

[image: Image 1]

[image: Image 2]

D3.js in Action, Third Edition MEAP V09

1. Copyright_2022_Manning_Publications

2. welcome

3. 1_An_introduction_to_D3.js

4. 2_Manipulating_the_DOM

5. 3_Working_with_data

6. 4_Drawing_lines,_curves,_and_arcs

7. 5_Pie_and_stack_layouts

8. 6_Visualizing_distributions

9. 7_Interactive_visualizations

10. 8_Integrating_D3_in_a_front-end_framework

11. 9_Responsive_visualizations

12. Appendix_A._Setting_up_a_local_development_environment

13. Appendix_D._Exercise_solutions

[image: Image 3]

MEAP Edition Manning Early Access Program D3.js in Action, Third Edition Version 8

Copyright 2022 Manning Publications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://livebook.manning.com/#!/book/d3js-in-action-third-edition/discussion For more information on this and other Manning titles go to manning.com

welcome

Thank you for purchasing the MEAP for D3.js in Action, Third Edition. D3, introduced in 2011 by Mike Bostock, literally changed the face of web-based data visualizations and opened the door to unprecedented possibilities. It set new standards upon what the readers of online visualizations expect in terms of interactivity and level of refinement.

When I first came across D3 visualizations that were not only informative but quite frankly captivating, I immediately wanted to learn how to do similar work. The journey was not all roses and unicorns, D3 being infamous for its steep learning curve, but as I built stuff and solved bugs, the key D3 concepts started to make sense. Today, I am convinced that if these fundamental concepts are learned strategically, D3 is not that hard to understand and can even become quite intuitive.

By learning D3, you are setting yourself up to create almost any data-bound graphics that you can imagine, from traditional graphs to intricate maps and networks to stunning scrollytelling animated projects. Today, even given the impressive amount of data visualization libraries available, learning D3 is a wise choice that will provide you with complete creative and technical freedom over your data visualization projects.

Learning D3 requires at least a minimal amount of literacy in front-end development. To get the most out of this book, you'll want to have previously learned the basics of front-end development. Being familiar with HTML

elements, CSS selectors, and the main CSS properties will support your journey. You'll also need at least a beginner level of comprehension with JavaScript and its ES6 syntax. Knowing how to declare and manipulate strings, numbers, arrays, and objects will save you from many headaches, as well as understanding how to call and pass arguments to JavaScript functions.

The first section of the book focuses on introducing the fundamental D3

concepts: creating SVG shapes, manipulating the DOM, working with data, and using basic shapes like lines, curves, and arcs to create traditional

visualizations. We will also show you how to integrate D3 within front-end frameworks since this is becoming the gold standard. Once this solid foundation is established, we will develop intricate hierarchical graphs, networks, and maps. We will then discuss how the latest web standards in terms of interactivity, responsiveness, and accessibility apply to D3

visualizations. Finally, we will use advanced techniques to write our own D3

components and render our visualizations with the canvas element rather than SVG.

D3 has evolved a lot since the previous edition of D3.js in Action, written by Elijah Meeks. Now in its 7th version, the library is fully compatible with Node modules and is commonly used in combination with popular front-end frameworks like React and Svelte. The reality of web development has evolved, and users now expect a certain level of aesthetics and interactivity.

This book's third edition has a brand new section focused solely on creating projects that meet these new standards.

In addition, we have carefully reviewed the architecture of the first section of the book. The foundational D3 concepts are introduced strategically to make them easy to digest and immediately applicable. Although we hope this book will remain a solid reference for your future as a D3 developer, with plenty of figures and summary tables helping you review concepts and techniques at a glance, it is also very hands-on. Each chapter revolves around a visualization project that we build as new techniques are introduced. We aimed at making these projects engaging and as close as possible to professional-like work, asking you to start thinking like a pro and giving you access to our best tips and tricks. These projects are hosted online, for example, the visualization report about the evolution of democratic rights that we will build in chapter 4.

A dedicated Github repository gives you access to code-along files and complete solutions. We are thrilled to have you on board and cannot wait to see what you will build once you obtain your D3 wings!

Please be sure to post any questions, comments, or suggestions you have about the book in the liveBook discussion forum. Your feedback is essential in developing the best book possible and ensuring that the explanations are clear.

—Anne-Marie Dufour

In this book

Copyright 2022 Manning Publications welcome brief contents 1 An

introduction to D3.js 2 Manipulating the DOM 3 Working with data 4

Drawing lines, curves, and arcs 5 Pie and stack layouts 6 Visualizing

distributions 7 Interactive visualizations 8 Integrating D3 in a front-end

framework 9 Responsive visualizations

Appendix A. Setting up a local development environment Appendix D.

Exercise solutions

1 An introduction to D3.js

This chapter covers

Understanding the role of D3.js and the philosophy behind it Recognizing the tools that are used in combination with D3 to create data visualizations

Creating and styling Scalable Vector Graphics (SVG) with code Learning how data visualization best practices can support your journey as a D3 developer

D3.js is behind nearly all the most innovative and exciting information visualizations. D3, which stands for Data-Driven Documents, is a brand name but also a class of applications that have been offered on the web in one form or another for years. We can use this library to build an extended variety of data-driven projects, from simple bar charts to dynamic maps to intricate explorations of space and time. D3 is the tool of choice when you want to have total creative and technical freedom over your data visualizations, whether you build interactive prototypes for research, extensive and fully-responsive data dashboards at a top tech company, or innovative data scrollytelling pages for the web.

1.1 What is D3.js

D3 is an open-source JavaScript library created in 2011 by Mike Bostock to generate dynamic and interactive data visualizations for the web. Although many new data visualization libraries have been introduced in the past few years, they often use D3 under the hood. This is because D3, like JavaScript, is extremely flexible and powerful.

Figure 1.1 An Interactive Visualization of Every Line in Hamilton, a D3 visualization created by Shirley Wu (https://pudding.cool/2017/03/hamilton)

[image: Image 4]

1.1.1 A need for web-accessible data visualizations

D3.js was created to fill a pressing need for web-accessible, sophisticated data visualizations. Let’s say your company is using a Business Intelligence tool, but it doesn’t show the kind of patterns in the data that your team needs.

You have to build a custom dashboard that shows exactly how your customers are behaving, tailored for your specific domain. That dashboard needs to be fast, interactive, and shareable around the organization. D3 would be a natural choice for such a project.

Or imagine that you are hired to implement a web page that visualizes how the rights of the LGBTQ+ community evolved in the past decades and across the world. This page contains many creative visualizations that transform as the user scrolls. They reveal more information with mouse events and adapt

[image: Image 5]

to the size of the screen. D3 would be the tool of choice to build such a project.

Mike Bostock originally created D3 to take advantage of emerging web standards, which, as he puts it, “avoids proprietary representation and affords extraordinary flexibility, exposing the full capabilities of web standards such as CSS3, HTML5, and SVG” (http://d3js.org). D3.js version 7, the latest iteration of this popular library, continues this trend by modularizing the various pieces of D3 to make it fully compatible with ECMAScript modules and modern application development.

D3.js affords developers the capacity to make not only richly interactive applications but also applications that are styled and served like traditional web content. This makes them more portable, more amenable to growth, and more easily maintained by large groups where other team members don’t know the specific syntax of D3 but, for instance, can use CSS to style the data visualization elements.

Figure 1.2 D3 developers have access to a wide range of data representations, maps being one example. Here is a digital elevation model (DEM) map created by Christophe Viau.

The decision on Bostock’s part to deal broadly with data and to create a

library capable of presenting maps as easily as charts, as easily as networks, as easily as lists, also means that a developer doesn’t need to understand the abstractions and syntax of one library for maps, and another for dynamic text content, and yet another for traditional graphs. Instead, the code for running an interactive network visualization is close to pure JavaScript and also similar to the code representing dynamic points on a D3 map. The methods are the same, but the data also could be the same, formulated in one way for the nodes and links of a network, while formulated in another way for geospatial representations on a map.

Not only can D3 create complex and varied graphics, it can embed the high level of interactivity that users expect, which is crucial to modern web development. With D3, every element of every chart, from a spinning globe to a slice of a pie chart, is made interactive in the same way. And because D3

was written by someone well versed in data visualization practice, it includes interactive components and behaviors that are standard in both data visualization and web development.

Figure 1.3 Interactivity is at the heart of D3. On this network visualization, mouse interactions reveal the relationships between different organizations as well as information specific to the selected node(https://amdufour.github.io/organizations-against-polarization).

[image: Image 6]

1.1.2 When do we use D3.js?

The field of data visualization is enjoying a boom in popularity, and the number of tools available to generate data-bound graphics has exploded in the last decade. We have business intelligence tools like Excel, a common entryway to data visualization, and Power BI, the Microsoft solution to build dashboards. On the other hand, more experienced data scientists often turn to ggplot2 for R or matplotlib for Python.

Browser-based point-n-click tools like Tableau, Flourish, DataWrapper, RAWGraphs, and Google charts have also taken the front of the scene, allowing to create stunning work with minimal technical knowledge.

Finally, JavaScript libraries like HighCharts, Chart.js, and, D3.js specialize in developing web-based interactive visualizations.

[image: Image 7]

And this list is far from being exhaustive...

So, where does D3 fall in this ocean of data visualization tools? When and how do we use it? We can probably say that, although D3 can totally build any of the charts offered by the data visualization libraries listed here, it is not usually the preferred option to build simple traditional charts or for the exploration phase, where we investigate which type of visualization is best suited to represent our data. Building D3 projects requires time, and D3 truly shines in complex, interactive, and custom-tailored projects. Data visualization is so much more than line charts and scatterplots! While the tools mentioned above often focus on predefined charts, D3 allows us to bind data to any graphical element and get off the beaten track by combining these visual elements in unique ways. We use D3 because we want the freedom to think outside of the box and don’t want to be limited by what a library offers.

Figure 1.4 D3 has SVG and canvas drawing functions, allowing developers to build custom visualizations such as this representation of musical scores by Elijah Meeks.

Here’s an example of how we can use D3 within the scope of a data visualization project. First, we start with a pre-existing dataset or with data gathered manually. We usually spend a significant amount of time cleaning, formatting, and preparing the data before beginning the data analysis process.

Data science tools like Python and R are powerful for this purpose and can help us identify the story or the stories hidden within the data. Excel can also do the job for simple data wrangling and data analysis and requires a less technical background. We can even use JavaScript and D3 for basic data exploration, as they offer statistical methods that we will discuss later in this book.

Once the data analysis is underway, it is common to create a few prototypes that help refine our story. Tools like Tableau and RawGraphs allow us to generate such graphs quickly. That’s a super important step, and the visualizations created during this phase aren’t usually fancy or refined. We don’t want to get too attached to our ideas during this prototyping phase by spending a lot of time on them. We might find ourselves having to “kill our darlings” and start over a few times until we identify the best-suited visualization for the story we want to tell. Network diagrams might be an exception here, and jumping right into D3 generally makes sense for these projects.

Finally, once we know the type of visualization we will create, it’s time to roll up our sleeves, code it, and refine it with D3. Nowadays, the coding step often occurs within single-page applications (SPA), using frameworks like React or Svelte.

Figure 1.5 Another example of a custom visualization built with D3, where the shapes are proportional to different attributes of each song like duration, genre, and tempo (https://amdufour.github.io/spotify-hits).

[image: Image 8]

1.1.3 How D3.js works

You might have already experimented with D3 and found that it isn’t easy to get into. Maybe that’s because you expected it to be a simple charting library.

A case in point is creating a bar chart, which we’ll do in chapter 2 and 3. D3

doesn’t have one single function to create a bar chart. Instead, it has a function that appends a <svg> container into the Document Object Model (DOM) and another set of functions that appends one <rect> element for each data point. We then use scales to calculate the length of the rectangles that compose our histogram and set their attributes. Finally, we call another set of functions that adds an x and a y-axis to the bar chart. As you can see in figure 1.6, it’s a much longer process than using a dedicated charting library like Highcharts. But the explicit manner in which D3 deals with data and graphics is also its strength. Although other charting libraries conveniently allow you to make line graphs and pie charts, they quickly break down when you want to create a visualization that falls outside of the traditional charts spectrum or when it comes to implementing custom interactions. Not D3. D3

allows you to build whatever data-driven graphics and interactivity you can imagine.

Figure 1.6 A simple bar graph generated with Highcharts vs. with D3.js

[image: Image 9]

In figure 1.7, you see a map of how we generally approach the coding of a data visualization with D3. We start with a dataset, often a CSV or a JSON

file, and we use the d3-fetch module to load this dataset into our project. We usually need to perform a few manipulations to format the data. For example, we ensure that our numbers and dates are correctly formatted. If we didn’t do it previously, we might also want to interrogate our dataset to find its main characteristics. For instance, knowing its maximum and minimum values in advance is often helpful. We are then ready to start building our visualization, for which we’ll combine the different D3 functions that we will learn in this book. Finally, we add interactivity by listening to mouse events, allowing users to filter the data or zoom in on the visualization.

Figure 1.7 How to approach data visualization with D3.js

[image: Image 10]

1.2 The D3 ecosystem - What you need to know to

get started

D3.js is never used alone but is rather part of an ecosystem of technologies and tools that we combine to create rich web interfaces. Like any web page, D3 projects are built within the DOM (Document Object Model) and leverage the power of HTML5. Although D3 can create and manipulate traditional HTML elements like divisions (<div>) and lists (,), we mainly generate our visualizations with SVG graphics or within canvas, an HTML element that renders bitmap images from scripts. Then we might also use good old CSS stylesheets which can enhance D3 projects and make their design easier to maintain, especially across broad teams.

Given that D3 is a JavaScript library, we naturally tend to combine D3

methods with native JavaScript functions to access and manipulate data. D3

now fully supports the ECMAScript 2015 or ES6 revision of JavaScript and most of the latest updates. D3 also comes as modules that can be integrated into the recent frameworks and libraries we build web projects with. Using these modules is often the preferred approach since it doesn’t pollute the global scope of our applications.

In this section, we will briefly discuss these technologies and their role in the D3 ecosystem. Since SVG knowledge is foundational to understanding D3, we will spend time explaining in greater detail the basics that you will need to comprehend to start building visualizations. If you are already familiar with HTML, SVG elements, CSS, JavaScript and JavaScript modules, feel free to skim or skip ahead to section 1.3.

1.1.4 HTML and the DOM

We’ve come a long way from the days when animated GIFs and frames were the pinnacles of dynamic content on the web. In figure 1.8, you can see why GIFs never caught on for robust web-based data visualizations. GIFs, like the infoviz libraries designed to use VML, were necessary for earlier browsers, but D3 is designed for the modern browsers that no longer need backward compatibility.

Figure 1.8 Before GIFs were weaponized to share cute animal behavior, they were your only hope

[image: Image 11]

for animated data visualization on the web. Few examples from the 1990s like dpgraph.com still exist, but this page has more than enough GIFs to remind us of their dangers.

When you land on a web page, the first file to be loaded is a HyperText Markup Language or HTML file, like the example below. The browser parses the HTML file to build the Document Object Model or DOM. We often refer to it as the DOM tree because it consists in a set of nested elements, also called nodes or tags. In our example, the <head> and the <body> elements are children of the <html> parent. Similarly, the <body> tag is the parent of the

<h1>, the <div> and the <p> tags. The <h1> title is also a sibling of the <div> element. When you load a web page, what you see on the screen is the elements contained within the <body> tag.

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>A simple HTML file | D3.js in Action</title>

</head>

<body>

<h1>I am a title</h1>

<div>

<p>I am a paragraph.</p>

<p>I am another paragraph.</p>

</div>

 </body>

</html>

In the DOM, three categories of information about each element define its behavior and appearance: styles, attributes, and properties. Styles determine color, size, borders, opacity, and so on. Attributes include classes, ids, and interactive behavior, though some attributes can also determine appearance, depending on which type of element you're dealing with. For SVG elements, attributes are used to set the position, size and proportions of the different shapes. Properties typically refer to states, such as the "checked" property of a check box, which is true if the box is checked and false if the box is unchecked. In chapter 2, we will discuss the D3 methods used to generate or modify the style and attributes of elements.

The DOM also determines the onscreen drawing order of elements, with child elements drawn after and inside parent elements. Although the CSS

property z-index gives us partial control over the order in which traditional HTML elements are drawn onto the screen, SVG elements strictly follow the order in which they appear in the DOM.

1.1.5 SVG - Scalable Vector Graphics

The introduction of Scalable Vector Graphics (SVG) changed the face of the web, literally. Within a few years, SVG graphics became a major web development tool. While raster graphics (PNG and JPG) are composed of tiny pixels that become visible when we zoom in too close, vector graphics are built with math and geometry. They maintain a crisp look at any size and any screen resolution. Another considerable advantage of SVG graphics is that they can be injected directly into the DOM, allowing developers to manipulate and animate their elements and making them accessible to screen readers. If built properly, SVGs are also performant, their file size being only a fraction of their equivalent raster images.

When creating data visualizations with D3, we usually inject SVG shapes into the DOM and modify their attributes to generate the visual elements that compose the visualization. Understanding how SVG works, the main SVG

shapes, and their presentational attributes are essential to most D3 projects.

[image: Image 12]

How to access the code files

Every chapter in this book includes code-along exercises designed to support your learning experience. We highly recommend that you “do” the book rather than just “read” the book, which means completing the exercises as you read the chapters. You will retain much more information this way and will soon be on your way to building your own D3 projects!

For every exercise and project, you have access to ready-to-use code files.

You can find them on the book’s Github repository (https://github.com/d3js-in-action-third-edition/code-files). If you are familiar with Git, you can clone the repository on your computer. You can also download the zipped files.

Download the code files from the Github repository

Each chapter has its own folder that contains one or multiple exercises numbered as per the sections in each chapter. The exercises include a start folder containing all the files you need to get started. You’ll find the complete solution of the exercise in the end folder.

Let’s start exploring vector graphics. Go to the code files provided with this book. Find the end folder in chapter_01/SVG_Shapes_Gallery and right-

[image: Image 13]

click on the file index.html. In the menu, go to Open with and select a browser. We recommend working with Chrome or Firefox for their great inspector tools. The file will open in a new browser tab, and the vector graphic that you see in figure 1.9 will appear. You can also view these SVG

shapes on the Github hosted project (https://d3js-in-action-third-edition.github.io/svg-shapes-gallery).

Figure 1.9 Gallery of fundamental SVG shapes

The SVG graphic you are looking at contains the shapes you will use most often as you create D3 visualizations: lines, rectangles, circles, ellipses, paths, and text.

When working with D3, you usually tell the library which shape(s) it should append to the DOM. You are also responsible for knowing which presentational attributes need to be calculated for the shape(s) to have the dimensions, color, and position that you are looking for. In the following exercise, you will write the code that creates each of the SVG elements from figure 1.9. We will refer to this exercise as our Gallery of SVG Shapes.

Afterward, you’ll know all the SVG basics you need to get started.

Open the file index.html from the start folder of the exercise SVG_Shapes_Gallery in your code editor of choice. We recommend VS

 Code, a code editor that is free, easy to use, and has multiple functionalities

that you will find helpful for frontend development.

As you can see, index.html is a simple HTML file. If you open this file in your browser (right-click on the file and choose a browser in the Open with menu), you will only see a blank page. This is because the <body> element is empty. In the next subsections, we will add SVG shapes into this <body> element.

Listing 1.1.a Starting HTML file for the Gallery of SVG Shapes exercise

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>SVG Shapes Gallery | D3.js in Action</title>

</head>

<body>

</body>

</html>

Where to find more information

The following sections will introduce multiple SVG elements and their attributes. As developers, we heavily rely on online resources when building our projects, using SVG elements that we are not familiar with, or looking for a JavaScript function to perform a specific action. In frontend development, MDN Web Docs (developer.mozilla.org) is always a reliable and comprehensive resource. It contains easy-to-understand and often editable examples for HTML elements and their attributes, CSS properties, and JavaScript functions.

responsive svg container

In the world of SVG graphics, the <svg></svg> container is the whiteboard on which everything is drawn. Every single SVG shape is nested inside a

<svg> parent. To see it in action, edit index.html and add a SVG container inside the <body> element. Reload your page in the browser. Nothing is

[image: Image 14]

visible yet.

<body>

<svg></svg>

</body>

Open the inspector tool of your browser (right-click in your browser window and choose Inspect). Within the inspector window, you will see the DOM

that composes the page. Find the <svg></svg> container, also called the SVG

node. When you pass your mouse over it in the inspector, the SVG element gets highlighted on the page. You can see this effect in figure 1.5.

Figure 1.10 SVG node selected in the DOM tree and highlighted in the viewport By default, the browser gives a width of 300px and a height of 150px to the SVG container. But we can also use the attributes of the SVG container to assign these values. Attributes are there to provide additional information about HTML elements. With inline SVG, we mainly use attributes to set the size and positions of the elements and shapes that compose a SVG graphic.

For example, we can set the width and height attributes of a SVG container.

Go back to your text editor, and add a width and a height attributes to the SVG container. Set their values to 900 and 300 and save the file.

[image: Image 15]

<svg width="900" height="300"></svg> Reload your project in the browser and find the SVG node in the inspect tool.

Notice that the width and height attributes now appear within the brackets of the SVG container. If you pass your mouse over the SVG node in the DOM

tree of the inspect tool, you'll also see that the SVG container in the viewport now has a size of 900px by 300px.

Figure 1.11 SVG node taking the size specified by its attributes To help us see the SVG container without having to highlight it from the inspector, let's give it a border. Add a style attribute to the SVG container and insert the CSS border property. In the next snippet, we used the border shorthand property to create a black, solid border of 1px width.

<svg width="900" height="300" style="border:1px solid black;"></svg> Save your file, reload the page and confirm that there is a border around your SVG container. Now, resize your browser window until it is smaller than the SVG container. You will observe that the SVG container keeps a fixed width and height and doesn't adapt to the browser window's size. Let's try to make our SVG container responsive.

Previously, we have set the SVG attributes as absolute values (900 and 300) and the browser interpreted them as measurements in pixels (900px and 300px). But we can also use percentages. In your text editor, change the width attribute to a relative value of "100%", save the file and reload the page.

<svg width="100%" height="300" style="border:1px solid black;"></svg> Resize your browser again and notice how the SVG takes the full width available and keeps a fixed height of 300px. That's better, but we've lost our original aspect ratio.

To make inline SVG responsive, we can use the viewBox attribute. In your code editor, remove the width and the height attributes from the SVG

container and replace them with a viewBox attribute. Give it a value of "0 0

900 300".

<svg viewBox="0 0 900 300" style="border:1px solid black;"></svg> Play again with resizing your browser window. What do you notice? The SVG container now adapts to any screen size while maintaining its aspect ratio of 900:300. We have a responsive SVG!

As you've noted, the viewBox attribute consists of a list of four values. The first two numbers specify the origin of the coordinate system of the viewBox (x and y). In this book, we will always use 0 0, but it is good to know that these values can be used to change which portion of the SVG container is visible on the screen. The last two numbers of the viewBox attribute are its width and its height. They define the aspect ratio of the SVG and ensure that it scales perfectly to fit within any container without distortion.

Fitting within a container is the key here. So far, the container of our inline SVG is the HTML <body> element, which generally extends to fit the browser's viewport. If the viewport gets very large, the SVG gets very large too. Usually, we want our SVG to have a maximum width so that it doesn't get larger than the rest of the content on the page. To do so, wrap the SVG

container inside a div with a width of 100% and a max-width of 1200px. For simplicity, we have set these properties as inline styles, but in real-life projects, these would be attributed from a CSS file. Notice that we have also

added a margin of value "0 auto" to center the SVG horizontally on the page.

<div style="width:100%; max-width:1200px; margin:0 auto;">

<svg viewBox="0 0 900 300" style="border:1px solid black;"> ... </svg>

</div>

Try resizing your browser one more time and see how our SVG adapts gracefully to any screen size while respecting the maximum width of its container. This strategy is helpful to inject D3 visualizations into responsive web pages, and we will use it throughout this book.

svg coordinate system

Now that we know how to make inline SVG responsive, it's important to address how the SVG shapes are positioned within the SVG container. The SVG container is like a blank sheet on which we draw vectorial shapes.

Vectorial shapes are defined with basic geometric principles and positioned in reference to the coordinate system of the SVG container.

The SVG coordinate system is similar to the cartesian coordinate system. Its 2D plane uses two perpendicular axes to determine the position of elements, referred to as x and y. These two axes originate from the top-left corner of the SVG container, as you can see in figure 1.12. It means that the positive direction of the y-axis goes from top to bottom. Remembering this will save you from a few headaches!

Figure 1.12 Coordinate system of the SVG container and position of an element

[image: Image 16]

To position an element inside the SVG container, we start from the origin at the top-left corner and move toward the right. This will give us the horizontal (x) position of the element. For the vertical (y) position, we start at the top and move down. These positions are defined by the presentational attributes of each SVG shape.

We will now look at the SVG shapes that you will often meet while building D3 projects. We will also discuss their main presentational attributes. The goal here is by no means to write a comprehensive guide of all the shapes and features SVG has to offer, but rather to cover the basic knowledge that will support your D3 journey.

Data visualization tip: Geometric primitives

Accomplished artists can draw anything with vector graphics, but you're probably not looking at D3 because you're an artist. Instead, you're dealing with graphics and have more pragmatic goals in mind. From that perspective, it's essential to understand the concept of geometric primitives (also known as graphical primitives). Geometric primitives are simple shapes such as points, lines, circles, and rectangles. These shapes, which can be combined to make more complex graphics, are particularly convenient for displaying information visually.

Primitives are also useful for understanding complex information visualizations that you see in the real world. tree layouts, like the ones we will build in chapter 10, are far less intimidating when you realize they're only circles and lines. Interactive timelines are easier to understand and create when you think of them as collections of rectangles and points. Even geographic data, which primarily comes in the form of polygons, points, and lines, is less confusing when you break it down into its most basic graphical structures.

line

The line element is probably the simplest of all SVG shapes. It takes the position of two points, set as attributes, and draws a straight line between them. Go back to the index.html file, and add a <line /> element inside the SVG container. Declare its attributes x1 and y1 and give them a value of 50

and 45, respectively. This means that the starting point of our line is positioned at (50, 45) in the coordinate system of the SVG container. If you start at the top-left corner of the SVG container, move 50px to the right and 45px down, you will meet the line's starting point. Similarly, set the line's endpoint to (140, 225), using the attributes x2 and y2.

<svg>

<line x1="50" y1="45" x2="140" y2="225" />

</svg>

Figure 1.13 Positioning a line element in the coordinate system of a SVG container

[image: Image 17]

If you save and reload your project, your line won't be visible, and you might wonder what's going on. For a SVG line to be visible on the screen, we also need to set its stroke attribute, which controls the line's color. The value of the stroke attribute is similar to the CSS color property. It can be a color name (black, blue, ...), a RGB color (rgb(255,0,0)) or a hexadecimal value (#808080). Add a stroke attribute to your line and give it the color of your choice (we used black). It should now be visible on the screen.

<line x1="50" y1="45" x2="140" y2="225" stroke="black" /> If we want to set the width of the line, we use the stroke-width attribute. This attribute accepts an absolute number, which translates into pixels or a relative value (%). For example, the following line will have a stroke-width of 3px.

If the stroke-width attribute is not declared, the browser applies a default value of 1px.

<line x1="50" y1="45" x2="140" y2="225" stroke="black" stroke-width="3" /> Open the inspector tool of your browser and find the SVG node and the line it contains. Double-click on one of the attributes, change its value and observe how the new value modifies the line's starting or endpoint. Take the time to play with different values to confirm that you understand how the attributes x1, y1, x2, and y2 affect the position and length of the line.

[image: Image 18]

Now, give a value of -20 to the attribute x1. Do you see how the starting point of the line disappeared? Any shape or portion of a shape that falls outside of the SVG viewBox is not visible on the screen. The element still exists in the DOM, though. We can access and manipulate it. If an element in your SVG is not visible and you don't know why the first thing to check is if it is outside of the SVG viewBox! Remember that you can always find it by using the developer tools to inspect the DOM. As we did earlier, if you pass your mouse over the element in the inspector tool, it will be highlighted in the viewport, even if it is outside of the SVG viewBox.

Figure 1.14 SVG line partially hidden when outside of SVG container Note

For effectiveness, most SVG elements need only a self-closing tags (we use

<line /> rather than <line></line>). Like some of the other HTML tags, the inherent structure of SVG elements provide all the required information within the self-closing tag. This will be different for SVG text elements, where the text is placed between an opening and a closing tag.

rectangle

[image: Image 19]

As its name suggests, the rectangle element <rect /> draws a rectangular shape on the screen. The <rect /> element requires four attributes to be visible. The attributes x and y declare the position of the rectangle's top-left corner, while the attributes width and height respectively control its width and height. Add the following <rect /> element and its attributes in your SVG container.

<rect x="260" y="25" width="120" height="60" /> In our example, the top-left corner of the rectangle is positioned 260px to the right and 25px below the origin of the SVG container. It has a width of 120px and a height of 60px. Like with other positional attributes, we can set their values using percentages instead of absolute numbers. For instance, if we set the width attribute to 50%, the rectangle will spread on half of the width of the SVG container.

Figure 1.15 Positioning and sizing a rectangle in the coordinate system of a SVG containers You might have noticed that our rectangle is filled with black color. By default, browsers apply a black fill to most SVG shapes. We can change that color by setting the fill attribute and giving it any CSS color. If we want to add a border to the rectangle, we add a stroke attribute. figure 1.16 shows a few examples. Note how no border is drawn around the rectangle if you don't

[image: Image 20]

declare a stroke attribute. Also, in the last rectangle, the attributes fill-opacity and stroke-opacity are used to make the fill and the stroke semi-transparent. Like in CSS, the opacity can be set as an absolute value (0.3) or a percentage (30%). All the attributes related to the fill and the stroke can also be set or modified from a CSS file.

Figure 1.16 Different styling attributes applied to rectangle SVG shapes If you want your rectangle to have rounded corners, you simply need to add the rx and ry attributes, respectively the horizontal and vertical corner radius.

These attributes accept absolute (in pixels) and relative values (percentages).

For example, each corner of the rectangle below has a radius of 20px. Add this rectangle to your gallery of shapes.

<rect x="260" y="100" width="120" height="60" rx="20" ry="20" /> At this point, you might wonder if there is an element to draw square shapes in SVG. We don't need one! In SVG, we draw squares with <rect /> elements, by giving them equal width and height attributes. For example, the following <rect /> element will draw a square of 60px by 60px. Add it to your gallery of shapes as well.

<rect x="260" y="175" width="60" height="60" /> As a reference, we now have three types of SVG rectangles in our gallery of shapes: a classical rectangle, a rectangle with rounded corners, and a square.

For fun, I gave them a color of #6ba5d7 and played with their stroke and

[image: Image 21]

fill attributes. Note that only the stroke is visible on the square because its fill attribute has a value of transparent or none. Your rectangles should look similar to the ones on figure 1.17, unless you changed their attributes, which we encourage you to do!

<rect x="260" y="25" width="120" height="60" fill="#6ba5d7" />

<rect x="260" y="100" width="120" height="60" rx="20" ry="20"

➥ fill="#6ba5d7" />

<rect x="260" y="175" width="60" height="60" fill="transparent"

➥ stroke="#6ba5d7" />

Figure 1.17 Three types of SVG rectangles

The position of SVG strokes

Something to keep in mind when you’re trying to align shapes in a visualization is that strokes are drawn evenly over the inside and the outside border of SVG shapes. As you can see on the figure below, if a rectangle has a width attribute of 40px, applying a stroke-width of 1 will visually add 0.5px to the left and 0.5px to the right of the rectangle (and not 1px to each side like we might instinctively think), for an actual total width of 41px. If the stroke-width is 2, it will add 1px to each side and so on.

Effect of the stroke-width on the actual width of a SVG shape

[image: Image 22]

circle and ellipse

Circular shapes are used regularly in data visualization. They naturally attract the eye and make the visualization feel more friendly and playful. We draw SVG circles with the <circle /> element. Its required attributes are the position of the center of the circle (cx, cy) and its radius (r). A circle's radius is the length of a line drawn from its center to any point on its border. Add the following circle to your gallery of shapes. Position its center at (530, 80) and give it a radius of 50px.

<circle cx="530" cy="80" r="50" /> Figure 1.18 Positioning and sizing a circle and an ellipse in the coordinate system of a SVG

containers

[image: Image 23]

You can also play with the fill and the stroke attributes of the circle. To generate the one in figure 1.18, we used a transparent fill and a stroke of 3px with a color of #81c21c.

Similarly, the <ellipse /> element requires attributes for the position of the center of the shape (cx, cy). While circles have a constant radius, the radius of ellipses varies, giving it its flattened structure. We create this flattened effect by declaring a horizontal radius (rx) and a vertical radius (ry). Add the next snippet to your gallery. It will draw an ellipse below the circle, with a horizontal radius of 50px and a vertical radius of 30px.

<ellipse cx="530" cy="205" rx="50" ry="30" /> path

SVG paths are by far the most flexible of all the SVG elements. They are extensively used in D3 to draw pretty much all the complex shapes and curves that cannot be represented by one of the shape primitives discussed so far (line, rectangle, circle, and ellipse).

We instruct the browser on how to draw a path by declaring its d attribute.

The d attribute contains a list of commands, from where to start drawing the path to the types of curves to use, up to specifying if we want the path to be a

[image: Image 24]

closed shape or not. As an example, add the following path element to your gallery.

<path d="M680 150 C 710 80, 725 80, 755 150 S 810 220, 840 150" fill="none"

➥ stroke="#773b9a" stroke-width="3" /> Figure 1.19 A simple SVG path

You can see the resulting path in figure 1.19. From the code of the d attribute, we can deduce that the path's starting point is located at (680, 150)and its endpoint at (840, 150). In between, we see the locations of the control points of the curves.

Manually writing the d attribute is feasible for simple shapes but gets tedious as the shapes gain in complexity. Fortunately, D3 has powerful shape generators that we will discuss in chapter 4.

Another important thing to remember about paths is that browsers will fill them with black color, unless we set their fill attribute to none or transparent. This is true even if the path is not closed, like in our example.

text

[image: Image 25]

One of the greatest advantages of inline SVG graphics is that they can contain text that is navigable like any other HTML text inserted in a <div> or a <p> element. This is a big plus for accessibility.

Since data visualizations often contain multiple labels, it is necessary to understand how to manipulate SVG text using the <text></text> element.

Let's add labels to our gallery of shapes to understand the basic principles of SVG text.

The SVG shapes discussed so far use a self-closing tag (<line />, <rect />,

<path />, ...). When working with SVG text elements, we need to use both an opening and a closing tag. We position the text to display in between these two tags. For example, let's add a text element into our SVG that says "line".

<text>line</text>

Save your file and reload the page. You might expect the text to appear at the top-left corner of the SVG container, but it's nowhere to be seen... Why is that? By default, the position of SVG text is calculated in reference to its baseline, controlled by the dominant-baseline attribute. If the coordinate of the text's baseline is (0, 0), you can see in figure 1.20 how the actual text ends up outside of the SVG container. Since any element positioned outside of the SVG container is invisible, we don't see our text.

Figure 1.20 Text positioned outside of the SVG container Another point to consider when working with SVG text is how the text will flow. Regular HTML elements are positioned on the page following specific

[image: Image 26]

rules that control the flow of content. If you insert a bunch of <div></div> elements into your page, they will naturally stack one over another, and their content will reflow so that it never goes outside of their container. SVG text doesn't flow at all and each SVG element must be positioned individually.

One way to proceed is to set their x and y attributes. If we use these attributes to place our text at (60, 260), the label "line" will appear below the SVG

line in our gallery of shapes.

<text x="60" y="260">line</text> To practice, create a new text element that positions a label "rect" below the rectangle and square shapes.

So far, we have used the x and y attributes to declare the bottom-left corner of our text elements. But what if we want to set the position of the middle point of our text instead? We can do so by using the attribute text-anchor and giving it a value of middle. For example, we can center a text label for our circle shape using this attribute.

<text x="530" y="155" style="text-anchor:middle">circle</text> Figure 1.21 How the text-anchor attribute affects the alignment of SVG text

Finish by adding a label for the ellipse and another one for the path element.

By default, SVG text is black. You can change its color with the fill attribute.

grouping elements

The final SVG element that we will discuss in this section is the group element. The group or <g></g> element is distinct from the SVG elements we’ve discussed so far in that it has no graphical representation and doesn’t exist as a bounded space. Instead, it’s a logical grouping of elements. You’ll want to use groups extensively when creating visualizations made of several shapes and text elements.

If we want the square and the "rect" label to be displayed together and move as one within the gallery of shapes, we can place them inside a <g> element, like in the following example. Note how the top-left corner of the <rect> element has been changed to (0, 0). The <text> is positioned at (0, 85) to maintain it below the <rect>.

<g>

<rect x="0" y="0" width="60" height="60" />

<text x="0" y="85">rect</text>

</g>

The group containing the square and its label now appear at the top-left corner of the SVG container. We can move this group and all the elements it contains wherever we want them within the SVG container while maintaining the alignment between the square and its label.

Moving a group around the SVG container is done with the transform attribute. The transform attribute is a little more intimidating than the attributes discussed so far but is identical to the CSS transform property. It takes a transformation (translate, rotate, scale, etc.) or a stack of transformations as values. To move a group, we use the translate(x, y) transformation. If we want to move our <rect> and <text> elements back to their original position, we need to apply a translation of 260 pixels to the right and 175 pixels down to the <g> element To do so, we set its transform attribute to transform="translate(260,75)".

<g transform="translate(260,175)">

<rect x="0" y="0" width="60" height="60" />

<text x="0" y="85">rect</text>

</g>

Another helpful aspect of the <g> element is that its children inherit its attributes. To illustrate this, let’s group all remaining the text elements within a <g> element, except the label "rect", which we have already grouped with the square.

<g>

<text x="60" y="260">line</text>

<text x="530" y="155" style="text-anchor:middle">circle</text>

<text x="530" y="260" style="text-anchor:middle">ellipse</text>

<text x="730" y="260">path</text>

</g>

If we apply a fill attribute of #636466 to the group, each <text> element inside that group will inherit the same color. Similarly, if we add a style attribute to the group, for instance, with the font-family and the font-size properties, the text inside the group will inherit these properties.

<g fill="#636466" style="font-size:16px; font-family:monospace">

<text x="60" y="260">line</text>

<text x="530" y="155" style="text-anchor:middle">circle</text>

<text x="530" y="260" style="text-anchor:middle">ellipse</text>

<text x="730" y="260">path</text>

</g>

Reload your page one last time and observe how the labels inside the group inherit the group's color and font, while the label that remained outside of that group kept its original look. This technique of applying shared attributes to a group element is quite handy and can help you apply the DRY (Don't Repeat Yourself) coding principle to your work. It will also make your life easier when you need to update these attributes.

Congrats on completing the first exercise of this book! You can find the complete code of the Gallery of Shapes in Listing 1.1.b and in the end folder of the coding files. Use this exercise as a reference when you'll build your first D3 projects.

Listing 1.1.b Completed HTML file for the Gallery of SVG Shapes exercise

<!DOCTYPE html>

<html>

<head> [...] </head>

<body>

<div style="width:100%; max-width:1200px; margin:0 auto;">

<svg viewBox="0 0 900 300" style="border:1px solid black;">

<line x1="50" y1="45" x2="140" y2="225" stroke="black" />

<rect x="260" y="25" width="120" height="60" fill="#6ba5d7" />

<rect x="260" y="100" width="120" height="60" rx="20" ry="20"

➥ fill="#6ba5d7" />

<g transform="translate(260, 175)">

<rect x="0" y="0" width="60" height="60" fill="transparent"

➥ stroke="#6ba5d7" />

<text x="0" y="85">rect</text>

</g>

<circle cx="530" cy="80" r="50" fill="none" stroke="#81c21c" stroke-

➥ width="3" />

<ellipse cx="530" cy="205" rx="50" ry="30" fill="#81c21c" />

<path d="M680 150 C 710 80, 725 80, 755 150 S 810 220, 840 150"

➥ fill="none" stroke="#773b9a" stroke-width="3" />

<g fill="#636466" style="font-size:16px; font-family:monospace">

<text x="60" y="260">line</text>

<text x="530" y="155" style="text-anchor:middle">circle</text>

<text x="530" y="260" style="text-anchor:middle">ellipse</text>

<text x="730" y="260">path</text>

</g>

</svg>

</div>

</body>

</html>

overview of the basic svg elements

In this section, we have discussed and played with the SVG elements and shapes that we use most often when creating data visualizations. List below contains an overview of these elements and their main attributes. You can use it as a quick reference as you build your first D3 projects. But with practice,

you’ll soon enough integrate this knowledge!

Basic SVG elements and their attributes

SVG container, fixed size

<svg width="900" height="900"></svg> SVG container, responsive

<div style="width:100%; max-width:1200px;">

<svg viewBox="0 0 900 300"></svg>

</div>

Group

<g></g>

The attributes of a group are inherited by its children.

SVG shapes

Line

<line x1="50" y1="45" x2="150" y2="200" />

[image: Image 27]

Rectangle

<rect x="260" y="25" width="120" height="60" />

[image: Image 28]

Circle

<circle cx="530" cy="80" r="50" />

[image: Image 29]

Ellipse

<ellipse cx="530" cy="205" rx="50" ry="30" />

[image: Image 30]

Path

<path d="M680 150 C 710 80, 725 80, 755 150 S 810 220, 840 150" />

[image: Image 31]

Text

<text x="60" y="260">My text</text>

[image: Image 32]

A few useful attributes to style the SVG shapes

fill: Sets the color inside the shape. Default value is black.

fill="darkturquoise"

fill="#00ced1"

fill="rgb(0,206,209)"

fill="transparent", fill="none"

fill-opacity: Sets the opacity of the fill. Default value is 100%.

fill-opacity="0.3"

fill-opacity="30%"

stroke: Sets the color of the line drawn around the shape shape. Default value is black.

stroke="gold"

stroke="#ffd700"

stroke="rgb(255,215,0)"

stroke-width: Sets the width of the stroke. Default value is 1px.

stroke-width="3"

stroke-opacity: Sets the opacity of the stroke. Default value is 100%.

stroke-opacity="0.3"

stroke-opacity="30%"

1.1.6 Canvas and webGL

We've mentioned that we usually build D3 projects with SVG elements.

Occasionally, we might need to create complex visualizations from large datasets, for which the traditional SVG approach can generate performance issues. It's important to remember that, for each graphical detail in a data visualization, D3 appends one or many SVG nodes to the DOM. A typical example is a large network visualization made of thousands of nodes and links. These may leave your browser huffing and puffing... Although the number of objects that a browser can comfortably handle is constantly evolving as they get more performant, a rule of thumb that is generally accepted is that we should consider using canvas rather than SVG if a visualization contains more than 1000 elements.

Canvas is a client-side drawing API that uses script, often JavaScript, to create visuals and animations. It doesn’t add XML elements to the DOM, which dramatically improve performance when building visualizations from large datasets.

Canvas also allows you to use the WebGL API to create 3D objects.

Although learning WebGL is outside of the scope of this book, creating 3D

data visualizations for the web is possible. At the moment, it is mainly used in experimental projects. In chapter 15, we’ll cover how to build visualization with canvas and discuss its pros and cons.

1.1.7 CSS

CSS stands for Cascading Style Sheets and is the language that describes how DOM elements are displayed on the screen and what they look like. From the

overall grid layout of a page to the family of fonts used for the text, up to the color of the circles in a scatterplot, CSS can turn a plain HTML file into an awe-inspiring web page. In D3 projects, we generally apply CSS styles using inline-styles or via an external stylesheet.

Inline-styles are applied to elements with the style attribute, as you can see in the following example. The style attribute can be used both on traditional HTML or SVG elements and D3 has a handy method to set or modify this attribute that we will discuss in chapter 2.

<div style="padding:10px; background:#00ced1;"> ... </div>

<text style="font-size:16px; font-family:serif;"> ... </text> Inline-styles affect only the element to which they are applied. If we want to propagate the same design to multiple elements, we need to apply the same style attribute to every one of them (or to a SVG group that wraps all the elements together). It certainly works but it’s not always the most efficient way to go.

On the other hand, external CSS stylesheets are perfect for applying styles globally. A strategy is to ask D3 to add the same class name to multiple elements. We then use this class name as a selector in an external stylesheet and apply the same styling properties to the targeted group of elements, as in the following example. This approach is much more efficient, especially when maintaining large projects. It also follows the separation of concerns principle, where we separate behaviors, controlled with JavaScript, from styles, regulated with CSS. Note that CSS pre-processors like SASS and LESS are part of the external stylesheet approach described here.

In the CSS stylesheet:

.my-class {

font-size: 16px;

font-family: serif;

}

In the DOM:

<text class="my-class"> ... </text> Remember that inline-styles take precedence over the ones applied from an external stylesheet. In any frontend development project, it's important to

plan the architecture of your CSS styles with the cascading order in mind.

1.1.8 JavaScript

D3 is a JavaScript library. It adds new methods on top of the existing core features of JavaScript. This means that a little bit of prior experience with JavaScript is helpful when working with D3. It also means that, when building D3 projects, you have access to all the existing JavaScript features.

In this section, we will explain two JavaScript topics that are used extensively in D3 projects: method chaining and object manipulation.

method chaining

If you search for examples of D3 projects on the web, you will notice that methods are called one after another on the same selection. This technique is what we call method chaining and helps to keep the code concise and readable.

We can think of method chaining as we would of a car assembly line. Let’s say we write the script that runs such an assembly line. As you can see in the following example, we would first declare a car variable that creates a new Car() object. We then call the function putOnHood(), which puts a hood on top of the car, and we continue by calling the functions that will put wheels, tires and lights. Each successive call adds an element to the Car() object, and, once all the methods have been executed, the car has a hood, wheels, tires, and lights. Each method passes the updated car object to the next, thus

”chaining”. Note that each call is separated by a dot and that the order in which the methods are called is important. In our car assembly line example, we need the wheels to be installed before we can put tires on them.

let car = new Car().putOnHood().putOnWheels().putOnTires().putOnLights(); Let’s now look at how we would use method chaining in D3. Imagine that we want to grab all the divs from the DOM and add a paragraph element into each of them. The paragraph elements should have a class attribute of my-class and contain the text “Wow”. We then want to insert a span element

into each paragraph, with the text “Even More Wow” in bold. Without method chaining, we would need to store each action into a variable, then call this variable when performing the next action, like below. It’s exhausting just to look at it...

const mySelection = d3.selectAll("div");

const myParagraphs = mySelection.append("p"); const myParagraphsWithAClass = myParagraphs.attr("class", "my-class"); const myParagraphsWithText = myParagraphsWithAClass.text("Wow"); const mySpans = myParagraphsWithText.append("span"); const mySpansWithText = mySpans.text("Even More Wow") const myBoldSpans = mySpansWithText.style("font-weight", "900"); Thanks to method chaining, the same example becomes much more concise.

d3.selectAll("div").append("p").attr("class", "my-class").text("Wow")

➥ .append("span").text("Even More Wow").style("font-weight", "900"); In D3, it is very common to break lines, which JavaScript ignores, and to indent the chained methods. This makes the code easier to read, and the indentation helps us see which element we are working on.

d3.selectAll("div")

.append("p")

.attr("class", "my-class")

.text("Wow")

.append("span")

.text("Even More Wow")

.style("font-weight", "900");

Don’t worry about understanding what the previous code example does, although you can totally guess it from the name of the different methods! For now, we only want you to get familiar with how methods can be chained in JavaScript. We will cover the D3-specific jargon in chapter 2.

arrays and objects manipulation

D3 is all about data, and data is often structured as JavaScript objects.

Understanding the construction of these objects and how to access and manipulate the data they contain will help you tremendously as you build visualizations with D3.

Let’s first talk about simple arrays, which are a list of elements. In data-related projects, arrays are usually an ordered list of numbers or strings.

const arrayOfNumbers = [17, 82, 9, 500, 40];

const arrayOfStrings = ["blue", "red", "yellow", "orange"]; Each element in an array has a numeric position, called the index, and the first element in an array has an index of 0.

arrayOfNumbers[0] // => 17

arrayOfStrings[2] // => "yellow"

Arrays have a length property that, for non-sparse arrays, specifies the number of elements they contain. Since arrays are zero-indexed, the last element in an array has an index corresponding to the array's length minus one.

arrayOfNumbers.length; // => 5

arrayOfStrings[arrayOfStrings.length - 1] // => "orange"

We can also determine if an array contains a specific value with the method includes(). This method returns true if one of the elements from the array corresponds exactly to the value passed as an argument. Otherwise, it returns false.

arrayOfNumbers.includes(9) // => true

arrayOfStrings.includes("pink") // => false arrayOfStrings.includes("ellow") // => false However, most datasets are not simple lists of numbers or strings, and each of their data points is usually composed of multiple properties. Let's imagine a database of employees from a fictional agency, represented in Table 1.1. The table contains four columns: the id, name, and position of each employee, and whether the employee works with D3 or not.

Table 1.1 A small dataset with employees and their position id

name

position

works_with_d3

1

Zoe

Data analyst

false

2

James

Frontend developer

true

3

Alice

Fullstack developer

true

4

Hubert

Designer

false

Each row in the dataset, or data point, can be represented by a JavaScript object like row1 below.

const row1 = {

id:"1",

name:"Zoe",

position:"Data analyst",

works_with_d3:false

};

We can easily access the value of each property in the object with the dot notation.

row1.name // => "Zoe"

row1.works_with_d3 // => false

We can also access these values with the bracket notation. The bracket notation is handy if the property name contains special characters like empty spaces or if we previously saved the property name in a constant or a variable.

row1["position"] // => "Data analyst"

const myProperty = "works_with_d3";

row1[myProperty] // => false

In real life, datasets are generally formatted as arrays of objects. For example, if we load the dataset contained in Table 1.1 with D3, as we will learn to do

in chapter 3, we obtain the following array of objects that we can save in a constant named data.

const data = [

{id:"1", name:"Zoe", position:"Data analyst", works_with_d3:false},

{id:"2", name:"James", position:"Frontend developer", works_with_d3:true},

{id:"3", name:"Alice", position:"Fullstack developer", works_with_d3:true},

{id:"4", name:"Hubert", position:"Designer", works_with_d3:false}

];

We can iterate through each element, or data point, in the data array with a loop. More specifically, the JavaScript forEach loop is convenient and easy to write and read. A common use case for iterating through a dataset is data wrangling. When we load an external CSV file, the numbers are often formatted as strings. Let’s take our data array as an example and convert the values of the property id from strings into numbers.

In the example below, the array iterator d gives us access to each object.

Using the dot notation, we convert each id into a number using the +

operator.

data.forEach(d => {

d.id = +d.id;

});

JavaScript provides many array iterator methods that help us interact with data and even reshape it when needed. Let's say we want to position each employee from our dataset onto a visualization. Creating a simple array that only contains the name of the employees might come in handy, and we’d use the map() method for that.

data.map(d => d.name); // => ["Zoe", "James", "Alice", "Hubert"]

Similarly, if we want to isolate only the employees that work with D3, we could use the filter() methods.

data.filter(d => d.works_with_d3);

// => [

{id:2, name:"James", position:"Frontend developer", works_with_d3:true},

{id:4, name:"Hubert", position:"Designer", works_with_d3:true}

];

Finally, we could find the employee with an id of 3 with the find() method.

Note that the find() method stops iterating after finding the value it's looking for. We can only use this method when searching for one single data point.

data.find(d => d.id === 3);

// => {id:"3", name:"Alice", position:"Fullstack developer", works_with_d3:true}

The methods discussed in this section are far from covering all the array and object manipulation techniques that JavaScript offers. But they probably are the ones you'll keep coming back to when working with data. Whenever you need to find another way to access or manipulate your data, MDN Web Docs (developer.mozilla.org) is always a solid reference with plenty of examples.

1.1.9 Node and JavaScript Frameworks

JavaScript has seen some major changes in the last decade. The two most significant trends in modern JavaScript are the rise of node.js and the establishment of JavaScript frameworks as the standard for most projects.

The major Node technology we want to know for D3 projects is NPM, or Node Package Manager. NPM allows you to install “modules” or small libraries of JavaScript code to use in your applications. You don’t have to include a bunch of <script> tag references to individual files and, if the module has been built so that it’s not one monolithic structure, you can reduce the amount of code you include in your applications.

D3.js version 7, which came out in mid-2021, takes advantage of module importing. Throughout this book, you’ll see examples of using D3 in one of two ways. Either we’ll include the entire D3 file, as we’ll do in chapter 2, or we’ll include only the individual parts of D3 that we need, as you’ll see in later examples. We can do so with script tags, but starting in section 2, we’ll primarily import D3 modules using NPM since this is considered standard practice nowadays. You’ll likely need to get familiar with it if you ship professional D3 projects.

If you already participate in professional web projects, there’s also a high

chance that you are working with JavaScript Frameworks, like React, Angular or Svelte. Frameworks provide developers with the foundation to build web projects with modular, reusable, and testable code. These frameworks are in charge of building and updating the DOM, which is what the D3 library does as well. In chapter 8, we will discuss strategies to avoid conflicts when building D3 visualization within JavaScript frameworks.

1.1.10 Observable notebooks

If you search for examples of D3 projects on the web, you will undoubtedly come across Observable notebooks (observablehq.com). Observable is a collaborative playground for data science and visualization, similar https://observablehq.com/to the Jupyter environment for Python projects. The Observable platform was created by Mike Bostock and replaced bl.ocks.org, the previous online D3 sandbox. All the official D3 examples now live on Observable, and the D3 community is quite active over there.

It's important to know that Observable requires you to learn a way to handle D3 projects that is specific to this platform. Also, you cannot directly copy-paste an Observable notebook into a frontend development environment (but there are ways to export and reuse them). Since the focus of this book is to build D3 visualizations in an environment that resembles how we ship D3

projects for production, we won't cover Observable notebooks. If you are interested in learning Observable, they have an excellent series of tutorials that you can find at observablehq.com/tutorials. Most of the techniques and concepts that you will learn in this book can be translated into Observable notebooks.

1.3 Data visualization standards expressed in D3.js

Data visualization has never been so popular as it is today. The wealth of maps, charts, and complex representations of systems and datasets isn’t present only in the workplace, but also in our entertainment and our everyday lives. With this popularity comes a growing library of classes and subclasses of representation of data and information using visual means, as well as aesthetic rules to promote legibility and comprehension. Your audience, whether the general public, academics, or decision makers, has grown

accustomed to what we once considered incredibly abstract and complicated representations of trends in data. This makes libraries such as D3 popular not only among data scientists, but also with journalists, artists, scholars, IT

professionals, and even fan communities.

Such a wealth of options can seem overwhelming, and the relative ease of modifying a dataset to appear in a streamgraph, treemap, or histogram tends to promote the idea that information visualization is more about style than substance. Fortunately, well-established rules dictate which charts and methods to use for different data types from diverse systems. This book doesn’t aim at covering every best practices in data visualization, but we’ll touch on ones that are useful to consider and will explain why we choose to represent different types of datasets with specific charts. Although developers use D3 to revolutionize the use of color and layout, most want to create visual representations of data that support practical concerns. Because D3 is being developed in this mature information visualization environment, it contains numerous helper functions to let developers worry about interface and design rather than color and axes.

As you build your first visualization projects and when in doubt, simplify—

it’s often better to present a histogram than a violin plot, or a hierarchical network layout (like a dendrogram) than a force-directed one. The more visually complex methods of displaying data tend to inspire more excitement, but can also lead an audience to see what they want to see or focus on the aesthetics of the graphics rather than the data. There’s nothing wrong with creating cool and jaw-dropping visualizations, but we should never forget that the primary goal of any data visualization is to tell a story. Asking around if people understand your visualization and how they interpret it is a crucial step. Do they need explanation? Which conclusions can they draw from interacting with your project? Does the story get told?

Still, to properly deploy information visualization, you should know what to do and what not to do. You need to have a firm understanding of your data and your audience. D3 grants us with immense flexibility, but as the saying goes, "With great power comes great responsibility." While it's good to know that certain charts are better suited to represent a specific type of data, it's even more important to remember that data visualizations can carry

misinformation when not architected with care and from an informed perspective. If you plan to design your own visualizations, educating yourself on data visualization best practices is essential. The best way to learn this is to review the work of established designers and information visualization practitioners. Although an entire library of works deals with these issues, here are a few that we've found useful and can get you oriented on the basics.

These are by no means the only texts for learning data visualization, but they are a great place to start.

 Better Data Visualizations, Jonathan Schwabish

 The Functional Art, The Truthful Art and How Charts Lie, Alberto Cairo Data Visualisation A Handbook for Data Driven Design, Andy Kirk The Visual Display of Quantitative Information Envisioning Information, Edward Tufte

 Designing for Information, Isabel Meirelles

 Pattern Recognition, Christian Swinehart

 Visualization Analysis and Design, Tamara Munzner One thing to keep in mind while reading about data visualization is that the literature is often focused on static charts. With D3 you’ll be making interactive and dynamic visualizations. A few interactive touches can make a visualization not only more readable but significantly more engaging. Users who feel like they’re exploring rather than reading, even if only with a few mouse over events or a simple click to zoom, might find the content of the visualization more compelling and memorable than is they read the static equivalent. But this added complexity requires an investment in learning principles of interface design and user experience. We’ll get into this in more detail in chapter 7.

This concludes our first chapter! Although we haven’t used D3 yet, you now have all the knowledge you need to get started. Keep coming back to this chapter when you are unsure about which SVG element you should use in your visualizations or if you need a reminder on how to manipulate data with JavaScript. From the next chapter, we wil roll our sleeves and create D3

visualizations.

1.4 Summary

D3 is the tool of choice when you want to have total creative and technical freedom on your data visualizations.

D3 applications are styled and served like traditional web content.

D3 is never used alone but is rather part of an ecosystem of technologies and tools that we combine the create rich web interfaces: HTML, CSS, JavaScript, SVG, Canvas and Frameworks like React or Svelte.

The SVG shapes that we use most often as we build data visualizations are lines, rectangles, circles, ellipses, paths, and text.

You need a basic understand of these shapes and their main attributes in order to work with D3.

When writing JavaScript with D3, you should familiarize yourself with two subjects: method chaining and object manipulation.

Method chaining is a pattern where multiple methods, are called one after the other on the same object.

In D3, datasets are often structured as arrays of objects. JavaScript offers multiple methods to access and manipulate the data within these structures.

As a D3 developer, it is important to develop a solid understanding of data visualization best practices. Multiple resources can help you start your learning journey.

2 Manipulating the DOM

This chapter covers

Setting up a local development environment for D3 projects Selecting elements from the DOM

Adding HTML or SVG elements to a selection

Setting and modifying the attributes and styles of DOM elements Now that we've established the role of D3 and its ecosystem of tools, it is time to get to work! In this chapter, we will set the foundations of our first visualization while learning how to manipulate the DOM (Document Object Model) with D3.

DOM manipulation is at the root of any D3 project, and the techniques that you will learn in this chapter are probably the ones you will use the most often as a D3 developer. First, we will cover selections, which allow us to grab a single or multiple elements from the DOM. You'll see that D3 makes selections very easy and intuitive. Then, once we have a selection, we'll want to do something with it. An action that we regularly perform in D3 projects is adding HTML or SVG elements to a selection. For example, to create a visualization, we often append SVG shapes inside a SVG container. Finally, we adjust the positions, sizes, and colors of these SVG shapes. We do that by setting their regular and presentation attributes.

Because this book focuses on building projects in a local development environment, you'll need to have one before we dive into D3 techniques. In section 2.2, we will explain how to use VS Code and its Live Server extension to have a local environment ready to go within a few minutes.

2.1 Your first D3 visualization

In this chapter and the following one, you will develop your first D3

visualization: a bar chart. Although we’ve mentioned in chapter 1 that D3 is

not necessarily the most efficient tool for making simple, classical charts, a bar graph is perfect for introducing D3’s fundamental concepts. Stick with us, and soon you’ll have a solid foundation that will allow you to build complex visualizations with ease.

The data behind our bar chart comes from the 2021 Data Visualization - State of the Industry Survey, hosted by the Data Visualization Society (datavisualizationsociety.org).

Figure 2.1 Most popular technologies among data visualization practitioners

[image: Image 33]

The state of the industry survey was answered by 2,181 data visualization practitioners, from professionals to students to hobbyists. We will visualize the answers to one question from the survey: “What technologies do you use often to visualize data?”, for which the respondents could select all the tools that apply from a predefined list. In figure 2.1, you can see the resulting bar graph, where the tools are listed vertically, and the length of each bar represents the number of respondents that selected this tool. According to this survey, D3 closes the top 10 of data visualization tools. Let’s get started!

2.2 Preparing your environment

Before we start using D3, we need to decide where we will build and run our projects. We could work with an online code editor, like Observable (observablehq.com) or Codepen (codepen.io), and these options are great for quickly testing and sharing code. But since the goal of this book is to help you get ready to ship D3 projects into websites and web apps, we will opt for a local development environment.

Now, if the idea of setting up a development environment makes you cringe, don’t worry. Far gone are the days where you had to spend half a day sweating and crying through this process. Thanks to modern tools, your whole set-up shouldn’t take more than a few minutes the first time, and, afterward, you’ll be up and running with the click of a button.

At this point you might wonder why we cannot simply open our HTML files with a browser like we did for the Gallery of SVG Shapes exercise in chapter 1 (section 1.2.2). Although this approach could sometimes work just fine, it will eventually lead to the browser refusing to perform specific tasks and throwing errors. Some browsers prevent loading local files with JavaScript for security reasons and require loading them via a web server instead. And since in D3 projects, we usually have to load a data file, we do need a web server.

