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  1 

Organometallic Multicomponent 

Reactions  

1.1. Introduction 

The first multicomponent reactions were discovered in the second half of the 19th Century. Long considered as laboratory curiosities, these reactions, which allow the assembly of several reactants in a single process and hence the synthesis of complex molecules with high added value, prospered at the end of the 20th Century with the advent of combinatorial chemistry. This new tool, used mainly by pharmaceutical and agrochemical companies, aims to quickly and efficiently produce large libraries of small, often heterocyclic, molecules for high throughput screening tests in order to increase the chances of identifying new bioactive compounds. The enthusiasm generated by these reactions has been greatly amplified by the emergence of the concept of green chemistry, through which researchers have committed themselves to minimizing the impact that the chemical sector can have on the environment. These new approaches are well adapted to meet this type of challenge, particularly in terms of saving time, energy or atoms, reducing waste and safety risks, and converging and simplifying processes. Catalysis is essentially one of the pillars of green chemistry because of its ability to accelerate and facilitate chemical reactions. Transition metal complexes are among the most widely used in the design of catalytic Chapter written by Nuno MONTEIRO. 
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2     Multi-component Reactions in Molecular Diversity multicomponent reactions because of the multitude of transformations they are capable of catalyzing with often high selectivities. This chapter, which is not intended to be exhaustive, aims to illustrate, through selected examples, how multicomponent reactions, merged with metal catalysis, can meet the requirements of green chemistry. 

1.2. Multicomponent reactions: concept and applications 1.2.1.   Concept and correlation with the principles of green 

 chemistry 

Synthetic organic chemists have a wide range of methods at their disposal to develop new functionalized target molecules on which future progress in medicine, biotechnology, crop protection and materials depend. Traditionally, over the last century, these molecules have been essentially developed through successive steps allowing the incorporation of the various fragments that make up the final structure. The desired structural and functional complexity is thus only accessible through a linear sequence of independent chemical reactions.  Multicomponent reactions, on the other hand, are processes that condense at least three reactants (components) into a single synthetic operation to produce a final molecule that incorporates the majority of the initial atoms. In general, an initial transformation combining two initial components will generate a reactive intermediate that will then undergo further transformations in the reaction medium by combining with other components. All these transformations take place in a single reactor; we will refer to this as a one-pot reaction (Figure 1.1). Ideally,  and from a puristic point of view, all components, reagents and possible catalytic systems should be present in the reaction medium from the beginning of the reaction. 

The various components must then be successively assembled in a predetermined order under the same reaction conditions to synthesize a single product. This therefore raises the problem of the compatibility of the various reactants involved, and therefore the formation of secondary products. However, in practice, the development of such reactions is very difficult, and it may be appropriate, when possible, to delay the addition of one or more components, reagents, catalysts or  
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ligands. It may also be possible to modulate the reaction parameters during the reaction. Thus, in some extreme cases, the design of a multicomponent reaction will involve successively carrying out several independent steps in the same pot (Herrera and Marques-López 2015a; Zhu  et al. 2015). 



Figure 1.1.   Linear approach compared to a multicomponent approach involving three reactants (components) A, B and C. For color versions of the figures in this book, see www.iste.co.uk/malacria/reactions.zip Multicomponent reactions are very effective in terms of atom economy and selectivity; they allow complex and varied structures to be reached in a single synthetic operation, that is without isolating the intermediate products formed during the reaction. Synthesis therefore requires fewer steps than a linear approach, saving time, equipment and consumables (solvents and reagents) and thus significantly reduces its impact on the environment, in particular by producing less waste (Cioc  et al.  2014). This also reduces safety risks. 

Multicomponent reactions thus satisfy many of the  principles of green chemistry (Anastas and Warner 1998). 

1.2.1.1.   Step economy  

In general, conventional chemical synthesis pathways can only create one bond per step. This approach is very costly in terms of solvents, reagents, auxiliaries, energy and time. Multicomponent reactions, on the other hand, create several bonds in a single operation in the same reaction medium, without purification of the intermediates. They are therefore clean reactions insofar as the use of solvents is limited to the reaction itself. As the intermediate products are not isolated, the purification steps, which consume large amounts 

4     Multi-component Reactions in Molecular Diversity of organic solvents, are therefore limited, which also reduces the cost of producing the desired molecules. One-pot reactions also aim to reduce the production of toxic waste that is difficult to dispose of or recycle. These are reactions that take place in a single reactor, resulting in energy savings and lower equipment costs. This strategy also saves a significant amount of time, which is also an economic advantage. 

1.2.1.2.   Atom economy 

Multicomponent reactions are a perfect answer to the concept of atom economy since they capitalize on the functionalities of each reactant in the final product. Indeed, these reactions offer the possibility of reaching very complex molecular systems in a single step where most of the functionalities of the starting products are found in the finished product. Reduced energy consumption is therefore required to create these structures compared to the requirements claimed in multistage synthesis. 

