

[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

[image: Image 10]

[image: Image 11]

[image: Image 12]

[image: Image 13]

[image: Image 14]

[image: Image 15]

[image: Image 16]

[image: Image 17]

[image: Image 18]

[image: Image 19]

[image: Image 20]

[image: Image 21]

[image: Image 22]

[image: Image 23]

[image: Image 24]

[image: Image 25]

[image: Image 26]

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

[image: Image 34]

[image: Image 35]

[image: Image 36]

[image: Image 37]

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

[image: Image 44]

[image: Image 45]

[image: Image 46]

[image: Image 47]

[image: Image 48]

[image: Image 49]

[image: Image 50]

[image: Image 51]

[image: Image 52]

[image: Image 53]

[image: Image 54]

[image: Image 55]

[image: Image 56]

[image: Image 57]

[image: Image 58]

[image: Image 59]

[image: Image 60]

[image: Image 61]

[image: Image 62]

[image: Image 63]

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

[image: Image 68]

[image: Image 69]

[image: Image 70]

[image: Image 71]

[image: Image 72]

[image: Image 73]

[image: Image 74]

[image: Image 75]

[image: Image 76]

[image: Image 77]

[image: Image 78]

[image: Image 79]

[image: Image 80]

[image: Image 81]

[image: Image 82]

[image: Image 83]

[image: Image 84]

[image: Image 85]

[image: Image 86]

[image: Image 87]

[image: Image 88]

[image: Image 89]

[image: Image 90]

[image: Image 91]

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

[image: Image 98]

[image: Image 99]

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

[image: Image 112]

[image: Image 113]

[image: Image 114]

[image: Image 115]

[image: Image 116]

[image: Image 117]

[image: Image 118]

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

[image: Image 124]

[image: Image 125]

[image: Image 126]

[image: Image 127]

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

[image: Image 134]

[image: Image 135]

[image: Image 136]

[image: Image 137]

[image: Image 138]

[image: Image 139]

[image: Image 140]

[image: Image 141]

[image: Image 142]

[image: Image 143]

[image: Image 144]

[image: Image 145]

[image: Image 146]

[image: Image 147]

[image: Image 148]

[image: Image 149]

[image: Image 150]

[image: Image 151]

[image: Image 152]

[image: Image 153]

[image: Image 154]

[image: Image 155]

[image: Image 156]

[image: Image 157]

[image: Image 158]

[image: Image 159]

[image: Image 160]

[image: Image 161]

[image: Image 162]

[image: Image 163]

[image: Image 164]

[image: Image 165]

[image: Image 166]

[image: Image 167]

[image: Image 168]

[image: Image 169]

[image: Image 170]

[image: Image 171]

[image: Image 172]

[image: Image 173]

[image: Image 174]

[image: Image 175]

[image: Image 176]

[image: Image 177]

[image: Image 178]

[image: Image 179]

[image: Image 180]

[image: Image 181]

[image: Image 182]

[image: Image 183]

[image: Image 184]

[image: Image 185]

[image: Image 186]

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

[image: Image 191]

[image: Image 192]

[image: Image 193]

[image: Image 194]

[image: Image 195]

[image: Image 196]

[image: Image 197]

[image: Image 198]

[image: Image 199]

[image: Image 200]

[image: Image 201]

[image: Image 202]

[image: Image 203]

[image: Image 204]

[image: Image 205]

[image: Image 206]

[image: Image 207]

[image: Image 208]

[image: Image 209]

[image: Image 210]

[image: Image 211]

[image: Image 212]

[image: Image 213]

[image: Image 214]

[image: Image 215]

[image: Image 216]

[image: Image 217]

[image: Image 218]

[image: Image 219]

[image: Image 220]

[image: Image 221]

[image: Image 222]

[image: Image 223]

[image: Image 224]

[image: Image 225]

[image: Image 226]

[image: Image 227]

[image: Image 228]

[image: Image 229]

[image: Image 230]

[image: Image 231]

[image: Image 232]

[image: Image 233]

[image: Image 234]

[image: Image 235]

[image: Image 236]

[image: Image 237]

[image: Image 238]

[image: Image 239]

[image: Image 240]

[image: Image 241]

[image: Image 242]

[image: Image 243]

[image: Image 244]

[image: Image 245]

[image: Image 246]

[image: Image 247]

[image: Image 248]

[image: Image 249]

[image: Image 250]

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

[image: Image 255]

[image: Image 256]

[image: Image 257]

[image: Image 258]

[image: Image 259]

[image: Image 260]

[image: Image 261]

[image: Image 262]

[image: Image 263]

[image: Image 264]

[image: Image 265]

[image: Image 266]

Document Outline

	Numerical Methods with Matlab

	Ryuichi Ashino and Remi Vaillancourt

	Contents

	Solutions of Nonlinear Equations

	1.1. Computer Arithmetics

	1.2. Review of Calculus

	1.3. The Bisection Method

	1.4. Fixed Point Iteration

	1.5. Newton’s, Secant, and False Position Methods

	1.6. Accelerating Convergence

	1.7. Horner’s Method and the Synthetic Division

	1.8. Muller’s Method

	Interpolation and Extrapolation

	2.1. Lagrange Interpolating Polynomial

	2.2. Newton’s Divided Difference Interpolating Polynomial

	2.3. Gregory-Newton Forward-Difference Polynomial

	2.4. Gregory-Newton Backward-Difference Polynomial

	The polynomial (2.6) is the Gregory-Newton backward-difference interpolating polynomial.

	2.5. Hermite Interpolating Polynomial

	2.6. Cubic Spline Interpolation

	Numerical Differentiation and Integration

	3.1. Numerical Differentiation

	3.2. The Effect of Roundoff and Truncation Errors

	3.3. Richardson’s Extrapolation

	3.4. Basic Numerical Integration Rules

	3.5. The Composite Midpoint Rule

	3.6. The Composite Trapezoidal Rule

	3.8. Romberg Integration for the Trapezoidal Rule

	3.9. Adaptive Quadrature Methods

	Matrix Computations

	4.1. LU Solution of Ax = b

	4.2. Cholesky Decomposition

	b=

	4.3. Matrix Norms

	4.4. Iterative Methods

	4.5. Overdetermined Systems

	Na

	(b) The Matlab numeric solution.—

	4.6. Matrix Eigenvalues and Eigenvectors

	4.7. The QR Decomposition

	4.8. The QR algorithm

	4.9. The Singular Value Decomposition

	Numerical Solution of Differential Equations

	5.1. Initial Value Problems

	5.2. Euler’s and Improved Euler’s Method

	5.3. Low-Order Explicit Runge-Kutta Methods

	c

	5.4. Convergence of Numerical Methods

	5.5. Absolutely Stable Numerical Methods

	5.6. Stability of Runge-Kutta methods

	5.7. Embedded Pairs of Runge-Kutta methods

	c

	5.8. Multistep Predictor-Corrector Methods

	Explicit Methods

	5.9. Stiff Systems of Differential Equations

	The Matlab ODE Suite

	6.1. Introduction

	6.2. The Methods in the Matlab ODE Suite

	6.3. The odeset Options

	6.4. Nonstiff Problems of the Matlab odedemo

	6.6. Concluding Remarks

	Bibliography

	Orthogonal polynomials

	7.1. Fourier-Legendre Series

	7.2. Derivation of Gaussian Quadratures

	7.3. Numerical Solution of Integral Equations of the Second Kind

	Formulae and Tables

	8.1. Legendre Polynomials Pn(x) on [-1, 1]

	8.2. Laguerre Polynomials on 0 < x < to

	8.3. Fourier-Legendre Series Expansion

	Exercises for Numerical Methods

	Exercises for Chapter 2

	Exercises for Chapter 4

	Exercises for Chapter 5

	Solutions to Exercises for Numerical Methods

	Solutions to Exercises for Chapter 1

	Solutions to Exercises for Chapter 2

	□

	Solutions to Exercises for Chapter 5

	Index

index-129_1.png
5.9. STIFF SYSTEMS OF DIFF]

=
-

ENTIAL EQUATIONS 125
Consider the initial value problem
v " _[1 0 y1(z) y1(0)
yo(z) 0 10¢ yal(z) |’ y2(0)

y' =Ay, y(0) =y,
Since the eigenvalues of A are

M =1, A= —109,

. } 7 (5.39)

or

the stiffness ratio (5.38) of the system is
r =102

PR

Even though the second part of the solution containing the fast decaying factor
exp(—10%t) for large ¢ numerically disappears quickly, the large stiffness ratio
continues to restrict the step size of any explicit schemes, including predictor-
corrector schemes.

The solution is

ExAMPLE 5.13. Study the effect of the stiffness ratio on the number of steps
used by the five MATLAB ode codes in solving problem (5.39) with ¢ = 1 and
q=>5.

SOLUTION. The function M-file exp5_13.m is

function uprime = exp5_13(x,u); % Example 5.13
global q % global variable

A=[-1 0;0 -10"q]l; % matrix A

uprime = Ax*u;

The following commands solve the non-stiff initial value problem with ¢ = 1,
and hence r = €'°, with relative and absolute tolerances equal to 10~ '? and
10—, respectively. The option stats on requires that the code keeps track of
the number of function evaluations.

clear;

global q; g=1;

tspan = [0 1]; yO = [1 1]7;

options = odeset(’RelTol’,le-12,’AbsTol’,le-14,’Stats’,’on’);
[x23,y23] = 0de23(’exp5_13’ ,tspan,y0,options);

[x45,y45] = ode45(’exp5_13’ ,tspan,y0,options);

[x113,y113] = odel113(’exp5_13’ ,tspan,y0,options);

[x23s,y23s] = 0de23s(’exp5_13’ ,tspan,y0,options);

[x15s,y1568] = odelbs(’exp5_13’ ,tspan,y0,options);

Similarly, when ¢ = 5, and hence r = exp(10°), the program solves a pseudo-
stiff initial value problem (5.39). Table 5.9 lists the number of steps used with
g =1 and ¢ = 5 by each of the five methods of the ODE suite.

It is seen from the table that nonstiff solvers are hopelessly slow and very
expensive in solving pseudo-stiff equations.

index-128_4.jpg

index-131_1.png
5.9. STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS 127

SOLUTION. Set

Hence,
ug = uj, uh =y" = —10%4 — (107 + 1)us.

Thus we have the system u' = Au,

[t A T e e B B e

Substituting the vector function

u(z) = ce™®

in the differential system, we obtain the matrix eigenvalue problem

Y 1 Ly
107 —(10941)—X | €7

This problem has a nonzero solution ¢ if and only if

det(A — M) = A2 + (109 + 1A+ 107 = (A + 109)(\ +1) =0.

(A—Aﬁc{

Hence the eigenvalues are
Ay = —109, Ay = —1.
The eigenvectors are found by solving the linear systems

100 1 PR
—107 —1 | V1T V1= _100

Thus,

and

1 1 o [0
—10¢ —10¢ | Y27 2= g |

The general solution is

—10%9%

u(z) =cre v+ e T,

The initial conditions implies that ¢4 = 1 and ¢z = 1. Thus the unique solution is

{ Z;Eig } B { —110q } e 10 { _} } e "

We see that the stiffness ratio of the equation in Example 5.15 is

109,

EXAMPLE 5.16. Use the five Matlab ode solvers to solve the nonstiff differ-
ential equations

y’ 4+ (107 4+ 1)y’ + 107 =0 on [0, 1],
with initial conditions
y(0)=2, ¢'(0)=-107 -1,
for ¢ = 1 and compare the number of steps used by the solvers.

SOLUTION. The function M-file exp5_16.m is

index-130_1.png
126 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

TABLE 5.9. Number of steps used by each method with ¢ = 1
and g = 5 with default relative and absolute tolerance RT = 1072
and AT = 10° respectively, and same tolerance set at tolerances
1071 and 10~™, respectively.

We consider another example of a second-order equation, with one real pa-
rameter ¢, which we first solve analytically. We shall obtain a coupled system in
this case.

EXAMPLE 5.14. Solve the initial value problem
y’ 4+ (107 4+ 1)y’ + 107 =0 on [0, 1],
with initial conditions
y(0)=2, ¢'(0)=-107—1,
and real parameter gq.

SOLUTION. Substituting

y(z) = e

in the differential equation, we obtain the characteristic polynomial and eigenval-
ues:

A2 (107 + DA+ 109 = (A 109 (A +1) =0 A= —109, Xy =—1.

Two independent solutions are

yr = e 107 ya(z) =€

The general solution is
y(z) = cre T feye
Using the initial conditions, one finds that ¢; = 1 and ¢; = 1. Thus the unique

solution is
—10%%

ylz) =e¢ +e ”.

In view of solving the problem in Example 5.14 with numeric Matlab, we
reformulate it into a system of two first-order equations.

ExaMPLE 5.15. Reformulate the initial value problem
y”’ 4+ (107 + 1)y’ + 109y = 0 on [0, 1],
with initial conditions
y(0)=2, '(0)=-107—1,

and real parameter ¢, into a system of two first-order equations and find its vector
solution.

index-128_1.jpg
i

index-127_1.png
5.9. STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS 123

in relation to the smoothness of the exact solution in I, then the system is said
to be stiff in /.

Explicit Runge—Kutta methods and predictor-corrector methods, which, in
fact, are explicit pairs, cannot handle stiff systems in an economical way, if they
can handle them at all. Implicit methods require the solution of nonlinear equa-
tions which are almost always solved by some form of Newton’s method. Two
such implicit methods are in the following two sections.

5.9.2. Backward differentiation formulae. We define a k-step back-
ward differentiation formula (BDF) in standard form by

k
Z O Yntj—k+r1 = PPk frrt,
=0

where o = 1. BDF’s are implicit methods. Table 5.7 lists the BDF’s of step-
number 1 to 6, respectively. In the table, k is the stepnumber, p is the order,
Cp+1 is the error constant, and « is half the angle subtended at the origin by the
region of absolute stability .

TABLE 5.7. Coefficients of the BDF methods.

k oag as oy a3 a9 aq ap B p Cpr1 «
1 1 1 1 1 1 90°
4 1 2 2 o

2 1 —4 i 2 2 -2 90
18 9 _ 2 & 3 o

3 1 it 11 11 11 3 22 86
48 36 16 3 12 12 o

4 I =% % -5 = 5 4 -1 03
300 300 200 75 12 60 110 o

5 I - & T = " o 0 —iw ol
6 1 360 450 _400 225 _712 10 60 g _ 20 qgo

147 147 147 147 147 147 147 343

The left part of Fig. 5.10 shows the upper half of the region of absolute
stability of the 1-step BDF, which is the exterior of the unit disk with center 1,
and the regions of absolute stability of the 2- and 3-step BDF’s which are the
exterior of closed regions in the right-hand plane. The angle subtended at the
origin is o = 90° in the first two cases and « = 88° in the third case. The right
part of Fig. 5.10 shows the regions of absolute stability of the 4-, 5-, and 6-steps
BDF’s which include the negative real axis and make angles subtended at the
origin of 73°, 51°, and 18°, respectively.

A short proof of the instability of the BDF formulae for & > 7 is found in [4].
BDF methods are used to solve stiff systems.

5.9.3. Numerical differentiation formulae. Numerical differentiation for-
mulae (NDF') are a modification of BDF’s. Letting

VYn = Yn — Yn—1

denote the backward difference of y,, we rewrite the k-step BDF of order p = &
in the form

1
— V™41 = hfni1.
m

NE

m=1

index-128_3.jpg

index-128_2.jpg

cover_image.jpg
mat3380.dvi

index-126_1.png
122 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

5.9. Stiff Systems of Differential Equations

In this section, we illustrate the concept of stiff systems of differential equa-
tions by means of an example and mention some numerical methods that can
handle such systems.

5.9.1. The phenomenon of stiffness. While the intuitive meaning of stiff
is clear to all specialists, much controversy is going on about its correct mathe-
matical definition. The most pragmatic opinion is also historically the first one:
stiff equations are equations where certain implicit methods, in particular back-
ward differentiation methods, perform much better than explicit ones (see [1],

p. 1).
Consider a system of n differential equations,
¥ = flz,y),
and let Ay, Ao, ..., A, be the eigenvalues of the n x n Jacobian matrix
a af; . .
J—'f<f>7 t11,...,n, 3—1,...,n, (5.36)
dy dy;
where Nagumo’s matrix index notation has been used. We assume that the n
eigenvalues, Aq, ..., Ay, of the matrix J have negative real parts, ReA; < 0, and
are ordered as follows:
Rel, <--- <Rel <ReX; <0. (5.37)

The following definition occurs in discussing stiffness.

DEFINITION 5.6. The stiffness ratio of the system y’ = f(z,y) is the positive

number
Re A,

" Rexy’
where the eigenvalues of the Jacobian matrix (5.36) of the system satisfy the
relations (5.37).

r

(5.38)

The phenomenon of stiffness appears under various aspects (see [2], p. 217—
221):

e A linear constant coefficient system is stiff if all of its eigenvalues have
negative real parts and the stiffness ratio is large.

e Stiffness occurs when stability requirements, rather than those of accu-
racy, constrain the step length.

¢ Stiffness occurs when some components of the solution decay much more
rapidly than others.

e A system is said to be stiff in a given interval I containing ¢ if in I the
neighboring solution curves approach the solution curve at a rate which
is very large in comparison with the rate at which the solution varies in
that interval.

A statement that we take as a definition of stiffness is one which merely relates
what is observed happening in practice.

DEeFINITION 5.7. If a numerical method with a region of absolute stability,
applied to a system of differential equation with any initial conditions, is forced
to use in a certain interval I of integration a step size which is ezcessively small

index-125_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS
k=1:
o =1 pi=41,
ag=—1, fo=13,
p=2 Cpt1 = _%'
k=2
ag =1, Bo=3(5+a),
a;=—1—a, B = %(1 a),
ag = a, 5y f%(—1—5a)7
Ifa#£ -1, p=3; C'p,,lf—ﬁ(lJra)7
Ifa=-1, p=4, Cle:_QL
k=3
as =1, Bs = 5:(9+a+b),
ay=—1—a, By=5:(19—13a—5b),
oy =a+b, B =z(-5—13a+ 19b),
ag = —b, Bo = (14 a+ 9b),
p=4; Cpi1 = —=25(19+ 11a + 19b).

Absolute stability limits the order to 4.

k=4:

By =
Bs =

a9 =a-+ b, Ba =

a1 =—b—c, fi—= %(53 +37a + 173b — 323¢),
ap = ¢, Bo = =35(—19 — 11a — 19b — 251¢).
If 27+ 11a+ 11b 4 27¢ £ 0, then
1
p—57 Cp+1 —@(27+11a+11b+27c)
If 274+ 11a+ 116+ 27¢ = 0, then
= 6; C, 744 10a — 106 — 74
P =6; Pl =TT 120(+ 10a c).
Absolute stability limits the order to 6.

5(251 4 19a + 116+ 19¢),
(323 —173a — 37b — 53¢),
—11—19a + 19b 4 11¢),

-3
B[

|H
AO

121

The Matlab solver ode113 is a fully variable step size, PECE implementation
in terms of modified divided differences of the Adams—Bashforth—Moulton family

of formulae of orders 1 to 12.

The natural “free”

interpolants are used. Local

extrapolation is done. Details are to be found in The MATLAB ODE Suite, L. F.
Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18(1),

1997.

index-121_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 117

% Pre: fname = string that names the function f.

% t0 = initial time.

% yO = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).
% n = number of steps to be taken,

%

% Post: tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(:j) = approximate solution at t = tvals(j), j=1l:n+1
%

[tvals,yvals,fvals] = StartAB(fname,t0,y0,h,k);
tc = tvals(k);

yc = yvals(:,k);

fc = fvals(:,k);

for j=k:n
% Take a step and then update.
[tc,yPred,fPred,yc,fc] = PCstep(fname,tc,yc,fvals,h,k);
tvals = [tvals tc];
yvals = [yvals ycl;
fvals = [fc fvals(:,1:k-1)];
end

The starting values are obtained by the following M-file by means of a Runge—
Kutta method.

function [tvals,yvals,fvals] = StartAB(fname,tO,y0,h,k)
A
% Uses k-th order Runge-Kutta to generate approximate
% solutions to

% y () = £(¢,y(8)) y(t0) = yO
A
% at t = t0, tO+h, ... , t0 + (k-1)h.
A
% Pre:
% fname is a string that names the function f.
% t0 is the initial time.
% yO is the initial value.
% h is the step size.
% k is the order of the RK method used.
A
% Post:
% tvals = [t0, tO+h, ... , tO0 + (k-1)h].
% For j =1:k, yvals(:,j) = y(tvals(j)) (approximately).
% For j =1:k, fvals(:,j) = f(tvals(j),yvals(j))
A
tc = t0;
ye = y0;

fc = feval(fname,tc,yc);

index-120_2.png
257

>..E15 B

Plot ot solution Y for Example 9.12

index-123_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 119

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

A

% fvals is an d-by-k matrix where fvals(:,i) is an approximation
% to £(t,y) at t = tc +(2-i)h, i=1:k

A

% h is the time step.

A

% k is the order of the AM method used, 1<=k<=5.

A

% Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and
% fnew = f(tnew,ynew).

if k==

ynew = yc + hxfvals;
elseif k==2

ynew = yc + (h/2)*(fvals*[1;1]);
elseif k==3

ynew = yc + (h/12)*(fvals*[5;8;-1]);
elseif k==4

ynew = yc + (h/24)*(fvals#*[9;19;-5;11);
elseif k==5b

ynew = yc + (h/720)*(fvals*[251;646;-264;106;-19]1);
end

tnew = tc+h;
fnew = feval(fname,tnew,ynew);

The predictor-corrector step is taken by the following M-file.

function [tnew,yPred,fPred,yCorr,fCorr] = PCstep(fname,tc,yc,fvals,h,k)
%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

h

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.
h

% fvals is an d-by-k matrix where fvals(:,i) is an approximation
% to £(t,y) at t = tc +(1-i)h, i=1:k

h

% h is the time step.

h

% k is the order of the Runge-Kutta method used, 1<=k<=5.

h

% Post: tnew=tc+h,

% yPred is the predicted solution at t=tnew

% fPred = f(tnew,yPred)

% yCorr is the corrected solution at t=tnew

% fCorr = f(tnew,yCorr).

index-122_1.png
118 5. NUMERICAL SOLUTION OF DIFFI

=
-

ENTIAL EQUATIONS

tvals = tc;
yvals = yc;
fvals = fc;

for j=1:k-1
[tc,yc,fc] = RKstep(fname,tc,yc,fc,h,k);
tvals = [tvals tc];
yvals = [yvals ycl;
fvals = [fc fvals];
end

The function M-file Rkstep is found in Subsection 5.6 The Adams-Bashforth
predictor step is taken by the following M-file.

function [tnew,ynew,fnew] = ABstep(fname,tc,yc,fvals,h,k)
%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

A

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.
A

% fvals is an d-by-k matrix where fvals(:,i) is an approximation
% to £(t,y) at t = tc +(1-i)h, i=1:k

A

% h is the time step.

A

% k is the order of the AB method used, 1<=k<=5.

A

% Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and
% fnew = f(tnew,ynew).

if k==

ynew = yc + hxfvals;
elseif k==2

ynew = yc + (h/2)*(fvals*[3;-1]);
elseif k==3

ynew = yc + (h/12)*(fvals*[23;-16;5]);
elseif k==4

ynew = yc + (h/24)*(fvals*[55;-59;37;-9]);
elseif k==5b

ynew = yc + (h/720)*(fvals*[1901;-2774;2616;-1274;251]);
end

tnew = tc+h;
fnew = feval(fname,tnew,ynew);

The Adams-Moulton corrector step is taken by the following M-file.

function [tnew,ynew,fnew] = AMstep(fname,tc,yc,fvals,h,k)
A
% Pre: fname is a string that names a function of the form f(t,y)
% where t is a scalar and y is a column d-vector.

h

index-118_1.png
114 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

In PECE mode, the Adams—Bashforth—Moulton pair of order 4 has interval
of absolute stability equal to (—1.25,0), that is, the method does not amplify past
errors if the step size h is sufficiently small so that

—-1.25 < hﬂ < 0, where ﬂ < 0.
dy dy

ExAMPLE 5.11. Consider the initial value problem
y=z+y, y(0)=0.

Compute the solution at x = 2 by the Adams—Bashforth—Moulton method of
order 4 with h = 0.2. Use Runge—Kutta method of order 4 to obtain the starting
values. Use five decimal places and use the exact solution to compute the global
error.

SOLUTION. The global error is computed by means of the exact solution
ylz) =" —xz — 1.

We present the solution in the form of a table for starting values, predicted values,
corrected values, exact values and global errors in the corrected solution.

Starting Predicted Corrected Exact Error: 10°x

n Yn Y Yn y(zn) (ylzn) —yd)
0 0.000000 0.000000 0
1 0.021 400 0.021 403 3
2 0.091818 0.091 825 7
3 0.222107 0.222119 12
4 0.425361 0.425529 | 0.425541 12
5 0.718066 0.718270 | 0.718282 12
6 1.119855 1.120106 | 1.120117 11
7 1.654885 1.655191 | 1.655200 9
8 2.352653 2.353026 | 2.353032 6
9 3.249190 3.249646 | 3.249647 1
10 4.388505 4.389062 | 4.389056 —6

We see that the method is stable since the error does not grow.

ExXAMPLE 5.12. Solve to six decimal places the initial value problem
y' = arctan z 4 arctany, y(0) =0,

by means of the Adams—Bashforth—-Moulton method of order 3 over the interval
[0,2] with h = 0.2. Obtain the starting values by Runge-Kutta 4. Use formula
(5.30) to estimate the local error at each step.

SoLUTION. The Matlab numeric solution.— The M-file exp5_12 for Ex-
ample 5.12 is

function yprime = exp5_12(x,y); % Example 5.12.
yprime = atan(x)+atan(y);

The initial conditions and the Runge—Kutta method of order 4 is used to
obtain the four starting values

index-117_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 113

ExXAMPLE 5.10. Solve to six decimal places the initial value problem
y =z +siny, y(0) =0,

by means of the Adams—Bashforth—-Moulton method of order 3 over the interval
[0,2] with h = 0.2. The starting values have been obtained by a high precision
method. Use formula (5.30) to estimate the local error at each step.

SoLUTION. The solution is given in a table.

Starting Predicted Corrected | 10°xLocal Error in y
c P c

n
0] 0.0 0.0000000
1102 0.0214047
2104 0.0918195
3106 0.221260 0.221977
41038 0.423703 0.424064
5(1.0 0.710725 0.709623
6(1.2 1.088004 1.083447
7114 1.542694 1.533698
8(1.6 2.035443 2.026712
9118 2.518039 2.518431
10 2.0 2.965994 2.975839

As a second and better known example of multistep methods, we consider
the four-step Adams—Bashforth—-Moulton method of order 4.

The Adams—Bashforth predictor and the Adams—Moulton corrector of order
4 are

PEis =0+ g (3515 —BOFC 43T, — 955) (531)
and
Vo =S g (OFFy 1958 =57+ 1) (5.32)
where

Starting values are obtained with a Runge—Kutta method or otherwise.
The local error is controlled by means of the estimate

19
C5h5y(5)($n+1) ~ 570 [%?H - y5+1] . (5.33)

A certain number of past values of y, and f,, are kept in memory in order to
extend the step size if the local error is small with respect to the given tolerance.
If the local error is too large with respect to the given tolerance, the step size can
be halved by means of the following formulae:

1

Yn-1/2 = Tog (35yn + 140y, 1 — 70y, 2 + 28yn 3 — Yn_4), (5.34)
1

Yn—3/2 = —= (—yn + 24yn 1 + 5dyn 2 — 16y, 3 + 3yn_4). (5.35)

162

index-120_1.png
116

FIGURE 5.9. Graph of the numerical solution of Example 5.12.

5. NUMI

ERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

PthSNMbnynmrB@mmeSAZ

0 0 0 0

1 0.2 0.02126422549044 0
2 0.4 0.08962325332457 0
3 0.6 0.21103407185113 0
4 0.8 0.39029787517821 0.00001007608281
5 1.0 0.62988482479868 0.00005216829834
6 1.2 0.92767891924367 0.00004381671342
7 1.4 1.27663327419538 -0.00003607372725
8 1.6 1.66738483675693 -0.00008228934754
9 1.8 2.09110753309673 -0.00005318684309
10 2.0 2.54068815072267 -0.00001234568256

The following commands print the output.

load output;

subplot(2,2,1); plot(output(:,2),output(:,3));
title(’Plot of solution y_n for Example 5.12°);

xlabel(’x_n’); ylabel(’y_n’);

Fixed stepsize Adams—Bashforth—Moulton methods of order 1 to 5 are imple-
mented in the following Matlab function M-files which are found in
ftp://ftp.cs.cornell.edu/pub/cv.

function [tvals,yvals] = FixedPC(fname,t0,y0,h,k,n)
h
% Produces an approximate solution to the initial value problem
h
% v (t) = £(t,y(t))
h
% using a strategy that is based upon a k-th order
% Adams PC method. Stepsize is fixed.
h

y(t0) = yO

index-119_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 115

clear

h =0.2; x0=0; xf= 2; y0 = 0;

n = ceil ((xf-x0)/h); % number of steps

h

count = 2; print_time = 1; % when to write to output
x = x0; y = y0; % initialize x and y

output = [0 x0 y0O 0];

#RK4

for i=1:3

k1l = h*exp5_12(x,y);

k2 = h*expb_12(x+h/2,y+k1/2);

k3 = h*expb_12(x+h/2,y+k2/2);

k4 = h*exp5_12(x+h,y+k3);

z =y + (1/6)*(k1+2*k2+2+¥k3+k4) ;

x = x + h;
if count > print_time
output = [output; i x z 0];
count = count - print_time;
end
y =z
count = count + 1;
end
% ABM4
for i=4:n
zp =y + (b/24)*(55%exp5_12(output(i,2) ,output(i,3))-...
59*exp5_12(output(i-1,2) ,output(i-1,3))+...
37*exp5_12(output(i-2,2) ,output(i-2,3))-...
9xexp5_12(output(i-3,2) ,output(i-3,3)));
z =y + (b/24)*(9*%exp5_12(x+h,zp)+...
19*exp5_12(output(i,2) ,output(i,3))-...
Bxexp5_12(output(i-1,2) ,output(i-1,3))+...
exp5_12(output(i-2,2) ,output(i-2,3)));
x = x + h;
if count > print_time
errest = -(19/270)*(z-zp);
output = [output; i x z errest];
count = count - print_time;
end
y =z
count = count + 1;
end
output
save output %for printing the graph

The command output prints the values of n, z, and y.

n X y Error estimate

index-124_1.png
120 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

[tnew,yPred,fPred] = ABstep(fname,tc,yc,fvals,h,k);
[tnew,yCorr,fCorr] = AMstep(fname,tc,yc, [fPred fvals(:,1:k-1)],h,k);

5.8.4. Specification of multistep methods. The left-hand side of Adams
methods is of the form

Yn+1 — Yn-
Adams—Bashforth methods are explicit and Adams—Moulton methods are im-
plicit. In the following formulae, Adams methods are obtained by taking a« = 0
and b = 0. The integer k is the number of steps of the method. The integer p is

the order of the method and the constant C,1 is the constant of the top-order
error term.

Explicit Methods

k=1
aq 17
ap = _17 ﬁo - 17
P= 17 CP+1 - %
k=2
Qo — 17
ar=-1-a, pi=3(3-a),
Gy — @, ﬁo %(_1+a)7
P =4 Cp+1:11_2(5+a)~
Absolute stability limits the order to 2.
k=3:
az =1,

12
a; =a+b, ﬁlzé(—4—2a+2b)7
ag = —b, ﬁo:%(5+a+5b)7
p=3 Cpy1 = 27(9 +a+b).
Absolute stability limits the order to 3.
k=4
ag =1,

a3 = —1—a, 53*%55 9a — b —c¢),

ar=a-+tb =

oy =—b—c, fBi=237+5a+ 13b—19c),
ag = ¢, ﬁofﬁ 9—a—b—9c),
p=4; Cpi1 = =55(251 + 19a + 116+ 19¢).

Absolute stability limits the order to 4.

Implicit Methods

index-116_6.jpg

index-116_1.jpg

index-115_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 111

respectively. Tables 5.5 and 5.6 list the AB and AM methods of stepnumber 1 to
6, respectively. In the tables, the coefficients of the methods are to be divided by
d, k is the stepnumber, p is the order, and C} ., and Cj 4 are the corresponding
error constants of the methods.

TABLE 5.5. Coefficients of Adams—Bashforth methods of step-
number 1-6.

E & ;B B m & dFop T
1 T 1 1 172
3 -1 2 2 2 5/12
23 —16 5 12 3 3 3/8
55 —59 37 -9 24 4 4 251/720
1901 2774 1616 —1274 251 720 5 5 95/288
4277 —7923 9982 —7298 2877 —475 1440 6 6 19087/60480

TABLE 5.6. Coefficients of Adams—Moulton methods of step-
number 1-6.

Jeis Je Je2 B2 81 Bo d k p Cpi1
1 1 2 1 2 —1/12
5 8 -1 12 2 3 —1/24
9 19 -5 1 24 3 4 —19/720
251 646 —264 106 —19 720 4 5 —3/160
475 1427 —798 482 —173 27 1440 5 6 —863/60480

The regions of absolute stability of k-step Adams—Bashforth and Adams—
Moulton methods of order k£ = 1, 2, 3, 4, are the interior of the closed regions whose
upper halves are shown in the left and right parts, respectively, of Fig. 5.7. The
region of absolute stability of the Adams—Bashforth method of order 3 extends in
a small triangular region in the right half-plane. The region of absolute stability
of the Adams—Moulton method of order 1 is the whole left half-plane.

In practice, an AB method is used as a predictor to predict the next-step
value gy ., which is then inserted in the right-hand side of an AM method used
as a corrector to obtain the corrected value y,41. Such combination is called an
ABM predictor-corrector which, when of the same order, comes with the Milne
estimate for the principal local truncation error

C
~ pt1
€nt1 ~ —% (yn+1 - ZUZ+1)~

p+1 Cpi1

The procedure called local approzimation improves the higher-order solution ¥, 41
by the addition of the error estimator, namely,
Cpi1

Yni+1t+ o O (Ynt1 — y;+1).
p+1 = “ptl

index-116_3.jpg

index-116_2.jpg

index-112_1.png
108 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

by means of the difference y,,11 — 9nt+1. We present this method in a Butcher
tableau. The estimated local error is obtained from the last line. The method of
order 4 minimizes the local error.

kq 0 ‘ 0
1 1
]fz Z Z O
3 3 9
ks 8 | 32 32 0
k 12 | 1932 7200 7296 0
4 13 2197 2107 2197
ks 1 | 439 _8 3680 _ 845 0
216 513 2104
k 1 | 8 9 _ 3544 1850 _ 11 g (5.20)
6 p) 7 7565 1104 0
2197 1
4704 5 0
- b7 | 16 0 6656 28561 9 2
Yn+1 135 12825 56430 50 F5
T _wT | L _ 128 2197 1 2
b b | 360 0 1275 75240 50 55

Six-stage Runge—Kutta—Fehlberg pair RKF(4,5) of order 4 and 5.

The interval of absolute stability of the pair RKF(4,5) is approximately
(—3.78,0).

The pair RKF45 of order four and five minimizes the error constant Cs of the
lower order method which is used to advance the solution from y,, to y,41, that
is, without using local extrapolation. The algorithm follows.

ALGORITHM 5.1. Let yo be the initial condition. Suppose that the approxi-
mation y, to y(z,) has been computed and satisfies |y(x,,) — yn| < € where ¢ is
the desired precision. Let A > 0.

(1) Compute two approximations for y,1: one using the fourth-order method

25 1408 2197 1
n — Yn —k k ky — =k s 5.21
Yt y+<2161+25653+41044 55> (5:21)
and the second using the fifth-order method,
N 16 6656 28561 9 2
Yj+1 =Yn + (E/ﬁ + 12825k3 + 56430k4 — %/% + %/%) , (5.22)
where
kl - hf xn7yn)7

ko = hf(z, + h/4,yn + k1 /4),

ks = hf(xn + 3h/8, yn + 3k1/32 + 9k2/32),

ky = hf (2 + 120/13, y + 19321 /2197 — 7200ks/2197 + 7296ks /2107),

ks = hf(en + hyyn + 439k1 /216 — 8ky | 3680ks/513 | 845k4/4104),

ke = hf(en 1 h/2,ypn — ki /27 + 2k + 3544ks /2565 + 1850ks /4104 — 11k /40).

(2) If |gj41 — ynt1] < €h, accept yni1 as the approximation to y(zni1).
Replace h by gh where

~ 1/4
q = [ﬁh/(2|yj+1 —yn+1|)] /

and go back to step (1) to compute an approximation for ;.

index-111_3.jpg
- 21

index-114_1.png
110 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

where h is the step size and n = (b —a)/h.
For this purpose, we consider the k-step linear method:

k k
Zajynﬂ‘ = h25jfn+j7 (5.25)
n=0 n=0

where yy, =~ y(z,) and f, = f(2p,yn). We normalize the method by the condition
o = 1 and insist that the number of steps be exactly k& by imposing the condition

(a0, o) # (0,0).

We choose k starting values yo,y1,...,yr—1, Say, by means of a Runge—Kutta
method of the same order.

The method is explicit if 5, = 0; in this case, we obtain vy, 1 directly. The
method is implicit if B, # 0; in this case, we have to solve for ynii by the
recurrence formula:

yif:k” = hBif (anm yy[ik) + g, yyﬂk arbitrary, s=0,1,..., (5.26)
where the function

g = g($n7 ey Tt k—15 Y05 - - - 7yn+k71)

contains only known values. The recurrence formula (5.26) converges as s — 00,
if 0 < M < 1 where M is the Lipschitz constant of the right-hand side of (5.26)
with respect to yn,1g. If L is the Lipschitz constant of f(z) with respect to y,
then

M = Lh|p] < 1 (5.27)

and the inequality
1

L| 3]

h <

implies convergence.
Applying (5.25) to the test equation,

Yy = Ay, R <0,
with solution y(z) — 0 as ¢ — oo, one finds that the numerical solution y,, — 0

as n — oo if the zeros, r5(h), of the stability polynomial

k
w(r, h) = Z(aj — hB;)r?
n=0
satisfy |rs (ﬁ)| <1,s=1,2,...,k In that case, we say that the linear multistep
method (5.25) is absolutely stable for given h. The region of absolute sta-

bility, I, in the complex plane is the set of values of h for with the method is
absolutely stable.