Throughout this book, we will be using the code editor Visual Studio Code, also known as VS Code, often combined with its Live Server extension, which provides a local web server. But if you already have a preferred set-up, feel free to use it and skip to section 2.2.1.

VS Code is wildly popular among developers. It is free, open-source, and easy to use, yet powerful. It has built-in Git commands (no need to have a terminal window open on the side!) and is highly customizable. If you don’t have VS Code already installed on your computer, you can download it from the official website of Visual Studio Code

(https://code.visualstudio.com/Download). Once you have VS Code, you’ll want to install its Live Server extension.

Refer to appendix A if you need help with the installation. This appendix also contains explanations on how to start and stop your local web server using the Live Server extension.

note

If you haven’t already, download the code files on the book’s Github repository (https://github.com/d3js-in-action-third-edition/code-files). From now on and until the end of the chapter, we will work with the chapter_02/start folder. If at any point you are stuck and need to look at the solution, you will find it in the chapter_02/end folder. When working with the chapter’s code files, open only one start OR one end folder in your your code editor. If you open all the chapter’s files at once and use the Live Server extension to serve the project, some paths won’t work as expected, especially when we will load a dataset into the project.

2.2.1 The structure of our first D3 project

The D3 projects that we will work on in the next chapters will all have a similar structure, represented in figure 2.2.

Figure 2.2 Folder structure of our first D3 project

[image: Image 34]

At the root of the project, we have an index.html file, where the initial markup of our projects lives. This is also where, in the first section of this book, we will load the D3 library, our JavaScript file(s), and our CSS file(s) into the project.

We then have three folders:

The /css folder contains any CSS file relevant to the project. Although this book doesn’t focus on CSS, we will use it occasionally. For simplicity, we will also group our styles in a minimal amount of files.

But keep in mind that in professional projects, the structure of the CSS

folder can be much more sophisticated and often involves a CSS

preprocessor like SASS or LESS.

The /data folder contains our dataset(s). For the bar graph, our dataset is a CSV file, where values are separated with a comma. Each line of the

dataset contains a technology, followed by the count, or how many times the survey respondents have selected this technology.

Finally, the /js folder contains our JavaScript file(s). To keep things simple, we will write our D3 code in one single file, main.js. But later, we’ll discuss how we can split the code into multiple files, or components, for better maintainability and testability.

2.2.2 Loading D3 into a project

Now that we have a web server up and running, there’s one more thing we need to do before we can start coding with D3: Loading the D3 library into our project. In this book, there are two main approaches that we will use. The first one is to add a script tag to index.html that links to the latest version of D3. We can use this approach to load the entire D3 library or only specific modules. The second approach is to load D3 as an NPM module(s) and is mainly suited to sites built with React or another JavaScript framework.

In this chapter, we will opt for the first approach, because it is the simplest.

As the book progresses, we will start loading only the D3 modules we need and use the second approach, which is more representative of how professional D3 projects are built nowadays.

In VS Code, or in your code editor of choice, open the chapter_02/start folder and start your local web server. Open the index.html file, located at the root of the folder.

Just before the closing body tag (</body>), load version 7 of the D3 library, the latest version at the time of writing this book, using a script tag. Add another script tag to load the file main.js located in the /js folder and save your project. You can see how to proceed in listing 2.1.a.

<script src="https://d3js.org/d3.v7.min.js"></script>

<script src="js/main.js"></script> note

The homepage of d3js.org always contains instructions and a snippet of code of how to load the latest version of the D3 library into a project.

The browser reads the JavaScript files in the same order as the script tags are listed in index.html. We must load the D3 library before main.js.

Otherwise, the browser won’t have access to the D3 methods used in main.js. It will throw errors and the code won’t execute.

We also want the scripts to be the last thing to load on a web page, hence we position the script tags just before the closing body tag (</body>). With this approach, we reduce the loading time of our web page, not having to wait for the script to load before the DOM is displayed. We also ensure that the DOM

is available before we try to manipulate it from the script files.

Listing 2.1.a Loading the entire D3 library in a script tag - index.html

<!DOCTYPE html>

<html>

<head> ... </head>

<body>

<div class="container">

<h1>Your are about to start working with D3!</h1>

</div>

<script src="https://d3js.org/d3.v7.min.js"></script> #A

<script src="js/main.js"></script> #B

</body> #C

</html>

Now, let's test that the D3 library and the main.js file are properly loaded into our project. In your code editor, go to the /js folder and open main.js.

Copy-paste the following code snippet into main.js, and save the file.

d3.select("h1").style("color", "plum"); In the next section, we will explain in detail what the D3 methods from this code snippet are for, but for now, let's just say that we've selected the title h1

and changed its color to the CSS color name "plum". If you look at your project in the browser, the color of the title should have changed, like in figure 2.3.

Figure 2.3 Title color modified with D3

[image: Image 35]

Now that we have confirmed that D3 is loaded into our project, you can delete the snippet from main.js and the h1 title from index.html. In the next section, we’ll introduce D3 selections.

2.3 Selecting elements

When building D3 projects, we constantly manipulate the DOM, and any DOM manipulation starts with a selection. Selections are like grabbing an element from the DOM and holding it ready for further manipulations. D3

has two methods for selections: d3.select() and d3.selectAll().

The method d3.select() takes a selector as a parameter and returns the first element that matches that selector. This method is chained to the d3 object and used to select one single element. As you can see in figure 2.4, the selector parameter can be a class attribute, an id, a tag name, or any combination of the above, exactly like the selectors we use in CSS.

Figure 2.4 The select() method

[image: Image 36]

Let’s take the fictional DOM sample illustrated in figure 2.5 as an example. It consists in a div element that contains an h1 title, a paragraph element with the class intro and another div with the id viz-container. This div wraps together another paragraph and a SVG container. Finally, the SVG container encompasses three circle elements. The first and the last of these circles have the class faded.

Figure 2.5 A fictional DOM sample

[image: Image 37]

If we want to select the h1 title, we can use its tag name as a selector passed to the d3.select() method, as follows:

d3.select("h1");

Similarly, if we want to select the paragraph with the class intro or the div with the id viz-container, we can use their respective class or id attributes as selectors. Like in CSS selectors, class names are preceded by a dot (.) and ids by a hashtag (#).

d3.select(".intro");

d3.select("#viz-container");

We can also use a combination of selectors. For instance, if we want to select the paragraph element inside the div with an id of viz-container, we leave a space between the two selectors.

d3.select("#viz-container p");

[image: Image 38]

One important thing to keep in mind is that the method d3.select() returns only the first element from the DOM that matches its selector. For example, there are three circle elements in our DOM sample illustrated in figure 2.6.

But the selection d3.select("circle") only returns the first one and ignores the others.

Figure 2.6 DOM elements returned by the d3.select() method So what can we do if we need to include more than one element into a selection? This is when we use the d3.selectAll() method.

d3.selectAll() works similarly to d3.select(), except that it returns all the DOM elements matching its selector. For example, if we go back to our fictional DOM sample, d3.selectAll("circle") returns all the circle elements contained in the DOM.

Figure 2.7 DOM elements returned by the d3.selectAll() method

[image: Image 39]

It's also sometimes helpful to know that, like in CSS, we can group multiple selectors strings, separated by a comma. For example, in the following snippet, we select both the h1 title and the paragraph with a class of intro.

d3.selectAll("h1, .intro");

Figure 2.8 Grouping selectors with a comma

[image: Image 40]

Most of the time, you’ll want to store your selections into JavaScript constants so that you can reuse and manipulate them later. You can store D3

selections like you would with any JavaScript constants (const) or variables (let).

const myCircles = d3.selectAll("circle");

2.4 Adding elements to a selection

Selections are nice, but they are not of much use if we don’t do anything with them. A typical pattern in D3 is to perform a selection in order to append another element into it. Although vanilla JavaScript already allows us to append elements, D3 makes it much easier.

The first D3 method used to add an element to a selection is selection.append(). The append() method adds a new element as the last child of the selection and takes the type of the element, or the name of the

[image: Image 41]

tag, as a parameter.

Figure 2.9 The append() method

Let’s go back to our fictional DOM sample. If we want to add a rectangle element as the last child of the SVG container, we first select the SVG

container then chain the append method to the selection. The type of node to append, a rect element, is passed to the append() method as a parameter.

d3.select("svg").append("rect");

Figure 2.10 Using the method selection.append() to add an element as the last child of a selection

[image: Image 42]

We could also use d3.selectAll("div") to select every div node in the DOM and append a paragraph element into each of them as you can see in figure 2.11.

d3.selectAll("div").append("p");

Figure 2.11 When combined with d3.selectAll(), the append method adds nodes into each element of the selection.

[image: Image 43]

The second D3 method we use to add elements to the DOM is selection.insert(). The insert method is similar to selection.append(), but it adds an element as the first child of the selection. So if we want to add a rectangle element as the first child of the SVG container in our DOM

sample, we need to use the insert() method.

d3.select("svg").insert("rect");

Figure 2.12 Using the method selection.insert() to add an element as the first child of a selection

[image: Image 44]

To put what we have learned in action, let’s start building the bar chart described in the introduction of this chapter.

Make sure that the start folder of chapter’s 2 code files is still open in your code editor and that your local web server is running. Refer to appendix A if you need a refresher on how to start a web server with VS Code’s Live Server extension. Open the file index.html and note that it contains a div element with the class responsive-svg-container.

As discussed in chapter 1, most D3 visualizations are built with SVG

elements and our bar chart will be no exception. To do so, we need a SVG

container into which the SVG shapes that make our chart will go. We will now add this SVG element.

Open the file main.js contained in the folder /js. Using the method d3.select(), select the div with a class of responsive-svg-container and add a SVG element inside this div. Since the div is empty, you can use the

[image: Image 45]

append() or the insert() method. They will have the exact same effect. The following snippet shows how the append() method is chained to the selection.

d3.select(".responsive-svg-container")

.append("svg");

Save the file main.js and look at the project in the browser. No change is visible in the viewport, but if you open the inspector, you’ll see that the SVG

element has been added to the DOM, precisely as we wanted!

Figure 2.13 SVG element added to the DOM tree

In the next section, we’ll make our SVG responsive by giving it a viewBox attribute.

2.5 Setting and modifying attributes

In chapter 1, we have extensively discussed the main SVG elements and the attributes that determine their position and size. We also explained that, as a D3 developer, you will need to set and modify these attributes in your code.

Now's the time to learn how!

Attributes can be set and modified with the D3 method selection.attr(), where “attr” stands for “attribute”. As you can see in figure 2.14, the attr() method takes two parameters, the first one is the name of the attribute, and the second one is its value. The value can be set directly, or via an accessor function as we will discuss in chapter 3.

[image: Image 46]

Figure 2.14 The attr() method

In our bar graph exercise, the div element that surrounds our SVG container has the class responsive-svg-container. If you open the file main.css in the /css folder, you'll see that this class applies all the styles needed for the container of a responsive SVG element, as discussed in section 1.2.2. Here, the container has a max-width property of 1200px, which will also be the maximum width of our bar graph.

For our SVG container to maintain its aspect ratio while adapting to its container, we only need to set its viewBox attribute. We’ll use the attr() method for that. As you can see in the next code snippet, the first parameter passed to the attr() method is the name of the attribute, which in this case is viewBox. Note how the “B” letter of this attribute’s name is a capital letter.

The presentation attributes are case sensitive, and it’s essential to respect the camel case notation of the viewBox attribute for the browser to recognize it..

[image: Image 47]

The second parameter is the value of the viewBox attribute, which is a list of four numbers. The first two numbers are the origin of the coordinate system of the viewBox, located at (0,0). The last two numbers are the width and height of the viewBox. The width corresponds to the max-width property of the container div, hence 1200px, and let’s estimate the height at 1600px. We can adjust it later if we need to. Our viewBox attribute then has a value of "0

0 1200 1600".

d3.select(".responsive-svg-container")

.append("svg")

.attr("viewBox", "0 0 1200 1600");

Set the viewBox attribute of the SVG element, save main.js and take a look at your project in the inspector. You’ll see that the viewBox attribute has been added to the SVG element, like in figure 2.15. Also, if you make your browser’s viewport smaller, the SVG element will adapt while keeping its aspect ratio of 1200:1600.

Figure 2.15 SVG element with a viewBox attribute

Let’s take our latest bit of code and save it into a JavaScript constant named svg that we will soon use.

const svg = d3.select(".responsive-svg-container")

.append("svg")

.attr("viewBox", "0 0 1200 1600");

Every time we add a new element to a selection, with the .append() or the

.insert() method, we change the element returned by the selection. For instance, when we will reuse the constant svg, it won’t return the div with a class of responsive-svg-container but rather the SVG container that we have added into it.

The D3 indentation convention

Before we go further, let’s discuss the D3 indentation convention. In our last snippets of code, you might have noticed that each chained method is written on a new line. Doing so helps with readability, especially when more than 2

or 3 methods are chained together. You might also have noticed that the append() method is indented with two spaces, while the attr() method uses four spaces of indent, hence following the indentation convention.

In D3, every time we append a new element to a selection, we update the DOM element(s) targeted by the selection. As we set the attributes and styles of the newly added element(s), a proper indentation helps us know to which selection the attributes and styles are applied.

The D3 indentation convention

[image: Image 48]

The indentation convention is especially handy when multiple elements are appended one after the other. Imagine that, after adding our SVG element and setting the viewBox attribute, we append a group element into the SVG

container, with a class of my-group. Then, we append a rectangle element to the group and set its required attributes. As you can see in the previous figure, we need to chain multiple methods to make that happen. But, thanks to the indentation convention, the chain is easy to read, and we see at a glance to which selection, or element, each attribute is applied.

Bar graphs, like the one we are building, are composed of rectangles and SVG rectangles are created with the rect element. Just to practice selections and the attr() method, we will add one rectangle to our bar chart, which will represent the number of data visualization practitioners that selected the tool D3.js in the survey. If you open the file data.csv in the folder /data, you’ll find that 414 practitioners said they use D3 regularly.

In main.js, start by calling the constant svg, which returns the SVG

container. Add a rect element inside the SVG container. In the following code snippet, we used the append() method to add the rect element, but we could also have employed the method insert(). Save your project and confirm that the rect element has been added inside the SVG.

const svg = d3.select(".responsive-svg-container")

.append("svg")

.attr("viewBox", "0 0 1200 1600");

svg

.append("rect");

The rect element exists in the DOM but is not yet visible on the screen because its required attributes haven’t been set. We know that SVG

rectangles need four attributes in order to appear on the screen. You can refer back to section 1.2.2 to review these notions. The x and the y attributes control the position of the top-left corner of the rectangle. Let’s place it at (10, 10) for now. The width of the rectangle corresponds to how many practitioners selected D3 as a tool, which is 414, and its height can be any number, we’ll use 16. By giving the width and the height attributes values of respectively 414 and 16, our rectangle will have a width of 414px and a height of 16px. The value of these four attributes is passed as numbers.

svg

.append("rect")

.attr("x", 10)

.attr("y", 10)

.attr("width", 414)

.attr("height", 16);

Finally, the fill attribute of the rectangle is set to the CSS colorname

"turquoise" and is passed as a string.

svg

.append("rect")

.attr("x", 10)

.attr("y", 10)

.attr("width", 414)

.attr("height", 16)

.attr("fill", "turquoise");

[image: Image 49]

Note how we use the indentation convention here: the new selection created when we append the rectangle uses two spaces of indent while the attr() methods use four spaces. This way, we make it obvious that the attributes are applied to the rect element.

Once your project is saved, the rectangle will be visible in the viewport of your browser.

Figure 2.16 Rectangle element appended into the SVG container 2.6 Setting and modifying styles

In order for our visualization elements to have the look and feel that we want, we need to be able to apply styles to them. The traditional CSS stylesheet approach is a good one and often a better option for maintainability purposes.

But sometimes, setting and modifying the style attribute directly with D3 is handy, especially when the styles are meant to represent the data.

D3 allows us to set and modify the style attribute of elements with the method selection.style(). This method takes two parameters. The first

[image: Image 50]

one is the name of the style property and the second its value.

Figure 2.17 The style() method

Go back to our bar chart exercise and, in main.js, chain a style() method to the SVG container selection, the one stored in the constant named svg. Like in the following snippet, use the style() method to apply a border to the SVG container. You can give it any value you’d like. Here we use the shorthand property to apply a black border with a width of 1px.

const svg = d3.select(".responsive-svg-container")

.append("svg")

.attr("viewBox", "0 0 1200 1600")

.style("border", "1px solid black"); The border around the SVG container will help us visualize the space we are working in. It will also help us understand how the style() method works.

Save your project and look at it in your browser. Locate the SVG container in the DOM inspector. You should see the border property added within a style attribute, like in figure 2.18. This means that the style() method injects inline-styles.

[image: Image 51]

Figure 2.18 Border applied with the style() method

When working with SVG elements, some styles can be applied as an attribute or using inline-styles, like the fill and the stroke properties. There is no strict rule as though we should use the attr() or the style() method to apply such properties, but some developers prefer to be consistent and always apply presentational attributes as CSS or inline-styles rather than using attributes. This can be a good idea, especially when we want to keep our cascade of styles easy to manage by separating the code that makes shapes from the code that dictates how they look like. In this book, we will use the attr() and the style() methods, as well as external CSS files to set the presentational attributes of SVG elements.

Let’s illustrate this with an example. In main.js, chain a style() method to the rectangle selection and use this method to apply a second fill of a different color to the rectangle. In the following snippet we use the CSS color

"plum".

svg

.append("rect")

.attr("x", 10)

.attr("y", 10)

.attr("width", 414)

.attr("height", 16)

[image: Image 52]

.attr("fill", "turquoise")

.style("fill", "plum");

Now, open the main.css file and add a third fill property to the rectangle.

Here we used the CSS color "orange".

rect {

fill: orange;

}

Figure 2.19 Fill applied as attribute, from an eternal stylesheet, and as an inline-style Our rectangle now has three fill properties, applied differently. It has a fill of color "turquoise", applied as an attribute, another one, of color "plum", as an inline-style and finally a third one, of color "orange", applied from the external CSS stylesheet. This is of course not something we would do in real-life and is only for demonstration purposes.

Save your project and notice how the fill applied with the style property overwrites the two other ones. In figure 2.19 you can see how the cascade of styles is applied. The inline-style override any other styles, followed by the style applied from an external CSS stylesheet. The fill attribute comes last.

Keeping this rule in mind will help you develop a strategy that fits your habits, team and projects while avoiding pulling your hair wondering why a style is visible on the screen and another one is not.

We now know how to perform selections, add elements to the DOM and how to position and style them. But adding the rectangles one by one to our bar chart like we did here isn’t efficient at all. In the next chapter, we will learn how data-binding can help us to add all the rectangles at once. Before we get there, remove the bit of code related to the rectangle from main.js and main.css. The file main.js now only contains the code from listing 2.1.b.

Listing 2.1.b Content of main.js at the end of chapter 2

const svg = d3.select(".responsive-svg-container")

.append("svg")

.attr("viewBox", "0 0 1200 1600")

.style("border", "1px solid black"); Accessing the D3 modules documentation

D3 consists in a collection of modules that we can use independently and combine based on our project’s needs. Each module contains multiple methods that perform related tasks.

All the methods that we have discussed in this chapter are part of the module d3-selection (https://github.com/d3/d3-selection). This module is hosted on github and is a trustworthy and an always up-to-date resource.

If you are new to web development, such API documentation might be intimidating at first but the more you refer to it, the better you’ll start to understand its technical language.

2.7 Summary

D3 projects require a web server in order to run properly. A quick and easy way to have access to a web server in a local development environment is to use the Live Server extension of VS Code.

There are two ways to load the D3 library into a project: by adding a

script tag to index.html that links to the library or as an NPM module.

In the first chapters of this book, we use the script tag approach for simplicity.

The D3 library can be loaded in its entirety, or we can load only the D3

modules that we need, which can improve the performance of our projects.

When loading files and libraries via script tags, the order in which the script tags are listed is the same as the order in which the browser will read the scripts. This means that the script tag that links to the D3 library must appear before the script tags that are loading the JavaScript file(s) where we use D3. Otherwise, the browser won’t have access to the D3

methods used in the JavaScript file(s) and will throw errors.

In D3, we can select elements from the DOM with the methods d3.select() and d3.selectAll(). The first method returns only the first element while the second returns all the DOM elements that match its selector.

The selector string passed as an argument to the select() and selectAll() methods are identical to the selectors used in CSS

stylesheets. They use tag names, class names, ids or a combination of those to identify DOM elements.

The append() method allows to add an element as the last child of a selection. The insert() method works similarly but adds an element as the first child of a selection. Both methods take the type of the element as an argument.

The attr() method is used to add or modify attributes to an element. It requires two arguments: the name of the attribute and its value.

The style() method allows to set and modify the style attribute of DOM elements. It also requires two arguments: the name of the style property and its value.

With the style() method, we apply inline-styles, overwriting styles applied from external CSS stylesheets and via presentation attributes.

3 Working with data

This chapter covers

Recognizing data types and dataset formats

Loading, formatting and measuring data

Binding data to DOM elements

Using scales to translate data into visual attributes

Adding labels to a chart

The common denominator of any data visualization is, obviously, the underlying presence of data. As data visualization developers, we meet different types of data and datasets that we need to understand and manipulate to generate visualizations. In this chapter, we will discuss a data workflow that applies to most D3 projects. This strategy, illustrated in figure 3.1, starts with finding data for our project. This data can contain different data types, like nominal or ordinal data, and can come in different dataset formats, like CSV or JSON files. There’s usually a lot of work implied at this stage to prepare and clean the data, that we won’t cover.

Once a dataset is assembled, we use D3 to load it into a project, to format and measure the data. Then, we are ready to generate visual elements, usually SVG shapes, based on the data. This powerful process is called data-binding and we will use it to generate all the rectangles for the bar chart we’ve started in chapter 2.

The values contained in a dataset are not always directly applicable on the screen. The numbers might be too big to be used directly as the size of visual elements in pixels. Or we might want to represent specific values with colors.

This is where D3 scales come into play. In this chapter, we will discuss the different types of scales and how to use them. We will then use linear and band scales to position and size the rectangles on our bar chart (https://d3js-in-action-third-edition.github.io/most-popular-data-visualization-technologies).

[image: Image 53]

Figure 3.1 The D3 data workflow

Figure 3.2 shows a simplified version of the data workflow that we will use as we progress in this chapter.

Figure 3.2 Simplified diagram of the D3 data workflow

[image: Image 54]

[image: Image 55]

3.1 Understanding data

Before we dive into D3 data techniques, we will briefly discuss the different data types and dataset formats you will encounter as a D3 developer. This little bit of theory will help you read and understand the data you work with, which is essential to proper data visualization architecture. It will also help you later to select the appropriate scales for your projects.

Figure 3.3 The first step of the D3 data workflow is finding or gathering data. Data comes in different types and dataset formats.

3.1.1 Data types

When building data visualizations, we work with two main data types: quantitative and qualitative. Quantitative data is numerical information like time, weight, or countries' GDP. As you can see in figure 3.4, quantitative data can be discrete or continuous. Discrete data consists of whole numbers, also called integers, that cannot be subdivided. For example, a company can have 16 employees but not 16.3 employees. On the other hand, continuous data can be divided into smaller units and still make sense. A typical example of continuous data is temperature. We can read that it is 17oC today, but we can also measure it with even more precision and realize that it is actually

16.8oC. Usually, continuous data can be measured with an instrument, while discrete data can be counted but not measured.

Meanwhile, qualitative data is made of non-numerical information like text. It can be nominal or ordinal. Nominal values don't have a specific order, for instance, gender identity labels or city names. Ordinal values, on the other hand, can be classified by order of magnitude. If we take t-shirt sizes as an example, we usually list them in ascending size order (XS, S, M, L, XL).

Data types will impact the sort of visualization that we can choose to communicate the data. Line charts can work great for continuous data but aren't an option for discrete values. Nominal values can be represented by a set of categorical colors, while we might opt for a sequential or diverging color palette for ordinal values.

We also keep the data types in mind when selecting a D3 scale. Linear scales are used with quantitative data, while D3 has specific scales for qualitative data. We discuss scales in greater detail in section 3.4.

Figure 3.4 A classification of data types

[image: Image 56]

3.1.2 Dataset formats

Data can be formatted in a variety of manners for various purposes. Still, it tends to fall into a few recognizable formats: tabular data, JavaScript objects (JSON), nested data, networks, geographic data, or raw data.

tabular

Tabular data appears in columns and rows and is typically found in a spreadsheet or a table in a database. Tabular data is separated with a particular character, called a delimiter, which defines its format. The most common tabular data format is probably Comma-Separated Values files (CSV), where the delimiter is a comma. We can also meet Tab-Delimited Values files (TSV) or any other Delimiter-Separated Values file (DSV) that uses specific delimiters like pipes or semicolons.

As an example, let's take a sample from our fictional employees' dataset, discussed in chapter 1 (table 1.2). If we saved this data as a CSV, TSV, or DSV file, values would be respectively separated by a comma, a tab or another delimiter, like in table 2.1. In tabular datasets, the first line usually lists the column headers, and each row of data is listed on a new line.

Table 3.1 Delimited data expressed in CSV, TSV and DSV formats TSV: Tab-CSV: Comma-

DSV: Delimiter-Separated Values

Separated

Separated Values

(with a pipe delimiter)

Values

id name

id,name,works_with_d3

id|name|works_with_d3

works_with_d3

1,Zoe,false

1|Zoe|false

1 Zoe false

2,James,true

2|James|true

2 James true

3,Alice,true

3|Alice|true

3 Alice true

4,Hubert,false

4|Hubert|false

4 Hubert false

D3 provides three different functions to load tabular data: d3.csv(), d3.tsv(), and d3.dsv(). The only difference between them is that d3.csv() is built for comma-delimited files, d3.tsv() is for tab-delimited files, and d3.dsv() allows you to declare a delimiter. You’ll see them in action throughout the book.

json

JavaScript Object Notation files, or JSON, are a common way to store simple data structures. Developers regularly use them, especially when fetching information from API endpoints.

If we stored the data from table 2.1 in a JSON format rather than tabular, it would look like the following array of objects. Although it is not the most compact, the object notation has the significant advantage of making the data key-value pairs easy to access with JavaScript, using the methods discussed in section 1.2.5.

[

{

"id": 1,

"name": "Zoe",

"position": "Data analyst",

"works_with_d3": false

},

{

"id": 2,

"name": "James",

"position": "Frontend developer",

"works_with_d3": true

},

{

"id": 3,

"name": "Alice",

"position": "Fullstack developer",

"works_with_d3": true

},

{

"id": 4,

"name": "Hubert",

"position": "Designer",

"works_with_d3": false

}

]

In d3, we use the function d3.json() to load JSON files. But even when you load another type of tabular data, like a CSV file, d3 will transform the data into an array of objects.

nested

Data that are nested, with objects existing as children of objects recursively, is common. Many of the most intuitive layouts in D3 are based on nested data, which can be represented as trees, such as the one in figure 3.5 or packed in circles or boxes. Data isn’t often output in such a format and

[image: Image 57]

requires a bit of scripting to organize it as such, but the flexibility of this representation is worth the effort. You’ll see hierarchical data in detail in chapter 10.

Figure 3.5 Nested data represents parent/child relationships of objects, typically with each object having an array of child objects, and is represented in a number of forms, such as this dendrogram. Notice that each object can have only one parent.

network

[image: Image 58]

Networks are everywhere. Whether they’re the raw output of social networking streams, transportation networks, or a flowchart, networks are a powerful method of delivering an understanding of complex systems.

Networks are often represented as node-link diagrams, as shown in figure 3.6. Like geographic data, network data has many standards, but this text focuses only on two forms: node/edge lists and connected arrays. Network data can also be easily transformed into these data types by using a freely available network analysis tool like Gephi (available at gephi.org). We’ll examine network data and network data standards when we deal with network visualization in chapter 11.

Figure 3.6 Network data consists of objects and the connections between them. The objects are typically referred to as nodes or vertices, and the connections are referred to as edges or links.

Networks are often represented using force-directed algorithms, such as the example here, that arrange the network in such a way as to pull connected nodes toward each other.

geographic

Geographic data refers to locations either as points or shapes, and is used to create the variety of online maps seen on the web today, such as the map of the United States in figure 3.7. The incredible popularity of web mapping means that you can get access to a massive amount of publicly accessible geodata for any project. Geographic data has a few standards, but the focus in this book is on two: the GeoJSON and Topo-JSON standards. Although geodata may come in many forms, readily available geographic information systems (GIS) tools such as PostGIS (https://postgis.net) allow developers to transform it into GIS format for ready delivery to the web. We’ll look at geographic data closely in chapter 12.

Figure 3.7 Geographic data stores the spatial geometry of objects, such as states. Each of the states in this image is represented as a separate feature with an array of values indicating its shape. Geographic data can also consist of points, such as for cities, or lines, such as for roads.

[image: Image 59]

raw

As you explore the field of data visualization, you’ll discover that everything is data, including images, blocks of text and a website’s markup. Although information visualization typically uses shapes encoded by color and size to represent data, sometimes the best way to represent it in D3 is with linear narrative text, an image, or a video. If you develop applications for an audience that needs to understand complex systems, but you consider the manipulation of text or images to be somehow separate from the representation of numerical or categorical data as shapes, then you arbitrarily reduce your capability to communicate. The layouts and formatting used when dealing with text and images, typically tied to older modes of web

[image: Image 60]

publication, are possible in D3, and we’ll work with that throughout this book.

3.2 Preparing data

Once we have a dataset ready, we use D3 to load the data into our project.

We then ensure that the data values are correctly formatted and can measure different aspects of the data. In this section, we discuss the D3 methods used to perform these tasks and prepare the data for our bar graph.

3.2.1 Loading a dataset into a D3 project

Figure 3.8 The second step of the D3 data workflow is to load a dataset into our project using one of the D3 fetch functions

D3 has convenient functions to load datasets into projects. The function that we choose is related to the format of the dataset. For instance, CSV files are loaded with d3.csv() and JSON files with d3.json(). We pass the path to the data file as the function's first argument. D3 also has functions to load text or even XML files. They are all part of the d3-fetch module (https://github.com/d3/d3-fetch).

note

You can find the code files for chapter 3 on the book’s Github repository (https://github.com/d3js-in-action-third-edition/code-files/tree/main/chapter_03). The code for each section is found in corresponding folders under the repository. You can expect to find the code for section 3.2 in a folder starting with 3.2 and then a subject like: 3.2-

Preparing_data. Each folder has a “start” and “end” folder. Use the start folder if you want to start fresh with the bare minimum code. The end folder will show you the books “end” result of the section if you get stuck. When working with the chapter’s code files, open only one start OR one end folder in your your code editor. If you open all the chapter’s files at once and use the Live Server extension to serve the project, some paths won’t work as expected, especially when we will load a dataset into the project.

Let’s go back to the bar chart exercise started in chapter 2 and load our sample dataset from the 2021 Data Visualization - State of the Industry Survey. The dataset is in a CSV format and is located in the /data folder.

You can see the content of the file data.csv in listing 3.1. The first line of the file lists the columns headers: technology and count, which respectively represent the data visualization tools available in the survey, from ArcGIS to P5, and how many data visualization practitioners selected each tool, which was 414 for D3.js and 530 for Python.

Listing 3.1 Tools most used by data practitioners - data.csv technology,count

ArcGIS,147

D3.js,414

Angular,20

Datawrapper,171

Excel,1078

Flourish,198

ggplot2,435

Gephi,71

Google Data Studio,176

Highcharts,58

Illustrator,426

Java,29

Leaflet,134

Mapbox,167

kepler.gl,24

Observable,157

Plotly,223

Power BI,460

PowerPoint,681

Python,530

QGIS,193

Qlik,61

R,561

React,145

Tableau,852

Vega,48

Vue,51

Web Components,79

WebGL,65

Pen & paper,522

Physical materials,69

Canvas,121

P5/Processing,55

Since our dataset is a CSV file, we can load it into our project using the function d3.csv(), passing the path to the data file as the first parameter.

Knowing that our data file is located in the /data folder, the relative path from main.js is "../data/data.csv". With the two dots ("..") we go back one level, which brings us outside of the /js folder, at the project's root. We then go inside the /data folder and arrive at the file data.csv.

d3.csv("../data/data.csv");

Well, this pretty much completes step 2 of our data workflow but now, we need to understand how to access the data in order to perform the formatting and measuring steps. It is important to know that loading data is an asynchronous process. Asynchronous operations are requests for which the result is not available right ahead. We need to wait for D3 to fetch the data before we can read or manipulate it. We can safely know that the data is done loading and is ready for manipulation by accessing it through the callback function of d3.csv() and/or by using a JavaScript Promise.

3.2.2 Formatting a dataset

Figure 3.9 The third step of the D3 data workflow consists initially in formatting the data so that it is ready to use when you’ll start building your visualization.

[image: Image 61]

The callback function of d3.csv(), also called the row conversion function, gives access to the data row by row. In the following snippet, the first argument of d3.csv() is the path to the data and the second one is the callback function, where we log the data into the console. Copy-paste this snippet into main.js and save your project.

d3.csv("../data/data.csv", d => {

console.log(d);

});

Open the inspector of your browser and go to the console tab. You will see that, like in figure 3.10, the data is logged one row at a time, each row being a JavaScript object containing a technology and a count.

Figure 3.10 Fetched data (partial) logged into the console from the callback function of d3.csv()

[image: Image 62]

Note how the values from the count column have been fetched as strings instead of numbers. This is a common issue when importing data and is due to the type conversion of the dataset from CSV to JSON. Since the callback function of d3.csv() gives us access to the data one row at a time, it is a great place to convert the counts back into numbers. Doing so will ensure that the count values are ready to be used to generate our visualization later.

In the next snippet, instead of logging each data row into the console we return an object containing the technology and the count key-value pairs. The values are made available with the d parameter via the dot notation. With the d parameter, we are looping through the objects previously logged into the console (figure 3.10). We can then access the technology with d.technology, and the count d.count. Finally, we convert the count into a number using the

+ operator.

d3.csv("../data/data.csv", d => {

return {

technology: d.technology,

[image: Image 63]

count: +d.count

};

});

It is important to know that the key-value pairs returned in the callback function are the only ones you will have access to once the dataset is fully loaded. This strategy can be an efficient way to get rid of columns from the original dataset that you don’t need. But, if the dataset contains a lot of columns and you do need to keep them all, returning the keys and values one by one can be redundant. In this case, you might want to skip working in the callback function and perform the formatting once D3 has returned the complete dataset. We discuss how to access it in the next section.

3.2.3 Measuring a dataset

Figure 3.11 In the second part of the third step, we can measure and explore the data.

While retrieving the data row by row is useful, we also need to access the dataset as a whole. This is where JavaScript Promises come into play. A Promise is the result of an asynchronous operation, stored as an object. A simple way to create a Promise is with the .then() method. In the following snippet, we chain the .then() method to d3.csv(). Once the data is fully loaded, the Promise is fulfilled and the complete dataset is available in the callback function of the .then() method. Log the complete dataset into the console and save your project.

d3.csv("../data/data.csv", d => {

return {

technology: d.technology,

count: +d.count

};

[image: Image 64]

}).then(data => {

console.log(data);

});

In the console, you’ll see that the dataset has been converted into an array of objects, each object being a line from the original CSV dataset. This way, D3

makes the data iterable, which is quite useful for developing visualizations.

We can also confirm that the count values have been properly converted into numbers. If you look at the last item in our data array, you’ll see that D3

exposed the column headers from the CSV dataset. Although we won’t need it to build our bar graph, this array can sometimes come handy.

Figure 3.12 Complete dataset expressed as an array of objects logged into the console In step 3.a of our data workflow, we have completed the data formatting part but we can still explore and measure our data using D3. Measuring specific aspects of the data can help to get situated before diving into the actual crafting of a data visualization.

Although there’s no strict rule about where to proceed, the then() method of our data Promise is a great place to perform an initial exploration of the dataset. The first thing we might want to know is how many technologies it contains. For that, we can directly look at the length property of our data array. If we log the length property in the console, we obtain 33, which means that our bar graph will have 33 rectangles.

d3.csv("../data/data.csv", d => {

...

}).then(data => {

console.log(data.length); // => 33 #A

});

We might also want to know which technology is the most popular in our survey data and how many data practitioners said that they use it regularly.

Same thing for the least popular. You can get these values with the methods d3.max() and d3.min(). As you can see in the following snippet, they take two parameters. The first one is the iterable from which we want to know the max or the min value, hence the data returned by the Promise. The second parameter is an accessor function, where we specify on which key from our data objects we want to compare values, here the count.

If we log the max and the min values into the console, still inside the then() method of the Promise, we obtain 1078 and 20. Note that we could also use the method d3.extent(), which takes the same parameters and returns an array containing both the minimum and the maximum value.

d3.max(data, d => d.count) // => 1078

d3.min(data, d => d.count) // => 20

d3.extent(data, d => d.count) // => [20, 1078]

Knowing the maximum and minimum values in our data helps us make a rough mental image of how long our bars will need to be in graph and if the difference between the highest and the lowest value will be easy to represent on the screen or not.

[image: Image 65]

It is common practice for bar charts to show the data in descending order. It makes them easier to read and allows viewers to know in a glimpse which technologies are used more or less than others. The JavaScript sort() method allows us to do it quite easily. It takes a compare function as an argument, as you can see in the next snippet, in which it compares the count value of two technologies, represented as the a and the b parameters. If the count of b is greater than the count of a, b should appear before a in the sorted array and so on.

data.sort((a, b) => b.count - a.count);

You can sort your data in the then() method. If you log it into the console, you’ll see that Excel is at the top of the technologies’ list, with a count of 1078, followed by Tableau, with 852. The last technology in the bar graph will be Angular, with a count of 20.

Figure 3.13 Technologies dataset sorted in descending order

The module d3-array (https://github.com/d3/d3-array) contains many other methods to measure and transform data, some of which we will explore throughout this book. But d3.max(), d3.min() and d3.extent() are probably the ones that you will use most often.

Once we are done loading, transforming and measuring our data, it is common practice to pass the dataset to another function that will take care of building the visualization. In listing 3.2, you can see the state of main.js at this stage and how, at the end of the then() method, we call and pass the data to the function createViz(). We’ll start working in this function from the next section.

Listing 3.2 Load, transform and measure the data - main.js const svg = d3.select(".responsive-svg-container")

.append("svg") #A

.attr("viewBox", "0 0 1200 1600") #A

.style("border", "1px solid black"); #A d3.csv("../data/data.csv", d => { #B

return { #C

technology: d.technology, #C

count: +d.count #C

}; #C

}).then(data => {

console.log(data.length); // => 33 #D

console.log(d3.max(data, d => d.count)); // => 1078 #D

console.log(d3.min(data, d => d.count)); // => 20 #D

console.log(d3.extent(data, d => d.count)); // => [20, 1078] #D

data.sort((a, b) => b.count - a.count); #E

createViz(data); #F

});

const createViz = (data) => {}; #G

Before we wrap up this section, you can find an overview of the data loading,

[image: Image 66]

row conversion, and Promise concepts discussed so far in figure 3.14. The strategy is as follows:

1. Load the data using a fetch function, like d3.csv().

2. Format the data in the row conversion function.

3. Chain a then() method to access the entire dataset once the data loading is complete. This last method is a great place to measure the data and perform any operation that requires the whole dataset.

4. Pass the data to another function that will handle the building of the visualization.

Figure 3.14 How and where to load, transform and measure data in D3

3.3 Binding data to DOM elements

We are now ready to introduce one of the most exciting features of D3: data-

[image: Image 67]

binding. With data-binding, we can couple objects from a dataset to DOM

elements. For instance, each rectangle element in our bar graph will be coupled with a technology and its corresponding count value. At the data-binding step of the data workflow, the visualization really starts to come to life. And that’s always a joyful moment for a visualization developer!

Figure 3.15 The fourth step of the D3 data workflow consist in creating and binding data to DOM

elements that will be the core of the visualization.

To bind data, you only need to remember the pattern shown in the next snippet and constituted of three methods (selectAll(), data() and join()) chained to a selection.

selection

.selectAll("selector")

.data(myData)

.join("element to add");

Let’s use our bar graph exercise to explain the data-binding pattern. In our bar graph, we need one rectangle element for each row in our dataset, also called a datum. With the data-binding pattern, we tell D3 that each rectangle element should correspond to a datum.

Go back to main.js and, inside the function createViz(), call the selection corresponding to the SVG container and saved in the constant named svg.

The selection is where our rectangles will be added. Now, chain a selectAll() method to the selection, and pass the type of element that we want to add as a parameter, which is SVG rect elements. You can pass any CSS selector to the selectAll() method but using the type of element is common.

const createViz => (data) {

svg

.selectAll("rect")

};

You might wonder why we are selecting elements that don’t even exist yet!

This is what we call an empty selection. It tells D3: “Get ready to add rect elements to the DOM”. But D3 doesn’t know yet how many rectangles it needs to add. This is why we chain the data() method and pass our dataset as a parameter. Now D3 knows that it needs to create one rectangle element for each row in the data.

svg

.selectAll("rect")

.data(data)

Finally, the rectangles enter the DOM with the join() method.

svg

.selectAll("rect")

.data(data)

.join("rect")

Save your file and take a look at the DOM in the inspector. The SVG

container now contains 33 rectangles, one for each technology in the dataset.

Figure 3.16 Data-bound rectangles added to the DOM

[image: Image 68]

Figure 3.17 illustrates the data-binding process. We start with a selection, here the SVG container. Then we create an empty selection by telling D3 that we are about to add rectangles with the selectAll() method. We pass the dataset to the data() method. Finally, D3 appends one rectangle for each datum via the join() method. Once the data-binding is complete, the selection becomes the combination of the elements and the data together.

Whenever we reuse or manipulate elements from this selection, we have access to their corresponding data!

Figure 3.17 The data-binding process

[image: Image 69]

Another data-binding pattern

If you look at D3 examples on the web, you will undoubtedly come across a slightly different data-binding pattern, where the methods

.enter().append() are used instead of .join().

selection

.selectAll("selector")

.data(myData)

.enter().append("element type");

Although the .enter().append() approach is still valid, it has mainly been replaced by .join() since D3 v6.

Under the hood, the join() method doesn’t only calculates the number of elements to add to the selection based on data. It actually considers how many new elements are entering the DOM, how many are exiting and how many are being updated. This more complex pattern is particularly powerful in interactive visualizations, where the data displayed in the visualization is evolving. By taking care of all these aspects of data-binding, the join() is simpler to use than the previous approach.

We will discuss this more complex approach in chapter 7. For now, it is only important for you to know that prior versions of D3 were using a slightly different data-binding pattern and that you are likely to meet these examples.

3.3.1 Setting DOM attributes dynamically with data

We mentioned earlier that, after loading the CSV file into our project, that D3

converted it into an iterable data structure, hence an array of objects. Then, we have bound each object from the iterable data structure to a rectangle element. This bound data doesn't only add the correct number of rectangle elements to the DOM but can also be accessed when we manipulate the rectangles with inline or accessor functions.

Let’s see it in action for our bar graph. After the data-binding pattern, chain an attr() method to the rectangles selection. We’ll use it to add a class attribute to each rectangle but, instead of simply passing the value as the

second parameter, we’ll enter the accessor function.

As you can see in the following snippet, the accessor function is structured as any JavaScript function and returns the value of the class, which is "bar" or any class name that you want to give to the rectangles.

svg

.selectAll("rect")

.data(data)

.join("rect")

.attr("class", d => {

console.log(d);

return `bar bar-${d.technology}`;

})

The accessor function exposes the parameter d, for datum, which is the data bound to each rectangle. If you log d into the console, you’ll see that each datum object, containing a technology and a count, is logged one after the other, precisely as if we were looping through the rectangles and their data.

Template literals versus concatenated strings

In the previous snippet, we have used template literals, also known as template strings, delimited with backticks (``). They are used to combine traditional JavaScript strings with expressions, the expressions being preceded by a dollars sign and wrapped in curly braces (${expression}).

Using template literals versus concatenated strings

[image: Image 70]

You might be more familiar with concatenated strings, an older but correct way to combine expressions with strings. As shown in figure 3.30, in a concatenated string, the strings are wrapped in quotation marks ("") and joined with the expression using plus signs (+). Both approaches are acceptable, but template literals are becoming the norm due to their enhanced readability.

This way of accessing the bound data is advantageous for setting the position and size of each rectangle. We know that we want to stack the rectangles vertically in our bar chart, like in figure 3.18. The width attribute of each rectangle represents the number of practitioners that use a tool, stored into the count key of the bound data. The longer the rectangle, the more the technology is used and vice versa. On the other hand, the height attribute is constant, and there's a little bit of vertical space between each rectangle.

Figure 3.18 Finding a formula for the position of the top-left corner of each rectangle

[image: Image 71]

If we store the height of the bars into a constant named barHeight, we can set the width and the height attributes of the rectangles selection as follows.

Note how the width attribute is using the data accessor function to get the count value bound to each rectangle.

const barHeight = 20;

svg

.selectAll("rect")

.data(data)

.join("rect")

.attr("class", d => {

console.log(d);

return "bar";

})

.attr("width", d => d.count)

.attr("height", barHeight)

Then, we need to set the position of the rectangles by calculating their x and y attributes, which represent the position of their top-left corners within the coordinate system of the SVG container. If you refer back to figure 3.18,

you’ll see that the rectangles are aligned with the left border of the SVG

parent, meaning that their x attribute is always zero.

For the y attribute, we need to perform a small calculation. The top-left corner of the first rectangle is positioned at the top of the SVG container, where y is equal to zero. The second rectangle is positioned below the first one, with a distance corresponding to the height of the bars plus a little spacing. Remember that the y-coordinate of SVG elements goes from top to bottom! The third rectangle is again lower, at a y position corresponding to the height of two rectangles plus two times the vertical spacing between those rectangles. In figure 3.18, we can see a pattern taking shape. The y position of each rectangle corresponds to the number of rectangles before it, multiplied by the bars' combined height and vertical spacing.

To make this calculation in the accessor function of the y attribute, we have access to a second parameter, often named i, for index. We’ve already stated that, in the accessor function, it is as if we were looping through the data of the bound elements. In JavaScript loops, we generally have access to the index of each item, corresponding to their position in the looped array minus one (arrays are zero-indexed in JavaScript). In the following snippet, we use the index to calculate the vertical position of each rectangle and leave 5px of empty space between each rectangle.

const barHeight = 20;

svg

.selectAll("rect")

.data(data)

.join("rect")

.attr("class", d => {

console.log(d);

return "bar";

})

.attr("width", d => d.count)

.attr("height", barHeight)

.attr("x", 0)

.attr("y", (d, i) => (barHeight + 5) * i)

In the accessor functions, we use JavaScript arrow functions (ES6 syntax).

When only one parameter is used, like for the class and the width attribute, it doesn’t require parentheses. When multiple parameters are used, they need

[image: Image 72]

to be wrapped in parenthesis, like (d,i) for the y attribute. Also, accessor functions that spread over multiple lines require body braces ({}) and a return statement, like for the class attribute, while simple, single-line functions don’t need them, like for the width attribute. These rules are summarized in figure 3.19.

Figure 3.19 Formatting arrow functions

Save your project and see your rectangles take their place, like on figure 3.20.

That starts to look like a bar graph!

Figure 3.20 Rectangles positioned and sized with data

[image: Image 73]

tip

In the next section, we will learn how band scales can calculate the vertical position of each bar for us. But knowing how to determine the bars' position on our own is a valuable exercise. When we build D3 projects, we regularly have to make such small calculations of the position of elements on the screen. It's important to get comfortable with it. It might not be easy at first, but with practice, you'll get the hang of it! One of the best ways to approach such calculations is to draw a few elements from your visualization on a piece of paper and find their position within the coordinate system of the SVG parent, as we did in figure 3.18. This exercise will help you better understand how your visualizations are built, which will be especially handy when you work on complex, "out of the box" visualizations.

Now we’ll make our graph a little more joyful by giving a blue color to the bars using their fill attribute. In the following snippet, we provide them with the CSS color name "skyblue". Feel free to use another color if you

[image: Image 74]

prefer.

svg

.selectAll("rect")

.data(data)

.join("rect")

...

.attr("fill", "skyblue");

As a last step, let’s interrogate the data bound to the rectangles to identify the one corresponding to D3.js. To do so, we use a JavaScript ternary operator that checks if the technology bound to the current rectangle is "D3.js". If this is the case, the CSS color "yellowgreen" is given to the fill attribute, otherwise "skyblue" is used.

...

.attr("fill", d => d.technology === "D3.js" ? "yellowgreen" : "skyblue"); Figure 3.21 The bar corresponding to D3.js is colored in green, while the other ones are blue.

[image: Image 75]

Our bar graph is really taking shape. Currently, we are directly using data to set the width of each rectangle. But this approach is not always practical.

Imagine if the numbers in the data were in the order of millions, we wouldn’t be able to use these values directly. In the next section, we’ll introduce scales, which is how we map data values into visual attributes in D3 projects.

3.4 Adapting data for the screen

When we create data visualizations, we translate the data into visual variables, like the size of an element, its color or its position on the screen. In D3 projects, this translation is handled with scales.

Figure 3.22 In the last step of the D3 data workflow, we use scales to translate data values into screen attributes like length, position and color.

3.4.1 Scales

Scales are functions that take a value from the data as an input, and return an output value that can directly be used to set the size, position or color of a data visualization element. More specifically, the input data is part of a domain, which is the spectrum of possible data values. On the screen, that domain is mapped onto a range, the spectrum of possible output values.

D3 has many scale functions that accept different types of domain and range.

Let’s take the linear scale function d3.scaleLinear() as an example. To initialize the scale function, we need to chain the domain() and the range() methods. The domain() method takes the spectrum of possible data values as an argument, from a min to a max value specified in an array. The range() method takes an array of the corresponding output values as an argument.

const myScale = d3.scaleLinear()

.domain([0, 200])

.range([0, 20]);

The scale can then be called like any JavaScript function. We pass a value from the domain as an argument, and the scale returns the corresponding value from the domain.

myScale(100) => 10

The input and output values of a scale can be continuous or discrete.

Continuous values can exist anywhere within a predetermined spectrum, for example a floating point number between 0 and 100 or a date between the June 2020 and January 2021. You can think of quantitative data like a sliding scale of values. On the other hand, discrete inputs and outputs have a predetermined set of values, for instance a collection of t-shirts available in the sizes XS, S, M, L and XL or a set of colors like “blue”, “green”, “yellow”

and “red”. Working with qualitative data is like throwing items into different boxes. The items can only go in one box.

In D3, quantitative data generally couples to a scale with a continuous domain. On the opposite, qualitative data implies a discrete domain, usually an array of the possible values. Similarly, a scale with a continuous output allows any value within the specified range, while a discrete output will return values from a predefined list.

Based on this concept of continuous versus discrete inputs and outputs, we can group D3 scales in four families:

1. Scales with a continuous input and a continuous output 2. Scales with a discrete input and a discrete output

3. Scales with a continuous input and a discrete output 4. Scales with a discrete input and a continuous output Let's say we make a Google search for series released in 2021 and group the first ten results in a dataset. We then retrieve information about the genre of each series, their popular score on Rotten Tomatoes, the average score given by professional critics and the platform on which they are available.

Table 3.2 TV series released in 2021 suggested by Google Audience score

Critics score

Title

Genre

Platform

(%)

(%)

Nine Perfect

Drama

59

62

Prime

Strangers

Drama

88

94

Netflix

Maid

Drama

78

100

Netflix

Katla

Action

73

40

Netflix

Jupiter's Legacy

Action

72

82

Netflix

Hit & Run

Crime

54

80

Netflix

The Irregulars

Action

89

88

Netflix

Shadow and Bone

Crime

64

56

Netflix

Clickbait

Comedy 34

23

Netflix

Sex/Life

Action

64

82

Prime

The Wheel of Time

Source: rottentomatoes.com

This dataset, shown in table 3.2, contains both continuous values, like the audience’s and critics’ scores, and discrete values, like the genres and platforms. To create the bar chart in figure 3.23, we need to use a D3 scale from each family listed previously.

Figure 3.23 Critics and popular reviews of 2021 TV series - A visualization with a scale from each family

[image: Image 76]

On the bar graph, each bar corresponds to a series, and the length of the bars is proportional to the average score given by critics. To calculate the length of the bars, we use a D3 scale from the first family that takes a continuous value as an input, a critics' score, and returns a continuous value as an output, the length of the corresponding bar.

This scale would have a domain between 0 and 100% (the spectrum of potential values from the critics' scores) and a range of the corresponding bar lengths in pixels.

domain => [0, 100] possible min and max values of the input, in %

range => [0, 500] related min and max values of the output, in pixels The color of the bars represents the genre of each series. To give the appropriate color to the bars, we need a scale from the second family that takes a discrete value as an input, the genre, and returns a discrete value as an output, the corresponding color. The domain of this scale is an array of genres, and the range is an array of related colors.

domain => ["Drama", "Action", "Crime", "Comedy"] possible inputs range => ["purple", "blue", "green", "yellow"] corresponding outputs At the tip of each bar, an emoji represents the score from the popular reviews.

Series that got a score above 80% get a heart-eyed emoji, series that got between 70 and 80% have a smiley, the ones that got a score between 60 and 70% get a neutral face, and the ones with a score below 60% have a grimacing face. Here we have a continuous input, the popular reviews, and a discrete output, the related emoji.

domain => [60, 70, 80] thresholds of the input values range => ["⊙﹏⊙", "●_●", "◠‿◠", "♥‿♥"] corresponding output Finally, the bars are distributed along the vertical axis of the graph. To calculate the position of each bar, we need a scale from the fourth family that takes a discrete input, the series’ titles, and returns a continuous output, a position along the vertical axis.

domain => ["Nine Perfect Strangers", "Maid", "Katla", ...] list of inputs range => [0, 500] related min and max values of the output, in pixels Each family of scales contains multiple scale functions. At the time of writing this book, there were well over 20 scale functions available in the d3-scale module (https://github.com/d3/d3-scale). In this chapter, we will introduce the functions d3.scaleLinear() and d3.scaleBand() since they are commonly used in D3 projects and because we will need them to finalize our bar graph. Throughout the book, we will cover many other scales. For an overview of all the scale functions available and a decision tree to help you select the right one for your project, refer to appendix B (available soon).

3.4.2 Linear scales

The type of scale that we use most often when developing D3 projects is, without a doubt, the linear scale (d3.scaleLinear()). This scales takes a continuous domain as an input and returns a continuous range of outputs.

const myLinearScale = d3.scaleLinear()

.domain([0, 250])

.range([0, 25]);

[image: Image 77]

The output of a linear scale is directly proportional to its input, as depicted in figure 3.24. In the previous snippet, the domain covers any value between 0

and 250, while the corresponding range of outputs contains values between 0

and 25. If we call this scale function with an argument of 100, it returns 10.

Similarly, if we pass a value of 150, it returns 15.

myLinearScale(100) => 10

myLinearScale(150) => 15

Figure 3.24 The output of a linear scale is directly proportional to the input Let’s get back to our bar graph exercise. In the previous section, we have used the count values from the data to set the width attribute of each rectangle. It worked fine because the counts were relatively small numbers, but using a scale to translate values from the data into SVG attributes is generally more practical.

To illustrate this, let’s say that the SVG container of our visualization has a size of 600 x 700 pixels instead of 1200 x 1600 pixels. Change the viewbox attribute of the SVG container in main.js to reflect this new width-height ratio.

const svg = d3.select(".responsive-svg-container")

 .append("svg")

.attr("viewBox", "0 0 600 700")

...

Modify also the value of the max-width property of the div with a class of responsive-svg-container in main.css.

.responsive-svg-container {

...

max-width: 600px;

...

}

If you save your project and go to your browser, you will see that the first three bars of the graph are larger than the SVG container and that their tips are hidden. We will fix that with a linear scale that will map the count values onto the space available in the SVG container, while leaving free space for labels.

We first declare a constant named xScale, because the scale will be responsible for sizing and positioning elements along the x-axis. We then call the function d3.scaleLinear() and chain the domain() and range() methods.

The possible count values from our dataset extend from zero, the theoretical minimum, to 1078, the highest count corresponding to Excel as a data visualization technology. Note that we use zero instead of the actual minimum count from the dataset. Like in most graphs, we want our x-axis to start at zero. We pass the minimum and maximum values from our domain to the domain() method as an array ([0, 1078]).

Now, we need to assess the horizontal space available, hence the range of the scale. Figure 3.25 shows the first five bars of the graph. We already know that the SVG container has a total width of 600px. We want to leave 100px of free space to the left, for the technology labels and 50px to the right for the count labels. This means that the length of the bars can range between 0 and 450px.

Figure 3.25 Assessing the horizontal space available for the bars

[image: Image 78]

We can now declare xScale, with a domain varying between 0 and 1078 and a range between 0 and 450. Add the linear scale inside the function createViz() before the data-binding's code.

const createViz = (data) => {

const xScale = d3.scaleLinear()

.domain([0, 1078])

.range([0, 450]);

// Data-binding

...

}

We have mentioned that we can call D3 scales like any other JavaScript function. We pass a value from the domain as an argument, and the function returns the corresponding value from the range. For example, if we pass the value 1078 to xScale, corresponding to Excel’s count value, the scale will return 450. If we pass 414, the number of practitioners that use D3, the scale returns 172.82, the width in pixels of the bar corresponding to D3.js.

xScale(1078) // => 450

xScale(414) // => 172.82

[image: Image 79]

Try it for yourself by logging into the console the output returned by the scale for a few values from the dataset.

Figure 3.26 Count values from the data mapped by the linear scale into the bars’ width Now that our scale is declared, we can start using it to calculate the width of each rectangle in our bar graph. Find the line of code where the width attribute of the rectangles is set. Like in the next snippet, instead of using the count value directly, call xScale() and pass the count value as an argument.

Change also the value of the x attribute to 100 to translate the rectangles toward the right and leave space for the technology labels shown in figure 3.25.

svg

.selectAll("rect")

.data(data)

.join("rect")

...

.attr("width", d => xScale(d.count))

...

.attr("x", 100)

...

Save your project and notice how the bars fit within the SVG container and how white space is preserved for the labels on each side of the bars.

You now know how to use D3 scales! Although there are a lot of different types of scale available in D3, the principles of how to declare and use them remain similar and switching from one scale to another only requires you to know the type of data accepted by the domain and the range.

3.4.3 Band scales

The second type of scale we will need for our bar graph is a band scale. Band scales are from the fourth family. They accept a discrete input and provide a continuous output and are especially useful for distributing the rectangles of a bar chart within the available space.

To declare a band scale, we call the function d3.scaleBand(). In the following code snippet, we save the scale into a constant named yScale, because this scale is responsible for distributing elements along the y-axis.

The domain of our band scale is an array containing all the technologies from our dataset. We generate this array with the JavaScript map() function. (Go back to section 1.2.5 if you need a refresher on when and how we use the map() function.) Then, our range covers all the vertical space available, from zero, at the top of the SVG container, to 700px, at the bottom of the SVG

container.

const yScale = d3.scaleBand()

.domain(data.map(d => d.technology))

.range([0, 700]);

Add the band scale inside createViz(), before the data-binding. When called with a technology from the dataset, the band scale returns a number that corresponds to a vertical position on our bar chart. For example, if we pass the string "Excel" to yScale, it returns zero. This makes sense because the bar that corresponds to Excel is the first one at the top of the graph. Similarly, if we call yScale passing the value "D3.js", it returns 272.72, which is the vertical position of the top-left corner of the bar corresponding to D3.

yScale("Excel") // => 0

yScale("D3.js") // => 272.72

Do you remember the calculations we had to perform earlier to set the y attributes of the rectangles? Thanks to the band scale, we can now set this attribute extremely easily by passing the name of the technology that is bound to each rectangle to yScale.

svg

.selectAll("rect")

.data(data)

.join("rect")

...

.attr("y", d => yScale(d.technology))

...

Band scales also have a very handy method, bandwidth(), that returns the thickness of the bars, which is proportional to the number of bars and the space available. In our bar graph, this thickness corresponds to the height attribute of the rectangles. You can see in the next snippet how calling the bandwidth() on the band scale directly returns the height attribute.

svg

.selectAll("rect")

.data(data)

.join("rect")

...

.attr("height", yScale.bandwidth())

...

Save your project and take a look at it in the browser. As you can see in figure 3.27, the bars cover all the vertical space available in the SVG

container, but the absence of padding between them makes the graph look cramped and difficult to read.

Figure 3.27 Bars distributed with a band scale and without padding

[image: Image 80]

We can fix it by setting the paddingInner() property of the band scale, which specifies the amount of padding between each band and accepts values between 0 and 1. Here we give it a value of 0.2, for 20% of the height of the bands.

const yScale = d3.scaleBand()

 .domain(data.map(d => d.technology))

.range([0, 1000])

.paddingInner(0.2);

Once we are done, our bar graph layout breathes a little more. That’s much better!

Figure 3.28 Bars distributed with a band scale, with padding

[image: Image 81]

Figure 3.29 gives an overview of how the band scale works. First, it takes a domain, the list of technologies from our dataset, and distributes it within the range, the vertical space available in the SVG container. The vertical position of the top-left corner of each rectangle can be retrieved by calling the scale function and passing the technology as an argument

(yScale("PowerPoint")). Similarly, we can obtain the height of the bars by

[image: Image 82]

calling the bandwidth method of the scale (yScale.bandwidth()). Finally, by default the padding between the bars is zero. We can tell D3 the amount of padding that we want between each band by setting the paddingInner() property of the band scale and giving it a value between 0 and 1.

