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Preface

Biometrics is the study of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits, including fingerprint, face, voice, gait, iris, signature, hand geometry, palm, ear, etc. Each biometric has its own relative merits, and the choice of a biometric trait for a particular application depends on a variety of issues. The inherent limitation of a single biometric can be alleviated by fusing the information presented by multiple sources. For example, the face and gait traits, or multiple images of face, or the fingerprints of the right and left index fingers of an individual may be used together to resolve the identity of an individual. 

A system that consolidates the evidence presented by multiple biometric sources is expected to be more reliable. 

Most of the current biometric systems for human recognition generally require a cooperative subject, views from certain aspects and physical contact or close proximity. These systems alone cannot reliably recognize non-cooperating individuals at a distance since it has been difficult to recognize a person from arbitrary views when one is walking at a distance in real-world changing environmental conditions. For optimal performance, a system should make use of as much information as can possibly be obtained from the available observations. Gait and face are the two available biometrics which can be easily captured on a video that is acquired from a distance. 

Gait is defined as the manner in which a person walks, and is one of the few biometric traits that can be used to identify non-cooperating humans at a distance. 

Recent advances in human gait analysis introduced a new application area of recognizing and identifying individuals, their gender, age and ethnicity (soft biometrics) and activities in a surveillance environment for security purposes. Most gait recognition algorithms attempt to extract the human silhouette in order to derive the spatio-temporal attributes of a moving individual. Hence, the selection of a good model to represent the human body is pivotal to the efficient functioning of a gait recognition system. Gait-based systems also offer the possibility of tracking an individual over an extended period of time and performing gait-based recognition in 3D

with data available from multiple video streams in a surveillance network. However, gait can be affected by clothing, shoes, or environmental context. Special physical conditions such as injury can also change a person’s walking style. The large gait v
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variation of the same person under different conditions (intentionally or unintentionally) reduces the discriminating power of gait as a biometric and it may not be as unique as fingerprint or iris, but the inherent gait characteristic of an individual still makes it irreplaceable and useful for human recognition in practical applications. 

Gait can be effectively utilized and combined with other biometrics for automatically detecting, recognizing and identifying individuals from a distance. 

Face recognition is non-intrusive, and facial attributes are one of the most common features used to recognize an individual. The applications of facial recognition vary from a static, controlled “mug-shot” authentication to a dynamic, uncontrolled face identification in a cluttered background. Most of the face recognition approaches are based on either the location and shape of facial attributes, such as the eyes, eyebrows, nose, lips, and chin and their spatial relationships, or the overall analysis of the face image that represents a face as a weighted combination of a number of canonical faces. While face recognition is conveniently applied, it is easily affected by several factors including illumination, expression, pose, etc. It is also questionable whether the face itself has a sufficient basis for recognizing a person from a very large number of individuals with an extremely high level of confidence. 

The general solution to analyze face and gait video data collected from arbitrary views is to estimate 3-D models. However, the problem of building reliable 3-D

models of face and gait with non-rigid face, flexible neck and the articulated human body from low resolution video data is a challenging task. In this book, integrated face and gait recognition approaches are developed that exploit inherent characteristics of human signatures in video that is captured from a distance. Experimental results show the effectiveness of the current systems for human recognition at a distance in video. 

This book addresses fundamental problems associated with gait, face and integrated gait and face based human recognition in color and infrared videos acquired at a distance under real-world environments. 

For gait-based human recognition the book addresses the problems associated with the representation, the large intra-person variation of gait appearance under different environmental conditions, the lack of discrimination analysis for gait-based human recognition, and the difficulties associated with reliable moving human detection in various situations. Both model-free and model-based approaches are considered for individual recognition under varying contextual, environmental and carrying conditions. This includes the newly developed techniques where the both the model and the data (obtained from multiple cameras) are in 3D. Bayesian-based statistical analysis is performed to evaluate the discriminating power of gait features for human recognition. To improve the performance of moving human detection for both model-free and model-based human recognition, the information from color and infrared videos is combined using automatic image registration methods. 

For face recognition in video with people at a distance, the challenges are precise registration of faces in low resolution video data and the robustness of super-resolution techniques to variations in pose, lighting, facial expression and the number of video frames. The book presents new video-based techniques for face profile-based recognition and three techniques for super-resolution of frontal and side facial
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imagery acquired from a video. These techniques are based on (a) closed-loop tracking, (b) free-form deformation, and (c) elastic registration. Objective measures, to evaluate the quality of super-resolved imagery for face recognition, are presented based on different conditions encountered during the video capture. 

For integrated gait and face biometrics the challenges are the development of effective techniques at different levels of abstraction. The book presents several systems that integrate information of the side view of face and gait from video data. 

Several fusion schemes are introduced at the match score and feature levels for the integration of super-resolved face and gait. Both face and gait recognition systems integrate information over multiple frames in a video sequence for improved performance. 
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Part I

Introduction to Gait-Based Individual

Recognition at a Distance


Chapter 1

Introduction

This book addresses the problem of recognizing people at a distance in video. 

Recognizing humans and their activities have become important research topics in image processing, computer vision and pattern recognition. Related research in biometrics is placed at high priority for homeland security, border control, anti-terrorism, and automated surveillance since it integrates identity information with these tasks. 

Biometrics is the study of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits, including fingerprint, face, ear, voice, gait, iris, signature, and hand geometry [12, 15, 76, 177, 203]. Each biometric has its relative merits in various operational scenarios. Therefore, the choice of a biometric trait for a particular application depends on a variety of issues besides its match performance. The biometric trait of an individual is characterized by a set of discriminatory features or attributes. Therefore, the performance of a single biometrics system is constrained by the intrinsic factors of a trait. Thus, it is clear that no single biometrics is expected to effectively meet all the requirements (e.g., accuracy, practicality, cost) imposed by all applications. However, this inherent limitation of a single biometric can be alleviated by fusing the information presented by multiple biometrics [13, 17]. For example, the face and gait traits or the fingerprints of the right and left index fingers of an individual may be used together to resolve the identity of an individual. US-Visit program requires fingerprint and face to determine the identity of the travelers at the US borders. Fusion of biometrics helps to “expand” the feature space used to represent individuals. This increases the number of people that can be effectively enrolled in a certain human identification system. A system that consolidates the evidence presented by multiple biometrics is expected to be more reliable. Further, fusing multiple biometrics can also enable indexing of large databases and enhance coverage of the section of the population which is not able to provide any single biometrics. Also multiple biometrics is naturally more robust against spoof attacks as well, as hackers have to contend with more than one biometrics. 

Multiple biometrics are available for recognizing people and activities at a distance in a video network [18, 113]. This book focuses on recognizing individuals at a distance by fusing gait and face in video. It takes us away from typical access control B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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kind of environments to challenging remote scenarios and applications for human recognition at a distance [165]. No active cooperation of the subject is needed. 

Current human recognition methods, such as fingerprints, face or iris biometrics, generally require a cooperative subject, views from certain aspects and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in a real-world under changing environmental conditions. 

Moreover, in many practical applications of personnel identification, most of the established biometrics may be obscured. Gait, which concerns recognizing individuals by the way they walk, can be used as a biometric without the above-mentioned disadvantages. 

It has been found to be difficult to recognize a person from arbitrary views when one is walking at a distance. For optimal performance, a system should make use of as much information as possible from the observations. Face and gait are two biometrics that are most easily obtained at a distance. A brief introduction to their inherent characteristic is given below. 

Gait-Based Human Recognition

Gait is defined as the manner in which a person

walks, and is one of the few biometric traits that can be used to identify humans at a distance [125, 177]. Most gait recognition algorithms attempt to extract the human silhouette in order to derive the spatio-temporal attributes of a moving individual. Hence, the selection of a good model to represent the human body is pivotal to the efficient functioning of a gait recognition systems [146]. Gait-based systems also offer the possibility of tracking an individual over an extended period of time in a video network [18]. However, gait can be affected by clothing, shoes, or environmental context. Special physical conditions such as injury can also change a person’s walking style. The large gait variation of the same person under different conditions (intentionally or unintentionally) reduces the discriminating power of gait as a biometrics [47]. 

Based on their different inherent characteristic, a fusion system, which combines face and gait cues from video sequences, is a potential approach to accomplish the task of human recognition at a distance. The general solution to analyze face and gait video data from arbitrary views is to estimate 3-D models. However, the problem of building reliable 3-D models for non-rigid face, with flexible neck and the articulated human body from low resolution video data, remains a hard one. We have integrated face and gait recognition approaches without resorting to 3-D models. Experiment results shows the effectiveness of the proposed systems for human recognition at a distance in video. A special case, in this book, we have presented a 3D gait recognition system. where the 3D data is obtained from a projector camera system. 

Face-Based Human Recognition

Face recognition is a non-intrusive approach, 

and facial attributes are probably the most common biometrics used to recognize individuals [58, 98, 203]. The applications of facial recognition vary from a static, controlled “mug-shot” authentication to a dynamic, uncontrolled face identification in a cluttered background in videos [198, 203]. Most of the face recognition approaches are based on either the location and shape of facial attributes, such as the
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eyes, eyebrows, nose, lips, and chin and their spatial relationships, or the overall analysis of the face image that represents a face as a weighted combination of a number of canonical faces. While face recognition is conveniently applied, it is easily affected by several factors including resolution, illumination, expression, pose, occlusion, clutter, etc. It is also questionable whether the face itself is a sufficient basis for recognizing a person from a larger number of identities with an extremely high level of confidence [146]. 

1.1 Key Ideas Described in the Book

Fusion of face and gait biometrics for individual recognition makes a strong rationale to overcome the disadvantages of each biometrics. It addresses many real-world applications and can be quite effective in the context of a video network [18]. The key ideas discussed in this book are:

•  Spatio-Temporal Gait Representation, Called the Gait Energy Image ( GEI). Unlike other gait representations which consider gait as a sequence of templates (poses), GEI represents human motion sequence in a single image while preserving temporal information. In comparison to the gait representation by binary silhouette sequence, GEI not only saves storage space and computation time but also it is less sensitive to silhouette noise in individual frames and we do not need to consider the time moment of each frame. GEIs reflect major shapes of silhouettes and their changes over the gait cycle. It accounts for human walking at different speeds. It is referred as the gait energy image because (a) each silhouette image is the space-normalized energy image of human walking at this moment; (b) GEI is time-normalized accumulative energy image of human walking in the complete cycle(s); and (c) a pixel with higher intensity value in GEI means that human walking occurs more frequently at this position (i.e., with higher energy). 

•  GEI-Based Framework for Human Gait Analysis. The use of the GEI-based general framework is discussed in five scenarios of gait-based human recognition and repetitive human activity recognition. It is shown that the proposed general framework achieves good performance in statistical feature fusion for human gait recognition, human recognition based on environmental contexts, view-insensitive human gait recognition, human repetitive activity recognition and recognizing different carrying conditions. Experimental results also show that our techniques can work just as fine in terms of effectiveness of performance while providing all the advantages associated with computational efficiency for real-world applications. 

•  Discriminating Power of Model-Based Gait Features. We use Bayesian based statistical analysis to evaluate the discriminating power of model-based gait features. Through probabilistic simulation, we not only obtain the upper bound on the probability of correct recognition with regard to different human silhouette resolution in ideal cases, but also predict the plots characterizing maximum number of people in the database that can be recognized given the allowable error rate. 
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•  Estimation of 3D Human Motion for Automatic Gait Recognition. A model-based approach is proposed for both single camera and multiple camera scenarios for gait recognition. The approach has the ability to automatically recognize individuals walking from different angles with respect to the image plane. 

•  3D Gait Modeling and Individual Recognition. Unlike the biometrics systems based on 2D images and videos, we present a recognition method using 3D gait biometrics from a projector–camera system. 3D human body data consisting of representative poses over one gait cycle are captured. 3D human body model is fitted to the body data using a bottom–up approach. The entire gait sequence is recovered in 3D from the fitted 3D body model. Then, gait features are defined by dynamic and static features. The similarity measure based on gait features is used for recognition. 

•  Fusion of Color and Thermal Videos. We improve the moving human detection performance by combining color and thermal image sequences using automatic image registration. A hierarchical genetic algorithm (HGA) based scheme is employed to find correspondence so that the preliminary silhouettes from the color and thermal images are well matched. HGA estimates the model parameters within a series of windows with adaptively reduced size at different levels. The obtained correspondence and corresponding transformation are used for image registration in the same scene. 

•  Integrated System for Fusion of Gait and Face. We integrate the information of the  side view  of face (or face profile) and gait from video data. The integration of these two biometrics modalities has not been done before. We have distinguished a side face from a face profile. Face profile refers to the outline of the shape of face as seen from the side. Side face includes not only the outline of the side view of a face, but also the entire side view of eye, nose and mouth, possessing both shape and intensity information. 

•  Face Profile and Its Integration with Gait. We have presented a curvature-based approach for face profile representation, which does not require the extraction of all the fiducial points. A dynamic time warping method is applied to match the face profile portion from nasion to throat. Match score level fusion is used to integrate the super-resolved face profile with gait. 

•  Super-Resolution of Human Face in Video. We have proposed a new face representation, a higher resolution image integrating information from multiple video frames. We present three approaches for super-resolution of frontal and side view face images: (a) closed-loop tracking and super-resolution of frontal face; (b) facial expression tolerant super-resolution of frontal faces; and (c) iterative scheme for super-resolution of side face images. Super-resolution of face overcomes the problem of the limited resolution in video, where it is difficult to get reliable information of a side face directly from a video frame for the recognition task. 

•  Non-reference Quality Evaluation. We propose an objective non-reference quality evaluation algorithm for super-resolved images. Unlike the current quality measures that only use the relationship between the super-resolved image and input images, the proposed quality evaluation method combines it with the relationship between the input images. We have evaluated the performance using the proposed
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quality measure under different conditions, including the variation of pose, lighting, facial expression and the number of input images. The relationship between the quality of the face image and the performance of face recognition is studied based on the experiments on 45 people with data from 90 video sequences. 

•  Match Score and Feature-Level Fusion. We have introduced several fusion schemes at the match score level and the feature level [209, 210] for the integration of face and gait. Both face and gait recognition systems integrate information over multiple frames in a video sequence for improved performance. 

•  Experimental Results and Their Evaluation. We have shown the recognition results on 45 people with data from 100 video sequences collected over seven months. Performance comparisons between different biometrics and different fusion methods are presented. The performance is also shown in cumulative match characteristic (CMC) curves. 

1.2 Organization of the Book

The book consists of 12 chapters and five parts. 

Part I consists of Chap. 1 and it provides an introduction to human recognition at a distance in video. 

Chapter 1 provides an introduction to human recognition at a distance, gait and face-based recognition in video and fusion of gait, face profile and face video biometrics from streams. 

Part II consists of Chaps. 2 to 6 and it deals with gait-based individual recognition Chapter 2 presents an overview of representations for individual and activity recognition by gait. A computationally efficient, gait energy image (GEI) representation, is then introduced to deal with human motion analysis under different situations. 

Chapter 3 builds on the GEI-based general framework introduced in Chap. 2 and develops approaches for individual or activity recognition in different scenarios: (1) statistical feature fusion for human recognition by gait, (2) human recognition based on environmental contexts, (3) view-insensitive human recognition by gait, (4) human repetitive activity recognition in thermal infrared imagery, and (5) recognizing different carrying conditions by hand. 

Chapter 4 presents a Bayesian-based statistical analysis for evaluating the discriminating power of static gait features. The probabilistic approach not only provides the upper bound on the probability of correct recognition (PCR) with regard to different human silhouette resolution, but also predicts the maximum number of people that can be distinguished in a database for an allowable error rate. 

Chapter 5 presents model-based approaches for human recognition by gait. The proposed approach estimates 3D human walking parameters by performing a least squares fit of the 3D kinematic model to the 2D silhouette. Gait signature is formed by estimated model parameters for human recognition. The proposed approach is applied in both the single camera and multiple camera situations. In addition, the
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chapter describes a recent 3D approach for individual recognition by gait where both the model and the data are in 3D. 

Chapter 6 investigates the task of reliable moving human detection from color and thermal image sequences using automatic image registration. A hierarchical scheme is described to automatically find the correspondence between the preliminary human silhouettes extracted from synchronous color and thermal image sequences for image registration. To improve the accuracy of human silhouette extraction, the information from the registered color and thermal images is combined. 

Various fusion strategies are applied for human body silhouette detection by combining registered color and thermal images. 

Part III consists of Chaps. 7–8 and it deals with super-resolution of facial images in video and their quality evaluation. 

Chapter 7 presents three super-resolution approaches specifically developed for face recognition in video. The first approach incrementally superresolves 3D facial texture in a closed-loop system by integrating information frame by frame from a (frontal face) video captured under changing pose and illumination. It recovers illumination, 3D motion and shape parameters from a tracking algorithm and use it to super-resolve 3D texture which, in turn, is fed back to the tracking part to improve the estimation of illumination and motion parameters. The second approach investigates the super-resolution of (frontal face) images in video in the presence of facial expression changes. The approach consists of global tracking, local alignment for precise registration and super-resolution algorithms. It uses a B-spline based resolution aware incremental free form deformation model to recover a dense local nonrigid flow field. The third approach to super-resolution of side face images in video is based on an elastic registration method for image alignment and an iterative method for super-resolution. The results from these three methods are presented. 

Chapter 8 introduces an objective non-reference quality evaluation approach for super-resolved images to be used face recognition. It focuses on evaluating the quality of super-resolved images that are constructed from video captured under different conditions associated with pose, lighting, facial expressions and the number of input images. 

Part IV consists of Chaps. 9, 10 and 11 and it describes score and feature level fusion approaches for integrating face profile and gait, and face and gait for human recognition at a distance in video. 

Chapter 9 provides a system for individual recognition by the fusion of gait and face profile. It presents a curvature-based approach for recognition (based on face profile) which does not require the extraction of all the fiducial points. A dynamic time warping method is applied to match the face profile portion from nasion to throat based on the curvature value. Experiments are performed on two profile face image databases. Subsequently, it presents amatch score level scheme for the fusion of face profile and gait where the features are extracted from the high-resolution side face image and low resolution regular gait images from video. 

Chapter 10 provides the integration of side face and gait at the match score based on the commonly used classifier combination schemes. The fusion of side face and gait is examined, where the super-resolved face image and gait energy image are
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used as the face and gait template, respectively. The proposed method is tested on a database of 100 video sequences. 

Chapter 11 proposes the integration of side face and gait at the feature level using two fusion schemes. In the first scheme, feature concatenation is obtained based on the features of side face and gait, which are obtained separately using the principal component analysis (PCA) and multiple discriminant analysis (MDA) combined method from the super-resolved side face image and the GEI image. In the second scheme, MDA is applied after, not before, the concatenation of face and gait features that are obtained separately. Different fusion methods, including the match score level fusion and the feature level fusion, are compared and analyzed. 

Part V consists of Chap. 12 and it provides a summary of the book for human recognition at a distance in video. 

Chapter 12 provides the conclusions and future work for integrated gait and face recognition. 


Part II

Gait-Based Individual Recognition

at a Distance


Chapter 2

Gait Representations in Video

In this chapter, we first present a spatio-temporal gait representation, called  gait energy image ( GEI), to characterize human walking properties. Next, a general GEI-based framework is developed to deal with human motion analysis under different situations. The applications of this general framework will be discussed in the next chapter. 

2.1 Human Motion Analysis and Representations

Current image-based human recognition methods, such as fingerprints, face or iris biometrics modalities, generally require a cooperative subject, views from certain aspects and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. However, gait also has some limitations, it can be affected by clothing, shoes, or environmental context. Moreover, special physical conditions such as injury can also change a person’s walking style. The large gait variation of the same person under different conditions (intentionally or unintentionally) reduces the discriminating power of gait as a biometric and it may not be as unique as fingerprint or iris, but the inherent gait characteristic of an individual still makes it irreplaceable and useful in visual surveillance. 

In traditional biometric paradigms, individuals of interest are represented by their biometric examples collected in gallery data. In general, the number of examples for each individual is limited to one in gallery data. Then feature vectors are extracted from the gallery examples by various feature extraction algorithms to construct the feature database. In the recognition procedure, the input probe example is processed in the same way to obtain the feature vector that will be compared with those in the database. The recognition decision is made according to the matching scores. This system setup is good for “strong” biometrics such as iris and fingerprint, where the B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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inherent discriminating features are abundance. Even if the data collection condition changes, there are still enough features to distinguish one individual from others. 

This setup may not be appropriate for gait which is supposed to be a“weak” biometric. Human gait properties can be affected by various environmental conditions such as walking surface, carrying objects and environmental temperature, etc. The change of environmental conditions may introduce a large appearance change in the detected human silhouette, which may lead to a failure in recognition. The large gait variation of the same individual under different conditions requires more gallery examples collected from different environmental contexts. However, this requirement is unreal due to the complexity of real-world situations. Due to the difficulty of gait data acquisition, gait gallery examples are generally obtained under similar environmental conditions and the number of examples for each individual is also very limited. 

To overcome this problem, we proposed a new gait representation, gait energy image (GEI), for human recognition [59]. Unlike other gait representations [21, 72]

which consider gait as a sequence of templates, GEI represents human motion in a single image while preserving temporal information. Considering that human walking is a cyclic motion and the human walking properties are not the same in different cycles, we can obtain a series of GEIs from different cycles of human motion. Moreover, we can generate synthetic GEIs through silhouette distortion analysis. Features are further learned from the GEIs so-obtained for human recognition. In this way, the use of GEI partially overcomes the problem mentioned above and achieves good performance in human recognition by gait. 

Human repetitive activity involves a regularly repeating sequence of motion events such as walking, running and jogging. Therefore, GEI can also be used to represent human repetitive activities. In this section, we propose a general GEI-based framework for both human recognition by gait and human activity recognition. Applications of the proposed general framework in different scenarios will be further discussed as case studies in the next chapter. 

2.2 Human Activity and Individual Recognition by Gait

In recent years, various approaches have been proposed for human motion understanding. These approaches generally fall under two major categories: model-based approaches and model-free approaches. When people observe human walking patterns, they not only observe the global motion properties, but also interpret the structure of the human body and detect the motion patterns of local body parts. The structure of the human body is generally interpreted based on their prior knowledge. 

Model-based gait recognition approaches focus on recovering a structural model of human motion, and the gait patterns are then generated from the model parameters for recognition. Model-free approaches make no attempt to recover a structural model of human motion. The features used for gait representation includes: moments of shape, height and stride/width, and other image/shape templates. 

2.2 Human Activity and Individual Recognition by Gait
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 2.2.1 Human Recognition by Gait

2.2.1.1 Model-Based Approaches

Niyogi and Adelson [126] make an initial attempt for gait-based recognition in a spatio-temporal (XYT) volume. They first find the bounding contours of the walker, and then fit a simplified stick model on them. A characteristic gait pattern in XYT

is generated from the model parameters for recognition. Yoo et al. [193] estimate hip and knee angles from the body contour by linear regression analysis. Then trigonometric-polynomial interpolant functions are fitted to the angle sequences, and the parameters so-obtained are used for recognition. In Lee and Grimson’s work [96], human silhouette is divided into local regions corresponding to different human body parts, and ellipses are fitted to each region to represent the human structure. Spatial and spectral features are extracted from these local regions for recognition and classification. 

In these model-based approaches, the accuracy of human model reconstruction strongly depends on the quality of the extracted human silhouette. In the presence of noise, the estimated parameters may not be reliable. To obtain more reliable estimates, Tanawongsuwan and Bobick [160] reconstruct the human structure by tracking 3D sensors attached on fixed joint positions. However, their approach needs lots of human interaction. Wang et al. [181] build a 2D human cone model, track the walker under the Condensation framework, and extract dynamic features from different body part for gait recognition. Zhang et al. [202] use a simplified five-link biped locomotion human model for gait recognition. Gait features are first extracted from image sequences, and are then used to train hidden Markov models for recognition. 

2.2.1.2 Model-Free Approaches

Moments of shape is one of the most commonly used gait features. Little and Boyd [107] describe the shape of human motion with a set of features derived from moments of a dense flow distribution. Shutler et al. [156] include velocity into the traditional moments to obtain the so-called velocity moments (VMs). A human motion image sequence can be represented as a single VM value with respect to a specific moment order instead of a sequence of traditional moment values for each frame. He and Debrunner’s [65] approach detects a sequence of feature vectors based on Hu’s moments of each motion segmented frame, and the individual is recognized from the feature vector sequence using hidden Markov models (HMMs) [152]. Sundarsen et al. [159] also proposed HMMs for individual. 

BenAbdelkader et al. [11] use height, stride and cadence as features for human identification. Kale et al. [82, 85] choose the width vector from the extracted silhouette as the representation of gait. Continuous HMMs are trained for each person and then used for gait recognition. In their later work [83], different gait features
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are further derived from the width vector and recognition is performed by a direct matching algorithm. 

To avoid the feature extraction process which may reduce the reliability, Murase and Sakai [118] propose a template matching method to calculate the spatio-temporal correlation in a parametric eigenspace representation for gait recognition. 

Huang et al. [72] extend this approach by combining transformation based on canonical analysis, with eigenspace transformation for feature selection. BenAbdelkader et al. [10] compute the self-similarity plot by correlating each pair of aligned and scaled human silhouette in an image sequence. Normalized features are then generated from the similarity plots and used for gait recognition via eigenspace transformation. Wang et al. [180] generate the boundary distance vector from the original human silhouette contour as the template, which is used for gait recognition via eigenspace transformation. Similarly, Boulgouris et al. [24] extract gait signatures through angular analysis, and identity recognition and verification are based on the matching of time normalized walking cycles. 

Han and Bhanu [59] proposed a new gait representation, called gait energy image (GEI), which represents human motion in a single image while preserving temporal information. Gait signatures are computed from original and derived gait sequences through principal component and discriminant analysis. Xu et al. [184]

compute gait signatures from GEI through a matrix based analysis, named coupled subspace analysis and discriminant analysis with tensor representation, instead of conventional principal component and discriminant analysis based on vector representation. Alternative gait feature extraction methods include Radon transform and linear discriminant analysis [23], marginal Fisher analysis [185], discriminant locally linear embedding [104], general tensor discriminant analysis and Gabor features [161, 162], multilinear principal component analysis [111, 112], factorial HMM and parallel HMM [28], etc. Lam et al. [94] propose the motion silhouette contour templates (MSCTs) and static silhouette templates (SSTs), which capture the motion and static characteristic of gait, and fuse them for human recognition. 

As a direct template matching approach, Phillips et al. [137, 150] measure the similarity between the gallery sequence and the probe sequence by computing the correlation of corresponding time-normalized frame pairs. Similarly, Collins et al. [32] extract key frames and the similarity between two sequences is computed from normalized correlation. Tolliver and Collins [166] cluster human silhouettes/poses of each training sequence into  k  shapes. In the recognition procedure, the silhouettes in a testing sequence are also classified into  k  prototypical shapes which are compared to prototypical shapes of each training sequence for similarity measurement. Liu and Sarkar [108] use a generic human walking model, derived from a population, to generate a dynamics normalized gait sequence. The dissimilarity between gait sequences are measured by the summation of the distance of corresponding stances in the feature space, which is transformed from the silhouette space by principal component analysis and linear discriminant analysis. 

2.3 Gait Energy Image (GEI) Representation
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 2.2.2 Human Activity Recognition

2.2.2.1 Model-Based Approaches

Guo et al. [56] represent the human body structure in the silhouette by a stick figure model. The human motion characterized by a sequence of the stick figure parameters is used as the input to a neural network for classification. Fujiyoshi and Lipton [46]

analyze the human motion by producing a star skeleton, determined by extreme point estimation, obtained from the extracted silhouette boundaries. These cues are used to recognize human activities such as walking or running. Sappa et al. [149]

develop a technique for human motion recognition based on the study of feature points’ trajectories. Peaks and valleys of points’ trajectories are first detected to classify human activity using prior knowledge of human body kinematics structure together with the corresponding motion model. In model-based approaches, the accuracy of human model reconstruction strongly depends on the quality of the extracted human silhouette. In the presence of noise, the estimated parameters may not be reliable. 

2.2.2.2 Model-Free Approaches

Polana and Nelson [139] analyze human repetitive motion activity based on bottom up processing, which does not require the prior identification of specific parts. 

Motion activity is recognized by matching against a spatio-temporal template of motion features. Rajagopalan and Chellappa [141] develop a higher-order spectral analysis-based approach for detecting people by recognizing repetitive motion activity. The stride length is determined in every frame, and the bispectrum which is the Fourier transform of the triple correlation is used for recognition. Bobick and Davis [21] propose motion-energy image (MEI) and motion-history image (MHI) for human movement type representation and recognition. Both MEI and MHI are vector-images where the vector value at each pixel is a function of the motion properties at this location in an image sequence. Vega and Sarkar [172] discriminate between motion types based on the change in the relational statistics among the detected image features. They use the distribution of the statistics of the relations among the features for recognition. Davis [39] proposes a probabilistic framework to address the issue of rapid-and-reliable detection of human activities using posterior class ratios to verify the saliency of an input before committing to any activity classification. 

2.3 Gait Energy Image (GEI) Representation

In this section, we only consider individual recognition by activity-specific human motion, i.e., regular human walking, which is used in most current approaches of individual recognition by gait. 
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 2.3.1 Motivation

Regular human walking can be considered as cyclic motion where human motion repeats at a stable frequency. While some gait recognition approaches [72] extract features from the correlation of all the frames in a walking sequence without considering their order, other approaches extract features from each frame and compose a feature sequence for the human walking sequence [32, 107, 150]. During the recognition procedure, these approaches either match the statistics collected from the feature sequence, or match the features between the corresponding pairs of frames in two sequences that are time-normalized with respect to their cycle lengths. The fundamental assumptions made here are: (a) the order of poses in human walking cycles is the same, i.e., limbs move forward and backward in a similar way among normal people; (b) differences exist in the phase of poses in a walking cycle, the extent of limbs, and the shape of the torso, etc. Under these assumptions, it is possible to represent the spatio-temporal information in a single 2D gait template instead of an ordered image sequence. 

 2.3.2 Representation Construction

We assume that silhouettes have been extracted from original human walking sequences. The silhouette extraction and preprocessing procedure will be introduced in Sect. 2.4.1 in detail. Given the normalized and aligned binary gait silhouette images  Bt (x, y)  at time  t  in a sequence, the grey-level gait energy image (GEI) is defined as follows

 N



 G(x, y) = 1

 Bt (x, y), 

(2.1)

 N t=1

where  N  is the number of frames in the complete cycle(s) of a silhouette sequence, t  is the frame number in the sequence (moment of time),  x  and  y  are 2D image coordinates. Figure 2.1 shows the sample silhouette images in a gait cycle from two people, and the right most image is the corresponding GEI. As expected, GEI reflects major shapes of silhouettes and their changes over the gait cycle. We refer to it as gait energy image because: (a) each silhouette image is the space-normalized energy image of human walking at this moment; (b) GEI is the time-normalized accumulative energy image of human walking in the complete cycle(s); (c) a pixel with higher intensity value in GEI means that human walking occurs more frequently at this position (i.e., with higher energy). 

 2.3.3 Relationship with MEI and MHI

Bobick and Davis [21] propose motion-energy image (MEI) and motion-history image (MHI) for human movement recognition. Both MEI and MHI are vector-images
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Fig. 2.1 Examples of normalized and aligned silhouette frames in different human walking sequences. The rightmost image  in each row  is the corresponding gait energy image (GEI) where the vector value at each pixel is a function of the motion properties at this location in an image sequence. As compared to MEI and MHI, GEI targets specific normal human walking representation and we use GEI as the gait template for individual recognition. 

MEI is a binary image which represents where motion has occured in an image sequence:

 τ −1



 Eτ (x, y, t) =

 D(x, y, t −  i), 

(2.2)

 i=0

where  D(x, y, t )  is a binary sequence indicating regions of motion,  τ  is the duration of time,  t  is the moment of time,  x  and  y  are values of 2D image coordinate. To represent a regular human walking sequence, if  D(x, y, t )  is normalized and aligned as  B(x, y, t )  in (2.1), MEI  EN (x, y, N )  is the binary version of GEI  G(x, y). 

MHI is a grey-level image which represents how motion in the image is taking place:

 τ, 

if  D(x, y, t ) = 1; 

 Hτ (x, y, t) =

(2.3)

max{0 , Hτ (x, y, t − 1 ) − 1} ,  otherwise. 

 2.3.4 Representation Justification

In comparison with the gait representation by binary silhouette sequence, GEI representation saves both storage space and computation time for recognition and is less sensitive to silhouette noise in individual frames. Consider a noisy silhouette image  Bt (x, y)  that is formed by the addition of noise  ηt (x, y)  to an original silhouette image  ft (x, y), that is,  Bt (x, y) =  ft (x, y) +  ηt (x, y), where we assume that
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at every pair of coordinates  (x, y)  the noise at different moments  t  is uncorrelated and identically distributed. Under these constraints, we further assume that  ηt (x, y) satisfies the following distribution:

⎧

⎪

⎨  η 1 t(x, y):  P { ηt(x, y) = −1} =  p, P { ηt(x, y) = 0} = 1 −  p, if  f

 η

 t (x, y) = 1 , 

 t (x, y) = ⎪

(2.4)

⎩  η 2 t(x, y):  P { ηt(x, y) = 1} =  p, P { ηt(x, y) = 0} = 1 −  p, if  ft (x, y) = 0 . 

We have



− p,  if  f

 E η

 t (x, y) = 1, 

 t (x, y)

=

(2.5)

 p, 

if  ft (x, y) = 0

and

 σ  2

=  σ  2

=  σ  2

=  p( 1 −  p). 

(2.6)

 ηt (x,y)

 η 1 t (x,y)

 η 2 t (x,y)

Given a walking cycle with  N  frames where  ft (x, y) = 1 at a pixel  (x, y)  only in M  frames, we have

 N



 N



 N



 G(x, y) = 1

 Bt (x, y) = 1

 ft (x, y) + 1

 ηt (x, y)

 N

 N

 N

 t =1

 t =1

 t =1

=  M + ¯ η(x, y). 

(2.7)

 N

Therefore, the noise in GEI is





 N



 M



 N



¯ η(x, y) = 1

 ηt (x, y) = 1

 η 1 t (x, y) +

 η 2 t (x, y) . 

(2.8)

 N

 N

 t =1

 t =1

 t = M+1

We have









 M





 N







 E ¯ η(x, y) = 1

 E η 1 t (x, y) +

 E η 2 t (x, y)

 N

 t =1

 t = M+1





= 1  M(− p) +  (N −  M)p =  N − 2 M p N

 N

and







2

 σ  2¯

=  E ¯ η(x, y) −  E ¯ η(x, y)

 η(x,y)

 M







= 1  E

 η 1 t (x, y) −  E η 1 t (x, y)

 N  2

 t =1



 N





2

+

 η 2 t (x, y) −  E η 2 t (x, y)

 t = M+1





= 1  Mσ  2

+  (N −  M)σ  2

= 1  σ  2

 . 

 N  2

 η 1 t (x,y)

 η 2 t (x,y)

 N ηt (x,y)
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Therefore, the mean of the noise in GEI varies between − p  and  p  depending on M  while its variability ( σ  2¯

) decreases. If  M =  N  at  (x, y) (all  f

 η(x,y)

 t (x, y) = 1), 

 E{ ¯ η(x, y)} becomes − p; if  M = 0 at  (x, y) (all  ft (x, y) = 0),  E{ ¯ η(x, y)} becomes  p. At the location  (x, y), the mean of the noise in GEI is the same as that in the individual silhouette image, but the noise variance reduces so that the probability of outliers is reduced. If  M  varies between 0 and  N  at  (x, y),  E{ ¯ η(x, y)} also varies between  p  and − p. Therefore, both the mean and the variance of the noise in GEI are reduced compared to the individual silhouette image at these locations. At the extreme, the noise in GEI has zero mean and reduced variance where  M =  N/ 2. 

As a result, GEI is less sensitive to silhouette noise in individual frames. 

2.4 Framework for GEI-Based Recognition

In this section, we describe a GEI-based general framework for the purpose of recognition. First, human silhouettes are extracted and processed to detect the base frequency and phase for each frame. GEIs are then constructed from difference human motion cycles according to different recognition purpose. Next, features are learned from training GEI templates by statistical analysis. The recognition is performed by matching features between probe and gallery templates. The system diagram is shown in Fig. 2.2. 

 2.4.1 Silhouette Extraction and Processing

The raw silhouettes are extracted by a simple background subtraction method. This method is relatively easy to implement and requires less computational time. Once a Gaussian model of the background is built using sufficiently large number of frames, given a foreground frame, for each pixel, we can estimate whether it belongs to the background or foreground by observing the pixel value compared with the mean and standard deviation values at this pixel. The raw silhouettes so-obtained are further processed by size normalization (proportionally resizing each silhouette image so that all silhouettes have the same height) and horizontal alignment (centering the upper half silhouette part with respect to its horizontal centroid) [150]. In a silhouette sequence so-obtained, the time series signal of lower half silhouette part Fig. 2.2 Diagram of the proposed GEI-based framework for the purpose of recognition

[image: Image 3]
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Fig. 2.3 Frequency and

phase estimation of human

walking

size from each frame indicates the motion frequency and phase information. The obtained time series signal consists of few cycles and lots of noise, which lead to sidelobe effect in the Fourier spectrum. To avoid this problem, we estimate the motion frequency and phase by maximum entropy spectrum estimation [107] from the obtained time series signal as shown in Fig. 2.3. 

 2.4.2 Feature Extraction

Once we obtain a series of training GEI templates for each person (class), the problem of their excessive dimensionality occurs. There are two classical linear approaches for finding transformations for dimensionality reduction—principal component analysis (PCA) and multiple discriminant analysis (MDA) that have been effectively used in face recognition [9]. PCA seeks a projection that best represents the data in the least-squares sense, while MDA seeks a projection that best separates the data in the least-squares sense. Huang et al. [72] combine PCA and MDA to achieve the best data representation and the best class separability simultaneously. 

In our approach, the learning procedure follows this combination approach. 

Given  n d-dimensional training GEI templates {x1 , x2 , . . . , x n}, PCA minimizes the function







 n



2



 d





 Jd =



−

m +

 akie i

x k  , 

(2.9)

 k=1

 i=1
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where  d  < d, m = 1

 n

x

 n

 k=1  k , and {e1 , e2 , . . . , e d } is a set of unit vectors.  Jd is minimized when e1, e2, . . . , e d are the  d eigenvectors of the scatter matrix  S  having the largest eigenvalues, where

 n



 S =

 (x k − m )(x k − m )T . 

(2.10)

 k=1

The  d-dimensional feature vector y k  is obtained from the x k  as follows y k =  M pcax k = [ a 1 , . . . , ad] T = [e1 , . . . , e d] T  x k, k = 1 , . . . , n. 

(2.11)

Suppose that the  n d-dimensional principal component vectors {y1 , y2 , . . . , y n}

belong to  c  classes. MDA seeks a transformation matrix  W  that maximizes the ratio of the between-class scatter matrix  SB  to the within-class scatter matrix  SW :

| ˜ SB|

| WT SBW|

 J (W ) =

=

| ˜ S

| WT S

 W |

 W W |  . 

(2.12)

The within-class scatter  SB  is defined as

 c



 SW =

 Si, 

(2.13)

 i=1

where



 Si =

 (y − m i)(y − m i)T

(2.14)

y∈ Di

and



m i = 1

y , 

(2.15)

 ni y∈ Di

where  Di  is the training template set that belongs to the  i th class and  ni  is the number of templates in  Di . The within-class scatter  SB  is defined as c



 SB =

 ni(m i − m )(m i − m )T , (2.16)

 i=1

where



m = 1

y , 

(2.17)

 n y∈ D

and  D  is the whole training template set.  J (W )  is maximized when the columns of W  are the generalized eigenvectors that correspond to the largest eigenvalues in SB w i =  λiSW w i. 

(2.18)

There are no more than  c − 1 nonzero eigenvalues, and the corresponding eigenvectors v1 , . . . , v c−1 form the transformation matrix. The  (c − 1 )-dimensional feature vector z k  is obtained from the  d-dimensional principal component vector y k: z k =  M mday k = [v1 , . . . , v c−1] T  y k, k = 1 , . . . , n. 

(2.19)
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For each training gait template, its gait feature vector is obtained as follows z k =  M mda M pcax k =  T  x k, 

 k = 1 , . . . , n. 

(2.20)

The obtained feature vectors represent the  n  templates for individual recognition. 

2.5 Summary

In this chapter, we presented a new spatio-temporal gait representation, called the gait energy image (GEI). Unlike other gait representations which consider gait as a sequence of templates (poses), GEI represents human motion sequence in a single image while preserving temporal information. Moreover, we described a general GEI-based framework for human motion analysis. Applications of the proposed general framework in different motion scenarios will be further discussed, as case studies, in detail in the next chapter. 

Chapter 3

Model-Free Gait-Based Human Recognition

in Video

In this chapter, the GEI-based general framework presented earlier is used for individual recognition in diverse scenarios. 

Insufficient training data associated with an individual is a major problem in gait recognition due to the difficulty of the data acquisition. To address this issue, we not only compute real templates from training silhouette sequences directly, but also generate synthetic templates from training sequences by simulating silhouette distortion. Features learned from real templates characterize human walking properties provided in training sequences, and features learned from synthetic templates predict gait properties under other conditions. A feature fusion strategy is therefore applied at the decision level to improve recognition performance. 

Human gait properties can be affected by various environmental contexts such as walking surface and carrying objects. We design different classifiers based on different sets of GEIs, and combine these classifiers with the knowledge of environmental contexts to improve the recognition performance. 

Human gait appearance depends on various factors including locations of the camera and the person, the camera axis and the walking direction. By analyzing these factors, we generate a series of view-insensitive GEIs for gait recognition in monocular image sequences without recovering the human body structure and camera parameters. 

We investigate human repetitive activity properties from thermal infrared imagery, where human motion can be easily detected from the background regardless of lighting conditions and colors of the human surfaces and backgrounds. GEI is used here for human repetitive activity recognition. Experimental results show that the proposed general framework achieves good performance in all of these scenarios. 

3.1 Statistical Feature Fusion for Human Recognition by Gait

In this section, we describe the statistical feature fusion approach for gait-based human recognition. In the training procedure, each gallery silhouette sequence is B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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Fig. 3.1 System diagram of human recognition using the proposed statistical feature fusion approach

divided into cycles by frequency and phase estimation. Real gait templates are then computed from each cycle, and distorted to generate synthetic gait templates. Next, we perform a component and discriminant analysis procedure on real and synthetic gait templates, respectively. As a result, real and synthetic transformation matrices and real features and synthetic features that form feature databases are obtained. In the recognition procedure, each probe silhouette sequence is processed to generate real and synthetic gait templates. These templates are then transformed by real and synthetic transformation matrices to obtain real and synthetic features, respectively. 

Probe features are compared with gallery features in the database, and a feature fusion strategy is applied to combine real and synthetic features at the decision level to improve recognition performance. The system diagram is shown in Fig. 3.1. 

 3.1.1 Real and Synthetic Gait Templates

The number of training sequences for each person is limited (one or several) in real surveillance applications. This makes it difficult to recognize individuals under various other conditions not exhibited in the data. To solve this problem, one solution is to directly measure the similarity between the gallery (training) and probe (testing) templates. However, direct template matching is sensitive to silhouette distortions such as scale and displacement changes. Statistical feature learning may extract inherent properties of training templates for an individual and, therefore, it will be less sensitive to such silhouette distortion. However, with gait templates obtained under similar conditions, the learned features may overfit the training data. Therefore, to overcome these problems we generate two sets of gait templates—real templates and synthetic templates. 

The real gait templates for an individual are directly computed from each cycle of the silhouette sequence of this individual. Let { Ri},  i = 1 , . . . , nR, be the real GEI template set of the individual, where  nR  is the number of completes cycles in the silhouette sequence. Figure 3.2 shows an example of the real GEI template set from a long gait sequence of an individual. Note the similarity of template appearance in the presence of noise. 

Although real gait templates provide cues for individual recognition, all the templates from the same sequence are obtained under the “same” physical conditions. If

[image: Image 4]
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Fig. 3.2 An example of real gait template set generated from a long silhouette sequence of an individual

Fig. 3.3 Procedure of generating synthetic GEI templates from an original template. The  leftmost template is the original template, other templates are generated by gradually cutting  the bottom portion (templates  in the first row) and fitting it to the original template size (templates  in the first row). Synthetic templates  in the second row  are used as the synthetically generated gait templates the conditions change, the learned features may not work well for recognition. Various conditions affect the silhouette appearance of the same person: walking surface, shoe, clothing, etc. The common silhouette distortion in the lower part of the silhouette occurs under most conditions. This kind of distortion includes shadows, missing body parts, and sequential silhouette scale changes. For example, silhouettes on the grass surface may miss the bottom part of feet, while silhouettes on the concrete surface may contain strong shadows. In these cases, silhouette size normalization errors occur, and silhouettes so-obtained may have different scales with respect to silhouettes on other surfaces. Therefore, we generate a series of synthetic gait templates with small silhouette scale changes. They will be less sensitive to the distortion in the lower silhouette. Note that a moving object detection approach can also provide information about the material type on which a person is walking [121]. This will allow the generation of appropriate models of human walking based on the kind of surface that is encountered. In the following, we describe the generation of synthetic GEI templates. 

Let  R

 nR

0 = 1

 R

 n

 i  be the fundamental GEI template computed from  nR  cy-

 R

 i=1

cles of a given silhouette sequence (the leftmost image in Fig. 3.3). Assume that  k bottom rows of  R 0 are missed due to some kind of environmental conditions. According to the silhouette preprocessing procedure in Sect. 3.2, the remaining part needs to be proportionally resized to fit to the original height. Thus, we can generate a series of new synthetic GEI templates corresponding to different lower body part distortion. 
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1. Given an original GEI template of size  X ×  Y

2. Let  h  be the highest row from the bottom corresponding to maximum allowable distortion

3. Let  k = 2

4. Initialize  i = 1

5. Remove  r =  k ∗  i  rows from the bottom of the original template 6. Resize the remaining template of  (X −  r) ×  Y  to  X ×  XY  by nearest neighbor X− r

interpolation

7. Equally cut left and right borders to generate a synthetic template  Si  of size  X ×  Y

8. Let  i =  i + 1

9. If  k ∗  i ≤  h, go to step 5; otherwise, stop

Fig. 3.4 Pseudo code for generating synthetic GEI templates

Synthetic gait templates are computed from  R 0 of a given silhouette sequence by following a distortion model based on anthropometric data [136]. The length from the bottom of bare foot to the ankle above the sole is approximately 1 / 24 of the stature. Considering the height of heelpiece and shadow, we select 2 / 24 of the silhouette height from the bottom of an original GEI template and the associated width as an estimate of the allowable distortion for all original training GEI templates. For all original testing GEI templates, we use 3 / 24 of the silhouette height for distortion. 

We allow larger distortion for testing templates since we want to allow larger distortion in unknown situations. The pseudo code for generating synthetic GEI templates is shown in Fig. 3.4. 

The synthetic templates, { Si},  i = 1 , . . . , nS  shown in Fig. 3.3 expanded from the same  R 0 have similar global shape properties but different bottom parts and different scales. Therefore, they can be effectively used for individual recognition in the presence of silhouette scale changes and lower silhouette distortion encountered in the real-world applications. 

In order to find effective features, we use the statistical feature extraction method described in Chap. 2 to learn gait features from real and synthetic templates. Features learned from real templates characterize human walking properties provided in training sequences, and features learned from synthetic templates simulate gait properties under other real-world conditions that incur distortion in the lower (feet) part of the silhouette. 

 3.1.2 Human Recognition

We train the real gait templates and synthetic gait templates separately for feature extraction. Let {r} be the set of real feature vectors extracted from real training gait templates, and  Tr  be the corresponding real transformation matrix. Similarly, let {s} be the set of synthetic feature vectors extracted from synthetic training gait templates, and  Ts  is the synthetic transformation matrix. The class centers for {r}
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and {s} are m ri = 1

r and m

s, where  i = 1 , . . . , c,  c  is the

 n

 si = 1

 i

r∈ Ri

 mi

s∈ Si

number of classes (individuals) in the database,  Ri  is the set of real feature vectors belonging to the  i th class,  Si  is the set of synthetic feature vectors belonging to the  i th class,  ni  is the number of feature vectors in  Ri , and  mi  is the number of feature vectors in  Si . Assuming that feature vectors in each class are Gaussian with the same covariance matrix  Σ =  σ  2 I , the Bayesian classifier becomes minimum Euclidean distance classifier that is used for individual recognition. 

Given a probe gait silhouette sequence  P , we follow the procedure in Sect. 4.1 to generate real gait templates { Rj },  j = 1 , . . . , nR  and synthetic gait templates { Sj }, j = 1 , . . . , nS . The corresponding real and synthetic feature vector sets are obtained as follows

{ ˆ

 RP } : ˆr j =  TrRj , j = 1 , . . . , nR  and (3.1)

{ ˆ

 SP } : ˆs j =  TsSj , j = 1 , . . . , nS. 

For the classifier based on real gait templates, we define

 nR



 D(  ˆ

 RP , Ri) = 1

ˆr j − m ri , i = 1 , . . . , c. 

(3.2)

 nR j=1

We assign  P ∈  ωk  if

 c

 D(  ˆ

 RP , Rk) = min  D(  ˆ

 RP , Ri). 

(3.3)

 i=1

For the classifier based on synthetic gait templates, we define

 nS

 D(  ˆ

 SP , Si) = min ˆs j − m si , i = 1 , . . . , c. 

(3.4)

 j =1

We assign  P ∈  ωk  if

 c

 D(  ˆ

 SP , Sk) = min  D(  ˆ

 SP , Si). 

(3.5)

 i=1

For the fused classifier, we define





 D { ˆ

 RP ,  ˆ

 SP } , { Ri, Si}

=

 c(c − 1 )D(  ˆ

 RP , Ri)





+

 c(c − 1 )D(  ˆ

 SP , Si)





 , (3.6)

2

 c

 c

 D(R

2

 c

 c

 D(S

 i=1

 j =1 ,j = i

 i , Rj )

 i=1

 j =1 ,j = i

 i , Sj )





for  i = 1 , . . . , c, where 2

 c

 c

 D(R

 i=1

 j =1 ,j = i

 i , Rj )/c(c − 1 )  is the average dis-

tance between real feature vectors of every two classes in the database which is used to normalize  D(  ˆ

 R

 c

 c

 P , Ri ), and 2

 D(S

 i=1

 j =1 ,j = i

 i , Sj )/c(c − 1 )  has the

similar meaning for the synthetic features. We assign  P ∈  ωk  if c





 D { ˆ

 RP ,  ˆ

 SP } , { Rk, Sk} = min  D { ˆ

 RP ,  ˆ

 SP } , { Ri, Si}  . 

(3.7)

 i=1
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 3.1.3 Experimental Results

3.1.3.1 Data and Parameters

Our experiments are carried out on the USF HumanID gait database [150]. This database consists of persons walking in elliptical paths in front of the camera. For each person, there are up to 5 covariates: viewpoints (left/right), two different shoe types, surface types (grass/concrete), carrying conditions (with/without a briefcase), time and clothing. Twelve experiments are designed for individual recognition as shown in Table 3.1. The gallery set contains 122 sequences/individuals. Individuals are unique in the gallery and each probe set, and there are no common sequences between the gallery set and any of the probe sets. Also all the probe sets are distinct. The real GEIs of three individuals in the gallery set and their corresponding sequences in probe sets A–L are shown in Fig. 3.5. 

Table 3.1 Twelve experiments designed for human recognition on USF HumanID database Experiment label

Size of probe set

Difference between gallery and probe sets

A

122

View

B

54

Shoe

C

54

View and shoe

D

121

Surface

E

60

Surface and shoe

F

121

Surface and view

G

60

Surface, shoe and view

H

120

Briefcase

I

60

Shoe and briefcase

J

120

View and briefcase

K

33

Time, shoe and clothing

L

33

Surface and time

Fig. 3.5 GEI examples in USF HumanID database
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Sarkar et al. [150] propose a baseline approach to extract human silhouette and recognize an individual in this database. For comparison, they provide extracted silhouette data which can be found at the website http://marathon.csee.usf.edu/

GaitBaseline/. Our experiments begin with these extracted binary silhouette data. 

Silhouette data of version 1.7 (extracted from the parameterized algorithm) contains the gallery set (71 sequences/individuals) and probe set A–G only; while silhouette data of version 2.1 (extracted from the parameter-free algorithm) contains the gallery set (122 sequences/individuals) and all probe sets. The results on data from version 1.7 and 2.1 are shown in Tables 3.2 and 3.3, respectively. 

Table 3.2 Comparison of recognition performance (rank 1) using different approaches on silhouette sequence version 1.7. (Legends: USF—direct frame shape matching [150]; CMU—key frame shape matching [166]; UMD—HMM framework [85]; Real—proposed real gait feature classifier only; Synthetic—proposed synthetic gait feature classifier only; Fusion—proposed gait feature fusion)

USF

CMU

UMD

Our approach

Real

Synthetic

Fusion

A

79%

87%

99%

100%

97%

100%

B

66%

81%

89%

85%

88%

90%

C

56%

66%

78%

80%

80%

85%

D

29%

21%

35%

30%

42%

47%

E

24%

19%

29%

33%

48%

57%

F

30%

27%

18%

21%

33%

32%

G

10%

23%

24%

29%

40%

31%

Table 3.3 Comparison of recognition performance on silhouette sequence version 2.1. (Legends: USF—direct frame shape matching [150]; Real—proposed real gait feature classifier only; Synthetic—proposed synthetic gait feature classifier only; Fusion—proposed gait feature fusion) Rank 1 performance

Rank 5 performance

Baseline

Our approach

Baseline

Our approach

Real

Synthetic

Fusion

Real

Synthetic

Fusion

A

73%

89%

84%

90%

88%

93%

93%

94%

B

78%

87%

93%

91%

93%

93%

96%

94%

C

48%

78%

67%

81%

78%

89%

93%

93%

D

32%

36%

53%

56%

66%

65%

75%

78%

E

22%

38%

45%

64%

55%

60%

71%

81%

F

17%

20%

30%

25%

42%

42%

54%

56%

G

17%

28%

34%

36%

38%

45%

53%

53%

H

61%

62%

48%

64%

85%

88%

78%

90%

I

57%

59%

57%

60%

78%

79%

82%

83%

J

36%

59%

39%

60%

62%

80%

64%

82%

K

3%

3%

21%

6%

12%

6%

33%

27%

L

3%

6%

24%

15%

15%

9%

42%

21%

32
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There are two parameters in our proposed approach: the size of distortion area for generating synthetic templates and the number of principal components  d in (2.9). 