5.8.2. Adams-Bashforth-Moulton linear multistep methods. Popu-
lar linear k-step methods are (explicit) Adams—Bashforth (AB) and (implicit)
Adams—Moulton (AM) methods,

h—1 k
Yntl — Yn = hZ@fnﬂ‘—mh Ynil — Yn = h25jfn+j—k+17
=0 =0

index-113_1.png
5.8. MULTISTEP PREDICTOR-CORRECTOR METHODS 109

(3) If |gj41 — Yn+t1| > €h, replace h by gh where

~ 1/4
g = [eh/@G511 — yari])]

and go back to step (1) to compute the next approximation for y, 1.

One can show that the local truncation error for (5.21) is approximately

[Yj11 = Ynyil/ P

At step (2), one requires that this error be smaller than eh in order to get |y(zy) —
yn| < € for all j (and in particular |y(z;) — y¢| < €). The formula to compute ¢
in (2) and (3) (and hence a new value for h) is derived from the relation between
the local truncation errors of (5.21) and (5.22).

RKF(4,5) overestimate the error in the order-four solution because its local
error constant is minimized. The next method, RKV, corrects this fault.

5.7.4. Eight-stage Runge—Kutta—Verner pair RKV(5,6). The eight-
stage Runge—Kutta—Verner pair RKV(5,6) of order 5 and 6 is presented in a
Butcher tableau. Note that 8 stages are necessary to get order 6. The method
attempts to keep the global error proportional to a user-specified tolerance. It is
efficient for nonstiff systems where the derivative evaluations are not expensive
and where the solution is not required at a large number of finely spaced points
(as might be required for graphical output).

C A
k1 0 0
1 1
4 4 16
ks] = 75 0
2 5 8 5
ka3 5 -3 2 0
k 5 _ 165 55 _ 425 85 0
5 6 64 6 64 96
k 1 12 _3 4015 11 88 (5.23)
6 5 612 36 255
k 1 | _ 8263 124 _643 81 2484
7 15 15000 75 680 250 10625
L 1 3501 _300 2072715 _ 319 24068 j 3850
8 1720 43 52632 2322 84065 26703
T 13 2375 5 12 3
Ynt1 b 160 0 £084 16 85 14
~ T 3 875 23 264 125 43
Ynt1 b 10 0 2244 72 1055 0 11592 616

Eight-stage Runge—Kutta—Verner pair RKV(5,6) of order 5 and 6.

5.8. Multistep Predictor-Corrector Methods

5.8.1. General multistep methods. Consider the initial value problem

y/ - f($7 y)? y(a) =1 (524)

where f(z) is continuous with respect to z and Lipschitz continuous with respect
to y on the strip [a,b] X (—00,00). Then, by Theorem 5.1, the exact solution,
y(z), exists and is unique on [a, b].

We look for an approximate numerical solution {y,} at the nodes z,, = a + nh

index-9_2.jpg

index-9_1.jpg
(“;b) 1) <0,

index-10_1.png
T

6 1. SOLUTIONS OF NONLINEAR EQUATIONS

% delta non-negative real number.

A

% Post:

% root the midpoint of an interval [alpha,betal

% with the property that f(alpha)f(beta)<=0 and
% |beta-alpha| <= deltateps*max(|alphal, |betal)
A

fa = feval(fname,a);
fb = feval(fname,b);
if fa*fb > O
disp(’Initial interval is not bracketing.’)
return
end
if nargin==3
delta = 0;
end
while abs(a-b) > deltateps*max(abs(a),abs(b))
mid = (a+b)/2;
fmid = feval(fname,mid);
if fa*xfmid<=0
% There is a root in [a,mid].

b = mid;
fb = fmid;
else
% There is a root in [mid,b].
a = mid;
fa = fmid;
end
end

root = (a+b)/2;

ExAMPLE 1.5. Find an approximation to v/2 using the bisection method.
Stop iterating when |zp1 — 2,| < 1072,

SOLUTION. We need to find a root of f(z) = x> —2 = 0. Choose ag = 1 and
bo = 2, and obtain recursively

ap, + by
Tptl = —5

by the bisection method. The results are listed in Table 1.1. The answer is
V2 &2 1.414063 with an accuracy of 10~2. Note that a root lies in the interval
[1.414063,1.421875].

EXAMPLE 1.6. Show that the function f(z) = 2> +4 2 —10 has a unique root
in the interval [1, 2] and give an approximation to this root using eight iterations
of the bisection method. Give a bound for the absolute error.

SOLUTION. Since

f(1)=-5<0 and f(2)=14>0,

index-116_5.jpg

index-116_4.jpg

index-9_3.jpg
y=5(x)_+

(a5, [(ay))

n

RN,
a, Boni p\ X

b, b))

index-12_1.png
8 1. SOLUTIONS OF NONLINEAR EQUATIONS

Thus,
n>4In10/ln2 = 13.28771238 — n = 14.

Hence, we need 14 iterations.

1.4. Fixed Point Iteration

Let f(x) be a real-valued function of a real variable . In this section, we
present iterative methods for solving equations of the form

fl@)=0. (1.1)
A root of the equation f(z) = 0, or a zero of f(z), is a number p such that
flp) =0.
To find a root of equation (1.1), we rewrite this equation in an equivalent
form
2= g(a), (1.2)
for instance, g(z) =z — f(z).
We say that (1.1) and (1.2) are equivalent (on a given interval) if any root
of (1.1) is a fixed point for (1.2) and vice-versa.
Conversely, if, for a given initial value zq, the sequence xo, x1, ..., defined
by the recurrence
Znt1 = glaxn), n=0,1,..., (1.3)
converges to a number p, we say that the fixed point method converges. If g(x)
is continuous, then p = g(p). This is seen by taking the limit in equation (1.3) as
n — 00. The number p is called a fixed point for the function g(z) of the fixed
point iteration (1.2).
It is easily seen that the two equations

2 92 -9=0, z=(9-2%)/9

are equivalent. The problem is to choose a suitable function g(z) and a suitable
initial value xo to have convergence. To treat this question we need to define the
different types of fixed points.

DerFINITION 1.1. A fixed point, p = g(p), of an iterative scheme

Tnt1 = g(Tn),
is said to be atiractive, repulsive or indifferent if the multiplier, ¢'(p), of g(x)
satisfies
')l <1, lg'p)l>1, or |g'(p)l=1,
respectively.

THEOREM 1.6 (Fixed Point Theorem). Let g(x) be a real-valued function
satisfying the following conditions:
(1) g(x) € [a,b] for all x € [a,b].
(2) g(z) is differentiable on |a,b].
(3) There exists a number K, 0 < K < 1, such that |¢'(z)] < K for all

x € (a,b).
Then g(x) has a unique atlractive fized point p € [a,b]. Moreover, for arbitrary
zg € [a,b], the sequence xq, x1, x9, ... defined by

Tt = g(zn), n=012 ...,

converges to p.

index-11_1.png
1.3. THE BISECTION METHOD 7

TABLE 1.1. Results of Example 1.5.

n o1 — ol [) | J(an)
O —
1 | 1.500000 1.500000 500000 + —
2 | 1.250000 | 1.250000 | 1.500000 250000 — —
3| 1.375000 | 1.375000 | 1.500000 .125000 — —
4 11.437500 | 1.375000 | 1.437500 062500 + —
5 | 1.406250 | 1.406250 | 1.437500 .031250 — —
6 | 1.421875 | 1.406250 | 1.421875 015625 + —
7 11.414063 | 1.414063 | 1.421875 007812 — —

TABLE 1.2. Results of Example 1.6.

then f(z

[N I~ S, B UR N R e I

has a root, p, in [1,2]. This root is unique since f(z) is strictly increasing

1.500000000
1.250000000
1.375000000

1.312500000
1.343750000
1.359375000
1.367187500
1.363281250

on [1,2]; in fact

() =32 +42 >0 for all z between 1 and 2.

1.250000000
1.250000000
1.312500000
1.343750000
1.359375000
1.359375000
1.363281250

The results are listed in Table 1.2.

After eight iterations, we find that p lies between 1.363281250 and 1.367187500.

1.500000000
1.500000000
1.375000000
1.375000000
1.375000000
1.375000000
1.367187500
1.367187500

Therefore, the absolute error in p is bounded by

1.367187500 — 1.363281250 = 0.00390625.

ExaMpPLE 1.7. Find the number of iterations needed in Example 1.6 to have
an absolute error less than 10~

SOLUTION. Since the root, p, lies in each interval [a,, b,], after n iterations
the error is at most b,, — a,. Thus, we want to find n such that b,, — a,, < 107%.
Since, at each iteration, the length of the interval is halved, it is easy to see that

b, —a, =(2—1)/2™.
Therefore, n satisfies the inequality
27 <1071,

that is,

In2™" <In107*, or —nln2< —4In10.

index-108_1.png
104 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

ynew = yc + (16/135)*kl + (6656/12825)*k3 +
(28561/56430)*k4 - (9/50)*k5 + (2/55)#*k6;

end
tnew = tc+h;
fnew = feval(fname,tnew,ynew);

5.7. Embedded Pairs of Runge—Kutta methods

Thus far, we have only considered a constant step size h. In practice, it is
advantageous to let h vary so that h is taken larger when y(z) does not vary
rapidly and smaller when y(z) changes rapidly. We turn to this problem.

Embedded pairs of Runge—Kutta methods of orders p and p+ 1 have built-in
local error and step-size controls by monitoring the difference between the higher
and lower order solutions, y,4+1 — Ynt1. Some pairs include an interpolant which
is used to interpolate the numerical solution between the nodes of the numerical
solution and also, in some case, to control the step-size.

5.7.1. Matlab’s four-stage RK pair ode23. The code 0de23 consists in a
four-stage pair of embedded explicit Runge—Kutta methods of orders 2 and 3 with
error control. It advances from y,, to y,+1 with the third-order method (so called
local extrapolation) and controls the local error by taking the difference between
the third-order and the second-order numerical solutions. The four stages are:

kl - hf(xn7yn)7

ky =h f(zn + (1/2)h, yn + (1/2)k1),
ks = h f(zn + (3/4)h, yn + (3/4)k2),
ko= hf(zn + hyyn + (2/9)k1 + (1/3)ka + (4/9)ks3),

The first three stages produce the solution at the next time step:

2 1 4
it = Yn + = ki + = ko + = ks,
Yl = TG R TGS

and all four stages give the local error estimate:
5
72

However, this is really a three-stage method since the first step at =z, is the

same as the last step at z,,, that is k[ln+1] = /@[1"]. Such methods are called FSAL
methods.

The natural interpolant used in ode23 is the two-point Hermite polyno-
mial of degree 3 which interpolates y,, and f(z,,y,) at z = x,,, and y,4+1 and

f(xn+17 xn+1) at t = Tp1-

ExXaMPLE 5.9. Use Matlab’s four-stage FSAL ode23 method with & = 0.1 to
approximate y(0.1) and y(0.2) to 5 decimal places and estimate the local error
for the initial value problem

1 1 1
E=- k1+ﬁk2+§k3_§k4'

y=ay+1, y(0)=1
SoLUTION. The right-hand side of the differential equation is

[z, y) =2y + 1.

index-107_1.png
h
h
h
h
h
h
h
h
h
h
h
h
h
h

5.6. STABILITY OF RUNGI

&3}

~KUTTA METHODS 103

Pre: fname is a string that names a function of the form f(t,y)
where t is a scalar and y is a column d-vector.

yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

fc = f(tc,yc).

h is the time step.

k is the order of the Runge-Kutta method used, 1<=k<=5.

Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and
fnew = f(tnew,ynew).

if k==

k1 = hxfc;
ynew = yc + kil;

elseif k==2
k1 = hxfc;
k2 = h*feval (fname,tc+h,yc+kl);
ynew = yc + (k1 + k2)/2;
elseif k==3
k1 = hxfc;
k2 = h*feval (fname,tc+(h/2) ,yc+(k1/2));

k3 = h*feval (fname,tc+h,yc-k1+2*k2);
ynew = yc + (k1 + 4xk2 + k3)/6;
elseif k==4
k1 = hxfc;
k2 = h*feval (fname,tc+(h/2) ,yc+(k1/2));
k3 = h*feval (fname,tc+(h/2) ,yc+(k2/2));
k4 = h*feval (fname,tc+h,yc+k3);
ynew = yc + (k1 + 2xk2 + 2xk3 + k4)/6;
elseif k==5b
k1 = hxfc;
k2 = h*feval (fname,tc+(h/4) ,yc+(k1/4));
k3 = h*feval (fname,tc+(3*h/8),yc+(3/32)*kl
+(9/32)*k2) ;
k4 = h*feval (fname,tc+(12/13)*h,yc+(1932/2197)*k1
-(7200/2197)*k2+(7296/2197) *k3) ;
k5 = h*feval (fname,tc+h,yc+(439/216)*k1
- 8*k2 + (3680/513)*k3 -(845/4104)*k4) ;
k6 = h*feval (fname,tc+(1/2)*h,yc-(8/27)*kl

+ 2%k2 -(3544/2565)*k3 + (1859/4104)*k4 - (11/40)*k5);

index-110_1.png
106 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Solution to equation of Example 5.9

35

FIGURE 5.5. Graph of numerical solutions of Example 5.9.

5.7.2. Seven-stage Dormand—Prince pair DP(5,4)7TM with inter-
polant. The seven-stage Dormand-Prince pair DP(5,4)7TM [3] with local error
estimate and interpolant is presented in a Butcher tableau. The number 5 in the
designation DP(5,4)7M means that the solution is advanced with the solution
ynt1 of order five (a procedure called local extrapolation). The number 4 means
that the solution 4,1 of order four is used to obtain the local error estimate by
means of the difference y,1+1 — Yn41. In fact, §,41 is not computed; rather the
coefficients in the line b7 — b7 are used to obtain the local error estimate. The
number 7 means that the method has seven stages. The letter M means that the
constant Cy in the top-order error term has been minimized, while maintaining
stability. Six stages are necessary for the method of order 5. The seventh stage is
necessary to have an interpolant. The last line of the tableau is used to produce
an interpolant.

c A
2 0 0
ko L L 0
3 3 9
k3 | B o 0
4 44 56 32
k4 |l = —15 5 0
k 8 | 10372 25360 64448 212 0
5 9 6561 2187 6561 729
k 1 | 5017 355 46732 49 _ 5103 0
6 3168 33 5247 76 18656
k 1 | 35 0 500 125 2187 11
7 384 1113 92 6784 84
-~ bT 5179 0 7571 303 92007 187 1
Yni-1 57600 16695 640 T 335200 2100 40
T 35 500 125 9187 11
Yn41 b | 384 0 1113 92 G 84 0
bT _ BT | 71 0 71 71 179253 22 1
57600 T 16605 1920 339 200 25 40
| BT783653 0 466123 _ 41347 16122321 _riiv 183
yn+0.5 57600000 1192500 1920000 339200000 20000(100)00
5.19

Seven-stage Dormand—Prince pair DP(5,4)7M of order 5 and 4.

index-109_1.png
5.7. EMBEDDED PAIRS OF RUNGE-KUTTA METHODS 105

With n = 0:

k1=01x1=0.1
ks =0.1x (0.05x 1.05 + 1) = 0.10525
ks = 0.1 x (0.75 x 1.0789375+ 1) = 0.108 092031 25

ks = 0.1 x (0.1 x 1.105346 458 333334 1) — 0.111 053 464 583 33
y1 — 1.105 346 458 333 33

The estimate of the local error is
Local error estimate = —4.506 848 958 333 448¢ — 05
With n = 1:

k1 =0.111053464 58333
k2 = 0.117413 097 859 37
ks = 0.120 884 609 930 24
ks =0.12445778397215
ya = 1.222889198 607 30

The estimate of the local error is
Local error estimate = —5.322 100094 209 102¢ — 05

To use the numeric Matlab command ode23 to solve and plot the given initial
value problem on [0, 1], one writes the function M-file exp5_9.m:

function yprime = exp5_9(x,y)
yprime = x.*y+1;

and use the commands

clear

xspan = [0 1]; yO = 1; % xspan and initial value

[x,y] = 0de23(’exp5_9’ ,xspan,y0);

subplot(2,2,1); plot(x,y); xlabel(’x’); ylabel(’y’);
title(’Solution to equation of Example 5.97);

print -deps2 Figexp5_9 % print figure to file Fig.exp5.9

The Matlab solver ode23 is an implementation of the explicit Runge—Kutta
(2,3) pair of Bogacki and Shampine called BS23. It uses a “free” interpolant of
order 3. Local extrapolation is done, that is, the higher-order solution, namely of
order 3, is used to avance the solution.

index-106_1.jpg

index-106_3.jpg

index-106_2.jpg

index-111_1.jpg

index-110_2.png
3.9

index-111_2.jpg

index-1_1.png
Numerical Methods with Matlab

Ryuichi Ashino and Rémi Vaillancourt

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF OT-
TAWA, OTTAWA, ON, CANADA, K1IN 6N5
E-mail address: remi®@®@.uottawa.ca

index-3_1.png
Contents

Chapter 1. Solutions of Nonlinear Equations

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.
1.7.
1.8.

Computer Arithmetics

Review of Calculus

The Bisection Method

Fixed Point Iteration

Newton’s, Secant, and False Position Methods
Accelerating Convergence

Horner’s Method and the Synthetic Division
Miiller’s Method

Chapter 2. Interpolation and Extrapolation

2.1.
2.2,
2.3.
24.
2.5.
2.6.

Lagrange Interpolating Polynomial

Newton’s Divided Difference Interpolating Polynomial
Gregory—Newton Forward-Difference Polynomial
Gregory—Newton Backward-Difference Polynomial
Hermite Interpolating Polynomial

Cubic Spline Interpolation

Chapter 3. Numerical Differentiation and Integration

3.1
3.2,
3.3.
34.
3.5.
3.6.
3.7.
3.8.
3.9.

Numerical Differentiation

The Effect of Roundoff and Truncation Errors
Richardson’s Extrapolation

Basic Numerical Integration Rules

The Composite Midpoint Rule

The Composite Trapezoidal Rule

The Composite Simpson’s Rule

Romberg Integration for the Trapezoidal Rule
Adaptive Quadrature Methods

Chapter 4. Matrix Computations

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

LU Solution of Ax =b

Cholesky Decomposition

Matrix Norms

Iterative Methods

Overdetermined Systems

Matrix Eigenvalues and Eigenvectors
The QR Decomposition

The QR algorithm

The Singular Value Decomposition

iii

27
27
29
32
35
36
37

41
41
43
45
47
49
51
53
55
57

59
59
67
71
73
75
78
82
83
84

index-2_1.png

index-5_1.png
CHAPTER 1

Solutions of Nonlinear Equations

1.1. Computer Arithmetics

1.1.1. Definitions. The following notation and terminology will be used.

(1)

(2)

(3)

(4)

If a is the exact value of a computation and & is an approximate value
for the same computation, then

c=a—a

is the error in @ and |¢| is the absolute error. If a £ 0,

is the relative error in a.

Upper bounds for the absolute and relative errors in a are numbers
B, and B, such that

a—a

el =la—al <Ba, |e|= < B,

a

respectively.

A roundoff error occurs when a computer approximates a real number
by a number with only a finite number of digits to the right of the decimal
point (see Subsection 1.1.2).

In scientific computation, the floating point representation of a num-
ber ¢ of length d in the base § is

Cc = ::O.blbg s bd X ﬁN7

where b1 £ 0, 0 < b; < 8. We call b1by - - - by the mantissa or decimal
part and N the exponent of ¢. For instance, with d =5 and g = 10,

0.27120 x 102, —0.31224 x 10°.

The number of significant digits of a floating point number is the
number of digits counted from the first to the last nonzero digits. For
example, with d = 4 and 8 = 10, the number of significant digits of the
three numbers:

0.1203 x 107, 0.1230 x 102, 0.1000 x 10,

is 4, 3, and 1, respectively.
The term truncation error is used for the error committed when an
infinite series is truncated after a finite number of terms.

1

index-4_1.png
iv CONTENTS

Chapter 5. Numerical Solution of Differential Equations 87
5.1. Initial Value Problems 87
5.2. Euler’s and Improved Euler’s Method 88
5.3. Low-Order Explicit Runge—Kutta Methods 91
5.4. Convergence of Numerical Methods 99
5.5. Absolutely Stable Numerical Methods 100
5.6. Stability of Runge—Kutta methods 101
5.7. Embedded Pairs of Runge—Kutta methods 104
5.8. Multistep Predictor-Corrector Methods 109
5.9. Stiff Systems of Differential Equations 122

Chapter 6. The Matlab ODE Suite 131
6.1. Introduction 131
6.2. The Methods in the Matlab ODE Suite 131
6.3. The odeset Options 134
6.4. Nonstiff Problems of the Matlab odedemo 136
6.5. Stiff Problems of the Matlab odedemo 136
6.6. Concluding Remarks 140

Bibliography 141

Chapter 7. Orthogonal polynomials 143
7.1. Fourier-Legendre Series 143
7.2. Derivation of Gaussian Quadratures 145
7.3. Numerical Solution of Integral Equations of the Second Kind 149

Chapter 8. Formulae and Tables 155
8.1. Legendre Polynomials P, (z) on [—1, 1] 155
8.2. Laguerre Polynomials on 0 < z < o0 156
8.3. Fourier—Legendre Series Expansion 157

Exercises for Numerical Methods 159
Exercises for Chapter 1 159
Exercises for Chapter 2 161
Exercises for Chapter 3 162
Exercises for Chapter 4 164
Exercises for Chapter 5 166

Solutions to Exercises for Numerical Methods 169
Solutions to Exercises for Chapter 1 169
Solutions to Exercises for Chapter 2 171
Solutions to Exercises for Chapter 4 172
Solutions to Exercises for Chapter 5 176

Index 183

index-7_1.png
1.1. COMPUTER ARITHMETICS 3

From Example 1.2, it is seen that a numerically stable formula for solving the
quadratic equation

az? + bz +c=0, a0,
is

1 L [—b — sign (b)/b? — 4ac} , o L7

2a axry
where the sighum function is

. +1, if x>0,
Sen (@) =9 1" i . <o

ExaMPLE 1.3. If the value of x rounded to three digits is 4.81 and the value
of y rounded to five digits is 12.752, find the smallest interval which contains the
exact value of x — y.

SOLUTION. Since
4.805 <z <4.815 and 12.7515 <y < 12.7525,
then

4.805 - 127525 <z —y < 4.815 - 12.7515 & —7.9475 < x —y < —7.9365.

EXAMPLE 1.4. Find the error and the relative error in the commonly used
rational approximations 22/7 and 355/113 to the transcendental number 7 and
express your answer in three-digit floating point numbers.

SoLUTION. The error and the relative error in 22/7 are
e=22/7—m, €& = €/,

which Matlab evaluates as

pp = pi
pp = 3.14159265358979
rl = 22/7.
rl = 3.14285714285714
abserrl = rl1 -pi
abserrl = 0.00126448926735
relerrl = abserrl/pi
relerrl = 4.024994347707008e-04

Hence, the error and the relative error in 22/7 rounded to three digits are

e=0.126x 1072 and ¢, = 0.402 x 1073,

respectively. Similarly, Matlab computes the error and relative error in 355/113
as

r2 = 355/113.

r2 = 3.14159292035398
abserr2 = r2 - pi

abserr2 = 2.667641894049666e-07
relerr2 = abserr2/pi

relerr2 = 8.491367876740610e-08

index-6_1.png
2 1. SOLUTIONS OF NONLINEAR EQUATIONS

REMARK 1.1. For simplicity, we shall often write floating point numbers
without exponent and with zeros immediately to the right of the decimal point
or with nonzero numbers to the left of the decimal point:

0.001203, 12300.04

1.1.2. Rounding and chopping numbers. Real numbers are rounded
away from the origin. The floating-point number, say in base 10,

C = ::O.blbg c. bd X 10N

is rounded to k digits as follows:
(i) If 0.bg1bg12 .. by > 0.5, round ¢ to

(0.b1by ... by 1bg + 0.1 x 107Ky 5 10V,
(ii) If 0.bgs1bkra ... by < 0.5, round ¢ to
O.blbg .. .bkflbk X ION.

ExaMPLE 1.1. Numbers rounded to three digits:

1.9234542 ~ 1.92

2.5952100 ~ 2.60

1.9950000 ~ 2.00
—4.9850000 ~ —4.99

Floating-point numbers are chopped to k digits by replacing the digits to the
right of the kth digit by zeros.

1.1.3. Cancellation in computations. Cancellation due to the subtrac-
tion of two almost equal numbers leads to a loss of significant digits. It is better
to avoid cancellation than to try to estimate the error due to cancellation. Ex-
ample 1.2 illustrates these points.

ExaMPLE 1.2. Use 10-digit rounded arithmetic to solve the quadratic equa-
tion
2 — 16342 +2 =0.

SoLUTION. The usual formula yields

x = 817+ V2669948,

Thus,
x1 = 817 4 816.998 776 0 = 1.633 998 776 x 103,
xy = 817 — 816.998 776 0 = 1.224000 000 x 10~ 3.

Four of the six zeros at the end of the fractional part of x5 are the result of
cancellation and thus are meaningless. A more accurate result for x5 can be
obtained if we use the relation

1y — 2.

In this case
x9 = 1.223991 125 x 1073,

where all digits are significant.

index-8_1.png
4 1. SOLUTIONS OF NONLINEAR EQUATIONS

Hence, the error and the relative error in 355/113 rounded to three digits are

e=0267x107°% and e =0.849 x 107",

1.2. Review of Calculus

The following results from elementary calculus are needed to justify the meth-
ods of solution presented here.

THEOREM 1.1 (Intermediate Value Theorem). Let a < b and f(z) be a con-
tinuous function on [a,b]. If w is a number strictly between f(a) and f(b), then
there erists a number ¢ such that a < ¢ < b and f(c) = w.

COROLLARY 1.1. Let a < b and f(x) be a continuous function on [a,b]. If
fla)f(b) <0, then there exists a zero of f(x) in the open interval |a, b[.

Proor. Since f(a) and f(b) have opposite signs, 0 lies between f(a) and
f(b). The result follows from the intermediate value theorem with w = 0.

THEOREM 1.2 (Extreme Value Theorem). Let a < b and f(x) be a continuous
function on [a,b]. Then there exist numbers « € [a,b] and 3 € [a,b] such that, for
all z € [a, b], we have

fla) < fl=) < f(B).

THEOREM 1.3 (Mean Value Theorem). Let a < b and f(x) be a continuous
function on [a,b] which is differentiable on |a,b]. Then there exists a number ¢

such that a < ¢ < b and
/ f(b) f(a)
fle) = —

THEOREM 1.4 (Mean Value Theorem for Integrals). Let a < b and f(x) be a
continuous functz’on on [a,b]. If g(x) is an integrable function on [a, b] which does
not change sign on [a, b], then there exists a number ¢ such thalt a < ¢ <b and

/ fo s [gl e

A similar theorem holds for sums.

THEOREM 1.5 (Mean Value Theorem for Sums). Let {w;},i=1,2,...,n, bea
set of n distinct real numbers and let f(x) be a continuous function on an interval
[a,b]. If the numbers w; all have the same sign and all the poinis z; € [a, b], then
there erists a number ¢ € [a, b] such that

szf(%) = fle) sz
i=1 i=1

1.3. The Bisection Method

The bisection method constructs a sequence of intervals of decreasing length
which contain a root p of f(z) =0. If

fla) f(b) <0 and f is continuous on [a,b],
then, by Corollary 1.1, f(z) = 0 has a root between a and b. The root is either

between))
a and a; i f(a)f(a;r ><07

index-101_2.png
Plot ot solution Y for Example 9./

0.8

1.5

index-186_1.png

index-101_1.png
5.3. LOW-ORDER EXPLICIT RUNGE-KUTTA METHODS 97

Plot of solution Yn for Example 5.7

0.8

1.5

FIGURE 5.2. Graph of numerical solution of Example 5.7.

100.0000 1.0000 0.7040
The following commands print the output.

load output;

subplot(2,2,1); plot(output(:,2),output(:,3));
title(’Plot of solution y_n for Example 5.7°);
xlabel(’x_n’); ylabel(’y_n’);

In the next example, the Runge—Kutta method of order 4 is used to solve the
van der Pol system of two equations. This system is also solved by means of the
Matlab ode23 code and the graphs of the two solutions are compared.

ExAaMPLE 5.8. Use the Runge—Kutta method of order 4 with fixed step size
h = 0.1 to solve the second-order van der Pol equation

'+ (y =1y +y=0, y(0)=0, ' (0)=0.25, (5.11)

on 0 < z < 20, print every tenth value, and plot the numerical solution. Also,
use the 0de23 code to solve (5.11) and plot the solution.

SOLUTION. We first rewrite problem (5.11) as a system of two first-order
differential equations by putting y; = y and yo = 9/,
yi = Y2,
vy = w(l-yi)—w,
with initial conditions y1(0) = 0 and y2(0) = 0.25.
Our MATLAB program will call the MATLAB function M-file explvdp.m:

function yprime = explvdp(t,y); % Example 5.8.
yprime = [y(2); y(2).*x(1-y(1).72)-y(1)]; % van der Pol system

The following program applies the Runge—Kutta method of order 4 to the
differential equation defined in the M-file explvdp.m:

index-185_5.png
1.4
1.2

0.8
0.6
0.4
0.2

Plot ot solution Y for Exercise 9.20

0.2 0.4 0.6 0.8

index-103_1.png
5.4. CONVERGENCE OF NUMERICAL METHODS 99

T

T

T

RK4 solution Yn for Example 5.8 ode23 solution Y for Example 5.8

F1GURE 5.3. Graph of numerical solution of Example 5.8.

subplot(2,2,1);

plot(w(:,1),w(:,2)); % plot RK4 solution

axis(v);

title (’RK4 solution y_n for Example 5.87); xlabel(’t_n’); ylabel(’y_n’);
subplot(2,2,2);

[t,y] = ode23(Pexplvdp’, [0 211, yO);

plot(x,y(:,1)); % plot ode23 solution

axis(v);

title(’0de23 solution y_n for Example 5.8%); xlabel(’t_n’); ylabel(’y_n’);

The code ode23 produces three vectors, namely t of (144 unequally-spaced) nodes
and corresponding solution values y(1) and y(2), respectively. The left and right
parts of Fig. 3.3 show the plots of the solutions obtained by Rk4 and ode23,
respectively. It is seen that the two graphs are identical.

5.4. Convergence of Numerical Methods

In this and the next sections, we introduce the concepts of convergence, con-
sistency and stability of numerical ode solvers.
The numerical methods considered in this chapter can be written in the gen-

eral form
k

Z XjYnitg — h@f(ynﬂm Yntk—1s- 2 Yny Tn; h) (512)

n=0
where the subscript f to ¢ indicates the dependance of ¢ on the function f(z,y)
of (5.1). We impose the condition that
szo(ynﬂw Yn+k—1;5 -3 Yn, Tn; h) = 07
and note that the Lipschitz continuity of ¢ with respect to y,14, n =20,1,...,k,
follows from the Lipschitz continuity (5.2) of f.

DerINITION 5.3. Method (5.12) with appropriate starting values is said to
be convergent if, for all initial value problems (5.1), we have

yn — y(z,) — 0 as h|O0,

index-188_1.png
184

Miiller’s method, 25

Newton divided difference, 29

parabola method, 25
interval of absolute stability, 101
inverse power method, 81
iterative method, 73

Jacobi iteration, 75
Jacobi method for eigenvalues, 83

l1-norm
of a matrix, 72
of a vector, 72
lo-norm
of a matrix, 72
of a vector, 72
lso-norm
of a matrix, 72
of a vector, 72
Lagrange basis, 27
Lagrange interpolating polynomial, 27
Legendre
differential equation, 155
polynomial P,(z), 143
linear regression, 76
Lipschitz condition, 87
local approximation, 111
local error of method for ODE, 100
local extrapolation, 106
local truncation error, 88, 89, 100

MATLAB
fzero function, 20
odel13, 121
odelbs, 129
ode23, 104
ode23s, 129
ode23t, 129
ode23tb, 129
mean value theorem, 4
for integral, 4
for sum, 4
method of false position, 17
method of order p, 100
midpoint rule, 47, 48
multistep method, 110

natural boundary, 38
natural spline, 38

NDF (numerical differentiation formula, 123

Newton’s method, 13
modified, 15
Newton—Raphson method, 13
normal equations, 76
normal matrix, 84
numerical differentiation formula, 123
numerical solution of ODE, 87

operation
gaxpy, 71

IND]

je3}

saxpy, 70
order of an iterative method, 13
overdetermined system, 75, 83

partial pivoting, 59

PECE mode, 112

PECLE mode, 112
phenomenon of stiffness, 122
pivot, 60

positive definite matrix, 67
power method, 80

predictor, 111

principal minor, 67

QR
algorithm, 83
decomposition, 82
quadratic regression, 77

rate of convergence, 13

region of absolute stability, 100

regula falsi, 17

relaltive error, 1

residual, 82

Richardson’s extrapolation, 45

RKF(4,5), 107

RKV(5,6), 109

roundoff error, 1, 43, 90

Runge-Kutta method
four-stage, 94
fourth-order, 94
second-order, 93
third-order, 93

Runge-Kutta—Fehlberg pair
six-stage, 107

Runge-Kutta—Verner pair
eight-stage, 109

scaling rows, 65
Schur decomposition, 84
secant method, 16
signum function sign, 3
singular value decomposition, 84
stability function, 101
stiff system, 122

in an interval, 123
stiffness ratio, 122
stopping criterion, 12
Sturm—Liouville problem, 143
subordinate matrix norm, 72
substitution

backward, 61

forward, 61
supremum norm

of a vector, 72

three-point formula for f/(z), 42
trapezoidal rule, 48
truncation error, 1
truncation error of a method, 90

index-102_1.png
98 5. NUMERICAL SOLUTION OF DIFFI

=
-

ENTIAL EQUATIONS

clear

h = 0.1; t0= 0; tf= 21; ¥, step size, initial and final times
yO = [0 0.25]’; % initial conditions

n = ceil ((xf-t0)/h); % number of steps

count = 2; print_control = 10; % when to write to output
t =t0; y=y0; % initialize t and y
output = [t0 y0’]; % first row of matrix of printed values
w = [t0, y0’]; % first row of matrix of plotted values
for i=1:n
k1l = h¥explvdp(x,y); k2 = h*explvdp(x+h/2,y+k1/2
k3 = h¥explvdp(x+h/2,y+k2/2); k4 = h*explvdp(x+h,y+k3);
z =y + (1/6)*(k1+2*k2+2%k3+k4) ;
t =t + h;
if count > print_control
output = [output; t z’]; % augmenting matrix of printe
count = count - print_control;
end
y =2z
w = [w; t z’]; ¥ augmenting matrix of plotted values
count = count + 1;
end
[output(1:11,:) output(12:22,:)] % print numerical values of
save w } save matrix to plot the solution

The command output prints the values of ¢, y1, and y».

t y(1) y(2) t y(1 y(2)

0 0 0.2500 11.0000 -1.9923 -0.2797
1.0000 0.3586 0.4297 12.0000 -1.6042 0.7195
2.0000 0.6876 0.1163 13.0000 -0.5411 1.6023
3.0000 0.4313 -0.6844 14.0000 1.6998 1.6113
4.0000 -0.7899 -1.6222 15.0000 1.8173 -0.5621
5.0000 -1.6075 0.1456 16.0000 0.9940 -1.1654
6.0000 -0.9759 1.0662 17.0000 -0.9519 -2.6628
7.0000 0.8487 2.5830 18.0000 -1.9688 0.3238
8.0000 1.9531 -0.2733 19.0000 -1.3332 0.9004
9.0000 1.3357 -0.8931 20.0000 0.1068 2.2766
10.0000 -0.0939 -2.2615 21.0000 1.9949 0.2625

The following commands graph the solution.

load w % load values to produce the graph
subplot(2,2,1); plot(w(:,1),w(:,2)); % plot RK4 solution
title (’RK4 solution y_n for Example 5.87); =xlabel(’t_n’);

‘We now use the ode23 code. The command

load w % load values to produce the graph
v=1[021-331; % sett and y axes

);

d values

solution

ylabel(’y_n’);

index-187_1.png
Index

absolute error, 1
absolutely stable method for ODE, 101
absolutely stable multistep method, 110
Adams—Bashforth multistep method, 110
Adams—Bashforth—-Moulton method
four-step, 113
three-step, 112
Adams—Moulton multistep method, 110
Aitken’s process, 20

backward differentiation formula, 123
BDF (backward differentiation formula, 123
bisection method, 5

Butcher tableau, 93

centered formula for f”(x), 42
centred formula for f/(x), 42
Cholesky decomposition, 67
clamped boundary, 38
clamped spline, 38
classic Runge—Kutta method, 94
composite integration rule
midpoint, 50
Simpson’s, 54
trapezoidal, 52
condition number of a matrix, 72
consistent method for ODE, 100
convergent method for ODE, 99
corrector, 111
cubic spline, 38

diagonally dominant matrix, 68
divided difference

kth, 31

first, 29
divided difference table, 31

Dormand—Prince pair

seven-stage, 106
DP(5,4)7TM, 106

eigenvalue of a matrix, 78
eigenvector, 78

error, 1

Euclidean matrix norm, 72
Euler’s method, 88

183

exact solution of ODE, 87
explicit multistep method, 110, 120
extreme value theorem, 4

first forward difference, 32
first-order initial value problem, 87
fixed point, 8

attractive, 8

indifferent, 8

repulsive, 8
floating point number, 1
forward difference

kth, 33

second, 32
Fourier—Legendre series, 143
free boundary, 38
Frobenius norm of a matrix, 72
FSAL method for ODE, 107
function of order p, 87

Gauss—Seidel iteration, 74
Gaussian quadrature, 145
three-point, 146
two-point, 146
Gaussian transformation, 60
inverse, 60
product, 61
Gershgorin
disk, 79
Theorem, 79
global Newton-bisection method, 18

Hermite interpolating polynomial, 36
Heun’s method

of order 2, 93
Horner’s method, 23

Householder reflection, 82

implicit multistep method, 120
improved Euler’s method, 91
intermediate value theorem, 4
interpolating polynomial
Gregory—Newton
backward-difference, 35
forward-difference , 33

index-185_2.png
0.8
0.6
0.4
0.2

Plot of solution Y for Exercise 0.3

0.2

0.4

0.6

0.8

index-100_1.png
96 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

ExaMPLE 5.7. Use the Runge—Kutta method of order 4 with &~ = 0.01 to
obtain a six-decimal approximation for the initial value problem

y = x +arctany, y(0)=0,
on 0 <z < 1. Print every tenth value and plot the numerical solution.