1.2.1.3.   Convergence and selectivity 

Multicomponent reactions are often compatible with many functional groups, which do not participate in the main reaction but can then be involved,  in situ where possible, in derivatization reactions – also called  post-condensation reactions. The latter make it possible to increase the structural complexity and/or functional diversity of the targeted products. These reactions, which take place in a single reactor, are very efficient, generating fewer by-products that are difficult to separate and eliminate. Tedious steps such as protection/deprotection of functional groups are avoided. 

1.2.1.4.   Process safety 

Some solvents are dangerous. They can be toxic, flammable, polluting, explosive. Multicomponent reactions considerably reduce these risks by reducing the quantities of solvents used to prepare the required compounds. Multicomponent reactions also avoid isolating the reaction intermediates. These can be unstable or toxic. Such reactions therefore have the advantage of performing transformations that would not be feasible in several, independent steps, as well as minimizing some risks of chemical accidents. 

Organometallic Multicomponent Reactions     5 

1.2.1.5.   Eco-compatible solvents 

The use of water as a solvent has many advantages. Due to its physico-chemical properties, it makes it possible to increase the reactivity and selectivity of many reactions and to operate under milder conditions, as well as to avoid in some cases the protection/ 

deprotection steps (Gawande  et al.  2013). It also simplifies the isolation of products, which are generally not very soluble in this medium. It is therefore interesting from an economic point of view (reduced costs), but also ecological (total absence of toxicity). These beneficial effects of water have also been observed in some multicomponent reactions (Gu 2012). The use of other eco-compatible media, such as ionic liquids and deep eutectic solvents, polyethylene glycol, biosourced solvents, or simply solvent-free reactions, has also been documented (Isambert  et al.  2011; Shankar Singh and Chowdhury 2012; Liu  et al.  2015). 

Multicomponent reactions have also benefitted from many non-conventional reaction techniques particularly adapted to the principles of green chemistry. These include sonication techniques, but above all microwave technology,  the main advantage of which is to drastically reduce reaction times, thus reducing the energy cost of processes while often improving the efficiency and purity of reaction products (Hügel 2009). Likewise,  continuous reactor technologies have developed considerably in recent years and are also gradually adapting to multicomponent synthesis. Among their many advantages, these continuous flow chemical production methods (flow chemistry) allow, through automation, reactions to proceed under optimal conditions of efficiency and safety, on a small or large scale, and in a reproducible manner (Newman and Jensen 2013). These technologies, particularly well adapted to the synthesis of chemical libraries, are used in pharmaceutical research and development departments. 

1.2.2.   Origins and areas of application 

The first multicomponent reaction was developed in the mid-19th Century (1850) by Strecker; it allows the synthesis of α-amino acids from aldehydes, ammonia and hydrocyanic acid, after hydrolysis of the α-aminonitriles formed (Strecker 1880). However, it should be noted 
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6     Multi-component Reactions in Molecular Diversity that a few years earlier, in 1837, the French chemists Auguste Laurent and Charles Gerhardt studied the reaction of bitter almond oil, containing benzaldehyde and hydrocyanic acid, with ammonia and proposed the formation of aminonitriles (Laurent and Gerhardt 1837, 1838). The first reaction to achieve heterocyclic compounds was developed in 1882 by Hantzsch during the synthesis of functionalized dihydropyridines, by reacting ammonia on various aldehydes in the presence of two equivalents of β-ketoesters (Hantzsch 1882). This was followed by Biginelli's reaction to synthesize dehydropyrimidones (1891) (Kappe 1993) and Mannich’s reaction to β-aminoketones (1912) (Figure 1.2a) (Mannich and Krösche 1912). New reactions emerged later, based on the reactivity of isonitriles. These include the Passerini reaction (1921) and more particularly that of Ugi (1959) involving four components (Figure 1.2b) (Ugi  et al.  1991). 



Figure 1.2.   History of multicomponent reactions 
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Among the first notable applications of these reactions was the synthesis of nifedipine by Bayer in 1981. This molecule used in the treatment of hypertension and angina pectoris is directly synthesize via the Hantzsch reaction (Figure 1.3a) (Bossert  et al.  

1981). It should also be noted that tropinone, a precursor of atropine used as an antidote to certain intoxications, was also synthesized in 1917 by Robinson (Nobel Prize 1947). It represents the first multicomponent synthesis of a natural product and involves successive inter- and intramolecular Mannich reactions (Figure 1.3b) (Robinson 1917). 



Figure 1.3.   Syntheses of Nifedipine and Tropinone based on the  Hantzsch and Mannich reactions, respectively It was only at the end of the last century that this type of reaction gained renewed interest with the  advent of combinatorial chemistry (Jung 1999) and the need to develop new chemical technologies that are more environmentally friendly. As the search for new  lead compounds by pharmaceutical and agrochemical companies is mainly based on the evaluation of biological tests of a large number of small molecules, the introduction of high throughput screening techniques in molecular biology has led synthetic chemists to  develop methods for the rapid and efficient preparation of large collections of small molecules (libraries), often heterocyclic, with the same skeleton  



8     Multi-component Reactions in Molecular Diversity but differing only by the nature of the substituents (Hulme 2005; Rotstein   et al.  2014). The main challenge was to improve synthesis strategies by avoiding the isolation of intermediates and time-consuming purifications including extraction, distillation, chromatography and crystallization, and to develop strategies to achieve a set of related molecules in the fewest operations. 



