more details. 

Conclusion

Brute force is the first algorithm that comes to mind when we see some problem. They are the simplest algorithms that are very easy to understand. However, these algorithms rarely provide an optimum solution. In many cases, we will find other effective algorithms that are more efficient than the brute force method. 
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Greedy   algorithms   are   generally   used   to   solve   optimization   problems.   To   find   the   solution   that minimises   or   maximises   some   value   (cost/profit/count   etc.).   In   greedy   algorithms,   solutions   are constructed through a sequence of steps. At each step, a choice is made which is locally optimal. 

Greedy algorithms do not always give optimal solutions. For some problems, greedy algorithms give an optimal solution. For others, they are useful for fast approximations. 

Some examples of greedy algorithms are:

Optimal solutions:

1 Minimal spanning tree: 

• Prim’s algorithm, 

• Kruskal’s algorithm

2 Dijkstra’s algorithm for single-source shortest path

3 Huffman trees for optimal encoding

4 Scheduling problems

Approximate solutions:

1 A greedy algorithm for the Knapsack problem

2 Coin exchange problem

Problems on Greedy Algorithm

Coin Exchange Problem

How can a given amount of money N be made with the least number of coins of given denominations D= {d1… dn}? 

For example,  the Indian coin system {5, 10, 20, 25, 50,100}. Suppose we want to give a change of a certain amount of 40 paise. 

Solution: We can make a solution by repeatedly choosing a coin ≤ to the current amount, resulting in a new amount. In the greedy algorithm, we always choose the largest coin value possible without exceeding the total amount. For 40 paisa: our algorithm will give {25, 10, and 5} but the optimal solution will be {20, 20}. 

This greedy algorithm did not always give us an optimal solution, but it gave us a fair approximation. 
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function MAKE-CHANGE (N)

C = {5, 20, 25, 50, 100}    // constant denominations. 

S = {}            // set that will hold the solution set. 

Value = N

while Value != 0

x = largest item in set C such that x < Value 

if no such item THEN

return  "No Solution" 

S = S + x 

Value = Value - x

return S

Example 16.1:

fun minCoins(coins: IntArray, n: Int, valueIn: Int): Int { // Greedy may be wrong. 

var value = valueIn

if (value <= 0) return 0

var count = 0

Arrays.sort(coins)

var i = n - 1

while (i >= 0 && value > 0) {

if (coins[i] <= value) {

count++

value -= coins[i]

} else {

i--

}

}

return if (value == 0) count else -1

}

Time-Complexity: O(n.log(n))

Minimum Spanning Tree

A spanning tree of a connected graph is a tree containing all the vertices. 

A minimum spanning tree of a weighted graph is a spanning tree with the smallest sum of the edge weights. 
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Prim’s Algorithm

Prim’s algorithm grows a single tree T, one edge at a time until it becomes a spanning tree. 

We Initialise T with zero edges and U with a single node. Where T is a spanning tree, edges set and U

is a spanning tree vertex set. 

At each step, Prim’s algorithm adds the smallest value edge with one endpoint in U and the other not in U. Since each edge adds one new vertex to U, after n − 1 addition, U contains all the vertices of the spanning tree and T becomes a spanning tree. 

// Returns the MST by Prim’s Algorithm

// Input: A weighted connected graph G = (V, E)

// Output: Set of edges comprising a MST

function Prim(G)

T = {}

Let r be any vertex in G

U = {r}

for i = 1 to |V| - 1 do

e = minimum-weight edge (u, v)

With u in U and v in V-U

U = U + {v}

T = T + {e}

return T

Prim’s Algorithm uses a priority queue (min-heap) to get the closest fringe vertex Time complexity is O(m log n) where n vertices and m edges of the MST. 

Note: Executable code is given in the Graph chapter. 

Kruskal’s Algorithm

Kruskal’s   Algorithm   is   used   to   create   a   minimum   spanning   tree.   Spanning   trees   are   created   by choosing the smallest weight edge that does not form a cycle. And repeat this process until all the edges from the original set are exhausted. 

Sort the edges in non-decreasing order of cost: c (e1) ≤ c (e2) ≤ · · · ≤ c (em). 

Set T to be the empty tree. Add edges to the tree one by one, if it does not create a cycle. (If the new edge forms a cycle then it ignores that edge.)

// Returns the MST by Kruskal’s Algorithm

// Input: A weighted connected graph G = (V, E)

// Output: Set of edges comprising a MST

function Kruskal(G)

Sort the edges E by their weights

T = {}

while |T | + 1 < |V | do

e = next edge in E

if T + {e} does not have a cycle then

T = T + {e}

return T
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Kruskal’s Algorithm is O(E log V) using efficient cycle detection. 

Note: Executable code is given in the Graph chapter. 

Dijkstra’s algorithm

Dijkstra’s algorithm is used for a single-source shortest path problem for weighted edges with no negative weight. It determines the length of the shortest path from the source to each of the other nodes of the graph. In a given weighted graph G, we need to find the shortest paths from the source vertex s to each of the other vertices. 

The algorithm starts by keeping track of the distance of each node and its parents. All the distance is set to infinite in the beginning, as we do not know the actual path to the nodes and the parent of all the vertices are set to null. All the vertices are added to a priority queue (min-heap implementation) Each step algorithm takes one vertex from the priority queue (which will be the source vertex in the beginning). Then, update the distance list corresponding to all the adjacent vertices. When the queue is empty, then we will have the distance and parent list fully populated. 

// Solves SSSP by Dijkstra’s Algorithm

// Input: A weighted connected graph G = (V, E)

// with no negative weights, and source vertex v

// Output: The length and path from s to every v

function Dijkstra(G, s)

for each v in V do

D[v] = infinite    // Unknown distance

P[v] = null    // Unknown previous node

add v to PQ    // Adding all nodes to priority queue

D[source] = 0 // Distance from source to source

while (PQ is not empty)

u = vertex from PQ with smallest D[u]

remove u from PQ

for each v adjacent from u do

alt = D[u] + length (u, v)

if alt < D[v] then

D[v] = alt

P[v] = u

return D[], P[]
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Time complexity is O(|E|log|V|). 

Note: Executable code is given in the Graph chapter. 

Note: Dijkstra’s algorithm does not work for graphs with negative edge weight. 

Note: Dijkstra’s algorithm applies to both undirected and directed graphs. 

Huffman trees for optimal encoding

Encoding is an assignment of bit strings of alphabet characters. 

There are two types of encoding:

➢ Fixed-length encoding (e.g., ASCII)

➢ Variable-length encoding (e.g., Huffman code)

Variable length encoding can only work on prefix-free encoding. This means that no codeword is a prefix of another codeword. 

Huffman codes are the best prefix-free code. Any binary tree with edges labelled as 0 and 1 will produce a prefix-free code of characters assigned to its leaf nodes. Huffman’s algorithm is used to construct a binary tree whose leaf value is assigned a code, which is optimal for the compression of the whole text that needs to be processed. For example, the most frequently occurring words will get the smallest code so that the final encoded text is compressed. 

Initialise n one-node trees with words and the tree weights with their frequencies. Join the two-binary tree with the smallest weight into one, and the weight of the newly formed tree as the sum of the weight of the two small trees. Repeat the above process N-1 times and when there is just one big tree left you are done. Mark edges leading to the left and right subtrees with 0’s and 1’s, respectively. 
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Character

Frequency

A

30

B

25

C

21

D

14

E

10

Character

Frequency

Code

A

30

11

B

25

10

C

21

00

D

14

011

E

10

010

// Computes optimal prefix code. 

// Input: List W of character probabilities

// Output: The Huffman tree. 

function Huffman(C[0..n-1], W[0..n-1])

PQ = {} // priority queue

for i = 0 to n-1 do

T.char = C[i]

T.weight = W[i] 

add T to priority queue PQ

for i = 0 to n-2 do

L = remove min from PQ

R = remove min from PQ

T = node with children L and R

T.weight = L.weight + R.weight

add T to priority queue PQ

return T

Example 16.2:

class HuffmanTree internal constructor(arr: CharArray, freq: IntArray) {

inner class Node(var c: Char, var freq: Int, var left: Node?, var right: Node?)

:        Comparable<Node> {

override operator fun compareTo(other: Node): Int {

return freq - other.freq

}

}

var root: Node? = null

init {
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val n = arr.size

val que: PriorityQueue<Node> = PriorityQueue<Node>(n)

for (i in 0 until n) {

val node: Node = Node(arr[i], freq[i], null, null)

que.add(node)

}

while (que.size > 1) {

val lt: Node = que.peek()

que.poll()

val rt: Node = que.peek()

que.poll()

val nd: Node = Node('+', lt.freq + rt.freq, lt, rt)

que.add(nd)

}

root = que.peek()

}

fun print(root: Node?, s: String) {

if (root!!.left == null && root.right == null && root.c != '+') {

println(root.c.toString() + " = " + s)

return

}

print(root.left, s + "0")

print(root.right, s + "1")

}

fun print() {

println("Char = Huffman code")

print(root, "")

}

}    

// Testing code. 

fun main() {

val ar = charArrayOf('A', 'B', 'C', 'D', 'E')

val fr = intArrayOf(30, 25, 21, 14, 10)

val hf = HuffmanTree(ar, fr)

hf.print()

}

Output: 

Char = Huffman code

C = 00

E = 010

D = 011

B = 10

A = 11

Time Complexity is O(n.log(n)), a heap is created and elements are removed from the heap one by one. 

Activity Selection Problem

Suppose that activities require exclusive use of common resources, and you want to schedule as many activities as possible. 
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Let S = {a1,..., an} be a set of n activities. Each activity ai needs the resource during a time period starting at si and finishing before fi, i.e., during [si, fi). 

Example: Consider these activities:

I

1

2

3

4

5

6

7

8

9

10

11

S[i]

1

3

0

5

3

5

6

8

8

2

11

F[i]

4

5

6

7

8

9

10

11

12

13

14

The optimization problem is to select the non-overlapping largest set of activities from S. We assume that activities S = {a1,..., an} are sorted in finish time f1 ≤ f2 ≤ ... fn-1 ≤ fn (this can be done in Θ(n lg n)). 

We choose an activity that starts first and then looks for the next activity that starts after it is finished. 

This could result in {a4, a7, a8}, but this solution is not optimal. 

An optimal solution is {a1, a3, a6, a8}. (It maximises the objective of the largest number of activities scheduled.). Another one is {a2, a5, a7, a9}. (Optimal solutions are not necessarily unique.) How do we find (one of) these optimal solutions? 

We are trying to optimise the number of activities:

1. The time left after running the activity can be used to run subsequent activities. 

2. If we choose the first activity to finish, more time will be left. 

3. Since activities are sorted by finish time, we will always start with a1. 

4. Then we can solve the single subproblem of activity scheduling in the remaining time. 

function ActivitySelection(S[], F[], N)

Sort S[] and F [] in increasing order of finishing time

A = {a1}

K = 1

for m = 2 to N do

if S[m] >= F[k]

A = A + {am}

K = m

return A

Example 16.3:

class Activity(var start: Int, var stop: Int) : Comparable<Activity> {

override operator fun compareTo(other: Activity): Int {

return stop - other.stop

}

}

fun maxActivities(s: IntArray, f: IntArray, n: Int) {

val act = arrayOfNulls<Activity>(n)

for (i in 0 until n) act[i] = Activity(s[i], f[i])

Arrays.sort(act) // sort according to finish time. 
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var i = 0 // The first activity at index 0 is always gets selected. 

print("Activities are : (" + act[i]!!.start + "," + act[i]!!.stop + ")") for (j in 1 until n) {

// Find next activity whose start time is greater than or equal

// to the finish time of previous activity. 

if (act[j]!!.start >= act[i]!!.stop) {

print(", (" + act[j]!!.start + "," + act[j]!!.stop + ")") i = j

}

}

}

// Testing code. 

fun main() {

val s = intArrayOf(1, 5, 0, 3, 5, 6, 8)

val f = intArrayOf(2, 6, 5, 4, 9, 7, 9)

val n = s.size

maxActivities(s, f, n)

}

Output:

Activities are : (1,2), (3,4), (5,6), (6,7), (8,9)

Time-Complexity: O(n.log(n))

Fractional Knapsack Problem

A thief enters a store and sees several items with their mentioned cost and weight. His Knapsack can hold a max weight. What should he steal to maximise profit? A thief can take a fraction of an item (they are divisible substances, like gold powder). 

Item

A

B

C

Cost

300

190

180

Weight

3

2

2

Cost/weight

100

95

9

For a knapsack of the capacity of 4 kg. The optimum solution of the above will take 3kg of A and 1 kg of B. 
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Solution: The fractional knapsack problem has a greedy solution: one should first sort the items in terms of cost density against weight. Then fill up as much of the most valuable substance by weight as one can hold, then as much of the next most valuable substance, etc. Until W is reached. 

function FractionalKnapsack(W[], C[], Wk)

for i = 1 to n do

X[i] = 0

Weight = 0

H = BuildMaxHeap(C/W)   //Use Max heap

while Weight < Wk do

i = H.GetMax()

if(Weight + W[i] <= Wk) do

X[i] = 1

Weight = Weight + W[i]

else

X[i] = (Wk – Weight)/W[i]

Weight = Wk

return X

Example 16.4:

class Items internal constructor(var wt: Int, var cost: Int) : Comparable<Items> {

var density: Double

init {

density = cost.toDouble() / wt

}

override operator fun compareTo(other: Items): Int { // decreasing order. 

return (other.density - density).toInt()

}

}

fun getMaxCostFractional(wt: IntArray, cost: IntArray, capa: Int): Double {

var capacity = capa

var totalCost = 0.0

val n = wt.size

val itemList = arrayOfNulls<Items>(n)

for (i in 0 until n) itemList[i] = Items(wt[i], cost[i])

itemList.sort()

for (i in 0 until n) {

if (capacity - itemList[i]!!.wt >= 0) {

capacity -= itemList[i]!!.wt

totalCost += itemList[i]!!.cost.toDouble()

} else {

totalCost += itemList[i]!!.density * capacity

break

}

}

return totalCost

}

// Testing code. 

fun main() {

val wt = intArrayOf(10, 40, 20, 30)

val cost = intArrayOf(60, 40, 90, 120)

val capacity = 50

val maxCost = getMaxCostFractional(wt, cost, capacity)
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println("Maximum cost obtained = $maxCost")

}

Output:

Maximum cost obtained = 230.0

Time-Complexity: O(n.log(n))

0/1 Knapsack Problem

In this Knapsack problem, a thief can only take or leave the item. He cannot take a fraction. 

Solution: A greedy strategy same as above could result in empty space, reducing the knapsack with a non-optimal solution. 

Example 16.5:

class Items internal constructor(var wt: Int, var cost: Int) : Comparable<Items> {

var density: Double

init {

density = cost.toDouble() / wt

}

override operator fun compareTo(other: Items): Int { // decreasing order. 

return (other.density - density).toInt()

}

}

// Approximate solution. 

fun getMaxCostGreedy(wt: IntArray, cost: IntArray, capacty: Int): Int {

var capacity = capacty

var totalCost = 0

val n = wt.size

val itemList = Array(n){Items(0,0)}

for (i in 0 until n) itemList[i] = Items(wt[i], cost[i])

itemList.sort()



var i = 0

while (i < n && capacity > 0) {

if (capacity - itemList[i].wt >= 0) {

capacity -= itemList[i].wt

totalCost += itemList[i].cost

}

i++

}

return totalCost

}

// Testing code. 

fun main() {

val wt = intArrayOf(10, 40, 20, 30)

val cost = intArrayOf(60, 40, 90, 120)

val capacity = 50

val maxCost = getMaxCostGreedy(wt, cost, capacity)

println("Maximum cost obtained : $maxCost")

}
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Output:

Maximum cost obtained : 150

Moreover, the result of the greedy solution is not optimal or we can say it gives the wrong answer. The optimal 

Time-Complexity: O(n.log(n))

Chota Bhim

Problem: A boy named Chota Bhim had visited his grandfather Takshak. Takshak had offered Chota Bhim to drink an elixir of power. He had offered several cups filled with different quantities of elixir. 

Chota Bhim is instructed to drink a maximum quantity of elixir from the cups one by one. The cups are magical when Chota Bhim empties a cup, it refills itself with half the previous quantity it uses ceil

[previous amount / 2] function to fill itself. Chota Bhim is given 1 minute. He is efficient, in each second, he drinks from one cup and puts it back. Chota Bhim had consumed a lot of elixirs by always picking the cup with maximum elixir. Now Takshak had called you to find how much he had consumed. 

Example: 5 Cups

Minute 1 Cups: 2, 1, 7, 4, 2

7 is selected

Minute 2 Cups: 2, 1, 4, 4, 2

4 is selected

Minute 3 Cups: 2, 1, 2, 4, 2

4 is selected

Minute 4 to 7 Cups 2, 1, 2, 2, 2

2 is selected four times

Minute 8 and rest of days Cups: 1, 1, 1, 1, 1

1 is selected for rest all

Total: 7+4+4+2+2+2+2+(60 - 7) = 76 units of elixir

First Solution: Sorted list method, First sort the ropes list. The minimum two will be at the start of the array. We remove the first two and then join them and add them to the sorted list in such a way that it remains sorted. Now repeat this process till all the arrays are added. 

Each insertion into a proper position such that the array remains sorted takes linear time so the total time complexity is O(n^2). 

Example 16.6:

fun chotaBhim(cups: IntArray): Int {

val size = cups.size

var time = 60

cups.sortDescending()

var total = 0

var index: Int

var temp: Int
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while (time > 0) {

total += cups[0]

cups[0] = Math.ceil(cups[0] / 2.0).toInt()

index = 0

temp = cups[0]

while (index < size - 1 && temp < cups[index + 1]) {

cups[index] = cups[index + 1]

index += 1

}

cups[index] = temp

time -= 1

}

println("Total : $total")

return total

}

// Testing code. 

fun main() {

val cups = intArrayOf(2, 1, 7, 4, 2)

chotaBhim(cups)

} 

Output:

Total : 76 

Second Solution: Greedy Algorithm, Performance can be improved by using a heap to store values. 