SoLUTION. The Matlab numeric solution.— The M-file exp5_7 for Ex-
ample 5.7 is

function yprime = exp5_7(x,y); % Example 5.7.
yprime = x+atan(y);

The Runge—Kutta method of order 4 is applied to the given differential equa-
tion:

clear
h =0.01; x0= 0; xf=1; yO = 0;
n = ceil ((xf-x0)/h); % number of steps
h
count = 2; print_time = 10; % when to write to output
x = x0; y = y0; % initialize x and y
output = [0 x0 y0];
for i=1:n
k1l = h*exp5_7(x,y);
k2 = h*exp5_7(x+h/2,y+k1/2);
k3 = h*exp5_7(x+h/2,y+k2/2);
k4 = h*exp5_7(x+h,y+k3);
z =y + (1/6)*(k1+2*k2+2%k3+k4) ;
Xx = x + h;
if count > print_time
output = [output; i x z];
count = count - print_time;

y =z

count = count + 1;
end

output

save output %for printing the graph

The command output prints the values of n, z, and y.

n X y

0 0 0
10.0000 0.1000 0.0052
20.0000 0.2000 0.0214
30.0000 0.3000 0.0499
40.0000 0.4000 0.0918
50.0000 0.5000 0.1486
60.0000 0.6000 0.2218
70.0000 0.7000 0.3128
80.0000 0.8000 0.4228
90.0000 0.9000 0.5531

index-185_4.png
0.8
0.6
0.4
0.2

Plot ot solution Y for exercise 2.13

0.2

0.4

0.6

0.8

index-185_3.png
1.4
1.2

0.8
0.6
0.4
0.2

Plot of solution Y for Exercise ©.6

0.2 0.4 0.6 0.8

index-99_1.png
5.3. LOW-ORDER EXPLICIT RUNGE-KUTTA METHODS 95

TABLE 5.4. Numerical results for Example 5.5.

Ty, Yn y(z,,) | Absolute | Relative
error error
1.00 | 1.0000 | 1.0000 | 0.0000 0.0
1.10 | 1.2337 | 1.2337 | 0.0000 0.0
1.20 | 1.5527 | 1.5527 | 0.0000 0.0
1.30 | 1.9937 | 1.9937 | 0.0000 0.0
1.40 | 2.6116 | 2.6117 | 0.0001 0.0
1.50 | 3.4902 | 3.4904 | 0.0002 0.0

The next example shows that the fourth-order Runge—Kutta method yields
better results for (5.6) than the previous methods.

ExaMPLE 5.5. Use the fourth-order Runge-Kutta method with h = 0.1 to
approximate the solution to the initial value problem of Example 5.2,

y'(x) =2xy, y(1) =1,

on the interval 1 <z < 1.5.

SoLuTioN. We have f(z,y) = 22y and
z, = 1.040.1n, for n=0,1,...,5.

With the starting value yo = 1.0, the approximation y,, to y(x,,) is given by the
scheme

Ynt1 = Yn + —(k1 +2ka +2ks + kg)

1
6
where
ki1 =0.1x2(1.0 + 0.1n)y,,
Fy = 0.1 x 2(1.05 4+ 0.1n)(y, + k1/2),
ks = 0.1 x 2(1.05 4+ 0.1n)(y, + k2/2),
ks =0.1x2(1.04+0.1(n+ 1)(yn + k3),

and n = 0,1,2,3,4. The numerical results are listed in Table 5.4. These results
are much better than all those previously obtained.

ExAMPLE 5.6. Consider the initial value problem
y=y-z-1°+2 y0)=1
Compute y4 by means of Runge-Kutta’s method of order 4 with step size h = 0.1.

SOLUTION. The solution is given in tabular form.

1.000000 000
1.200334 589

1.402709 878
1.609336039
1.822792993

Exact value
1.000 000 000
1.200334672
1.402710036
1.609 336 250
1.822793219

Global error
y(®n) = Yn
0.000 000 000
0.000000083
0.000000 157
0.000000 181
0.000000 226

index-22_1.png
18 1. SOLUTIONS OF NONLINEAR EQUATIONS

TABLE 1.8. Results of Example 1.13.

1.333333 | 1.333333 — —
1.400000 | 1.400000 0.066667 — —
1.411765 | 1.411765 0.011765 — —
1.413793 | 1.413793 0.002028 — —
1.414141 | 1.414141 0.000348 — —

(6) Repeat (2)—(5) until the selected stopping criterion is satisfied (see Sub-
section 1.4.1).

This method is generally slower than Newton’s method, but it does not require
the derivative of f(z) and it always converges to a nested root. If the approach
to the root is one-sided, convergence can be accelerated by replacing the value of
f(x) at the stagnant end position with f(z)/2.

ExaMPLE 1.13. Find an approximation to v/2 using the method of false
position. Stop iterating when |z, 1 — 2,| < 1073,

SoLUTION. This problem is equivalent to the problem of finding a root of the
equation
flz)=a2*>—-2=0.
We have
an (b2 —2) —bp (a2 —2) apb, +2
xn+1 - # -
(bn_2)_(an_2) an+bn
Choose ap = 1 and by = 2. Notice that f(1) < 0 and f(2) > 0. The results are
listed in Table 1.8. Therefore, V2 2 1.414141.

1.5.4. A global Newton-bisection method. The many difficulties that
can occur with Newton’s method can be handled with success by combining the
Newton and bisection ideas in a way that captures the best features of each
framework. At the beginning, it is assumed that we have a bracketing interval
[a,b] for f(x), that is, f(a)f(b) < 0, and that the initial value x. is one of the
endpoints. If

f(ze)

T)
we proceed with either [a,z1] or [z+,b], whichever is bracketing. The new z,
equals =, . If the Newton step falls out of [a, b], we take a bisection step setting
the new z, to (a +b)/2. In a typical situation, a number of bisection steps are
taken before the Newton iteration takes over. This globalization of the Newton
iteration is programmed in the following Matlab function M-file which is found
in ftp://ftp.cs.cornell.edu/pub/cv.

€ [a, b],

function [x,fx,nEvals,aF,bF] = ...
GlobalNewton(fName,fpName,a,b,tolx,tolf ,nEvalsMax)

% Pre:
% fName string that names a function f(x).

index-21_3.jpg
y=/(x) _~

(@, f(ay))

ay Xn+1 by, “x

b, b))

index-24_1.png
T

20 1. SOLUTIONS OF NONLINEAR EQUATIONS

% There is a root in [x,b]. Bring in left endpoint.

a = x;
fa = fx;
end
disp(sprintf (’%20.15f ¥%20.15f %20.15f7 ,a,x,b))
end
aF = a;
bF = b;

1.5.5. The Matlab fzero function. The MATLAB fzero function is a
general-purpose root finder that does not require derivatives. A simple call in-
volves only the name of the function and a starting value xg. For example

aroot = fzero(’function_name’, x0)

The value returned is near a point where the function changes sign, or NaN if the
search fails. Other options are described in help fzero.

1.6. Accelerating Convergence

The linear convergence of an iterative method can be accelerated by Aitken’s
process. Suppose that the sequence {z,} converges to a fixed point p to first
order. Then the following ratios are approximately equal:

In+1 —P Lnt2 —P

~

Ly — P ZEn,,l—p.

We make this an equality by substituting a,, for p,

Tpt1 — An Tp42 — n

In — On Tpi1 — dn
and solve for a,, which, after some algebraic manipulation, becomes

(xn+1 - xn)z

Op = Ty — ———— 2
Tp42 — 2xn+1 + xy

This is Aitken’s process which accelerates convergence in the sense that

. ap —p
lim

n—o0 Ly — P

= 0.

If we introduce the first- and second-order forward differences:
Az, = Ln+1 — Tn, Aan = A(Axn) = Tnt2 — 2xn+1 + xy,
then Aitken’s process becomes

(Az,)?
A2z,
Steffensen’s process assumes that s; = ag is a better value than zo. Thus

s0 = zo, 21 = g(s0) and z9 = g(z1) are used to produce s;. Next, sy, 21 = g(s1)
and zo = g(29) are used to produce s5. And so on. The algorithm is as follows.

Ay — Ty —

(1.8)

ALGORITHM 1.4 (Steffensen’s Algorithm). Set

S0 — Zo,

index-23_1.png
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

1.5. NEWTON’S, SECANT, AND FALSE POSITION METHODS 19

fpName string that names the derivative function £’ (x).
a,b A root of f(x) is sought in the interval [a,b]
and f(a)*f(b)<=0.
tolx,tolf Nonnegative termination criteria.
nEvalsMax Maximum number of derivative evaluations.
Post:
X An approximate zero of f.
fx The value of f at x.
nEvals The number of derivative evaluations required.
aF,bF The final bracketing interval is [aF,bF].
Comments:
Iteration terminates as soon as x is within tolx of a true zero
or if |f(x)|<= tolf or after nEvalMax f-evaluations

fa = feval(fName,a);
fb = feval(fName,b);
if fa*fb>0

disp(’Initial interval not bracketing.’)

return

end
X = a;
fx = feval(fName,x);
fpx = feval(fpName,x);
disp(sprintf (’%20.15f %20.15f %$20.15f’ ,a,x,b))

nEvals = 1;
while (abs(a-b) > tolx) & (abs(fx) > tolf) &
((nEvals<nEvalsMax) | (nEvals==1))
%[a,b] brackets a root and x = a or x = b.
if StepIsIn(x,fx,fpx,a,b)
%#Take Newton Step
disp(’Newton’)
x = x-fx/fpx;
else
%Take a Bisection Step:
disp(’Bisection’)
x = (a+b)/2;
end
fx = feval(fName,x);
fpx = feval(fpName,x);
nEvals = nEvals+1;
if fa*xfx<=0
% There is a root in [a,x]. Bring in right endpoint.
b = x;
fb = fx;
else

index-103_3.png
odeZ3 solution Y for Example 5.0

index-25_2.png
o}

index-103_2.png
RK4 solution Y for Example 5.0

index-189_1.png
IND]

=
s

185

two-point formula for f/(z), 41
well-posed problem, 87

zero-stable method for ODE, 100

index-25_1.png
1.6. ACCELERATING CONVERGENCE 21
5
> 0
-5 '
-5 0 5
X

F1Gurg 1.5. The three real roots of x = 2sinx in Example 1.14.

and, forn =0,1,2,...,

21 g(s’n)7
72 = g(21),
2
Z1 — 8
Snt1 = Sn — (n)

29 — 221 + Sy,
Steffensen’s process applied to a first-order fixed point method produces a
second-order method.

ExaMPLE 1.14. Consider the fixed point iteration z, 1 = g(ay,):
Tpt1 = 28N Ty, xrg = 1.
Do seven iterations and perform Aitken’s and Steffensen’s accelerations.

SOLUTION. The three real fixed points of x = 2sinx can be seen in Fig. 1.5.
The Matlab function fzero produces the fixed point near z = 1:

p = fzero(’x-2*sin(x)’,1.)
p = 1.89549426703398

The convergence is linear since
g (p) = —0.63804504828524 £ 0.

The following Matlab M function and script produce the results listed in Ta-
ble 1.9. The second, third, and fourth columns are the iterates z,, Aitken’s
and Steffensen’s accelerated sequences a,, and s,, respectively. The fifth column,
which lists €,11/¢2 = (8p02 — 8p11)/(8n11 — 55) tending to a constant, indicates
that the Steffensen sequence s, converges to second order.

The M function function is:

function f = twosine(x);
f = 2%sin(x);

index-105_1.png
5.6. STABILITY OF RUNGE-KUTTA METHODS 101

The region of absolute stability of the explicit Euler method is the disk of
radius 1 and center (—1,0), see curve k = 1 in Fig. 5.7. The region of stability
of the implicit backward Euler method is the outside of the disk of radius 1 and
center (1,0), hence it contains the left half-plane, see curve k = 1 in Fig. 5.10.

The region of absolute stability, 12, of an explicit method is very roughly a
disk or cardioid in the left half-plane (the cardioid overlaps with the right half-
plane with a cusp at the origin). The boundary of R cuts the real axis at a,
where —oo < a < 0, and at the origin. The interval [a, 0] is called the interval
of absolute stability. For methods with real coefficients, R is symmetric with
respect to the real axis. All methods considered in this work have real coefficients;
hence Figs. 5.7, 5.8 and 5.10, below, show only the upper half of R.

The region of stability, R, of implicit methods extends to infinity in the left
half-plane, that is &« = —o00. The angle subtended at the origin by R in the left
half-plane is usually smaller for higher order methods, see Fig. 5.10.

If the region R does not include the whole negative real axis, that is, —oo <
a < 0, then the inclusion

hA e R

restricts the step size:

e
<hRex = 0<h< .

“= = Rex

In practice, we want to use a step size h small enough to ensure accuracy of the

numerical solution as implied by (5.15)—(5.16), but not too small.

5.6. Stability of Runge—Kutta methods

There are stable s-stage explicit Runge-Kutta methods of order p = s for
s = 1,2,3,4. The minimal number of stages of a stable explicit Runge-Kutta
method of order 5 is 6.

Applying a Runge-Kutta method to the test equation,

Yy = Ay, KA <0,

with solution y(z) — 0 as t — oo, one obtains a one-step difference equation of
the form

o~ o~

Ynt1 = Q(h)yn7 h = h)‘7

where Q(ﬁ) is the stability function of the method. We see that ¢, — 0 as
n — oo if and only if

QR < 1, (5.18)

and the method is absolutely stable for those values of b in the complex plane
for which (5.18) hold; those values form the region of absolute stability of the
method. It can be shown that the stability function of explicit s-stage Runge-
Kutta methods of order p = s, s =1,2, 3,4, is

~ " PO I

R(h) = 4t =1 h g R SR
Yn :

The regions of absolute stability, R, of s-stage explicit Runge—Kutta methods of

order k = s, for s = 1,2, 3,4, are the interior of the closed regions whose upper

halves are shown in Fig. 5.4. The left-most point o of R is —2, —2, 2.51 and

—2.78 for the methods of order s = 1, 2, 3 and 4, respectively

index-27_1.png
1.7. HORNER’S METHOD AND THE SYNTHETIC DIVISION 23

In this simple case, the reduction is from 8 to 3 products.
The Matlab command horner transforms a symbolic polynomial into its
Horner, or nested, representation.

syms x
p = x"3-6%x"2+11%x-6
p = x"3-6%x"2+11%x-6
hp = hormner(p)
hp = -6+ (11+(-6+x)*x)*x

Horner’s method incorporates this nesting technique.

THEOREM 1.8 (Horner’s Method). Let
p(z) = apz™ + 12" T4+ a1z + ao.
Ifb, = a, and

by =ar +brrizo, for k=n—-1n-2,...,1,0

? ? ?

then
bo == p(:l?o).
Moreover, if
q(z) = bpa™ t by 2™ 2 4 - boz + by,
then
p(z) = (z — z0)q(z) + bo.

Proor. By the definition of ¢(z),
(2 —z0)q(x) +bo = (& — 20) (bpa™ L + by 12" 2 4 -+ boz 4+ by) + by
= (bpa™ + b2 L boz? o byz)
— (bpwox™ Y by _qwox™ 2 4 - bomox + bizo) + bo
=bpa" + (b1 —bpxo)z™ L+ - (b1 — bawo)x + (bo — 1)
= apt™ + ap 12" b arx + ag
=p(z)

and

bo = p(zo).

1.7.2. Synthetic division. Evaluating a polynomial at x = xz¢ by Horner’s
method is equivalent to applying the synthetic division as shown in Example 1.15.

ExaMPLE 1.15. Find the value of the polynomial
plz) = 22 — 322 + 32— 4
at o = —2 by Horner’s method.

SOLUTION. By successively multiplying the elements of the third line of the
following tableau by xzop = —2 and adding to the first line, one gets the value of

p(=2).

CL4:2 CL3:O CL2:—3 CL1:3 a0:—4
—4 8 —10 14

by =2 by = —4 bo =5 by =-7 by =10

index-104_1.png
100 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

where nh = z for all = € |a, b].

The local truncation error of (5.12) is the residual
k

Ryyr = Zajy($n+j) — hpp(y(@nin), Y(@ntr—1); - y(@n), zni h). (5.13)

n=0

DEFINITION 5.4. Method (5.12) with appropriate starting values is said to
be consistent if, for all initial value problems (5.1), we have

1
ﬁR”H’k_)O as hl07

where nh = z for all = € |a,b].

DerINITION 5.5. Method (5.12) is zero-stable if the roots of the character-
istic polynomial
k
> ey
n=0

lie inside or on the boundary of the unit disk, and those on the unit circle are
simple.

We finally can state the following fundamental theorem.

THEOREM 5.2. A method is convergent as h | 0 if and only if it is zero-stable
and consistent.

All numerical methods considered in this chapter are convergent.

5.5. Absolutely Stable Numerical Methods

We now turn attention to the application of a consistent and zero-stable
numerical solver with small but nonvanishing step size.

For n =0,1,2,.. ., let y,, be the numerical solution of (5.1) at z = z,,, and
y™ (2, 1) be the exact solution of the local problem:
y' = fl@y), yl@n) =y (5.14)
A numerical method is said to have local error,
Ent1 = Ynet — Y (@nga). (5.15)

If we assume that y(z) € CPTt[zq, z¢] and
et Cprahh Dy (@) + O(RE 1), (5.16)

then we say that the local error is of order p+1 and Cy, 1 is the error constant of
the method. For consistent and zero-stable methods, the global error is of order
p whenever the local error is of order p+ 1. In such case, we say that the method
is of order p. We remark that a method of order p > 1 is consistent according to
Definition 5.4.

Let us now apply the solver (5.12), with its small nonvanishing parameter h,
to the linear test equation

Yy = Ay, RA < 0. (5.17)

The region of absolute stability, R, is that region in the complex ﬁ—plane7
where h = hA, for which the numerical solution y,, of (5.17) goes to zero, as n
goes to infinity.

index-26_1.png
22 1. SOLUTIONS OF NONLINEAR EQUATIONS

TABLE 1.9. Results of Example 1.14.

1.00000000000000 | 2.23242945471637 | 1.00000000000000
1.68294196961579 | 1.88318435428750 | 2.23242945471637
1.98743653027215 | 1.89201364327283 | 1.83453173271065
1.82890755262358 | 1.89399129067379 | 1.89422502453561
1.93374764234016 | 1.89492839486397 | 1.89549367325365
1.86970615363078 | 1.89525656226218 | 1.89549426703385
1.91131617912526 1.89549426703398
1.88516234821223 NaN

0
1
2
3
4
5
6
7

The M script function is:

n=7;

x = ones(1l,n+1);

x(1) = 1.0;

for k = 1:n

x(k+1)=twosine(x(k)); % iterating x(k+1) = 2*sin(x(k))
end

a = ones(1l,n-1);

for k = 1:n-1

a(k) = x(k) - &+ -x(K)) "2/ (x(k+2)-2kx(k+1)+x(k)); % Aitken
end

s = ones(1l,n+1);

s(1) = 1.0;

for k = 1:n

zl=twosine(s(k));

z2=twosine(z1);

s(k+1) = s(k) - (z1-s(k))"2/(z2-2*z1+s(k)); % Steffensen
end

d = ones(1,n-2);

for k = 1:n-2

d(k) = (s(k+2)-s(k+1))/(s(k+1)-s(k))"2; % 2nd order convergence
end

Note that the Matlab program produced NaN (not a number) for s; because
of a division by zero.

1.7. Horner’s Method and the Synthetic Division

1.7.1. Horner’s method. To reduce the number of products in the evalu-
ation of polynomials, these should be expressed in nested form. For instance,

plx) = asz® + asz? + a1z + ao

= ((agx +ag)x + a1)x + ao.

index-21_1.jpg

index-20_3.jpg
y=1x)

(xn_ 18 f(xn— 1))

(. f)

index-21_2.jpg
B ® - - e Pk a bl o mw

index-179_1.png
SOLUTIONS TO EXERCISES FOR CHAPTER 4 175

Ex. 4.11. Do three iterations of Gauss—Seidel’s scheme on the properly
permuted system with given initial vector x(?,

(0)

6:171 T o - r3 = 3 Ty = 17
—xy + @y + Ty = -17 with ¥ — 1
1 + Sxg + xy = 0 xéo) = 1.

SOLUTION. Interchanging rows 2 and 3 and solving for x{, zo and z3, we
have

R i S
40 S0 - g T TR
xénﬁl) :%[—17 + x(lnﬁl) — xgn+1)] xéo) = 1.
Hence,
0.5 0.164 28 0.01724
x =1 -03 ;o xP =1 043000 |, x® =] 048986
—2.31429 —2.466 53 —2.496 09
One suspects that
0.0
xS 0.5
-2.5

as n — o0.

Ex. 4.14. Using least squares, fit a parabola to the data
(_172)7 (070)7 (171)7 (27 2)
SoLUTION. We look for a solution of the form

f@)=as+ a1z + asx’.

> x=[-1012];
>> A = [x.70 x x.72];
>y=[2012];

>> a = (A7*A\(A’*y))’
a =

0.4500 -0.6500 0.7500

The parabola is

f(z) =045 — 0.65z + 0.752°.
The Matlab command A\y produces the same answer. It uses the normal equa-

tions with the Cholesky or LU decomposition, or, perhaps, the QR decomposi-
tion,

Ex. 4.18. Determine and sketch the Gershgorin disks that contain the
eigenvalues of the matrix

—2 1/2 /2
A=1 1/2 0 2
—ij2 —i/2 2

index-93_1.png
5.2. EULER’S AND IMPROVED EULER’S METHOD 89

TABLE 5.1. Numerical results of Example 5.1.

Ty, Yn y(z,,) | Absolute | Relative
error error
1.00 | 1.0000 | 1.0000 | 0.0000 0.00
1.10 | 1.0200 | 1.0212 | 0.0012 0.12
1.20 | 1.0424 | 1.0450 | 0.0025 0.24
1.30 | 1.0675 | 1.0714 | 0.0040 0.37
1.40 | 1.0952 | 1.1008 | 0.0055 0.50
s1.50 | 1.1259 | 1.1331 0.0073 0.64

DUk Wi = o

TABLE 5.2. Numerical results of Example 5.2.

n| z, Yn y(zy) | Absolute | Relative
error error

0 (1.00(1.0000 | 1.0000 | 0.0000 0.00

1(1.10(1.2000 | 1.2337 | 0.0337 2.73

2 11.20]1.4640 | 1.5527 | 0.0887 5.71

311.30|1.8154 | 1.9937 | 0.1784 8.95

41140 (22874 | 26117 | 0.3244 12.42

5 11.50 | 2.9278 | 3.4904 | 0.5625 16.12

ExaAMPLE 5.2. Use Euler’s method with A = 0.1 to approximate the solution
to the initial value problem

y'(x) =22y, y(l)=1, (5.6)
on the interval 1 <z < 1.5.

SOLUTION. As in the previous example, we have

15-1

zo=1, @y =15 =1 an=z0thn=1401n N=—=m=5,

However, f(z,y) = 2zy. Thus, Euler’s method is
Ynt1 = Yn + 0.1 x 2(1 + O.ln)y,“ yo =1,

for n = 0,1,2,3,4. The numerical results are listed in Table 5.2. The relative
errors show that our approximations are not very good.

DEFINITION 5.2. The local truncation error of a method of the form

Ynit1 :yn+h¢(xn7yn)7 (5'7
is dedfined by the expression

1
Tn+1 — ﬁl:y(x’rﬁ*l) _y(x’n)] —¢($n7y($n)) for TL:O71727...7N— 1.

The method (5.7) is of order k if |7;| < M h* for some constant M and for all 3.

An equivalent definition is found in Section 5.4

EXAMPLE 5.3. The local truncation error of Euler’s method is

Trtl = %[y(xnﬂ) —y(zn)] = f(zn, y(zn)) = gy”(ﬁn)

index-178_2.png
26
61

£y
€2
xs3

44
128
214

index-92_1.png
88 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

5.2. Euler’s and Improved Euler’s Method

We begin with the simplest explicit methods.

5.2.1. Euler’s method. We choose N points, =, = zg + nh where h =
(x¢ —x0)/N. From Taylor’s Theorem we get
y" (&)

y(xn+1) = y(xn) + y/(xn) (xn+1 - xn) + T (xn+1 - xn)z

for &, between x,, and z,,1, n =0, 1, ..., N — 1. Since y'(z,,) = f(xn,y(xy))
and x,+1 — x, = h, it follows that

y// (gn) h2)

We obtain Euler’s method,
Ynt1 = Yn + hf(xru yn)7 (53)
by deleting the term of order O(h?),

V) e
2 ?

called the local truncation error.
The algorithm for Euler’s method is as follows.

(1) Choose h such that N = (x; — x0)/h is an integer.
(2) Given yq, for n=0,1,..., N, iterate the scheme

Yn+1 = Yn + hf(fo + nh7 yn) (54)

Then, y,, is as an approximation to y(z,,).

ExaMPLE 5.1. Use Euler’s method with » = 0.1 to approximate the solution
to the initial value problem

y'(z) = 0.2zy, y(1) =1, (5.5)
on the interval 1 <z <1.5.
SOLUTION. We have
x0 =1, xzp = 1.5, yo = 1, flz,y) = 0.22y.

Hence
15-1
=5

Zp =x0+ hn=140.1n, N = 01 ,

and
Ynt1 = Yn + 0.1 x 0.2(1 +0.1n)y,, with yo =1,

for n = 0,1,...,4. The numerical results are listed in Table 5.1. Note that the
differential equation in (5.5) is separable. The (unique) solution of (5.5) is

y(z) = 6(0.11270.1).

This formula has been used to compute the exact values y(z,) in the previous
table.

The next example illustrates the limitations of Euler’s method. In the next
subsections, we shall see more accurate methods than Euler’s method.

index-181_1.png
SOLUTIONS TO EXERCISES FOR CHAPTER 5

7.00000000000000
8.00000000000000
9.00000000000000
10.00000000000000

0
0
0
1

.70000000000000
.80000000000000
.90000000000000
.00000000000000

0.
0.
1.
1.

8b5097722706339
98690209299587
12202980842386
25541526027779

177

Ex. 5.8. Use the improved Euler method with h = 0.1 to obtain a four-
decimal approximation for the initial value problem

y =+ cosy,

on 0 < z <1 and plot the numerical solution.

y(0) =0

SoLUTION. The Matlab numeric solution.— The improved Euler method
applied to the given differential equation:

ceil((xf-x0)/h); % number of steps

1; % when to write to output

= y0; % initialize x and y

count - print_time;

clear
h=0.1; x0=0; xf=1; y0 = 0;
n =
h
count = 2; print_time =
x =x0; vy
output2 = [0 x0 yOl;
for i=1:n
Zp =y *
z =y +
Xx = x + h;
if count > print_time
output2 = [output2; i x z];
count =
end
y =2z
count = count + 1;
end
output?2

save output2 %for printing the graph

h*exr5_25(x,y); % Euler’s method
(1/2)*h* (exr5_25(x,y)+exr5_25(x+h,zp));

The command output?2 prints the values of n, z, and y.

W00 N O WN -

-
o

n
0

.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000

= O O OO OO0 O oo

X
0
.10000000000000
.20000000000000
.30000000000000
.40000000000000
.50000000000000
.60000000000000
.70000000000000
.80000000000000
.90000000000000
.00000000000000

=, O OO OO0 OO0 OO

y
0

.10475020826390
.21833345972227
.33935117091202
.46622105817179
.59727677538612
.73088021271199
.86552867523997
.99994084307400
.13311147003613
.26433264384505

index-94_2.jpg

index-180_1.png
176 SOLUTIONS TO EXERCISES FOR NUMERICAL METHODS

SOLUTION. The centres, ¢;, and radii, r;, of the disks are

o= -2, =124 Jij2] =1,
= 0, m=1/24 /2 =1,
ca= 2 rs=|—i/2[+]i/2 = 1.

Note that the eigenvalues are real since the matrix A is symmetric, A7 = A.

Solutions to Exercises for Chapter 5

The M-file exr5_25 for Exercises 5.3, 5.8, 5.13 and 5.12 is

function yprime = exr5_25(x,y); % Exercises 12.3, 12.8, 12.13 and 12.25.
yprime = x+cos(y);

Ex. 5.3. Use Euler’s method with A = 0.1 to obtain a four-decimal approx-
imation for the initial value problem

y' =z +cosy, y(0)=0

on 0 <z <1 and plot the numerical solution.

SoLUTION. The Matlab numeric solution.— Euler’s method applied to
the given differential equation:

clear
h=0.1; x0=0; xf=1; y0 = 0;
n = ceil ((xf-x0)/h); % number of steps
h
count = 2; print_time = 1; % when to write to output
x = x0; y = y0; % initialize x and y
outputl = [0 x0 yOl;
for i=1:n
z = y + h*exr5_25(x,y);
X = X + h;
if count > print_time
outputl = [outputl; i x z];
count = count - print_time;
end
y =2z
count = count + 1;
end
outputl
save outputl %for printing the graph

The command outputl prints the values of n, z, and y.

n X y

0 0 0
1.00000000000000 0.10000000000000 0.10000000000000
2.00000000000000 0.20000000000000 0.20950041652780
3.00000000000000 0.30000000000000 0.32731391010682
4.00000000000000 0.40000000000000 0.45200484393704
5.00000000000000 0.50000000000000 0.58196216946658
6.00000000000000 0.60000000000000 0.71550074191996

index-94_1.jpg

index-178_1.png
174 SOLUTIONS TO EXERCISES FOR NUMERICAL METHODS

SoLUTION. The inverse, M !, of a Gaussian transformation is obtained by
changing the signs of the multipliers, that is, of —a, —b, —c. Thus

100 0
4 a1 00
M==1% 010

c 001

Ex. 4.7. Find the product of the three Gaussian transformations

o ovae =
OO = O
O = OO
_o oo
[enlNen B evil
o Q= o
O = OO
—_ o O O
[enlNen B evil
OO = O
N =)
—oc oo

SOoLUTION. The product of three Gaussian transformation, My Ao Ms, in the

given order is the unit lower triangular matrix whose jth column is the j7th column
of Mj .

1 0 0 O

a 1 0 0

=14 a1 o0

c e f 1

Ex. 4.10. Solve the linear system

4 10 8 1 44
10 26 26 x9 | = | 128
8 26 61 z3 214

by the Cholesky decomposition.

SoLUTION. The Matlab command chol decomposes a positive definite matrix
A in the form

A= RTR, where R is upper triangular.

>> A = [4 10 8; 10 26 26; 8 26 61]; b = [44 128 214]7;
>> R = chol(4) % Cholesky decomposition
R =
2 5 4
0 1 6
0 0 3
>> y = R’\b } forward substitution
y =
22
18
6
>> x = R\y % backward substitution
x =
-8
6

index-91_1.png
CHAPTER 5

Numerical Solution of Differential Equations

5.1. Initial Value Problems

Consider the first-order initial value problem:

y' = flz,y), ylzo) = yo. (5.1)
To find an approximation to the solution y(z) of (5.1) on the interval a < z <
b, we choose N points, a = z0 < 21 < 23 < ... < zny = b, and construct
approximations y,, to y(z,),n=20,1, ..., N.

It is important to know whether or not a small perturbation of (5.1) shall lead
to a large variation in the solution. If this is the case, it is extremely unlikely
that we will be able to find a good approximation to (5.1). Truncation errors,
which occur when computing f(z,y) and evaluating the initial condition, can
be identified with perturbations of (5.1). The following theorem gives sufficient
conditions for an initial value problem to be well-posed.

DEeFINITION 5.1. Problem (5.1) is said to be well posed in the sense of Ha-
damard if if it has one, and only one, solution and any small perturbation of the
problem leads to a correspondingly small change in the solution.

THEOREM 5.1. Let
D=A{(z,y):a<z<band —oco <y <0}
If f(z,y) is continuous on D and salisfies the Lipschitz condition

|f(x,y1) — fz,y2)| < Llyr — o] (5.2)

for all (z,y1) and (z,y2) in D, where L is the Lipschitz constant, then the initial
value problem (5.1) is well-posed.

In the sequel, we shall assume that the conditions of Theorem 5.1 hold and
(5.1) is well posed. Moreover, we shall suppose that f(z,y) has mixed partial
derivatives of arbitrary order.

In considering numerical methods for the solution of (5.1) we shall use the
following notation:

e h > 0 denotes the integration step size
e 1, = g+ nh is the n-th node

e y(z,) is the exact solution at xz,

e v, is the numerical solution at x,

o [= f(zn,yn) is the numerical value of f(z) at (z,, yn)

A function, g(z), is said to be of order p as z — xq, written g € O(]z — x¢|P)
if
lg(x)] < Mla — aol?, M a constant,
for all x near zo.

87

index-177_1.png
SOLUTIONS TO |

=
%

ERCISES FOR CHAPTER 4 173

T

Ex. 4.4. Solve the linear system

3:171 - 9:172 - 6:173 == 23
181 + 48z9 — 3923 = 136
911 — 27x9 + 4223 = 45

by the LU decomposition with pivoting.

SoLUTION. The Matlab numeric solution.— In this case, Matlab will
pivot since L will be a row permutation of a unit lower triangular matrix. Hence
we can use the LU decomposition obtained by Matlab.

clear
>>A = [3 9 6; 18 48 -39; 9 -27 42]; b = [23 136 45]’;
>> [L,U] = 1u(4) % LU decomposition of A

L =
0.1667 -0.0196 1.0000
1.0000 0 0
0.5000 1.0000 0
U=
18.0000 48.0000 -39.0000
0 -51.0000 61.5000
0 0 13.7059
>> y = L\b % solution by forward substitution
y =
136.0000
-23.0000
-0.1176
>> x = U\y % solution by backward substitution
x =
6.3619
0.4406
-0.0086

Ex. 4.6. Find the inverse of the Gaussian transformation

Ldn
oo = O
S = O O
—_ o o o

|
o

index-17_1.jpg

index-98_1.png
94 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

5.3.3. Fourth-order Runge—Kutta method. The fourth-order (classic)
Runge-Kutta method (also known as the classic Runge-Kutta method) is the
very popular among the explicit one-step methods.

By Taylor’s Theorem, we have

" 2 y(S) Ty
Yner) =y o Go)anor—an)t L) (g g P gy
€] (5)
Y \In Yy (En
T % ($n+1 - xn)4 + 5(') ($n+1 - xn)5
for some &, between z, and z,41 and n = 0, 1, ..., N — 1. To obtain the

fourth-order Runge—Kutta method, we can proceed as we did for the second-
order Runge-Kutta methods. That is, we seek values of a, b, ¢, d, ; and 3; such
that

" 2 (3) Zn
Y (20) (Tny1 — Tn) + % (@n i1 —ap)? + 2 3(!) (Tnt1 —zn)?
Wz,
+ y4—(') (xn+1 - xn)4 + O(h5)
is equal to
aky + bko + cks + dky + O(B®),
where
kl - hf(xn7yn)7
kZ - hf(ZEn T a1 h7 Yn T ﬁ1k1)7
kS - hf(ZEn T Q2 h7 Yn T ﬁ2k2)7
ky = hf(xn T Qa3 h7 Yn T ﬁSkS)'

This follows from the relations

Tpt1 — Lp = h7

y/(xn) = f(@n, y(zn))
d

¥ (0) = == S (@ (@)=,

and Taylor’s Theorem for functions of two variables. The lengthy computation is
omitted.

The (classic) four-stage Runge—Kutta method of order 4 given by its formula
(left) and, conveniently, in the form of a Butcher tableau (right).

1 1 A
ko = hf <xn an §h7 Yn T §k1> k1 0
)) ko 1/2 (/)
_ 4= 4T ks 0 1/2 0
k3 = hf <xn 2h7 Yn 2k2> ks 0 0 1 0
k4 - hf (xn + h7 Yn + kS)
Yn+1 bt 1/6 2/6 2/6 1/6

index-17_3.jpg
y=/(x) _~

Tangent

(x}’b f(xn))

X, p\ X1

index-17_2.jpg
-

ool a- -t

index-183_1.png
SOLUTIONS TO EXERCISES FOR CHAPTER 5 179

Ex. 5.25. Use the Adams—Bashforth—Moulton four-step predictor-corrector
method with A = 0.1 to obtain a six-decimal approximation for the initial value
problem

y' =z +cosy, y(0)=0

on 0 < z < 1, estimate the local error at = 0.5, and plot the numerical solution.