Figure 3.29 How the band scale distributes the list of technologies within the available vertical space

3.5 Adding labels to a chart

Our bar chart is almost complete, but it is currently impossible to know which rectangle corresponds to which technology and which values the length of the bars represents. We will rectify this by adding two sets of labels to the chart. The first set of labels will be the name of the technologies listed on the left side of the bars. The second one will be the count associated with

each bar and positioned at the end of the rectangles.

In SVG-based visualizations, we make labels with SVG text elements. We will have two text elements combined with each rectangle and will nest each rectangle and its related labels into a SVG group. If you remember our discussion about SVG groups from chapter 1 (section 1.2.2), we use groups to move multiple elements as one. They are also handy to pass bound data to their descendants, as we will observe here.

Let’s start by refactoring our code a little bit. First, comment out all the lines related to the attributes of the rectangle elements. We will reuse them in a few minutes. In JavaScript, single-line comments start with two forward slashes (//) while multi-line comments start with /* and end with */.

Now go back to the data-binding piece of code. Instead of binding data onto rectangles, use SVG groups (g). We also save the selection in a constant named bar.

const bar = svg

.selectAll("g")

.data(data)

.join("g");

In order for the rectangles and their labels to move together, we will apply a vertical translation to each group, using the transform attribute. The translate property of the transform attribute takes two parameters: the horizontal translation, which we set to zero, and the vertical translation, which corresponds to the vertical position of each bar. Note how we call the yScale function to find this position, exactly as we did previously for the rectangles.

const bar = svg

.selectAll("g")

.data(data)

.join("g")

.attr("transform", d => `translate(0, ${yScale(d.technology)})`); Although SVG groups have no graphical representation and do not exist as a bounded space, we can imagine them as boxes that encapsulate all their child elements. Thanks to the transform attribute, the groups are spread over the vertical height of the SVG container. The position of the rectangle and labels

[image: Image 83]

will be relative to their parent group.

Figure 3.30 Groups positioned within the SVG container and encapsulating their descendent rectangle and labels

Now that our groups are ready, let’s add back the rectangles. Call the bar constant and append rectangle elements into it.

const bar = svg

.selectAll("g")

.data(data)

.join("g")

.attr("transform", d => `translate(0, ${yScale(d.technology)})`); bar

.append("rect");

Since the bar selection contains multiple group elements, one for each datum, D3 understands that it needs to add one rectangle element into each group.

Save your project and look at the markup with the inspector tool. Confirm that the groups and rectangles have been added to the DOM.

Figure 3.31 Rectangle elements appended into groups

[image: Image 84]

You can now uncomment the rectangles’ attribute methods and apply them to the newly added rect elements. What is neat about data-binding is that the bound data is passed to the descendent elements of the groups. We still have access to the data, exactly as we did before. The only difference is that, since the vertical translation has already been applied to the groups, the y attribute of the rectangles can be set to zero.

bar

.append("rect")

.attr("width", d => xScale(d.count))

.attr("height", yScale.bandwidth())

.attr("x", 100)

.attr("y", 0) #A

.attr("fill", d => d.technology === "D3.js" ? "yellowgreen":"skyblue"); Your rectangles should now be visible on your bar graph and look exactly as they did previously (see figure 3.28).

We are ready to add the labels! Call the bar selection again and append a text element into it. This will add a text element to each group. We want the labels to display the name of the technology related to each rectangle. To do so, chain the text() method to the selection. This method accepts one

[image: Image 85]

parameter: the text to add to the SVG text element. Here we set the text dynamically based on the data bound to each element.

bar

.append("text")

.text(d => d.technology);

Then, we position each label using the x and the y attribute of the text elements. Horizontally, we want the end of the labels to align with the start of each rectangle. Since the rectangles start at 100px, we can say that the labels should end at around 96px, leaving 4px between the end of the labels and the start of the related rectangle. We also use the text-anchor attribute with a value of end to make the labels right-aligned. This means that the x attribute represents the position of the end of each label, as you can see in figure 3.32.

Figure 3.32 Calculating the position of the technology labels Vertically, the position of each label is relative to its parent group. We need to move them down slightly until they are centered with the bars, keeping in mind that text elements are vertically positioned in reference to their baseline.

Here we apply a translation of 12px. Note that the values of the x and y attributes don’t come out of thin air. We found these numbers by having a rough idea of where we wanted to display the labels and testing a few values until we find the right ones. The browser’s inspector is a great place to make such minor adjustments.

bar

.append("text")

.text(d => d.technology)

.attr("x", 96)

.attr("y", 12)

.attr("text-anchor", "end");

Finally, we can set the font-family and font-size properties of the labels based on our preference and using the style() method. Here we use a sans-serif font with a size of 11px. You can see the result in figure 3.33.

bar

.append("text")

.text(d => d.technology)

.attr("x", 96)

.attr("y", 12)

.attr("text-anchor", "end")

.style("font-family", "sans-serif")

.style("font-size", "11px");

Figure 3.33 Bar chart with technology labels

[image: Image 86]

We can now add a label at the rectangles’ tip, representing how many times a technology was selected in the survey. The procedure is very similar to the one used for the technology labels. First, we call the bar constant, which contains the groups’ selection, and append another text element into each group. The text of each label is set to the count value of each technology, via

[image: Image 87]

the text() method.

bar

.append("text")

.text(d => d.count)

Since the count labels are positioned at the tip of each rectangle, we can calculate their horizontal position by calling xScale(), which returns the length of the bars. We also add a little bit of padding at the end of the bars (4px) and take into account that there is a space of 100px at the left of the rectangles. Vertically, the count labels are also pushed down with 12px.

Figure 3.34 Calculating the position of the count labels bar

.append("text")

.text(d => d.count)

.attr("x", d => 100 + xScale(d.count) + 4)

.attr("y", 12)

Finally, we set the font-family and font-size properties using the style() method. Notice how the font-size of the count labels (9px) is smaller than the one of the technology labels (11px). We proceed this way to maintain the visual hierarchy between the two types of labels. The larger labels will catch the attention first, and the viewers will understand that the count labels are secondary to the technology labels.

bar

.append("text")

.text(d => d.count)

.attr("x", d => 100 + xScale(d.count) + 4)

.attr("y", 12)

.style("font-family", "sans-serif")

.style("font-size", "9px");

As a final step, let’s add a vertical line to the left of the bars to hold the graph together visually. In the code snippet below, we append the line into the SVG

container. The starting position of the line (x1, y1) is at (100, 0), the top of the SVG container, and its ending position (x2, y2) is at (100, 700), the bottom of the container. We also need to specify the stroke’s color for the line to be visible.

svg

.append("line")

.attr("x1", 100)

.attr("y1", 0)

.attr("x2", 100)

.attr("y2", 700)

.attr("stroke", "black");

If you remove the border from the SVG container, your bar graph should look like the one in figure 3.36 and on the Github hosted project (https://d3js-in-action-third-edition.github.io/most-popular-data-visualization-technologies/). In our graph, the vertical line and the technology labels act as an axis. To make space for axes and labels, we usually use the D3 margin convention, a concept we will introduce in the next chapter and use throughout the rest of the book.

Figure 3.35 Completed bar graph (https://d3js-in-action-third-edition.github.io/most-popular-data-visualization-technologies)

[image: Image 88]

Congrats on making it to the end of this chapter, it was a dense one! Don’t worry too much if you don’t yet master all the concepts that we have

discussed. We will keep using them in different contexts and they will soon become second nature.

3.6 Summary

In data visualization, we work with two main data types: quantitative and qualitative. Quantitative data is numerical information, like weight or temperature, while qualitative data is generally textual information, like country names or movie genres.

As D3 developers, we work with different formats of datasets. The most common ones are tabular datasets like CSV files, and JavaScript objects found in JSON files. But data can also be organized in ways specific to hierarchical, network, or geographic visualizations.

D3 offers functions to load specific dataset formats into a project. For example, the functions d3.csv() and d3.json() can respectively load a CSV or a JSON file. As it loads the data, D3 transforms it into an array of objects.

When loading external datasets, we generally need to ensure that the data, especially numbers, are correctly formatted. The callback function of d3.csv() and d3.json() gives access to the dataset row by row and can be a great place to perform type conversion and other data manipulation.

Loading data into a project is an asynchronous process, which means that the browser continues to read and execute the script file while the data is loading.

It is crucial to wait for the data to be fully available before manipulating it. To do so, we can use JavaScript Promises with the then() method.

The callback function of the then() method gives us access to the entire dataset once it is loaded. We can then measure and reorganize the data before building a visualization.

The data-binding pattern generates as many SVG elements as there are datum (individual data points or rows in a tabular dataset).

The data-binding pattern is made of three methods chained to a selection: selectAll(), data() and join().

Once SVG elements are generated with the data-binding pattern, we have access to the data bound to each of them via inline

functions.

Data bound to an element is also passed to its children.

D3 scales allow translating values from a dataset into attributes applied to SVG elements, like their size, position, or color.

We can group scales into four families based on if their input and output values are discrete or continuous.

Linear scales take an input from a continuous domain and return a value from a continuous range of outputs. The output is linearly proportional to the input value. Linear scales are widely used in D3

projects, for example, to calculate the length of the rectangles in a bar chart.

Band scales take an input from a discrete domain and return a value from a continuous range of outputs. They are especially useful to spread rectangles over the available space in a bar graph.

Translation applied to a SVG group affects all of its descendent elements.

Graphs labels are built with SVG text elements. Each text element must be positioned individually, using its x and y attributes. We can also make the text right-aligned with the text-anchor attribute.

4 Drawing lines, curves, and arcs

This chapter covers

Adding axes to a chart and applying the margin convention Drawing a line chart with the line generator function

Interpolating data points to turn lines into curves

Drawing an area with the area generator

Using the arc generator to create arcs

You are already familiar with the common SVG shapes that we use and combine to make data visualizations: lines, rectangles, and circles. You even have already created a bar chart from scratch using rectangles. But there’s just so much we can draw with primitive shapes. To create more complex visualizations, we generally turn to SVG paths. As we’ve discussed in chapter 1, SVG paths are the most flexible of all SVG elements and can take pretty much any form. We use them extensively in D3 projects, the simplest examples being drawing the lines and curves in line charts or the arcs in donut charts.

The shape of an SVG path is determined by its d attribute. This attribute is composed of commands dictating the starting and endpoint of the path, the type of curves it uses to change direction, and whether the path is open or closed. The d attribute of a path can quickly become long and complex. Most times, we don’t want to have to compose it ourselves. This is where D3’s shape generator functions come in!

In this chapter, we will build the project shown in figure 4.1: a line chart of the evolution of temperature and a set of arcs visualizing the percentage of days with precipitations in New York City in 2021. You can find this project online at https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021/. The underlying data comes from Weather Underground (www.wunderground.com/).

Figure 4.1 Project that we will build in this chapter: A line chart of the temperature evolution in

[image: Image 89]

New York City in 2021 and a set of arcs showing the percentage of days with precipitations.

We will create both visualizations using D3’s shape generator functions. But before we get started, we will discuss D3’s margin convention and how to

add axes to a chart.

4.1 Creating axes

Developing data visualizations often requires planning ahead on how we will use the space available in the SVG container. It’s very tempting to start playing with the cool stuff first, a.k.a. the core of the visualization, but trust us. A little bit of preparation can save you a lot of execution time. It’s true for all programming tasks and, well, in life in general! During this planning phase, we don’t only think about the chart itself but also about the complementary elements that make a chart readable, like axes, labels, and legends.

In this section, we will introduce the margin convention, a way to facilitate allocating space for these different elements. We will then discuss how to add axes to a visualization and the multiple SVG elements that compose a D3

axis. We will apply these concepts to the line chart shown in figure 4.1.

Before we get started, go to the code files of chapter 4. You can download them from the book’s Github repository if you haven’t already (https://github.com/d3js-in-action-third-edition/code-files). In the folder named chapter_04, the code files are organized by section. To get started with this chapter’s exercise, open the 4.1-Margin_convention_and_axes/start folder in your code editor and start your local web server. Refer to appendix A if you need help setting up your local development environment.

You can find more details about the project folder structure in the README

file located at the root of this chapter’s code files.

Warning

When working with the chapter’s code files, open only one start OR one end folder in your code editor. If you open all the chapter’s files at once and use the Live Server extension to serve the project, the path to the data file won't work as expected.

We’ll start working in the file line-chart.js and load the weekly temperatures dataset using the method d3.csv().

d3.csv("../data/weekly_temperature.csv");

In chapter 3, we have explained that the type conversion performed by D3

when loading a tabular dataset can affect the type of the values. For example, the numbers from the original dataset become strings, and we need to turn them back into numbers to facilitate their manipulation. We have seen that the call back function of d3.csv(), where we have access to the data row by row, is a great place to perform such conversion. Here we will introduce a little trick. Instead of converting the numbers manually, we can call the method d3.autoType. This function detects common data types, like dates and numbers, and converts them into the corresponding JavaScript type.

d3.csv("../data/weekly_temperature.csv", d3.autoType); Beware that data types can be ambiguous and that d3.autoType sometimes picks the wrong type. For this reason, it’s important to double-check your data array once it is fully loaded. In the following snippet, we access the loaded dataset with a JavaScript Promise and log it into the console to confirm that the dates are formatted as JavaScript dates and the temperatures as numbers. You can see the result in figure 4.2.

d3.csv("../data/weekly_temperature.csv", d3.autoType).then(data => {

console.log("temperature data", data);

});

Figure 4.2 Thanks to the method d3.autoType, dates are formatted as JavaScript dates and temperatures as numbers.

[image: Image 90]

We used a JavaScript Promise to access the dataset because loading data is an asynchronous process (refer to chapter 3 if you need a refresher about loading and accessing data with D3). But now that we know that our dataset is fully loaded and formatted correctly, we can start building our chart.

The file line-chart.js already contains a function named drawLineChart(), in which we will create the line chart. Within the callback function of the JavaScript Promise, call the function drawLineChart() and pass the dataset as an argument.

d3.tsv("../data/weekly_temperature.csv", d3.autoType).then(data => {

console.log("temperature data", data);

drawLineChart(data);

});

We are now ready to discuss the margin convention and apply it to our chart!

4.1.1 The margin convention

The D3 margin convention aims at reserving space around a chart for axes, labels, and legend in a systematic and reusable way. This convention uses four margins: above, to the right, below, and to the left side of a chart, as shown in figure 4.3. By stating these margins, we can know the position and the size of the area remaining for the core of the chart, which we will call the inner chart.

[image: Image 91]

Figure 4.3 The D3 margin convention sets the value of the margins at the top, right, bottom, and left of a chart.

The margin values are declared in a margin object, composed of a top, right, bottom, and left margin. Let’s create the margin object for our line chart.

Inside the function drawLineChart(), declare a constant named margin. Like in the following snippet, give the top, right, bottom, and left margins the respective values of 40, 170, 25, and 40px.

const drawLineChart = (partialData) => {

const margin = {top: 40, right: 170, bottom: 25, left: 40};

};

Knowing in advance exactly how much real estate we will need for the axes and labels is not usually possible. We start with an educated guess and adjust them later if we need to. For example, look at the line chart in figure 4.1 or on the hosted project (https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021/). You’ll see that the labels displayed on the right side of

[image: Image 92]

the visualization are relatively long, hence the 170px right margin. On the other hand, the axes’ labels don’t take much space; therefore, the remaining margins can be much smaller.

Once our margin object is declared, we can start thinking about the size of the SVG container. Knowing the size of the SVG container and the margins, we can finally calculate two new constants named innerWidth and innerHeight, which represent the width and the height of the inner chart. These dimensions are shown in figure 4.4.

Figure 4.4 Knowing the dimensions of the SVG container and the margins, we can calculate the inner chart’s width and height.

The inner chart’s width corresponds to the width of the SVG container minus the margins on the left and the right. If the SVG container has a width of 1000px and margins of 170 and 40px on each side, 790px remains for the inner chart. Similarly, if the SVG container’s height is 500px, we calculate

the inner chart’s height by subtracting the top and the bottom margins from the total height, hence 435px. By making the constants innerWidth and innerHeight proportional to the margins, we ensure that they will automatically adjust if we need to change the margins later.

const margin = {top: 40, right: 170, bottom: 25, left: 40}; const width = 1000;

const height = 500;

const innerWidth = width - margin.left - margin.right;

const innerHeight = height - margin.top - margin.bottom; Let’s now append the SVG container of our line chart. Still working inside the function drawLineChart(), append an SVG element to the div with an id of line-chart, which already exists in the file index.html, and set its viewBox attribute using the width and height constants. You can also temporarily apply a border to the SVG element to help you see the area in which you are working. If you need a refresher on appending elements to the DOM or setting their attributes and styles, refer to chapter 2.

const svg = d3.select("#line-chart")

.append("svg")

.attr("viewBox", `0, 0, ${width}, ${height}`); We have previously declared the margins that will dictate the area reserved for the inner chart. Knowing that the coordinate system of the SVG container starts at its top-left corner, every element of the inner chart will have to be moved toward its reserved area. Instead of applying this displacement to every element, we can wrap the inner chart within an SVG group and apply a translation only to that group. As you can see in figure 4.5, this strategy creates a new coordinate system for the inner chart.

Figure 4.5 Translation applied to the SVG group that will contain the inner chart, creating a new coordinate system for the elements contained in the inner chart.

[image: Image 93]

To put this strategy into action, we append a group to the SVG container. We then apply a translation to the group based on the left and the top margin.

Finally, we save the SVG group into a constant named innerChart that we’ll use to build the line chart later.

const innerChart = svg

.append("g")

.attr("transform", `translate(${margin.left}, ${margin.top})`); The main advantage of the margin convention and the strategy presented here is that, once implemented, we don’t need to think about it anymore. We can go on to create our axes and chart while knowing that an area is preserved for the labels, legends, and other complementary information.

4.1.2 Generating axes

With our margin convention established, we are ready to add axes to the

chart. Axes are an essential part of data visualizations. They serve as a reference for the viewer to understand the numbers and categories represented.

If you look at the line chart in figure 4.1 or on the hosted project (https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021/), you’ll see two axes. The horizontal axis, also called the x-axis, shows the position of each month. The vertical axis, or y-axis, serves as a reference for the temperature in Fahrenheit.

In D3, we create axes with the axis() component generator. This generator takes a scale as an input and returns the SVG elements that compose an axis as an output. If you remember the discussion we had about scales in chapter 3, you know they map data values onto the screen. For example, for our line chart, scales will calculate for us the horizontal position of each date from the dataset or the vertical position of their related temperatures.

declaring the scales

The first step to creating axes is actually to declare their scales. First, we need a scale that will position the dates horizontally. That’s precisely the role of D3’s time scale d3.scaleTime() (refer to appendix B for help selecting a D3

scale). The time scale is part of the first family of scales discussed in chapter 3. It takes a continuous input and returns a continuous output. The time scale behaves very similarly to the linear scale used in chapter 3, the only difference being that it manipulates time-related data and calculates their position in space.

Let’s declare our time scale and name it xScale because it will be responsible for positioning elements along the x-axis. The domain of our scale extends from the first to the last date in our dataset. In the following snippet, we use d3.min() and d3.max() to find these values.

The range covered by the scale extends along with the horizontal space available within the inner chart (see figure 4.5). In the coordinate system of the inner chart, it means that the range extends from zero to the innerWidth calculated earlier. Refer to chapter 3 if you need a refresher on declaring the

domain and range of D3 scales.

const firstDate = d3.min(data, d => d.date);

const lastDate = d3.max(data, d => d.date);

const xScale = d3.scaleTime()

.domain([firstDate, lastDate])

.range([0, innerWidth]);

The temperature, distributed along the y-axis, also requires a scale from the first family, with a continuous input and output. A linear scale will be perfect here, since we want the temperature and the vertical position on the line chart to be linearly proportional.

In the following snippet, we declare our temperature scale and name it yScale because it will be responsible for positioning elements along the y-axis. Here, we want our y-axis to start at zero, so we pass zero as the first value of the domain. Although the minimum temperature in the dataset is somewhere around 26°F, starting the y-axis at zero is often a good idea and, in our case, will allow us to see the evolution of temperature correctly. But like most things in life, this is not a hard rule, and there’s no right or wrong answer for this chart, especially since the zero in Fahrenheit is not an absolute zero.

We pass the maximum temperature from the dataset as the second value of the domain. We find this value by interrogating the column max_temp_F from the dataset with the function d3.max().

The range of our scale extends along with the height of the inner chart. Since vertical values are calculated from top to bottom in the SVG coordinate system, the range starts at innerHeight, the position of the bottom-left corner of the inner chart, and ends at zero, the position corresponding to its top-left corner.

const maxTemp = d3.max(data, d => d.max_temp_F);

const yScale = d3.scaleLinear()

.domain([0, maxTemp])

.range([innerHeight, 0]);

appending the axes

With our scales initialized, we are ready to append the axes. D3 has four axis generators: axisTop(), axisRight(), axisBottom() and axisLeft(), that respectively create the components of top, right, bottom and left axes. They are all part of the d3-axis module (https://github.com/d3/d3-axis).

We mentioned that axis generator functions take a scale as input. For example, to create the bottom axis of our line chart, we call the generator axisBottom() and pass xScale as an argument because this scale is responsible for distributing data along the bottom axis. We save the generator in a constant named bottomAxis.

const bottomAxis = d3.axisBottom(xScale);

The axis generator is a function that returns the elements composing an axis as an output. For these elements to appear on the screen, we need to call the axis generator from within a D3 selection, using the call() method. In the following snippet, note how we have used the innerChart selection and have appended a group element into it before calling the axis generator. The group has a class name of axis-x and will help us position and style the axis later.

const bottomAxis = d3.axisBottom(xScale);

innerChart

.append("g")

.attr("class", "axis-x")

.call(bottomAxis);

Figure 4.6 By default, D3 axes are generated at the origin of the selection, here the top-left corner of the inner chart. We need to apply a translation to move them to the desired location.

[image: Image 94]

Take a look at the generated axis in your browser. By default, D3 axes are displayed at the origin of the selection, in this case, the top-left corner of the inner chart region, as shown in figure 4.6. We can move the axis to the bottom of the chart by applying a translation to the SVG group that contains the axis. Remember that transformations applied to a group are inherited by all its children. In the following snippet, we translate the group containing the axis elements down by a value corresponding to the height of the inner chart.

const bottomAxis = d3.axisBottom(xScale);

innerChart

.append("g")

.attr("class", "axis-x")

.attr("transform", `translate(0, ${innerHeight})`)

.call(bottomAxis);

Another thing that we will want to change is the formatting of the axis labels.

[image: Image 95]

By default, D3 adapts the representation of time on axes, displaying hours, days, months, or years labels based on the domain. But this default formatting doesn't always provide the labels we are looking for. Fortunately, D3 offers multiple methods to change the labels' format.

First, we note that the x-axis has labels for the months of February to December, which is great, but doesn't have one for January. Depending on the time zone in which you live, the first date might not be exactly the first of January at midnight, which keeps D3 from recognizing it as the start of our first month. Since our dataset is not dynamic, hardcoding the firstDate variable is a reasonable solution. To do so, we will use the JavaScript Date() constructor.

In the following code snippet, firstDate becomes a new Date() object.

Between the parenthesis, we first declare the year (2021), the month (00

because the month index is zero-indexed), the day (01), and optionally follow it by hours, minutes, and seconds (0, 0, 0).

const firstDate = new Date(2021, 00, 01, 0, 0, 0);

const lastDate = d3.max(data, d => d.date);

const xScale = d3.scaleTime()

.domain([firstDate, lastDate])

.range([0, innerWidth]);

If you save your project, you’ll see that we now have a label at the location of January 1st. But the label only gives us the year 2021, which is not wrong, given that Fri Jan 01 2021 00:00:00 corresponds to the very start of the year 2021, but we would prefer to have a month label instead.

Figure 4.7 By default, D3 adapts the representation of time on axis labels. In our case, it represents January 1st as the beginning of the year 2021. This is not wrong, but not ideal for readability.

[image: Image 96]

We can change the format of the axis labels with the method axis.tickFormat(), available in the d3-axis module

(https://github.com/d3/d3-axis). Ticks are the short vertical lines that you see on the axis. They are often, but not necessarily, accompanied by a tick label.

Let’s say that we want our tick labels to be the abbreviated month names. In D3, we can format time-related values with the method d3.timeFormat(), from the module d3-time-format (https://github.com/d3/d3-time-format). This method accepts a format as an argument, for example, %b for the abbreviation of a month name. You can see the full list of available formats in the module.

In the following snippet, we chain the tickFormat() method to the bottom axis declared earlier and pass the time format as an argument.

const bottomAxis = d3.axisBottom(xScale)

.tickFormat(d3.timeFormat("%b"));

Figure 4.8 Bottom axis labels formatted with the abbreviated name of each month.

Our labels are now formatted properly! They mark the beginning of each month, which is not bad, but we could improve readability by centering the month labels between their respective ticks, to suggest that each month extends from one tick to the next one.

To change the position of the tick labels, we first need to select them. Open your browser’s inspector and take a closer look at the SVG elements generated by D3 for the axis. First, we have a path element with the class domain that draws a horizontal line across the range (or the domain’s representation). This path includes two outer ticks, the short vertical lines at each end of the shape, as you can see in figure 4.9. The ticks and labels of the axis are composed of a line and a text element, organized into SVG groups with a class of tick. These SVG groups are translated along the axis to set the positions of their lines and text elements.

[image: Image 97]

Figure 4.9 SVG elements composing an axis

With that structure in mind, we can select all the labels of the x-axis with the selector ".axis-x text", meaning that we grab every text element in the group with the class axis-x. We then perform a few adjustments. First, we move the text elements down by 10px using their y attribute. This increased vertical white space will improve readability. We also set their font-family to Roboto, the font we already use in the project. By default, D3 sets the font-family of axis to sans-serif, preventing the labels from inheriting the font-family of a project. Finally, we increase their font-size to 14px.

For separation of concerns purposes, these last two style adjustments should preferably be handled from a CSS file. But here, we do it with D3 to simplify the instructions.

d3.selectAll(".axis-x text")

.attr("y", "10px")

.style("font-family", "Roboto, sans-serif")

.style("font-size", "14px");

To center the month labels between their corresponding ticks, we'll use the x attribute. Because each month has a different length (between 28 and 31

days), we need to find the median position between the first day of the month and the first day of the following month for each label.

We know that the data attached by D3 to each label corresponds to the first day of the month. In the following snippet, we find the next month by applying the JavaScript method getMonth() to the current month or the value attached to the label. This method returns a number between 0 and 11, 0 for January and 11 for December. We can then create a new JavaScript date by passing the year, next month, and the first day of the month to the Date() object.

Finally, we calculate the median distance between the start of the month and

[image: Image 98]

the start of the following month using xScale. Once completed, your axis should look like the one in figure 4.10.

d3.selectAll(".axis-x text")

.attr("x", d => {

const currentMonth = d;

const nextMonth = new Date(2021, currentMonth.getMonth() + 1, 1); return (xScale(nextMonth) - xScale(currentMonth)) / 2;

})

.attr("y", "10px")

.style("font-family", "Roboto, sans-serif")

.style("font-size", "14px");

Figure 4.10 Formatted x-axis with the month labels centered between their respective ticks.

That was a lot of manipulation! But hopefully, it gave you an overview of the different ways we can customize D3 axes.

We will now add the y-axis, for which the steps will be much more straightforward. We use the axis generator d3.axisLeft(), since we want to position the y-axis on the left side of the chart. We pass yScale as an argument and save the axis in a constant named leftAxis.

const leftAxis = d3.axisLeft(yScale);

Once again, we want to append the axis to the inner chart. We append a group to the inner chart selection, give it a class of axis-y and call leftAxis.

const leftAxis = d3.axisLeft(yScale);

innerChart

.append("g")

.attr("class", "axis-y")

.call(leftAxis);

If you save your project and look at it in the browser, you'll see that the y-axis is already positioned correctly. All we have to do is change the labels' font

and increase their size. In the following snippet, we select all the text elements inside the group with the class axis-y. We move them slightly to the left for better readability, using their x attribute, and set their font-family and font-size property.

d3.selectAll(".axis-y text")

.attr("x", "-5px")

.style("font-family", "Roboto, sans-serif")

.style("font-size", "14px");

You might have noticed the code repetition we had to do to set both axis labels' font-family and font-size properties. In a learning context, that's not a big deal, but we usually try to avoid such repetition in professional projects.

A better solution, mentioned earlier, would be to control these styles from a CSS file. Another one could be to apply them using a combined selector, like below.

d3.selectAll(".axis-x text, .axis-y text")

.style("font-family", "Roboto, sans-serif")

.style("font-size", "14px");

Figure 4.11 Completed x and y axes.

[image: Image 99]

adding axis labels

We have completed our axes, but there's still one thing we should do to help readers understand our chart. The labels on the x-axis are self-explanatory, but the ones on the y-axis are not. We know that they vary between 0 and 90, but we have no idea what they represent.

We can fix that by adding a label to the axis. In D3 projects, labels are simply text elements, so all we have to do is append a text element to the SVG

container. We set its content to "Temperature (°F)" and its vertical position to 20px below the origin of the SVG container. That’s it! Your project should now look like the one in figure 4.12. In the next section, we’ll draw the line chart.

svg

.append("text")

.text("Temperature (°F)")

[image: Image 100]

.attr("y", 20);

Figure 4.12 Completed axes and labels.

4.2 Drawing a line chart

We are now ready to build one of the most common data visualizations: a line chart. Line charts are composed of lines connecting data points or curves interpolating these data points. They are often used to show the evolution of a phenomenon over time. In D3, these lines and curves are built with SVG path elements whose shape is determined by their d attribute. In chapter 1, we discussed how the d attribute is made of a series of commands that dictate how to draw a shape. We also said that it can quickly become complex.

Thankfully, the d3-shape module (https://github.com/d3/d3-shape) provides line and curve generator functions that calculate the d attribute for us, easing

the creation of line charts.

In this section, we will draw a line/curve showing the evolution of the average temperature in New York City during the year 2021, like the one you can see on the hosted project (https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021/) or in figure 4.1. But first, let’s display each data point on the screen. Although this step is not necessary for drawing a line chart, it will help us understand how D3’s line generator function works.

Working inside the function drawLineChart(), we use the data-binding pattern to create one circle for each row in the dataset weekly_temperature.csv. We append these circles to the innerChart selection and give them a radius of 4px. We then calculate their position attributes (cx and cy) using the x and y scales.

If you remember our discussion on data-binding from chapter 3, you know that we can access the data bound to each circle with an accessor function. In the following snippet, d exposes the datum attached to each circle. This data being a JavaScript object, we can access the date or the average temperature with the dot notation. Refer back to section 3.3.1 if you need to review this concept.

Note how we have declared a separate color constant named “aubergine” and used it to set the fill attribute of the circles. We will reuse the same color a few times during this project, so having it in a constant will be handy. Feel free to use any color of your preference!

const aubergine = "#75485E";

innerChart

.selectAll("circle") #A

.data(data) #A

.join("circle") #A

.attr("r", 4)

.attr("cx", d => xScale(d.date)) #B

.attr("cy", d => yScale(d.avg_temp_F)) #B

.attr("fill", aubergine);

Save your projects and take a look at the circles in your browser. They should be positioned between 29 and 80°F and form a dome-like shape, as in figure

[image: Image 101]

4.13.

Figure 4.13 Data points of the evolution of average temperature over time.

You can now draw scatterplots

A cool thing to point out at this stage is that, even without noticing it, you now know how to draw scatterplots! A scatterplot is simply a chart showing a collection of data points positioned along the x and y-axis and visualizing the relationship between two or more variables.

You know how to draw axes, and you know how to position data points on the screen based on their related data, so you can totally build a scatterplot!

That’s what’s so cool about D3. You don’t have to learn how to create specific charts. Instead, you build visualizations by generating and assembling building blocks. For a scatterplot, those building blocks can be as simple as two axes and a set of circles. In chapter 7, we’ll build a scatterplot

[image: Image 102]

where the area of the circles changes based on a variable.

Example of a scatterplot

4.2.1 Using the line generator

Now that we clearly see the position of each data point, it will be easier to introduce D3’s line generator. The line generator d3.line() is a function that takes the horizontal and vertical position of each data point as an input and returns the d attribute of a line, or polyline, passing through these data points as an output. We usually chain the line generator with two accessor functions, x() and y(), respectively taking the data point’s horizontal and vertical

[image: Image 103]

position as an argument, as shown in figure 4.14.

Figure 4.14 The line generator d3.line() is used in combination with two accessor functions, x() and y(), that respectively take the horizontal and vertical position of each data point as arguments.

Let’s declare a line generator function for our line chart. We first call the method d3.line() and chain in with the x() and y() accessor functions. The x() accessor function takes the horizontal position of each data point as an argument. If we loop through our data like we have been doing so far, we can use the parameter d that gives us access to each datum (each row of the dataset). The horizontal position of the data points corresponds to the date

they represent and is calculated with xScale(). Similarly, the vertical position of the data points is proportional to the average temperature on that day and is returned by yScale(). We store the line generator function in a constant named lineGenerator so that we can call it later.

const lineGenerator = d3.line()

.x(d => xScale(d.date)) #A

.y(d => yScale(d.avg_temp_F)); #B

Then, we append a path element to the inner chart and set its d attribute by calling the line generator and passing the dataset as an argument.

By default, SVG paths have a black fill. If we want to see only a line, we need to set the fill attribute to none and set the stroke attribute to the color of our choice; here, the color stored in the aubergine constant. This stroke will become our line chart, as you can see in figure 4.15.

innerChart

.append("path")

.attr("d", lineGenerator(data)) #A

.attr("fill", "none")

.attr("stroke", aubergine);

Figure 4.15 SVG path created with the line generator and passing through each data point, resulting in a line chart.

[image: Image 104]

4.2.2 Interpolating data points into a curve

In cases like our line chart, where the discrete data points cover the whole spectrum of data, representing the data points with a simple line is a good solution. But sometimes, we need to interpolate the data between points, for which D3 provides a variety of interpolation functions that generate curves.

Curve generators are used as an accessor function of d3.line(). To transform the line generator declared in the previous section into a curve generator, we simply chain the curve() accessor function and pass one of D3’s interpolators. In the following snippet, we use the interpolator d3.curveCatmullRom, which produces a cubic spline (a smooth and flexible shape passing through each data point and calculated with a polynomial function of the third-order). The result is shown in figure 4.16.

const curveGenerator = d3.line()

.x(d => xScale(d.year))

[image: Image 105]

.y(d => yScale(d.electoral_democracies))

.curve(d3.curveCatmullRom);

Figure 4.16 Line chart with a curve interpolation using a Catmull-Roll spline.

What’s the best interpolation?

Interpolations modify the data representation, and different interpolation functions create different visualizations. Data can be visualized in various ways, all correct from a programming perspective. But it’s up to us to make sure the information we are visualizing reflects the actual phenomena.

Since data visualization deals with the visual representation of statistical principles, it’s subject to all the dangers of misusing statistics. The interpolation of lines is particularly vulnerable to misuse because it changes a clunky-looking line into a smooth, “natural” line.

In figure 4.17, you can see the same line chart traced with different curve interpolations and appreciate how they affect the visual representation.

Choosing an adequate interpolation function depends highly on the data you are working with. In our case, d3.curveBasis underestimates the sudden variations of temperature, while d3.curveBundle is meant to straighten a curve and reduce its variation, which is not adequate for our data. If we did not draw the data points on the chart, we’d have no idea that the curve doesn’t represent them accurately. That’s why it’s important to select and test your curve interpolation function carefully.

On the other hand, the functions d3.curveMonotoneX and

d3.curveCatmullRom create curves that closely follow the data points and are similar to the original line chart. d3.curveStep can also provide an interesting interpretation of the data when the context is appropriate. The list of curve interpolations illustrated in figure 4.17 is not exhaustive, and some of these interpolators also accept parameters that affect the shape of the final curve. Refer to the d3-shape module (https://github.com/d3/d3-shape) for all the available options.

Figure 4.17 Different curve interpolations and how they modify the representation of data.

[image: Image 106]

You now know how to draw line charts with D3! To recap, we first need to initialize a line generator function and set its x() and y() accessor functions.

These will be responsible for calculating each data point's horizontal and vertical position. Then, we can choose to turn the line into a curve by

[image: Image 107]

chaining the curve() accessor function and selecting an interpolation.

Finally, we append a SVG path element to our chart and set its d attribute by calling the line generator and passing the data as an argument. In chapter 7, we will make this line chart interactive with a tooltip. Feel free to go directly to that chapter if that's something you'd like to learn right ahead!

Figure 4.18 Steps to create a line chart.

4.3 Drawing an area

In this section, we will add an area behind our line chart that shows the range between the minimum and maximum temperature for each date. The process of drawing an area in D3 is very similar to the one used to draw a line. Like lines, areas are created with SVG path elements, and D3 provides us with a handy area generator function, d3.area(), to calculate the d attribute of that path.

One thing to note before we get started is that we want to display the area behind the line chart. Because elements are drawn on the screen in the same order they are appended inside the SVG parent, the code to draw the area should be added before the code that creates the line chart.

4.3.1 Using the area generator

Let’s first declare an area generator function and store it in a constant named areaGenerator. As you can observe in the following snippet, the area generator requires at least three accessor functions. The first one, x(), is responsible for calculating the horizontal position of the data points, exactly like with the line generator. But now, we don’t have only one set of data points, but rather two: one along the lower edge of the area and another one on its upper edge, hence the accessor functions y0() and y1(). Note that in our case, the data points on the lower and upper edges of the area share the same horizontal positions.

const areaGenerator = d3.area()

.x(d => xScale(d.date))

.y0(d => yScale(d.min_temp_F))

.y1(d => yScale(d.max_temp_F));

Figure 4.19 might help you visualize the lower and upper boundaries of the area and how the area generator computes the data related to the area.

Figure 4.19 The area generator d3.area() is used in combination with three or more accessor functions. To draw the area between the minimum and the maximum temperatures, we use x(), y0(), and y1(). The first one calculates the horizontal position of each data point, the second the vertical position of the data points on the lower boundary, here the minimum temperature, and the third one the vertical position of the data points on the upper edge, here the maximum temperature.

[image: Image 108]

As we did for the line chart, we interpolate the area's boundaries into curves by chaining the curve() accessor function to the area generator. Here we also use the same curve interpolator function, d3.curveCatmullRom.

const areaGenerator = d3.area()

.x(d => xScale(d.date))

.y0(d => yScale(d.min_temp_F))

.y1(d => yScale(d.max_temp_F))

.curve(d3.curveCatmullRom);

[image: Image 109]

Once the area generator is ready, all we need to do is append a SVG path element to the inner chart. To set its d attribute, we call the area generator and pass the dataset as an argument. The rest is purely aesthetic-related. We set the fill attribute to the aubergine color constant declared earlier and the fill-opacity to 20% to ensure that the contrast is sufficient between the area and the line chart. Note that the declaration of the aubergine constant needs to happen before we use it to set the fill of the area.

innerChart

.append("path")

.attr("d", areaGenerator(data))

.attr("fill", aubergine)

.attr("fill-opacity", 0.2);

Figure 4.20 Line chart of the average temperature combined with an area showing the variation between the minimum and the maximum temperature.

As you can see, the process of drawing an area is very similar to the one of

[image: Image 110]

drawing a line. The main difference is that a line has only one set of data points between which the line is drawn, while an area is a region between two edges, with one set of data points for each edge. This is why the line generator requires only two accessor functions, x() and y(), while the area generator needs at least three, in our case x(), y0() and y1().

Figure 4.21 Steps to create an area.

4.3.2 Enhancing readability with labels

We now have a line chart of the average temperature in New York City for the year 2021, combined with an area showing the variation between the minimum and the maximum temperature. It looks pretty good already, but we need to ensure that the people who will see this chart will easily understand what the line and the area mean. Labels are an excellent tool for that!

In D3, labels are simply SVG text elements that we position over our visualizations. Here we will create three labels, one for the average temperature that we will place at the end of the line chart, one for the minimum temperature positioned below the area, and one for the maximum temperature placed above the area.

Let’s start with the label for the line chart. We first append a SVG text element to the inner chart and set its content to “Average temperature” using the text() method. We then calculate its position, controlled by the attributes x and y.

We want the label to be positioned at the end of the line chart or just after its last data point. We can obtain that value by passing the lastDate constant,

[image: Image 111]

calculated earlier when we declared our scales, to xScale(). We also add 10px of extra padding.

For the vertical position, we don't already have a constant that gives us the last temperature value. Still, we can find the last row in the dataset with data[data.length - 1], and use the dot notation to access the average temperature. We pass this value to the yScale() and obtain the vertical position of the label.

We finally reuse the color constant aubergine for the color of the text, controlled by its fill attribute.

innerChart

.append("text")

.text("Average temperature")

.attr("x", xScale(lastDate) + 10)

.attr("y", yScale(data[data.length - 1].avg_temp_F))

.attr("fill", aubergine);

If you save your project and look at it in the browser, you'll observe that the bottom of the label is vertically aligned with the center of the last data point on the line chart. By default, the baseline of SVG text is positioned at the bottom of the text, as shown in figure 4.22. We can change this with the dominant-baseline attribute. In the following snippet, we give this attribute a value of middle, to shift the baseline to the vertical center of the text.

Figure 4.22 The y attribute of SVG text sets the vertical position of its baseline, which by default is positioned at the bottom of the text. We can change that with the dominant-baseline attribute.

If we give this attribute the value “middle”, the baseline of the text is shifted to its vertical middle, while the value “hanging” shifts the baseline to the top of the text.

innerChart

.append("text")

 .text("Average temperature")

.attr("x", xScale(lastDate) + 10)

.attr("y", yScale(data[data.length - 1].avg_temp_F))

.attr("dominant-baseline", "middle")

.attr("fill", aubergine);

We will then add a label for the lower boundary of the area, which represents the evolution of the minimum temperature. The strategy is very similar. We first append a SVG text element and give it a content of “Minimum temperature”.

For its position, we opted for the last downward protuberance, which corresponds to the third to last data point. We pass the values of this data points to our scales to find its position, and move the label down by 20px and right by 13px. These numbers were found simply by moving the label around until we found a position that looked right. The inspector tool of the browser is a great place to test such minor adjustments. Note that we have set the dominant-baseline of the label to hanging. As you’ve seen in figure 4.22, this means that the y attribute controls the position of the top of the text.

Finally, in the snippet you’ll see that we have added a line to the label, traced between the downward protuberance of the area and the label, to clarify what the label represents. You can see how it looks like in figure 4.23. Again, we have used the scales to calculate the x1, y1, x2, and y2 attributes of the line, which control the position of its starting and ending points.

innerChart

.append("text")

.text("Minimum temperature")

.attr("x", xScale(data[data.length - 3].date) + 13)

.attr("y", yScale(data[data.length - 3].min_temp_F) + 20)

.attr("alignment-baseline", "hanging")

.attr("fill", aubergine);

innerChart

.append("line")

.attr("x1", xScale(data[data.length - 3].date))

.attr("y1", yScale(data[data.length - 3].min_temp_F) + 3)

.attr("x2", xScale(data[data.length - 3].date) + 10)

.attr("y2", yScale(data[data.length - 3].min_temp_F) + 20)

.attr("stroke", aubergine)

.attr("stroke-width", 2);

We use a very similar process to append a label for the upper boundary of the area, which represents the evolution of the maximum temperature. We chose to position this label close to the upward protuberance corresponding to the fourth to last data point. Again, we drew a line between the label and the protuberance. Once you are done, the line chart is complete!

innerChart

.append("text")

.text("Maximum temperature")

.attr("x", xScale(data[data.length - 4].date) + 13)

.attr("y", yScale(data[data.length - 4].max_temp_F) - 20)

.attr("fill", aubergine);

innerChart

.append("line")

.attr("x1", xScale(data[data.length - 4].date))

.attr("y1", yScale(data[data.length - 4].max_temp_F) - 3)

.attr("x2", xScale(data[data.length - 4].date) + 10)

.attr("y2", yScale(data[data.length - 4].max_temp_F) - 20)

.attr("stroke", aubergine)

.attr("stroke-width", 2);

Figure 4.23 Completed line chart of the evolution of temperature in New York City for the year 2021.

[image: Image 112]

4.4 Drawing arcs

In this last section, we will discuss how to draw arcs with D3. Arcs are a common shape in data visualization. They are used in pie charts, sunburst diagrams, and Nightingale charts to visualize how an amount relates to the total, and we regularly use them in custom radial visualizations.

Like lines and areas, arcs are drawn with SVG paths, and, as you have probably guessed by now, D3 provides a handy arc generator function that computes the d attribute of arc paths for us.

Before discussing the arc generator in detail, let’s prepare our project. Here, we will draw the arcs that compose the radial chart you can see under “Days with precipitations” in figure 4.1 or on the hosted project (https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021/). The blue arc portrays the percentage of days with precipitations in New York City during

2021 (35%), while the gray arc represents the rest of the days.

First, open the file arcs.js. This is where we will work for the rest of the chapter. As usual, we need to load a dataset, in this case daily_precipitations.csv, which is included in the data folder. If you take a look at the CSV file, you’ll see that it only contains two columns: the date column lists every day of 2021, while the total_precip_in column provides the total precipitations, in inches, for each day.

In the following snippet, we fetch the dataset with d3.csv(), use d3.autoType to format the dates and numbers correctly, and chain it with a Promise, inside of which we log the data into the console. We won’t discuss the details of how to use d3.csv() here. Refer to chapter 3 for more explanations or to section 4.1 of this chapter for a discussion about d3.autoType.

d3.csv("./data/daily_precipitations.csv", d3.autoType).then(data => {

console.log("precipitations data", data);

});

If you look at the data in the console, you’ll see that both the dates and numbers are correctly formatted. Great! We can take our formatted dataset and pass it to the function drawArc(), which already exists in arcs.js.

d3.csv("./data/daily_precipitations.csv", d3.autoType).then(data => {

console.log("precipitations data", data);

drawArc(data);

});

Inside drawArc(), we can now append a new SVG container. As you can see in the following snippet, we give a width and height of 300px to the SVG

container and append it inside the div with an id of arc that already exists in index.html. We use the strategy explained in chapter 1 to make the SVG

responsive: setting the last two values of the viewBox attribute to its width and height and omitting the width and height attributes altogether. This way, the SVG container will adapt to the size of its parent while preserving its aspect ratio. Note that we save the SVG container selection in a constant named svg.

const pieChartWidth = 300;

const pieChartHeight = 300;

[image: Image 113]

const svg = d3.select("#arc")

.append("svg")

.attr("viewBox", [0, 0, pieChartWidth, pieChartHeight]); 4.4.1 The polar coordinate system

As discussed in section 4.1, we will wrap our chart inside a SVG group and translate this group to the desired position. The strategy is a little bit different this time, though. We don’t need to reserve space for axis or labels, so we can omit the margin convention. But, contrary to all the visualizations built so far, arcs live in a polar coordinate system rather than a cartesian coordinate system, which behaves slightly differently.

As shown in figure 4.24, the coordinate system of a SVG container is cartesian. It uses two perpendicular dimensions, x and y, to describe positions in the 2D space. We discussed in chapter 1 that the coordinate system of SVG

elements is a little bit special, given that its origin is located at the top-left corner of the SVG container, making the y dimension positive in the top to bottom direction.

A 2D polar coordinate system also uses two dimensions, a radius, and an angle. The radius is the distance between the origin and a point in space, while the angle is calculated from 12 o’clock in the clockwise direction. This way of describing positions in space is particularly useful when working with arcs.

Figure 4.24 The dimensions of a cartesian coordinate are perpendicular to one another, while the polar coordinate system uses the radius and angle dimensions to describe a position in space.

Since elements are positioned around the origin in the polar coordinate system, we can say that the origin of the arcs visualization we are about to build is positioned at the center of the SVG container, as shown in figure 4.25.

Figure 4.25 We facilitate the creation of a set of arcs by wrapping them into a SVG group and translating this group to the center of the SVG container. When we'll append arcs to the group, their position will be automatically relative to the center of the chart, which corresponds to the origin of their polar coordinate system.

[image: Image 114]

In the next snippet, we take our SVG container selection and append a group inside of it We translate the group to the center of the SVG container and save it in the constant innerChart.

const innerChart = svg

.append("g")

.attr("transform", `translate(${pieChartWidth/2},

 ➥ ${pieChartHeight/2})`);

Before creating our arcs, we need to do one last thing: calculate the angle taken by the days with precipitations on our chart. When creating pie or donut charts with D3, we usually handle such calculations with the pie layout generator, which we will introduce in the next chapter. But since we will draw only two arcs here, the math is easy.

First, we can know the total number of days in 2021 with the length property of our dataset, which is 365. Then, we find the number of days with precipitations by filtering the dataset to keep only the days for which precipitations are greater than zero, which is 126 days. Finally, we turn the number of days with precipitations into a percentage by dividing it by the total number of days, which gives 35%.

const numberOfDays = data.length;

const numberOfDaysWithPrecipitations = data.filter(d =>

➥ d.total_precip_in > 0).length;

const percentageDaysWithPrecipitations =

➥ Math.round(numberOfDaysWithPrecipitations / numberOfDays * 100); We can then calculate the angle corresponding to the number of days with precipitations by multiplying this number by 360 degrees, the number of degrees in a full circle, to obtain 126 degrees. We start with degrees because it tends to be more intuitive, but we also need to convert this value to radians.

To do so, we multiply the angle covered by the percentage of days with precipitations, in degrees, by the number pi (3.1416) and divide it by 180 for an angle of about 2.2 radians that we save in the constant angleDaysWithPrecipitations_rad.

We perform this conversion because the arc generator we will use in a moment expects angles to be in radians rather than degrees. As a rule of thumb when working with angles, JavaScript usually expects them to be in radians, while CSS uses degrees.

const angleDaysWithPrecipitations_deg = percentageDaysWithPrecipitations *

➥ 360 / 100;

const angleDaysWithPrecipitations_rad = angleDaysWithPrecipitations_deg *

➥ Math.PI / 180;

4.4.2 Using the arc generator

We are finally getting to the fun part, generating the arcs! First, we need to declare an arc generator as we did for lines and areas. The arc generator d3.arc() is part of the module d3-shape (https://github.com/d3/d3-shape) and, in our case, requires two main accessor functions: the inner radius and the outer radius of the arcs, respectively handled by innerRadius() and outerRadius() and given values of 80 and 120px. Note that if the inner radius is zero, we get an arc like the ones found in pie charts and starting at the origin.

const arcGenerator = d3.arc()

.innerRadius(80)

.outerRadius(120);

We can personalize our arcs by adding padding between them with the accessor function padAngle(), which accepts an angle in radians. Here we use 0.02 radians, which corresponds to a little more than 1 degree. We can also round the corner of the arcs with cornerRadius(), which accepts a value in pixels. This accessor function has a similar effect than the CSS border-radius property.

const arcGenerator = d3.arc()

.innerRadius(80)

.outerRadius(120)

.padAngle(0.02)

.cornerRadius(6);

Figure 4.26 The arc generator uses multiple accessor functions to compute the d attribute of an arc. Here we set its inner radius, outer radius, padding angle, and corner radius during the generator declaration. We’ll pass each arc's start and end angle when we append the path element to the chart.

[image: Image 115]

At this point, you might wonder why we didn't use accessor functions that handle the angles covered by the arcs. In our case, since we have manually calculated our angle, it's simpler to pass these values to the arc generator ourselves when we append the paths. But we'll see in the next chapter that this is not always the case.

So let’s append our first arc, the one showing the number of days with

precipitations. In the following snippet, we first append a path element to the inner chart selection. Then, we set its d attribute by calling the arc generator declared in the last snippet.

Observe how we pass the start and end angles to the generator as an object.

The value of startAngle is zero, which corresponds to 12 o’clock, while the value of endAngle is the angle covered by the days with precipitations calculated earlier. Finally, we set the fill of the arc to the color #6EB7C2, a cyan blue.

innerChart

.append("path")

.attr("d", () => {

return arcGenerator({

startAngle: 0,

endAngle: angleDaysWithPrecipitations_rad

});

})

.attr("fill", "#6EB7C2");

We append the second arc in a similar fashion. This time, the arc starts where the previous one ended and ends at the circle's completion, corresponding to the angle 2*Pi in radians. We give a fill of #DCE2E2 to the arc, a color closer to gray, to suggest that these are the days without precipitations.

innerChart

.append("path")

.attr("d", () => {

return arcGenerator({

startAngle: angleDaysWithPrecipitations_rad,

endAngle: 2 * Math.PI

});

})

.attr("fill", "#DCE2E2");

After saving your project, your arcs should look like the ones in figure 4.27.

We encourage you to play with the values passed to the generator's accessor functions, like the radius or corner radius, to get a feel for how they modify the appearance of arcs.

Figure 4.27 Arcs showing the ratio between days with precipitations and days without.

[image: Image 116]

[image: Image 117]

As you can see, the process of drawing arcs is similar to the one of drawing lines and areas. The main difference is that the position of arcs in space is handled with polar coordinates rather than cartesian, which is reflected in the accessor functions of the arc generator.

Figure 4.28 Steps to draw an arc.

4.4.3 Calculating the centroid of an arc

Pie charts and donut charts have recently got a lot of bad press in the data visualization community, mainly because we realized that the human eye is

not very good at estimating the ratio represented by an arc. These charts are not always a poor choice, though, especially when they contain a small number of categories. But we can definitely help their readability with labels, and this is what we’ll do here!

On the arc representing the number of days with precipitations, we’ll add the label “35%”, the percentage of days with precipitations calculated earlier. A great place to position this label is on the centroid of the arc, also known as its center of mass. This value can be provided by the arc generator.

In the following snippet, we call the arc generator function initialized earlier.

This time, we chain it with the startAngle() and endAngle() accessor function, passing them respectively the values of the start and end angles of the arc representing the days with precipitations. Finally, we chain the method centroid(), which will calculate the midpoint of the arc.

const centroid = arcGenerator

.startAngle(0)

.endAngle(angleDaysWithPrecipitations_rad)

.centroid();

Log the centroid into the console. You’ll see that it consists of an array of two values: the horizontal and vertical position of the centroid, which in our case is [89, -45], calculated from the origin of the inner chart.

In the next snippet, we create the label by appending a text element to the inner chart. For the label to include a “%” sign, we use the method d3.format(".0%"), followed by the value in parenthesis. This method is convenient for formatting numbers in a specific way like currencies, percentages, and exponents, or adding a particular suffix to these numbers like “M” for millions or “µ” for micro. You can find a detailed list of all the formats available in the module d3-format (https://github.com/d3/d3-format).

We then set the x and y attributes, using the first and second values returned in the centroid array. Note how we set the text-anchor and dominant-baseline attributes to ensure that the label is centered around the x and y attributes, both horizontally and vertically.

Finally, we give the label a white color and a font-weight of 500 to improve

[image: Image 118]

its legibility. Once saved, your arc with label should look like the one in figure 4.29.

innerChart

.append("text")

.text(d => d3.format(".0%")(percentageDaysWithPrecipitations/100))

.attr("x", centroid[0])

.attr("y", centroid[1])

.attr("text-anchor", "middle")

.attr("dominant-baseline", "middle")

.attr("fill", "white")

.style("font-weight", 500);

Figure 4.29 Completed arcs with a label.

And you now know how to draw lines, areas, and arcs with D3! In the next chapter, we’ll use layout generators to bring these shapes to another level.

4.5 Summary

The role of the D3 margin convention is to reserve space around a chart

for axes, labels, and legend in a systematic and reusable way.

We do so by declaring a margin object containing a value for the top, right, bottom, and left margin.

A useful strategy is to wrap the elements constituting the chart itself into a SVG group and position this group inside the SVG container based on the margins. This creates a new origin for the chart elements and facilitates their implementation.

D3 has four axis generators: axisTop(), axisRight(), axisBottom() and axisLeft(), that respectively create the components of top, right, bottom and left axes.

These axis generators take a scale as an input and return the SVG

elements composing an axis as an output (a line along the axis and multiple sets of tick and label).

We append an axis to a chart by chaining the call() method to a selection and passing the axis as an argument.

Line charts are one of the most common charts and are useful to show the evolution of a phenomenon over time. We draw line charts with lines or curves connecting data points.

To draw a line chart, we first initialize a line generator with the method d3.line(). The line generator has two accessor functions, x() and y(), which calculate each data point's horizontal and vertical position.

We can turn a line chart into a curve with the curve() accessor function. D3 offers multiple curve interpolation functions, which affect data representation and must be selected carefully.

To make a line chart appear on the screen, we append a path element to a selection and set its d attribute by calling the line generator and passing the dataset as an attribute.

An area is a region between two boundaries, and drawing an area with D3 is similar to drawing a line.

To draw an area, we first declare an area generator with the method d3.area(). This method requires at least three accessor functions to calculate the position of each data point along the edges of the area, for example, x(), y0() and y1() or x0(), x1() and y().

Like for lines, D3 provides interpolation functions that can be applied with the curve() accessor function.

To make an area appear on the screen, we append a path element to

a selection and set its d attribute by calling the area generator and passing the dataset as an attribute.

Labels are particularly useful to help readers understand our data visualizations. In D3, labels are simply text elements that we need to position within the SVG container.

The position of SVG text is controlled by their x and y attributes.

The y attribute sets the position of the text’s baseline, which by default is positioned at its bottom. We shift the baseline of a SVG

text with the attribute dominant-baseline. The value middle moves the baseline to the vertical middle of the text, while the value hanging, shifts the baseline to the top.

Visualizations that use arcs are usually described with a polar coordinate system. This coordinate system uses a radius, the distance between the origin and a point, and an angle to describe a position in space.

Arcs are created with SVG path elements, for which the d attribute is calculated with an arc generator.

D3’s arc generator d3.arc() has accessor function that defines the starting and ending angle of an arc (startAngle() and

endAngle()), as well as its inner and outer radius (innerRadius() and outerRadius()).

We can also use accessor functions to round the corners of an arc (cornerRadius()) or to add padding between arcs (padAngle()).

The arc generator expects angles to be expressed in radians.

The center of mass of an arc can be calculated with the centroid() method. Chained to an arc generator, this accessor function returns an array containing the horizontal and vertical position of the center of mass.

5 Pie and stack layouts

This chapter covers

Understanding D3 layout functions

Drawing donut charts using the pie layout

Stacking shapes to generate a stacked bar graph and a streamgraph Creating a simple legend

In the last chapter, we have discussed how D3 can calculate the d attribute of complex shapes like curves, areas, and arcs with its shape generator functions. In this chapter, we will take such shapes to another level with layouts. In D3, layouts are functions that take a dataset as an input and produce a new, annotated dataset as an output, containing the attributes necessary to draw a specific visualization. For example, the pie layout calculates the angles of each slice of a pie chart and annotates the dataset with these angles. Similarly, the stack layout calculates the position of the piled shapes in a stacked bar chart or a streamgraph.

Layouts don’t draw the visualizations, nor are they called like components or referred to in the drawing code like shape generators. Instead, they are a preprocessing step that formats your data so that it’s ready to be displayed in the form you’ve chosen.

Figure 5.1 Layout function are a data preprocessing step used to calculate the information required to draw a specific chart.

[image: Image 119]

In this chapter, we will combine the pie and the stack layouts with the arc and area shape generators discussed in chapter 4 to create the project shown in figure 5.2. You can also find it online at https://d3js-in-action-third-edition.github.io/visualizing-40-years-of-music-industry-sales/. This project visualizes sales per format in the music industry between 1973 and 2019. It is inspired by a challenge hosted by MakeoverMonday in 2020

(www.makeovermonday.co.uk/week-21-2020/).

Figure 5.2 Visualization of the sales in the music industry between 1973 and 2019. This is the project that we will build in this chapter.

[image: Image 120]

Although this chapter presents only the pie and the stack layout, other layouts, such as the chord layout and more exotic ones, follow the same principles and should be easy to understand after looking at these.

Before we get started, go to the code files of chapter 5. You can download them from the book’s Github repository if you haven’t already (https://github.com/d3js-in-action-third-edition/code-files). In the folder named chapter_05, the code files are organized by section. To get started with this chapter’s exercise, open the 5.1-Pie_layout/start folder in your code editor and start your local web server. Refer to appendix A if you need help setting up your local development environment. You can find more details about the project’s folder structure in the README file located at the root of this chapter’s code files.

The three visualizations we will build in this chapter (donut charts, stacked bar chart, and streamgraph) share the same data, dimensions, and scales. To avoid repetition, the project is broken into multiple JavaScript files, including one for the constants shared by the visualizations and one specifically for the scales. This approach will make our code easier to read and modify. In production code, we would likely use JavaScript imports and exports to access the different functions, in combination with Node and a bundler. We will get there when discussing frontend frameworks, but for now, we’ll stick to a legacy-like project structure to keep the focus on D3. Note that the D3

library and all the JavaScript files are already loaded in index.html.

WARNING

When working with the chapter’s code files, open only one start OR one end folder in your code editor. If you open all the chapter’s files at once and use the Live Server extension to serve the project, the path to the data file won't work as expected.

5.1 Creating pie and donut charts

In this section, we will use D3’s pie layout to create the donut charts that you can see at the top of figure 5.2 and on the hosted project (https://d3js-in-

action-third-edition.github.io/visualizing-40-years-of-music-industry-sales/).

More specifically, we will visualize the sales per music format breakdown for 1975, 1995, and 2013. The center of each donut chart will correspond to the position of the corresponding years on the x-axis of the streamgraph and stacked bar chart below.

5.1.1 Preparatory steps

Let’s take a moment to establish a strategy that will ensure a proper horizontal alignment of each chart according to the years on the x-axis. An easy way to proceed is to use the margin convention described in chapter 4.