Create a min-heap of all the ropes. Then remove the lowest two values from the heap. Add these two values and then insert them into the heap. Deletion and Insertion will take O(log(n)) time, so the total time complexity of this algorithm will be O(n.log(n)). 

Example 16.7:

fun chotaBhim2(cups: IntArray): Int {

val size = cups.size

var time = 60

val pq: PriorityQueue<Int> = 

PriorityQueue<Int>(Collections.reverseOrder<Int>())

var i = 0

while (i < size) {

pq.add(cups[i])

i++

}

var total = 0

var value: Int

while (time > 0) {

value = pq.remove()

total += value

value = Math.ceil(value / 2.0).toInt()

pq.add(value)

time -= 1

}

println("Total : $total")

return total

}
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Join Rope

Problem: Given N number of ropes of various lengths. You need to join these ropes to make a single rope. The cost of joining two ropes of length X and Y is (X+Y) which is their combined length. You need to find the minimum cost of joining all the ropes. The minimum cost of joining rope is obtained when we always join the two smallest ropes. 

First Solution: Sorted list method, First sort the rope's list. The minimum two will be at the start of the array. We remove the first two and then join them and add them to the sorted list in such a way that it remains sorted. Now repeat this process till all the arrays are added. Each insertion into a proper position such that the array remains sorted takes linear time, so the total time complexity is O(n^2). 

Example 16.8:

fun joinRopes(ropes: IntArray, size: Int): Int {

ropes.sort()

var i = 0

var j = size - 1

while (i < j) {

val temp = ropes[i]

ropes[i] = ropes[j]

ropes[j] = temp

i++

j--

}

var total = 0

var index: Int

var length = size

while (length >= 2) {

var value = ropes[length - 1] + ropes[length - 2]

total += value

index = length - 2

while (index > 0 && ropes[index - 1] < value) {

ropes[index] = ropes[index - 1]

index -= 1

}

ropes[index] = value

length--

}

println("Total : $total")

return total

}

// Testing code. 

fun main() {

val ropes = intArrayOf(4, 3, 2, 6)

joinRopes(ropes, ropes.size)

}

Output:

Total : 29 

Second Solution: Greedy Algorithm, Performance can be improved by using a heap to store values. 

Create a min-heap of all the ropes. Then remove the lowest two values from the heap. Add these two values and then insert them into the heap. Deletion and Insertion will take O(log(n)) time, so the total time complexity of this algorithm will be O(n.log(n)). 
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Example 16.9:

fun joinRopes2(ropes: IntArray, size: Int): Int {

val pq: PriorityQueue<Int> = PriorityQueue<Int>()

var i = 0

while (i < size) {

pq.add(ropes[i])

i++

}

var total = 0

while (pq.size > 1) {

var value = pq.remove()

value += pq.remove()

pq.add(value)

total += value

}

println("Total : $total")

return total

}

Convex-Hull Problem

Problem: Convex-hull of a set of points is the smallest convex polygon that contains all the points. All the points of the set will lie on the convex hull or inside the convex hull. The convex-hull of a set of points is a subset of points in the given sets. 

Graham Scan Algorithm

Graham Scan Algorithm:

➢ Find the bottom most point with least value of y-coordinate. If there are two points with the same y coordinate value then take the point with the smaller x-coordinate. Let the bottom most point be P0. 

This point P0 is the point in the output convex hull. 

➢ Sort the rest of the n-1 points of the P[] array according to the polar angle in anti-clockwise order around the point P0. If the angle of the two points are the same then remove the nearer point as this will not be part of the output convex hull. 

➢ If the number of points are less than 3 then a convex hull is not possible and returns false. 

➢ Add the first 3 points P[0], P[1] and P[2] to an empty stack ‘S’. 

➢ Loop through all the remaining points P[i] from array P[]. 

o Keep popping the top of the stack ‘S’, till the top two points from stack ‘S’ and P[i] make clockwise angles. 

o Add point P[i] to the stack ‘S’

➢ Print content of stack ‘S’. 
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Time Complexity of this algorithm will be O(n.log(n)), which is the time taken in the sorting step. 
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Jarvis's March algorithm

In Jarvis's March algorithm we start from the leftmost point and we keep wrapping points in an anticlockwise direction. 

Jarvis’s March Algorithm:

➢ From   the   given   set   of   points   array   P[],   we   find   the   leftmost   point   P0   with   minimum   x-coordinates. This point is guaranteed to be in the convex hull, we add this point P0 to the convex hull list. Initialise variable p by P0. 

➢ While we don’t come back to the first point p0. 

◦ From the list of vertices we choose a vertice q such that all other vertices r make an anticlockwise angle with triplate (p, q, r). We traverse for all the vertices r in p[] such that If angle with triplate (p,q,r) is clockwise then we Initialise variable q as r. 

◦ Now add q to the convex hull. Assign variable p as q. 

Time Complexity: For every vertice in the convex hull we examine all the other points to determine the next point. Time complexity is O(m * n) 

Conclusion

Greedy algorithms are generally used to solve optimization problems. In greedy algorithms, solutions are constructed through a sequence of steps. At each step, a choice is made which is locally optimal. 

Not   always   greedy   algorithms   give   optimal   solutions.   Sometimes   greedy   algorithms   give   wrong answers too. 
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Divide-and-Conquer   algorithms   work   by   recursively   breaking   down   a   problem   into   two   or   more subproblems (divide step) of the same type, until these sub-problems become simple enough so that they can be solved directly. The solution of these sub-problems is then combined (conquer step) to give a solution to the original problem. 

Divide-and-Conquer algorithms involve basic three steps

1. Divide the problem into smaller problems. 

2. Conquer by solving these problems. 

3. Combine these results. 

In divide-and-conquer, the size of the problem is reduced by a factor (half, one-third etc.), while in decrease-and-conquer the size of the problem is reduced by a constant. 

function Divide&Conquer(P)

if (P is small)

// Base Case: P is very small so the solution of P is obvious. 

return Solution of P

Divide problem P into K sub-problems P1, P2, P3 and so on. 

Return Combine ( Divide&Conquer(P1) , Divide&Conquer(P2), ….. so on) 492
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Examples of divide-and-conquer algorithms:

1. Merge-Sort algorithm (recursion)

2. Quick-Sort algorithm (recursion)

3. Computing the length of the longest path in a binary tree (recursion)

4. Computing Fibonacci numbers (recursion)

5. Searching in BST

6. Computing POW (a, n) by calculating POW (a, n/2) using recursion

General Divide & Conquer Recurrence

T(n) = aT(n/b) + f (n)

1. Where a ≥ 1 and b > 1. 

2. "n" is the size of a problem. 

3. "a" is the number of subproblems in the recursion. 

4. “n/b” is the size of each sub-problem. 

5. "f(n)" is the cost of the division of the problem into subproblems or merge of the results of the sub-problem to get the final result. 

Problems on Divide & Conquer Algorithm

Merge Sort Algorithm

A merge-sort algorithm is used to sort an array of integers using the divide-and-conquer technique. 

For Merge-sort explanation and executable code, please refer to the Sorting chapter. 

Quick Sort Algorithm

A quick-sort algorithm is used to sort an array of integers using the divide-and-conquer technique. 

For Quick-sort explanation and executable code, please refer to the Sorting chapter. 

Binary Search Algorithm

Binary-search is used to search a key in a sorted array. 

For Binary-search explanation and executable code, please refer to the Searching chapter. 

Power function

Problem: Write a function that will calculate xn, taking x and n as arguments. 

Example 17.1:

fun power(x : Int, n : Int) : Int{

var value : Int; 

493

Chapter 17: Divide and Conquer

Problems on Divide & Conquer Algorithm

if (n == 0) {

return 1; 

} else if (n % 2 == 0) {

value = power(x, n / 2); 

return (value * value); 

} else {

value = power(x, n / 2); 

return (x * value * value); 

}

}

Time complexity: O(log(n)), where N is an exponent in the desired value. 

Nuts & Bolts

Problem: Given an array of nuts and bolts of different sizes. There is a one-one mapping between nuts and bolts. You need to arrange nuts and bolts in increasing order of size. Given the constraint that a nut cannot be compared with another nut.  And a bolt cannot be compared with another bolt. In other words, nuts can be compared with bolts. 

Solution: Take the first element of the bolts[] array, call it bolt1 and use bolt1 to do partition of the nuts[] array. Now, this partition array will return the index of the nut corresponding to bolt1, call it nut1. 

Now use nut1 to partition the bolt[] array. By doing this, we had to partition both the arrays. Do this for all the elements. (same as quick sort)

Example 17.2:

fun makePairs(nuts: IntArray, bolts: IntArray) {

makePairs(nuts, bolts, 0, nuts.size - 1)

println("Matched nuts and bolts are : ")

printArray(nuts)

printArray(bolts)

}

// Quick sort kind of approach. 

fun makePairs(nuts: IntArray, bolts: IntArray, low: Int, high: Int) {

if (low < high) {

// Choose first element of bolts array as pivot to partition nuts. 

val pivot = partition(nuts, low, high, bolts[low])

// Using nuts[pivot] as pivot to partition bolts. 

partition(bolts, low, high, nuts[pivot])

// Recursively lower and upper half of nuts and bolts are matched. 

makePairs(nuts, bolts, low, pivot - 1)

makePairs(nuts, bolts, pivot + 1, high)

}

}

// Partition method similar to quick sort algorithm. 

fun partition(arr: IntArray, low: Int, high: Int, pivot: Int): Int {

var i = low

var j = low

while (j < high) {

if (arr[j] < pivot) {

swap(arr, i, j)
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i++

} else if (arr[j] == pivot) {

swap(arr, high, j)

j--

}

j++

}

swap(arr, i, high)

return i

}

fun swap(arr: IntArray, first: Int, second: Int) {

val temp = arr[first]

arr[first] = arr[second]

arr[second] = temp

}

fun printArray(arr: IntArray) {

for (i in arr) print("$i ")

println()

}

// Testing code. 

fun main() {

val nuts = intArrayOf(1, 2, 6, 5, 4, 3)

val bolts = intArrayOf(6, 4, 5, 1, 3, 2)

makePairs(nuts, bolts)

}

Output:

Matched nuts and bolts are : 

1 2 3 4 5 6 

1 2 3 4 5 6  

Closest Pair Problem

Given N points in a 2-dimensional plane, find two points whose mutual distance is the smallest. 

A brute force algorithm takes every point and finds its distance from all the other points in the plane. In addition, keep track of the minimum distance points and minimum distance. The closest pair will be found in O(n^2) time. 
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Let us suppose that there is a vertical line, which divides the graph into two separate parts (let us call it the left and right parts). In the brute force algorithm, we will notice that we are comparing all the points in the left half with the points in the right half. This is the point where we are doing some extra work. 

To find the minimum we need to consider only three cases:

1. The Closest pair in the right half 

2. The Closest pair in the left half. 

3. The Closest pair in the boundary region of the two halves. (Grey)

Every time we will divide the space S into two parts S1 and S2 by a vertical line. Recursively, we will compute the closest pair in both S1 and S2. Let us call minimum distance in space S1 as δ1 and minimum distance in space S2 as δ2. 

We will find δ = min (δ1, δ2)

Now we will find the closest pair in the boundary region. By taking one point each from S1 and S2 in the boundary range of δ width on both sides. 

The candidate pair of points (p, q) where p Є S1 and q Є S2. 

We can find the points that lie in this region in linear time O(N) by just scanning through all the points and finding that all points lie in this region. 
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Now we can sort them in increasing order in the Y-axis in just O(n.log(n)) time. Then scan through them and get the minimum in just one linear pass. The closest pair cannot be far apart from each other. 

Let us look into the next figure. 



Then the question is how many points we need to compare. We need to compare the points sorted in the Y-axis only in the range of δ. Therefore, the number of points will come down to only 6 points. 

By doing this, we are getting an equation. 

T(N) = 2T(N/2) + N + n.log(n) + 6N = O(n(log(n))2) 

Can we optimise this further? 

Yes

Initially, when we are sorting the points in X coordinate, we are sorting them in Y coordinate too. 

When we divide the problem, then we traverse through the Y coordinate list too and construct the corresponding Y coordinate list for both S1 and S2. And pass that list to them. Since we have the Y

coordinate list passed to a function the δ region points can be found sorted in the Y coordinates in just one single pass in just O(N) time. 

T(N) = 2T(N/2) + N + N + 6N = O(n.log(n))

// Finds closest pair of points

// Input: A set of n points sorted by coordinates

// Output: Distance between closest pair

function ClosestPair(P)

if n < 2 then

return ∞

else if n = 2 then

return distance between pair

else

m = median value for x coordinate
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δ1 = ClosestPair(points with x < m)

δ2 = ClosestPair(points with x > m)

δ = min(δ1, δ2)

δ3 = process points with m −δ < x < m + δ

return min(δ, δ3)

First pre-process the points by sorting them in X and Y coordinates. Use two separate lists to keep these sorted points. Before recursively solving a sub-problem, pass the sorted list for that sub-problem. 

Example 17.3:

class Point internal constructor(var x: Int = 0, var y: Int = 0) internal class xComp : Comparator<Point> {

public override fun compare(s1: Point, s2: Point): Int {

return s1.x - s2.x

}

}

internal class yComp : Comparator<Point> {

public override fun compare(s1: Point, s2: Point): Int {

return s1.y - s2.y

}

}

private fun distance(a: Point, b: Point): Double {

return Math.sqrt(((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - 

b.y)).toDouble())

}

private fun stripMin(q: Array<Point>, n: Int, d: Double): Double {

var min = d

// Find the distance between all the points in the strip. 

// Array q is sorted according to the y axis coordinate. 

// The inner loop will run at most 6 times for each point. 

for (i in 0 until n) {

var j: Int = i + 1

while (j < n && q[j].y - q[i].y < min) {

var dst = distance(q[i], q[j])

if (dst < min) 

min = dst

++j

}

}

return min

}

private fun closestPairUtil(p: Array<Point>, start: Int, stop: Int, q: Array<Point>, n: Int): Double {

if (stop - start < 1) return Double.MAX_VALUE

if (stop - start == 1) return distance(p[start], p[stop])

// Find the middle point

val mid = (start + stop) / 2


val dl = closestPairUtil(p, start, mid, q, n)

val dr = closestPairUtil(p, mid + 1, stop, q, n)

val d: Double = Math.min(dl, dr)
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// Build an array strip[] that contains points whose x axis coordinate

// in the range p[mid]-d and p[mid]+d

// Points are already sorted according to y axis. 

val strip = Array(n){Point(0, 0)}

var j = 0

for (i in 0 until n) {

if (Math.abs(q[i].x - p[mid].x) < d) {

strip[j].x = q[i].x

strip[j].y = q[i].y

j++

}

}

// Find the closest points in strip and compare with d. 

return Math.min(d, stripMin(strip, j, d))

}

fun closestPairDC(arr: Array<IntArray>): Double {

val n = arr.size

val p = Array(n){Point(0, 0)}

for (i in 0 until n) {

p[i].x = arr[i][0]

p[i].y = arr[i][1]

}

// Sort according to x axis. 

Arrays.sort<Point>(p, xComp())

val q: Array<Point> = p.clone()

// Sort according to y axis. 

Arrays.sort<Point>(q, yComp())

return closestPairUtil(p, 0, n - 1, q, n)

}

// Testing code. 

fun main() {

val arr = arrayOf( intArrayOf(648, 896), intArrayOf(269, 879), intArrayOf(250, 922), 

intArrayOf(453, 347), intArrayOf(213, 17))

println("Smallest distance is:" + closestPairDC(arr))

}

Output:

Smallest distance is:47.01063709417264

Strassen’s Matrix Multiplication

Problem: Given two square matrices A and B of size n x n each, find their multiplication matrix. 

Solution 1: Naive Method, multiply two matrices using three for loop. 

function multiply(a, b):

for i=0 to N-1

for j=0 to N-1

c[i, j] = 0

for k=0 to N

c[i, j] += a[i, k]*b[k, j]

return c
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Solution 2: Divide and Conquer 

Following is a simple Divide and Conquer method to multiply two square matrices. 

1) Divide matrices A and B in 4 sub-matrices of size N/2 x N/2. 

2) Calculate the product recursively for all the subproblems and combine the result to get the final output. Output =   (ae + bg), (af + bh), (ce + dg) and (cf + dh). 

In the above method, we do 8 multiplications for matrices of size N/2 x N/2 and 4 additions. Addition of two matrices takes O(N^2) time. So the time complexity can be written as 

T(N) = 8T(N/2) + O(N^2)  

From Master's Theorem, time complexity of above method is O(n^3)

which is unfortunately the same as the above naive method. 

function multiply(x, y)

// Base case when size of matrices is 1x1

if Size(x) = 1

return x * y

// Splitting the matrices into 4 quadrants. 

// This will be done recursively until the base case is reached. 

a, b, c, d = Split(x)

e, f, g, h = Split(y)

A = multiply(a)

B = multiply(b)

C = multiply(c)

D = multiply(d)

E = multiply(e)

F = multiply(f)

G = multiply(g)

H = multiply(h)

// Computing the values of the 4 quadrants of the output matrix c

c11 = A*E + B*G

c12 = A*F + B*H

c21 = C*E + D*G

c22 = C*F + D*H

// Combining the 4 quadrants into a single output matrix. 

c = Combine(c11, c12, c21, c22)

return c

Solution 3: Strassen’s method, the strassen's method is similar to the divide-&-conquer method described above. In this method the matrix is divided into sub matrices of size N/2 x N/2. The idea of this method is to reduce the number of recursive calls to 7. 

T(N) = 7T(N/2) +  O(N^2)

From Master's Theorem, time complexity of above method is 

O(N^Log7) which is approximately O(N^2.8074)
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function StrassenMultiply (x, y)

// Base case when size of matrices is 1x1

if Size(x) = 1

return x * y

// Splitting the matrices into 4 quadrants. 