The former parameter has been discussed earlier in this chapter. The latter parameter d is chosen to facilitate the solution of (2.18). If  d  < c, where  c  is the number of classes, or  d is too large (some elements in principal component vectors are too small),  SW  matrix becomes uninvertable. We choose  d = 2 c  in our approach. 

3.1.3.2 Performance Evaluation

The experimental results as well as comparison with other approaches of individual recognition by gait are shown in Tables 3.2 and 3.3. In these tables, rank 1 performance means the percentage of the correct subjects appearing in the first place of the retrieved rank list, and rank 5 means the percentage of the correct subjects appearing in any of the first five places of the retrieved rank list. The performance in these tables is the recognition rate under these two definitions. 

We perform experiments using (a) real features (obtained GEI without distortion), (b) synthetic features, and (c) fused features according to rules in (3.3), (3.5), and (3.7), respectively. Table 3.3 compares the recognition performance of USF

baseline algorithm [150] and our proposed approach. It can be seen that the rank 1

performance of the proposed real feature classifier is better than or equivalent to that of the baseline algorithm in all the experiments. The rank 5 performance of the real feature classifier is better than that of the baseline algorithm on most experiments but slightly worse on D. This shows the inherent representational power of GEI and demonstrates that matching features learned from real gait templates achieves better recognition performance than direct matching between individual silhouette frame pairs in the baseline algorithm. 

The performance of proposed synthetic feature classifier is significantly better than that of real feature classifier in experiments D–G and K–L. Probe sets in D–G

have the common difference of walking surface with respect to the gallery set, and probe set in K–L have the common difference of time with respect to the gallery set. In these probe sets, there is silhouette distortion in the lower body part compared with silhouettes in the gallery set. As expected, the experimental results show that the proposed synthetic feature classifier is insensitive to this kind of distortion compared with the real feature classifier. However, the proposed synthetic feature classifier sacrifices the performance in experiments H–J where probe sets contain people who are carrying briefcases (as compared to the gallery set). The distortions as a result of briefcase occur beyond the selected distortion area. 

The fused feature classifier achieves better performance than individual real feature classifier and synthetic feature classifier in most experiments, and achieves significantly better performance (both ranks 1 and 5) than the baseline algorithm in all the experiments. This shows that the fusion approach is effective and it takes the advantage of merits of individual features. 

Although the proposed fusion approach achieves significantly better results than the baseline algorithm, its performance is still not satisfactory in the presence of
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Table 3.4 Comparison of recognition performance (rank 5) using different approaches on silhouette sequence version 1.7. (Legends: USF—direct frame shape matching [150]; CMU—key frame shape matching [166]; UMD—HMM framework [85]; Real—proposed real gait feature classifier only; Synthetic—proposed synthetic gait feature classifier only; Fusion—proposed gait feature fusion)

USF

CMU

UMD

Our approach

Real

Synthetic


Fusion

A

96%

100%

100%

100%

99%

100%

B

80%

90%

90%

85%

90%

93%

C

76%

83%

90%

88%

88%

93%

D

61%

59%

65%

55%

70%

79%

E

52%

50%

65%

55%

69%

69%

F

45%

53%

60%

41%

58%

70%

G

33%

43%

50%

48%

66%

67%

large silhouette distortion such as probe sets K and L. Examining the columns K

and L in Fig. 3.5, note that K and L are quite different from the gallery in time, shoe and clothing, and time and surface, respectively. This requires a more complex model and analysis for distortion in these cases. 

Tables 3.2 and 3.4 compare the recognition performance of different published approaches on silhouette version 1.7. The ranks 1 and 5 performance of real feature classifier is better than other approaches in A, C (rank 1 only), E and G, and slightly worse in B, D and F. The ranks 1 and 5 performance of synthetic feature classifier is better than other approaches in almost all the experiments but slightly worse than UMD HMM approach in A and B. The proposed fusion approach takes advantage of real and synthetic features and, therefore, achieves better performance (both ranks 1

and 5) than other approaches in all the experiments. 

3.2 Human Recognition Based on Environmental Context

In traditional biometric paradigms, individuals of interest are represented by their biometric examples in the gallery data. In general, the gallery examples are obtained under the similar environmental conditions (context) and the number of examples for each individual is limited to one. This setup is good for strong biometrics such as iris and fingerprint, where the inherent discriminating features are in abundance. 

Even if the context changes, there are still enough features to distinguish one individual from others. 

This setup may not be appropriate for gait recognition. Human gait properties can be affected by various environmental contexts such as walking surface, carrying objects and environmental temperature. The change of an environmental context may introduce a large appearance change in the detected human silhouette, which may lead to a failure in recognition. The large gait variation of the same individual
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Fig. 3.6 Context-based classifier combination

under different contexts requires more gallery examples of all individuals from all possible different environmental contexts. However, this requirement is unreal due to the complexity of real-world situations. Due to the difficulty of gait data acquisition, gait gallery examples are generally obtained under a limited environmental condition and the number of examples for each individual is also quite small. Moreover, the environmental contexts are too rich in the real world to be included in a gallery dataset entirely. 

Different gait recognition approaches (classifiers) capture different aspects of gait characteristics. It is difficult to find a single classifier to effectively recognize individuals under all environmental contexts without gallery examples from these contexts. One classifier may be insensitive to the change of one context, while another classifier may be insensitive to the change of another context. If we can detect the environmental contexts of a given probe gait example, it is possible to combine these classifier to improve the recognition performance. 

In this section, we propose a context-based human recognition approach by probabilistically combining different gait classifiers under different environmental contexts. The basic idea is illustrated in Fig. 3.6. First, context properties are learned from context training examples to construct context detectors. The contexts of a given probe gait examples are then obtained by these context detectors. Assuming that all gait gallery examples are obtained under the similar environmental contexts, the context changes between the probe example and gallery examples are obtained. 

With the gait classifiers designed for individual recognition under different environmental context changes, these classifiers are probabilistically combined to recognize the probe individual based on the detected context changes. 

 3.2.1 Walking Surface Type Detection

The context investigated in this section is the walking surface type, but the approach could be extended to other contexts. The system diagram is shown in Fig. 3.7. 

[image: Image 7]
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Fig. 3.7 Diagram of context-based classifier combination for individual recognition by gait. The context investigated in this diagram is the walking surface type

Fig. 3.8 GEI examples of three people ( rows) walking on different surface types.  First four examples in each row  are on the grass surface, and  the others  are on the concrete surface Various environmental contexts have effect on silhouette appearance: clothing, shoes, walking surface, camera view, carrying object, time, etc. Among these contexts, slight camera view changes may be neglected. Irregular changes in clothing, shoe, carrying object and time generally cannot be detected. When the same person walks on different surface types, the detected silhouettes may have large difference in appearance. For example, silhouettes on the grass surface may miss the bottom part of feet, while silhouettes on the concrete surface may contain additional shadows. In these cases, silhouette size normalization error occurs, and silhouettes so-obtained may have different scales with respect to silhouettes on other surfaces. 

Figure 3.8 shows the GEI examples of three people walking on grass or concrete surfaces in USF HumanID database. 

Considering the lower body part difference in silhouettes of people walking on grass and concrete surface, we use the silhouette energy in the lower body part as the indicator of the walking surface type. Let the bottom row be the first row

[image: Image 8]
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and leftmost column be the first column in the image coordinate, the surface type indicator is defined as





 N TOP

 N COL  G(i, j)

 i=1

 j =1

 s(G, N TOP ) = 



 , 

(3.8)

 N ROW

 N COL  G(i, j)

 i=1

 j =1

where  G  is a GEI example with the size of  N ROW ×  N COL, and  N TOP is the number of rows from the bottom. Assuming  s  has a Gaussian distribution for both grass GEI examples and concrete GEI examples, the class-conditional probability functions are estimated from the context training examples as follows
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(3.9)

 p(s|concrete ) =

1

√

exp −  (s −  μ concrete ) 2  , 

2 π σ concrete

2 σ  2

concrete

where  μ grass and  σ grass are the sample mean and sample standard deviation of  s  for training examples on the grass surface, and  μ concrete and  σ concrete are the sample mean and sample standard deviation of  s  for training examples on the concrete surface. These distributions are different for different  N TOP values. The optimal  N TOP

for discriminating these two surface types is estimated by maximizing the Bhattacharyya distance with respect to  N TOP:

 (μ
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grass σ concrete

The Bhattacharyya distance is used as a class separability measure here. The Bhattacharyya distance of the two distributions with respect to different  N TOP values is shown in Fig. 3.9(a). The estimated distribution for optimal  N TOP = 6 is shown in Fig. 3.9(b). 

Fig. 3.9 (a) The Bhattacharyya distance of the two distributions with respect to different  N TOP

values. (b) The estimated distributions of  p(s|grass )  and  p(s|concrete )  for  N TOP = 6
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According to the Bayes rule, we have the following probabilities for probabilistic classifier combination

 P ( grass| s) =  p(s|grass )P ( grass ) , p(s)

(3.11)

 P ( concrete| s) =  p(s|concrete )P ( concrete ) . 

 p(s)

 3.2.2 Classifier Design

In this section, we use the real gait classifier for recognizing probe examples having no surface type change with respect to gallery examples, and synthetic gait classifier for recognizing probe examples having the surface type change [59]. 

The real GEI templates for an individual are directly computed from each cycle of the silhouette sequence of this individual. They are used as the input of real classifier for recognizing probe examples having no surface type change with respect to gallery examples. 

The statistical feature extraction method by combining PCA and MDA is used for learning real gait features from training real templates. Let m ri  be the mean of real feature vectors belonging to the  i th class (individual) in the gallery set. Given a probe example  P , { Rj },  j = 1 , . . . , n, are its real gait templates. The corresponding real feature vector set is

{ ˆ RP } : ˆr j =  TrRj , j = 1 , . . . , n, 

where  Tr  is the learned transformation matrix for real feature extraction. The dissimilarity between the probe example and each gallery class is then measured by n



 D(  ˆ

 RP , ωi) = 1

ˆr j − m ri , i = 1 , . . . , c, 

(3.12)

 n j=1

where  c  is the number of classes in the gallery set. The real classifier is c

Decide  P ∈  ωk

if  D(  ˆ

 RP , ωk) = min  D(  ˆ

 RP , ωi). 

(3.13)

 i=1

Although real gait templates provide cues for individual recognition, all the templates from the same sequence are obtained under the “same” physical conditions. 

If the condition changes, the learned features may not work well for recognition. 

Let  R 0 be the GEI template computed from all the cycles of a given silhouette sequence. Assume that  k  bottom rows of  R 0 are missed due to some kind of environmental conditions. According to the silhouette preprocessing procedure in Chap. 2, the remaining part needs to be proportionally resized to fit to the original height. In the same way, we can generate a series of new synthetic GEI templates corresponding to different lower body part distortion with different values of  k. The synthetic templates expanded from the same  R 0 have the same global shape properties but different bottom parts and different scales. Therefore, they provide cues for individual recognition that are less sensitive to surface type changes. 
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A similar statistical feature extraction method by combining PCA and MDA

is used for learning synthetic gait features from synthetic templates. Let m si  be the mean of synthetic feature vectors belonging to the  i th class (individual) in the gallery set. Given a probe example  P , { Sj },  j = 1 , . . . , m, are its synthetic gait templates. The corresponding synthetic feature vector set is obtained as follows

{ ˆ SP } : ˆs j =  TrSj , j = 1 , . . . , m, 

where  Ts  is the learned transformation matrix for synthetic feature extraction. The dissimilarity between the probe example and each gallery class is then measured by m



 D(  ˆ

 SP , ωi) = 1

ˆs j − m si , i = 1 , . . . , c, 

(3.14)

 m j=1

where  c  is the number of classes in the gallery set. The synthetic classifier is c

Decide  P ∈  ωk

if  D(  ˆ

 SP , ωk) = min  D(  ˆ

 SP , ωi). 

(3.15)

 i=1

3.2.2.1 Probabilistic Classifier Combination

Given a probe example, the probabilities of different surface types are obtained in (3.11). The dissimilarities of the probe example for each class in the gallery set are obtained by (3.12) and (3.14), respectively. Notice that the real classifier is designed for recognizing probe examples having no surface type change with respect to gallery examples, and the synthetic gait classifier is designed for recognizing probe examples having the surface type change. If the walking surface of gallery examples is grass, the combined dissimilarly is measured as follows:

 D(P , ωi) =  P ( grass| s) ¯

 D(  ˆ

 RP , ωi) +  P ( concrete| s) ¯

 D(  ˆ
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 P ( concrete| s) 
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 D  is the normalized dissimilarity. Assuming  P ( grass ) =  P ( concrete ), we have

 D(  ˆ
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 D(P , ωi) =  P (s|grass )  c D(  ˆ R

 j =1

 P , ωj )

+

 D(  ˆ

 SP , ωi)
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(3.16)

 c

 D(  ˆ

 S

 j =1

 P , ωj )

The combined classifier based on surface context is

 c

Decide  P ∈  ωk

if  D(P , ωk) = min  D(P , ωi). 

(3.17)

 i=1

3.2 Human Recognition Based on Environmental Context

39

 3.2.3 Experimental Results

The experiments are carried out on the USF HumanID gait database [137], which is the same as that in Sect. 3.1.3. 

We carry out experiments of human recognition by the real classifier, the synthetic classifier and the combined classifier based on the context according to the rules in (3.13), (3.15), and (3.17), respectively. Table 3.5 shows the recognition performance of USF baseline algorithm and our proposed approaches. Note that the ranks 1 and 5 performance of proposed classifiers is better than or equivalent to that of the baseline algorithm in all the experiments. 

The performance of the synthetic classifier is significantly better than that of the real classifier in experiments D–G and L, where the surface type of probe examples is different from that of gallery examples. In other experiments where the surface type of probe examples is the same as that of gallery examples, the performance of the real classifiers is better in A, C and G–J, but a little worse in B and K. These results demonstrate the our real and synthetic classifiers are suitable for their desired contexts. 

The combined classifier based on the surface context achieves better performance than individual real feature classifier and synthetic classifier in most experiments. It is shown that the combined classifier takes advantage of merits of individual classifiers based on the detected contextual that information. In this section, we only detect and use the specific contextual has information about the walking surface type, and only design two classifiers for it. If we can detect or obtain more detailed contextual information such as carrying objects, clothing and time, and design the corresponding classifiers, we expect the combined results will further improve. 

Table 3.5 Comparison of recognition performance using different approaches on silhouette sequence version 2.1. (Legends: Baseline—USF baseline algorithm [137]; Real—real classifier; Synthetic—synthetic classifier; Context—proposed context-based approach)

Rank 1 performance

Rank 5 performance

Baseline

Real

Synthetic

Context

Baseline

Real

Synthetic

Context

A

73%

89%

84%

90%

88%

93%

93%

93%

B

78%

87%

93%

91%

93%

93%

96%

94%

C

48%

78%

67%

80%

78%

89%

93%

89%

D

32%

36%

53%

56%

66%

65%

75%

81%

E

22%

38%

55%

57%

55%

60%

71%

76%

F

17%

20%

30%

27%

42%

42%

53%

53%

G

17%

28%

34%

36%

38%

45%

53%

50%

H

61%

62%

47%

60%

85%

87%

79%

90%

I

57%

59%

57%

62%

78%

79%

81%

84%

J

36%

58%

40%

57%

62%

81%

65%

84%

K

3%

3%

21%

9%

3%

6%

33%

18%

L

3%

6%

24%

12%

15%

9%

42%

27%
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Fig. 3.10 Examples of human walking along different directions

3.3 View-Insensitive Human Recognition by Gait

Most existing model-free gait recognition approaches study human walking fronto-parallel to the image plane [72, 107, 137, 166] only. This makes them sensitive to human walking along various directions in real video surveillance applications as illustrated in Fig. 3.10. 

To address the view-sensitive problem, Shakhnarovich et al. [154] estimate the sequence at any arbitrary view from multiple views from four fixed cameras. Kale et al. [81] synthesize a side view silhouette sequence from a sequence of any arbitrary view if the person is far enough from the camera. Their method needs prior camera calibration information. Wang et al. [179] include sequences of different walking directions in the database and evaluate the performance using the leave-one-out cross-validation rule. Spencer and Carter [157] analyze human motion structure from single view sequences to remove the unknown camera and pose ambiguities and reconstruct the underlying gait signature without the prior knowledge of camera calibration. The assumption of this approach is that the computer vision task of finding limb landmark points and tracking them over all frames in a sequence has been solved. 

We use a GEI-based approach for view-insensitive gait recognition by analyzing the appearance changes of human walking along different directions. The proposed approach avoids the difficulties associated with recovering the human body structure and camera intrinsic parameters. 

 3.3.1 View-Insensitive Gait Templates

In real video surveillance applications, training and testing data may contain people walking along various directions. Figure 3.11 shows the graphic illustration of human walking along different directions from the top view. When a person walks, he/she is only visible within the camera view range. In this figure, there are three kind of angles: walking direction angle  a, camera view  b  and walking view  c.  a  is

3.3 View-Insensitive Human Recognition by Gait
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Fig. 3.11 The graphic

illustration ( from the top

 view) of human walking

along different directions

fixed in a walking sequence assuming that the person does not change the walking directions in the scene,  b  varies when the person is located at different positions, and  c  is determined by  a  and  b. It is the walking view  c  that directly affects the shape of human in the image. That is, if the walking view  c  and human pose are the same for the same person at two moments of time, their shapes in the image are the same after size normalization. Even if a person walks along the same direction in a scene, the walking view  c  is still different at different 3D locations. This makes the human shapes/silhouettes with the same pose different when their 3D locations are different. As show in Fig. 3.11, if a person walks along the direction with angle  a  from  P 1 through  P 2 to  P 3, the walking view  c  will change from  c 1 through c 2 to  c 3. If the same person is walking along the fronto-parallel direction from  P 4

through  P 2 to  P 5, the walking view  c  will change from  c 4 through 90° to  c 5. The overlapping walking view of the two sequence ranges from  c 4 to  c 3 if  c 4  < c 3. In this case, the parts within the overlapping walking view range can be used for view-insensitive gait recognition. When the difference of walking direction  a  is too large or the camera view range is too small,  c 4 may be greater than  c 3. Although there is no overlapping walking view range of the two sequences in this case, the beginning of the fronto-parallel sequence and the end of the sequence with walking direction a  may have similar walking views that still provide cues for recognizing human walking along different directions. 

The walking views are generally unavailable in real applications. However, the above-mentioned fact indicates that the walking view (the angle between the walking direction and the camera view) ranges of human walking along different directions may be overlapping or adjacent if the difference of their walking directions is not too large. Therefore, we can generate a series of GEIs at a certain interval from each sequence, and some GEIs so obtained from the two sequences may have the similar appearance. If the GEIs of one sequence are used for training, the GEIs of the other sequence will be suitable for view-insensitive recognition. In our approach, we generate GEI set { Gj } from the original sequence at the interval of 1 / 4

walking cycle, i.e., two adjacent GEIs have the overlap of 3 / 4 cycles. Figure 3.12

shows the GEIs generated from sequences of the same person walking along different directions. It is shown that the first several GEIs in the first row are similar to the last several GEIs in the second row, and the first several GEIs in the second row

[image: Image 10]
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Fig. 3.12 GEIs generated from three sequences of the same person walking along different directions

are similar to the last several GEIs in the third row. This is due to the overlap of the walking view range among sequences with different walking directions. 

With the GEI templates obtained from each person (one or two sequences for each person), a statistical feature extraction method is used for learning efficient features. Features learned from the GEI templates characterize view insensitive human walking properties provided in training sequences. 

 3.3.2 Human Recognition

For each training gait template, its gait feature vector is obtained as: z k =  T  x k,  k =

1 , . . . , nt , where  T = [v1 , . . . , v c−1] T [e1 , . . . , e d] T  is the complete transformation matrix based on combined PCA and MDA analysis. The set {z} is composed of the feature database for individual recognition. The class centers for {z} are given as follows



m i = 1

z , 

 i = 1 , . . . , c, 

(3.18)

 ni z∈ Di

where  c  is the number of classes (individuals) in the database,  Di  is the set of feature vectors belonging to the  i th class, and  ni  is the number of feature vectors in  Di . Assuming that feature vectors for each class have Gaussian distribution with the same covariance matrix  Σ =  σ I , the Bayesian classifier becomes minimum Euclidean distance classifier which will be used in the following for individual recognition. 

Given a probe gait silhouette sequence  P , we follow the procedure in Sect. 3.3.1

to generate templates { Gj },  j = 1 , . . . , n. The corresponding feature vector set is obtained as follows

{ ˆ

 DP } : ˆz j =  T Gj , j = 1 , . . . , n. 

(3.19)
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Let

 m



 D(  ˆ

 DP , Di) = 1

ˆz j − m i , i = 1 , . . . , c. 

(3.20)

 m j=1

We assign  P ∈  ωk  if

 c

 D(  ˆ

 DP , Dk) = min  D(  ˆ

 DP , Di). 

(3.21)

 i=1

 3.3.3 Experimental Results

The video data used in our experiments are real human walking data recorded in outdoor environment. In these video data, there is only one walking person at the same time. Eight people walk along 10 different directions as shown in Fig. 3.13. 

The beginning and end positions are different in the image sequences, and are not indicated in this figure. There is only one sequence per person per direction in the database. To obtain a uniform silhouette sequence representation for human walking left/right, we assume that people walk from right to left in the normalized silhouette sequence. If the person walks right in a sequence, we will reverse the silhouette along its vertical centroid axis, so that the person looks like walking left. 

We first study the human recognition performance using sequences of one specific direction for training. In each experiment, we select sequences of one specific direction as the training data, and other sequences as the testing data. The experimental results are shown in Table 3.6. It can be seen that the average recognition performance is good. The performance of experiments using training data with ±30° is better than those with 0° and ±60° because the walking view overlap between the training data and testing data is larger in the former case. The recognition performance is not satisfactory in some extreme cases because the walking view difference between the training data and testing data is too large. 

Fig. 3.13 Experiment

design:  Left—walking left; 

 Right—walking right; 

positive angle—walking

toward the camera; negative

angle—walking away from

the camera (all angles in °)
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Table 3.6 Recognition performance using sequences of one specific direction for training (all performance in %)

Training

Testing data

data

L 0

R 0

L  π

R −  π

R  π

L −  π

L  π

R −  π

R  π

L −  π

Avg

6

6

6

6

3

3

3

3

L 0

100

100

75

75

88

63

50

50

75

75

R 0

100

88

88

88

75

38

63

50

13

67

SubAvg

100

100

84

84

84

84

50

50

50

50

71

L  π

88

88

88

88

100

100

50

63

75

82

6

R −  π

75

75

75

100

88

63

88

88

50

78

6

R  π

75

75

88

100

88

75

88

88

63

82

6

L −  π

75

63

100

75

88

75

63

63

75

75

6

SubAvg

77

77

90

90

90

90

73

73

73

73

79

L  π

75

38

100

63

88

88

63

63

100

75

3

R −  π

50

50

50

88

88

75

50

88

63

67

3

R  π

50

63

50

88

75

50

75

88

75

68

3

L −  π

63

50

88

63

50

88

75

63

63

67

3

SubAvg

55

55

74

74

74

74

72

72

72

72

69

Table 3.7 Recognition performance using sequences of two specific directions for training Training data

L 0°

L 30°

R 30°

L 60°

R 60°

Testing data

R 0°

R −30°

L −30°

R −60°

L −60°

Performance

72%

92%

89%

86%

87%

Some other interesting results are obtained from our experiments. If the person in the training sequence walks left (right), the average recognition rate for the testing sequences where the person walks left (right) is 82%, and that for the testing sequences where the person walks right (left) is 66%. This observation indicates that our method to unify people walking left/right introduces errors. On the other hand, if the person in the training sequence walks toward (away from) the camera, the average recognition rate for the testing sequences where the person walks toward (away from) the camera is 81%, and that for the testing sequences where the person walks away from (toward) the camera is 82%. These results do not include the sequences with walking direction of 0°. This observation indicates that walking toward or away from the camera has little effect on gait recognition. 

We also study the human recognition performance using sequences of two specific directions for training. Experimental results in Table 3.7 show that this combination dramatically improves the human recognition performance. Notice that the combination of left 0° and right 0° does not improve the performance because sequences with the two directions contain the same walking view ranges. 

[image: Image 11]
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3.4 Human Repetitive Activity Recognition in Thermal Imagery

Human repetitive activity involves a regularly repeating sequence of motion events such as walking, running and jogging. Most existing human activity recognition approaches detect human motion in visible spectrum. However, it is very likely that some part of human body or clothing has similar color as background colors. In this case, human motion detection usually fails on this part. Moreover, the existence of shadows is a problem in visible spectrum. In addition, sensors in visible spectrum do not work under low lighting conditions such as night or indoor environment without lighting. 

To avoid the disadvantages of using sensors in the visible spectrum, we investigate the possibility of using the thermal infrared (long wave infrared) sensor for human activity analysis. Unlike a regular camera which records reflected visible light, a long wave (8–12 µm) infrared camera records electromagnetic radiation emitted by objects in a scene as a thermal image whose pixel values represent temperature. 

In a thermal image that consists of humans in a scene, human silhouettes in motion can be easily extracted from the background regardless of lighting conditions and colors of the human surfaces and backgrounds because the temperatures of the human body and background are different in most situations [6]. Figure 3.14 shows an example of human walking at different time of a day recorded from a thermal infrared sensor: noon (first row), late afternoon (second row) and night (third row). 

There is no obvious shadow introduced in the thermal infrared images recorded at noon and late afternoon. The thermal images also provide enough contrast between the human and the background at night. 

Fig. 3.14 An example of human walking at different time of a day recorded from a thermal infrared sensor: noon ( first row), late afternoon ( second row) and night ( third row)
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 3.4.1 Object Detection in Thermal Infrared Imagery

Images from different kind of sensors generally have different pixel characteristics due to the phenomenological differences between the image formation process of the sensors. In recent years, some approaches have already been proposed to detect and recognize object in thermal infrared imagery, especially in the field of remote sensing, automated target recognition and face recognition. 

Object detection in thermal infrared imagery has been widely used in remote sensing. Holland and Yan [67] propose a method to quantitatively measure ocean surface movement using sequential 10.8 µm-band thermal infrared satellite images. 

Ocean thermal pattern features are selected by detecting and mapping gradients and at the same time discriminating between the water surface, land, and clouds. The pattern features are then tracked by a constrained correlation based feature recognition scheme in a subsequent image. Abuelgasim and Fraser [1] investigate the applicability of NOAA-16/AVHRR (N-16) satellite data for detecting and mapping active wildfires across North American forest ecosystems. Their algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. Riggan and Hoffman [144] discussed the applications of a thermal imaging radiome-ter in field trials. The system has successfully demonstrated remote detection of a small spot fire, landscape temperature mapping; and quantitative, unsaturated measurements of flame radiance during large-scale open burning. Martinez et al. [116]

develop a three-dimensional thermal model to study the effect of the presence of landmines in the thermal signature of the bare soil. In their approach, landmines are regarded as a thermal barrier in the natural flow of the heat inside the soil, which produces a perturbation of the expected thermal pattern on the surface. Surface-laid and shallowly buried landmines are detected and classified from measured infrared images by studying these perturbations. 

Object detection in thermal infrared imagery has also been widely used in automated target recognition in surveillance environments, especially for human target detection. Andreone et al. [5] propose an approach for detecting vehicles in thermal infrared imagery. Initially, the attention is focused on portions of the image that contains hot objects only. The result is further investigated exploiting specific vehicle thermal characteristics. Arlowe [6] develop an automatic detection systems based on the thermal contrast and motion of human intruders. The conditions and energy transfer mechanisms that lead to difficult thermal detection are discussed in his work. The heat flux balance equation can be used in an iterative computer program to predict the surface temperatures of both the background and the target for human intruder detection. Ginesu et al. [52] propose a novel method to detect foreign bodies, which are not detectable using conventional methods, by inspecting food samples using thermographic images. Pavlidis et al. [132] propose a method for detecting suspects engaged in illegal and potentially harmful activities in or around critical military or civilian installations. The use of thermal image analysis are investigated to detect at a distance facial patterns of anxiety, alertness, and/or fearfulness. 

Yoshitomi et al. [195] develop a face identification approach by thermal image analysis. The front-view face is first normalized in terms of location and size, the temperature distribution is then measured as well as the locally averaged temperature

[image: Image 12]
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and the shape factors of face. These features are used for supervised classification in a neural network. 

 3.4.2 Human Repetitive Activity Representation and Recognition

Human repetitive activity is a cyclic motion where human motion repeats at a stable frequency. We use GEI to represent the human repetitive activity as shown in Fig. 3.15. In the training procedure, GEI templates are generated from the original silhouette sequences. A component and discriminant analysis is then performed on the training templates for feature extraction. Human activity recognition is based on the extracted features. 

The feature set {z} extracted from all training GEI templates is composed of the feature database for individual recognition. The class centers for {z} are given as follows



m i = 1

z , 

 i = 1 , . . . , c, 

(3.22)

 ni z∈ Di

where  c  is the number of classes (individuals) in the database,  Di  is the set of feature vectors belonging to the  i th class, and  ni  is the number of feature vectors in  Di . Assuming that feature vectors for each class have Gaussian distribution with the same covariance matrix  Σ =  σ I , the Bayesian classifier becomes minimum Euclidean distance classifier which will be used in the following individual recognition. 

Given a probe gait silhouette sequence  P , we generate a series of GEI templates

{ Gj },  j = 1 , . . . , n. The corresponding feature vector set is obtained as follows

{ ˆ

 DP } : ˆz j =  T Gj , j = 1 , . . . , n. 

(3.23)

Fig. 3.15 Examples of normalized and aligned silhouette frames in different human motion sequences. The  rightmost image in each row  is the corresponding gait energy image (GEI)

[image: Image 13]
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Let

 m



 D(  ˆ

 DP , Di) = 1

ˆz j − m i , i = 1 , . . . , c. 

(3.24)

 m j=1

We assign  P ∈  ωk  if

 c

 D(  ˆ

 DP , Dk) = min  D(  ˆ

 DP , Di). 

(3.25)

 i=1

 3.4.3 Experimental Results

We have recorded real thermal image data of human activities with a FLIR SC2000

long-wave infrared camera in an outdoor environment. The image size is 240 × 320. 

The field-of-view of the camera is fixed during human walking. Repetitive activities of five people are recorded at different times: noon (four people), late afternoon (three people) and night (two people). The corresponding backgrounds are shown in Fig. 3.16. Each background is normalized by the temperature range individually. 

Each person was asked to walk slowly, walk fast and run forward and backward along the fronto-parallel direction at each time. Therefore, there is a set of six sequences for each person at each time: two slow walking, two fast walking and two running. Four people are recorded at noon, three people are recorded at late afternoon, and 2 people are recorded at night. Three data sets recorded at noon are used for training, and other data sets are used for testing. Figure 3.17 shows GEI examples of the 9 data sets (54 human motion sequences) used in our experiments. 

An observation from this figure is that the silhouette extraction performance at late afternoon is better than that at noon and at night. This means that the temperature contrast between the human object and the background is larger at late afternoon. 

The motion of the trees in the background also contributes to the silhouette extraction performance in some frames. 

The goal of our activity recognition here is to discriminate human walking or running regardless of the speed (slow or fast walking). In the recorded data, the Fig. 3.16 Thermal images of the background at different time of a day recorded from the thermal infrared sensor: noon, late afternoon and night, each of which is normalized by the temperature range individually

[image: Image 14]
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Fig. 3.17 GEI examples of the 54 human motion sequences used in our experiments
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speed in some fast walking sequences is equivalent or faster than that in some running sequences. Therefore, the speed is not appropriate for recognition of walking or running individuals. We employ the approach of combining PCA and MDA for feature extraction. The four-dimensional vectors obtained by PCA are used as the input of the MDA, and the final feature vectors are of one dimension. The recognition performance on training data and testing data are all 100%. This demonstrates that the proposed approach achieves good performance in human repetitive activity recognition. 

3.5 Human Recognition Under Different Carrying Conditions

In this section, we present an approach based on gait energy image (GEI) and co-evolutionary genetic programming (CGP) for human activity classification. Specifically, Hu’s moment and normalized histogram bins are extracted from the original GEIs as input features. CGP is employed to reduce the feature dimensionality and learn the classifier. The strategy of majority voting is applied to the CGP to improve the overall performance in consideration of the diversification of genetic programming. This learning-based approach improves the classification accuracy by approximately 7% in comparison to the traditional classifiers. 

 3.5.1 Technical Approach

In our approach, we first employ an efficient representation of human motion, i.e., gait energy image, for human activity classification; second, a learning algorithm based on co-evolutionary genetic programming is proposed for feature dimension reduction and classifier learning; third, the performance of our proposed approach is tested on the real data of walking people with or without briefcases, and it is found to be superior to the traditional classifiers. 

3.5.1.1 Gait Energy Image (GEI)

The example GEIs of the persons with and without a briefcase are shown in Fig. 3.18. All six GEIs in the upper row are from the same sequence of the person carrying a briefcase. Similarly, the GEIs in the bottom row are from a walking person without the briefcase. A pixel with higher intensity value in GEI means that human walking occurs more frequently at this position than at those positions corresponding to darker pixels. GEI reflects major shapes of human silhouettes and their changes over the motion cycle. 

[image: Image 15]
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Fig. 3.18 GEIs of the walking person carrying a briefcase ( above); GEIs of the people without a briefcase ( below)

Table 3.8 An example of Hu’s moment for the GEI of a human with a briefcase and without a briefcase

Hu’s

 φ 1

 φ 2

 φ 3

 φ 4

 φ 5

 φ 6

 φ 7

moment

Carrying 0.311988 0.067428 1.3719e−3 1.4102e−4 3.3018e−9 1.7903e−6 6.1937e−8

briefcase

Without

0.375040 0.084405 0.012321

1.899e−3

8.1395e−6 4.8114e−4 4.2573e−6

briefcase

3.5.1.2 Feature Extraction

The dimensionality of the original GEI (e.g., 88 columns × 128 rows = 11264) constrains it as the input feature to classifiers. Additionally, the huge redundancy of gait energy image (over half of GEI pixels are dark) also makes it an implausible and ineffective method of representation. Thus, we consider extracting features from the original GEI to obtain a compact and effective representation. First, we calculate the histogram of grayscale values from the GEI and normalize it to 17 bins. The 17 bins of histograms are used as one set of features to represent GEI. Furthermore, we calculate the Hu’s moment ( φ 1,  φ 2,  φ 3,  φ 4,  φ 5,  φ 6,  φ 7) [70] of the GEIs, which is a set of seven moments, derived from the second/third central moments and invariant to translation, rotation and scale change. Examples of Hu’s moments of the GEIs for the people with or without a briefcase are shown in Table 3.8. Due to the good property of invariance, we mainly use Hu’s moment as the set of features to represent GEI. The normalized histogram bins are also used as classification features for comparison. 
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Fig. 3.19 Co-evolutionary genetic programming: (a) training phase; (b) testing phase 3.5.1.3 Co-evolutionary Genetic Programming

Genetic programming (GP) is an evolutionary computational paradigm [91] that is an extension of genetic algorithm and works with a population of individuals. An individual in a population can be any complicated data structure such as a tree or a graph, etc. Co-evolutionary genetic programming (CGP) [106] is an extension of GP in which several populations are maintained and employed to evolve solutions cooperatively. A population maintained by CGP is called a sub-population and it is responsible for evolving a part of a solution. A complete solution is obtained by combining the partial solutions from all the sub-populations. For the task of object recognition, individuals in sub-populations are composite operators, which are the elements of a composite operator vector. A composite operator is represented by a binary tree whose internal nodes are the pre-specified domain-independent primitive operators (linear operators such as summation and nonlinear ones such as multipli-cation) and leaf nodes are original features (e.g., Hu’s moments). The CGP algorithm shown in Fig. 3.19 includes two different phases: training and testing. It first learns the composite operator vectors and Bayesian classifier over the training set; then applies the learned composite operators and Bayesian classifier to the testing set. 
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3.5.1.4 Majority Voting

Multi-agent methodology can be used to boost the overall performance of the evolutionary process. The basic prerequisite for the agents’ fusion is their diversification. In our approach, agents correspond to Bayes classifiers accompanying the CGP. Therefore, the diversification is naturally provided by the random nature of the genetic search. We run multiple genetic searches that start at different initial populations. With the same parameters, a number of independent GP synthesis processes provide a statistical significance to the results. Each run starts with the same GP parameters, but with a different, randomly created, initial population of feature synthesis programs. In classification, we employ the majority voting strategy as the decision rule: the Bayes classifier following each GP run is considered to be a voting agent where votes can be cast for each of the testing images. In the end, we take the majority vote for each testing image (GEI). 

 3.5.2 Experimental Results

3.5.2.1 Data

The experiments are conducted using the data from the computer vision/image analysis research lab at the University of South Florida. This data set consists of silhouette sequences of humans walking with or without a briefcase on an elliptical path. 

Therefore, there are two classes of activity for our task: with a briefcase and without a briefcase. In each sequence, approximately 200 to 250 frames are available. 

The data set contains silhouettes of 470 people without a briefcase and those of 466

people carrying a briefcase. The size of all silhouettes is normalized to 88 × 128

pixels. The number of silhouettes in one cycle to form a GEI varies from 15 to 19. 

And depending on the length of sequences, the number of GEIs in a sequence could be between 5 and 14, and, in most cases, it occurs at 10 and 11. From the data set, we choose a small set and a large set for our experiment (described in Table 3.9). 

In constructing the small dataset, only one GEI in each sequence is selected. Therefore, the total number of GEIs in the small set is equal to the number of sequences Table 3.9 Description of experimental data

Class

Total GEIs

# of GEIs for training

# of GEIs for testing

Small set

With briefcase

942

500

442

Without briefcase

930

500

430

Large set

With briefcase

10068

3765

6303

Without briefcase

9693

3714

5979
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for each class. While in constructing the large dataset, all GEIs in each sequence are selected. So, the number of GEIs for each class increases dramatically in comparison to that of the small dataset. Furthermore, both datasets are split (equally) into training and testing sets accordingly. The selection of training and testing sets are done randomly. 

3.5.2.2 Experiments

After obtaining the small and large datasets of GEIs, we calculate the desired histogram and Hu’s moment features for classification. The original feature size of the Hu’s moments is 7. The size of GEI histogram bin vectors is 17. In the following, we first discuss the execution of our experiment on the small dataset. The experiments on the large dataset are similarly performed. 

The original Hu’s moment features are sent to two statistical classifiers: Bayesian classifier and Fisher discriminant. For the first one, the classification accuracy in training and testing is 74.1% and 69.5% respectively. The latter one achieves the accuracy of 72.3% in training, and 70.59% in testing. Then, the Hu’s moment features are sent to the co-evolutionary genetic programming (CGP) to learn the composite feature vectors and the Bayesian classifier. In CGP, the dimensionality of feature vectors is reduced from 7 to 2. The fitness values (i.e., accuracy) of the Bayesian classifier in training and testing phases are 73.7% and 72.83%, respectively. Considering of the random nature of the genetic programming, we further apply the

“majority voting” strategy on the Bayesian classifiers to improve the classifier performance. In the experiment, we set the number of runs of CGP to be five. And those candidate classes with at least three votes are chosen as the final results. Thus, the training and testing fitness values on the small dataset are 77.69% and 77.3%. 

For comparison, we send the GEI histogram features to the CGP and learn the Bayesian classifier for classification. The accuracy of the Bayesian classifier is 71.15%. With the help of majority voting, the classification accuracy is improved to 75.77%. Also, we perform experiments with different feature reduction schemes, e.g., 17D to 5D, 17D to 1D, etc. Among them, the performance of 17D to 2D is the best. So, we neglect the experiments of other feature reduction schemes. 

3.5.2.3 Classifier Performance Comparison

The complete performance comparison of different classifiers on both large and small datasets is presented in Fig. 3.20. We can see it that the CGP improves the classification accuracy by 2–3%. With the help of majority voting, it can further improve by 4–5%. Also, the Hu’s moment is found to perform better than the histogram bin features. 

The CGP takes a relatively large amount of time to train the composite feature operators and classifier. But it can be performed offline. And the online testing of CGP is really fast and comparable to the Bayesian classifier and Fisher discriminant. 

[image: Image 16]
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Fig. 3.20 Performance comparison of different classifiers. By default, the input feature is Hu’s moment

3.6 Summary

In this chapter, we used the GEI-based general framework for human recognition by gait and human activity recognition. Applications of the proposed general framework in different scenarios were further discussed as case studies in detail. 

First, to overcome the limitation of training templates, we proposed a simple model for simulating distortion in synthetic templates and a statistical gait feature fusion approach for human recognition by gait. Experimental results showed that the proposed recognition approach achieves highly competitive performance with respect to the published major gait recognition approaches. 

Second, we proposed a context-based human recognition approach by probabilistically combining different gait classifiers with different environmental contexts. 

First, context properties were learned from context training examples to construct context detectors. The contexts of a given probe gait examples were then obtained by these context detectors. With the gait classifiers designed for individual recognition under different environmental context changes, these classifiers were probabilistically combined to recognize the probe individual based on the detected context changes. Experimental results showed that the combined classifier takes advantage of merits of individual classifiers based on the detected context information. 

Third, we proposed a statistical feature extraction approach for view-insensitive gait recognition based on the fact that the walking view (the angle between the walking direction and the camera view) ranges of human walking along different directions may be overlapping or adjacent. The proposed approach avoids the difficulties of recovering the human body structure and camera calibration. Experimental results showed that the proposed approach achieves good performance in recognizing
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people walking along different directions from the training sequence with a given walking direction. It was also shown that the performance is further improved when more sequences with different walking directions are available for training. 

Fourth, we suggested using GEI for human repetitive activity recognition. Human motion was detected in thermal infrared imagery, which provides generally good contrast between human objects and backgrounds regardless of lighting conditions and colors of the human surfaces and backgrounds. Unlike other motion representations which consider gait as a sequence of templates (poses), GEI represents human motion sequence in a single image while preserving temporal information. 

A statistical approach was used to extract features from GEI for activity recognition. 

Experimental results showed that the proposed approach achieves good performance for human repetitive activity recognition. 

Fifth, we presented an approach based on gait energy image (GEI) and co-

evolutionary genetic programming (CGP) for human activity classification. Hu’s moment and histogram bins were extracted from the original GEI as input features. 

CGP was employed to reduce the feature dimensionality and learn the classifier. 

The “majority voting” was applied to the CGP to improve the performance. This learning-based approach improved the classification accuracy by approximately 7%

in comparison to the Bayesian classifier and Fisher discriminant. 

Chapter 4

Discrimination Analysis for Model-Based Gait

Recognition

Gait has been evaluated as a new biometric through psychological experiments [34, 42, 78, 92, 158]. However, most gait recognition approaches do not give their theoretical or experimental performance predictions. Therefore, the discriminating power of gait as a feature for human recognition cannot be evaluated. In this chapter, a Bayesian based statistical analysis is performed to evaluate the discriminating power of static gait features (body part dimensions). Through probabilistic simulation, we not only predict the probability of correct recognition (PCR) with regard to different within-class feature variance, but also obtain the upper bound on PCR with regard to different human silhouette resolution. In addition, the maximum number of people in a database is obtained given the allowable error rate. This is extremely important for gait recognition in large databases. 

4.1 Predicting Human Recognition Performance

Model-based object recognition is concerned with searching for a match to associate components of the given data with corresponding parameters of the object model [54]. The approaches can be classified as global matching or local feature matching. Global matching approaches consider finding a transformation from a model to an image while feature matching approaches involve establishing a correspondence between local features extracted from the given data and corresponding local features of the object model. 

Boshra and Bhanu [22] present a method for predicting fundamental performance of object recognition. They assume that both scene data and model objects are represented by 2D point features and a data/model match is evaluated using a vote-based criterion. Their method considers data distortion factors such as uncertainty, occlusion, and clutter, in addition to model similarity. This is unlike previous approaches, which consider only a subset of these factors. However, their assumptions make their method only applicable to local feature matching and not to global matching. 

In this chapter, we carry out a Bayesian based statistical analysis to evaluate the discriminating power of static gait features. We address the prediction problem in B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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the context of an object recognition task as follows: (1) scene data are represented by 2D regions where the region pixels are discretized at some resolution, and model objects are represented by 3D volumes; (2) body part length of a model subject in the scene is assumed to be obtained; (3) the matching criterion is based on Bayesian theory. 

4.2 Algorithm Dependent Prediction and Performance Bounds

In this chapter, we only use features from static parameters (body part dimensions) for gait recognition. We select the length of six body parts as the feature vector for human recognition: torso, upper arm, lower arm, thigh and leg, which are not sensitive for recognizing human with different clothes and different walking directions. We consider uncertainties for feature vectors in two categories: uncertainties from all factors which are algorithm dependent; uncertainties only from different silhouette resolutions that are algorithm independent. 

 4.2.1 Body Part Length Distribution

To evaluate the performance of recognizing a human by the length of body parts, we have to know the prior length distributions of different body parts over human population. Anthropometric estimates of individual body part length distribution for British adults 19–65 years are shown in Fig. 4.1 and Table 4.1. It is obvious that these lengths are correlated. Anthropometric estimates of their correlation coefficients for the Australian elderly population are shown in Table 4.2. Assuming that men and women have the same population, the overall distributions for the five static features can be modeled as a five-dimensional mixture Gaussian distribution. 

Although the anthropometric data are surveyed in the British population and the Australian elderly population, the resulting predicted performance should be approximately applicable to other populations. In general, the mean of body part lengths may change but the standard deviation should not change a lot in different populations. 

Table 4.1 Anthropometric estimates of individual body part length distribution for British adults 19–65 years [136]

Major body part length (in mm)

Torso

Upper arm

Lower arm

Thigh

Leg

Men

Mean

595

365

475

595

545

Standard deviation

32

20

21

31

32

Women

Mean

555

360

430

570

500

Standard deviation

31

17

19

30

27

4.2 Algorithm Dependent Prediction and Performance Bounds 59

Fig. 4.1 Anthropometric estimates of individual body part length distribution for British adults 19–65 years [136]

Table 4.2 Anthropometric estimates of their correlation coefficients Australia elderly population [90]

Correlation coefficients

Torso

Upper arm

Lower arm

Thigh

Leg

Torso

1

Upper arm

0 .  4190

1

Lower arm

0 .  4049

0 .  4842

1

Thigh

0 .  3981

0 .  3490

0 .  4516

1

Leg

0 .  5811

0 .  4386

0 .  4438

0 .  5397

1
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 4.2.2 Algorithm Dependent Performance Prediction

Uncertainties in static gait features come from various sources: image quantization error, camera calibration error, silhouette segmentation error, matching error, and body part occlusion. To completely model the uncertainties of 3D body part lengths, we have to model all the above-mentioned factors. This is a challenging task because it is difficult to mathematically find the distribution functions of uncertainties for all these factors. A reasonable approach is to estimate the uncertainties from training data. Assuming that feature vectors obtained from a feature extraction algorithm for a person are normally distributed in the given feature space, we can easily obtain the within-class variance from the experimental results on the training data. Then, the obtained within-class variance can be used to predict the recognition performance. 

According to the Bayes decision theory, an unknown feature vector x is assigned to class  ωi  if  P (ωi|x ) > P (ωj |x ) ∀ j =  i [163]. Let  gi(x ) = ln (p(x| ωi)P (ωi)). Then decision test becomes classifying x in  ωi  if  gi(x ) > gj (x ) ∀ j =  i. 

Assuming the feature vector x for a person  ωi  is normally distributed in an l-dimensional feature space, the probability distributions of  ωi  with respect to x follow





 p(x| ωi) =

1

exp − 1  (x −  μ

 (x −  μ

 , 

 i = 1 , . . . , M, 

(4.1)

 l

 i )T Σ −1

 i

 i )

 ( 2 π )

2

2 | Σi | 12

where  μ =

 i

 E[x] is the mean value of the  ωi  class and  Σi  is the  l ×  l  covariance matrix defined as





 Σi =  E (x −  μi)(x −  μi)T . 

(4.2)

Assuming that  Σi =  Σ  for all  i, the maximum  gi(x )  implies the minimum Mahalanobis distance

 dM =  (x −  μi)T Σ−1 (x −  μ

 i

 i ). 

(4.3)

Thus, feature vectors are assigned to classes according to their Mahalanobis distances from the respective mean vectors. 

With the body part length distribution in Fig. 4.1 and the within-class covariance matrix  Σ  of the features obtained from a feature extraction approach, we can predict its  probability of correct recognition (PCR) with regard to the number of classes (people) in the database through a simulation approach. In order to give a direct un-derstanding about how the within-class covariance matrix affects the recognition performance, we assume that  Σi =  σ  2 I  for all  i. This is a reasonable assumption since all the features are lengths, although different features may have slightly different variances and may be slightly correlated. Therefore, the maximum  gi(x )  implies the minimum Euclidean distance

 dE = x −  μ 

 i . 

(4.4)

Thus, feature vectors are assigned to classes according to their Euclidean distances from the respective mean vectors. In this way, we can obtain a plot directly indicating the relationship between the predicted recognition performance and the within-class standard deviation  σ . 
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 4.2.3 Upper Bound on PCR

We have considered the uncertainties that are dependent on feature extraction algorithms. The predicted performance indicates the discriminant power of features extracted by different algorithms, and these algorithms can therefore be compared. 

However, we still do not know the upper bound on PCR which can be achieved independent of different algorithms. In the ideal case, image quantization errors, i.e., the human silhouette resolution, is the only source of uncertainties. By analyzing the uncertainties given a fixed silhouette resolution, we can obtain the upper bound on PCR with regard to the number of classes (people) in the database. 

Given the silhouette resolution  r, we can compute the corresponding uncertainty from the body part length  L  as shown in Fig. 4.2. The first step is projecting the 3D

length  L  to length  l =  Lr  in the 2D continuous plane, where  f  is the camera focal length as shown in Fig. 4.2(a). 

The second step is the image quantization step as shown in Fig. 4.2(b). For every 2D point falling into a box in the continuous image plane, its location is represented by the center location of the box in the discrete image plane. Therefore, the corresponding length of  L  in the discrete image plane is the discrete value  l. Now we can obtain the corresponding length of  l in 3D space as  L =  l r. Therefore, the overall error in Fig. 4.2 is  L −  L. Assuming the elements in the feature vector are independent and identically distributed, the minimum Euclidean distance classification criterion in (4.4) is still effective. 

Assuming that the quantization error is uniformly distributed in the  r ×  r  area, we can predict the recognition performance with regard to the number of classes (people) in the database through a simulation approach. The prediction results are upper bounds on PCR with regard to different human silhouette resolution values. 

Fig. 4.2 Uncertainty computation for the given silhouette resolution  r (in mm/pixel)
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4.3 Experimental Results

In our experiments, the performance prediction results are obtained through simulation approaches. First, we randomly generate the body part lengths of  M  classes (people) according to the distribution of different body part lengths. Next, for each of the  M  classes, we randomly generate  N  instances for this class according to the uncertainties in Sects. 4.2.2 or 4.2.3. Then, the recognition rate is obtained by the minimum Euclidean distance classification on the  M ×  N  instances. After this experiment has been repeated  K  times, we can obtain the average recognition rate. 

If  N ∗  K  is large enough ( N = 100 and  K = 100 in our experiments), this average recognition rate can be viewed as the predicted PCR of the given algorithm (Fig. 4.3), and an upper bound on PCR (Fig. 4.4). From these prediction results, we can find the corresponding maximum number of people in a database given the allowable error rate. Table 4.3 shows the corresponding resolution (mm/pixel) for a 1675 mm (population average height) person occupying different vertical portions of the frame with different video formats. It is shown that most of these resolutions are good enough for human recognition in databases of less than 500 people. 

Our prediction results are based on the assumption that the selected length features are independently distributed with an identical Gaussian distribution. This assumption may not accurately reflect different types of perturbations. In the future, Fig. 4.3 Predicted PCR with regard to different database size and different within-class standard deviation values of the features extracted from different algorithms
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Fig. 4.4 Predicted upper bound on PCR with regard to different database size and different human silhouette resolution values

Table 4.3 Resolution (mm/pixel) for a 1675 mm (population average height) person occupying different vertical portions of the frame with different video formats

Human silhouette

VHS 240 lines

Digital video

High definition

occupancy

480 lines

1080 lines

100% of frame

6 .  98

3 .  49

1 .  55

75% of frame

9 .  31

4 .  65

2 .  07

50% of frame

13 .  96

6 .  98

3 .  10

25% of frame

27 .  92

13 .  96

6 .  20

it will be useful to investigate the real feature distribution under different types of perturbations. 

4.4 Summary

In this chapter, we proposed a Bayesian based statistical analysis to evaluate the discriminating power of extracted features for gait-based individual recognition. 

64

4

Discrimination Analysis for Model-Based Gait Recognition

Through probabilistic simulation, we not only obtain the probability of correct recognition for our approach, but also obtain an upper bound on the probability of correct recognition with regard to different human silhouette resolution in ideal cases. We obtain the plots characterizing the maximum number of people in the database that can be recognized given the allowable error rate. This will guide future research for gait recognition in large databases. The discrepancy between actual and predicted results will be reduced by developing better gait recognition algorithms. 