SoLUTION. The Matlab numeric solution.— The initial conditions and

the Runge—Kutta method of order 4 are used to obtain the four starting values
for the ABM four-step method.

clear

h=0.1; x0=0; xf=1; y0 = 0;

n = ceil ((xf-x0)/h); % number of steps

h

count = 2; print_time = 1; % when to write to output
x = x0; y = yO; % initialize x and y

output4 = [0 x0 y0 0];

%RK4

for i=1:3

k1l = h*exr5_25(x,y);

k2 = h*exr5_25(x+h/2,y+k1/2);

k3 = h*exr5_25(x+h/2,y+k2/2);

k4 = h*exr5_25(x+h,y+k3);

z =y + (1/6)* (k1+2%k2+2%k3+k4) ;
X = x + h;

if count > print_time
output4 = [outputd; i x z 0];
count = count - print_time;

y = z;

count = count + 1;

end

% ABM4

for i=4:n

zp = y + (h/24)*(55*exr5_25(outputd (i,2) ,outputd(i,3))-...
59*exr5_25(output4 (i-1,2) ,outputd(i-1,3))+...
37*exr5_25(output4 (i-2,2) ,outputd(i-2,3))-...
9xexr5_25(outputd (i-3,2) ,outputd (i-3,3)));

z =y + (h/24)*(9*%exr5_25(x+h,zp)+...
19*exr5_25(outputd (i,2) ,outputd(i,3))-. ..
Bxexr5_25(outputd (i-1,2) ,outputd(i-1,3))+...
exr5_25(output4 (i-2,2) ,output4 (i-2,3)));
X = x + h;

if count > print_time
errest = -(19/270)*(z-zp);
output4 = [outputd; i x z errest];
count = count - print_time;

end

y =z

index-19_1.png
1.5. NEWTON’S, SECANT, AND FALSE POSITION METHODS 15

TABLE 1.7. Results of Example 1.12.

n Tn, enti/€
0 0.00000000000000

1 0.80000000000000 | —0.2000
2 0.98461538461538 | —0.3846
3 0.99988432620012 | —0.4887
4 0.99999999331095 | —0.4999
5 1

6 1

we have

Since f(p) =0, we have
g'(p) =0.
Therefore, Newton’s method is of order two near a simple zero of f.

REMARK 1.3. Taking the second derivative of g(z) in Newton’s method, we

have
(F'@)2 " (@) + f@) (@) f" (@) = 2f (2)(f" () .

g'(@) = F@7

If f7”(p) exists, we obtain

[
g//(p) - = /() :
f'(p)
Thus, by (1.4), the successive errors satisfy the approximate relation
LW
TR)

which explains the doubling of the number of leading zeros in the error of Newton’s
method near a simple root of f(z) = 0.

ExaMPLE 1.12. Use six iterations of the ordinary and modified Newton’s
methods

fan)’

to approximate the double root, z = 1, of the polynomial
fla) = (@ = 1)*(= - 2).

SoLUTION. The two methods have iteration functions

(z —1)(z—2) (2) — (z —1)(z—2)
Ww—-2) 1 (@x-1) P @ —2) (1)

respectively. We take zog = 0. The results are listed in Table 1.7. One sees that
Newton’s method has first-order convergence near a double zero of f(z), but one

Tpt41l — Tp — Tpt1 — Tn — 2

gi(z) =2 —

index-95_1.png
5.3. LOW-ORDER EXPLICIT RUNGE-KUTTA METHODS 91
TABLE 5.3. Numerical results of Example 5.4.
n| z, Absolute | Relative
error error
01]1.00 0.0000 0.00
1(1.10 0.0017 0.14
211.20 0.0048 0.31
311.30 0.0106 0.53
411.40 0.0209 0.80
511.50 0.0344 1.13

5.2.2. Improved Euler’s method. The improved Euler’s method takes
the average if the slopes at the left and right ends of each step. It is, here,
formulated in terms of a predictor and a corrector:

ys——l - y'r(Lj i hf(x’ﬂ7y'r(7,j)7

1
Ynr1 =Y + 3h [f(@n, 1) + F@nst, n01)] -
This method is of order 2.

ExXAMPLE 5.4. Use the improved Euler method with » = 0.1 to approximate
the solution to the initial value problem of Example 5.2.

y'(z) =2zy, y(l) =1,
1<z <1.5.
SOLUTION. We have
Zp =x0+ hn =140.1n, n=20,1,...,5.
The approximation y, to y(z,) is given by the predictor-corrector scheme
o =1,
Yni1 =Y + 022y,

C C C P
Ynt1 = Yn T 0.1 (:En Yy T Tpti yn+1)

for n =0, 1, ..., 4. The numerical results are listed in Table 5.3. These results
are much better than those listed in Table 5.2 for Euler’s method.

We need to develop methods of order greater than one, which, in general, are
more precise than Euler’s method.

5.3. Low-Order Explicit Runge—Kutta Methods
Runge—Kutta methods are one-step multistage methods.

5.3.1. SecNond-order Runge—Kutta method. Two-stage explicit Runge—
Kutta methods are given by the formula (left) and, conveniently, in the form of
a Butcher tableau (right):

kl - hf(xru yn) kl
ko = hf (xn + c2h, yn + a21k1) ko
Ynt1 = Yn + birky + bk

index-18_1.png
14 1. SOLUTIONS OF NONLINEAR EQUATIONS

TABLE 1.5. Results of Example 1.10.

1.5 0.5
1.416667 | 0.083333
1.414216 | 0.002451
1.414214 | 0.000002

TABLE 1.6. Results of Example 1.11.

Ly |xn — xn71|

15
1.37333333333333 0.126667
1.36526201487463 | 0.00807132
1.36523001391615 | 0.000032001
1.3652300134141 | 5.0205 x 10~ 1°
1.3652300134141 | 2.22045 x 10716
1.3652300134141 | 2.22045 x 10716

(2B NV e K=l IS

In this case, Newton’s method becomes

flan) 2 =2 a2

f(zn) n 21y, 2z,
With xo = 2, we obtain the results listed in Table 1.5. Therefore,
V2 x 1.414214.

Note that the number of zeros in the errors roughly doubles as it is the case with
methods of second order.

Tp41 = Tpn —

ExAMPLE 1.11. Use six iterations of Newton’s method to approximate a root
p € [1,2] of the polynomial
flz)=a®+42>—10=0

given in Example 1.9.

SOLUTION. In this case, Newton’s method becomes

B flzn) ap +4x2 — 10 2(z) 4 222 +5)
Tl = En Fizn) on 322 +8x, 322+ 8z,

We take zg = 1.5. The results are listed in Table 1.6.

THEOREM 1.7. Let p be a simple root of f(x) = 0, that is, f(p) = 0 and
f'(p) £0. If f"(p) exists, then Newton’s method is at least of second order near

p.

Proor. Differentiating the function

index-182_1.png
178

Ex. 5.13. Use the Runge—Kutta method of order 4 with ~ = 0.1 to obtain

SOLUTIONS TO |

=
%

ERCISES FOR NUM]I

ERICAL METHODS

a six-decimal approximation for the initial value problem

y =+ cosy,

on 0 < z <1 and plot the numerical solution.

SoLuTioN. The Matlab numeric solution.— The Runge—Kutta method

y(0) =0

of order 4 applied to the given differential equation:

clear
h=0.1; x0=0; xf=1; y0 = 0;

n =

h

ceil((xf-x0)/h); % number of steps

count

X =

k3
k4

z
X

i

= 2; print_time

=1:n

h*exr5_25(x,y);

1; % when to write to output
x0; y = yO; % initialize x and y
output3 = [0 x0 yOl;
for
k1
k2

h*exr5_25(x+h/2,y+k1/2);
h*exr5_25(x+h/2,y+k2/2);
h*exr5_25(x+h,y+k3);

y + (1/8)*(k1+2xk2+2*k3+k4) ;

x + h;
if count > print_time

output3 = [output3; i x z];

count =

end

y =z
count

end
output3
save output3), for printing the graph

= count + 1;

count - print_time;

The command output3 prints the values of n, z, and y.

W00 N O WN -

-
o

n
0

.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000

= O O O OO0 O oo

X
0

.10000000000000
.20000000000000
.30000000000000
.40000000000000
.50000000000000
.60000000000000
.70000000000000
.80000000000000
.90000000000000
.00000000000000

PR, 2, O 00 00O OO

y
0

.10482097362427
.21847505355285
.33956414151249
.46650622608728
.59763447559658
.73130914485224
.86602471267959
.00049620051241
.13371450064800
.26496830711844

index-94_3.jpg
z=Mh/2+8/h

1/h

1/h

index-185_1.png
SOLUTIONS TO |

=
%

ERCISES FOR CHAPTER 5 181

Plot of solution Yn for Exercise 5.3 Plot of solution Yn for Exercise 5.8

1.4 1.4
1.2 1.2

1 1
0.8 0.8

>~.E

0.6 0.6
0.4 0.4
0.2 0.2

0 : : : : 0 : : : :

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
X X
n n
Plot of solution Yn for Exercise 5.13 Plot of solution Yn for Exercise 5.25

1.4 1.4
1.2 1.2

1 1
0.8 0.8

>~.E

0.6 0.6
0.4 0.4
0.2 0.2

0 : : : : 0 : : : :

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
X X
n n

F1GURE 8.4. Graph of numerical solutions of Exercises 12.3 (Eu-
ler), 12.8 (improved Euler), 12.13 (RK4) and 12.25 (ABM4).

index-20_2.jpg
DA LA e
F.-*r.-l i e

index-97_1.png
5.3. LOW-ORDER EXPLICIT RUNGE-KUTTA METHODS 93

Thus, we have three equations in four unknowns. This gives rise to a one-
parameter family of solutions. Identifying the parameters:

cp=«, ay=pf bi=a, by=05h,

we obtain second-order Runge—Kutta mathods.

Here are some two-stage second-order Runge-Kutta methods.

The improved Euler’s method can be written in the form of a two-stage
explicit Runge-Kutta method (left) whith Butcher tableau (right):

kl - hf(xrwyn)
k2 - hf (xn + h7yn +k1)

1
Yntl = Yn + 5(’% + ka)

This is Heun’s method of order 2.
Other two-stage second-order methods are the mid-point method:

kl - hf(xruyn)
ko = hf lh Jrlk
9 = $n+§ » Yn 5%

Ynt+1 = Yn + K2
and Heun’s method:

kl - hf(xrwyn)

2 2

1 3
il = Yn + = k1 + = k
Yn+1 y+41+42

5.3.2. Third-order Runge—Kutta method. We list two common three-
stage third-order Runge—Katta methods in their Butcher tableau, namely Heun’s
third-order formula and Kutta’s third-order rule.

A
k1 0
ks 1/3 0
ks 0 2/3 0

A
kit 0
ks 1/2 0
ks -1 2 0

Ynt1 bT 1/6 2/3 1/6
Butcher tableau of Kutta’s third-order rule.

index-184_1.png
180

count =

end

SOLUTIONS TO |

count + 1;

outputéd
save output4 %for printing the grap

=
%

ERCISES FOR NUM]I

ERICAL METHODS

The command output4 prints the values of n, z, and y.

-
o

W 00 N O WN -

n
0
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000
.00000000000000

= O O OO OO0 O oo

X
0

.10000000000000
.20000000000000
.30000000000000
.40000000000000
.50000000000000
.60000000000000
.70000000000000
.80000000000000
.90000000000000
.00000000000000

B, 2, OO0 0O 00O O0OO0

y
0

.10482097362427
.21847505355285
.33956414151249
.46650952510670
.59764142006542
.73131943222018
.86603741396612
.00050998975914
.13372798977088
.26498035231682

Error estimate

o O O o

.00000234408483
.00000292485029
.00000304450366
.00000269077058
.00000195879670
.00000104794662
.00000017019624

The numerical solutions for Exercises 12.3, 12.8, 12.13 and 12.25 are plotted
by the commands:

load outputl; load output2; load output3; load outputéd;
subplot(2,2,1); plot(outputl(:,2),outputi(:,3));
title(’Plot of solution y_n for Exercise 5.3°);
xlabel(’x_n’); ylabel(’y_n’);
subplot(2,2,2); plot(output2(:,2),output2(:,3));
title(’Plot of solution y_n for Exercise 5.8°);
xlabel(’x_n’); ylabel(’y_n’);
subplot(2,2,3); plot(output3(:,2),output3(:,3));
title(’Plot of solution y_n for Exercise 5.137);
xlabel(’x_n’); ylabel(’y_n’);
subplot(2,2,4); plot(outputd(:,2),outputd(:,3));
title(’Plot of solution y_n for Exercise 5.257);
xlabel(’x_n’); ylabel(’y_n’);
print -deps Fig9_3

index-20_1.jpg

index-96_1.png
92 5. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

In a Butcher tableau, the components of the vector ¢ are the increments of x,, and
the entries of the matrix A are the multipliers of the approximate slopes which,
after multiplication by the step size h, increments y,. The components of the
vector b are the weights in the combination of the intermediary values k;. The
left-most column of the tableau is added here for the reader’s convenience.

To attain second order, ¢, A and b have to be chosen judiciously. We proceed
to derive two-stage second-order Runge-Kutta methods.

By Taylor’s Theorem, we have

1
y(@n1) = ylon) + y/(xn)(xn+1 —n) + §y//(xn)(xn+1 - xn)z
1
+ 50" (€ ane —) (58)
for some &, between z,, and z,11 and n =20, 1, ..., N —1. From the differential

equation
y'(z) = flz,y(2)),

and its first total derivative with respect to z, we obtain expressions for y'(zy)
and v’ (zy),

Therefore, putting h = z,,+1 — z,, and substituting these expressions in (5.8), we
have

1

T3 [fz (xm y(xn)) + fy(xn7y(xn))f(xn7y(xn))] h?

1
oy (6’ (5.9)
form=0,1,..., N —1.

Our goal is to replace the expression

1

by an expression of the form

The constants a, b, oz and 3 are to be determined. This last expression is simpler
to evaluate than the previous one since it does not involve partial derivatives.
Using Taylor’s Theorem for functions of two variables, we get

+ Bh (0, y(wn)) fy (20, y(20)) + O(h?).
In order for the expressions (5.8) and (5.9) to be equal to order h, we must have

a+b=1, ab=1/2, 8b=1/2.

index-14_1.png
10

Ok W o~ O3

1. SOLUTIONS OF NONLINEAR EQUATIONS

TABLE 1.3. Results of Example 1.8.

Iy error €,

0.50000000000000
0.98611111111111

0.89345451579409

0.92075445888550
0.91326607850598
0.91536510274262

—0.41490784153366
0.07120326957745
—0.02145332573957
0.00584661735184
—0.00164176302768
0.00045726120896

6n/6n7 1
1.00000000000000
0.07120326957745

—0.30129691890395
—0.01940483617658
0.08460586900804
0.00540460389243

The exact solution
0.914 907 841 53366

is obtained by means of some 30 iterations. The following iterative procedure
solves the problem.

xexact = 0.91490784153366;

N = 5; x=zeros(N+1,4);

x0 = 0.5; x(1,:) = [0 xO (x0O-xexact), 1];

for i = 1:N

xt=exp8_8(x(1,2));

x(i+1,:) = [1i xt (xt-xexact), (xt-xexact)/x(i,4)];
end

The iterates, their errors and the ratios of successive errors are listed in Table 1.3.
One sees that the ratios of successive errors are decreasing; therefore the order
of convergence, defined in Subsection 1.4.2, is greater than one, but smaller than
two since the number of correct digits does not double from one iterate to the
next.

In Example 1.9 below, we shall show that the convergence of an iterative
scheme z,41 = g(z,) to an attractive fixed point depends upon a judicious re-
arrangement of the equation f(z) =0 to be solved. In fact, besides fixed points,
an iterative scheme may have cycles which are defined in Definition 1.2, where

g°(x) = g(g(@)), ¢°(2) = 9(g* (@) ete.
DEFINITION 1.2. Given an iterative scheme
xn+1::9(an
a k-cycle of g(x) is a set of k distinct points,
xo,

L1, T2, B

satisfying the relations
ry = g(z0), T2 = 92(950)7 ce
The multiplier of a k cycle is
(6" (@) = g'(zh-1) - g'(z0), j=0,1,...k=1.
A k-cycle is attractive, repulsive, or indifferent as
(g") ()] < 1,
A fixed point is a 1-cycle.

>1, =1.

index-13_1.png
1.4. FIXED POINT ITERATION 9

Proor. If gla) = a or g(b) = b, the existence of an attractive fixed point
is obvious. Suppose not, then it follows that g(a) > a and g(b) < b. Define the
auxiliary function

hz) = g(x) — x.
Then h is continuous on [a, b] and

h{a) = gla) —a >0, h(b) = g(b) — b < 0.

By Corollary 1.1, there exists a number p €]a,b[such that h(p) = 0, that is,
g(p) = p and p is a fixed point for g(z).

To prove uniqueness, suppose that p and ¢ are distinct fixed points for g(x)
in [a,b]. By the Mean Value Theorem 1.3, there exists a number ¢ between p and
g (and hence in [a, b]) such that

lp—ql =lglp) —g(q)| = g’ () lp —ql < Klp—gql <Ip—dl,

which is a contradiction. Thus p = ¢ and the attractive fixed point in [a,b] is
unique.

We now prove convergence. By the Mean Value Theorem 1.3, for each pair
of numbers z and y in [a, b], there exists a number ¢ between z and y such that

g(x) = gly) = g'(c)(z — y).
Hence,
lg(z) — 9(y)| < K|z —yl.
In particular,
|Zn+1 —p| = |g(zn) — 9(p)| < Klzn —pl.

Repeating this procedure n + 1 times, we have

|xn+1_p|§Kn+1|xO_p|_>O7 as n — o0,

since 0 < K < 1. Thus the sequence {z,,} converges to p.

ExaMPLE 1.8. Find a root of the equation
flz)=2>4+92-9=0
in the interval [0, 1] by a fixed point iterative scheme.

SOLUTION. Solving this equation is equivalent to finding a fixed point for
glx) = (9 —™)/9.

Since
F(0)f(1) = -9 <0,

Corollary 1.1 implies that f(z) has a root, p, between 0 and 1. Condition (3) of
Theorem 1.6 is satisfied with K = 1/3 since

lg' ()] = | —2?/3] <1/3

for all z between 0 and 1. The other conditions are also satisfied.
Five iterations are performed with Matlab starting with xog = 0.5. The func-
tion M-file exp8_8.m is

function x1 = exp8_8(x0); % Example 8.8.
x1 = (9-x0"3)/9;

index-16_1.png
12 1. SOLUTIONS OF NONLINEAR EQUATIONS

TABLE 1.4. Results of Example 1.9.

g3() g4(z) g5 ()

n 0.5V10 — 23 | \/10/(4 + z) | = — 53210
0 L5 15 15 L5 1.5

1 —0.8750 0.816 1.286953 1.348399 | 1.373333333
2| 6.732421875 2.996 1.402540 1367376 | 1.365262015
3 | —4.6972001 x 10> | 0.00 —2.94i | 1.345458 1.364957 | 1.365230014
4| 1.0275x 108 2752750 | 1.375170 1.365264 | 1.365230013
5 —1.08x10% 1.81 —3.53¢ | 1.360094 1.365225

6 1.3 x 107 2.38 —343i | 1.367846 1.365230

to produce a 10-digit correct answer. On the other hand, the sequence go(x,,) is
trapped in an attractive two-cycle,

zy = 2.27475487839820 £ 3.60881272309733 ¢,

with multiplier
gh(z:)gh(2-) = 0.19790433047378

which is smaller than one in absolute value. Once in an attractive cycle, an
iteration cannot converge to a fixed point. Finally z, is a repulsive fixed point
of g1(x) and x,11 = g(x,,) diverges to —o0.

REMARK 1.2. An iteration started in the basin of attraction of an attractive
fixed point (or cycle) will converge to that fixed point (or cycle). An iteration
started near a repulsive fixed point (or cycle) will not converge to that fixed point
(or cycle). Convergence to an indifferent fixed point is very slow, but can be
accelerated by different acceleration processes.

1.4.1. Stopping criteria. Three usual criteria that are used to decide when
to stop an iteration procedure to find a zero of f(z) are:

(1) Stop after N iterations (for a given N).
(2) Stop when |z,11 — 2| <e (for a given €).
(3) Stop when |f(x,)| <n (for a given n).
The usefulness of any of these criteria is problem dependent.

1.4.2. Order and rate of convergence of an iterative method. We are
often interested in the rate of convergence of an iterative scheme. Suppose that
the function g(z) for the iterative method

Lnt+1 =g (xn)
has a Taylor expansion about the fixed point p (p = g(p)) and let
€n = Ty — P.

Then, we have

g9"(p)

ey

Tni1 = glxn) = g(p +en) = g(p) +g'(pen +

g9"(p)

Ty

=p+ g Pen+

index-15_1.png
1.4. FIXED POINT ITERATION 11

The multiplier of a cycle is seen to be the same at every point of the cycle.

ExaMPLE 1.9. Find a root of the equation
flz)=2°+42>-10=0

in the interval [1, 2] by fixed point iterative schemes and study their convergence
properties.

SOLUTION. Since f(1)f(2) = —70 < 0, the equation f(x) = 0 has a root in
the interval [1,2]. The exact roots are given by the Matlab command roots

p=[1 4 0 -10]; % the polynomial f(x)
r =roots(p)
r =
-2.68261500670705 + 0.358259359924041
-2.68261500670705 - 0.358259359924041
1.36523001341410

There is one real root, which we denote by 2, in the interval [1,2], and a pair
of complex conjugate roots.
Six iterations are performed with the following five rearrangements « = g;(x),
7 =1,2,3,4,5, of the given equation f(x) = 0. The derivative of g’(x) is evaluated
at the real root r., ~ 1.365.
2 3

z=gi(x) = 10+ 2 —42° — 2°, g1(zs0) & —15.51,
xz = golz) =: /(10/x) — 4z, gh(T00) ~2 —3.42,
1

= gsz) = 5V 10 — 23, gh(7o0) = —0.51,

z = g4(x) = \/10/(4 + z), ga(zoo) ~ —0.13
22 4 422 - 10 , 0

z=gs5(z) =1 - —F—— Too) = 0.

gs 322 T 8z ’ g5

The Matlab function M-file exp1_9.m is

function y = expl_9(x); % Example 1.9.

y = [10+x(1)-4+x(1)"2-x(1)"3; sqrt((10/x(2))-4%x(2));
sqrt(10-x(3)73)/2; sqrt(10/(4+x(4)));
x(5)-(x(5)"3+4*x(5)"2-10)/ (3*x(5) "2+8*x(5))]’;

The following iterative procedure is used.

N = 6; x=zeros(N+1,5);

x0 =1.5; x(1,:) = [0 x0 x0 x0 x0];
for i = 1:N

xt=expl_9(x(1,2:5));

x(i+1,:) = [1 xt];

end

The results are summarized in Table 1.4. We see from the table that z., is an
attractive fixed point of gs(z), g4(z) and gs(x). Moreover, g4(z,,) converges more
quickly to the root 1.365 230013 than gs(z,), and gs(z) converges even faster. In
fact, these three fixed point methods need 30, 15 and 4 iterations, respectively,

index-171_1.png
EXERCISES FOR CHAPTER 5 167

5.13. y' =z 4 cosy, y(0)=0.
5.14. yy =e ¥, y(0)=0.
515. v =y> + 2y — =, y(0)=0.

Use the Matlab ode23 embedded pair of order 3 with A = 0.1 to obtain a six-
decimal approximation for each initial value problem on 0 <z < 1 and estimate
the local truncation error by means of the given formula.

5.16. ¢ = 2% +2y°, y(0) = 1.
5.17. y' = x + 2siny, y(0) =0.
5.18. y' = x4+ 2cosy, y(0)=0.

5.19. ¢ =¥, y(0)=0.
5.20. ' =y> + 2y — =, y(0)=0.

Use the Adams—Bashforth—Moulton three-step predictor-corrector method with
h = 0.1 to obtain a six-decimal approximation for each initial value problem on
0 <z <1, estimate the local error at z = 0.5, and plot the numerical solution.

5.21. vy =z +siny, (0
5.22. y' =2z 4 cosy, y(0

523. ¢y =y —y+1, y(0)=0.

)=0.
) =0

Y
Y

Use the Adams—Bashforth—Moulton four-step predictor-corrector method with
h = 0.1 to obtain a six-decimal approximation for each initial value problem on
0 <z <1, estimate the local error at z = 0.5, and plot the numerical solution.

5.24. y =z +siny, (0
5.25. y' =z 4 cosy, y(0

5.26.y =y —y+1, y(0)=0.

)=0.
) =0

Y
Y

index-84_1.png
80 4. MATRIX COMPUTATIONS

FIGURE 4.2. Gershgorin disks for Example 4.9.

4.6.2. The power method. The power method can be used to determine
the eigenvalue of largest modulus of a matrix A and the corresponding eigenvector.
The method is derived as follows.

For simplicity we assume that A admits n linearly independent eigenvectors
Z1,%9,...,2y corresponding to the eigenvalues A{, Ao, ..., \,, ordered such that

ALl > ol = As] = = Al
Then any vector @ can be represented in the form

T = a1z1 +azzz + -+ anZp.
Applying A* to x, we have

Abp = al)\]le —+ CLQ)\];ZQ 4 an)\ﬁzn

s (22 k boopay (2o k
a1z a)\1 z9 (279)\1 Zn

—>)\’fa1z1 =y as k — o0.

=)

Thus Ay = A\y. In practice, successive vectors are scaled to avoid overflows.

1
Az(® — (1) wh) — 2 7
(R

2
AuD — 2@ u® — z?) 7
123 |0

Au™ — gD

ExAMPLE 4.10. Using the power method, find the largest eigenvalue and the
corresponding eigenvector of the matrix

5]

index-170_2.png
=t &N

o =

4.20.

™M o oM

AN © ©

Iar IR aN Ian]

4.21.

index-83_1.png
4.6. MATRIX EIGENVALUES AND EIGENVECTORS 79

4.6.1. Gershgorin’s disks. The inclusion theorem of Gershgorin states
that each eigenvalue of A lies in a Gershgorin disk.

THEOREM 4.6 (Gershgorin Theorem). Let A be an eigenvalue of an arbitrary
n x n matric A= (a;). Then for some i, 1 < i <n, we have

lais — Al < agt| + lag| + -+ |agi—1| + las i1+ -+ |aim]. (4.7)
ProoF. Let & be an eigenvector corresponding to the eigenvalue A, that is,
(A— M)z =0. (4.8)

Let z; be a component of x that is largest in absolute value. Then we have
|¢;/z;| <1forj=1,2,...,n. The vector equation (4.8) is a system of n equations
and the ith equation is

;121 + -+ agi1@i—1 + (G — A& + G i1@ip1 + o+ Gz = 0.

Division by z; and reshuffling terms give

N — €1 Li—1 Li+1 L
273 Qil— — T Qi1 — @441 - —_—

Taking absolute values on both sides of this equation, applying the triangle in-
equality |a+b| < |a|+|b| (where a and b are any complex numbers), and observing
that because of the choice of i,

£y

X4

<1

= 4 R

we obtain (4.7).

ExAMPLE 4.9. Using Gershgorin Theorem, determine and sketch the Gersh-
gorin disks Dy that contain the eigenvalues of the matrix

-3 0bi —¢
A=|1—-i 144 0
0.1z 1 —14

SoLUTION. The centres, ¢;, and radii, r;, of the disks are

¢ = —3, r= |0.5i| + | — Z| =15
co=1+i, rm=|1—i+0] =v2
3 = —i, rg = [0.1i|+1 =11

as shown in Fig. 4.2.

The eigenvalues of the matrix A of Example 4.9 are
—3.2375 — 0.1548i, 1.0347 4-1.16304, 0.2027 — 1.0082;.

In this case, there is one eigenvalue in each Gershgorin disk.

index-173_1.png
Solutions to Exercises for Numerical Methods

Solutions to Exercises for Chapter 1

Ex. 1.11. Sketch the function
fl@)=e" —tanz

and compute a root of the equation f(z) = 0 to six decimals by means of Newton’s
method with g = 1.

SOLUTION. We use the newton1_11 M-file

function f = newtonl_11(x); % Exercise 1.11.
f =x - (exp(-x) - tan(x))/(-exp(-x) - sec(x)7"2);

We iterate Newton’s method and monitor convergence to six decimal places.

>> xc = input(’Enter starting value:’); format long;
Enter starting value:1
>> xc = newtonl_11(xc)
xc = 0.68642146135728
>> xc = newtonl_11(xc)
xc = 0.54113009740473
>> xc = newtonl_11(xc)
xc = 0.53141608691193
>> xc = newtonl_11(xc)
xc = 0.53139085681581
>> xc = newtonl_11(xc)
xc = 0.53139085665216

All the digits in the last value of xc¢ are exact. Note the convergence of order 2.
Hence the root is z¢ = 0.531391 to six decimals.

We plot the two functions and their difference. The z-coordinate of the point
of intersection of the two functions is the root of their difference.

x=0:0.01:1.3;

subplot(2,2,1); plot(x,exp(-x),x,tan(x));

title(’Plot of exp(-x) and tan(x)’); xlabel(’x’); ylabel(’y(x)?);
subplot(2,2,2); plot(x,exp(-x)-tan(x),x,0);

title (’Plot of exp(-x)-tan(x)’); xlabel(’x’); ylabel(’y(x)’);
print -deps Fig9_2

169

index-85_1.png
4.6. MATRIX EIGENVALUES AND EIGENVECTORS 81

SoLUTION. Letting (") = { } } , We have
3 20[1] [5] a | 5/7
{2 5“1__7}:”7 R
327 [5/7] [414] @ @ [0.644
{2 5}{1__6.43} S [7
3210644] [3933] L _ | 06254
2 5 1 | 7| 6.288 ’ |1

Numeric Matlab has the command eig to find the eigenvalues and eigenvec-
tors of a numeric matrix. For example
>> A = [3 2;2 5];
>> [X,D] = eig(4)

X =
0.8507 0.52567
-0.5257 0.8507

D =
1.7639 0
0 6.2361

where the columns of the matrix X are the eigenvectors of A and the diagonal el-
ements of the diagonal matrix D are the eigenvalues of A. The numeric command
eig uses the QR algorithm with shifts to be described in Section 4.8.

4.6.3. The inverse power method. A more versatile method to determine
any eigenvalue of a matrix A4 € R™">*", or C"*", is the énverse power method. 1t
is derived as follows, under the simplifying assumption that A has n linearly

independent eigenvectors z1,..., zZ,, and X is near A;.
We have
(A=ADz™ =2 — g2+ +ayz,,
PRC PR SN S
AL — A Ay — A An — A

Similarly, by recurrence,

k k
$(k)al;{zl+a2<>\l_)\> Zo+ -+ ay (Al_A> zn}

O\t — MF X2 — A M — A
1
HalmZh as]f—>OO7
since N
1 .
1 1.
Noa b 7

Thus, the sequence (®) converges in the direction of z1. In practice the vectors
(™ are normalized and the system

(A= ADxFD = gk

is solved by the LU decomposition. The algorithm is as follows.

index-172_1.png

index-84_2.png

index-170_1.png
166 EXERCISES FOR NUMERICAL METHODS

4.17.
—i 01+4+01i 05
0.3i 2 0.3
0.2 03+04i i
4.18.
—2 1/2 /2
12 0 /2
—ij2 —i/2 2

4.19. Find the [{-norm of the matrix in exercise 17 and the [,-norm of the
matrix in exercise 18.

Do three iterations of the power method to find the largest eigenvalue, in absolute
value, and the corresponding eigenvector of the following matrices.

4.20. { 104 } with 29 = { ! } .

4 2 1
3 2 3 1
4.21. | 2 6 6 with 209 = | 1
3 6 3 1

Exercises for Chapter 5

Use Euler’s method with & = 0.1 to obtain a four-decimal approximation for each
initial value problem on 0 < z < 1 and plot the numerical solution.

51. 9y =eV—y+1, y(0)=1.
5.2. y' =z +siny, y(0)=
53. y =z+cosy, y(0)=
54. ¢ =22 +y?, y(0)=1.
5.5. 1

Use the improved Euler method with & = 0.1 to obtain a four-decimal approx-
imation for each initial value problem on 0 < z < 1 and plot the numerical
solution.

56.y =e¢V—y+1, y(0)=1.

5.7. y =z +siny, y(0)=0.
58. ¢y =z+cosy, y(0)=0.
5.9. ¢ =22 + ¢y, y(0)=1.
5.10. v =1 +4% y(0)=0.

Use the Runge—Kutta method of order 4 with A = 0.1 to obtain a six-decimal
approximation for each initial value problem on 0 < z < 1 and plot the numerical
solution.

511. ¢ =22 +4°, y(0)=1.
5.12. y' =z +siny, y(0)=0.

index-37_1.png
2.3. GREGORY-NEWTON FORWARD-DIFFERENCE POLYNOMIAL 33

respectively, and in general, the kth forward difference of f(x) at z; is
AFfy = A = AL,

It is seen by mathematical induction that

f[$o7...7$k] . 1 Akfo

T RUBE

If we set
Tr —Xp

then, for equidistant nodes,

and
(x—zo)(z—21) - (—ap 1) =P -1 —=2)-(r—k+1).
Thus (2.4) becomes

k
= (A o, (25)
k
where
= k!
1 if k=0.

Polynomial (2.5) is the Gregory—Newton forward-difference interpolating
polynomial.

C) rr=) o ok D

EXAMPLE 2.7. Suppose that we are given the following equally spaced data:

Extrapolate the value of y in year 1994.

SOLUTION. The forward difference table is

U Ys Ay, Ay ANy, Aty APy
0 1988 [35000]
1 1989 36000

500 500
2 1990 36500 0

500 300 [0]
3 1991 37000 300 ~200

800 100
4 1992 37800 400

1200

5 1993 39000

index-36_1.png
32 2. INTERPOLATION AND EXTRAPOLATION

TABLE 2.1. Ddivided difference table

First Second Third

z f(z) divided differences divided differences divided differences
zo flzo

flzo, z1
z1 flzs flzo, z1, 22

flx1, a2 flxo, z1, 22, 23]
2y flza flz, za, 23

flza,x3 Jley, @2, 23, 24)
x3 flzs flza, z3,24

flza, my Jlaa, x3, 24, 5]
2y flzg flza, mq, x5

flza, =5
s [flzs

ExaMPLE 2.6. Construct the cubic interpolating polynomial through the four
unequally spaced points

(1.0,2.4), (1.3,2.2), (1.5,2.3), (1.7,2.4),
on the graph of a certain function f(z) and approximate f(1.4).

SOLUTION. Newton’s divided difference table is
i (o) fleozocd] flos zi, o] flos 2o, a0, Tag3)

1.0

1.3 22

0.500000

1.5 23 0.00000
0.500000
1.7 24
Therefore,

p3(z) = 2.4+ (z — 1.0) (—0.66667) + (x — 1.0) (z — 1.3) x 2.33333
+(z—1.0) (x — 1.3) (z — 1.5) (—3.33333).
The approximation to f(1.4) is
p3(1.4) = 2.2400.

2.3. Gregory—Newton Forward-Difference Polynomial
We rewrite (2.4) in the special case where the nodes z; are equidistant,
x; = 20 + 1 h.

The first and second forward differences of f(z) at x; are

Afji=fir =T A= AL — A,

index-39_1.png
2.4. GREGORY-NEWTON BACKWARD-DIFFERENCE POLYNOMIAL 35

2.4. Gregory—Newton Backward-Difference Polynomial

To interpolate near the bottom of a difference table with equidistant nodes,

one uses the Gregory—Newton backward-difference interpolating polynomial for
the data

(@, fn)y (@it fnr1), oy (@0, f0).

If we set
xr —Xxo

]’[/ ?

r =
then, for equidistant nodes,

z—x_=x—x0— (_x —2z0) = hr + hk = h(r + k)

and
(x—zo)lz—z 1) - (z—2_(3—1)) = Rer(r + D)(r +2) - (r + k—1).
Thus (2.5) becomes

palr) = fo 4 3o LA TR D
k=1

)
k!

-y (’" + Z - 1) AFF . (2.6)
k=0

The polynomial (2.6) is the Gregory—Newton backward-difference interpo-
lating polynomial.

AFfy

ExXAMPLE 2.9. Interpolate the equally spaced data of Example 2.8 at x = 2.1

SoLUTION. The difference table is
iy Yi Ay; Ay Ay Aty

—4 1.0 0.7651977

-0.145112
—3 1.3 0.6200860 -0.0195721
-0.164684 0.0106723
—2 1.6 0.4554022 -0.0088998
-0.173584
~1 1.9 0.2818186

0 22 |(0.1103623

Setting r = (z — 2.2)/0.3, we have

r(r+1)

pa(r) = 0.1103623 + r (—0.170856) + (0.0021273)

r+ 1)(r+2)(r +3)

4 e DO 2) 6 o110271) 4 2L 51

(0.0003548).

Since
21-22 1
= —_— — ——

0.3 3’
then

pa(—1/3) = 0.115904.

index-90_1.png

index-176_1.png
172 SOLUTIONS TO EXERCISES FOR NUMERICAL METHODS

The backward difference table is

n| Tn fn vfn vzfn van v4fn
0.22140
110.211.2214 0.04902
0.27042 0.01086
210.4]1.4918 0.05998 0.00238
0.33030 0.01324
3106 1.8221 0.07312
0.40342
41 0.8 | 22255

s = (0.65-0.80)/0.2 % the variable s
s = -0.7500
format long
p4 = ddt(5,1) + s*ddt(5,2) + s*x(s+1)*ddt(5,3)/2
+ s*x(s+1)*(s+2)*ddt(5,4)/6 + s*(s+1)*(s+2)*(s+3)*ddt(5,5)/24
p4 = 1.91555051757812

Solutions to Exercises for Chapter 4

Ex. 4.2. Solve the linear system

xryT T X9 T xr3 = 5
xryT T 2:172 - 2:173 6
xryT T 2:172 - 3:173 = 8

by the LU decomposition without pivoting.

SoLUTION. The Matlab numeric solution.— In this case, Matlab need
not pivot since L will be unit lower triangular. Hence we can use the LU decom-
position obtained by Matlab.

clear
>>A=[111; 122;123]; b=[5628]";
>> [L,U] = 1u(4) % LU decomposition of A

L =
1 0 0
1 1 0
1 1 1
U=
1 1 1
0 1 1
0 0 1
>> y = L\b % solution by forward substitution
y =
5
1
2
>> x = U\y % solution by backward substitution

index-38_1.png
34 2. INTERPOLATION AND EXTRAPOLATION

Setting r» = (z — 1988)/1, we have

ps(r) — 35000 4 r (1000) 4 "= 500y 4 T =D =2) 50
r(r—1)(r—2)(r —3) rir—D(r—2)r —-3)(r—4)
+ — o1 (—200) + - 10 (0).

Extrapolating the data at 1994 we have r = 6 and
ps5(6) = 40500.