As we progress in this chapter, we will use three SVG containers: one for the donut charts, one for the streamgraph, and one for the stacked bar chart. Each of these containers will have the same dimensions and share the same margins. The areas reserved for the inner charts (the visualizations without axes and labels) will also have the same dimensions and be horizontally aligned, as shown in figure 5.3. The file js/shared-constant.js already contains the margin object and dimension constants shared by the visualizations.

We have also loaded the CSV data file for you in js/load-data.js. Refer to chapters 3 and 4 for more information about how we load data into a D3

project. Once the data is loaded, we call the functions defineScales() and drawDonutCharts(), which we will use in this section.

Figure 5.3 To create this chapter’s project, we will use three SVG containers: one for the donut charts, one for the streamgraph, and one for the stacked bar chart. This strategy will allow us to have a consistent area reserved for the inner chart and to align each chart on top of the other properly.

[image: Image 121]

First, let’s append a SVG container for the donut charts and an SVG group that defines the area reserved for the inner chart. To do so, we go to js/donut-charts.js and, inside the function drawDonutCharts(), we create both the SVG container and a SVG group. In the following snippet, you’ll see that we append the SVG container inside the div with an id of donut. Note that we apply the margin convention by translating the group based on the left and top margins of the charts.

const svg = d3.select("#donut")

.append("svg") #A

.attr("viewBox", `0 0 ${width} ${height}`); #A const donutContainers = svg

.append("g") #B

.attr("transform", `translate(${margin.left}, ${margin.top})`); #B

You might wonder why we need to apply the margin convention to the donut charts since there’s no axis and labels to account space for. This is because each donut chart will be positioned horizontally based on the year it represents. Since we want the horizontal position of these years to be the same as in the streamgraph and the stacked bar chart below, we need to account for the margin convention.

In chapter 4, we discussed polar coordinates and how we can facilitate the creation of a pie or donut chart by containing the arcs inside a SVG group and translating this group to the position of the center of the chart. By proceeding this way, the arcs are automatically drawn around this center.

We will apply the same strategy here, the only difference being that we have three donut charts to account for and that the horizontal position of their center corresponds to the years they represent, as illustrated by figure 5.4.

Figure 5.4 Each set of arcs composing a donut chart is contained inside a SVG group. These groups are translated horizontally based on the year they represent. This position is calculated with a D3 scale.

[image: Image 122]

To calculate the horizontal position of each donut’s center, we will need a scale. As you know by now, we use D3 scales to translate data, here the years, onto screen attributes, here the horizontal positions. A linear or a time scale would work just fine for our purpose, but we opt for a band scale since

we know that we will draw a stacked bar chart later, that will share the same scale. Refer to chapter 3 for more explanations about how band scales work.

In the file js/scale.js, we start by initializing the band scale with the function d3.scaleBand() and store it in a constant named xScale. Notice how we declare the scale’s domain and range inside the function defineScales(). This approach lets us wait until the data is done loading before attempting to use it to set the domain (the function defineScales() is called from load-data.js, once the data is ready). We declare the constant xScale outside the function to make it accessible from the other js files.

Listing 5.1 Declaring the band scale (scales.js)

const xScale = d3.scaleBand(); #A

const defineScales = (data) => {

xScale

.domain(data.map(d => d.year)) #B

.range([0, innerWidth]); #B

};

Band scales accept a discrete input as a domain and return a continuous output from the range. In listing 5.1, we set the domain by creating an array with each year from the dataset, using the JavaScript map() method. For the range, we pass an array containing the minimum value of the horizontal space available, which is zero, and the maximum value, corresponding to the innerWidth of the inner chart.

We go back to the function drawDonutCharts(), and as you can see in listing 5.2, we first declare an array, named years, that lists our years of interest, here 1975, 1995, and 2013. Then, using a forEach() loop, we append a SVG

group for each year of interest and save it in a constant named donutContainer. We finally translate the groups by setting their transform attributes. The horizontal translation is calculated by calling xScale, to which we pass the current year, while the vertical translation corresponds to the half-height of the inner chart.

Listing 5.2 Appending and translating a SVG group for each donut chart (donut-charts.js)

const years = [1975, 1995, 2013];

years.forEach(year => {

const donutContainer = donutContainers

.append("g")

.attr("transform", `translate(${xScale(year)}, ${innerHeight/2})`);

});

5.1.2 The pie layout generator

With the preparation steps completed, we can now focus on the donut charts.

Pie and donut charts visualize part-to-whole relationships or the amount represented by each slice in regards to the total. The D3 pie layout generator helps us by calculating each slice's start and end angle based on the percentage it represents.

Formatting the data

D3's pie generator expects the input data to be formatted as an array of numbers. For example, for the year 1975, we could have an array with the sales corresponding to each music format, as shown below: const sales1975 = [8061.8, 2770.4, 469.5, 0, 0, 0, 48.5]; Although such a simple array is enough to generate a pie chart, it will prevent us later from attributing a color to each slice based on the music format it represents. To carry this information with us, we can use an array of objects that contains both the id of the music format and the related sales for the year of interest.

In listing 5.3, we start by extracting the formats from the column attribute of the loaded dataset. When fetching data, with the method d3.csv() for example, D3 attaches an array to the dataset containing each column's title from the original CSV dataset and accessible with the key data.columns. If you log the fetched data into the console, you'll see it at the end of the data array, as shown in figure 5.5.

Since we are only interested in the music formats, we can filter the columns

[image: Image 123]

array to remove the "year" label.

Figure 5.5 When fetching data, from a CSV file for example, D3 attaches an array to the dataset, containing the titles of the columns from the original dataset. This array is accessible with the key data.columns.

To prepare the data for the pie generator, we also need to extract the data for the year of interest. We isolate this data with the JavaScript method find() and store it in a constant named yearData.

We loop through the formats array and for each format, we create an object

containing the format id and its related sales for the year of interest. Finally, we push this object into the array formattedData, declared previously.

Listing 5.3 Formatting the data for the pie generator (donut-charts.js) const years = [1975, 1995, 2013];

const formats = data.columns.filter(format => format !== "year"); #A years.forEach(year => {

...

const yearData = data.find(d => d.year === year); #B

const formattedData = []; #C

formats.forEach(format => { #D

formattedData.push({ format: format, sales: yearData[format] }); #D

}); #D

});

Once ready, the formatted data is an array of objects, each object containing the id of a format and its related sales for the year of interest.

// => formattedData = [

{ format: "vinyl", sales: 8061.8 },

{ format: "eight_track", sales: 2770.4 },

{ format: "cassette", sales: 469.5 },

{ format: "cd", sales: 0 },

{ format: "download", sales: 0 },

{ format: "streaming", sales: 0 },

{ format: "other", sales: 48.5 }

];

Initializing and calling the pie layout generator

Now that the data is formatted properly, we can initialize the pie layout generator. We construct a new pie generator with the method d3.pie(), which is part of the d3-shape module (https://github.com/d3/d3-shape#pies).

Since our formatted data is an array of objects, we need to tell the pie generator which key contains the value that will determine the size of the slice. We do so by setting the value() accessor function, like in the

following snippet. We also store the pie generator in a constant named pieGenerator, so that we can call it like any other function.

const pieGenerator = d3.pie()

.value(d => d.sales);

To produce the data for the pie layout, we simply call the pie generator function, pass the formatted data as an argument and store the result in a constant named annotatedData.

const pieGenerator = d3.pie()

.value(d => d.sales);

const annotatedData = pieGenerator(formattedData);

The pie generator returns a new, annotated dataset that contains a reference to the original dataset but also includes new attributes: the value of each slice, its index and its start and end angle (in radians). Note how padAngle, the padding between each slice, is also included and currently set to zero. We’ll change that in a moment.

// => annotatedData = [

{

data: { format: "vinyl", sales: 8061.8 },

value: 8061.8,

index: 0,

startAngle: 0,

endAngle: 4.5,

padAngle: 0,

},

...

];

 It's important to understand that the pie layout generator is not directly involved in drawing a pie chart. It is a preprocessing step that calculates the angles of a pie chart’s slices. As described in figures 5.1 and 5.6, this process usually involves three steps:

1. Formatting the data;

2. Initializing the pie layout function;

3. Calling the pie layout and passing the formatted data as an argument.

Later, we’ll use the annotated dataset returned by the pie layout to draw

the arcs.

Figure 5.6 The pie layout generator is a preprocessing step that generates an annotated dataset containing the start and end angle of each slice of a pie chart. The process usually involves formatting our data, initializing the pie generator function, and calling that function to obtain the annotated data.

[image: Image 124]

5.1.3 Drawing the arcs

With our annotated dataset ready, it’s time to generate the arcs! You’ll see that the following steps are very similar to how we created arcs in the previous chapter. For this reason, we won’t explain every detail. Refer back to chapter 4 if you need a more in-depth discussion.

In listing 5.4, we start by initializing the arc generator by calling the d3.arc() method and its various accessor functions responsible for setting the inner and outer radius of the chart, the padding between the slices, and the radius of the slices’ corners. If the inner radius is set to zero, we’ll obtain a pie chart, while if it’s greater than zero, we’ll get a donut chart.

The only difference with the strategy used in chapter 4, is that this time we can set the startAngle() and endAngle() accessor functions while declaring the arc generator. This is because now, these values are included in the annotated dataset and we can tell these accessor functions how to access them, via d.startAngle and d.endAngle.

The last thing we need to do for the arcs to appear on the screen is to use the data-binding pattern to generate one path element for each object in the annotated dataset (there is one object for each arc or slice). Note how, in listing 5.4, we give a specific class name to the arcs of each donut (àrc-

${year}`) and use this class name as a selector in the data-binding pattern.

Since we are creating the donuts in a loop, this will prevent D3 from overwriting each donut as it makes a new one.

Finally, we call the arc generator function to calculate the d attribute of each path.

Listing 5.4 Generating and drawing the arcs (donut-charts.js) const arcGenerator = d3.arc()

.startAngle(d => d.startAngle) #A

.endAngle(d => d.endAngle) #A

.innerRadius(60)

.outerRadius(100)

.padAngle(0.02)

 .cornerRadius(3);

const arcs = donutContainer

.selectAll(`path.arc-${year}`) #B

.data(annotatedData) #B

.join("path") #B

.attr("class", àrc-${year}`)

.attr("d", arcGenerator); #C

Using a color scale

If you save your project and look at the donut charts in your browser, you’ll see that their shape is correct, but each arc is pitch black. This is normal, black being the default fill attribute of SVG paths. To improve readability, we will apply a different color to each arc based on the music format they represent.

An easy and reusable way to apply the right color to each arc is to declare a color scale. In D3, color scales are often created with d3.scaleOrdinal() (https://github.com/d3/d3-scale#scaleOrdinal). Ordinal scales map a discrete domain onto a discrete range. In our case, the domain is an array of music formats, and the range is an array containing the color associated with each format.

In the file scales.js, we start by declaring an ordinal scale and saving it in the constant colorScale. We then set its domain by mapping each format id from the formatsInfo array (available in shared-constants.js) into an array. We do the same with the colors, which you can personalize to your liking. Throughout the chapter, we will reuse this color scale to create all the charts that compose our project.

const colorScale = d3.scaleOrdinal();

const defineScales = (data) => {

colorScale

.domain(formatsInfo.map(f => f.id))

.range(formatsInfo.map(f => f.color));

};

Back to donut-charts.js, we can set the fill attribute of the arcs by passing the music format id bound to each arc to the color scale.

const arcs = donutContainer

.selectAll(`path.arc-${year}`)

.data(annotatedData)

.join("path")

.attr("class", àrc-${year}`)

.attr("d", arcGenerator)

.attr("fill", d => colorScale(d.data.format)); Save your project and take a look in your browser. It doesn’t look bad! The arcs already appear in descending order, from the largest to the smallest, which can help with readability. We can already see how the face of music changed between 1975, 1995, and 2013, the dominant formats being completely different.

Figure 5.7 Donut charts for the years 1975, 1995 and 2013

[image: Image 125]

5.1.4 Adding labels

In chapter 4, we mentioned that pie charts are sometimes hard to interpret, given that the human brain is not very good at translating angles into ratios.

We can improve the readability of our donut charts by adding a label with the value of each arc, in percentage, onto their centroid, as we did in the previous chapter.

In listing 5.5, we modify slightly the code used to create the arcs (from listing 5.4). First, we use the data-binding pattern to append SVG groups rather than path elements. We then append path elements (for the arcs) and SVG text elements (for the label) into these groups. Because parents pass bound data to children, we will have access to the data as we shape the arcs and the labels.

We draw the arcs by calling the arc generator, precisely as we did previously.

To set the label's text, we need to calculate the ratio, or percentage, represented by each arc. We perform this calculation by subtracting the arc's start angle from its end angle and dividing the result by 2π, the angle covered by a full circle in radians. Note how we store the percentage value into the bound data using bracket notation (d["percentage"]). This trick is useful when we need the same calculation for different attributes. It keeps you from repeating the computation multiple times. To return the label's text, we pass the calculated percentage to the method d3.format(".0%"), which produces a rounded percentage and adds a percentage symbol at the end of the label.

We apply the same strategy to calculate the centroid of each arc, which is where we want to position the labels. When setting the x attribute of the labels, we calculate the centroid of the related arc (with the technique discussed in chapter 4) and store it in the bound data (d["centroid"]). Then, when setting the y attribute, the centroid array is already accessible via d.centroid.

For the labels to be horizontally and vertically centered with the centroid, we need to set their text-anchor and dominant-baseline attributes to middle.

We also set their color to white, with the fill attribute, increase their font-size to 16px and their font-weight to 500 to improve readability.

If you save your project and look at the donut charts in the browser, you'll see that the labels are working well on large arcs but are almost impossible to read on smaller ones. In a professional project, we could solve this problem by moving the small arcs' labels outside the donut chart. For this project, we simply won't show these labels by setting their fill-opacity attribute to zero when the percentage is smaller than 5%.

Listing 5.5 Adding value labels on the centroid of each arc (donut-charts.js) const arcs = donutContainer

.selectAll(`path.arc-${year}`)

.data(annotatedData)

.join("g") #A

.attr("class", àrc-${year}`);

arcs #B

.append("path") #B

 .attr("d", arcGenerator) #B

.attr("fill", d => colorScale(d.data.format)); #B

arcs

.append("text") #C

.text(d => {

d["percentage"] = (d.endAngle - d.startAngle) / (2 * Math.PI); #D

return d3.format(".0%")(d.percentage); #D

})

.attr("x", d => { #E

d["centroid"] = arcGenerator #E

.startAngle(d.startAngle) #E

.endAngle(d.endAngle)#E

.centroid(); #E

return d.centroid[0]; #E

}) #E

.attr("y", d => d.centroid[1]) #E

.attr("text-anchor", "middle")

.attr("alignment-baseline", "middle")

.attr("fill", "#f6fafc")

.attr("fill-opacity", d => d.percentage < 0.05 ? 0 : 1) #F

.style("font-size", "16px")

.style("font-weight", 500);

Figure 5.8 Donut charts with percentage labels

[image: Image 126]

As a last step, we will indicate the year represented by the donut charts with labels positioned in their center. We do it by appending a text element to each donut container. Because we are still looping through the years, we can directly apply the current year as the label's text. Also, because the donut containers are positioned at the center of the charts, the text element is automatically positioned correctly. All we have to do is set its text-anchor and dominant-baseline properties to center it horizontally and vertically.

donutContainer

.append("text")

.text(year)

.attr("text-anchor", "middle")

.attr("dominant-baseline", "middle")

.style("font-size", "24px")

.style("font-weight", 500);

And voilà! Our donut charts are complete.

[image: Image 127]

Figure 5.9 Completed donut charts with year labels

The steps to create a pie or donut chart are reviewed in figure 5.10. During the first step, we preprocess the data with the layout function d3.pie() to obtain an annotated dataset with the angles for each slice. We then draw the arcs with the arc generator function that takes the angles from the annotated dataset and returns each path's d attribute. Finally, we add labels to improve the readability of the chart, using SVG text elements.

Figure 5.10 The main steps involved in the creation of a pie or donut chart.

[image: Image 128]

5.2 Stacking shapes

So far, we’ve dealt with simple examples of information visualization that we might easily create in any traditional spreadsheet. But you didn’t get into this business to make Excel-like charts. You might want to wow your audience with beautiful data, win awards for your aesthetic je ne sais quoi, and evoke deep emotional responses with your representation of change over time.

The streamgraph is a sublime piece of information visualization that represents variation and change. It may seem challenging to create until you start to put the pieces together. Ultimately, a streamgraph is a variant of what’s known as a stacked area chart. The layers accrete upon each other and adjust the area of the elements above and below, based on the space taken up by the components closer to the center. It appears organic because that accretive nature mimics the way many organisms grow and seems to imply the kinds of emergent properties that govern the growth and decay of

organisms. We’ll interpret its appearance later, but first, let’s figure out how to build it.

We’re looking at a streamgraph in the first section of this book because it’s actually not that exotic. A streamgraph is a stacked chart, which means it is fundamentally similar to stacked bar charts, as shown in figure 5.11.

Streamgraphs are also similar to the area behind the line chart we have been building in the last chapter, except that these areas are stacked over one another. In this section, we will use D3’s stack and area generators to create a stacked bar chart followed by a streamgraph.

Figure 5.11 Streamgraphs are fundamentally similar to stacked bar charts. In D3, both are created with the stack layout generator.

[image: Image 129]

[image: Image 130]

In D3, the steps for creating a stacked bar chart or a streamgraph are similar, as explained in figure 5.12. First, we initialize a stack layout generator and set the parameters of the stack. Then, we pass the original dataset to the stack generator, which will return a new annotated dataset indicating each data point's lower and upper boundary. If we make a streamgraph, we'll also have to initialize an area generator, similar to the line and curve generators discussed in the last chapter. Finally, we bind the annotated dataset to the SVG shapes required to make our chart, rectangles for a stacked bar chart, or paths for a streamgraph. In the case of a streamgraph, the area generator is called to calculate the d attribute of the paths. We will look at these steps in greater detail in the following sub-sections.

Figure 5.12 The steps to creating a stacked chart with D3.

5.2.1 The stack layout generator

The stack layout generator is a D3 function that takes a dataset with multiple

categories as an input. The dataset used in this chapter’s example contains the total sales for different music formats for each year between 1973 and 2019.

Each music format will become a series in the stacked chart.

Like the pie layout generator discussed earlier, the stack layout function returns a new, annotated dataset that contains the position of the different series when “stacked” one over the other. The stack generator is part of the d3-shape module (https://github.com/d3/d3-shape#stacks).

Let’s put the stack layout into action and start working in the function drawStackedBars(), located in stacked-bars.js. Note that this function already contains the code that appends a SVG container to the div with an id of “bars”, as well as a group container for the inner chart. This is the same strategy that we used in chapter 4, in parallel with the margin convention.

In the following snippet, we start by declaring a stack generator with the method d3.stack() and store it in a constant named stackGenerator. We then need to tell the generator which keys from the dataset contain the values we want to stack (what will become the series). We do that with the keys() accessor function, to which we pass an array of the category ids, here the identifier of each music format. We create this array by mapping the ids from the formatsInfo constant. We could also have used the columns key attached to the dataset and filtered out the years, as we did in section 5.1.2.

Finally, we call the stack generator and pass the data as an argument to obtain the annotated dataset. We store the new dataset in a constant named annotatedData.

const stackGenerator = d3.stack() #A

.keys(formatsInfo.map(f => f.id)); #B

const annotatedData = stackGenerator(data); #C

If you log the annotated dataset into the console, you'll see that it consists of a multi-dimensional array. We first have an array for each series, as illustrated in figure 5.13, with the series' id available via the key property. The series array then contains another set of arrays, one for each year from the dataset.

These last arrays include the lower and upper boundary of the category for the related year and the original data for that year. The lower and upper

boundaries are accessed by index, respectively d[0] and d[1], if d corresponds to the array.

The format "vinyl" is the first key to be treated by the stack layout. Note how its lower boundary is always zero, while its upper boundary corresponds to the sales of that format for the year. Then, the following category is "8-tracks". The lower boundary for 8-tracks corresponds to the upper boundary for vinyls, to which we add the sales of 8-tracks to get its upper boundary, which creates a stack.

Figure 5.13 Annotated dataset returned by the stack layout generator.

[image: Image 131]

If the notion of “stack” is not clear yet, the following figure might help. If we take a closer look at the year 1986 from the original dataset, we’ll see that music was available primarily via three formats: vinyl with sales of 2,825M$, cassettes with 5,830M$, and CDs with 2,170M$. We show these data points, drawn independently, on the left side of figure 5.14.

When we use the stack layout, we create what we’ll call “data columns”

rather than “data points”, each column having a lower and an upper boundary. If our stack starts with vinyl, the lower boundary is zero, and the upper boundary corresponds to the sales of vinyl for the year 1986: 2,825M$.

We then stack the cassette sales over it: the lower boundary corresponding to the upper boundary for vinyl (2,825M$) and the upper boundary being the addition of the sales for vinyl and cassette (8,655M$). This upper boundary becomes the lower boundary for CD sales, whose upper boundary corresponds to the addition of the sales from the three formats (10,825M$).

These boundaries are accessed in the annotated dataset by index (d[0] and d[1]).

Figure 5.14 The stack layout generator transforms data points into stacked data columns and returns an annotated dataset containing each data column’s lower and upper boundary. Here we see an example for the year 1986.

[image: Image 132]

5.2.2 Drawing a stacked bar chart

In this section, we will create the stacked bar chart that you’ve seen at the bottom of figure 5.11. The stacked bar chart is similar to the bar charts we have already made in chapters 2 and 3, except that the bars are divided into multiple categories, or series. Stacked bar charts, and stacked visualizations in general, are often used to show the evolution of trends over time.

Like we did for the donut chart, we will use the annotated dataset returned by the stack layout to draw the bars corresponding to each category. But first, we'll need a scale for the vertical axis to translate each rectangle's lower and upper boundary into a vertical position. We want the height of the bars to be linearly proportional to the sales, so we'll use a linear scale. Since this scale will need to access the annotated data, we will declare it inside the function drawStackedBars().

The scale domain goes from zero to the maximum upper boundary available in the annotated data. We know that this maximum value must live inside the last series of the annotated data, which will be positioned at the top of the chart. We can access this series with the length property (annotatedData[annotatedData.length - 1]). Then, we use the method d3.max() to retrieve the maximum value under the property d[1], which corresponds to the upper boundary.

The range of the vertical scale varies from innerHeight, the bottom of the inner chart, to zero, the top of the inner chart (remember that the SVG

vertical axis is positive in the downward direction). Finally, we chain the scale declaration with the method .nice(), which will ensure that the domain ends on “nice” round values rather than the actual maximum value in the annotated dataset.

Listing 5.6 Declaring the vertical scale (stacked-bars.js) const maxUpperBoundary = d3.max(annotatedData[annotatedData.length - 1], d

➥ => d[1]);

const yScale = d3.scaleLinear()

 .domain([0, maxUpperBoundary])

.range([innerHeight, 0])

.nice();

We are now ready to append the bars. To do so, we loop through the annotated data and append the series one after the other, as detailed in listing 5.7. We start with the data-binding pattern to append one rectangle element for each item, or year, in the series array (there’s one series for each music format). Note how we apply a class name related to the current series to the rectangles and use it as a selector. If we simply use “rect” elements as a selector, every time the loop executes, the rectangles previously created will be removed and replaced by the new ones.

We then set the rectangles’ x attribute by passing the current year to xScale and their width attribute by calling the bandwidth property of the band scale.

The y attribute, corresponding to the vertical position of the rectangle’s top-left corner, is returned by the vertical scale declared previously, to which we pass the upper boundary of the rectangle (d[1]).

Similarly, the height of the rectangle is the difference between the position of their upper and lower boundaries. Here there’s a bit of a catch. Because the SVG vertical axis is positive in the downward direction, yScale(d[0]) returns a higher value than yScale(d[1]). We need to subtract the latter from the former to avoid giving a negative value to the y attribute, which would throw an error.

Finally, we set the fill attribute by passing the current music format to the color scale, which is accessible under the key property for each series, as shown previously in figure 5.13.

Listing 5.7 Appending the stacked bars (stacked-bars.js) annotatedData.forEach(serie => { #A

innerChart

.selectAll(`.bar-${serie.key}`) #B

.data(serie) #B

.join("rect") #B

.attr("class", d => `bar-${serie.key}`) #B

 .attr("x", d => xScale(d.data.year)) #C

.attr("y", d => yScale(d[1])) #C

.attr("width", xScale.bandwidth()) #C

.attr("height", d => yScale(d[0]) - yScale(d[1])) #C

.attr("fill", colorScale(serie.key)); #C

});

If you save your project, you’ll see that there is no horizontal space between the bars. We can fix that by going back to the declaration of xScale, and setting its paddingInner() accessor function to a value of 20%, as we did in chapter 3.

Listing 5.8 Adding padding between the bars (scales.js) xScale

.domain(data.map(d => d.year))

.range([0, innerWidth])

.paddingInner(0.2);

To complete our stacked bar chart, we need to add axes. In listing 5.9, we start by declaring a bottom axis with the method d3.axisBottom() and passing xScale as a reference.

We chain the axis declaration with the method, .tickValues(), which allows us to state the exact ticks and labels that we want to see on the chart.

Otherwise, D3 will provide a pair of tick and label for each year, which will look cramped and hard to read. The method .tickValues() takes an array of values as an argument. We generate this array with the method d3.range() and state that we want every integer from 1975 to 2020, with a step of 5.

We also hide the ticks at each end of the bottom axis with the method

.tickSizeOuter(), to which we pass a value of zero. The methods tickValues() and tickSizeOuter() can both be found in the d3-axis module (https://github.com/d3/d3-axis), while d3.range() is part of the d3-array module (https://github.com/d3/d3-array).

Finally, we append the bottom axis to the chart with the call() method, inside a group translated to the bottom and do the same for the left axis.

Listing 5.9 Appending the axes (stacked-bars.js) const bottomAxis = d3.axisBottom(xScale) #A

.tickValues(d3.range(1975, 2020, 5)) #A

.tickSizeOuter(0);#A

innerChart #B

.append("g") #B

.attr("transform", `translate(0, ${innerHeight})`) #B

.call(bottomAxis); #B

const leftAxis = d3.axisLeft(yScale); #C

innerChart #C

.append("g") #C

.call(leftAxis); #C

If you save your project and take a look at it in your browser, you might find that the axis labels are a little too small. Also, as mentioned in chapter 4, D3

applies the font-family “sans-serif” to the SVG group that contains the axis elements, which means that the font-family of the project is not inherited.

From the CSS file visualization.css, we can target the axis labels with the selector .tick text and modify their style properties. In the following snippet, we change their font-family, font-size and font-weight properties.

.tick text {

font-family: 'Roboto', sans-serif;

font-size: 14px;

font-weight: 500;

}

Once completed, your stacked bar chart will look like the one in figure 5.15

but doesn’t look like the one in figure 5.2 or from the hosted project (https://d3js-in-action-third-edition.github.io/visualizing-40-years-of-music-industry-sales/) yet. We’ll get there in a moment.

Figure 5.15 First version of the stacked bar chart

[image: Image 133]

5.2.3 Drawing a streamgraph

In the previous subsection, we used the stack layout function to generate an annotated dataset from which we drew the rectangles of a stacked bar chart.

Now, we’ll apply a similar strategy to draw a streamgraph. Although streamgraphs look more complex than stacked bar charts, they are simple to create in D3. The main difference is that for streamgraphs, we use the annotated dataset to append areas while we append rectangles for stacked bar charts.

In this subsection, we’ll work in the function drawStreamGraph(), which you can find in the file streamgraph.js. This function already contains code that appends a SVG container to the div with an id of “streamgraph”, as well as a

group container for the inner chart. This is the same strategy that we used in chapter 4, in parallel with the margin convention.

In listing 5.10, we initialize the stack generator and call it to obtain the annotated data. We also declare a linear scale to calculate the position of the vertical boundaries. This is the exact same code we’ve used for the stacked bar chart. For now, don’t worry about the fact that we are duplicating code.

We’ll come back to it in the next subsection.

Listing 5.10 Declaring the stack generator and the vertical axis (streamgraph.js) const stackGenerator = d3.stack() #A

.keys(formatsInfo.map(f => f.id)); #A

const annotatedData = stackGenerator(data); #A

const maxUpperBoundary = d3.max(annotatedData[annotatedData.length - 1], d

➥ => d[1]);

const yScale = d3.scaleLinear() #B

.domain([0, maxUpperBoundary]) #B

.range([innerHeight, 0]) #B

.nice(); #B

In order to draw the stacked areas, we’ll need an area generator function that will be responsible for calculating the d attribute of each path element used to draw the series. As explained in chapter 4, the area generator uses at least three accessor functions, in our case, one to retrieve the horizontal position of each data point, one for the lower boundaries of the stacked areas, and one for their upper boundaries. Figure 5.16 illustrates how the area generator applies to stacked areas.

Figure 5.16 The area generator d3.area() is combined with three or more accessor functions.

When employed in combination with the stack layout for a streamgraph, it uses the lower and upper boundaries (y0 and y1) of each data point to calculate the d attribute of the areas.

[image: Image 134]

In the following snippet, we initialize the area generator d3.area(). First, we use the x() accessor function to calculate the horizontal position of each data point. Because xScale is a band scale, it returns the position of the beginning of each band for the related year, which is accessible in the annotated dataset in the data object of each data point (d.data.year). If we want the data points to align horizontally with the center of the bars of the stacked bar chart below, we need to translate the data points toward the right, by half the width of the bars, which we can calculate with the bandwidth() property of the band scale.

Then, we use the y0() and y(1) accessor functions to determine the vertical position of the data points along the lower and upper boundary of each series.

This position is calculated with yScale, declared earlier, to which we pass the values of the boundaries, accessible by their array index in the bound data: d[0] for the lower boundary and d[1] for the upper boundary.

Finally, if we want to interpolate the data points along each boundary to obtain curves rather than lines, we use the curve() accessor function. Here we chose the curve interpolation function d3.curveCatmullRom. As emphasized previously, curve interpolations modify the representation of data and must be chosen with care. Refer to section 4.2.2 for a discussion and demonstration.

const areaGenerator = d3.area()

.x(d => xScale(d.data.year) + xScale.bandwidth()/2)

.y0(d => yScale(d[0]))

.y1(d => yScale(d[1]))

.curve(d3.curveCatmullRom);

We are now ready to draw the stacked areas! First, we use the data-binding pattern to generate a SVG path element for each series in the annotated dataset. We call the area generator function to obtain the d attribute of each path, and the color scale for their fill attribute.

Note how we have appended the paths inside a SVG group to keep the markup organized and easy to inspect. This will also help maintain a proper juxtaposition of the areas and vertical grid later.

innerChart

.append("g")

.attr("class", "areas-container")

.selectAll("path")

.data(annotatedData)

.join("path")

.attr("d", areaGenerator)

.attr("fill", d => colorScale(d.key));

The last thing we’ll do in this section is to add axes and labels to the streamgraph. We start be declaring the axis generator d3.axisLeft() and passing yScale as a reference. We then append the axis elements inside a SVG group, using the .call() method.

const leftAxis = d3.axisLeft(yScale);

innerChart

.append("g")

.call(leftAxis);

Expanding axis ticks into a grid

We could potentially omit the x-axis, given that the streamgraph is horizontally aligned with the stacked bar chart below, and that this chart has the same x-axis. But we’ll use this opportunity to discuss how the ticks on an axis can be expanded to create a grid behind a chart.

First, we need to remember that SVG elements are drawn in their order of appearance within the SVG container. So if we want the grid to appear behind the streamgraph, we need to draw it before. That’s why the following code snippet should be positioned before the one that appends the streamgraph’s paths.

So far, the code to generate the bottom axis is identical to the one used for the stacked bar chart, including the usage of the tickValues() and tickSizeOuter() methods.

const bottomAxis = d3.axisBottom(xScale)

.tickValues(d3.range(1975, 2020, 5))

.tickSizeOuter(0);

innerChart

 .append("g")

.attr("class", "x-axis-streamgraph")

.attr("transform", `translate(0, ${innerHeight})`)

.call(bottomAxis);

To transform the ticks into a grid, all we have to do is extend their length, using the tickSize() method. Via this method, we give the ticks a length corresponding to the height of the inner chart, multiplied by -1 to make them grow in the upward direction. Note that we could also avoid translating the axis in the first place and set this length to a positive value to make the ticks grow in the top to bottom direction. This approach can also be applied to a left or a right axis whenever you need a horizontal grid.

const bottomAxis = d3.axisBottom(xScale)

.tickValues(d3.range(1975, 2020, 5))

.tickSizeOuter(0)

.tickSize(innerHeight * -1);

Finally, we can choose to hide the horizontal line at the bottom of the axis and the years labels by giving them an opacity of zero. To do so, we use the class name given to the x-axis container previously (x-axis-streamgraph) and use it as a selector in the CSS file visualization.css. As you can see in the following snippet, the opacity of the horizontal line, accessed via “.x-axis-streamgraph path” is managed with the stroke-opacity property, while we need to use fill-opacity to hide the year labels (“.x-axis-streamgraph text”). We could also have used the D3 style() method to handle the opacity from within streamgraph.js.

.x-axis-streamgraph path {

stroke-opacity: 0;

}

.x-axis-streamgraph text {

fill-opacity: 0;

}

Handling complex svg text layouts

As a final touch, we’ll add a label above the left axis to indicate what this axis represents. As you can see in figure 5.2 or on the hosted project (https://d3js-in-action-third-edition.github.io/visualizing-40-years-of-music-

industry-sales/), the streamgraph’s label is broken over two lines, the first one with the text “Total revenue (million USD)” and the second one mentioning

“Adjusted for inflation”.

We will build this label using SVG text. One thing that is important to know about SVG text is that it doesn’t behave like HTML text. For example, if we add text inside HTML elements, the text will automatically break line or reflow based on the space available horizontally. SVG text doesn’t do that, and the position of each text element needs to be handled separately.

To manipulate subtext inside SVG text, we can use the tspan element.

Breaking down text into multiple tspans, allows for adjusting their style and position separately by using their x, y, dx, and dy attributes, the first two being applied in reference to the coordinate system of the SVG container, and the last two in reference to the previous text element.

x: Horizontal position of the text baseline, in reference to the coordinate system of the SVG container.

y: Vertical position of the text baseline, in reference to the coordinate system of the SVG container.

dx: Shifts the horizontal position of the text baseline, in reference to the previous text element.

dy: Shifts the vertical position of the text baseline, in reference to the previous text element.

In all the definitions above, it is important to remember that the text baseline is controlled horizontally by its text-anchor attribute and vertically by its dominant-baseline attribute.

To create our label, we can use three tspan elements positioned inside a SVG

text, as illustrated in figure 5.17. If the dominant-baseline attribute of the text element is set to hanging, the text will appear right below and to the right of the origin of the SVG container. Using dx and dy we can move the second and third span, respectively, to their proper positions based on Figure 5.17.

Figure 5.17 tspan elements allow for manipulating the style and position of subtext items separately. We use the attributes dx and dy to set a position relative to the previous text element.

[image: Image 135]

In the following snippet, we put that strategy into action. First, we append a text element into our SVG container and set its dominant-baseline attribute to the value hanging, which means that the baseline of the text and its children will be positioned right above them.

We save the text selection into the constant leftAxisLabel and reuse it to append three tspan elements into the text container. We set the text of the first tspan to “Total revenue”, the second one to “(million USD)”, and the third to

“Adjusted for inflation”.

By default, the tspan elements appear one after another on the same horizontal line. Save your project and take a look at the labels to confirm.

const leftAxisLabel = svg

.append("text")

.attr("dominant-baseline", "hanging"); leftAxisLabel

.append("tspan")

.text("Total revenue");

leftAxisLabel

.append("tspan")

.text("(million USD)");

leftAxisLabel

.append("tspan")

.text("Adjusted for inflation");

To move the second tspan slightly toward the right, we can set its dx attribute and give it a value of 5. To move the third tspan below the first and the second ones, we can use the y or the dy attributes and give it a value of “20”.

Both attributes will have the same effect in this particular case. Finally, if we want the left side of the third tspan to align with the left border of the SVG

container, it’s best to use the x attribute and set it to zero.

const leftAxisLabel = svg

.append("text")

.attr("dominant-baseline", "hanging"); leftAxisLabel

.append("tspan")

.text("Total revenue");

leftAxisLabel

.append("tspan")

.text("(million USD)")

.attr("dx", 5);

leftAxisLabel

.append("tspan")

.text("Adjusted for inflation")

.attr("x", 0)

.attr("dy", 20);

Often, tspan elements are used to apply different styles to a portion of the text. As an example, we can reduce the opacity of the second and third tspan elements to give them a grey color and reduce the font-size of the third tspan because it conveys secondary information in comparison to the rest of the label.

const leftAxisLabel = svg

.append("text")

.attr("dominant-baseline", "hanging"); leftAxisLabel

.append("tspan")

.text("Total revenue");

leftAxisLabel

.append("tspan")

.text("(million USD)")

.attr("dx", 5)

 .attr("fill-opacity", 0.7); leftAxisLabel

.append("tspan")

.text("Adjusted for inflation")

.attr("x", 0)

.attr("dy", 20)

.attr("fill-opacity", 0.7)

.style("font-size", "14px");

The first iteration of our streamgraph is now complete and is shown in figure 5.18. When the vertical baseline of such a chart is located at zero, we often name it a stacked area chart, while streamgraphs tend to have their areas positioned around a central baseline. In the next subsection, we’ll discuss how we can change the baseline of the chart. But before we get there, it’s interesting to observe how similar the stacked bar chart and the stacked area chart look at this point.

Figure 5.18 First iteration of our streamgraph, which can also be named stacked area chart.

[image: Image 136]

5.2.4 The stack order and stack offset properties

We can bring our stacked bar and stacked area charts a step further by controlling the order in which the series are stacked and how they are vertically positioned around a zero baseline. This level of control is achieved with the order() and offset() accessor functions, both applied to the stack layout generator.

Let’s first take a look at the order() accessor function, which controls the order in which the shapes are vertically stacked. D3 has six built-in orders that can be passed as an argument, as illustrated in figure 5.19.

d3.stackOrderNone is the default order, which means that it is the one that is applied if the order() accessor function is not set. It stacks the shapes corresponding to each series in the same order as they are listed in the keys array, from bottom to top. d3.stackOrderReverse reverses that order, starting with the last key at the bottom and ending with the first key at the top.

d3.stackOrderAscending calculates the total sum of each series. The series with the smallest total sum is positioned at the bottom and the other ones are stacked following an ascending order. Similarly, d3.stackOrderDescending positions the series with the largest total sum at the bottom and stacks the series in descending order.

The last two orders calculate the index at which each series reaches its maximum value. d3.stackOrderAppearance stacks the series in the order in which they reach their peak values, which is great for readability, especially for stacks with a zero baseline. d3.stackOrderInsideOut, on the other hand, positions the series with the earliest peak value at the middle of the chart and the series with the latest peaks outside. This order works great for streamgraphs where the shapes are distributed around a central baseline.

Figure 5.19 D3 allows controlling the order in which the shapes are stacked with the order() accessor function. Here we see examples with stacked areas but the same principles apply to stacked bar charts.

[image: Image 137]

The other accessor function of the stack layout, called offset(), controls the position of the zero baseline of the chart and how the shapes are distributed around it. D3 has five built-in offsets, shown in figure 5.20.

d3.stackOffsetNone positions all the shapes above the zero baseline. It is the default offset.

The following three offsets distribute the shapes above and below the baseline. d3.stackOffsetDiverging positions the positive values above the baseline and the negative ones below. This offset is best suited for stacked bar charts. d3.stackOffsetSilhouette shifts the baseline to the center of the chart. d3.stackOffsetWiggle acts similarly but optimizes the position of the baseline to minimize the wiggle, or the alternate up and down movement of the series. These three offsets require adapting the domain of the vertical scale to accommodate the position of the baseline.

Finally, d3.stackOffsetExpand normalizes the data values between 0 and 1

so that the sum at each index is 100%. When normalizing values, the domain of the vertical scale also varies between 0 and 1.

Figure 5.20 D3 allows controlling how the shapes are positioned in regard to the baseline with the offset() accessor function. Here we see examples with stacked areas and stacked bars.

[image: Image 138]

When creating stacked layouts, we usually combine an order and an offset to achieve the desired result. Although there’s no strict rule regarding when we should use an order or an offset over another, the goal should always be to improve the readability of visualization and/or focus the attention on the story we want to emphasize.

For this chapter’s project, we’ll use the order() and offset() accessor functions to transform the stacked area chart into a streamgraph with a central baseline and the stacked bar chart to represent relative values (between 0 and 100%).

One thing to note before we get started is that the order() and offset() accessor functions can significantly change the values carried inside the annotated dataset. For example, by turning the stacked area chart into a streamgraph, the sales value represented won’t anymore vary between zero and 24,000, but rather between -12,000 and 12,000. Similarly, if we use d3.stackOffsetExpand to normalize the sales displayed by the stacked bar chart, the annotated data will be contained between 0 and 1. These different values must be taken into consideration when setting the domain of the vertical scale.

A simple way to consider the domain variation brought by different offset() accessor functions is to ensure that we always calculate the minimum and the maximum value in the annotated dataset and set the domain accordingly.

In listing 5.11, we start by declaring two empty arrays, one in which we will store the minimum value of each series and another one in which we will store the maximum values. Then we loop trough the annotated dataset, find the minimum and maximum values for each series using d3.min() and d3.max(), and push them into their corresponding array. Finally, we extract the minimum and maximum value from each array and use them to set the domain.

This strategy can be applied to both the streamgraph and the stacked bar chart. For the stacked bar chart, you might want to remove the nice() method from the scale declaration to only show values between 0 and 1.

Listing 5.11 Calculating the minimum and maximum values of yScale’s domain (stacked-bar.js +

streamgraph.js)

const minLowerBoundaries = []; #A

const maxUpperBoundaries = []; #A

annotatedData.forEach(series => { #B

minLowerBoundaries.push(d3.min(series, d => d[0])); #B

maxUpperBoundaries.push(d3.max(series, d => d[1])); #B

}); #B

const minDomain = d3.min(minLowerBoundaries); #C

const maxDomain = d3.max(maxUpperBoundaries); #C

const yScale = d3.scaleLinear()

.domain([minDomain, maxDomain]) #D

.range([innerHeight, 0])

.nice();

With this modification in place, you’ll be free to test any order of offset value, and the domain of yScale will adjust automatically.

Now, to turn the stacked area chart into a streamgraph, all we have to do is to chain the order() and offset() accessor function to its stack generator declared earlier. Here we use the order d3.stackOrderInsideOut in combination with the offset d3.stackOffsetSilhouette. We encourage you to test a few combinations to see how they affect the data representation.

const stackGenerator = d3.stack()

.keys(formatsInfo.map(f => f.id))

.order(d3.stackOrderInsideOut)

.offset(d3.stackOffsetSilhouette);

VISUALIZATION TIP

Streamgraphs are aesthetically pleasing, and they certainly grab attention. But they are also harder to read. Streamgraphs are a great option when you want to give an overview of the evolution of a phenomenon over time. But if you want your reader to be able to measure and compare values precisely, stacked bar charts or paired bar charts are better options. Tooltips can also help with streamgraphs’ readability. We’ll build one in chapter 7.

Similarly, we modify the stacked bar chart by setting its offset to d3.stackOffsetExpand, which will normalize the sales values between 0 and 1. We also set the order to d3.stackOrderDescending to emphasize how the CD format had dominated the market around the year 2000. Again, try a few combinations and see how it can change the focus of the story conveyed by the chart.

const stackGenerator = d3.stack()

.keys(formatsInfo.map(f => f.id))

.order(d3.stackOrderDescending)

.offset(d3.stackOffsetExpand);

5.3 Adding a legend to a project

In this last section, we’ll discuss how legends can be easily built with traditional HTML elements, and we’ll put that into practice by placing a color legend below the stacked bar chart. Legends are an essential part of data visualization and help readers interpret what they see.

Usually, legends involve text, and we know that SVG text is not always convenient to manipulate. If you look at the color legend we are about to build in figure 5.21, you’ll see that it consists in a series of colored squares and labels, horizontally centered with the stacked bar chart. Building this legend with SVG elements would involve calculating each rect and text element’s exact position. That’s possible, but there’s an easier way.

Figure 5.21 Color legend that we will build in this section, positioned below the stacked bar chart.

[image: Image 139]

D3 is not only used to control SVG elements. It can create and manipulate any DOM element. This means that we can build the legend with traditional HTML elements and use CSS to position them. There are many ways to proceed, but such a legend calls to be structured as an HTML unordered list (). Each combination of color with a label can be stored in an

 element, with one element holding the color and another one containing the label, as shown in the following example.

 color 1

 label 1

 color 2

 label 2

...

To build this HTML structure with D3, we go to the file legend.js and start working inside the function addLegend(). In the following snippet, we select the div with a class of legend-container, that already exists in index.html.

We append a ul element into this div and give it a class of color-legend.

Then, we use the data-binding pattern to append a li element for each format included in the formatsInfo array, available in shared-constants.js. We save this selection into a constant named legendItems.

We call the legendItems selection and append a span element into it, to which set the background-color attribute based on the current music format.

To do so, we can directly access the color key from formatsInfo or call the color scale. Finally, we append another span elements and set its text to the label key of the current format.

const legendItems = d3.select(".legend-container")

.append("ul") #A

.attr("class", "color-legend") #A

.selectAll(".color-legend-item") #A

.data(formatsInfo) #A

.join("li") #A

.attr("class", "color-legend-item"); legendItems #B

.append("span") #B

.attr("class", "color-legend-item-color") #B

.style("background-color", d => d.color); #B

legendItems #C

.append("span") #C

.attr("class", "color-legend-item-label") #C

.text(d => d.label); #C

If you applied the same class names as the ones used in the previous snippet, your legend should automatically look like the one on figure 5.21. This is because the following styles are already set in base.css. Note how we use the CSS flexbox property (https://css-tricks.com/snippets/css/a-guide-to-flexbox/) to handle the legend’s layout. We won’t spend time explaining this style snippet since you are likely familiar with CSS and this is not the focus of this book. The main take-away here is that sometimes traditional HTML

elements and CSS styles are easier to manipulate than SVG and that we can use D3 to bind data and manipulate any DOM element.

.color-legend {

display: flex;

justify-content: center;

flex-wrap: wrap;

margin: 0;

padding-left: 0;

}

.color-legend-item {

margin: 5px 12px;

font-size: 1.4rem;

}

.color-legend span {

display: inline-block;

}

.color-legend-item-color {

position: relative;

top: 2px;

width: 14px;

height: 14px;

margin-right: 5px;

border-radius: 3px;

}

You now know how to work with D3 layouts like the pie and the stack layout. In chapter 7, we’ll turn this project into an interactive visualization.

Feel free to go there directly if that’s something you’d like to do next.

5.4 Summary

D3 layouts are functions that take a dataset as an input and produce a new, annotated dataset as an output. The annotated dataset contains the attributes necessary to draw a specific visualization. Layouts are a

preprocessing step that formats your data so that it’s ready to be displayed in the form you’ve chosen.

The pie layout d3.pie() calculates the start and end angle of each slice of a pie or donut chart.

The pie layout expects the input data to be formatted as an array of numbers or an array of objects. Each element of the array corresponds to a slice of the pie.

If the data is formatted as an array of objects, we use the value() accessor function to tell the pie layout under which key of the objects the value that will determine the size of the slice is stored.

We obtain the annotated dataset by calling the pie layout function and passing the input data as an argument.

The annotated dataset contains the start and end angle of each slice of the pie.

To draw the arcs of a pie or a donut chart, we need to declare an arc generator function. This generator will use the start and end angle contained in the annotated dataset to calculate the d attribute of the SVG paths used to draw the arcs.

The stack layout d3.stack() calculates the position of different series when “stacked” one over the other.

We tell the stack layout which keys from the input dataset contain the values we want to stack with the keys() accessor function.

We obtain the annotated dataset by calling the stack layout function and passing the input data as an argument.

The annotated dataset contains the value of the lower and upper boundaries of each series, accessible by index (respectively d[0]

and d[1]). It also contains a reference to the input data.

To draw a stacked bar chart, we use the data returned by the stack layout to append rectangles whose position depends on each series's lower and upper boundaries.

To draw a streamgraph, we initialize an area generator function and use its accessor functions to specify how to access the values of the lower and upper boundaries in the annotated dataset. Then we use the annotated dataset to append SVG paths and calculate their d attribute with the area generator.

We control the order in which shapes are stacked by chaining the order() accessor function to the stack layout. D3 offers six build-

in orders.

We control how shapes are positioned around the zero baseline of a stacked chart by chaining the offset() accessor function to the stack layout. D3 offers five build-in offsets.

Orders and offsets affect the domain of the chart, which should be taken into consideration when setting the scale responsible for calculating the position of the stacked shapes.

D3’s ordinal scales have both a discrete input and a discrete output.

They are great for discrete color scales, where each element in an array is mapped to a specific color.

Legends are a critical aspect of developing visualizations. When legends contain multiple elements, it is worth considering building them with traditional HTML elements and using CSS for the layout. This approach is usually easier than using SVG shapes and text.

We can create complex SVG text layouts by breaking the text into multiple tspan elements. When positioning SVG text, the x and y attribute set the position of the text’s baseline in reference to the origin of the SVG container, while dx and dy dictate the position in relation to the previous text element.

6 Visualizing distributions

This chapter covers

Grouping data points into bins

Drawing a histogram

Comparing two distributions side-by-side with a pyramid chart Calculating the quartiles of a dataset and generating box plots Using violin plots to compare distributions of multiple categories Visualizing distributions is a common request in data visualization. We use data distributions to assess how often data values occur within a specific bracket or the probability for data points to appear within a range.

In this chapter, we will study the distribution of salaries for data visualization practitioners based in the United States. The data behind the report we will build comes from the 2021 State of the Industry Survey hosted by the Data Visualization Society (DVS) (www.datavisualizationsociety.org). You can see this report in figure 6.1 or online at https://d3js-in-action-third-edition.github.io/dvs-salary-distribution.

For this report, we will start by building the most common representation of data distribution, a histogram, to visualize the salary of the survey’s 788 US-based and salaried respondents. We’ll then compare the wages of respondents identifying as women and men using two types of visualizations: a pyramid chart and box plots. The first one is handy for comparing two categories side-by-side. The latter offers an extra layer of information compared to histograms, revealing the quartiles and median of a dataset.

We’ll complete this chapter by investigating the distribution of earnings for different roles in data visualization, like analysts, developers, and designers.

We will use violin charts showing the shape of the distribution for each role, to which we’ll add the interquartile range and the average value.

Figure 6.1 In this chapter, we will build four charts to visualize the salaries distribution among

data visualization practitioners based in the United States.

[image: Image 140]

To build the charts represented in figure 6.1, we’ll introduce the concept of bins. Bins are groups of data points, generally of equal width. When creating distribution visualizations with D3, we preprocess the data into bins and then use these bins to draw our charts.

Before we get started, go to the code files of chapter 6. If you haven’t already, you can download them from the book’s GitHub repository (https://github.com/d3js-in-action-third-edition/code-files). In the folder named chapter_06, the code files are organized by section. To get started with this chapter’s exercise, open the start folder inside 6.1-Binning_data in your code editor and start your local web server. Refer to Appendix A if you need help setting up your local development environment. You can find more details about the project’s folder structure in the README file located at the root of this chapter’s code files.

Warning

When working with the chapter’s code files, open only one start OR one end folder in your code editor. If you open all the chapter’s files at once and use the Live Server extension to serve the project, the path to the data file won't work as expected.

The project’s data folder contains a CSV file where each row corresponds to a response to the DVS survey. The dataset has four columns: a unique identifier (uid), the respondent’s role (Designer, Developer, Journalist, etc.), the respondent’s gender, and his salary bracket in US dollars. In the survey, the participants could choose a bracket of $10K or $20K ("$10,000 -

$19,999", "$20,000 - $39,999", "$40,000 - $59,999", and so on). For comparison purposes, the respondents who chose the option “$240,000 or more” won’t be included in the visualizations.

6.1 Binning data

To visualize data distributions, we often need to preprocess a dataset by grouping its data points into buckets or bins, which are groups of equal width along an axis. In D3, we do this with the method d3.bin(), from the module

[image: Image 141]

d3-array (https://github.com/d3/d3-array).

Figure 6.2 To visualize a distribution with D3, we pass the original dataset to the function d3.bin(). This function returns a new dataset that includes the bins, their boundaries, and their corresponding data points.

Let’s take the dataset from this chapter’s project, data.csv, as an example.

This dataset contains the yearly salary of 788 data practitioners and is extracted from a survey where the respondent could select their salary bracket. These brackets cover a range of $10K or $20K USD, for example

“$10,000 - $19,999”, “$20,000 - $39,999”, “$40,000 - $59,000”, “$60,000 -

$79,999” and so on. Each salary bracket could be an example of how bins are used in data visualization. We know that the actual salary of the respondent exists within the boundaries of the bin, but we don’t know the actual value.

To illustrate the concept of bins with an example, we’ll start working on this

chapter’s project. Make sure that the start folder included in 6.1-Binning_data is open in your code editor and that your local web server is running. If you go to the file load-data.js, you’ll see that the dataset is already loaded into the project using the method d3.csv() discussed in chapter 3. You can see the related code in listing 6.1.

Since the survey dataset didn’t list the actual salary of each respondent, we call the function getRandomSalary() to get a random integer value located between the lower and upper boundaries of the salary bracket. This is probably not something we would do in an actual dataviz project, but it will allow us to work with a realistic distribution.

Warning

Since we use the function Math.random() to generate the salary values, the results you’ll get while doing this chapter’s project might differ slightly from the one presented in this book, but the overall look and feel should remain the same.

While the data is loading, we filter out the earnings of “$240,000 or more”

since we don’t know the upper limit of this bracket. Once the random salaries are calculated, and the data is done loading, we call the functions drawHistogram(), drawBoxplot(), drawPyramid(), and

drawViolinCharts(), where we will build each visualization. These functions take the dataset as a parameter and are already declared in their corresponding JavaScript files.

Listing 6.1 Fetching and formatting the dataset (load-data.js) const getRandomSalary = (salary) => { #A const lowerLimit = +salary.slice(1, salary.indexOf(" -")) #A

➥ .replace(",",""); #A const upperLimit = +salary.slice(salary.indexOf(" $") + 2) #A

➥ .replace(",", ""); #A

#A

return Math.floor(Math.random() * (upperLimit - lowerLimit) + #A

➥ lowerLimit); #A

} #A d3.csv("./data/earnings_per_role.csv", d => { #B

if (d.pay_annual_USD !== "$240,000 or more") { #C

return { #C

role: d.role, #C

gender: d.gender, #C

salary: getRandomSalary(d.pay_annual_USD) #C

}; #C

} #C

}).then(data => { #D

#D

drawHistogram(data); #D

drawBoxplot(data); #D

drawPyramid(data); #D

drawViolinCharts(data); #D

#D

}); #D

Let’s now open the file histogram.js and start working within the function drawHistogram(). You’ll see that we have already declared the chart’s margins, width, and height. We have also appended a SVG container to the DOM and a SVG group element translated into the position of the inner chart, following the strategy described in section 4.2.1. This group is saved into the constant innerChart, to which we will later append the elements constituting the histogram. This will be true for every chart in this chapter.

We then declare a bin generator with the method d3.bin(). As you can see in the following snippet, this method can be chained with a few accessor functions. For example, since our data consists of an array of objects, we chain the function value() to tell D3 under which key the values we want to visualize are stored; in our project, the key is salary. Finally, generate the bins by calling the bin generator and passing the dataset as an argument. Note how the process is similar to the shape generators discussed in chapter 4.

const binGenerator = d3.bin()

.value(d => d.salary);

const bins = binGenerator(data);

In the latest code snippet, we save the array returned by the bin generator into a constant named bins, which we will reuse later to draw our histogram. If you log the bins into the console, you’ll see that it is structured as a multi-dimensional array, as illustrated in figure 6.3. Each item in the top level bin

[image: Image 142]

array contains an array of data points for that specific bin. The length property of a bin tells us how many data points it contains. Its lower and upper boundaries are found under the keys x0 and x1.

Figure 6.3 In the multi-dimensional array returned by the bin generator, each bin is an array containing data points. In this figure, the data points, consisting of JavaScript objects, are represented by {...} for conciseness. A bin's lower and upper limits are accessible under the keys x0 and x1.

To illustrate the concept of bins, we drew the data points into their respective bins in figure 6.4. Each data point is a circle, with its horizontal position corresponding to the salary and its vertical position being arbitrary to reduce overlap between circles. As you can see, there's a higher density of data points between $60K and $140K, while the density gets lower as we move toward the extremities. This phenomenon will also be visible in the

distribution visualizations we will create later. Although figure 6.4 is not a traditional way of visualizing distributions, it might help you better grasp the concept of bins.

Figure 6.4 Salary data points in their respective bins. The horizontal position of each circle corresponds to the salary, while their vertical positions are arbitrary to reduce overlap.

[image: Image 143]

6.2 Drawing a histogram

Histograms provide an overview of how values are distributed within a dataset, allowing us to spot where the values are concentrated or if there are noticeable gaps between them. In this section, we will build a histogram to visualize the salary distribution of 755 data visualization practitioners.

The completed histogram can be seen in figure 6.1 and the hosted project (https://d3js-in-action-third-edition.github.io/dvs-salary-distribution/). You’ll notice that histograms are simply made of rectangles, one for each salary bracket. To build this graph with D3, all we have to do is append rectangles elements to a SVG container with the data-binding pattern, using the bins generated in the last section as data. We then calculate the position of each rectangle with D3 scales and set their height based on the number of data points they represent.

Figure 6.5 To generate a histogram, we first use the method d3.bin() to preprocess a dataset. This method returns a new dataset, where data points are distributed into bins (arrays), and each bin has a lower and an upper boundary. We then use this new dataset to append rectangles to a SVG

container. The length of the rectangles is proportional to the number of data points the related bin contains, while their position corresponds to the boundaries of the bins.

[image: Image 144]

Let’s start by declaring the scales for the histogram. As illustrated in figure 6.6, we will need two scales: one to position the rectangles horizontally, which we will name xScale, and one to calculate the rectangles’ height and vertical position, named yScale. Since both scales domains and ranges are continuous and we want the ranges to be linearly proportional to the domains, we will use linear scales.

Figure 6.6 The horizontal scale is responsible for positioning rectangles along the x-axis. In contrast, the vertical scale arranges rectangles along the y-axis and calculates their height.

[image: Image 145]

Still working in the function drawHistogram() within the file histogram.js, declare the horizontal and the vertical scales, as detailed in listing 6.2. The domain of the horizontal scale extends from the minimum to the maximum salaries covered by the bins. They can respectively be found with the lower boundary of the first bin (bins[0].x0) and the upper limit of the last bin (bins[bins.length - 1].x1). The range of this scale extends from zero to innerWidth, covering the whole width of the inner chart. We save this scale into a constant named xScale.

On the other hand, the vertical scale is responsible for positioning and scaling the rectangles. Its domain extends from zero to the number of data points contained in the tallest bin (d3.max(bins, d => d.length)). Its range covers the values between innerHeight, the height of the inner chart, and zero. Because in SVG the y-axis goes from top to bottom, innerHeight corresponds to the bottom of the histogram’s rectangles while zero corresponds to the top of the chart. We save this scale in a constant named yScale and chain it with the method nice() to ensure that the y-axis ends with a rounded value.

Listing 6.2 Declaring the scales (histogram.js)

const minSalary = bins[0].x0; #A

const maxSalary = bins[bins.length - 1].x1; #A

const xScale = d3.scaleLinear() #B

.domain([minSalary, maxSalary]) #B

.range([0, innerWidth]); #B

const binsMaxLength = d3.max(bins, d => d.length); #C

const yScale = d3.scaleLinear() #D

.domain([0, binsMaxLength]) #D

.range([innerHeight, 0]) #D

.nice(); #D

The next step is to append one rectangle to the chart for each bin. To do so, we apply the data-binding pattern to innerChart, using the bins calculated in section 6.1 as data and asking D3 to append a rectangle element for each of them. As shown in figure 6.7, the x and y attributes of the rectangles correspond to the position of their top-left corner, while their width and height attributes control their dimensions.

Figure 6.7 The position of the histogram's rectangles is controlled by their x and y attributes and their dimensions by their width and height attributes. The height of the rectangles is proportional to the number of data points contained in their related bin.

[image: Image 146]

In listing 6.3, we use the data binding pattern to append one rectangle for each bin inside the innerChart selection. We then set the rectangles’

positional attributes:

The x attribute of each rectangle corresponds to the position of their lower boundary, calculated with xScale.

Their y attribute can be found by passing the length property of their bin to yScale.

The width of the rectangles corresponds to the distance between their bin’s upper and lower boundary.

The rectangles’ height is equal to the difference between the height of the innerChart and the vertical position of their top-left corner.

Finally, we set the fill attribute of the rectangles to slateGray, a color variable already declared in the file shared-constants.js. We also add a white stroke to the rectangle to give the illusion of space between them.

Listing 6.3 Appending the rectangles (histogram.js)

innerChart

.selectAll("rect") #A

.data(bins) #A

.join("rect") #A

.attr("x", d => xScale(d.x0)) #B

.attr("y", d => yScale(d.length)) #B

.attr("width", d => xScale(d.x1) - xScale(d.x0)) #B

.attr("height", d => innerHeight - yScale(d.length)) #B

.attr("fill", slateGray) #C

.attr("stroke", white) #C

.attr("stroke-width", 2); #C

As a final step, we add axes and labels to the histogram. We start by initializing the bottom axis constructor for the horizontal axis, using the method d3.axisBottom() and xScale as a reference, as detailed in listing 6.4. We then append a SVG group to the inner chart and translate it to the selection’s bottom. By calling the axis constructor from this selection, we append all the elements that compose an axis inside the group: ticks, labels, and a horizontal line across the range. Finally, we append a text element to the SVG container to serve as the main label of the axis. This label has a text

of “Yearly salary (USD)” and is positioned at the bottom-right corner of the container.