// This will be done recursively until the base case is reached. 

a, b, c, d = Split(x)

e, f, g, h = Split(y)

// Computing the 7 sub-problems, recursively. 

m1 = StrassenMultiply(a, f - h)

m2 = StrassenMultiply(a + b, h)

m3 = StrassenMultiply(c + d, e)

m4 = StrassenMultiply(d, g - e)

m5 = StrassenMultiply(a + d, e + h)

m6 = StrassenMultiply(b - d, g + h)

m7 = StrassenMultiply(a - c, e + f)

// Computing the values of the 4 quadrants of the output matrix c

c11 = m5 + m4 - m2 + m6

c12 = m1 + m2

c21 = m3 + m4

c22 = m1 + m5 - m3 - m7

// Combining the 4 quadrants into a single output matrix. 

c = Combine(c11, c12, c21, c22)

return c

Exercise

1. Problem: Given a sorted array of integers, find the index of the first and last occurrence of a given value. 

Hint: Using binary search, find the element smaller than the searched key. Again, find the element greater than the given value. 

2. Problem: Given a sorted array of integers, find the number of occurrences of a given value. 

Hint: Binary search based. Same as above, just find the difference of index and report count. 

3. Problem:   Given   a   sorted   array   of   distinct   non-negative   whole   numbers,   find   the   smallest missing number. 

Hint: Binary search based. Whole numbers are considered. If the number at some index is greater than the index value, then something is missing in the left portion else right portion. 

Narrow down your search and reach the solution. 

4. Problem: Given a sorted array of integers and a key. Find the floor and ceiling of the key in the given array. 
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Hint: Binary search based. Like in binary search, we compare our key with value at index i =

n/2. In this algorithm, we will have to consider index (i-1) and (i+1) before ignoring half part of the search space, the same as Binary Search. 

5. Problem: Given a sorted array that is further rotated in a clockwise direction. You need to find the number of rotations. 

Hint: Using a binary search kind of technique, find the point when the next value is smaller than the previous value. 

6. Problem: Given a sorted array that is further rotated. Find a given key-value inside this given array. 

Hint: Binary search based. Consider rotated segments and continuous segments. The rotated segment value at the end is smaller than the beginning. And the other segment will have the last value greater than the first value. 

7. Problem: Given a box with locks and keys, where one lock can be opened by one key in the box. We need to match the pairs. 

Hint: Same problem as Nuts and Bolts. 
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Dynamic programming algorithms are used to solve optimization problems by breaking them into smaller sub-problems. The optimal solution of the sub-problems is used to construct optimal solutions to the overall problems. Dynamic programming is applied to solve problems that have properties of Optimal Substructure and Overlapping Sub-Problems. 

Optimal Substructure: The optimization problem is divided into simpler sub-problems. The optimal solution of the overall problem is constructed from optimal solutions of its sub-problems. 

Overlapping   subproblems:   While   calculating   the   optimal   solution   of   sub-problems,   the   same computation is performed multiple times. 

If the problems with overlapping subproblems are solved using recursion. Then because the subproblems are overlapping, it results in the same computation being performed multiple times. This repeated computation gives less efficient solutions. Dynamic programming is used to avoid repeated calculation of the same sub-problem. In this method, we usually store the result of sub-problems in some data structure (like an array) and refer to it to find if we have already calculated the solution of sub-problems before calculating it again. 

Let’s take an example of the Fibonacci Series. Few elements of the Fibonacci series are 0, 1, 1, 2, 3, 5

and so on. Fibonacci numbers are a series of numbers in which each number is the sum of the two preceding numbers. The Fibonacci number is represented by the below formula. 

Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2) where n > 1

Fibonacci(0) = 0

Fibonacci(1) = 1

Example 18.01: Recursive solution of fibonacci number. 

fun fibonacci(n: Int): Int {

return if (n < 2) n 

           else fibonacci(n-1) + fibonacci(n-2)

}

The   problem   is   to   divide   into   sub-problems.   These   subproblems   are   overlapping,   so   the   same calculations are performed again and again, which reduces the performance of this solution. This algorithm has an exponential time complexity of O(2^n). 
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From the above diagram it is clear that to calculate fibonacci(5), fibonacci(2) is calculated 3 times. 

Further, if we want to find the complete Fibonacci series then the number of times these sub-problems are calculated is increases further. 

Dynamic Programming Methods

DP offers two methods to solve a problem2:

1. Tabulation (Bottom-Up)

2. Memoization (Top-Down)

Tabulation (Bottom-Up)

Bottom-up with Tabulation is the approach in which smaller subproblems are solved first, and their solution is stored in a table. Bigger problems are calculated by using solutions to these sub-problems. 

Below is the Bottom-up calculation of the Fibonacci Number. Array dp[ ] is created to store the result of sub-problems. 

Example 18.02 : Bottom-up solution of fibonacci problem

fun fibonacciBU(n: Int): Int {

if (n < 2) return n

val dp = IntArray(n + 1)

dp[0] = 0

dp[1] = 1

for (i in 2..n) {

dp[i] = dp[i - 2] + dp[i - 1]

}

return dp[n]

}

Analysis:

1 In this, the array dp[] is created, which is used to store the sub-problems and used in further calculation of bigger problems. 
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2 This solution is efficient and takes linear time O(n) to compute the Fibonacci series. 

Memoization (Top-Down)

Top-down with Memoization  is the approach in which a bigger problem is recursively divided into smaller sub-problems. These sub-problems are solved, and their result is stored in a table / an array. 

So that we do not solve the same sub-problem again when it is called again. Instead, we just use the saved result. This approach is called Top-down with Memoization. 

Example 18.03: Top down solution of fibonacci problem

fun fibonacciTD(n: Int): Int {

val dp = IntArray(n + 1)

fibonacciTD(n, dp)

return dp[n]

}

fun fibonacciTD(n: Int, dp: IntArray): Int {

if (n < 2) return n.also { dp[n] = it }

if (dp[n] != 0) return dp[n]

dp[n] = fibonacciTD(n - 1, dp) + fibonacciTD(n - 2, dp)

return dp[n]

}

Analysis:

1 This is a top-down approach to solving the problem. 

2 First, we had created an array dp[] to store intermediate states. 

3 If some calculations are already done, then they will not be performed again. 

4 Again this solution time complexity is O(n)

Steps for Solving Dynamic Programming problem :

1. Optimal Substructure: Try to find if there is a recursive relation between problem and subproblem. 

2. Write a recursive relation of the problem. Observe Overlapping subproblems at this step. 

3. Bottom-up approach:

• The bottom-up approach uses loops. 

• Compute the value of sub-problems in a bottom-up fashion and store this value in some table. 

• Construct the optimal solution from the value stored in the above step. 

4 Top-Down approach:

• The top-down approach uses recursion. 

• Identify the base case of recursion. 

• Create a recursive solution. 

• Store results of sub-problems in some tables. 

• Check for overlapping subproblems solutions in the table before recalculating them. 
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O

￹ ptimal Substructure and Overlapping subproblems is the core of Dynamic programming. But we can group   similar   dynamic  programming  questions  to   make   it   easy   to  understand   which  all   types  of problems can be solved with dynamic programming. Learning one problem can help you solve many more that resemble it. The solution to those problems had the same approach. 

Below are some types of problems for which solutions can be obtained using a Dynamic Programming approach: 

Type 1 : Maximum or Minimum cost to reach some state. 

➢ Climbing Stairs with a minimum cost: Given a list cost[] representing the cost of climbing from any step in the stair. From each step, you can climb 1 or 2 steps. You need to minimise the cost of reaching the top of the stairs. C

an  start f rom  0 th   o r 1 st   stair . 

➢ Coin Change: Given a list of coins[] representing various denominations of coins and an amount  total  representing the total amount of money.  Return the  least  number  of  coins needed to make the total amount.  I f coins can’t make the required t otal,  then return -1. 

➢ Grid Min Value Path: Given a grid of dimension m x n filled with positive numbers. Find the minimum cost path from bottom-left (0, 0) to top-right(m-1,n-1). You can only move up or right. 

➢ Min Cost Travel: Given a list of days[] which represent days in future. There are three different types of tickets: a 1 day ticket, 7 days ticket and a 30 days ticket, with their respective cost in costs[] array. 1 day ticket cost is costs[0], 7 days ticket cost is costs[1] and 30 days ticket cost is costs[2]. You want to minimise the cost of travel, but also have to t ravel  in all the days in days[] array. 

Type 2 : Distinct ways to reach some state. 

➢ Fibonacci sequence: The Fibonacci sequence is a series of numbers, where a number is the addition of the previous two numbers. Starting numbers of the series are 0 and 1. Find the nth number in the Fibonacci numbers series. 

➢ Stair Climbing ways: Given a stair of n steps. For each step, you can climb 1 or 2 steps. How many distinct ways can you climb to the top of the stairs? 

➢ Grid Unique Paths: Given a grid of dimension m x n.  Find the various unique paths from bottom-left (0, 0) to top-right(m-1,n-1). You can only move up or right. 

➢ N Dice with Target Sum: Given N dice with M faces. When all the dice are thrown together. 

Find the number of ways to get sum V. 

Type 3 : Merging intervals to get an Optimal solution. 

➢ BST with minimum non-leaf nodes sum: Given a list, arr[] of positive integers corresponds to the value of leaf node in a binary tree. The value of a non-leaf node is equal to the product of the largest leaf value of the left and right subtree. Among all the possible binary trees, return the smallest possible sum of the values of the non-leaf node. 
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➢ Optimal Binary Search Tree: Given a sorted array keys[] and a list freq[] both arrays of length n. keys[i] is searched freq[i] a number of times. Create a binary search tree of all the input keys such that the overall cost of all the searches is as small as possible. The cost of a BST node is the level of the node multiplied by its frequency. 

➢ Matrix Chain Multiplication: Given a sequence of matrices, M = M1,…, Mn. The goal of this problem is to find the most efficient way to multiply these matrices. The goal is not to perform the actual multiplication, but to decide the sequence of the matrix multiplications, so that the result will be calculated in minimal operations. To compute the product of two matrices of dimensions pXq and qXr, p*q*r number of operations will be required. Matrix multiplication operations are associative. Therefore, n matrix multiplication can be done in many ways. 

Type 4 : Subsequence, Substrings and String Manipulation using Dynamic Programming

➢ Longest Common Subsequence: Given X = {x1, x2,…., xm} is a sequence of characters and Y = {y1, y2,…, yn} is another sequence. Z is a subsequence of X if it can be driven by deleting some elements of X. Z is a subsequence of Y if it can be driven by deleting some elements from Y. Z is LCS of it is subsequence to both X and Y, and length of all the sub-sequences is less than Z. Find the longest common subsequence Z given X and Y. 

➢ Largest   Increasing   Subsequence:   Given   a   list   of   integers,   you   need   to   find   the   largest subsequence in increasing order. You need to find the largest increasing sequence by selecting the elements from the given array such that their relative order does not change. 

➢ Longest   Bitonic   Subsequence:   Given   a   list,   you   need   to   find   the   longest   bitonic subsequence. 

➢ Longest   Palindromic  Subsequence:   Given   a   string   s,   find   the   longest   palindromic subsequence  length in s. A  Subsequence  is a sequence that can be derived from another sequence   by   deleting   some   or   no   elements   without   changing   the   order   of   the   remaining elements. 

➢ Longest  Palindromic  Substring:  Given  a  string  s,   find  the  longest   palindromic  substring length in s.  A Substring is a string that is part of a longer string. 

➢ Edit Distance: Given two strings s1 and s2, find the minimum number of operations required to convert s1 to s2. The available operations are “Insert a character”, “Delete a character” or

“Replace a character”. 

Type 5 : State Selection: To reach the current state, you need to decide which previous state needs to be used. 

➢ Assembly Line Scheduling: Calculate the least amount of time necessary to build a car when using a manufacturing chain with two assembly lines. The problem variables:

• e[i]: entry time in assembly line i

• x[i]: exit time from assembly line i

• a[i, j]: Time required at station S[i, j] (assembly line i, stage j)

• t[i, j]: Time required to transit from station S[i, j] to the other assembly line

➢ House Robber: A robber wants to rob houses along a certain street. He has a rule that he doesn't rob from adjacent houses. Given an integer array representing the amount of money in 507
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each house. You need to return the maximum amount of money the robber can rob without breaking his rule. 

➢ Job Scheduling: Given N jobs, where every job has a start time, finish time and positive value associated with it.  Find the maximum values of the jobs which can be scheduled, such that no two jobs overlap. 

Type 1 : Maximum / Minimum cost to reach some state problems

In this type of problem, it is asked to find the minimum / maximum cost to reach some state. 

General Top-Down function to solve Min and Max problems:

fun TopDownFunction(ways: IntArray, target: Int): Int {

val dp = IntArray(target)

// fill dp[] with INVALID value

return TopDownFunction(dp, ways, target)

}

fun TopDownFunction(dp: IntArray, ways: IntArray, target: Int): Int {

// Base Case

if (target == 0) return 0

if (dp[target] != INVALID) return dp[target]

// Recursion

for(i in 0 to way.size-1) {

dp[target] = Math.min(dp[target], TopDownFunction(dp, ways, target - 

ways[i]) + cost)

}

return dp[target]

}

General Bottom-Up function to solve Min-Max problems:

fun BottomUpFunction(ways: IntArray, target: Int): Int {

val dp = IntArray(target)

// fill dp[] array with INVALID value

dp[0] = 0 // Base value. 



for (i in 1..target) {

for (j in 0..ways.size) {

// For all fusible ways. 

dp[i] = Math.min(dp[i], dp[i - ways[j]] + cost)

}

}

return dp[target]

}

Coin Change

Problem: Given an array of coins[] representing various denominations of coins and an amount total representing the total amount of money. Return the least number of coins needed to make the total amount.  If coins can’t make the required total then return -1. 

For example, the Indian coin system {5, 10, 20, 25, 50,100}. Suppose we want to give a change of 40 

paisa. 
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Solution: We can make a solution by repeatedly choosing a coin ≤ to the current amount, resulting in a new amount. The greedy solution always chooses the largest coin value possible. For 40 paisa: {25, 10, and 5} 

This is how billions of people around the globe make changes every day. That is an approximate solution to the problem. But this is not the optimal way, the optimal solution for the above problem is 

{20, 20}

Step (I): Characterise the class of a coin-change solution. 

Define C [j] to be the minimum number of coins we need to make a change for j cents. If we knew that an optimal solution for the problem of making change for j cents used a coin of denomination di, we would have:

C[j] = 1+C[j − di]

Strep (II): Recursively defines the value of an optimal solution. Where j is the total amount. 

c[j] =  {0

 if j=0

1+ min ( c [  j− di])

1  ≤ i≤ k &  j≥  1

Example 18.04: Brute force solution

fun minCoins2(coins: IntArray, n: Int, value: Int): Int { // Brute force. 

if (value == 0) return 0

var count = Int.MAX_VALUE

for (i in 0 until n) {

if (coins[i] <= value) {

val subCount = minCoins2(coins, n, value - coins[i])

if (subCount >= 0) count = Math.min(count, subCount + 1)

}

}

return if (count != Int.MAX_VALUE) count else -1

}

Analysis: The above solution have overlapping subproblem so have exponential time complexity. 

Step (III): Compute values using dynamic programming in a bottom-up fashion. 

Example 18.05:

fun minCoinsBU(coins: IntArray, n: Int, value: Int): Int { // DP bottom up approach. 

val count = IntArray(value + 1)

Arrays.fill(count, Int.MAX_VALUE)

count[0] = 0 // Base value. 

for (i in 1..value) {

for (j in 0 until n) {

// For all coins smaller than or equal to i. 

if (coins[j] <= i && count[i - coins[j]] != Int.MAX_VALUE && count[i] > count[i - coins[j]] + 1) {

count[i] = count[i - coins[j]] + 1

}
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}

}

return if (count[value] != Int.MAX_VALUE) count[value] else -1

}

Time-Complexity: O(nk)

Step (iv): Construct an optimal solution. We use an additional list Deno[1.. n], where Deno[j] is the denomination of a coin used in an optimal solution. 

Example 18.06:

fun printCoinsUtil(cvalue: IntArray, value: Int) {

if (value > 0) {

printCoinsUtil(cvalue, value - cvalue[value])

print(cvalue[value].toString() + " ")

}

}

fun printCoins(cvalue: IntArray, value: Int) {

print("Coins are : ")

printCoinsUtil(cvalue, value)

println()

}

fun minCoinsBU2(coins: IntArray, n: Int, value: Int): Int { // DP bottom up approach. 

val count = IntArray(value + 1)

val cvalue = IntArray(value + 1)

Arrays.fill(count, Int.MAX_VALUE)

Arrays.fill(cvalue, Int.MAX_VALUE)

count[0] = 0 // Base value. 

for (i in 1..value) {

for (j in 0 until n) {

// For all coins smaller than or equal to i. 

if (coins[j] <= i && count[i - coins[j]] != Int.MAX_VALUE && count[i] > count[i - coins[j]] + 1) {

count[i] = count[i - coins[j]] + 1

cvalue[i] = coins[j]

}

}

}

if (count[value] == Int.MAX_VALUE) return -1

printCoins(cvalue, value)

return count[value]

}

// Testing code. 

fun main() {

val coins = intArrayOf(5, 6)

val value = 16

val n = coins.size

println("Count is : " + minCoinsBU2(coins, n, value))

}
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Output:

Coins are : 6 5 5 

Count is : 3

The same problem can be solved using a top-down approach. 