Chapter 5

Model-Based Human Recognition—2D and 3D

Gait

In this chapter, we propose a kinematic-based approach to recognize individuals by gait using a single camera or multiple cameras for 2D gait recognition where the model is in 3D and the data are in 2D. In addition, we present a 3D gait recognition approach where both the model and the gait data are in 3D. 

In Sect. 5.1, the proposed approach based on 3D model and 2D data estimates 3D human model parameters by performing a least squares fit of the 3D kinematic model to the 2D silhouette from single camera view or multiple camera views. A genetic algorithm is used for human model parameter estimation, and the individuals are then recognized from the feature vectors using a nearest neighbor method. 

Section 5.2 describes an approach where both modeling and recognition of an individual are done using the dense 3D range data. The approach first measures 3D

human body data that consists of the representative poses during a gait cycle. Next, a 3D human body model is fitted to the body data using an approach that overcomes the inherent gaps in the data and estimates the body pose with high accuracy. A gait sequence is synthesized by interpolation of joint positions and their movements from the fitted body models. Both dynamic and static gait features are obtained which are used to define a similarity measure for an individual recognition in the database. 

Both Sects. 5.1 and 5.2 provide experimental results. 

Finally, Sect. 5.3 provides the summary of the chapter. 

5.1 2D Gait Recognition (3D Model, 2D Data)

In this section, we present aspects of 3D modeling and propose a kinematic-based approach to recognize individuals by gait. The proposed approach estimates 3D

human walking parameters by performing a least squares fit of the 3D kinematic model to the 2D silhouette from single camera view or multiple camera views. Our approach eliminates the assumption of individuals walking fronto-parallel to the image plane, which is desirable in many gait recognition applications. Experimental results on both single and multiple camera views are presented. 

B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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Niyogi and Adelson [126] make an initial attempt in a spatio-temporal (XYT) volume. They first find the bounding contours of the walker, and then fit a simplified stick model on them. A characteristic gait pattern in XYT is generated from the model parameters for recognition. Yoo et al. [193] estimate hip and knee angles from the body contour by linear regression analysis. Then trigonometric-polynomial interpolant functions are fitted to the angle sequences, and the parameters so-obtained are used for recognition. In Lee and Grimson’s work [96], human silhouette is divided into local regions corresponding to different human body parts, and ellipses are fitted to each region to represent the human structure. Spatial and spectral features are extracted from these local regions for recognition and classification. 

In these model-based approaches, the accuracy of human model reconstruction strongly depends on the quality of the extracted human silhouette. In the presence of noise, the estimated parameters may not be reliable. To obtain more reliable estimates, Tanawongsuwan and Bobick [160] reconstruct the human structure by tracking 3D sensors attached on fixed joint positions. However, their approach needs lots of human interaction. Spencer and Carter [157] analyze human motion structure from single view sequences to remove the unknown camera and pose ambiguities and reconstruct the underlying gait signature without the prior knowledge of camera calibration. The assumption of this approach is that the computer vision task of finding limb landmark points and tracking them over all frames in the sequence is solved. 

 5.1.1 3D Human Modeling

A human body can be viewed as an articulated object, consisting of a number of body parts. Human bodies can be represented as stick figures [19, 95], 2D contours

[3, 97], or volumetric models [128, 143]. 

5.1.1.1 Human Kinematic Model

A human body is considered as an articulated object, consisting of a number of body parts. The body model adopted here is shown in Fig. 5.1, where a circle represents a joint and a rectangle represents a body part (N: neck, S: shoulder, E: elbow, W: waist, H: hip, K: knee, and A: ankle). 

Most joints and body part ends can be represented as spheres, and most body parts can be represented as cones. The whole human kinematic model is represented as a set of cones connected by spheres [105]. Figure 5.2 shows that most of the body parts can be approximated well in this manner. However, the head is approximated only crudely by a sphere and the torso is approximated by a cylinder with two spheroid ends. 
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Fig. 5.1 3D human

kinematic model

Fig. 5.2 Body part geometric

representation

5.1.1.2 Human Model Parameter Selection

Human motion is very complex due to many degrees of freedom (DOF). To simplify the matching procedure, we use the following reasonable assumptions: (1) the camera is stationary; (2) people are walking before the camera at a distance; (3) people are moving in a constant direction; (4) the swing direction of arms and legs parallels to the moving direction. 

According to all the above-mentioned assumptions, we do not need to consider the waist joint, and only need to consider 1 DOF for each other joint. Therefore, the elements of the parameter vector of the 3D human kinematic model are defined as follows:
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• Stationary parameters—radius  ri (11): torso (3), shoulder, elbow, hand, hip, knee, ankle, toe, and head; length  li (9): torso, inter-shoulder, inter-hip, upper arm, forearm, thigh, calf, foot, and neck

• Kinematic parameters—location  (x, y) (2); Angle  θi (11): neck, left upper arm, left forearm, right upper arm, right forearm, left thigh, left calf, left foot, right thigh, right calf, and right foot

With these parameters, the projection of the human model can be completely determined. 

5.1.1.3 Camera Model and Coordinate Transformation

In this section, we briefly describe the camera model and associated calibration parameters [168]. Figure 5.3 illustrates the camera geometry with perspective projection and radial lens distortion.  (xw, yw, zw)  is the 3D world coordinate centered at  Ow,  (x, y, z)  is the 3D camera coordinate centered at  O, and  (X, Y )  is the image Fig. 5.3 Camera geometry with perspective projection and radial lens distortion [168]
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coordinate centered at  O 1. Among image coordinates,  (Xu, Yu)  is the ideal undistorted image coordinate if a perfect pinhole camera model is used,  (Xd , Yd )  is the actual distorted image coordinate with lens distortion, and  (Xf , Yf )  is the computer image coordinate in pixel. Four steps of transformation are used to convert the 3D

world coordinate  (xw, yw, zw)  to the computer image coordinate  (Xf , Yf ). 

World Coordinate to Camera Coordinate

The first step is performed by a rigid

body transformation from the 3D world coordinate  (xw, yw, zw)  to the 3D camera coordinate  (x, y, z)⎛ ⎞ ⎛

⎞ ⎛

⎞ ⎛ ⎞

 x

 r 11

 r 12

 r 13

 xw

 Tx

⎝ y ⎠ = ⎝ r

⎠ ⎝

⎠ ⎝ ⎠

21

 r 22

 r 23

 yw

+  Ty , 

(5.1)

 z

 r 31

 r 32

 r 33

 zw

 Tz

where

⎛

⎞

 r 11

 r 12

 r 13

 R = ⎝ r

⎠

21

 r 22

 r 23

(5.2)

 r 31

 r 32

 r 33

is the 3D rotation matrix, and

⎛ ⎞

 Tx

 T = ⎝  T ⎠

 y

(5.3)

 Tz

is the 3D translation vector. 

Camera Coordinate to Ideal Image Coordinate

The second transformation

converts the 3D camera coordinate  (x, y, z)  to the ideal undistorted image coordinate  (Xu, Yu)  using perspective projection with pinhole camera geometry x

 Xu =  f , 

(5.4)

 z

 y

 Yu =  f , 

(5.5)

 z

where  f  is the camera focal length, i.e., the distance between front image plane and the optical center. 

Ideal Image Coordinate to Actual Image Coordinate

The transformation from

the ideal undistorted image coordinate  (Xu, Yu)  to the actual distorted image coordinate  (Xd , Yd )  is formulated by radial lens distortion

 Xd +  Dx =  Xu, 

(5.6)

 Yd +  Dy =  Yu, 

(5.7)

where





 Dx =  Xd k 1 r 2 +  k 2 r 4 + · · ·  , (5.8)





 Dy =  Yu k 1 r 2 +  k 2 r 4 + · · ·  , (5.9)



 r =

 X 2 +  Y  2 . 

(5.10)

 d

 d
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Actual Image Coordinate to Computer Image Coordinate

The final step is the

transformation from the actual distorted image coordinate  (Xd , Yd )  to the computer image coordinate  (Xf , Yf )

 Xf =  sxd−1

 x

 Xd +  Cx, 

(5.11)

 Yf =  d−1

 y

 Yd +  Cy, 

(5.12)

where

 Ncx

 d =

 x

 dx

(5.13)

 Nf x

and  (Cf , Cf )  is the vector of row and column numbers of the center of the computer coordinate system. In (5.13),  dx  and  dy  are the center-to-center distances between adjacent sensor elements in the  X  and  Y  direction, respectively.  Ncx  and  Ncy  are the number of pixels in the  X  and  Y  direction, respectively. 

The calibration parameters used in these transformations can be divided into two categories: extrinsic parameters and intrinsic parameters. Extrinsic parameters include three translation components  Tx ,  Ty ,  Tz  and three Euler angles: yaw  θ , pitch  φ

and tile  η. The rotation matrix can be determined by these three Euler angles cos  η  cos  θ

sin  η  cos  θ

−sin  θ

 R = −sin  η  cos  θ + cos  η  sin  θ  cos  φ

cos  η  cos  θ + sin  η  sin  θ  sin  φ

cos  θ  sin  φ

 . 

sin  η  sin  θ + cos  η  sin  θ  cos  φ

−cos  η  sin  θ + sin  η  sin  θ  cos  φ  cos  θ  cos  φ

(5.14)

Intrinsic parameters include the parameters in the last three steps: focal length  f , first order lens distortion  k 1, uncertainty scale factor  sx , and computer image coordinate for the origin in the image plane  (Cx, Cy). 

 5.1.2 Human Recognition from Single Non-calibrated Camera

5.1.2.1 Silhouette Preprocessing

The raw silhouettes are extracted by a simple background subtraction method. After the silhouette has been cleaned by a pre-processing procedure, its height, width and centroid can be easily extracted for motion analysis. In addition, the moving direction of the walking person is determined as follows

⎧

⎨ tan−1  f(h 1− hN) , 

if  y

 h

1  > yN ; 

1 yN − hN y 1

 θ = ⎩

(5.15)

tan−1  f (h 1− hN ) +  π,  otherwise, 

 h 1 yN − hN y 1

where  f  is the camera focus length,  y 1 and  yN  are the horizontal centroids of the silhouette, and  h 1 and  hN  are the heights of the silhouette in the first and  N  th frame, respectively. 
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5.1.2.2 Matching Between 3D Model and 2D Silhouette

The matching procedure determines a parameter vector x so that the proposed 3D

model fits the given 2D silhouette as well as possible. For that purpose, two chained transformations transform the human body local coordinates  (x, y, z)  into the image coordinates  (x , y ) [174]: the first transformation transforms local coordinates into camera coordinates; while the second transformation projects camera coordinates into image coordinates. 

Each 3D human body part is modeled by a cone with two spheres s i  and s j  at its ends, as shown in Fig. 5.2 [105]. Each sphere s i  is fully defined by 4 scalar values,  (xi, yi, zi, ri), which define its location and size. Given these values for two spheroid ends  (xi, yi, zi, ri)  and  (xj , yj , zj , rj )  of a 3D human body part model, its projection  P(ij)  onto the image plane is the convex hull of the two circles defined by (x , y , r )  and  (x  , y  , r  ). 

 i

 i

 i

 j

 j

 j

Given the 2D human silhouette in a frame, we may find the relative 3D body parts’ locations and orientations. The 3D locations so-obtained is not the actual 3D information because the depth  z  is lost from the single camera view. We further assume that the image plane is perpendicular to the ground, and we can also estimate the 3D human orientation given the estimated human walking direction. We propose a method to perform a least squares fit of the 3D human model to the 2D human silhouette, that is, to estimate the set of sphere parameters x = {x i :  (xi, yi, zi, ri)}

by choosing x to minimize



2

error (x;  I ) =

 Px (x , y ) −  I (x , y ) , (5.16)

 x ,y∈ I

where  I  is the silhouette binary image,  Px is the binary projection of the 3D human model to image plane, and  (x,  y )  is the computer image coordinate vector. 

5.1.2.3 Human Model Parameter Estimation

The realization of our proposed approach is shown in Fig. 5.4, and the major processing steps are detailed in the following subsections. 

Stationary Parameter Estimation

The stationary parameters include body part

length parameters and joint radius parameters. Notice that human walking is a cyclic motion, so a video sequence can be divided into motion cycles and studied separately. In each walking cycle, the silhouette with minimum width means that people stand straight in that frame and that means the most occlusion; the silhouette with maximum width means the least occlusion and, therefore, it is more reliable. 

To estimate the stationary parameters, we first select some key frames (4 frames in our experiments) which contain more reliable silhouettes, and then perform matching procedure on the key frames as a whole. The corresponding feature vector thus includes 20 common stationary parameters and 13 × 4 kinematic parameters. 
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Fig. 5.4 Diagram of the proposed approach for human gait analysis

Next, we first initialize these parameters according to the human statistical information. Then, the set of parameters is estimated from this initial parameters by choosing a parameter vector x to minimize the least squares error in (5.16) with respect to the same kinematic constraints. 

After the matching algorithm is converged, the estimated stationary parameters are obtained and will be used for kinematic parameter estimation of other frames. 

At the same time, the estimated kinematic parameters of key frames will be used for prediction. 

Kinematic Parameter Estimation

To reduce the search space and make our

matching algorithm converge faster, we use the predicted parameters from the previous frames as the initialization of the current frame:





 θ (i) =  θ(i−1 ) +  θ(i−1 ) −  θ(i−2 ) , y(i) =  y(i−1 ) +  y(i−1 ) −  y(i−2 ) , (5.17)

 x(i) =  x(i−1 ). 

After the matching algorithm is converged, the estimated kinematic parameters are obtained for each frame. 
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5.1.2.4 Recognition Based on Kinematic and Stationary Features

In our approach, kinematic features are the mean and standard deviation values extracted from the kinematic parameters of each frame in the whole image sequence containing one human walking cycle. Assuming that human walking is symmetric, that is, the motion of the left body parts is the same as or similar to the right body parts, the kinematic feature vector xk selected for human recognition includes 10 elements: the mean and standard deviation of angles of neck, upper arm, forearm, thigh, and leg. 

Kinematic and Stationary Feature Classifier

Stationary features are directly se-

lected from the estimated stationary parameters of each sequence containing human walking. Among those model stationary parameters, joint radius depends on human clothing, and inter-shoulder and inter-hip length is hardly estimated due to the camera view (human walking within small angle along the front-parallel direction). 

Assuming the body part length is symmetric for left and right body parts, the stationary feature vector xs selected for human recognition includes 7 elements: neck length, torso length, upper arm length, forearm length, thigh length, calf length, and foot length. 

After the kinematic and stationary features are extracted, they are used to classify different people separately. For simplicity, we assume that the feature vector x (x could be xs or xk) for a person  ωi  is normally distributed in the feature space, and each of the independent features have Gaussian distribution with the same standard deviation value. Under this assumption, the minimum distance classifier is established: x is assigned to the class whose mean vector has the smallest Euclidean distance with respect to x. 

Classifier Combination Strategies

To increase the efficiency and accuracy of hu-

man recognition, we need to combine the two classifiers in some way. Kittler et al. 

[88] demonstrate that the commonly used classifier combination schemes can be derived from a uniform Bayesian framework under different assumptions and using different approximations. We use these derived strategies to combine the two classifiers in our experiments. 

In our human recognition problem with  M  people in the database, two classifiers with feature vectors xs and xk, respectively, are combined to make a decision on assigning each sample to one of the  M  people ( ω 1 , . . . , ωM ). The feature space distribution of each class  ωi  is modeled by the probability density function  p(xs| ωi) and  p(xk| ωi), and its a priori probability of occurrence is  P (ωi). Under the assumption of equal priors, the classifier combination strategies are described as follows:

• Product rule {xs , xk} ∈  ωi, if  p(xs| ωi)p(xk| ωi) = max M p(x k=1

s| ωk )p(xk| ωk )

• Sum rule {xs , xk} ∈  ωi, if  p(xs| ωi) +  p(xk| ωi) = max M (p(x k=1

s| ωk ) +  p(xk| ωk ))

• Max rule {xs , xk} ∈  ωi, if max{ p(xs| ωi), p(xk| ωi)} = max M  max{ p(x k=1

s| ωk ), 

 p(xk| ωk)}

• Min rule {xs , xk} ∈  ωi, if min{ p(xs| ωi), p(xk| ωi)} = max M  min{ p(x k=1

s| ωk ), 

 p(xk| ωk)}

[image: Image 17]
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Fig. 5.5 Sample sequences in our gait database recorded from single camera view In our application, the estimate of a posteriori probability is computed as follows: P (ωi|x ) =

exp{−x −  μi2}



 , 

(5.18)

 M

exp{−x −  μ

 k=1

k2}

where x is the input of the classifier, and  μi is the  i th class center. 

5.1.2.5 Performance Evaluation on Monocular Image Sequences

The video data used in our experiment are real human walking data recorded in outdoor environment. Eight different people walk within [−45◦ ,  45◦] with respect to the front-parallel direction. We manually divide video data into single-cycle sequences with an average of 16 frames. In each sequence, only one person walks along the same direction. There are a total of 110 single-cycle sequences in our database, and the number of sequences per person ranges from 11 to 16. The image size is 180 × 240. Figure 5.5 shows some sample sequences in our database. 

We use a genetic algorithm for model parameter estimation. Each of the extracted kinematic and stationary features is normalized by  x− μ , where  x  is the specific σ

feature value,  μ  and  σ  are the mean and standard deviation of the specific feature over the entire database. Recognition results in our experiments are obtained using the leave-one-out nearest neighbor classification method. 

Performance of Stationary Feature Classifier

The recognition rate with all the

7 stationary features is 62%. Table 5.1 shows the human recognition performance using a different number of stationary features. From this table, we can see that the recognition rate increases when the number of features increases. Therefore, each of these features has its own contribution to the overall recognition performance using stationary features. On the other hand, the contribution varies among different features. For example, adding the torso length into the feature vector with the neck length makes a 1% improvement, while adding the upper arm length into the feature vector with the torso and neck lengths makes a 13% improvement. As a
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Table 5.1 Comparison of performance using different number of stationary features Feature size

Stationary features

Recognition rate

1

Neck

31%

2

Neck, torso

32%

3

Neck, torso, upper arm

45%

4

Neck, torso, upper arm, forearm

50%

5

Neck, torso, upper arm, forearm, thigh

55%

6

Neck, torso, upper arm, forearm, thigh, calf

59%

7

Neck, torso, upper arm, forearm, thigh, calf, foot

62%

Table 5.2 Comparison of

performance using mean and

Feature size

Kinematic features

Recognition rate

standard deviation features

computed from each body

5

Mean

50%

part angle variation sequences

5

Standard deviation

49%

over a single-cycle sequence

10

Mean and standard deviation

72%

Table 5.3 Comparison of

performance using different

Feature

Kinematic features

Recognition

number of kinematic features

size

rate

2

Neck

34%

4

Neck, upper arm

51%

6

Neck, upper arm, forearm

57%

8

Neck, upper arm, forearm, thigh

63%

10

Neck, upper arm, forearm, thigh, leg

72%

result, better recognition performance might be achieved by using a weighted Euclidean distance instead of the regular Euclidean distance. This requires a training procedure. However, due to the high feature space dimension (7) and the small class number (8) in the database, overfitting becomes a big problem in this situation, i.e., training results achieve high recognition rate on training data and low recognition rate on testing data. Therefore, we do not carry out weight training in this chapter. 

We expect such a procedure to be carried out when a large database with a large number of classes (people) becomes available. 

Performance of Kinematic Feature Classifier

The recognition rate with all 10

kinematic features is 72%. In Table 5.2, it is shown that the mean and standard deviation features computed from each body part angle variation sequences over a single-cycle sequence achieve similar recognition rates, 50% and 49%, respectively. 

Table 5.3 shows the human recognition performance using different number of kinematic features. Similar to stationary features, the recognition rate increases when the
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Table 5.4 Comparison of

performance using different

Combination rule

Recognition rate

combination strategies

Product rule

83%

Sum rule

80%

Max rule

73%

Min rule

75%

number of features increases. We expect a weight training procedure carried out on a large human walking database in the future. 

Performance with Classifier Combination

Table 5.4 shows the human recogni-

tion performance on classifier combinations with different strategies. Considering the recognition rates for stationary and kinematic classifiers are 62% and 72%, respectively, all four rules achieve better recognition performance in human recognition. Among the combination strategies, the product rule achieves the best recognition rate of 83%. The sum rule also achieves a better recognition rate of 80%. The recognition rates achieved by the max and min rules are only slightly better than that of the kinematic classifier (72%). The sum rule has been mathematically proved to be robust to errors by Kittler et al. [88]. We believe that the main reason for the good performance achieved by the product rule is the holding of the conditional independence assumption (the features used in different classifiers are conditionally statistically independent) in the product rule for our application. The poor performance of the max and min rules may come from their order statistics and sequential sensitivity to noise. Similar results are found in Shakhnarovich and Darrell’s work on combining face and gait features [154]. 

 5.1.3 Human Recognition from Multiple Calibrated Cameras

Human model parameter estimation from a single camera can only provide the relative length of different body parts. In this section, we propose a model parameter estimation approach from multiple calibrated cameras. The proposed approach provides the estimation of actual length of different body parts, leading to better human recognition performance. The technical approach is similar to that for a single camera, but there are some differences in human model parameter selection, matching between human model and silhouettes, and human model parameter initialization and estimation. 

5.1.3.1 Human Model Parameter Selection

We use the same assumptions as those in Sect. 5.1.1.2. Under these assumptions, we further simplify the human model as follows:
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• Stationary parameters—length  li (7): torso (2), upper arm, forearm, thigh, leg, and neck

• Kinematic parameters—location  O =  (xw, yw, zw) (3); angle  θi (10): neck, torso, left upper arm, left forearm, right upper arm, right forearm, left thigh, left leg, right thigh, and right leg

All the other stationary parameters not selected here are designed as fixed percentages of the selected stationary parameters. The location parameters indicate the origin of the local human coordinates in the world coordinates. The origin of the local body coordinates is chosen as the center of the bottom end of the torso, that is, the middle point between the left and right hip joints. 

5.1.3.2 Matching Between 3D Human Model and Multiple 2D Silhouettes

The matching procedure determines a parameter vector x so that the proposed 3D

model fits the given 2D silhouettes from multiple cameras as well as possible. In the multiple camera scenario, each camera has its own coordinates. Therefore, three major chained transformations transform the human body local coordinates  (x, y, z) into the image coordinates  (x , y ): the first transformation transforms the local coordinates into the world coordinates; the second transformation transforms the world coordinates into the camera coordinates; and the third transformation projects the camera coordinates into the image coordinates. 

Given multiple 2D human silhouettes corresponding to one 3D pose, we may find the relative 3D body parts’ locations and orientations with the knowledge of camera parameters. We perform a least squares fit of the 3D human model to multiple 2D

human silhouettes, that is, we estimate the set of human model parameters x that minimize

 m



2

error (x;  I 1 , I 2 , . . . , Im) =

 Px (x , y ) −  Ii(x , y ) , (5.19)

 i=1  x ,y∈ Ii

where  Ii  is the silhouette binary image of the  i th camera,  m  is the number of cameras,  Px is the binary projection of the 3D human model to the image plane, and (x , y )  is the computer image coordinate vector. 

5.1.3.3 Human Model Parameter Initialization and Estimation

We initialize the length and angle parameters in Sect. 5.1.3.1 using anthropometric data [136] and prior knowledge of normal human walking. The initial location parameters  O =  (xw, yw, zw), the center of the local body coordinate in the world coordinates, are estimated from the silhouette centroid of multiple camera views, corresponding to the center of the bottom end of the torso (the middle point between the left and right hip joints). 

Given the centroid of a human silhouette,  (xf , yf )  in the computer image system, we can calculate the corresponding  (xu, yu)  in the ideal image coordinates, 
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according to (5.7)–(5.13). Combining (5.1)–(5.5), we have two equations in the following form:

 a 1 xw +  a 2 yw +  a 3 zw =  xu +  b 1 , (5.20)

 a 4 xw +  a 5 yw +  a 6 zw =  xu +  b 2 , (5.21)

where  a 1 , . . . , a 6,  b 1,  b 2,  xu, and  yu  are known. Therefore, given  m  silhouettes of the same pose from  m  cameras, we have 3 unknown variables in 2 m  equations:
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We rewrite (5.22) as

 AT w = b . 

(5.23)

Minimizing the sum of error squares criterion [163] defined as

2 m
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 J (w ) =
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 , 

 i w

(5.24)

 i=1

the estimate of w is





ˆ

−1

w =  AT A

 AT b . 

(5.25)

We use genetic algorithm (GA) to solve the optimization problem in (5.19). GA provides a learning method motivated by an analogy to biological evolution. Rather than searching from general-to-specific hypotheses, or from simple-to-complex hypotheses, GA generates successor hypotheses by repeatedly mutating and recom-bining parts of the best currently known hypotheses. At each step, a collection of hypotheses called the current population is updated by replacing some fraction of the population by offspring of the most fit current hypotheses. After a large number of steps, the hypotheses having the best fitness are considered as solutions. 

5.1.3.4 Performance Evaluation on Data from Multiple Cameras

We use CMU Mobo database to evaluate the performance of the proposed approach for multiple camera scenario [55]. In CMU Mobo database, the CMU 3D room

is reconfigured to capture multi-view motion sequences of human body motion. 

A total of 6 high quality (3CCD, progressive scan) synchronized cameras are used to record subjects walking on a treadmill positioned in the middle of the room. 

25 subjects are recorded when performing slow walk, fast walk, incline walk, and slow walk holding a ball. Each sequence only contains one person performing one

[image: Image 18]
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Fig. 5.6 Sample frames of three camera views in Mobo database

walking type of 11 seconds long at the speed of 30 frames/second. The size of color images is 640 × 480. The pre-extracted silhouettes and calibration parameters are also available in the database. 

We choose three camera views out of a total of six camera views for human model parameter estimation as shown in Fig. 5.6. For each person and each walking type, the frequency and phase for each frame is estimated as discussed in Chap. 2. 

The whole sequence can, therefore, be divided into different walking cycles. Within each walking cycle, we choose two key frames at pre-selected phases to estimate the static features (body part length). Once the estimates from one walking cycle is obtained, they are used as the initial parameter for the estimation in the next cycle. 

With more cycles involved, the estimation error is reduced. The pre-selected phases are the same for all the sequences. 

In our experiments of human recognition, we choose sequences containing fast walk as the gallery data (one sequence per person), and sequences containing slow walk as the probe data (one sequence per person). We found that sequences of 4 subjects with the ID of 04013, 04015, 04070, and 04071 have different camera setup in comparison with other sequences. Therefore, they are excluded from our experiments. Because the walking styles (body part angles) of fast walk and slow walk are different for the same person, only static features (length or torso, upper arm, lower arm, thigh and leg) are used for human recognition. The resulting recognition
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performance on the remaining 21 subjects is 76% using the nearest neighbor classification on static features. This performance is better than that in the single camera view (72% out of 8 persons), which indicates the improvement of human model parameter estimation using multiple cameras. 

5.2 Gait Recognition in 3D

It has been challenging to recognize walking humans at arbitrary poses from a single or small number of video cameras. Attempts have been made mostly using a 2D image/silhouette-based representation and a limited use of 3D kinematic model-based approaches. In this section, the problem of recognizing walking humans at arbitrary poses is addressed. Unlike all the previous work in computer vision and pattern recognition, the models of walking humans are built using the sensed 3D

range data at selected poses without any markers. An instance of a walking individual at a different pose is recognized using the 3D range data at that pose. Both modeling and recognition of an individual are done using the dense 3D range data. 

The approach first measures 3D human body data that consists of the representative poses during a gait cycle. Next, a 3D human body model is fitted to the body data using an approach that overcomes the inherent gaps in the data and estimates the body pose with high accuracy. A gait sequence is synthesized by interpolation of joint positions and their movements from the fitted body models. Both dynamic and static gait features are obtained which are used to define a similarity measure for an individual recognition in the database. The experimental results show high recognition rates using our range based 3D gait database. 

 5.2.1 Individual Recognition by Gait in 3D

Biometric authentication based on human gait has attracted significant attention recently. Gait has unique characteristics and indicates a personal trait. If we change the habit of walking consciously, the motion of body parts seem unnatural. Thus, gait involves not only the surface geometry but also dynamic motions of the joints. 

As discussed previously, single-camera based gait recognition methods have been developed. Usually, they use a silhouette image extracted by background subtraction. Liu and Sarkar [108] generated hidden Markov model-based gait representation by estimating the stance state and then averaging silhouette images. Goffredo et al. [53] introduced view-independent markerless gait analysis based on the anthropometric propositions of human limbs and the characteristics of gait. To overcome the non-frontal pose problem, more recently multi-camera based gait recognition methods (see previous section) have also been developed. These methods exhibited higher recognition accuracy for multi-views than that of a single view. Zhao et al. [205] proposed gait tracking and recognition by matching 3D body model to
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video sequences. Gait feature is defined by the lengths of key segments and the motion trajectory of lower limbs which are obtained from the inferred model. Huang et al. [71] investigated the exploitation of the availability of multi-views in a gait recognition system. The combination of the results of different views is evaluated to find the improvement in the recognition accuracy. Seely et al. [152] developed the University of Southampton Multi-Biometrics Tunnel. The subject’s gait is recorded by eight synchronized cameras, and the face and ear are also captured by two videos separately. 

Typically, gait recognition methods employ 3D pose inference, and then extract a gait feature. The effectiveness and correctness of the inference and feature extraction need to be verified before recognition. To overcome this problem, full body motion capture methods based on multi-camera system directly fit 3D body model to 3D

body data. Cheung et al. [29] proposed temporal shape-from-silhouette algorithms for human body modeling and motion tracking. The markerless tracking algorithm is based on the Visual Hull alignment algorithm. Caillette et al. [44] proposed variable length Markov model which formulates human activities. Appearance model represented by Gaussian blobs is fitted onto voxels data from multiple views. The multi-camera system, 3D Room [30], acquires ten thousand triangles in the mesh to represent a whole body. When another object is measured, the size of a voxel used is 7.8 mm×7.8 mm×7.8 mm. 

If we apply the multi-camera system to obtain 3D gait biometrics, the low resolution and the small number of measurement points are not well suited and qualified to make precise models of human body in motion. In contrast, a projector camera system, used in this section, captures whole human body data with 3 mm depth resolution. The number of measurement points on the entire human body is approximately one million. It takes ∼2–3 s to capture the 3D data on the entire human body. To our knowledge, there is no publication in the computer vision and pattern recognition field that has been able to generate 3D data of (markerless) walking humans from a multi-camera passive stereo with such a high accuracy and data rates. 

Since the data is dense and it is at a high resolution, we can interpolate the data to fill-in between gait acquisitions for improved human motion analysis. Therefore, the projector-camera system used in this section is well suited for gait recognition, and it provides a firm basis for systematic evaluation of gait biometrics in 3D. 

 5.2.2 Related Work

The following are representative recognition approaches for 3D biometrics. 

Kakadiaris et al. [80] developed a fully automatic 3D face recognition system based on a composite alignment algorithm to register 3D facial scans with a 3D facial model. The geometry image and normal map image are created by the deformed facial model. They are analyzed by a wavelet transform and the coefficients are used for authentication. Malassiotis et al. [114] proposed an authentication system based on measurements of 3D finger geometry using a low-cost real-time 3D sensor. The
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similarity between training and testing set is computed by the finger width and curvature measurements sampled by the finger length. Bhanu and Chen [12] and Yan and Bowyer [190] proposed complete systems for ear biometrics including automated ear region segmentation and 3D ear shape matching for recognition. These systems use an improved interactive closest point (ICP) method, that could be combined with point-to-point and point-to-surface approaches, to align a probe surface with a gallery surface. Multimodal 3D biometrics approaches have been developed in recent years. Tsalakanidou et al. [170] presented an authentication system based on the fusion of 3D face and finger biometrics. Theoharis et al. [164] presented a unified approach to fuse 3D facial and ear data. These methods achieve high recognition rate when compared to a single modality approach. As compared to all the work presented in Table 5.5, there are various approaches for 2D and 3D biometrics. While biometrics approaches using 3D face, finger, and ear data have been proposed, gait recognition method still utilizes 2D data. Therefore, in this section Table 5.5 Summary of 3D biometrics approaches for human recognition Authors

Technique

Data

Biometrics

Zhao et al. [205]

Fitting 3D body model to video sequences cap-

2D

Gait

tured by multi-camera to extract the lengths of

key segments and the motion trajectory of lower

limbs

Huang et al. [71]

Combination of the results of different views into

2D

Gait

a common distance metric for the evaluation of

similarity

Seely et al. [152]

Classification by non-normalized average silhou-

2D

Gait

ettes from three orthogonal viewpoints; side-on, 

front-on, and top–down view

Kakadiaris et al. [80]

Annotated face model fitting and its deformed

3D

Face

model geometry analysis by wavelet transform

Malassiotis et al. [114]

Similarity measurement computed by finger

3D

Finger

width and curvature measurements sampled by

finger length

Yan and Bowyer [190]

Modified ICP-based shape matching using ear

3D

Ear

point-cloud representation to align probe surface

with gallery surface

Bhanu and Chen [12]

Complete human identification system consist-

3D

Ear

ing of 3D ear detection, 3D ear identifica-

tion/verification, and performance prediction

Tsalakanidou et al. [170]

Combined face classifier based on probabilistic

3D

Face & 

matching algorithm and finger classifier based on

Finger

similarity

Theoharis et al. [164]

Wavelet transform for geometries derived from

3D

Face & Ear

annotated face model and annotated ear model

The approach discussed

Score matching for dynamic and static features

3D

Gait

in Sect. 5.2

of gait sequence recovered by interpolation of

representative poses
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we attempt to tackle human recognition using 3D gait biometrics where both the modeling and the test data are obtained in 3D. 

The key ideas described in this section are: (a) representative poses of a walking human are captured in 3D by a novel projector–camera system unlike motion capture methods with/without markers using a multi-camera system; (b) continuous motion is recovered by interpolation of the representative poses whose joint positions are estimated by a bottom-up approach using an articulated limb model; (c) 3D

gait biometrics based on interpolated motion provides highly reliable authentication. 

 5.2.3 Technical Approach

The representative poses of a walking human are captured using a high resolution projector–camera system. Then, a 3D human body model is fitted to the captured 3D data in the following order: torso, limb, and head. Next, the gait sequence is recovered by interpolation of the fitted body models to the real data. Then the gait features, as defined by dynamic and static features, are obtained. Finally, feature matching is performed based on the similarity measure for individual human recognition. 

5.2.3.1 3D Human Body Data

Gait has two distinct periods: a swing phase, when the foot does not touch the ground moving the leg forward, and a stance phase, when the foot touches the ground. Murray et al. [119] propose that a gait cycle is the time interval between instances of initial foot-to-floor contact, called  heel strike, for the same foot. 

Figure 5.7 is the gait cycle expressed by the swing phase and the stance phase. 

The cycle begins with a  foot touch  which marks the start of the swing phase. The body weight is transferred onto the other leg, and the leg swings forward to meet the ground in front of the other foot. The cycle ends with a  foot touch. The start of stance phase is when the heel strikes the ground. The ankle flexes to bring the foot flat on the ground and the body weight is transferred onto it. The end of stance phase is when the heel leaves the ground. 

Fig. 5.7 Gait cycle expressed by swing phase and stance phase

[image: Image 20]
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We measure four poses during the cycle by a projector–camera system. The

projector–camera system captures high resolution and highly accurate whole human body data. It includes approximately one million 3D points, x, in a few (2–3) seconds. A subject has the following posture conditions:

1. Right foot touches the ground. Right leg (left hand) is in front of the torso and left leg (right hand) is at the back of the torso. The length of stride is the longest during walking. 

2. Right foot touches the ground and left foot leaves the ground. Right leg is vertical to the ground and left leg is at the back of the torso. Both hands are along the sides. 

3. Left foot touches the ground. Left leg (right hand) is in front of the torso and right leg (left hand) is at the back of the torso. The length of stride is the longest during walking. 

4. Left foot touches the ground and right foot leaves the ground. Left leg is vertical to the ground and right leg is at the back of the torso. Both hands are along the sides. 

Currently, gait databases have tens of images during a gait cycle [55, 150]. In this chapter, we assume that there are only four measured poses of them. 

5.2.3.2 3D Human Body Model

The model of the human body is based on a kinematic tree consisting of 12 segments, as illustrated in Fig. 5.8. Each body segment,  i, is approximated by a 3D

tapered cylinder which has one free parameter,  li , the cylinder length. It has two Fig. 5.8 3D human body model. (a) Tapered cylinder with two angular DOF. (b) Body model approximated by 12 segments. (c) Hierarchical structure

5.2 Gait Recognition in 3D

85

degrees of freedom rotational joint, [ θi

]

 x , θ iz , in the local coordinate system ( Oi – Xi –

 Yi – Zi ). Upper torso is the root segment, i.e., the parent of lower torso, right upper leg, and left upper leg. Similarly, other segments are linked to parent segments by the rotational joints. 

The articulated structure of the human body has a total of 40 degrees of freedom (DOFs). The pose is described by a 6D vector, p, representing global position and rotation, a 22D vector, q, representing the joint angles, and a 12D vector, r, representing the lengths of body part as follows:





p =  τ  0 x, τ  0 y, τ  0 z, θ 0 x, θ 0 y, θ 0 z , (5.26)



q =  θ 1 x, θ 1 z, θ 3 x, θ 3 z, θ 4 x, θ 4 z, θ 5 x, θ 5 z, θ 6 x, θ 6 z, θ 7 x, θ 7 z, θ 8 x, θ 8 z, θ 9 x, θ 9 z, θ  10

 x , θ  10

 z , θ  11

 x , θ  11

 z , θ  12

 x , θ  12

 z

 , 

(5.27)





r =  l 1 , l 2 , l 3 , l 4 , l 5 , l 6 , l 7 , l 8 , l 9 , l 10 , l 11 , l 12  . 

(5.28)

Here, neck is the fixed segment between head and upper torso, so that we do not consider neck angles. The combination of the representative four poses is denoted by  u. Joint DOF values concatenated along the kinematic tree define the kinematic pose, k, as a tuple, [p , q , r , u], where p ∈ R6, q ∈ R22, r ∈ R12,  u = { u 1 , u 2 , u 3 , u 4}. 

In the previous works, segments are linked to parent segments by either 1-DOF

(hinge), 2-DOF (saddle) or 3-DOF (ball and socket) rotational joints [173]. We use only 2-DOF rotational joints because the 3D tapered cylinder has rotational sym-metry along the direction orthogonal to the radial direction. Therefore, we eliminate unnecessary variables. 

5.2.3.3 Model Fitting

Let us consider human body modeling and its problems. Modeling methods which use  ideal data  sometimes fail when applied to real data [199]. The real data captured by projector–camera systems have some problems. For example, a projector–

camera system cannot cover well particular body parts, such as the groin region, axillary region, and side of a human body, so that 3D points of the real data are not independently and identically distributed [182]. In addition, the body sways, and deep color clothes also have detrimental effects such as holes and gaps. 

In this section, a modeling method for dealing with the problems occurring in real data is proposed. Our approach to modeling a walking human incorporates four separate steps: body axes estimation, torso detection, arms/legs detection, and head/neck detection. 

5.2.3.4 Body Axes

The intuition behind the principal component analysis (PCA) is to find a set of base vectors, so that they explain the maximum amount of variance of the data [79]. PCA

[image: Image 21]
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Fig. 5.9 Body axes

estimation by PCA

is applied to determine coronal axis ( X-axis), vertical axis ( Y -axis), and sagittal axis ( Z-axis). The centroid of a human body and the three axes are shown in Fig. 5.9. 

Our approach to determining the three axes and the centroid incorporates two separate steps. First, we compute the eigenvectors and the mean vector using the data of the whole human body. The first eigenvector, e1, and the mean vector, m, define the vertical axis and the centroid. The data of arms and legs do not affect the estimation of the vertical axis and the centroid adversely because they are at symmetric positions in a horizontal direction. Second, we compute the eigenvectors using the extracted torso data (after torso detection, see below). The second eigenvector, e , and the third eigenvector, e , define the coronal axis and the sagittal axis, 2

3

respectively. The torso data is convex and has symmetrical shape even if a subject is walking, so that the two axes can be estimated robustly. Finally, the world coordinate system ( O– X– Y – Z) is defined by associating the coronal axis, the vertical axis, the sagittal axis, and the centroid with  X-axis,  Y -axis,  Z-axis, and the origin  O. 

5.2.3.5 Torso

We use the cross-section of a human body to detect upper torso and lower torso. 

Body data have some holes and gaps, so that the sampling and interpolation processes for the extraction of cross-section are required. 

First, the cross-section is divided into  R  regions radiating from a 3D point, c h, which is the intersection of the  Y -axis, with the  X– Z  plane. Here, the index  h  corresponds to the body height. For each region, the closest point from the intersection point is left and the others are removed. If there are no points, one linearly interpolated point is calculated using the neighbors. Next, the sample points are connected by the line segments. The areas inside the line segments defined by  si  are used for the detection of upper torso and lower torso. 

The height of the centroid is denoted by  g. We assume the cross-sectional area, sg, is the boundary between the upper torso and lower torso. The cross-sectional
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area of the top of upper torso,  sm, and the cross-sectional area of the base of lower torso,  sn, are given by

 sm =  δ ut sg, 

(5.29)

 sn =  δ lt sg, 

(5.30)

where  δ ut and  δ lt are weight parameters. We compute all the cross-sectional areas, and then search for the similar values in a vertical direction. When  si  is smaller than sm (or  sn),  i  is the height of the top of the upper torso (or the base of the lower torso). 

Then, directional vectors, nut and nlt, of upper torso and lower torso are estimated as





c h − c g

nut = median 

 , 

 g < h ≤  m, 

(5.31)

c h − c g





c h − c g

nlt = median 

 , 

 n ≤  h < g. 

(5.32)

c h − c g

The joint angles of upper torso and lower torso are obtained by the directional vectors. One is the angle between nut (or nlt) and the  X-axis, and the other is the angle between nut (or nlt) and the  Z-axis. Therefore, tapered cylinders can be fitted along the directional vectors. 

5.2.3.6 Arms and Legs

We use the fitting of tapered cylinders to detect arms and legs. The right/left-upper/lower-arm and right/left-upper/lower-leg are detected by using the same method. Thus, the detection of two of them, which are called the  upper part  and the  lower part (e.g., right upper arm and right lower arm), takes place. 

The line segments between the top and base of the cylinders of the upper part and lower part are defined as  L up = {oup +  λnup |  λ ∈ R3} and  L lp = {olp +  λnlp |

 λ ∈ R3}. Here, oup and olp are joint points (shoulder and elbow, or hip and knee). 

nup and nlp are the corresponding directional vectors, which are used as nrua and nrla for the right arm, and nrul and nrll for the right leg. Therefore, the distance between the line and 3D points can be written as







x

2

upnup − oupnup

 d





up =

xup − oup +

nup

 , 

(5.33)

n



upnup

xup∈upper part (x )







x
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lpnlp − olpnlp

 d





lp =

xlp − olp +

nlp

 , 

(5.34)

n



lpnlp

xlp∈lower part (x )

where xup and xlp are 3D points within each of the parts. We first seek the direction vectors to minimize each of the functions, and then two sets of two joint angles are estimated from the directional vectors. Accordingly, tapered cylinders can be fitted to the arms and legs along the directional vectors. 
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5.2.3.7 Head and Neck

Let us consider the difference between the head and the other body parts. In the measurement of the head, it is sometimes difficult to capture the shape of hair on the head because of the low sensitivities to deep color. Therefore, face shape and neck shape are used for the detection. 

First, the sizes of head and neck are estimated from the distribution of 3D points in the  X– Y  and  Y – Z  planes. Next, the directional vector of head, denoted by n h, is determined, and then the tapered cylinder is fitted to the head. As stated above, neck does not rotate in our model independently, so that the neck’s tapered cylinder is placed on upper torso. 

5.2.3.8 Gait Reconstruction

Gait sequence composed of tens or hundreds of poses is required to analyze and recognize. The representative four poses obtained by fitting body models to body data are used to recover the other poses. 

Assuming that the motion between pose  α  and pose  β  varies linearly, kinematic pose, k f = [p f , q f , r f , u], at frame  f ( α < f < β) can be written as p f = p α +  (f −  α)v , (5.35)

q f = q α +  f −  α (q β − q α), (5.36)

 β −  α

r f =  (r u + r + r + r  )/ 4 , (5.37)

1

 u 2

 u 3

 u 4

where v is the velocity vector which includes speed and direction, and the combination of  α  and  β  is expressed by { α, β} ∈ {{ u 1 , u 2} , { u 2 , u 3} , { u 3 , u 4} , { u 4 , u 1}}. The equations allow interpolation of joint angles and lengths of body parts. Therefore, arbitrary poses between representative poses can be recovered. 

5.2.3.9 Feature Matching

Gait features are divided into two types: (a) dynamic features and (b) static features. 

For example, the length of stride is one of significant features of the human gait. It can be computed by the leg length and its varying angles between poses. In addition, all of joint positions can be computed by using the same method. Therefore, both dynamic and static features are used for recognition. 

We define the dynamic feature as joint angles, q i,j , and static feature as lengths of the body parts, r i,j . Here,  i  is personal identification number, and  j  is a pose index. To transform these values into a common domain, the normalization is given by

q

= q i,j −  μq , 

 i,j

(5.38)

 σq

r

= r i,j −  μr , 

 i,j

(5.39)

 σr
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where

 M

 N

 M

 N

1  

1  
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 μr = 1

r i,j , 
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1 1  
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 M

 N

1 / 2

1 1  

 σr =

 (r i,j −  μr )(r i,j −  μr )T · I

· k . 

 M N
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In the formulations,  μq ,  μr  are the arithmetic means of dynamic and static features, and  σq ,  σr  are standard deviations of dynamic and static features,  M,  N

are the numbers of people and poses, with the matrix I = diag ( 1 ,  1 ,  1 , . . . ,  1 )  and the vector k = [1 ,  1 ,  1 , . . . ,  1]. Both features are concatenated on a feature vector φi,j = [q  , r ]. If only the dynamic feature is used, the feature vector is defined i,j

 i,j

as  φi,j = [q ]. 

 i,j

Suppose that the unknown feature vector,  φU , is one of  M ×  N  feature vectors, φi,j . The minimum value of matching scores can be written as

 s = min  φU −  φi,j  . 

(5.40)

 i,j

The matching score is computed as the  L 2 distance. For unknown data, the personal identification number and pose index are recognized. 

 5.2.4 Experimental Results

The experiments were performed on the 3D human body data set collected by a projector–camera system. It contains 24 body data from the representative four poses of six subjects  X ∈ {A ,  B ,  C ,  D ,  E ,  F}. 

The body data of representative poses are captured by the projector–camera system [188]. The system consisted of nine laser rangefinders, which acquires nine range images in two–three seconds with 640×480 pixels, 3 mm depth resolution, and measurement accuracy within 2 mm. Data from nine different views are integrated. Figure 5.10 shows the measurement results of walking humans. (For the modeling we have used  R = 36,  δ ut = 0 .  25, and  δ lt = 0 .  5.) The number of measured 3D points is about 1/2 to one million depending on the subject and the pose. Figure 5.11 shows the results of human body modeling. The body model is fitted to the captured body data, so that their joint angles and lengths of body parts are obtained. 

5.2.4.1 Gait Reconstruction

Figure 5.12 gives the results of gait reconstruction. We define one gait cycle as composed of 20 frames  Y ∈ {1 ,  2 , . . . ,  20}. The speed is given by dividing the stride

[image: Image 22]
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Fig. 5.10 3D human body data. Representative poses of walking humans length by the number of poses, and the direction is given manually. Four of them are representative poses, indicated by the frame index 1, 6, 11, and 16, and the others are interpolated poses, indicated by the frame index 2–5, 7–10, 12–15, and 17–20. 

5.2.4.2 Training and Testing Data

The representative poses  u = { u 1 , u 2 , u 3 , u 4} and their symmetric poses ¯ u =

{ ¯ u 1 , ¯ u 2 , ¯ u 3 , ¯ u 4} are used for the experiment. The symmetric poses ¯ u 1, ¯ u 2, ¯ u 3, ¯ u 4

are symmetric to  u 3,  u 4,  u 1,  u 2, respectively. They are synthesized by allocating right (or left) side parameters of representative poses to left (or right) side parameters of symmetrical poses. 

For the training data, two gait sequences are recovered by using two com-

binations of representative poses and symmetrical poses. Figure 5.13 shows the training data of six subjects. One gait sequence is recovered by four poses  c 1 =

{ u 1 , ¯ u 2 , u 3 , ¯ u 4}, and the other one is recovered by four poses  c 2 = { ¯ u 1 , u 2 , ¯ u 3 , u 4}. 

Each subject has 40 poses, so that training data contains a total of 240 kinematic poses. 

[image: Image 23]
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Fig. 5.11 Fitted 3D models to four poses of gait cycle

Fig. 5.12 Gait sequence composed of 20 frames recovered by four poses

[image: Image 25]

92

5

Model-Based Human Recognition—2D and 3D Gait

Fig. 5.13 Examples of training data for six subjects

For the testing data, one gait sequence is recovered by representative poses  c 3 =

{ u 1 , u 2 , u 3 , u 4}. Figure 5.14 shows the testing data of six subjects. This sequence includes the representative four poses and 16 interpolated poses. The 16 interpolated poses are unique and also they are not included in the training data. Therefore, we utilize 96 kinematic poses of six subjects for testing. There is absolutely no overlap between the training and testing data. 

5.2.4.3 Gait Recognition

In order to evaluate the proposed method, identification rate and average pose error are obtained. The identification rate is obtained by dividing the number of recog-

[image: Image 26]
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Fig. 5.14 Examples of testing data for six subjects

nized subjects by the number of subjects in the testing data. The pose error is the frame difference between the estimated pose and the ideal pose. 

Table 5.6 shows that we achieve 98.96% identification rate using the dynamic feature and 100.0% using both dynamic and static features. When only the dynamic feature is used, the method fails to recognize testing data Subject D with pose 14

who is recognized as Subject B with pose 13 in the training data. Although body types between the two subjects are different, their joint angles, i.e., leg and arm swings, are quite similar. In contrast, we achieve 0.41° average pose error using the dynamic feature and 1.31ůsing both features. The experiment using the dynamic feature has acceptable results because it focuses on estimating poses, i.e., the dynamic feature does not consider length of body parts. Thus, both dynamic and static features are useful for gait recognition. 
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Table 5.6 Identification rate and average pose error

Features

Identification rate (%)

Average pose error (frame)

Dynamic

98 .  96

0.41

Dynamic and static

100 .  0

1.31

5.3 Summary

In this chapter, we proposed an approach to estimate 3D human motion for automatic gait recognition from a single-view image sequence and multi-view image sequences. The proposed approach estimates 3D human model parameters by fitting the 3D kinematic model to the 2D silhouette. The human gait signature is generated from the estimated model parameters for human recognition. 

One of the difficulties associated with model-based gait recognition is the proper human model selection. If too few body parts and degrees of freedom of joints are selected to form a human model, the estimated parameters and the resulting gait features may be not discriminating enough for human recognition. On the other hand, if too many body parts and degrees of freedom of joints are selected, the issue of body pose ambiguities arises and the model parameter estimation is sensitive to incidental silhouette noise. A solution of this problem might be the hierarchical model estimation with a series of human models of different complexities. The performance evaluation of different human models in different situations can also be explored. 

Since, one of the significant weaknesses of current gait recognition methods using a 3D kinematic model has been the lack of enough pixels on the human body to fit the 3D models accurately in the 2D video or the 3D data obtained with a multi-camera system. We proposed a new approach for biometric authentication based on 3D human gait. In our approach, the body data are captured by a high performance projector–camera system. Unlike the multi-camera passive stereo systems used to date, this 3D data is of high resolution and has high accuracy. As a result, the fitted 3D body models and the reconstructed synthetic poses in a gait cycle are quite accurate, including the interpolation of the joint angles and lengths of the body parts. 

Using training and testing experiments we verified that 3D gait biometrics provide high identification rate to recognize a human subject and his/her pose. In the future, it is desired to test this approach on a much longer dataset. 

Chapter 6

Fusion of Color/Infrared Video for Human

Detection

In this chapter, we approach the task of human silhouette extraction from color and thermal image sequences using automatic image registration. Image registration between color and thermal images is a challenging problem due to the difficulties associated with finding correspondence. However, moving people in a static scene provide cues to address this problem. We first propose a hierarchical scheme to automatically find the correspondence between the preliminary human silhouettes extracted from synchronous color and thermal image sequences for image registration. Next, we discuss strategies for probabilistically combining cues from registered color and thermal images for improved human silhouette detection. It is shown that the proposed approach achieves good results for image registration and human silhouette extraction. Experimental results also show a comparison of various sensor fusion strategies and demonstrate the improvement in performance over non-fused cases for human silhouette extraction. 

The initial step of most of the gait recognition approaches is human silhouette extraction [72, 82, 107, 126, 137, 166]. Many gait recognition approaches use electro-optical (EO) sensors such as CCD cameras. However, it is very likely that some part of the human body or clothing has colors similar to the background. In this case, human silhouette extraction usually fails on this part. Moreover, the existence of shadows is a problem for EO sensors [121]. In addition, EO sensors do not work under low lighting conditions such as night or indoor environment without lighting. The top rows in Fig. 6.1 show human silhouette extraction results from two color images. 

To avoid the disadvantages of using EO sensors, infrared (IR) sensors are used for object detection [122, 148]. We investigate the possibility of using an IR sensor for gait analysis [14]. Unlike a commonly used video camera that operates in the visible band of the spectrum and records reflected light, a long wave (8–12 µm) IR sensor records electromagnetic radiations emitted by objects in a scene as a thermal image whose pixel values represent temperature. In a thermal image that consists of humans in a scene, human silhouettes can be generally extracted from the background regardless of lighting conditions and colors of the human cloth-B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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Fig. 6.1 Human silhouette extraction results from color images ( first two rows) and thermal images ( last two rows) using the background subtraction method with increasing thresholds  from left to right. The  leftmost  image is the original image  for each row ing and skin, and backgrounds because the temperatures of the human body and background are different in most situations [6]. Although the human silhouette extraction results from IR sensors are generally better than that from EO sensors, human silhouette extraction is unreliable when some part of the human body or clothing has the temperature similar to the background temperature. In addition, human body casts obvious projection on smooth surfaces such as a smooth floor. The last two rows in Fig. 6.1 show human silhouette extraction results from a thermal image. 