We proceed similarly for the left axis, using the method d3.axisLeft() and yScale as a reference. Once the axis elements are appended, we add a label with the text “Frequency” to the top-left corner of the SVG container.

Listing 6.4 Adding the axes and labels (histogram.js) const bottomAxis = d3.axisBottom(xScale); #A innerChart #B

.append("g") #B

.attr("transform", `translate(0, ${innerHeight})`) #B

.call(bottomAxis); #B

svg #C

.append("text") #C

.text("Yearly salary (USD)") #C

.attr("text-anchor", "end") #C

.attr("x", width) #C

.attr("y", height - 5); #C

const leftAxis = d3.axisLeft(yScale); #D

innerChart #E

.append("g") #E

.call(leftAxis); #E

svg #F

.append("text") #F

.text("Frequency") #F

.attr("x", 5) #F

.attr("y", 20); #F

You can see the completed histogram in figure 6.8. In the next chapter, we’ll add a filtering option to this visualization, allowing us to see only the data related to respondents identifying as women or men.

Figure 6.8 Completed histogram of the salary distribution among data visualization practitioners in the United States.

[image: Image 147]

6.3 Creating a pyramid chart

Another way to visualize distributions is with a pyramid chart. This chart consists of two vertical histograms standing side-by-side and is easy to build, thanks to D3 bins. We use pyramid charts to compare the distribution of two categories.

A common use case for pyramid charts is the age distribution between women and men, like in the example illustrated in figure 6.9. Such charts often use bars to visualize the data, but lollipop or dumbbell shapes can also be employed. The x-axis of pyramid charts often uses percentages as units.

For example, the following figure indicates that women between 20 and 24

years old represent about 3% of the total population while men between 85

and 89 represent approximately 1%.

Figure 6.9 Pyramid charts of the age distribution of women and men in Canada in 2021. The chart on the left uses bars to visualize the data, while the chart on the right uses lollipop or dumbbell shapes.

[image: Image 148]

Mini-project: Build a pyramid chart Now that you are familiar with d3.bin() and know how to append rectangles to a chart, you have all the keys to building a pyramid chart. In this section, we challenge you to create the pyramid chart shown in the following figure, representing the earnings of US data visualization practitioners identifying as women and men.

On this chart, women’s earnings are represented by purple bars and men’s by orange bars. The length of the bars is proportional to the number of respondents in a salary bracket. For example, we observe that 12% of the respondents are women earning between $60k and $80k, while about 6.5%

are men in the same salary bracket. The first half of the horizontal axis is reserved for women and extends from 15% to 0, while the second half is for men and extends from 0 to 15%. The vertical axis represents the salaries, from 0 to $240k.

Pyramid chart visualizing the salary distribution of US data visualization practitioners identifying as women and men.

[image: Image 149]

Here are a few hints that might help you complete this exercise:

· Work in the file pyramid.js, inside the function drawPyramid(). The SVG container and the inner chart (SVG group) have already been appended inside div#pyramid.

· Generate bins using d3.bin() and based on the salary. You will need to generate separate bins for the women and the men.

· You can declare different horizontal scales for the women and the men.

The women’s scale extends on the first half of the x-axis, while the men’s scale extends on the second half.

· The length of the bars is proportional to the percentage of the total respondents represented by each salary bracket. This percentage varies approximately between zero and 15%.

· Each side of the pyramid chart is built exactly like the histogram created in section 6.2. Only the orientation is different!

· The color constants are available in shared-constants.js.

If at any point you are stuck or want to compare your solution with ours, you will find it in listing D.6.1 of appendix D and in the folder 6.3-Pyramid / end of this chapter’s code files. But we encourage you to try to complete it on your own; it’s the best way to learn!

Note that your solution might differ slightly from ours. In development, there is often more than one way to achieve the same result.

6.4 Generating box plots

Box plots are another familiar way to visualize distributions. Their primary role is to highlight the median of a dataset and to illustrate quartiles, which divide the data points into four groups of more or less equal size. Box plots have the advantage of being more compact than histograms but might be harder to comprehend for readers who are not familiar with statistics.

As shown in figure 6.10, a box plot is composed of a rectangle, indicating where 50% of the data points are located. This rectangle covers the interquartile ranges, from the first quartile, or 25th percentile, to the third quartile, or 75th percentile. It also intersects with the median, the threshold separating the data points' lower and higher half.

The vertical lines extending from the bottom and the top of the rectangle are called whiskers. The lower one spreads from the minimum value in the dataset to the first quartile, while the upper one extends from the third quartile to the maximum value.

Figure 6.10 A box plot consists of five pieces of information encoded in a single shape: the minimum value in a dataset, the first quartile or the 25th percentile, the median or mean value, the third quartile or the 75th percentile, and the maximum value.

[image: Image 150]

[image: Image 151]

To generate a box plot with D3, we start by finding the minimum and maximum values in the dataset we are working with. We then use a quantile scale to calculate the quartiles and median values. Finally, we append a rectangle and line elements to a SVG container and set their attributes to match the minimum, maximum, median, and quartile positions.

Figure 6.11 Steps to generate a box plot with D3.

6.4.1 Calculating quartiles with the quantile scale

Quantiles are cut points splitting a data distribution into groups of similar sizes. Quartiles, on the other hand, are a type of quantiles, dividing the data into four groups. In D3, we use the quantile scale (https://github.com/d3/d3-scale) to calculate both quantiles and quartiles.

Let’s go back to this chapter’s project and calculate the quartiles of the box plots illustrated in figure 6.1 and on the hosted project (https://d3js-in-action-third-edition.github.io/dvs-salary-distribution). In this project, box plots are used to compare women’s and men’s salaries, which means that we need to work with two datasets: one containing the wages of women and one for the men. In this section, we’ll work within the function drawBoxplot(),

contained in the file box-plot.js. Note that it already includes the code that appends a SVG container to the DOM and a SVG group to hold the inner chart, per the strategy used since chapter 4.

In the following code snippet, we use the JavaScript filter() method to isolate women’s salaries and map them into a new array using the JavaScript map() method. We save this array in the constant femaleSalaries.

const femalesSalaries = data.filter(d => d.gender === "Female")

➥.map(d => d.salary);

To calculate quartiles, we use D3’s quantile scale, for which both the domain and the range are discrete. The domain is an array of data points, here the salaries of women or men, while the range determines the number of quantiles that are computed. If we want to calculate quartiles, hence dividing the data into four groups, the range must be an array of four elements, like

[0, 1, 2, 3].

In the following code snippet, we declare the quantile scale with d3.scaleQuantile(), passing the array of women's salaries as the domain and an array of four values as the range. We save this scale into the constant femaleQuartilesScale.

const femalesQuartilesScale = d3.scaleQuantile()

.domain(femalesSalaries)

.range([0, 1, 2, 3]);

Finally, we compute the quartiles by calling the quantiles() accessor function of femaleQuartilesScale, which returns the quantile thresholds.

const femalesQuartiles = femalesQuartilesScale.quantiles(); If we save the thresholds into the constant femalesQuartiles and log them into the console, we obtain an array of three values:

The first quartile or 25th percentile

The second quartile or 50th percentile, also known as the median The third quartile or 75th percentile

Note that we could also find the median directly with the method d3.median() from the module d3-array (https://github.com/d3/d3-array).

This method takes an array of values, here the salaries, as an argument.

d3.median(femalesSalaries);

In listing 6.5, we repeat the same process for men’s salaries. We also calculate the minimum and maximum values of both the women’s and men’s wages using d3.extent(), which returns an array of two values: the minimum and the maximum. We will soon use the quartile, minimum and maximum values to position the rectangle and line elements of the box plot on the chart.

Listing 6.5 Calculating the quartiles, min and max values (box-plot.js) const femalesSalaries = data.filter(d => d.gender === "Female") #A

➥ .map(d => d.salary); #A const femalesQuartilesScale = d3.scaleQuantile() #B

.domain(femalesSalaries) #B

.range([0, 1, 2, 3]); #B

const femalesQuartiles = femalesQuartilesScale.quantiles(); #C

const femalesExtent = d3.extent(femalesSalaries); #C

const malesSalaries = data.filter(d => d.gender === "Male") #A

➥ .map(d => d.salary); #A const malesQuartilesScale = d3.scaleQuantile() #B

.domain(malesSalaries) #B

.range([0, 1, 2, 3]); #B

const malesQuartiles = malesQuartilesScale.quantiles(); #C

const malesExtent = d3.extent(malesSalaries); #C

6.4.2 Positioning multiple box plots on a chart

In our project, we want to position two box plots within a graph, one visualizing the salary distribution of women and one for men. As shown in figure 6.1 and on the hosted project (https://d3js-in-action-third-edition.github.io/dvs-salary-distribution/), genders are positioned along the horizontal axis, while salaries are spread along the vertical axis. This means that for the horizontal axis, we need a scale that accepts discrete values for

the domain, the genders, and outputs values along a continuous range, the horizontal space available. For the vertical scale, we need a scale that takes a continuous domain, the salaries, and outputs values along the vertical height of the chart, which is a continuous range.

Figure 6.12 The horizontal scale will be responsible for position the women’s and men’s box plot along the x-axis. The vertical scale will distribute the salaries along the y-axis and allow to calculate the position of the minimum, maximum, median and quartile values of the box plots.

[image: Image 152]

the point scale

To position the genders along x-axis, we will use D3’s point scale d3.scalePoint() (https://observablehq.com/@d3/d3-scalepoint). The point scale is very similar to the band scale used in chapters 3 and 5, except that the bandwidth is zero. This scale is used to distribute discrete elements along a continuous range.

In figure 6.13, we illustrate a point scale that uses an array of letters as the domain and the horizontal space available as the range. We then chain the scale with the method padding() to set its outer padding, the blank space at the two extremities. The padding() method accepts a factor between 0 and 1

as an argument. The outer padding is calculated as this factor multiplied by the size of the steps (padding factor * step), the steps being the space between adjacent points.

Figure 6.13 D3’s point scale is similar to the band scale, with zero bandwidth. Its domain consists of a discrete list of elements distributed over a continuous range.

[image: Image 153]

Before declaring the scales in listing 6.6, we create an array containing two strings: “Female” and “Male,” and we name it genders. We then declare a point scale that will be used to distribute the genders uniformly along the x-axis. We pass the genders array as the scale’s domain, set its range to extend from zero to the inner width of the chart, and its padding to 0.5, or 50% of the distance between the position of the two box plots.

Like in the histogram we built in section 6.2, we want the salaries to be linearly proportional to their position along the y-axis. To do so, we declare a linear scale. Its domain extends from zero to the maximum salary in the dataset, calculated with d3.max(). Its range extends from the inner height of the chart to zero because the y-axis is positive in the top to bottom direction.

Finally, we chain the method nice() to the linear scale to ensure that the axis ends with a round value.

Listing 6.6 Declaring the scales (box-plot.js)

const genders = ["Female", "Male"]; #A const xScale = d3.scalePoint() #A

.domain(genders) #A

.range([0, innerWidth]) #A

.padding(0.5); #A

const maxSalary = d3.max(data, d => d.salary); #B

const yScale = d3.scaleLinear() #B

.domain([0, maxSalary]) #B

.range([innerHeight, 0]) #B

.nice(); #B

We then use the scales to draw the axes of the box plots chart. In listing 6.7, we start by declaring a constructor for the bottom axis, using the method d3.axisBottom() and passing xScale as a reference. To hide the axis’ outer ticks, we chain the constructor with tickSizeOuter(), to which we give a value of zero. Then we append a SVG group to the inner chart, translate it to the bottom, and call the constructor to generate the axis elements.

Similarly, we declare a constructor for the left axis, using d3.axisLeft() and passing yScale as a reference. We append a group to the inner chart and call the constructor. Finally, we display a label above the y-axis by appending a

text element to the SVG container and giving it a value of “Yearly salaries (UDS)”.

Listing 6.7 Drawing the axes (box-plot.js)

const bottomAxis = d3.axisBottom(xScale) #A

.tickSizeOuter(0); #A innerChart #B

.append("g") #B

.attr("transform", `translate(0, ${innerHeight})`) #B

.call(bottomAxis); #B

const leftAxis = d3.axisLeft(yScale); #C

innerChart #C

.append("g") #C

.call(leftAxis); #C

svg #D

.append("text") #D

.text("Yearly salary (USD)") #D

.attr("x", 0) #D

.attr("y", 20); #D

6.4.3 Drawing a box plot

We are now ready to draw our box plots! As mentioned earlier, box plots are composed of three elements, illustrated in figure 6.14: A rectangle extending from the first to the third quartiles.

A line positioned at the median, corresponding to the second quartile.

The whiskers, or lines extending from the minimum value to the first quartile and from the third quartile to the maximum value.

Figure 6.14 A box plot is composed of a rectangle extending from the first to the third quartile, a line positioned at the median and whiskers extending from the minimum value to the first quartile and from the third quartile to the maximum value.

[image: Image 154]

To draw the box plots, we start by declaring two constants: boxplotWidth and boxplotStrokeWidth, respectively responsible for holding the value of the width of the box plots and the width of their stroke. In listing 6.8, we give them values of 60px and 3px, respectively, but feel free to adjust them to your liking. These values can be used multiple times to draw the box plots, so having them in constants facilitates future changes.

We then loop through the genders array declared in listing 6.8. For each gender, we append a SVG group to the inner chart. We set the stroke attribute to the color slateGray (#305252), declared in shared-constants.js, and the stroke-width attribute to the constant boxplotStrokeWidth declared earlier. The elements appended into this group will inherit these attributes, preventing us from having to set them multiple times.

Next, we append a rectangle element to the SVG group. To set its x attribute (the horizontal position of its top-left corner), we pass the current gender to xScale. Because xScale returns the position of the box plot’s center, we need to subtract half of the box plot width to get the x attribute. The y attribute (the vertical position of the top-left corner) corresponds to the position of the third quartile, which we get by passing the third value in the quartiles array to yScale. The width of the rectangle is set with boxplotWidth. Its height is calculated by subtracting the position of the third quartile from the one of the first quartile (because the y-axis is positive in the top to bottom direction!).

These last values are also returned by yScale. Finally, we set the fill attribute of the rectangle to the value “transparent”.

The position of the median is indicated with a SVG line. Horizontally, the line extends from the left to the right of the rectangle. These two values (x1

and x2) are calculated by finding the center of the rectangle (xScale(gender)) and adding or subtracting half of the width of the box plot.

The vertical position of the line (y1 and y2) is found by passing the second quartile of each gender to yScale. To emphasize the median, we give its stroke a different color for women and men (respectively “#826C7F” and

“#FA7E61”, from the constants womenColor and menColor declared in shared-constants.js) and a stroke width of 10px.

Listing 6.8 Drawing the box plots’ rectangle and median (box-plot.js)

const boxplotWidth = 60; #A const boxplotStrokeWidth = 4; #A genders.forEach(gender => { #B

const boxplotContainer = innerChart #C

.append("g") #C

.attr("stroke", slateGray) #C

.attr("stroke-width", boxplotStrokeWidth); #C

boxplotContainer #D

.append("rect") #D

.attr("x", xScale(gender) - boxplotWidth/2) #D

.attr("y", gender === "Female" #D

? yScale(femalesQuartiles[2]) #D

: yScale(malesQuartiles[2])) #D

.attr("width", boxplotWidth) #D

.attr("height", gender === "Female" #D

? yScale(femalesQuartiles[0]) - yScale(femalesQuartiles[2]) #D

: yScale(malesQuartiles[0]) - yScale(malesQuartiles[2])) #D

.attr("fill", "transparent"); #D

boxplotContainer #E

.append("line") #E

.attr("x1", xScale(gender) - boxplotWidth/2) #E

.attr("x2", xScale(gender) + boxplotWidth/2) #E

.attr("y1", gender === "Female" #E

? yScale(femalesQuartiles[1]) #E

: yScale(malesQuartiles[1])) #E

.attr("y2", gender === "Female" #E

? yScale(femalesQuartiles[1]) #E

: yScale(malesQuartiles[1])) #E

.attr("stroke", gender === "Female" #E

? womenColor #E

: menColor) #E

.attr("stroke-width", 10); #E

}); #B

In listing 6.9, we add whiskers at the bottom and the top of the rectangles using SVG lines. The bottom whisker consists of a vertical line going from the minimum salary value to the first quartile and a horizontal line at the position of the minimum salary. The top whisker is made of a vertical line from the third quartile to the maximum wage and a horizontal line at the position of the maximum salary.

Listing 6.9 Drawing the box plots’ whiskers (box-plot.js) genders.forEach(gender => {

...

boxplotContainer #A

.append("line") #A

.attr("x1", xScale(gender)) #A

.attr("x2", xScale(gender)) #A

.attr("y1", gender === "Female" #A

? yScale(femalesExtent[1]) #A

: yScale(malesExtent[1])) #A

.attr("y2", gender === "Female" #A

? yScale(femalesQuartiles[2]) #A

: yScale(malesQuartiles[2])); #A

boxplotContainer #B

.append("line") #B

.attr("x1", xScale(gender) - boxplotWidth/2) #B

.attr("x2", xScale(gender) + boxplotWidth/2) #B

.attr("y1", gender === "Female" #B

? yScale(femalesExtent[0]) #B

: yScale(malesExtent[0])) #B

.attr("y2", gender === "Female" #B

? yScale(femalesExtent[0]) #B

: yScale(malesExtent[0])); #B

boxplotContainer #C

.append("line") #C

.attr("x1", xScale(gender)) #C

.attr("x2", xScale(gender)) #C

.attr("y1", gender === "Female" #C

? yScale(femalesQuartiles[0]) #C

: yScale(malesQuartiles[0])) #C

.attr("y2", gender === "Female" #C

? yScale(femalesExtent[0]) #C

: yScale(malesExtent[0])); #C

boxplotContainer #D

.append("line") #D

.attr("x1", xScale(gender) - boxplotWidth/2) #D

.attr("x2", xScale(gender) + boxplotWidth/2) #D

.attr("y1", gender === "Female" #D

? yScale(femalesExtent[1]) #D

: yScale(malesExtent[1])) #D

.attr("y2", gender === "Female" #D

 ? yScale(femalesExtent[1]) #D

: yScale(malesExtent[1])); #D

});

Once completed, your box plots will look similar to the ones in figure 6.15.

Note that there might be slight differences between the box plots shown in this chapter’s figures and your results since the salary values are generated randomly in load-data.js.

Figure 6.15 Completed box plots of the salary distribution for women and men working in data visualization in the US.

[image: Image 155]

If you are still unsure about the meaning of a box plot, look at figure 6.16. It shows the actual data points visualized by the box plots. The vertical position of each circle corresponds to the salary it represents, while the horizontal position is calculated randomly to reduce overlap. Note how the circles’

density is higher within the rectangles, which contain 50% of the data points.

This density reduces as we move further from the rectangles along the whiskers.

Figure 6.16 Salary data points visualized by the box plots. The vertical position of each circle corresponds to the salary it represents, while the horizontal position is calculated randomly to reduce overlap.

[image: Image 156]

6.5 Comparing distributions with violin plots We will complete this chapter with a visualization that combines many of the notions we have discussed so far: violin plots. Violin plots are mirrored curved area that bulges in regions containing multiple data points and tapers where few exist. They’re commonly seen in medical diagrams dealing with dosage and efficacy but are also used more generally to visualize distributions. Unlike box plots that only display predefined information (minimum, maximum, median, and quartiles), violin plots encode the entire distribution. They are often combined with additional information like the position of the mean and the quartiles.

In this section, we will compare the salary distribution of the dataset’s leading five data visualization roles: analyst, developer, designer, scientist, and leadership. We chose not to visualize the other professions, like cartographer and teacher, due to their low number of data points. Figure 6.17

shows the violin plots we will build for each of the five roles. As you can see, they are combined with a line along the interquartile range and a dot at the position of the mean or average salary. We could also have chosen to represent the median instead of the mean; both approaches are valid.

Figure 6.17 Violin plots of the salary distribution of the five leading data visualization roles. Each plot is combined with a gray line extending from the first to the third quartile and a white dot positioned at the mean value.

[image: Image 157]

We will start working in the file violins.js, inside the function drawViolinCharts(). Note that the file already contains code adding a SVG

container and the inner chart to the DOM. We have also declared the array named roles, which includes a list of objects with the id of the professions we want to visualize.

To build the violin plots, we’ll need to isolate the salaries for each role, calculate their mean or average value, organize them into bins and calculate their quartiles. In listing 6.10, we perform these calculations while looping through the roles array. To isolate the data for the current role, we use the JavaScript method filter() and chain the method map() to generate an array containing only the salary values. We store this array under the key salaries to make it accessible within the roles array.

We then calculate the mean value of the salaries array, using the method d3.mean(). This method is part of the module d3-array

(https://github.com/d3/d3-array) and works similarly to d3.min() and d3.max().

We organize the salaries into bins using d3.bin() and the quartiles with D3’s quantile scale, following the techniques used throughout this chapter. All these values are also saved in the roles array.

Finally, we sort the roles to ensure that the mean values appear in ascending order, using the JavaScript method sort(). This will improve the readability of our chart and facilitate comparisons.

Listing 6.10 Extracting information for the violin plots (violins.js) const roles = [#A

{id: "Designer" }, #A

{id: "Scientist" }, #A

{id: "Developer" }, #A

{id: "Analyst" }, #A

{id: "Leadership" }, #A

]; #A roles.forEach(role => { #B

role["salaries"] = data #C

.filter(d => d.role === role.id) #C

.map(d => d.salary); #C

role["mean"] = d3.mean(role.salaries); #D

role["bins"] = d3.bin()(role.salaries); #E

const quartilesScale = d3.scaleQuantile() #F

 .domain(role.salaries) #F

.range([0, 1, 2, 3]); #F

role["quartiles"] = quartilesScale.quantiles(); #F

}); #B

roles.sort((a, b) => a.mean - b.mean); #G

Figure 6.18 shows that we will need three scales to build the violin charts: A point scale for spreading the roles along the x-axis.

A linear scale for the salary values along the y-axis.

A linear scale to calculate the width of the violin plots based on the number of data points within each bin.

Figure 6.18 To build the violin charts, we need three scales: a point scale responsible for spreading the roles along the x-axis, a linear scale for the salary values along the y-axis, and a linear scale to calculate the width of the violin plots based on the number of data point within each bin.

[image: Image 158]

In listing 6.11, we declare a point scale responsible for spreading the roles along the x-axis and save it in a constant named xScale. As discussed in section 6.4.2, d3.scalePoint() accepts a discrete domain, here an array of the roles created with the JavaScript map() method, and returns values from a continuous range, the space available on the width of the inner chart. We set the padding at the two extremities of the axis with the method padding() and give it a value of 0.7, or 70% of the scale steps.

Then, we declare the constant yScale, a linear scale used to distribute the salaries on the y-axis. The scale's domain is continuous and extends between zero and the maximum wage in the dataset. The range is also continuous, returning values along the inner chart's vertical space. We chain this scale with the method nice() to ensure that the y-axis ends with a round number.

Finally, we declare another linear scale, named violinsScale, that will be responsible for calculating the width of the violin plots. This width will vary along the y-axis, depending on the number of data points in each salary bracket.

Listing 6.11 Declare the scales for the violin plots (violins.js) const xScale = d3.scalePoint() #A

.domain(roles.map(d => d.id)) #A

.range([0, innerWidth]) #A

.padding(0.7); #A

const maxSalary = d3.max(data, d => d.salary); #B

const yScale = d3.scaleLinear() #B

.domain([0, maxSalary]) #B

.range([innerHeight, 0]) #B

.nice(); #B

let maxBinLength = 0; #C

roles.forEach(role => { #C

const max = d3.max(role.bins, d => d.length); #C

if (max > maxBinLength) { #C

maxBinLength = max; #C

} #C

}); #C

const violinsScale = d3.scaleLinear() #D

 .domain([0, maxBinLength]) #D

.range([0, xScale.step()/2]); #D

Exercise: Append the axes

You have witnessed how to append axes to a chart multiple times throughout this book. Now it’s your turn! Use the scales declared in listing 6.11 to draw the axes for our violin charts. The roles should be displayed along the x-axis and the salaries along the y-axis. Also, add a label to the y-axis with the text

“Yearly salary (USD)”.

Once completed, your axes should look similar to the ones in the following figure. If ever you get stuck or want to compare your solution with ours, refer to listing D.6.2 of appendix D or to the folder 6.5-Violins / end in this chapter’s code files.

Axes for the violin charts. The roles are spread along the x-axis while the salaries are represented along the y-axis.

[image: Image 159]

Violin plots can be described as smoothed histograms mirrored around an invisible central axis. To illustrate this concept, we’ll start by creating a vertically oriented histogram for each role.

In listing 6.12, we loop through the roles and append a SVG group to the inner chart for each one, which we save in a constant named roleContainer.

This strategy will help us keep our markup tidy and easy to inspect.

Then, we use the data-binding pattern to append a rectangle element for each bin within a role. The rectangles start at the current role’s central axis, which is returned by xScale. Their width is proportional to the number of data points contained in the related bin and is calculated by violinScale. Finally, the vertical position and height of the rectangles depend on the salary brackets and are returned by yScale.

Listing 6.12 Draw a histogram for each role (violins.js) roles.forEach(role => { #A const roleContainer = innerChart #B

.append("g"); #B

roleContainer #C

.selectAll(`.bar-${role.id}`) #C

.data(role.bins) #C

.join("rect") #C

.attr("class", `bar-${role.id}`) #C

.attr("x", xScale(role.id)) #C

.attr("y", d => yScale(d.x1)) #C

.attr("width", d => violinsScale(d.length)) #C

.attr("height", d => yScale(d.x0) - yScale(d.x1)) #C

.attr("fill", slateGray) #C

.attr("fill-opacity", 0.4) #C

.attr("stroke", white) #C

.attr("stroke-width", 2); #C

}); #A Once completed, your histograms should look similar to the ones in figure 6.19. Note how the analyst role is the one for which we have the most data points, while leadership positions offer the possibility of the highest salaries.

Although drawing histograms is not a necessary step when creating violin charts, they will help us understand how to calculate the violin’s paths.

Figure 6.19 Histograms of the salary distribution for each role.

[image: Image 160]

To draw violin plots, all we have to do is draw a curve passing through the tip of each histogram bar. In listing 6.13, we are still working within the roles loop. We start by declaring an area generator and setting its accessor functions. We want the area to have two horizontal boundaries. The first one (x0) is positioned at the centerline of the current role, while the second one (x1) is at the tip of the related bar. The data points are vertically positioned at

the middle of each bar, and we smooth the curve with d3.curveCatmullRom.

For more information about area generators, refer back to chapter 4.

We then append a path element to roleContainer. To calculate its d attribute, we call the area generator and pass the bins of the current role as an argument.

Listing 6.13 Draw half-violin plots (violins.js)

roles.forEach(role => {

...

const areaGenerator = d3.area() #A

.x0(d => xScale(role.id)) #A

.x1(d => xScale(role.id) + violinsScale(d.length)) #A

.y(d => yScale(d.x1) + ((yScale(d.x0) - yScale(d.x1))/2)) #A

.curve(d3.curveCatmullRom); #A roleContainer #B

.append("path") #B

.attr("d", areaGenerator(role.bins)) #B

.attr("fill", "transparent") #B

.attr("stroke", slateGray) #B

.attr("stroke-width", 2); #B

};

You should now have half-violin plots like in figure 6.20. The areas start at the centerline of each role and pass by the tips of the histogram’s bars.

Figure 6.20 Half-violin plots drawn by passing a curve on the tip of each bar of the histograms.

[image: Image 161]

To finalize the violin plots, start by commenting out the lines of code that create the histogram. In JavaScript, single-line comments start with //, and multi-line comments start with /* and end with */.

To complete the violin shapes, we simply have to mirror the right half of the violins. In listing 6.14, we update the area generator's x0() accessor function

to reflect x1(). Then, we remove the path's stroke, set the fill to the color slateGray available in shared-constants.js (#305252), and change its opacity to 30%.

Listing 6.14 Draw complete violin plots (violins.js) roles.forEach(role => {

...

const areaGenerator = d3.area()

.x0(d => xScale(role.id) - violinsScale(d.length)) #A

.x1(d => xScale(role.id) + violinsScale(d.length))

.y(d => yScale(d.x1) + ((yScale(d.x0) - yScale(d.x1))/2))

.curve(d3.curveCatmullRom);

roleContainer

.append("path")

.attr("d", areaGenerator(role.bins))

.attr("fill", slateGray) #B

.attr("fill-opacity", 0.3); #B

};

And we have violin plots! We only need to add a few details to complete this chapter’s project, which you’ll do in the following exercise.

Figure 6.21 Violin plots for each data visualization role.

[image: Image 162]

Exercise: Add the interquartile ranges and the mean values to the violin plots To complete this chapter’s project, indicate the interquartile ranges and the mean values on the violin charts, like in figure 6.22. The specifications are the following:

· The interquartile range is represented by rectangles spreading from the first to the third quartile. These values are available in the roles array.

· The rectangles have a width of 8px, and their corners are rounded with a radius of 4px. Their color is gray, for which you can use the variable gray available in shared-constants.js (#606464).

· The mean values are represented by circles.

· The circles have a radius of 3px and a white color, for which you can use the variable white available in shared-constants.js (#faffff).

If at any point you are stuck or want to compare your solution with ours, you will find it in listing D.6.3 of appendix D and in the folder 6.5-Violins /

end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

Figure 6.22 Violin plots with interquartile ranges and mean values.

[image: Image 163]

This completes the first section of the book! You should now have a good grasp of D3’s fundamental techniques. In the following chapters, we’ll dive into more advanced topics and visualizations.

6.6 Summary

To visualize data distributions, we often need to preprocess a dataset by grouping its data points into buckets or bins, which are groups of equal width along an axis. In D3, we do this with the method d3.bin().

To draw a histogram, we use the data-binding pattern to append rectangle elements to a selection, using bins as data. The length of each rectangle is proportional to the number of data points contained in its related bin.

The structure of a pyramid chart is similar to the one of a histogram, except that they are used to compare two distributions side-by-side.

Box plots are composed of a rectangle spreading from the first to the third quartiles and whiskers or lines extending from the minimum value to the first quartile and the third quartile to the maximum value. The median is generally represented by a perpendicular line.

In D3, we calculate quartiles with the quantile scale d3.scaleQuantile(), which accepts a discrete domain and a discrete range. If we want to calculate quartiles, hence dividing the data into four groups, the range must be an array of four elements, like [0, 1, 2, 3].

To draw a box plot with D3, we simply need to append rectangle and line elements to a selection and set their attributes based on the positions of the minimum, maximum, median, and quartile values.

D3’s point scale d3.scalePoint() is similar to the band scale discussed in chapter 3, except it has zero bandwidth. Its domain consists of a discrete list of elements distributed over a continuous range.

Violin plots are mirrored curved area that bulges in regions containing multiple data points and tapers where few exist. They can be described as smoothed histograms mirrored around an invisible central axis. To draw a violin plot, we need to generate an area passing through the tips of each bin. It can be helpful to draw histograms first to get situated.

Violin plots are often combined with a rectangle showing the interquartile range and a circle positioned at the mean or the median value.

7 Interactive visualizations

This chapter covers

Adding event listeners to a D3 selection.

Creating smooth and reusable transitions.

Filtering a visualization.

Using tooltips to reveal additional information.

Animating the enter, update, and exit selections.

The possibility to create interactive visualizations that meet today’s web standards is one of the key selling points of D3. That’s one of the primary reasons why so many data practitioners want to master this library.

In the first part of this book, you’ve worked hard to understand the philosophy behind D3 and its building blocks. Now it’s time for a treat! In this chapter, we will reuse previously built charts and make them interactive.

We’ll start by filtering the histogram created in chapter 6 to show only the data of practitioners identifying as women or men. This exercise will teach you how to listen to user events and create smooth transitions. Then, we’ll go back to the temperature line chart built in chapter 4 and display a tooltip when the mouse passes over a data point. We’ll take this feature further in the following section with a composite tooltip that reveals the sales breakdown for each music format as the mouse moves over the streamgraph from chapter 5. Finally, we’ll create a scatterplot from scratch to explore how D3 offers granular control over the transitions when data enters or exits a visualization.

We’ll also introduce D3’s logarithmic and radial scales.

Although it doesn’t cover all the types of interactions available in D3, this chapter will give you a strong foundation for building interactive visualizations. Throughout the rest of the book, we’ll cover other interactions like brushing, zooming, and panning. But first, let’s briefly discuss why we use interactive visualizations and touch on the best practices.

7.1 Why use interactivity?

Interactive visualizations offer a wide range of opportunities compared to static ones. They allow users to explore rich datasets, highlight connections or focus on a subset of data, making the information accessible and easier to find. Instead of offering only an editorial perspective, interactive visualizations give back the power to the users. They are free to explore different interrogations about the same subject, find outliers and draw conclusions. As Andy Kirk puts it, “[Interactive visualizations] expand the physical limits of what can be consumed in a given space.”[1]

Interactivity is definitely an exciting subject. But it is good to remember that not every visualization can or should be interactive.

7.1.1 A few best practices for interactivity

Keeping the end user in mind when planning interactions is critical. By asking yourself the following questions, you increase the chances of creating interactions that are both relevant and intuitive:

How much time does the user have to explore the visualization? The context can help us answer this question. If the visualization is part of a dashboard, critical information must be directly available, and interactions should allow the user to answer specific questions. On the other hand, if the work is part of a long-form online article, we can assume that the user has time to explore and get lost in the details.

Will the visualization be consumed mostly on desktop or mobile?

Desktops imply mouse events and landscape orientation, while mobiles use touch screens, and we primarily use them in portrait orientation.

They also offer limited space. We’ll discuss responsive interactions in chapter 9.

How much does the user already know about the subject? Should the foundational information be displayed directly, or can we afford to

“hide” it within interactive features?

Is the user tech-savvy? Will they understand how to interact with the visualization? Consider providing instructions when relevant.

What are the benefits of the interactions and animations? Are they

enhancing the user experience, or did we add them just for the coolness factor?

Are the interactive features obstructing the visualization in any way? If yes, consider modifying the type of interaction or maybe use transparency to reduce obstruction.

7.2 Filtering a visualization

One of the typical use cases for interactivity is filtering a visualization. In this section, we will work with the histogram built in chapter 6 and allow the user to filter data by gender. Take a look at the completed project at https://d3js-in-action-third-edition.github.io/filtered-histogram/ and click on the buttons above the histogram to see the transition happening. As you can see in figure 7.1, there are three buttons or filters: one to see all the data selected by default, one to see the data related to respondents identifying as women, and one for men.

Figure 7.1 Histogram of the salary distribution among data visualization practitioners in the US

with buttons to filter the chart by gender.

[image: Image 164]

Code

To follow along with the instructions, download or clone the files from the book’s GitHub repository (https://github.com/d3js-in-action-third-edition/code-files). The folder chapter_07/7.2-Filtering contains two subfolders named start and end. Open the start folder in your code editor and start your local web server. Refer to the solution in the end folder if you ever get stuck.

The code files for this project already contain the histogram built in chapter 6.

Note that we moved the declaration of the scales to the file shared-constants.js to make them accessible globally.

First, let’s add the filtering buttons to the histogram interface. The file shared-constants.js already contains an array named filters, with an id, label, and status for each button. You can see this array in the following code snippet. Observe that the isActive property of the first filter is set to true, while the others are false. We’ll use this property to track which filter is currently selected.

const filters = [

{ id: "all", label: "All", isActive: true },

{ id: "female", label: "Women", isActive: false },

{ id: "male", label: "Men", isActive: false },

];

To add the filters to the interface, we’ll start working in the file interactions.js, within the function populateFilters(). This function is already called from load-data.js and gets the dataset as an argument.

In listing 7.1, we start by selecting the div with an id of “filters” that already exists in index.html. We then use the data-binding pattern to append three button elements to the selection based on the three objects contained in the filters array. We give each button the class name “filter”. If the isActive property of the filter is true, we also add the class name “active”. Finally, we set the text of each button to correspond to the label property of the filter.

Listing 7.1 Adding the filter buttons to the interface (interactions.js)

const populateFilters = (data) => {

d3.select("#filters") #A

.selectAll(".filter") #B

.data(filters) #B

.join("button") #B

.attr("class", d => `filter ${d.isActive ? "active" : ""}`) #C

.text(d => d.label); #D

};

Save your project and look at it in the browser. You’ll see that the three buttons are displayed above the histogram, like in figure 7.1, and styled by the CSS styles listed in visualization.css. The active button is dark green, while the other buttons have a semi-transparent background to suggest that they are not selected.

If you click on the buttons, nothing happens. This is because we are not capturing the click event yet. We’ll now learn how to do that in the following section.

7.2.1 Capturing user events

For our project to react when we click on one of the buttons, we need to attach an event listener to them. Event listeners are simply strategies put in place to wait and detect when a predefined event happens. In JavaScript, we use the addEventListener() method. In D3, we attach event listeners to a selection with the method on(), which is part of the d3-selection module (https://github.com/d3/d3-selection).

As illustrated in figure 7.2, the first argument accepted by the on() method is the name of the event we want to capture. Any DOM event type can be used, like click, mouseover, touch, keydown, etc. The second argument is a callback function in which we perform the desired action(s). This callback function receives two parameters: the event captured and the datum attached to the D3 selection on which the event occurred. Note that we use the term datum when we refer to a single item from a dataset, often a JavaScript object. Datum is the singular of data.

Figure 7.2 The on() method attaches an event listener to a D3 selection and performs specific

[image: Image 165]

actions when the event occurs.

Let’s attach an event listener to our buttons. In the following snippet, we chain the method on() to the filters selection. We pass the event type

"click" as the first argument, meaning that the callback function of on() (the second argument) will be executed every time a click occurs on one of the buttons.

d3.select("#filters")

.selectAll(".filter")

.data(filters)

.join("button")

.attr("class", d => `filter ${d.isActive ? "active" : ""}`)

.text(d => d.label)

.on("click", (e, d) => {

console.log("DOM event", e);

console.log("Attached datum", d);

});

If you log the first parameter received by the callback function (e) in the console, you’ll see that it consists of a comprehensive object. Properties like clientX, clientY, offsetX, offsetY, pageX, and pageY provide the coordinates at which the event occurred relative to different elements on the page. The type of event can be confirmed by the type property, while the target property is probably the one we use most often. This property gives us the element on which the event took place, in this case button.filter. It also includes the datum attached by D3 to the element under __data__.

But we can access this datum more directly with the second parameter received by the callback function (d). For example, if you log d into the console and click on the button with the label “Women”, you’ll obtain the object attached to the button:

{ id: "female", label: "Women", isActive: false }

We use the callback function of the on() method to perform actions based on the detected event. In listing 7.2, we first verify that the click that triggered the event was on a non-active button. We don’t want to perform the manipulations required for the chart update if it’s not necessary. Then we loop through the filters array and update the isActive property of each filter based on the clicked button. Similarly, we select all the buttons with D3 and use the classed() method to add or remove the “active” class name to the buttons. Finally, we call the function updateHistogram() and pass the clicked filter’s id and the complete dataset as arguments. This function is already declared in interactions.js, and this is where we’ll update the histogram in a moment.

Listing 7.2 Handle the active state of the buttons (interactions.js)

...

.on("click", (e, d) => {

if (!d.isActive) { #A filters.forEach(filter => { #B

filter.isActive = d.id === filter.id ? true : false; #B

}); #B

d3.selectAll(".filter") #C

.classed("active", filter => filter.id === d.id ? true : false); #C

updateHistogram(d.id, data); #D

}

});

the classed method

So far in this book, we have handled class names with D3’s attr() method, which takes the attribute’s name as the first parameter and its value as the second. Let’s say we want to give the class name “filter” to a selection. We simply use the attr() method, pass “class” as the name of the attribute and

“filter” as its value.

filtersSelection

.attr("class", "filter");

The attr() method only allows us to manipulate the class name(s) of a selection as a block. If we want to add the class name “active” to the selected filter, we could use the attr() method again, but since this method overwrites the entire class attribute, we would need to include the initial class name, which was “filter”. The two class names are separated with a blank space.

myActiveFilter

.attr("class", "filter active");

Fortunately, D3 lets us manipulate each class name separately with the classed() method. This method allows us to specify if a selection has a class name or not. It takes the class name as the first parameter and a boolean

[image: Image 166]

(true or false) as the second. In our example, instead of having to reapply the class name “filter” every time we add or remove the class name “active”, we can use the classed() method and control the class name “active”

separately.

myActiveFilter

.classed("active", true);

Figure 7.3 The classed() method provides control over each class name of a selection separately.

Its first argument is the class name, and its second is true or false, indicating if the selection should have the class name or not.

7.2.2 Updating the data in a visualization

Now that we can detect the clicks on the buttons, we are ready to update the

histogram accordingly. We’ll start working within the function updateHistogram(), which we called in listing 7.2.

If the user clicks on the button with the label “Women”, we want the histogram to contain only the data of respondents identifying as women.

Similarly, if the user clicks on the “Men” button, we want the histogram to include only the men’s data. Finally, when selecting the “All” button, the histogram should contain the whole dataset.

The first parameter that updateHistogram() receives is the id property of the data attached to the selected filter, which can have three different values:

“all”, “female”, or “male”. If the id is “all”, we conserve the whole dataset (the second parameter received by the function). Otherwise, we filter the dataset to keep only the responses of people from the selected gender. We save the new data in the constant updatedData.

Since our data changed, we must also recalculate the bins used to draw the histogram. To do that, we call the bin generator created when we made the original histogram and give it the updated dataset. We save the bins returned by the generator in the constant updatedBins. Note that for the bin generator to be accessible from here, we added it to the global variables listed in shared-constants.js.

Finally, we select the rectangle elements that compose the histogram and attach the new bins as their data. We then only need to recalculate the y, and the height attributes of the rectangles based on the new bins and using the yScale declared when we built the histogram.

Listing 7.3 Updating the data in the histogram (interactions.js) const updateHistogram = (filterId, data) => {

let updatedData = filterId === "all" #A

? data #A

: data.filter(respondent => respondent.gender === filterId); #A const updatedBins = binGenerator(updatedData); #B

d3.selectAll("#histogram rect") #C

.data(updatedBins) #C

[image: Image 167]

.attr("y", d => yScale(d.length)) #C

.attr("height", d => innerHeight - yScale(d.length)); #C

};

You’ll notice that the histogram now updates every time we click on one of the filter buttons. But the shift happens abruptly, without a smooth transition.

We’ll address that in the following sub-section.

Figure 7.4 The three states of the histogram: with all the data, with women’s data only, and with men’s data only.

7.2.3 Creating smooth transitions

Interactions generally imply that a change is happening between two or multiple states. For example, a blue element turning green or a tooltip going from hidden to visible. Ensuring that our transitions are smooth, meaning that there’s an animation between state A and state B, is important for more than aesthetic purposes. Carefully crafted animations and transitions can actually reduce the users’ cognitive load by helping them keep track of what changed, where it moved and why. Animations literally help users to understand what is happening.

In D3, we perform smooth transitions with the method transition(), which is part of the module d3-transition (https://github.com/d3/d3-transition). We chain the transition() method just before changing the values of the attributes and styles on which we want to apply the animation. For example, the following snippet adds a transition to the histogram data update coded in listing 7.3. Since we chain the transition() method before updating the y and the height attributes, both of them will be animated. Transitions only affect the properties chained after the transition() method.

d3.selectAll("#histogram rect")

.data(updatedBins)

.transition()

.attr("y", d => yScale(d.length))

.attr("height", d => innerHeight - yScale(d.length)); Like in CSS, we can control the parameters of D3 transitions. First, we can set its duration with the duration() method, which accepts a value in milliseconds. If this method is not set, a default duration of 250ms is applied by D3.

We can also apply a delay before the transition happens with the method delay(), which also takes a value in milliseconds. The default delay is zero.

Finally, we can specify the easing function of the transition or the rate of change over time. In real life, objects rarely move at a constant or linear speed. The movement rather starts slow and accelerates with time, like when dropping an object to the floor, or the movement starts quickly and gets slower or more controlled over time. These phenomena can be reproduced with easing functions. Because they mimic real-life action, carefully chosen easing functions can make transitions feel more natural. You have probably already used easing functions like ease-in, ease-out, and ease-in-out in CSS.

Figure 7.5 shows the difference between a linear speed and the most common easing functions: quadratic, cubic, exponential, sinusoidal, circle, and polynomial. On each graph, the horizontal axis represents the time, while the vertical axis represents the change rate. For example, the change can be the position, color, or opacity of an element. The sinusoidal and quadratic functions offer a more subtle rate of change, while the exponential function

creates the most dramatic one.

Note that the polynomial function is represented as an area on figure 7.5. This is because D3 allows us to change the value of the exponent applied to the time between 0.13 and 8, providing a range of possibilities. The default value is 3, which corresponds to a cubic function. On the Observable notebook

“Easing Graphs”, you can test the effect of different exponents on the curve (https://observablehq.com/@d3/easing).

Each easing function comes in three formats:

Animations that start slowly and accelerate as they reach the end. These functions’ names have the suffix “In”, e.g. d3.easeQuadIn, d3.easeExpIn, d3.easeCircleIn, etc.

Animations that start quickly and slow down as they reach the end.

These functions’ names have the suffix “Out”, e.g. d3.easeQuadOut, d3.easeExpOut, d3.easeCircleOut, etc.

Animations that start and end quickly. These functions’ names have the suffix “InOut”, e.g. d3.easeQuadInOut, d3.easeExpInOut, d3.easeCircleInOut, etc.

If the ease method is not set, D3 will use d3.easeCubicInOut by default.

Figure 7.5 The most common easing functions in comparison to a linear rate of change. On each graph, the horizontal axis represents the time, while the vertical axis represents the change rate.

[image: Image 168]

In addition to the more conventional ones, D3 gives us access to three functions that mimic specific physical reactions. These functions are represented in figure 7.6.

The elastic easing function reproduces a material that can be deformed and return to its original shape, like a rubber band. It accepts two parameters, the amplitude and the period, that can significantly impact the rate of change over time. You can see their effect at https://observablehq.com/@d3/easing.

The back easing function produces an overshoot, which is adjustable.

You can also test different overshoot values at

https://observablehq.com/@d3/easing.

The bounce easing is like a ball bouncing on the floor before reaching its full amplitude of movement. This function doesn’t accept parameters.

These easing functions accept the three formats (in, out, and in-out) mentioned earlier.

Figure 7.6 Easing function that mimic the elastic, overshoot and bounce reactions. On each graph, the horizontal axis represents the time, while the vertical axis represents the change rate.

[image: Image 169]

We can see every easing function offered by D3 in action (applied to the horizontal translation of a circle) in the notebook “Easing Animations”

created by Mike Bostock (https://observablehq.com/@d3/easing-animations?

collection=@d3/d3-transition). If the graphs in Figures 7.5 and 7.6 are still a little unclear for you, this demo can help!

Let’s go back to our project and tweak the histogram’s animation. In the following snippet, we slow down the transition by giving it a duration of 500ms and changing its easing function to d3.easeCubicOut. For such scenarios where the user clicks on a button and expects something to happen, it’s often preferable to choose a rate of change that starts quickly and slows down as it reaches the end. It gives immediate feedback to the user while conserving a natural feel. For this same reason, we won’t apply a delay to the transition.

d3.selectAll("#histogram rect")

.data(updatedBins)

.transition()

.duration(500)

.ease(d3.easeCubicOut)

.attr("y", d => yScale(d.length))

.attr("height", d => innerHeight - yScale(d.length)); As you can see, smooth transitions are easy to apply in D3. The main rule to remember, highlighted in figure 7.7, is that the transition only affects the properties (attributes and styles) chained after the transition() method.

Figure 7.7 D3 transitions affect only the properties chained after the transition method. We can customize transitions by setting their duration, delay, and easing function.

[image: Image 170]

FILTERING IN ACTION

7.3 Revealing additional information with tooltips

Tooltips might be one of the first features that come to mind when we think

about interactive visualizations. They allow adding annotations without overcrowding a chart. Since they don’t take up a lot of physical space, tooltips are a great way to reveal complementary information in a digital visualization.

In this section, we will build two types of tooltips. We’ll start with a simple, more classical tooltip to reveal the temperature points in the line chart made in chapter 4. Then we’ll create a compound tooltip that follows the mouse over the streamgraph built in chapter 5 and provide the sales breakdown per music format for the corresponding year.

7.3.1 Building a simple tooltip

In this section, we will work with the line chart of the 2021 New York City weather built in chapter 4. When the user passes the mouse over a circle, we will display a tooltip with the exact temperature it represents. This chart is shown in figure 7.5, and the tooltip in action can be previewed at https://d3js-in-action-third-edition.github.io/tooltip/.

Figure 7.8 Line chart of the 2021 weekly average temperature in New York City built in chapter 4.

[image: Image 171]

Code

To follow along with the instructions, download or clone the files from the book’s GitHub repository (https://github.com/d3js-in-action-third-edition/code-files). The folder chapter_07/7.3.1-Simple_tooltip contains two subfolders named start and end. Open the start folder in your code editor and start your local web server. Refer to the solution in the end folder if you ever get stuck.

Figure 7.9 To create a tooltip, we first append a group element to the inner chart. In this group, we add a rectangle for the tooltip’s background and a text element. We set the opacity of the tooltip to zero. Then, we attach two mouse events to the chart’s circles: “mouseenter” and

“mouseleave”. When the mouse enters a circle, we set the tooltip’s text, translate it above the circle, and set its opacity to 100%. When the mouse leaves, we set the opacity to zero and move the tooltip away from the chart.

[image: Image 172]

There are many approaches to creating a tooltip with D3. In this project, we will follow the steps illustrated in figure 7.9. First, we’ll build the tooltip by appending a group element to the inner chart. This group will contain a rectangle element, which will act as the background of our tooltip, superposed with a text element, which we’ll use to display the temperature represented by each circle on the chart.

To do so, start working inside the function createTooltip(), which you’ll find in interactions.js. Note that this function is already called after loading the data, so the code it contains will be executed.

As you can see in listing 7.4, we first append a group element and give it a class name of “tooltip”. The class name is important since we’ll use it later to select the tooltip and change its position. We save the tooltip selection in a constant named “tooltip”.

Then, we append a rectangle element to the tooltip selection, which will act as the background of the tooltip. We set its width and height with the constants tooltipWidth and tooltipHeight, respectively 65 and 32px, which have already been declared in shared-constants.js. With the attributes rx and ry, we give the tooltip’s corners a radius of 3px. We set its fill attribute to the color “aubergine”, another constant already saved in shared-constants.js and used for the stroke of the line chart. Finally, we make the rectangle semi-transparent, with a fill-opacity of 0.75. This will ensure that the tooltip doesn’t obstruct the chart completely when in view.

As the last step, we append a text element in the tooltip selection. We set its text to “00.0°F” to ensure that the rectangle is big enough for the text, but this step is not obligatory. We set the text’s horizontal and vertical anchor to the value “middle”, and then position it at the center of the rectangle with the x and y attributes. We give the text a white color and a font-weight style property of 900 to help with readability.

Listing 7.4 Creating the elements composing a tooltip (interactions.js) const createTooltip = () => {

 const tooltip = innerChart #A

.append("g") #A

.attr("class", "tooltip"); #A tooltip #B

.append("rect") #B

.attr("width", tooltipWidth) #B

.attr("height", tooltipHeight) #B

.attr("rx", 3) #B

.attr("ry", 3) #B

.attr("fill", aubergine) #B

.attr("fill-opacity", 0.75); #B

tooltip #C

.append("text") #C

.text("00.0°F") #C

.attr("x", tooltipWidth/2) #C

.attr("y", tooltipHeight/2 + 1) #C

.attr("text-anchor", "middle") #C

.attr("alignment-baseline", "middle") #C

.attr("fill", "white") #C

.style("font-weight", 900); #C

}

After saving your project, you’ll see the tooltip appearing in the top-left corner of the chart, like in figure 7.10.

Figure 7.10 Tooltip appended to the inner chart.

[image: Image 173]

We’ll now set the tooltip’s opacity to zero to hide it from the user. In a few moments, we’ll make it visible when the mouse passes over a circle on the chart.

const tooltip = innerChart

.append("g")

.attr("class", "tooltip")

.style("opacity", 0);

If we continue with the workflow illustrated in figure 7.9, the second step is to attach two event listeners to the line chart’s circles. In listing 7.5, we add these event listeners inside the function handleMouseEvents(), which is already declared in interactions.js.

First we select all the circle elements inside the inner chart and chain two on() methods, as discussed in the previous section. The DOM event detected by the first on() method is mouseenter, when the mouse enters a circle, while the second one is mouseleave, when the mouse leaves a circle. The callback function of the on() method receives two parameters: e, the DOM event, and d, the datum attached to the circle that triggered the event. Log them both into the console and take a moment to explore their content. You’ll notice that the datum attached to each circle corresponds to a row in the original dataset.

Listing 7.5 Adding the event listeners (interactions.js) const handleMouseEvents = () => {

innerChart.selectAll("circle") #A

.on("mouseenter", (e, d) => { #B

#B

console.log("DOM event", e); #B

console.log("Attached datum", d); #B

#B

}) #B

.on("mouseleave", (e, d) => { #C

#C

}); #C

}

Now that we know when the mouse enters a circle, we can make the tooltip appear. We’ll proceed as follows:

1. Set the tooltip's text to the average temperature found in the data attached to the circle element.

2. Move the tooltip above the circle using the DOM event.

3. Set the tooltip's opacity to 100%.

In listing 7.6, we select the text element inside the tooltip and set its text based on the average temperature in the datum returned by the callback function. We use the method d3.format() to limit the number of digits to three.

Then, we get the position of the pointed circle via its cx and cy attributes.

The target property of the DOM event returns the circle element itself; then, we can apply the JavaScript getAttribute() method to obtain the cx and cy attributes. We use these values to translate the tooltip above the pointed circle and center it horizontally.

Finally, we apply the transition() method to the opacity of the tooltip, setting its duration to 200ms.

Listing 7.6 Making the tooltip appear when the “mouseenter” event is detected (interactions.js) innerChart.selectAll("circle")

.on("mouseenter", (e, d) => {

d3.select(".tooltip text") #A

.text(`${d3.format(".3")(d.avg_temp_F)}°F`); #A const cx = e.target.getAttribute("cx"); #B

const cy = e.target.getAttribute("cy"); #B

d3.select(".tooltip") #B

.attr("transform", `translate(${cx - 0.5*tooltipWidth}, #B

➥ ${cy - 1.5*tooltipHeight})`) #B

.transition() #C

.duration(200) #C

.style("opacity", 1); #C

})

Save your project and note how the tooltip now appears above the circles pointed with the mouse, like in figure 7.11.

Figure 7.11 When the mouse enters a circle, the tooltip appears above it and indicates the corresponding temperature.

[image: Image 174]

Visualization tip

When building tooltips, it’s best to avoid obstructing the view of the adjacent markers, in this case, the neighboring circles. One trick is to make the tooltip’s background semi-transparent, as we did in this project.

As the last step, we want the tooltip to disappear when the mouse leaves a circle. Within the callback function of the “mouseleave” event listener, we select the tooltip and change its opacity back to zero. We then want to move the tooltip out of the way. If the tooltip is positioned above a circle, it will prevent mouse events from being detected, even if the tooltip is not visible. In listing 7.7, we simply translate it down by 500px, but any translation away from the chart will do the trick.

Listing 7.7 Making the tooltip disappear when the “mouseleave” event is detected (interactions.js)

...

.on("mouseleave", (e, d) => {

d3.select(".tooltip")

.style("opacity", 0)

.attr("transform", `translate(0, 500)`);

});

And that’s it, we now have a fully functional tooltip!

Simple tooltip in action

7.3.2 Developing a compound tooltip

Streamgraphs are built with stacked areas over a variable baseline, making it hard for the reader to translate the shapes into exact values. A tooltip is a handy way to provide this additional information to the user. In this section, we will build a compound tooltip that follows the mouse over the streamgraph made in chapter 5 and provide the breakdown of sales for each music format for the corresponding year. This tooltip can be seen in figure 7.12 and tried at https://d3js-in-action-third-edition.github.io/composite-tooltip/.

Figure 7.12 Streamgraph visualizing 40 years of music sales per format. The tooltip follows the mouse over the visualization, revealing the corresponding year and the breakdown of sales per format.

[image: Image 175]

Visualization tip

You might observe that the stacking order of the streamgraph’s paths is different than in chapter 5. We changed it to almost match the order in the tooltip. Such minor considerations can help the user map the information he sees on the streamgraph to the one in the tooltip.

Again, there are many approaches to building a tooltip. In this project, we will follow the steps illustrated in figure 7.13.

Code

To follow along with the instructions, download or clone the files from the book’s Github repository (https://github.com/d3js-in-action-third-edition/code-files). The folder chapter_07/7.3.2-Compound_tooltip contains two subfolders named start and end. Open the start folder in your code editor and start your local web server. Refer to the solution in the end folder if you ever get stuck.

Figure 7.13 Steps to build our composite tooltip and its mouse interaction.

[image: Image 176]

The first step, illustrated in figure 7.13, is to build the elements that compose the tooltip. To do so, we’ll start working within the function createTooltip(), which is already declared in interactions.js and called from load-data.js. This function receives the dataset as an argument, and we have already declared a few handy constants for the tooltip’s width, height, color, and line-height properties.

In listing 7.8, we first append a group element to the inner chart and give it a class name of “tooltip”. We’ll use this class name later to select the tooltip and make it follow the mouse.

We then append a vertical line to the tooltip. The line's horizontal position is zero, extending vertically from the inner chart's bottom to 30px above it. We give the line a stroke-width of 2px and make it dashed with the stroke-dasharray attribute, to which we provide a value of "6 4". The dashes will have a length of 6px and 4px of space in between.

We also append a text element and position it at the line's bottom. The text will display the year as the tooltip moves horizontally. For now, since the tooltip is positioned at the left extremity of the streamgraph, its year is the first one in the dataset, 1973, found with d3.min(). We give this text a class name of "tooltip-year" so that we can select it and update it as the tooltip moves.

Listing 7.8 Appending the vertical line and the year (interactions.js) const createTooltip = (data) => {

...

const tooltip = innerChart #A

.append("g") #A

.attr("class", "tooltip"); #A tooltip #B

.append("line") #B

.attr("x1", 0) #B

.attr("x2", 0) #B

.attr("y1", -30) #B

.attr("y2", innerHeight) #B

 .attr("stroke", textColor) #B

.attr("stroke-width", 2) #B

.attr("stroke-dasharray", "6 4"); #B

const firstYear = d3.min(data, d => d.year); #C

const tooltipYear = tooltip #C

.append("text") #C

.attr("class", "tooltip-year") #C

.attr("x", 0) #C

.attr("y", innerHeight + 25) #C

.style("font-size", "16px") #C

.style("font-weight", 700) #C

.style("fill", textColor) #C

.attr("text-anchor", "middle") #C

.text(firstYear); #C

};

In listing 7.9, we handle the sales breakdown per music format and display it above the vertical line. First, we append a SVG group to the tooltip and translate it towards the left by half the tooltip’s width and then upward. We save this group in a constant named “tooltipContent”. We append a text element inside the group, give it a class name of “tooltip-content”, and save it in the constant “tooltipText”. It is in this element that we’ll display the sales breakdown.

After retrieving the sales object for the first year (1973), we loop through the formatsInfo array declared in shared-constants.js. For each music format, we append a tspan element inside “tooltipText”. We set its text to the label property of the music format followed by the sales in M$, formatted as grouped thousands with one significant digit (d3.format(",.1r")). Each span element is positioned below the previous one using its y attribute.

Finally, still inside the loop, we add a circle to the left of each tspan, giving it a radius of 6px and a color corresponding to the music format. These circles will act as a legend and make the tooltip’s content more digestible.

Listing 7.9 Appending the sales breakdown per format (interactions.js) const createTooltip = (data) => {

...

const tooltipContent = tooltip #A

.append("g") #A

.attr("transform", `translate(${-1 * tooltipWidth/2}, #A

➥ ${-1 * margin.top + 30})`); #A const tooltipText = tooltipContent #B

.append("text") #B

.attr("class", "tooltip-content") #B

.style("font-size", "14px") #B

.style("font-weight", 500) #B

.style("fill", textColor); #B

const dataFirstYear = data.find(item => item.year === firstYear); formatsInfo.forEach((format, i) => { #C

#C

tooltipText #C

.append("tspan") #C

.attr("class", `sales-${format.id}`) #C

.attr("x", 0) #C

.attr("y", i * textLineHeight) #C

.text(`${format.label}: #C

➥ ${d3.format(",.1r")(dataFirstYear[format.id])}M$`); #C

#C

tooltipContent #C

.append("circle") #C

.attr("cx", -10) #C

.attr("cy", i * textLineHeight - 5) #C

.attr("r", 6) #C

.attr("fill", format.color); #C

#C

}); #C

};

Once completed, your tooltip should look like the one in figure 7.14. Note how the vinyl format dominated the market in 1973, followed by 8-tracks.

Figure 7.14 Tooltip positioned over the first year.

[image: Image 177]

With the tooltip in place, we are ready for the following steps: attaching an event listener to the streamgraph’s paths and moving the tooltip along with the mouse! We’ll start working inside the function handleMouseEvents(), which is already declared in interactions.js. In listing 7.10, we first select all the path elements in the streamgraph and use the on() method to attach an event listener. The DOM event we want to detect is mousemove, which will be triggered when the mouse moves over the streamgraph.