In this context, multicomponent reactions have proven to be a perfect tool for the rapid synthesis of compound series. The Ugi condensation reaction, in particular, has seen considerable growth as it allows a high degree of molecular diversity to be achieved thanks to its four modular components, while generating only water as a by-product. It enables, from commercial or easily accessible compounds, the quick creation of large libraries of peptide derivatives. 

Many post-condensation reactions associated with the Ugi reaction have also been developed, including cyclization reactions that lead to 

“rigidification” of structures, thus broadening their potential properties and applications (Sunderhaus and Martin 2009). Very high levels of diversity and complexity are thus easily accessible (Ruijter   et al.  2011). In addition to the new opportunities for the research of bioactive molecules (Dömling 2012), multicomponent reactions have found their application in the  optimization of existing synthesis pathways by reducing the number of steps. A very good example is telaprevir, a peptide protease inhibitor recently approved for the treatment of hepatitis C, whose 20 synthetic steps have been halved thanks to the implementation of a new strategy based on two multicomponent reactions (Ugi and Passerini) (Zarganes-Tzitzikas and Dömling 2014). Multicomponent reactions have also been used in the  synthesis of natural products and analogues (Toure and Hall 2009), and more recently in the construction of macromolecules, such as polymers, including dendrimers (Rudick 2013), as well as peptidomimetics (Koopmanschap   et al.  2014). Some of these applications will be illustrated during this presentation. 

Given their remarkable potential for organic synthesis, the search for new multicomponent reactions now occupies a major place in modern organic chemistry. To date, a multitude of processes have been described in the literature, most often combining three to four 
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reactants, but in some rare cases up to five or more reactants (Brauch et al.  2013). In this field, many advances have been made, thanks to the contribution of catalysis by transition metals. 

1.3. Merging multicomponent and organometallic transformations 

As we have just seen, the first multicomponent reactions were based on condensation reactions of carbonyl derivatives and the use of reactive compounds such as imines and isonitriles; they were therefore mainly adapted to the preparation of a certain type of nitrogen compounds. The use of catalyzed processes, particularly by transition metals, has made it possible to achieve greater diversity and molecular complexity thanks to the wide variety of elementary processes that they are able to catalyze, and all within a reasonable time frame. 

1.3.1.   History: the predominant role of palladium 

Among the first multicomponent organometallic reactions, we can mention the conjugate addition reactions of organometallic nucleophiles on cyclic enones, followed by a trapping of the enolate formed by an electrophilic species. As the alkylating agent approaches the most exposed side of the enolate, the  trans diastereomer is preferentially formed (Figure 1.4a). 

These reactions, developed in the 1970s by Stork (Stork and Isobe 1975), have been used in particular in the synthesis of prostaglandins, natural products involved in many biological processes. They most often involve the addition of a lithiated organo-copper compound (R2CuLi type) to a cyclopentenone. 

A very good illustration of these reactions is shown by the synthesis of an advanced intermediate of prostaglandin E2  (Figure 1.4b). Developed by Noyori in 1984, it enables the introduction of the two side chains in a single step and with perfect control of the formed stereogenic centers (Noyori and Suzuki 1984). 
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10     Multi-component Reactions in Molecular Diversity Figure 1.4.   Tandem conjugate addition/alkylation reactions: application to the synthesis of prostaglandin E2  

Many catalytic multicomponent reactions began to emerge in the 1980s, particularly focusing on alkenes, alkynes, and to a lesser extent allenes as key components, due to the particular affinity of transition metals for unsaturated functional groups. Among the latter, palladium occupies a prominent place. The interest of this metal for the development of multicomponent reactions lies, on the one hand, in its compatibility with a very large number of functional groups and, on the other hand, in the great diversity of fundamental processes that it catalyzes, as well as in its ability to create several carbon-carbon or carbon-heteroatom bonds in a single operation (Balme  et al.  2003; D’Souza and Müller 2007). The Heck reaction (Nobel Prize in Chemistry 2010), used since 1968 for the coupling of alkenes with halogenated aromatic derivatives (Figure 1.5a), has significantly  
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contributed to the development of the first multicomponent metal-catalyzed reactions, based in particular on alkene carbopalladation. It has indeed been shown that the  syn-addition of an organopalladium complex to a suitably chosen unsaturated bond – so that the catalytic cycle cannot end with the conventional  syn- β-elimination of palladium hydride – could lead to the formation of an organometallic intermediate with a long enough lifetime to be engaged in new coupling reactions, thus allowing a third partner to be introduced into this reaction. A remarkable example of this type of reaction is the synthesis of a compound belonging to the leukotriene family (Figure 1.5b) (Oda  et al.  1995). This involves a rigid bicyclic compound such as norbornadiene, a functionalized vinyl chloride and an organotin compound. All three compounds are present in the reaction medium from the beginning of the reaction. The  syn-addition step of vinyl chloride to norbornadiene leads to an organometallic intermediate that cannot undergo  syn- β-elimination of palladium hydride due to the rigidity of the structure. This intermediate can then be trapped by coupling with the organotin derivative. This last step allows the catalyst to be regenerated; the reaction is then catalyzed by palladium. 