An iterative use of the Matlab diff (y,n) command produces a difference table.

y = [35000 36000 36500 37000 37800 39000]
d

y = diff(y);

dy = 1000 500 500 800 1200
d2y = diff(y,2)

d2y = -500 0 300 400

d3y = diff(y,3)

d3y = 500 300 100
day = diff(y,4)

d4y = -200 -200
dsy = diff(y,5)

dsy = 0

ExampPLE 2.8. Use the following equally spaced data to approximate f(1.5).

SOLUTION. The forward difference table is

i Yi Ay; Ay, APy, Aty
0 10
1 1.3 0.6200860
-0.164684
2 1.6 04554022 -0.0088998
-0.173584 0.0110271
3 1.9 0.2818186 0.0021273
-0.170856

4 22 01103623
Setting r» = (z — 1.0)/0.3, we have

r(r—1)
pa(r) = 07651977 4 7 (=0.145112) + S (~0.0195721)
1) -2 D) —2)(r—3
+—115———%¥1l———2(0.0106723)47fﬁf———jiéiz—lif———l (0.0003548).

Interpolating f(z) at = 1, we have r = 5/3 and and
pa(5/3) = 0.511819.

index-89_1.png
4.9. THE SINGULAR VALU]

&3}

DECOMPOSITION 85

THEOREM 4.8. A malriz A is normal if and only if it admits the Schur
decomposition
A=UDUH,
where the diagonal matriz D contains the eigenvalues of A and the columns of
the unitary matriz U are the eigenvectors of A.

index-39_3.png

index-39_2.png

index-174_2.png
yx)

Plot of exp(-x) and tan(x)

05 1

1.5

index-41_1.png
2.6. CUBIC SPLINE INTERPOLATION 37

First Second Third
z f(z) divided differences divided differences divided differences
zo==wx0 [lzo] = f(zo
flz0, 21] = f'(z0)
z1 =m0 flz1] = fl@o flzo, 21, 22
flz1, 22] flz0, 21, 22, 23]
29 =z1 [leo] = fl1 flz1s 22, 23
flz2, 23] = f'(z1) flz1, 22, 23, 24]
z3 =21 flzs] = f(z1 flz2, 23, 24
flza, 24] flz2, 23, 24, 25]
24 =x9 [laa] = f(22 flz3, 24,25
flza, 2] = f'(22)
25 =19 [flzs] = flx2

ExXAMPLE 2.10. Interpolate the underlined data, given in the table below, at
z = 1.5 by a Hermite interpolating polynomial of degree five.

SOLUTION. In the difference table the underlined entries are the given data.
The remaining entries are generated by standard divided differences.

1.3 0.6200360

—0.5220232
1.3 0.6200860 —0.0897427
—0.5489460 0.0663657
1.6 0.4554022 —0.0698330 0.0026663
—0.5698959 0.0679655 —0.0027738
1.6 0.4554022 —0.0290537 0.0010020
—0.5786120 0.0685667
1.9 0.2818186 —0.0084837
—0.5811571

1.9 0.2818186

Taking the elements along the top downward diagonal, we have

P(1.5) = 0.6200860 4 (1.5 — 1.3)(—0.5220232) + (1.5 — 1.3)?(—0.0897427)
+ (1.5 — 1.3)2(1.5 — 1.6)(0.0663657) + (1.5 — 1.3)*(1.5 — 1.6)?(0.0026663)

+ (1.5 —1.3)%(1.5 — 1.6)%(1.5 — 1.9)(—0.0027738)
—0.5118277.

2.6. Cubic Spline Interpolation

In this section, we interpolate functions by piecewise cubic polynomials which
satisfy some global smoothness conditions. Piecewise polynomials avoid the os-
cillatory nature of high-degree polynomials over a large interval.

DerINITION 2.1. Given a function f(z) defined on the interval [a,b] and a
set of nodes

a=xo <21 < - <xTp =",

index-86_2.png

index-174_1.png
170 SOLUTIONS TO |

je3}
7
&3l

RCISES FOR NUMERICAL METHODS

Plot of exp(-x) and tan(x) Plot of exp(-x) - tan(x)

15 0 05 1 15

Ficure 8.3. Graph of two functions and their difference for Exercise 1.11.

Ex. 1.12 Compute a root of the equation f(z) = z — tanz given in Exer-
cise 1.10 with the secant method with starting values zop = 1 and z; = 0.5. Find
the order of convergence to the root.

SOLUTION. x0 = 1; x1 =
zeros(20,1);

0.5; % starting values

X =

x(1) = x0; x(2) = x1;
for n = 3:20
x(n) = x(n-1) -&x@-D-x(n-2)) ...
/x(@m-1)-tan(x(n-1))-x(n-2)+tan(x(n-2))) *(x(n-1)-tan(x(n-1)));
end
dx = abs(diff(x));
p = 1; % checking convergence of order 1
dxr =

dx(2:19)./(dx(1:18).7p);

table = [[0:19]° x [0; dx] [0; 0; dxr]ll

table =
n X_n x_n - x_{n-1} |x_n - x_{n-1}|

/1x_{n-1} - x_{n-23}|

0 1.00000000000000
1 0.50000000000000 0.50000000000000
2 0.45470356524435 0.04529643475565 0.09059286951131
3 0.32718945543123 0.12751410981312 2.81510256824784
4 0.25638399918811 0.07080545624312 0.55527546204022
5 0.19284144711319 0.06354255207491 0.89742451283310
6 0.14671560243705 0.04612584467614 0.72590481763723
7 0.11082587909404 0.03588972334302 0.77808273420254
8 0.08381567002072 0.02701020907332 0.75258894628889
9 0.06330169146740 0.02051397855331 0.75948980985777
10 0.04780894321090 0.01549274825651 0.75522884145761
11 0.03609714636358 0.01171179684732 0.75595347277403
12 0.02725293456160 0.00884421180198 0.75515413367179
13 0.02057409713542 0.00667883742618 0.75516479882196
14 0.01553163187404 0.00504246526138 0.75499146627099

index-40_1.png
36 2. INTERPOLATION AND EXTRAPOLATION

2.5. Hermite Interpolating Polynomial

Given n + 1 distinct nodes zq, z1,...,2, and 2n + 2 values f;, = f(zy) and
fr. = f'(=1), the Hermite interpolating polynomial ps,11(z) of degree 2n+ 1,

Poni1 (@) = > hon(@) fon + > () f1,

takes the values

pomti(@n) = o, Papa(e) =fi, E=0,1,...,n.

We look for polynomials Ay, (z) and ﬁm(x) of degree at most 2n + 1 satisfying the
following conditions:

hin (k) = hop (1) = 0, k#m,

P () = 1,

ho (&) = 0,
and

ﬁm(ﬂﬂk :/}\L;n(xk) =0, k#m,

ﬁm(xm =0,

bl (z) = 1.

These conditions are satisfied by the polynomials

hn (@) = [1 = 2(x = @) L, (@) L7, ()

and

N

m(@) = (& —om) Ly, (),

where

n

Lo~] 222

X — X
k=0 ktm M Uk

are the elements of the Lagrange basis of degree n.
A practical method of constructing a Hermite interpolating polynomial over

the n + 1 distinct nodes zo, x1,...,z, is to set
Zoi = 22441 = Ty, 1=0,1,...,n,
and take
['(zo) for flzo, 21|, f'(x1) for flzo, 23], ..., [f'(z;) for flzanzans1]

in the divided difference table for the Hermite interpolating polynomial of degree
2n+ 1. Thus,

2n+1
DPont1(x) = flzo] + Z flz0, 21, 2il(— z0) (@ — 21) - (2 — 25_1).
k=1

A divided difference table for a Hermite interpolating polynomial is as follows.

index-86_1.png
82 4. MATRIX COMPUTATIONS

Choose z(®)

For k=1,2,3,..., do

Solve

(A= My™ = 2(*=1) by the LU decomposition with partial pivoting.

2 =y /|y O]

Stop if ||(A — Az ||o < ce||A]|oo, where ¢ is a constant of order unity and
€ is the machine epsilon.

4.7. The QR Decomposition

A very powerful method to solve ill-conditioned and overdetermined system
Az = b, AeR™* m > n,
is the QR decomposition,
A=0QR,
where () is orthogonal, or unitary, and R is upper triangular. In this case,
| Az —bll» = | QRz — b||» = || Rz — Q" b|».

If A has full rank, that is, rank of A is equal to n, we can write

(4] 3]

where Ry € R, 0 € RUm)x7 ¢ c R" d e R™ ", and Ry is upper triangular
and non singular.
Then the least-square solution is

x=R'c
obtained by solving
Rix=c

by backward substitution and the residual is

= min || Az — bl = ||d]|2.
p= min [[Az —blj> = |d||>

In the Q R decomposition, the matrix A is transformed into an upper-triangular
matrix by the successive application of n — 1 Householder reflections, the kth one
zeroing the elements below the diagonal element in the kth column. For exam-
ple, to zero the elements o, 3, ..., x, in the vector x € R”, one applies the
Householder reflection

T
v
P=71-2——
vTv’
with
1
0
v = +sign(z)ey, where e; = | .
0
In this case,
zq — ||l
X9 0

index-175_1.png
SOLUTIONS TO EXERCISES FOR CHAPTER 2

15 0.01172476374403 0.00380686813002 0.75496169684658
16 0.00885088980844 0.00287387393559 0.75491817353192
17 0.00668139206035 0.00216949774809 0.75490358892216
18 0.00504365698583 0.00163773507452 0.75489134568691
19 0.00380735389990 0.00123630308593 0.75488588182657

171

An approximate solution to the triple root x = 0 is x5 = 0.0038. Since the

ratio
Nz =20l 675 o constant
|:En71 - xn72|

as n grows, wee conclude that the method converges to order 1.
Convergence is slow to a triple root. In fact

f(0) = f'(0) = f’(0) =0, f"(0)#£0.

In general, the secant method may not converge at all to a multiple root.

Solutions to Exercises for Chapter 2

Ex. 2.4. The three points

(0.1,1.0100502), (0.2,1.04081077), (0.4,1.1735109)

lie on the graph of a certain function f(z). Use these points to estimate f(0.3).

SOLUTION. We have
1.04081077 — 1.0100502

f10.1,0.2] = = 0.307606,
0.1
1.1735109 — 1.04081077
f10.2,04]= —————— =0.663501
0.2
and
0.663501 — 0.307606
fl0.1,0.2,0,4] = ————————————— = 1.18632.
0.3
Therefore,

pa(x) = 1.0100502 + (z — 0.1) x 0.307606 + (z — 0.1) (z — 0.2) x 1.18632

and

p2(0.3) = 1.0953.

Ex. 2.12. Approximate f(0.65) using the data in Exercise 2.10

and Gregory—Newton’s backward interpolating polynomial of degree four.
SOLUTION. We construct the difference table.

f = [1 1.2214 1.49182 1.82212 2.22554];
ddt = [f’ [0 diff(£)]’ [0 O diff(f,2)]’
[0 00 0 diff(f,4)]’]

[0 O 0 diff(£,3)]’ ...

index-43_1.png
2.6. CUBIC SPLINE INTERPOLATION

Spline interpolant to sine curve

FiGurg 2.1. Spline interpolant of sine curve.

Clamped spline approximation to data

FIiGURE 2.2. Clamped spline approximation to data.

39

index-88_1.png
84 4. MATRIX COMPUTATIONS

4.9. The Singular Value Decomposition

The singular value decomposition is a very powerful tool in matrix compu-
tation. It is more expensive in time than the previous methods. Any matrix
A € R™ " gay, with m > n, can be factored in the form

A=UxvT,

where U € R™*™ and V € R™*" are orthogonal matrices and > € R™*" is a
diagonal matrix, whose diagonal elements o; ordered in decreasing order

o1 >0y >0, 20,

are the singular values of A. If A € R®*™ is a square matrix, it is seen that
Az =01, [IA 2 = 0s.

The same decomposition holds for complex matrices A € C™*™. In this case U
and V are unitary and the transpose V7 is replaced by the Hermitian transpose

ve=vT
The rank of a matrix A is the number of nonzero singular values of A.
The numeric Matlab command svd produces the singular values of a matrix:
A=1[123;456; 738 9];
[U,S,V] = svd(d)

U =
0.2148 0.8872 -0.4082
0.5206 0.2496 0.8165
0.8263 -0.3879 -0.4082

g =
16.8481 0 0
0 1.0684 0
0 0 0.0000

vV =

0.4797 -0.7767 0.4082
0.5724 -0.0757 -0.8165
0.6651 0.6253 0.4082

The diagonal elements of the matrix S are the singular values of A. The ls norm
of Ais ||A]l2 = o1 = 16.8481. Since o3 = 0, the matrix A is singular.

If A is symmetric, A7 = A, Hermitian symmetric A7 = A or, more generally,
normal, AAT = AH A then the moduli of the eigenvalues of A are the singular
values of A.

THEOREM 4.7 (Schur Decomposition). Any square matriz A admits the Schur
decomposition

A=UTU"H,

where the diagonal elements of the upper triangular matrix T are the eigenvalues
of A and the matriz U is unitary.

For normal matrices, the matrix T' of the Schur decomposition is diagonal.

index-174_3.png
Plot of exp(-x) - tan(x)

05 1 1.5

index-42_1.png
38 2. INTERPOLATION AND EXTRAPOLATION

a cubic splines interpolant S for f is a piecewise cubic polynomial that satisfies
the following conditions:

a) S(x) is a cubic polynomial, denoted S;(z), on the subinterval [z, ;1]
foreach 7 =0,1,...,n—1;

S(z;) = f(z;) foreach j=0,1,...,n;

Sit1(zjq1) = S;(xj41) foreach j=0,1,...,n—2;

i1(@ie1) = Si(w41) foreach j =0,1,...,n—2;

Sy (@jr1) = 87 (zj41) foreach j=0,1,...,n—-2;

One of the sets of boundary conditions is satisfied:

(i) 8" (zo) = S"(xy) =0 (free or natural boundary);

(ii) S'(zg) = f'(x0) and S'(ayn) = f'(z,) (clamped boundary).

) Ei o T
K

Other boundary conditions can be used in the definition of splines. When
free or clamped boundary conditions occur, the spline is called a natural spline
or a clamped spline, respectively.

To construct the cubic spline interpolant for a given function f, the conditions
in the definition are applied to the cubic polynomials

Sj(x) = a; + bz — z5) + c5(x — ;)" + dy(z — 2;)%,
foreach 7 =0,1,...,n— 1.

The following existence and uniqueness theorems hold for natural and clamped
spline interpolants, respectively.

THEOREM 2.2 (Natural Spline). If f is defined at a = zq < 1 < -+ <z =

b, then f has a unique natural spline interpolant S on the nodes xo,x1,..., Ty
with boundary conditions S”(a) =0 and 5" (b) = 0.

THEOREM 2.3 (Clamped Spline). If f is defined at a = 2o < 21 < -+ <
z, = b and is differentiable at a and b, then f has a unique clamped spline
interpolant S on the nodes xq,x1, ..., Ty with boundary conditions S'(a) = f/(a)

and S'(b) = f'(b).

The following Matlab commands generate a sine curve and sample the spline

over a finer mesh:

x = 0:10; y = sin(x);

xx = 0:0.25:10;

yy = spline(x,y,xx);

subplot(2,2,1); plot(x,y,’0’ ,xx,yy);
The result is shown in Fig 2.1.

The following Matlab commands illustrate the use of clamped spline inter-
polation where the end slopes are prescribed. Zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced:

x = -4:4; y=[0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);

xx = linspace(-4,4,101);

plot(x,y,’0’ ,xx,ppval(cs,xx),’-?);

The result is shown in Fig 2.2.

index-87_1.png
4.8. THE QR ALGORITHM 83

The matrix P is symmetric and orthogonal and it is equal to its own inverse, that
is, it satisfies the relations

pr—p=p1

To minimize the number of floating point operations and memory allocation, the
scalar

s =2/vlv
is first computed and then

T

Pr=z—s(v'x)v

is computed taking the special structure of the matrix P into account. To keep
P in memory, only the number s and the vector v need be stored.

Softwares systematically use the QR decomposition to solve overdetermined
systems. So does the Matlab left-division command \ with an overdetermined or
singular system.

The numeric Matlab command qr produces the QR decomposition of a ma-
trix:

> A=[123;456; 78 9];
>> [Q,R] = gqr(4)

Q =
-0.1231 0.9045 0.4082
-0.4924 0.3015 -0.8165
-0.8616 -0.3015 0.4082
R =

-8.1240 -9.6011 -11.0782
0 0.9045 1.8091
0 0 -0.0000

It is seen that the matrix A is singular since the diagonal element r33 = 0.

4.8. The QR algorithm

The QR algorithm uses a sequence of QR decompositions

A=Q1 Ry
A= Q1 = Q2R
As = RoQr = Q33

to yield the eigenvalues of A, since A, converges to an upper or quasi-upper tri-
angular matrix with the real eigenvalues on the diagonal and complex eigenvalues
in 2 x 2 diagonal blocks, respectively. Combined with simple shifts, double shifts,
and other shifts, convergence is very fast.

For large matrices, of order n > 100, one seldom wants all the eigenvalues.
To find selective eigenvalues, one may use Lanczos’ method.

The Jacobi method to find the eigenvalues of a symmetric matrix is being
revived since it is parallelizable for parallel computers.

index-35_3.png

index-164_1.png
160 EXERCISES FOR NUMERICAL METHODS

1.12 Compute a root of the equation f(z) = 2z — tanz given in Exercise 1.10
with the secant method with starting values o = 1 and x; = 0.5. Find the order

of convergence to the root.

1.13. Repeat Exercise 1.12 with the method of false position. Find the order of
convergence of the method.

1.14. Repeat Exercise 1.11 with the secant method with starting values zg = 1
and xz; = 0.5. Find the order of convergence of the method.

1.15. Repeat Exercise 1.14 with the method of false position. Find the order of
convergence of the method.

1.16. Consider the fixed point method of Exercise 1.5:
Tyl = 2z, + 3.

Complete the table:

n T, Az, Az,

1]z =4.000

wel]
Accelerate convergence by Aitken.

S —
renT A2z -

1.17. Apply Steffensen’s method to the result of Exercise 1.9. Find the order of
convergence of the method.

]

3

1.18. Use Miiller’s method to find the three zeros of

flz) =a®+ 322 — 1.

1.19. Use Miiller’s method to find the four zeros of

flz)=a*+22% -2 —3.

1.20. Sketch the function f(z) = 2 — tanz and compute a root of the equation
f(x) = 0 to six decimals by means of Newton’s method with o = 1. Find the
multiplicity of the root and the order of convergence of Newton’s method to this

root.

index-76_1.png
72 4. MATRIX COMPUTATIONS

Given a matrix A € R™" or C"*", and a vector norm ||| for z € R", a
subordinate matriz norm, ||A]|, is defined by the supremum

[Az|
x#£0 || =|=1

There are three important vector norms in scientific computation, the l{-norm of
T

?
n
Izl =D leil = lea| + o] + -+ |,
i=1

the Buclidean norm, or lo-norm, of x,

" 1/2
1/2
]2 = [ZI%IZ] — [l o foal - feal)
i=1

and the supremum norm, or lo-norm, of x,

[2lloc = sup |wi| = sup{laal, [z2], .., Jznl}.
i=1,2,...n

It can be shown that the corresponding matrix norms are given by the following

formulae.
The l1-norm, or column “sum” norm, of A is

n
| Al = jignzax . Z || (largest column in the !y vector norm),
TS 1:1

the lo-norm, or a row “sum” norm, of A is

Ao = max Z || (largest row in the [y vector norm),
i=1,2,....,n

and the ly-norm of A is

|All2 = max {03/2} (largest singular value of A),
i=1,2,...n
where the o2 > 0 are the eigenvalues of AT A. The singular values of a matrix are
considered in Subsection 4.9.
An important non-subordinate matrix norm is the Frobenius norm, or Bu-
clidean matriz norm,

1/2
n n

[Alr = D0 lail?

j=11i=1

DEFINITION 4.2 (Condition number). The condition number of a matrix A €
R™*™ is the number

R(A) = Al A, (4.1)

Note that x(A4) > 1 if ||| = 1.
The condition number of A appears in an upper bound for the relative error

in the solution to the system
Az =b.

In fact, let & be the exact solution to the perturbed system
(A+AA)x = b+ b,

index-163_1.png
Exercises for Numerical Methods

Angles are always in radian measure.
Exercises for Chapter 1

1.1. Use the bisection method to find z3 for f(x) = /z —cosz on [0,1]. Angles
in radian measure.

1.2. Use the bisection method to find z3 for

f(2) =3 + e - g)a— 1)
on the following intervals:
[—2,1.5], [—1.25,2.5].
1.3. Use the bisection method to find a solution accurate to 1072 for f(z) =

z —tanz on [4,4.5]. Angles in radian measure.

1.4. Use the bisection method to find an approximation to v/3 correct to within
1074, [Hint: Consider f(z) = 2 — 3]

1.5. Show that the fixed point iteration

In+1 = 2z, + 3
for the solving the equation f(z) = x> —2x —3 = 0 converges in the interval [2,4].

1.6. Use a fixed point iteration method, other than Newton’s method, to de-
termine a solution accurate to 1072 for f(z) = 2> —2 —1 = 0 on [1,2]. Use
xrg = 1.

1.7. Use a fixed point iteration method to find an approximation to v/3 correct
to within 10~*. Compare your result and the number of iterations required with
the answer obtained in Exercise 1.4.

1.8. Do five iterations of the fixed point method g(x) = cos(z — 1). Take xy = 2.
Use at least 6 decimals. Find the order of convergence of the method. Angles in
radian measure.

1.9. Do five iterations of the fixed point method g(x) = 1 4 sin® . Take zq = 1.
Use at least 6 decimals. Find the order of convergence of the method. Angles in
radian measure.

1.10. Sketch the function f(z) = 22 — tanz and compute a root of the equation
f(x) = 0 to six decimals by means of Newton’s method with zp = 1. Find the
order of convergence of the method.

1.11. Sketch the function f(z) = ¢ ¥ —tanz and compute a root of the equation
f(x) = 0 to six decimals by means of Newton’s method with 2o = 1. Find the
order of convergence of the method.

159

index-165_1.png
EXERCISES FOR CHAPTER 2 161

Exercises for Chapter 2

2.1. Given the function f(z) = In(z + 1) and the points zp = 0, ;1 = 0.6 and
z9 = 0.9. Construct the Lagrange interpolating polynomials of degrees exactly
one and two to approximate f(0.45) and find the actual errors.

2.2. Consider the data

F(8.1) =16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091.

Interpolate f(8.4) by Lagrange interpolating polynomials of degree one, two and
three.

2.3. Construct the Lagrange interpolating polynomial of degree 2 for the function
f(z) = €*¥cos3x, using the values of f at the points zp = 0, 1 = 0.3 and
Xy — 0.6.

2.4. The three points
(0.1,1.0100502), (0.2,1.04081077), (0.4,1.1735109)
lie on the graph of a certain function f(z). Use these points to estimate f(0.3).

2.5. Complete the following table of divided differences:

i x| fla] flziszin] flrozipn zive] flos, 21, Tig, 2igs)
032 220
8.400
1127 178 2.856
—0.528
10| 142]
|15 | ass]
4 5.6 5.17

Write the interpolating polynomial of degree 3 that fits the data at all points from
o = 3.2 to r3 = 4.8.

2.6. Interpolate the data
(_172)7 (070)7 (1'57_1)7 (274)7

by means of Newton’s divided difference interpolating polynomial of degree three.
Plot the data and the interpolating polynomial on the same graph.

2.7. Repeat Exercise 2.1 using Newton’s divided difference interpolating polyno-
mials.

2.8. Repeat Exercise 2.2 using Newton’s divided difference interpolating polyno-
mials.

index-78_1.png
74 4. MATRIX COMPUTATIONS

EXAMPLE 4.6. Apply two iterations of Gauss—Seidel’s iterative scheme to the
system

dry + 2w+ s = 14, 7 = 1,
r1 + bxy — r3 — 107 with ng) = 17
0 0 — (0)

X X9 8:173 207 Zq — 1.

SOLUTION. Since the system is diagonally dominant, Gauss—Seidel’s iterative
scheme will converge. This scheme is

x(ln”? = i(14 LT ngn) - xén))7 x(lg) = 1,
S P PRI R
xénﬁl) = %(20 — x(lnﬁl) — xgn+1)), xéo) = 1.

For n = 0, we have

1 11
AV (4 —2-1)== =275
1 4
1
2 = (10 -2.75 + 1) = 1.65
1
2 = 5 (20 = 2.75 — 1.65) = 1.95.
For n=1:
@ _ 1

P = Z(14 -2 x 1.65 —1.95) = 2.1875
4

1
2 = = (10 — 21875 4 1.95) = 1.9525

1
=) = Z(20 — 2.1875 — 1.9525) = 1.9825
8

Gauss—Seidel’s iteration to solve the system Ax = b is given by the following
iterative scheme:

gt = p-t (b — L™t — Ua:(m)) , with properly chosen (¥,

where the matrix A has been split as the sum of three matrices,
A=D+L+U,

with D diagonal, L strictly lower triangular, and U strictly upper triangular.
This algorithm is programmed in Matlab to do k£ = 5 iterations for the fol-
lowing system:
=[71-1;1 11 1;-1 1 9]; b= [3 0 -17]";
= diag(h); L = tril(A,-1); U = triu(4,1);
= size(b,1); % number of rows of b
= ones(m,1); % starting value
= zeros(m,1); % temporary storage
= 5; % number of iterations
for j = 1:k
uy = Uxx(:,j);
for i = 1:m
y(i) = (1/D(i))*(b(i)-L(1,:)*y-uy(i));
end
x = [x,y];

N X B O

index-164_2.png

index-77_1.png
4.4. ITERATIVE METHODS 73

where all experimental and numerical roundoff errors are lumped into AA and
&b. Then we have the bound

o 1a4] e
< (A){ E ||b||} 4.2)

We say that a system Az = b is well conditioned if x(A) is small; otherwise it is
ill conditioned.

ExXAMPLE 4.5. Study the ill condition of the following system
1.0001 1 z1 | | 2.0001
1 1.0001 z9 | | 2.0001
with exact and some approximate solutions

1 [2.0000
=111 T7| 00001 |

SoLUTION. The approximate solution has a very small residual (to 4 deci-
mals), r = b — AZ,

respectively.

_ | 2.0001 1.0001 1 2.0000
"= 20001 | |1 1.0001 0.0001

_ | 2.0001 2.0003 | [—0.0002

| 2.0001 | | 2.0001 | 0.0000 |-

However, the relative error in Z is
|2 — 2|1 (1.000040.9999)

lelly 1+1 T
that is 100%. This is explained by the fact that the system is very ill conditioned.
In fact,

~0.0002 | —1.0000 1.0001 —5000.0 5000.5 |’

= 1 1.0001 —1.0000 } B { 5000.5 —5000.0 |

and

k1(A) = (1.0001 + 1.0000)(5000.5 + 5000.0) = 20 002.

The l{-norm of the matrix A of the previous example and the [{-condition
number of A are obtained by the following numeric Matlab commands:

>> A4 = [1.0001 1;1 1.0001];
>> N1 = norm(4,1)

N1 = 2.0001

>> K1 = cond(A,1)

K1 = 2.0001e+04

4.4. Tterative Methods

One can solve linear systems by iterative methods, especially when dealing
with very large systems. One such method is Gauss—Seidel’s method which uses
the latest values for the variables as soon as they are obtained. This method is
best explained by means of an example.

index-30_1.png
T

26 1. SOLUTIONS OF NONLINEAR EQUATIONS

16 x*-40 x 3+5 x°+20 x+6
25 . . .

20t
157
107

-1 0 1 2 3
X

F1GURE 1.6. The graph of the polynomial 162* — 402> + 52 +
20z + 6 for Example 1.17.

syms x

pp = 16*x74-40%x"3+5*x"2+20%x+6
pp = 16*x74-40%x"3+5%x"2+20*x+6
pp = horner (pp)

pp = 6+(20+(5+(-40+16%x)*x) *x) *x

The polynomial is evaluated by the Matlab M function:

function pp = mullerpol(x);
pp = 6+(20+ (5+(-40+16*x) *x) *x)*x;

Miiller’s method obtains x5 with the given three starting values:

x0 = 0.5; x1 = -0.5; x2 = 0; % starting values
m = [(x0-x2)"2 x0-x2; (x1-x2)"2 x1-x2];
rhs = [mullerpol(x0)-mullerpol(x2); mullerpol(xl)- mullerpol(x2)];
ab = m\rhs; a = ab(1); b = ab(2); % coefficients a and b
¢ = mullerpol(x2); ¥ coefficient ¢
x3 = x2 -(2xc)/(b+sign(b)*sqrt(b"2-4*a*xc))
x3 = -0.5556 + 0.59841

The method is iterated until convergence. The four roots of this polynomial
are

rr = roots([16 -40 5 20 6])’
rr = 1.9704 1.2417 -0.3561 - 0.16281 -0.3561 + 0.1628i

The two real roots can be obtained by Miiller’s method with starting values
[0.5,1.0,1.5] and [2.5,2.0, 2.25], respectively.

index-169_1.png
EXI

ERCISI

ES FOR CHAPTI

4.8. Find the Cholesky decomposition of

ER 4

165

9 9 9 0
1 -1 =2
A- | 5 4|, B 9 13 13 -2
9 4 9 9 13 14 -3
0 -2 -3 18
Solve the following systems by the Cholesky decomposition.
4.9.
16 —4 4 zq —12
—4 10 -1 z0 | = 3
4 -1 5 z3 1
4.10.
4 10 8 1 44
10 26 26 x9 | = | 128
8 26 61 z3 214

Do three iterations of Gauss—Seidel’s scheme on the following properly permuted
systems with given initial values ().

4.11. o
6ry + Ty — r3 = 3 x(l) = 1
21+ w2+ Tas —17 with 2" = 1
s s - 0
Ty 5x9 xs3 0 1;(3) 1
4.12.
21 o+ @y + by = 22 A7 =1
r{ + 4:172 + 2:173 13 with ng) - 1
s _ - _ 0
7:171 2:172 xs 6 x;(g) 1
4.13. Using least squares, fit a straight line to (s, F):
(0.9,10), (0.5,5), (1.6,15), (2.1,20),

where s is the elongation of an elastic spring under a force I, and estimate from
it the spring modulus k = F/s. (I' = ks is called Hooke’s law).

4.14. Using least squares, fit a parabola to the data

(_172)7 (070)7 (171)7 (27 2)
4.15. Using least squares, fit f(z) = ap + a1 cosz to the data
(0,3.7), (1,3.0), (2,24), (3,1.8).

Note: z in radian measures.

4.16. Using least-squares, approximate the data

[T [=05 [0]025] 05 [075 1]

by means of

f(@) = aoPo(x) + a1 P (z) + as Pa(z),
where Py, P and P, are the Legendre polynomials of degree 0, 1 and 2 respec-
tively. Plot f(z) and g(z) = ¢* on the same graph.

Using Theorem 4.3, determine and sketch disks that contain the eigenvalues of
the following matrices.

index-31_1.png
CHAPTER 2

Interpolation and Extrapolation

Quite often, experimental results provide only a few values of an unknown
function f(z), say,

(xo, fo), (x1, 1), (w2, fa), S (@n, fn), (2.1)

where f; is the observed value for f(z;). We would like to use these data to
approximate f(z) at an arbitrary point x # z;.

When we want to estimate f(z) for z between two of the z;’s, we talk about
interpolation of f(z) at . When z is not between two of the z;’s, we talk about
extrapolation of f(z) at z.

The idea is to construct an interpolating polynomial, p,, (z), of degree n whose
graph passes through the n + 1 points listed in (2.1). This polynomial will be
used to estimate f(z).

2.1. Lagrange Interpolating Polynomial

The Lagrange interpolating polynomial, p,,(z), of degree n through the n+ 1
points (35;67 f(gsk))7 k=0,1,...,n, is expressed in terms of the following Lagrange
basis:

(o —2) @z)@ —apg) (@ —)
Lyz)=ri—+—-—-o—+— -~ -
(xr —zo)(xr —21) - (zh —ap—1) (2 — Tpy1) - (Th — Tp)

Clearly, Li(x) is a polynomial of degree n and

1 —
Lk(fﬂ){07 T

? €r = xj? j # k/.'
Then the Lagrange interpolating polynomial of f(z) is
pul(x) = f(zo)Lo(z) + flz1)La(z) + -+ flon) Ln(2). (2.2)

It is of degree n and interpolates f(z) at the points listed in (2.1).

ExamMpLE 2.1. Interpolate f(z) = 1/x at the nodes zy = 2, z; = 2.5 and
z9 = 4 with the Lagrange interpolating polynomial of degree 2.

SoLUTION. The Lagrange basis, in nested form, is
xz—25)(x—4

(2 -2)(xz—4) (—4x+24)x— 32
hio) = a5 es-0 3 7
z—2)(xz—25 (x —45)x+5
Le) =ga=s 3

27

index-82_1.png
78 4. MATRIX COMPUTATIONS

The solution a is obtained by forward and backward substitutions with Gw = b
and GTa = w

?

ap = 2.8252
ay = —2.0490
ay = 0.3774.

(b) The Matlab numeric solution.—

[0124686];
[x.70 x x.72];
[31 01 4];
(A7*A\ (A7 *y))?
a = 2.8252 -2.0490 0.3774

VRS
non

The result is plotted in Fig. 4.1

FIGURE 4.1. Quadratic least-square approximation in Example 4.8.

4.6. Matrix Eigenvalues and Eigenvectors

An eigenvalue, or characteristic value, of a matrix A € R™*™, or C"*", is a
real or complex number such that the vector equation

Az =Xz, xe€R" or C", (4.4)

has a nontrivial solution, & # 0, called an eigenvector. We rewrite (4.4) in the
form

(A— M)z =0, (4.5)

where [is the n x n identity matrix. This equation has a nonzero solution x if
and only if the characteristic determinant is zero,

det(A — AT) = 0, (4.6)

that is, X is a zero of the characteristic polynomial of A.

index-168_1.png
164 EXERCISES FOR NUMERICAL METHODS

3.13. Apply Romberg integration to the integral

1
/ 23 da
0

until £,—1,—1 and R, , agree to within 1074,

Exercises for Chapter 4

Solve the following system by the LU decomposition without pivoting.

4.1.
201 4+ 219 4+ 2x3 = 4
o 2:172 — 3:173 = 32
3:171 — 4:173 = 17
4.2,
X1 -T- X9 -T- €3 = 5
xryT T 2:172 - 2:173 = 6
xryT T 2:172 - 3:173 = 8

Solve the following system by the LU decomposition with partial pivoting.

4.3.
201 — r9 + brg = 4
—6x1 + 329 — Y93 = —6
4:171 — 3:172 = =2
4.4.
3:171 - 9:172 - 6:173 == 23
182y 4+ 48xy — 3923 = 136
9:171 — 27:172 - 42:173 == 45

4.5. Scale each equation in the [..-norm, so that the largest coefficient of each
row on the left-hand side be equal to 1 in absolute value, and solve the scaled
system by the LU decomposition with partial pivoting.

X1 — X9 T 2:173 == 3.8
dxry + 3x9 — r3 = —=b.7
5x1 4+ 10x9 + 3x3 = 2.8

4.6. Find the inverse of the Gaussian transformation

1 0 0 0
—a 1 0 O
-b 0 1 0
—c 0 0 1

4.7. Find the product of the three Gaussian transformations

QO oV e =
oo = O
[l N e i]
_—o oo
OO O =
o o~ O
[l N e i]
_—0 O O
OO O =
oo = O
—_— -0 o
_—0 O O

index-30_2.png
25

20t
157
107

16 X"-40 X °+5 x“+20 x+6

index-81_3.png
57 ao 9
289 a1 | = 29
1569 as 161

index-32_1.png
28 2. INTERPOLATION AND EXTRAPOLATION

Thus,
1 (—det24)z—32 1 (z—45)z+5
e =65z 410 — TS TR
ple) =5 @ Ja 10+ o= 3 +1 3
— (0.052 — 0.425)z 1 1.15.
THEOREM 2.1. Suppose xo,x1,...,xy are n+ 1 distinct points in the interval
[a,b] and f € C"1|a,b]. Then there exits a number &(z) € [a, b] such that
(n+1)
fa)=pe) = L sy @) - e @23)

where py,(x) is the Lagrange interpolating polynomial. In particular, if

_ . (n+1) _ (n+1)
Mn g1 = WD | (@) and My i1 = max, |f7 T (=),

then the absolute error in py,(x) is bounded by the inequalities:

gy = a0) (o =) (o —)] S 1) = pa()
M,
S e TGREICRE R CR
fora <z <b.
Proor. First, note that the error is 0 at = = xg, x4, ..., z, since

pn(xk):f(xk)7 k:0717"'7n7

from the interpolating property of p,, (z). For z # xy, define the auxiliary function

918) = 1) = (0) = () = o)) =L o

t—ZEi

= J(t) = pu(t) = [f(@) = pu(e)]] |

T —x;
i=0 v

For t = x4,
9(@x) = f(@r) —palzs) = [f(2) —pn(@)] X 0 =0

and for t = z,

glz) = fla) —pplz) — [flz) —pa(z)] x 1 =0.

Thus g € C"'a,b] and it has n + 2 zeros in [a,b]. By the generalized Rolle
theorem, ¢’(t) has n + 1 zeros in [a,b], g”(t) has n zeros in [a,b], ..., g TV ()
has 1 zero, £ € [a, b],

m—+1 " —
WHWQ:fW”@wmﬂm@%ﬁﬂ@—mmﬂd+ hlt -

dtrntl R

t=¢

(n+1)!

_ () 0 () — ()] =
FO) —0 = [1(@) =)]

=0

index-31_2.png

index-82_2.png

index-165_3.png

index-34_1.png
30 2. INTERPOLATION AND EXTRAPOLATION

EXAMPLE 2.3. Approximate cos0.2 linearly using the values of cos0 and
cos /8.

SOLUTION. We have the points

7r 7r w1
(0,cos0) = (0,1) and <§7cos§)<§7§ \/§+2>

(Substitute § = /8 into the formula

cos?) — 1+ cos(26)

to get

This leads to

In particular,
p1(0.2) = 0.96125.

Note that cos 0.2 = 0.98007 (rounded to five digits). The absolute error is 0.01882.