Example 18.07:

fun minCoinsTD(coins: IntArray, n: Int, value: Int): Int {

val count = IntArray(value + 1)

Arrays.fill(count, Int.MAX_VALUE)

count[0] = 0 // zero val need zero coins. 

return minCoinsTD(count, coins, n, value)

}

fun minCoinsTD(count: IntArray, coins: IntArray, n: Int, value: Int): Int {

// Base Case

if (count[value] != Int.MAX_VALUE) {

return count[value]

}

// Recursion

for (i in 0 until n) { // For all possible coins

if (coins[i] <= value) { // check validity of a sub-problem

val subCount = minCoinsTD(count, coins, n, value - coins[i])

if (subCount != Int.MAX_VALUE && count[value] > subCount + 1) count[value] = subCount + 1

}

}

return count[value]

}

Time-Complexity: O(nk)

Climbing Stairs with minimum cost

Problem: Given an array cost[] representing the cost of climbing from any step in the stair. From each step, you can climb 1 or 2 steps. You need to minimise the cost of reaching the top of the stairs. Can start from 0th or 1st stair. 

Solution: Recurrence Relation is MinCost(n) = min( MinCost(n-1) + MinCost(n-2)) + Cost[n]

Using a bottom-up approach, an array dp[] is used to store the total cost of climbing from each stair. 

After populating this array, dp[]. In the end, the n-1th and nth stair minimum are returned, after which we will reach the top. 

Example 18.08:

fun minStairCost(cost: IntArray, n: Int): Int {

// base case

if (n == 1) return cost[0]

val dp = IntArray(n)

dp[0] = cost[0]

dp[1] = cost[1]
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for (i in 2 until n) {

dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i]

}

return Math.min(dp[n - 2], dp[n - 1])

}

// Testing code. 

fun main() {

val a = intArrayOf(1, 5, 6, 3, 4, 7, 9, 1, 2, 11)

val n = a.size

print("minStairCost : " + minStairCost(a, n))

}

Output:

minStairCost : 18

Time-Complexity: O(n)

Grid Min Value Path

Problem: Given a grid of dimension m x n filled with positive numbers. Find the minimum cost path from bottom-left (0, 0) to top-right(m-1,n-1). You can only move up or right. 

Solution:

1 minCost(cost, m, n) = cost[m-1][n-1] + min( minCost(cost, m-1, n), minCost(cost, m, n-1) ) 2 Each cell in the grid can be reached from at most 2 paths- bottom or left. 

3 The bottom-up approach is used to populate dynamic programming array dp[]. 

Example 18.09:

fun gridMinCostBU(cost: Array<IntArray>, m: Int, n: Int): Int {

val tc = Array(m) { IntArray(n) }

tc[0][0] = cost[0][0]

// Initialize first column. 

for (i in 1 until m) {

tc[i][0] = tc[i - 1][0] + cost[i][0]

}

// Initialize first row. 

for (j in 1 until n) {

tc[0][j] = tc[0][j - 1] + cost[0][j]

}

for (i in 1 until m) {

for (j in 1 until n) {

tc[i][j] = cost[i][j] + min(tc[i - 1][j - 1], tc[i - 1][j], tc[i][j - 

1])

}

}

return tc[m - 1][n - 1]

}

512

Chapter 18: Dynamic Programming 

Type 1 : Maximum / Minimum cost to reach some state

problems

// Testing code. 

fun main() {

val cost = arrayOf(intArrayOf(1, 3, 4), intArrayOf(4, 7, 5), intArrayOf(1, 5, 3))

println(gridMinCostBU(cost, 3, 3))

}

Output:

11

Time-Complexity: O(mn)

Min Cost Travel

Problem: Given an array of days[] which represent days in future. There are three different types of tickets: a 1 day ticket, 7 days ticket and a 30 days ticket, with their respective cost in costs[] array. 1

day ticket cost is costs[0], 7 days ticket cost is costs[1] and 30 days ticket cost is costs[2]. You want to minimise the cost of travel but also have to t ravel  in all the days in days[] array . 

Solution: 

Recurrence Relation is minCost(i) = min (minCost(i-1) + costs[0], minCost(i-7) + costs[1], minCost(i-30)

+ costs[2])  where “i” is travel days. 

The bottom-up approach is used to solve this problem. 

Example 18.10:

fun minCostTravel(days: IntArray, costs: IntArray): Int {

val n = days.size

val max = days[n - 1]

val dp = IntArray(max + 1)

var j = 0

for (i in 1..max) {

if (days[j] == i) { // That days is definitely travelled. 

j++

dp[i] = dp[i - 1] + costs[0]

dp[i] = Math.min(dp[i], dp[Math.max(0, i - 7)] + costs[1])

dp[i] = Math.min(dp[i], dp[Math.max(0, i - 30)] + costs[2])

} else dp[i] = dp[i - 1] // day may be ignored. 

}

return dp[max]

}

// Testing code. 

fun main() {

val days = intArrayOf(1, 3, 5, 7, 12, 20, 30)

val costs = intArrayOf(2, 7, 20)

println("Min cost is : " + minCostTravel(days, costs))

}

Output:

Min cost is : 13

Time-Complexity: O(n)
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Type 2 : Distinct ways to reach some state problems

In this type of problem, it is asked to find the total number of distinct ways to reach some state. 

All possible ways to reach the target state are stored in the dp[] array. 

General Top-Down function to solve Distinct-Way problems:

fun TopDownFunction(ways: IntArray, target: Int): Int {

val dp = IntArray(target)

return TopDownFunction(dp, ways, target)

}

fun TopDownFunction(dp: IntArray, ways: IntArray, target: Int): Int {

// Base Case

if (target == 0) return 0

if (dp[target] != 0) return dp[target]

// Recursion

var i = 0

while (i < ways.size && ways[i] <= i) {

// For all fusible ways. 

dp[target] += TopDownFunction(dp, ways, target - ways[i])

i++

}

return dp[target]

}

General Bottom-Up function to solve Distinct-Way problems:

fun BottomUpFunction(ways: IntArray, target: Int): Int {

val dp = IntArray(target)

for (i in 1..target) {

var j = 0

while (j < ways.size && ways[i] <= i) {

// For all fusible ways. 

dp[i] += dp[i - ways[j]]

j++

}

}

return dp[target]

}

Stair Climbing Ways

Problem: Given a stair of n steps. For each step, you can climb 1 or 2 steps. How many distinct ways can you climb at the top of the stairs? 

Solution:  The Recurrence Relation is  ways(i) = ways(i-1) + ways(i-2). Bottom up approach is used to solve this problem. 
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Example 18.11:

fun stairUniqueWaysBU2(n: Int): Int {

if (n < 2) return n

val ways = IntArray(n)

ways[0] = 1

ways[1] = 2

for (i in 2 until n) ways[i] = ways[i - 1] + ways[i - 2]

return ways[n - 1]

}

// Testing code. 

fun main() {

println("Unique way to reach top:: " + stairUniqueWaysBU2(4))

}

Output:

Unique way to reach top:: 5

Time-Complexity: O(n)

Grid Unique Paths

Problem: Given a grid of dimension m x n. Find the various unique paths from bottom-left (0, 0) to top-right(m-1,n-1). You can only move up or right. 

Solution: The Recurrence Relation is uniqueWays(m, n) = uniqueWays(m-1, n) + uniqueWays(m, n-1) dp[][] array is used to store unique ways to reach some cells. Index dp[0][0] is 1 as there is only one way to reach (0,0). The first column and first row cells are also populated by 1 as there is only one way to reach them. Which is the direct path from (0,0). The bottom-up approach is used to populate the dp[]

[] array. 

Example 18.12:

fun gridUniqueWays(m: Int, n: Int): Int {

val dp = Array(m) { IntArray(n) }

dp[0][0] = 1

// Initialize first column. 

for (i in 1 until m) {

dp[i][0] = dp[i - 1][0]

}

// Initialize first row. 

for (j in 1 until n) {

dp[0][j] = dp[0][j - 1]

}

for (i in 1 until m) {

for (j in 1 until n) dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

}

return dp[m - 1][n - 1]

}
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// Testing code. 

fun main() {

println(gridUniqueWays(3, 3))

}

Output:

6

Time-Complexity: O(mn)

Problem: Given a grid of dimension m x n. Find the various unique paths from bottom-left (0, 0) to top-right(m-1,n-1). You can only move up, right or diagonally up-right. 

Solution:

dp[i][j] = dp[i-1][j-1] + dp[i-1][j] + dp[i][j-1]; 

N Dice with Target Sum

Problem: Given N dice with M faces. When all the dice are thrown together. Find the number of ways to get sum V. 

Solution: The Recurrence Relation for this problem:

findWays(N, V) = ΣfindWays(N-1, V-k), where k = 1 to M, N total number of dice. 

Populate dp[x][y] array which will store the number of ways to reach value y by x number of dices. 

Example 18.13:

fun findWays(n: Int, m: Int, V: Int): Int {

val dp = Array(n + 1) { IntArray(V + 1) }

// Table entries for only one dice. 

var l = 1

while (l <= m && l <= V) {

dp[1][l] = 1

l++

}

// i is number of dice, j is Value, k value of dice. 

for (i in 2..n) {

for (j in 1..V) {

var k = 1

while (k <= j && k <= m) {

dp[i][j] += dp[i - 1][j - k]

k++

}

}

}

return dp[n][V]

}

// Testing code. 

fun main() {

print(findWays(4, 6, 6).toString() + " ")

}
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Output:

10

Time-Complexity: O(n*m*V), n is the number of dice, m is the different faces of one dice and V is the input value. 

Fibonacci Sequence

Problem:  The Fibonacci sequence is a series of numbers where a number is the addition of the previous two numbers. Starting numbers of the series are 0 and 1. Find the nth number in the Fibonacci numbers series. 

Note: This problem is solved at the start of this chapter. 

Type 3 : Merging intervals to get optimal solution problems

Problem: Given a  list of values,  find an optimal solution for a problem  using  the current  value  and optimal solution of the left and right sub-problem. 

Solution: Find all optimal solutions in the interval and return the best optimal solution. 

Recurrence Relation of the problem is:

optimalSolution(i, j) = optimalSolution(i, k-1)  + cost[k] + optimalSolution(k+1, j)    for k in range “i” to “j”. 

General Top-Down function to solve Merging-Interval problems:

fun TopDownFunction(costs: IntArray): Int {

val n = costs.size

val dp = Array(n) { IntArray(n) }

for (row in dp) {

//fill row[] array with value INVALID

}

return TopDownFunction(dp, costs, 0, n-1)

}

fun TopDownFunction(dp: Array<IntArray>, costs: IntArray, i: Int, j: Int): Int {

// Base Case

if (i == j) return 0

if (dp[i][j] != INVALID) return dp[i][j]

// Recursion

for (k in i until j) {

dp[i][j] = Math.min(dp[i][j], TopDownFunction(dp, costs, i, k)

+ costs[k] + TopDownFunction(dp, costs, k + 1, j))

}

return dp[i][j]

}

General Bottom-Up function to solve Merging-Interval problems:

fun BottomUpFunction(costs: IntArray): Int {

val n = costs.size

val dp = Array(n) { IntArray(n) }

517

Chapter 18: Dynamic Programming 

Type 3 : Merging intervals to get optimal solution

problems

for (row in dp) {

//fill array row[] with value INVALID

}

for (l in 1 until n) { // l is length of range. 

var i = 1

var j: Int = i + l

while (j < n) {

for (k in i until j) {

dp[i][j] = Math.min(dp[i][j], dp[i][k] + costs[k] + dp[k + 1][j])

}

i++

j++

}

}

return dp[1][n-1]

}

Matrix Chain Multiplication

Problem: Given a sequence of matrices, M = M1,…, Mn. The goal of this problem is to find the most efficient way to multiply these matrices. The  goal  is not to perform the actual multiplication, but to decide the sequence of the matrix multiplications, so that the result will be calculated in minimal operations. To compute the product of two matrices of dimensions pXq and qXr, p*q*r number of operations   will   be   required.   Matrix   multiplication   operations   are   associative.   Therefore,   n   matrix multiplication can be done in many ways. 

For example, M1, M2, M3 and M4, can be fully parenthesized as: 

(M1·(M2·(M3·M4)))

(M1·((M2·M3)·M4))

((M1·M2)·(M3·M4))

(((M1·M2)·M3)·M4)

((M1·(M2·M3))·M4)

For example, 

Let M1 dimensions be 10 × 100, M2 dimensions are 100 × 10, and M3 dimensions are 10 × 50. 

((M1·M2)· M3) = (10*100*10) + (10*10*50) = 15000

(M1· (M2·M3) = (100*10*50) + (10*100*50) = 100000

Therefore, in this problem, we need to parenthesize the matrix chain so that the total multiplication cost is minimised. 

Solution: Given a sequence of n matrices M1, M2,… Mn. And their dimensions are p0, p1, p2,…, pn. 

Where matrix Ai has dimension pi − 1 × pi for 1 ≤ i ≤ n. Determine the order of multiplication that minimises the total number of multiplications. 

p[0] = row of the M1

p[i-1] = row of the Mi   1<=i<=N

p[1] = column of the M1
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p[i] = column of Mi   1<=i<=N

M(1,N) = min( M(1, K) + M(K+1, N) + p0*pk*pn )      where 1<= K <=N

If M (1, N) is minimal, then both M (1, K) & M (K+1, N) are minimal. Otherwise, if there is some M’(1, K) is there whose cost is less than M (1.. K), then M (1.. N) can't be minimal, and there is a more optimal solution possible. 

Recurrence relation:

M(i, j) =  { 0

 if i=  j

 min { M ( i ,k)+  M ( k , j) +  pi−1∗ pk∗ pj}  i≤k<  j If   you   try   to   solve   this   problem   using   the   brute-force   method,   then   you   will   find   all   possible parenthesization. Then you will compute the cost of multiplications. Thereafter you will pick the best solution. This approach will be exponential. 

Example 18.14: Brute-force approach to solve matrix chain multiplication problem. 

fun matrixChainMulBruteForce(p: IntArray, i: Int, j: Int): Int {

if (i == j) return 0

var min = Int.MAX_VALUE

// place parenthesis at different places between first and last matrix, 

// recursively calculate count of multiplications for each parenthesis

// placement and return the minimum count

for (k in i until j) {

val count =

matrixChainMulBruteForce(p, i, k) + matrixChainMulBruteForce(p, k + 1, 

j) + p[i - 1] * p[k] * p[j]

if (count < min) min = count

}

// Return minimum count

return min

}

fun matrixChainMulBruteForce(p: IntArray, n: Int): Int {

val i = 1

val j = n - 1

return matrixChainMulBruteForce(p, i, j)

}

The   brute   force   approach   is   insufficient.   Take   an   example   of   M1,   M2,…,   Mn.   When   you   have calculated that ((M1·M2) · M3) is better than (M1· (M2·M3) so there is no point of calculating then combinations of (M1· (M2·M3) with (M4, M5…. Mn). 

Directly calling a recursive function will lead to the calculation of the same sub-problem multiple times. 

This will lead to an exponential solution. So dynamic programming is used to prevent recalculation of already calculated values. 
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Overlapping subproblems:

Example 18.15: Top-down Dynamic programming Implementation

fun matrixChainMulTD(p: IntArray, n: Int): Int {

val dp = Array(n) { IntArray(n){Int.MAX_VALUE} }

for (i in 1 until n) dp[i][i] = 0

return matrixChainMulTD(dp, p, 1, n - 1)

}

fun matrixChainMulTD(dp: Array<IntArray>, p: IntArray, i: Int, j: Int): Int {

// Base Case

if (dp[i][j] != Int.MAX_VALUE) {

return dp[i][j]

}

for (k in i until j) {

dp[i][j] = Math.min(

dp[i][j], 

matrixChainMulTD(dp, p, i, k) + matrixChainMulTD(dp, p, k + 1, j) + p[i

- 1] * p[k] * p[j]

)

}

return dp[i][j]

}

Time Complexity will O(n^3) 

Example 18.16: Bottom-Up dynamic programming Implementation

fun matrixChainMulBU(p: IntArray, n: Int): Int {

val dp = Array(n) { IntArray(n){Int.MAX_VALUE} }

for (i in 1 until n) dp[i][i] = 0

for (l in 1 until n) { // l is length of range. 

var i = 1

var j: Int = i + l

while (j < n) {

for (k in i until j) {

dp[i][j] = Math.min(dp[i][j], dp[i][k] + p[i - 1] * p[k] * p[j] + 

dp[k + 1][j])

}

520

Chapter 18: Dynamic Programming 

Type 3 : Merging intervals to get optimal solution

problems

i++

j++

}

}

return dp[1][n - 1]

}

Time Complexity: O(n^3)

Example 18.17: Testing code

fun main() {

val arr = intArrayOf(1, 2, 3, 4)

val n = arr.size

println("Matrix Chain Multiplication is: " + matrixChainMulBU(arr, n))

}

Output:

Matrix Chain Multiplication is: 18

Printing brackets in Matrix Chain Multiplication. Another table pos[n][n] is used to keep track of the position where the product is split. Each entry pos[i][j] records the value of k such that the optimal parenthesization of Mi to Mj splits the product into ( M1 to Mk ) and ( Mk+1 to Mj). 

Example 18.18: Bottom-Up dynamic programming Implementation

fun PrintOptPar(n: Int, pos: Array<IntArray>, i: Int, j: Int) {

if (i == j) print("M" + pos[i][i] + " ") else {

print("( ")

PrintOptPar(n, pos, i, pos[i][j])

PrintOptPar(n, pos, pos[i][j] + 1, j)

print(") ")

}

}

fun PrintOptimalParenthesis(n: Int, pos: Array<IntArray>) {

print("OptimalParenthesis : ")

PrintOptPar(n, pos, 1, n - 1)

println("")

}

fun matrixChainMulBU2(p: IntArray, n: Int): Int {

val dp = Array(n) { IntArray(n){Int.MAX_VALUE} }

val pos = Array(n) { IntArray(n) }

for (i in 1 until n) {

dp[i][i] = 0

pos[i][i] = i

}

for (l in 1 until n) { // l is length of range. 

var i = 1

var j: Int = i + l

while (j < n) {

for (k in i until j) {

dp[i][j] = Math.min(dp[i][j], dp[i][k] + p[i - 1] * p[k] * p[j] + 

dp[k + 1][j])

pos[i][j] = k
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}

i++

j++

}

}

PrintOptimalParenthesis(n, pos)

return dp[1][n - 1]

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4)

val n = arr.size

println("Matrix Chain Multiplication is: " + matrixChainMulBU2(arr, n))

}

Output:

OptimalParenthesis : ( ( M1 M2 ) M3 )

Matrix Chain Multiplication is: 18

Optimal Binary Search Tree

Problem: Given a sorted array keys[] and an array freq[] both arrays of length n. keys[i] is searched freq[i] a number of times. Create a binary search tree of all the input keys such that the overall cost of all the searches is as small as possible. The cost of a BST node is the level of the node multiplied by its frequency. 