In Fig. 6.1, notice that the unreliably extracted body parts from one sensor might be reliably extracted from the other sensor. This provides an opportunity for improv-ing the human detection performance by the fusion of EO and IR sensors [62]. 

6.1 Related Work
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6.1 Related Work

Images from different kind of sensors generally have different pixel characteristics due to the phenomenological differences between the image formation processes of the sensors. In recent years, sensor fusion approaches have already been employed to improve the performance of object detection and recognition, especially in the field of automated target recognition [31, 133] and remote sensing [4, 37, 74, 101]. 

Wilder et al. [183] compare the effectiveness of EO and IR imagery for detecting and recognizing faces, and expect the improvement of face detection and recognition algorithms that fuse the information from the two sensors. Yoshitomi et al. [194]

propose an integrated method to recognize the emotional expressions of a human using voice, and color and thermal images of face. The recognition results show that the integration method for recognizing emotional states gives better performance than any of individual methods. In these approaches, images from different sensors are independently processed without an image registration procedure. In these applications, the fusion for object detection and recognition takes place at the decision level. 

Image registration is essential for precise comparison or fusion of images from multiple sensors at the pixel level. Sometimes, manual image registration is employed in many sensor fusion approaches [31, 133]. This needs lots of human interaction which is not desirable in processing large collections of image data taken under different field-of-views of the sensors. 

Many approaches have been proposed for automatic registration between SAR

and optical images. Li et al. [101] propose an elastic contour matching scheme based on the active contour model for image registration between SAR (microwave) and SPOT (visible and near infrared) images. Inglada and Adragna [74] propose an approach for automatic image registration between SAR and SPOT images. They first extract edges in both images, and then use a genetic algorithm to estimate the geometric transformation which minimizes the matching error between corresponding edges. Similarly, Ali and Clausi [4] automatically register SAR and visible band remote sensing images using an edge-based pattern matching method. In order to locate reliable control points between SAR and SPOT images, Dare and Dowman [37]

propose an automatic image registration approach based on multiple feature extraction and matching methods, rather than just relying on one method. 

Zheng and Chellappa [206] propose an automatic image registration approach to estimate 2D translation, rotation and scale of two partially overlapping images obtained from the same sensor. They extract features from each image using a Gabor wavelet decomposition and a local scale interaction method to detect local curvature discontinuities. Hierarchical feature matching is performed to obtain the estimate of translation, rotation and scale. Li and Zhou [100, 102] extend this single sensor image registration approach to the work of automatic EO/IR and SAR/IR image registration. Their approach is based on the assumption that some strong contours are presented in both the EO and IR images. Consistent checking is required to remove inconsistent features between images from different sensors. 

Due to the difficulty in finding a correspondence between images with different physical characteristics, image registration between imagery from different sensors
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is still a challenging problem. In our task, objects in color and thermal images appear different due to different phenomenology of EO and IR sensors. Also, there are differences in the field-of-view and resolution of the sensors. Therefore, it is generally difficult to precisely determine the corresponding points between color and thermal images. However, in a human walking sequence, human motion provides enough cues for image registration between color and thermal images. In this chapter, we first propose a genetic algorithm (GA) based hierarchical correspondence search approach for automatic image registration between synchronous color and thermal image sequences. The proposed approach reduces the overall computational load of the GA without decreasing the final estimation accuracy. The registered thermal and color images are then combined by probabilistic strategies at the pixel level to obtain better body silhouette extraction results. 

Mandava et al. [115] proposed an adaptive GA based approach for medical image registration with manually selected region-of-interest. Compared with their approach, our approach employs the similar concept of hierarchical search space scaling in GA. However, the two approaches are different in strategies, implementation and applications. 

In comparison with the state-of-the-art, the key aspects of the approach presented in this chapter are:

•  Automatic Image Registration Based Preliminary Silhouette Matching—Due to the phenomenological differences of objects in color and thermal images, it is difficult to automatically find accurate correspondence between color and thermal images. However, human motion provides enough cues for automatic image registration between synchronized color and thermal images in our human silhouette extraction application. Compared with the correspondence of individual points, the preliminary extracted body silhouette regions provide a more reliable correspondence between color and thermal image pairs. In this chapter, we propose an automatic image registration method to perform a match of the transformed color silhouette to the thermal silhouette. 

•  Hierarchical Genetic Algorithm Based Search Scheme—We use genetic algorithm (GA) to solve the optimization problem in silhouette matching. However, the accurate subpixel corresponding point search requires longer bit length for each coordinate value of each point. As a result, the population size of GA needs to be large to reduce the probability of falling into a local maxima. Due to the costly fitness function, the large population size is not desirable. In this chapter, we propose a hierarchical genetic algorithm (HGA) based search scheme to estimate the model parameters within a series of windows with adaptively reduced size at different levels. 

•  Sensor Fusion—To improve the accuracy of human silhouette extraction, we combine the information from the registered color and thermal images. Various fusion strategies are applied for human body silhouette detection by combining registered color and thermal images. Experimental results show that the sum rule achieves the best results. 

6.2 Hierarchical Image Registration and Fusion Approach
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6.2 Hierarchical Image Registration and Fusion Approach

In this section, we propose a genetic algorithm (GA) based hierarchical correspondence search approach for automatic image registration between synchronous color and thermal image sequences as shown in Fig. 6.2. Input to the system are videos possibly with moving humans, recorded simultaneously by both EO and IR cameras. 

Next, a background subtraction method is applied to both color and thermal images to extract preliminary human body silhouettes from the background. Silhouette centroids are then computed from the color and thermal silhouettes as the initial corresponding points between color and thermal images. A hierarchical genetic algorithm (HGA) based scheme is employed to estimate the exact correspondence so that the silhouettes form the synchronous color and thermal images are well matched. The transformation so-obtained from this correspondence is used for the registration of images from EO and IR cameras. Finally, registered thermal and color images are combined using probabilistic strategies to obtain better body silhouette extraction results. 

Fig. 6.2 Proposed

hierarchical genetic algorithm

based multi-modal image

registration approach
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 6.2.1 Image Transformation Model

We use one EO camera and one IR camera for sensor fusion. We place the EO

and IR camera as close as possible without interference as shown in Fig. 6.3, and adjust their camera parameters so that the field-of-views of both cameras contain the desired scene where human motion occurs. The geometric transformation between the cameras involved can be represented by a 3D linear transformation and a 3D

translation. We transform points in the color image plane into points in the thermal image plane because the thermal images have higher resolution and the IR camera has a narrower field of view relative to the EO camera. The 2D point  (X, Y )  in the color image is transformed into the 2D point  (X , Y  )  in the thermal image as follows:
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where  (x, y, z)  and  (x , y , z )  are the 3D points in EO and IR camera coordinates, respectively; ( x,  y,  z) is the 3D displacement vector of two cameras in the world coordinate system;  f  and  f  are the focal lengths of EO and IR cameras, respectively. 

Fig. 6.3 IR and EO camera

set-up
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According to the degree of elasticity of the transformations, they can be rigid, affine, projective, or curved [171]. Our geometric transformation is more complex than the rigid, affine, and projective models. However, the geometric transformation for planar objects can be strictly represented by a projective transformation [192] as follows. Assuming that there is a large distance between the camera and the walking people, the visible human surface from the camera view can be approximated as planar. In this case, the projective transformation model is appropriate for image registration for our application. Furthermore, assuming that the person walks along the fronto-parallel direction with respect to the image plane and camera axes are parallel to the ground, the visible human surface during the walking sequence approximately parallels to the image planes of both EO and IR cameras. Under this assumption, the geometric transformation can be further simplified as the rigid model. A rigid transformation can be decomposed into 2D translation, rotation, and reflection. In the rigid transformation, the distance between any two points in the color image plane is preserved when these two points are mapped into the thermal image plane. The 2D point  (X, Y )  in the color image plane is transformed into the 2D point  (X , Y  )  in the thermal image plane as follows: X

= cos  θ

sin  θ

 X

+  X , 

(6.3)

 Y 

− sin  θ  cos  θ

 Y

 Y

where  θ  is the rotation angle, and  (X, Y )T  is the translation vector. Rigid transformations are used when shapes in the input image are unchanged, but the image is distorted by some combination of translation, rotation, and scaling. Straight lines remain straight, and parallel lines are still parallel under the assumption as mentioned above. A minimum correspondence of two pairs of points is required in rigid transformation. 

Compared to the complex projective model, the rigid model reduces the probability of estimated transformation overfitting the distorted human silhouettes from EO and IR cameras. Although the fronto-parallel assumption is not strictly suitable in real surveillance situations with a single pair of cameras, we need only one pair of sequences satisfying this assumption to register EO/IR imagery. The registration result will be used for human silhouette extraction from other synchronous EO/IR

sequence pairs under the same camera setup. 

 6.2.2 Preliminary Human Silhouette Extraction

 and Correspondence Initialization

Assume that both the EO and IR cameras are fixed and mounted on suitable stationary platforms. Further assume that a human is the only moving object in the scene and there is only one person at any time in the scene. Under this situation, silhouettes of moving humans can be extracted by a background subtraction method. To model the color background, we choose all frames from a color image sequence that contains background only, and compute the mean and standard deviation values
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for each pixel in each color channel. Assuming that the background has a Gaussian distribution at each pixel, a pixel at  (X, Y )  in the input color image is classified as part of moving objects if





 r(X, Y ) −  μ



 r (X, Y ) > ασr (X, Y ), 

(6.4)





 g(X, Y ) −  μ



 g (X, Y ) > ασg (X, Y ), 

(6.5)





 b(X, Y ) −  μ



 b(X, Y ) > ασb(X, Y ), 

(6.6)

where  r,  g  and  b  represent pixel color values of the input image for red, green and blue channels, respectively;  μr ,  μg  and  μb  represent mean values of the background pixels;  σr ,  σg  and  σb  represent standard deviation values of the background pixels; and  α  is the threshold. 

Similarly, a pixel at  (X, Y )  in the input thermal image is classified as part of moving objects if





 t (X, Y ) −  μ



 t (X, Y ) > β σt (X, Y ), 

(6.7)

where  t  represents the pixel thermal value in the input thermal image;  μt  represents the mean value of the background pixel temperature;  σt  represents the standard deviation value of the background pixel temperature; and  β  is the threshold. 

After body silhouettes are extracted from each color image and its synchronous thermal image, the centroid of the silhouette region is computed as the initial correspondence between each pair of color and thermal images. 

 6.2.3 Automatic Image Registration

In applications with manual image registration, a set of corresponding points are manually selected from the two images to compute the parameters of the transformation model, and the registration performance is generally evaluated by manually comparing the registered image pairs. The same step is repeated several times until the registration performance is satisfied. If the background changes, the entire procedure needs to be repeated again. This makes manual image registration inapplicable when data are recorded at different locations with changing time or with different camera setup. The automatic image registration is desirable under this situation. 

6.2.3.1 Model Parameter Selection

Due to the phenomenological differences of objects in color and thermal images, it is difficult to automatically find accurate correspondence between color and thermal images. Figure 6.4 shows different object appearances in color and thermal images due to the phenomenological difference between the image formation process of EO and IR cameras. However, human motion provides enough cues for automatic image registration between synchronized color and thermal images in our human silhouette extraction application. Compared with the correspondence of individual points, the preliminary extracted body silhouette regions provide a more reliable

[image: Image 28]
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Fig. 6.4 Different object appearances in color and thermal images are due to the phenomenological differences between the image formation process of EO and IR cameras. The images are at different resolutions and the field-of-views (FOVs) of the two cameras overlap (EO camera FOV

contains IR camera FOV)

correspondence between color and thermal image pairs. Therefore, we propose a method to perform a match of the transformed color silhouette to the thermal silhouette, that is, we estimate the set of model parameters p to maximize N

Num (TC

Similarity (p;  I

 i ; p ∩  Ii )

 i ;  Ci ) =

 , 

(6.8)

Num (TC

 i=1

 i ; p ∪  Ii )

where  I  is the silhouette binary image obtained from the thermal image,  C  is the silhouette binary image obtained from color image,  TC; p is the transformed binary image of  C  by rigid transformation with parameter set p,  N  is the number of color and thermal image pairs, and Num (X)  is the number of silhouette pixels in a silhouette image  X. We use the product of similarity of image pairs instead of the sum to reduce the possibility of falling into local maxima on specific frame(s), i.e., to increase the possibility of the global maximum on all images pairs. 

In the rigid transformation model, the parameters are the elements of the 2D linear transformation in (6.3). However, the ranges of these parameters are difficult to determine. In the rigid transformation model, a maximum correspondence of two
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pairs of points is required. If we fix two points in the thermal image as the reference points, the 2D coordinates of their corresponding points in the synchronous color image can be used to determine the rigid transformation model. Because the locations of the corresponding points should exist in limited local areas, the ranges of new parameters can be determined. 

For each pair of color and thermal images, we obtain a pair of initial corresponding points, i.e., the centroids of the preliminary extracted silhouettes. Under the assumption of planar object surface (i.e., a human walks along the same direction in the scene so that the human body surface from the camera view in each frame lies on the same plane over the whole sequence), we can choose an initial correspondence from two image pairs in the given color and thermal image sequences. In this way, we have two pairs of initial correspondence: two points from the thermal images are reference points and two points from the color images are initial model parameters whose exact values need to be estimated. If both pairs of points are chosen from a small area, the resulting registration performance may be unsatisfied in other areas. 

To avoid this problem, these points should be located as far away as possible in the images. This is also the reason that we do not choose all the corresponding points from the silhouettes of one color and thermal image pair. 

6.2.3.2 Parameter Estimation Based on Hierarchical Genetic Algorithm

We use genetic algorithm (GA) to solve the optimization problem in (6.8). GA provides a learning method motivated by an analogy to biological evolution. Rather than searching from general-to-specific hypotheses, or from simple-to-complex hypotheses, GA generates successor hypotheses by repeatedly mutating and recom-bining parts of the best currently known hypotheses. At each step, a collection of hypotheses called the current population is updated by replacing some fraction of the population by offspring of the most fit current hypotheses. After a large number of steps, the hypotheses having the best fitness are considered as solutions. However, a single genetic algorithm is not appropriate to estimate the subpixel location of corresponding points in given search windows. The accurate subpixel corresponding point search requires longer bit length for each coordinate value of each point. 

As a result, the population size of GA needs to be large to reduce the probability of falling into a local maxima. Due to the costly fitness function (6.8), the large population size is not desirable. In this section, we propose a hierarchical genetic algorithm (HGA) based search scheme to estimate the model parameters within a series of windows with adaptively reduced size as shown in Fig. 6.5. The model parameters are coordinate values of the two points in the color image plane, corresponding to the two reference points in the thermal image plane. 

We choose the estimated human silhouette centroids (as mentioned in Sect. 6.2.2) from two thermal images in the same infrared video as two reference points in the thermal image plane as shown in Fig. 6.6. Let p = [ x 1 , y 1 , x 2 , y 2] T  be the model parameter to be estimated, where x1 =  (x 1 , y 1 )  and x2 =  (x 2 , y 2 )  are corresponding points to be searched in the color image plane. The estimated two centroids from
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Fig. 6.5 Illustration of the HGA-based search scheme to estimate the model parameters—coordinate values of the two points ( black and white) simultaneously in the color image plane. The search windows here are only for illustration whose sizes are much larger than the real window sizes the two synchronized color images, x1 ,  0 =  (x 1 ,  0 , y 1 ,  0 )  and x2 ,  0 =  (x 2 ,  0 , y 2 ,  0 ), are chosen as the initial corresponding points in the color image plane. At each search level of the HGA based search scheme, GA is applied to estimate the two corresponding coordinates according to (6.8). The center and size of search windows are both determined by the previous three estimates of corresponding points. In the  k th search level, the centers of the two search windows for the two corresponding points are chosen as follows: ⎧⎨x i,  0 , 

if  k = 1; 

c i,k = ⎩ (x i,  0 + x i,  1 )/ 2 , if  k = 2; 

(6.9)

 (x i,k−3 + x i,k−2 + x i,k−1 )/ 3 ,  if  k >  2, 

[image: Image 29]
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Fig. 6.6 Illustration of initial control point selection in both color and thermal image planes where  i = 1 ,  2, x i,j  is the new estimate of x i  after the  j  th search level. The length of the search windows (square in shape) are chosen as follows:

⎧
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if  k = 1; 
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(6.10)
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⎩
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 j,k−3 , pj,k−2 , pj,k−1}

− min{ pj,k−3 , pj,k−2 , pj,k−1}} , 

if  k >  2, 

where  w 1 is the preselected initial length of the search window. This iterative procedure is repeated until the search  wk  is lower than a pre-selected lower limit  wl. 

In the proposed approach, the code length of parameters in each GA can be small without decreasing the final estimation accuracy. Considering the costly fitness func-
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Given initial corresponding points x1 ,  0 =  (x 1 ,  0 , y 1 ,  0 )  and x2 ,  0 =  (x 2 ,  0 , y 2 ,  0 ), and initial side length of the square search window  w 1, pre-selected threshold  wl  of minimum square window size, and  N  pairs of preliminarily extracted color and thermal silhouette images; 

1. Apply GA in the search windows ( w 1 ×  w 1) centered at x1 ,  0 and x2 ,  0 at search level 1. 

2. Obtain the estimated corresponding points x1 ,  1 and x2 ,  1 after the GA terminates. 

3. Let  k = 2. 

4. Calculate the side length of search widows  wk  by (6.10). 

5. Apply GA in the search windows ( wk ×  wk) centered at x1 ,k−1 and x2 ,k−1 at search level  k. 

6. Obtain the estimated corresponding points x1 ,  1 and x2 ,  1 after the GA terminates. 

7. If  wk < wl, go to step 5; otherwise, output x1 ,k  and x2 ,k. 

Fig. 6.7 Pseudo code for parameter estimation based on hierarchical genetic algorithm tion in our application, the population size cannot be large. Short code length is desired because a GA with high ratio of code length over population size has a high probability of falling into the local maximum. Generally, the window size will be adaptively reduced until reaching the lower limit. Even if the real correspondence exists outside of the initial search window, the approach still has the possibility to find a good estimate because the new window might cover areas outside of the initial window. After the correspondences in the color image plane are located, the transformation is uniquely determined for this pair of color and thermal image sequences, and it will be used to transform color images into the plane of thermal images. Figure 6.7 provides the pseudo code for parameter estimation based on hierarchical genetic algorithm. 

 6.2.4 Sensor Fusion

To improve the accuracy of human silhouette extraction, we combine the information from the registered color and thermal images. If the human silhouette extraction is viewed as a classification procedure, the commonly used classifier combination strategies can be employed here. Kittler et al. [88] demonstrate that the commonly used classifier combination schemes can be derived from a uniform Bayesian framework under different assumptions and using different approximations. The product rule assumes that the measurements used are conditionally statistically independent. 

The sum rule further assumes that the a posteriori probability computed by the respective classifiers will not deviate dramatically from the prior probabilities. The max rule is derived from the sum rule by approximating the sum by the maximum
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of the posterior probabilities under the assumption of equal priors. The min rule is derived from the product rule under the assumption of equal priors. Similar fusion strategies can be applied for human body silhouette detection by combining registered color and thermal images as follows:

• Product rule  (X, Y ) ∈  S  if  P (S|c (X, Y ))P (S| t(X, Y )) > τ product

• Sum rule  (X, Y ) ∈  S  if  P (S|c (X, Y )) +  P (S| t(X, Y )) > τ sum

• Max rule  (X, Y ) ∈  S  if max{ P (S|c (X, Y )), P (S| t(X, Y ))}  > τ max

• Min rule  (X, Y ) ∈  S  if min{ P (S|c (X, Y )), P (S| t(X, Y ))}  > τ min where  (X, Y )  represents the 2D image coordinate,  S  represents the human silhouette, c represents the color value vector,  t  represents the thermal value, and  τ product, τ sum,  τ max, and  τ min are the thresholds described in the next section. The estimate of the probability is computed as





 P S| c(X, Y ) = 1 −  e−c (X,Y )− μc (X,Y ) 2 , (6.11)





 P S| t (X, Y ) = 1 −  e−| t(X,Y )− μt(X,Y )|2 , (6.12)

where  μc represents the mean background color value vector, and  μt  represents the mean background thermal value. 

 6.2.5 Registration of EO/IR Sequences with Multiple Objects

The proposed approach for registration of EO/IR imagery is presented for the single-object scenario. Without losing any generality, we can assume that both the EO and IR cameras are fixed for a period of time, and a pair of EO/IR image sequences, containing a single object, are available for registration at the beginning. Then, the estimated transformation model presented in this paper can be used for image registration from subsequent synchronous EO/IR sequence pairs under the same camera setup and it does not matter how many objects are present in these sequences. Therefore, multiple moving objects are allowed for registration and detection under the same camera setup. 

6.3 Experimental Results

The image data used in our experiments are real human walking data recorded by the two cameras in the same indoor environment. Color images are recorded by a PC camera with image size of 240 × 360 as shown in the first row of Fig. 6.8. 

Thermal images are recorded by a long-wave IR camera with image size of 240 ×

360 as shown in the third row of Fig. 6.8. Both cameras have fixed but different focal lengths. The IR camera has a narrower field-of-view and a higher resolution than the color camera. It has less distortion than the color camera, and, therefore, it is used as the base camera. The color images are transformed and then fused with the original thermal images in our experiments for human silhouette detection. 

[image: Image 30]
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Fig. 6.8 Examples of registration results:  first row—original color images,  second row—original thermal images,  third row—transformed color images

 6.3.1 Image Registration Results

Three color and thermal images are selected for matching by (6.8). In our experiments, we choose  α =  β = 15 in (6.6) and (6.7). The initial search window is set as 16 × 16 pixels ( w 1 = 16), and the final search window is 0 .  1 × 0 .  1 pixels ( wl = 0 .  1). 

In the GA at each search level, we use 6 bits to represent each coordinate value (totally 24 bits for 4 coordinate values); fitness function is the similarity between image pairs in (6.8); population size is 100; crossover rate is 0.9; crossover method is uniform crossover; mutation rate is 0.05; the GA will terminate if the fitness values have not changed for 5 successive steps. 

Figure 6.9 shows examples of estimated transformation results from good initial corresponding points at different search levels, while Fig. 6.10 shows results from bad initial corresponding points. Even though the original transformation Fig. 6.10(c) is far away from the true transformation, the transformation results are improved gradually at successive search levels and finally converged around the real transformation. The variations of fitness values from bad and good initial correspondence are shown in Figs. 6.11 and 6.12, respectively. The vertical line corresponds to the last generation at each search level. The curve between two adjacent vertical lines indicate the variation of GA fitness values in a search level. In the GA at each search level, the populations are randomly generated, leading to the drop of the fit-

[image: Image 31]
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Fig. 6.9 Examples of estimated transformation results from good initial correspondence: (a) original silhouettes from thermal images, (b) original silhouettes from color images, (c) matching error of the initial transformation, (d) matching error after the first search level, (e) after the second search level, (f) after the third search level, (g) after the fourth search level, (h) after the 12th search level

ness value at the beginning of each search level. We do not use the population from the previous search level because we hope to estimate transformation parameters more accurately as the window size decreases and diversify the population to avoid premature convergence. In general, our image registration approach is not sensitive to the location of initial correspondence if it is located inside or slightly outside of the initial search window depending on the size of the initial search window. 

Figure 6.8 shows the comparison of original color images, transformed color images, and original thermal images. To evaluate the registration performance, we define the registration precision as  P (A, B) =  (A ∩  B)/(A ∪  B), where  A  and  B  are manually labeled human silhouette pixel sets from the original thermal image and the transformed color image, respectively. According to this definition, the registration precision for the three image pairs in Fig. 6.8 is 78%, 80% and 85%, respectively. Considering that the color and thermal image pairs are not exactly synchronized, and human labeling errors are possible due to the physical difference between color and thermal signals, our image registration still achieves good results. 

[image: Image 32]
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Fig. 6.10 Examples of estimated transformation results from bad initial correspondence: (a) original silhouettes from thermal images, (b) original silhouettes from color images, (c) matching error of the initial transformation, (d) matching error after the first search level, (e) after the second search level, (f) after the third search level, (g) after the fourth search level, (h) after the 23th search level

Fig. 6.11 Variation of fitness

values from bad initial

correspondence. The  vertical

 line  corresponds to the last

generation at each search

level.  The curve between two

 adjacent vertical lines

indicate the variation of GA

fitness values at a search level
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Fig. 6.12 Variation of fitness

values from good initial

correspondence.  The vertical

 line  corresponds to the last

generation at each search

level.  The curve between two

 adjacent vertical lines

indicate the variation of GA

fitness values at a search level

Table 6.1 Confusion matrix

Ground truth

Ground truth

foreground

background

Detected foreground

 N −  α

 β

Detected background

 α

 B −  β

 6.3.2 Sensor Fusion Results

We evaluate the human silhouette extraction performance by the receiver operating characteristic (ROC) curves [120]. Let  N  be the number of moving object pixels in the ground truth images,  α  be the number of moving object pixels that the algorithm did not detect,  B  be the number of background pixels in the ground truth image, and β  be the number of background pixels that were detected as foreground. The ground truth images in our experiments are manually labeled from the original thermal images. The confusion matrix is given in Table 6.1. We can define the probability of detection and probability of false alarms as

 Pd =  (N −  α)/N

and

 Pf =  β/B. 

(6.13)

If we evaluate  M  images in their entirety, the equations become

 M



 M



 M

 M



 Pd =

 (Ni −  αi)

 Ni

and

 Pf =

 βi

 Bi. 

(6.14)

 i=1

 i=1

 i=1

 i=1

Equations given in (6.14) are used to obtain the ROC curves for detection performance evaluation of different fusion strategies which are shown in Fig. 6.13. 

This figure shows that the product, sum and max fusion rules achieve better results than using color or thermal classifiers individually. Among these rules, the sum rule achieves the best results. Considering that the image resolution of the

6.4 Summary

113

Fig. 6.13 ROC curves for

detection performance

evaluation of different fusion

strategies for silhouette

detection

thermal camera is higher than that of the EO camera, the thermal classifier has much higher confidence than the color classifier. We believe that the main reason for the good performance achieved by sum rule is its robustness to errors (or noise) especially from the color classifier [88]. The product rule considers more color information, so it is sensitive to the noise from color classifier especially when the false alarm is low. The max rule considers less color information with low confidence, so its performance is higher than that of the thermal classifier but lower than that of the sum rule. The performance of the min rule is even worse than that of using thermal information only because it mainly focuses on the color information with low confidence. Figure 6.14 shows the human silhouette extraction results by combining color and thermal image pairs with different strategies described in Sect. 6.2.4. The thresholds for each of these rules are chosen as the smallest values such that shadows in both color and thermal images are eliminated. These thresholds are held constant ( τ product = 0 .  1, τ sum = 0 .  9,  τ max = 0 .  9, and  τ min = 0 .  1) for all the experiments reported in this chapter. 

6.4 Summary

In this chapter, we focused on human silhouette extraction from color and thermal image sequences using automatic image registration. A hierarchical genetic algorithm (HGA) based scheme was employed to find correspondence so that the preliminary silhouettes form the color and thermal images are well matched. HGA estimates the model parameters within a series of windows with adaptively reduced size at different levels. The obtained correspondence and corresponding transformation are used for image registration in the same scene. 

Registered color and thermal images were combined by probabilistic strategies to obtain better body silhouette extraction results. Experiments show that (1) the

[image: Image 33]
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Fig. 6.14 Examples of fusion results: (a) transformed color images, (b) original thermal images, (c) silhouette from (a), (d) silhouette from (b), (e) silhouette from product rule fusion, (f) silhouette from sum rule fusion, (g) silhouette from max rule fusion, (h) silhouette from min rule fusion proposed approach achieves good performance for image registration between color and thermal image sequences, and (2) each of the product, sum, and max fusion rules achieves better performance on silhouette detection than color or thermal images used individually. Among these rules, the sum rule achieves the best results. 

Part III

Face Recognition at a Distance in Video


Chapter 7

Super-Resolution of Facial Images in Video

at a Distance

In this chapter, we address the problem of super-resolution of facial images in videos that are acquired at a distance. In particular, we consider (a) a closed-loop approach for super-resolution of frontal faces, (b) super-resolution of frontal faces with facial expressions, and (c) super-resolution of side face images. 

In Sect. 7.1, a method is proposed to super-resolve 3D facial texture integrating information frame by frame from a video under changing poses and illuminations. First, illumination, 3D motion and shape parameters from a tracking algorithm are recovered. This information is used to super-resolve 3D texture using iterative back-projection (IBP) method. The super-resolved texture, in turn, is fed back to the tracking part to improve the estimation of illumination and motion parameters. 

This closed-loop process continues as new frames come in to refine the texture. 

A local-region based scheme to handle non-rigidity of human face is also proposed. 

Experiments demonstrate that this framework not only incrementally super-resolves facial images, but also recovers the expression changes with high quality. 

Super-resolution (SR) of facial images from video generally suffers from facial expression changes. Most of the existing SR algorithms for facial images make an unrealistic assumption that the “perfect” registration has been done prior to the SR process. However, the registration is a challenging task for SR with expression changes. In Sect. 7.2, a method is proposed for enhancing the resolution of low-resolution (LR) facial image by handling the facial image in a non-rigid manner. It consists of global tracking, local alignment for precise registration and SR algorithms. A B-spline based resolution aware incremental free form deformation (RAIFFD) model is used to recover a dense local non-rigid flow field. In this scheme, low-resolution image model is explicitly embedded in the optimization function formulation to simulate the formation of a low resolution image. The results achieved by the proposed approach are significantly better as compared to the SR approaches applied on the whole face image without considering local deformations. The results are also compared with the state-of-the-art SR algorithms to show the effectiveness of the approach in super-resolving facial images with local expression changes. 

Since in many of the scenarios for human recognition at a distance in video, only a side face (not the frontal face) may be available, in Sect. 7.3 a super-resolution B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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technique is presented for the enhanced side face images. The approach consists of face detection, alignment of facial images, resolution enhancement and the normalization of super-resolved side face images. These images are combined with gait energy images in Chaps. 10 and 11 for human recognition at a distance in video. 

7.1 Closed-Loop Super-Resolution of Face Images in Video

Face recognition and identification for surveillance systems, information security, and access control have received growing attention. In many of the above scenarios, the distance between the objects and the cameras is quite large, which makes the quality of video usually low and facial images small. Zhao et al. [204] identify low-resolution as one of the challenges in video-based face recognition. Super-resolution from multiple images in video has been studied by many researchers in the past decades [7, 43, 75, 109, 178]. There still exist significant problems such as facial expression variations, different poses and lighting changes that need further investigation. In our approach, we propose a closed-loop framework that super-resolves facial texture through the combined effects of motion, illumination, 3D structure and albedo. 

In this section, we propose a method to super-resolve facial texture utilizing both spatial and temporal information from video through changing poses and illuminations. We track a face in an image sequence and estimate illumination parameters through 3D tracking, interpolation by changing pose and illumination normalized images. We also use local-region based super-resolution to handle the non-rigidity of human face. 

 7.1.1 Related Work

The idea of super-resolution was introduced by Huang and Tsai [169] using frequency domain approach to reconstruct one image from several down-sampled translated images. Schultz and Stevenson [151] use a Huber–Markov–Gibbs model for the a priori model to preserve edges while achieving a global smoothness constraint. Another approach toward the SR reconstruction problem is the method of projections onto convex sets (POCS) [131]. POCS defines closed convex constraint sets within a well-defined vector space which contain the actual SR image. An estimate of the SR image is defined by finding a point in the intersection of these constraint sets. Irani and Peleg [75] propose an iterative back-projection (IBP) method updating the estimate of the SR reconstruction by back-projecting the error between the simulated LR images and the observed LR ones. This method starts with an initial guess of the SR images and repeats the process iteratively to minimize the error. Yu and Bhanu [196] adopt this method for super-resolving 2D facial images non-uniformly based on local regions. There exist hybrid methods which combine ML/MAP/POCS based approaches to SR reconstruction[151]. 

7.1 Closed-Loop Super-Resolution of Face Images in Video 119

In the SR literature, there are only a few approaches that focus on superresolution of facial images. Baker and Kanade [7] propose learning-based SR algorithm named hallucination or reconstruction on human facial images. Following this work, Dedeoglu et al. [41] adopt graphical model to encode spatial-temporal consistency of the LR images. Park and Lee [130] propose a method of synthesiz-ing SR facial image using an error back-projection of example-based learning. The above methods are all learning-based SR approaches and need a certain amount of training faces. They assume alignment is done before applying SR methods. However, accurate alignment is the most critical step for SR techniques. 

 7.1.2 Technical Approach

We propose a framework to incrementally super-resolve facial video under changing illumination and pose. Unlike traditional approaches which extract SR frames from multiple images using a “sliding window” with respect to reference frame, we integrate spatial and temporal information of low-resolution (LR) frames to refine 3D facial texture for the entire video. 

LR video is usually taken under uncontrolled condition at a distance. Hence there may be large illumination and pose variation in the acquired video. Traditional motion estimation techniques in existing SR literature using dense flow or parametric transformation without compensating for illumination changes will not work at the registration stage. It is difficult to handle large pose changes in video for these techniques. We estimate 3D motion and illumination parameters for the video to register the images with 3D model and normalize the illuminations. We also design a scheme to take special care of the non-rigidity of human face with expression changes. 

The block diagram of our approach is shown in Fig. 7.1. A generic 3D face model [20] is used in our approach. This generic model is acceptable for superresolving the 3D texture. Here we are not concerned with the problem of obtaining a more accurate 3D structural model. We first track the pose and estimate illumination of the incoming frame from a video. Then the tracked pose and estimated Fig. 7.1 Block diagram of the closed-loop approach for super-resolution of facial images
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illumination are passed to the super-resolution algorithm for super-resolving the 3D

facial texture. Following this step the super-resolved 3D facial texture is fed back to generate low-resolution bilinear basis images, which are used for pose tracking and illumination estimation. The feedback process improves the estimates of pose and illumination in subsequent frames. This process is continuously repeated to refine the 3D facial texture as new frames come in. 

7.1.2.1 Bilinear Basis Images Computation

It has been proved that for a fixed Lambertian object, the set of reflectance images under distant lighting without cast shadow  can be approximated by a linear combination of the first nine spherical harmonics [8, 142]. In recent work [186], motion was taken into the consideration in the above formulation. It was shown that for moving objects it is possible to approximate the sequence of images by a bilinear subspace using tensor notation as





T

I = B + B ×2

×

 Ω

1 l , 

(7.1)

where × n  is the  mode-n product [40].  I ∈ R1×1× M× N  is a sub-tensor representing the image,  B ∈ R Nl×1× M× N  is a sub-tensor comprising the illumination basis images.  C ∈ R Nl×6× M× N  incorporates the bilinear basis for the motion and illumination, and l ∈ R9 is the vector of illumination coefficients. 

Thus, low-resolution bilinear basis images are obtained from the super-resolved texture and passed on to the pose and illumination component described below. 

7.1.2.2 Pose and Illumination Estimation

The joint illumination and motion space described above provides us with a method for estimating 3D motion of moving objects in video sequences under time-varying illumination conditions as
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After this process, 3D motion ˆ

T and ˆ

 Ω  along with illumination coefficients l

are estimated. We use the estimated motion and illumination to get the illumination normalized frame with respect to the reference illumination and pass it along with the 3D motion estimate to the super-resolution algorithm. 

7.1.2.3 Super-Resolution Algorithm

We adopt IBP [75] algorithm and extend it to 3D as our SR method. Due to the non-rigidity of the face, we reconstruct SR texture separately based on six facial
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Fig. 7.2 Block diagram of the super-resolution algorithm

regions of the face. The inputs to IBP are illumination normalized LR images and the current super-resolved texture. The block diagram is illustrated in Fig. 7.2. 

In Fig. 7.2, X n  is the currently reconstructed 3D facial texture at the  n th frame. 

We define Y kn  as the  k th illumination normalized LR facial region. ˆT and ˆ

 Ω  rep-

resent the tracked pose passed from the tracking algorithm. B n  is the process of projecting 3D texture to form 2D image, while B−1

 n

denotes the inverse process. h is

the blurring function, and P denotes the back-projection kernel as proposed in [75]. 

↑ s represents an up-sampling operator by a factor s. 

Due to the non-rigidity of a human face, there may exist facial expression changes such as closing eyes and opening mouth. In order to handle facial expression changes in images, we use a locally-based SR approach by dividing facial image into different regions (two eyes, two eye brows, mouth, and the rest of the face) based on facial features. We interactively locate eyes, eye brows, and mouth in the 3D model during registration of the first frame to 3D model. For each incoming LR image, we calculate match statistics to detect whether there are significant expression changes. If the match score is below a certain threshold, the corresponding part will be ignored during super-resolving the texture. According to [75], the re-vising values of model texture  ΔX n  are calculated by simulated pixel values from 3D texture and the observed image pixels (illumination normalized) as given by the following equation
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The simulated image ˜

Y kn is generated as
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(7.4)

We define our match measure as follows:

 M

 N

 ((Y k

E

 n(x, y) −  μ 1 )([X k

 n(x, y)]B n −  μ 2 ))

 k =

 , 

(7.5)

 M∗ N∗ σ 1∗ σ 2

 x=1  y=1

where  M  and  N  are the image sizes,  μ 1 and  μ 2 are respective means of image region,  σ 1 and  σ 2 are respective image variances within the region. 
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 7.1.3 Experimental Results

We carry out our a variety of experiments to demonstrate the performance of our closed-loop approach. 

7.1.3.1 Synthetic Data

Given pose changes, we generate a LR video sequence synthetically from the scanned 3D model [20] with high-resolution texture. The generated LR video sequence is blurred by a 7 × 7 Gaussian blur function and down-sampled to about 30 × 30 pixels. 

Not only does our approach integrate information from commonly visible part on the images, it can also integrate invisible texture on the previous pose to superresolve the 3D texture. The last row in Fig. 7.3 shows this tendency from the first reconstructed image to the last one. On the first reconstructed SR image, the left-most part is black and blurred because this part is not visible from the previous input LR images. After some interaction, it is getting better and better, as new frames at visible poses are available. Figure 7.4 clearly shows this tendency through the measurement of peak signal-to-noise ratio (PSNR) for reconstructed SR images. SNR of common face parts denotes the frontal facial region for the face. PSNR of non-common parts represents the facial region which becomes completely visible at the end from being invisible in the first frame. From this figure, Fig. 7.3 Results on synthetic video with ground-truth poses.  The first row  shows the original low-resolution (LR) frames, and  the second row  shows the bicubically interpolated ones. Reconstructed SR images are shown  in the third row.  The last row  shows pose and illumination normalized, reconstructed SR images with respect to the middle input LR image

[image: Image 35]
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Fig. 7.4 Evaluation of

super-resolved video as

measured by the peak

signal-to-noise ratio

Fig. 7.5 Real video with

expression changes.  The first

 row  shows the original LR

frames, and  the second row

shows the reconstructed ones

using the global method.  The

 third row  shows the SR

images of our locally-based

method

PSNR of the common parts keeps rising higher for the first 41 frames and almost keeps constant at a value close to 31. Compared with the initial guess of the superresolved texture, the one after the first 41 frames integrates information from these frames, which causes the PSNR value to go higher. The PSNR of non-common

parts shows the process of super-resolving for the invisible part of the face in the first frame. 

7.1.3.2 Real Video

We test our algorithm on a video of a person whose face has significant expression over time. Assuming the face is a rigid object, we observe this sequence over

[image: Image 36]
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time during tracking. In super-resolution step, we use the locally-based approach to super-resolve the texture. The results are shown in Fig. 7.5. We partition the input LR image into six regions corresponding to 2 eyes, 2 eyebrows, mouth, and the rest of the face automatically. We then compute matching statistics between partitioned region of illumination normalized input LR image and the corresponding superresolved texture. If there are fewer than 10 continuous frames which are determined by the matching statistics to have significant facial expression changes, we will discard the corresponding parts of the LR image for super-resolution. Otherwise, we believe that there are valid expressions, and we super-resolve the associated texture. 

In this situation, we refresh the previously constructed texture. 

In the next section, we focus on the super-resolution of video images with significant expression changes. 

7.2 Super-Resolution of Facial Images with Expression Changes

in Video

Super-resolution reconstruction is one of the most difficult and ill-posed problems due to the demand of accurate alignments between multiple images and multiple solutions for a given set of images. In particular, the human face is much more complex compared to other objects which have been used in the majority of the super-resolution literature. Super-resolution from a facial video may suffer from subtle facial expression variation, non-rigid complex motion model, occlusion, illumination and reflectance variations. Figure 7.6 shows six low-resolution facial frames from one video sequence with the corresponding high-resolution frames. It is clear that the face undergoes non-rigid motions because of the expression changes. 

Fig. 7.6 An example of facial images with expression changes: (a) high-resolution (92 × 73) images, (b) low-resolution (30 × 24) images
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In order to tackle the problems brought by the complexity of facial images, in this chapter, we propose a global-to-local approach to locally align the images before applying SR algorithms. The approach consists of three steps: global tracking, local alignment and SR algorithm. In the global tracking step, a global transformation is used to track the face through the video sequence. Following the global registration, a space warping technique called free form deformations (FFD) is used for modeling the local deformation of faces. The globally aligned image is parameterized using a set of B-spline functions and a set of control points overlaid on its volumetric embedding space. Correspondence is obtained through evolving a control lattice overlaid on the source image. We explicitly embed the LR image formation into the formulation of the free form deformation to simulate the process of the LR imaging. 

We use three SR algorithms [43, 75, 212] in the last step and compare performance results on many real video sequences [197]. 

 7.2.1 Related Work

In the past decades, a number of SR techniques have been proposed [7, 41, 43, 110]. 

Based on whether a training step is employed in SR restoration, they are categorized as: reconstruction-based methods [43, 75] and learning-based methods [7, 27, 41, 110]. Table 7.1 presents a summary of the recent work on super-resolution of facial images and compares it with the work in this paper. All the methods in Table 7.1

are learning-based SR approaches and need a certain amount of training data of faces. They do not handle local deformations. They assume that alignment has been performed before applying SR methods. However, accurate alignment is the most critical step for SR of facial videos. Our proposed approach integrates the alignment and super-resolution steps. 

The key elements of the proposed approach discussed in Sect. 7.2.2 are as follows:

•  Super-Resolve Facial Images by Handling them in a Non-rigid Way—Considering the facial expression changes on a human face, we propose a hierarchical registration scheme that combines a global parametric transformation with a local free-form deformation. In addition to the global transformation which tracks the face through the video sequence using a global motion model, a B-spline based Free Form Deformation is used to locally warp the input LR images to register with the reference LR image. 

•  Resolution Aware Incremental FFD—The performance of tracking and registration algorithms, which are not designed for LR data, degrades as the quality of input images become poor and the size of images become small. In order to relieve this difficulty brought by LR data, we explicitly embed low resolution imaging model in the formulation of FFD to simulate the formation of LR images. 

•  Part-Based Super-Resolution of Facial Images—We design a matching statistic to measure the alignment and then super-resolve the images. 
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Table 7.1 Sample work for face SR (L-learning-based method, R-reconstruction-based method) Authors

Approach

Comments

Baker and

Find the closest matching pixels in the

Manual affine registration by 3 hand

Kanade [7]

training data using Gaussian, Lapla-

marked points on the high-resolution

cian and feature pyramids (L)

data

Liu et al. 

Combine a global parametric linear

Manually align the data using 5 hand-

[109]

model for the whole face with a local

selected points on the high-resolution

nonparametric model which learns lo-

data

cal texture from training faces (L)

Liu et al. 

Fuse high-resolution patches to form a

Assume a preamble step for alignment

[110]

high-resolution image integrating Ten-

using locations of eyes and mouth on

sorPatch model and coupled residue

the high-resolution data

compensation (L)

Capel and

Divide a face into six regions and re-

SR images have visible artifacts on

Zisserman

cover the SR face image from a high-

the regions which have expression

[27]

resolution eigenface space (L)

changes

Dedeoglu

Find the best-matched patch in a train-

Consider translation as the only global

et al. [41]

ing set for the probe image by encod-

motion on the high-resolution data

ing spatio-temporal consistency of the

LR images using a graphical model (L)

Wang and

Render the SR facial image from high-

Manual registration using the locations

Tang [178]

resolution training set using eigen-

of eyes on high-resolution data

transformation algorithm (L)

Jia and

Super-resolve facial image given mul-

Manual registration using 3 hand-

Gong [77]

tiple partially occluded LR images us-

selected points on the high-resolution

ing a Bayesian framework (L)

data

Pan et al. 

Super-resolve 3D human face by max-

Correspondence

between

the

3D

[129]

imizing a posteriori probability us-

model and an image is achieved by

ing progressive resolution chain (PRC)

mesh parameterizations, and there is

model (L)

no local deformation of the mesh

Lin et al. 

Reconstruct the SR face image based

Manual registration by using locations

[103]

on a layered predictor network by

of eyes and mouth on high-resolution

integrating the local predictors and

data

learning-based fusion strategy (L)

This paper

Reconstruct SR facial image with ex-

Automatic registration is done using

pression changes by registering them

the global-to-local approach to handle

with global transformation and local

the expression changes

deformation (R)

 7.2.2 Technical Approach

The overall approach is shown in Fig. 7.7. Given a sequence of facial images, we first track the facial region using a global motion model [57]. After this global tracking step, we find the optimal transformation T :  (x, y) −→  (x 0 , y 0 )  which maps any point of the facial region in the dynamic image sequence I (x, y, t )  at time  t  into its corresponding point in the reference image I (x 0 , y 0 , t 0 ). Reference image is the first image in the video sequence. We extract the facial region from the video sequence

[image: Image 37]
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Fig. 7.7 Block diagram of our approach

Fig. 7.8 Tracking results for

one sequence.  The first row

shows the video frames.  The

 second row  shows the tracked

facial regions

after the global tracking. In order to handle the warping errors and outliers, we partition the facial regions into six regions as left/right eyes, left/right eyebrows, mouth, and the rest of the face. Following this step, we deform the globally aligned facial regions (rectified image) to locally register with the regions in the reference image using our specially designed FFD algorithm that accounts the nature of LR data. The last step is to super-resolve the facial image on these registered images to acquire the SR image. Therefore, we design a combined transformation T consisting of a global transformation and a local deformation as follows

T (x, y, t ) = Tglobal (x, y, t) + Tlocal (x, y, t). 

(7.6)

In Fig. 7.7, the input LR images are tracked to extract the facial region and globally align with the reference LR image. Following this step, a resolution aware incremental free-form deformation (RAIFFD) is used to locally deform the LR facial images to align with the reference facial image. The details are given below. 

7.2.2.1 Tracking of Facial Regions

A plane tracking algorithm based on minimizing the sum of squared difference between stored image of the reference facial region and the current image of it [57]

is used for tacking the facial region. The motion parameters are obtained by minimizing the sum of squared differences between the template and the rectified image. 

For efficiency, we compute the Jacobian matrix only once on the template image as M0 instead of recomputing it for each input image [57]. 

We use a similarity transformation as the motion model to track the facial regions through the video sequence. We locate the facial region interactively on the first image. We recover the motion parameters of translation, rotation and scale for the input images and register them with the reference image by applying these parameters. Figure 7.8 shows some frames of tracking results for one video sequence. 

The first row shows the original video frames, and the second one demonstrates the tracked facial regions. 
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7.2.2.2 Local Deformation

The global motion model only captures the global motion of the facial images. As shown in Fig. 7.6, the local deformations vary significantly across the video sequence. In order to handle the local deformations, we choose a B-splines based FFD model [73, 147] which is a popular approach in graphics, animation and rendering. The basic idea of the FFD is to deform an object by space warping the control points which are overlaid on the object. Compared to the pixel-wise optical flow techniques, the FFD methods support smoothness constraints and exhibit robustness to noise. Moreover, the FFD produces one-to-one correspondences after deformation, which is important for carrying out the SR process. 

We consider an incremental free form deformation (IFFD) [73] formulation to model the local deformation and integrate it into our framework. In order to cope with the large local motion such as open mouth in Fig. 7.6, we adopt a multi-level IFFD from coarse to fine control points levels. Given an incoming frame which is globally aligned, a control lattice  P  is overlaid on the image space. By evolving the control points in the lattice, the displacements of all the control points are acquired. 

Subsequently, B-spline basis functions are used as interpolation functions to get the dense deformation field for each pixel in the image space. 

7.2.2.3 Free Form Deformation Formulation

Let us denote the domain of image space as  Ω = {x} = { (x, y)|1 ≤  x ≤  X,  1 ≤

 y ≤  Y } and a lattice of control points overlaid to the image space y

 P =

 pxm,n, pm,n , 

 m = 1 , . . . , M, n = 1 , . . . , N. 

Let us denote the initial configuration of the control lattice as  P  0, and the deformed one as  P =  P  0 +  δP . The parameters of the FFD are the deformations of the control points of the lattice in both directions  (x, y):





 y

 ΔP =

 δP x

 m,n, δPm,n

 , 

 (m, n) ∈ [1 , M] × [1 , N] . 

The deformed location of a pixel, given the deformation of the control lattice from P  0 to  P , is defined as the tensor product of cubic B-splines Tlocal (x;  ΔP )

3

3







=

 Bk(u)Bl(v) P  0

+  δP

 i+ k,j + l

 i+ k,j + l

 k=0  l=0

3

3



3

3



=

 Bk(u)Bl(v)P  0

+

 B

 i+ k,j + l

 k (u)Bl (v)δPi+ k,j + l , 

(7.7)

 k=0  l=0

 k=0  l=0
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where P i+ k,j+ l(k, l) ∈ [0 ,  3] × [0 ,  3] are pixel  (x, y)’s 16 adjacent control points, k =    x ·  (M − 1 ) + 1 , j =    y ·  (M − 1 ) + 1 and  B

 X

 Y

 k (u)  represents the  k th basis

function of cubic B-splines





 B 0 (u) =  ( 1 −  u) 3 / 6 , 

 B 1 (u) = 3 u 3 − 6 u 2 + 4  / 6 , B 2 (u) = −3 u 3 + 3 u 2 + 3 u + 1  / 6 , B 3 (u) =  u 3 / 6 , 

where  u =  x ·  M −    x ·  M , v =  y ·  M −    y ·  M. 

 X

 X

 Y

 Y

7.2.2.4 Cost Function

Given the local deformation formulations, we need to find the deformation parameters of the control lattice  ΔP. Then we can warp the input frame I (x, y)  to register with the reference frame I (x 0 , y 0 )  using the cubic B-spline functions. Similarly to

[73], we use the sum of squared differences (SSD) as the data-driven term for our optimization energy function





2

 E data (ΔP ) =

I (x, y) −  g T (x, y;  ΔP ) dx dy. 

(7.8)

 Ω

In order to account for outliers and noise, we consider an additional smoothness term on the deformation field  δP  as









 ∂δT 2

 ∂δT2

 E









smoothness (ΔP ) =



+ 

 dx dy. 

(7.9)

 Ω

 ∂x

 ∂y

Combining (7.8) with (7.9), we can write the energy term as E(ΔP ) =  E data (ΔP ) +  λE smoothness (ΔP ), (7.10)

where  λ  is a constant which defines the tradeoff between the displacements and the smoothness of the transformation. We choose  λ  as a value between 2 and 20. The calculus of variations and a gradient decent method can be used to optimize the energy function. We can take the derivative of  E(ΔP )  with respect to the deformation parameters  ΔP as  αE(ΔP )

[

and  αE(ΔP )  to find the deformation  ΔP by minimizing x]

[ y]

 αΔP

 αΔP

 (m,n)

 (m,n)

the energy function. 

7.2.2.5 Resolution Aware Local Deformation

In order to account for the complexity brought by LR data, we integrate the LR image formation model into the FFD formulation. Considering the LR imaging model of a digital camera, LR images are blurred and subsampled (aliased) from the high resolution data with additive noise. While the FFD works well with high resolution data, its accuracy of deformation degrades quickly at low resolution. We integrate

[image: Image 38]
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Fig. 7.9 The resolution

aware incremental free form

deformation: (a) the input LR

image, (b) bicubically

interpolated image of (a), 

(c) the reference LR image, 

(d) the interpolated image (b)

overlaid with control lattice, 

(e) the deformed LR image

the LR imaging model into the FFD formulation. Figure 7.9 shows the process of our proposed resolution aware incremental free form deformation (RAIFFD). In Fig. 7.9, (a) shows the input LR image which needs to be deformed with reference to the LR image in (d); (b) is the interpolated image of (a); (e) shows the control lattice overlaid on (b) to show the deformation; (c) is the LR image deformed from (a). 

We perform local deformations on (b) based on the following considerations: Deform Local Motion on High Resolution Data

Without the loss of generality, 

we assume the camera is fixed and the relative motion between the object and the camera is due to the motion of the object. Local motion occurs on the object, while the acquired LR image is the process of the digital camera. To better model the local motion, instead of deforming the control lattice on the LR image, we perform the FFD on the high resolution data. Then we can simulate the process of the LR

imaging from the deformed high resolution image to get the motion compensated LR image. Plugging the LR imaging model into the data driven term in (7.8), we can rewrite (7.8) as



2

 E data (ΔP ) =

ILR (x, y) −  f (X, Y ;  ΔP ) dx dy, Ω

where









 f (X, Y ;  ΔP ) =  g T (X, Y ;  ΔP ) ∗ h ↓ s=

 ϕ(· ) dX  dY  . (7.11)

 (X ,Y  )∈bin (X,Y )

In (7.11),  ϕ(· )  is defined as





 ϕ(· ) =  g T (X , Y ;  ΔP ) h (X −  X , Y −  Y  ) dX  dY  , (7.12)
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where  (X, Y )  is the vector of pixel coordinates on a high resolution image, bin (X, Y ) is the sensing area of the discrete pixel  (X, Y ), and h is the blurring function (point spread function). The continuous integral in (7.11) is defined over bin (X, Y )  to simulate the formation of the LR image. The smoothness term in (7.9) is rewritten as E smoothness (ΔP ) =

 φ (· ) dX dY, 

(7.13)

 Ω

where
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 ∂Y

[

 ∂ΔP  x]

 (m,n)

where  r  in data term is defined as ILR (x, y) −  f (X, Y ;  ΔP ). The derivative with

[ y]

respect to  ΔP

can be obtained similarly. 