We then need to find the cursor's position and move the tooltip accordingly.

D3 has a convenient method, d3.pointer(), that takes a DOM event as an argument and returns the coordinates of the event relative to the target, here the streamgraph’s paths. This method is part of the d3-selection module (https://github.com/d3/d3-selection) and provides the horizontal and vertical coordinates of the selection in an array. Since we are only interested in the horizontal coordinate, we can get it with d3.pointer(e)[0] and translate the tooltip consequently.

Listing 7.10 Listening to the “mousemove” event and translating the tooltip accordingly (interactions.js)

const handleMouseEvents = (data) => {

d3.selectAll(".areas-container path") #A

.on("mousemove", e => { #A const xPosition = d3.pointer(e)[0]; #B

d3.select(".tooltip") #B

.attr("transform", `translate(${xPosition}, 0)`); #B

});

};

If you move your mouse over the streamgraph, the tooltip should now follow it closely. How cool is that? Let’s now update the tooltip’s text as the mouse moves, starting with the year. To know the year corresponding to the mouse's position, we can use xScale, the scale responsible for positioning elements along the horizontal axis. So far in this book, we have always passed a value from the domain to the scales for them to return the corresponding value from

the range. With continuous scales, we can do the opposite! In listing 7.11, note how we call xScale.invert(xPosition). By chaining xScale with the invert() method, we can pass a value from the range, a horizontal position on the streamgraph, and obtain the corresponding value from the domain, which is a year. Because xScale is a continuous scale, it will return floating point numbers. Since we want the year to be an integer, we pass the value returned by xScale.invert(xPosition) to Math.round(). We can then select the text element responsible for holding the year (with the class name

“tooltip-year”) and update its text to the year corresponding to the mouse position.

To update the text in the sales breakdown portion of the tooltip, we start by finding the data related to the mouse's position. We then loop through the music formats, and for each format, we select the corresponding tspan element and update the sales according to the year's data.

Listing 7.11 Update the tooltip’s text as the mouse moves (interactions.js) const handleMouseEvents = (data) => {

d3.selectAll(".areas-container path")

.on("mousemove", e => {

...

const year = Math.round(xScale.invert(xPosition)); #A d3.select(".tooltip-year").text(year); #A const yearData = data.find(item => item.year === year); #B

formatsInfo.forEach(format => { #B

d3.select(`.sales-${format.id}`) #B

.text(`${format.label}: #B

➥ ${d3.format(",.1r")(yearData[format.id])}M$`); #B

}); #B

});

};

Visualization tip

When an interaction is not standard, give a little cue to your users. For

example, we have added instructions above this project's streamgraph.

Compound tooltip in action

7.4 Animating the enter, update, and exit selections Earlier in this chapter, we updated the data presented in a histogram with the click of a button. In that example, the number of SVG elements within the visualization invariably remained the same: 12 rectangles whose height changed depending on how many data points they represented. But what if a data update implies that new SVG elements must enter or exit the visualization? In this section, we’ll build a scatterplot to answer this question.

The scatterplot we are about to create visualizes a dataset of cetacean species, as you can see in figure 7.15 and at https://d3js-in-action-third-edition.github.io/enter-update-exit/. Each circle in the scatterplot represents a cetacean species. The circles’ horizontal position is relative to the species’

estimated population, while the vertical position corresponds to the size of the cetacean in meters. The area of the circles is proportional to the weight of the cetacean, and their color symbolizes their conservation status according to the International Union for Conservation of Nature, from “Least Concern”

being green to “Critically Endangered” being red.

Four buttons are displayed above the scatterplot and allow filtering it. All species are shown by default in the visualization, and the button “All cetaceans” is selected. We can filter the cetaceans by the region where they live: in the northern hemisphere, in the southern hemisphere, or species traveling between the two hemispheres. Every time we select a filter, the circles exiting the scatterplot slide downward, while the circles entering fall in from the top. We’ll learn how to create this effect in a moment!

Figure 7.15 Visualization of cetacean species that we will build in this section.

[image: Image 178]

Code

To follow along with the instructions, download or clone the files from the book’s Github repository (https://github.com/d3js-in-action-third-edition/code-files). The folder chapter_07/7.4-Refining_data_updates contains two subfolders named start and end. Open the start folder in your code editor and start your local web server. Refer to the solution in the end folder if you ever get stuck.

7.4.1 Building a scatterplot

If you open the start folder of this section’s project in your code editor and start your local web server, you’ll see that the filter buttons are already in place but that we need to build the scatterplot. To do so, go to the file scatterplot.js inside the function drawScatterplot(). This function is already called from load-data.js and receives the loaded data as an argument. Refer to the README file inside chapter_07/7.4-Refining_data_updates for a breakdown of the dataset’s columns and the different files of this project.

In scatterplot.js, we have already appended a SVG container and an inner chart, following the strategy introduced in chapter 4. We are ready to declare the scales. For this project, we will need four scales, which we already declared in shared-constants.js to make them globally accessible: yScale: a linear scale responsible for distributing the cetaceans’ size along the y-axis.

colorScale: an ordinal scale to provide colors to the circles based on the conservation status of the species they represent.

xScale: a logarithmic scale for distributing the species’ population along the x-axis.

rScale: a radial scale for calculating the area of the circles based on the species’ weight.

We still have to set the scales’ domain and range based on the data, which we’ll do in scatterplot.js. Let’s start with the linear scale since we are

already familiar with it. The domain of yScale is continuous and extends from zero to the maximum size of a cetacean in the dataset, which we find with d3.max(). The scale maps the domain onto a continuous range that extends from innerHeight, at the bottom of the inner chart, to zero, at the top of the inner chart (you must know very well by now that, in the SVG world, the vertical axis is positive in the top to bottom direction!). Finally, we chain the scale with the method nice() to ensure that the y-axis ends on a nice round value.

const maxSize = d3.max(data, d => d.max_size_m);

yScale = d3.scaleLinear()

.domain([0, maxSize])

.range([innerHeight, 0])

.nice();

We can also set the color scale since we’ve already discussed ordinal scales in chapter 5. An ordinal scale maps a discrete domain over a discrete range.

Here the domain is an array of the conservation status ids, created with the JavaScript method map() and the conservationStatuses array already declared in shared-constants.js. We use the same method to generate an array of colors for the range.

colorScale = d3.scaleOrdinal()

.domain(conservationStatuses.map(s => s.id))

.range(conservationStatuses.map(s => s.color));

The two other scales will require a little more explanation since we'll use them for the first time. We’ll do that in the following subsections.

the log scale

In our project, the cetacean with the smallest population is the Baiji, a dolphin whose population is currently estimated between zero and 13

individuals (the latest expedition to estimate the population found none). On the other hand, the largest population is the Pantropical spotted dolphin, estimated to be 3 million individuals. That’s a huge difference!

If we were to represent these populations on a linear scale, the species with smaller populations would be cramped together, and their actual values

[image: Image 179]

would be impossible to read. In figure 7.16, see how more clearly we can read the population values over a logarithmic axis, where the value at each marked location is increased by a factor of 10.

Figure 7.16 On a linear axis, the species with a smaller population appear cramped, and their values are almost impossible to read. The logarithmic scale helps solve this issue by presenting populations with a tenfold increase (1, 10, 100, 1k, 10k, 100k, 1M, and 10M).

In D3, we create logarithmic axes with the log scale d3.scaleLog(), which returns the logarithmic transform of a continuous domain. This scale is especially handy when the data contains significant differences of magnitude.

Visualization tip

The improvement in readability provided by logarithmic scales comes at the cost of losing the sense of how tiny some values are compared to the larger

ones. Although log scales certainly have their place, it’s important to be aware of this drawback.

In the following code snippet, we set the domain and the range of the log scale. The domain is continuous and accepts an array of the minimum and the maximum population. Note how we’ve set the minimum value to 1 rather than zero. If you remember your math classes, the logarithmic value of zero is undefined (moving toward -∞ to be more precise). The range extends along the width of the inner chart, and we chain the method nice() for the axis to end on a nice round value.

const maxPopulation = d3.max(data, d => d.global_population_estimate); xScale = d3.scaleLog()

.domain([1, maxPopulation])

.range([0, innerWidth])

.nice();

the radial scale

So far in this book, we have outputted data values onto one-dimensional graphical marks only, like the length of a bar in a bar chart or the horizontal position on a timeline. But in data visualization, we often use the area of a circle to represent the magnitude of data. If we want to map one-dimensional data, in our case, the weight of cetaceans, onto a two-dimensional graphical mark, the area of a circle, we cannot use a linear scale.

Let’s first go back to the equation of the area of a circle (A), which is equal to the constant π (3.1416...) multiplied by the radius squared. The radius is multiplied by itself; its impact on the area of a circle is quadratic, not linear!

A = πr2

To map a linear value onto a graphical mark defined by its radius, like a circle, we use radial scales. As you can see in figure 7.17, circles sized with a linear scale create a visual distortion that exaggerates the difference in the area of circles representing 10, 100, and 200 tons. On the other hand, the radial scale internally squares the range and is better adapted for sizing circles.

[image: Image 180]

Figure 7.17 Weight of the cetacean represented by circles. On the left, the circles are sized with a linear scale, while on the right, we used a radial scale. Note how the linear scale creates a visual distortion by exaggerating the differences between the area of the circles for each weight.

In the following code snippet, we declare our radial scale. Both the domain and the range are continuous, the domain extending between zero and the maximum weight found in the dataset and the range between zero and 45, the radius of the largest circle that will appear on the visualization.

const maxWeigth = d3.max(data, d => d.max_weight_t); rScale = d3.scaleRadial()

.domain([0, maxWeigth])

.range([0, 45]);

Tip

For sizing our circles, we could also have used the square root scale, d3.scaleSqrt(), a power scale applying the exponent 0.5. The results would have been the same.

Exercise: Create the axis and append the circles to the scatterplot Now that we have declared our scales, we are ready to build the scatterplot.

You have all the knowledge required to do it. If you need more guidance, follow these steps:

1 Declare a generator for the bottom axis (d3.axisBottom()) and pass xScale as a reference. Append the axis to the inner chart.

2 Declare a generator for the left axis (d3.axisLeft()) and pass yScale as a reference. Append the axis to the inner chart.

3 Append two text elements to the SVG container, one for each axis label:

“Estimated population” and “Max size (m)”.

4 Using the data-binding pattern, append one circle to the inner chart for each cetacean in the dataset.

5 Set the circles' cx, cy, r, and fill attributes using the logarithmic, linear, radial, and color scales declared earlier.

6 If you wish, you can set the opacity of the fill attribute to 60% and add a stroke of 2px to the circles.

Once completed, your scatterplot should look like the one in the following image.

Completed scatterplot

[image: Image 181]

If at any point you are stuck or want to compare your solution with ours, you will find it in listing D.7.1 of appendix D and in the folder 7.4-

Refining_data_updates / end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

To generate the project legend, uncomment the function populateLegend() in load-data.js. We encourage you to take a look at the code in legend.js since building legends is a request you will meet as a D3 developer. We will not explain the legend code in detail here since it uses concepts you are already familiar with.

7.4.2 Filtering a scatterplot

We will now enable the scatterplot filtering when the user clicks on one of the buttons above it. We will also discuss how we can control the animations when circles enter or leave the chart.

First, let’s go to the file interactions.js. The filter buttons have already been created in the function populateFilters(). We will handle the clicks on the filters inside the function handleClickOnFilter(). In listing 7.12, we start by selecting all the buttons with the class name “filter” and attach an event listener to them. This listener waits for a “click” event and provides the datum attached to the clicked filter in the callback function. This datum is the corresponding object from the array cetaceanFilters, which you can find in shared-constants.js.

If the clicked button was not already selected, we update the isActive properties in the cetaceanFilters array and update the “active” class name of the buttons accordingly. Based on which button has been clicked, we filter the original dataset to conserve only the cetaceans corresponding to the selection.

Finally, we use the data-binding pattern to update the number of circles on the screen, move these circles to their positions, calculate their radius and find their color, all with a smooth transition. As you can see, the strategy is so far very similar to the one used in section 7.2.

Listing 7.12 Updating scatterplot when the user clicks on the filters (interactions.js)

const handleClickOnFilter = (data) => {

d3.selectAll(".filter") #A

.on("click", (e, datum) => { #A

if (!datum.isActive) { #B

cetaceanFilters.forEach(h => h.isActive = h.id === datum.id #C

➥ ? true : false); #C

#C

d3.selectAll(".filter") #C

.classed("active", d => d.id === datum.id ? true : false);#C

const updatedData = datum.id === "all" #D

? data #D

: data.filter(d => d.hemisphere === datum.id); #D

innerChart #E

.selectAll("circle") #E

.data(updatedData) #E

.join("circle") #E

.transition() #E

.attr("class", "cetacean") #E

.attr("cx", d => xScale(d.global_population_estimate)) #E

.attr("cy", d => yScale(d.max_size_m)) #E

.attr("r", d => rScale(d.max_weight_t)) #E

.attr("fill", d => colorScale(d.status)) #E

.attr('fill-opacity', 0.6) #E

.attr("stroke", d => colorScale(d.status)) #E

.attr("stroke-width", 2); #E

}

});

};

If you save your project, go to your browser and click on the filters, you’ll see that the number of circles in the scatterplot adapts to the selected filter.

As briefly mentioned in chapter 3, the join() method calculates how many circles need to enter or leave the visualizations and which ones need to be updated. It creates an interesting effect with little effort.

FILTERING IN ACTION - v1

But there’s an issue. Did you notice, when clicking on a filter, that circles not only enter and leave the screen but also move around in the scatterplot? The big orange circle at the top (representing blue whales) suddenly becomes a medium size red circle (representing north Atlantic right whale), and so on.

Although we all like seeing movement on the screen, that’s not ideal from a storytelling perspective. What happens is that D3 automatically updates the number of circles in the DOM to match the filtered dataset. It then assigns the first circle element in the DOM to the first cetacean in the updated dataset, the second circle to the second cetacean, and so on.

Preferably, we want the circles that remain on the screen to keep representing the same cetacean. We can do this by adding a key function as the second argument of the data() method. With this key function, we tell D3 to maintain the datum assigned to each element remaining on the screen. In the snippet below, we use the cetaceans' uid as a reference. If you are familiar with React, this is similar to giving key attributes to list elements that provide them with a stable identity.

innerChart

.selectAll("circle")

.data(updatedData, d => d.uid)

.join("circle")

...

Save your project again and play with the filters. That’s much better!

FILTERING IN ACTION - v2

Figure 7.18 Without the key function, during data updates, D3 assigns the first circle element in the DOM to the first cetacean in the updated dataset, the second circle to the second cetacean, and so on. With a key function, the elements that remain on the screen keep the same data.

[image: Image 182]

Currently, when we play with the filters of our scatterplot, the circles that

enter the screen arrive from the left, while the circles that exit the screen simply disappear. How can we control these transitions? We have mentioned that when we update the data bound to our scatterplot, the circles (or the data attached to them) can enter, update, or exit.

The enter selection represents new elements that need to be created. For example, if the cetaceans living in the northern hemisphere are currently selected on the scatterplot, and we click the filter “All cetaceans”, new circles will enter the screen.

The update selection contains the elements that are already present on the screen and will remain on the screen. These elements might keep the same position and style or change if the data bound to them has been updated. For example, if the cetaceans living in the northern hemisphere are currently selected on the scatterplot, and we click the filter “All cetaceans”, the circles representing cetaceans from the northern hemisphere should remain as they are.

The exit selection represents the elements that need to be removed. For example, suppose the cetaceans living in the northern hemisphere are currently selected on the scatterplot, and we click the filter “Living in the southern hemisphere”. In that case, the circles representing cetaceans from the northern hemisphere should leave the screen.

Figure 7.19 The enter selection represents new elements that need to be created, while the update selection contains the elements that are already displayed on the screen and will remain on the screen. The exit selection is made of elements that need to be removed from the DOM.

[image: Image 183]

While the join() method makes our life easier by handling the enter, update and exit selections, we can still access and control them separately! In the following snippet, instead of passing a string to the join() method like we have been doing so far, we pass separate functions for the enter, update and exit selections, separated by a comma.

innerChart

.selectAll("circle")

.data(updatedData, d => d.uid)

.join(

enter => enter,

update => update,

exit => exit

)

In listing 7.13, we specify what we want to happen with the enter, update and exit selections. When new data is added to the scatterplot (the enter selection), we append the corresponding number of circle elements and set their attributes. Here we want to create an animation where circles enter from above, their radius increases from zero to its final value, and their opacity goes from zero to 100%. To do that, we first set the cy attribute to -50, r to 0, and the opacity style property to 0. Then, we use the call() method to create a transition and set the cy, r, and opacity to their final values. Note that we don’t chain the transition directly like we have been doing so far, but we perform the transition inside the call() method instead.

Although we don’t need to apply any change to the update selection, the update function must still be included inside join() for this technique to work.

Finally, we handle the exit selection by calling a transition, translating the exiting circles to the bottom of the inner chart, and reducing their radius and opacity to zero. Finally, we remove the exit selection from the DOM by chaining the remove() method, still inside call().

Listing 7.13 Controlling the enter, update and exit selections (interactions.js) innerChart

.selectAll("circle")

.data(updatedData, d => d.uid)

 .join(

enter => enter #A

.append("circle") #B

.attr("class", "cetacean") #B

.attr("cx", d => xScale(d.global_population_estimate)) #B

.attr("cy", d => -50) #B

.attr("r", 0) #B

.attr("fill", d => colorScale(d.status)) #B

.attr('fill-opacity', 0.6) #B

.attr("stroke", d => colorScale(d.status)) #B

.attr("stroke-width", 2) #B

.style('opacity', 0) #B

.call(enter => enter.transition() #C

.attr("cy", d => yScale(d.max_size_m)) #C

.attr("r", d => rScale(d.max_weight_t)) #C

.style('opacity', 1)), #C

update => update, #D

exit => exit #E

.call(exit => exit.transition() #F

.attr("cy", d => innerHeight) #F

.attr("r", 0) #F

.style('opacity', 0) #F

.remove()) #F

)

7.4.3 Creating a reusable transition

The default transition applied to the enter and exit selections is nice, but we would like to slow it down and change its easing function. If we want to use the same duration and easing function for both the enter and exit selections, we can create a reusable transition function.

In listing 7.14, we start by declaring a transition with the method d3.transition(). We chain the duration() method and set its duration to 800ms. We also chain the ease() method and set its easing function to d3.easeExpOut. Finally, we save this transition function into a constant named t.

Then, all we have to do is to pass this transition function to the transition() methods called for the enter and exit selections. Reusable transition functions help us avoid repetition, make our code easier to maintain, and keep the transition parameters consistent throughout our projects.

Listing 7.14 Adding a reusable transition (interactions.js) const handleClickOnFilter = (data) => {

d3.selectAll(".filter")

.on("click", (e, datum) => {

if (!datum.isActive) {

...

const t = d3.transition() #A

.duration(800) #A

.ease(d3.easeExpOut); #A

innerChart

.selectAll("circle")

.data(updatedData, d => d.uid)

.join(

enter => enter

.append("circle")

.attr("class", "cetacean")

...

.call(enter => enter.transition(t) #B

...,

update => update,

exit => exit

.call(exit => exit.transition(t) #B

...)

)

}

});

};

Exercise: Create a tooltip

Our scatterplot is pretty cool but we have no idea which circle represents which cetacean species. To fix this:

1 add a simple tooltip to the visualization that consist only in a SVG text

element.

2 When the mouse is positioned over a circle, display the common name of the related cetacean.

3 When the mouse leaves the circle, hide the tooltip.

You can see an example in the following image.

Tooltip displayed when the mouse is positioned over a circle

[image: Image 184]

Note that event listeners must be reattached when new elements enter the DOM!

If at any point you are stuck or want to compare your solution with ours, you will find it in listing D.7.2, D.7.3, and D.7.4 of appendix D and in the folder 7.4-Refining_data_updates / end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

FILTERING IN ACTION - v3 with tooltip

7.5 Summary

Keeping the end user in mind when planning interactions is critical.

Always aim at creating interactions that are both relevant and intuitive.

In D3, we capture user events with the on() method. This method takes the event's name as the first parameter (click, mouseenter, mouseleave, mousemove, etc.) and a callback function as the second. The callback function receives both the triggered DOM event and the datum attached to the selection.

We can control the class names of a selection separately with the classed() method, which takes the class name as the first parameter and a boolean (true or false) as the second.

To create smooth animations between states, we use the transition() method.

Any attribute or style chained after the transition method is affected by it.

By default, D3 transitions have a duration of 250ms, a delay of zero, and use the easing function d3.easeCubicInOut. We can change these parameters respectively with the duration(), delay(), and ease() methods.

We can declare transitions and their parameters separately and reuse them throughout our projects. To do so, we save our transition function into a constant and pass this constant to the transition() method chained to a selection.

We use tooltips to add annotations to a chart and reveal additional information. We can build tooltips with SVG elements. We update their content and position from the callback function of an event listener.

The method d3.pointer() takes a DOM event as an argument and returns the coordinates of the event relative to the target. It is useful to

position elements on the screen based on a mouse event.

The log scale d3.scaleLog() is a scale that returns the logarithmic transform of a continuous domain. It's especially handy when the data expands between significant differences of magnitude.

The radial scale d3.scaleRadial() is used to map a linear value onto a graphical mark defined by its radius, like a circle.

On data updates, D3 automatically updates the number of elements in the DOM to match the new dataset. It then assigns the first element in the DOM to the first datum in the updated dataset, the second element to the second datum, and so on. If we want the data to stick to the elements that remain on the screen, we must add a key function to the data() method.

The join() method takes care of the enter, update, and exit selections for us, but we can control them by passing their respective functions to the join() method instead of a string.

The enter selection of the join() method represents new elements that need to be created.

The update selection of the join() method contains the elements that are already present on the screen and will remain on the screen.

The exit selection of the join() method represents the elements that need to be removed.

[1] Andy Kirk, Data Visualisation: A Handbook for Data Drive Design, 2nd ed . (London: SAGE Publications Ltd, 2019), 203.

8 Integrating D3 in a front-end

framework

This chapter covers

Loading the D3 library in a front-end framework

Creating a dashboard with D3 and React

Allowing D3 to manipulate the DOM with React hooks

Using D3 as a utility library and letting React render and update the DOM

Applying the same strategies in Angular and Svelte

So far in this book, we have been creating projects in a simple but old-fashioned way, using only HTML, CSS, and JavaScript files. But today’s front-end projects are generally built with JavaScript frameworks. These tools facilitate the development of larger projects and optimize their performance.

With the help of JavaScript frameworks like React, Angular, and Svelte, we can create projects where everything happens instantly and provide the feeling of a mobile application. We call such projects Single Page Applications (SPAs) because only one HTML file is loaded from the server and then updated dynamically, even for multi-page projects.

According to the State of JavaScript 2021 survey, the most popular frameworks among front-end developers are React (80%), Angular (54%), Vue.js (51%), and Svelte (20%). Although the philosophy and syntax of these tools can vary broadly, using them in combination with D3 follows common principles. In this chapter, we will discuss these principles and apply them to the interactive dashboard you can see in figure 8.1 and at https://d3js-in-action-third-edition.github.io/d3-with-react/. For this dashboard, we will reproduce a visualization of the developers' satisfaction, interest, usage, and awareness of the different front-end frameworks between 2016 and 2021, created by the team of the State of JavaScript 2021 survey (https://2021.stateofjs.com/en-US/libraries/front-end-frameworks). We will

also build a scatterplot of the retention percentage (developers who would use the framework again) vs. the number of users for each framework, as well as a bar chart of their awareness of each tool.

Figure 8.1 Dashboard about front-end frameworks that we will build in this chapter.

[image: Image 185]

We will build this dashboard by integrating D3 into a React application.

React is the gold standard and by far the most popular framework. But since you will likely also want to use D3 with other frameworks, throughout this chapter we will provide you with additional information regarding D3

integration in Angular and Svelte. In this chapter's code files, you can find the dashboard built with these different frameworks at https://github.com/d3js-in-action-third-edition/code-files/tree/main/chapter_08.

NOTE

React is technically a JavaScript library, and Svelte is a compiler rather than a framework. But for simplicity purposes, we will assume that the term framework applies to React and Svelte.

Because we want to keep the focus of this book on D3, we recommend that you have a basic knowledge of React before reading this chapter. You should know how to build components, pass props to children and parent components, manage a component's state, and use React hooks. If you are new to React, here are a few resources that can help you get started: React Quickly, 2nd edition, by Morten Barklund and Azat Mardan.

React.JS: The Complete Course for Beginners, by Meta Brains React - The Complete Guide, by Maximilian Schwarzmüller.

8.1 Approaches to using D3 in a front-end

framework

The main job of a front-end framework is to manipulate the DOM.

Frameworks keep track of which pieces of the DOM need to be rendered or updated at any point in time. D3 was created before the arrival of such tools and was also meant to manipulate the DOM heavily. If we try to use D3 the way we have been so far within a framework, it can lead to conflicts when both the framework and D3 want to manipulate the same elements. For this reason, we need to be strategic and use one of the following approaches: 1. Giving D3 access to a portion of the DOM

2. Using D3 as a utility library

3. Applying a hybrid approach

The first approach is to isolate an element of the DOM and give its control over to D3. The main benefit of this approach is its simplicity. It allows using D3 the same way we have been doing so far in this book. But it is often considered a bit of a hack, and we lose some of the optimization features that are an integral part of the JavaScript frameworks.

The second approach is the exact opposite: letting the framework handle the DOM alone and using D3 only as a utility library. This strategy implies forgetting about D3's data-binding pattern, axis generations, attributes and styles manipulations, as well as event detection and transitions. Fortunately, many powerful D3 methods remain accessible, like the scales and the shape generators. This approach is preferable for overall performance and allows us to create all the visualizations we have discussed so far, albeit it requires a little more work.

With the hybrid approach, we let the framework control the DOM as much as possible and provide control to D3 with parsimony when there's a clear gain in development time or the workaround is too complex. For example, in the last chapter, we discussed how D3 transitions are powerful and easy to use.

But they require that D3 manipulates the related elements in the DOM. In that case, we have to evaluate our options. To create transitions that imply only CSS properties, applying CSS transitions and animations, or even using a React 3rd party library like react-spring are usually the best approach. But if we need to transition the d attribute of a path element for example, D3

transitions are arguably the simplest and most effective way forward. Another example is the D3 brush() method, for which it can be acceptable to let D3

manipulate the DOM.

In this chapter, we will use these three approaches to build our dashboard, and we’ll proceed in the order shown in figure 8.2. First, we’ll make the scatterplot of the frameworks’ retention percentage vs. user count using the first approach, where we let D3 control a portion of the DOM. Then, we’ll rebuild the same chart, using D3 as a utility library and giving DOM control only to React. Building the same chart with both approaches will provide you with an occasion to appreciate the pros and cons of each one.

You will then build the bar chart of the developers’ awareness of the frameworks on your own, using the second approach. This exercise will be an excellent opportunity to consolidate what you’ve learned. Finally, we’ll build the interactive rankings visualization with the hybrid strategy. We will make the chart itself with the second approach, but we’ll allow D3 to control the DOM to smoothly transition the curves when the user clicks on one of the buttons above the visualization.

Figure 8.2 We will build our dashboard with the three approaches described previously. First, we’ll make the scatterplot with the first strategy by giving D3 access to the DOM. Then we’ll rebuild the same chart with React, using D3 only as a utility library. You’ll also use this approach to build the bar chart yourself. Finally, we’ll make the rankings visualization with the hybrid strategy, building it with React but allowing D3 to access the DOM to transition the curves when the user clicks on one of the buttons.

[image: Image 186]

8.2 Installing the D3 library in a React project

You can download this chapter's project from the book's GitHub repository (https://github.com/d3js-in-action-third-edition/code-files). Open the start folder contained in chapter_08/8.2-Installing_D3 in your code editor.

NOTE

The folder chapter_08 contains multiple subfolders, each named based on its related chapter section. Each of these subfolders has a start and an end folder. The start folder contains the code as it is at the beginning of a section, while the end folder contains the solution for that section.

If you have experience with front-end frameworks, you are familiar with npm (Node Package Manager), the registry of software from which we install libraries and tools into our projects. To install your project's dependencies, run the following command in your terminal. Ensure that your terminal's current directory is pointing to your project folder. If you use the integrated terminal in VS Code, your current directory is your project root.

npm install

To add the D3 library to your project, install the d3 package (npmjs.com/package/d3).

npm install d3

Finally, start the React project with:

npm run start

The project should open automatically in your default browser. We recommend that you use Chrome or Firefox for their handy inspector tools.

All you should see on the screen at this point is the word "Loading...", because no data has been loaded yet into our project. We will address that in the next section.

One of the key advantages of working with frameworks is that they encourage us to break down our code into small, reusable components. In the src folder of this chapter's project, the components of the dashboard are broken down into four subfolders:

ChartComponents: Singular chart elements, like circles, rectangles, and axis.

Charts: Complete charts like the scatterplot or the bar chart.

Interactions: Where most of the interactions’ code will live.

UI: For specific UI elements unrelated to charts, like buttons and cards.

Before we start using D3, we need to import it into the components where we will need it. Go to the file App.js and, at the top of the file, import D3 as follows:

import * as d3 from 'd3';

The previous code snippet is what we call a namespace import. Here, d3 is a namespace object which contains all exports from the D3 library. We can then access any D3 method with the dot notation as we have been doing so far, like d3.scaleLinear() and d3.line(). We need to import D3 into each and every file where we want to use it.

TIP

Instead of loading the entire D3 library, we could also choose to install only the D3 modules we need for a project, like d3-scale or d3-shape.

In a React project, the vast majority of the files that we work with are located inside the src folder, where index.js is the root file and loads App.js. It's in App.js that we start writing our code and loading our components.

8.3 Loading data into a React project

If you take a closer look at App.js, you'll see that it consists of a functional component. In React, functional components are JavaScript functions that accept arguments, called props, and return the component's markup in JSX

(JavaScript XML) format. In this chapter, we will focus on functional components because this is the modern way of building React components and has been broadly adopted by the React community. The older way of building components, called class-based components, is still valid, though, and you will find many examples of how to use D3 in class-based

components on the web.

The App component has a state variable named loading, which is initialized to true. It then returns a div element that contains a condition. If loading is true, the expression "Loading..." is returned and appears on the screen. If loading is false, it loads a component named Charts, which will later contain the three charts of the dashboard.

Listing 8.1 Initial state of App.js

import { useState } from 'react'; #A import * as d3 from 'd3'; #A import Charts from './Charts/Charts'; #A const App = () => {

const [loading, setLoading] = useState(true); #B

return (

<div className="container">

{loading && <div className="loading">Loading...</div>}#C

{!loading && <Charts />} #C

</div>

);

};

export default App;

We have structured the App component this way because we need to load data into our application before we display the charts. And since fetching data is an asynchronous process, we need a strategy to wait for the data to be accessible before creating the charts.

In functional components, the Effect hook is where we want to fetch data. In listing 8.2, we start by loading useEffect from the React library. Then we call the useEffect hook and pass an anonymous function as its first argument. In this function, we use the method d3.json() to load data in the JSON format from a REST API accessible via the URL https://d3js-in-action-third-edition.github.io/hosted-data/apis/front_end_frameworks.json. So far, we have only loaded data from CSV files that were included in our project files, but fetching data from a REST API is more common in professional projects.

We chain the d3.json() method with the JavaScript then() method, which returns a Promise. Once the data is available we call the setData() and the setLoading() functions to update the state of the component. Note that we have also declared the data state variable above and set its initial value to an empty array.

The second argument of useEffect() is its dependencies, which tell React when the effect should be executed. Because we've set the dependencies to an empty array, the function will run only once: after the component is mounted.

Finally, we pass the updated data state variable to the Charts component as a prop.

Listing 8.2 Loading data into App.js

import { useState, useEffect } from 'react'; #A import * as d3 from 'd3';

import Charts from './Charts/Charts';

const App = () => {

const [loading, setLoading] = useState(true);

const [data, setData] = useState([]); #B

useEffect(() => {

const dataURL = "https://d3js-in-action-third-edition.github.io/

[CA] hosted-data/apis/front_end_frameworks.json";

d3.json(dataURL).then(data => { #C

setData(data); #C

setLoading(false); #C

}); #C

}, []); #D

return (

<div className="container">

{loading && <div className="loading">Loading...</div>}

{!loading && <Charts data={data} />} #E

</div>

);

};

export default App;

The useEffect() cleanup function

Although this is not likely for this project, the user might get impatient and browse to another page before D3 completes the data fetching process. In that case, React will unmount the component where the data is being fetched. If the request is still going on behind the curtains, this might lead to unwanted behaviors like memory leaks.

To avoid such problems, it’s best to add a cleanup function inside the useEffect hook, which is the return function in the following example. If the component unmounts before the data fetching is completed, React will run the cleanup function.

There are many different ways to handle this situation, but here’s a simple one. In the example below, we declare the variable mounted inside the useEffect hook and set its initial value to true. In the cleanup function, which will be called when the component unmounts, we set mounted to false.

Finally, we add a condition inside the then() method to update the state variables only if mounted is true. This way, we will never try to update state variables on an unmounted component and avoid triggering errors.

useEffect(() => {

...

let mounted = true

d3.json(dataURL).then(data => {

if (mounted) {

setData(data);

setLoading(false);

}

});

return () => mounted = false;

}, []);

Inside the then() method, log the data into the console. You’ll notice that it is composed of three arrays. The ids array contains a list of the frameworks addressed by the dataset, while the years array lists the years for which we have data. The experience array contains an object for each framework, with

its id, name, number of users (as per the survey data collected by the State of JavaScript survey 2021), and retention percentages. It also contains arrays accessible under the keys satisfaction, interest, usage, and awareness that provide the rank of the framework and the percentage of respondents that answered that they are satisfied, are interested in, use, or are aware of the framework for each year. Your data is now ready to use!

NOTE

You'll notice that the data is logged twice into the console while we told you that the anonymous function inside the Effect hook would run only once.

This feature of React, called StrictMode, is intentional and aims at helping us detect accidental side effects when we render our application. It only happens in development mode.

8.4 A reusable approach to SVG containers

From chapter 4 of this book, we have adopted an approach to building D3

charts that involves an SVG container and a group element, as illustrated in figure 8.3. This group is translated based on the chart's margins and becomes the parent of all the elements composing the inner chart. Because children of an SVG group inherit the properties of their parent, they are then all translated to the position of the inner chart.

Figure 8.3 The strategy that we have been using since chapter 4 is to build charts with an SVG

container to which we append a group element. This group is translated based on the chart's margins and becomes the parent of all the elements composing the inner chart. Those will inherit the translation.

[image: Image 187]

Since our dashboard will contain three charts, creating a reusable SVG

container that holds both the SVG parent and the group wrapping the inner chart would be helpful. Let's go to the file ChartContainer.js, contained in the folder ChartComponents. This file includes a functional component named ChartContainer that receives props and returns an SVG element.

To follow the strategy illustrated in figure 8.2, we add a group element inside the SVG container. In listing 8.3, we assume that this component receives three props: a width, a height, and a margin object. We apply the width and height props to the viewBox attribute of the SVG element. Then we set the transform attribute of the group and translate it horizontally with the left margin and vertically with the top margin.

Finally, knowing that in React, every component receives a prop named children that contains any child element defined within the parent component, we can return this prop between the brackets of the SVG group as follows: {props.children}.

Listing 8.3 Creating the ChartContainer component (ChartContainer.js) const ChartContainer = props => {

return (

<svg viewBox={`0 0 ${props.width} ${props.height}`}> #A

<g transform={`translate(${props.margin.left}, #B

[CA] ${props.margin.top})`}> #B

{props.children} #C

</g>

</svg>

);

};

export default ChartContainer;

Then we go to the file Charts.js, contained in the folder Charts, and define a margin object. In listing 8.4, this object is passed as a prop to the three chart components (Rankings, Scatterplot, and BarChart).

Listing 8.4 Declaring a margin object and passing it as props to each chart component (Charts.js) const Charts = props => {

 const margin = {top: 30, right: 10, bottom: 50, left: 60}; #A return (

<Fragment>

<h1>Front-end Frameworks</h1>

<div className='row'>

<div className='col-9'>

<Rankings margin={margin} /> #B

</div>

<div className='col-3'>

<div className='row'>

<div className='col-12'>

<ScatterplotD3Controlled margin={margin} /> #B

</div>

<div className='col-12'>

<BarChart margin={margin} /> #B

</div>

</div>

</div>

</div>

...

</Fragment>

)

};

To append the chart container:

1. Go to the component ScatterplotD3Controlled located in the Charts folder.

2. At the top of the file, import the ChartContainer component.

3. Inside the component function, declare the width and height constants equal to 300 and 245, respectively.

4. Calculate the innerWidth and innerHeight of the chart by subtracting the margins received as props from the dimensions, like in listing 8.5.

5. Just before the closing Card tag (</Card>), call the ChartContainer component. Pass the width, height, and margin as props.

Listing 8.5 Calling the ChartContainer from a component (ScatterplotD3Controlled.js) import Card from '../UI/Card';

import ChartContainer from '../ChartComponents/ChartContainer'; #A const ScatterplotD3Controlled = props => {

 const width = 300; #B

const height = 245; #B

const innerWidth = width - props.margin.left - props.margin.right; #B

const innerHeight = height - props.margin.top - props.margin.bottom; #B

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer #C

width={width} #C

height={height} #C

margin={props.margin} #C

> #C

</ChartContainer> #C

</Card>

)

};

export default ScatterplotD3Controlled;

Apply the same step to the BarChart and the Rankings component. The dimensions of the bar chart are the same as the scatterplot, while the rankings chart has a width of 1000px and a height of 542px. We also increase the left and right margins of the rankings chart, as shown in the following snippet.

const width = 1000;

const height = 542;

const marginRight = 150;

const marginLeft = 110;

const innerWidth = width - props.marginLeft - props.marginRight; const innerHeight = height - props.margin.top - props.margin.bottom; Once all your files are updated and saved, take a look at your project in the browser. If you inspect the markup, you’ll see that an SVG container and a group element have been added for each chart and that their attributes are set as expected. And this is how we create a reusable SVG container in React!

8.5 Allowing D3 to control a portion of the DOM

We are now ready to draw a first visualization. In this section, we will build the scatterplot shown in figure 8.1 and on the hosted project (https://d3js-in-action-third-edition.github.io/d3-with-react/) using the first approach:

allowing D3 to control a portion of the DOM.

Figure 8.4 In this section, we will build the scatterplot of the frameworks' retention vs. user count by allowing D3 to control a portion of the DOM.

[image: Image 188]

8.5.1 React

In React, we pass the control of an element with a reference, also called ref.

We do so with the useRef() hook, as detailed in figure 8.5.

We first need to import the useRef and the useEffect hooks from React.

Inside the component, we initialize useRef and save it in a constant called, for example, myRef. We then give a ref attribute to the element we want to control with D3 and point to the constant in which we saved the hook (myRef).

The second step is to use the Effect hook to create a function where we’ll be able to use D3. In the anonymous function passed as the first argument of useEffect, we select the current version of the ref with D3

(d3.select(myRef.current)). The current property ensures that the element we manipulate is up to date. From this point, we can use D3 as we have been so far, as long as it is inside the anonymous function of useEffect.

Figure 8.5 To let D3 control a portion of the DOM in React, we first need to import the useRef() and the useEffect() hooks into our component. We then initialize a ref and attach it as an attribute to the element we want to control with D3. Finally, inside a useEffect() hook, we select the current instance of the ref and start using D3 as usual.

[image: Image 189]

To apply this strategy to the scatterplot, open the file ScatterplotD3Controlled.js, located inside the Charts folder. At the top of the file, import the useRef and useEffect hooks from React and the D3

library. Inside the component, initialize the ref hook and save it in a constant named scatterplotRef, as detailed in listing 8.6. Append a group element inside the ChartContainer and set its ref attribute to scatterplotRef.

Finally, create a useEffect hook and use D3 to select the current property of the ref.

Listing 8.6 Letting D3 control a portion of the DOM with refs (ScatterplotD3Controlled.js) import { useRef, useEffect } from 'react'; #A

import * as d3 from 'd3'; #A const ScatterplotD3Controlled = props => {

...

const scatterplotRef = useRef(); #B

useEffect(() => { #C

const scatterplotContainer = d3.select(scatterplotRef.current); #C

}, []); #C

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer

...

>

<g ref={scatterplotRef}></g> #D

</ChartContainer>

</Card>

)

};

export default ScatterplotD3Controlled;

Before we build our scatterplot, let’s go back to the Charts component and declare the color scale we will use throughout the project. We choose D3’s ordinal scale, which maps a discrete domain onto a discrete range. The domain is the array of framework ids available in the data, while for the range, we use one of D3’s predefined color palettes, d3.schemeTableau10, available in the module d3-scale-chromatic (https://github.com/d3/d3-scale-

chromatic/).

const colorScale = d3.scaleOrdinal()

.domain(props.data.ids)

.range(d3.schemeTableau10);

We pass the color scale as props to the component

ScatterplotD3Controlled, as well as the experience array as data.

<ScatterplotD3Controlled

margin={margin}

data={props.data.experience}

colorScale={colorScale}

/>

We are now ready to build our scatterplot with D3. The horizontal axis of the scatterplot represents the number of users, while the vertical axis is their retention percentage. Back in ScatterplotD3Controlled and inside the anonymous function of the useEffect hook, we can declare scales, generate axes and use the data-binding pattern to append a circle element for each framework, as demonstrated in listing 8.7. If you read the previous chapters, you should be familiar with these steps by now.

Note how we pass the dependencies innerWidth, innerHeight, and props to the useEffect hook. These variables are used inside the useEffect function and if we don’t add them to the dependencies array, React will throw a warning.

But since these variables won’t change, the useEffect function will still run only once.

Listing 8.7 Building a scatterplot by letting D3 control a portion of the DOM

(ScatterplotD3Controlled.js)

const ScatterplotD3Controlled = props => {

...

const scatterplotRef = useRef();

useEffect(() => {

const scatterplotContainer = d3.select(scatterplotRef.current); const xScale = d3.scaleLinear() #A

.domain([0, d3.max(props.data, d => d.user_count)])#A

.range([0, innerWidth]) #A

 .nice(); #A const yScale = d3.scaleLinear() #A

.domain([0, 100]) #A

.range([innerHeight, 0]); #A

const bottomAxis = d3.axisBottom(xScale) #B

.ticks([3]) #B

.tickFormat(d3.format("d")); #B

scatterplotContainer #B

.append("g") #B

.attr("class", "axis") #B

.attr("transform", `translate(0, ${innerHeight})`) #B

.call(bottomAxis); #B

const leftAxis = d3.axisLeft(yScale) #B

.ticks([5]); #B

scatterplotContainer #B

.append("g") #B

.attr("class", "axis") #B

.call(leftAxis); #B

scatterplotContainer #C

.selectAll(".scatterplot-circle") #C

.data(props.data) #C

.join("circle") #C

.attr("class", "scatterplot-circle") #C

.attr("cx", d => xScale(d.user_count)) #C

.attr("cy", d => yScale(d.retention_percentage)) #C

.attr("r", 6) #C

.attr("fill", d => props.colorScale(d.id)); #C

}, [innerWidth, innerHeight, props]); #D

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer ... >

<g ref={scatterplotRef}></g>

</ChartContainer>

</Card>

)

};

Once completed, your scatterplot should look similar to the one in figure 8.6.

Note that we won’t spend time styling the axes and giving them labels at this stage, but feel free to do so if you want!

Figure 8.6 Scatterplot built by letting D3 control a portion of the DOM.

[image: Image 190]

Building a visualization by allowing D3 to control a portion of the DOM is relatively simple. From the moment the ref attribute is handled, we can use D3 the same way we have been in the first part of this book. This approach is advantageous when you are short on time or want to build a quick demo. But it is important to remember that it can impact your project's performance because we prevent React from using its optimization features on the part of the DOM that D3 controls. On a small project containing few visualizations, the impact is probably unnoticeable, but on larger, more complex projects, it's crucial to take performance into consideration.

In the next section, we'll discuss how we can use D3 while maintaining React's total control over the DOM, but first, here are a few tips to implement the same strategy in Angular and Svelte.

8.5.2 Angular

To apply the same strategy in Angular, we use an ElementRef, which is Angular’s way of providing direct access to the DOM. We first need to import ElementRef and ViewChild from Angular’s core module, as shown in figure 8.7. Then, in the HTML template, we give a direct reference to an element with a hash symbol (#) followed by the name of your choice, for example, #myRef.

Inside the component’s JavaScript class, we use the property decorator ViewChild and pass the name of the reference. This decorator returns an ElementRef, and we specify that the reference is applied to an SVG element (<SVGElement>).

We then need to wait for the component to be fully initialized before we try to manipulate the referenced element. To do so, we call the function where we will use D3 inside Angular’s lifecycle hook ngAfterViewInit(). Finally, we select the nativeElement property of the reference with D3 and start using D3 as usual. To see this strategy applied inside an actual Angular application, look at the component scatterplot-d3-controlled, in the folder d3-with-angular of this chapter’s code files.

Figure 8.7 To allow D3 to control a portion of the DOM in Angular, we use an ElementRef. We

give a reference to an element from the HTML template using a hash followed by the name of our choice. Then, inside the component’s JavaScript class, we pass the reference to the ViewChild property decorator. Finally, once the component is initialized, we select the nativeElement property of the reference with D3 and start using D3 as usual.

[image: Image 191]

This strategy, although it allows us to use D3 in the way we are familiar with, is not recommended by Angular. We should use it cautiously because it interferes with Angular's rendering of the DOM and can make your application more vulnerable to XSS (Cross-Site Scripting) attacks. We'll discuss a better approach in the next section.

When working with SVG elements in Angular, you should be aware of a few syntax specificities. First, SVG elements other than the SVG container require an svg: prefix, for example: <svg:g></svg:g>, <svg:circle />, or

<svg:text></svg:text>.

<svg>

<svg:g>

<svg:circle />

</svg:g>

</svg>

Also, SVG attributes must be prefixed with attr.

<svg:circle

[attr.cx]="10"

[attr.cy]="15"

[attr.r]="5"

/>

Finally, it's helpful to know that Angular uses TypeScript, so we must declare types as we code. You can install type definitions for D3 with the npm package @types/d3.

8.5.3 Svelte

Svelte is all the rage in the data visualization world at the moment of writing this book. Its lightweight, slim architecture makes it easier to learn for new coders, and it is an efficient tool for shipping small, stand-alone projects.

Like in React and Angular, we can let D3 control a portion of the DOM in Svelte using a reference. We apply a reference to a DOM element with bind:this, to which we pass the name of our reference. Then, once the component has mounted, we select the reference with D3 and start using it as

usual, as shown in figure 8.8.

To see this strategy applied inside a real Svelte application, look at the component scatterplotD3Controlled, in the folder d3-with-svelte of this chapter’s code files.

Figure 8.8 To allow D3 to control a portion of the DOM in Svelte we declare a reference variable within the <script> tags and point to this variable from the DOM element we want to control, using bind:this. Then, we wait for the component to be mounted, using the onMount() lifecycle function, and call another function, where we will build the chart. Inside this function, we select the reference with D3 and start using it as usual.

[image: Image 192]

8.6 Using D3 as a utility library

In this section, we will discuss a better approach to using D3 within a framework: letting the framework fully control the DOM and using D3 as a utility library. This strategy implies that D3 won’t append elements to the DOM, set their attributes, or style properties. When following this approach, we cannot use methods from the d3-selection, d3-axis, or d3-transition modules to name to main ones.

This might sound discouraging, and you might wonder, what’s the point of using D3, then? Actually, a lot of powerful D3 methods are still available! As a rule of thumb, we can still perform all the background calculations with which we create visualizations, with scales or shape generators, for example.

We then generate the markup, or SVG elements, that compose our visualizations with the framework.

If we take the scatterplot we’ve built in the last section as an example, can you mentally list the SVG elements required to draw it? A circle for each framework, a line for each axis, and a bunch of axis labels built with SVG

text elements. Not that bad! In the following sub-section, we’ll rebuild the scatterplot with this approach in mind.

Figure 8.9 In this section, we will rebuild the scatterplot of the frameworks' retention vs. user count, this time controlling the DOM only with React and using D3 as a utility library.

[image: Image 193]

8.6.1 React

To build the scatterplot with the second approach, go to Charts.js and comment out the ScatterplotD3Controlled component. Import the component ScatterplotReactControlled into the file and display this one instead, passing the same props as before.

<ScatterplotReactControlled

margin={margin}

data={props.data.experience}

colorScale={colorScale}

/>

Now, go into ScatterplotReactControlled.js and import the ChartContainer component. Declare constants for a width of 300px, and a height of 245px. Calculate the related innerWidth and innerHeight, like in listing 8.8. Finally, append the ChartContainer component after the h2 title and pass its required props (width, height, and margin).

Listing 8.8 Preparing ScatterplotReactControlled to receive the scatterplot (ScatterplotReactControlled.js)

import Card from '../UI/Card';

import ChartContainer from '../ChartComponents/ChartContainer'; #A const ScatterplotReactControlled = props => {

const width = 300;

const height = 245;

const innerWidth = width - props.margin.left - props.margin.right; #B

const innerHeight = height - props.margin.top - props.margin.bottom; #B

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer #C

width={width} #C

height={height} #C

margin={props.margin} #C

> #C

</ChartContainer> #C

</Card>

)

};

export default ScatterplotReactControlled;

To create our scatterplot, we want to append a circle element to the chart for each framework in the dataset. With our previous approach, we would have used the data-binding pattern, but since we don’t want to let D3 manipulate the DOM, we’ll do it manually.

Because circles are primary chart elements that are likely to be used at more than one place in a project, and because it’s best to create small, reusable components, we’ll have a separate component whose only job is to return circle elements.

Open the file Circle.js, inside the folder ChartComponents. Currently, this component returns a circle element (<circle />), but its attributes are not set. It would be useful to pass the required attributes of the circle element via props. In listing 8.9, we set the cx, cy, r, and fill attributes of the circle with the props we expect it to receive. To make this component even more generic, we set the stroke and stroke-width attributes but make them optional, with a ternary operator that sets the stroke property to “none” and the stroke-width to zero if they are not passed as props.

Listing 8.9 Preparing the Circle component to receive attributes as props (Circle.js) const Circle = props => {

return (

<circle

cx={props.cx}

cy={props.cy}

r={props.r}

fill={props.fill}

stroke={props.stroke ? props.stroke : "none"}

strokeWidth={props.strokeWidth ? props.strokeWidth : 0}

/>

)

};

export default Circle;

Back to the ScatterplotReactControlled component, we import the Circle component and the d3 library at the top of the file. We also declare a horizontal and a vertical linear scale, responsible for calculating the position of the circles based on the number of users and the retention percentage.

To create the circles, we use the JavaScript map() method to append a Circle component for each framework in the dataset. To help React keep track of which item to update in the DOM (in the eventuality that the circles are updated), we pass a unique key to each Circle component. Then, we calculate their cx attribute with xScale, cy with yScale, and fill with the colorScale and pass them as props. The r attribute is a static value of 6. If you save your project you should see the circles on the screen.

Listing 8.10 Appending a circle for each framework (ScatterplotReactControlled.js)

...

import * as d3 from 'd3'; #A

import Circle from '../ChartComponents/Circle'; #A const ScatterplotReactControlled = props => {

...

const xScale = d3.scaleLinear() #B

.domain([0, d3.max(props.data, d => d.user_count)]) #B

.range([0, innerWidth]) #B

.nice(); #B

const yScale = d3.scaleLinear() #B

.domain([0, 100]) #B

.range([innerHeight, 0]); #B

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer ... >

{props.data.map(framework => (#C

<Circle #C

key={`circle-${framework.id}`} #C

cx={xScale(framework.user_count)} #C

cy={yScale(framework.retention_percentage)}#C

r={6} #C

fill={props.colorScale(framework.id)} #C

/> #C

))} #C

</ChartContainer>

</Card>

)

};

export default ScatterplotReactControlled;

To complete our scatterplot, we need to create the axes without the help of D3’s axis generator. We’ll have two axes: a bottom axis and a left axis. Go to the file Axis.js, inside the folder ChartComponents. The Axis component declared at the bottom of the file receives a type props that can have the value “bottom”, “left”, or “band”. If the type is “bottom”, we call the function AxisBottom and pass our props, while if the type is “left” we call the function Axisleft. With this strategy, our different axes will be created inside the same file, but we could also decide to create them into separate ones.

In ScatterplotReactControlled, let’s import the Axis component and render it twice inside the chart container, like in listing 8.11. The first axis has a type of “bottom”, its scale is xScale, and its label is “User Count”. We also need to pass the innerWidth and innerHeight as props, which we’ll use to position the axis properly. For the second axis, the type is “left”, the scale is yScale, and the label is “Retention %”. We’ll see how these props will be used to draw the axis in a moment.

Listing 8.11 Calling the Axis component for the bottom and the left axes (ScatterplotReactControlled.js)

...

import Axis from '../ChartComponents/Axis'; #A

const ScatterplotReactControlled = props => {

...

return (

<Card>

<h2>Retention vs Usage</h2>

<ChartContainer ... >

<Axis #B

type="bottom" #B

scale={xScale} #B

innerWidth={innerWidth} #B

innerHeight={innerHeight} #B

label={"User Count"} #B

/> #B

<Axis #B

type="left" #B

scale={yScale} #B

innerWidth={innerWidth} #B

innerHeight={innerHeight} #B

label={"Retention %"}#B

[image: Image 194]

/> #B

{props.data.map(framework => (

<Circle

...

/>

))}

</ChartContainer>

</Card>

)

};

export default ScatterplotReactControlled;

In chapter 4, we explained that D3 generates three kinds of elements when it creates an axis: a line (or a path) that extends along the axis, and a text element accompanied by a short line for each tick, or labels that are displayed with the axis. Figure 8.10 shows the bottom axis from the scatterplot created in section 8.5. This is something we can easily reproduce manually.

Figure 8.10 The axes generated by D3 are composed of a main line or path that extends along the length of the axis. Then, each axis label is accompanied by a short line, the combination of the two being called a tick.

Back to Axis.js, we’ll start by creating the bottom axis inside the function AxisBottom. First, we need to determine how many ticks, or axis labels, we want to display. In listing 8.12, we specify that we want to show a tick every

100px. If we divide the innerWidth, which is 300px, by 100, we’ll have three ticks. We save this number in the constant numberOfTicks.

In D3, continuous scales have a ticks() property to which we pass a number, and that returns an array with the ticks and their value from the domain. Still in listing 8.12, we call this method with props.scale.ticks(numberOfTicks), and it returns the array [0, 5000, 10000] that we save in the constant ticks.

To draw the axis, we translate the group element that already exists in the return statement to the bottom of the chart and give it a class name of “axis”.

In the file Axis.css, we have already declared a few styles for the axis. Then we append a line element extending from the axis's left to the right.

For the labels, for each tick inside the ticks array, we append a group, a short vertical line, and a text element that displays the tick label. Finally, if a label is passed as a prop, we show it below the axis.

Listing 8.12 Generating the bottom axis (Axis.js)

const AxisBottom = props => {

const numberOfTicks = props.innerWidth / 100; #A const ticks = props.scale.ticks(numberOfTicks); #A return (

<g className="axis" transform={`translate(0,${props.innerHeight})`} >#B

<line x1={0} y1={0} x2={props.innerWidth} y2={0} /> #C

{ticks.map(tick => (#D

<g key={tick} transform={`translate(${props.scale(tick)}, 0)`}> #D

<line x1={0} y1={0} x2={0} y2={5} /> #D

<text x={0} y={20} textAnchor="middle" > #D

{tick} #D

</text> #D

</g> #D

))} #D

{props.label && #E

<text #E

className="axis-label" #E

textAnchor="middle" #E

transform={`translate(${props.innerWidth / 2}, 45)`} #E

> #E

{props.label} #E

</text> #E

 } #E

</g>

);

};

In listing 8.13, we proceed similarly for the left axis. The main difference is that we display an axis label every 50px and rotate the main label 90 degrees.

Listing 8.13 Generating the left axis (Axis.js)

const AxisLeft = props => {

const numberOfTicks = props.innerHeight / 50; #A const ticks = props.scale.ticks(numberOfTicks); #A return (

<g className="axis">

<line x1={0} y1={props.innerHeight} x2={0} y2={0} /> #B

{ticks.map(tick => (#C

<g key={tick} transform={`translate(0, ${props.scale(tick)})`}> #C

<line x1={-5} y1={0} x2={0} y2={0} /> #C

<text x={-10} y={0} textAnchor="end" #C

[CA] alignmentBaseline="middle"> #C

{tick} #C

</text> #C

</g> #C

))} #C

{props.label && #D

<text #D

textAnchor="middle" #D

transform={`translate(-42, ${props.innerHeight / 2}) #D

[CA] rotate(-90)`} #D

> #D

{props.label} #D

</text> #D

} #D

</g>

);

};

Once completed, your scatterplot should look like the one in figure 8.11.

Figure 8.11 Scatterplot built by using D3 solely as a utility library.

[image: Image 195]

8.6.2 Angular and Svelte

When letting the framework handle the DOM and using D3 as a utility library, there is no specific strategy to apply, whether we use React, Angular, or Svelte. Once you know your framework and its syntax, you can build any chart like we have been doing in this section. For examples of how to build the scatterplot with the second strategy in Angular and Svelte, refer to the components scatterplot-angular-controlled and

ScatterplotSvelteControlled in the folders d3-with-angular and d3-with-svelte of this chapter’s code files.

Exercise: Create a bar chart

Now it’s your time to try! Creating the chart elements and axes manually might not seem easy at first, but this exercise should help you clarify the process.

[image: Image 196]

Let’s consolidate your knowledge by building the bar chart of the developer’s awareness of each framework, as shown in the following image. Here are a few tips:

1 Create a component responsible only for drawing a rectangle (Rectangle.js) and call it for each rectangle in the bar chart (call it from BarChart.js).

2 Give the bar chart a width of 300px and a height of 245px. You should increase its bottom margin to accommodate the framework labels (we applied 85px).

3 Use a band scale to calculate the horizontal position of each bar.

4 To improve the readability of this visualization, sort the bars in descending order using the JavaScript method sort().

5 For the bottom axis, pass a type prop with the value “band” and generate the axis in the function AxisBandBottom() available in Axis.js.

6 Because the band scale is not continuous, it doesn’t have a ticks() method. To generate a label for each framework, pass an array of their names to the Axis component.

7 You will need to rotate the labels on the bottom axis. To do so, you can use the transform attribute with a translation followed by a rotation.

Completed bar chart of the developers’ awareness of each framework.

[image: Image 197]

If at any point you are stuck or want to compare your solution with ours, you will find it in section D.8.1 of appendix D and in folder 8.6.b-Bar_chart /

end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

8.6.3 Generating curves

So far, we have been rendering simple shapes like circles, rectangles, and lines. But what if we need to use D3’s shape generator to create a curve?

Well, since the shape generator’s only job is to return the d attribute of a path element, we can totally use it while applying the second strategy. We’ll demonstrate this by building the rankings chart from figure 8.1 and the hosted project (https://d3js-in-action-third-edition.github.io/d3-with-react/). This chart shows the ranking of each framework in terms of user satisfaction. The framework that ranks first is positioned at the top, and the one that ranks last is at the bottom.

First, in Charts.js, let’s pass the data and the color scale to the Rankings component.

<Rankings

margin={margin}

data={props.data}

colorScale={colorScale}

/>

Then, let’s go to the Curve component and declare a line generator, like in listing 8.14. We assume that we receive xScale and yScale as props, as well as the key accessors for the x() and the y() functions, which in our case are

“year” and “rank”.

Because not every framework has data for the first years, we need to use the defined() accessor function, which will handle the years without data. We also set the curve to d3.curveMonotoneX.

When appending the path element, we set the d attribute by calling the line generator (lineGenerator(props.data)). The stroke and strokeWidth

attributes are passed as props.

Listing 8.14 Preparing the curve generator (Curve.js) import * as d3 from "d3";

const Curve = props => {

const lineGenerator = d3.line() #A

.x(d => props.xScale(d[props.xAccessor]))#A

.y(d => props.yScale(d[props.yAccessor]))#A

.defined(d => d[props.yAccessor] !== null) #A

.curve(d3.curveMonotoneX); #A

return (

<path #B

d={lineGenerator(props.data)} #B

fill="none" #B

stroke={props.stroke} #B

strokeWidth={props.strokeWidth} #B

/> #B

);

};

export default Curve;

We’ll call the Curve component from Rankings.js. Note that this file already has an array named rankingFilters that contains the information for each button displayed above the chart. In the component, we also have a state variable named activeFilter, which is initialized to “satisfaction”. In the next section, we’ll make these filters usable and update the rankings visualization accordingly.

But for now, we need to declare our scales. If you refer back to figure 8.1 or to the hosted project (https://d3js-in-action-third-edition.github.io/d3-with-react/), you’ll see that the years 2016 to 2021 are spread horizontally, and the frameworks are distributed vertically by rank. We can use a point scale in both cases, as in listing 8.15.

For each framework, we call the Curve component and pass the required props. Note how the data passed to the Curve component is determined with the activeFilter state variable, which means that currently we are passing the array available under the key satisfaction, which provides the rank of the

current framework in terms of user satisfaction for the years 2016 to 2021.