Solution: Recurrence Relation: 

optCost(i, j) = min(optCost(i, r-1) + optCost(r+1, j)) + Σkey[r]  where r is from i to j . 

When the tree from ‘i’ to ‘r-1’ & tree form ‘r+1’ to ‘j’ is added by the node at ‘r’ then both of the trees will go one level down and then node ‘r’ is added. Change in cost will be the sum of all the nodes from ‘i’ to

‘r-1’ & cost of all the nodes from ‘r+1’ to ‘j’ & cost of node ‘r’. These all three parts sum up to Σkey[r] in the recurrence relation. 

This recurrence relation has overlapping solutions, so dynamic programming is applied. Top-down and bottom-up approaches are used to create solutions for this problem. 

Example 18.19: Top-down Implementation

fun optBstCostTD(freq: IntArray): Int {

val n = freq.size

val cost = Array(n) { IntArray(n){Int.MAX_VALUE} }

for (i in 0 until n) cost[i][i] = freq[i]

return optBstCostTD(freq, cost, 0, n - 1)

}

fun optBstCostTD(freq: IntArray, cost: Array<IntArray>, i: Int, j: Int): Int {

if (i > j) return 0

if (cost[i][j] != Int.MAX_VALUE) return cost[i][j]

val s = sum(freq, i, j)

for (r in i..j) {

cost[i][j] = Math.min(cost[i][j], 

optBstCostTD(freq,cost,i,r-1) + optBstCostTD(freq,cost,r+1,j) + s
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)

}

return cost[i][j]

}

fun sum(freq: IntArray, i: Int, j: Int): Int {

var s = 0

for (k in i..j) s += freq[k]

return s

}

// Testing code. 

fun main() {

val freq = intArrayOf(30, 10, 40)

println("OBST cost:" + optBstCostTD(freq))

}

Output:

OBST cost:130

Example 18.20: Bottom-Up implementation:

fun optBstCostBU(freq: IntArray): Int {

val n = freq.size

val cost = Array(n) { IntArray(n){Int.MAX_VALUE} }

for (i in 0 until n) cost[i][i] = freq[i]

for (l in 1 until n) { // l is length of range. 

var i = 0

var j: Int = i + l

while (j < n) {

var sm = sum(freq, i, j)

for (r in i..j) {

cost[i][j] = Math.min(

cost[i][j], 

sm + (if (r - 1 >= i) cost[i][r - 1] else 0) + if (r + 1 <= j) cost[r + 1][j] else 0

)

}

i++

j++

}

}

return cost[0][n - 1]

}

Time-complexity: O(n^3)

BST with minimum non-leaf nodes sum

Problem: Given an array of positive integers corresponds to the value of leaf node in a binary tree. 

The value of a non-leaf node is equal to the product of the largest leaf value of the left and right subtree. Among all the possible binary trees, return the smallest possible sum of the values of the non-leaf node. 
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Solution: The recurrence relation for the problem is:

findSum(i,j)= Min( findSum(i,k) + findSum(k+1,j) + maxVal(i,k)* maxVal(k+1,j)) We need to create two arrays, the first dp[][] array to keep the value of the various nodes of the tree. 

Along with this, we need another array max[][] which will store the max of the left of that subtree. 

Example 18.21: Top-Down approach to solve the problem

fun minCostBstTD(arr: IntArray): Int {

val n = arr.size

val dp = Array(n) { IntArray(n){Int.MAX_VALUE} }

val max = Array(n) { IntArray(n){Int.MIN_VALUE} }

for (i in 0 until n) max[i][i] = arr[i]

return minCostBstTD(dp, max, 0, n - 1, arr)

}

fun minCostBstTD(dp: Array<IntArray>, max: Array<IntArray>, i: Int, j: Int, arr: IntArray?): Int {

if (j <= i) return 0

if (dp[i][j] != Int.MAX_VALUE) return dp[i][j]

for (k in i until j) {

dp[i][j] = Math.min( dp[i][j], 

minCostBstTD(dp, max, i, k, arr) +

minCostBstTD(dp, max, k + 1, j, arr) +

maxVal(max,i,k) * maxVal(max, k + 1, j))

}

return dp[i][j]

}

fun maxVal(max: Array<IntArray>, i: Int, j: Int): Int {

if (max[i][j] != Int.MIN_VALUE) return max[i][j]

for (k in i until j) {

max[i][j] =

Math.max(max[i][j], Math.max(maxVal(max, i, k), maxVal(max, k + 1, j)))

}

return max[i][j]

}

Example 18.22: Bottom-Up approach to solve problem:

fun minCostBstBU(arr: IntArray): Int {

val n = arr.size

val dp = Array(n) { IntArray(n) }

val max = Array(n) { IntArray(n) }

for (i in 0 until n) max[i][i] = arr[i]

for (l in 1 until n) { // l is length of range. 

var i = 0

var j: Int = i + l

while (j < n) {

dp[i][j] = Int.MAX_VALUE

for (k in i until j) {

dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k + 1][j] + max[i][k] *

max[k + 1][j])

max[i][j] = Math.max(max[i][k], max[k + 1][j])

}

i++

j++

}
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}

return dp[0][n - 1]

}

// Testing code. 

fun main() {

val arr = intArrayOf(6, 2, 4)

println("Total cost: " + minCostBstTD(arr))

println("Total cost: " + minCostBstBU(arr))

}

Output:

Total cost: 32

Total cost: 32

Time Complexity: O(n^3) 

Type 4 : Subsequence, Substrings and String Manipulation problems

In this type of problem, sometimes a single string or array is given, and you need to find some pattern inside it. Or you may be given two strings or arrays, and you need to get some pattern out of it. 

Type1 : Increasing or decreasing subsequence or substring in a given string. 

for (i in 0 until n) {

for (j in 0 until i) {

// incremental found pattern of sub-problem. 

}

}

Type2 : Largest substring or subsequence in a given string. 

for (l in 1 until n) {  // Range. 

var i = 0

var j: Int = i + l

while (j < n) {

// incremental calculation of sub-problem

// with increasing range. 

i++

j++

}

}

Type3 : Comparison of two different strings. 

for (i in 1..m) { // First string index. 

for (j in 1..n) { // Second string index. 

// Comparison of two strings. 

}

}
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Largest Increasing Subsequence

Problem: Given an array of integers, you need to find the largest subsequence in increasing order. 

You need to find the largest increasing sequence by selecting the elements from the given array such that their relative order does not change. 

Input  V = [10, 12, 9, 23, 25, 55, 49, 70]

Output will be 6 corresponds to [10, 12, 23, 25, 49, 70]

Solution: Optimal Substructure for this problem:

LIS(k) = max (LIS(k), LIS(j) + 1, where 0<j<k & v[j]<v[k]) where 0 < k < n Keep populating the LIS[] array to create the Largest Increasing Subsequence. 

function LIS(v[], n)

for i ← 1 to n do

lis[i] ← 1

for j ← 1 to i do

if v[j] < v[i] and lis[i] < lis[j]+1 then

lis[i] ← lis[j] +1

return max (length[i] where 1≤i≤n)

Time Complexity: O(n^2), Space Complexity: O(n). 

Example 18.23:

fun lis(arr: IntArray): Int {

val n = arr.size

val lis = IntArray(n)

var max = 0

// Populating LIS values in bottom up manner. 

for (i in 0 until n) {

lis[i] = 1 // Initialize LIS values for all indexes as 1. 

for (j in 0 until i) {

if (arr[j] < arr[i] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1

}

if (max < lis[i]) // Max LIS values. 

max = lis[i]

}

return max

}

// Testing code. 

fun main() {

val arr = intArrayOf(10, 12, 9, 23, 25, 55, 49, 70)

println("Length of lis is " + lis(arr))

}

Output:

Length of lis is 6
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Longest Bitonic Subsequence

Problem: Given an array, you need to find the longest bitonic subsequence. 

Solution:  Largest bitonic  subsequence  is the addition of the  longest  increasing  subsequence  and longest decreasing subsequence. 

Optimal Substructure is

LBS = Max( LIS(i) + LDS(i) - 1 ) where i range from 0 to n. 

LIS( Largest increasing subsequence) and LDS(Largest decreasing subsequence) are created. 

function LBS(arr )

maxValue = 0

size = len(arr)

lis = [1]*size

lds = [1]*size

for i in range(size)

for j in range(i)

if arr[j] < arr[i] and lis[i] < lis[j] + 1

lis[i] = lis[j] + 1

for i in reversed(range(size))

for j in reversed(range(i, size))

if arr[j] < arr[i] and lds[i] < lds[j] + 1

lds[i] = lds[j] + 1

for i in range(size)

maxValue = max((lis[i] + lds[i] - 1), maxValue)

return maxValue

Example 18.24:

fun lbs(arr: IntArray): Int {

val n = arr.size

val lis = IntArray(n){1} // Initialize LIS values for all indexes as 1. 

val lds = IntArray(n){1} // Initialize LDS values for all indexes as 1. 

var max = 0

// Populating LIS values in bottom up manner. 

for (i in 0 until n) {

for (j in 0 until i) {

if (arr[j] < arr[i] && lis[i] < lis[j] + 1) lis[i] = lis[j] + 1

}

}

// Populating LDS values in bottom up manner. 

for (i in n - 1 downTo 1) {

for (j in n - 1 downTo i + 1) {

if (arr[j] < arr[i] && lds[i] < lds[j] + 1) lds[i] = lds[j] + 1

}

}

for (i in 0 until n) {

527

Chapter 18: Dynamic Programming 

Type 4 : Subsequence, Substrings and String

Manipulation problems

max = Math.max(max, lis[i] + lds[i] - 1)

}

return max

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 6, 3, 11, 1, 9, 5, 12, 3, 14, 6, 17, 3, 19, 2, 19) println("Length of lbs is " + lbs(arr))

}

Output:

Length of lbs is 8

Time Complexity: O(n^2)

Longest Palindromic Subsequence

Problem: Given a string s, find the longest palindromic subsequence length in s. A Subsequence is a sequence  that   can  be  derived   from   another  sequence  by  deleting   some   or  no   elements   without changing the order of the remaining elements. 

Solution: Recurrence Relation of the problem is:

PalindromicSubSeq(i,j) = {PalindromicSubSeq(i-1, j-1) + 2     if char(i) == char(j) max(PalindromicSubSeq(i+1, j), PalindromicSubSeq(i, j-1))

Where i = 0 to n, and i<j<n. 

Example 18.25:

fun largestPalindromicSubseq(str: String): Int {

val n = str.length

val dp = Array(n) { IntArray(n) }

for (i in 0 until n)  // each char is itself palindromic with length 1

dp[i][i] = 1

for (l in 1 until n) {

var i = 0

var j: Int = l

while (j < n) {

if (str[i] == str[j]) dp[i][j] = dp[i + 1][j - 1] + 2 else dp[i][j] = 

Math.max(

dp[i + 1][j], 

dp[i][j - 1]

)

i++

j++

}

}

return dp[0][n - 1]

}

// Testing code. 

fun main() {

val str = "ABCAUCBCxxCBA" 

println("Largest Palindromic Subseq: " + largestPalindromicSubseq(str)) 528
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}

Output:

Largest Palindromic Subseq: 9

Time Complexity: O(n^2)

Longest Palindromic Substring

Problem: Given a string s, find the longest palindromic substring length in s. A Substring is a string that is part of a longer string. 

Solution: Recurrence Relation of the problem is:

PalSubStr(i,j) = {PalSubStr(i−1 ,j−1)+2 where char(i)=char(j) & length(substring(i−1 , j−1)) is i+j−1

0   a

∈ ll other case

where i = 0 to n, and i<j<n. 

Example 18.26:

fun largestPalinSubstr(str: String): Int {

val n = str.length

val dp = Array(n) { IntArray(n) }

for (i in 0 until n) dp[i][i] = 1

var max = 1

var start = 0

for (l in 1 until n) {

var i = 0

var j: Int = i + l

while (j < n) {

if (str[i] == str[j] && dp[i + 1][j - 1] == j - i - 1) {

dp[i][j] = dp[i + 1][j - 1] + 2

if (dp[i][j] > max) {

max = dp[i][j] // Keeping track of max length and

start = i // starting position of sub-string. 

}

} else {

dp[i][j] = 0

}

i++

j++

}

}

println("Max Length Palindromic Substrings : " + str.substring(start, start + 

max))

return max

}

// Testing code. 

fun main() {

val str = "ABCAUCBCxxCBA" 

println("Max Palindromic Substrings len: " + largestPalinSubstr(str))

}
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Output:

Max Length Palindromic Substrings : BCxxCB

Max Palindromic Substrings len: 6

Time Complexity: O(n^2)

Longest Common Subsequence

Problem: Given X = {x1, x2,…., xm} is a sequence of characters and Y = {y1, y2,…, yn} is another sequence. Z is a subsequence of X if it can be driven by deleting some elements of X. Z is a subsequence of Y if it can be driven by deleting some elements from Y. Z is the Longest Common Subsequence, if it is subsequence to both X and Y, and length of all the subsequences is less than Z. 

Find the longest common subsequence Z given X and Y. 

Solution: Optimal Substructure of the problem

Let X = < x1, x2, ..., xm > and Y = < y1, y2, ..., yn > be two sequences, and let Z = < z1, z2, ..., zk > be a LCS of X and Y. 

➢ If xm = yn, then zk = xm = yn   

⇒ Zk−1 is a LCS of Xm−1 and Yn−1

➢ If xm != yn, then:

◦ zk != xm   

⇒ Z is an LCS of Xm−1 and Y. 

◦ zk != yn   

⇒ Z is an LCS of X and Yn−1. 

Recurrence relation, Let c[i, j] be the length of the longest common subsequence between X = {x1, x2, 

…., xi} and Y = {y1, y2,…, yj}.  Then c[n, m] contains the length of an LCS of X and Y

c[i][j] ={0    if i = 0 or j = 0 

c[i - 1][j - 1]  + 1    if  i , j  >  0 and  xi = yi

max ( c[i-1][j],  c[i][j-1])  otherwise 

function LCS(X[], m, Y[], n)

Initialise dp[m][n]

for i = 1 to m 

dp[i][0] = 0 

for j = 1 to n 

dp[0][j] = 0; 

for i = 1 to m

for j = 1 to n

if X[i] == Y[j]

dp[i][j] = dp[i-1][j-1] + 1

p[i][j] = ↖

else

if dp[i-1][j] ≥ dp[i][j-1]

dp[i][j] = dp[i-1][j]

p[i][j] = ↑

else

dp[i][j] = dp[i][j-1]

p[i][j] = ←
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function printLCS(p[],X[], i, j)

if i = 0 or j = 0 

return

if p[i][j] = ↖

printLCS (p[],X[], i − 1, j − 1)

print X[i]

else if p[i][j] = ↑

printLCS (p[],X[], i − 1, j)

else

printLCS (p[],X[], i, j − 1)

Example 18.27:

fun LCSubSeq(st1: String, st2: String): Int {

val X: CharArray = st1.toCharArray()

val Y: CharArray = st2.toCharArray()

val m = st1.length

val n = st2.length

val dp = Array(m + 1) { IntArray(n + 1) } // Dynamic programming array. 

val p = Array(m + 1) { IntArray(n + 1) } // For printing the substring. 

// Fill dp array in bottom up fashion. 

for (i in 1..m) {

for (j in 1..n) {

if (X[i - 1] == Y[j - 1]) {

dp[i][j] = dp[i - 1][j - 1] + 1

p[i][j] = 0

} else {

dp[i][j] = if (dp[i-1][j] > dp[i][j-1]) dp[i-1][j] else dp[i][j-1]

p[i][j] = if (dp[i-1][j] > dp[i][j-1]) 1 else 2

}

}

}

PrintLCS(p, X, m, n)

return dp[m][n]

}

fun PrintLCS(p: Array<IntArray>, X: CharArray, i: Int, j: Int) {

if (i == 0 || j == 0) return

if (p[i][j] == 0) {

PrintLCS(p, X, i - 1, j - 1)

print(X[i - 1])

} else if (p[i][j] == 1) PrintLCS(p, X, i - 1, j) else PrintLCS(p, X, i, j - 1)

}

// Testing code. 

fun main() {

val X = "carpenter" 

val Y = "sharpener" 

println(LCSubSeq(X, Y))

}

Output:

arpener

7

Time Complexity: O(n^2)
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Edit Distance

Problem: Given two strings s1 and s2, find the minimum number of operations required to convert s1

to s2. The available operations are “Insert a character”, “Delete a character” or “Replace a character”. 

Solution: To convert one string to another, there are a few cases to consider: 1 If any string is empty, then empty the other string. 

2 If the last characters of both strings are the same, ignore the last characters. 

3 If the last characters are not the same, consider all three operations:

• Insert the last char of second into first. 

• Remove the last char of the first. 

• Replace the last char of the first with the second. 