The two side chains are therefore introduced in a single operation to give a unique  cis- addition product. A simple reduction of the ethylenic ketone allows a member of the leukotriene family, which, like prostaglandins, are metabolites of arachidonic acid, to be synthesized very efficiently. However, this reaction had the disadvantage of involving an organotin derivative whose possible residues may be toxic. A large number of multicomponent reactions based on this principle were subsequently developed (Tsuji 2004). 

A multitude of palladium-catalyzed multicomponent reactions have been developed to date. At the same time, many other metals, such as copper, nickel, ruthenium, rhodium, silver or more recently gold, have contributed through their specific reactivities to enrich this field of research, offering multiple opportunities for the discovery of new multicomponent syntheses (Balme  et al.  2005; Lorenzini  et al.  

2014; Herrera and Marques-López 2015b). 
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12     Multi-component Reactions in Molecular Diversity Figure 1.5.   Carbopalladation of alkenes: from Heck’s reaction to the first multicomponent applications 

1.3.2.   Contribution of catalysis in multicomponent 

 reactions 

Catalysis is one of the major fields in green chemistry (Sheldon et al.  2007). Although most transition metals are relatively expensive, their involvement in organic synthesis as catalysts is often beneficial. 

In general,  a catalyst will accelerate and facilitate chemical transformations by lowering the energy barrier required to activate reactions, allowing the use of milder conditions, and thus reducing the chemical industry’s production costs. In addition, the use of a catalyst allows  reactions to be carried out that would not have been possible without it. It makes it possible to consider the  successive creation of several bonds and cycles in a single synthetic operation and thus to reach in an efficient and selective way complex structures difficult to  
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synthesize by conventional methods, also offering the possibility of  

 inducing asymmetry by the use of chiral ligands of the metal. For obvious reasons, organometallic multicomponent reactions involving catalytic quantities of one or more metals are among the most environmentally friendly reactions. They address issues of process efficiency, diversity and safety, are adaptable to the use of eco-friendly solvents, particularly water, and benefit from recent efforts to recycle catalytic systems. 

1.3.2.1.   Process efficiency and safety 

If we wish to illustrate the remarkable way in which a reaction can be improved – in terms of efficiency and safety – by developing a new process merging catalysis with a multicomponent strategy, the synthesis of 1,2,3-triazoles by combining an alkyne with an azide is probably one of the best examples (Figure 1.6). Although discovered in 1893 by Michael, this reaction was only developed much later, in the early 1960s, thanks to Huisgen’s work, which demonstrated its mechanism and synthetic potential. However, this 1,3-dipolar cycloaddition reaction had the disadvantage of requiring long reaction times and high temperatures. In addition, due to the concerted nature of its mechanism, it produced a mixture of two regioisomers (Figure 1.6a) (Huisgen 1984). It is in 2002 that this transformation took off considerably thanks to the work of Fokin, Sharpless (Rostovtsev   et al.  2002) and Meldal (Tornøe  et al.  2002) who discovered that the addition of catalytic quantities of copper significantly accelerated the reaction rate, thus allowing reactions at room temperature and shorter reaction times. Another notable consequence was the possibility of controlling the regioselectivity of cycloaddition. The beneficial role of copper in this reaction can be explained by the formation of a copper (I) acetylide, followed by a complexation of the azide that orientates the regioselectivity of cycloaddition towards the exclusive formation of the 1,4 regioisomer (Berg and Straub 2013). This discovery therefore saved time, energy and controlled selectivity and reactivity, thus limiting the formation of unwanted co-products that must be separated and eliminated. Milder reaction conditions allow the presence of various functional groups, thus avoiding tedious protection/deprotection steps (Bräse  et al.  2005). 



14     Multi-component Reactions in Molecular Diversity It should be noted that ruthenium catalysis has also been recently explored (Johansson  et al.  2011). Although it does not allow the use of such mild conditions as in the case of copper catalysis; but it has the significant advantage of allowing the selective formation of the 1,5 

regioisomer (Figure 1.6b). 

The copper-catalyzed version of Huisgen’s cycloaddition reaction now has a myriad of applications in the field of “click” chemistry. This term introduced by Kolb  et al.  in 2001 defines a set of reliable, clean and atom efficient reactions that can be used in the efficient formation of molecular structures for applications in the fields of medicinal and bio-organic chemistry and materials science (Kolb  et al.  2001). 

However, the handling of organic azides can be hazardous because some of them are potentially explosive. A solution to this problem was provided by Fokin and van der Eycken in 2004 (Appukkuttan  et al.  