Consider the three data points

(o, fo)y (1, f1), (=2, fa), where z; #z; for i#j.
Then the divided difference interpolating polynomial of degree two through these

points is
p2(z) = fo+ (z — x0) flzo, z1] + (z — 20) (x — z1) flzo, 71, 2]
where

fi—fo and flzo, 21,] — flz1, z2] — flzo, 1]
1 — xo Ty — X0

f[$07 ZEl] =
are the first and second divided differences, respectively.

ExaMPLE 2.4. Interpolate a given function f(z) through the three points
(2.2,6.2), (2.5,6.7), (2.7,6.5),

by means the divided difference interpolating polynomial of degree two, ps(z),
and interpolate f(x) at = 2.35 by means of p3(2.35).

SOLUTION. We have
f[2.2,2.5] = 1.6667, f12.5,2.7= -1

and

2.5,2.7 — f[2.2,2.5] —1 — 1.6667
f[2.2,2.5,2.7] = f125,27) - f2.2,25] 1 - 16667 o0
2.7 — 2.2 27— 2.2

index-80_1.png
76 4. MATRIX COMPUTATIONS

and want to determine a function f(z) such that
f(xl)%y’u 2:17277]\[
For properly chosen functions, po(z), ¢1(z), ..., pn(x), we put

(@) = aopo() + a1p1(z) + - + anpn(z),

and minimize the quadratic form

N
Q(CLO7 Aty ...y a”ﬂ) - Z(f(xl) - yl)z
i=1

Typically, N 3» n+ 1. If the functions ¢;(x) are “linearly independent”, the qua-

dratic form is nondegenerate and the minimum is attained for values of ap, a1, ..., an,
such that 5

99 o 012 .n

8aj

Writing the quadratic form @ explicitly,

N
Q= (aopo(@:) + -+ angpn(®i) — vi)?,
i=1
and equating the partial derivatives of) with respect to a; to zero, we have

2 _

N
7a; 2Z(ao<po(x¢) + b anen(®i) — yi)ws () = 0.

i=1

This is an (n + 1) x (n+ 1) symmetric linear algebraic system

Yopolzi)polzi) dopr(zi)polz:) - D on(zi)po(zi) ao

Seola)on(z:) Ser@en(@) - Dealedenls) | | an

> polzi)yi
= : , (4.3)

> en(zi)yi

where all sums are over ¢ from 1 to N. Setting the N x (n + 1) matrix A, and
the N vector y as

eo(z1) wi(z1) - (@) Y1
A= ’ U)
olzn) wilzn) - pnlzn) YN

we see that the previous square system can be written in the form

These equations are called the normal equations.
In the case of linear regression, we have

po(z) =1, p1(z) ==,

index-165_2.png
17.8

14.2

38.3

517

i

index-33_1.png
2.2. NEWTON’S DIVIDED DIFFERENCE INTERPOLATING POLYNOMIAL 29

since p,(z) is a polynomial of degree n so that its (n + 1)st derivative is zero and
only the top term, "1, in the product [} (¢t — ;) contributes to (n+1)! in its
(n+ 1)st derivative. Hence

FUtD(E())
(n+ 1)!

From a computational point of view, (2.2) is not the best representation of
pn(z) because it is computationally costly and has to be redone from scratch if
we want to increase the degree of p,(2) to improve the interpolation.

If the points z; are distinct, this polynomial is unique, For, suppose p,(z)
and ¢, (z) of degree n both interpolate f(x) at n -+ 1 distinct points, then

(x —xo) (z —21) - (& — an).

f@) = pnlz) +

pnlx) = qn(2)
is a polynomial of degree n which admits n+ 1 distinct zeros, hence it is identically
Zero.

2.2. Newton’s Divided Difference Interpolating Polynomial

Newton’s divided difference interpolating polynomials, p,,(z), of degree n use
a factorial basis in the form

po(z) = agtari(x—zo)+as(z—zo)(z—z1)+ Hap(z—z0)z—21) (2 —20H_1).
The values of the coefficients ay are determined by recurrence. We denote
I = fl=zk).

Let 29 # z1 and consider the two data points: (zq, fo) and (21, f1). Then the
interpolating property of the polynomial

pi(z) = ag + a1 (z — xp)
implies that
p1(xo0) = ao = fo, pi(z1) = fot+ai(zr —z0) = f1.

Solving for aq we have

~ fi—fo

a] — .

X1 — X0
If we let o
flao, 1] = ———=
1 — x0o

be the first divided difference, then the divided difference interpolating poly-
nomial of degree one is

pi(z) = fo+ (z —z0) flzo, z1].

ExampLE 2.2. Consider a function f(z) which passes through the points
(2.2,6.2) and (2.5,6.7). Find the divided difference interpolating polynomial of
degree one for f(x) and use it to interpolate f at z = 2.35.

SOLUTION. Since

6.7— 6.2
f[2.2,2.5] = ————= — 1.6667,
2522

then
p1(z) =624 (x —2.2) X 1.6667 = 2.5333 + 1.6667 .

In particular, p;(2.35) = 6.45.

index-79_1.png
4.5. OVERDI

T

&3}
=

ERMINED SYSTEMS 75

end

1.0000 0.4286 0.1861 0.1380 0.13567 0.1356
1.0000 -0.1299 0.1492 0.1588 0.1596 0.1596
1.0000 -1.8268 -1.8848 -1.8912 -1.8915 -1.8916

It is important to rearrange the coefficient matrix of a given linear system
in as much a diagonally dominant matrix as possible since this may assure or
improve the convergence of the Gauss—Seidel iteration.

EXAMPLE 4.7. Rearrange the system

2:171 - 10:172 — xr3 = —-32
—xry T 2:172 — 15:173 == 17
10y — xro + 203 = 35

such that Gauss—Seidel’s scheme converges.

SOLUTION. By placing the last equation first, the system will be diagonally
dominant,

10y — xro + 203 = 35
2:171 - 10:172 — xr3 = —-32
—xry T 2:172 — 15:173 == 17

The Jacobi iteration solves the system Ax = b by the following simultaneous
iterative scheme:

2"t = pt (b — L™ — Ua:(m)) , with properly chosen 2",

where the matrices D, L and U are as defined above.
Applied to Example 4.6, Jacobi’s method is

A0 = L4 — 225 — 2, 20 =,
S R TR PR
xénﬁl) = %(20 - x(ln) - xgn)), xéo) = 1.

We state the following three theorems, without proof, on the convergence of
iterative schemes.

THEOREM 4.3. If the matriz A is diagonally dominant, then the Jacobi and
Gauss-Seidel iterations converge.

THEOREM 4.4. Suppose the matriz A € R™*" is such that ay; > 0 and a;; <0
fori £ 4, 4,75 =1,2,...,n. If the Jacobi iterative scheme converges, then the
Gauss-Seidel iteration converges faster. If the Jacobi iterative scheme diverges,
then the Gauss-Seidel iteration diverges faster.

THEOREM 4.5. If A € R™"™ is symmetric and positive definite, then the
Gauss-Seidel iteration converges for any (%),

4.5. Overdetermined Systems

A linear system is said to be overdetermined if it has more equations than
unknowns. In curve fitting we are given N points,

(x17y1)7 (127y2)7 R (xN7yN)7

index-167_1.png
EXERCISES FOR CHAPTER 3 163

(a) compute the numerical values

ndf = £/(1.2)

(deleting the error term in the formulae),
(b) compute the exact value at = 1.2 of the derivative df = f/(z) of the
given function

f(x) = cosha — sinh z,

(¢) compute the error

e = ndf — df;

(d) verify that || is bounded by the absolute value of the error term.

3.2. Use Richardson’s extrapolation with A = 0.4, h/2 and h/4 to improve the
value f'(1.4) obtained by formula (4.5).

3.3. Evaluate /
0

3.4. Evaluate

S~

3.5. Evaluate

3.6. Evaluate

S S

3.7. Evaluate

S~

3.8. Evaluate /
0

d
1 x by the trapezoidal rule with n = 10.
+x
dx . .
T by Simpson’s rule with n = 2m = 10.
+x
dx . .
T 9.2 by the trapezoidal rule with n = 10.
dz . , .
T 5.2 by Simpson’s rule with n = 2m = 10.
dx . . 4
T2 by the trapezoidal rule with A for an error of 107",
dz . , . . —6
T 2 by Simpson’s rule with with & for an error of 107°.

3.9. Determine the values of A and n to approximate

3
/ Inxzdz
1

to 1072 by the following composite rules: trapezoidal, Simpson’s, and midpoint.

3.10. Same as Exercise 3.9 with

to 1075,

2
/ L dz
0 ZE+4

3.11. Use Romberg integration to compute I23 5 for the integral

1.5
/ 22 Inz da.
1

3.12. Use Romberg integration to compute K3 3 for the integral

1.6
2
/ 295 dx.
1 X —4

index-35_2.png
H | =

<\/§— \/§+2>

4\/\/§+2—8}

index-81_2.png

index-166_1.png
162 EXERCISES FOR NUMERICAL METHODS

2.9. Interpolate the data
(-1,2), (0,0), (L,-1), (2,4),
by means of Gregory—Newton’s interpolating polynomial of degree three.
2.10. Interpolate the data
(=1,3), (0,1), (L,0), (25),
by means of Gregory—Newton’s interpolating polynomial of degree three.

2.11. Approximate f(0.05) using the following data and Gregory—Newton’s for-
ward interpolating polynomial of degree four.

2.12. Approximate f(0.65) using the data in Exercise 2.11 and Gregory—Newton’s
backward interpolating polynomial of degree four.

2.13. Construct a Hermite interpolating polynomial of degree three for the data

| fl=) f'(=)

8.3 17.56492 | 3.116256
8.6 | 18.50515 | 3.151762

Exercises for Chapter 3

3.1. Consider the formulae

1) o) = s -850) 1 470+) — Fro + 20 + 2 5 e)

15) F(a0) = gelfao + 1) — Flao —] = S,

46) f'(ao) = ﬁ[f(xo — 2h) — 8f (w0 — h) + 8 (w0 + h) — flao + 2h)] + Z_;f(5)(5)7
47) f(zo) = ﬁ[—%f(xo) +48f (o + h) — 36 f(xo + 2R) + 16 f (20 + 3h)

h4
—3f(zo+4h) + ?f@)(@?

and the table {z,,, f(x,)} :

x = 1:0.1:1.8; format long; table = [x’,(cosh(x)-sinh(x))’]
table =

1.00000000000000 0.36787944117144
1.10000000000000 0.33287108369808
1.20000000000000 0.30119421191220
1.30000000000000 0.27253179303401
1.40000000000000 0.24659696394161
1.50000000000000 0.22313016014843
1.60000000000000 0.20189651799466
1.70000000000000 0.18268352405273
1.80000000000000 0.16529888822159

For each of the four formulae (4.4)—(4.7) with h = 0.1,

index-35_1.png
2.2. NEWTON’S DIVIDED DIFFERENCE INTERPOLATING POLYNOMIAL 31

Therefore,
pala) = 6.2+ (z — 2.2) x 1.6667 + (z — 2.2) (x — 2.5) x (—5.3334).
In particular, ps(2.35) = 6.57.

ExaMpPLE 2.5. Construct the divided difference interpolating polynomial of

degree two for cos z using the values cos0, cosw/8 and cosn/4, and approximate
c0s0.2.

SOLUTION. It was seen in Example 2.3 that

™ 1
—==\/V2+2
cos8 5 V2t

Hence, from the three data points
(0,1), (a/8,cosm/8), (m/4,V2/2),

we obtain the divided differences

o =2 (Vara-2). s =1 (VE-VVEr2).

and
f[Qw/&ﬂAJW
4 [w_@l
o T/A—7/8 7r
= i—g <\/§—2\/\/§7+2>,
Hence,
e g (W) (o= 2 (2-afiBen)

Evaluating this polynomial at z = 0.2, we obtain

p2(0.2) = 0.97881.

The absolute error is 0.00189.

In general, given n + 1 data points

(x07f0)7 (x17f1)7 ceey (xn7fn)7

where z; # z; for ¢ # j, Newton’s divided difference interpolating polynomial of
degree n is

pn(x) = fo+ (2 — 20) flzo, 21] + (# — z0) (x — 21) flwo, @1, 22| + -
+ (@ —zo)(z—z1) - (& —2p1) flwo, 21, .. 2], (24)
where, by definition,

f[xj7xj+17 B ~7xk] _ f[xj+17 .. .7$k] - f[xj7xj+17 .. '7xk71]
Ty — Xy

is a (k — 7)th divided difference. This formula can be obtained by recurrence.
A divided difference table is shown in Table 2.1.

index-81_1.png
4.5. OVERDETERMINED SYSTEMS

and the normal equations are

=l
D1 T Zi:NQZ

N
aq :| _ Z’ﬁl Y
a1 Do T

This is the least-square fit by a straight line.
In the case of quadratic regression, we have

wo(z) =1, p1(z) ==, pa(z) = 27,

and the normal equations are

N N

]\],V vazl DN

y:]ivﬂxi :%1%2 i i
2 3

Dosi T DT D T

This is the least-square fit by a parabola.

N
ao Zz]\?l Yi
ar | = | Dol Ty
N
a2 Z¢:1 ﬂﬂfyl

ExaMPLE 4.8. Using the method of least squares, fit a parabola

f@) =ar+ a1z + asx’

to the following data

[1[2]3]4]5]
o [O]L1]2]4]6]
[[3]L]O1]4]

SoLUTION. (a) The analytic solution.— The normal equations are

1 0 0
111 1 1 11 1 ag
01 2 4 6 1 2 4 at
0 1 4 16 36 1 4 16 an
1 6 36
111 1 1
=101 2 4 6
0 1 4 16 36
that is
5 13 57 ag 9
13 57 289 ar | = 29 |,
57 289 1569 as 161
or
Na =0b.

Using the Cholesky decomposition N = GGT, we have

2.2361

0 0

G = 5.8138 4.8166 0
254921 29.2320 8.0430

~— O = W

T

index-29_1.png
1.8. MULLER’S METHOD 25

1.8. Miiller’s Method

Miiller’s, or the parabola, method finds the real or complex roots of an equa-
tion
f(z) =0.
This method uses three initial approximations, xzg, x1, and x2, to construct a
parabola,

p(x) = alz — 12)2 + bz —x9) + ¢,

through the three points (zo, f(z0)), (z1, f(z1)), and (z9, f(x2)) on the curve
f(z) and determines the next approximation z3 as the point of intersection of the
parabola with the real axis closer to z».

The coefficients a, b and ¢ defining the parabola are obtained by solving the
linear system

flxo) = alxo — xg)2 +blzp —x9) + ¢

flay) = alay — xg)2 +blzy —x9) + ¢

We immediately have
c= f(z2)
and obtain a and b from the linear system
(xo —x2)? (z0 — x2) } { a }
(x1 —22)? (21 —22) b
Then, we set
pas) = a(zs —x9)? + bz —a2) + ¢ =0

and solve for x3 — x9:

—b+ V/b? — dac
X3 —I9 — T
- —bx Vb —dac o bF Vb? —4dac
2a —bFVb? —4dac
N —2¢
b+ VB2 — dac
To find z3 closer to 9, we maximize the denominator:
2¢
X3 — 9 —

b+ sign(b)vb2 — dac

Miiller’s method converges approximately to order 1.839 to a simple or double
root. It may not converge to a triple root.

ExaMPLE 1.17. Find the four zeros of the polynomial
162* — 402> + 5z” + 20z + 6,

whose graph is shown in Fig. 1.6, by means of Miiller’s method.

SoLUTION. The following Matlab commands do one iteration of Miiller’s
method on the given polynomial which is transformed into its nested form:

index-28_1.png
24 1. SOLUTIONS OF NONLINEAR EQUATIONS

Thus
p(z) = (z +2)(22° — 42® + 5z — 7) + 10

and

p(—2) = 10.

Horner’s method can be used efficiently with Newton’s method to find zeros
of a polynomial p(z). Differentiating

p(x) = (& —z0)q(x) + bo
we obtain
P (@) = (z —20)q'(z) + q().
Hence
P (@0) = q(z0).

Putting this in Newton’s method we have

Ty, = Tp_ 1 — p(xnfl)
S
o p(xnfl)

= Tp-1 — .
Q(xnfl)

This procedure is shown in Example 1.16.
ExaMPLE 1.16. Compute the value of the polynomial
plz) = 22% = 323 + 32 — 4

and of its derivative p’(z) at o = —2 by Horner’s method and apply the results
to Newton’s method to find the first iterate zy.

SOLUTION. By successively multiplying the elements of the third line of the
following tableau by zg = —2 and adding to the first line, one gets the value
of p(—2). Then by successively multiplying the elements of the fifth line of the
tableau by zp = —2 and adding to the third line, one gets the value of p’(—2).

2 0 -3 =3 —4
—4 8 —-10 14
/! /! /! /!
2 —4 5 -7 10 = p(—2)
—4 16 —42
/! /! /!
2 -8 21 —49 = p'(-2)
Thus
and

1
] =—-2— —— =~ —1.7959.

index-157_1.png
7.3. NUMI

ERICAL SOLUTION OF INT]

EGRAL 1

EQUATIONS OF THI

E Sl

ECOND KIND 153

TABLE 7.2. Nystrom—Gaussian method in Example 7.9.

N

1
2
3
4
5

I
4.19E-03
1.22E-04
1.20E-06
5.09E-09
1.74E-11

Ratio

34
100
200
340

Eo
9.81E-03
2.18E-04
1.86E-06
8.47E-09
2.39E-11

Ratio

45
117
220
354

index-159_1.png
CHAPTER 8

Formulae and Tables

8.1. Legendre Polynomials P, (z) on [1, 1]
(1) The Legendre differential equation is
(1—a2%y” —2zy' +n(n+1)y=0, —-1<z<1.

(2) The solution y(z) = P, (z) is given by the series

o g 3o () (15)

m=0

where [rn/2] denotes the greatest integer smaller than or equal to n/2.
3) The three-point recurrence relation is

(n+1)Pyi(z) = 2n+ DazP(2) — nP_1(x).
4) The standardization is

P(1)=1.

5) The norm of P, () is

(6) Rodrigues’s formula is

Po(z) = (2_711737 CZ—: [(1 —xz)"} . (8.1)

(7) The generating function is

\/ﬁ . ;Pn(x)t"7 lca<l, <1 (8.2)
(8) The P, (z) satisfy the inequality
|Po(2)] <1, —1<z<1.
(9) The first six Legendre polynomials are:
Poz) =1, Pi(z) = =,
Paw) = 5 (34 = 1), Puo) = 5 (30° — 30),
Py(z) = % (352% — 3027 +3) Ps(z) = % (632° — 702% + 152) .

The graphs of the first five P, (z) are shown in Fig. 8.1.

155

index-68_1.png
64 4. MATRIX COMPUTATIONS

EXAMPLE 4.2. Given

3 20 14
A=1| 12 13 6|, b=| 40|,
-3 8 9 —928

find the LU decomposition of A without pivoting and solve
Az =b.

SOLUTION. For M A = Ay, we have

1 00 3 20 3 20
-4 1 0 12 13 6 | =0 5 6
1 0 1 -3 8 9 0 10 9
For M>A, = U, we have
1 0 0 3 20 32 0
0 10 0 5 6|=[05 6 | =U
0 -2 1 0 10 9 0 0 -3
that is
MoMA=U, A=M;'M;'U=LU
Thus
1 0 0 1 0 0 10
L=M'M;'=| 4 1 0 01 0= 41
-1 0 1 0 2 1 -1 2
Forward substitution is used to obtain y from Ly = b,
1 0 0 Y1 14
4 1 0 ys | = 40 | ;
-1 2 1 Y3 —28
thus
Y1 = 147

yo = 40 — 56 = —16,
ys = —28 + 14+ 32 = 18.

Finally, backward substitution is used to obtain « from Uz = y,

3 2 0 T 14
0 5 6 9 | = | —16 |;
0 0 -3 T3 18
thus
xr3 — —67

w9 = (—16 + 36)/5 = 4,
zp = (14— 8)/3=2.

_ o O

index-158_1.png

index-67_1.png
4.1. LU SOLUTION OF Ax=1b 63

finds the permutation matrix P which does all the pivoting at once on the system

Az =b
and produces the equivalent permuted system
PAx = Pb

which requires no further pivoting. Then it computes the LU decomposition of
PA

PA=LU,
where the matrix L is unit lower triangular with I;; < 1, for 4 > j, and the matrix
U is upper triangular.
We repeat the previous Matlab session making use of the matrix P.

A =[39 6; 18 48 39; 9 -27 42]

A= 3 9 6
18 48 39
9 =27 42

b = [23; 136; 45]
b = 23
136
45

[L,U,P] = 1lu(d)
L = 1.0000 0 0
0.5000 1.0000 0
0.1667 -0.0196 1.0000

U= 18.0000 48.0000 392.0000
0 -51.0000 22.5000

0 0 -0.0588
P = 0 1 0
0 0 1
1 0 0
y = L\P*b
y = 136.0000
-23.0000
-0.1176
x = U\y
x = -0.3333
1.3333
2.0000

THEOREM 4.1. The LU decomposition of a matriz A exists if and only if all
its principal minors are nonzero.

The principal minors of A are the determinants of the top left submatrices of
A. Partial pivoting attempts to make the principal minors of PA nonzero.

index-51_1.png
3.4. BASIC NUMERICAL INTEGRATION RULES 47

3.4. Basic Numerical Integration Rules

To approximate the value of the definite integral

/f

where the function f(z) is smooth on [a,b] and a < b, we subdivide the interval
[a,b] into n subintervals of equal length & = (b — a)/n. The function f(z) is
approximated on each of these subintervals by an interpolating polynomial and
the polynomials are integrated.

For the midpoint rule, f(z) is interpolated on each subinterval [z;_1, z1] by
f([zi—1 + 21]/2), and the integral of f(z) over a subinterval is estimated by the
area of a rectangle (see Fig. 3.2).

For the trapezoidal rule, f(z) is interpolated on each subinterval [z;_1, 2]
by a polynomial of degree one, and the integral of f(z) over a subinterval is
estimated by the area of a trapezoid (see Fig. 3.3).

For Simpson’s rule, f(x) is interpolated on each pair of subintervals, [za;, 2;+1]
and [z9;41, Z2;+2], by a polynomial of degree two (parabola), and the integral of

f(x) over such pair of subintervals is estimated by the area under the parabola
(see Fig. 3.4).

3.4.1. Midpoint rule. The midpoint rule,

[r@de—hfan s g O w<t<a (39

approximates the integral of f(z) on the interval zp < z < z1 by the area of a
rectangle with height f(x7) and base h = 21 — 2o, where z} is the midpoint of
the interval [zg, z1],
« _ Totx1
Ty =) ’

(see Fig. 3.2).
To derive formula (3.5), we expand f(z) in a truncated Taylor series with
center at © = z7,

1
Jla) = Ji) + [(@ = 21) + 5 1O —z1)’, @ <E<an

Integrating this expression from zg to x{, we have

|tz s+ [T e g [@ -

= hfG) + 5 1) / (& — 2})? de.

where the integral over the linear term (z — z7) is zero because this term is an odd
function with respect to the midpoint z = z¥ and the Mean Value Theorem 1.4
for integrals has been used in the integral of the quadratic term (z — «%)? which
does not change sign over the interval [zg, z1]. The result follows from the value
of the integral

1 [. 1 e
5/ (x—xl)zdeE[(x—xl)g‘z;:—hg.

0

index-50_1.png
46 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

TABLE 3.1. Richardson’s extrapolation to the derivative of z e®.

N1(0.2) = 22.414 160
N(0.1) = 22.228786 N»(0.2) = 22.166 995
N1(0,05) = 22182564 N»(0.1) = 22.167157 N3(0.2) = 22.167 168

the above formula for f’(zg) becomes

/ h? " (5)
f(ﬂﬂo):Nl(h)—Ef (o) — 120f (o) —

Replacing h with h/2 in this formula gives the approximation

flzo) = Ny (h

h2 "
5) =57 1" (0) = 555 7 (o) -
Subtracting the second last formula for f’(xzg) from 4 times the last one and

dividing by 3, we have
h4

F'(0) = Na(h) = 2 1) +
where
No(h) = Ny (g) ¥+ w

The presence of the number 47! — 1 in the denominator of the second term of
N;(h) provides fast convergence.

EXAMPLE 3.2. Let
fl@)==x¢".
Apply Richardson’s extrapolation to the centred difference formula to compute
f'(z) at o0 = 2 with h =10.2.

SOLUTION. We have

N1(0.2) = N(0.2) = oi [£(2.2) — £(1.8)] = 22.414 160,

4
N1(0.1) = N(0.1) = % [£(2.1) = £(1.9)] = 22.228786,
N1(0.05) = N(0.05) = % [£(2.05) — £(1.95)] = 22.182564.
Next,
Ny(0.2) = Ny(0.1) + w — 22.166 995,
N5(0.1) = Ny (0.05) + w — 22.167157.
Finall
’ N3(0.2) = Ny (0.1) + No(0.1) = N2(0-2) 55 167 168,

15
which is correct to all 6 decimals. The results are listed in Table 3.1. One

sees the fast convergence of Richarson’s extrapolation for the centred difference
formula.

index-52_1.png
48 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

3.4.2. Trapezoidal rule. The trapezoidal rule,

[s e = S ¢ 1)) = 5 O0, m<g<m (0

approximates the integral of f(z) on the interval zp < z < z1 by the area of a
trapezoid with heights f(xq) and f(z) and base h = 21 — x¢ (see Fig. 3.3).

To derive formula (3.6), we interpolate f(z) at 2 = zp and z = z1 by the
linear Lagrange polynomial

pi(z) = flao)— 1 flag)—2
Xo — I X1 — X0

Thus,

@ =@+ 586 am)a-z), m<e<n
Since
Tl h
[e = 31560} + st
we have

1 h/

"“ f”(S()

(x —xo)(zx — x1) dx

f//(g / (x —z0)(zx — x1) dx

{xg o + q

@

z2 —+ xox1x

3

Zo
f//
12 ’
where the Mean Value Theorem 1.4 for integrals has been used to obtain the third

equality since the term (z — x¢)(z — z1) does not change sign over the interval
[0, z1]. The last equality follows by some algebraic manipulation.

3.4.3. Simpson’s rule. Simpson’s rule

[@ = 2) 145G +) s FOE, < €<, (57

approximates the integral of f(x) on the interval zq < z < a9 by the area under
a parabola which interpolates f(x) at z = zg, 21 and a9 (see Fig. 3.4).

To derive formula (3.7), we expand f(z) in a truncated Taylor series with
center at z =z,

f//(xl)

(x—xl)erf ((3951) (z—ay 5

Integrating this expression from zg to 29 and noticing that the odd terms (— 1)
and (z — z1)? are odd functions with respect to the point z = x; so that their

f@) = Fla)+f (@) (m—z)+

(4)
) f (5()) ($—$1)4.

index-51_2.png

index-161_1.png
8.3. FOURIER-LEG

(n+ 1) Lypt1(z) = 2n+1—2)L,(x) —nl,_(x).

ENDRI

E Sl

ERIES

The Ly (z) are solutions of the differential equation
zy” + (1 —2)y' +ny=0
and satisfy the orthogonality relations with weight p(z) = e

/OO e "Lp(x)Ly(2)dz = {07
0

8.3. Fourier—Legendre Series Expansion

The Fourier-Legendre series expansion of a function f(z) on [—1,1] is

flz) = Z an P (),
n=0

where
2n

Ay, —

2

1

?

-1<

m #£ n,

m = n.

r<l1

— ?

This expansion follows from the orthogonality relations

1
/71 Po(2) P, (z) dz = {

0

?

2
2n+17

m #£ n,

m = n.

EXPANSION

—x

1
Jr1/ f(@) P (z) dz, n=20,1,2 ...
—1

157

(8.3)

index-53_1.png
3.5. THE COMPOSITE MIDPOINT RULE 49

integrals vanish, we have

Z2 e 4)
/ fl@)dz = {f(x)er ! (6) (x—x)® + f 12(5) (x —x1)°

h3 (4)
=gl + e + LS,
where the Mean Value Theorem 1.4 for integrals was used in the integral of the
error term because the factor (x — x1)* does not change sign over the interval
[:Eo7 ZEQ].

Substituting the three-point centered difference formula (3.4) for f”(z) in

terms of f(xq), f(z1) and f(zs):

xo

1 (1) = o £) = 26 (1) + ()] = 7 DA,
we obtain
g2 h h5 n n
[1@de = 5 [+ agten) + floa)] - 35 |5 196@) - £ (&)

In this case, we cannot apply the Mean Value Theorem 1.5 for sums to express the
error term in the form of f (4)(5) evaluated at one point since the weights 1/3 and
—1/5 have different signs. However, since the formula is exact for polynomials of
degree less than or equal to 4, to obtain the factor 1/90 it suffices to apply the
formula to the monomial f(z) = x* and, for simplicity, integrate from —h to h:

h
h
/ atde = 3 [(=R)* +4(0)* + B*] + kf(¢)
—h
2 2
=R 4 Alk=2h
3 + 5 7
where the last term is the exact value of the integral. It follows that
12 2.5 1 5
k 41 {5 3} L 90h ’

which yields (3.7).

3.5. The Composite Midpoint Rule

We subdivide the interval [a, b] into n subintervals of equal length h = (b —
a)/n with end-points

ro = a, 1 =a-+h, ey z; = a+ ih, ey Ty, = b.

On the subinterval [z;_1, z;], the integral of f(z) is approximated by the signed
area of the rectangle with base [z;_1, 2;] and height f(z}), where

1
x; = 5 (i1 + x4)

is the mid-point of the segment [2;_1,z;], as shown in Fig. 3.2 Thus, by the basic
midpoint rule (3.5),

| e = hsai) s g R, a <<

index-73_1.png
4.2. CHOLESKY DECOMPOSITION 69

we have

y1 =0,
Y2 = _327
ys = (—452 + 256)/7 = —28.

Solving GTx = y by backward substitution,

2 3 4 il 0
0 5 8 o | =] =32 |,
0 0 7 3 —28
we have
xr3 — —47

w9 = (=324 32)/5 =0,
z1=(0—3x0+16)/2=8.

The numeric Matlab command chol find the Cholesky decomposition RT R
of the symmetric matrix A as follows.

>> A =[4 6 8;6 34 52;8 52 129];
>> R = chol(4)

R =
2 3 4
0 5 8
0 0 7

The following Matlab function M-files are found in
ftp://ftp.cs.cornell.edu/pub/cv. They are introduced here to illustrate the
different levels of matrix-vector multiplications.

The simplest “scalar” Cholesky decomposition is obtained by the following
function.

function G = CholScalar(4);
h
% Pre: A is a symmetric and positive definite matrix.
% Post: G is lower triangular and A = G*G’.

[n,n] = size(d);
G = zeros(n,n);
for i=1:n
% Compute G(i,1:1)

for j=1:i
s = A(j,1);
for k=1:j-1
s =s - G(j,k)*G(1,k);
end
if j<i
G(i,3) = s/G(,3);
else

G(i,i) = sqrt(s);
end

index-160_4.jpg
Ly(x)

-2

index-52_2.png

index-72_1.png
68 4. MATRIX COMPUTATIONS

IfA>O7 then ay; >0,:=1,2,...,n.
An n x n matrix A is diagonally dominant if

lasi| > |aci| + |aca| + - - + [agi—1] + agip1[+ - +lam], i=1,2,...,n.

A diagonally dominant symmetric matrix with positive diagonal entries is
positive definite.

THEOREM 4.2. If A is positive definite, the Cholesky decomposition
A=aGGT

does not require any pivoting, and hence Ax = b can be solved by the Cholesky
decomposition without pivoting, by forward and backward substitutions:

Gy=b, Glz=y.

EXAMPLE 4.4. Let

4 6 8 0
A=1|6 34 52|, b=| —-160
8 52 129 —452

Find the Cholesky decomposition of A and use it to compute the determinant of
A and to solve the system

Ax = b.

SoLuTION. The Cholesky decomposition is obtained (without pivoting) by
solving the following system for g;;:

gu 0 0 gi1 921 g31 4 6 8
go1 922 0 0 g g0 | = | 6 34 52
g3l 932 933 0 0 gs33 8 52 129
91 =4 == g11 = 2> 0,
g11921 = 6 = g9 = 3,
g11931 = 8 = g31 = 4,
g1+ gy = 34 = g2 =5>0,
921931 + ga2gaz = 52 == g3 = 8§,
g3+ 93+ 933 =129 = g3 =7>0
Hence
2 0 0
G=|3 5 0],
4 8 7
and

det A = det Gdet GT = (det @)2 = (2x 5 x 7)? > 0.
Solving Gy = b by forward substitution,

2 0 0 1 0
350 v | = | —160 |,
4 8 7 Y —452

index-54_2.jpg
= R Fll e

index-75_1.png
4.3. MATRIX NORMS 71
An update of the form
vector « vector + matrix x vector

is called a gazpy operation, which stands for “general A times x plus y” (general
saxpy), that is y = Ax + y. A version that features level-2 gaxpy operation is
the following implementation.

function G = CholGax(4);
h
% Pre: A is a symmetric and positive definite matrix.
% Post: G is lower triangular and A = G*G’.

[n,n] = size(d);
G = zeros(n,n);
s = zeros(n,1);

for j=1:n
if j==
s(j:n) = A(j:n,j);
else
s(j:n) = A(j:n,j) - G(G:n,1:j-1)*G(j,1:j-1)7;

end
G(j:n,j) = s(j:n)/sqrt(s(§));

end

There is also a recursive implementation which computes the Cholesky factor row
by row, just like ChoScalar

function G = CholRecur(d);
h
% Pre: A is a symmetric and positive definite matrix.
% Post: G is lower triangular and A = G*G’.

[n,n] = size(d);

if n==
G = sqrt(A);
else
G(1:n-1,1:n-1) = CholRecur(A(1:n-1,1:n-1));
G(n,1:n-1) = LTriSol(G(1:n-1,1:n-1),A(1:n-1,n))’;
G(n,n) = sqrt(A(n,n) - G(n,1:n-1)*G(n,1:n-1)’);
end

There is even a high performance level-3 implementation of the Cholesky decom-
position CholBlock

4.3. Matrix Norms

In matrix computations, norms are used to quantify results, like error esti-
mates and to study the convergence of iterative schemes.

index-162_1.png

index-54_1.jpg

index-74_1.png
70 4. MATRIX COMPUTATIONS

end
end

The dot product of two vectors returns a scalar, ¢ = z7y. Noticing that the
k-loop in CholScalar oversees an inner product between subrows of GG, we obtain
the following level-1 dot product implementation.

function G = CholDot(4);
h
% Pre: A is a symmetric and positive definite matrix.
% Post: G is lower triangular and A = G*G’.

[n,n] = size(d);
G = zeros(n,n);
for i=1:n
% Compute G(i,1:i)
for j=1:i
if j==
s = A(j,1);
else
s = A(j,1) - G(j,1:j-1)*G(i,1:j-1)";
end
if j<i
G(i,j) = s/G(j,j);
else
G(i,1) = sqrt(s);
end
end
end

An update of the form
vector « vector + vector - scalar

is called a saxpy operation, which stands for “scalar a times x plus y”, that is
y = ax +y. A column-orientation version that features the saxpy operation is
the following implementation.

function G = CholSax(4);
h
% Pre: A is a symmetric and positive definite matrix.
% Post: G is lower triangular and A = G*G’.

[n,n] = size(d);
G = zeros(n,n);
s = zeros(n,1);

for j=1:n
s(j:n) = A(j:n,j);
for k=1:j-1
s(j:n) = s(j:n) - G(j:n,k)*G(j,k);
end

G(j:n,j) = s(j:n)/sqrt(s(j));
end

index-160_1.jpg

index-55_1.jpg
12

index-69_1.png
4.1. LU SOLUTION OF Ax=1b 65

We note that, without pivoting, |l;;|, ¢ > 7, may be larger than 1.

The LU decomposition without partial pivoting is an unstable procedure
which may lead to large errors in the solution. In practice, partial pivoting is
usually stable. However, in some cases, one needs to resort to complete pivoting
on rows and columns to ensure stability, or to use the stable QR decomposition.

Sometimes it is useful to scale the rows or columns of the matrix of a linear
system before solving it. This may alter the choice of the pivots. In practice, one
has to consider the meaning and physical dimensions of the unknown variables
to decide upon the type of scaling or balancing of the matrix. Softwares provide
some of these options. Scaling in the /,,-norm is used in the following example.

EXAMPLE 4.3. Scale each equation in the [,-norm, so that the largest coef-
ficient of each row on the left-hand side is equal to 1 in absolute value, and solve
the following system:

30.00xy + 591400z, = 591700
529z, — 6.130z7 = 46.70

by the LU decomposition with pivoting with four-digit arithmetic.

SorLuTIioN. Dividing the first equation by
s1 = max{|30.00]|, |591400|} = 591400

and the second equation by

sy = max{|5.291|,16.130|} = 6.130,

we find that
30.00 5.291
| —osoraxi0t, Ll B2 g g
si 591400 s2 6.130

Hence the scaled pivot is in the second equation. Note that the scaling is done only

for comprison purposes and the division to determine the scaled pivots produces
no roundoff error in solving the system. Thus the LU decomposition applied to
the interchanged system

529z, — 6.130x,
30.00x; + 591400z,

produces the correct results:

21 = 10.00, 25 = 1.000.

46.70
591700

On the other hand, the LU decomposition with four-digit arithmetic applied to
the non-interchanged system produces the erroneous results xy &~ —10.00 and
o 22 1.001.