Recurrence Relation is 

editDist(str1,str2,m,n) = {n                 if m = 0 

m                if n = 0

editDist(str1, str2, m-1, n-1)    if char(m) == char(n)

1 + min(editDist(str1, str2, m, n-1), editDist(str1, str2, m-1, n), 

editDist(str1, str2, m-1, n-1))            otherwise

where m is index of str1 and n is index of str2

Example 18.28

fun editDistDP(str1: String, str2: String): Int {

val m = str1.length

val n = str2.length

val dp = Array(m + 1) { IntArray(n + 1) }

// Fill dp[][] in bottom up manner. 

for (i in 0..m) {

for (j in 0..n) {

// If any one string is empty, then empty the other string. 

if (i == 0 || j == 0) dp[i][j] = i + j 

else if (str1[i - 1] == str2[j - 1]) dp[i][j] = dp[i - 1][j - 1] 

else dp[i][j] = 1 + min( dp[i][j - 1],  // Insert

dp[i - 1][j],  // Remove

dp[i - 1][j - 1]) // Replace 

}

}

return dp[m][n]

}

// Testing code. 

fun main() {

val str1 = "sunday" 

val str2 = "saturday" 

println(editDistDP(str1, str2))

}

Output:

3
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Time Complexity: O(n^2)

Regular Expression Matching

Problem: Implement regular expression matching with the support of ‘?’ and ‘*’ special characters. 

‘?’ Matches any single character. 

‘*’ Matches zero or more of the preceding elements. 

First Solution: Backtracking approach, traverse both the pattern and input string. 

➢ If we see a '?' in pattern, then it can match with any character of the input string. To traverse the next characters of both pattern and input string. 

➢ If we see a '*' in pattern, then there are two cases

➢ We ignore the '*' character and consider the next character in the pattern. 

➢ We ignore one character in the input str and consider the next character. 

➢ If both the pattern and input string are traversed to the end, then return match. 

➢ If one of the patterns or input strings is reached to end and other not then return unmatched. 

Example 18.29:

fun matchExp(exp: String, str: String): Boolean {

return matchExpUtil(exp.toCharArray(), str.toCharArray(), 0, 0)

}

fun matchExpUtil(exp: CharArray, str: CharArray, m: Int, n: Int): Boolean {

if (m == exp.size && (n == str.size || exp[m - 1] == '*')) {

return true

}

if ((m == exp.size && n != str.size || m != exp.size) && n == str.size) {

return false

}

if (exp[m] == '?' || exp[m] == str[n]) {

return matchExpUtil(exp, str, m + 1, n + 1)

}

if (exp[m] == '*') {

return matchExpUtil(exp, str, m + 1, n) || matchExpUtil(exp, str, m, n + 1)

} 

return false

}

// Testing code. 

fun main() {

println("matchExp :: " + matchExp("*llo,?World?", "Hello, World!"))

}

Output:

matchExp ::true

Time complexity: O(2^n) since T(n) ≈ 2T(n-1) + 1, where n is the number of elements in str. 
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Second Solution: Dynamic Programming, Let T[i][j] be true if the first i characters in a given pattern matches the first j characters of the input string. 

1. The 0th row will always be false, as empty expressions can’t match with any input string. 

2. * can match with an empty input string, so column 0 is updated accordingly. 

3. Now process and fill the rest of the dynamic programming array. 

4. If we see a '?' in pattern, then it can match with any character of the input string. To traverse the next characters of both pattern and input string. 

5. If we see a '*' in pattern, then there are two cases

o We ignore the '*' character and consider the next character in the pattern. 

o We ignore one character in the input str and consider the next character. 

6. If both the pattern and input string are traversed to the end, then return match. 

7. If one of the pattern or input string is reached to end and other not then return unmatched. 

Example 18.30:

fun matchExpDP(exp: String, str: String): Boolean {

return matchExpUtilDP(exp.toCharArray(), str.toCharArray(), exp.length, str.length)

}

fun matchExpUtilDP(exp: CharArray, str: CharArray, m: Int, n: Int): Boolean {

val lookup = Array(m + 1) {

BooleanArray(

n + 1

)

}

lookup[0][0] = true // empty exp and empty str match. 

// 0 row will remain all false. empty exp can't match any str. 

// '*' can match with empty string, column 0 update. 

for (i in 1..m) {

if (exp[i - 1] == '*') lookup[i][0] = lookup[i - 1][0] else break

}

// Fill the table in bottom-up fashion

for (i in 1..m) {

for (j in 1..n) {

// If we see a '*' in pattern:

// 1) We ignore '*' character and consider next character in the pattern. 

// 2) We ignore one character in the input str and consider next character. 

if (exp[i - 1] == '*') {

lookup[i][j] = lookup[i - 1][j] || lookup[i][j - 1]

} else if (exp[i - 1] == '?' || str[j - 1] == exp[i - 1]) {

lookup[i][j] = lookup[i - 1][j - 1]

} else {

lookup[i][j] = false

}

}

}

return lookup[m][n]

}

Time complexity:  T(n)=O(m*n), where n is the length of a text string and m is the length of the pattern. 
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Type 5 : State Selection kind of problems

We need to reach at some final state. To create a current state you need to decide which previous state needs to be used. We need to choose the previous states which gives the best result. 

Solution of State-Selection problems will look something like this:

fun BottomUpFunction(costs: IntArray): Int {

val n = costs.size

val dp = Array(n) { IntArray(2) }

/* Initialization of 0th state of various types.*/

dp[0][1] =  /* Initialization value */

dp[0][0] =  /* Initialization value */

for (i in 1 until n) {

dp[i][1] =  /*Max values based on previous states.*/

dp[i][0] =  /*Max values based on previous states.*/

}

return Math.max(dp[n-1][1], dp[n-1][0])

}

Assembly Line Scheduling

Problem: Calculate the least amount of time necessary to build a car when using a manufacturing chain with two assembly lines. The problem variables:

1. e[i]: entry time in assembly line i

2. x[i]: exit time from assembly line i

3. a[i, j]: Time required at station S[i, j] (assembly line i, stage j)

4. t[i, j]: Time required to transit from station S[i, j] to the other assembly line Solution: This program must calculate:

1. The least amount of time needed to build a car 

2. The array of stations to traverse to assemble a car as fast as possible. 

The manufacturing chain will have no more than 50 stations. 
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If   we   want   to   solve   this   problem  in   the   brute   force   approach,   there   will   be   in   total   2n  Different combinations, so the Time complexity is O(2n)

Step 1: Characterising the class of the optimal solution

To calculate the fastest assembly time, we only need to know the fastest time to S1n and the fastest time to S2n, including the assembly time for the nth part. Then we choose between the two exit points by taking into consideration the extra time required, x1 and x2.  To compute the fastest time to S1n we only need to know the fastest time to S1n-1 and to S2n-1. Then there are only two choices. 

Step 2: A recursive definition of the values to be computed

f1[j] = {

 e 1 +  a 1[1]  if j=1

 min ( f  1[  j− 1] +  a 1[  j]  , f  2[  j− 1] +  t  2[  j − 1] +  a 1[  j]) f2[j] = {

 e 2 +  a 2[1]  if j=1

 min ( f  2[  j− 1] +  a 2[  j ] , f  1[  j− 1] +  t  1[  j − 1] +  a 2[  j]) Step 3: Computing the fastest time finally, compute f* as

Step 4: Computing the fastest path computes li[j] as the choice made for fi[j] (whether the first or the second term gives the minimum). Also, compute the choice for f* as l*. 

function FASTESTWAY(a, t, e, x, n)

f1[1] ← e1 + a1[1]

f2[1] ← e2 + a2[1]

for j ← 2 to n do

f1[j] ← min( f1[j-1] + a1[j], f2[j-1] + t2[j-1] + a1[j]) 

f2[j] ← min( f2[j-1] + a2[j], f1[j-1] + t1[j-1] + a2[j])

return min(f1[n] + x1, f2[n] + x2)

Example 18.31:

fun fastestWayBU(a: Array<IntArray>, t: Array<IntArray>, e: IntArray, x: IntArray, n: Int): Int {

val f = Array(2) { IntArray(n) }

// Time taken to leave first station. 

f[0][0] = e[0] + a[0][0]

f[1][0] = e[1] + a[1][0]

// Fill the tables f1[] and f2[] using

// bottom up approach. 

for (i in 1 until n) {

f[0][i] = Math.min(f[0][i-1] + a[0][i], f[1][i-1] + t[1][i-1] + a[0][i])

f[1][i] = Math.min(f[1][i-1] + a[1][i], f[0][i-1] + t[0][i-1] + a[1][i])

}

// Consider exit times and return minimum. 

return Math.min(f[0][n - 1] + x[0], f[1][n - 1] + x[1])

}
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// Testing code. 

fun main() {

val a = arrayOf(intArrayOf(7, 9, 3, 4, 8, 4), intArrayOf(8, 5, 6, 4, 5, 7)) val t = arrayOf(intArrayOf(2, 3, 1, 3, 4), intArrayOf(2, 1, 2, 2, 1)) val e = intArrayOf(2, 4)

val x = intArrayOf(3, 2)

val n = 6

println(fastestWayBU(a, t, e, x, n))

}

Output:

38

Time Complexity: O(n)

0/1 Knapsack

Problem: Given an item with cost C1, C2,..., Cn, and volume V1, V2,..., Vn and knapsack of capacity Vmax, find the most valuable (max ∑Cj) that fits in the knapsack (∑Vj  ≤ Vmax). 

Solution 1: Brute-force algorithm, In this approach, we will consider all the combinations for which each element is included or not included. 

Example 18.32: Brute-force algorithm to solve 0/1 knapsack problem. 

fun maxCost01Knapsack(wt: IntArray, cost: IntArray, capacity: Int): Int {

val n = wt.size

return maxCost01KnapsackUtil(wt, cost, n, capacity)

}

fun maxCost01KnapsackUtil(wt: IntArray, cost: IntArray, n: Int, capacity: Int): Int

{    // Base Case

if (n == 0 || capacity == 0) return 0

// Return the maximum of two cases:

// (1) nth item is included

// (2) nth item is not included

var first = 0

if (wt[n - 1] <= capacity) first = cost[n - 1] + maxCost01KnapsackUtil(wt, cost, n - 1, capacity - wt[n - 1])

val second = maxCost01KnapsackUtil(wt, cost, n - 1, capacity)

return Math.max(first, second)

}

// Testing code. 

fun main() {

val wt = intArrayOf(10, 40, 20, 30)

val cost = intArrayOf(60, 40, 90, 120)

val capacity = 50

var maxCost = maxCost01Knapsack(wt, cost, capacity).toDouble()

println("Maximum cost obtained = $maxCost")

}

Output:

Maximum cost obtained = 210.0
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Time complexity: T(n) ≈ 2T(n-1) + 1. the time complexity will be O(2^n) Solution 2: Dynamic Programming Approach, In this approach, we will create a dp array dp[][] with the size of capacity x item index. We will maximise the cost that can be generated in a given weight capacity with the first i elements. 

Example 18.33: Top-down dynamic programming approach to solve 0/1 knapsack problem. 

fun maxCost01KnapsackTD(wt: IntArray, cost: IntArray, capacity: Int): Int {

val n = wt.size

val dp = Array(capacity + 1) { IntArray(n + 1) }

return maxCost01KnapsackTD(dp, wt, cost, n, capacity)

}

fun maxCost01KnapsackTD(dp: Array<IntArray>, wt: IntArray, cost: IntArray, i: Int, w: Int): Int {

if (w == 0 || i == 0) return 0

if (dp[w][i] != 0) return dp[w][i]

// Their are two cases:

// (1) ith item is included

// (2) ith item is not included

var first = 0

if (wt[i - 1] <= w) first = maxCost01KnapsackTD(dp, wt, cost, i - 1, w - wt[i -

1]) + cost[i - 1]

val second = maxCost01KnapsackTD(dp, wt, cost, i - 1, w)

return Math.max(first, second).also { dp[w][i] = it }

}

Example 18.34: Bottom-Up dynamic programming approach to solve 0/1 knapsack problem. 

fun maxCost01KnapsackBU(wt: IntArray, cost: IntArray, capacity: Int): Int {

val n = wt.size

val dp = Array(capacity + 1) { IntArray(n + 1) }

// Build table dp[][] in bottom up approach. 

// Weights considered against capacity. 

for (w in 1..capacity) {

for (i in 1..n) {

// Their are two cases:

// (1) ith item is included

// (2) ith item is not included

var first = 0

if (wt[i - 1] <= w) first = dp[w - wt[i - 1]][i - 1] + cost[i - 1]

val second = dp[w][i - 1]

dp[w][i] = Math.max(first, second)

}

}

printItems(dp, wt, cost, n, capacity)

return dp[capacity][n] // Number of weights considered and final capacity. 

}

fun printItems(dp: Array<IntArray>, wt: IntArray, cost: IntArray, n: Int, capa: Int) {

var capacity = capa

var totalCost = dp[capacity][n]

print("Selected items are:")

for (i in n - 1 downTo 1) {
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if (totalCost != dp[capacity][i - 1]) {

print(" (wt:" + wt[i] + ", cost:" + cost[i] + ")") capacity -= wt[i]

totalCost -= cost[i]

}

}

}

// Testing code. 

fun main() {

val wt = intArrayOf(10, 40, 20, 30)

val cost = intArrayOf(60, 40, 90, 120)

val capacity = 50

var maxCost = maxCost01KnapsackBU(wt, cost, capacity).toDouble()

println("Maximum cost obtained = $maxCost")

}

Output:

Selected items are: (wt:30, cost:120) (wt:20, cost:90)

Maximum cost obtained = 210.0

Time complexity: O(W*N), where w is the weight capacity and N is the number of objects. 

House Robber

Problem: A robber wants to rob houses along a certain street. He has a rule that he doesn't rob from adjacent houses. Given an integer array representing the amount of money in each house. You need to return the maximum amount of money the robber can rob without breaking his rule. 

Solution:  We can have two  kinds  of states  in which  ith house is not included and the ith house is included. 

If the ith house is included then (i-1)th house cannot be included. 

If the ith house is not included then (i-1)th house can be included / it's optional. 

Example 18.35:

fun maxRobbery2(house: IntArray): Int {

val n = house.size

val dp = Array(n) { IntArray(2) }

dp[0][1] = house[0]

dp[0][0] = 0

for (i in 1 until n) {

dp[i][1] = Math.max(dp[i - 1][0] + house[i], dp[i - 1][1])

dp[i][0] = dp[i - 1][1]

}

return Math.max(dp[n - 1][1], dp[n - 1][0])

}

// Testing code. 

fun main() {

val arr = intArrayOf(10, 12, 9, 23, 25, 55, 49, 70)

println("Total cash: " + maxRobbery2(arr))

}
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Output:

Total cash: 160

Time Complexity: O(n)

Exercise

1. Given number of elements n, display the fibonacci series with n elements. Create a linear time algorithm using both top-down and bottom-up approaches. 

2. In the 0/1 knapsack problem, repetition of objects is allowed to solve the unbounded 0/1

knapsack problem. 

3. In the coin change problem discussed before, write the code of printing coins selected. 

Take help from algorithms given with coin selection problems. 

4. Similarly in climbing stairs, the problem is finding which all stairs are used. 

5. In the Grid min value path problem, modify the solution such that diagonal movement is also allowed. 

6. Generalised the min-cost travel problem such that the costs[] can take another array numDays[]

which are the number of days corresponding to the ticket cost. 

7. Implement printing Fibonacci series with the help of a few variables. Don’t use arrays. 

8. In the Optimal Binary Search tree problem, write a function to print OBST. 

9. In the Matrix Chain Multiplication problem, print the Matrix parenthesized. 

10. In BST with minimum non-leaf node problems, print the tree. 

11. Implement the Largest Increasing Substring. Also, implement The Largest Bitonic Substring. 
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In the Backtracking approach, In each step of creating an answer, it is checked if this step satisfies the given conditions. If it does satisfy constraints, then continue generating the rest of the solution. If constraints are not satisfied, then we backtrack one step to check for another solution. 

The way backtracking works is that we build up a solution step-by-step. Sometimes we realise that our current state isn’t going to get us to the desired solution, in which case we ‘backtrack’ by going back a few steps. So we just undo the last few steps until our desired criteria are again met, and continue building our solution by making different choices this time. 

Backtracking problems have the following components:

1. Initial state

2. Target / Goal state

3. Intermediate states

4. The path from the initial state to the target/goal state

5. Operators to get from one state to another

6. Pruning function

The solving process of the backtracking algorithm starts with the construction of a state's tree, whose nodes represent the states. The root node is the initial state and one or more leaf nodes will be our target state. Each edge of the tree represents some operation. The solution is obtained by searching the tree until a Target state is found. 

Backtracking uses depth-first search:

1. Store the initial state in a stack

2. While the stack is not empty, repeat:

3. Read a node from the stack. 

4. While there are available operators, do:

• Apply an operator to generate a child

• If the child is a goal state – return solution

• If it is a new state and the pruning function does not discard it, then push the child into the stack. 
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Problems on Backtracking Algorithm

All permutations of an integer list

Problem: Generate all permutations of an integer array. 

Solution: At each level of recursion, every element is positioned at the first position and the rest of the array is passed recursively to produce permutation of the rest part. When one element is completely processed then put it back to its original position. This solution is both brute-force and backtracking as a constraint is not there. 

Example 19.01:

fun permutation(arr: IntArray, i: Int, length: Int) {

if (length == i) {

printArray(arr, length)

return

}

for (j in i until length) {

swap(arr, i, j)

permutation(arr, i + 1, length)

swap(arr, i, j)

}

return

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4)

permutation(arr, 0, 4)

}

Output:

1 2 3 4 

1 2 4 3 

.... 

4 1 3 2 

4 1 2 3 

Analysis: In the permutation method, at each recursive call number at index, “i” is swapped with all the numbers that are right of it. Since the number is swapped with all the numbers in its right one by one, it will produce all the permutations possible. 

Time Complexity: O(n!), where n is the number of integers. 

All permutations with constraints

Problem: Generate all permutations of an integer array. Such that no two consecutive digits have an absolute difference less than 2. 

Hint: This is the same as the previous problem, but we have an extra constraint that the absolute difference of two consecutive digits should be greater than or equal to 2. 
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Brute-force Solution: All the different permutations are created and at the end, before printing them, it is checked that they satisfy the given constraint. 