Listing 8.15 Displaying the rank curves (Rankings.js) const Rankings = props => {

...

const xScale = d3.scalePoint() #A

.domain(props.data.years) #A

.range([0, innerWidth]); #A

const yScale = d3.scalePoint() #A

.domain(d3.range(1, props.data.ids.length + 1))#A

.range([0, innerHeight]); #A

return (

<Card>

<h2>Rankings</h2>

<RankingFilters ... />

<ChartContainer ... >

{props.data.experience.map((framework, i) => (#B

<g key={`curve-${framework.id}`}> #B

<Curve #B

data={framework[activeFilter]}#B

xScale={xScale} #B

yScale={yScale} #B

xAccessor="year" #B

yAccessor="rank" #B

stroke={props.colorScale(framework.id)} #B

strokeWidth={5} #B

/> #B

</g> #B

))}

</ChartContainer>

</Card>

)

};

To clarify which curve represents which framework, we’ll add labels to the left and right sides of the chart. In listing 8.16, we go to the Label component and set the attributes of a text element based on its props. Because we will have labels on both sides, we will need to set the textAnchor, also via the labels’ props. We also give it a font-weight of bold, to improve readability.

Listing 8.16 Preparing the Label component (Label.js)

const Label = props => {

return (

<text

x={props.x}

y={props.y}

fill={props.color}

textAnchor={props.textAnchor}

alignmentBaseline="middle"

style={{ fontWeight: "bold" }}

>

{props.label}

</text>

);

};

export default Label;

In listing 8.17, we call the Label component twice if a framework has data for the first year (2016) and once otherwise. The first framework label is displayed to the left of the chart, with a textAnchor of “end”, and the second framework is displayed on the right, with a textAnchor of “start”.

Listing 8.17 Adding labels to the left and right sides of the chart (Rankings.js) const Rankings = props => {

...

return (

<Card>

<h2>Rankings</h2>

<RankingFilters ... />

<ChartContainer ... >

{props.data.experience.map((framework, i) => (

<g key={`curve-${framework.id}`}>

<Curve ... />

{framework[activeFilter][0].rank && #A

<Label #A

x={-25} #A

y={yScale(framework[activeFilter][0].rank)} #A

color={props.colorScale(framework.id)} #A

label={framework.name} #A

textAnchor={"end"} #A

/> #A

} #A

<Label #B

x={innerWidth + 25} #B

 y={yScale(framework[activeFilter] #B

[CA] [framework[activeFilter].length - 1].rank)} #B

color={props.colorScale(framework.id)} #B

label={framework.name} #B

textAnchor={"start"} #B

/> #B

</g>

))}

</ChartContainer>

</Card>

)

};

Finally, behind the curves, we append a dashed vertical line for each year. In listing 8.18, we add the text element for the year labels manually for simplicity, be we could also have tweaked the Axis component. We wrap those two elements with a group that has a class of “axis”, to apply the styles already declared in Axis.css.

Listing 8.18 Adding a dashed vertical line and a label for each year (Rankings.js) const Rankings = props => {

...

return (

<Card>

<h2>Rankings</h2>

<RankingFilters ... />

<ChartContainer ... >

{props.data.years.map(year => (

<g #A

key={`line-year-${year}`} #A

className="axis" #A

transform={`translate(${xScale(year)}, 0)`} #A

> #A

<line #B

x1={0} #B

y1={innerHeight} #B

x2={0} #B

y2={0} #B

strokeDasharray={"6 4"} #B

/> #B

<text #C

x={0} #C

y={innerHeight + 30} #C

 textAnchor="middle" #C

> #C

{year} #C

</text> #C

</g>

))}

{props.data.experience.map((framework, i) => (

<g key={`curve-${framework.id}`}>

<Curve ... />

...

</g>

))}

</ChartContainer>

</Card>

)

};

Once completed, your rankings chart should look like the one on figure 8.12.

Figure 8.12 Rankings chart with framework labels.

[image: Image 198]

Exercise: Add badges to the rankings visualization Only one element needs to be added to complete the static version of our dashboard: badges that communicate the percentage of developers who answered that they are satisfied with a framework for each year. You can see the result in the following image. Try to implement these badges on your own!

1 Each badge consists of three elements:

a. A group element that is translated to the proper position using the CSS transform property.

b. A white circle with a stroke of 3px. The color of the stroke corresponds to the one of the related framework.

c. A text element that displays the percentage for the selected filter.

Currently, the selected filter is “Satisfaction” but in the next section, that will vary based on which filter is selected. Make sure to take this into consideration when passing the text to the badge.

2 We suggest that you create the badges in the Badge component, available in the UI folder.

3 To display the circles, use the Circle component that we used to draw the scatterplot. The circles have a radius of 18px.

4 You might want to round the percentages to integers by using the JavaScript Math.round().

5 For the text, we used a color of #374f5e, a font-size of 12px, and a font-weight of bold.

Completed rankings visualization with badges.

[image: Image 199]

If at any point you are stuck or want to compare your solution with ours, you will find it in section D.8.2 of appendix D and in folder 8.6.d-Rankings_with_badges / end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

8.7 Hybrid approach

To complete our dashboard, we’ll listen to click events on the buttons at the top of the rankings visualization and update it accordingly. As we implement the solution, we’ll discuss one last strategy for using D3 with a framework: the hybrid approach.

Figure 8.13 For the rankings visualization, we'll use the hybrid approach. We built the chart entirely with React but will allow D3 to control the d attribute of the curves to provide smooth transitions.

[image: Image 200]

But first, go to RankingFilters.js and add a onClick event to the Button component, as in the following snippet. When the click event is detected, point to the prop onFilterSelection, sent from the parent component. Note

that the Button component already returns its id when clicked (see Button.js).

<Button

key={filter.id}

id={filter.id}

label={filter.label}

isActive={props.activeFilter === filter.id ? true : false}

onClick={props.onFilterSelection}

/>

Then, go to the parent component, in Rankings.js, and add the prop onFilterSelection to the RankingFilters component. This prop points to a function named filterSelectionHandler.

<RankingFilters

filters={rankingFilters}

activeFilter={activeFilter}

onFilterSelection={filterSelectionHandler}

/>

Still in the Rankings component, declare the function

filterSelectionHandler that receives the id of the clicked filter as an argument. If the activeFilter state variable is not equal to the received id, update the state with the passed id, using setActiveFilter().

const filterSelectionHandler = (id) => {

if (activeFilter !== id) {

setActiveFilter(id);

}

};

Save your project and click on the buttons. The rankings visualization should update accordingly.

FILTERING THE RANKINGS VISUALIZATION

The filtering is working fine, but we lack a smooth transition of the curves and the position of their labels and badges. Because D3 allows us to easily animate shapes, we could argue that it makes sense to allow D3 to control these paths only and use the transition() method over their d attributes.

Since this is a small project, it shouldn’t significantly impact its performance.

But this decision highly depends on your project, team, and priorities.

In listing 8.19, we import the useRef and useEffect hooks from react. We then initialize a useRef hook and save it in a constant named pathRef. We give a ref attribute to the path element and point to that constant. Note that we also removed the d attribute from the path element.

Finally, in a useEffect hook, we pass an anonymous function where D3

selects the current instance of pathRef, applies a transition function, and updates the d attribute by calling the line generator. Because this anonymous function depends on the data received as props, the transition function, and the line generator, we need to pass them as dependencies. The last two won’t change, but every time the data passed as a prop to the Curve component updates, the anonymous function in useEffect will be executed.

Listing 8.19 Using a D3 to apply a smooth transition to the curves (Curve.js) import { useRef, useEffect } from "react"; #A import * as d3 from "d3";

const Curve = props => {

const lineGenerator = d3.line()

.x(d => props.xScale(d[props.xAccessor]))

.y(d => props.yScale(d[props.yAccessor]))

.defined(d => d[props.yAccessor] !== null)

.curve(d3.curveMonotoneX);

const pathRef = useRef(); #B

useEffect(() => { #C

const path = pathRef.current; #C

d3.select(path) #C

.transition() #C

.duration(400) #C

.ease(d3.easeCubicOut) #C

.attr("d", lineGenerator(props.data)); #C

}, [props.data, t, lineGenerator]); #D

return (

<path

ref={pathRef} #E

fill="none"

stroke={props.stroke}

strokeWidth={props.strokeWidth}

 />

);

};

export default Curve;

We must still apply a smooth transition to the framework labels and badges.

Although using a D3 transition would work, it’s worth wondering if there is a better approach. For example, we could move them around with the transform CSS property and apply a CSS transition. Not only is this simpler, but it is likely better for performance, given that there are multiple labels and badges.

In the following snippet, we update the text element returned by the Label component. We set its x and y attributes to zero, wrap it in a group element and position the group with the transform CSS property. We also give the group a class name of “label”.

Note that we apply the CSS transform property to a group rather than the text element because the browser Safari doesn’t apply this property correctly to text element. In other browsers, applying the transform directly to the text element works fine.

<g

className="label"

style={{ transform: `translate(${props.x}px, ${props.y}px)` }}

>

<text

x={0}

y={0}

fill={props.color}

textAnchor={props.textAnchor}

alignmentBaseline="middle"

style={{ fontWeight: "bold" }}

>

{props.label}

</text>

</g>

Then, we create a file named Label.css and import it into our component. In this file, we set the transition property of the labels as follows.

.label {

transition: transform 400ms cubic-bezier(0.33, 1, 0.68, 1);

}

Finally, since the group element that wraps the badges is already positioned with a transformed property, all we have to do is to give it a class name of

“label”. Because styles are global by default in React, the transition will apply.

SMOOTH FILTERING OF THE RANKINGS VISUALIZATION

Now that we have had an overview of the three approaches to integrating D3

in a front-end framework, you might still wonder which one to use. Although the correct answer highly depends on the type of projects you work on and your priorities, here are a few guidelines:

1. The first approach, where we allow D3 to control a portion of the DOM, is mainly adapted to quick internal demos and small projects that contain few visualizations, where performance is not the primary concern.

2. The second approach, where the framework solely manipulates the DOM, and we use D3 as a utility library, is preferred whenever possible.

Not only can it enhance performance on large projects, but it also makes maintenance easier across broad teams. In such teams, most developers won't know D3. They will find it easier to understand the code where the SVG elements are built manually rather than with the data-binding pattern or with axis generators.

3. The hybrid approach is to be used with care when there's a clear advantage in letting D3 manipulate a portion of the DOM. If you plan to use D3 to perform transitions, ask yourself if you could use a CSS

transition or animation instead or even an animation library built specifically for your framework of choice.

And we are done with our dashboard! In the next chapter we’ll make it responsive.

8.8 Summary

Modern front-end development projects are usually built with

frameworks like React, Angular, or Svelte. If you ship professional D3

projects, you will likely need to integrate D3 into one of those frameworks.

There are three approaches to using D3 with a framework: giving D3

access to a portion of the DOM, manipulating the DOM with the framework only and using D3 as a utility library, and a hybrid approach where we give D3 access to the DOM occasionally when there’s a clear benefit.

Frameworks allow us to manipulate portions of the DOM with references. Once a reference is set, we can use D3 as we have been in the earlier chapters of this book.

When following the second strategy and manipulating the DOM only with a framework, we cannot use D3’s data-binding pattern, axes generators, event listeners, and transitions, for example. But we still have access to a plethora of useful methods to build visualizations like scales and shape generators.

A case scenario for the hybrid approach is when we need to animate the d attribute of an element. D3’s transition method is advantageous in this case and might not significantly impact the performance of a project.

9 Responsive visualizations

This chapter covers

Discussing the main approaches to responsive design.

Dynamically adapting the size of text elements to fit smaller screens.

Using a responsive grid layout.

Adapting the density of information to different screen sizes.

Changing the orientation of a chart.

In web design, deciding whether a website or a web application should be responsive is no longer a question. We take it for granted that users will access our projects from phones, tablets, and desktop screens. We have clear guidelines and best practices, and adapting standard digital features to different screen sizes is straightforward. But when it comes to digital data visualizations, the process is more challenging and often highly dependent on the type of visualization that we are working on and our target audience.

In this chapter, we will transform the line chart built in chapter 4 and the dashboard built in chapter 8 to make them responsive. As we progress, we’ll introduce key tips and ideas for making responsive digital visualizations.

9.1 What is responsive design

A responsive design is a design that adapts to the most common screen sizes and modalities: from desktop to tablet and mobile and from mouse to touch interactions. According to Statcounter, in October 2022, mobile devices accounted for 58% of the overall internet traffic, desktops 40%, and tablets 2%. Therefore, adapting our data visualizations for mobile users significantly increases their potential reach. For example, visualizations from news articles or storytelling pieces shared on social media are highly likely to be consumed on mobile devices.

Figure 9.1 In October 2022, mobile devices accounted for 58% of the overall traffic on the internet, desktops 40%, and tablets 2%. Source: Statcounter.

[image: Image 201]

Although techniques for developing responsive websites are well established, responsive data visualizations are different. As Hoffswell, Wilmot, and Liu point out, "Techniques for responsive web design [...] are not directly transferable to visualization: webpages primarily employ text wrapping,

image resizing, and document reflow to achieve responsiveness; these approaches offer little insight on visualization challenges such as data encoding, scale adjustment, or annotation placement."[1] Because the process is not straightforward and can be time-consuming, it is crucial to plan additional time and budget to make our data visualizations responsive.

Two fundamental approaches to responsive web design still need to be considered when working with digital data visualizations: mobile-first and desktop-first.

9.1.1 Mobile-first approach

With the mobile-first approach, we first create a design with a mobile layout in mind. This process often implies simpler visualizations adapted to phones’

portrait orientation. Once the mobile design is complete, we can expand it to larger screens by modifying the layout and adding supplementary information and features.

During the implementation phase, we code the mobile version first. We also ensure to load only the styles and code that apply to the mobile version on phones, which can enhance performance. CSS media queries are of type min-width, allowing us to progressively add styles and features that only apply to larger screens.

@media (min-width: 600px) { ... }

9.1.2 Desktop-first approach

With the desktop-first approach, we start by creating a design with the desktop layout in mind. This design can be more intricate and include multiple details and interactions. We then adapt it to smaller screens, sometimes by simplifying the layout and focusing the story on the most critical information.

During the implementation phase, we code the desktop version first. CSS

media queries are of type max-width, allowing to progressively add styles that apply to smaller screens only.

@media (max-width: 600px) { ... }

9.2 A responsive line chart

In this section, we will revisit the temperature line chart built in chapter 4 and make it responsive. As we proceed, we’ll introduce a few tips and ideas for making responsive charts. You can see the responsive layout in figure 9.2 and at https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021-responsive/.

Figure 9.2 Responsive line chart

[image: Image 202]

First, open the folder 9.2-Responsive_line_chart / start in your code editor and start your local web server. Refer to Appendix A if you need a refresher on how to proceed.

note

This chapter’s code file can be found on the book’s GitHub repository at https://github.com/d3js-in-action-third-edition/code-files.

Open the project in your browser and play with the window size. We suggest you open the inspector tool and dock it to the right side of your screen because it is easier to resize the inspector tool than the entire screen. If you use Chrome or Firefox, you can simulate mobile devices with the Device Mode.

We already did a good job making our chart responsive by setting the viewBox attribute of the SVG container and avoiding setting its width and height attributes. Refer to chapter 1, section 1.1.5, for an in-depth discussion about this strategy. But you may have noticed a few issues on smaller screens. The first one is that the labels get way too small to be readable on small screens. This happens because SVG text acts like any other graphical element and scales as an image. The second issue is that the line chart doesn't have enough horizontal space to spread correctly. The dots and axis labels become very close to each other.

Figure 9.3 Although the visualization is responsive, thanks to the viewBox attribute applied to the SVG container, there are still a few issues to address: the text labels are too small, there are too many axis labels, and the dots are very close to each other.

[image: Image 203]

RESPONSIVE LINE CHART - INITIAL

As we adapt a visualization to make it responsive, we want to address two case scenarios:

1. The size of the screen on which the project is initially loaded: Whether

we open the visualization on a phone, a tablet, or a desktop, it should be easy to read and adapted to the screen layout.

2. The user might resize the screen: On desktop, the user might resize their browser window, while on phone and tablet, they might change the orientation of their device. The visualization should adapt dynamically to these changes, with CSS media queries or by listening to the window resize event in Java Script.

9.2.1 Adapting the size of the text labels

Let’s first address the size of the text labels. Currently, the axis labels have a size of 14px, while the other labels have a size of 16px. The SVG container of the line chart has a viewBox attribute of “0, 0, 1200, 500”. On desktop, where the SVG container can expand to its full size (1200 x 500px), the labels match their CSS font-size property and are easily readable. But as we reduce the window width, the whole SVG graphic scales down, including its text elements, making them tiny on phone screens.

To solve this issue, we need to apply a larger font size on smaller screens. We will apply a trick shared by Nadieh Bremer in her blog article “Techniques for Data Visualization on both Mobile & Desktop”

(https://www.visualcinnamon.com/2019/04/mobile-vs-desktop-dataviz/) and use a linear scale to calculate the font size based on the screen width.

Go to the file shared-constants.js and declare the following fontSizeScale.

Its domain extends from a screen width of 600 to 1000px, while its range goes from a font size of 26 to 16px. Note how we also enable the clamp() property to keep D3 from extrapolating the values outside the range. If the screen has a width of 600px or smaller, the font size will be 26px. If it is 1000px or larger, the font size will be 16px. In between, the font size varies.

const fontSizeScale = d3.scaleLinear()

.domain([600, 1000])

.range([26, 16])

.clamp(true);

To apply this scale to our visualization, we need to know the screen's width.

At the top of shared-constants.js, add the following snippet. It declares a

function getWindowWidth() that returns the innerWidth property of the JavaScript window object. We then call this function and store its value in the constant windowWidth.

const getWindowWidth = () => {

return window.innerWidth;

};

let windowWidth = getWindowWidth();

In line-chart.js, at the end of the function drawLineChart(), we call the fontSizeScale to set the font-size style property of each text element contained in the div with an id of line-chart.

d3.selectAll("#line-chart text")

.style("font-size", `${fontSizeScale(windowWidth)}px`); This strategy works fine but adapts the font size only once: on page load. If we resize the screen, nothing happens, and the text labels on the chart still end up with a suboptimal size. To solve this problem, let’s go to the file resize.js and add an event listener for the JavaScript window resize event.

When the resize event is detected, update the value of windowWidth and call the function resizeChart(), where we update the font size of each text element with fontSizeScale.

const resizeChart = () => {

d3.selectAll("#line-chart text") #A

.style("font-size", `${fontSizeScale(windowWidth)}px`); #A

};

window.addEventListener("resize", () => { #B

windowWidth = getWindowWidth(); #B

resizeChart(); #B

}); #B

Finally, to avoid code duplicates, go back to the function drawLineChart() in line-chart.js and, instead of updating the font-size properties directly, call resizeChart(). This way, the code inside resizeChart() will run both at page load and on screen resize.

In your browser, open the inspector tool and select one of the text labels on

the chart. Play with the size of the window. You should see the font-size update dynamically!

9.2.2 Adjusting the axes labels

Because the labels are now larger on phone screens, one could argue that there are too many axis labels on the y-axis. Currently, there’s a label every 10°F. Let’s see how we can reduce it dynamically.

First, let’s distinguish what we will call our desktop layout and our mobile layout. In the file shared-constants.js, declare a new constant named isDesktopLayout. If the window width is greater or equal to 700px set it to true. Otherwise, set it to false.

let isDesktopLayout = windowWidth >= 700 ? true : false; Then, in line-chart.js, specify the number of ticks on the y-axis based on the current layout. On desktop, we want ten ticks, and on mobile, five ticks.

leftAxis = d3.axisLeft(yScale)

.ticks(isDesktopLayout ? 10 : 5);

Finally, to handle window resizing, we go back to resize.js. To update the number of ticks only if we cross the boundary of 700px, where the layout changes from desktop to mobile, we add a condition inside resizeChart(). If the window width is greater than or equal to 700px and isDesktopLayout is false, or if the window width is smaller than 700px and isDesktopLayout is true, we update the value of isDesktopLayout.

We call the leftAxis generator, which we made available by declaring it inside shared-constant.js, and update its number of ticks. We then select the group that contains the y-axis elements (with a class name of “axis-y”) and call leftAxis while applying a smooth transition.

const resizeChart = () => {

...

if ((windowWidth >= 700 && !isDesktopLayout) || #A (windowWidth < 700 && isDesktopLayout)) { #A

isDesktopLayout = !isDesktopLayout; #B

leftAxis #C

.ticks(isDesktopLayout ? 10 : 5); #C

d3.select(".axis-y") #D

.transition() #D

.call(leftAxis); #D

}

};

The number of ticks on your left axis should now update dynamically!

9.2.3 Adopting a minimalistic approach

Working with small screens often means adopting a minimalistic approach.

We focus on the critical pieces of information and remove what is secondary to the understanding of our story.

An example is the annotations displayed on the right side of the visualization.

They are helpful but not necessary to understand what the chart is about.

Also, they take up a lot of horizontal real estate, which we lack on phones (assuming a portrait orientation).

At the bottom of line-chart.js, we already call the function appendAnnotations(), located in annotations.js. Let’s call this function only if isDesktopLayout is true. This condition will ensure that these annotations don't appear on phones' page load.

if (isDesktopLayout) {

appendAnnotations();

}

In shared-constants.js, let’s also set the right margin based on the current layout. If we are on a desktop layout, the right margin is 200px, while it's 10px for smaller screens.

const margin = {

top: 35,

right: isDesktopLayout ? 200 : 10,

 bottom: 35,

left: 45

};

In annotations.js, we then add a new function named removeAnnotations().

In this function, D3 selects the group with a class name of “annotations” and removes it from the DOM with the method remove().

const removeAnnotations = () => {

d3.select(".annotations").remove();

};

Finally, back to resize.js inside the function resizeChart(). Within the condition where isDesktopLayout is updated, we recalculate the right margin and the chart’s inner width. Then, as shown in listing 9.1, we update the range of xScale, the bottom axis, and the chart’s elements. We also add or remove the annotations.

Listing 9.1 Updating the curve and right margin dynamically (resize.js) const resizeChart = () => {

...

if ((windowWidth >= 700 && !isDesktopLayout) ||

(windowWidth < 700 && isDesktopLayout)) {

...

margin.right = isDesktopLayout ? 250 : 10; #A

innerWidth = width - margin.left - margin.right; #A

xScale.range([0, innerWidth]); #B

bottomAxis = d3.axisBottom(xScale) #C

.tickFormat(d3.timeFormat("%b")); #C

d3.select(".axis-x") #C

.transition() #C

.call(bottomAxis); #C

positionXaxisLabels(); #C

if (isDesktopLayout) { #D

appendAnnotations(); #D

} else { #D

 removeAnnotations(); #D

} #D

d3.select(".temperature-area") #E

.transition() #E

.attr("d", areaGenerator(data)); #E

#E

d3.select(".temperature-curve") #E

.transition() #E

.attr("d", curveGenerator(data)); #E

#E

d3.selectAll("circle") #E

.data(data) #E

.join("circle") #E

.transition() #E

.attr("r", 5) #E

.attr("cx", d => xScale(d.date)) #E

.attr("cy", d => yScale(d.avg_temp_F)) #E

.attr("fill", aubergine); #E

}

};

Once completed, your line chart should be better adapted to mobile screens, like in figure 9.4. As you can tell, the changes we have performed are minor.

We increased the size of labels, adjusted the number of axis ticks, and removed secondary information. But if you compare the initial project (https://d3js-in-action-third-edition.github.io/tooltip/) with the final layout (https://d3js-in-action-third-edition.github.io/new-york-city-weather-2021-responsive/) on an actual phone, you'll see a significant improvement of legibility. In the next section, we'll discuss a slightly more complex use case.

Figure 9.4 Completed responsive line chart

[image: Image 204]

RESPONSIVE LINE CHART - FINAL

9.3 A responsive dashboard

In chapter 8, we created a dashboard of the top JavaScript frameworks and built it with React. In this section, we’ll make this dashboard responsive while introducing additional considerations for responsive visualizations.

Because the dashboard is built in React, you'll need a basic knowledge of this framework to follow along with the instructions. You should know how to build components, pass props to children and parent components, manage a component's state, and use React hooks. But if you are unfamiliar with React or don't wish to use it, keep reading this section, as the tips we share for responsive visualization design apply to any digital project.

Figure 9.5 Responsive dashboard

[image: Image 205]

9.3.1 Using a responsive grid

A responsive CSS grid is a great place to start when working with a more complex layout that may contain multiple visualizations or a mix of visualizations and text. For example, our dashboard uses a 12 columns flexbox grid inspired by Bootstrap’s grid system. With the help of CSS media queries and a strategy for class names, we can generate three layouts for our dashboard: one for desktop, one for tablet, and one for mobile. In figure 9.6, each rectangle contains a visualization in this order: rankings visualization, scatterplot, and bar chart.

Figure 9.6 Using a responsive grid to position the visualizations based on the screen width.

[image: Image 206]

A CSS flexbox grid includes three types of components: a container, rows, and columns. The container is responsible for centering the content on the page, providing horizontal padding, and ensuring that the content doesn’t get larger than the specified maximum width. If you open the code files for this section (the start folder in 9.3-Responsive_dashboard) and go to the file grid.css, you’ll find the following style declaration for the element with a class name of container. The margin-right and left properties are set to auto, which centers the div. We also apply 20px of padding on both sides and set the max-width property to 1400px. On figure 9.7, the container div corresponds to the green rectangle. As you can see, it encompasses all the content of the dashboard.

.container {

margin-right: auto;

margin-left: auto;

padding-right: 20px;

padding-left: 20px;

width: 100%;

max-width: 1400px;

}

Figure 9.7 The container is responsible for centering the content on the page, providing horizontal padding, and ensuring that the content doesn’t get larger than the specified maximum width. It encompasses all the visualizations and text of the dashboard.

[image: Image 207]

As their name suggests, we use rows to enclose horizontal blocks of content.

To generate our responsive layout, we need two divs with a class of row, shown as the yellow rectangles in figure 9.8. On the desktop layout, the outer row creates a block that contains the rankings visualization on the left and the stacked scatterplot and bar chart on the right. On tablet, the inner row creates a second horizontal block where the scatterplot is displayed on the left and the bar chart on the right. Both rows remain present on all screen sizes.

Figure 9.8 Rows enclose horizontal blocks of content. For our responsive layout, we need two rows: one for the desktop layout, with the rankings chart on the left and the other charts on the right, and one for the tablet layout, with a second horizontal block that includes the scatterplot and the bar chart.

[image: Image 208]

In the following snippet, we give the rows a display property of flex, which will allow us to generate the desired layout in a moment. The flex-wrap ensures that children can wrap onto multiple lines, and the negative margins account for the gutter, or horizontal space between elements, that will be created with the columns.

.row {

display: flex;

flex-wrap: wrap;

margin-left: -10px;

margin-right: -10px;

}

In this grid system, the word column has two meanings, which can be confusing. First, the "column elements" are actual divs in the markup with a class name starting with col-. Then, there's the "12 columns grid system" that we use as a design reference to distribute our content horizontally.

In figure 9.9, we see the column elements as blue rectangles. They dictate the width of their content and need to be the immediate children of a row element for the styles to work as expected.

We handle the columns layout with two sets of properties. The first one applies to all the elements with a class name starting with the term “col-“.

Such elements have a left and right padding of 10px, creating the gutter, and a width of 100% of their parent.

[class^="col-"] {

position: relative;

width: 100%;

min-height: 1px;

padding-right: 10px;

padding-left: 10px;

}

Figure 9.9 Column elements dictate the width of their content. They must be immediate children of a row element.

[image: Image 209]

As mentioned previously, we base our design on a 12 columns grid system.

Using such a grid of 12 columns is very common because this number can easily be subdivided (by 12, 6, 4, 3, 2, and 1). We also have three screen sizes: small, medium, and large. To use a mobile-first approach, we first give the class names that apply to small screens, then to medium screens, and finally to large screens.

Let’s take the scatterplot and bar chart visualizations as examples. On small screens (like phones), we want them to take the entire width of the screen.

We’ll give them a class of col-12, to spread them over all the 12 columns.

On medium screens (like tablets), we want them to take 50% of the screen’s width or six columns. Their class names will be col-md-6. It’s like saying,

“from the medium screen width, take up six columns”. Finally, on large screens (desktop), we want them to take all the width available in their row parent (12 columns). We’ll give them a class name of col-lg-12, which means “from large screens, take up 12 columns”. Note that every row element creates a new grid layout of 12 columns. On desktop, the outer row englobes the rankings chart, which spreads over nine columns, and the right part of the screen, which takes three columns. The right part of the screen contains a second row element, from which we start a new 12 columns layout. The scatterplot and bar chart it contains both spread along these 12

columns.

In the following snippet, you can see how we handle these class names. For 12 columns, we give a flex shorthand property of 0 0 100% (flex-grow flex-shrink flex-basis) and a max-width of 100%. In the flex shorthand property, we apply a flex-grow and flex-shrink of zero to ensure that the columns' desired width is respected while the flex-basis handles the actual width of the column.

We also handle the different screen sizes with CSS media queries: the medium screen has a min-width of 600px, and the large screen has a min-width of 1100px. These numbers will vary from project to project and are chosen to ensure that the dashboard looks good on any screen size.

.col-12 {

flex: 0 0 100%;

 max-width: 100%;

}

.col-3 {

flex: 0 0 25%;

max-width: 25%;

}

@media (min-width: 600px) {

.col-md-6 {

flex: 0 0 50%;

max-width: 50%;

}

}

@media (min-width: 1100px) {

.col-lg-12 {

flex: 0 0 100%;

max-width: 100%;

}

}

If you are new to the CSS flex property, it might be a lot of information to assimilate. For more details, refer to the article A Complete Guide to Flexbox by CSS -Tricks (https://css-tricks.com/snippets/css/a-guide-to-flexbox/).

note

We can also create a responsive grid with the CSS grid property.

Let’s see this strategy in action for our dashboard. With the project open in your code editor, open your terminal and run the command npm install, followed by npm run start.

In your browser, you’ll see that the desktop layout is already in place (9 col -

3 col). But if you resize your screen, the same layout remains, which is not ideal for phones and tablets. In the file App.js, we already have a div with a class name of container. Then, in Charts.js, we have two divs with a class name of row, as illustrated in figure 9.7. In listing 9.2, we only have to change the class names applied to the chart columns (the ones starting with col-).

We give the wrapper of the rankings chart the class names col-12 and col-lg-9. These classes mean "on small screens, spread over 12 columns and from large screens, take up nine columns". Similarly, for the div that wraps both the scatterplot and the bar chart, we give the classes col-12 and col-lg-

3. Finally, the individual wrappers of the scatterplot and the bar chart take the class names col-12, col-md-6, and col-lg-12. On small screens, they'll spread over 12 columns, on medium screens, they'll take up six columns and on large screens, 12, or the entire width available in their parent with a class of row.

Listing 9.2 Creating the responsive layout (Charts.js)

<Fragment>

<h1>Front-end Frameworks</h1>

<div className='row'>

<div className='col-12 col-lg-9'> #A

<Rankings ... />

</div>

<div className='col-12 col-lg-3'> #B

<div className='row'>

<div className='col-12 col-md-6 col-lg-12'> #C

<ScatterplotReactControlled ... />

</div>

<div className='col-12 col-md-6 col-lg-12'> #C

<BarChart ... />

</div>

</div>

</div>

</div>

...

</Fragment>

Because all the required styles are already declared in grid.css, if you resize your screen, the dashboard should adapt to the three layouts illustrated in figures 9.6 to 9.9.

9.3.2 Adapting the density of information

Now that we handled the responsive grid let’s focus on the rankings chart. On small screens, you’ll notice that the badges get tiny, and the labels are hard to read. A strategy for mobile design is to reduce the density of information by focusing on the essentials. For example, instead of showing the rankings for all the years between 2016 to 2021, we could focus only on 2016, 2019, and 2021. Our story would still work but would focus on the main shifts that

occurred between those years.

First, we need to know what’s the current layout based on the screen width.

Let’s say we want the rankings visualization to have a “desktop” layout on screens larger or equal to 600px and a “mobile” layout on smaller screens. In listing 9.3, we declare a constant named breakpoint and set its value to 600.

Then, we declare a function called getLayout() that returns “desktop” or

“mobile” based on the innerWidth property of the JavaScript window object.

Note that we have declared this constant and function outside the Charts component because they don’t need any related props or variables. Then, inside the Charts component, we declare a state variable named layout and initialize its value by calling getLayout().

Inside the anonymous function passed to a useEffect hook, we attach an event listener to the JavaScript window object. Every time the window is resized, we call a function named handleWindowResize() that gets the innerWidth of the window. If the width is greater or equal to the breakpoint and the layout is

“mobile” or if the width is smaller than the breakpoint and the layout is desktop, we update the layout state variable by calling getLayout().

Note that we also define a clean-up function in the return statement of the useEffect hook that removes the event listener when the component is unmounted. We also pass the layout state variable as a dependency.

Listing 9.3 Getting the window width and listening to the window resize event (Charts.js) import { Fragment, useState, useEffect } from 'react'; #A import * as d3 from 'd3';

const breakPoint = 600; #B

const getLayout = () => { #B

const layout = window.innerWidth >= breakPoint ? "desktop" : "mobile"; #B

return layout; #B

}; #B

const Charts = props => {

const [layout, setLayout] = useState(getLayout()); #C

const margin = {top: 30, right: 10, bottom: 50, left: 60}; useEffect(() => {

 const handleWindowResize = () => { #D

const windowWidth = window.innerWidth; #D

if ((windowWidth >= breakPoint && layout === "mobile") || #D

(windowWidth < breakPoint && layout === "desktop")) { #D

setLayout(getLayout()); #D

} #D

}; #D

#D

window.addEventListener('resize', handleWindowResize); #D

return () => { #E

window.removeEventListener('resize', handleWindowResize); #E

}; #E

}, [layout]); #F

return (

<Fragment>

...

</Fragment>

)

};

export default Charts;

In a moment, we will create a second rankings component, named RankingsMobile, that we'll use to display the mobile version of the rankings visualization. In listing 9.4, if the layout state variable is equal to "desktop"

we call the Rankings component; otherwise, we call RankingsMobile. Note that we have moved the rankingsFilters array to the Charts component to make it available to both Rankings and RankingsMobile. We have also moved the functions that handle the filter selection to Charts.

Listing 9.4 Calling the Rankings or the RankingsMobile component based on the layout (Charts.js)

...

const rankingFilters = [#A

{ id: "satisfaction", label: "Satisfaction" }, #A

{ id: "interest", label: "Interest" }, #A

{ id: "usage", label: "Usage" }, #A

{ id: "awareness", label: "Awareness" }, #A

]; #A

const Charts = props => {

...

const [activeFilter, setActiveFilter] = useState("satisfaction"); #B

const filterSelectionHandler = (id) => { #B

if (activeFilter !== id) { #B

setActiveFilter(id); #B

} #B

}; #B

return (

<Fragment>

<h1>Front-end Frameworks</h1>

<div className='row'>

<div className='col-12 col-lg-9'>

{layout === "desktop" #C

? <Rankings #C

margin={margin} #C

data={props.data} #C

colorScale={colorScale} #C

rankingFilters={rankingFilters} #C

activeFilter={activeFilter} #C

onFilterSelection={filterSelectionHandler} #C

/> #C

: <RankingsMobile #C

margin={margin} #C

data={props.data} #C

colorScale={colorScale} #C

rankingFilters={rankingFilters} #C

activeFilter={activeFilter} #C

onFilterSelection={filterSelectionHandler} #C

/>

}

</div>

<div className='col-12 col-lg-3'>

...

</div>

</div>

...

</Fragment>

)

};

export default Charts;

Finally, in listing 9.5, we create the RankingsMobile component. It is very similar to the Rankings component created in the last chapter, the differences being the following:

The chart's width, height, right margin, and left margin are different.

We create an array with the years we want to display on the visualization. We opt for the dataset's first, last, and median years. Feel free to change the years in this array to see how it affects the layout!

We make a deep copy of the experience data received as props and save it in a constant named mobileData. Then, we loop through mobileData and keep only the data included in the years array.

We render the visualization exactly like we have been doing in Rankings.js, the only difference being that no framework labels are displayed to the left of the chart.

Listing 9.5 Create the RankingsMobile component (RankingsMobile.js)

...

const RankingsMobile = props => {

const width = 300; #A

const height = 550; #A

const marginRight = 120; #A

const marginLeft = 30; #A

const innerWidth = width - marginRight - marginLeft;

const innerHeight = height - props.margin.top - props.margin.bottom; const firstYear = props.data.years[0]; #B

const lastYear = props.data.years[props.data.years.length - 1]; #B

const middleYear = Math.round(d3.median([firstYear, lastYear])); #B

const years = [firstYear, middleYear, lastYear]; #B

const mobileData = JSON.parse(JSON.stringify(props.data.experience)); #C

mobileData.forEach(framework => { #C

framework.awareness = framework.awareness.filter(d => years.includes(d.year)); #C

framework.interest = framework.interest.filter(d => years.includes(d.year)); #C

framework.satisfaction = framework.satisfaction.filter(d => years.includes(d.year)); #C

framework.usage = framework.usage.filter(d => years.includes(d.year)); #C

}); #C

const xScale = d3.scalePoint()

.domain(years)

.range([0, innerWidth]);

 const yScale = d3.scalePoint()

.domain(d3.range(1, props.data.ids.length + 1))

.range([0, innerHeight]);

return (

<Card>

<h2>Rankings</h2>

<RankingFilters

filters={props.rankingFilters}

activeFilter={props.activeFilter}

onFilterSelection={props.onFilterSelection}

/>

<ChartContainer

width={width}

height={height}

margin={{ top: props.margin.top, right: marginRight, bottom: props.margin.bottom, left: marginLeft }}

>

...

</ChartContainer>

</Card>

);

};

export default RankingsMobile;

Once completed, your mobile version of the rankings visualization should look like the one in figure 9.8.

Figure 9.10 On the mobile layout of the rankings chart, we reduce the number of years we display to three. Reducing information density allows us to adapt to the screen's width while still showing the main trends. We also removed the framework labels on the left of the chart.

[image: Image 210]

9.3.3 Changing the orientation of a chart Some types of visualizations take up lots of horizontal space, like line charts and streamgraphs. But phones are primarily used in portrait mode, where the height is much larger than the width. Changing the orientation of a chart can be a handy way to accommodate phones’ layouts.

An example is the bar chart on our dashboard. On desktop, the name of the frameworks are displayed along the x-axis, and the percentage of awareness on the y-axis. If we look at this chart on mobile, the framework names are cramped together and hard to read.

Exercise: Change the orientation of the bar chart on mobile Change the orientation of the bar chart on mobile by making the bars horizontal and displaying the framework names along the y-axis.

· Create a new component named BarChartMobile that will render the mobile layout of the bar chart.

· In Charts.js, if the layout is “desktop”, call the BarChart component; otherwise, call BarChartMobile.

· To render the names of the frameworks along the y-axis, you can create a new axis generator function for vertical band scales in Axis.js.

· Instead of displaying an axis for the awareness percentages, show the rounded values at the tip of each bar. Check figure 9.9 for an example.

FIgure 9.11 Changing the orientation of a chart can be a handy strategy for responsive visualizations. Here, the framework labels of our bar chart get cramped together on mobile. We can take up more space by displaying them vertically instead of horizontally. We also show the awareness percentages as labels instead of on an axis, making the information readily available.

[image: Image 211]

If at any point you are stuck or want to compare your solution with ours, you will find it in section D.9.1 of appendix D and folder 9.3-Responsive_dashboard / end of this chapter’s code files. But, as usual, we encourage you to try to complete it on your own. Your solution might differ slightly from ours, and that’s all right!

9.4 Additional tips

This chapter covered many concrete tips for transposing digital visualizations onto small screens. But this was far from being exhaustive. Here are additional ideas for helping you adapt your projects:

Certain types of visualizations don’t adapt well to mobile screens, radial visualizations being an example. For such projects, it might be worth opting for a completely different type of chart on mobile.

Some projects, like internal BI dashboards, often don’t need to be accessed on phones. In that case, desktop design is enough.

Complex visualizations that contain hundreds, if not thousands, of elements can require a lot of resources, especially on mobile. If a visualization won’t change over time and is not interactive, it might make sense to serve it only as a static image on mobile.

When relevant, ensure that users can zoom and pan mobile visualizations. This is especially true for maps and network layouts.

Make the primary information readily accessible. On mobile, interacting with visualizations can be cumbersome, and tooltips don’t work very well. Ensure all the information essential to your story is displayed directly on the screen or is easy to access.

Fingers are way bigger than cursors! If you plan to make your project interactive on mobile, ensure that the user can comfortably and intuitively trigger touch events.

For visualizations that take a lot of horizontal real estate and where we don't want to change the chart's orientation, we can consider allowing users to scroll horizontally. This approach allows the chart to be bigger while making it relatively easy to explore.

Here are resources to dig deeper into responsive visualizations:

Nadieh Bremer, Techniques for Data Visualization on both Mobile & Desktop, visualcinnamon.com/2019/04/mobile-vs-desktop-dataviz/

Diana MacDonald, Designing for Small Screens: Responsive Data Viz, Resizing, and Aspect Ratios,

https://observablehq.com/@didoesdigital/9-june-2020-designing-for-small-screens-responsive-data-viz

Bill Hinderman, Building Responsive Data Visualization for the Web, Wiley, 2015, 448 pages.

9.5 Summary

Today, a majority of internet content is consumed on phones. Hence, adapting our data visualizations for smaller screens is critical to reaching a larger audience.

Although techniques for developing responsive websites are well established, approaches to responsive data visualizations are not. The strategy depends on the type of chart you are working with and your audience.

Depending on our priorities or preferences, we can create responsive designs in two ways: with a mobile-first or a desktop-first approach.

There is no one-size-fits-all way to make responsive visualizations. In this chapter, we have used a linear scale to dynamically adapt the size of labels based on screen width. We have also reduced the number of ticks on an axis and removed secondary information.

Responsive grids make responsive layouts easy to develop. Such layouts can include multiple visualizations or a mix of visualizations and text.

For charts that mainly take horizontal space, we can consider changing their orientation on phones (assuming the phone is used in portrait mode).

[1] Jane Hoffswell, Wilmot Li and Zhicheng Liu, “Techniques for Flexible Responsive Visualization Design,” in CHI, 2020.

Appendix A. Setting up a local

development environment

This chapter covers

Installing the code editor VS Code.

Setting a local web server with the Live Server extension.

Starting and stopping a local development environment.

A.1 VS Code

If you don’t have VS Code already installed on your computer, follow these instructions:

1. Go to https://code.visualstudio.com/Download

2. Select the version corresponding to your operating system (Windows, Linus, or Mac) and download the installer.

Windows

1. If you downloaded VS Code for Windows, run the installer and follow the instructions.

2. Once VS Code installation is complete, select the Launch Visual Studio code option and click the Finish button.

Mac OS

1. If you are working with the Mac version, locate the downloaded zip file and double-click to expand it.

2. Drag the expanded file, named Visual Studio Code.app, to your Applications folder.

3. Double-click on the application icon to open VS Code.

Linux

1. If you downloaded VS Code for Linux, your installation strategy will depend on your operating system. Go to

https://code.visualstudio.com/docs/setup/linux to find detailed instructions.

2. Once you are done, open VS Code.

A.2 Installing and using the Live Server extension

VS Code offers a large number of extensions that you can browse and install directly from the code editor’s window. One of these extensions, named Live Server, allows you to launch a local web server with the click of a button. It also has an auto-reload feature, which is pretty neat.

1. In VS Code, locate the Extensions icon on the left side of the screen.

A.1 Finding the Extensions icon in VS Code’s interface

[image: Image 212]

2. Click on the icon to open the Extensions search bar.

3. In the search bar, type “live server”.

A.2 Searching for the Live Server extension

[image: Image 213]

4. The Live Server extension will likely appear as the first result. Select it to open the extension’s details page.

5. On the details page, click install.

A.3 Installing the Live Server extension from its detail page

[image: Image 214]

[image: Image 215]

6. Reload VS Code: Quit the application and relaunch it.

7. Open any web project in VS Code. Here we use the start folder of chapter’s 2 coding files (https://github.com/d3js-in-action-third-edition/code-files).

To do so, open a VS Code window, go to File > Open in the menu bar and browse to the start folder's location. If you are working on a Mac, you can also locate the folder with Finder and drag it onto the VS Code icon.

8. Whenever the Live Server extension detects that a web project is available, the Go live option becomes available in the status bar at the bottom of the VS Code window. Click on it to start a local web server.

A.4 Click on the Go live button to start a local web server.

9. The project automatically opens as a new tab in your default browser.

For now, it is a simple white page containing the title “You are about to start working with D3!”.

A.5 Your project will automatically open as a new tab in your default browser.

[image: Image 216]

[image: Image 217]

10. In the status bar, note that the Go live button has been replaced by the port on which the project is running. You can open the project in the browser of your choice by typing localhost:port_number, for example, localhost:5500, in the URL bar.

A.6 The port on which the project is running is displayed in the status bar. Click on it to stop the web server.

11. To test the auto-reload feature, change the text of the title in the index.html file and save the project. It will automatically reload the page and show your changes.

12. When you are done working on a project, you can stop the server by clicking on the Port number in the status bar.

Appendix D. Exercise solutions

D.1 Solutions chapter 6

D.1.1 Build a pyramid chart

Listing D.6.1 Build a pyramid chart (pyramid.js)

const dataWomen = data.filter(d => d.gender === "Female"); #A const binsWomen = d3.bin() #A

.value(d => d.salary)(dataWomen); #A const dataMen = data.filter(d => d.gender === "Male"); #A const binsMen = d3.bin() #A

.value(d => d.salary)(dataMen); #A const xScaleWomen = d3.scaleLinear() #B

.domain([15, 0]) #B

.range([0, innerWidth/2]); #B

const xScaleMen = d3.scaleLinear() #B

.domain([0, 15]) #B

.range([innerWidth/2, innerWidth]); #B

const minSalary = binsWomen[0].x0; #C

const maxSalary = binsWomen[binsWomen.length - 1].x1; #C

const yScale = d3.scaleLinear() #C

.domain([minSalary, maxSalary]) #C

.range([innerHeight, 0]); #C

const pyramidContainer = innerChart #D

.append("g") #D

.attr("stroke", white) #D

.attr("stroke-width", 2); #D

pyramidContainer #E

.selectAll(".bar-women") #E

.data(binsWomen) #E

.join("rect") #E

.attr("class", "bar-women") #E

.attr("x", d => xScaleWomen(d.length / data.length * 100)) #E

.attr("y", d => yScale(d.x1)) #E

.attr("width", d => innerWidth/2 - xScaleWomen(d.length / #E

➥ data.length * 100)) #E

.attr("height", d => yScale(d.x0) - yScale(d.x1)) #E

.attr("fill", womenColor); #E

pyramidContainer #E

.selectAll("bar-men") #E

.data(binsMen) #E

.join("rect") #E

.attr("class", "bar-men") #E

.attr("x", innerWidth/2) #E

.attr("y", d => yScale(d.x1)) #E

.attr("width", d => xScaleMen(d.length / data.length * 100) - #E

➥ innerWidth/2) #E

.attr("height", d => yScale(d.x0) - yScale(d.x1)) #E

.attr("fill", menColor); #E

const bottomAxisFemales = d3.axisBottom(xScaleWomen) #F

.tickValues([15, 10, 5, 0]) #F

.tickSizeOuter(0); #F

innerChart #F

.append("g") #F

.attr("transform", `translate(0, ${innerHeight})`) #F

.call(bottomAxisFemales); #F

const bottomAxisMales = d3.axisBottom(xScaleMen) #F

.tickValues([5, 10, 15]) #F

.tickSizeOuter(0); #F

innerChart #F

.append("g") #F

.attr("transform", `translate(0, ${innerHeight})`) #F

.call(bottomAxisMales); #F

svg #F

.append("text") #F

.text("Percent") #F

.attr("text-anchor", "middle") #F

.attr("x", margin.left + innerWidth/2) #F

.attr("y", height - 3); #F

const leftAxis = d3.axisLeft(yScale); #G

innerChart #G

.append("g") #G

.call(leftAxis); #G

svg #G

.append("text") #G

.text("Yearly salary (USD)") #G

.attr("x", 0) #G

.attr("y", 20); #G

D.1.2 Append axes to the violin charts

Listing D.6.2 Append the axes to the violin charts (violins.js) const bottomAxis = d3.axisBottom(xScale) #A

.tickSizeOuter(0); #A

innerChart #A

.append("g") #A

.attr("transform", `translate(0, ${innerHeight})`) #A

.call(bottomAxis); #A

const leftAxis = d3.axisLeft(yScale); #B

innerChart #B

.append("g") #B

.call(leftAxis); #B

svg #B

.append("text") #B

.text("Yearly salary (USD)") #B

.attr("x", 0) #B

.attr("y", 20); #B

D.1.3 Add the interquartile ranges and the mean values to the violin plots

Listing D.6.3 Add the interquartile ranges and the mean values to the violin plots (violins.js) roles.forEach(role => {

...

const width = 8;

roleContainer #A

.append("rect") #A

.attr("x", xScale(role.id) - width/2)#A

.attr("y", yScale(role.quartiles[2]))#A

.attr("width", width) #A

.attr("height", yScale(role.quartiles[0]) - #A

➥ yScale(role.quartiles[2])) #A

.attr("rx", 4) #A

.attr("ry", 4) #A

.attr("fill", gray); #A

roleContainer #B

.append("circle") #B

.attr("cx", d => xScale(role.id)) #B

.attr("cy", d => yScale(role.mean)) #B

 .attr("r", 3) #B

.attr("fill", white); #B

};

D.2 Solutions chapter 7

D.2.1 Create the axis and append the circles to the scatterplot Listing D.7.1 Adding axes and circles to a scatterplot (scatterplot.js) const bottomAxisGenerator = d3.axisBottom(xScale); #A innerChart #A

.append("g") #A

.attr("class", "axis-x") #A

.attr("transform", `translate(0, ${innerHeight})`) #A

.call(bottomAxisGenerator); #A

const leftAxisGenerator = d3.axisLeft(yScale); #B

innerChart #B

.append("g") #B

.attr("class", "axis-y") #B

.call(leftAxisGenerator); #B

svg #C

.append("text") #C

.text("Estimated population") #C

.attr("text-anchor", "end") #C

.attr("x", margin.left + innerWidth + 20) #C

.attr("y", height - 3) #C

.style("font-size", "18px"); #C

svg #C

.append("text") #C

.text("Max size (m)") #C

.attr("dominant-baseline", "hanging") #C

.attr("y", 15) #C

.style("font-size", "18px"); #C

innerChart #D

.selectAll(".cetacean") #D

.data(data) #D

.join("circle") #D

.attr("class", "cetacean") #E

.attr("cx", d => xScale(d.global_population_estimate)) #E

.attr("cy", d => yScale(d.max_size_m)) #E

.attr("r", d => rScale(d.max_weight_t)) #E

.attr("fill", d => colorScale(d.status)) #E

.attr('fill-opacity', 0.6) #E

.attr("stroke", d => colorScale(d.status)) #E

.attr("stroke-width", 2); #E

D.2.2 Create a tooltip

Listing D.7.2 Adding event listeners to the circles (scatterplot.js) innerChart

.selectAll(".cetacean")

.data(data)

.join("circle")

.attr("class", "cetacean")

...

.on("mouseenter", showTooltip) #A

.on("mouseleave", hideTooltip); #B

Listing D.7.3 Create and handle the tooltip (interactions.js) const appendTooltip = () => { #A

const tooltip = innerChart #A

.append("text") #A

.attr("class", "tooltip") #A

.attr("text-anchor", "middle") #A

.attr("fill", "#192e4d") #A

.style("opacity", 0);#A

}; #A

const showTooltip = (e, d) => { #B

const cx = e.target.getAttribute("cx"); #B

const cy = e.target.getAttribute("cy"); #B

const r = e.target.getAttribute("r"); #B

#B

d3.select(".tooltip") #B

.attr("x", cx) #B

.attr("y", cy - r - 10) #B

.text(d.common_name) #B

.transition() #B

.style("opacity", 1); #B

}; #B

const hideTooltip = (e, d) => { #C

d3.select(".tooltip") #C

.attr("y", -500) #C

.style("opacity", 0); #C

}; #C

Listing D.7.4 Append event listeners to the entering selection (interactions.js)

const handleClickOnFilter = (data) => {

...

d3.selectAll(".filter")

.on("click", (e, datum) => {

if (!datum.isActive) {

innerChart

.selectAll("circle")

.data(updatedData, d => d.uid)

.join(

enter => enter

.append("circle")

...

.on("mouseenter", showTooltip) #A

.on("mouseleave", hideTooltip) #B

...,

update => update,

exit => exit

...

)

}

});

};

D.3 Solutions chapter 8

D.3.1 Bar chart

Listing D.8.1.1 Pass the experience data and the color scale to the BarChart component (Chart.js) const Charts = props => {

...

return (

<h1>Front-end Frameworks</h1>

<div className='row'>

...

<div className='row'>

...

<div className='col-12'>

<BarChart

data={props.data.experience}

margin={margin}

colorScale={colorScale}

/>

</div>

</div>

</div>

);

};

Listing D.8.1.2 Set the attributes of the rectangle component (Rectangle.js) const Rectangle = props => {

return (

<rect

x={props.x}

y={props.y}

width={props.width}

height={props.height}

fill={props.fill}

/>

)

};

Listing D.8.1.3 Prepare the axis of type band (Axis.js)

const AxisBandBottom = props => {

return (

<g className="axis" transform={`translate(0, ${props.innerHeight})`} >

<line x1={0} y1={0} x2={props.innerWidth} y2={0} />

{props.ticks.map(tick => (

<text

key={tick}

textAnchor="end"

alignmentBaseline="middle"

transform={`translate(${props.scale(tick) + props.scale.bandwidth() / 2}, 8) rotate(-90)`}

>

{tick}

</text>

))}

</g>

);

};

Listing D.8.1.4 Append the axis to the bar chart and a rectangle for each framework (BarChart.js)

import * as d3 from "d3";

import Card from '../UI/Card';

import ChartContainer from '../ChartComponents/ChartContainer'; import Axis from "../ChartComponents/Axis";

import Rectangle from "../ChartComponents/Rectangle"; const BarChart = props => {

const width = 300;

const height = 245;

const marginBottom = 85;

const innerWidth = width - props.margin.left - props.margin.right; const innerHeight = height - props.margin.top - marginBottom; const awarenessData = []; #A props.data.forEach(d => { #A const awareness = { #A id: d.id, #A name: d.name, #A awareness_percentage: d.awareness[d.awareness.length -1].percentage_question #A

}; #A awarenessData.push(awareness); #A

}); #A awarenessData.sort((a, b) => b.awareness_percentage - a.awareness_percentage);#A const xScale = d3.scaleBand() #B

.domain(awarenessData.map(d => d.name)) #B

 .range([0, innerWidth]) #B

.padding(0.2); #B

const yScale = d3.scaleLinear() #B

.domain([0, 100]) #B

.range([innerHeight, 0]); #B

return (

<Card>

<h2>Awareness</h2>

<ChartContainer ... >

<Axis #C

type="band" #C

scale={xScale} #C

ticks={awarenessData.map(d => d.name)} #C

innerWidth={innerWidth} #C

innerHeight={innerHeight} #C

/>

<Axis #D

type="left" #D

scale={yScale} #D

innerWidth={innerWidth} #D

innerHeight={innerHeight} #D

label={"Awareness %"} #D

/> #D

{awarenessData.map(framework => (#E

<Rectangle #E

key={`rectangle-${framework.id}`} #E

x={xScale(framework.name)} #E

y={yScale(framework.awareness_percentage)} #E

width={xScale.bandwidth()} #E

height={innerHeight - yScale(framework.awareness_percentage)} #E

fill={props.colorScale(framework.id)} #E

/> #E

))} #E

</ChartContainer>

</Card>

)

};

D.3.2 Ranking badges

Listing D.8.1.5 Create the Badge component (Badge.js) import Circle from "../ChartComponents/Circle"; const Badge = props => {

 return (

<g style={{ transform: `translate(${props.translation[0]}px, ${props.translation[1]}px)` }}> #A

<Circle #B

cx={0} #B

cy={0} #B

r={18} #B

fill={"#fff"} #B

stroke={props.strokeColor} #B

strokeWidth={3} #B

/> #B

<text #C

textAnchor="middle" #C

alignmentBaseline="middle" #C

fill="#374f5e" #C

style={{ fontSize: "12px", fontWeight: "bold" }} #C

> #C

{props.label} #C

</text> #C

</g>

);

};

export default Badge;

Listing D.8.1.6 Call the Badge from the Rankings component (Rankings.js) const Rankings = props => {

...

return (

<Card>

<h2>Rankings</h2>

<RankingFilters ... />

<ChartContainer ... >

...

{props.data.experience.map((framework, i) => (

<g key={`curve-${framework.id}`}>

<Curve ... />

...

{framework[activeFilter].map((selection, i) => (#A

<Fragment key={`${framework.id}-selection-${i}`}> #A

{selection.rank && #B

<Badge #B

translation={[xScale(selection.year), yScale(selection.rank)]} #B

strokeColor={props.colorScale(framework.id)} #B

label={`${Math.round(selection.percentage_question)}%`} #B

/> #B

 }

</Fragment>

))}

</g>

))}

</ChartContainer>

</Card>

)

};

Document Outline

	Copyright_2022_Manning_Publications

	welcome

	1_An_introduction_to_D3.js

	2_Manipulating_the_DOM

	3_Working_with_data

	4_Drawing_lines,_curves,_and_arcs

	5_Pie_and_stack_layouts

	6_Visualizing_distributions

	7_Interactive_visualizations

	8_Integrating_D3_in_a_front-end_framework

	9_Responsive_visualizations

	Appendix_A._Setting_up_a_local_development_environment

	Appendix_D._Exercise_solutions

index-392_1.jpg
RANKINGS RETENTION VS USAGE

1. D3 controlled
2. React controlled

AWARENESS

Nl

index-388_1.jpg
FRONT-END FRAMEWORKS

RANKINGS

Embex

2016

| satisfaction ! Interest | Usage | Awareness |

solid
Svelte
React
Vue.js
Alpine.js
Lit
Preact
stimulus
Angular

Ember

2018 2019 2020 2021

RETENTION VS USAGE

Retention

3 5000

User Count

AWARENESS

100
0
8
2 5o
H
g
El
g
z
o
EoHoHE o
I
gTSEEgT
§s332 89
23325 pe
2PaTE g
£ 3
2

Solid

10000

Lit

Stimulus

index-404_1.jpg
RANKINGS RETENTION VS USAGE

1. D3 controlled
2. React controlled

AWARENESS

"I“lln. e

index-399_1.jpg
SVG container

X <svg></svg>
margin.top
Y % <g></g>
Yy
v translate(margin.left, margin.top)

iner

“—> —>

margin.bottom

index-376_1.jpg
Data update without key function

data = [data = [
"blue whale", —» <circle-A> "gray whale", —» <circle-A>
"beluga", —» <circle-B> _> "blue whale", —» <circle-B>
"striped dolphin" —» <circle-C> "narwhal", —» <circle-C>

il ; "striped dolphin" —» <circle-D>

119
Data update with key function

data = [data = [
"blue whale", —» <circle-A> "gray whale", —» <circle-D>
"beluga", —» <circle-B> _> "blue whale", —» <circle-A>
"striped dolphin" —» <circle-C> "narwhal", —» <circle-E>

1 "striped dolphin" —» <circle-C>

17

index-372_1.jpg
Max size (m)
35

30
25
20
15

10

1 10 100 1k 10k 100k ™ 10M
Estimated population

index-383_1.jpg
Max size (m)
35

30

25 ‘

north Pacific right whale

20

15

10

1 10 100 1k 10k 100k ™ 10M
Estimated population

index-378_1.jpg
data = [dat
"blue whale", —» <circle-A>
"beluga", —> <circle-B> —fp 5

"striped dolphin" —» <circle-C>

enter selection

a=[

"gray whale",

blue whale",

—
—’
"narwhal", —>
—’

"striped dolphin"

visualization

update selection

exit selection

<circle-D>
<circle-a>
<circle-E>
<circle-c>

cover_image.jpg
copyright-2022-
manning-
publications.html

index-370_1.jpg
Circle sized with a linear scale Circle sized with a radial scale

—————— 200t
—————— 200t
— — 100t
— 100t
— — 10t

- — —— 10t

index-368_1.jpg
Population of cetacean species over a linear axis

OEBee—e© 06— 00— T T g 4 v T T - @
0 M 2M 3M

Population of cetacean species over a logarithmic axis

— @SB Or B — 0 0 0-0— I CS- SR ®—8-8———m
1 10 100 1k 10k 100k M 10M

index-355_1.jpg
@ Vinyl: 110M$

@ 8-Track: OM$

@ Cassette: 2,600M$
@ CD: 16,000M$

© Download: 0M$
@ Streaming: 0OM$

® Other: 520M$

1997

index-352_1.jpg
Weekly average temperature

Temperature (°F)

90 -

80 -

70 |

60 - Maximum temperature

50 4 Average temperature

40
30 - Minimum temperature

20

10 4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

index-361_1.jpg
® Vinyl: 8,000M$
@ 8-Track: 3,000M$
@ Cassette: 400M$
@ CD: 0M$

© Download: 0M$
@ Streaming: OM$

© Other. 90M$
1

1973

index-357_1.jpg
1. Build the tooltip with SVG
elements and append it to
the inner chart. Position it

over the first year and set
the corresponding values for
the sales breakdown.

2. Attach an event listener to
the streamgraph paths using
"mousemove" as the event

type.

3. When the mouse moves
over the streamgraph, get its
horizontal position (relative
to the streamgraph) with the
method d3.pointer().
Translate the tooltip to the

mouse position.