The following Matlab function M-files are found in
ftp://ftp.cs.cornell.edu/pub/cv. The forward substitution algorithm solves
a lower triangular system:

function x = LTriSol(L,b)
)
% Pre:
% L n-by-n
% b n-by-1
)

nonsingular lower triangular matrix

index-159_2.png

index-54_3.jpg
Rectangle
y=s)

*
Xii1 X, X; b

index-68_2.png
(=2

h—

14
40
—28

index-160_3.png

index-71_1.png
4.2. CHOLESKY DECOMPOSITION 67

h

% Pre:

h A n-by-n

h

% Post:

% L n-by-n unit lower triangular with |L(i,j)[<=1.
% U n-by-n upper triangular

% piv integer n-vector that is a permutation of 1:n.
h

% Adpiv,:) = LU

[n,n] = size(d);
piv = 1:n;

for k=1:n-1
[maxv,r] = max(abs(A(k:n,k)));
q = r+k-1;
piv([k ql) = piv([q k1);
A(lk ql,:) = A([q k]1,:);

if A(k,k) "= 0
A(k+1:n,k) = ACk+1:n,k)/A(k,k);
A(k+1:n,k+1:n) = A(k+1l:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n);
end
end
L = eye(n,n) + tril(4,-1);
U = triua);

4.2. Cholesky Decomposition

The important class of positive definite symmetric matrices admits the Cholesky
decomposition

A=aGaT
where G is lower triangular.
DEFINITION 4.1. A symmetric matrix A € R™*" is said to be positive definite
if
T Az >0, forallz#0, xecR"™
In that case we write A > 0.

A symmetric matrix, A, is positive definite if and only if all its eigenvalues A,
Ax =z, z#£0,

are positive, A > 0.
A symmetric matrix A is positive definite if and only if all its principal minors
are positive. For example,

ajl diz ais
A= as1 agy Aoy >0

a3l asz assg

if and only if

detai; = aq; >0, det { e } >0, detA>0.
a1 a

index-160_2.jpg

index-70_1.png
66 4. MATRIX COMPUTATIONS

% x Lx=0»

n = length(b);
zeros(n,1);
for j=1:n-1
x(j) = b(§)/L{5,3);
b(j+1:n) = b(j+1:n) - L(G+1:n,j)*x(j);
end
x(n) = b(n)/L{(n,n);

The backward substitution algorithm solves a upper triangular system:

function x = UTriSol(U,b)
%
% Pre:
h U
h b
%
% Post:
%% x Lx=0b

o]
I

nonsingular upper triangular matrix

n = length(b);
zeros(n,1);
for j=n:-1:2
x(3) = b(§)/U(,53);
b(1:j-1) = b(1:j-1) - x(§)*U(L:3-1,5);
end
x(1) = b(1)/U(1,1);

The LU decomposition without pivoting is performed by the following function.

function [L,U] = GE(A);
%

o]
I

% Pre:
h A n-by-n
A
% Post:
% L n-by-n unit lower triangular with |L(i,j)|<=1.
% U n-by-n upper triangular.
h A=1L1U
[n,n] = size(A);
for k=1:n-1

A(k+1:n,k) = A(k+1:n,k)/ACk,k);

A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1l:n,k)*A(k,k+1:n);
end

L = eye(n,n) + tril(4,-1);
U = triua);

The LU decomposition with pivoting is performed by the following function.

function [L,U,piv] = GEpiv(4);

index-152_1.png
148 7. ORTHOGONAL POLYNOMIALS

we have
5x1 9 3 8 3 2x5/315—-450+75 8 3
2 x I/HXx ——30x=-4+3]+=-x=-= - 4+ =x=
9x%x8 25 5 9 8 9x8 25 9 8
2x5 (—60) 8x3
= X ——= +
9x8 25 9x8
—24
A
9x8

Therefore, the three-point Gaussian quadrature formula is

1
/1f(x)dxgf<—\/§>+§f(0)+gf<\/§>. (7.15)

REMARK 7.1. The interval of integration in the Gaussian quadrature formulae
is normalized to [—1,1]. To integrate over the interval [a, b] we use the change of
independent variable (see Example 7.2)

s—z=as+ [, such that —1—a=—-a+ 3, 1—b=a+p,

— b—
oo boattbta dx(a>dt,

/f b—a/11f<(b—a)t2+b+a>dt.

EXAMPLE 7.7. Evaluate
/2
I = / sinx dx
0

by applying the two-point Gaussian quadrature formula once over the interval
[0, /2] and over the half-intervals [0, 7/4] and [r/4, 7/2].

SOLUTION. Let

leading to

Then,

(m/2)t + 7 /2
2 ?
Att=—-1,z=0and, at t =1, 2z = 7/2. Hence

1
I:z/ sin(Wt+7T>dt
N 4

7 . :
M [1.0 x sin (0.105 667) 4 1.0 X sin (0.394 347)]
= 0.99847.

xr =

de — = dt.
1

The error is 1.53 x 1073, Over the half-intervals, we have

1 1
14 t+3
I%/lsin<7r ;rw>dt+%/1sm<7r + 7T>clt

8
~ L sinﬂ ! +1 +sm
A 8 V3

=0.999910 166 769 89.

index-151_1.png
7.2. DERIVATION OF GAUSSIAN QUADRATURES 147

formula will be exact for polynomials of degree five or less. By Example 7.1, it

suffices to consider the basis Py(z), ..., Ps(z). Thus,
2 :/7 Py(x)dz = aPy(x1) + bPy(x9) + cPo(x3), (7.7
0 :/ Pi(x)dz = aP(x1) + bP(x9) + cPy(x3), (7.8
0 :/ Py(x)dz = aPy(x1) + b (x9) + cPo(x3), (7.9
0 :/ P3(xz)dr = aPs(x1) + bPs3(x0) + cPs(x3), (7.10
0 :/ Py(x)dr = aPy(x1) + bPi(x0) + cPy(x3), (7.11
0 :/ Ps(z)dx = aPs(x1) + bPs(z2) + cPs(x3). (7.12
To satisfy (7.10), we let 21, 29, x5 be the three zeros of
Py(x) = %(5953 3x) = %x(sz —3)

that is,

3
1 =3 = \/;0.77459677 xy =0.
\/jaJr\/ja:ac

We immediately see that (7.12) is satisfied since Ps(z) is odd. Moreover, by
substituting @ = ¢ in (7.9), we have

1 3 1 1 3
—(3x2—1)+4b(—= —(3x2-1)=0
ez axg-t)re(=g)raz (x5-1) o

Hence (7.8) implies

that is,
da—5b+4a=0 or Sa—5b=0. (7.13)
Now, it follows from (7.7) that
2 +b=2 or 10a+ 5b= 10. (7.14)
Adding the second expressions in (7.13) and (7.14), we have
L 0.555
T
Thus
10 8

b=2—-—=—-=0.888.
9 9

Finally, we verify that (7.11) is satisfied. Since

1
Py(z) = g(35354 — 3027 + 3),

index-43_2.png
Spline interpolant to sine curve

index-44_1.png

index-43_3.png
Clamped spline approximation to data

index-154_1.png
150 7. ORTHOGONAL POLYNOMIALS

to Fredholm integral equations of the second kind in one variable. The general
form of such equation is

b
f) =)\/ K(t,s)f(s)ds+ g(t), A£0. (7.16)

We shall assume that the kernel K (¢, s) is continuous on the square [a, b] X [a, b] €
R?.

A significant use of Gaussian quadrature formulae is in the numerical solution
of Fredholm integral equations of the second kind by the Nystrom method. We
explain this method.

Let a numerical integration scheme be given:

b N
/ y(s)ds = z:wjy(sj)7 (7.17)
a =1

where the N numbers {w;} are the weights of the quadrature rule and the N
points {s;} are the nodes used by the method. One may use the trapezoidal or
Simpson’s rules, but for smooth nonsingular problems Gaussian quadrature seems
by far superior.

If we apply the numerical integration scheme to the integral equation (7.16),
we get

FO) =AY wiK(t,s5)f(s5) + g(t), (7.18)

where, for simplicity, we have written f(¢) for fy(¢). We evaluate this equation
at the quadrature points:

N
Fltg) = XD wiK (t;, 5;)f(s5) + 9(t;)- (7.19)
j=1

Let f; be the vector f(¢;), g; the vector g(t;), K;; the matrix K (¢;, s;), and define

Kij = Kijwj.
Then, in matrix notation, the previous equation becomes
(I-XK)f=g. (7.20)

This is a set of N linear algebraic equations in N unknowns that can be solved
by the LU decomposition (see Chapter 4).

Having obtained the solution at the quadrature points {¢;}, how do we get
the solution at some other point ¢t7 We do not simply use polynomial interpo-
lation since this destroys the accuracy we worked hard to achieve. Nystrom’s
key observation is to use (7.18) as an interpolatory formula which maintains the
accuracy of the solution.

In Example 7.8, we compare the performance of the three-point Simpson rule
and three-point Gaussian quadrature, respectively.

ExaMmpLE 7.8. Consider the integral equation

1
f) =)\/O e f(s)ds+ g(t), 0<z <1, (7.21)

index-46_1.png
42 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

With j =0,1,2, f'(z;) gives three second-order three-point formulae:
—3h —2h —h 2h?

F'(xo) = J(wo) g + flwn) =5 + [(22) g + == " (60)
i 1 3 2 1 h2 1"
4 |3t 2o - § s+ e
—h 0 h h?
f(@1) = f(zo) 7 T f(z1) 5zt f(z2) 576 (&)
h2
1 |3+)| - e
and, similarly,
1 3 h?
Plaz) = 3 |5 0G0 =200 + 3 Saa)| + 5 17E0).
These three-point formulae are usually written at zq:
2
F'(wo) = g [=87(w) + 47z + B) = flao + 2] + 1" (&), (32)
1 h?
f(zo) = o [f(zo+ h) = flzo — R)| - Ffm(&) (3.3)

The third formula is obtained from (3.2) by replacing h with —h. It is to be noted
that the centred formula (3.3) is more precise than (3.2) since its error coefficient
is half the error coefficient of the other formula.

3.1.3. Three-point centered difference formula for f”(z). We use trun-
cated Taylor’s expansions for f(z + h) and f(x — h):

Flwo B = o) - F/(ao)h 5 £ (wo)b? + 51" (w0l + 5= O (G,
Flwo —h) = o) — F'(ao)h 5 £ (wo) b = £ 1" (w0l + 5= FO(E b,

Adding these expansions, we have

Flao+)+ Fla = h) = 26 (o) + (o) + 52 [(€0) + 7€) W

Solving for f”(zq), we have

1

P (o) = 3 £ = B) = 2f o) + Flao + h)] = 5z [F9(60) + £D(en)] 2.

By the Mean Value Theorem 1.5 for sums, there is a value £, zg —h < £ < xo+h,
such that

5 [19@) + 1) = 1o,

We thus obtain the three-point second-order centered difference formula

1

2
F(r0) = 5 [F (e — B) = 2f (o) + Jlao + B)] = = fO(E). (34)

index-153_1.png
T

7.3. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE SECOND KIND 149

The error is 8.983 x 107°. The Matlab solution is as follows. For generality, it is
convenient to set up a function M-file exp7_7.m,

function f=exp7_7(t)
% evaluate the function f(t)
f=sin(t);

The two-point Gaussian quadrature is programmed as follows.

>> clear

>> a=0; b =pi/2; ¢ = (b-a)/2; d= (a+b)/2;

>> weight = [1 1]; node = [-1/sqrt(3) 1/sqrt(3)];

>> syms X t

>> x = c*node+d;

>> nvl = c*xweight*exp7_7(x)’ % numerical value of integral
nvl = 0.9985

>> errorl = 1 - nvl) error in solution

errorl = 0.0015

The other part is done in a similar way.

REMARK 7.2. The Gaussian quadrature formulae are the most accurate in-
tegration formulae for a given number of nodes. The error in the n-point formula
is

n(n1)2]°
Bu1) - o || 1000, —1<e<,

This formula is therefore exact for polynomials of degree 2n — 1 or less.

Matlab’s adaptive Simpson’s rule quad and adaptive Newton—Cotes 8-panel
rule quad8 evaluate the integral of Example 7.7 as follows.
>> vl = quad(’sin’,0,pi/2)

vl = 1.00000829552397

>> v2 = quad8(’sin’,0,pi/2)

v2 = 1.00000000000000

respectively, within a relative error of 1072,

Uniformly spaced composite rules that are exact for degree d polynomials
are efficient if the (d + 1)st derivative f(¢*1) is uniformly behaved across the in-
terval of integration [a,b]. However, if the magnitude of this derivative varies
widely across this interval, the error control process may result in an unnecessary
number of function evaluations. This is because the number n of nodes is de-
termined by an interval-wide derivative bound My 1. In regions where f(@+1) is
small compared to this value, the subintervals are (possibly) much shorter than
necessary. Adaptive quadrature methods addresses this problem by discovering
where the integrand is ill behaved and shortening the subintervals accordingly.
See Section 3.9 for an example.

7.3. Numerical Solution of Integral Equations of the Second Kind

The theory and application of integral equations is an important subject in
applied mathematics, science and engineering. In this section we restrict attention

index-45_1.png
CHAPTER 3

Numerical Differentiation and Integration

3.1. Numerical Differentiation

3.1.1. Two-point formula for f’(x). The Lagrange interpolating polyno-
mial of degree 1 for f(z) at zp and 21 = zo + h is

£(#) = Fwo) T2 4 fan) T2
P2l 22 ey, < e <ot

F'@) = Floo) b flan) 7+ - 7€)
pEmme o) 4 ey,

Putting z = z¢ in f’(x), we obtain the first-order two-point formula

flza+h) = f(z0)

h/ "
. 1€, (3.)

f(zo) =

If h > 0, this is a forward difference formula and, if A < 0, this is a backward
difference formula.

3.1.2. Three-point formula for f’(z). The Lagrange interpolating poly-
nomial of degree 2 for f(z) at zo, 1 = zo + h and z2 = o + 2h is

(x —x1)(z — z9) (x —z0)(z — z29)

T =160 e o =2y T o a0 or = a)
(z—zo)(z—z1) (z—z0)(z—z)(z—22)

where 20 < §(x) < 2. Differentiating this polynomial and substituting z = z;,
we have

2x; — w1 — T2

(xo — z1)(wo — 22)

+f(xz)m+%f///(£(xj)) H 4(xj—$k).

(z2 — z0)(z2 — 21)

2x; — 0 — T2

(x1 — x0)(x1 — 22)

J'(x5) = flwo) + f(z1)

41

index-156_1.png
152 7. ORTHOGONAL POLYNOMIALS

TABLE 7.1. Nystrom—trapezoidal method in Example 7.9.

N Eq Ratio FEs Ratio
2 5.35E-03 5.44E-3
4 1.35E-03 39 137E-03 4.0
8 3.39E-04 4.0 344E-04 4.0
16 847E-05 4.0 861E-05 4.0

sf3 = sA\sb;
serror = exp(snode)-sf3’
serror =

-0.0047 -0.0080 -0.0164
gnode = [(1-sqrt(0.6))/2 1/2 (1+sqrt(0.6))/2]; % Gaussian quadrature
gweight = [5/18 8/18 5/18];
gK = exp(gnode’*gnode)*diag(gweight) ;
gh = eye(3)-lambda*gK;
gb = double(exp7_8(gnode)’);
gf3 = ghA\gb;
gerror = exp(gnode)-gf3’
gerror = 1.0e-04 *
0.2099 0.3195 0.6315

Note that the use of matrices in computing sK and gK avoids recourse to loops.
Quadratic interpolation can be used to extend the numerical solution to all
other ¢ € [0, 1], but it generally results in a much larger error. For example,

F(1.0) = Py f3(1.0) = 0.0158,

where P, f3(t) denotes the quadratic polynomial interpolating the Nystrém solu-
tion at the Gaussian quadrature nodes given above. In contrast, the Nystrom
formula (7.18) gives errors that are consistent in size with those in (7.22). For
example,

F(1.0) — f3(1.0) =8.08 x 10>,

ExaMmpPLE 7.9. Consider the integral equation of Example 7.8 with A = 1/50
and f({) = e'. Compare the errors in the Nystrom-trapezoidal method and
Nystrom—Gaussian method, respectively.

SOLUTION. In Table 7.1 we give numerical results when using the trapezoidal
rule with n nodes, with N = 2,4,8,16. In Table 7.2 we give results when using
n-point Gaussian quadratures for N = 1,2, 3,4, 5. The following norms are used

E = nax, |f(t:) — fn(ta)l, By = Jnax, |f(z) = fn()].

For E,, fn(x) is obtained using the Nystrom interpolation formula (7.18). The
results for the trapezoidal rule show clearly the O(h?) behavior of the error. It is
seen that the use of Gaussian quadrature leads to very rapid convergence of fx

to f(z).

index-47_2.jpg

index-155_1.png
7.3. NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE SECOND KIND 151

with A = 0.5 and f(t) = e*. Compare the errors in the numerical solutions at the
nodes of Simpson’s rule and three-point Gaussian quadrature, respectively.

SOLUTION. Substituting f(¢) = €* in the integral equation, we see that the
function g(¢) on the right-hand side is

1
2(t+1)
This is easily obtained by the symbolic Matlab commands

g(t) =e' - (=€)

>> clear; syms s t; lambda = 1/2;
>> g = exp(t)-lambdaxint (exp((t+1)*s),s,0,1)
g = exp(t)-1/2/(t+ D) *exp(t+1)+1/2/(t+1)

Applying Simpson’s rule to equation (7.21), with nodes
t1 =0, to = 0.5, tg =1,

and solving the resulting algebraic system (7.20), say, by the LU decomposition,
we have the error in the solution fs:

f(0) 13(0) —0.0047
£05) | — | f3(05) | = | —0.0080
£(1) f5(1) —0.0164

Applying the three-point Gaussian quadrature to equation (7.21), with nodes

1-4/06 1406
- -

tq — ~0.112701 67, ty = 0.5, t3 ~2 0.887 298 33,

and solving the resulting algebraic system (7.20), say, by the LU decomposition,
we have the error in the solution fs:

fty) falty) 0.2099 x 104
fta) | = | fata) | = | 0.3195 x 1074 (7.22)
f(ts) falts) 0.6315 x 1074

which is much smaller than with Simpson’s rule when using the same number of
nodes.
The function M-file exp7_8.m:

function g=exp7_8(t) % Example 7.8

% evaluate right-hand side

global lambda

syms s

g = exp(t)-lambda*int (exp(t*s)*exp(s),s,0,1);
\end{varbatim}

computes the value of the function $g(t)$, and

the following Matlab commands produce these results.
\begin{verbatim}

clear; global lambda

lambda = 1/2; h = 1/2;

snode = [0 1/2 1]; sweight = [1/3 4/3 1/3]; ’ Simpson’s rule
sK = hxexp(snode’*snode)*diag(sweight);

sA = eye(3)-lambda*sk;

sb = double(exp7_8(snode)’);

index-47_1.jpg

index-152_3.png

index-48_1.png
44 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

approxminate f(0.7) with A = 0.1 by the five-point formula, without the trunca-
tion error term,

4
f(z) = ﬁ [—f(z+2h) + 8f(x + h) —8f(x — h) + fz — 2h)] + h O,

where &, in the truncaction error, satisfies the inequalities x — 2h < & < z + 2h.
(b) Given that the roundoff error in each evaluation of f(z) is bounded by ¢ =
5 x 1077, find a bound for the total error in f/(0.7) by adding bounds for the
roundoff and the truncation errors).

(c) Finally, find the value of h that minimizes the total error.

SOLUTION. (a) A simple computation with the given formula, without the
truncation error, gives the approximation

F(0.7) ~ —0.644 215542,
(b) Since
O (z) = —sinz
is negative and decreasing on the interval 0.5 < z < 0.9, then

M= max |—sinz|=-sin0.9=0.7833.
0.5<x<0.9

Hence, a bound for the total error is

1 . (04
Total <—— (148+8+1)x5x 1077 0.7833
ota error_mxo.l(+8+8+1)x5x + 0 %
=7.5000 x 107% 4+ 26111 x 107°
=1.0111 x 1075,

(¢) The minimum of the total error, as a function of h,

90 x 10-7 0.7833
_ h ,
12h 30

will be attained at a zero of its derivative with respect to h, that is,

T +

d (90x107 07833
12 30

Performing the derivative and multiplying both sides by A%, we obtain a quintic
equation for h:

4 % 0.7833
30

—75x 1077+ K =0

Hence,

4 % 0.7833
= 0.0936

- (7.5 x 1077 x 30)1/5

minimizes the total error.

index-152_2.png

index-47_3.jpg
1/h

e

index-152_5.png

index-152_4.png

index-49_1.png
3.3. RICHARDSON’S EXTRAPOLATION 45

3.3. Richardson’s Extrapolation

Suppose it is known that a numerical formula, N(h), approximates an exact
value M with an error in the form of a series in A7,

M = N(h) + Kih + Kob® + Ksh® + ...,
where the constants K; are independant of h. Then computing N(h/2), we have

h 1 1 1
- - —Kih+ = Kyh>+ - K3h®+ ...,
M N<2>+2 1 +4 2 +8 3h” +

Subtracting the first expression from twice the second, we eliminate the error in
h:

o (B P (8) v s () e (2w

If we put
No(h) = Ny (g) + {Nl () - Nl(h)} :

the last expression for M becomes
1 3
M:Ng(h)—athz—ZthS—....

o =

Now with h/4, we have

h 1 3
M=Ny|(=) —=Koh>— — K3h®+....
2<2> 3 2 35 143 +

Subtracting the second last expression for M from 4 times the last one and di-
viding the result by 3, we elininate the term in h?:

M= {Nz <g>+W}+%th3+....

Now, putting
h No(h/2) — No(h
Na(h) = Ny <2> 2(h/)3 2()7

1
M:Ng(h)+§K3h3+....

we have

The presence of the number 27~! — 1 in the denominator of the second term of
N;(h) ensures convergence. It is clear how to continue this process which is called
Richardson’s extrapolation.
An important case of Richardson’s extrapolation is when N(h) is the centred
difference formula (3.3) for f/(z), that is,
1 h? h*

f'(@0) = g [F@o + h) = flwo = W] = = " (w0) = 355 P (wo) = ...

Since, in this case, the error term contains only even powers of h, the convergence
of Richardson’s extrapolation is very fast. Putting

L o 4) = flao—)],

Ni(h) = N(B) = 5=

index-150_1.png
146 7. ORTHOGONAL POLYNOMIALS

EXAMPLE 7.5. Determine the four parameters of the two-point Gaussian
quadrature formula,

1
1 () ds = af(e) + b es).

SOLUTION. By symmetry, it is expected that the nodes will be negative to
each other, 1 = —x9, and the weights will be equal, a = b. Since there are four
free parameters, the formula will be exact for polynomials of degree three or less.
By Example 7.1, it suffices to consider the polynomials Py(x), ..., P3(z). Since
Py(x) = 1 is orthogonal to P, (z), n=1,2,..., we have

2:/ Py(z)dz = aPy(z1) + bPy(z2) = a+b, 7.2
0= / 1 x Pi(x)de = aPi(z1) + bPi(x9) = axy + bxa, 7.3
0= / 1 x Py(x)de = aPy(xq) + bPy(x2), 74
0= / 1 x Py(x)de = aPs(xq) + bPs(z2), 7.5

To satisfy (7.4) we choose 21 and z2 such that
Py(z1) = Pa(z2) =0,

that is,

0.57735027.

1
Py(z) = =322 -1)=0 Ty =29 = —
V3
Hence, by (7.3), we have

a="=.

Moreover, (7.5) is automatically satisfied since Py(x) is odd. Finally, by (7.2), we
have

a="b=1.

Thus the two-point Gaussian quadrature formula is

/11f(x)dx — 7 (-%) + (%) . (7.6)

EXAMPLE 7.6. Determine the six parameters of the three-point Gaussian
quadrature formula,

1
1 f(@)de = af (@) +bf(a2) + f (23)

SOLUTION. By symmetry, it is expected that the two extremal nodes are
negative to each other, 1 = —x3, and the middle node is at the origin, x5 = 0,
Moreover, the extremal weights should be equal, a = ¢, and the central one be
larger that the other two, b > a = c¢. Since there are six free parameters, the

index-142_1.png
138 6. THE MATLAB ODE SUITE

6.5.7. The chm9ode problem. CHM9ODE is the stiff problem CHM9 from
[13]. It is a scaled version of the famous Belousov oscillating chemical system.
There is a discussion of this problem and plots of the solution starting on p. 49
of Aiken [14]. Aiken provides a plot for the interval [0,5], an interval of rapid
change in the solution. The default time interval specified here includes two full
periods and part of the next to show three periods of rapid change.

6.5.8. The dlode problem. D1IODE is a stiff problem, nonlinear with real
eigenvalues (problem D1 of [11]). This is a two-equation model from nuclear
reactor theory. In [11] the problem is converted to autonomous form, but here
it is solved in its original non-autonomous form. On page 151 in [15], van der
Houwen provides the reference solution values

£=400, y(1)=22.24222011, y(2) = 27.11071335

6.5.9. The femlode problem. FEMIODE is a stiff problem with a time-
dependent mass matrix,

M)y = f(t.y).

REMARK 6.2. FEMIODE(T, Y) or FEMIODE(T, Y, [], N) returns the
derivatives vector for a finite element discretization of a partial differential equa-

tion. The parameter N controls the discretization, and the resulting system
consists of N equations. By default, N is 9.

FEMI1ODE(T, [], 'mass’) or FEMIODE(T, [], 'mass’, N) returns the time-
dependent mass matrix M evaluated at time T. By default, ODE15S solves sys-
tems of the form

y' = f(t.y).
However, if the ODE solver property Mass is set to on’ with ODESET, the solver

calls the ODE file with the flag 'mass’. The ODE file returns a mass matrix that
the solver uses to solve

M)y = f(t.y).

If the mass matrix is a constant M, then the problem can be also be solved with
ODE23S.

FEM1ODE also responds to the flag ’init’ (see RIGIDODE).
For example, to solve a 20 x 20 system, use

[t, y] = odel5s(’femlode’, [1, [1, [1, 20);

6.5.10. The fem2ode problem. FEM2ODE is a stiff problem with a time-
independent mass matrix,

My' = f(t,y).

Remark 6.2 applies to this example, which can also be solved by ode23s with
the command

[t, y] = ode23s(’fem20de’, [1, [1, [1, 20).

6.5.11. The gearode problem. GEARODE is a simple stiff problem due to
Gear as quoted by van der Houwen [15] who, on page 148, provides the reference
solutionvalues

t=50, y(1)=0.5976546988, y(2) = 1.40234334075

index-61_2.png

index-61_1.png
3.9. ADAPTIVE QUADRATURE METHODS 57

3.9. Adaptive Quadrature Methods

Uniformly spaced composite rules that are exact for degree d polynomials are
efficient if the (d + 1)st derivative f(*t1) is uniformly behaved across the interval
of integration [a,b]. However, if the magnitude of this derivative varies widely
across this interval, the error control process may result in an unnecessary num-
ber of function evaluations. This is because the number n of nodes is determined
by an interval-wide derivative bound Mg1. In regions where f (d+1) is small com-
pared to this value, the subintervals are (possibly) much shorter than necessary.
Adaptive quadrature methods addresses this problem by discovering where the
integrand is ill behaved and shortening the subintervals accordingly.

We take Simpson’s rule as a typical example:

b 5
I::/ f(x)dx:S(a7b)—§—0f(4)(£)7 0<&<h,

where
Sleb) = % [fla) +4flath)+ O, b= b;a.

The aim of adaptive quadrature is to take h large over regions where |f) ()| is
small and take h small over regions where |f(*)(z)| is large to have a uniformly
small error. A simple way to estimate the error is to use h and h/2 as follows:

h5
I:S(a7b)_%f(4)(£l)7 (311)
o aer aer 2 h5 (4)
Assuming that
(&) ~ rU(&)

and subtracting the second expression for I from the first we have an expression
for the error term:

h® 16 a+b a+b
90 F9E) =~ B {S(a7 b) — S (a7 5 > S(5 J)ﬂ .

Putting this expression in (3.12), we obtain an estimate for the absolute error:

a-+b a-+b 1 atb atb
‘I—S(m 5 >—S< 5 7b>‘NE S(aJ))—S(a7 5 >—S< 5 J))‘.

If the right-hand side of this estimate is smaller than a given tolerance, then

atb a-+b
S S b
(w57) +5(0)

is taken as a good approximation to the value of I.
The adaptive quadrature for Simpson’s rule is often better than the composite
Simpson’s rule. For example, in integrating the function

100 10
f(x)_281n<_>7 1§ZE§37

x x

shown in Fig. 3.5, with toleralance 10~%, the adaptive quadrature uses 23 subinter-
vals and requires 93 evaluations of f. On the other hand, the composite Simpson’s
rule uses a constant value of A = 1/88 and requires 177 evaluations of f. It is
seen from the figure that f varies quickly over the interval [1, 1.5]. The adaptive

index-62_2.png
(100/x)sin(10/x)
80

40

-60

1.5 2 25 3

index-62_1.png
58 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

(100%)sin(10/x)

1.5 2 25 3

Ficure 3.5. A fast varying function for adaptive quadrature.

quadrature needs 11 subintervals on the short interval [1,1.5] and only 12 on the
longer interval [1.5, 3].

The MATLAB quadrature routines quad, quadl and dblquad are adaptive
routines.

Matlab’s adaptive Simpson’s rule quad and adaptive Newton—Cotes 8-panel
rule quad8 evaluate the integral

/2
I = / sin z dx
0
as follows.

>> vl = quad(’sin’,0,pi/2)
vl = 1.00000829552397
>> v2 = quad8(’sin’,0,pi/2)
v2 = 1.00000000000000
respectively, within a relative error of 1072,

index-64_1.png
60 4. MATRIX COMPUTATIONS

SOLUTION. Since ag; = 18 is the largest pivot in absolute value in the first
column of A,
[18] > [3], [18] > [9],

we interchange the second and first rows of A,

18 48 39 01 0
PA= 3 9 6|, where Pp=|1 0 0
9 27 42 0 0 1

We now apply a Gaussian transformation, M7, on P; A to put zeros under 18 in
the first column,

1 0 0 18 48 39 18 48 39
~1/6 1 0 39 6|=] 0 1 —1/2|,
—-1/2 0 1 9 27 42 0 —51 45/2
with multipliers —1/6 and —1/2. Thus
M{PlA=A;.

Considering the 2 x 2 submatrix

s)

we see that —51 is the pivot in the first column since

| — 51| > |1].
Hence we interchange the third and second row,
18 48 39 1 00
PA = 0 —51 45/2 |, where PB,=|0 0 1
0 1 -1/2 01 0
To zero the (3,2) element we apply a Gaussian transformation, Ms, on Py Ay,
1 0 0 18 48 39 18 48 39
0 10 0 —51 45/2 | = 0 -51 225 |,
0 1/51 1 0 1 —1/2 0 0 —0.0588
where 1/51 is the multiplier. Thus
MyPr Ay =U.
Therefore

MyPy M PLA = U,

and
A=Pr MR MU = LU

The inverse of a Gaussian transformation is easily written:

100 100
Mi=| -a 1 0 = M;'=|a 1 0],
-b 0 1 b 0 1
1 00 1 0 0
My=]0 1 0 —= M;y'=]0 1 0],
0 —c 1 0 ¢ 1

index-63_1.png
CHAPTER 4

Matrix Computations

With the advent of digitized systems in many areas of science and engineering,
matrix computation is occupying a central place in modern computer software.
In this chapter, we study the solutions of linear systems,

Az =b, AcR™",
and eigenvalue problems,
Az =Xz, AeR™", x#£0,

as implemented in softwares, where accuracy, stability and algorithmic complexity
are of the utmost importance.

4.1. LU Solution of Az =b
The solution of a linear system
Az =b, AeR™",

with partial pivoting, to be explained below, is obtained by the LU decomposition
of A,

A= LU,

where L is a row-permutation of a lower triangular matrix M with m;; = 1 and
|m;;| < 1, for i > j, and U is an upper triangular matrix. Thus the system
becomes

LUx =0b.

The solution is obtained in two steps. First,
Ly=5»

is solved for y by forward substitution and, second,
Ux =y

is solved for & by backward substitution. The following example illustrates the
above steps.

EXAMPLE 4.1. Solve the system Ax = b,

3 9 6 Ty 23
18 48 39 2 | = | 136
9 27 42 3 45

by the LU decomposition with partial pivoting.

59

index-148_1.png
144 7. ORTHOGONAL POLYNOMIALS

Fiaure 7.1. Affine mapping of = € [3,7] onto s € [—1,1].

Then

p(z) =p(2s +5)
=24 3(2s +5) + 5(2s + 5)?
= 142 + 1065 + 20s°

= 142P0(8) —+ 106P1(8) + 20 |:§P2(8) —+ %P@(s)} ;

consequently, we have
20 z—5 z—5 40 z—5
o~ (112 2 (257) s voom (752 1 0, (252).

ExaMmPLE 7.3. Compute the first three terms of the Fourier—Legendre expan-
sion of the function

0, -1<x<0,
z, 0<xz<l.

SoLUTION. Putting

f@) =Y amPulz), —1<z<l,
m=0

we have
2m

+1 /1
m = —— /71 f(@) P () dz.

Hence

L rwr@a=L -]
a0 = 3 B x)Py(z xf20xxf47
1 1
alzé/ f(x)Pl(x)dxzé/ 2 de = =,

2/, 2 /s

5 [5 (1 1
az:i/,lf(x)Pz(x)dng/o x§(3xz—1)dxzﬁ.

Thus we have the approximation

flz) ~ iPO(x) + %Pl(x) +

index-65_2.png
then, solely by a rearrangement of the elements of M b and My ! without any
arithemetic operations, we obtain

01 0 0 100 1 0 0
L=|10 0 1/610 00 1 0 1 0
00 1 1/201 010 0 —1/51 1
1/6 1 0 00 1/6 ~1/51 1
= 100 0—1/511 00
1/2 0 1 10 1/2 10

index-147_1.png
CHAPTER 7

Orthogonal polynomials

Orthoggonal polynomials are solutions of Sturm—Liouville problems given by
second-order differential equations with boundary conditions. These polynomials
have desirable properties in the applications.

7.1. Fourier—Legendre Series

Properties of the Legendre polynomials are listed in Section 8.1 We present
simple examples of expansions in Fourier—Legendre series.

ExaMpPLE 7.1. Expand the polynomial
plz) = 2% —22° 4 4z + 1
over [—1,1] in terms of the Legendre polynomials Py(x), Pi(z),. ..

SOLUTION. We express the powers of x in terms of the basis of Legendre
polynomials:

Po(x) =1 = 1= Po($)7

Piz) =2 = == Pi(x),
Py(x) = %(3952 —1) = 2? = %Pg(x) + %P@(gﬂ)7
Py(x) = %(513 —3z) = 2° = %Pg(:l?) + §P1($)~

This way, one avoids computing integrals. Thus

plz) = %PS(OE) + %Pl(x) - %Pz(x) - %Po(x) + 4Py (z) + Po(z)

ExaMPLE 7.2. Expand the polynomial
p(z) =2+ 3z + 5z°
over [3,7] in terms of the Legendre polynomials Py(z), P (z),. ..

SoLUTION. To map the segment z € [3,7] onto the segment s € [—1,1] (see
Fig. 7.1) we consider the affine transformation

sz =as+ [, such that —1—3=—-a+8 1—7T=a+/[.

Solving for o and 3, we have
xz=2s+5. (7.1)

143

index-65_1.png
4.1. LU SOLUTION OF Ax=1b 61

once the multipliers —a, —b, —c are known. Moreover the product M 1M§ ! can
be easily written:

100 100 100
MMy t=]a 1 0 01 0|=|a 10
b 0 1 0 ¢ 1 b ¢ 1

It is easily seen that a permutation P, which consists of the identity matrix [
with permuted rows, is an orthogonal matrix. Hence,

pt=pT
Therefore, if
L=P{M P My,
then, solely by a rearrangement of the elements of M L and My ! without any
arithemetic operations, we obtain

01 0 100 100 1 0 0
L=|10 0 16 1. 0|0 0 1 0 1 0
00 1 1/201 010 0 —1/51 1
1/6 1 0 1/6 ~1/51 1
= 100 0—1/51 00
1/2 0 1 1/2 10

which is the row-permutation of a lower triangular matrix, that is, it becomes

lower triangular if the second and first rows are interchanged, and then the new

second row is interchanged with the third row, namely, P, P, L is lower triangular.
The system

Ly=5»
is solved by forward substitution:
1/6 —1/51 1 Y1 23
1 0 0 yo | = | 136 |,
1/2 10 Y3 45
y1 = 136,

yo = 45 — 136/2 = —23,
ys = 23— 136/6 — 23/51 = —0.1176.

Finally, the system

Ux =y
is solved by backward substitution:
18 48 39 1 136
0 -51 22.5 z9 | = —23 |,
0 0 —0.0588 z3 —0.1176

x5 = 0.1176/0.0588 = 2,
zo = (=23 — 22,5 x 2)/(=51) = 1.3333,
— (136 — 48 x 1.3333 — 39 x 2)/18 = —0.3333.

The following Matlab session does exactly that.

index-149_1.png
7.2. DERIVATION OF GAUSSIAN QUADRATURES 145

ExAMPLE 7.4. Compute the first three terms of the Fourier—Legendre expan-
sion of the function

flz)=¢", 0<z<I.

SOLUTION. To use the orthogonality of the Legendre polynomials, we trans-
form the domain of f(z) from [0, 1] to [—1, 1] by the substitution

1 1
s=2|xz—=1], thatis x:£+—.
2 2 2
Then
f(z) = e® = T3)/2 = Z am P (s), —1<s<1,
m=0
where

1
ay — 2m2+ 1 / 6(1+s)/2pm(8) ds.
1

We first compute the following three integrals by recurrence:

1
10:/ es/zds:2<el/2—efl/2)7
-1

1 1
11:/ se’/? ds = 2se’/?

1
—2/ 32 ds
1 —1 —1

=2 (61/2 + 671/2) — 21y

= —2¢l/2 +6671/27

1
I :/ s2e%/? ds = 2% %2
-1

=2 (61/2 — 671/2) — 41

—10e"/? — 26 1/2,

1

1
—4/ se’?ds
1 —1

Thus
1
a0 =3 2l =e— 12 1.7183,
3
=3 e’ = —3e+ 9~ 0.8452,
5 (51
=3 61/25(312 —Iy) = 35 — 95 &2 0.1399.

We finally have the approximation
f(@) =~ 1.7183Py(22 — 1) + 0.8452P (22 — 1) + 0.1399 P, (22 — 1).