 (m,n)

Super-Resolution Methodology Requires Sub-pixel Registration

SR recon-

struction can be seen as “combining” new information from LR images to obtain an SR image. If the LR images have sub-pixel shifts from each other, it is possible to reconstruct the SR image. Otherwise, if the LR images are shifted by integer units, then each image contains the same information, and thus there is no new information that can be used to reconstruct the SR image. High frequency areas in a human face usually correspond to facial features such as eyes, eyebrows, and mouth. 

During facial expression changes, these facial features deform the most on the face. 

In the LR facial images, these facial features, in fact, have a few pixels which are blurred from high resolution image and are noisy. If we deform the LR image, the deformation cannot capture the subtle movements. Moreover, interpolation in the
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LR image during the process of deformation smooths out the high frequency features since they only occupy a few pixels. This leads to the loss of new information which can be used to reconstruct the SR image. 

7.2.2.6 Super-Resolution Algorithm

We work with three algorithms. The first super-resolution algorithm is based on IBP

[75]. We also perform experiments with the methods in [212] and [43]. In [212], the authors proposed a robust approach which combines a median estimator and the iterative framework to reconstruct SR images. The authors demonstrate that their method is robust to the outliers due to motion errors, inaccurate motion models, noise, moving objects, and motion blurs. The authors of [43] proposed a general hybrid SR approach that combines the benefits of the stochastic ML (or MAP) and the POCS approaches. 

7.2.2.7 A Match Measure for Warping Errors

Even though a global transformation and a local deformation method are used to handle the non-rigidity of the facial image, there may exist warping errors due to the violation of basic assumptions such as Lambertian surface, particularly for low-resolution images. In order to detect anomalies in flow based warping, we partition the facial images into six regions based on facial features as left/right eyebrows, left/right eyes, mouth, and the other parts of the face. We design a match statistics to measure how well the warped patches align with the target patches. If the match score is below a certain threshold, the corresponding part will be ignored during super-resolving the texture. We define our match measure as follows:

 M

 N



 j

 j

 ((Y  (x, y) −  μ 1 )([X n(x, y)]B n −  μ 2 )) E

 k

 j =

 , 

(7.17)

 M∗ N∗ σ 1∗ σ 2

 x=1  y=1

where  M  and  N  are the image sizes,  μ 1 and  μ 2 are the respective means of image region,  σ 1 and  σ 2 are the respective image variances within the region.  j  ranges from j

1 to 6 and represents the  j  th part of the face, Y represents the  j  th local region k

of the  k th input LR frame and X kn  denotes the intensity value of the SR image at n th iteration. The absolute value of E j  is between 0 and 1. We choose 0.9 as the matching threshold in this book. 

 7.2.3 Experimental Results

7.2.3.1 Data and Parameters

We record 10 video sequences for 10 people, each of them lasting about 3 minutes. 

During the recording, each person was asked to look at the camera at a distance

[image: Image 39]
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Fig. 7.10 Examples of our

resolution aware IFFD local

registration: (a) source frames

which need to be deformed, 

(b)–(c) illustration of the

deformation process from

coarse to fine control lattice, 

(d) representation of the final

deformed LR images warped

to the reference frames, 

(e) representation of the

reference frames

of about 20 feet from the camera and make continuous expression changes. The average size of the face is about 75 × 70 with the maximum size of 115 × 82 and the minimum size of 74 × 58. We then blur these videos with a 5 × 5 Gaussian kernel and down-sample them into image sequences with the average size of 35 × 27. We then use our proposed approach to estimate the flow fields and super-resolve these LR images to acquire SR images. We found that 35 frames were enough to cover most of the expression changes people made during the recording. We then use 35

frames for each person for super-resolving. 

7.2.3.2 Results of Resolution Aware FFD

The examples of the local deformation process are shown in Fig. 7.10. In this figure, the input frames which need to be locally deformed are shown in (a). (b)–(c) demonstrate the process of local deformation from coarse to fine control lattice configurations. The reference frames are shown in (e). This figure clearly shows that our proposed resolution aware FFD approach can successfully deform the facial images with expression changes to register with the reference images. 

7.2.3.3 Super-Resolution Results—Global Registration vs. Global + RAIFFD

Local Deformation

We super-resolve the input LR images to acquire SR images using the SR algorithms discussed in Sect. 7.2.2. We perform the SR reconstruction on two kinds of aligned data: globally aligned LR images using the registration method and LR images aligned using the proposed global and local alignment methods. We show the results for the complete data in Figs. 7.11 and 7.12. In Figs. 7.11 and 7.12, two of

[image: Image 40]
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Fig. 7.11 Super-resolution

results: (a)–(b) low-resolution

images, (c) reconstructed SR

images using global

registration, (d) reconstructed

SR images using global and

our RAIFFD local

deformation approach

the input LR frames are shown in (a) and (b). The reconstructed SR images on globally aligned LR data are shown in (c). SR images reconstructed using our global +

local method are shown in (d). The SR results in (d) are much better than the results in (c), especially in the high-frequency areas such as mouth, eyes and eyebrows. 

This is due to the fact that the global-only alignment method cannot capture the local deformations on these local parts when a face experiences expression changes. 

Our global + local approach not only finds the global transformation for the global motion, but also captures the local deformations. 

Quantification of Performance

In order to measure the performance of our algo-

rithm, we compute peak signal-to-noise ratio (PSNR) as the measurement between

[image: Image 41]
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Fig. 7.12 Super-resolution

results: (a)–(b) low-

resolution images, 

(c) reconstructed SR images

using global registration, 

(d) reconstructed SR images

using global and our RAIFFD

local deformation approach

original high-resolution and reconstructed SR images. Considering the fact that local motions mostly occur in the high-frequency areas such as eyes and mouth (see Fig. 7.13), we calculate the PSNR values only on the marked regions between the reconstructed SR image ((a) and (b)) and the original high-resolution image. The SR

image in (a) is reconstructed using global registration, and the SR image in (b) is the SR image using our proposed global + local approach. We calculate the PSNR values for our data (10 people) and show this plot in Fig. 7.14. We find that the PSNR

of the areas for our global + local approach is much better than that for global-only approach. The average PSNR value is 20.6261 for the global approach and 26.1327

for our global + local approach. 

[image: Image 42]
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Fig. 7.13 Marked regions for calculating peak signal-to-noise ratio (PSNR): (a) reconstructed SR image using global registration, (b) reconstructed SR image using global + local deformation approach, (c) original high-resolution image

Fig. 7.14 Comparison of

PSNR values between

globally reconstructed SR

images and our globally +

locally reconstructed SR

images

7.2.3.4 Proposed Approach with Two Different SR Algorithms

Similarly to the previous experiments, we implement two methods [43, 212] both on the globally aligned data and the data aligned using our global + local model. The results are shown in Figs. 7.15 and 7.16. We find that both SR images in (b) and (d) are better than in (a) and (c), which are the results on the globally aligned data. We also compute the PSNR values using these two methods and show them in Fig. 7.17. 

This verifies again that global-only alignment is not good enough to register facial images with expression changes for the SR purposes. After comparing the results between (b) and (d) or (a) and (c), we find that the SR images using the method of [212] outperform those obtained with the method of [43]. This does not surprise us because the method of [212] uses the median estimator to replace the sum in the iterative minimization in the method of [43], which reduces the influence of the large projection errors due to inaccurate motion estimation. We also find that the SR

algorithm of [212] achieves better results than that of [75] from the PSNR values in Figs. 7.14 and 7.17, while [75] has similar results compared to the method of [43]. 

[image: Image 43]
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Fig. 7.15 Super-resolution

results using SR algorithms

(I): (a) SR results of globally

aligned data using the method

of [43], (b) SR results of

globally + locally aligned

data using the method of [43], 

(c) SR results of globally

aligned data using the method

of [212], (d) SR results of

globally + locally aligned

data using the method

of [212]

7.3 Constructing Enhanced Side Face Images from Video

Multiframe resolution enhancement seeks to construct a single high-resolution image from multiple low-resolution images. These low-resolution images must be of the same object, taken from slightly different angles, but not so much as to change the overall the appearance of the object in the image. In this section, we present an approach for the super-resolution of side face video images acquired from a distance. 

[image: Image 44]

[image: Image 45]
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Fig. 7.16 Super-resolution

results using SR algorithms

(II): (a) SR results of globally

aligned data using the method

of [43], (b) SR results of

globally + locally aligned

data using the method of [43], 

(c) SR results of globally

aligned data using the method

oh [212], (d) SR results of

globally + locally aligned

data using the method

of [212]

Fig. 7.17 Comparison of

PSNR values between

globally reconstructed SR

images and our globally +

locally reconstructed SR

images using the SR methods

in [43, 212]
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 7.3.1 Enhanced Side Face Image (ESFI) Construction

The key components of the approach are: (a) acquisition of moving head of a person in video, (b) side face image alignment, (c) resolution enhancement algorithm, (d) side face image normalization. 

 7.3.2 Technical Approach

7.3.2.1 Acquiring Moving Head of a Person in Video

We use a background subtraction method [60] for human body segmentation. A human body is divided into two parts according to the proportion of its parts [66]: from the top of the head to the bottom of the chin, and then from the bottom of the chin to the bottom of the foot. A head-height is defined as the length from the top of the head to the bottom of the chin. We regard an adult human body as 7.75

head-heights. Another 0.25 of one head-height is added when the height of hair and the length of the neck are considered. So the human head cut from the human body in the image should be 1.25 head-heights. The ratio of human head (1.25 head-heights) to human body (7.75 head-heights) is 0.16. Therefore, we assume that the upper 16% of the segmented human body includes the human head. In this section, original low-resolution side face images are first localized and then extracted by cutting the upper 16% of the segmented human body obtained from multiple video frames. 

7.3.2.2 Side Face Image Alignment

Before multiple low-resolution face images can be fused to construct a high-resolution image, motion estimates must be computed to determine pixel displacements between them. It is very important since the quality of a high-resolution image relies on the correctness of low-resolution image alignment. In this section, the side face images are aligned using a two step procedure. In the first step, an elastic registration algorithm [134] is used for motion estimation in low-resolution side face images. In the second step, a match statistic is introduced to detect and discard images that are poorly aligned. Hence, the quality of constructed high-resolution images can be improved by rejecting such errors. 

Elastic Registration Method

Denote by  f (x, y, t )  and  f (  ˆ x,  ˆ y, t − 1 )  the reference side face image and the image to be aligned, respectively. Assuming that the image intensities are conserved at different times, the motion between images is modeled locally by an affine transform:

 f (x, y, t ) =  f (m 1 x +  m 2 y +  m 5 , m 3 x +  m 4 y +  m 6 , t − 1 ), 
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where  m 1,  m 2,  m 3, and  m 4 are the linear affine parameters, and  m 5 and  m 6 are the translation parameters. To account for intensity variations, an explicit change of local contrast and brightness is incorporated into the affine model. Specifically, the initial model takes the form:

 m 7 f (x, y, t) +  m 8 =  f (m 1 x +  m 2 y +  m 5 , m 3 x +  m 4 y +  m 6 , t − 1 ), where  m 7 and  m 8 are two new (spatially varying) parameters that embody a change in contrast and brightness, respectively. In order to estimate these parameters, the following quadratic error function is minimized:



2

 E(m ) =

 m 7 f (x, y, t) + m 8 − f (m 1 x + m 2 y + m 5 , m 3 x + m 4 y + m 6 , t −1 ) , x,y∈ Ω

where m =  (m 1 , m 2 , . . . , m 8 )T  and  Ω  denotes a small spatial neighborhood around (x, y). Since this error function is nonlinear in its unknowns, it cannot be minimized analytically. To simplify the minimization, this error function is approximated by using a first-order truncated Taylor series expansion. It now takes the form: 2

 E(m ) =

 k − c T m  , 

(7.18)

 x,y∈ Ω

where the scalar  k  and the vector c are given as:

 k =  ft −  f +  xfx +  yfy, 

(7.19)

c =  (xfx

 yfx

 xfy

 yfy

 fx

 fy

− f −1 )T , 

where  fx(· ),  fy(· ), and  ft (· )  are the spatial/temporal derivatives of  f (· ). The minimization of this error function is accomplished by differentiating  E(m ), setting the result equal to zero, and solving for m. The solution is



− 



1



m =

cc T

c k . 

(7.20)

 x,y∈ Ω

 x,y∈ Ω

Intensity variations are typically a significant source of error in differential motion estimation. The addition of the contrast and brightness terms allows us to accurately register images in the presence of local intensity variations. Another important assumption for the model is that the model parameters m vary smoothly across space. 

A smoothness constraint on the contrast/brightness parameters has the added benefit of avoiding a degenerate solution where a pure brightness modulation is used to describe the mapping between images. 

To begin, the error function  E(m )  in (7.18) is augmented as follows: ˆ E(m ) =  Eb(m ) +  Es(m ), (7.21)
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where  Eb(m )  is defined without the summation:



2

 Eb(m ) =  k − c T m

(7.22)

with  k  and c as in (7.19). The new quadratic error term  Es(m )  embodies the smoothness constraint:

8
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 Es(m ) =

 λi
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 , 

(7.23)

 ∂x

 ∂y

 i=1

where  λi  is a positive constant that controls the relative weight given to the smoothness constraint on parameter  mi . This error function is again minimized by differentiating with respect to the model parameters, setting the result equal to zero, and solving  d  ˆ

 E(m ) =  dEb(m ) +  dEs(m ) = 0. Since solving for m at each pixel location dm

 dm

 dm

yields an enormous linear system which is intractable to solve, an iterative scheme is used to solve for m [68]. Now m is expressed as the following iterative equation:



− 



1

m (j+1 ) = cc T + L

c k + Lm (j) , 

(7.24)

where m is the component-wise average of m over a small spatial neighborhood, and L is an 8 × 8 diagonal matrix with diagonal elements  λi , and zero off the diagonal. 

At each iteration  j , m (j)  is estimated from the current m (j). The initial estimate m ( 0 )  is estimated from (7.20). 

In this section, a two-level Gaussian pyramid is constructed for both the reference side face image and the side face image to be aligned. The global parameters m are first estimated at each pyramid level as in (7.20) for the entire image. Then, the local parameters m are estimated with  Ω = 5 × 5 as in (7.20) using a least squares algorithm. This estimate of m is used to bootstrap the iterations in (7.24). At each iteration,  λi ,  i = 1 , . . . ,  8, is constant for all m components, and its value is set to 1011. 

 mi  is computed by convolving with the 3 × 3 kernel  ( 1 4 1; 4 0 4; 1 4 1 )/ 20. The number of iterations is 10. This process is repeated at each level of the pyramid. 

The values of these parameters are chosen empirically and are based on the previous motion estimation work. Although the contrast and brightness parameters  m 7

and  m 8 are estimated, they are not used when the side face image is aligned to the reference side face image [134]. 

Match Statistic

A match statistic is designed to indicate how well a transformed

image aligns with the reference image. It is used to select or reject a low-resolution image during alignment. If the size of the reference image is  M ×  N , the mean square error between the aligned image and the reference image is

 M

 N



2

 E =

 f (x, y, t ) −  f (m 1 x +  m 2 y +  m 5 , m 3 x +  m 4 y +  m 6 , t − 1 ) /MN. 

 x=1  y=1
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The match statistic of the aligned image is defined as

 S = 1 −

 E





 . 

(7.25)

[  M

 N

 f  2 (x, y, t )] /MN

 x=1

 y=1

If the value of  S  is close to 1, the image at time  t − 1 is well aligned with the image at time  t . A very low value indicates misalignment. A perfect match is 1. 

However, even images that are very well aligned typically do not achieve 1 due to error in the transformation and noise. To improve image quality, the resolution enhancement method (Sect. 7.3.2.3) discussed next works most effectively when the match values of aligned images are close to 1. A match threshold is specified, and any aligned image whose match statistic falls below the threshold will not be subsequently used. 

The pseudo code for the low-resolution image alignment is shown in Fig. 7.18. 

Two alignment results with the match statistic  S  are shown in Fig. 7.19. The reference images and the images to be aligned are from a video sequence, in which a person is walking and exposes a side view to the camera. The reference images in both Figs. 7.19(a) and 7.19(b) are the same. The time difference between the image to be aligned in Fig. 7.19(a) and the reference image is about 0.033 seconds, and the time difference between the image to be aligned in Fig. 7.19(b) and the reference image is about 0.925 seconds. The  S  values are 0.95 and 0.86 for Figs. 7.19(a)

and 7.19(b), respectively. Note the differences in the bottom right part of each of Align the low-resolution side face image with the reference side face image Input: The reference side face image and the side face image to be aligned. 

Output: The motion vector m and the match statistic  S  of the aligned image. 

1. For each pyramid level in global registration

1.1 Estimate m between the newest warped image and the reference image using (7.20)

1.2 Warp the image to the next level of the pyramid using the newest estimate 2. For each pyramid level in local registration

2.1 Estimate m between the newest warped image and the reference image using (7.20)

2.2 Warp the image using the newest estimate

2.3 For each iteration

2.3.1 Estimate m between the newest warped image and the reference image using (7.24)

2.3.2 Warp the image using the newest estime

3. Compute the match statistic  S  of the aligned image

4. If  S ≥ threshold, keep the low-resolution image;otherwise, discard it Fig. 7.18 Pseudo code for low-resolution image alignment
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Fig. 7.19 Two examples of alignment results with the match statistic  S: the reference image ( left), the image to be aligned ( middle) and the aligned image ( right) the aligned images. We specify the match threshold at 0.9. For 28 out of 100 video sequences used in our experiments, 1 or 2 low-resolution images are discarded from each of the sequences during the image alignment process. 

7.3.2.3 Resolution Enhancement Algorithm

An iterative method [75] is used to construct a high-resolution side face image from aligned low-resolution side face images, whose match statistics are above the specified threshold. 

The Imaging Model

The imaging process, yielding the observed side face image

sequence  fk, is modeled by







 fk(m, n) =  σk h Tk F (x, y) +  ηk(x, y) , 

(7.26)

where

 fk  is the sensed image of the tracked side face in the  k th frame. 

 F  is a high-resolution image of the tracked side face in a desired reconstruction view. Finding  F  is the objective of the super-resolution algorithm. 

 Tk  is the 2D geometric transformation from  F  to  fk, determined by the 2D motion parameters  m  of the tracked side face in the image plane.  Tk  is assumed to be invertible and does not include the decrease in the sampling rate between  F

and  fk. 

 h

is a blurring operator determined by the point spread function (PSF) of the sensor. We use a circular averaging filter with radius 2 as the PSF. 

 ηk  is an additive noise term. 

 σk  is a down-sampling operator which digitizes and decimates the image into pixels and quantizes the resulting pixel values. 

The receptive field (in  F ) of a detector whose output is the pixel  fk(m, n)  which is uniquely defined by its center  (x, y)  and its shape. The shape is determined by the region of the blurring operator  h, and by the inverse geometric transformation  T −1. 

 k

Similarly, the center  (x, y)  is obtained by  T −1 (m, n). The resolution enhancement k

algorithm aims to construct a higher resolution image ˆ

 F , which approximates  F

as accurately as possible and surpasses the visual quality of the observed images in { fk}. 
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Algorithm for Resolution Enhancement

The algorithm for creating higher res-

olution images is iterative. Starting with an initial guess  F ( 0 )  for the high-resolution side face image, the imaging process is simulated to obtain a set of low-resolution side face images {  ( 0 )

 f

} K  corresponding to the observed input images { f

. 

 k

 k=1

 k } K

 k=1

If  F ( 0 )  were the correct high-resolution side face image, then the simulated images {  ( 0 )

 f

} K  should be identical to the observed low-resolution side face image k

 k=1

{

 ( 0 )

 fk} K . The difference images { f

} K  are used to improve the initial guess

 k=1

 k −  fk

 k=1

by “back projecting” each value in the difference images onto its receptive field in F ( 0 ), yielding an improved high-resolution side face image  F ( 1 ). This process is repeated iteratively to minimize the error function:







 K





 (n)

 e(n) =  1

 f

2

 k −  f

 . 

(7.27)

 K

 k

 k=1

The imaging process of  fk  at the  n th iteration is simulated by (n)

 f

=  T F (n) ∗  h ↓  s, 

(7.28)

 k

 k

where ↓  s  denotes a down sampling operator by a factor  s, and ∗ is the convolution operator. The iterative update scheme of the high-resolution image is expressed by K











 (n)

 F (n+1 ) =  F (n) + 1

 T −1

 fk −  f

↑  s ∗  p , 

(7.29)

 K

 k

 k

 k=1

where  K  is the number of low-resolution side face images, ↑  s  is an up sampling operator by a factor  s, and  p  is a “back projection” kernel, determined by  h.  Tk  denotes the 2D motion parameters. The averaging process reduces additive noise. 

We use a sampling factor  s = 2. An initial guess  F ( 0 )  for the high resolution image is obtained by up-sampling a low-resolution image using bilinear interpolation. 

Ten low-resolution side face images contribute to a high-resolution side face image. 

The high-resolution image is obtained after 10 iterations ( N = 10). 

The pseudo code for the high-resolution image construction is shown in Fig. 7.20. 

Figure 7.21 shows four examples of low-resolution face images and reconstructed high-resolution face images. The resolution of the low-resolution side face images is 68 × 68 and the resolution of the high-resolution side face images is 136 × 136. For comparison, we resize the low-resolution face images using bilinear interpolation. 

From this figure, we can see that the quality of the reconstructed high-resolution images is much better than the resized low-resolution images. 

7.3.2.4 Side Face Normalization

Before feature extraction, all high-resolution side face images are normalized. The normalization is based on the locations of nasion, pronasale and throat on the face

[image: Image 47]
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Construct the high-resolution side face image from the low-resolution side face images

Input: The observed input images { fk} K

and the corresponding motion vectors

 k=1

{ mk} K . 

 k=1

Output: The high-resolution image  F . 

1. Start with iteration  n = 0

2. Obtain an initial guess  F ( 0 )  for the high-resolution image using bilinear interpolation

3. Obtain a set of low-resolution images {  (n)

 f

} K  using (7.28)

 k

 k=1

4. Obtain an improved high-resolution image  F (n+1 )  using (7.29) 5. Let  n =  n + 1

6. If  n ≤  N, go to step 3; otherwise, stop

Fig. 7.20 Pseudo code for high-resolution image construction

Fig. 7.21 Four examples of resized low-resolution face images ( top) and constructed high-resolution face images ( bottom)

profile (see Sect. 9.2.2). These three fiducial points are identified by using a curvature based fiducial extraction method [16]. It is explained as follows. 

We apply a canny edge detector to the side face image. After edge linking and thinning, the profile of a side face is extracted as the leftmost points different from background, which contain fiducial points like nasion, pronasale, chin and throat. 

The profile consists of a set of points  T =  (x, y), where  x  is a row index and  y  is a column index of a pixel. Then, a Gaussian scale-space filter is applied to this 1D

curve to reduce noise. The convolution between the Gaussian kernel  g(x, σ )  and the signal  f (x)  depends both on  x, the signal’s independent variable, and on  σ , the
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Gaussian’s standard deviation. It is given by

∞

1

− (x− u) 2

 F (x, σ ) =  f (x) ⊕  g(x, σ ) =

 f (u) √

 e  2 σ 2

 du, 

(7.30)

−∞

 σ

2 π

where ⊕ denotes the convolution with respect to  x. The bigger the  σ , the smoother the  F (x, σ ). The curve  T  is parameterized as  T (u) =  (x(u), y(u))  by the arc length parameter  u. An evolved version of  T  is  Tσ (u) =  (X(u, σ ), Y (u, σ )), where X(u, σ ) =  x(u) ⊕  g(u, σ )  and  Y (u, σ ) =  y(u) ⊕  g(u, σ ). 

The curvature  κ  on  Tσ  is computed as

 κ(u, σ ) =  Xu(u, σ )Yuu(u, σ ) −  Xuu(u, σ )Yu(u, σ ) , (7.31)

1 .  5

 (Xu(u, σ ) 2 +  Yu(u, σ ) 2 )

where the first and second derivatives of  X  and  Y  can be computed as Xu(u, σ ) =  x(u) ⊕  gu(u, σ ), 

 Xuu(u, σ ) =  x(u) ⊕  guu(u, σ ), 

 Yu(u, σ ) =  y(u) ⊕  gu(u, σ ), 

 Yuu(u, σ ) =  y(u) ⊕  guu(u, σ ), 

where  gu(u, σ )  and  guu(u, σ )  are the first and the second derivative of the Gaussian kernel, respectively. 

To localize the fiducial points, the curvature of a profile is first computed at an initial scale and the locations where the local maxima of the absolute values occur are chosen as corner candidates. These locations are tracked down, and the fiducial points are identified at lower scales. The initial scale must be large enough to remove noise and small enough to retain the real corners. Our method has advantages in that it does not depend on too many parameters and it does not require any thresholds. It is also fast and simple. The complete process to find the fiducial points is described as follows:

Step 1: Compute the curvature of a profile at an initial scale, find all points with the large absolute curvature values as corner candidates and track them down to lower scales. 

Step 2: Regard the rightmost point in the candidate set as the throat. 

Step 3: Regard the pronasale as one of the two leftmost candidate points in the middle part of the profile and then identify it using the curvature value around this point. 

Step 4: Assume that there are no candidate points between pronasale and nasion, and identify the first candidate point above the pronasale as nasion. 

Figure 7.22 shows the extracted face profile and the absolute values of the curvature. We amplify the absolute values of the curvature 20 times in order to show them more clearly. It is clear that the locations of the fiducial points, including nasion, pronasale and throat, have large curvature values. Given a set of high-resolution images and the three fiducial points of each face image, affine transformations are computed between the first image and all the other images. Subsequently, images are cropped as follows: the highest point is defined as the point six pixels above nasion; 

[image: Image 48]
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Fig. 7.22 The extracted face

profile and the absolute

values of the curvature

Fig. 7.23 Examples of

4 people: (a) resized OSFIs, 

(b) ESFIs

the lowest point is defined as the throat; the leftmost point is defined as the point 4

pixels to the left of pronasion; and the rightmost point is defined as the one, which is half of the height of the cropped image and is to the right of the leftmost point. All cropped images are further normalized to the size of 64 × 32. We call these images as enhanced side face images (ESFIs). Similarly, original side face image (OSFI) is a subimage from the normalized version of the low-resolution side face image. 

It is obtained by the similar process explained above. The size of OSFI is 34 × 18. 

Examples of resized OSFIs and ESFIs for four people are shown for comparison in Fig. 7.23. Clearly, ESFIs have better quality than OSFIs. 

In Chaps. 10 and 11, we use ESFI and OSFI images for recognizing people at a distance in video. Chapter 10 deals with the match score level fusion of side face and gait, and Chap. 11 deals with the feature level fusion of side face and gait. 
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7.4 Summary

In this chapter, we presented three approaches for super-resolution of human faces in video. 

In the first video-based super-resolution approach, pose and illumination invariant tracking and super-resolution take place in a closed-loop. The experimental results showed that this method can achieve good quality super-resolution video using the closed-loop system. Moreover, this method can handle the non-rigidity of a human face to some extent since the facial images are processed non-uniformly for different regions of the face. 

Reconstruction of SR facial images from multiple LR images suffers from the special characteristics of a human face. In particular, the non-rigidity of human face is a critical issue since accurate registration is an important step for SR. The second approach for super-resolution presents a resolution aware incremental free form deformation (RAIFFD) approach which embedds the low resolution imaging model explicitly in the formulation to handle the non-rigidity and low-resolution issues. 

The experimental results showed that the proposed SR framework can effectively handle the complicated local deformation of a human face and produced better SR image. Note that since most of the SR approaches presented in Table 7.1 are learning-based methods which do not handle local deformations in real data, the proposed method was not compared with them. 

The third approach for super-resolution focuses on the side face images in video. 

It is an integrated approach that registers human faces, performs super-resolution and face normalization so that face recognition can be accomplished for human recognition at a distance in video. This is the approach that is used in Chap. 10

(match score level fusions) and Chap. 11 (feature level fusion) for the integrated gait and face recognition of an individual in videos that are acquired from a distance. 

Chapter 8

Evaluating Quality of Super-Resolved Face

Images

The widespread use of super-resolution methods in a variety of applications such as surveillance has led to an increasing need for quality assessment measures. The current quality measures aim to compare different fusion methods by assessing the quality of the fused images. They consider the information transferred between the super-resolved image and input images only. In this chapter, we propose an integrated objective quality evaluation measure for super-resolved images, which focuses on evaluating the quality of super-resolved images that are constructed from different conditions of input images. The proposed quality evaluation measure combines both the relationship between the super-resolved image and the input images, and the relationship between the input images. Using the proposed measure, the quality of the super-resolved face images constructed from videos are evaluated under different input conditions, including the variation of pose, lighting, facial expressions and the number of input images. 

8.1 Image Quality Indices

Super-resolution for image and video has emerged as a major research area and a vital technology in recent years. The aim of image and video super-resolution is to create new images that are more suitable for human/machine perception. In many application scenarios, a super-resolution algorithm is only an introductory preprocessing stage to other tasks. Therefore, the quality of super-resolved images need to be measured in terms of the performance improvement for the subsequent tasks. 

In the literature, several mathematically defined objective image quality measures have been suggested for their ease of computation and independence of viewing conditions and individual interpreters. Among these quality indices, the mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), signal-to-noise ratio (SNR), and peak signal-to-noise ratio (PSNR) are widely employed for comparing a distorted image with an ideal image in full-reference quality B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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assessment approaches. However, for super-resolution applications, the ideal reference image is normally unknown. Designing objective image fusion metrics for cases without an ideal or a reference image is a difficult task, but such metrics are highly desired. 

Table 8.1 presents a summary of the recent work and compares it with the proposed work in this chapter for the image quality evaluation. The first three quality measures (SSIM, UQI and MCQI) need a reference image. The quality of the fused image is evaluated based on the similarity between the fused image and the reference image. The non-reference image quality measures [35, 36, 135, 138, 140, 167, 187] mainly focus on comparing the fusion results obtained with different algorithms. The quality of the fused image is evaluated based on the similarity between the fused image and the input images. 

The proposed quality measure aims to evaluate the quality of super-resolved images constructed from input images acquired under different conditions by analyzing the factors which may influence the quality of super-resolved face images. In comparison to the previous work, the contributions of this chapter are as follows:

• An objective quality evaluation algorithm is proposed for the super-resolved images, which does not require a ground-truth or reference image. It focuses on comparing the quality of super-resolved images that are constructed under different input conditions. 

• The quality of the super-resolved face images constructed from real video data is evaluated using the proposed quality measures under different conditions, including the variation of pose, lighting, facial expression and the number of input images. The influence of different conditions on the quality of the super-resolved face images is analyzed based on the experimental results. 

• The relationship between the quality of the face image and the performance of face recognition is addressed. Face images of 45 people are constructed using the different numbers of input images from a video database. The quality evaluation and face recognition experiments are conducted on these super-resolved images. 

Experimental results show the effectiveness of the proposed quality measure for the super-resolved image and the necessity of super-resolution for face recognition under low-resolution conditions. 

8.2 Integrated Image Quality Index

The proposed quality evaluation method is based on the intensity value of a pixel in a image. For the color images, they are first transformed into YIQ representation, and the luminance (Y) component [50] is used. The integrated quality measure  Q int takes the form

 Q int =  f (Qg, Qe, Qi), 

(8.1)

where  Qg  is the gray scale based quality,  Qe  is the structure based quality, and  Qi is the similarity between input images. 
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 8.2.1 Gray Scale Based Quality (Qg)

The gray scale based quality takes into account the integration of information transferred from all the input images to the super-resolved image. The form of this integration is similar to the form in [138]. We define the quality based on the gray value as  Qg. It is given by

 Qg(f1 , f2 , . . . , f n, F )





=

 κ(w ) α 1 (f1|w )Q(f1 , F|w ) w∈W



+  α 2 (f2|w )Q(f2 , F|w ) + · · · +  αn(f n|w )Q(f n, F|w ) , (8.2)

where f i, i = 1 ,  2 , . . . , n  is the input image, F is the super-resolved image, w is the analysis window and W is the family of all windows. The parameter  αi  and  κ(w ) are defined as

 αi(f i|w ) =

 σ  2 (f i |w )

 , 

 i = 1 ,  2 , . . . , n, (8.3)

 σ  2 (f1|w ) +  σ  2 (f2|w ) + · · · +  σ  2 (f n|w ) max n

 σ  2 (f i|w )

 κ(w ) =

 i=1



 , 

(8.4)

max n

 σ  2 (f

w∈W

 i=1

 i |w )

where  σ  2 (f i|w )  denotes the variance of image f i  in window w. 

 Q(f i, F|w ), i = 1 ,  2 , . . . , n, evaluates the similarity between the images, f i  and F, within the sliding window w. It takes the same form as proposed by Wang and Bovik [175]. Let f = { xi| i = 1 ,  2 , . . . , N} and F = { yi| i = 1 ,  2 , . . . , N} be the input and the super-resolved image signals, respectively.  Q  is defined as Q =

4 σxyμx ·  μy

 , 

(8.5)

 (σ  2 +

 x

 σ  2

 y )[ (μx ) 2 +  (μy ) 2]

where

 N



 N



 μx = 1

 xi, 

 μy = 1

 yi, 

 N

 N

 i=1

 i=1

 N



 σ  2 =

1

 x

 (xi −  μx) 2 , 

 N − 1  i=1

 N



 σ  2 =

1

 y

 (yi −  μy) 2 , 

 N − 1  i=1

 N



 σxy =

1

 (xi −  μx)(yi −  μy). 

 N − 1  i=1

The dynamic range of  Q  is [−1 ,  1]. The best value 1 is achieved if and only if yi =  xi  for all  i = 1 ,  2 , . . . , N . The lowest value of −1 occurs when  yi = 2 μx −  xi
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for all  i = 1 ,  2 , . . . , N . The definition of  Q  can be decomposed as a product of three components

 σxy

 Q =

·

2 μxμy

· 2 σxσy . 

(8.6)

 σ

 y

 x σy

 (μx) 2 +  (μy) 2  σ  2 +

 x

 σy

This quality index models any distortion as a combination of three different distortions: loss of correlation, luminance distortion, and contrast distortion.  Q  is used to quantify the structural distortion between two images. In fact, the value  Q =  Q(f , F ) is a measure for the similarity of images f and F. The first component is the correlation coefficient between f and F, and its dynamic range is [−1, 1]. The second item measures how close the mean luminance is between f and F, and it has a dynamic range of [0, 1]. The third item measures how similar the contrast distortion is, and its dynamic range is also [0, 1]. 

Since images are generally non-stationary signals, it is appropriate to measure  Q

over local regions and then combine the different results into a single measure  Q. 

Wang and Bovik propose using a sliding window [175]: starting from the top left corner of the two images, f and F, a sliding window of fixed size moves pixel by pixel over the entire image until the bottom-right corner is reached. For each window w, the local quality index  Q(f , F|w )  is computed for the pixels within the sliding window w. 

 8.2.2 Structure Based Quality (Qe)

Generally, an image with stronger edges is regarded to have a better quality. Therefore, we take into account the edge strength which is associated to some important visual information of the human visual system. The Sobel operator performs a 2D

spatial gradient measurement on an image. For the input image f i  and the superresolved image F, we get the corresponding edge strength images ˆf i  and ˆF. The structure based quality of the super-resolved image  Qe  is evaluated as Qe( ˆf1 ,  ˆf2 , . . . ,  ˆf n,  ˆF )





=

 λ(w ) β 1 ( ˆf1|w )Q( ˆf1 ,  ˆF|w ) w∈W



+  β 2 ( ˆf2|w )Q( ˆf2 ,  ˆF|w ) + · · · +  βn( ˆf n|w )Q( ˆf n,  ˆF|w ) . 

(8.7)

The parameters  βi  and  λ(w )  in (8.7) are obtained using the same method as the parameters  αi  and  κ(w )  in (8.2), where the  σ  2 corresponds to the variance of edge image ˆf i  in window w. They are defined as

 βi( ˆf i|w ) =

 σ  2 ( ˆf i|w )

 , 

 i = 1 ,  2 , . . . , n, (8.8)

 σ  2 ( ˆf1|w ) +  σ  2 ( ˆf2|w ) + · · · +  σ  2 ( ˆf n|w ) max n

 σ  2 ( ˆf i|w )

 λ(w ) =

 i=1



 . 

(8.9)

max n

 σ  2 ( ˆf

w∈W

 i=1

 i |w )
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 Q( ˆf i ,  ˆF|w ), i = 1 ,  2 , . . . , n  is computed using (8.5) to evaluate the similarity between the edge images, ˆf i  and ˆF, within the sliding window w. 

 8.2.3 Similarity Between Input Images (Qi)

The current quality methods focus on evaluating the fused image quality by directly assessing the similarity between the fused image and the input images [35, 36, 138, 167, 187]. They never directly consider the relationship between the input images. Moreover, they assume that all the input images are perfectly registered, even though it is not the case most of the time in real-world applications, especially for the construction of super-resolved images from video where the input images from video frames have to be registered before any resolution enhancement. Considering the important role of input images in super-resolved image construction, we want to measure the relationship between input images explicitly. Without loss of generality, we assume the input images f i, i = 2 , . . . , n, are all aligned to the input image f1. 

The relationship between input images is defined as

 Qi(f1 , f2 , . . . , f n)



= 1

|

 γ 1 (f1 , f2 )Q(f1 , f2|w ) W| w∈W



+  γ 2 (f1 , f3 )Q(f1 , f3|w ) + · · · +  γn−1 (f1 , f n)Q(f1 , f n|w ) . 

(8.10)

 γi, i = 1 ,  2 , . . . , n − 1, are the weights which represent the registration quality between the two input images. w is the analysis window, and W is the family of all windows.  Q(f1 , f i|w ), i = 2 , . . . , n, are computed using (8.5) to evaluate the similarity between the input images, f1 and f i , within the sliding window w. 

Cvejic et al. [35] use cross-correlation to indicate the similarity between images in the spatial domain. However, cross-correlation is not appropriate as the weight because of its potentially negative values. It is also difficult to interpret and inconvenient to use it for more than two input images. The methods based on the maximization of the mutual information (MI) are the leading techniques for multi-modal image registration. MI, originating from the information theory, is a well studied measure of statistical dependency between two data sets. Based on MI, the weight γi  in (8.10) is defined as

 γi(f1 , f i+1 ) =

 I (f1 , f i+1 )



 , 

 i = 1 ,  2 , . . . , n − 1 , 

(8.11)

 n−1  I (f

 i=1

1 , f i+1 )

where  I  is the mutual information (MI) which describes the common information between two input images and indicates the registration quality.  I  between two images f1 and f i+1 is defined as

 I (f1 , f i+1 ) =  H (f1 ) +  H (f i+1 ) −  H (f1 , f i+1 ), (8.12)

where
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 H (f1 ) =

 p(a)  log  p(a), 

 a∈f1



 H (f i+1 ) =

 p(b)  log  p(b), 

 b∈f i+1



 H (f1 , f i+1 ) =

 p(a, b)  log  p(a, b). 

 a∈f1  b∈f i+1

 H (f1 )  and  H (f i+1 )  are the entropies of gray level distributions of images f1 and f i+1, and  H (f1 , f i+1 )  is the entropy of the joint distribution of gray level of the images f1

and f i+1.  a  and  b  denote gray level values of the images f1 and f i+1.  I  in (8.12) is dependent on the similarity in the spatial domain between the two input image. In this sense, we are able to measure the relationship between different input images accurately and conveniently using (8.10) even when the number of the input images is large. 

 8.2.4 Integrated Quality Measure (Qint )

The current quality measures shown in Table 8.1 are based on evaluating how much of the information contained in each of the input images has been transferred into the fused image. The fused images for comparison are all constructed from the same input images. They do not consider the quality difference of the fused image due to the changing input conditions, such as the change in the quality of the input image and the number of input images. However, the relationship between the quality of a super-resolved image and the condition of input images is very important. To compare the quality of super-resolved images that are constructed from images acquired under different input conditions, the proposed quality measure for the superresolved images, combines not only the relationship between the super-resolved image and input images, but also the relationship between different input images. It takes the final form as

 (Qg +  Qe)

 Q int =  ( 1 −  θ) ×

+  θ ×  Qi, 

(8.13)

2

where  θ  is a parameter, 0  < θ <  1. Usually, the value of  θ  should be no more than 0.5.  Qg,  Qe, and  Qi  are given by (8.2), (8.7), and (8.10), respectively. The proposed measure has a dynamic range of [−1 ,  1]. The first term in (8.13) is the similarity between the input images and the super-resolved image, and the second is the similarity between the input images. 

8.3 Experimental Results for Face Recognition in Video

Using the proposed quality measure defined by (8.13), the quality of the superresolved face images constructed from video is evaluated under different input conditions. These conditions include the variation of pose, lighting, facial expression, 
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Fig. 8.1 Quality evaluation of a super-resolved image

and the number of input images used for constructing the super-resolved image. 

The process for the quality evaluation of the super-resolved images is shown is Fig. 8.1. 

We use an iterative method [75] to construct the super-resolved face image from the aligned input images from the video. An elastic registration algorithm [134] is used for motion estimation of the input face images. The reference (ideal) image is the original face image directly obtained from the video frame, which is used only for the comparison with the super-resolved image. The input images, which are used for constructing the super-resolved face image, are obtained by down-sampling by a factor of 2 the corresponding original face images. 

The proposed quality measure is computed using the super-resolved face image and the input face images in each case (pose, lighting, facial expression). We choose the size of the sliding window as 8 × 8 and  θ  as the inverse of the number of the input images in (8.13). This will emphasize the first term as the number of input images increases. We also compute the UQI [175] and peak signal-to-noise ratio (PSNR) between the super-resolved image and the reference image for comparison. In real-world applications, we do not have access to the reference image in super-resolution scenarios, therefore, the UQI and PSNR values are provided just for comparison. Finally, different numbers of input images are used to construct the super-resolved images. The relationship between the quality of super-resolved image and the recognition performance is tested on a real-video database of 45 people acquired under outdoor conditions. 

 8.3.1 Experiment 1: Influence of Pose Variation

 on the Super-Resolved Face Image

This experiment tests the influence of pose variation on the quality of the superresolved face image. Figure 8.2 shows three input face images with the same pose. 

Figure 8.3 shows three input face images with perceptibly different poses. Figure 8.4

shows two super-resolved face images constructed from the images in Figs. 8.2

and 8.3, respectively, and the ideal reference image (for comparison only). The size of the input images is 128 × 128 and the size of the super-resolved image is 256 × 256. The images in Figs. 8.2(a) and 8.3(a) are the same, and all the other input images are aligned to this image before the construction of the super-resolved

[image: Image 49]

[image: Image 50]

[image: Image 51]
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Fig. 8.2 Three input face images with the same pose

Fig. 8.3 Three input face images with different poses

Fig. 8.4 (a) The super-resolved face image from the input images in Fig. 8.2. (b) The super-resolved face image from the input images in Fig. 8.3. (c) The ideal reference image shown for comparison. It is directly obtained from the original video

image. Therefore, the reference image is the same for the two super-resolved images, and it is the original face image corresponding to the image in Figs. 8.2(a)

and 8.3(a). Table 8.2 shows the quality of the super-resolved image evaluated using the proposed quality measures, UQI and PSNR. 

[image: Image 52]

[image: Image 53]
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Table 8.2 The effect of pose variation on quality

Measure

Q (proposed) (no

UQI [175]

PSNR(dB)

reference is needed)

(reference is needed)

(reference is needed)

Figure 8.4(a)

0.8067

0.5595

28.1384

Figure 8.4(b)

0.6791

0.4918

27.1954

Fig. 8.5 Three input face images with the same lighting conditions Fig. 8.6 Three input face images with different lighting conditions

 8.3.2 Experiment 2: Influence of Lighting Variation

 on the Super-Resolved Face Image

This experiment tests the influence of lighting variation on the quality of the superresolved face image. Figure 8.5 shows three input face images with the same lighting conditions. Figure 8.6 shows three input face images with perceptibly different lighting conditions. Figure 8.7 shows the two super-resolved face images constructed from the images in Figs. 8.5 and 8.6, respectively, and the ideal reference image (for comparison only). The images in Figs. 8.5(a) and 8.6(a) are the same, and all the other input images are aligned to this image before the construction of the super-resolved image. Therefore, the reference image is the same for the two super-resolved images, and it is the original face image corresponding to the image in Figs. 8.5(a) and 8.6(a). Table 8.3 shows the quality of the super-resolved image evaluated using the proposed quality measures, UQI and PSNR. 

[image: Image 54]

[image: Image 55]
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Fig. 8.7 (a) The super-resolved face image from the input images in Fig. 8.5. (b) The super-resolved face image from the input images in Fig. 8.6. (c) The ideal reference image shown for comparison. It is directly obtained from the original video

Table 8.3 The effect of light variation on quality

Measure

Q (proposed) (no

UQI [175]

PSNR(dB)

reference is needed)

(reference is needed)

(reference is needed)

Figure 8.7(a)

0.8075

0.5408

28.2127

Figure 8.7(b)

0.5094

0.4720

21.9090

Fig. 8.8 Three input face images with the same expression

 8.3.3 Experiment 3: Influence of Facial Expression Variation

 on the Super-Resolved Face Image

This experiment tests the influence of facial expression variation on the quality of the super-resolved face image. Figure 8.8 shows three input face images with the same expression. Figure 8.9 shows three input face images with perceptibly different facial expressions. Figure 8.10 shows two super-resolved face images constructed from the images in Figs. 8.8 and 8.9, respectively, and the ideal reference image (for comparison only). The images in Figs. 8.8(a) and 8.9(a) are the same, and all the other input images are aligned to this image before the construction of the super-resolved image. Therefore, the reference image is the same for the two super-resolved images, and it is the original face image corresponding to the image

[image: Image 56]

[image: Image 57]
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Fig. 8.9 Three input face images with different expressions

Fig. 8.10 (a) The super-resolved face image from the input images in Fig. 8.8. (b) The super-resolved face image from the input images in Fig. 8.9. (c) The ideal reference image shown for comparison. It is directly obtained from the original video

Table 8.4 The effect of facial expression variation on quality

Measure

Q (proposed) (no

UQI [175]

PSNR(dB)

reference is needed)

(reference is needed)

(reference is needed)

Figure 8.10(a)

0.8087

0.5485

28.0497

Figure 8.10(b)

0.7925

0.5431

27.9933

in Figs. 8.8(a) and 8.9(a). Table 8.4 shows the quality of the super-resolved image evaluated using the proposed quality measures, UQI and PSNR. 

 8.3.4 Experiment 4: Influence of the Number of Images Used

 for Constructing the Super-Resolved Face Image

 for Face Recognition

In this experiment, the quality of the super-resolved images, which are constructed from the different number of input images, are evaluated and compared. Also the relationship between the quality and the recognition rates is examined. Ninety video

[image: Image 58]
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sequences of 45 people are used. Each subject walks in an outdoor conditions and exposes a side view to the camera. Therefore, the super-resolved side-face images are constructed. Each person has two video sequences, and each video sequence Fig. 8.11 Sample low-resolution input face images taken from videos of 45 people. They are numbered 1 to 45 ( from left to right  and  top to bottom)

[image: Image 59]
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includes one person. For each video sequence, we construct 10 super-resolved side-face images by using different numbers of input images. The numbers are 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21. Figure 8.11 shows sample low-resolution input side-face images of 45 people. We name 45 people from 1 to 45 (from left-to-right and top-to-bottom in Fig. 8.11). Figure 8.12 shows a sample super-resolved side-face, which is constructed from nine low-resolution input images. The size of the low-resolution input images is 68 × 68, and the size of the super-resolved images is 136 × 136. 

Since each of the 45 persons has two video sequences, we use one for training and the other for testing for face recognition. Face recognition is based on principal component analysis (PCA). It compares the super-resolved face images from the training video sequences with those from the testing video sequences. Table 8.5

shows the average quality index of 45 people using the proposed measure and the recognition rates for these super-resolved face images. We also plot the recognition rates versus the different number of images to obtain the super-resolved images in Fig. 8.13(a) and the quality versus the different number of images to obtain the super-resolved images in Fig. 8.13(b). 

Fig. 8.12 Examples of

super-resolved face images of

people from number 13 to 24. 

They are constructed from

nine low-resolution input

images
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Table 8.5 The effect of the number of input images on the quality of super-resolved image Number of input images

3

5

7

9

11

Q (proposed)

0.7866

0.8070

0.8157

0.8201

0.8220

Recognition rate

73.3%

73.3%

75.6%

77.8%

77.8%

Number of input images

13

15

17

19

21

Q (proposed)

0.8229

0.8238

0.8248

0.8257

0.8262

Recognition rate

77.8%

77.8%

77.8%

77.8%

77.8%

Fig. 8.13 Results from 90 video sequences of 45 people: (a) recognition rate vs. number of input images, (b) quality vs. number of input images

 8.3.5 Discussion

It is clear from these four experiments that the conditions of the input image have a significant effect on the quality of the super-resolved images. To achieve a superresolved image with the improved quality, it needs to be constructed from multiple input images, which must be of the same object, taken from slightly different angles, but not so much as to change the overall appearance of the object in the image. The experimental results demonstrate that if the differences between the input images are too large, the quality of the super-resolved images will degrade. Among them, the variation of pose and lighting causes much effect on the quality of the superresolved image since they are more likely to bring the overall appearance changes on the face in an image. These global changes make the registration between different input images difficult and information in the input images work as noise instead of complementary cues to each other. 

Comparatively, the facial expression variation is a local change of the face in an image. The overall appearance of the face will not be degraded too much since most information still works complementarily except for the regions where the changes are large. Moveover, for the super-resolved image construction, it is clear that the quality will be improved with the increase of the number of input images on the
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condition that the information from input images is complementary and not too different from each other. Using the proposed measure, we can quantify the quality difference and, therefore, choose the appropriate number of the input images. The experimental results show the effectiveness of the proposed measure in the quality assessment of image/video super-resolution. 

8.4 Summary

In this chapter, a non-reference objective measure is proposed, which aims to evaluate the quality of super-resolved images that are constructed under different input conditions. Different from the current non-reference quality measures that only use the relationship between the super-resolved image and the input images, the proposed quality evaluation method combines both the relationship between the superresolved image and the input images, and the relationship between the input images. 

Face recognition experiments are conducted based on the super-resolved images. 

The experimental results demonstrated that the variation of pose, lighting and expression have different effects on the quality of the super-resolved face images and that the recognition performance strongly correlates with the quality of the tested images. 

Part IV

Integrated Face and Gait for Human

Recognition at a Distance in Video


Chapter 9

Integrating Face Profile and Gait at a Distance

Human recognition from arbitrary views is an important task for many applications, such as visual surveillance, covert security and access control. It has been found to be difficult in reality, especially when a person is walking at a distance in real-world outdoor conditions. For optimal performance, the system should use as much information as possible from the observations. In this chapter, we introduce a video based system which combines cues of face profile and gait silhouette from the single camera video sequences. It is difficult to get reliable face profile information directly from a low-resolution video frame because of limited resolution. To overcome this problem, we first construct a high-resolution face profile image from multiple adjacent low-resolution frames for each video sequence. Then, we extract face features from the high-resolution profile image. Finally, dynamic time warping (DTW) is used as the matching method to compute the similarity of two face profiles based on the absolute values of curvature. For gait, we use gait energy image (GEI), a spatio-temporal compact representation, to characterize human walking properties. Gait recognition is carried out based on the direct GEI matching. Several schemes are considered for fusion of face profile and gait. A number of dynamic video sequences are tested to evaluate the performance of our system. Experimental results are compared and discussed. 

9.1 Introduction

It has been found to be difficult to recognize a person from arbitrary views in reality, especially when one is walking at a distance in real-world outdoor conditions. For optimal performance, the system should use as much information as possible from the observations. A fusion system which combines face and gait cues from video sequences is a potential approach to accomplish the task of human recognition. 

The general solution to analyze face and gait video data from arbitrary views is to estimate 3D models. However, the problem of building reliable 3D models for nonrigid face with flexible neck and the articulated human body from low resolution video data remains a hard one. In recent years, integrated face and gait recognition B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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approaches without resorting to 3D models have achieved some progress. In [84], Kale et al. present a gait recognition algorithm and a face recognition algorithm based on sequential importance sampling. The fusion of frontal face and gait cues is performed in the single camera scenario. In [153, 154], Shakhnarovich et al. compute an image-based visual hull from a set of views of four monocular cameras. It is then used to render virtual canonical views for tracking and recognition. The gait recognition scheme is based on silhouette extent analysis. Eigenfaces are used for recognizing frontal face rendered by the visual hull. The authors also discuss the issues of cross-modal correlation and score transformations for different modalities and present the fusion of face and gait. 

Most current gait recognition algorithms rely on the availability of the side view of the subject since human gait, or the style of walking, is best exposed when one presents a side view to the camera. For face recognition, on the other hand, it is preferred to have frontal views. These conflicting requirements are easily satisfied by an individual classifier for face or gait, but pose some challenges when one attempts to integrate face and gait biometrics in real world applications. In Kale’s and Shakhnarovich’s fusion systems [84, 153, 154], both use the side view of gait and the frontal view of face. In Kale’s work [84], the subjects are walking in a single camera scenario. For face recognition, only the final segment of the database presents a nearly frontal view of face and it is used as the probe. The galley consists of static faces for the corresponding subjects. Therefore, they perform still-to-video face recognition. In Shakhnarovich’s work [153, 154], four cameras must be used to get both the canonical view of gait and the frontal view of face simultaneously. 