2004). It involves preparing the latter  in situ by reacting sodium azide with an alkyl halide in the presence of the acetylenic partner and under microwave irradiation (Figure 1.6c). Other precursors have since been used for the  in situ preparation of organic azide, including alcohols, aldehydes, epoxides, diazonium salts, or boronic acids, thus providing greater structural and functional diversity. Significant efforts have also been made in the use of eco-friendly solvents (water, polyethylene glycol), as well as in the design of recyclable catalytic systems immobilized on a solid support. 

Automated continuous flow chemical production methods are also applicable to the multicomponent synthesis of triazoles from alkyl halides. The advantage of this method is that it avoids the accumulation of large quantities of hazardous organic azides during large-scale synthesis; in particular, the use of copper flow microreactor technology in this field is noteworthy, allowing heterogeneous catalysis of this reaction to be carried out without the need for additional copper catalysts. The method is applicable to the preparation of triazole libraries (Figure 1.6d) (Bogdan and Sachs 2009). Today, a very large number of multicomponent reactions are based on the copper-catalyzed version of the Huisgen cycloaddition reaction (Hassan and Müller 2015). 
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Figure 1.6.   Click chemistry. Huisgen cycloaddition reaction: contribution of catalysis and advantages of the multicomponent approach 1.3.2.2.   Diversity and complexity 

Metals are reactive species capable of catalyzing various elementary processes; they allow the successive creation of several 
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16     Multi-component Reactions in Molecular Diversity bonds in a single pot, sometimes by activating several substrates in turn, thus offering many opportunities in the construction of complex molecular structures. However, the more complex the targeted transformations prove to be, the more difficult it will be to perfectly control the selectivity of the catalyst and thus avoid the occurrence of competing reactions, sometimes unexpected, sources of co-products that will have to be separated and destroyed. Nevertheless, the discovery of new multicomponent processes often results from the creative exploitation of unexpected reactions. The latter may simply result from the fact that a catalyst modifies the reaction mechanism of the reaction on which it operates. A good illustration of this is the Huisgen cycloaddition reaction once again. The use of a copper catalyst in this transformation made it possible to reveal particular reactivity linked to the use of sulphonyl azides as partners of alkynes. 

In this case, the reaction does not generate the expected triazoles, but leads, via    the extrusion of dinitrogen, to the formation of an  N-sulfonyl ketene iminyl copper intermediate that can be trapped by various nucleophilic species present in the reaction medium (Figure 1.7) (Yoo  et al.  2008). 



Figure 1.7.   Catalytic Huisgen cycloaddition reaction: discovery of new reaction outcomes 

This reaction does not occur in the absence of copper and therefore could not have been discovered without the addition of catalysis. In addition to click chemistry, this new multicomponent reaction has found many applications, particularly in functionalized polymer synthesis (section 1.3.3.3.). 
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Reactions involving migratory insertion steps of carbon monoxide as a C1 synthon are particularly valuable tools for designing multicomponent processes (Mihovilovic and Stanetty 2007). Carbon monoxide can act as a third component, or as an additional component in an already established multicomponent reaction. Many catalytic multicomponent reactions, in particular palladium-catalyzed ones, have been reproduced under a carbon monoxide atmosphere, thus providing access to carbonylated analogues of typical reaction products, thus increasing the degree of diversity. Many heterocyclic derivatives, in particular, have been prepared in this way (Wu  et al.  

2013); some illustrations of these reactions are given below. Among the most interesting applications of carbonylation reactions are the multicomponent synthesis of münchnones, developed by Arndtsen in the early 2000s from imines and acid chlorides. These stable mesoionic heterocyclic compounds, discovered by Huisgen in Munich (München in German) in the 1960s, can give rise to various 1,3-dipolar cycloaddition reactions in the presence of unsaturated derivatives to lead to various nitrogen-containing heterocyclic compounds, such as pyrroles, imidazoles, or β-lactams. Arndtsen developed several multicomponent reactions to prepare and transform münchnones  in situ, creating a lot of diversity (Figure 1.8.) (Quesnel and Arndtsen 2013). An application of this reaction to the synthesis of polyheterocyclic polymers will be presented later (section 1.3.3.3.). 



Figure 1.8.   Multicomponent synthesis of münchnones applied to heterocyclic synthesis 

Palladium-catalyzed carbonylation reactions have been shown to be particularly useful for the esterification (Schoenberg  et al.  1974) or amidation (Schoenberg and Heck 1974) of aryl derivatives (Figure 1.9a, left part). The first examples of these reactions combining an  
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18     Multi-component Reactions in Molecular Diversity aryl halide with an alcohol or an amine in the presence of CO were published in 1974 by Heck. A remarkable application of these reactions was the development of a one-step Lazabemide synthesis process by Hoffmann-La Roche in the 1990s. This monoamine oxidase B inhibitor, developed for the treatment of Parkinson’s disease, although never marketed, previously required eight synthetic steps from 2-methyl-5-ethylpyridine, for an overall yield of 8%. The new strategy involves the regioselective monoamidocarbonylation reaction of 2,5-dichloropyridine (Figure 1.9b). The very small amount of catalyst used facilitates its removal at the end of the reaction (Schmid 1996). 