Example 19.02:

fun isValid(arr: IntArray, n: Int): Boolean {

for (j in 1 until n) {

if (java.lang.Math.abs(arr[j] - arr[j - 1]) < 2) return false

}

return true

}

fun permutation2(arr: IntArray, i: Int, length: Int) {

if (length == i) {

if (isValid(arr, length)) printArray(arr, length)

return

}

for (j in i until length) {

swap(arr, i, j)

permutation2(arr, i + 1, length)

swap(arr, i, j)

}

return

}

// Testing code. 

fun main() {

val arr = intArrayOf(1, 2, 3, 4)

permutation2(arr, 0, 4)

}

Output:

2 4 1 3 

3 1 4 2

Analysis: All permutations are created and before printing the constraint is checked. 

Time Complexity: O(n!), where n is the number of integers. 

Backtracking Solution:  While creating various solutions at each  step,  constraint is checked and further state space is traversed only if the constraint is met. 

Example 19.03:

fun isValid2(arr: IntArray, i: Int): Boolean {

return if (i < 1 || java.lang.Math.abs(arr[i] - arr[i - 1]) >= 2) true else false

}

fun permutation3(arr: IntArray, i: Int, length: Int) {

if (length == i) {

printArray(arr, length)

return

}

for (j in i until length) {

swap(arr, i, j)

if (isValid2(arr, i)) permutation3(arr, i + 1, length)

swap(arr, i, j)
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}

return

}

Analysis: All permutations are created step-by-step and before adding any number to the permutation it is checked if it results in a valid permutation satisfying the constraint. While creating a solution, if an invalid condition is found then it is reverted. 

Time Complexity: O(n!), where n is the number of integers. 

N Queens Problem

Problem: There are N queens given, you need to arrange them in a chessboard on NxN such that no queen should attack each other. 

Solution:  Since the queen  can attach horizontally, diagonally. Queens are added one by one, for horizontally we can make sure that no two queens are in the same row. The conditions that need to be made sure that the new queen added are in different columns and not diagonally attacking. 

Example 19.04:

fun nQueens(Q: IntArray, k: Int, n: Int) {

if (k == n) {

print(Q, n)

return

}

for (i in 0 until n) {

Q[k] = i

if (feasible(Q, k)) {

nQueens(Q, k + 1, n)

}

}

}

fun feasible(Q: IntArray, k: Int): Boolean {

for (i in 0 until k) {

if (Q[k] == Q[i] || java.lang.Math.abs(Q[i] - Q[k]) == java.lang.Math.abs(i

- k)) {

return false

}

}

return true

}

fun print(Q: IntArray, n: Int) {

for (i in 0 until n) {

print(" " + Q[i])

}

println(" ")

}

// Testing code. 

fun main() {

val Q = IntArray(8)

nQueens(Q, 0, 8)

}
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Output:

0 4 7 5 2 6 1 3 

0 5 7 2 6 3 1 4 

.... 

7 2 0 5 1 4 6 3 

7 3 0 2 5 1 6 4 

Analysis:  The recurrence relation is T(n) = n*T(n-1) + O(n^2). Time complexity will be O(n^n) Tower of Hanoi

Problem: In the Tower of Hanoi, we are given three rods and N number of disks, initially all the disks are added to the first rod (the leftmost one) such that no smaller disk is under the larger one. The objective is to transfer the entire stack of disks from the first tower to the third tower (the rightmost one), moving only one disk at a time. Moving a larger disk onto a smaller one is not allowed. 

Solution: If we want to transfer N disks from source to destination tower. Let's consider the bottom-most disk, it is the largest disk so can not be placed to any other tower except the destination tower. 

Also, all the disks above the largest disk need to be placed in the temporary tower then only the largest disk can be moved to the destination tower. So we move N-1 disks from source to temporary tower and then move the lowest Nth disk from source to destination. Then we will move N-1 disks from the temporary tower to the destination tower. 



Example 19.05:

fun toh(num: Int) {

println("Moves involved in the Tower of Hanoi are :")

tohUtil(num, 'A', 'C', 'B')

}

fun tohUtil(num: Int, from: Char, to: Char, temp: Char) {

if (num < 1) {

return

}

tohUtil(num - 1, from, temp, to)

println("Move disk $num from peg $from to peg $to")

tohUtil(num - 1, temp, to, from)

}

545

Chapter 19: Backtracking 

Problems on Backtracking Algorithm

// Testing code. 

fun main() {

toh(3)

}

Output:

Moves involved in the Tower of Hanoi are :

Move disk 1 from peg A to peg C

Move disk 2 from peg A to peg B

Move disk 1 from peg C to peg B

Move disk 3 from peg A to peg C

Move disk 1 from peg B to peg A

Move disk 2 from peg B to peg C

Move disk 1 from peg A to peg C

Analysis: Recurrence Relation will be T(n) = 2*T(n-1) + 1. So the final time complexity will be O(2^n). 

Graph Colouring Problem

Problem: Graph colouring is the procedure of assignment of colours to each vertex of a graph G such that no adjacent vertices  get the same  colour. The objective is to minimise the number of colours while colouring a graph. 

Brute-force solution: Various colours are assigned to all the nodes one by one. When all the nodes are coloured, then the constraint checking function isSafe2() is used to check if a colour assignment is correct or not.  This is the brute force approach as various permutations of colours are assigned, and then it is checked if criteria are fulfilled or not. 

Example 19.06:

fun printSolution(colour: IntArray, V: Int) {

print("Assigned colours are::")

for (i in 0 until V) 

print(" " + colour[i])

println()

}

// Check if the whole graph is coloured properly. 

fun isSafe2(graph: Array<BooleanArray>, colour: IntArray, V: Int): Boolean {

for (i in 0 until V) 

for (j in i + 1 until V) 

if (graph[i][j] && colour[j] == colour[i]) 

return false

return true

}

fun graphColouring2(graph: Array<BooleanArray>, V: Int, m: Int, colour: IntArray, i: Int): Boolean {

if (i == V) {

if (isSafe2(graph, colour, V)) {

printSolution(colour, V)

return true

}

return false
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}

// Assign each colour from 1 to m

for (j in 1..m) {

colour[i] = j

if (graphColouring2(graph, V, m, colour, i + 1)) 

return true

}

return false

}

fun graphColouring2(graph: Array<BooleanArray>, V: Int, m: Int): Boolean {

val colour = IntArray(V)

return if (graphColouring2(graph, V, m, colour, 0)) true else false

}

// Testing code. 

fun main() {

val graph = arrayOf(

booleanArrayOf(false, true, false, false, true), booleanArrayOf(true, false, true, false, true), booleanArrayOf(false, true, false, true, true), booleanArrayOf(false, false, true, false, true), booleanArrayOf(true, true, true, true, false)) val V = 5 // Number of vertices

val m = 4 // Number of colours

if (!graphColouring2(graph, V, m)) 

println("Solution does not exist")

}

Output:

Assigned colours are:: 1 2 1 2 3

Analysis:   Since   various   colouring   permutations  are   created  and  at   the   end,   it   is  checked   if   the generated colouring is valid. This solution is inefficient. There is a total O(m^V) combination of colours. 

So the time complexity is O(m^V). 

Backtracking Solution: In the backtracking solution colour is assigned to the nodes one by one and at each assignment isSafe() function is called to check if the assignment will produce a legal graph colouring. 

Example 19.07:

fun isSafe(graph: Array<BooleanArray>, V: Int, colour: IntArray, v: Int, c: Int): Boolean {

for (i in 0 until V) 

if (graph[v][i] == true && c == colour[i]) 

return false

return true

}

fun graphColouringUtil(graph: Array<BooleanArray>, V: Int, m: Int, colour: IntArray, i: Int): Boolean {

if (i == V) {

printSolution(colour, V)

return true

}
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for (j in 1..m) {

if (isSafe(graph, V, colour, i, j)) {

colour[i] = j

if (graphColouringUtil(graph, V, m, colour, i + 1)) 

return true

}

}

return false

}

fun graphColouring(graph: Array<BooleanArray>, V: Int, m: Int): Boolean {

val colour = IntArray(V)

return if (graphColouringUtil(graph, V, m, colour, 0)) {

true

} else false

}

Analysis: Since a lot of invalid colouring combinations are discarded in between, this backtracking approach gives a more efficient solution. There is a total O(m^V) combination of colours. So the time complexity is O(m^V). 

Subset Sum Problem

Problem: Given a set of integers, find a subset of elements such that their sum adds up to a given target value T. 

Backtracking Solution: For each element, there are two  cases: it is included in the subset or not included. So the total state space is created with these two choices. If the partial sum is greater than the target value, then that combination cast produces the desired subset, so we need to backtrack in that case. 

Example 19.08:

fun printSubset(flags: BooleanArray, arr: IntArray, size: Int) {

for (i in 0 until size) {

if (flags[i]) print(arr[i].toString() + " ")

}

println()

}

fun subsetSum(arr: IntArray, n: Int, target: Int) {

val flags = BooleanArray(n)

subsetSum(arr, n, flags, 0, 0, target)

}

fun subsetSum(arr: IntArray, n: Int, flags: BooleanArray, sum: Int, curr: Int, target: Int) {

if (target == sum) {

printSubset(flags, arr, n) // Solution found. 

return

}

if (curr >= n || sum > target) { // constraint check and Backtracking. 

return

}
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// Current element included. 

flags[curr] = true

subsetSum(arr, n, flags, sum + arr[curr], curr + 1, target)

// Current element excluded. 

flags[curr] = false

subsetSum(arr, n, flags, sum, curr + 1, target)

}

// Testing code. 

fun main() {

val arr = intArrayOf(15, 22, 14, 26, 32, 9, 16, 8)

val target = 53

val n = arr.size

subsetSum(arr, n, target)

}

Output:

15 22 16 

15 14 16 8 

22 14 9 8 

Analysis: Flag array is used to create state space of the various elements of the input array. The flag value at ith index is true, then the ith element of the input array is considered in the subset. If the flag value of the ith index is false, then the ith element of the input array is not considered in the subset. 

Those subsets which do not fulfil the required criteria are ignored and backtracked. 

Time-complexity: O(2^n)

Exercise

1. Monks and Demons: There are three monks and three demons on one side of a river. We want to move all of them to the other side using a small boat. The boat can carry only two persons at a time. Given if on any shore the number of demons will be more than monks then they will eat the monks. How can we move all these people to the other side of the river safely? Provide bounding function, initial state and final state of these problems. 

Hint: In this problem, the bounding function is that all the monks are safe. The initial state is all the monks and demons on one side. The final state is that all the monks and demons are on the other side of the bridge. 

2. Farmers Problem: Same as the above problem, there is a farmer who has a goat, a cabbage, and a wolf. If the farmer leaves the goat with cabbage, the goat will eat the cabbage. If the farmer leaves the wolf alone with the goat, the wolf will kill the goat. How can the farmer move all his belongings to the other side of the river? 

Hint: The bounding function is to discard all the states in which the goat and cabbage or goat and wolf are alone. The initial state is all the belongings of the farmer on one side. The final state is all the belongings of the farmer on the other side of the river. 
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Introduction

Computational complexity theory focuses on classifying solvable problems according to the amount of resources required to solve them using some algorithm. 

There are two types of resources:

1. Time: Number of steps required to solve a problem. 

2. Space: Amount of memory required to solve a problem. 

Decision Problem

Much of Complexity theory deals with decision problems. A decision problem always has a yes or no answer. 

Travelling Salesman Problem as optimization and decision problem: 

Optimization Problem: Given a graph G and vertices v1 and vn in that graph, what is the minimum weight of the path from v1 to vn that visits every vertex exactly once? 

Decision Problem: Given a graph G, a cost C and vertices v1 and vn in the graph, is there a path from v1 to vn which visits each vertex exactly once and has cost less than C? 

Many other problems can be converted to a decision problem that has answers as yes or no. For example:

1. Searching: Find if a particular number is there in the array?. 

2. Graph Colouring: Can we perform the graph colouring using X number of colours, such that no adjacent nodes have the same colour? 

3. Hamiltonian Path: Given a graph G and vertices v1 and vn in that graph, is there a path from v1 to vn such that it visits every vertex exactly once? 

4. Hamiltonian Cycle: Given a graph G with vertices v1 to vn, is there a path through all the nodes such that each node is visited exactly once and comes back to the starting node without breaking? 

5. Substring: Given a Text string T and pattern string P, find if P appears inside T? 

6. Minimal Spanning Tree: Given a graph G with integral weights of its edges, Given some value K, find if the weight of minimal spanning tree is less than k? 

Complexity Classes

Depending upon time-complexities (Big-O notation) and some other properties, various solvable problems are classified into the following classes: P, NP, NP-Complete and NP-Hard. 

The time complexities of various algorithms are used to divide problems into two categories, depending upon their growth rate. 
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Name

Time Complexities

Category

Constant

O(1)

Logarithmic

O(log(n))

Polynomial Time Complexities

Linear

O(n)

(Clever algorithms with fast solutions)

N-log(n)

O(n.log(n))

Quadratic

O(n^2)

Polynomial

O(n^c)       c is a constant & c>1

Exponential

O(c^m)      c is a constant & c>1

Exponential Time complexities

(Slow solutions which try all 

Factorial  

O(n!)

possibilities )

N-Power-N

O(n^n)

Class P Problems

Class P consists of a set of problems that can be solved in polynomial time by modern computers. The Big-O   notation   of   a   Class   P   problem   is   always   polynomial.   For   example,   O(1),   O(log(n)),   O(n), O(n.log(n)), O(n^2), O(n^c), where n is input size and k is some constant (k is independent of n). 

Class P Definition: Class P contains all decision problems which can be solved into “yes/no” answers by a Deterministic Turing Machine (Modern Computers) in polynomial time. 

A Deterministic Turing machine is a theoretical machine that manipulates symbols on a strip of tape according to a table of rules. Given the current state of the Deterministic Turing Machine, it can manipulate symbols on tape, then produce only one next state. A Turing machine can be used to simulate   any   algorithm   and   is   particularly   useful   in   explaining   the   functions   of   a   CPU   inside   a computer. 

Deterministic   Algorithms:   The   algorithms   in   which   we   know   every   step   of   how   they   work,   and conventional computers can perform them are called deterministic algorithms. 

For example: Given a sequence a1, a2, a3…. an. Find if a number X is there in this list. 

We can traverse the list and answer if the number X in this list in linear time (polynomial time) Another example: Given a sequence a1, a2, a3…. an. Do you need to find if this sequence is sorted in increasing order? 

We can again traverse the list and see if all the elements are sorted in linear time (polynomial time). 

Some problem of P class is:  

1. Stack insertion and deletion with time complexity, O(1). 

2. Binary Search in a sorted array with time complexity, O(log(n)). 
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3. Linear Search in an unsorted array with time complexity, O(n). 

4. Sorting using bubble sort with time complexity, O(n^2). 

5. Sorting using merge sort with time complexity, O(n.log(n)). 

6. Shortest path in an unweighted graph, O(n). 

7. Minimum Spanning Tree using Kruskal’s Algorithm with time complexity, O(E log V). 

8. Closest Pair divide-and-conquer algorithm with time complexity, O(n.log(n)). 

9. Matrix Multiplication Problem, O(n^3)

Trackable Problems: Problems that can be solvable in a polynomial time. 

In-trackable Problems: Problems that cannot be solved in polynomial time. Or which have exponential solutions only. 

Class NP Problems

The Class NP consists of a set of problems that cannot be solved in polynomial time by conventional computers. But given a solution, we can verify the solution in a polynomial time. 

Class NP Definition: Class NP means “Non-Deterministic Polynomial” class. They are kind of problems that can be solved in polynomial time by a Non-Deterministic Turing Machine (No such computer exists till now). The class NP contains all decision problems for which, given a solution, it can be verified if the solution is correct or not by a Deterministic Turing Machine in polynomial time. A problem Q ϵ NP if it can be verified in polynomial time. 

A Non-deterministic Turing machine for some state and symbol pair, the non-deterministic machine makes an arbitrary choice between a finite number of states. At each point, all the possibilities are executed in parallel. If there are n possible choices, then all n cases will be executed in parallel. We do not   have   non-deterministic   computers.   Do   not   be   confused   with   parallel   computing   because   the number of CPUs is limited in parallel computing. In parallel computing, it may be 16 core or 32 cores, but it cannot be N-Core. In short, NP problems are those problems for which, if a solution is given, we can verify that solution (if it is correct or not) in polynomial time. 

Non-Deterministic Algorithms: The algorithms in which some steps are not solvable in polynomial time by conventional computers. These steps can be solved by a Non-deterministic Turing machine in polynomial time, and so such a computer exists. 

Now let's understand what a Non-deterministic algorithm looks like for a 0/1 Knapsack problem, which is an NP Problem. 

// 0/1 Knapsack problem finds the set of objects that a thief can carry. 

// Input: List of object weights & cost and capacity of the knapsack. 

// Output: Set of objects that the thief can carry. 

function NonDeterministic01Knapsack(Weight[], Cost[], Capacity)

S = GetObjectSet()            // This is a nondeterministic step. Will give    

// a list of binary numbers each value of this 

// list corresponds to object in the input 
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// list of which 0 means ignore and 1 means 

// take objects. 

NetWeight = GetNetWeight(S)   // Linear time step. 

if NetWeight < Capacity than  // Constant time step. 

Sum = SumAll(S)           // Linear time step. 

return Sum                // Constant time step

return -1                     // Constant time step. 

Since for a nondeterministic Turing machine, the non-deterministic step will take polynomial time. But we don’t have non-deterministic computers, so this algorithm will not work in realistic computers. 

P  is  a subset  of  NP  (P  ⊆  NP),  any problem  that  can be  solved  by a  deterministic machine  in polynomial time can also be solved by a non-deterministic machine in polynomial time. 

Reduction

Given two problems A and B, we say that problem A is reducible to problem B if there exists a polynomial algorithm to transform A to B. If we have an algorithm to solve problem B, then this same algorithm can be used as a subroutine to solve problem A. 