In this chapter, an innovative system is proposed, aiming at recognizing non-cooperating individuals at a distance in a single camera scenario. Information from two biometric sources, face profile and gait, is combined. We use face profile instead of frontal face in the system since a side view of the face is more likely to be seen than a frontal view of a face when one exposes the best side view of gait to the camera. It is very natural to integrate information of the side face view and the side gait view. However, it is difficult to get reliable information of a face profile directly from a low-resolution video frame for recognition tasks because of limited resolution. To overcome this problem, we use resolution enhancement algorithms for face profile analysis. We first reconstruct a high-resolution face profile image from multiple adjacent low-resolution video frames. The high-resolution face profile image fuses both the spatial and temporal information present in a video sequence. The approach relies on the fact that the temporally adjacent frames in a video sequence, in which one is walking with a side view to the camera, contain slightly different, but unique, information for face profile [211]. Then, we extract face profile features from the high-resolution face profile images. Finally, a dynamic time warping (DTW) method [16] is used to match face profiles based on absolute values of curvature. For gait, we use gait energy image (GEI), a spatio-temporal compact representation, to characterize human walking properties [61]. Recognition is carried out based on the direct GEI matching. Face profile cues and gait cues are integrated by three schemes. The first two are the Sum rule and the Product rule [88]. The last one is an indexing-verification scheme which consolidates the accept/reject decisions of multiple classifiers [213]. 

9.2 Technical Approach
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This chapter is organized as follows. Section 9.2 presents the overall technical approach. It explains the construction of a high-resolution face profile image and describes the generation of gait energy image (GEI). It presents the details of face profile recognition and gait recognition. It provides a description of the fusion of face profile and gait, and the classification methods. In Sect. 9.3, a number of dynamic video sequences are tested. Experimental results are compared and discussed. 

Finally, Sect. 9.4 concludes this chapter. 

9.2 Technical Approach

The overall technical approach is shown in Fig. 9.1. A simple background subtraction method [60] is used for human body segmentation from video data. For each video sequence in the gallery, we construct a high-resolution face profile image from low-resolution face profile images, and a gait energy image (GEI) from the binary silhouette image sequences. Then, we extract face profile features from each high-resolution profile image to form face feature gallery. During the testing procedure, each testing video is processed to generate both the high-resolution face profile image and the GEI. The face profile features are extracted from the high-resolution face profile image and compared with face profile features in the gallery using dynamic time warping (DTW). The GEI is directly compared with the GEI templates in the gallery. Finally, different fusion strategies are used to combine the results of the face profile classifier and the gait classifier to improve recognition performance. 

 9.2.1 High-Resolution Image Construction for Face Profile

Multiframe resolution enhancement seeks to construct a single high-resolution image from multiple low-resolution images. These images must be of the same object, Fig. 9.1 Technical approach for integrating face profile and gait in video
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taken from slightly different angles, but not so much as to change the overall appearance of the object in the image. The idea of super-resolution was first introduced for multiframe image restoration of band-limited signals in 1984 [169]. In the last two decades, different mathematical approaches have been developed. All of them seek to address the question of how to combine irredundant image information present in multiple images. 

In this paper, the original low-resolution face profile images are first localized and extracted from the segmented human body obtained from multiple video frames. 

A human body is divided into two parts according to the proportion of its parts [66]: from the top of the head to the bottom of the chin, and then from the bottom of the chin to the bottom of the foot. Human head is defined as the part from the top of the head to the bottom of the chin. Considering the height of hair and the length of neck, we obtain the original low-resolution face profile images by cutting the upper 16%

of the segmented human body. Before multiple low-resolution face images are fused to construct a high-resolution face image using the resolution enhancement method, they are aligned by an affine transformation, and motion estimates are computed to determine pixel displacements between them. Then, an iterative method [75] is used to construct a high-resolution face profile image from aligned low-resolution face profile images. 

9.2.1.1 The Imaging Model

The imaging process, yielding the observed face profile image sequence  fk, is modeled by [75]







 fk(m, n) =  σk h Tk F (x, y) +  ηk(x, y) , 

(9.1)

where

 fk  is the sensed image of the tracked face profile in the  k th frame. 

 F  is a high-resolution image of the tracked face profile in a desired reconstructed view. Finding  F  is the objective of the super-resolution algorithm. 

 Tk  is the 2D geometric transformation from  F  to  fk, determined by the 2D motion parameters of the tracked face profile in the image plane.  Tk  is assumed to be invertible and does not include the decrease in the sampling rate between  F

and  fk. 

 h

is a blurring operator, determined by the point spread function (PSF) of the sensor. We use a circular averaging filter with radius 2 as PSF. 

 ηk  is an additive noise term. 

 σk  is a down sampling operator which digitizes and decimates the image into pixels and quantizes the resulting pixel values. 

The receptive field (in  F ) of a detector whose output is the pixel  fk(m, n)  is uniquely defined by its center  (x, y)  and its shape. The shape is determined by the region of the blurring operator  h, and by the inverse geometric transformation  T −1. 

 k

Similarly, the center  (x, y)  is obtained by  T −1 (m, n). The resolution enhancement k
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algorithm aims to construct a higher resolution image ˆ

 F , which approximates  F

as accurately as possible, and surpasses the visual quality of the observed images in { fk}. 

9.2.1.2 The Super Resolution Algorithm

The algorithm for creating higher resolution images is iterative. Starting with an initial guess  F ( 0 )  for the high-resolution face profile image, the imaging process is simulated to obtain a set of low-resolution face profile images {  (

 f  0 )} K

cor-

 k

 k=1

responding to the observed input images { fk} K . If  F ( 0 )  were the correct high-k=1

resolution face profile image, then the simulated images {  ( 0 ) f

} K  should be identi-

 k

 k=1

cal to the observed low-resolution face profile image { fk} K . The difference images k=1

{

 ( 0 )

 fk −  f

} K  are used to improve the initial guess by “back projecting” each value k

 k=1

in the difference images onto its receptive field in  F ( 0 ), yielding an improved high-resolution face profile image  F ( 1 ). This process is repeated iteratively to minimize the error function:







 K





 (n)

 e(n) =  1

 f

2

 k −  f

 . 

(9.2)

 K

 k

 k=1

The imaging process of  fk  at the  n th iteration is simulated by: (n)

 f

=  T F (n) ∗  h ↓  s, 

(9.3)

 k

 k

where ↓  s  denotes a down-sampling operator by a factor  s, and ∗ is the convolution operator. The iterative update scheme of the high-resolution image is expressed by: K











 (n)

 F (n+1 ) =  F (n) + 1

 T −1

 fk −  f

↑  s ∗  p , 

(9.4)

 K

 k

 k

 k=1

where  K  is the number of low-resolution face profile images. ↑  s  is an up-sampling operator by a factor  s, and  p  is a “back projection” kernel, determined by  h.  Tk  denotes the 2D motion parameters. The averaging process reduces additive noise. 

In our system, we reconstruct a high-resolution face profile image from six adjacent video frames. We assume that six low-resolution face profile images have been localized and extracted from adjacent video frames. We then align these six low-resolution face profile images using affine transformation. An affine transformation works for in-plane, not out of plan rotations of the human face. The quality of the reconstructed image depends on how well the six profile images are registered. Finally, we apply the super-resolution algorithm given above to construct a high-resolution face profile image from the six aligned low-resolution face profile images. The resolution of the original low-resolution face profile images is 70 × 70, and the resolution of the reconstructed high-resolution face profile image is 140 × 140. Figure 9.2

shows the six low-resolution face profile images from six adjacent video frames. For comparison, we resize the six low-resolution face profile images by using bilinear

[image: Image 60]

[image: Image 61]
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Fig. 9.2 Six low-resolution face profile images resized by using bilinear interpolation (a–f) Fig. 9.3 The edge images of six low-resolution face profile images shown in Fig. 9.2

interpolation. Figure 9.3 shows the corresponding edge images of six low-resolution face profiles. Figure 9.4 shows the reconstructed high-resolution face profile image and its edge image. From these figures, we can see that the reconstructed high-resolution image is better than any of the six low-resolution images. It is clearly

[image: Image 62]
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Fig. 9.4 The reconstructed

high-resolution face profile

and its edge image

shown in the edge images that the edges of the high-resolution image are much smoother and more accurate than that of the low-resolution images. Using the reconstructed high-resolution image, we can extract better features for face profile matching. 

 9.2.2 Face Profile Representation and Matching

This section focuses on individual recognition based on face profile. Face profile may be visible in most of the situations when a subject is at a distance from a camera. 

Most of the current profile recognition algorithms depend on the correct detection of fiducial points and the determination of relationships among these fiducial points. 

Unfortunately, some features such as concave nose, protruding lips, flat chin, etc., make detection of such points difficult and unreliable. Also, the number and position of fiducial points may vary when facial expression changes even for the same person. 

Therefore, we develop a curvature-based matching approach which does not require the extraction of all the fiducial points, but uses information contained in the face profile. 

Face profile is an important aspect for the recognition of faces, which provides a complementary structure of the face that is not seen in the frontal view. Though it inherently contains less discriminating power than frontal images, it is relatively easy to analyze and is more foolproof. Within the last decade, several algorithms have been proposed for automatic person identification using face profile images. 

Most of these algorithms depend on the correct detection of all fiducial points and the determination of relationships among these fiducial points. 

Harmon et al. [63] use manually entered profile traces from photographs of 256

male faces. They locate eight independent fiducials on the profiles and obtain the ninth fiducial by rotating a point from the chin about the pronasale until it intersects the profile above the pronasale. Later, Harmon et al. [64] increase the number of fiducials from nine to 11, and achieve 96% recognition accuracy for 112 subjects, using a 17-dimensional feature vector. The most significant problem with tangency-based techniques is that there is not a line that is bitangent to the pronasale and chin for profiles with protruding lips [127]. Campos et al. [26] analyze the profile of the face using scale space techniques to extract eight fiducials. This technique assumes that there will be nine zero-crossings on the profile, and this assumption could be invalidated by facial hair particularly moustaches and the hairline on the forehead. 
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Fig. 9.5 Technical approach for face profile recognition

Dariush et al. [38] extract nine fiducials based on the observation that the curvature of the profile alternates between convex and concave, with the point of maximal absolute curvature in each segment corresponding to a fiducial. Akimoto et al. [2]

use a template matching approach to find the position of the same five fiducials used by Galton [48]. The template consisting of approximately 50 line segments is used to represent a generic face profile. 

In reality, some profiles are too difficult for all fiducials to be reliably extracted, so in these cases a feature vector approach based on the same fiducial points of different face profiles will fail. In this chapter, we use a curvature-based matching approach [16] for recognition, which does not focus on the extraction of all the fiducial points and the determination of relationship among these fiducial points [26, 38, 64]. We use the relationship of some fiducial points for their extraction, but not for an individual recognition. The Gaussian scale-space filter is first used to smooth the profile extracted from the high-resolution face profile image, and then the curvature of the filtered profile is computed. Using the curvature value, the fiducial points, including the nasion and throat, can be reliably extracted using a fast and simple method after pronasale is determined. Finally, a dynamic time warping (DTW) method is applied to compare the face profile portion from nasion to throat based on the curvature values. 

The approach for face profile recognition is shown in Fig. 9.5. First, face profile is extracted from facial images. Second, the scale space filtering is used to smooth the profile, and then the curvature of the filtered profile is computed. Using the curvature value, the fiducial points such as nasion and throat can be reliably extracted using a fast method. Finally, a dynamic time warping method is applied to match the face profile portion from nasion to throat based on the curvature value. The reason for choosing dynamic time warping as the matching method is that it is a robust distance measure for time series, allowing similar shapes to match even if they are out of phase in the time axis [86]. 

9.2.2.1 Face Profile Extraction

The outline of a profile contains fiducial points like nasion, pronasale, chin, and throat. The following is the procedure which is used to extract the face profile curve from the side view images. 
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1. Apply canny edge detector to the grey-level image and obtain a binary image. 

2. Extract the outline curve of the front of the silhouette (the profile) as the face profile contour by extracting the leftmost point different from background. 

3. The 2D curve is treated as a function, which consists of a set of points  T =  (x, y), where  x  is a row index and  y  is a column index of a pixel in a profile line. 

9.2.2.2 Curvature-Based Fiducial Extraction

The Gaussian scale-space filter is applied to the face profile to eliminate the spatial quantization noise introduced during the digitization process, as well as other types of high frequency noise. The convolution between the Gaussian kernel  g(x, σ )  and signal  f (x)  depends both on  x, the signal’s independent variable, and on  σ , the Gaussian’s standard deviation. It is given by

∞

1

− (x− u) 2

 F (x, σ ) =  f (x) ⊕  g(x, σ ) =

 f (u) √

 e  2 σ 2

 du, 

(9.5)

−∞

 σ

2 π

where ⊕ denotes convolution with respect to  x. The larger the  σ , the smoother the  F (x, σ ). The curve  T  is parameterized as  T (u) =  (x(u), y(u))  by the arc length parameter  u. An evolved version of  T  is  Tσ (u) =  (X(u, σ ), Y (u, σ )), where X(u, σ ) =  x(u) ⊕  g(u, σ )  and  Y (u, σ ) =  y(u) ⊕  g(u, σ ). 

The curvature  κ  on  Tσ  is computed as

 κ(u, σ ) =  Xu(u, σ )Yuu(u, σ ) −  Xuu(u, σ )Yu(u, σ ) , (9.6)

1 .  5

 (Xu(u, σ ) 2 +  Yu(u, σ ) 2 )

where the first and second derivatives of  X  and  Y  can be computed as: Xu(u, σ ) =  x(u) ⊕  gu(u, σ ), 

 Xuu(u, σ ) =  x(u) ⊕  guu(u, σ ), 

 Yu(u, σ ) =  y(u) ⊕  gu(u, σ ), 

 Yuu(u, σ ) =  y(u) ⊕  guu(u, σ ). 

 gu(u, σ )  and  guu(u, σ )  are the first and the second derivative of the Gaussian kernel, respectively. 

Since profiles may include hair and some other parts that are not reliable for matching, we extract a portion of profile starting from nasion to throat for effective matching. It is done by finding the fiducial points on the face profile. To localize the fiducial points, the curvature of a profile is first computed at an initial scale and the locations, where the local maxima of the absolute values occur, are chosen as corner candidates. These locations are tracked down and the fiducial points are identified at lower scales. The initial scale must be large enough to remove noise and small enough to retain the real corners. Our method has advantages in that it does not depend on too many parameters and does not require any thresholds. It is also fast and simple. 

We define pronasale as the leftmost point above throat in the middle part of the profile and nasion as the first point that has local maximum of the absolute values above pronasale. The method of extracting the nasion and throat points is described as follows:
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Fig. 9.6 The extracted face profile and the absolute values of curvature 1. Compute the curvature of a profile at an initial scale, find local maxima of the absolute values as corner candidates and track them down to lower scales. 

2. Regard the rightmost point in the candidate set as the throat. 

3. Regard the pronasale as one of the two leftmost candidate points in the middle part of the profile and then identify it using the curvature value around this point. 

4. Assuming that there are no candidate points between pronasale and nasion. Identify the first candidate point above the pronasale as nasion. 

Figure 9.6 shows the extracted face profile and the absolute values of curvature. It is clear that the locations of the fiducial points, including nasion, pronasale and throat, have local maxima of the absolute values. Curvature features have some advantages in that they are invariant to rotation, translation and uniform scaling. Figure 9.7

provides another four examples of absolute values of curvature on face profiles belonging to different people. 

The method will work well since the facial images include the head above the neck. If the image of an entire human body is available, then the cropped facial images should be first obtained (see Chaps. 8 and 10). 

9.2.2.3 Profile Matching Using Dynamic Time Warping

We choose the dynamic time warping as the matching method to compute the similarity of two profiles based on the absolute values of curvature, which are used to represent the shapes of face contours. The dynamic time warping is an algorithm to calculate the optimal score and to find the optimal alignment between two strings. 

This method is robust for time series since it allows similar shapes to match even if they are out of phase in the time axis [86]. 

[image: Image 63]
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Fig. 9.7 Four examples of curvature features on face profiles

We use the Needleman–Wunsch [123] global alignment algorithm to find the

optimum alignment of two sequences when considering their entire length. For two strings  s[1  . . . n] and  t[1  . . . m], we compute  D(i, j )  for entire sequences, where  i ranges from 1 to  m  and  j  ranges from 1 to  n.  D(i, j )  is defined as D(i, j ) = min  D[ i − 1 , j − 1] +  d s[ j ] , t[ i]  , D[ i − 1 , j ] +  gap, D[ i, j − 1] +  gap , 

(9.7)

where  d(s[ j ] , t[ i] )  represents the similarity between two points on face profiles. 

Since the face profile is represented by the absolute values of curvature on the profile,  d(s[ j ] , t[ i] )  is calculated by the Euclidean distance d s[ j ] , t[ i] =  s[ j ] −  t[ i] . 

(9.8)

The penalty is defined for both horizontal and vertical gaps. It is small, and yet exists just to control non-diagonal moves. Generally, the penalties should be set to less than  ( 1 / 10 ) th the maximum of the  d(s[ j ] , t[ i] ). In our method, we use the same constant penalty for both horizontal and vertical gaps. The maximum of  d(s[ j ] , t[ i] ) is 5, and the gap penalties are set to 0.5 in our experiments. The final score  D(m, n) is the best score for the alignment. 

[image: Image 64]
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Fig. 9.8 The similarity matrix ( left) and the dynamic programming matrix ( right) A dynamic programming matrix is used to visualize the alignment. Figure 9.8

gives an example of DTW of two face profiles from the same person. From the similarity matrix in Fig. 9.8, we can see a light stripe (high similarity values) approximately down the leading diagonal. From the dynamic programming matrix in Fig. 9.8, we can see the lowest-cost path between the opposite corners visibly follows the light stripe, which overlay the path on the similarity matrix. The least cost is the value in the bottom-right corner of the dynamic programming matrix. This is the value we would compare between different templates when we are doing classification. The unknown person is classified to the class which gets the least cost out of all the costs corresponding to all the classes. 

 9.2.3 Gait Recognition

We use the gait energy image (GEI) as described in Chap. 2 for gait recognition. 

Individuals are recognized by measuring the similarity between the gallery (training) and probe (testing) templates. Given GEIs of two gait sequences,  Gg(x, y)  and Gp(x, y), their distance can be measured by calculating their normalized matching error

| G

 x,y

 g (x, y) −  Gp (x, y)|

 D(Gg, Gp) = 



 , 

(9.9)

 G

 G

 x,y

 g (x, y)

 x,y

 p (x, y)



where

| G

 x,y

 g (x, y) −  Gp (x, y)| is the matching error between two GEIs, G

 G

 x,y

 g (x, y)  and

 x,y

 p (x, y)  are the total energies in two GEIs, respectively. 

The unknown person is classified to the class which gets the smallest distance (matching error) out of all the distances (matching errors) corresponding to all the classes. 
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 9.2.4 Integrating Face Profile and Gait for Recognition

 at a Distance

Face profile cues and gait cues are integrated by three schemes. Commonly used classifier combination schemes [88] are obtained based on Bayesian theory where the representations are assumed to be conditionally statistically independent. We employ the Sum rule and the Product rule in our fusion system, with which the similarity scores obtained individually from the face profile classifier and the gait classifier are combined. Before combination of the results of face profile classifier and the results of gait classifier, it is necessary to map distances obtained from different classifiers to the same range of values. We use exponential transformation here. 

Given that the distances for a probe  X  are  S 1 , S 2 , . . . , Sc, we obtain the normalized match scores as

ˆ Si =

exp (− Si)

 c

 , 

 i = 1 ,  2 , . . . , c. 

(9.10)

exp (− S

 i=1

 i )

After normalization, the match scores of face and gait from the same class are fused using different fusion methods. Let ˆ

 SF  and ˆ

 SG  be the normalized face match

 i

 i

scores and the normalized gait match scores, respectively. The unknown person is classified to class  k  if









 R  ˆ

 SF ,  ˆ

 SG =

ˆ SF ,  ˆ SG , 

 k

max  R

(9.11)

 k

 i

 i

where  R{· , ·} means a fusion method. The Sum and Product rules [88] are used in our experiments. Distances representing dissimilarity become match scores representing similarity by using (9.10), so the unknown person is classified to the class which gets the largest integrated match score out of all the integrated match scores corresponding to all the classes. 

The last one is an indexing-verification scheme. In a biometric fusion system, a less accurate, but fast and simple classifier can pass on a smaller set of candidates to a more accurate, but time-consuming and complicated classifier. In our system, the face profile classifier works as a filter to pass on a smaller set of candidates to the next stage of gait classifier. Then, the gait classifier compares similarity among these candidates based on GEIs. The result of the gait classifier is the result of the fusion system. 

9.3 Experimental Results

 9.3.1 Face Profile-Based Recognition

9.3.1.1 Static Face Database

The first face profile database we used is from the University of Bern. It contains profile views of 30 people. For each person, there are three big grey-level profile

[image: Image 65]

[image: Image 66]
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Fig. 9.9 Examples of face profile images from the University of Bern Fig. 9.10 Examples of face profile images from the University of Stirling images with variations of the head position, size and contrast. The size of images is 342 × 512 pixels. In this experiment, 60 images (two images per person) are used as the training data set, and the other 30 images are used as the testing data set. Some examples of the data set are shown in Fig. 9.9. 

Another database we used to test our method is the set of face images from the University of Stirling, which contains 311 images of 35 people (18 females and 17 males). Thirty-one people (16 females and 15 males) have complete image sets, which contain three poses (frontal view, view and profile view) and three expressions (neutral expression, smiling and speaking). The size of the image is 284 × 365

pixels. We use the images with neutral expressions as the training data and the profile with smiling and speaking expressions as the testing data for 31 people. Some examples of the data set are shown in Fig. 9.10. 

9.3.1.2 Experimental Results

The results for two databases are shown in Table 9.1. We can see that 90.9% profiles are correctly recognized for data from the University of Bern when the nearest neighbor method is used (3 errors out of 30 testing people). For the three persons who are not recognized correctly, if we choose the first three matching results as potential candidates, all of them are in the candidate list. A refined verification process can be developed to improve the recognition rate. 
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Table 9.1 Experimental

results for face profile

Data from University of Bern

90.9%

recognition

Data from University of

Speaking

72.1%

Stirling

Smiling

78.4%

For the database from the University of Stirling, the recognition rate is 78.4%

for smiling face profiles and 72.1% for speaking face profiles. Compared with the recognition rate of 90% for profiles from the University of Bern, although the results have degraded, the approach has potential since it can work without considering the number and position of fiducial points when the facial expression changes. This shows that our curvature-based matching method is relatively robust for recognition based on face profiles that are obtained under different situations. 

These experiments show that our curvature-based matching method is promising. 

Even for face profile with obvious facial expression variations, where the number and location of fiducial points are different, the method can still work, although the performance is degraded since the curvature is sensitive to noise to some extent. The performance in the presence of facial expression can be further improved by using a refined verification process. 

 9.3.2 Integrating Face Profile With Gait

9.3.2.1 Video Data

The data are obtained with a Sony DCR-VX1000 digital video camera recorder. 

We collect 28 video sequences of 14 people walking in the outdoor conditions and exposing a side view to the camera. The camera operates at about 30 frames per second. The resolution of each frame is 720 × 480. The distance between people and the video camera is about 10 feet. Each person has two sequences, one for training and the other for testing. Each sequence includes one person. Figure 9.11

shows some video frames of four people. 

9.3.2.2 Experimental Results

From each sequence, we construct one high-resolution face profile image from six low-resolution face profile images that are extracted from six adjacent video frames, and one GEI from a complete walking cycle that includes about 20 video frames. 

Since there are two sequences for each of 14 people, we have 14 high-resolution face profile images and 14 GEIs in the gallery and another 14 high-resolution face profile images and 14 GEIs in the probe. The resolution of low-resolution face profile images is 70 × 70 and the resolution of reconstructed high-resolution face profile images is 140 × 140. The resolution of each GEI is 128 × 88. 

[image: Image 67]
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Fig. 9.11 Four examples of video sequences

Table 9.2 Experimental

results for integrated face

Combination scheme

Recognition rate

profile and gait

Gait

Face profile Integration

No combination

85.7%

64.3%

Sum rule

100%

Product rule

92.9%

Indexing-verification

92.9%

The  recognition metric  is used to evaluate the performance of our method, the quality of extracted features, and their impact on identification. It is defined as the ratio of the number of the correctly recognized people to the number of all people. The results for our database are shown in Table 9.2. We can see that 64.3%

of people are correctly recognized (5 errors out of 14 persons) by face profile, and 85.7% of people are correctly recognized by gait (2 errors out of 14 persons), respectively. For the fusion schemes, the best performance is achieved by the Sum rule at 100% accuracy. The Product rule and the indexing-verification scheme obtain the same recognition rate of 92.9%. When we use the indexing-verification scheme, we choose the first three matching results of the face profile classifier as candidates. 

Then, the gait classifier measures the similarity between the corresponding GEI of the testing people and the corresponding GEI of the training people in the candidate list. The unknown person is finally classified as the most similar class among the candidates. 

From Table 9.2, we can see that there are two people who are not correctly recognized by gait, but when the face profile classifier is integrated, the recognition rate is improved. It is because gait recognition based on GEI is not only affected by the walking style of a person, but also by the shape of a human body. Environmental and clothing changes cause the difference in the shape of the training sequence and the testing sequence for the same person. However, the face profiles of these two

[image: Image 68]

[image: Image 69]
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Fig. 9.12 GEIs of two people misclassified by the gait classifier. For each person, the training GEI and the testing GEI are shown for comparison

Fig. 9.13 Face profile of two people misclassified by the gait classifier. For each person, the training profile and the testing profile are shown for comparison

people do not change so much in the training and the testing sequences. It shows that face profile is a useful cue for the fusion system. Figure 9.12 shows the corresponding GEIs of two people who are misclassified by the gait classifier. Figure 9.13

shows the corresponding face profiles of two people who are misclassified by the gait classifier. Note the difference in the training and testing GEIs in Fig. 9.12 and the similarity in the training and testing face profiles in Fig. 9.13. Since the face
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profile classifier is comparatively sensitive to the variation of facial expression and noise, the face profile classifier cannot get a good recognition rate by itself. When the gait classifier is combined with the face profile classifier, better performance is achieved. 

From the experiments, we can see that the fusion system using face profile and gait is promising. The fusion system has better performance than either of the individual classifier. It shows that our fusion system is relatively robust. Although the experiments are only done on a small database, our system has the potential since it integrates cues of face profile and cues of gait reasonably, which are independent biometrics. 

9.4 Summary

This chapter introduced a video based system combining face profile and gait for human recognition in a single camera scenario. For optimal face profile recognition, we extracted face profile features from a high-resolution face profile image constructed from multiple video frames instead of a low-resolution face profile images directly obtained from a single video frame. For gait recognition, we used gait energy image (GEI), a spatio-temporal compact representation to characterize human walking properties. Serval schemes were considered for fusion of face profile and gait. The experimental results showed that the integration of information from face profile and gait is effective for individual recognition in video. The performance improvement is archived when appropriate fusion rules are used. The idea of constructing the high-resolution face profile image from multiple video frames and generating the gait energy image (GEI) is promising for human recognition in video. 

Several issues that concern real-world applications require further research in the future. These include the extraction of accurate face profile from video frames in a crowded surveillance application, extraction of reliable silhouettes of moving people in the presence of environmental and clothing changes, and real-time operation of the fusion system. Moreover, for face profile recognition, the outer contour of the side face is sensitive to local distortion and noise. In Chaps. 10 and 11, we will use the side face which includes entire side view of on eye, nose and mouth (discarding facial hair). Since it possesses both the shape and the intensity information, it is found to have more discriminating power for recognition than a face profile. 

Chapter 10

Match Score Level Fusion of Face and Gait

at a Distance

This chapter introduces a video based recognition method to recognize non-cooperating individuals at a distance in video, who expose side views to the camera. 

Information from two biometric sources, side face and gait, is utilized and integrated for recognition. For side face, an enhanced side face image (ESFI), a higher resolution image compared with the image directly obtained from a single video frame, is constructed, which integrates face information from multiple video frames. For gait, the gait energy image (GEI), a spatio-temporal compact representation of gait in video, is used to characterize human walking properties. The features of face and gait are obtained separately using the principal component analysis (PCA) and the multiple discriminant analysis (MDA) combined method from ESFI and GEI, respectively. They are then integrated at the match score level by using different fusion strategies. The approach is tested on a database of video sequences, corresponding to 45 people, which are collected over seven months. The different fusion methods are compared and analyzed. The experimental results show that (a) better face features are extracted from ESFI compared to those from the original side face images; (b) the synchronization of face and gait is not necessary for face template ESFI and gait template GEI. The synthetic match scores combine information from them; and (c) integrated information from side face and gait is effective for human recognition in video. 

The chapter is organized as follows. Section 10.1 provides the introduction to the fusion of gait and face. Section 10.2 provides the related work and the key aspects of this chapter. Section 10.3 presents the overall technical approach. It uses the enhanced side face image (ESFI) developed in Sect. 8.3 and describes the generation of gait energy image (GEI) developed in Chap. 2. It presents PCA and MDA combined method for feature extraction using ESFI and GEI templates. It introduces an approach to generate synthetic match scores for fusion and provides a description of the classification method. In Sect. 10.4, a number of dynamic video sequences are tested in three experiments using the approach presented. Experimental results are compared and discussed. Finally, Sect. 10.5 provides the summary of the chapter. 
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10.1 Introduction

It has been found to be difficult to recognize a person from arbitrary views when one is walking at a distance. For optimal performance, a system should use as much information as possible from the observations. A fusion system, which combines face and gait cues from video sequences, is a potential approach to accomplish the task of human recognition. The general solution to analyze face and gait video data from arbitrary views is to estimate 3D models. However, the problem of building reliable 3D models for non-rigid face, with flexible neck and the articulated human body from low resolution video data, remains a hard one. In recent years, integrated face and gait recognition approaches without resorting to 3D models have achieved some success [84, 153, 154, 211]. 

Most current gait recognition algorithms rely on the availability of the side view of the subject since human gait, or the style of walking is best exposed when one presents a side view to the camera. For face recognition, on the other hand, it is preferred to have frontal views. These conflicting requirements pose some challenges when one attempts to integrate face and gait biometrics in real world applications. 

In the previous fusion systems [84, 153, 154], the side view of gait and the frontal view of face are used. Kale et al. [84] present a gait recognition algorithm and a face recognition algorithm based on sequential importance sampling. The database contains video sequences for 30 subjects walking in a single camera scenario. For face recognition, only the final segment of the database presents a nearly frontal view of face and it is used as the probe. The gallery consists of static faces for the 30 subjects. Therefore, they perform  still-to-video face recognition. Shakhnarovich et al. [153, 154] compute an image-based visual hull from a set of monocular views of multiple cameras. It is then used to render virtual canonical views for tracking and recognition. They discuss the issues of cross-modal correlation and score transformations for different modalities, and present the cross-modal fusion. In their work, four monocular cameras are used to get both the side view of gait and the frontal view of face simultaneously. Recently, Zhou et al. [211] proposed a system, which combines cues of face profile and gait silhouette from the video sequences taken by a single camera. It is based on the fact that a side view of a face is more likely to be seen than a frontal view of a face when one exposes the best side view of gait to the camera. The data is collected for 14 people with 2 video sequences per person. 

Even though the face profile in Zhou et al.’s work is used reasonably (see Chap. 7), it only contains shape information of the side view of a face and misses the intensity distribution on the face. 

In this chapter, a video based fusion system is proposed, aiming at recognizing non-cooperating individuals at a distance in a single camera scenario. Information from two biometric sources, side face and gait, from the single camera video sequence is combined. We distinguish a side face from a face profile. Face profile refers to the outline of the shape of face as seen from the side. Side face includes not only the outline of the side view of a face, but also the entire side view of an eye, nose and mouth, possessing both shape and intensity information. Therefore, a side face has more discriminating power for recognition than a face profile. 

10.2 Related Work
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10.2 Related Work

Table 10.1 presents a summary of related work and compares it with the work presented in this paper. It is difficult to get reliable information of a side face directly from a video frame for recognition task because of the limited resolution. To overcome this problem, we construct an enhanced side face image (ESFI), a higher reso-Table 10.1 Approaches for integrating face and gait for human recognition Features

Kale et al. [84]

Shakhnarovich et

Zhou et al. [211]

This chapter
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lution image compared with the image directly obtained from a single video frame, to fuse the information of face from multiple video frames. The idea relies on the fact that the temporally adjacent frames in a video sequence, in which one is walking with a side view to the camera, contain slightly different, but unique information about a side face. Experiments show that better face features can be extracted from constructed ESFI compared to those from original side face images. 

The key ideas of this chapter are as follows:

• We present a system that integrates side face and gait information from video data [209]. 

• Both face and gait recognition systems integrate information over multiple frames in a video sequence for improved performance. High-resolution face images are obtained from video and features from face profile are used for side face normalization (see Sect. 10.4). 

• The fusion of side face and gait biometrics is done at the match score level by obtaining synthetic match scores and using different fusion schemes. Face features and gait features are obtained separately using PCA and MDA combined method from the enhanced side face image (ESFI) and the gait energy image (GEI), respectively. The fusion performance is evaluated using the  Q  statistic. 

• Various experiments are performed on 45 people with data from 100 video sequences collected over seven months. Performance comparisons between different biometrics and different fusion methods are presented. 

10.3 Technical Approach

The overall technical approach is shown in Fig. 10.1. We first construct enhanced side face image (ESFI) as the face template and gait energy image (GEI) as the gait template (see Chap. 2) from video sequences. During the training procedure, we perform a component and discriminant analysis separately on face templates Fig. 10.1 Technical approach for integrating side face and gait in video

[image: Image 70]
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and gait templates obtained from all training videos. As a result, transformation matrices and features that form feature gallery are obtained. During the recognition procedure, each testing video is processed to generate both face templates and gait templates which are then transformed by the transformation matrices obtained during the training procedure to extract face and gait features, respectively. These testing features are compared with gallery features in the database, and then different fusion strategies are used to combine the results of the face and gait classifiers to improve recognition performance. 

 10.3.1 Enhanced Side Face Image Construction

It is difficult to get reliable information of a side face directly from a video frame for the recognition task because of the limited resolution and small size of the face compared to the human body. To overcome this problem, we construct an enhanced side face image (ESFI), a higher resolution image compared with the image directly obtained from a single video frame, by fusing the face information from multiple video frames. The idea relies on the fact that the temporally adjacent frames in a video sequence, in which one is walking with a side view to the camera, contain slightly different, but unique information about a side face. The ESFI construction involves registration of low-resolution images, selection of aligned low-resolution images, and formation of a high-resolution image using the selected images. The details of the construction of high-resolution side face images from video sequences are described in [209]. We use the same method here and provide and example as shown in Fig. 10.2. 

The resolution of a video frame is 480 × 720. The resolutions of low-resolution and high-resolution images are 68 × 68 and 136, respectively. Before feature extraction, all high-resolution side face images are cropped and normalized to the size of 64 × 32. We call these images as enhanced side face images (ESFIs). Similarly, original side face image (OSFI) is a subimage from the normalized version of the low-resolution side face image. The size of OSFI is 34 × 18. Figure 10.2(a)

shows one low-resolution face image and one reconstructed high-resolution face image. For comparison, we resize the low-resolution face image using bilinear interpolation. Figure 10.2(b) shows one example of the resized OSFIs and ESFIs for Fig. 10.2 (a) One resized low-resolution face image ( left) and one reconstructed high-resolution face image ( right). (b) Resized OSFI ( left) and ESFI ( right)

[image: Image 71]
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Fig. 10.3 Examples of normalized and aligned silhouette images in a gait cycle.  The right most image is the corresponding gait energy image (GEI)

comparison. Clearly, ESFIs have better quality than OSFIs. Experiments show that better face features can be extracted from constructed ESFI compared to those from the original side face images [209]. 

 10.3.2 Gait Energy Image Construction

Gait energy images (GEI) is a spatio-temporal compact representation of gait in video. The entire gait sequence is divided into cycles according to gait frequency and phase information. GEI reflects major shapes of silhouettes and their changes over the gait cycle. It accounts for human walking at different speeds. GEI has several advantages over the gait representation of binary silhouette sequence. GEI is not sensitive to incidental silhouette errors in the individual frames. Moreover, with such a 2D template, we do not need to consider the time moment of each frame, and the incurred errors can therefore be avoided. 

Given the preprocessed binary gait silhouette sequence in the complete cycle(s), the grey-level gait energy image (GEI) is obtained by averaging the normalized and aligned silhouette images in the gait cycle(s) [61]. Figure 10.3 shows the sample silhouette images in a gait cycle from a person and the right most image is the corresponding GEI. The resolution of each GEI is 300 × 200. 

 10.3.3 Human Recognition Using ESFI and GEI

10.3.3.1 Feature Learning Using PCA and MDA Combined Method

In this section, PCA and MDA combined method [9] is applied to face templates, ESFIs, and gait templates, GEIs, separately to get low dimensional feature representation for side face and gait. PCA reduces the dimension of feature space, and MDA automatically identifies the most discriminating features. 

Let {x1 , x2 , . . . , x n}, x k ∈ R N , be  n  random vectors representing  n  ESFIs or  n GEIs, where  N  is the dimension of the image. The covariance matrix is defined as  Σx =  E([x −  E(x )][x −  E(x )] T ), where  E(· )  is the expectation operator and  T
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denotes the transpose operation. The covariance matrix  Σx can be factorized into the following form:

 Σx =  ΦΛΦ, 

(10.1)

where  Φ = [ Φ1  Φ2  . . . ΦN] ∈ R N× N  is the orthogonal eigenvector matrix of  Σx; Λ = { Λ 1  Λ 2  . . . ΛN } ∈ R N× N  is the diagonal eigenvalue matrix of  Σx  with diagonal elements in descending order. One important property of PCA is its optimal signal reconstruction in the sense of minimum mean square error (MSE) when only a subset of principal components are used to represent the original signal. An im-mediate application of this property is the dimension reduction:





y k = P T pca x k −  E(x ) k = 1 , . . . , n, 

(10.2)

where  P pca = [ Φ 1  Φ 2  . . . Φm],  m < N . The lower-dimensional vector y k ∈ R m captures the most expressive features of the original data x k. 

MDA seeks a transformation matrix W that maximizes the ratio of the between-class scatter matrix S B  to the within-class scatter matrix S W :  J (W ) = |W T S BW|

|W T S W W| . 

Suppose that w1 , w2 , . . . , w c  and  n 1 , n 2 , . . . , nc  denote the classes and the numbers of images within each class, respectively, with  n =  n 1 +  n 2 + · · · +  nc  and w = w1 ∪ w2 ∪ · · · ∪ w c.  c  is the number of classes. The within-class scatter matrix is S

 c

 W =

 (y − M

 i=1

y∈w i

 i )(y − M i )T , and the between-class scatter matrix is S

 c

 B =

 n

y and M = 1

y

 i=1  i (M i − M )(M i − M )T , where M i = 1

 ni

y∈w i

 n

y∈w

are the mean of the class  i  and the grand mean, respectively.  J (W )  is maximized when the columns of W are the generalized eigenvectors of S B  and S W  corresponding to the largest generalized eigenvalues in

S B Ψi =  λiS W Ψi. 

(10.3)

There are no more than  c − 1 nonzero eigenvalues  λi  and the corresponding eigenvectors  Ψi . The transformed feature vector is obtained as follows: z k = P T

=

 k =

mday k = P T

mdaP T

pca x k −  E(x )

Q x k −  E(x )

1 , . . . , n, 

(10.4)

where Pmda = [ Ψ 1  Ψ 2  . . . Ψr ],  r < c, and Q is the overall transformation matrix. 

We can choose  r  to perform feature selection and dimension reduction. The choice of the range of PCA and the dimension of MDA reflects the energy requirement. 

On the one hand, we hope to lose as little representative information of the original data as possible. On the other hand, the small eigenvalues mainly correspond to the high-frequency noise, which may lead to decreased performance for recognition. 

We choose the threshold of 99% in eigenvalue energy for eigenvector selection. The lower dimensional vector z k ∈ R r  captures the most expressive and discriminating features of the original data x k. 

10.3.3.2 Recognition by Integrating ESFI and GEI

We train face templates and gait templates separately for feature extraction. Let

{F} be the set of all training face templates, and Q f  be the corresponding face
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transformation matrix. Let {G} be the set of all training gait templates, and Q g  be the corresponding gait transformation matrix. Let {f i} be the set of face feature vectors belonging to the  i th class, and {g i} be the set of gait feature vectors belonging to the  i th class,  i = 1 ,  2 , . . . , c, where  c  is the number of classes in the gallery. Given a testing video  P , we follow the procedure explained in Sect. 8.3 to generate the set of testing face templates (Chap. 2) { ˆF P } and the set of testing gait templates

{ ˆG P }, respectively. The corresponding face and gait feature vector sets are obtained as follows:

{ˆf P }: ˆf Pj = Q f  ˆF Pj j = 1 ,  2 , . . . , nf  and (10.5)

{ˆg P }: ˆg Pj = Q g  ˆG Pj j = 1 ,  2 , . . . , ng, where  nf  is the number of testing face templates and  ng  is the number of testing gait templates. 

The Euclidean distance is used as the similarity measure for the face classifier and the gait classifier. From the classifier based on face templates, we obtain D( ˆf Pj , f i) = ˆf Pj − m f i  i = 1 ,  2 , . . . , c, j = 1 ,  2 , . . . , nf , (10.6)



where m f i = 1

f,  i = 1 ,  2 , . . . , c, is the prototype of class  i  for face and Nf i

f∈f i

 Nf i  is the number of face feature vectors in {f i}. We assign the testing video  P  to class  k  if

 c

 nf

 D( ˆf P , f k) = min min  D( ˆf Pj , f i). 

(10.7)

 i=1  j =1

From the classifier based on gait templates, we obtain

 D( ˆg Pj , g i) = ˆg Pj − m gi  i = 1 ,  2 , . . . , c, j = 1 ,  2 , . . . , ng, (10.8)



where m gi = 1

g,  i = 1 ,  2 , . . . , c, is the prototype of class  i  for gait and Ngi

g∈g i

 Ngi  is the number of gait feature vectors in {g i}. We assign the testing video  P  to class  k  if

 c

 ng

 D( ˆg P , g k) = min min  D( ˆg Pj , g i). 

(10.9)

 i=1  j =1

Before combining the results of the face and gait classifiers, it is necessary to map distances obtained from the different classifiers to the same range of values. 

We use an exponential transformation here. Given that the distance for a probe  X

are  D 1 , D 2 , . . . , Dc, we obtain the normalized match scores as S =

exp (− Di)



 i = 1 ,  2 , . . . , c. 

(10.10)

 i

 c

exp (− D

 i=1

 i )

After normalization, the match scores of face templates and the match scores of gait templates from the same class are fused using different fusion methods. Since face and gait can be regraded as two independent biometrics in our scenario, synchronization is totally unnecessary for them. To take advantage of information for a walking person in video, we use all the possible combinations of face and gait match
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scores to generate new match scores, which encode information from both face and gait. The new match scores are called  synthetic match scores, defined as St {ˆf P ,  ˆg P } , {f l, g l} =  R S ( ˆf P i, f l), S ( ˆg Pj , g l) , i = 1 ,  2 , . . . , nf , j = 1 ,  2 , . . . , ng, t = 1 ,  2 , . . . , nf ng, l = 1 ,  2 , . . . , c, (10.11)

where  S means the normalized match score of the corresponding distance  D, and R{· , ·} means a fusion method. In this paper, we use the Sum, Product, and Max rules. It is reasonable to generate synthetic match scores using (10.11) since ESFI is built from multiple video frames, and GEI is a compact spatio-temporal representation of gait in video. In this chapter, we use 2 face match scores and 2 gait match scores to generate 4 synthetic match scores for one person from each video. 

Distances representing dissimilarity become match scores representing similarity by using (10.11), so the unknown person should be classified to the class for which the synthetic match score is the largest. We assign the testing video  P  to class  k  if n





 f ng

 S {ˆf P ,  ˆg P } , {f k, g k} =  c max max  St {ˆf P ,  ˆg P } , {f l, g l}  . 

(10.12)

 l=1  t=1

Since we obtain more than one synthetic match score after fusion for one testing video sequence, (10.12) means the unknown person is classified to the class which gets the maximum synthetic match score out of all the synthetic match scores corresponding to all the classes. 

10.4 Experimental Results and Performance Analysis

 10.4.1 Experiments and Parameters

We perform three experiments to test our approach. The data are obtained with a Sony DCR-VX1000 digital video camera recorder operating at 30 frames per second. We collect video sequences of 45 people, who are walking in outdoor condition and expose a side view to the camera. The number of sequences per person varies from two to three. The resolution of each frame is 720 × 480. The distance between people and the video camera is about 10 feet. Each video sequence includes only one person. 

In Experiment 1, the data consists of 90 video sequences of 45 people. Each person has two video sequences, one for training and the other for testing. For the same person, the clothes are the same in the training sequence and the testing sequence. 

In Experiment 2, the data consists of 90 video sequences of 45 people. Each person has two video sequences, one for training and the other for testing. For 10 out of 45 people, the clothes are different in the training sequences and the testing sequences, and the data are collected on two separate days about one month apart. For the other 35 people, the clothes are the same in the training sequences and in the testing sequences. In Experiment 3, we use the same data as in Experiment 2. The
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Table 10.2 Summary of three experiments

Data

Experiments

1

2

3

Number of subjects

45

45

45

Number of subjects with changed clothes

0

10

10

Number of GEIs for testing per video

2

2

1 or 2

Number of ESFIs for testing per video

2

2

1 or 2

difference between them is that we use different numbers of ESFIs and GEIs in the testing procedure. Table 10.2 summaries the key features of the three experiments. 

For gait, we obtain two complete walking cycles from a video sequence ac-

cording to the gait frequency and gait phase. Each walking cycle includes about 20 frames. We construct two GEIs corresponding to two walking cycles from one video sequence. The resolution of each GEI is 300 × 200. For face, we also construct two high-resolution side face images from one video sequence. The match threshold (for the match statistic  S) for aligned low-resolution side face images is specified at 0 .  9. Each high-resolution side face image is built from 10 low-resolution side face images that are extracted from adjacent video frames. The resolution of low-resolution side face images is 68 × 68 and the resolution of reconstructed high-resolution side face images is 136 × 136. After normalization (see Sect. 10.4), the resolution of ESFI is 64 × 32. Recognition performance is used to evaluate our method in the three experiments. For a video sequence, it is defined as the ratio of the number of the correctly recognized people to the number of all the people. 

To analyze the performance of our method more insightfully, we provide the error index that gives the numbers of misclassified sequences. For comparison, we also show the performance using face features from the original side face images (OSFIs) to demonstrate the performance improvement by using constructed ESFIs. The resolution of OSFI is 34 × 18. The procedures of feature extraction, synthetic match score generation and classification are the same for ESFI and OSFI. 

10.4.1.1 Experiment 1

Figures 10.4 and 10.5 show the data used in Experiment 1. We name 45 people from 1 to 45, and each person has two video sequences. For each of the 45 people, some frames of the training sequence and the testing sequence are shown. Since we construct two GEIs and two ESFIs for each sequence, we obtain a total of 90 ESFIs and 90 GEIs as the gallery, and another 90 ESFIs and 90 GEIs as the probe. After fusion, as explained in Sect. 10.3.3.2, four synthetic match scores are generated based on two face match scores and two gait match scores for one person from each video. In total, we have 180 synthetic match scores corresponding to 45 people in the gallery, and 180 synthetic match scores corresponding to 45 people in the probe. 

The dimensionality of PCA features is 72 for GEI, 56 for ESFI, and 65 for OSFI. 

[image: Image 72]
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Fig. 10.4 Data in Experiment 1. Video sequences 1 through 23

After MDA, the dimensionality of features is 17 for GEI, 35 for ESFI, and 25 for OSFI. Table 10.3 shows the performance of a single biometric. Table 10.4 shows the performance of fusion using different combination rules. In Tables 10.3 and 10.4, the error index gives the numbers of misclassified sequences. 

From Table 10.3, we can see that 73.3% of people are correctly recognized by OSFI (12 errors out of 45 people), 91.1% of people are correctly recognized by ESFI

[image: Image 73]
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Fig. 10.5 Data in Experiment 1. Video sequences 24 through 45

Table 10.3 Experiment 1. Single biometric performance and error index of individuals Performance

Biometric

Original face (OSFI)

Enhanced face (ESFI)

Gait (GEI)

Recognition rate

73.3%

91.1%

93.3%

Error index

1, 6, 10, 12, 14, 18, 20, 22, 26, 28, 42, 43

13, 16, 21, 35

4, 15, 26

[image: Image 74]
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Table 10.4 Experiment 1. Fused biometric performance and error index of individuals Fusion method

Sum rule

Product rule

Max rule

OSFI & GEI

Recognition rate

93.3%

95.6%

93.3%

Error index

4, 10, 26

4, 26

4, 10, 26

ESFI & GEI

Recognition rate

95.6%

95.6%

97.8%

Error index

4, 26

4, 26

26

Fig. 10.6 Experiment 1. GEIs of people misclassified by the gait classifier (see Table 10.3). For each person, two GEIs of the training video sequence and two GEIs of the testing video sequence are shown for comparison

(four errors out of 45 people), and 93.3% of people are correctly recognized by GEI (3 errors out of 45 people). Among the three people misclassified by GEI, person 26 has a backpack in the testing sequence but not in the training sequence. The difference causes the body shape to change enough to make a recognition error. The changes of the walking style for the other two people (4 and 15) also cause recognition errors. We show GEIs of people who are misclassified by the gait classifier in Fig. 10.6. Comparing the performance of fusion methods in Table 10.4, the Max rule based on ESFI and GEI performs the best at the recognition rate of 97.8% (one error out of 45 people), followed by the Sum rule and the Product rule at 95.6% (two errors out of 45 people). For fusion based on OSFI and GEI, the best performance is achieved by the Product rule at 95.6%, followed by the Sum rule and the Max rule at 93.3%. It is clear that fusion based on ESFI and GEI always has better performance than fusion based on OSFI and GEI, except using the Product rule where they are the same. Figure 10.7 shows people (video sequences) misclassified by integrating ESFI and GEI using different fusion rules. It is clear that only person 26, who is misclassified by the Max rule, has a backpack in the testing sequence that does not occur in the training sequence. This difference makes both the gait classifier and the fused classifier fail to recognize him. 

[image: Image 75]

[image: Image 76]

198

10

Match Score Level Fusion of Face and Gait at a Distance

Fig. 10.7 Experiment 1. People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table 10.4). For each person, one frame of the training video sequence and one frame of the testing video sequence are shown for comparison Fig. 10.8 Data in Experiment 2. 10 updated video sequences {1 ,  2 ,  5 ,  6 ,  8 ,  9 ,  10 ,  13 ,  19 ,  40}

10.4.1.2 Experiment 2

The data used in Experiment 2 are obtained by substituting 10 testing video sequences of Experiment 1 with the other 10 testing video sequences shown in Fig. 10.8. We use the same order as in Experiment 1 to name 45 people. Compared with the data in Experiment 1, the 10 replaced testing video sequences are

{1 ,  2 ,  5 ,  6 ,  8 ,  9 ,  10 ,  13 ,  19 ,  40}. Therefore, 10 out of 45 people in Experiment 2 wear different clothes in the training sequences and the testing sequences, and for each of the 10 people, two video sequences are collected on two separate days about one month apart. We construct two GEIs and two ESFIs from each sequence, so we obtain a total of 90 ESFIs and 90 GEIs as the gallery, and another 90 ESFIs

10.4 Experimental Results and Performance Analysis

199

Table 10.5 Experiment 2. Single biometric performance and error index of individuals Performance

Biometric

Original face (OSFI)

Enhanced face (ESFI)

Gait (GEI)

Recognition rate

64.4%

80%

82.2%

Error index

1, 2, 5, 6, 8, 9, 13, 18, 

1, 2, 5, 8, 11, 13, 30, 35, 

2, 5, 6, 8, 13, 19, 26, 40

19, 20, 26, 28, 34, 40, 

42

42, 43

Table 10.6 Experiment 2. Fused biometric performance and error index of individuals Fusion method

Sum rule

Product rule

Max rule

OSFI &GEI

Recognition rate

82.2%

82.2%

82.2%

Error index

2, 5, 6, 8, 13, 19, 

2, 5, 6, 8, 13, 19, 

2, 5, 6, 8, 13, 19, 

26, 40

26, 40

26, 40

ESFI & GEI

Recognition rate

88.9%

82.2%

88.9%

Error index

2, 5, 6, 8, 13

2, 5, 6, 8, 13, 19, 

2, 5, 6, 8, 13

26, 40

and 90 GEIs as the probe for 45 people. After fusion, we have 180 synthetic match scores corresponding to 45 people in the gallery, and 180 synthetic match scores corresponding to 45 people in the probe. The dimensionality of PCA features is 72

for GEI, 56 for ESFI, and 65 for OSFI. After MDA, the dimensionality of features is 17 for GEI, 35 for ESFI, and 25 for OSFI. Table 10.5 shows the performance of individual biometric. Table 10.6 shows the performance of fusion using different combination rules. In Tables 10.5 and 10.6, the error index gives the numbers of misclassified sequences. 