Figure 1.9.   Insertion reactions of carbon monoxide and isonitriles However, the use of carbon monoxide in the design of new multicomponent processes can have some disadvantages: it is a toxic  
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gas, used in excess, and often at high pressure. It also does not offer any degree of structural flexibility. For these reasons, researchers are becoming increasingly interested in the reactivity of isonitriles to transition metals, particularly palladium. Indeed, isonitriles, already widely used in multicomponent reactions, are practical to use and provide diversity; they are mainly isoelectronic species of the carbon monoxide molecule, and therefore have similar reactivities, particularly with respect to insertion reactions. Their usefulness for the synthesis of imidines, imidates, or thioimidates was demonstrated by Whitby in the early 2000s (Figure 1.9a, right-hand side) (Saluste  et al.  

2000; 2001). A particular application of this chemistry, illustrated in Figure 1.9c, concerns the amidation of aryl derivatives with  tert- butyl isonitrile. Here, water plays the role of the third component and allows the direct formation of an amide functional group, avoiding the use of carbon monoxide (Jiang  et al.  2011). However, although these reactions have a very high synthetic potential (Vlaar  et al.  2013), isonitriles remain highly reactive species that can cause intolerance problems with certain substrates. 

1.3.2.3.   Asymmetric reactions 

The importance of optically pure compounds in industry, particularly in the pharmaceutical sector, has strongly encouraged the development of asymmetric multicomponent processes. Indeed, since the biological properties of enantiomers can differ greatly, it is important to have methods available to prepare the right enantiomer selectively. Such methods are interesting in terms of atom-economy and reducing the waste caused by the separation of enantiomers. Two approaches are being considered for the design of catalytic and asymmetric multicomponent reactions. In the first –  diastereo selective approach – the catalyst is not involved in the realization of asymmetry; the formation of new stereogenic centers results from the use of one (or more) chiral components, or a chiral auxiliary. The second –  enantioselective approach – involves achiral components; the formation of new stereogenic centers is controlled by a chiral catalyst. Early work in this area focused on the desymmetrization of norbornene and illustrates both approaches well (Figure 1.10). In 1992, Torii performed the diastereoselective desymmetrization of palladium-catalyzed norbornene using a chiral vinyl iodide of  E 
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20     Multi-component Reactions in Molecular Diversity configuration and potassium cyanide (Figure 1.10a). This three-component reaction involving a Heck insertion step leads to a bis-functionalized norbornane with four contiguous chiral centers, including two new asymmetric centers (C2,  C3) created with a high degree of stereocontrol. It can be noted that the double bond of the starting vinyl iodide is isomerized during this transformation. The authors propose a mechanism involving the formation of a cyclopropane intermediate that would lead to the most stable alkene of configuration   E after reopening (Torii  et al.  1992). In 1997, Fiaud produced an enantioselective version of this type of desymmetrization using 2-iodophenol as a coupling partner under atmospheric pressure of carbon monoxide. The use of a bidentate chiral ligand of palladium yields a tricyclic heterocyclic derivative in good yields, but relatively low enantiomeric excesses (Figure 1.10b) (Moinet and Fiaud 1997). 

This is probably the first asymmetric multicomponent reaction involving a chiral metal catalyst. 



Figure 1.10.   Desymmetrization reactions of norbornene 
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There are now many examples of asymmetric organometallic multicomponent reactions based on the use of chiral ligands (Ramón and Yus 2005; Clavier and Pellissier 2012; de Graaff  et al.  2012). One notable example is the Wacker-type carbonylative cyclization reaction developed by Tietze, and recently applied to the synthesis of a natural product, (-)-diversonol (Figure 1.11) (Tietze  et al.  2013). This reaction, based on the use of a bis(oxazoline) ligand, allows the formation of an initial cyclic compound and the concomitant creation of a stereogenic center with high enantioselectivity. 



Figure 1.11.   Asymmetric carbonylative Wacker-type cyclization: synthesis of (-)-Diversonol 

1.3.2.4.   Chemistry in water 

Synthetic methods using organometallic compounds are often carried out in organic solvents because of the sensitivity of some of these species (including organolithium, organomagnesium, organozinc, and organocopper compounds) to hydrolysis. The  use of water as a reaction solvent could be developed with the advent of organometallic chemistry of transition metals. Although reactions catalyzed by these metals are generally conducted in an inert atmosphere and anhydrous conditions, many of them are in fact compatible with water. Many solutions have been found to the problems of solubility and relative instability of transition metal 

22     Multi-component Reactions in Molecular Diversity complexes in water: design of metal complexes more stable in air and water or water-soluble complexes, particularly through the development of hydrophilic ligands. In many cases, there is a better catalyst reactivity and selectivity in aqueous media, both in the heterogeneous and homogeneous catalytic systems. It is also important to note that the use of water as a solvent can facilitate the isolation of reaction products but also the recycling of the catalyst (Cornils and Herrmann 2004). Thus, the hydroformylation process for propene and 1-butene, developed by Rhône-Poulenc – Ruhrchemie in the 1980s, is an industrial process carried out in an aqueous medium using a rhodium-based catalyst combined with a water-soluble phosphine. Since the aldehydes produced cannot be mixed with water, this catalytic system can be easily separated. This process can be considered a three-component process since an olefin reacts with carbon monoxide and dihydrogen. 