7.2. Derivation of Gaussian Quadratures

We easily obtain the n-point Gaussian quadrature formula by means of the
Legendre polynomials. We restrict attention to the cases n = 2 and n = 3. We
immediately remark that the number of points n refers to the n points at which we
need to evaluate the integrand over the interval [—1, 1], and not to the numbers of
subintervals into which one usually breaks the whole interval of integration [a, b]
in order to have a smaller error in the numerical value of the integral.

index-66_1.png
62 4. MATRIX COMPUTATIONS
>> A =[39 6; 18 48 39; 9 -27 42]
A=

3 9 6

18 48 39
9 -27 42

>> [L,U] = 1u(a)

L =
0.1667 -0.0196 1.0000
1.0000 0 0
0.5000 1.0000 0

U =

18.0000 48.0000 39.0000
0 -51.0000 22.5000
0 0 -0.0588

>> b = [23; 136; 45]

b =
23
136
45

>>y =L\b % forward substitution

y:
136.0000
-23.0000

-0.1176
>> x = U\y % backward substitution

x =
-0.3333
1.3333
2.0000

>> z = A\b ¥, Matlab left-inverse to solve Az = b by the LU decomposition

z =
-0.3333
1.3333
2.0000

The didactic Matlab command
[L,U,P] = 1u(d)

index-148_2.png

index-65_3.png
39 Ty 136
225 T2 | = —-23
0.0588 3 —0.1176

index-144_1.png
140 6. THE MATLAB ODE SUITE

VDPODE(T, Y, ’jacobian’) or VDPODE(T, Y, ’jacobian’, MU) returns the
Jacobian matrix dF/3Y evaluated analytically at (T, Y). By default, the stiff
solvers of the ODE Suite approximate Jacobian matrices numerically. However,
if the ODE Solver property Jacobian is set to 'on’ with ODESET, a solver calls
the ODE file with the flag ’jacobian’ to obtain dF/dY. Providing the solvers
with an analytic Jacobian is not necessary, but it can improve the reliability and

efficiency of integration.
VDPODE([], [], ’init’) returns the default TSPAN, Y0, and OPTIONS val-

ues for this problem (see RIGIDODE). The ODE solver property Vectorized is set
to ’on’ with ODESET because VDPODE is coded so that calling VDPODE(T,
[Y1Y2...]) returns [VDPODE(T, Y1) VDPODE(T, Y2) ...] for scalar time T
and vectors Y1, Y2,... The stiff solvers of the ODE Suite take advantage of this
feature when approximating the columns of the Jacobian numerically.

6.6. Concluding Remarks

Ongoing research in explicit and implicit Runge—Kutta pairs, and hybrid
methods, which incorporate function evaluations at off-step points in order to
lower the stepnumber of a linear multistep method without reducing its order,
may, in the future, improve the MATLAB ODE suite.

index-143_1.png
6.5. STIFF PROBLEMS OF THE MATLAB ODEDEMO 139

6.5.12. The hblode problem. HB1ODE is the stiff problem 1 of Hind-
marsh and Byrne [16]. This is the original Robertson chemical reaction problem
on a very long interval. Because the components tend to a constant limit, it
tests reuse of Jacobians. The equations themselves can be unstable for negative
solution components, which is admitted by the error control. Many codes can,
therefore, go unstable on a long time interval because a solution component goes
to zero and a negative approximation is entirely possible. The default interval is
the longest for which the Hindmarsh and Byrne code EPISODE is stable. The
system satisfies a conservation law which can be monitored:

y(1) +9(2) +y(3) = 1.

6.5.13. The hb2ode problem. HB20DE is the stiff problem 2 of [16]. This
is a non-autonomous diurnal kinetics problem that strains the step size selection
scheme. It is an example for which quite small values of the absolute error tol-
erance are appropriate. It is also reasonable to impose a maximum step size so
as to recognize the scale of the problem. Suitable values are an AbsTol of 1e-20
and a MaxStep of 3600 (one hour). The time interval is 1/3; this interval is used
by Kahaner, Moler, and Nash, p. 312 in [17], who display the solution on p. 313.
That graph is a semilog plot using solution values only as small as 1e-3. A small
threshold of 1e-20 specified by the absolute error control tests whether the solver
will keep the size of the solution this small during the night time. Hindmarsh and
Byrne observe that their variable order code resorts to high orders during the day
(as high as 5), so it is not surprising that relatively low order codes like ODE23S
might be comparatively inefficient.

6.5.14. The hb3ode problem. HB3ODE is the stiff problem 3 of Hind-
marsh and Byrne [16]. This is the Hindmarsh and Byrne mockup of the diurnal
variation problem. It is not nearly as realistic as HB2ODE and is quite special in
that the Jacobian is constant, but it is interesting because the solution exhibits
quasi-discontinuities. It is posed here in its original non-autonomous form. As
with HB2ODE, it is reasonable to impose a maximum step size so as to recog-
nize the scale of the problem. A suitable value is a MaxStep of 3600 (one hour).
Because y(:,1) ranges from about 1e-27 to about 1.1e-26, a suitable AbsTol is
le-29.

Because of the constant Jacobian, the ODE solver property JConstant pre-
vents the solvers from recomputing the Jacobian, making the integration more
reliable and faster.

6.5.15. The vdpode problem. VDPODE is a parameterizable van der Pol
equation (stiff for large mu) [18]. VDPODE(T, Y) or VDPODE(T, Y, [], MU)
returns the derivatives vector for the van der Pol equation. By default, MU is
1, and the problem is not stiff. Optionally, pass in the MU parameter as an
additional parameter to an ODE Suite solver. The problem becomes more stiff
as MU is increased.

When MU is 1000 the equation is in relaxation oscillation, and the problem
becomes very stiff. The limit cycle has portions where the solution components
change slowly and the problem is quite stiff, alternating with regions of very sharp
change where it is not stiff (quasi-discontinuities). The initial conditions are close
to an area of slow change so as to test schemes for the selection of the initial step
size.

index-146_1.png

index-145_1.png
10

11

12

13

14

15

16

17

18

Bibliography

E. Hairer and G. Wanner, Solving ordinary differential equations 11, stiff and differential-
algebraic problems, Springer-Verlag, Berlin, 1991, pp. 5-8.

J. D. Lambert, Numerical methods for ordinary differential equations. The initial value
problem, Wiley, Chichester, 1991.

J. R. Dormand and P. J. Prince, A family of embedded Runge—Kutta formulae, J. Com-
putational and Applied Mathematics, 6(2) (1980), 19-26.

E. Hairer and G. Wanner, On the instability of the BDF formulae, STAM J. Numer. Anal.,
20(6) (1983), 1206-1209.

L. F. Shampine and M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci. Comput.,
18(1), (1997) 1-22.

R. Ashino and R. Vaillancourt, Hayawakari Matlab (Introduction to Matlab), Kyoritsu
Shuppan, Tokyo, 1997, xvi-211 pp., 6th printing, 1999 (in Japanese). (Korean translation,
1998.)

Using MATLAB, Version, 5.1, The MathWorks, Chapter 8, Natick, MA, 1997.

L. F. Shampine and M. K. Gordon, Computer solution of ordinary differential equations,
W.H. Freeman & Co., San Francisco, 1975.

T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, Comparing numerical
methods for ordinary differential equations, STAM J. Numer. Anal., 9(4) (1972) 603-637.
L. F. Shampine, Numerical solution of ordinary differential equations, Chapman & Hall,
New York, 1994.

W. H. Enright, T. E. Hull, and B. Lindberg, Comparing numerical methods for stiff
systems of ODEs, BIT 15(1) (1975), 10-48.

L. F. Shampine, Measuring stiffness, Appl. Numer. Math., 1(2) (1985), 107-119.

W. H. Enright and T. E. Hull, Comparing numerical methods for the solution of stiff
systems of ODEs arising in chemistry, in Numerical Methods for Differential Systems, L.
Lapidus and W. E. Schiesser eds., Academic Press, Orlando, FL, 1976, pp. 45-67.

R. C. Aiken, ed., Stiff computation, Oxford Univ. Press, Oxford, 1985.

P. J. van der Houwen, Construction of integration formulas for initial value problems,
North-Holland Publishing Co., Amsterdam, 1977.

A. C. Hindmarsh and G. D. Byrne, Applications of EPISODE: An experimental package
for the integration of ordinary differential equations, in Numerical Methods for Differen-
tial Systems, L. Lapidus and W. E. Schiesser eds., Academic Press, Orlando, FL, 1976,
pp- 147-166.

D. Kahaner, C. Moler, and S. Nash, Numerical methods and software, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

L. F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM Trans. Math. Soft.,
7(4) (1981) 409-420.

141

index-55_2.jpg
[RS SRR T N =

index-56_1.png
52 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

Thus, we obtain the composite trapezoidal rule:

b
[@ = S 15Ge0) + 21 (e1) + 26 (02) + - 25 w2

(b—a)h?
12

We see that the composite trapezoidal rule is a method of order O(h?), which is
exact for polynomials of degree smaller than or equal to 1. Its absolute truncation
error is twice the absolute truncation error of the midpoint rule.

+2f(wn-1) + fan)] — 7€), a<g<b (39

ExAMPLE 3.4. Use the composite trapezoidal rule to approximate the integral

1 2
I:/ e’ dx
0

with step size h such that the absolute truncation error is bounded by 10~%.
Compare with Examples 3.3 and 3.6.

SOLUTION. Since

flz)=e” and f(z)= (2+422)e”,
then

0< f"(z) <6e for ze€l0,1].

Therefore,
1 1
Jer] < 75 6e(1 - 0)h? = 3 eh? < 107*, thatis, h <0.008577638.

We take n = 117 > 1/h = 116.6 (compared to 83 for the composite midpoint
rule). The approximate value of [is

~ 1171>< 5 £(0/117)? + 9 ((1/117)* + 9 ((2/117)* I
+ 26(115/117)2 + 26(116/117)2 + 6(117/117)2
= 1.46268.

The following Matlab commands produce the trapesoidal integration of nu-
merical values y; at nodes k/117, k= 0,1,...,117, with stepsize h = 1/117.

x = 0:117; y = exp((x/117).72);
z = trapz(x,y)/117
z = 1.4627

ExaMPLE 3.5. How many subintervals are necessary for the composite trape-
zoidal rule to approximate the integral

’ 1
I:/ {xz — —(z—1.5)* dz
. 12

with step size h such that the absolute truncation error is bounded by 1073.

index-55_3.jpg
Trapezoid

y=/x

index-57_1.jpg
242

index-56_2.png

index-57_3.jpg
y=/x)

a Xo; Xni41 Xniso b

index-57_2.jpg
= bk w Rl .

index-59_1.png
3.8. ROMBERG INTEGRATION FOR THE TRAPEZOIDAL RULE 55

ExaMPLE 3.7. Use the composite Simpson’s rule to approximate the integral

2
I:/ v 1+cos?zdx
0

within an accuracy of 0.0001.

SoLUTION. We must determine the step size A such that the absolute trun-
cation error, |es|, will be bounded by 0.0001. For

f(@) =1+ cos?z,

we have
@ () — —3cos*(x) 4 cos?(x) 3 18 cos* (z) sin?(z)
@) T eo@)? | it @ (1t @) "
22 cos?(z) sin?(z) B 4sin?(x) 15 cos* () sin’ (x)
(1+cos2@)™® VIHeos?(@) (14 cos(2)”?
18 cos®(x) sin*(x) 3 3sint(z)
(1+cos2(2)™? (14 cos2(2))*?

Since every denominator is greater than one, we have
IFfO (@) <3+4+18+2244+15+ 1843 =87,

Therefore, we need

87
|€S| < @ (2 - O)h4

Hence,

1
h < 0.100 851 140, - > 9.915 604 269.

To have 2m > 1/h = 9.9 we take n = 2m = 10 and h = 1/10. The approximation
Is

I~ ! [\/1+cosz(0/20)+4\/1+cosz(1/20)+2\/1+cosz(2/20)+~~~

20 x 3
+2+/1 4 cos?(18/20) + 4 /1 + cos2(19/20) + /1 + 0082(20/20)}
= 2.48332.

3.8. Romberg Integration for the Trapezoidal Rule

Romberg integration uses Richardson’s extrapolation to improve the trape-
zoidal rule approximation, Fy 1, with step size kg, to an integral

I/abf(x)dx.

It can be shown that
I=Ryq+ Kby + Kohi + K3hf + ...,
where the constants K; are independant of ;. With step sizes

h h h
hy=h, h2:§7 h3:2—27 ceey =

index-58_1.png
54 3. NUMERICAL DIFFERENTIATION AND INTEGRATION

Summing over all the subintervals, we have

/ Jla Z[f($21)+4f($21+1)+f (@2442) ——Zf(4 (&)
i=1
Multiplying and dividing the error term by m, applying the Mean Value Theo-
rem 1.5 for sums to this term and using the fact that 2mh = nh = b — a, we

have
m

h® b—
22’:902) = LM g, acean

Thus, we obtain the composite Simpson’s rule:

/ F() do = 2 (zo) + A (e1) +2f (22) + 47 (23) +

(b—a)

+ 2f (Tam—2) + Af (@am—1) + f@am)] — —=2—FH(¢), a<&<b (3.10)

We see that the composite Simpson’s rule is a method of order O(h*), which
is exact for polynomials of degree smaller than or equal to 3.

ExAMPLE 3.6. Use the composite Simpson’s rule to approximate the integral

1
2
I:/ e’ dx
0

with stepsize h such that the absolute truncation error is bounded by 107%. Com-
pare with Examples 3.3 and 3.4.

SOLUTION. We have

2

Jlwy=¢" and f@(z)=4e” (34 1227 1 da?).
Thus
0<fW@) <76e on [0,1].

The absolute truncation error is thus less than or equal to 180 e(1 —0)h*. Hence,
h must satisfy the inequality

76
=0 eht <107%, thatis, h < 0.096614232.
To satisfy the inequality
1
2m > — =104
h
we take)
=2m =12 d h=—.
n m an B
The approximation is
T~ 121 - £(0/12)° + 4 (1/12) + 9 ((2/12) NI 9 £(10/12)* + 4 (11/12)* + o(12/12)
X
= 1.46267.

We obtain a value which is similar to those found in Examples 3.3 and 3.4. How-
ever, the number of arithmetic operations is much less when using Simpson’s
rule (hence cost and truncation errors are reduced). In general, Simpson’s rule is
preferred to the midpoint and trapezoidal rules.

index-60_1.png
56

one can cancel errors of order A2, b

3. NUMERICAL DIFFERENTIATION AND INTEGRATION

have been computed, then we have
I= R+ Kb} + Kohj + Kshl + ...

and

h
I =Ry +K1Ik +Ky—+ K

2

, etc. as follows. Suppose R 1 and Ry

by by

16 gaJr....

Subtracting the first expression for I from 4 times the second expression and
dividing by 3, we obtain

I = |Rpy11+

Put

3

Rpo=Rp1+

and, in general,

Ripj; = Ry ;-1 +

Rri11— Rk,l} n Ky

3

4 3 |16

{1—1} h§+ﬁ{i—1}h§+....

Rp1— Rr—11

3

Rij—1 — Rp—1,5-1

411

Then Ry, ; is a better approximation to I than Ry ;_1 and Ri_1 ;_1. The relations

between the Ry ; are shown in Table 3.2.

TABLE 3.2. Romberg integration table with n levels

Ry
\

R27 — R272
\

Rg7 — R372
\

R47 — R472
\

Rn 1 = Rn 2

’

N\
— HRs3
N\
— Ru3
N\
i Rn,S

L/

\ \

ExaMPLE 3.8. Use 6 levels of Romberg integration, with by = h = w/4, to
approximate the integral

/4
I:/ tanx dz.
0

SoLuTION. The following results are obtained by a simple Matlab program.

Romberg integration table:

. 39269908
.35901083
.34975833
. 34737499
.34677428
.34662378

O O O O OO

0.34778141
0.34667417
0.34658054
0.34657404
0.34657362

0.34660035
0.34657430
0.34657360
0.34657359

0.34657388
0.34657359 0.34657359
0.34657359 0.34657359 0.34657359

index-140_1.png
136 6. THE MATLAB ODE SUITE

¢ NormControl : Control error relative to norm of solution [on | {off} |
Set this property 'on’ to request that the solvers control the error in each
integration step with norm(e) <= max(RelTol*norm(y), AbsTol). By
default the solvers use a more stringent component-wise error control.

6.4. Nonstiff Problems of the Matlab odedemo

6.4.1. The orbitode problem. ORBITODE is a restricted three-body prob-
lem. This is a standard test problem for non-stiff solvers stated in Shampine and
Gordon, p. 246 ff in [8]. The first two solution components are coordinates of the
body of infinitesimal mass, so plotting one against the other gives the orbit of
the body around the other two bodies. The initial conditions have been chosen
so as to make the orbit periodic. Moderately stringent tolerances are necessary
to reproduce the qualitative behavior of the orbit. Suitable values are le-5 for
RelTol and 1e-4 for AbsTol.

Because this function returns event function information, it can be used to
test event location capabilities.

6.4.2. The orbt2ode problem. ORBT20DE is the non-stiff problem D5
of Hull et al. [9] This is a two-body problem with an elliptical orbit of eccentricity
0.9. The first two solution components are coordinates of one body relative to the
other body, so plotting one against the other gives the orbit. A plot of the first
solution component as a function of time shows why this problem needs a small
step size near the points of closest approach. Moderately stringent tolerances are
necessary to reproduce the qualitative behavior of the orbit. Suitable values are

le-5 for RelTol and 1e-5 for AbsTol. See [10], p. 121.

6.4.3. The rigidode problem. RIGIDODE solves Euler’s equations of a
rigid body without external forces.

This is a standard test problem for non-stiff solvers proposed by Krogh. The
analytical solutions are Jacobi elliptic functions accessible in MATLAB. The in-
terval of integration [to, ;] is about 1.5 periods; it is that for which solutions are

plotted on p. 243 of Shampine and Gordon [8].
RIGIDODE([], [], ’init’) returns the default TSPAN, Y0, and OPTIONS

values for this problem. These values are retrieved by an ODE Suite solver if the
solver is invoked with empty TSPAN or YO arguments. This example does not
set any OPTIONS, so the third output argument is set to empty [] instead of an

OPTIONS structure created with ODESET.

6.4.4. The vdpode problem. VDPODE is a parameterizable van der Pol
equation (stiff for large mu). VDPODE(T, Y) or VDPODE(T, Y, [], MU) re-
turns the derivatives vector for the van der Pol equation. By default, MU is 1,
and the problem is not stiff. Optionally, pass in the MU parameter as an addi-
tional parameter to an ODE Suite solver. The problem becomes stiffer as MU is
increased.

For the stiff problem, see Sections 5.9 and 6.5.

6.5. Stiff Problems of the Matlab odedemo

index-139_1.png
6.3. THE ODESET OPTIONS 135

(0.1% accuracy) in all solvers. The estimated error in each integration
step satisfies e(i) <= max(RelTol*abs(y(i)), AbsTol(i)).

AbsTol : Absolute error tolerance [positive scalar or vector le-6 | A
scalar tolerance applies to all components of the solution vector. Ele-
ments of a vector of tolerances apply to corresponding components of
the solution vector. AbsTol defaults to le-6 in all solvers.

Refine : Output refinement factor [positive integer | This property
increases the number of output points by the specified factor producing
smoother output. Refine defaults to 1 in all solvers except ODE45,
where it is 4. Refine does not apply if length(TSPAN) > 2.

OutputFcn : Name of installable output function [string | This output
function is called by the solver after each time step. When a solver
is called with no output arguments, OutputFecn defaults to 'odeplot’.
Otherwise, OutputFen defaults to 7.

OutputSel : Output selection indices [vector of integers | This vector
of indices specifies which components of the solution vector are passed
to the OutputFen. OutputSel defaults to all components.

e Stats : Display computational cost statistics [on | {off}]

e Jacobian : Jacobian available from ODE file [on | {off} | Set this
property ’on’ if the ODE file is coded so that F(t, y, ’jacobian’) returns
dF/dy.

JConstant : Constant Jacobian matrix dF/dy [on | {off} | Set this
property ’on’ if the Jacobian matrix dF/dy is constant.

JPattern: Jacobian sparsity pattern available from ODE file [on | {off}
| Set this property ’on’ if the ODE file is coded so F([|, [], jpattern’)
returns a sparse matrix with 1’s showing nonzeros of dF/dy.
Vectorized : Vectorized ODE file [on | {off} | Set this property ’on’
if the ODE file is coded so that F(t, [yl y2 ...]) returns [F(t, y1) F(t,
v2) ...

Events : Locate events [on — off | Set this property ’on’ if the ODE file
is coded so that F(t, v, ’events’) returns the values of the event functions.
See ODEFILE.

Mass : Mass matrix available from ODE file [on | {off}] Set this prop-
erty on’ if the ODE file is coded so that F(t, [], 'mass’) returns time
dependent mass matrix M(t).

MassConstan : Constant mass matrix available from ODE file [on |
{off} | Set this property ’on’ if the ODE file is coded so that F(t, [],
‘mass’) returns a constant mass matrix M.

MaxStep : Upper bound on step size [positive scalar | MaxStep defaults
to one-tenth of the tspan interval in all solvers.

InitialStep : Suggested initial step size | positive scalar | The solver
will try this first. By default the solvers determine an initial step size
automatically.

¢ MaxOrder : Maximum order of ODE15S [1|2 | 3|4 | {5}]

e BDF : Use Backward Differentiation Formulae in ODE15S [on | {off}
| This property specifies whether the Backward Differentiation Formu-
lae (Gear’s methods) are to be used in ODEI5S instead of the default
Numerical Differentiation Formulae.

index-141_1.png
6.5. STIFF PROBLEMS OF THE MATLAB ODEDEMO 137

6.5.1. The a2ode and a3ode problems. A20DE and A30ODE are stiff
linear problems with real eigenvalues (problem A2 of [11]). These nine- and four-
equation systems from circuit theory have a constant tridiagonal Jacobian and
also a constant partial derivative with respect to ¢ because they are autonomous.

REMARK 6.1. When the ODE solver JConstant property is set to ’off’, these
examples test the effectiveness of schemes for recognizing when Jacobians need
to be refreshed. Because the Jacobians are constant, the ODE solver property
JConstant can be set to 'on’ to prevent the solvers from unnecessarily recomputing
the Jacobian, making the integration more reliable and faster.

6.5.2. The b5ode problem. B50ODE is a stiff problem, linear with com-
plex eigenvalues (problem B5 of [11]). See Ex. 5, p. 298 of Shampine [10] for a
discussion of the stability of the BDFs applied to this problem and the role of
the maximum order permitted (the MaxOrder property accepted by ODE15S).
ODE15S solves this problem efficiently if the maximum order of the NDF's is
restricted to 2. Remark 6.1 applies to this example.

This six-equation system has a constant Jacobian and also a constant partial
derivative with respect to ¢ because it is autonomous.

6.5.3. The buiode problem. BUIODE is a stiff problem with analytical
solution due to Bui. The parameter values here correspond to the stiffest case of
[12]; the solution is

y(1) =, y(2)=e".

6.5.4. The brussode problem. BRUSSODE is a stiff problem modelling
a chemical reaction (the Brusselator) [1]. The command BRUSSODE(T, Y) or
BRUSSODE(T, Y, [], N) returns the derivatives vector for the Brusselator prob-
lem. The parameter N >= 2 is used to specify the number of grid points; the
resulting system consists of 2N equations. By default, N is 2. The problem be-
comes increasingly stiff and increasingly sparse as NNV is increased. The Jacobian
for this problem is a sparse matrix (banded with bandwidth 5).

BRUSSODE([], [], ’jpattern’) or BRUSSODE([], [], ’jpattern’, N)
returns a sparse matrix of 1’s and 0’s showing the locations of nonzeros in the Ja-
cobian 9F/dY . By default, the stiff solvers of the ODE Suite generate Jacobians
numerically as full matrices. However, if the ODE solver property JPattern is
set to 'on’ with ODESET, a solver calls the ODE file with the flag 'jpattern’. The
ODE file returns a sparsity pattern that the solver uses to generate the Jacobian
numerically as a sparse matrix. Providing a sparsity pattern can significantly
reduce the number of function evaluations required to generate the Jacobian and
can accelerate integration. For the BRUSSODE problem, only 4 evaluations of
the function are needed to compute the 2N x 2N Jacobian matrix.

6.5.5. The chm6ode problem. CHM6ODE is the stiff problem CHMS6 from
Enright and Hull [13]. This four-equation system models catalytic fluidized bed
dynamics. A small absolute error tolerance is necessary because y(:,2) ranges from
7e-10 down to 1le-12. A suitable AbsTol is 1e-13 for all solution components. With
this choice, the solution curves computed with ode15s are plausible. Because the
step sizes span 15 orders of magnitude, a loglog plot is appropriate.

6.5.6. The chm7ode problem. CHM7ODE is the stiff problem CHM?7 from
[13]. This two-equation system models thermal decomposition in ozone.

index-136_1.png
132 6. THE MATLAB ODE SUITE

In MATLAB 6, the command
odedemo

lets one solve 4 nonstiff problems and 15 stiff problems by any of the five methods
in the suite. The four methods for stiff problems are also designed to solve nonstiff
problems. The three nonstiff methods are poor at solving very stiff problems.

For graphing purposes, all seven methods use interpolants to obtain, by de-
fault, four or, if specified by the user, more intermediate values of y between vy,
and y,41 to produce smooth solution curves.

6.2.1. The ode23 method. The code 0de23 consists in a four-stage pair of
embedded explicit Runge—Kutta methods of orders 2 and 3 with error control. It
advances from y,, to y,4+1 with the third-order method (so called local extrapola-
tion) and controls the local error by taking the difference between the third-order
and the second-order numerical solutions. The four stages are:

k1 = hf(zn yn),

k2 = hf(en+ (1/2)h, yn + (1/2)k1),

k3 = hf(zn+ (3/4)h,yn + (3/4)k2),

k4 = hf(z,+hyyn + (2/9)k1 + (1/3)ka + (4/9)k3),

The first three stages produce the solution at the next time step:
Ynt1 = Yn + (2/9)k1 + (1/3)k2 + (4/9)ks,

and all four stages give the local error estimate:

5 1 1 1
——k —k — ko — —ka.
= 1+12 2+9 2 3 4

However, this is really a three-stage method since the first step at =z, is the

same as the last step at z,,, that is k[lnﬂ] = I@E"] (that is, a FSAL method).
The natural interpolant used in ode23 is the two-point Hermite polyno-
mial of degree 3 which interpolates y,, and f(z,,y,) at z = x,,, and y,4+1 and

f(xn+17 xn+1) at t = Tp1-

FE =

6.2.2. The ode45 method. The code ode45 is the Dormand-Prince pair
DP(5,4)7M with a high-quality “free” interpolant of order 4 that was communi-
cated to Shampine and Reichelt [5] by Dormand and Prince. Since ode45 can use
long step size, the default is to use the interpolant to compute solution values at
four points equally spaced within the span of each natural step.

6.2.3. The ode113 method. The code odel113 is a variable step variable
order method which uses Adams—Bashforth—Moulton predictor-correctors of order
1 to 13. This is accomplished by monitoring the integration very closely. In the
MATLAB graphics context, the monitoring is expensive. Although more than
graphical accuracy is necessary for adequate resolution of moderately unstable
problems, the high accuracy formulae available in ode113 are not nearly as helpful
in the present context as they are in general scientific computation.

index-135_1.png
CHAPTER 6

The Matlab ODE Suite

6.1. Introduction

The MATLAB ODE suite is a collection of seven user-friendly finite-difference
codes for solving initial value problems given by first-order systems of ordinary
differential equations and plotting their numerical solutions. The three codes
0de23, ode4b, and odel113 are designed to solve non-stiff problems and the four
codes 0de23s, ode23t, ode23tb and odelbs are designed to solve both stiff and
non-stiff problems. This chapter is a survey of the seven methods of the ODE
suite. A simple example illustrates the performance of the seven methods on
a system with a small and a large stiffness ratio. The available options in the
MATLAB codes are listed. The 19 problems solved by the MATLAB odedemo are
briefly described. These standard problems, which are found in the literature,
have been designed to test ode solvers.

6.2. The Methods in the Matlab ODE Suite

The MATLAB ODE suite contains three explicit methods for nonstiff prob-
lems:

e The explicit Runge—Kutta pair ode23 of orders 3 and 2,

e The explicit Runge—Kutta pair ode45 of orders 5 and 4, of Dormand—
Prince,

e The Adams—Bashforth—Moulton predictor-corrector pairs ode113 of or-
ders 1 to 13,

and fuor implicit methods for stiff systems:

The implicit Runge—Kutta pair ode23s of orders 2 and 3,

ode23t is an implementation of the trapezoidal rule,

0de23tb is a two-stage implicit Runge-Kutta method,

The implicit numerical differentiation formulae ode15s of orders 1 to 5.

All these methods have a built-in local error estimate to control the step size.
Moreover ode113 and ode15s are variable-order packages which use higher order
methods and smaller step size when the solution varies rapidly.

The command odeset lets one create or alter the ode option structure.

The ODE suite is presented in a paper by Shampine and Reichelt [5] and
the MATLAB help command supplies precise information on all aspects of their
use. The codes themselves are found in the toolbox/matlab/funfun folder of
MATLAB 6. For MATLAB 4.2 or later, it can be downloaded for free by ftp on
ftp.mathworks.comin the
pub/mathworks/toolbox/matlab/funfun directory.

131

index-138_1.png
134 6. THE MATLAB ODE SUITE

6.3. The odeset Options

Options for the seven ode solvers can be listed by the odeset command (the
default values are in curly brackets):

odeset
AbsTol: [positive scalar or vector {le-6}]
BDF: [on | {off}]
Events: [on | {off}]
InitialStep: [positive scalar]
Jacobian: [on | {off}]
JConstant: [on | {off}]
JPattern: [on | {off}]
Mass: [on | {off}]
MassConstant: [on | off]
MaxOrder: [1 | 2 | 3 | 4 | {5} 1]
MaxStep: [positive scalar]
NormControl: [on | {off}]
OutputFen: [string]
OutputSel: [vector of integers]

Refine: [positive integer]
RelTol: [positive scalar {1le-3}]
Stats: [on | {off}]

The following commands solve a problem with different methods and different
options.

[t, yl=0de23(’exp2’, [0 1], O, odeset(’RelTol’, le-9, ’Refine’, 6));

[t, yl=ode45(’exp2’, [0 1], O, odeset(’’AbsTol’, le-12));

[t, yl=odel113(’exp2’, [0 1], O, odeset(’RelTol’, le-9, ’AbsTol’, le-12));
[t, yl=ode23s(’exp2’, [0 1], 0, odeset(’RelTol’, le-9, ’AbsTol’, le-12));
[t, yl=odelbs(’exp2’, [0 1], 0, odeset(’JConstant’, ’on’));

The ode options are used in the demo problems in Sections 8 and 9 below. Others

ways of inserting the options in the ode M-file are explained in [7].
The command ODESET creates or alters ODE OPTIONS structure as follows

¢ OPTIONS = ODESET(NAMEL’, VALUE1, 'NAME2’, VALUE2, ...)
creates an integrator options structure OPTIONS in which the named
properties have the specified values. Any unspecified properties have
default values. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names.

¢ OPTIONS = ODESET(OLDOPTS, 'NAMEL’, VALUEL, ...) alters an
existing options structure OLDOPTS.

¢ OPTIONS = ODESET(OLDOPTS, NEWOPTS) combines an existing
options structure OLDOPTS with a new options structure NEWOPTS.
Any new properties overwrite corresponding old properties.

¢ ODESET with no input arguments displays all property names and their
possible values.

Here is the list of the odeset properties.

e RelTol : Relative error tolerance | positive scalar 1e-3 | This scalar
applies to all components of the solution vector and defaults to le-3

index-137_1.png
6.2. THE METHODS IN THE MATLAB ODE SUITE 133

6.2.4. The ode23s method. The code ode23s is a triple of modified im-
plicit Rosenbrock methods of orders 3 and 2 with error control for stiff systems.
It advances from y,, to y,+1 with the second-order method (that is, without local
extrapolation) and controls the local error by taking the difference between the
third- and second-order numerical solutions. Here is the algorithm:

fO - hf(xn7yn)7

ky = W (fo+ hdl),
ky = W HNf1— ki) + k,
Yntl = Yn + Dk,
foo = fl@ni1, Ynt1),
k3 = Wl fy —caalka — f1) — 2(k1 — fo) + hdt],
h
error =~z E<k1_2k2+k3)7
where
W=TI-hdJ, d=1/2+V2), c30=6+v2,
and
of of
J%_ ny Yn />y T%_ nyYn /-
ay@ Yn) 5 (Enn)

This method is FSAL (First Step As Last). The interpolant used in ode23s is
the quadratic polynomial in s:
s(1 —s) s(s — 2d)

By 222

nt+s — Yn h | ———=
Ynts =Yn 0\ o Bt g

6.2.5. The ode23t method. The code 0de23t is an implementation of the
trapezoidal rule. It is a low order method which integrates moderately stiff sys-
tems of differential equations of the forms v’ = f(¢,y) and m(t)y’ = f(t,y), where
the mass matrix m(¢) is nonsingular and usually sparse. A free interpolant is used.

6.2.6. The ode23tb method. The code ode23tb is an implementation of
TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a trape-
zoidal rule (TR) step and a second stage that is a backward differentiation for-
mula (BDF) of order two. By construction, the same iteration matrix is used in
evaluating both stages. It is a low order method which integrates moderately stiff
systems of differential equations of the forms v’ = f(t,y) and m(t)y’ = f({,v),
where the mass matrix m(t) is nonsingular and usually sparse. A free interpolant
is used.

6.2.7. The ode15s method. The code ode15s for stiff systems is a quasi-
constant step size implementation of the NDF’s of order 1 to 5 in terms of back-
ward differences. Backward differences are very suitable for implementing the
NDF’s in MATLAB because the basic algorithms can be coded compactly and ef-
ficiently and the way of changing step size is well-suited to the language. Options
allow integration with the BDF’s and integration with a maximum order less than
the default 5. Equations of the form M (t)y’ = f(t,vy) can be solved by the code
ode15s for stiff problems with the Mass option set to on.

index-132_1.png
128 5. NUMERICAL SOLUTION OF DIFFI

=
-

ENTIAL EQUATIONS

function uprime = exp5_16(x,u)
global g

4=[0 1;-10"q -1-10"q];

uprime = Ax*u;

The following commands solve the initial value problem.

>> clear

>> global q; q = 1;

>> xspan = [0 1]; u0 = [2 -(10"q + 1)]7;

>> [x23,u23] = 0de23(’exp5_16’ ,xspan,ul);

>> [x45,u45] = ode45(’exp5_16’ ,xspan,ul);

>> [x113,u113] = odel13(’exp5_16’ ,xspan,ul);
>> [x23s,u23s] = ode23s(’exp5_16’ ,xspan,ul);
>> [x15s,ulbs] = odelbs(’exp5_16’ ,xspan,ul);

>> whos

Name Size Bytes Class

q 1x1 8 double array (global)
ul 2x1 16 double array
ull3 26x2 416 double array
ulbs 32x2 512 double array
u23 20x2 320 double array
u23s 2bx2 400 double array
u4b 49x2 784 double array
x113 26x1 208 double array
x15s 32x1 256 double array
x23 20x1 160 double array
x23s 2bx1 200 double array
x45 49x1 392 double array
xspan 1x2 16 double array

Grand total is 461 elements using 3688 bytes

From the table produced by the command whos one sees that the nonstiff ode
solvers ode23, ode45, odel13, and the stiff ode solvers ode23s, odelbs, use 20,
49, 26, and 25, 32 steps, respectively.

EXAMPLE 5.17. Use the five Matlab ode solvers to solve the stiff differential

equations
y’ 4+ (107 4+ 1)y’ + 107 =0 on [0,1],

with initial conditions
y(0)=2, (0)=-107 -1,
for ¢ = 5 and compare the number of steps used by the solvers.

SOLUTION. Setting the value ¢ = 5 in the program of Example 5.16 we obtain
the following results for the whos command.

clear
global q; q = 5;
xspan = [0 1]; u0 = [2 -(10"q + 1)]7;

index-134_1.png

index-133_1.png
5.9. STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS 129

[x23,u23] = 0de23(’exp5_16’ ,xspan,ul);
[x45,u45] = oded45(’exp5_16’ ,xspan,ul);
[x113,u113] = odel13(’exp5_16’ ,xspan,ul);
[x23s,u23s] = ode23s(’exp5_16’ ,xspan,ul);
[x15s,ulbs] = odelbs(’exp5_16’ ,xspan,ul);

whos

Name Size Bytes Class

q 1x1 8 double array (global)
ul 2x1 16 double array
ull3 62258x2 996128 double array
ulbs 107x2 1712 double array
u23 39834x2 637344 double array
u23s 75x2 1200 double array
u4b 120593x2 1929488 double array
x113 62258x1 498064 double array
x15s 107x1 866 double array
x23 39834x1 318672 double array
x23s 7bx1 600 double array
x45 120593x1 964744 double array
xspan 1x2 16 double array

Grand total is 668606 elements using 5348848 bytes

From the table produced by the command whos one sees that the nonstiff ode
solvers ode23, ode45, ode113, and the stiff ode solvers ode23s, ode15s, use 39 834,
120593, 62 258, and 75, 107 steps, respectively. It follows that nonstiff solvers are
hopelessly slow and expensive to solve stiff equations.

Numeric MATLAB has four solvers with “free” interpolants for stiff systems.
The first three are low order solvers.

¢ The code ode23s is an implementation of a new modified Rosenbrock
(2,3) pair. Local extrapolation is not done. By default, Jacobians are
generated numerically.

e The code 0de23t is an implementation of the trapezoidal rule.

¢ The code ode23tb is an in an implicit two-stage Runge—Kutta formula.

e The variable-step variable-order Matlab solver ode15s is a quasi-constant
step size implementation in terms of backward differences of the Klopfenstein—
Shampine family of Numerical Differentiation Formulae of orders 1 to
5. Local extrapolation is not done. By default, Jacobians are generated
numerically.

Details on these methods are to be found in The MATLAB ODE Suite, L. F.
Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18(1),
1997.