From Table 10.5, we can see that 64.4% of people are correctly recognized by OSFI (16 errors out of 45 people), 80% of people are correctly recognized by ESFI (9 errors out of 45 people), and 82.2% of people are correctly recognized by GEI (8 errors out of 45 people). Compared with the performance of individual biometric in Experiment 1 in Table 10.3, all performances of individual biometrics in Experiment 2 decrease to some extent. It is reasonable since gait recognition based on GEI is not only affected by the walking style of a person, but also by the shape of a human body. Changing clothes causes the difference in the shape of the training sequence and the testing sequence for the same person. Also, the lighting conditions and the color of clothes cause human body segmentation inaccurate. Figure 10.9

shows GEIs of people who are misclassified by the gait classifier. Meanwhile, since face is sensitive to noise as well as facial expressions, the different conditions in the two video sequences that are taken one month apart bring face recognition errors. Figure 10.10 shows ESFIs of people who are misclassified by the face classifier. Note the differences in the training and testing GEIs and ESFIs in Figs. 10.9

and 10.10. From Table 10.6, we can see when ESFI and GEI are fused using appropriate fusion methods, the performance improves. Specifically, the Sum rule and

[image: Image 77]
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Fig. 10.9 Experiment 2. GEIs of people misclassified by the gait classifier (see Table 10.5). For each person, two GEIs of the training video sequence and two GEIs of the testing video sequence are shown for comparison

the Max rule based on ESFI and GEI perform the best and achieve the recognition rate of 88.9% (5 errors out of 45 people), and the performance improvement is 6.7% compared with that of the gait classifier. Figure 10.11 shows people (video sequences) misclassified by integrating ESFI and GEI using different fusion rules. 

For fusion based on OSFI and GEI, there is no improvement compared with the individual classifier. These results demonstrate the importance of constructing ESFI. 

From ESFI, we can extract face features with more discriminating power. Therefore, the performance improvement is still achieved when ESFI instead of OSFI is used for fusion. 

10.4.1.3 Experiment 3

The data used in Experiment 3 are the same as the data used in Experiment 2. Experiment 3 studies the effect of using the different number of GEIs and ESFIs in the testing procedure. In the gallery, we still use two GEIs and two ESFIs for each of the 45 people. While for the probe, we vary the number of GEIs and ESFIs for each person. Table 10.7 shows the performance of fusion by different combination rules when the different number of GEIs and ESFIs is used. Except the performance of

[image: Image 78]
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Fig. 10.10 Experiment 2. ESFIs of people misclassified by the face classifier (see Table 10.5). For each person, two ESFIs of the training video sequence and two ESFIs of the testing video sequence are shown for comparison

fusion using two GEIs and two ESFIs, which is obtained from Experiment 2, the other performance is the average value on different combination of GEI and ESFI. 

From Table 10.7, it is clear that if more GEIs and ESFIs are used, i.e., more information in video sequences is used, better performance can be achieved. Meanwhile, this experiment shows that our method to generate the maximum number of synthetic match scores is a reasonable way to use all the available information. 

 10.4.2 Performance Analysis

10.4.2.1 Discussion on Experiments

From Experiments 1 and 2, when ESFI and GEI are used, we can see that the Max rule always achieves the best fusion performance, the Sum rule has the same fusion performance as the Max rule in Experiment 2, and the Product rule does not achieve performance improvement after fusion. 

[image: Image 79]
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Fig. 10.11 Experiment 2. People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table 10.6). For each person, one frame of the training video sequence and one frame of the testing video sequence are shown for comparison Table 10.7 Experiment 3. Fused biometric performance using different number of GEI and ESFI Fusion method

1 GEI & 1 ESFI

1 GEI & 2 ESFI

2 GEI & 1 ESFI

2 GEI & 2 ESFI

Sum rule

82.8%

84.4%

84.4%

88.9%

Product rule

77.2%

81.1%

82.2%

82.2%

Max rule

81.1%

80%

84.4%

88.9%

When we compare Experiments 1 and 2, it can be seen that the recognition rates in Experiment 2 decrease compared with Experiment 1 since 10 out of 45 people change their clothes in the testing sequences. As explained before, gait recognition based on GEI is not only affected by the walking style of a person, but also by the shape of human body. Face is sensitive to noise as well as facial expressions, so the different condition in the training sequence and the testing sequence affects its reliability. All these factors contribute to recognition errors of the individual classifiers. 

However, the fusion system based on side face and gait overcomes this problem to some extent. In Experiment 2, there are some people who are not correctly recognized by gait, but when side face information is integrated, the recognition rate is improved. It is because the clothes or the walking style of these people are much different between the training and testing video sequences, so the gait classifier can not recognize them correctly. However, the side face of these people does not change so much in the training and testing sequences, and it brings useful information for the fusion system and corrects some errors. Specifically, in Experiment 2, the gait
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classifier misclassifies eight people {2 ,  5 ,  6 ,  8 ,  13 ,  19 ,  26 ,  40} and after fusion with ESFI using the Sum rule or the Max rule, three errors {19 ,  26 ,  40} are corrected. On the other hand, since the face classifier is comparatively sensitive to the variation of facial expressions and noise, it cannot get a good recognition rate by itself. When gait information is combined, the better performance is achieved. Our experimental results demonstrate that the fusion system using side face and gait has potential since face and gait are two complementary biometrics. Compared with gait, face images are readily interpretable by humans, which allows people to confirm whether a computer system is functioning correctly, but the appearance of a face depends on many factors: incident illumination, head pose, facial expressions, mustache/beard, eyeglasses, cosmetics, hair style, weight gain/loss, aging, and so forth. Although gait images can be easily acquired from a distance, the gait recognition is affected by clothes, shoes, carrying status, and specific physical condition of an individual. 

The fusion system is relatively more robust compared with the system that uses only one biometric. For example, face recognition is more sensitive to low lighting conditions, whereas gait is more reliable under these conditions. Similarly, when the walker is carrying heavy baggage or he/she is injured, the captured face information may contribute more than gait. 

In Experiment 1, the gait recognition misclassified three people and achieves the recognition rate of 93.3%. The fusion by using the Max rule performs the best at 97.8% with one error, followed by the Sum rule and Product rule at 95.6% with two errors. It may seem that the improvement is not significant in the number of people because of the size of our database. In Experiment 2, where 10 of the subjects wear different clothes in the training data and the testing data, the performance of gait recognition decreases to 82.2% with eight errors. For this more difficult database, there is a larger improvement in fusion performance. The Sum rule and the Max rule have an improvement of 6.7% with the fusion performance at 88.9% with five errors. These results demonstrate the effectiveness of integrating ESFI and GEI for human recognition since the proposed fusion system still achieved improvement, even a larger improvement for the more challenging database. 

The experimental results in Experiments 1 and 2 clearly demonstrate the importance of constructing ESFI. From ESFI, we can extract face features with more discriminating power. Therefore, better performance is achieved when ESFI instead of OSFI is used for both of the individual classifier and the fused classifier. For example, in Experiment 2, OSFI has bad performance at 64.4%, but ESFI still achieves the recognition rate of 80%. Fusion based on ESFI and GEI achieves the performance improvement of 6.7% (from 82.2% to 88.9%) using the Sum rule and the Max rule, while there is no performance improvement by fusion of OSFI and GEI using any combination rule (see Table 10.6). Furthermore, from Experiment 3, we can see that more information means better performance. This also explains why ESFI always performs better than OSFI since ESFI fuses information from multiple frames. 

These results also demonstrate that the match score fusion cannot rectify the misclassification achieved by both of the face classifier and the gait classifier. People misclassified by the individual classifiers are likely to be classified correctly after fusion under the condition that there is at least one of the two classifiers that
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works correctly. For example, in Table 10.5, there are four misclassified people

{2 ,  5 ,  8 ,  13} overlapped between classification using ESFI only and GEI only. There are eight misclassified people {2 ,  5 ,  6 ,  8 ,  13 ,  19 ,  26 ,  40} overlapped between classification using OSFI only and GEI only. From Table 10.6, we can see that the set of misclassified people {2 ,  5 ,  8 ,  13} is always a subset of the error indices when ESFI and GEI are combined by any fusion rule. Similarly, the set of misclassified people {2 ,  5 ,  6 ,  8 ,  13 ,  19 ,  26 ,  40} is always a subset of the error indices when OSFI and GEI are combined by any fusion rule. It is also the reason that the fusion performance based on OSFI and GEI can never be better than the performance of the gait classifier. 

10.4.2.2 Performance Characterization Statistic  Q

For the performance improvement by fusion compared with an individual biometric, if the different classifiers misclassify features for the same person, we do not expect as much improvement as in the case where they complement each other [87]. We use a statistic to demonstrate that. There are several methods to assess the interrelation-ships between the classifiers in a classifier ensemble [25, 155]. Given classifiers  i and  j  corresponding to feature vectors  fi  and  fj  from the same person, respectively, we compute the  Q  statistic:

 Qi,j =  N 11 N 00 −  N 01 N 10  , 

(10.13)

 N  11 N  00 +  N 01 N 10

where  N  00 is the number of misclassifications by both  i  and  j ;  N  11 is the number of correct classifications by both  i  and  j ;  N  10 and  N  01 are the number of misclassifications by  i  or  j , but not by both. It can be easily verified that −1 ≤  Q ≤ 1. 

The  Q  value can be considered as a correlation measure between the classifier decisions. The best combination is the one that minimizes the value of the  Q  statistic, which means that the smaller the  Q  value, the greater the potential for performance improvement by fusion. 

Tables 10.8 and 10.9 show the  Q  values in Experiments 1 and 2.  N  01 is defined as the number of people misclassified by the face classifier but correctly recognized Table 10.8 Experiment 1. 

 Q  statistics

Fused templates

 N  11

 N  00

 N  01

 N  10

 Q  statistic

OSFI & GEI

31

1

11

2

0 .  1698

ESFI & GEI

38

0

4

3

−1

Table 10.9 Experiment 2. 

 Q  statistics

Fused templates

 N  11

 N  00

 N  01

 N  10

 Q  statistic

OSFI & GEI

29

8

8

0

1

ESFI & GEI

32

4

5

4

0.7297
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by the gait classifier.  N  10 is defined as the number of people misclassified by the gait classifier but correctly recognized by the face classifier. The  Q  value based on OSFI and GEI in Experiment 2 is 1, which means the performance improvement by fusion will be zero. The experimental results in Table 10.6 verify it. The  Q  value based on OSFI and GEI in Experiment 1 is 0 .  1698, which explains the fact that the fusion performance increases to 95.6% when the Product rule is used (see Table 10.4). 

When we compare the  Q  values between the fusion of OSFI and GEI, and the fusion of ESFI and GEI, the results show that the  Q  values based on ESFI and GEI are always smaller than the  Q  values based on OSFI and GEI in both of the experiments. It indicates that the expected performance improvement using ESFI and GEI is higher than using OSFI and GEI. For example, in Experiment 1, the  Q

value based on fusion of ESFI and GEI is −1, and the  Q  value based on fusion of OSFI and GEI is 0 .  1698. The maximum performance increase is 4.5% (from 93.3%

to 97.8%) by fusion of ESFI and GEI, while the performance increase by fusion of OSFI and GEI is only 2.3% (from 93.3% to 95.6%). On the other hand, even though the  Q  value of 0 .  7297 for the fusion performance of ESFI and GEI is smaller than the  Q  value of 1 for the fusion performance of OSFI and GEI in Experiment 2, it is positive and relatively high. This indicates that many times the gait classifier and the face classifier are both performing correct classification or incorrect classification for the same person. In spite of this, our video based fusion method using ESFI and GEI always achieves better performance than either of the individual classifier when the appropriate fusion strategy is used. 

To visualize the correlation of the face classifier and the gait classifier, we plot the normalized match scores of the two classifiers. Figure 10.12 shows the correlation of the normalized match scores of the two classifiers in Experiment 1. We can see that the match scores of the gait classifier using GEI and the face classifier using OSFI are more correlated than the match scores of the gait classifier using GEI and the face classifier using ESFI. It is consistent with the  Q  statistics in Table 10.8. 

Figure 10.13 shows correlation of the normalized match scores of the two classifiers in Experiment 2. We can see that the match scores of the gait classifier using GEI and Fig. 10.12 Experiment 1. (a) Correlation of the normalized match scores of the two classifiers using GEI and OSFI. (b) Correlation of the normalized match scores of the two classifiers using GEI and ESFI
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Fig. 10.13 Experiment 2. (a) Correlation of the normalized match scores of the two classifiers using GEI and OSFI. (b) Correlation of the normalized match scores of the two classifiers using GEI and ESFI

the face classifier using OSFI are more correlated than the match scores of the gait classifier using GEI and the face classifier using ESFI. It is also consistent with the Q  statistics in Table 10.9. When we compare Figs. 10.12 and 10.13, it is obvious that the correlation of the match scores of the two classifiers in Experiment 2 is higher than in Experiment 1. 

10.5 Summary

This chapter presented an innovative video based fusion system which aims at recognizing non-cooperating individuals at a distance in a single camera scenario. Information from two biometric sources, side face and gait, is combined using different fusion methods. Side face includes the entire side views of an eye, nose and mouth, possessing both shape information and intensity information. Therefore, it has more discriminating power for recognition than face profile (see Chap. 7). To overcome the problem of limited resolution of side face at a distance in video, we use enhanced side face image (ESFI), a higher resolution image constructed from multiple video frames (see Sect. 8.3) instead of OSFI directly obtained from a single video frame, as the face template for an individual. ESFI serves as a better face template than OSFI since it generates more discriminating face features. Synthetic match scores are generated for fusion based on the characteristics of face and gait. 

The experimental results show that the integration of information from side face and gait is effective for individual recognition in video. The performance improvement is always archived when appropriate fusion rules, such as the Max rule and the Sum rule, are used to integrate information from ESFI and GEI. Consequently, our fusion system is relatively robust compared with the system using only one biometric in the same scenario. 

However, our system has some limitations: (a) gait recognition based on GEI is affected by the shape of human body to some extent; (b) the side face contains less
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information compared with the frontal face and it is sensitive to noise as well as facial expressions; (c) the system has been tested on limited video sequences. In spite of these limitations, we demonstrate that the integration of face and gait can achieve better recognition performance at a distance in video. Although our database is not very big, it is of reasonable size (45 people with 100 video sequences) and shows how the proposed ideas work. In the future, we will collect more data to evaluate the performance of our system. We will also focus on problems that are not addressed in this book. We will use multiple cameras to capture different views of a person. To get face images with high quality, we will track the whole human body first and then zoom in to get better face images. We will speed up the process of ESFI and GEI construction so that our system can operate in real time. 


Chapter 11

Feature Level Fusion of Face and Gait

at a Distance

Video-based human recognition at a distance remains a challenging problem for the fusion of multi-modal biometrics. As compared to the approach based on match score level fusion (Chap. 10), in this chapter, we present an approach that utilizes and integrates information from side face and gait at the feature level. The features of face and gait are obtained separately using principal component analysis (PCA) from enhanced side face image (ESFI) and gait energy image (GEI), respectively. 

Multiple discriminant analysis (MDA) is employed on the concatenated features of face and gait to obtain discriminating synthetic features. This process allows the generation of better features and reduces the curse of dimensionality. The proposed scheme is tested using two comparative data sets to show the effect of changing clothes and face changing over time. Moreover, the proposed feature level fusion is compared with the match score level fusion and another feature level fusion scheme. 

The experimental results demonstrate that the synthetic features, encoding both side face and gait information, carry more discriminating power than the individual biometrics features, and the proposed feature level fusion scheme outperforms the match score level and another feature level fusion scheme. The performance of different fusion schemes is also shown as cumulative match characteristic (CMC) curves. They further demonstrate the strength of the proposed fusion scheme. 

The chapter is organized as follows. Section 11.2 presents the overall technical approach. It describes feature extraction from ESFI and GEI. It explains the proposed scheme to generate synthetic features for feature level fusion and classification. Section 11.3 provides a description of the related fusion methods [207, 209]

to be compared in the experimental section. In Sect. 11.4, a number of dynamic video sequences are tested using the approach presented. Experimental results are compared and discussed. Section 11.5 concludes this chapter. 

11.1 Introduction

Compared with the abundance of research work related to fusion at the match score level, fusion at the feature level is a relatively understudied problem because of the B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 

209

Advances in Pattern Recognition, 
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difficulties in practice. Multiple modalities may have incompatible feature sets and the relationship between different feature spaces may not be known [146]. Moreover, the concatenated feature vectors may lead to the problem of the curse of dimensionality and it may contain noisy or redundant data, thus leading to a decrease in the performance of the classifier. 

However, pattern recognition and computer vision systems that integrate information at an early stage of processing are believed to be more effective than those systems that perform integration at a later stage. Therefore, while it is relatively difficult to achieve in practice, fusion at the feature level has drawn more attention in recent years. Table 11.1 presents a summary of the recent work for the feature level fusion. Among the existing research work, feature concatenation is the most popular feature level fusion methodology. Some of schemes perform feature concatenation after dimensionality reduction [45, 87, 93, 207] while others perform feature concatenation before feature selection or transformation [145, 191]. 

In recent years, integrated face and gait recognition approaches without resorting to 3D models have achieved some success. Most of the fusion schemes [16, 84, 153, 154, 208] have focused on the fusion of face and gait at the match score level and the experimental results demonstrate improved performance after fusion. Recently, Zhou and Bhanu [207] conducted feature concatenation after dimensionality reduction by the PCA and MDA combined method to fuse face and gait information at the feature level. The experimental results showed the performance improvement compared with the single biometrics, but they did not show any comparison with other schemes. Since the feature set contains richer information about the input biometrics pattern than the match score, integration at this level is expected to provide better recognition result than the match score level. Therefore, the fusion of face and gait at the feature level deserves a closer study and performance comparison between different fusion schemes. 

Table 11.2 presents a summary of related work and compares it with the work presented in this chapter for the fusion of face and gait. In this chapter, information related to side face and gait from a single camera video sequence is combined at the feature level to recognize non-cooperating individuals at a distance. We distinguish a side face from a face profile. A face profile refers to the outline of the shape of a face as seen from the side. A side face includes not only the outline of the side view of a face, but also the entire side view of an eye, nose and mouth, possessing both shape and intensity information. Therefore, a side face has more discriminating power for recognition than a face profile. For side face, an enhanced side face image (ESFI), a higher resolution image compared with the image directly obtained from a single video frame, is constructed as the face template [209]. For gait, the gait energy image (GEI), which is used to characterize human walking properties, is generated as the gait template [61]. 

The key ideas of this chapter are as follows:

• A new feature level fusion scheme is proposed to fuse information from a side face and gait for human recognition at a distance in a single camera scenario. 

Multiple discriminant analysis (MDA) is applied after the concatenation of face and gait features. This allows the generation of better discriminating features and
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Table 11.1 The recent work for feature level fusion

Authors

Modalities

Methodology

Data

Yang et al. 

Face

PCA, K–L expansion and

CENPARMI handwritten

[191]

LDA after parallel

numeral database, NUST603

concatenation of features

handwritten Chinese

character database and ORL

face image database

Kumar et al. 

Hand

Concatenation of geometry

1000 hand images of 100

[93]

and texture features

individuals

Kinnunen

Voice

Concatenation of LPCC, 

NIST-1999 subset

et al. [87]

MFCC, ARCSIN, and FMT

features

Moon et al. 

Fingerprint

Averaging two templates of

1149 images of 383

[117]

minutiae

individuals

Feng et al. 

Face and

Concatenation of PCA and

400 images of 40 individuals

[45]

palmprint

LDA coefficients

Ross et al. 

Face and hand

Feature selection after

500 face and hand images of

[145]

concatenation of PCA and

100 individuals

LDA coefficients

Gao et al. 

Face and

Fusion of line features by

(a) 210 images of 35

[49]

palmprints

multi-view line segment

individuals; (b) 311 images

Hausdorff distance

of 35 individuals from the

University of Stirling

Zhou et al. 

Face and gait

Feature concatenation after

92 video sequences of 46

[207]

MDA and PCA combined

individuals

method

Kong et al. 

Palmprint

Fusion of phase information

9599 palmprint images of

[89]

from Gabor filters according

488 different palms

to a fusion rule

Li et al. [99]

Palmprint, 

KPCA after fusion of kernel

1,853 right hand images of

knuckleprint

matrixes using decision level

98 individuals

and hand

fusion operator

shape

leads to the improved performance. Face features are extracted from enhanced side face image (ESFI) which integrates face information over multiple frames in video. Gait features are extracted from gait energy images (GEI), a spatio-temporal compact representation of gait in video. 

• The proposed feature level fusion scheme is compared with the match score level fusion schemes (Sum and Max rules) [209] and the feature level fusion scheme [207]. The basic processes of these approaches are shown in Fig. 11.1. 
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Table 11.2 The related work for integrating face and gait for human recognition vs. this chapter Authors

Modalities

Fusion methods

Data

Kale et al. [84]

Frontal face and

Hierarchical fusion and


30 subjects (number of

gait

Sum/Product rule

sequences per person is

not specified) and static

images as the face

gallery

Shakhnarovich

Frontal face and

• Sum rule [154]

• 12 subjects and 2 to 6

et al. [153, 154]

gait

sequences per person

[154]

• Min, Max, Sum and

• 26 subjects and 2 to 14

Product rules [153]

sequences per person

[153]

Zhou et al. 

• Side face and

• Feature concatenation

• 46 subjects and 2

[207, 209, 211]

gait [207, 209]

after MDA and PCA

sequences per person

combined method [207]

[207]

• Face profile and

• Sum, Product and Max

• 45 subjects and 2 to 3

gait [211]

rules [209]

video per person [209]

• Hierarchical fusion, 

• 14 subjects and 2

Sum and Product rules

sequences per person

[211]

[211]

This chapter

Side face and gait

MDA after concatenation

45 individuals and 2 to 3

of PCA-based features of

video per person

side face and gait

The experimental results demonstrate the effectiveness of the fusion at the feature level in comparison to the match score level. The proposed feature level fusion scheme performs the best among all the compared fusion schemes. Besides the recognition rates, the performance is also compared using CMC curves. They further demonstrate the strengths of the proposed fusion scheme. 

• The problem of the curse of dimensionality is reduced in two ways: (a) PCA is used to transform high dimensional face and gait templates to low dimensional feature space; (b) synthetic features are generated based on all possible combinations of face and gait features from the same video sequence. 

11.2 Technical Approach

The proposed feature level fusion scheme is shown in Fig. 11.2. Enhanced side face image (ESFI) and gait energy image (GEI) are first constructed as the face template and the gait template from a video sequence, respectively. Principal component analysis (PCA) is employed separately on face templates and gait templates to extract

11.2 Technical Approach
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Fig. 11.1 The basic processes of the fusion schemes for comparison
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Fig. 11.2 The proposed feature level fusion scheme for integrating side face and gait in video lower dimensional face features and gait features. Multiple discriminant analysis (MDA) is then applied to the concatenated features to generate the synthetic features. Finally, the testing synthetic features are compared with the training synthetic features to evaluate the performance of the proposed approach. 

We use the same methods for enhanced side face image (Sect. 10.3.1) and gait energy image (Sect. 10.3.2) construction as in Chap. 10. 

 11.2.1 Human Identification Using ESFI and GEI

11.2.1.1 Feature Learning Using PCA

PCA is a standard decorrelation technique [51]. The derived orthogonal projection basis leads to dimension reduction, and possibly to feature selection. 

Let {x1 , x2 , . . . , x n}, x k ∈ R N , be  n  random vectors representing  n  ESFIs or  n GEIs, where  N  is the dimension of the vector obtained by concatenation of an image row-by-row. The covariance matrix is defined as  Σx =  E([x −  E(x )][x −  E(x )] T ), where  E(· )  is the expectation operator and  T  denotes the transposition operation. 

The covariance matrix  Σx  can be factorized into the following form: Σx =  ΦΛΦ, 

(11.1)

where  Φ = [ Φ 1  Φ 2  . . . ΦN ] ∈ R N× N  is the orthonormal eigenvector matrix of  Σx ; Λ = { Λ 1  Λ 2  . . . ΛN } ∈ R N× N  is the diagonal eigenvalue matrix of  Σx  with diagonal elements in descending order. One important property of PCA is its optimal signal reconstruction in the sense of minimum mean square error (MSE) when only a subset of principal components are used to represent the original signal. An im-mediate application of this property is the dimension reduction:





y k = P T pca x k −  E(x ) , k = 1 ,  2 , . . . , n, 

(11.2)

where Ppca = [ Φ 1  Φ 2  . . . Φm],  m ≤  N . The lower-dimensional vector y k ∈ R m captures the most expressive features of the original data x k. 
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11.2.1.2 Synthetic Feature Generation and Classification

Let f ∈ R N 1 and g ∈ R N 2 be the ESFI and GEI of a person represented as a vector, where  N 1 and  N 2 are the dimensions of the face and the gait feature spaces, respectively. We obtain low dimensional feature vectors, f = M f f and g = M gg, by using the PCA method as in (11.2). M f  and M g  are the PCA transformation matrices for the face and gait, respectively. We choose a subset of principal components to derive the lower dimensional face and gait features, f ∈ R m 1 and g ∈ R m 2 , where  m 1

and  m 2 are the dimensions of the reduced face feature space and gait feature space, respectively. On the one hand, we hope to lose as little representative information of the original data as possible in the transformation from the high dimensional space to the low dimensional one. On the other hand, the eigenvectors corresponding to the small eigenvalues are excluded from the reduced space so that we can obtain more robust multiple discriminant analysis (MDA) projection as well as reduce the problem of the curse of dimensionality. The eigenvalue spectrum of the covariance matrix of the training data supplies useful information regarding the choice for the dimension of the feature space. 

Before face features and gait features are combined, the individual face features and gait features are normalized to have their values lie within similar ranges. We use a linear method [163], which provides a normalization via the respective estimates of the mean and variance. For the  j  th feature value in the  i th feature vector wij , we have

 w

ˆ

 ij − ¯

 wj

 wij =

 , 

 i = 1 ,  2 , . . . , I, j = 1 ,  2 , . . . , L, (11.3)

 σj





where ¯

 w

 I

 I

 j = 1

 w

= 1

 (w

 I

 i=1

 ij  and  σ  2

 j

 (I −1 )

 i=1

 ij − ¯

 wj ) 2.  I  is the number of avail-

able feature vectors, and  L  is the number of features for each feature vector. The resulting normalized features have zero mean and unit variance. 

We assume that ˆf and ˆg are the face and gait features after normalization using (11.3), respectively. They are concatenated to form the features as follows h = ˆf

ˆg

(11.4)

where h ∈ R m 1+ m 2 . The rationale behind such a simple combination is that the face and gait are viewed as carrying equally important discriminating information. 

Since face and gait can be regraded as two independent biometrics in our application scenario, synchronization is totally unnecessary for them. To take advantage of information for a walking person in video, we use all possible combinations of side face features and gait features to generate the maximum number of vectors h. 

Specifically, we have two feature vectors of side face and two feature vectors of gait for one person from one video. Therefore, we have four concatenated features h for one person from one video. It is reasonable to concatenate face and gait feature vectors in this way, since ESFI is built from multiple video frames and GEI is a compact spatio-temporal representation of gait in video. Generation of all possible vectors h from PCA features for side face and gait data helps to reduce the problem of the curse of dimensionality for the subsequent MDA transformation. 
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Suppose that w1 , w2 , . . . , w c  and  n 1 , n 2 , . . . , nc  denote the classes and the numbers of concatenated feature vectors  h  within each class, respectively, with w = w1 ∪ w2 ∪ · · · ∪ w c  and ˆ n =  n 1 +  n 2 + · · · +  nc. Note that the value of ˆ n  is 2 n.  c  is the number of classes. MDA seeks a transformation matrix W

that maximizes the ratio of the between-class scatter matrix S B  to the within-class scatter matrix S W :  J (W ) = |W T S BW|

|W T S W W| . The within-class scatter matrix is S

 c

 W =

 (h − M

 i=1

h∈w

 i )(h − M i )T , and the between-class scatter matrix is i







S

 c

 B =

 n

h and M = 1

h

 i=1  i (M i − M )(M i − M )T , where M i = 1

 ni

h∈w i

ˆ n

h∈w

are the mean of the class  i  and the grand mean, respectively.  J (W )  is maximized when the columns of W are the generalized eigenvectors of S B  and S W , which correspond to the largest generalized eigenvalues in

S B Ψi =  λiS W Ψi. 

(11.5)

There are no more than  c − 1 nonzero eigenvalues  λi . Let the corresponding eigenvectors be  Ψi . The transformed feature vector is obtained as follows: z k = P T h

mda  k , 

 k = 1 ,  2 , . . . ,  ˆ n, 

(11.6)

where Pmda = [ Ψ 1  Ψ 2  . . . Ψc−1] is the MDA transformation matrix. We call the lower dimensional vector z k ∈ R c−1 the  synthetic feature  which captures the most discriminating power of the face and gait. 

Let U i, i = 1 ,  2 , . . . , c, the mean of the training synthetic features of class  i, be the prototype of class  i. The unknown person is classified to class  K  to which the synthetic feature z is the nearest neighbor. 

z − UK = min z − U i . 

(11.7)

When multiple synthetic features are obtained for one person, (11.7) means that the unknown person is classified to the class which has the minimum distance out of all the distances corresponding to all the classes. 

11.3 The Related Fusion Schemes

In this chapter, we also compare the proposed feature level fusion scheme with the related fusion schemes at the match score level (Sum and Max rules) [209] and the feature level [207]. These techniques are explained in the following. PCA and MDA combined method [209] is used for feature learning from face and gait for these two fusion schemes. It is applied to face templates (ESFIs) and gait templates (GEIs) separately to get low dimensional feature representation for side face and gait. 

The transformed feature vector is obtained as follows:









z k = P T P T

x

= Q x

 , 

 k = 1 , . . . , n, 

(11.8)

mda pca

 k −  E(x )

 k −  E(x )

where x k ∈ R N  is the vector representing  n  ESFIs or  n  GEIs, where  N  is the dimension of the vector obtained by concatenation of an image row-by-row. Ppca =

[ Φ 1  Φ 2  . . . Φm],  m ≤ min  (n, N)  is the PCA transformation matrix, Pmda =
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[ Ψ 1  Ψ 2  . . . Ψr],  r ≤  c − 1, is the MDA transformation matrix, and Q is the overall transformation matrix. The lower dimensional vector z k ∈ R r  captures the most expressive and discriminating features of the original data x k. 

Let f ∈ R N 1 and g ∈ R N 2 represent ESFI and GEI of a person, where  N 1 and N 2 are the dimensions of the face and the gait spaces, respectively. We obtain low dimensional feature vectors, f = Q f f and g = Q gg, by using PCA and MDA combined method as in (11.8). Q f  and Q g  are the overall transformation matrices for the face and gait, respectively. 

 11.3.1 Fusion at the Match Score Level [209]

Given f and g, the Euclidean distance for the face classifier and the gait classifier is obtained as





 f

 f

 D = f −  U  , 

 i

 i





(11.9)

 g

 g

 D = g −  U  , 

 i

 i

 f

 g

where  U

and  U ,  i = 1 ,  2 , . . . , c, are the prototypes (mean of the features that i

 i

belong to a class) of class  i  for the face and gait, respectively. Before combining the results of the face and gait classifiers, it is necessary to map the distances obtained from the different classifiers to the same range of values. We use an exponential transformation here. Given that the distance of a probe (test data) obtained from the classifier are  D 1 , D 2 , . . . , Dc, we obtain the normalized match scores as Si =

exp (− Di)

 c

 , 

 i = 1 ,  2 , . . . , c. 

(11.10)

exp (− D

 i=1

 i )

After normalization using (11.10), the match scores of face templates and the match scores of gait templates from the same video are fused based on different match score fusion rules. We use all the possible combinations of the face and gait match scores to generate the maximum number of fused match scores based on the characteristics of the face and gait. Specifically, we use two face match scores and two gait match scores to generate four fused match scores for one person from each video. 

Since the distances representing dissimilarity become match scores by us-

ing (11.10), the unknown person should be classified to the class for which the f

 g

fused match score is the largest. Let  S

and  S  be the normalized match scores of

 i

 i

 f

 g

 D

and  D , respectively. The unknown person is classified to class  K  if i

 i









 f

 g

 f

 g

 R S , S

= max  R S , S , 

(11.11)

 K

 K

 i

 i

where  R{· , ·} means a fusion rule. In this chapter, we use the Sum and Max rules. 

Since we obtain more than one fused match score after fusion for one testing video sequence, (11.11) means the unknown person is classified to the class which gets the maximum fused match score out of all the fused match scores corresponding to all the classes. 

[image: Image 80]
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 11.3.2 Fusion at the Feature Level [207]

Before face features f and gait features g are combined, the individual face features and gait features are normalized to have their values lie within similar ranges using (11.3). We assume that ˆf and ˆg are face features and gait features after normalization using (11.3), respectively. They are concatenated to form the features as follows





p = ˆf

ˆg  , 

(11.12)

where p ∈ R m 1+ m 2 . As explained earlier, we use all possible combinations of side face features and gait features to generate the maximum number of concatenated feature vectors based on the characteristics of face and gait. Specifically, four concatenated features are constructed based on two face features and two gait features for one person from each video. 

Let V i, i = 1 ,  2 , . . . , c, the mean of the training synthetic features of class  i, be the prototype of class  i. The unknown person is classified to class  K  to whom the synthetic feature p is the nearest neighbor. 

p − VK = min p − V i . 

(11.13)

When multiple synthetic features are obtained for one person, (11.13) means that the unknown person is classified to the class which has the minimum distance out of all the distances corresponding to all the classes. 

11.4 Experimental Results and Comparisons

 11.4.1 Experiments and Parameters

We collect 100 video sequences of 45 people using a Sony DCR-VX1000 digital video camera recorder operating at 30 frames per second. Each video sequence includes only one subject. The subject is walking in outdoor condition and expose a side view to the camera. The number of sequences per subject varies from two to three. The resolution of each frame is 720 × 480. The distance between people and the video camera is about 10 feet. Figure 11.3 shows some examples of the data. 

We perform two experiments using two comparative data sets to test our approach and show the effect of changing clothes and changing face over time on the Fig. 11.3 Two examples of video sequences
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performance of the fusion schemes. In Experiment 1, the data consists of 90 video sequences of 45 people. Each person has two video sequences, one for training and the other for testing. For the same person, the clothes are the same in the training and in the testing sequences. In Experiment 2, the data consists of 90 video sequences of 45 people. Each person has two video sequences, one for training and the other for testing. For 10 of 45 people, the clothes are different in the training sequences and in the testing sequences, and the data are collected on two separate days that are about 1 month apart. For the other 35 people, the clothes are the same in the training sequences and in the testing sequences. Experiments are conducted on two Dual Core AMD Opteron Processors 265 1.8 GHz Linux machine with 2 GB RAM. 

The simulation language is Matlab. It takes 26 seconds to recognize 45 people based on their ESFIs and GEIs. 

Recognition performance is used to evaluate our method in the two experiments. 

For a video sequence, it is defined as the ratio of the number of the correctly recognized people to the number of all the people. To analyze the performance of our method more insightfully, we also provide the error index that gives the numbers of misclassified sequences. Cumulative match characteristic (CMC) curve is used to further evaluate the performance of the systems. The CMC curve returns identities associated with the  K  highest-scoring biometrics samples from the training data. For  x  axis,  K  rank means the  K  nearest neighbor method is considered for the recognition results. For  y  axis, the accuracy rate means the frequency when the genuine identities are included in the  K  nearest neighbors. The lower the rank of the genuine matching biometrics in the training data, the better the performance of the identification system. Improved algorithms would result in a better CMC curve, one that would run more toward the upper left corner of the plot. For comparison, we also show the performance using face features from the original side face images (OSFIs) to demonstrate the performance improvement by using constructed ESFIs. 

The resolution of OSFI is 34 × 18. The procedures of feature extraction, synthetic feature generation and classification are the same for ESFI and OSFI. Furthermore, the proposed feature fusion scheme is compared with the single biometrics scheme where MDA is applied to the PCA features of the single biometrics, the feature level fusion scheme [207] and the match score level fusion schemes using the Sum and Max rules [209]. 

For gait, two complete walking cycles are obtained from a video sequence according to the gait frequency and gait phase. Each walking cycle consists of 20

frames. We construct two GEIs corresponding to two walking cycles from one video sequence. The resolution of each GEI is 300 × 200. For face, we also construct two high-resolution side face images from one video sequence. Each high-resolution side face image is built from 10 low-resolution side face images that are extracted from adjacent video frames. The resolution of low-resolution side face images is 68 × 68 and the resolution of reconstructed high-resolution side face images is 136 × 136. After normalization, the resolution of ESFI is 64 × 32. 

For the proposed feature fusion scheme, the dimension of the synthetic features is 44 ( c − 1), which results from applying MDA transformation to the concatenated face and gait features. The selection of eigenvectors as face features and gait features is based on both the observation and the energy criteria. Figures 11.4 and 11.5
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Fig. 11.4 The top 70 eigenvectors of face ( from left to right  and  top to bottom) Fig. 11.5 First 70 eigenvectors of gait ( from left to right  and  top to bottom) show the top 70 eigenvectors of face and gait, respectively. The order of eigenvectors corresponds to the descending order of the eigenvalues. The higher numbered eigenvectors seem more blotchy and it becomes more and more difficult to discern the semantics of what they are encoding. This indicates that eliminating these eigenvectors from the eigenspace should have a minimal effect on performance [189]. 

Meanwhile, the remaining eigenvectors should satisfy the requirement that the corresponding eigenvalues have 99% of the total energy. Furthermore, we decide to
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Fig. 11.6 (a) Performance vs. number of face and gait features based on GEI and ESFI in Experiment 1. (b) Performance vs. number of face and gait features based on GEI and ESFI in Experiment 2

keep no more than two-thirds of the total eigenvectors to reduce the problem of curse of dimensionality. In both experiments, we retain eigenvectors corresponding to the top 59 eigenvalues as face features and the top 56 eigenvalues as gait features. 

In practice, the dimensions of face and gait features may influence the performance of the proposed method. 

Figure 11.6 shows the performance of the proposed feature fusion scheme corresponding to the different number of the face and gait features in Experiments 1
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and 2. We can see that the performance fluctuates as the number of face and gait features changes. The optimal fusion performance is achieved somewhere when the eigenvectors corresponding to the eigenvalues have between 98.5% and 99.5% of the total energy for face and gait. There is more than one optimal choice for the number of the face and gait features. It is also clear that the fusion performance degrades abruptly when the number of chosen eigenvectors is below some threshold. 

Figure 11.6 verifies the soundness of our choice for face and gait features. 

11.4.1.1 Experiment 1

45 people are named from 1 to 45, and each of them has two video sequences. Two GEIs and two ESFIs are constructed for each sequence. Therefore, four synthetic features are generated based on two face features and two gait features for one person from each video. Totally, we have 180 synthetic features corresponding to 45

people in the gallery and 180 synthetic features corresponding to 45 people in the probe. Table 11.3 shows the performance of single biometrics. Table 11.4 shows the performance of fusion using different schemes. In Tables 11.3 and 11.4, the error index gives the numbers of misclassified sequence. 

Table 11.3 shows that 73.3% of people are correctly recognized by OSFI, 91.1%

of people are correctly recognized by ESFI, and 93.3% of people are correctly recognized by GEI. The changes of the body shape and the walking style cause gait recognition errors. We show GEIs of the people who are misclassified by the gait Table 11.3 Experiment 1. Single biometrics performance and error index of individuals Performance

Biometrics

Original face (OSFI)

Enhanced face (ESFI)

Gait (GEI)

Recognition rate

73.3%

91.1%

93.3%

Error index

1, 6, 10, 12, 14, 18, 20, 

13, 16, 21, 35

4, 15, 26

22, 26, 28, 42, 43

Table 11.4 Experiment 1. Fused biometrics performance and error index of individuals Fusion method

Match score level

Feature level

[209]

Sum rule

Max rule

Fusion scheme [207]

Fusion scheme

(this chapter)

OSFI & 

Recognition

93.3%

93.3%

97.8%

97.8%

GEI

rate

Error index

4, 10, 26

4, 10, 26

26

6

ESFI & 

Recognition

95.6%

97.8%

100%

100%

GEI

rate

Error index

4, 26

26

None

None
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classifier in Fig. 11.7. Face is sensitive to noise as well as facial expressions, so the different conditions in the training sequence and the testing sequence affect its reliability. We show ESFIs of the people who are misclassified by the face classifier in Fig. 11.8. Among fusion performance of ESFI and GEI in Table 11.4, the proposed feature fusion approach has the same performance as [207] at the best recognition rate of 100%, followed by the Max rule at 97.8% and the Sum rule at 95.6%. Figure 11.9 shows people (video sequences) misclassified by integrating ESFI and GEI using the Sum and Max rules. It is clear that both of the match score level fusion schemes using Sum and Max rules misclassify person 26, but both of the feature level fusion schemes recognize the person correctly. For fusion based on OSFI and GEI, the best performance is also achieved by the proposed feature fusion approach and [207] at 97.8%, followed by the Sum rule and the Max rule Fig. 11.7 Experiment 1. GEIs of people misclassified by the gait classifier (see Table 11.3). For each person, two GEIs of the training video sequence and two GEIs of the testing video sequence are shown for comparison

Fig. 11.8 Experiment 1. ESFIs of people misclassified by the face classifier (see Table 11.3). For each person, two ESFIs of the training video sequence and two ESFIs of the testing video sequence are shown for comparison

[image: Image 85]

224

11

Feature Level Fusion of Face and Gait at a Distance

Fig. 11.9 Experiment 1. People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table 11.4). For each person, one frame of the training video sequence and one frame of the testing video sequence are shown for comparison at 93.3%. Figure 11.10 shows the CMC curves of Experiment 1. The CMC curve of the proposed feature fusion scheme overlaps with the CMC curve of [207]. Both of them are more toward the upper left corner of the plots compared with that of the match score fusion schemes. It is clear that the feature level fusion schemes are more effective than the match score level fusion schemes. Fusion based on ESFI and GEI always has better performance than fusion based on OSFI and GEI using the same fusion scheme. It also demonstrates that the synthetic features carry more discriminating power than the individual biometrics features. 

11.4.1.2 Experiment 2

In Experiment 2, we use the same order as in Experiment 1 to name 45 people. 

10 testing video sequences are substituted with the other 10 testing video sequences. 

The order of the 10 replaced testing video sequences is {1 ,  2 ,  5 ,  6 ,  8 ,  9 ,  10 ,  13 ,  19 , 40}. Consequently, 10 out of 45 people in Experiment 2 wear different clothes in the training sequences and in the testing sequences. We also construct two GEIs and two ESFIs from each sequence and generate four synthetic features based on two face features and two gait features for one person from each video. In total, we have 180 synthetic features corresponding to 45 people in the gallery and 180 synthetic features corresponding to 45 people in the probe. Table 11.5 shows the performance of single biometrics. Table 11.6 shows the performance of fusion using different schemes. In Tables 11.5 and 11.6, the error index gives the number of misclassified sequence. 

Table 11.5 shows that 64.4% of people are correctly recognized by OSFI, 80% of people are correctly recognized by ESFI, and 82.2% of people are correctly recognized by GEI. Compared with the performance of individual biometrics in Experiment 1 in Table 11.3, all the performances of individual biometrics in Experiment 2

decrease to some extent. It is reasonable since the changes in the lighting conditions and the color of clothes cause changes in the segmentation of the human body. Also, changing clothes causes the difference in the shape of the training sequence and the testing sequence for the same person. Figure 11.11 shows GEIs of the people who
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Fig. 11.10 Experiment 1. (a) CMC curves of the classifiers using GEI and OSFI. (b) CMC curves of the classifiers using GEI and ESFI

[image: Image 86]
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Table 11.5 Experiment 2. Single biometrics performance and error index of individuals Performance

Biometrics

Original face (OSFI)

Enhanced face (ESFI)

Gait (GEI)

Recognition rate

64.4%

80%

82.2%

Error index

1, 2, 5, 6, 8, 9, 13, 

1, 2, 5, 8, 11, 13, 30, 35, 42

2, 5, 6, 8, 13, 19, 26, 40

18, 19, 20, 26, 28, 

34, 40, 42, 43

Table 11.6 Experiment 2. Fused biometrics performance and error index of individuals Fusion method

Match score level [209]

Feature level

Sum rule

Max rule

Fusion

Fusion scheme

scheme [207]

(this chapter)

OSFI

Recognition

82.2%

82.2%

84.4%

86.7%

& GEI

rate

Error index

2, 5, 6, 8, 13, 

2, 5, 6, 8, 13, 

1, 2, 5, 8, 13, 19, 

1, 2, 5, 6, 8, 19

19, 26, 40

19, 26, 40

40

ESFI

Recognition

88.9%

88.9%

88.9%

91.1%

& GEI

rate

Error index

2, 5, 6, 8, 13

2, 5, 6, 8, 13

2, 5, 8, 13, 19

2, 5, 6, 13

Fig. 11.11 Experiment 2. GEIs of people misclassified by the gait classifier (see Table 11.5). For each person, two GEIs of the training video sequence and two GEIs of the testing video sequence are shown for comparison
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Fig. 11.12 Experiment 2. ESFIs of people misclassified by the face classifier (see Table 11.5). For each person, two ESFIs of the training video sequence and two ESFIs of the testing video sequence are shown for comparison

are misclassified by the gait classifier. Meanwhile, since face is sensitive to noise as well as facial expressions, the different conditions in the two video sequences that are taken at least one month apart bring more face recognition errors. Figure 11.12

shows ESFIs of the people who are misclassified by the face classifier. 

For the fusion performance based on ESFI and GEI in Table 11.6, the proposed feature fusion approach achieves the best performance at 91.1%. The approach [207]

has the same performance as the Sum rule and the Max rule at 88.9% [209]. We can see that a larger improvement of fusion performance is achieved by the proposed feature level fusion scheme compared with the other fusion schemes. Figure 11.13

shows the people (video sequences) misclassified by integrating ESFI and GEI using different fusion rules. For fusion based on OSFI and GEI, the best performance is also achieved by the proposed feature fusion approach at 86.7%, followed by [207]

at 84.4%, and the Sum rule and the Max rule at 82.2% [209]. Figure 11.14 shows the CMC curves of Experiment 2. In Fig. 11.14(a), it is clear that the CMC curve of the proposed feature fusion scheme has better performance than any other scheme. 

In Fig. 11.14(b), the accuracy rate of the proposed feature fusion scheme is lower than that of the Max rule fusion scheme at ranks 4 and 5, but for the other ranks, the accuracy rate of the proposed feature fusion scheme is higher than or equal to that

[image: Image 88]
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Fig. 11.13 Experiment 2. People misclassified by the integrated classifier based on ESFI and GEI using different fusion rules (see Table 11.6). For each person, one frame of the training video sequence and one frame of the testing video sequence are shown for comparison of the Max rule fusion scheme. Specifically, the highest accuracy rates are achieved by the proposed feature fusion scheme at ranks 1 and 2, which demonstrates the better performance than other fusion schemes since the accuracy rates at low ranks are more important for a recognition system. 
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Fig. 11.14 Experiment 2. (a) CMC curves of the classifiers using GEI and OSFI. (b) CMC curves of the classifiers using GEI and ESFI
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 11.4.2 Discussion on Experiments

The experimental results in Experiment 1 and 2 clearly demonstrate the importance of constructing ESFI. From ESFI, we can extract face features with more discriminating power. Therefore, better performance is achieved when ESFI instead of OSFI is used for all of the fusion schemes. For example, in Experiment 2, OSFI has bad performance at 64.4%, but ESFI still achieves the recognition rate of 80%. The proposed feature fusion scheme based on ESFI and GEI achieves the performance improvement of 8.9% (from 82.2% to 91.1%), while the improvement is 4.5% (from 82.2% to 86.7%) for the fusion of OSFI and GEI. The results demonstrate that ESFI serves as a better face template than OSFI. The synthetic features obtained from ESFI and GEI capture more discriminating power than those from OSFI and GEI. 

Consequently, the fusion based on ESFI and GEI always has better performance than the fusion based on OSFI and GEI using the same fusion scheme. 

In Experiment 1, the proposed feature level fusion scheme outperforms the match score level fusion schemes but has the same performance as the feature level fusion scheme [207]. For the more difficult database in Experiment 2, we can see that the proposed feature level fusion scheme outperforms all the other fusion schemes. 

The feature level fusion scheme [207] does not perform better than the match score level fusion schemes. Moreover, the proposed feature level fusion scheme achieves a larger performance improvement in Experiment 2 compared with the improvement in Experiment 1. Specifically, compared with the performance achieved by gait (the better performance of the two individual biometrics), the proposed scheme has an improvement of 6.7% in Experiment 1 and 8.9% in Experiment 2. All these results demonstrate the effectiveness of integrating face and gait information for human recognition using the proposed feature level fusion scheme since it outperforms the other fusion schemes and even achieves a larger improvement for the more challenging database. Furthermore, the results in both experiments indicate that the proposed feature level fusion scheme does not depend on specific features since it achieves the best fusion performance in both of cases: fusion of OSFI and GEI, and fusion of ESFI and GEI. 

When Experiments 1 and 2 are compared, it is clear that the recognition rates in Experiment 2 decrease compared with Experiment 1 because of 10 out of 45 people changed their clothes in the testing sequences. As explained before, gait recognition based on GEI is not only affected by the walking style of a person, but also by the shape of human body; see Figs. 11.7 and 11.11 as examples. Face is sensitive to noise as well as facial expressions, so the different condition in the training sequence and the testing sequence affects its reliability; see Figs. 11.8 and 11.12 as examples. 

All these factors contribute to recognition errors of the individual classifiers. However, the fusion system based on side face and gait overcomes this problem to some extent. For example, in Experiment 2, people from the set {2 ,  5 ,  6 ,  8 ,  13 ,  19 ,  26 ,  40}

are not correctly recognized by gait, and the performance of gait classifier is 82.2%, but when side face information is integrated, the recognition rate is improved to 91.1%. It is because the clothes or the walking style of these people are different
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between the training and testing video sequences, so the gait classifier cannot recognize them correctly. However, the side face of these people does not change so much in the training and testing sequences, and it brings useful information for the fusion system and corrects some errors. On the other hand, since the face classifier is comparatively sensitive to the variation of facial expressions and noise, it cannot get a good recognition rate by itself. When gait information is combined, the better performance is achieved. For example, in Experiment 2, people from the set

{1 ,  2 ,  5 ,  8 ,  11 ,  13 ,  30 ,  35 ,  42} are not correctly recognized by face, and the performance of face classifier is 80%, but when gait information is integrated, the recognition rate is improved to 91.1%. This demonstrates that the fusion system using side face and gait is effective for individual recognition in video since face and gait are two complementary biometrics. Consequently, our fusion system is relatively robust compared with the system using only one biometrics in the same scenario. 

These results also demonstrate that the proposed classifier using the synthetic features can rectify the misclassification conducted by both of the individual classifier. For example, in Table 11.6, the proposed feature level fusion scheme based on ESFI and GEI correctly recognizes person 8 who is misclassified by both the face classifier and the gait classifier individually. However, the match score fusion cannot rectify the misclassification conducted by both of the face classifier and the gait classifier. For example, in Table 11.5, there are four misclassified people {2 ,  5 ,  8 ,  13}

overlapped between classification using ESFI only and GEI only. From Table 11.6, we can see that the set of misclassified people {2 ,  5 ,  8 ,  13} is always a subset of the error indices when ESFI and GEI are combined by the Sum and Max rules. For the match score fusion, people misclassified by the individual classifiers are likely to be classified correctly after fusion under the condition that there is at least one of the two classifiers that works correctly. It is clear that the performance of the feature level fusion mainly depends on the fused feature set while the performance of the match score level fusion mainly depends on the results of the individual biometrics classifiers. Since the fused feature set contains richer information about the input biometrics pattern than the match score, the feature level fusion is more effective than the match score level fusion when individual biometrics features are appropriately combined. Moreover, even though the proposed feature level fusion scheme has the same performance as the feature level fusion scheme [207] in Experiment 1, it outperforms the feature level fusion scheme [207] in Experiment 2, which is a more challenging case. For the feature level fusion scheme [207], the face and gait features are simply concatenated, and the relationship between them is not known. For the proposed feature level fusion scheme, MDA is applied to the concatenated features of face and gait, and it maximizes the difference between values of the dependent variable. It is clear that MDA improves the discriminant power of the synthetic features, therefore, the proposed feature level fusion scheme is more effective than the feature level fusion scheme [207] for the recognition task. 

Though the comparison of the potential to correct errors between different fusion schemes is analyzed based on the experimental results in this chapter, the conclusion is applicable to other settings, such as different biometrics and multiple classifiers. 

232

11

Feature Level Fusion of Face and Gait at a Distance

11.5 Summary

The fusion of face and gait is promising in real world applications because of their individual characteristics. Compared with gait, face images are readily interpretable by humans, which allows people to confirm whether a biometrics system is functioning correctly, but the appearance of a face depends on many factors: incident illumination, head pose, facial expressions, mustache/beard, eyeglasses, cosmetics, hair style, weight gain/loss, aging, and so forth. Although gait images can be easily acquired from a distance, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. The fusion system is relatively more robust compared with the system that uses only one biometrics. For example, face recognition is more sensitive to low lighting conditions, whereas gait is more reliable under these conditions. Similarly, when the walker is carrying a heavy baggage or he/she is injured, the captured face information may contribute more than gait. 

In this chapter, a feature level fusion scheme was proposed to integrate information from side face and gait for recognizing individuals at a distance in video. 

ESFI and GEI, both of which integrate information over multiple frames in video, work as face template and gait template, respectively. Multiple discriminant analysis (MDA) is applied after the concatenation of face and gait features to generate discriminating features for improved recognition performance. The problem of the curse of dimensionality is reduced since the final feature vectors used in this chapter are of lower dimension than those in [207]. The experimental results show that the proposed feature level fusion scheme is effective for individual recognition in video. It outperforms the previously published fusion schemes at the match score level [209] and the feature level [207] for face- and gait-based human recognition at a distance in video. 

Part V

Conclusions for Integrated Gait and Face

for Human Recognition at a Distance

in Video


Chapter 12

Conclusions and Future Work

12.1 Summary

This book has focused on human recognition at a distance by integrating gait and face in video. Our research has demonstrated that the proposed video-based fusion system is effective for human identification. The representation of face and gait, where both fuse information from multiple video frames, is promising in real-world applications. The integration of face and gait biometrics will be highly useful in practical applications. Several important problems are addressed in this book. 