The development of multicomponent catalytic reactions in aqueous media is a very active area of research today (Simon and Li 2012). 

Among the most studied processes are nucleophilic addition reactions of terminal alkynes on unsaturated electrophilic species, particularly imines, which provide access to propargyl amines, useful for the synthesis of complex nitrogen molecules and bioactive compounds. 

These Barbier-Grignard-type reactions have long required the use of stoichiometric quantities of organometallic reagents, such as organolithium or organomagnesium compounds, as well as the protection of any sensitive functional groups (Figure 1.12a). 

Moreover, the activation of imines by Lewis acids was often necessary, which, in terms of atom economy and ecological considerations, was not entirely satisfactory. In addition, the isolation of synthesized imines was delicate due to the fragility of these compounds. 

A multicomponent catalytic approach was developed in the early 2000s, in which an iminium intermediate is prepared  in situ by condensation of a carbonyl compound and an amine, to which a catalytically generated metal acetylide is added. Several metals, such as copper, silver, gold and palladium, have been used to catalyze this reaction and in many cases use water as a reaction medium (Li 2010). 
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Figure 1.12.   Barbier-Grignard reactions: merged contributions of catalysis, the multicomponent approach and water 

In particular, a study of the catalytic performance of gold salts showed that only water, among the various solvents examined, could 

24     Multi-component Reactions in Molecular Diversity achieve total conversion. Other organic solvents such as DMF, toluene or THF, resulted in incomplete conversion or the formation of by-products. It is interesting to note that water is also the only co-product of the reaction, which makes this process very efficient in terms of atom economy and respect for the environment. The proposed mechanism for this reaction involves the formation of an α-alkynyl-Au complex by C-H acetylene activation (Figure 1.12b) (Wei and Li 2003). 

In addition, the use of chiral ligands has allowed the development of elegant asymmetric multicomponent syntheses of propargyl amines in water. For example, the use of a copper complex composed of a hydrophobic chiral ligand of the bis-imidazoline type has resulted in excellent yields and enantiomeric excess in micellar media through the use of a surfactant, sodium dodecylsulfate (SDS) (Figure 1.12c). 

In general, micelles increase the concentration and reactivity of substrates and catalysts, leading to better selectivities. Catalytic methods in micellar media are currently the subject of significant research efforts and are particularly well adapted to multicomponent reactions; apart from the many sustainable development benefits that these methods offer, they also have the advantage of allowing the direct use of catalyst systems already developed in organic media, not requiring modifications to make them compatible with water (La Sorella  et al.  2015). 

1.3.3.   Multicomponent catalytic reactions: design and 

 applications 

The development of new processes, in which several substrates, reagents and catalysts react, is relatively difficult due to the many compatibility and selectivity problems that this situation creates. This is particularly true in cases where all ingredients are introduced at the beginning of the reaction and allowed to react without altering the reaction conditions. This requires careful selection of the catalyst(s) and optimizing the reaction parameters can be a major challenge. 

These ideal cases are in fact relatively rare because most often, when the reaction allows, it is preferable to intervene on the course of the reaction, notably by modulating the reaction parameters or delaying 
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the addition of an ingredient, in order to minimize the formation of by-products. The design of even more elaborate processes could also be considered in order to increase diversity and complexity. In particular, it will be possible to combine a multicomponent reaction ( mono-condensation reaction) with a post-condensation reaction in the same reactor, or to carry out two consecutive multicomponent reactions, the first of these reactions being used to produce one of the components that will be used in the second. Finally,  polycondensation processes (multicomponent polymerizations) will allow the development of polyfunctional polymers, for which each monomer will consist of an assembly of the various components. These various situations will be illustrated later in this presentation. 

1.3.3.1.   Monocondensation reactions: catalysis strategies Organometallic multicomponent reactions may combine various catalytic and non-catalytic transformations (involving stoichiometric reagents), involve several catalysts, which may catalyze one or more consecutive transformations, sometimes operating in parallel, successively activate several substrates to create several intra- or intermolecular bonds. With so many possibilities available in terms of mechanistic diversity, combinations of elementary organic and organometallic processes, and experimental protocols, it is difficult to categorize these reactions. Nevertheless, three types of multicomponent reactions will be distinguished. In 1996, Tietze defined   domino reactions as transformations that create two or more bonds under the same reaction conditions and without adding additional reagents or catalysts, each new step being the consequence of a functionality created in the previous step (Tietze 2014). 