SolutionA = TransformAtoB + SolutionB

When this condition is true, solving A cannot be harder than solving B. 

First Example: Quadratic Equation Solver: We have a Quadratic Equation Solver, which solves equations of the form ax2 + bx + c = 0. It takes input a, b, c and generates output r1, r2. 

Now try to solve a linear equation 2x+4=0. Using reduction, the second equation can be transformed into the first equation. 

2x+4 = 0

0x2 + 2x + 4 = 0

Second Example: ATLAS, We have an atlas, and we need to colour maps so that no two countries have the same colour. Let us suppose below are the various countries. Moreover, different patterns represent different colours. 
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Reduction

We can see that the same problem of atlas colouring can be reduced to graph colouring and if we know the solution of graph colouring then the same solution can work for atlas colouring too. Where each node of the graph represents one country, and the adjacent country relation is represented by the edges between nodes. 

NP Hard Problems

A problem is in Class NP-Hard if every problem in NP can be polynomially reduced to it. Because of this, NP-Hard problems are at least as hard as NP problems, but could be much harder or more complex. 

The Class NP-Hard are a set of problems that are not only hard to solve but may be hard to verify as well. NP-Complete is a subset of NP-Hard and is verifiable, the rest of the problems of NP-Hard are non-verifiable. 

Note: If we find a polynomial-time solution to any problem in the NP-Hard set then since all the NP 

problem reduces to it, we will find a solution to all the NP problems in polynomial time. 

NP-Complete Problems

The Class NP-Complete includes all the problems in class NP and also in class NP-Hard. These are the hardest kind of problems in NP since all NP problems are reduced to it. 

Properties of NP-Complete class are:

1. Its solutions can be verified in polynomial time. 

2. All problems of NP are reduced to NP-complete problems in polynomial time. 
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Note: NP-Complete is a subset of NP-Hard so, If we find a polynomial-time solution to any problem in the NP-Complete set then since all the NP problems reduce to it, we will find a solution to all the NP 

problems in polynomial time. However, so far no one has found any solution to the NP-Complete problem in polynomial time. 

For the question “Is P = NP” the solution is No-till now. If P=NP becomes true, then factoring of a number will become P and then various cryptography algorithms which depend on prime factoring become solvable in polynomial time. 

Some NP-Complete problems are:

1. Boolean Satisfiability Problem (SAT): Given a Boolean expression (i.e. (x1 V x2) Λ (x3 V x4) 

….Λ (.. V xn) , is there an assignment of true or false to the variables xi so that the expression is true? 

2. 3-CNF: A Boolean expression in 3-CNF is an AND OPERATOR of Boolean clauses, where each clause has exactly 3 literals. (x1 V x3 V x4) Λ (x2 V x3 V x4) Λ (x1 V x3 V x4), is there an assignment of true or false to the variables xi so that the expression is true? 

3. Independent Set: Given a graph G and an integer K, is there a set S of K vertices in G such that no two vertices in S are connected by an edge? 

4. Clique: Given a graph G and an integer K, is there a set S of K vertices in G such that every pair of vertices in S are connected by an edge? 

5. Vertex Cover: An vertex cover is a subset V' of the vertices of graph G = (V, E) such that for every edge (u, v) ϵ E, either u ϵ V' or v ϵ V'. 

6. Travelling Salesman Problem: Given a graph G, a cost C. and vertices v1 to vn, is there a path from v1 to vn which visits each vertex exactly once and has cost less than C? 

7. Hamiltonian Path: Given a graph G and vertices v1 to vn, is there a path from v1 to vn which visits each vertex exactly once? 

8. Graph-Colouring: Given a graph G and K colours, is there a colouring of the vertices with K 

colours so that no two adjacent vertices have the same colour? 

9. Subset Sum: Given a set of positive integers S = {x1, x2, . . , xn} and an integer K, is there a subset of S’ whose sum equals K? 

10. Sub-graph Isomorphism: Given two graphs G1 and G2, is G2 a sub-graph of G1? 

11. Quadratic Equations: Given integers, a, b, and c, are there positive integers x and y which satisfies the equation ax + by =c? 

How to prove some problem is an NP-Complete problem? 

To prove NP-Complete, we need to prove both the properties. 

➢ Its solutions can be verified in polynomial time. This property shows that if we have a solution to the problem, then we can verify that it is a correct solution in polynomial time. 

➢ All problems of NP are reduced to NP-complete problems in polynomial time. This is a tricky thing to prove. What we need to do in this step is to prove that there is some known NP-Complete problem P’ that reduces to this given problem P in polynomial time. Since all the NP 

problems reduce to P’, which in turn reduces to P. So all the NP problems reduce to P in polynomial time. 

Boolean Satisfiability problem (SAT)

Given a Boolean expression, is there an assignment of true and false to the variables xi, so that the expression is true? 

For example, (x1 V x2) Λ (x2 V x3 V x4) Λ … Λ (xn) 
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Cook's Theorem (1971) proves that the Boolean satisfiability problem (SAT) is an NP-Complete problem. The proof of this theorem is beyond the scope of this book. 

There are in total, “n” Different Boolean Variables x1, x2… xn. There is an “m” number of clauses. At max, there are “k” variables in a single clause. 

There are“n” variables, so the number of solutions will be 2n. 

To find the solution for this equation, the total time complexity will be O(2n * km). 

NP property: If a solution is given, then it can be verified in O(km) time. 

3-CNF

A Boolean expression in 3-CNF is an AND of Boolean clauses, where each clause has exactly 3 

variables. Is there an assignment of true and false to the variables xi, so that the expression is true? 

For example, (x1 V x3 V x4) Λ (x2 V x3 V x4) Λ (x1 V x3 V x4) 

NP property: A truth assignment is an assignment of true (T) or false (F) to each variable that can be verified by assigning these values in an expression in polynomial time. 

We can convert any length clause to 3CNF with three variables. 

(a V b V c V d) == (a V b V x) (

∧ ¬x V c V d)        // Converting 4 cnf to 3 cnf. 

(a V b V c V d V e ) == (a V b V x1) (

∧ ¬x1 V c V x2) (

∧ ¬x2 V d V e)  // Converting 5 cnf to 3 cnf. 

(a V b) == (a V b V b )   // Converting 2 cnf to 3 cnf. 

(a) == (a V a V a )   // Converting 1 cnf to 3 cnf. 

All NP problems can be reduced to SAT and SAT reduces to 3SAT, so 3SAT is NP-complete. 

Independent Set 

Given a graph G = (V, E), an independent set is a subset V' of the vertices of a graph such that if u & v ϵ  V' then there is no edge (u, v) or (u, v) ∉ E. 

Problem: Given a graph G  = (V, E) and an integer K, does G contain an independent set of size K? 

NP problem condition: Given an independent subset V' of the vertices of graph G with “n” number of vertices and “m” number of edges. 

1. We first verify if subset V’ contains K elements. 

2. For each pair u, v V’ we check that (u,v) ∉ E. 

There are O(n^2) pairs of vertices in V', so time complexity will be O(m.n^2) which is polynomial. 

Now, to prove the Independent Set problem as NP-Complete, we need to reduce some known NP-Complete problems into Independent Set problems. 

We will try to reduce 3-SAT to the Independent Set Problem in polynomial time. Let Q be a Boolean expression in 3-CNF. We want to express Q as a graph G so that if graph G has an independent set, then expression Q is satisfiable. 

Steps to convert the 3-SET expression to the graph. 

➢ Create a vertex for each variable. 

➢ Connect each variable to the other two variables in the same clause. 

➢ Connect each variable with its negation. 
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In the expression Q, “n” is the number of variables and “m” is the number of clauses. Q can be satisfied if and only if the graph has an independent set of size “m”. This graph G is constructed in polynomial time O(m*n) so the reduction time complexity will be O(m*n). 

Clique Problem 

Given a graph G = (V, E), a clique V' is a subset of the vertices V of G, such that if u, v ϵ  V' then (u, v) ϵ E. That means all the vertices in the subset V’ are is completely connected. 

Clique Problem: Given a graph G and an integer M, does G contain a clique of size M? 

For example: {A, B, E, D } is a clique of the given graph. 

NP problem property: Given a solution to the clique problem is a subset V'. Let n be the number of vertices of graph G = (V, E) and m be the number of edges. 

1. Check if V' contains M elements. 

2. For each pair u, v ϵ V', check that (u, v) ϵ E. There are O(n^2) pairs of vertices in V', so time complexity will be O(n^2) time which is a polynomial in n. 

NP-Complete property:

The Independent Set Problem reduces to the Clique Problem in polynomial time. 

Independent Set Problem: Given a graph G and an integer K, does G contain an independent set of size K? 

Note: In Independent Set the vertices of the set have no connectivity on the other hand in a Clique problem the vertices of the set have complete connectivity. 

Complement of Graph: The complement of a graph G = (V, E) is a graph G’ with the same vertices as G such that (u, v) is an edge of G’ if and only if (u, v) is not an edge of G. 

If V' is an independent set of G, then V’ is a clique of G’:

1. V' be an independent set of G = (V, E). such that every pair of vertices u,v  V', (u,v) ∉ E. 

2. G’ be the complement of graph G. 

3. By complement property, If (u,v) ∉ E. then (u, v) is an edge of G’. 

4. That is. for every pair of vertices u,v ϵ V', (u, v) is an edge of G’. So, V' is a clique of G’. 

Creating a complement of a graph takes O(n^2) time which is polynomial time. 
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Vertex Cover 

An vertex cover is a subset V' of the vertices V of graph G = (V, E) such that for every edge (u, v) ϵ E, either u ϵ V' or v ϵ V'. 

The Independent Set Problem can be reduced to the Vertex Cover problem in polynomial time. 

V' is an independent set of G = (V E), then V -V' is a vertex cover of G. 

1. V' be an independent set of G = (V, E) 

2. V’’ =V - V'. 

3. (u,v) ϵ E, since V' is an independent set either u or v are not in V'. 

4. (u,v) ϵ E, at least one of the edge u or v is in V’’ = V -V’. So V’’ is a vertex cover of G. 

The number of vertices in set V’’ is equal to the number of vertices V of graph G minus the number of vertices in the independent set V’. 

Vertex Cover Problem: Given a graph G, does it have a vertex cover of size M? 

Independent Set Problem: Given a graph G, does it contain an independent set of size N-M? Where N 

is the number of vertices in the graph G. 

Time complexity of reduction is O(n). 

Class Co-NP Problems

Given a solution, if we can check in a polynomial time if that solution is incorrect, the problem is a co-NP problem. 

End Note

Solvable problems are classified into following groups based on time-complexities: 1 Class P problems are quick to solve. 

2 Class NP problems are slow to solve but quick to verify. 

3 Class NP-Complete problems are also slow to solve but quick to verify. Each NP-Complete problem can be reduced to any other NP-Complete problem. 

4 NP-Hard problems are both slow to verify and slow to solve.  Each NP-Hard problem can be reduced to any other NP problem. 

Till now, nobody has come up with a polynomial-time algorithm to solve a NP-Complete problem. Many important   algorithms   depend   upon   it.   However,   at   the   same   time,   nobody   has   proven   that   no polynomial-time algorithm is possible. There is a million US dollars for anyone who can solve any NP-Complete problem in polynomial time. The whole economy of the world will fall as most of the banks depend on public-key encryption, which will be easy to break if a polynomial-time solution is found for any NP-Complete problem. 
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Some of the important bit manipulation operations that are useful in various algorithms: Operation

Code

Example

Bitwise And 

fun andEx(a: Int, b: Int): Int {

A = 4 = 00000100

operator

return a and b

B = 8 = 00001000

}

A & B = 00000000

Bitwise Or 

fun orEx(a: Int, b: Int): Int {

A = 4 = 00000100

operator

return a or b

B = 8 = 00001000

}

A | B = 00001100 = 12

Bitwise XoR 

fun xorEx(a: Int, b: Int): Int {

A = 12 = 00001100

operator

return a xor b

B = 8  = 00001000

}

A^B    = 00001000 = 8

Multiply 

fun leftShiftEx(a: Int): Int { 

A = 4 = 00000100

number by 2

// multiply by 2

A<<1 = 00001000 = 8

return a shl 1

}

Divide number fun rightShiftEx(a: Int): Int { 

A = 4 = 00000100

by 2

// divide by 2

A>>1 = 00000010 = 2

return a shr 1

}

Once 

fun bitReversalEx(a: Int): Int {

A = 00000100

complement of     return a.inv()

a number. 

~A = 11111011

}

Two’s 

fun twoComplementEx(a: Int): Int {

A = 00000100

complement of     return -a

a number. 

-A = 11111100

}

Check if Kth 

fun kthBitCheck(a: Int, k: Int): 

A = 12 = 00001100, K = 4

Bit is set. 

Boolean 

1<<(k-1) = 00001000

{

(A & 1<<(k-1)) = 00001000

return (a and (1 shl (k-1))) > 0

}

Set kth bit in a fun kthBitSet(a: Int, k: Int): Int  A = 4 = 00000100, K = 4

number. 

{

1<<(k-1) = 00001000

return a or (1 shl (k- 1)) 

(A | 1<<(k-1)) = 00001100 = 12

}

Reset the Kth  fun kthBitReset(a: Int, k: Int): 

A = 12 = 00001100, K = 4

bit in a 

Int {

number. 

1<<(k-1) = 00001000

return a and (1 shl (k - 

~(1<<(k-1)) = 11110111

1)).inv()

a & ~(1<<(k-1)) = 00000100 = 4

}

Rightmost set  fun rightMostBit(a: Int): Int {

A = 00001100

bit of a 

return a and -a

number. 

-A = 11110100

}

A & -A = 00000100

Reset the 

fun resetRightMostBit(a: Int): Int  A = 00001100

rightmost set 

{

bit of a given 

A - 1 = 00001011

return a and a - 1

number. 

A & (A - 1) = 00001000

}

Find if a 

fun isPowerOf2(a: Int): Boolean {

A = 00001000

number is a 

return if (a and a - 1 == 0) 

power of 2

A - 1 = 00000111

true else false

A & (A - 1) = 00000000

}

Count the set 

fun countBits(a1: Int): Int {

Reset the rightmost set bit in a 

bits in a 

var a = a1

loop and count the number of 

number. 

var count = 0

iterations. 

while (a > 0) {

count += 1

a = a and a - 1 // reset 

least significant bit. 

}

return count

}

Appendix B : Basic Complexity

No. Algorithms

Time Complexity

1. 

Binary Search in a sorted array of N elements

O(log(N)) 

2. 

Compare two strings with lengths L1 and L2 

O(min(L1, L2))

3. 

Reversing a string of N elements

O(N)

4. 

Linear search in an unsorted array of N elements 

O(N)

5. 

Computing the Nth Fibonacci number using dynamic programming 

O(N)

6. 

Checking if a string of N characters is a palindrome 

O(N)

7. 

Finding a string in another string using the Aho-Corasick algorithm 

O(N)

8. 

Computing the Nth Fibonacci number using dynamic programming 

O(N)

9. 

Sorting an array of N elements using Merge-Sort/Quick-Sort/Heap-Sort  O(N.Log(N)) 10. 

The Knapsack problem of N elements with capacity M 

O(N * M)

11. 

Finding a string in another string – the naive approach 

O(L1 * L2)

12. 

Sorting an array of N elements using Bubble-Sort 

O(n^2)

13. 

Two nested loops from 1 to N 

O(n^2)

14. 

Three nested loops from 1 to N 

O(n^3)

15. 

Twenty-eight nested loops … you get the idea 

O(N^28)

Stack

16. 

Adding a value to the top of a stack 

O(1)

17. 

Removing the value at the top of a stack 

O(1)

18. 

Reversing a stack 

O(N)

Queue

19. 

Adding a value to end of the queue 

O(1)

20. 

Removing the value at the front of the queue 

O(1)

21. 

Reversing a queue 

O(N)

Heap

22. 

Adding a value to the heap 

O(log(N))

23. 

Removing the value at the top of the heap 

O(log(N))

Hash Table

24. 

Adding a value to a hash table

O(1)

25. 

Checking if a value is in a hash tabke

O(1)

Index

0

Dynamic Programming

468, 503

0/1 Knapsack 474, 485, 536

Dynamic Programming Patterns

506

A

E

Abstract Data Type 29

Edit Distance 531

Activity Selection Problem

481

Euler Circuit 431

Adjacency List403

Euler path

431

Adjacency Matrix

401

External Sort 51

Anagram

464

F
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Factorial

14

Average-Case Complexity

4

Fibonacci

17

AVL Tree

313

Fibonacci Heap

374

B

Fibonacci Search

86

B Tree 336

Floyd Warshall Algorithm

439

B+ Tree

341

Fractional Knapsack 483

Backtracking 469, 541

Full Binary tree

270

Bellman Ford Algorithm

437

G

Best-Case Complexity

4

Graph Colouring Problem

546

Big-O Notation

2

Graphs

396

Binary Index Tree

310

Greatest Common Divisor

16

Binary Search 84

Greedy Algorithm

468, 475

Binary Search Tree 35, 292

H

Binary Tree

269

Hamiltonian Circuit

443

Binomial Heap369

Hamiltonian Path

441

Bottom-Up Dynamic Programming 504

Hash Table

39, 381

Breadth First Traversal

407

Hashing with Open Addressing

383

Brute Force Algorithm467, 470

Hashing with separate chaining

387

Bubble Sort

44

Heap 37, 346

Bucket Sort

61

Heap Sort

59, 358

C

Height-balanced Binary Tree 271

Circular Linked List

189

Huffman Trees Algorithm

479

Class Co-NP Problems
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I

Class NP Problems 552

In-Order Traversal

274

Class P Problems

551

Insertion Sort 46

Closest Pair 473, 495

K

Closest Pair Problem 495

Complete binary tree 270

Knuth Morris Pratt Algorithm 449

Complexity Theory

550

Kosaraju’s Algorithm 424

Convex-Hull Problem 489

Kruskal’s Algorithm 430

Counting Sort 56

L

D

Left skewed binary tree

271
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