A summary of key contributions in gait-based human recognition, video-based face recognition and fusion of gait and face for individual recognition is given below. 

 12.1.1 Gait-Based Human Recognition at a Distance

• We proposed a spatio-temporal gait representation, called the gait energy image (GEI). Unlike other gait representations which consider gait as a sequence of templates (poses), GEI represents human motion sequence in a single image while preserving temporal information. In comparison to the gait representation by binary silhouette sequence, GEI not only saves storage space and computation time, but it is also less sensitive to silhouette noise in individual frames. 

• We presented a general GEI-based framework for human gait analysis. The use of the GEI-based general framework was discussed in five scenarios of gait-based human recognition and repetitive human activity recognition. It was shown that the proposed general framework achieves good performance in statistical feature fusion for human gait recognition, human recognition based on environmental contexts, view-insensitive human gait recognition, human repetitive activity recognition, and recognizing different carrying conditions. Experimental results also showed that our technique can work just as fine in terms of effectiveness of performance while providing all the advantages associated with computational efficiency for real-world applications. Therefore, we believe that our technique will have an impact on practical applications. 

B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 
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• We proposed a Bayesian based statistical analysis to evaluate the discriminating power of model-based gait features. Through probabilistic simulation, we not only obtained an upper bound on the probability of correct recognition with regard to different human silhouette resolution in ideal cases, but also predicted the plots characterizing maximum number of people in the database that can be recognized given the allowable error rate. This will guide future research for gait recognition in large databases. The discrepancy between the actual and predicted results will be reduced by developing better gait recognition algorithms. 

• We proposed a model-based approach to estimate 3D human motion for automatic gait recognition. The proposed approach was studied in both single camera and multiple camera scenarios. Experimental results showed that the proposed approach has the ability to automatically recognize individuals walking from different angles with respect to the image plane. 

• We presented a recognition method for 3D gait biometrics from a projector–

camera system. 3D human body data consisting of representative poses over one gait cycle were captured. 3D human body model was fitted to the body data using a bottom-up approach. The entire gait sequence was recovered in 3D from the fitted 3D body model. Then, gait features were defined by dynamic and static features. The similarity measure based on gait features was used for recognition. 

• We improved the moving human detection performance by combining color and thermal image sequences using automatic image registration. A hierarchical genetic algorithm (HGA) based scheme was employed to find correspondence so that the preliminary silhouettes form the color and thermal images were well matched. HGA estimated the model parameters within a series of windows with adaptively reduced size at different levels. The obtained correspondence and corresponding transformation were used for image registration in the same scene. 

Registered color and thermal images were combined by probabilistic strategies to obtain better body silhouette extraction results. Experiments showed that the proposed approach achieves good performance for image registration between color and thermal image sequences, and fusion of color and thermal images achieves better performance on silhouette detection than color or thermal images used individually. The performance improvement of moving human detection can further improve the performance of the proposed model-free and model-based human

gait recognition

 12.1.2 Video-Based Human Recognition at a Distance

• Instead of using the frontal face in a face- and gait-integrated system as in the previous work, we have developed a system that integrates information of the side view of face and gait from video data in a single camera scenario. The integration of these two biometrics modalities has not been done before. 

• We have constructed a high-resolution side face image from multiple video frames to overcome the problem of limited resolution of face at a distance in
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video. Two different face recognitions, face profile recognition and side face recognition, were conducted. For the face profile, curvature features were extracted from the high-resolution side face image. For the side face, enhanced side face image (ESFI), a normalized high-resolution face image, was used as the face template for an individual. The experimental results showed that the idea of constructing ESFI from multiple frames is promising for human recognition in video, and more discriminating face features are extracted from ESFI compared to those from the original side face images (OSFI). 

• Besides the work on the integration of face and gait for recognition, we have explored a non-reference objective measure to evaluate the quality of the superresolved face images constructed under different conditions. Face recognition was also conducted on a set of the super-resolved images, which were constructed from different numbers of low-resolution face images. Experimental results demonstrated that the variation of pose, lighting and expression has different effects on the quality of the super-resolved face images, and that the recognition performance is in agreement with the quality of the tested images. Furthermore, it is clear that the proposed quality measure is effective in the quality assessment of super-resolved images and that the image resolution enhancement is necessary for the recognition task in the low-resolution image/video scenario. 

 12.1.3 Fusion of Face and Gait for Human Recognition

 at Distance

• We have proposed several schemes to fuse the information of the side face and gait at two different levels: the match score level and the feature level. The experiments were conducted on a database of 100 video sequences corresponding to 45 people. For the fusion at the match score level, the performance improvement was always archived when appropriate fusion rules, such as the Max rule and the Sum rule, were used to integrate information from ESFI and GEI. For the fusion at the feature level, the synthetic features, encoding both face information from ESFI and gait information from GEI, carry more discriminating power than either of single biometrics features. Also, the synchronization of face and gait is not necessary for face template ESFI and gait template GEI. Furthermore, different fusion methods, including the match score level fusion and the feature level fusion, were compared and analyzed. One of the proposed feature level fusion scheme, where MDA is applied after the concatenation of face and gait features that are obtained separately, performed the best among all the compared fusion schemes. 

• The experimental results have demonstrated that the fusion system using side face and gait has potential since face and gait are two complementary biometrics. Compared with gait, face images are readily interpretable by humans, which allows people to confirm whether a computer system is functioning correctly, but the appearance of a face depends on many factors: incident illumination, head pose, facial expressions, moustache/beard, eyeglasses, cosmetics, hair style, 
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weight gain/loss, aging, and so forth. Although gait images can be easily acquired from a distance, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. The fusion system is relatively more robust compared with the system that uses only one biometric. For example, face recognition is more sensitive to low lighting conditions, whereas gait is more reliable under these conditions. Similarly, when the walker is carrying a heavy baggage or he/she is injured, the captured face information may contribute more than gait. 

12.2 Future Research Directions

Although the video-based fusion system we have developed achieved good performance in human recognition at a distance, we believe that some problems need to be worked on to make the face and gait fusion system more effective and efficient in the future. Variability of clothes, baggy pants, low resolution, active control of cameras in a video network, fusion of multiple viewpoints are all important problems. 

We list the possible directions as follows. 

• Gait recognition based on GEI is affected by the shape of human body to some extent. For gait recognition, the characteristics of human body parts and their relations could be used to improve performance and achieving better performance in the presence of changing clothes [69]. Robust image segmentation is desired in the presence of changing environmental conditions, lighting, shadow, and occlusion. Model-based and model free approaches need to be integrated in an effective manner. 3D gait is also a real possibility in a video network [13]. Further, in a camera rich video networks it is possible to work with full volumetric model. In this context, 3D probabilistic modeling, tracking in 3D, gait from a long distance at low resolution become important. 

• For better face recognition, the camera could track the whole human body first and then zoom-in to get face images with as high quality as possible. Active camera control in the context of a video network is an important problem to work on [18]. Variations in illumination, pose, make-up, glasses, hair style, age, facial expressions and recognition at large distances are other important problems. 

• The face and gait integrated system can be in combination with other biometrics such as ear and iris for certain applications so that it could be used in the high-security applications [165]. It is also possible to combine graphics and vision in a camera network for large scale practical applications [18]. 

• The side face contains less information compared with the frontal face, and it is sensitive to noise as well as facial expressions. Multiple cameras could be used to capture different views of a person since an integrated system based on different views could be more favorable in real-world applications [18]. Multiple biometrics such as face, gait and iris can be effectively used for robust recognition. Multi-view gait and face have been recently used for determining age, ethnicity, and gender [200, 201]. Thus, it is possible to integrate soft biometrics with tracking and recognition algorithms to improve confidence in recognition. 

12.2 Future Research Directions
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• Currently, our database is small as it contains only 100 video sequences of 45 people. A larger database with more variety, such as variation of lighting conditions and backgrounds, could be collected to further evaluate the performance of the fusion system. More thorough evaluation is needed with varying distances, viewing angles, clothing, weather and system level evaluation. VideoWeb laboratory can be effectively used for this purpose [124]. 

• The construction of ESFI and GEI is time consuming compared with other processes during the implementation of the fusion system. The efficiency of these processes should be improved so that our system could operate in real time. One possible approach could be the implementation of time consuming algorithms in graphics processing units (GPU) and field-programmable gate arrays (FPGAs). 


References

1. Abuelgasim, A., Fraser, R.: Day and night-time active fire detection over north America using NOAA-16 AVHRR data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 3, pp. 1489–1491 (2002)

2. Akimoto, T., Suenaga, Y., Wallace, R.S.: Automatic creation of 3d facial models. IEEE Trans. 

Comput. Graph. Appl. 13, 16–22 (1993)

3. Akita, K.: Image sequence analysis of real world human motion. Pattern Recognit. 17(1), 73–83 (1984)

4. Ali, M.A., Clausi, D.A.: Automatic registration of SAR and visible band remote sensing images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 3, pp. 1331–1333 (2002)

5. Andreone, L., Antonello, P.C., Bertozzi, M., Broggi, A., Fascioli, A., Ranzato, D.: Vehicle detection and localization in infra-red images. In: Proceedings of IEEE International Conference on Intelligent Transportation Systems, pp. 141–146 (2002)

6. Arlowe, H.D.: Thermal detection contrast of human targets. In: Proceedings of IEEE International Carnahan Conference on Security Technology, pp. 27–33 (1992)

7. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)

8. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)

9. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720

(1997)

10. BenAbdelkader, C., Cutler, R., Davis, L.: Motion-based recognition of people in EigenGait space. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 254–259 (2002)

11. BenAbdelkader, C., Cutler, R., Davis, L.: Person identification using automatic height and stride estimation. In: Proceedings of International Conference on Pattern Recognition, vol. 4, pp. 377–380 (2002)

12. Bhanu, B., Chen, H.: Human Ear Recognition by Computer. Springer, New York (2008) 13. Bhanu, B., Govindaraju, V. (eds.): Multibiometrics for Human Identification. Cambridge University Press, Cambridge (2010)

14. Bhanu, B., Han, J.: Kinematic-based human motion analysis in infrared sequences. In: Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 208–212 (2002) 15. Bhanu, B., Tan, X.: Computational Algorithm for Fingerprint Recognition. Kluwer Academic, Norwell (2003)

16. Bhanu, B., Zhou, X.: Face recognition from face profile using dynamic time warping. In: Proceedings of International Conference on Pattern Recognition, vol. 4, pp. 499–502 (2004) B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 

241

Advances in Pattern Recognition, 

DOI 10.1007/978-0-85729-124-0, © Springer-Verlag London Limited 2011

242

References

17. Bhanu, B., Ratha, N.K., Kumar, V., Chellappa, R., Bigun, J. (eds.): IEEE Transactions on Information Forensics and Security, Special Issue on Human Detection and Recognition, vol. 2 (2007)

18. Bhanu, B., Ravishankar, C., Roy-Chowdhury, A., Aghajan, H., Terzopoulos, D. (eds.): Distributed Video Sensor Networks. Springer, Berlin (2010)

19. Bharatkumar, A.G., Daigle, K.E., Pandy, M.G., Cai, Q., Aggarwal, J.K.: Lower limb kinematics of human walking with the medial axis transformation. In: Proceedings of IEEE Computer Society Workshop on Motion of Non-rigid and Articulated Objects, pp. 70–76 (1994) 20. Blanc, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Computer Graphics Proceedings of SIGGRAPH ’99, pp. 187–194 (1999)

21. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. 

IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

22. Boshra, M., Bhanu, B.: Predicting performance of object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 956–969 (2000)

23. Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(3), 731–740 (2007)

24. Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D.: Gait recognition using linear time normalization. Pattern Recognit. 39(5), 969–979 (2006)

25. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categori-sation. Inf. Fusion 6(1), 5–20 (2005)

26. Campos, J.C., Linney, A.D., Moss, J.P.: The analysis of facial profiles using scale space techniques. Pattern Recognit. 26, 819–824 (1993)

27. Capel, D.P., Zisserman, A.: Super-resolution from multiple views using learnt image models. 

In: CVPR’01, vol. 2, pp. 627–634 (2001)

28. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Factorial HMM and parallel HMM for gait recognition. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(1), 114–123 (2009) 29. Cheung, K.M., Baker, S., Kanade, T.: Shape-from-silhouette across time part II: applications to human modeling and markerless motion tracking. Int. J. Comput. Vis. 63(3), 225–245

(2005)

30. Cheung, K.M., Baker, S., Kanade, T.: Shape-from-silhouette across time part II: theory and algorithms. Int. J. Comput. Vis. 63(3), 221–247 (2005)

31. Clark, G.A., Sengupta, S.K., Buhl, M.R., Sherwood, R.J., Schaich, P.C., Bull, N., Kane, R.J., Barth, M.J., Fields, D.J., Carter, M.R.: Detecting buried objects by fusing dual-band infrared images. In: 1993 Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 135–143 (1993)

32. Collins, R.T., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 351–356 (2002)

33. Cornet, Y., Binard, M.: Which metrices to assess and compare the quality of image fusion products? In: Remote Sensing of Land Use and Land Cover, Proceedings of the EARSeL

Workshop, Dubrovnik, Croatia, 2004

34. Cutting, J.E., Kozlowski, L.T.: Recognition of friends by their walk. Bull. Psychon. Soc. 9, 353–356 (1977)

35. Cvejic, N., Loza, A., Bull, D., Canagarajah, N.: A novel metric for performance evaluation of image fusion algorithms. Trans. Eng. Comput. Technol. 7, 80–85 (2005) 36. Cvejic, N., Canagarajah, C., Bull, D.: Image fusion metric based on mutual information and Tsallis entropy. Electron. Lett. 42, 626–627 (2006)

37. Dare, P.M., Dowman, I.J.: Automatic registration of SAR and spot imagery based on multiple feature extraction and matching. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 7, pp. 2896–2898 (2000)

38. Dariush, B., Kang, S.B., Waters, K.: Spatiotemporal analysis of face profiles: detection, segmentation, and registration. In: Proceedings of IEEE Conference on Automatic Face and Gesture Recognition, pp. 248–253 (1998)

39. Davis, J.: Sequential reliable-inference for rapid detection of human actions. In: Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 111–118 (2004)

References

243

40. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. 

SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

41. Dedeoglu, G., Kanade, T., August, J.: High-zoom video hallucination by exploiting spatio-temporal regularities. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR’04, vol. 2, pp. 151–158 (2004)

42. Dittrich, W.H.: Action categories and the perception of biological motion. Perception 22, 15–22 (1993)

43. Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred, noisy and under-sampled measured images. IEEE Trans. Image Process. 6, 1646–1658

(1997)

44. Caillette, A.G.F., Howard, T.: Real-time 3-d human body tracking using learnt models of behavior. Comput. Vis. Image Underst. 109(2), 112–125 (1998)

45. Feng, G., Dong, K., Hu, D., Zhang, D.: When faces are combined with palmprints: a novel biometric fusion strategy. In: International Conference on Biometric Authentication, pp. 

701–707 (2004)

46. Fujiyoshi, H., Lipson, A.J.: Real-time human motion analysis by image skeletonization. In: Proceedings of 4th IEEE Workshop on Applications of Computer Vision, pp. 15–21 (1998) 47. Gafurov, D., Snekkenes, E., Bours, P.: Spoof attack on gait identification system. IEEE Trans. 

Inf. Forensics Secur. 2(3), 491–502 (2007)

48. Galton, F.: Numeralised profiles for classification and recognition. Nature 83, 127–130

(1910)

49. Gao, Y., Maggs, M.: Feature-level fusion in personal identification. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (2005)

50. Gharavi, H., Tabatabai, A.: Application of quadrature mirror filtering to the coding of monochrome and color images. In: Proceedings of IEEE International Conference Acoustic, Speech, and Signal Processing, pp. 2384–2487 (1987)

51. Ginesu, G., Giusto, D.D., Margner, V., Meinlschmidt, P.: Digital Image Processing. Addison-Wessley, Reading (1992)

52. Ginesu, G., Giusto, D.D., Margner, V., Meinlschmidt, P.: Detection of foreign bodies in food by thermal image processing. IEEE Trans. Ind. Electron. 51(2), 480–490 (2004) 53. Goffredo, M., Seely, R.D., Carter, J.N., Nixon, M.S.: Markerless view independent gait analysis with self-camera calibration. In: Proceedings of International Conference on Automatic Face and Gesture Recognition (2008)

54. Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Constraints. 

MIT Press, Cambridge (1990)

55. Gross, R., Shi, J.: The CMU Motion of Body (MoBo) database. Technical Report CMU-RI-TR-01-18, Robotics Institute, Pittsburgh, PA, 2001

56. Guo, Y., Tsuji, S.: Understanding human motion patterns. In: Proceedings of the International Conference Pattern Recognition, vol. 2, pp. 325–329 (1994)

57. Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20(10), 1025–1039 (1998) 58. Hammoud, R.I., Abidi, B.R., Abidi, M.A. (eds.): Face Biometrics for Personal Identification—Multi-Sensory Multi-Modal Systems. Springer, Berlin (2007) 59. Han, J., Bhanu, B.: Statistical feature fusion for gait-based human recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 842–847

(2004)

60. Han, J., Bhanu, B.: Performance prediction for individual recognition by gait. Pattern Recognit. Lett. 26(5), 615–624 (2005)

61. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. 

Mach. Intell. 28(2), 316–322 (2006)

62. Han, J., Bhanu, B.: Moving human detection by EO and IR sensor fusion. Pattern Recognit. 

40(6), 1771–1784 (2007)

63. Harmon, L.D., Hunt, W.F.: Automatic recognition of human face profiles. Comput. Graph. 

Image Process. 6, 135–156 (1977)

244

References

64. Harmon, L.D., Khan, M.K., Lasch, R., Ramig, P.F.: Machine identification of human faces. 

Pattern Recognit. 13, 97–110 (1981)

65. He, Q., Debrunner, C.: Individual recognition from periodic activity using hidden Markov models. In: Proceedings of IEEE Workshop on Human Motion, pp. 47–52 (2000) 66. Hewitt, P.A., Dobberfuhl, D.: The science and art of proportionality. Sci. Scope 27, 30–31

(2004)

67. Holland, J.A., Yan, X.-H.: Ocean thermal feature recognition, discrimination, and tracking using infrared satellite imagery. IEEE Trans. Geosci. Remote Sens. 30(5), 1046–1053 (1992) 68. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)

69. Hossain, M.A., Makihara, Y., Wang, J., Yagi, Y.: Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Pattern Recognit. 43(6), 2281–2291 (2010)

70. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–

187 (1962)

71. Huang, X., Boulgouris, N.V.: Human gait recognition based on multiview gait sequences. 

EURASIP J. Adv. Signal Process. 2008, 1–8 (2008)

72. Huang, P.S., Harris, C.J., Nixon, M.S.: Recognizing humans by gait via parametric canonical space. Artif. Intell. Eng. 13, 359–366 (1999)

73. Huang, X., Paragios, N., Metaxas, D.: Shape registration in implicit spaces using information theory and free form deformations. IEEE Trans. Med. Imaging 28(8), 1303–1318 (2006) 74. Inglada, J., Adragna, F.: Automatic multi-sensor image registration by edge matching using genetic algorithms. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 5, pp. 2313–2315 (2001)

75. Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and trans-parency. J. Vis. Commun. Image Represent 4, 324–335 (1993)

76. Jain, A., Bolle, R., Pankanti, S. (eds.): Biometrics—Personal Identification in Networked Society. Kluwer Academic, Norwell (1999)

77. Jia, K., Gong, S.: Hallucinating multiple occluded face images of different resolutions. Pattern Recognit. Lett. 27(15), 1768–1775 (2006)

78. Johannson, G.: Visual perception of biological motion and a model for its analysis. Percept. 

Psychophys. 14, 201–211 (1973)

79. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002) 80. Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, M.N., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: an annotated deformable model approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–649

(2007)

81. Kale, A., Chowdhury, A.K.R., Chellappa, R.: Towards a view invariant gait recognition algorithm. In: Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 143–150 (2003)

82. Kale, A., Rajagopalan, A.N., Cuntoor, N., Kruger, V.: Gait-based recognition of humans using continuous HMMs. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 321–326 (2002)

83. Kale, A., Cuntoor, N., Yegnanarayana, B., Rajagopalan, A.N., Chellappa, R.: Gait analysis for human identification. In: Proceedings of fourth International Conference on Audio- and Video-Based Biometric Person Authentication. LNCS, vol. 2688, pp. 706–714. Springer, Berlin (2003)

84. Kale, A., Roy-chowdhury, A., Chellappa, R.: Fusion of gait and face for human identification. In: Proceedings of Acoustics, Speech, and Signal Processing, vol. 5, pp. 901–904

(2004)

85. Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004)

86. Keogh, E.: Exact indexing of dynamic time warping. In: Proceedings of Conference on Very Large Data Bases (2002)

References

245

87. Kinnunen, T., Hautamaki, V., Franti, P.: Fusion of spectral feature sets for accurate speaker identification. In: Proceedings of International Conference Speech and Computer, pp. 361–

365 (2004)

88. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. 

Mach. Intell. 20(3), 226–239 (1998)

89. Kong, A., Zhang, D., Kamel, M.: Palmprint identification using feature-level fusion. Pattern Recognit. 39(3), 478–487 (2006)

90. Kothiyal, K., Tettey, S.: Anthropometry for design for the elderly. Int. J. Occup. Sagety Ergon. 7(1), 15–34 (2001)

91. Koza, J.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

92. Kozlowski, L., Cutting, J.: Recognizing the sex of a walker from a dynamic point-light dis-play. Percept. Psychophys. 21(6), 575–580 (1977)

93. Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal verification using palmprint and hand geometry biometric. In: Proceedings of Audio- and Video-Based Biometric Person Authentication, pp. 668–678 (2003)

94. Lam, T.H.W., Lee, R.S.T., Zhang, D.: Human gait recognition by the fusion of motion and static spatio-temporal templates. Percept. Psychophys. 40(9), 2563–2573 (2007) 95. Lee, H.J., Chen, Z.: Determination of 3d human body postures from a single view. Comput. 

Vis. Graph. Image Process. 30, 148–168 (1985)

96. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of fifth International Conference on Automatic Face and Gesture Recognition, pp. 148–155

(2002)

97. Leung, M.K., Yang, Y.-H.: First sight: a human body outline labeling system. IEEE Trans. 

Pattern Anal. Mach. Intell. 17(4), 359–377 (1995)

98. Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, Berlin (2005) 99. Li, Q., Qiu, Z.: Handmetric verification based on feature-level fusion. J. Comput. Sci. Netw. 

Secur. 6(2A) (2006)

100. Li, H., Zhou, Y.T.: Automatic EO/IR sensor image registration. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 240–243 (1995)

101. Li, H., Manjunath, B.S., Mitra, S.K.: A contour-based approach to multisensor image registration. IEEE Trans. Image Process. 4(3), 320–334 (1995)

102. Li, H., Zhou, Y.T., Chellappa, R.: SAR/IR sensor image fusion and real-time implementation. 

In: Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1121–1125 (1995)

103. Lin, D., Liu, W., Tang, X.: Layered local prediction network with dynamic learning for face super-resolution. In: Proceedings of IEEE International Conference Image Processing, vol. a, pp. 885–888 (2005)

104. Li, X., Lin, S., Yan, S., Xu, D.: Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man Cybern., Part B 38(2), 342–352 (2008)

105. Lin, M.H.: Tracking articulated objects in real-time range image sequences. In: Proceedings of International Conference on Computer Vision, pp. 648–653 (1999)

106. Lin, Y., Bhanu, B.: Evolutionary feature synthesis for object recognition. IEEE Trans. Syst. 

Man Cybern., Part C 35(2), 156–171 (2005)

107. Little, J.J., Boyd, J.E.: Recognizing people by their gait: the shape of motion. Videre, J. Comput. Vis. Res. 1(2), 1–32 (1998)

108. Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Trans. 

Pattern Anal. Mach. Intell. 28(6), 863–876 (2006)

109. Liu, C., Shum, H., Zhang, C.: A two-step approach to hallucinating faces: global parametric model and local nonparametric model. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR’01, vol. 1, pp. 192–198 (2001) 110. Liu, W., Lin, D., Tang, X.: Hallucinating faces: tensor patch super-resolution and coupled residue compensation. In: CVPR’05, vol. 2, pp. 478–484 (2005)

111. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008)

246

References

112. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition. IEEE Trans. Neural Netw. 20(1), 103–123 (2009)

113. Ma, Y., Qian, G. (eds.): Intelligent Video Surveillance. CRC Press, Boca Raton (2010) 114. Malassiotis, S., Aifanti, N., Strintzis, M.G.: Personal authentication using 3-D finger geometry. IEEE Trans. Inf. Forensics Secur. 1(1), 12–21 (2006)

115. Mandava, V.R., Fitzpatrick, J.M., Pickens, D.R.I.: Adaptive search space scaling in digital image registration. IEEE Trans. Med. Imaging 8(3), 251–262 (1989)

116. Martinez, P.L., van Kempen, L., Sahli, H., Ferrer, D.C.: Improved thermal analysis of buried landmines. IEEE Trans. Geosci. Remote Sens. 42(9), 1965–1975 (2004) 117. Moon, Y.S., Yeung, H.W., Chan, K.C., Chan, S.O.: Template synthesis and image mosaick-ing for fingerprint registration: an experimental study. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 409–412 (2004)

118. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognit. Lett. 17(2), 155–62 (1996)

119. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Jt. Surg. 

46A(2), 335–360 (1964)

120. Nadimi, S., Bhanu, B.: Multistrategy fusion using mixture model for moving object detection. In: Proceedings of International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 317–322 (2001)

121. Nadimi, S., Bhanu, B.: Physical models for moving shadow and object detection in video. 

IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1079–1087 (2004)

122. Nanda, H., Davis, L.: Probabilistic template based pedestrian detection in infrared videos. 

In: Proceedings of IEEE Intelligent Vehicle Symposium, vol. 1, pp. 15–20 (2002) 123. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443–453 (1977) 124. Nguyen, H., Bhanu, B., Patel, A., Diaz, R.: VideoWeb: design of a wireless camera network for real-time monitoring of activities. In: Third ACM/IEEE International Conference on Distributed Smart Cameras, Como, Italy, 30 August–2 September 2009

125. Nixon, M.S., Tan, T., Chellappa, R.: Human Identification Based on Gait. Springer, Berlin (2006)

126. Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 469–474

(1994)

127. O’Mara, D.: Automated facial metrology. PhD Thesis, The University of Western Australia 128. O’Rourke, J., Badler, N.I.: Model-based image analysis of human motion using constraint propagation. IEEE Trans. Pattern Anal. Mach. Intell. 2, 522–536 (1980) 129. Pan, G., Han, S., Wu, Z., Wang, Y.: Super-resolution of 3d face. In: The nineth European Conference on Computer Vision, ECCV’06, vol. 3952, pp. 389–401 (2006)

130. Park, J.S., Lee, S.W.: Resolution enhancement of facial image using an error back-projection of example-based learning. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 831–836 (2004)

131. Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6, 1064–1076

(1997)

132. Pavlidis, I., Levine, J., Baukol, P.: Thermal imaging for anxiety detection. In: Proceedings of IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications, pp. 104–109 (2000)

133. Perez-Jacome, J.E., Madisetti, V.K.: Target detection from coregistered visual-thermal-range images. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2741–2744 (1997)

134. Periaswamy, S., Farid, H.: Elastic registration in the presence of intensity variations. IEEE

Trans. Med. Imaging 22(7), 865–874 (2003)

135. Petrovic, V., Xydeas, C.: Sensor noise effects on signal-level image fusion performance. Inf. 

Fusion 4(3), 167–183 (2003)

References

247

136. Pheasant, S.: Bodyspace: Anthropometry, Ergonomics and Design. Taylor & Francis, London (1986)

137. Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of International Conference on Pattern Recognition, vol. 1, pp. 385–388 (2002)

138. Piella, G., Heijmans, H.: A new quality metric for image fusion. In: Proceedings of International Conference Image Processing, pp. 173–176 (2003)

139. Polana, R., Nelson, R.: Low level recognition of human motion (or how to get your man without finding his body parts). In: Proceedings of IEEE Workshop on Motion of Non-Rigid and Articulated Objects, pp. 77–82 (1994)

140. Qu, G.H., Zhang, D.L., Yan, P.F.: Information measure for performance of image fusion. 

Electron. Lett. 38(7), 313–315 (2002)

141. Rajagopalan, A.N., Chellappa, R.: Higher-order spectral analysis of human motion. In: Proceedings of International Conference on Image Processing, vol. 3, pp. 230–233 (2000) 142. Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. J. Opt. Soc. Am. A 18(10), 2448–2459 (2001)

143. Rehg, J.M., Kanade, T.: Model-based tracking of self-occluding articulated objects. In: Proceedings of International Conference on Computer Vision, pp. 612–617 (1995) 144. Riggan, P.J., Hoffman, J.W.: Field applications of a multi-spectral, thermal imaging radiome-ter. In: Proceedings of IEEE Aerospace Conference, vol. 3, pp. 443–449 (1999) 145. Ross, A.A., Govindarajan, R.: Feature level fusion of hand and face biometrics. In: Proceedings of SPIE Conference on Biometric Technology for Human Identification II, pp. 196–204

(2006)

146. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of multibiometrics. In: Proceedings of IEEE International Conference on Image Processing (2006)

147. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 8, 712–721 (1999)

148. Santiago-Mozos, R., Leiva-Murillo, J.M., Perez-Cruz, F., Artes-Rodriguez, A.: Supervised-PCA and SVM classifiers for object detection in infrared images. In: Proceedings of IEEE

Conference on Advanced Video and Signal Based Surveillance, pp. 122–127 (2003) 149. Sappa, A.D., Aifanti, N., Malassiotis, S., Strintzis, M.G.: Unsupervised motion classification by means of efficient feature selection and tracking. In: Proceedings of International Symposium on 3D Data Processing, Visualization and Transmission, pp. 912–917 (2000) 150. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. 

Intell. 27(2), 162–177 (2005)

151. Schultz, R.R., Stevenson, R.L.: Extraction of high resolution frames from video sequences. 

IEEE Trans. Image Process. 5(6), 996–1011 (1996)

152. Seely, R.D., Samangooei, S., Middleton, L., Carter, J.N., Nixon, M.S.: The University of Southampton multi-biometric tunnel and introducing a novel 3d gait dataset. In: Proceedings of International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6

(2008)

153. Shakhnarovich, G., Darrell, T.: On probabilistic combination of face and gait cues for identification. In: Proceedings of Automatic Face and Gesture Recognition, vol. 5, pp. 169–174

(2002)

154. Shakhnarovich, G., Lee, L., Darrell, T.: Integrated face and gait recognition from multiple views. In: Proceedings of IEEE Workshop on Visual Motion, vol. 1, pp. 439–446 (2001) 155. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of diversity in combining classifiers. Inf. Fusion 3, 135–148 (2002)

156. Shutler, J.D., Nixon, M.S., Harris, C.J.: Statistical gait recognition via velocity moments. In: Proceedings of IEE Colloquium on Visual Biometrics, pp. 10/1–10/5 (2000)

157. Spencer, N., Carter, J.: Towards pose invariant gait reconstruction. In: Proceedings of IEEE

International Conference on Image Processing, vol. 3, pp. 261–264 (2005)

248

References

158. Stevenage, S.V., Nixon, M.S., Vince, K.: Visual analysis of gait as a cue to identity. Appl. 

Cogn. Psychol. 13, 513–526 (1999)

159. Sundaresan, A., RoyChowdhury, A., Chellappa, R.: A hidden Markov model based framework for recognition of humans from gait sequences. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 93–96 (2003)

160. Tanawongsuwan, R., Bobick, A.: Gait recognition from time-normalized joint-angle trajectories in the walking plane. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 726–731 (2001)

161. Tao, D., Li, X., Wu, X., Maybank, S.: Human carrying status in visual surveillance. In: Proceedings of IEEE Conference Computer Vision and Pattern Recognition, vol. 2, pp. 1670–

1677 (2006)

162. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and Gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715

(2007)

163. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press, San Diego (1998) 164. Theoharis, T., Passalis, G., Toderici, G., Kakadiaris, I.A.: Unified 3d face and ear recognition using wavelets on geometry images. Pattern Recognit. 41(3), 796–804 (2008) 165. Tistarelli, M., Li, S.Z., Chellappa, R.: Handbook of Remote Biometrics: For Surveillance and Security. Springer, Berlin (2009)

166. Tolliver, D., Collins, R.T.: Gait shape estimation for identification. In: Proceedings of fourth International Conference on Audio- and Video-Based Biometric Person Authentication. 

LNCS, vol. 2688, pp. 734–742 (2003)

167. Tsagaris, V., Anastassopoulos, V.: Information measure for assessing pixel-level fusion methods. In: Image and Signal Processing for Remote Sensing X. Proceedings of the SPIE, vol. 5573, pp. 64–71. SPIE, Bellingham (2004)

168. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Eng. Med. Biol. Mag. RA-3(4), 323–344 (1987)

169. Tsai, R.Y., Huang, T.S.: Multiframe Image Restoration and Registration, vol. 1. JAI Press, London (1984)

170. Tsalakanidou, F., Malassiotis, S., Strintzis, M.G.: A 3D face and hand biometric system for robust user-friendly authentication. Pattern Recognit. Lett. 28(16), 2238–2249 (2007) 171. van den Elsen, P.A., Pol, E.-J.D., Viergever, M.A.: Medical image matching—a review with classification. IEEE Eng. Med. Biol. Mag. 12(1), 26–39 (1993)

172. Vega, I.R., Sarkar, S.: Statistical motion model based on the change of feature relationships: human gait-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1323–1328

(2003)

173. Vondrak, M., Signal, L., Jenkins, O.C.: Physical simulation for probabilistic motion tracking. 

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8

(2008)

174. Wachter, S., Nagel, H.-H.: Tracking of persons in monocular image sequences. In: Proceedings of IEEE Workshop on Nonrigid and Articulated Motion, pp. 2–9 (1997)

175. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

176. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004) 177. Wang, L., Geng, X. (eds.): Behavioral Biometrics for Human Identification—Intelligent Applications. IGI Global, Hershey (2010)

178. Wang, X., Tang, X.: Hallucinating face by eigentransformation. IEEE Trans. Syst. Man Cybern., Part C 35(3), 425–434 (2005)

179. Wang, L., Tan, T., Hu, W., Ning, H.: Automatic gait recognition based on statistical shape analysis. IEEE Trans. Image Process. 12(9), 1120–1131 (2003)

180. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

References

249

181. Wang, L., Ning, H., Tan, T., Hu, W.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004) 182. Werghi, N.: Segmentation and modeling of full human body shape from 3-d scan data: a survey. IEEE Trans. Syst. Man Cybern., Part C 37(6), 1122–1136 (2007) 183. Wilder, J., Phillips, P.J., Jiang, C., Wiener, S.: Comparison of visible and infra-red imagery for face recognition. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 182–187 (1996)

184. Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.-J.: Human gait recognition with matrix representation. IEEE Trans. Circuits Syst. Video Technol. 16(7), 896–903 (2006) 185. Xu, D., Yan, S., Tao, D., Zhang, L., Li, X., Zhang, H.-J.: Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Trans. Image Process. 16(11), 2811–2821 (2007)

186. Xu, Y., Roy-Chowdhury, A.: Integrating the effects of motion, illumination and structure in video sequences. In: Proceedings of IEEE International Conference on Computer Vision, ICCV (2005)

187. Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36, 308–309 (2000)

188. Yamauchi, K., Sato, Y.: 3d human body measurement by multiple range images. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 833–836 (2006) 189. Yambor, W.S., Draper, B.A., Beveridge, J.R.: Analyzing PCA-Based Face Recognition Algorithms: Eigenvector Selection and Distance Measures. World Scientific, Singapore (2002) 190. Yan, P., Bowyer, K.W.: Biometric recognition using 3d ear shape. IEEE Trans. Pattern Anal. 

Mach. Intell. 29(8), 1297–1308 (2007)

191. Yang, J., Yang, J.Y., Zhang, D., Lu, J.F.: Feature fusion: parallel strategy vs. serial strategy. 

Pattern Recognit. 38(6), 1369–1381 (2003)

192. Yao, J.: Image registration based on both feature and intensity matching. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1693–1696 (2001)

193. Yoo, J.-H., Nixon, M.S., Harris, C.J.: Model-driven statistical analysis of human gait motion. 

In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 285–288

(2002)

194. Yoshitomi, Y., Kim, S.-I., Kawano, T., Kilazoe, T.: Effect of sensor fusion for recognition of emotional states using voice, face image and thermal image of face. In: Proceedings of IEEE International Workshop on Robot and Human Interactive Communication, pp. 178–

183 (1996)

195. Yoshitomi, Y., Miyaura, T., Tomita, S., Kimura, S.: Face identification using thermal image processing. In: Proceedings of IEEE International Workshop on Robot and Human Communication, pp. 374–379 (1997)

196. Yu, J., Bhanu, B.: Super-resolution restoration of facial images in video. In: International Conference on Pattern Recognition, ICPR’06, vol. 4, pp. 342–345 (2006)

197. Yu, J., Bhanu, B.: Super-resolution of facial images in video with expression changes. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance, Santa Fe, NM, September 1–3, 2008

198. Yu, J., Bhanu, B., Xu, Y., Roy-Chowdhury, A.: Super-resolved 3D facial texture under changing pose and illumination. In: International Conference on Image Processing, pp. 553–556

(2007)

199. Yu, H., Qin, S., Wight, D.K., Kang, J.: Generation of 3D human models with different levels of detail through point-based simplification. In: Proceedings of International Conference on

“Computer as a Tool”, pp. 1982–1986 (2007)

200. Zhang, D., Wang, Y., Bhanu, B.: Age classification based on gait using HMM. In: International Conference on Pattern Recognition, Istanbul, Turkey, August 23–26, 2010

201. Zhang, D., Wang, Y., Bhanu, B.: Ethnicity classification based on gait using multi-view fusion. In: IEEE Computer Society Workshop on Biometrics, August 18, 2010. Held in Conjunction with IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 13–18, 2010

250

References

202. Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition at sagittal plane. Image Vis. 

Comput. 25(3), 321–330 (2007)

203. Zhao, W., Chellappa, R.: Face Processing-Advanced Modeling and Methods. Else-vier/Academic Press, Amsterdam/San Diego (2006)

204. Zhao, W., Chellapa, R., Phillips, P.J.: Face recognition: a literature survey. ACM Comput. 

Surv. 35(4), 399–458 (2003)

205. Zhao, G., Liu, G., Li, H., Pietik, M.: 3D gait recognition using multiple cameras. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 529–534

(2006)

206. Zheng, Q., Chellappa, R.: A computational vision approach to image registration. IEEE

Trans. Image Process. 2(3), 311–326 (1993)

207. Zhou, X., Bhanu, B.: Feature fusion of face and gait for human recognition at a distance in video. In: Proceedings of IEEE International Conference Pattern Recognition (2006) 208. Zhou, X., Bhanu, B.: Integrating face and gait for human recognition. In: Proceedings of Workshop on Biometrics Held in Conjunction with the IEEE Conference Computer Vision and Pattern Recognition, pp. 55–62 (2006)

209. Zhou, X., Bhanu, B.: Integrating face and gait for human recognition at a distance in video. 

IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37, 55–62 (2007)

210. Zhou, X., Bhanu, B.: Feature fusion for video-based human identification. Pattern Recognit. 

41(3), 778–795 (2008)

211. Zhou, X., Bhanu, B., Han, J.: Human recognition at a distance in video by integrating face profile and gait. In: Proceedings of Audio- and Video-Based Biometric Person Authentication, pp. 533–543 (2005)

212. Zomet, A., Rav-Acha, A., Peleg, S.: Robust super resolution. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR, vol. 1, pp. 645–

650 (2001)

213. Zuev, Y., Ivanon, S.: The voting as a way to increase the decision reliability. J. Franklin Inst. 

336(2), 361–378 (1999)

Index

2D gait recognition, 65

D

3D gait, 6

Determining age, 238

3D gait recognition, 65

Different carrying conditions, 50

3D human body data, 83

Discriminating power, 13

3D human body model, 84

Dynamic programming matrix, 178

3D human model and multiple 2D silhouettes, 

Dynamic time warping (DTW), 8, 167

77

3D human modeling, 66

E

3D human motion, 6, 236

Enhanced side face image construction, 189

Enhanced side face image (ESFI), 139, 237

A

Environmental contexts, 7, 33

Anti-terrorism, 3

Environmental Contexts, 235

Appearance of a face, 237

Ethnicity, 238

Automatic image registration, 95, 98

F

B

Face profile, 6, 168

Bayesian based statistical analysis, 7, 236

Face profile representation and matching, 173

Bhattacharyya distance, 36

Facial expression, 6

Biometric fusion, 179

Facial expression changes, 8

Body part length distribution, 58

Feature level fusion scheme, 213

Border control, 3

Feature-level fusion, 7

Field-programmable gate arrays (FPGAs), 239

C

Frequency and phase estimation, 22

Carrying conditions, 7, 235

Classifier combination, 179

Fusion at the feature level, 218

Classifier combination strategies, 73

Fusion at the match score level, 217

Closed-loop approach, 119

Fusion of gait and face, 235

Closed-loop tracking, 6

Fusion strategy, 25

CMC curve, 227

Co-evolutionary genetic programming, 52

G

Color and thermal images, 95, 236

Gait, 4

Context-based classifier, 34

Gait energy image construction, 190

Cumulative match characteristic (CMC), 209, 

Gait energy image (GEI), 5, 18, 235

219

Gait recognition, 178

Curvature, 175

Gait recognition in 3D, 80

Curvature-based, 8

Gait reconstruction, 88, 89

Curvature-based fiducial extraction, 175

Gender, 238

B. Bhanu, J. Han,  Human Recognition at a Distance in Video, 

251

Advances in Pattern Recognition, 

DOI 10.1007/978-0-85729-124-0, © Springer-Verlag London Limited 2011

252

Index

Graphics processing units (GPU), 239

Normalized matching error, 178

Gray scale based quality, 152

O

H

Original side face images (OSFIs), 219, 237

Hierarchical genetic algorithm based search

scheme, 98

P

Hierarchical genetic algorithm (HGA), 6, 104, 

Part-based super-resolution of facial images, 

236

125

Hierarchical image registration and fusion, 99

PCA, 9

High-resolution image, 169

PCA and MDA combined method, 190

Homeland security, 3

Performance bounds, 58

Human activity recognition, 17

POCS, 118

Human kinematic model, 66

Pose and illumination estimation, 120

Human model parameter estimation, 71

Predicting human recognition performance, 57

Human repetitive activity recognition, 235

Principal component analysis (PCA), 22

Probabilistic classifier combination, 38

I

Profile matching using dynamic time warping, 

Image quality indices, 149

176

Image registration, 236

Projector-camera system, 81, 236

Indexing-verification scheme, 179

Proposed feature level fusion scheme, 213

Integrated quality measure, 155

PSNR, 138

Integrates information of the side view of face

and gait, 236

Q

Integrating ESFI and GEI, 191

Quality of the super-resolved face images, 237

Iterative back-projection (IBP), 117

R

K

Real and synthetic gait templates, 26

Kinematic and stationary feature classifier, 73

Real templates, 25

Recognition metric, 182

L

Registered color and thermal images, 8

Local deformation, 128

Low-resolution image, 169

Registration of EO/IR, 108

Repetitive activity recognition, 45

M

Resolution aware incremental free form

Match measure for warping errors, 132

deformation (RAIFFD), 117, 125

Match score, 7

Match score level fusion scheme, 213

S

MDA, 9, 237

Score and feature level fusion, 8

Model fitting, 85

Sensor fusion, 98, 107

Model-based and model free approaches, 238

Side face image alignment, 139

Model-based approaches, 15

Side face images, 6

Model-based gait features, 5

Side face normalization, 144

Model-based gait recognition, 14

Similarity between input images, 154

Model-free approaches, 14, 15

Spatio-temporal gait representation, 13

Motion-energy image (MEI), 18

Static face database, 179

Motion-history image (MHI), 18

Statistic  Q, 204

Multiple calibrated cameras, 76

Statistical feature fusion, 7, 25

Multiple discriminant analysis (MDA), 22

Strong biometrics, 13

Structure based quality, 153

N

Super-resolution, 6, 8

Nasion to throat, 8

Super-resolution of facial images with

Non-intrusive approach, 4

expression changes, 124

Non-reference quality evaluation, 6

Super-resolution of frontal faces, 117

Normalization, 179

Super-resolution of side face images, 117

Index

253

Synthetic feature generation and classification, 

V

215

Variability of clothes, 238

Synthetic templates, 25

Variations in illumination, 238

Video-based face recognition, 235

T

VideoWeb laboratory, 239

Thermal imagery, 45

View-insensitive gait templates, 40

Thermal infrared imagery, 7, 46

View-insensitive human gait recognition, 235

Tracking of facial regions, 127

View-insensitive human recognition, 7

View-insensitive human recognition by gait, 40

U

Upper bound on PCR, 61

W

US-Visit program, 3

Walking surface type detection, 34

USF HumanID gait database, 30

Weak biometric, 14



Document Outline


	Preface  

	Contents

	List of Figures

	List of Tables

	Part I: Introduction to Gait-Based Individual Recognition at a Distance

	1 Introduction

	1.1 Key Ideas Described in the Book

	1.2 Organization of the Book









	Part II: Gait-Based Individual Recognition at a Distance

	2 Gait Representations in Video

	2.1 Human Motion Analysis and Representations

	2.2 Human Activity and Individual Recognition by Gait

	2.3 Gait Energy Image (GEI) Representation

	2.4 Framework for GEI-Based Recognition

	2.5 Summary





	3 Model-Free Gait-Based Human Recognition in Video

	3.1 Statistical Feature Fusion for Human Recognition by Gait

	3.2 Human Recognition Based on Environmental Context

	3.3 View-Insensitive Human Recognition by Gait

	3.4 Human Repetitive Activity Recognition in Thermal Imagery

	3.5 Human Recognition Under Different Carrying Conditions

	3.6 Summary





	4 Discrimination Analysis for Model-Based Gait Recognition

	4.1 Predicting Human Recognition Performance

	4.2 Algorithm Dependent Prediction and Performance Bounds

	4.3 Experimental Results

	4.4 Summary





	5 Model-Based Human Recognition—2D and 3D Gait

	5.1 2D Gait Recognition (3D Model, 2D Data)

	5.2 Gait Recognition in 3D

	5.3 Summary





	6 Fusion of Color/Infrared Video for Human Detection

	6.1 Related Work

	6.2 Hierarchical Image Registration and Fusion Approach

	6.3 Experimental Results

	6.4 Summary









	Part III: Face Recognition at a Distance in Video

	7 Super-Resolution of Facial Images in Video at a Distance

	7.1 Closed-Loop Super-Resolution of Face Images in Video

	7.2 Super-Resolution of Facial Images with Expression Changes in Video

	7.3 Constructing Enhanced Side Face Images from Video

	7.4 Summary





	8 Evaluating Quality of Super-Resolved Face Images

	8.1 Image Quality Indices

	8.2 Integrated Image Quality Index

	8.3 Experimental Results for Face Recognition in Video

	8.4 Summary









	Part IV: Integrated Face and Gait for Human Recognition at a Distance in Video

	9 Integrating Face Profil and Gait at a Distance

	9.1 Introduction

	9.2 Technical Approach

	9.3 Experimental Results

	9.4 Summary





	10 Match Score Level Fusion of Face and Gait at a Distance

	10.1 Introduction

	10.2 Related Work

	10.3 Technical Approach

	10.4 Experimental Results and Performance Analysis

	10.5 Summary





	11 Feature Level Fusion of Face and Gait at a Distance

	11.1 Introduction

	11.2 Technical Approach

	11.3 The Related Fusion Schemes

	11.4 Experimental Results and Comparisons

	11.5 Summary









	Part V: Conclusions for Integrated Gait and Face for Human Recognition at a Distance in Video

	12 Conclusions and Future Work

	12.1 Summary

	12.2 Future Research Directions









	References

	Index






index-213_1.png





index-207_2.png
Curvature values

Curvature values

502 1 2 3 4 5 6 7 [ 1 2 g 4 5 6 17
60 :;
70
o 70
2 o F o 8 F
2‘00 = 2 o A
o c
c
110 E 54 E
110
120 et
130 130
20 40 60 80 100 120 140 20 40 60 80 100 120 140
Pixels Pixels
Testing profile (a) Testing profile
Curvature values Curvature values
[{ I e Gl G 1, S 0 1 2 3 4 & 6 7
20
40
40
60
F 60 £
©» 80 A
¢ 84 ¢
o E A
100 E
100
120
120
140
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Pixels Pixels
Testing profile (b) Testing profile





index-219_1.png
Seq. # Iraining viaeos Testing videos






index-214_1.png





index-221_1.png





index-220_1.png
] 2 L ||
L L] L] L
L] L L] [}
L] B L] ]
B [ B [

[ ‘ [
il | ]
] [ "
i (! i i
3 3 i ]
L3 * L » I * ! L] !
: Y h b
i 7 L 4 . |
[ A ) |
™ = a
N | | L
i K o f i i
L] ] ] (]
3 R Rl el T el

[
i £ L R #
a 1





index-222_2.png





index-222_1.png
Training
video

Training
video

Testing i Testing
video i video

Seq. # X 4 Seq. # 26

(b) Errors by Product rule. (¢) Errors by Max rule.





index-225_1.png





index-224_1.png
raining
GEl






cover_image.jpg
¥ S
Human

~» Recognition at a 9
Distance in Video
(Advances in
Pattern






index-186_1.png





index-196_2.png





index-196_1.png





index-201_1.png
Curvature values

Curvature values
0 2 3 4 5 6 7 0 i) 2 3 4 5 6
40
40
60
60
F
F
3 8 A kL A
x X c
o c a E
100 E 100
120 120
0 40 60 80 100 120 140 0 20 40 60 80 100 120
Pixels Pixels
Curvature values Curvature values
0 2 3 4 5 6 7
20 40 0 1 2 3 4 5 6
40 60
60 F
80
P A 5 E
g 80 c 4B A
E & 100 g
100
120
120
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120
Pixels Pixels






index-197_1.png





index-204_1.png
()]






index-202_1.png
100

a1

20
40

60

8of

20

60

80






index-206_1.png





index-204_2.png
(a)Speaking (b)Smiling (¢)Neutral Expression





index-207_1.png
AIdlkl!





index-66_1.png





index-64_1.png





index-71_1.png





index-69_1.png





index-73_1.png
- . "oyl .
S = e e
e e ey
Ee=ceemcr

& ]






index-72_1.png





index-226_1.png





index-244_1.png





index-242_1.png





index-247_1.png





index-244_2.png





index-248_1.png
Training
video

Training
video

Testing Testing
video video
Seq. # 4 2% Seq. # 26

(@) Errors by the Sum rule. (b) Errors by the Max rule.





index-247_2.png
Training
ESFI

Testing
ESFI
13 16 21 35





index-251_1.png





index-250_1.png





index-252_1.png
(d) Errors by the proposed fusion scheme





index-1_1.png
2 Springer

pr—





index-46_1.png





index-43_1.png
24111}





index-51_2.png





index-51_1.png





index-59_1.png





index-54_1.png





index-60_1.png
035

~ grass
concrete
03

025

564200

20 30
Ni
(a)

10

8 38 g ¢
00000

‘2oueysiq eAfueyoeneug

< e
S
S s g





index-133_1.png





index-130_1.png





index-135_1.png





index-134_1.png





index-146_1.png





index-138_1.png





index-148_1.png





index-147_1.png





index-120_1.png





index-117_1.png
AAAAAA

tttttt
g 3 3 g k: 3
= = oy = =2 =
uuuuuu
SSSSSS





index-127_1.png
I'hermal Background Image

Thermal Edge





index-107_1.png
Pose: 1

Pose: 1 Pose: 2 Pose: 3 Pose: 4
Right Stance Right Swing
Left Swing Left Stance






index-110_1.png





index-108_1.png
global position |t} =) 7| Whole body (0)

Upper torso (1)

global rotation[6? 67 6°]
lo: @l et o] Head (3)

Right upper arm (4)

ez Gf] Right lower arm (5)

Left upper arm (6)

Left lower arm (7)

Lower Torso (8)

Right upper leg (9)

Right lower leg (10)

Left upper leg (11)

Left lower leg (12)

(a) (b) ©





index-115_1.png
RN
XFIRREE
SYTRALL






index-114_1.png
SRR
908 fi4d
JETRLLL





index-116_1.png
s e~ e Sl M L

AAAAAA
. 5 3 5 3 e
2 2 2 2 3 g
] 2 3 3 3 3
ssssss





index-115_2.png
AL A

Subj

IR

0 #13
b;





index-79_1.png
classification accuracy
o 9o o o o
b5 N w S {4

=)

Elsmall dataset]
[llarge dataset

1 2 3 4 5 6
1: Bayesian clasifier; 2: Fisher discriminant; 3: CGP; 4: CGP on histogram;
5: CGP + majority voting (MV); 6: CGP + MV on histogram






index-75_1.png





index-103_1.png
Camera #17






index-98_1.png





index-181_2.png





index-181_1.png





index-182_1.png





index-181_3.png





index-183_1.png





index-182_2.png





index-184_1.png





index-183_2.png





index-185_1.png
M | ’

‘-i‘ y
L.J

$99.99





index-184_2.png





index-171_1.png





index-157_1.png





index-159_1.png





index-158_1.png





index-161_1.png





index-160_1.png





index-162_2.png
N g
8 8

8

PSNR of SR Image (db)
8w
8o

8
8

[F5— PSRN of giobar approach SR method i 11
|5 PSRN o global approach using SR method i [15]

|6— PSRN o plobai+local approach using SR method i 4]

|-+ PSRN of gobaisiocal approach using SR method n 15

®

4 5 6 7 8 9
The number pf person

10





index-162_1.png





index-169_1.png





index-167_1.png
(a) A well aligned image with § = 0.95.





index-154_1.png





index-151_1.png