4. Pass the horizontal
position to the invert()
method of xScale to obtain
the year matching the mouse
position.

Find the data corresponding
to the year in the original
dataset and populate the
tooltip labels with the sales
of each format.

@ Vinyl: 8,300M$
@ 8-Track: 2,800M$

Total: 12,000M$

Sales
breakdown

<g>
<line />
<text>1973</text>
<g>
<text>
<tspan>Vinyl: $</tspan>
<tspan>8-Track: $</tspan>
</text>
<circle />
<circle />
</g>
</g>

paths
.on("mousemove", e => {

// Do something

.on("mousemove", e => {
x => d3.pointer(e)[0]

)

.on("mousemove", e => {

Year => xScale.invert(x)
Sales => year data

1)

index-343_1.jpg
Weekly average temperature

Temperature (°F)

90 -

80 -

70 |

60 - Maximum temperature

50 4 Average temperature

40
30 - Minimum temperature

20

10 4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

index-341_1.jpg
Properties
chained before
are not affected

by the transition

Properties
chained after

are affected by
the transition

selection
.attr("name of attribute", "value")

.style("name of style property", "value")

.transition() Duration of the transition, in milliseconds
.duration(500) e
.delay(1000) Pela)./t.befo.re thﬁ begmzmg of the
.ease(d3.easeCubicoOut) fArRNoN, I MIBeconas
Easing function applied to the transition

.attr("name of attribute", "value")
.style("name of style property", "value");

index-348_1.jpg
Weekly average temperature

Temperature (°F)
90
00.0°F
80 -
70 4
60 4 Maximum temperature
50 Average temperature

40
30 - Minimum temperature

20 -

10 4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

index-345_1.jpg
1. Build the tooltip with SVG
elements and append it to
the inner chart. Set its
opacity to zero.

2. Attach two event listeners
to each circle: one for the
"mouseenter" event and one
for "mouseleave".

3. When the mouse is
positioned over a circle,
populate the tooltip with the
average temperature data
attached to the circle
element. Then translate the
tooltip over the circle, and
set its opacity to 100%.

4. When the mouse leaves
the circle, change the

tooltip's opacity back to zero
and move it away from the
chart.

tooltip

opacity =

<g>
<rect />
<text></text>
</g>

——++rrrrrr+rrrr— datapoints

78.9°F

.on("mouseenter”, (e, d) => {
// Do something

})

.on("mouseleave", (e, d) => {
// Do something

1)

.on("mouseenter”, (e, d) => {

text => data
position => above circle
opacity => 100%

})

.on("mouseleave", (e, d) => {

opacity => 0
position => away from chart

})

index-365_1.jpg
Cetacean species

How to read this visualization

Color: Conservation statuses Area of the circle: Weight of the cetaceans

. Critically Endangered

Select a group of cetaceans

x_ All cetaceans O Living in the northern hemisphere O Living in the southern hemisphere
. Traveling through both hemispheres

Max size (m)
354 '
304
254 .
(©]
e
@

(X
104

0+ —rr —rrrr rrT————r — e ———r

1 10 100 Tk 10k 100k ™ oM
Estimated population

index-339_1.jpg
Animation that changes at a constant Animations that start slowly and acceler-

speed. ate as they reache the end.

Linear —>» d3.easelLinear Elastic —» d3.easeElasticIn
Back — d3.easeBackIn
Bounce — d3.easeBounceln

Animations that start quickly and slow Animations that start and end quickly.

down as they reache the end.

Elastic — d3.easeElasticOut Elastic — d3.easeElasticInOut
Back —— d3.easeBackOut Back —— d3.easeBackInOut
Bounce ~—— d3.easeBounceOut Bounce ~——p d3.easeBounceInOut

index-326_1.jpg
i L vomen T v

Frequency

160
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000
Yearly salary (USD)

140

120

100

80

60

40

20

index-321_1.jpg
Yearly salary (USD)

240,000

220,000

200,000

180,000

160,000

140,000

120,000

100,000 I
80,000 i
60,000
40,000
20,000

0
Analyst Developer Designer Scientist Leadership

index-332_1.jpg
selection.classed("class name", value);

(string) (boolean)

"my-class-name" true
false

index-329_1.jpg
(string)

"gliek™
"mouseover"
"touch"
"keydown"

(e, @) =>{ ... });

(callback function)

Parameters:
e: Detected DOM event.
d: Datum attached to the
selection.

Perform the desired action(s)
between the brackets.

index-315_1.jpg
Yearly salary (USD)
240,000
220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0
Analyst Developer Designer Scientist Leadership

index-313_1.jpg
Yearly salary (USD)
240,000
220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0
Analyst Developer Designer Scientist Leadership

index-319_1.jpg
Yearly salary (USD)
240,000
220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0
Analyst Developer Designer Scientist Leadership

index-317_1.jpg
Yearly salary (USD)
240,000
220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0
Analyst Developer Designer Scientist Leadership

index-18_1.jpg
1.Find data

Find apre-esistng dtaset or
manually gaher data.

I

2 Load the data
Uso one ofhe D3 fech
funclions toload the data nto

i e

2. Format the data b Measure the data (opiona))
Make sure tat the data s ready doniy tho main stastl

10 use, eg-format numbers.and | = | charactrst ofyourdataset
dates. ko the max value and the mean.

~ A

4.Bind data to DOM elements

|

5. Transiate data values into screen atributes
Uso scaos o cacuate he visual variabos (ngt,

ol postion, oc) used o reprosent the data

(Gombine methads rom the D3 mocus to achieve the desied data visualzaton.

“The same princile i e for any D3 projec, fom common charts o Highly
‘customized graptics.

@
da =vay

5. Add nteractiviy

Lot users explors your visualzaton wit imeractve eatures

X

Mouso everts Brusn fiteing

i

index-16_1.jpg
‘Average time spent working with D3 js each week

.

Numbs of hours
3

Highcharts

charts.chart ('container’, {

(

text: ‘Number of hours

D3js*

d3.cov('../data/ny_data.csv')

then(data =>

createBarChart(data); Load the data
hi
const createsarchart = (data) => {

const xscale = d3.scalesand()

douain (names)
“range([0, width]);
Create the scales
const yscale = d3.scaleLinear()
~domain([0, 40])
range([height, 0]);

conat avg = d3.select(#viz')

-append('svg')
.ater('wideh', width)
-ater('height', height);

Append the SVG
parent to the DOM

const bars = svg
melectAll('rect')
data(data)
-3oin('rect’)

Bind the data to rectangles

Tatee(x', & => xScale(d.nane))
= laer('y's 4 = yBoale(sd.mem hours
Set the position and | 77711 L T - .
size of the rectangles | oo ool 0 o 400 eeei i hone)
laer(T fecbasarys
E—
append('g’)
el (a3, axteBotton(xscaie)
nd the axes
const yAxis = svg Appe

.append('g’)
call(d3.axisLeft(yscale));

* This D3js code has been simplified for better readabilty.

index-22_1.jpg
@ d3js-in-action-third-edition code-files rusc

©Cods ©ssues 1) Pulrequests © Actons

P omain - P ibemen ©0tags

cooRE

chapter 01
chnapier02
ucense
README md

gitgnre

B projcts

Dwi

© Security L isights

Gotofie

@ clone
HrTes b cu

Netoss//g1tnub. con/d3js-in-action-thir

9 Open with Github Desktop.

D Download zIP

1. Click on the Code button

2. Copy the url to clone
the git repository

2. Dowload the files

index-337_1.jpg
Animation that changes at a constant

speed.

Linear

—

d3.easelLinear

Animations that start quickly and slow
down as they reache the end.

Quadratic —p d3
Cubic —p d3.
Exponential ——» d3
Sinusoidal -=< d3
Circle ----p d3.
Polynomial d3

Animations that start slowly and acceler-
ate as they reache the end.

.easeQuadIn

easeCubicIn

.easeExpIn
.easeSinlIn

easeCircleln

.easePolyIn

Animations that start and end quickly.

Quadratic
Cubic
Exponentia
Sinusoidal
Circle
Polynomia

d3
d3
d3
d3
d3
d3

.easeQuadoOut
.easeCubicoOut
.easeExpOut
.easeSinOut
.easeCircleOut
.easePolyOut

Quadratic —p d3
Cubic —» d3.
Exponential —» d3
Sinusoidal -=-9 d3
Circle ----p d3.

Polynomial d3

.easeQuadInOut

easeCubicInOut

.easeExpInOut
.easeSinInOut

easeCircleInOut

.easePolyInOut

index-20_1.jpg

index-334_1.jpg
e e

Women

index-25_1.jpg
The SVG node is highlighted in the viewport.

viewport

T | The SYG node is selected in the DOM tree. Inspector tool

o it it (chrome)

index-23_1.jpg
- circle

line rect ellipse path

SVG container
<svg></avg>

index-295_1.jpg
const pointScale = d3.scalePoint()
.domain(["A", "B", "c", "D", "E"])— List of discrete elements

.range([0, innerWidth]) —————— Start and end of the space available
.padding(0.5); ———— Outer padding, as a % of the steps
outer outer
padding padding

pointScale.step()
1

<—>|<+>|4—>|
))))

L 4
A ? C ? E
| xScale range |
(continuous) - -
0 ! Il innerwidth
| |
| |

1 1
pointScale("B") pointScale("D")

index-293_1.jpg
genders = ["Female", "Male"] data

—_— |

xScale domain yScale domain

(discrete) (continuous)
‘ list of genders ’ 0 maxSalary
X SVG container <svg></svg>
5 I X Inner chart <g></g>
0
¥
yScale range
(continuous)
© @
Female Male

B ————

xScale range

(continuous) - -
0 innerWidth

index-303_1.jpg
Yearly salary (USD)
240,000

220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0
Female Male

index-298_1.jpg
boxplotWidth boxplotWidth

yScale(maximum value) ———p I !
\

<line /> /
/ \

yScale(quartile3) ———)p
— <rect /> —

yScale(median) ————9p <line />

yScale(quartilel) ———)p

\ <line /> /
7 ™~ .

| [
[[
xScale("Female") xScale("Male")

yScale(minimum value) —— —p

index-285_1.jpg
Yearly salary (USD)

240,000
220,000
200,000
180,000
160,000
140,000
120,000
100,000
80,000
60,000
40,000
20,000

0

15

index-289_1.jpg
3. Append a rectangle and line
2. Find the minimum and elements to a SVG container, and
1. Original dataset. maximum values. Determine set their attributes to match the

the quartiles and median with a position of the minimum, maximum,
quantile scale. median, and quartile values. Use
scales to calculate these positions.

index-288_1.jpg
Maximum value _>

4— Quartile 3 (75th percentile)

Median value _> Interquartile range

4— Quartile 1 (25th percentile)

Minimum value _>

index-307_1.jpg
Yearly salary (USD)

240,000

220,000

200,000

180,000

160,000

140,000 —— Mean

120,000

100,000 I
80,000 i
60,000
40,000
20,000

0

—— Quartile 3

—— Quartile 1

Analyst Developer Designer Scientist Leadership

index-305_1.jpg
Yearly salary (USD)
240,000 Maximum
220,000
200,000
180,000
160,000
Quartile 3
140,000
120,000 Median
100,000
Quartile 1
80,000
60,000
40,000

20,000

Minimum
0

Female Male

index-310_1.jpg
genders

["Analyst",

"Developer",

"Designer",

"Scientist",

"Leadership"]

T

xScale domain

(discrete)

bins = [
bins[0].x0 [{}, x0: 0, x1: 10],
[{y, {3}, x0: 10, x1: 207,
r{x, {3}, {3}, {}, x0: 20, x1: 307,
yScale domain | [{}, {}, {}, {}, {}, {}, x0: 30, x1: 407,
(continuous) {14}, {}, {}, {}, {}, {}, {}, {}, x0: 40, x1: 50],
[{} {¥, {}, x0: 50, x1: 60],
[{} {¥, {}, x0: 60, x1: 707,
bins[bins.length - 1].x1’ ({}, {}, x0: 70,(x1%780]
] -__________________________';
violinScale domain
(continuous)
theoretical length of the
zero tallest bin
violinScale range
(continuous)
0 length of the
tallest bin
= B SVG container <svg></svg>
| = Inner chart <g></g>
¥ I >
0
Yy
yScale range
(continuous)
innerHeight
° ° ° ° °
Analyst Developer Designer Scientist Leadership

xScale range
(continuous)

innerwidth

index-1_1.jpg

index-4_1.jpg

index-2_1.jpg

index-10_1.jpg

index-9_1.jpg
An Interactive Visualization of

index-13_1.jpg

index-12_1.jpg
enics

S s, s, Tcoson,Open s

= ANations Nonrott Dodiate To Appying The
prncies Ao racices O Mosem Techoiogy At
Senvice esgn o e machney f Goverrmert.”

Scal: Natons (Unitea st
Estmated people impacted: 500000
cosstormercaory

index-15_1.jpg

index-270_1.jpg
bins

v Array(12)

(4'H
»1:
»>2:
»3:
>4:
»5:
»6:
»7:
»8:
»9:
>10:
bin —{»11:

(9) .}, {3 L1 4G G 4G LG GG W) xe: 0, x1: 20000]
(18) [{.}, {.}, . whe 4}y {4} {Gh L) {3 43 4G L
(52) .}, % .
(147) [{..
(150)
(126)
(104) [{..
(59) [{.},
(37) [{.},
(27) [{.},
(19) [{.}
(7) [{.},

0, x1:
>

data points upper boundary

lower boundary

index-267_1.jpg
1. Original dataset. 2. Distribute the data points into bins

3. Use the new dataset (the

with the method d3.bin(). bins) to draw the chart.

v

The method d3.bin() returns a new
dataset containing an array of data
points for each bin and the bins' lower
and upper boundaries.

index-274_1.jpg
1. Original dataset. 2. Distribute the data points into

bins with the method d3.bin().

The method d3.bin() returns a new
dataset containing an array of data
points for each bin and the bins' lower
and upper boundaries.

3. Append rectangle elements to a
SVG container using the data-bind-
ing pattern and the bins as data.

\

Using D3 scales, calculate the height of
each rectangle based on the number of
data points their related bin contains
and position the rectangles on the chart
based on the bin’s boundaries.

index-272_1.jpg
d3.bin()
.value('d => d.key);

e Key under which the values to bin are stored

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000
bin

lower boundary upper boundary

index-265_1.jpg
Earnings of Data Visualization practitioners

In their 2021 State of the Industry Suryey, the Data Visualization Society asked data visualization practitioners for their pre-tax
yearly pay in US dollars. This project visualizes the answers to this question for respondents living in the United States.

Distribution of annual salaries

The annual salaries vary between $0 and $240,000, with most professionals earning between $60,000 and $140,000. They
almost form a normal distribution, slightly skewed to the right.

Frequency
160

140

120

100

80

60

40

20

20000 40000 60000 80,000 100,000 120000 140000 160,000 180000 200,000 220,000 240,000
Yearly salary (USD)

Comparison between women and men

We observe that [JEIIIE's salary is slightly lower than [5i1's, with medians being respectively $90,000 and $110,000. 50% of
the [IETE) eam between $70,000 and $110,000 per year, while 50% of the [[i[] earn between $90,000 and $150,000.

Yearly salary (USD) Yearly salary (USD)
240,000 240,000
220,000 220,000
200,000 200,000
180,000 180,000
160,000 160,000
140,000+ 140,000
120,000 1505004
100,000 0000
80,000 oo
60,000
60,000
40,0004
40,000
20,0004
20,0004
0 1
15 15 0

Female Male

Comparison between roles

The violin charts below represent the salary distribution for five leading data visualization roles: analyst, developer, designer,
scientist, and leadership. We observe that analysts have the lowest average salary, while respondents with a leadership
position have the highest. The thicker a violin is, the more respondents it contains for a specific salary bracket. On the contrary,
thinner plots have a lower number of responses.

Yearly salary (USD)
240,000
220,000
200,000
180,000
160,000
140,0004
120,000
100,000 |
80,000 I

60,0004
40,000
20,000

0

Analyst Developer Designer Scientist Leadership

index-258_1.jpg
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
1975 1980 1985 1990 1995 2000 2005 2010 2015

@) vinyl [8Track ([Cassette ([CD Download Streaming Other

index-48_1.jpg
Origin
(0,0)

index-47_1.jpg
Origin
(0,0)

index-50_1.jpg
Origin
(0,0)

index-49_1.jpg
Origin
(0,0)

index-278_1.jpg
SVG container <svg></svg>

index-68_1.jpg
v Project folder

v [css

main.css

v [data
@ data.csv

v s
1 main.js

B index.html

index-275_1.jpg
. Bl U
bins[0].x0 [{}, x0: 0, x1: 10],
[{¥, {3}, x0: 10, x1: 20],
[{¥ {3}, {¥, {}, x0: 20, x1: 307,

xScale domain | [{}- {3}, {3, {}, {}, {}, x0: 30, x1:
(continuous) { 1{}, {}, {}, {}, {}, {3, {}, {}, xO:

[{y, {}, {}, x0: 50, x1: 60],

[{x, {}, {}, x0: 60, x1: 70],
bins[bins.length - l].xl’ [{}, {}, x0: 70, %1% 80]

] —>
yScale domain
(continuous)

theoretical length of the
zero tallest bin
e SVG container <svg></svg>
YI . Inner chart <g></g>

Y

xScale range

(connnuous
0 innerwidth

401,
40, x1: 501,

yScale range
(continuous)

innerHeight

index-65_1.jpg
Google Data Studio

Source: Data Visualization - State of the Industry Survey 2021, Data Visualization Soclety

index-283_1.jpg
Age distribution of [T and {177

Canada, 2021

age
| 100+ (o}
B 95-99 @
| 90-94 O
| 85-89 —o0
| . 80-84 o—o0
[7579 e—o0
| 7074 o———0
[s 6569 e——90
| N R e EEEE—O)
T 5559 e 0
| 50-54 e————————°
[2020 02— 45-49 o——— 0
D 4044 e————————————————0
. 3539 e/ 0
| I - R e 0]
000000 00000000] 2529 @—mm 0
| 20-24 e——— —0
[1519 o——0
[D 1014 o——o
| 59 o— ©
[= 0-4 |—|—|—.—.|—|—|—|—|—|

data source: Statistics Canada

index-72_1.jpg
d3.select("selector”);

id
class

tag name

combination
of selectors

(string)

P
*.my-class"

it
"circle.faded"

“#my-id p"
"rect, circle"

index-281_1.jpg
Frequency

160

140

120

100

80

60

40

20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 180,000 200,000 220,000 240,000
Yearly salary (USD)

index-71_1.jpg
You are about to start working with D3!

index-45_1.jpg

index-40_1.jpg
Origin
(0,0)

text-anchor

(xy)
SVG kext.
middle

(x,3)

-

VG textd
end

SVG container
<svg></avg>

index-46_1.jpg
height

index-233_1.jpg
d3.stack() annotatedData = [

~keys ([{
"vinyl", key: "vinyl",
"eight_track", L
SOt O
Bl lower boundary (y0)
"download", 1: 8268.5, upper boundary (yl)
"streaming", data: { year: 1973, vinyl: 8268.5, eight_track: 2815.6,
"other" cassette: 437.6, cd: 0, ... }
17

0: 0, lower boundary (y0)

1: 504.4, upper boundary (yl)

data: { year: 2019, vinyl: 504.4, eight_track: O,
cassette: 0, cd: 616.2, ... }

ozl 08402 upper boundary (yl)

data: { year: 1973, vinyl: 8268.5, eight_track: 2815.6,
cassette: 437.6, cd: 0, ... }

key: "eight_track",
0: 8268.5, lower boundary (y0)
}
{
}
{
}

index-230_1.jpg
1. Preprocess the data with the stack
layout.
a. Format the data.
b. Initialize the stack layout d3.stack().
c. If the data is formatted as an array

of objects, use the keys () accessor
function to specify the key in which the
stack values are contained.

d. Call the stack layout to obtain a dataset
annotated with the lower and upper
boundary of each series.

2. Initialize the area generator
(optional).

3. Draw the stacked shapes

Bind the annotated dataset
generated at step 1 to the desireq
SVG shapes. For a streamgraph,
call the area generator to calculate
the d attributes of the path
elements.

index-240_1.jpg
24,000
22,000
20,000
18,000
16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000

1975

1980

1985

1990

1995

2000

2005

2010

2015

index-235_1.jpg
million USD

12,000

10,000

8,000

6,000

4,000

2,000

cassette: 5,830 — @

vinyl: 2,825 — @

cd:2,170 — @

independent
data points

2,825 + 5,830 + 2,170 = 10,825

2,825 + 5,830 = 8,655

2,825

*~upper boundary (d[1])

CD

,lower boundary (d[0])

*~upper boundary (d[1])

Cassette

,~lower boundary (d[0])

*~upper boundary (d[1])

Vinyl

,-lower boundary (d[0])

stacked
data columns

index-229_1.jpg
Total revenue (million USD)
(Adjusted for inflation - 2017)

12,000
10,000
8,000

6,000
4,000
2,000
0
-2,000
-4,000

-6,000
-8,000
-10,000

-12,000

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
1975 1980 1985 1990 1995 2000 2005 2010 2015

inyl [8Track [Cassette (@ CD Download Streaming Other

index-33_1.jpg
Origin
(0,0)

SVG container
<svg></svg>

index-254_1.jpg
d3.stackOffsetNone

Applies a zero baseline and position the shapes above
it. If the offset accessor function is not set,
d3.stackOffsetNone is used by default.

d3.stackOffsetSilhouette

Shifts the baseline to the center of the chart by
distributing the shapes above and below.

d3.stackOffsetExpand

Applies a zero baseline and normalizes the values
between O and 1.

d3.stackOffsetDiverging

Moves positive values above the baseline and negative
values below it. Best used with stacked bar charts
rather than stacked areas.

d3.stackOffsetWiggle

Shifts the baseline to minimize the wiggle in each
series. This offset is recommended for streamgraphs
along with d3.stackOrderInsideOut.

index-35_1.jpg
SVG container
<svg></svg>

index-34_1.jpg
BN]

£i11="#81c21c"

£ill="#81c21c"
stroke="#000"

£il1="none"

stroke="#0060b1"

stroke-width=

3

£311="#0060b1
£ill-opacity="0.3"
stroke="#0060b1"
stroke-wideh="3"
stroke-opacity="0.6"

index-247_1.jpg
<text> x dx
<tspan>Total revenue</tspan> 2 """ TPy o T LAy
<tspan>(million USD)</tspan> '

<tspan>Adjusted for inflation</tspan> @---—mmmmm SN e
</text> 1 Adjusted for inflation

index-37_1.jpg
Origin
(0,0 =

-

- <circle />
(ex,cy) N

(ex,0y),
o

SVG container
<svg></avg>

index-242_1.jpg
d3.area()
.x(d => xScale(d.xValue))

g Horizontal position of each data point

.y0(d => yScale(d.yOValue)) . Vertical position of each data point on the

.yl(d => yScale(d.ylvalue));

key: cassette

d3.area()
.X(-xXScale(1978).)
.y0(yScale(14,436)
.yl(yScale(16,200)

key: eight_track

d3.area()
.X(-xXScale(1978).)
.y0(yScale(10,719)
.yl(yScale(14,436)

key: vinyl

d3.area()
.X(-xScale(1978))
.y0(yScale(0))
.yl(yScale(10,719)

1978

lower boundary

Vertical position of each data point on the

upper boundary

1988

key: cd

d3.area()
.X(xScale(1988))
.y0(yScale(8,979))
.yl(yScale(13,517));

key: cassette

d3.area()
.X(-xScale(1988).)
.y0(yScale(1,540))
.yl(yScale(8,979));

key: vinyl
d3.area()
.X(-xScale(1988).)
.y0(yScale(0))

.yl(yScale(1,540));

index-36_1.jpg
<rect width="40" height="40" />
o 1 2 3 a

stroke-width

index-252_1.jpg
el o

d3.stackOrderNone d3.stackOrderReverse

The series are stacked in the same order as in the The series are stacked in the reversed order as in the
key () accessor function. If the order accessor function key () accessor function.
is not set, d3.stackOrderNone is used by default.

il el

d3.stackOrderAscending d3.stackOrderDescending

The series are organized in ascending order of total The series are organized in descending order of total
sum, starting with the series with the smallest total sum sum, starting with the series with the highest total sum
at the bottom. at the bottom.

1999 $1999
1978 1088 =

4 2018 2019
ﬁ

b o
5% A 2012 °
L[]
2019) 1978 ~

d3.stackOrderAppearance d3.stackOrderInsideOut

Finds the index at which each series reaches its Finds the index at which each series reaches its
maximum value and stacks the series in ascending maximum value. The series with the earliest index is
order of that index, starting with the series with the positioned inside, and the ones with later indexes
earliest index at the bottom. outside. This order is recommended for streamgraphs

along with d3.stackoffsetWiggle.

index-39_1.jpg
ol Baseline of

rigin the SVG text

(0,0) SVG_text
SVG container
<svg></svg>

index-250_1.jpg
Total revenue (million USD)
Adjusted for inflation

24,000 -
22,000 -
20,000 |
18,000 -
16,000 -
14,000 -
12,000 o
10,000 -
8,000 o
6,000 -
4,000
2,000

0

index-38_1.jpg
Origin
(0,0)

<path />

SVG container
<svg></avg>

index-29_1.jpg
Origin
(0,0)

123456785910 s

(10,5);

SVG element

SVG container
<avg></avg>

index-26_1.jpg
‘The width and height of the SVG node
corresponds to the related attributes.

I R e —

ey et sten- v e 14—k Lot 14,1010 Gth-gr-nt asalls

[width and height attributes

Viewport

Inspector tool
(chrone)

index-32_1.jpg
Origin
0,0 x

(xL,y1

(x2,¥2)

SVG container

<avg></avg>

index-31_1.jpg
(x1,y1)

(x2,y2)

SVG container
<svg></avg>

index-206_1.jpg
Visualizing 40 Years of Music Industry Sales

This project visualizes the music sales in the United States by format between 1973 and 2019. These formats range from

physical supports like [, [0, [EEEEE. and], to music consumed digitally, with [and

. The category m includes less prominent sources of revenue like music videos (physical),
synchronization, and royalties.

O G
-

Total revenue (million USD)
Adjusted for inflation

12,000
10,000
8,000
6,000
4,000
2,000
0

-2,000
-4,000
-6,000
-8,000

-10,000

-12,000

1.0
0.9
0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

0.0
1975 1980 1985 1990 1995 2000 2005 2010 2015

@vVinyl @ 8Track @ Cassette @CD M Download @ Streaming @ Other

Data Source: MakeoverMonday 2020/W21
Inspiration for the dataviz layout: Submission of Laura Elliot

index-205_1.jpg
1. Original dataset. 2. Preprocess the data with a D3 layout. 3. Use the annotated dataset

(ex: d3.pie(), d3.stack()) to draw the chart.

|

The layout function returns a new
dataset, annotated with the information
needed to draw the chart.

(ex: start and end angles of each slice
for a pie chart, lower and upper
boundary of each shape for a stack)

index-211_1.jpg
translate(
xScale(1975),
innerHeight/2

)

1975

translate(
xScale(1995),
innerHeight/2

)

1995

translate(
xScale(2013),
innerHeight/2

)

2013

SVG container 1
<svg></svg>

Inner chart 1
<g></g>

index-209_1.jpg
1975

1995

2013

SVG container 1
<svg></svg>

Inner chart 1
<g></g>

SVG container 2

<svg></svg>

Inner chart 2
<g></g>

SVG container 3

<svg></svg>

Inner chart 3
<g></g>

index-88_1.jpg
selection.style("name of style property", "value");

(string)

"£il1l"
"fill-opacity"
"stroke"
"stroke-width"
"font-size"

(string, number or
accessor function)

"cyan"
0.6

"plum”
2
"14px"

index-87_1.jpg
(R (] | Eements Console Souces Network Performance Memory Application Sect

“htm:
> <head>..</head>
v<body data-new-gr-c-s-check-loaded="14.1845.0" data-gr-ext-installed cz-shortcut-listen='tr)
v<div class-"responsive-svg-container
v<5vg viewBox-"0 0 1200 1608’
<rect x-"10" y-"10" width-"414" height-"16" fill-"turquoise’
</svg-
</div-

Irect

index-227_1.jpg
1. Preprocess the data with the pie
layout.
a. Format the data.
b. Initialize the pie layout d3.pie().
c. If the data is formatted as an array

of objects, use the value () accessor
function to specify the key in which the
slice values are contained.

d. Call the pie layout to obtain a dataset
annotated with the angles attributes of
each slice.

2. Draw the arcs.

a. Initialize the arc generator
d3.arc() and set its accessor
functions.

b. Append a SVG path element for
each arc, using the data-binding
pattern.

c. Set the path’s d attributes by
calling the arc generator.

3. Add labels to improve
readability.

index-90_1.jpg
R] Bemews Conol Souves Newok Petomancs Memoy Appiaon Searty Lohouss Bi® i ox
Syjes Computed Layout >

ntat

[- Fier hov cts 4, @)

~aa Inline-style | <o
T cassere ; s)“""‘m- o

T vioon
e e I A L g et SO TR }</rm>

<o i SRR |
| €S stylesheet |

<o
(aeributes scyle) {

index-226_1.jpg
O 00

index-89_1.jpg
R §] Eoments Console Souces

<htnl>
> <head-..</head-

v<body cz-shortcut-listen
v <div class=" responsive-sve-con]
v<svg viewBox

<rect x
</svg>
<sdiv

0 1200 1600’
10" y="10" width

sty

g

Network

Performance Memory

border: 1px solid black;

ruoTse

rect

Border applied as an

plcation Securly

true" data-new-gr-c-s-check-loaded-"14.1045.0" dafa-gr-ext-installed

index-95_1.jpg
3.a Format

1. Find

—

2. Load

!

4.Bind ‘4-

5. Scale

/N

3.b Measure

N/

index-94_1.jpg
3.a Format the data
Make sure that the data is ready

to use, e.g. format numbers and
dates.

1. Find data
Find a pre-existing dataset or
manually gather data.

2. Load the data
Use one of the D3 fetch

functions to load the data into
your project.

3.b Measure the data (optional)
Identify the main statistical
characteristics of your dataset
like the max value and the mean.

s 4.Bind data to DOM elements -

l

5. Translate data values into screen attributes
Use scales to calculate the visual variables (length,
color, position, etc) used to represent the data.

index-218_1.jpg
1. Format the data to an array of values formattedData = [

or an array of objects containing these { item: "item A", value: 60 },
values. { item: "item B", value: 30 },
{ item: "item C", value: 10 }

1i

2. Initialize a pie layout generator with const pieGenerator = d3.pie()
the method d3.pie(). If the data is .value(d => d.value);
formatted as an array of objects, use the

value () accessor function to specify

the key in which the values are

contained.

3. Call the pie generator function and const annotatedData = pieGenerator(formattedData)
pass the formatted data as an
argument.

Store the array returned by the pie
generator into a constant. This is the
annotated dataset you’ll use later to
draw the arcs of the pie or donut

Annotated Dataset

data: { item: "item A", value: 60 },
value: 60, 6.3rad s Orad

5.7rad
index: 0,
startAngle: 0
endAngle: 3.8

data: { item: "item B", value: 30 },
value: 30,

index: 0,

startAngle: 3.8,

endAngle: 5.7

data: { item: "item C", value: 10 },
value: 10,

index: 0,

startAngle: 5.7,

endAngle: 6.3,

index-97_1.jpg
Data types

Quantitative

Numerical information.
Time, weight, GDP

<\

Qualitative

Non-numerical information.

Text, images

e

N

Discrete Continuous Nominal | Ordinal
Integers (whole numbers) Numbers that remain Values don't have aspecific Values can be organized in
that cannot be subdivided. meaningful when divided order. order of magnitude
Gan be counted but not into smaller unis. Can often Gender identiy (cisgender, T-shirt sizes (XS, S, M, L,
measured be measured. agender, gender fuid, etc.) X0,
Days of the month, Number Amount of snow fallen, Gty (New York, Paris, Gold, Silver and Bronze
of languages spoken by a Height of each child in a Moscow, Tokyo, etc.) medalists in an olympic
person class. competition

index-214_1.jpg
data

v Array(47) B
»0: {year: 1973, vinyl: 8268.55, eight_track: 2815.68, cassette: 437.611081081, cd: 0, ..}
»1: {year: 1974, vinyl: 8037.9, eight_track: 2848.01, cassette: 452.196559838, cd: 0, ..}
»2: {year: 1975, vinyl: 8061.75, eight_track: 2770.41, cassette: 469.496498141, cd: 0, ..}
»3: {year: 1976, vinyl: 8573.27, eight_track: 3047.22, cassette: 654.643671353, cd: @, ..}

» 44: {year: 2017, vinyl: 411.551754832, eight_track: @, cassette: @, cd: 1107.92, ..}

» 45: {year: 2018, vinyl: 432.206383393, eight_track: @, cassette: @, cd: 715.45199218, ..}

» 46: {year: 2019, vinyl: 504.384866529, eight_track: @, cassette: @, cd: 616.192064248, ..}

» columns: (8) ['year', 'vinyl', ‘'eight_track', 'cassette', 'cd', 'download', 'streaming', 'other']

columns attribute of the fetched data

index-95_2.jpg
3.a Format

2. Load

o~
N

N4

4. Bind

5. Scale

3.b Measure

i-i

index-101_1.jpg

index-225_1.jpg

index-100_1.jpg

index-222_1.jpg
O 00

index-85_1.jpg
d3.select(".responsive-svg-container")

2. append("svg") New selection

4

attr("viewBox", "0 0 1200 1600")

Z.append("g") New selection

4

attr("class", "my-group")

4 attr(afills, rbluen)

12 | opendgssecoa) New selection

4L attr(ix", 50)

4 attr('y", 100)

4 attr('width’, 200)

4 . attr("height’, 20);

Affects the new selection

Affect the latest selection

Affect the latest selection

index-185_1.jpg
SVG container
x <avg></avg>

[Temperature (F)
%0
¥

0

o

:
; A
;

:
:

10

Jan | Feb | Mar | Apr | May | Jun | Ju | Aig | Sep | Oct | Nov | Dec

index-187_1.jpg
Average tewperative. . R

AVeTagE Rperatre "

dominant-baseline: auto dominant-bassline: middle dominant-baseline: hanging

index-186_1.jpg
1. Initalize an area generator
and set ts accessor functions,
for example (), yO() and y1()
ORX0(), x1() and y().

2. Chain the area generator
with the curve() accessor
function and set its curve
interpolator. (optional)

3. Append a SVG path element
to your chart and call the area
generator to setits d attribute,
passing the data as an
argument.

index-75_1.jpg
<div>

<h1>

A title</hl>

. </p>

<div id="viz-container">

<> ... </p>

vg>

<circle class="faded" />

d3.selectAll("circle")

<circle />

<circle class="faded" />

</

</di

</div>

svg>

v>

index-199_2.jpg
1. Initialize an arc generator
and set its look and feel with
‘accessor functions like
innerRadius(), outerRadius(),
padAngle() and cornerRadius().

2. Append a SVG path element
to your chart and call the arc
generator to set ts d attribute,
passing the startAngle and
endAngle of the arc as
arguments

The strategy may vary. When
using the pie layout generator,
the startAngle and endAngle
can be declared directly with
the arc generator. We discuss
this case in chapter 5.

index-77_1.jpg
selection.append("type”);

(string)

Traditional HTML "div" <div></div>
elements “p" > <p></p>

"svg" <svg></svg>
"line" <line />

SVG elements ‘'rect' ——- <rect />
"path" <path />
"text" <text></text>

index-199_1.jpg
Days with precipitations

index-76_1.jpg
<div>

d3.selectall("hl,

.intro")

E[<h1>A title</hl>
<p class="intro">

</p>

<div id="viz-container">

<p> ... </p>
<svg>
<circle clas:
<circle />
<circle clas:
</svg>
</div>

</div>

“faded” />

faded” />

index-79_1.jpg
Selections

“divt)
~append("p’

New DOM elements

<div>
<h1>A title</hl>
<p class="intro"> ... </p>

<div. i

viz-container’>
@ ... </p>
<svg>
<circle class="faded" />
<circle />
<circle class="faded" /

</svg>

<p></p>

</div>

L—| <p></p>

</div>

index-201_1.jpg
Days with precipitations

index-78_1.jpg
<div>

<hI>A title</hl>

<p class="intro"> ... </p>
<div id="viz-container">
<> ... </p>

<svg>

<circle class="faded" />

d3.select("svg") _ Sel
~append("rect*); <circle />
<circle class="faded" />
Mews BOM sloivit <rect />
</svg>
</div>

</div>

index-192_1.jpg
SVG cartesian coordinate system Polar coordinate system

Origin y

(0,0)

Origin
(0,0)

(radius,angle)

index-81_1.jpg
T &) Domem Goeos Pew & Soreer Newor Po

| —

L SVG element in the DOM tree.

index-190_1.jpg
Weekly average temperature

Temperature ('F)
%

8

70

Maimum temperatire

& -)

‘
P \1 A L/ Jrem—

21 A

0 Miimum temperature
2

0

Jan | Feb | Mar | Apr | May un | Ji | Aug | Sep | Ot | Nov | Dec

index-80_1.jpg
<div>

<hI>A title</hl>

intro™> ... </p>

viz-container”>

<> ... </p>

<svg>

[<rect />
d3.select("svg") _ Selection

~-insert(rect’) <circle clas:

faded” />

<circle />

New DOM element

<circle class="faded" />
</svg>
</div>

</div>

index-197_1.jpg
d3.arc()

5 3 80
~-outerRadius(120).
.padAngle(0.02)
.cornerRadius(6);

startAngle

S| y,

innerRadius [LUPH

outerRadius |— 0;-1

padAngle

index-83_1.jpg
A e > e T x

SVG element with viewBox attribute, | —————= % il 4+ ik /0

Sves Caoued Layan vt Loaers

e oo bov s+, B

index-194_1.jpg
translate(width/2, height/2)

SVG container
<svg></svg>

index-82_1.jpg
selection.attr("name of the attribute"”,

Generic attributes

Attributes of
SVG elements

(string)

wign
"class"

"viewBox"

x
'y
"width"
"height"
UEill"
"stroke-width"

"value®);

(string, number or
accessor function)

"my-id"
"my-class"

"0 0 500 300"
30

20

100

30

"plum”

npn

index-74_1.jpg
<div>

d3.select ("h1") <hl>A title</hl>
d3.select(".intro") <p class="intro"> ... </p>
d3.select ("#viz-container”) <div id="viz-container">
a3.select ("#viz-container p") <p> ... </p>
<svg>
d3.select("circle") <circle clas: >
<circle />
<circle class="faded" />
</svg>
</div>

</div>

index-73_1.jpg
<div>

<h1>A title</h1>

<p class="intro"> ... </p>
<div id="viz-container">

<p> ... </p>

<svg>

<circle class="faded" />

<circle />

<circle class="faded" />
</svg>
</div>

</div>

index-172_1.jpg
Temperature (°F)
90

80
70
60
50
40
20
20

10

Jan Feb Mar Apr May Jun Jul Aug Sep Ot Nov = Dec

index-171_1.jpg
SVG container
<svg></svg>

7

Inner chart
50

0

2

10

Jan | Feb | Mar | Apr | May | Jin | Ju | Aug | Sep | Oct | Nov Dec

index-121_1.jpg
Backticks
I

[|
Template literals: “bar bar-${d.technology}"

’— Expression

Concatenated strings: ""bar bar-" + d.technology

e

Quotation Marks

index-118_1.jpg
I. Selection

v<div class="responsive-svg-container'=
<svg viewBox="0 @ 1200 1600" styl
</div>

order: 1px solid black;></svg>

2. Data-binding (in the code editor)

const myData = [
{ technology: "Excel’, count: 1078 }, <
{ technology: "Tableau", count: 852 }, <
—= | { technology: *Powerroint”, count: 681 }, <
{
{

technology: 'R", count: 561 }, =
technology: "Bython’, count: 530 } <

d3.select("svg")
-selectAll("rect")

L .data(mypata)

-join("rect");

_ B

3. DOM with data-bound elements

v<div class="responsive-svg-container'>
w<svg viewBox="@ @ 1200 160" (1211
’ <rect></rect> = 1 J

<rect></rect> -
<rect></rect> -

<rect></rect> =

<rect></rect> =
</svg>

index-124_1.jpg
selection

.attr("width", d => d.count) _ Arrow function displayed on one line.

.attr("y", (d, i) => (barHeight + 5) * i)

.attr("class”, d => {

)

|_If more than one parameter, we wrap them in parenthesis.

console.log(d);

return "bar”;

If the function is spread over multiple lines
we use body braces

and a return statement.

index-122_1.jpg
SVG container
<svg></svg>

index-126_1.jpg

index-181_1.jpg
d3.curveBasis

Produces a cubic basis spline that passes through the
first and the last data point

NN

Al N

/.»/“ \\J‘bz'
N J

d3.curveCardinal

Produces a cardinal spiine that passes through each
data point

TN

n
o

N
d3.curveMonotoneX

Produces a cubic spline that passes through each data
point while preserving monotonicity in the vertical
direction.

d3.curveBundle

Produces a straightened cubic basis spline.

d3.curveCatmullRom

Produces a cubic Gatmuli-Rom spiine that passes
through each data point.

e
PUSANY

wAS

n.lm_r/
d3.curveStep

Produces a step function passing through each data
point and alternating horizontal and vertical lines.

index-125_1.jpg

index-179_1.jpg
SVG container
<svg></svg>

|Temperature (*F)
Isa
¥

50

i)

Jan | Feb | Mar | Apr | May | Jin | Ju | Aug | Sep | Oct | Nov | Dec

index-130_1.jpg
Reviews of 2021 series

Katla Genre
M Acton
Maid W comerr
‘Shadow and Bone M crme
Hit & Run Wowe
The Wheel of Time
The Iregulars
Nine Perfect Strangers
Clickbait
Jupier's Legacy
SexLife

0 10 20 3 40 5 6 70 8 9% 100
Critics reviews (%)

index-184_1.jpg
L

d3.area()

.x(d => xScale(d.xValue))

[~ Horizontal position of each data point

.y0(@ => yScale(d.yOValue)) . Vertical position of each data point on the
.yl(@ => yScale(d.ylValue)); lower boundary

[Temperature (F)

%0

50

1

)

50

W

0

2

d3.line()
.x(.xScale(Mar 12).)
.y0(yScale(35.6))
.yl(yScale(48.0));

o

.line()
-x(.xScale(Jul 16).)

Vertical position of each data point on the
upper boundary

d3.line()
.x(.xScale(Dec.10).)
.y0(yScale(44.3))
.y1(yScale(56.4))

—

.y0(yScale(74.3))
.y1(yScale(86.7));

Jan | Feb | Mar | Apr | May

Jn Wl A sep | Ot | Nov | Dec

index-127_1.jpg
3.a Format

1. Find

2. Load

/\

!

N/

4.Bind

5. Scale

3.b Measure

index-182_1.jpg
1. Initialize a line
generator and set its

X() and y() accessor
functions.

3. Append a SVG path element
to your chart and call the line
generator to set its d attribute,
passing the data as an
argument.

2. Chain the line generator
with the curve() accessor
function and set its curve
interpolator. (optional)

index-134_1.jpg
SVG container
<svg></svg>

index-175_1.jpg

index-132_1.jpg
input

output

index-174_1.jpg
SVG container
x <avg></avg>

[Temperature (F)
%
¥

0 .

i .

0 . ®

E

10

Jan | Feb | Mar | Apr | May | Jin | Ju | Aug | Sep | Oct | Nov Dec

index-178_1.jpg
SVG container
x <svg></svg>

|Temperature (*F)
Isn

50

i

Jan | Feb | Mar | Apr | May | Jin | Ju | Awg | Sep | Oct | Nov Dec

index-176_1.jpg
50

w0

30

2

10

d3.line()

.x(d => xScale(d.xValue)) ., Horizontal pos

n of each data point

-¥(d => yscale(d.yvalue)); . Vertical position of each data point

(Max.12, 42.6)

|

d3.line()
.x(_xScale(Mar 12).)
.y(yScale(42.6));

(3ul.16, 80.2)

d3.line()
-x(.xScale(Jul 16).)
-y (yScale(80.2)

)i

(Pec.10, 50.1)

d3.line()
-x(.xScale(Dec 10).)
.y(yScale(50.1));

Jan | Feb | Mar | Ao | May

Jun

il

sep.

ot | Nov | Dec

index-479_1.jpg
Desktop and tablet layouts Mobile layout

RANKINGS RANKINGS

2016 2017 2018 2019 2020 2021 2016 2019 2021

index-470_1.jpg
Desktop layout (large)

.col-1g-12

.col-1g-12

Tablet layout (medium) Mobile layout (small)

index-103_1.jpg

index-107_1.jpg
3.a Format

1. Find

2. Load

index-104_1.jpg
1. Find

]

i

3.a Format

i

4.Bind ‘4»

5. Scale

3.b Measure

index-109_1.jpg
3.a Format

1. Find

2. Load

/\

3.b Measure

index-489_1.jpg
You are about to start working with D3!

index-108_1.jpg
» {technology:
» {technology:
» {technology:

» {technology
» {technology.

» {technology:
» {technology:
» {technology:
» {technology:
» {technology:

» {technology.

» {technology:
» {technology:

‘Arc6Is’, count: '147'}

'D3.js', count: '414'}

‘Angular’, count: '20'}
‘Datawrapper*, count: '171'}
‘Excel’, count: '1078'}

‘Flourish', count: '198'}
'ggplot2', count: '435'}

‘Gephi*, count: '71'}

‘Google Data Studio', count: '176'}
'Highcharts', count: '58'}

‘Physical materials', count: '69'}
‘Canvas', count: '121'}

'P5/Processing’, count: '55'}

index-488_2.jpg

index-112_1.jpg
sorted data

L (33) [}, 1.
Ay [

{technology:

Excel’, count: 1078}

»1: {technology: 'Tableau', count: 852}
»2: {technology: ‘PowerPoint’, count: 681}
»3: {technology: 'R', count: 561}

»4: {technology: 'Python’, count: 530}

»5: {technology: 'Pen & paper’, count: 522}
»6: {technology: 'Power BI', count: 460}
»7: {technology: 'ggplot2’, count: 435}
»8: {technology: 'Illustrator’, count: 426}
»9: {technology: 'D3.js', count: 414}

»30: {technology: 'Java', count: 29}
»31: {technology: 'kepler.gl', count: 24}
»32: {technology: ‘Angular’, count: 20}
» columns: (2) ['technology’, 'count']
length: 33

> [[Prototype]]: Array(0)

{-}, {-}s A=bs 4=}, {}s (=} L}

main. js:22

o by Aads Aeks by L}y ek Leds £}y {uds Aobs A}y {ads {eds L=}, {3, {ud)
(-}, A}, {-}, {-}, columns: Array(2)]

index-110_1.jpg
¥ (33) [}, (b {eds b {-Ds
(}/{—}r{)l(}r[)r(}l

3 A=}, {=b {-}s
wbr {dr L}, A

b {=bs L=y L=}, £}, 4=}, {=}, -},
s Al {w}, {w}, {w}, {w}, columns: Array(2)] B

T {technology: "ArcGIS', count: 147F |
»1: {technology: 'D3.js', count: 414} - .
»2: {tecmology: ‘Angular’, count: 20}
»3: {technology: 'Datawrapper', count: 171}
»4: {technology: 'Excel’, count: 1078}
»5: {technology: 'Flourish’, count: 198}
»6: {technology: 'ggplot2', count: 435}
»7: {technology: 'Gephi', count: 71}
»8: {technology: 'Google Data Studio', count: 176}
»9: {technology: 'Highcharts', count: 58}
»30: {technology: 'Physical materials', count: 69}
»31: {technolog: ‘Canvas', count: 121}
» 32: {technolog 'PS/Processing', count: 55}
[cotumns: (2) ['technology’, ‘count’] [Column headers from the CSV file

Tength: 33
» [[Prototype]]:

Array(0)

index-489_2.jpg
Q@Port:5500 | & 0

index-115_1.jpg
3.a Format

1. Find

2. Load

o~
N

\V4

4. Bind

3.b Measure

i-i

index-486_1.jpg
e Extensions icon

index-114_1.jpg
Path to data

Row conversion function

Access the data row by row.

A great place to format
the data.

fulfilled

Access to the complete
dataset.

Promi

A great place to measure
the data.

d3.csv("path/to/file.csv", d =>

return {

keyl: d.keyl,

key2: +d.key2,

key3: new Date(d.key3)
Yi

}).then(data => {

console.log(d3.max(data, d => d.key2));
console.log(d3.min(data, d => d.key2));

createviz(data); 4——]

. We usually pass the data to
b another function that will build
the visualization.

index-481_1.jpg
Desktop and tablet layouts Mobile layout

AWARENESS AWARENESS

100
- React 100%
@ -
@ Vue.js 100%
c 50
@
= Angular 100%
ES
0 Svelte 94%
P OH O H P 0T H W
A iy - A s o
S 5593 4% - Ember 87%
@ S % >W H c O» £
> ch o A =
< = 5 Preact
<
Alpine.js
Solid
Lit

Stimulus

index-488_1.jpg
Live Server vs.6.1
Ritwick Dey | < 17,726,018 | % % % ¥ (350)

Launch a development local Server with live reload feature for static & dynamic pages

index-117_1.jpg
v<div class="responsive-svg-container">
v<svg viewBox="0 0 1200 1600" style="border: 1px solid black;">
<rect></rect>
<rect></rect>
<rect></rect>
<rect></rect>
<rect></rect>
<rect></rect>

<rect></rect>
<rect></rect>
<rect></rect>
</svg>
</div>

index-487_1.jpg
EXTENSIONS: MARKETPLACE

live server

()

Live Server DI17.7IM 450 443ms

Launch a development local Server with
Ritwick Dey R

Live Server Preview @ 435K % 3.5
Preview your HTML file with localhost ser...
negokaz

Live Share D72M Kk 45

Real-time collaborative development fro.
£ Microsoft

SQL Server (mssql)

index-468_1.jpg
Desktop layout (large)

Tablet layout (medium) Mobile layout (small)

index-157_1.jpg
“heray(ss) @

Fri 30n 01 2021 01100108 G180 (Central Europesn Stansard Tine), ro._tem.F: 43.2857142857103, B p—
Fri Jon 00 2021 1 (Cemtral Earopesn Sandard Tive), For_temsFi 42, 2857142857143, 37LUSTIEBSTIS, nin st 3572857162081
Fri Jan 35 2071 1 (Contral Esropean Standard Tive), ror_tems_Fi 45, 12BSTIGZBSTL, @ TSI, nin_tem P 35, e5TLSTIS
Fri Jon 22 2071 1 (Contral Esropean Standard Tine), ros_tems_F1 37.6STLASTIAS, LTINS, nir tew i 20142148S7)
Fri s (Contral Earopesn Standard Tine), eos_tems_F1 35.BSTLASTLS, 29I57LUTLE, wi e T+ 25.420ATLS)
Fri v (Contral Europeon Standard Tive) cos_tems F1 4. TLA2SSTLIZES, DTS, wircem T+ 2. 2028571420571)
Frireo (Central Exropesn Standard Tine), cor_tens_Fi 35, 2BSTI2ETL, 3103, win_tem £ 27, 105702057401
Fri v (Central Europesn Stangard Tine), ror_tems_Fi £2.7162857142057, STLBSTIGERSTAE, nintew 1 33 71z857362857)
Fri v (Central European Standard Tine), eor_ten_F+ 45, SSTLGIISTIAS, v tenp_ i 0. DESTIGRASTIE, nin_temF 32.STLAIISTIAZ8)
Fri v (Contral Earopean Standard Tine), cor_tens_Fi 48.STLZISTIOZS, avg_tem.T: 1, ain tenp.F: . ZASTIGZBSTL)

FrS N 12 2071 91100190 GNT-0180 (Central Eurepean SIaRGSrS Tise A0k 1o+ 49, A teap.F¢ 2, 1EBSTLEZBST mi.tew Pt 35.5714285T14288)
Fri Dec 17 2021 91190190 G100 [Gentral Eurepean Standard Tine), wax_tem_Fs 8, ag_tesp_Fs ALIASTIAZASTL, min_tem s 35.71A2857142657)
FrS Dec 24 2020 91190190 G180 [Certral European Stamiord Tine), hox_tem T+ 4642057128571, v teno r1 41LISTICESTLAZS, wi.tem.)

T52: {sate P Dec 31 2021 03:00:00 GUTVGLBD (Central Europeon Standord Tin), s end T 54, o1 16
Feotumns (4) (1ot max tenp K, v temp8 -, eintenp PO
fresereity

P 51, win_tem. 40}

index-439_1.jpg
RANKINGS

React

Vue.js

Angular

Embex

Satisfaction iInteIest

Usage | Awareness |

Solid

Svelte

React

Vue.js

Alpine.js

Lit

Preact

Stimulus

Angular

Embex

index-154_1.jpg
New York City 2021 Weather

Weekly average temperature Days with precipitations

Temperature (*F)
%

a0
o
0 Masimam tapersture

0 Averagetamparsture
2

20 Minimum temperature
2

10

0
Jan | Feb | Mar ' Apr | May | Jun | Jul | Aug | Sep | Oct | Nov Dec

Data source: Weather Undergroud

index-159_1.jpg
SVG container
<svg></svg>

I I i) T

Inner chart

hei

margin.right

[« F {marsin voreon

index-158_1.jpg
SVG container
<svg></svg>

[

Inner chart

... |

7 ey

index-165_1.jpg
SVG container
<svg></svg>

yI oy Mawh AWM M M M MG Swemoe Obe Nowmos Owemie 'y

Inner chart

innerHeight

T““A
ol

rWidth

index-161_1.jpg
op)

Inner chart

SVG container

<svg></svg>

=

7 {marsin borion

X3

index-167_1.jpg
i

o

ey

an

B

A

index-462_1.jpg
FRONT-END FRAMEWORKS

RANKINGS RETENTION VS USAGE FRONT-END FRAMEWORKS

index-166_1.jpg
o ooy wam A Moy Wne Wy Al Seplmber Ociber Nowmber Decomoer

year label month labels

index-460_1.jpg
New York City 2021
Weather

Weekly average temperature

Temperature (F)
®
&
w0
2

o

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

index-169_1.jpg
Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

oct

Nov

Dec

index-466_1.jpg
Desktop layout (large)

.container

Tablet layout (medium) Mobile layout (small)

.container .container

index-168_1.jpg
<path class="domain" /> <g class="tick"><g/>

' ' | . ' <line />
<text>

index-464_1.jpg
Desktop layout (large)

9 columns 3 columns

3 columns

Tablet layout (medium) Mobile layout (small)

12 columns 12 columns

12 columns

6 columns 6 columns
12 columns

index-448_1.jpg
Tablet (2%)

\

—— Mobile (58%)

Desktop (40%)

index-441_1.jpg
RANKINGS RETENTION VS USAGE

TT

AWARENESS

index-453_1.jpg
Too many
axis labels

New York City 2021
Weather

Weekly average temperature

Dots are very close
to each other

(R @] | FElements Console Sources Network

<html>
» <head>.</head>

Performance

Memory

Application » | ©2 B1| & i X
Styles Computed Layout »
Filter thov .cls +, @ [

w<body data-new-gr-c-s-check-loaded="14.1087.0" data-gr-ext-installed cz-shortcut- ciement.style {

Uisten="tru
e Pediv clas:

ontainer>.</div> == $0
Load your scripts here —>

<script src:
<script src:
<script src:
<script src:
<script src:

js/line-chart., js"></script>
js/interactions. js"></script>
js/l0ad-data. js"></script>

tps://d3)s.0rg/d3. vI. nin. js"></script>
s/shared-constants. js"></script>

¥

.container {
margin-right: auto;
margin-left: auto;
padding-right: 30px;

base.css:20

max-width: 1200px;

<!—- Code injected by live-server —> }
> <scriptso</script> %, ciafter, sibefore { base.cssi8
</body> box-sizing: inherit;
» <grammarly-desktop-integration data-grammarly-shadow-root="true">.</grammarly- %
desktop-integration> div { user agent stylesheet
</htat> display: block;
}
Inherited from body
body {

— Text is too small

margin: » 0;
background-color: [4FFFDFE;
font-fanily: ‘Roboto’, sans-

serif
font-size: 1.6rem;
Uine-height
font-weight
color: M#27262

index-451_1.jpg
New York City 2021 Weather

Weekly average temperature

Temperature (°F)
%0

80
70
60
50
40
30

20

Maximum temperature

Average temperature

Minimum temperature

New York City 2021
Weather

Weekly average temperature

Tempartre (7)

index-135_1.jpg
domain: count values in the dataset

Flourish D3.js Tableau Excel
) 198 414 852 1078

o
0 83173 356 450

range: rectangles’ width in pixels

index-140_1.jpg

index-138_1.jpg

index-143_1.jpg
<g></g>

1078
e Tableau
< powerpoint o1
<g></g>
<g></g>
SVG container

<svg></svg>

index-141_1.jpg
range: Vertical
space available

domain: list of the technologies from the dataset

["Excel”, "Tableau

yScale("PowerPoint!

"PowerPoint”, "R", "Python", ...]

y{ Excel

Tableau

paddingInner

roveszoine | ysaate.bandiden)
paddingznner

It

R

Bython

SVG container
<avg></avg>

index-145_1.jpg
E .
<g></g>y

........ Excel
<g></g> t....]‘ablﬁali
A |88 PowerPoint
<g></g> ;- R ‘
<g></g>e

index-144_1.jpg
v<div class="responsive-svg-container'
v<svg viewBox="0 0 600 700" style="border: 1px solid black;">
v<g transforn="translate(0, 0)">
</rect> | «—— Rectangle element

ranslate(0, 21.34146341463415) ">..</g>
translate(0, 42.6829268292683)">..</g>
ranslate(0, 64.02439024390245 /9>
translate(0, 85.3658536585366)">..</g>

»<g transform=
»<g transforr
»<g transform=

»<g transform="translate(@, 618.9024390243903)"
»<g transform="translate(@, 640.2439024390244)">.
»<g transform="translate(@, 661.5853658536586)">.
»<g transform="translate(@, 682.9268292682927)">..
</svg>

</div>

index-148_1.jpg
SVG container

<svg></svg>

index-147_1.jpg

index-150_1.jpg
Angular|

1078

index-430_1.jpg
AWARENESS

9% SSauaIeMy

SNTNWI3S
311

PTTOS
sLrautdTy
JoeaI1d
Iaqu3
93TdAS
Iernguy
s anp
Joeay

index-428_1.jpg
RANKINGS RETENTION VS USAGE

AWARENESS

Mk,

index-437_1.jpg
RANKINGS

Awareness

Usage

o
-

-]
)

Svelte

React

Vue.js

Alpine.js

Lit

Preact

Stimulus

Angular

Embexr

2021

2020

2019

2018

2017

2016

index-418_1.jpg
RANKINGS RETENTION VS USAGE

1. D3 controlled
2. React controlled

AWARENESS

"I“lln. e

index-416_1.jpg
<script>

import { onMount } from "svelte";) 1. Import the onMount lifecycle function
from svelte.
let myRef;
2. Declare the reference variable.
onMount(() => {

buildcChart();
)i

const buildChart = () => {
d3.select (myRef)
.append(...)

.style(...)

}

</script>

<div bind:this={myRef}></div> 3. Apply a reference to the element you
want to control with D3 using bind:this,
pointing to the reference variable
declared in step 2.

4. Wait for the component to be mounted
before calling the function where you will
build the chart. Otherwise the reference
won't be available.

5. Select the reference with D3.
6. Use D3 to append and style elements.

index-426_1.jpg
RETENTION VS USAGE

100

[] o
80 ® @
®e

60 @
40 o

o/
70

Retention

201 @

0

T T
(0] 5000 10000

User Count

index-423_1.jpg
main line (<line /> or<path />)

\
tick line (<1ine />)
0 5000 10000 tick label (<text>)

tick

index-406_1.jpg
import { useRef, useEffect } from 'react'; 1. Import the useRef and useEffect hooks.

const myComponent = props => {
const myRef = useRef(); 2. Inside the component, initialize the
useRef() hook. Save it in a constant

useEffect(() => { (myRef).

const ref = d3.select(myRef.current)
.append(...)
.style(...)

Yool oo D)

return (
<div ref={myRef}></div> 3. Give a ref atiribute to the element you
s want to control with D3, pointing to the
}; useRef() hook initialized in step 2.

export default ScatterplotUncontrolled;

4. With d3, select the current instance of
the ref inside a useEffect() hook.

5. Remaining inside the useEffect() hook,
use D3 to append and style elements.

index-413_1.jpg
import { ElementRef, ViewChild } from '@angular/core';

selector: '...', Angular’s core module.

template: '<svg:g #myRef></svg:g>',
%) 2. Inside the HTML template, give a direct
reference to an element with a hash (#)
symbol followed by the name of your

export class MyComponent { hoice (myRef)
choice (myRef).

@viewChild('myRef')
myRef!: ElementRef<SVGElement>;

3. Use the property decorator ViewChild
ngAftervViewInit(): void { to access the reference. It returns an
{EhEiSEbuEsId ChiaTst(@)Fs ElementRef on a SVG element.

}

buildcChart() {

d3.select(this.myRef.nativeElement) 4. Wait for the component to be fully
.append(...) initialized before calling the function

.style(...) where you will build the chart. Otherwise
the reference won't be available.

5. Select the nativeElement property of
the reference with D3.

6. Use D3 to append and style elements.

index-410_1.jpg
RETENTION VS USAGE

100
80
60
40

20

0

0 5000 10000