Multicomponent reactions are – in the  purist sense of the term – 

domino reactions; that is, they ideally require the presence of all reactants from the beginning of the reaction, which react under the same reaction conditions without producing isolable intermediates. To these will be added one-pot reactions which combine two or more independent steps, thus generating isolable intermediates, and for which the addition of reactants can be done before each new step:   

 sequential reactions and  consecutive reactions. The additional feature of consecutive reactions is that they allow a change in reaction conditions. The examples presented below illustrate the approaches 

26     Multi-component Reactions in Molecular Diversity most frequently encountered in the design of multicomponent monocondensation reactions. For strategic purposes, these will be classified according to the number of catalytic transformations they involve, and more specifically the number of distinct catalytic mechanisms. 

1.3.3.1.1. Monocatalytic reactions 

These reactions involve a single catalytic transformation combined or not combined with other non-catalytic transformations. Various situations are possible depending on the nature of the intermediates involved in these reactions. 

 Catalytic intermediates: the most practical and conceptually very simple multicomponent reactions are those for which the various reaction components will be assembled through a single, catalytic process. This type of domino reaction only produces organometallic catalytic intermediates that are constantly regenerated and therefore not isolable. The presence of all components, reagents and catalysts is therefore required from the start of the reaction, which may have some advantage in that it will not be necessary to intervene in the course of events; however, in return, it will offer little control over any side reactions. Most of the multicomponent reactions already presented in the first part of this chapter (Figures 1.5, 1.7–1.11) follow this type of pattern. As we have seen above, addition reactions of organometallic species on unsaturated derivatives are particularly interesting for the design of multicomponent reactions, palladium being especially well adapted to such transformations. This type of approach has been considered notably to improve the synthesis of a herbicide – indanofan 

– developed by Mitsubishi Chemical Co. Ltd. and marketed in 1999 

for weeding rice crops, in particular to control certain very harmful grasses (barnyard grass  Echinochloa oryzicola) competing with cultivated plants (Figure 1.13). The first synthesis of this herbicide involved an advanced intermediate 2-allyl-1,3-indanedione, derived from allylation of 2-ethyl-1,3-indanedione with an allyl chloride derivative that requires five synthetic steps (Figure 1.13a) (Tanaka et al.  1999). A more efficient synthesis could then be developed, in which this advanced precursor of indanofan is directly accessible by means of an elegant multicomponent domino reaction catalyzed by 
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palladium and involving three commercially available or easily accessible starting compounds: an aryl dihalide, propadiene (allene), and the 2-ethyl-1,3-indanedione previously used (Figure 1.13b). This reaction consists of a carbopalladation of the allene that generates an allyl-palladium intermediate on which the carbon nucleophile reacts, thus recycling the catalyst. As the three reagents had to be present from the beginning of the reaction, liquid allene was first used and added in one portion. Unfortunately, this led to the formation of a by-product resulting from the addition of a second allene molecule to the organometallic intermediate. However, carrying out this reaction under bubbling allene gas, which allows a slow addition of this component, has considerably limited this competitive reaction (Hosokawa and Yoshida 2003). 



Figure 1.13.   Carbopalladation of allenes: synthesis of indanofan developed by Mitsubishi Chemical Corporation 

Multicomponent reactions based on the addition of organopalladium species to terminal or disubstituted alkynes have been shown to be interesting strategies for the regio- and 

28     Multi-component Reactions in Molecular Diversity stereoselective synthesis of polysubstituted olefins. This type of approach has been applied to the synthesis of tamoxifen, an anti-estrogen used in the treatment of breast cancer, from an aryl halide, a disubstituted alkyne and a boronic acid (Figure 1.14a) (Zhou and Larock 2005). During this reaction, the same catalyst is used to create two successive bonds by carbopalladation of the alkyne followed by coupling the organometallic intermediate thus generated with a boronic acid. The geometry of the formed double bond is totally controlled during the  syn- addition of the metal complex on the alkyne. 

Although the regioselectivity of this type of addition can become a problem when unsymmetrical alkynes are used, the use of arylalkyl-acetylenes generally results in very good selectivities. As the three components must be introduced at the beginning of the reaction, it is difficult to rule out the risk that the halogen derivative will react directly with boronic acid to form a bisaryl co-product. These two reagents must therefore be introduced in excess to obtain an acceptable yield of the desired product. This greatly limits the effectiveness of the method in terms of atom economy, but it can nevertheless be useful in the search for bioactive analogues. Another version of this type of strategy based on nickel catalysis, involving an organomagnesium compound and an iodine derivative used slightly in excess, has also been developed (Xue  et al.  2015). 

Fluorine chemistry currently plays a key role in the pharmaceutical and agrochemical sectors, but also in materials science. The incorporation of fluorinated units on molecules of biological interest modifies their physico-chemical properties and typically improves their biological properties. Multicomponent reactions are therefore an interesting tool for the synthesis of high added value fluorinated molecules (Wu and Cao 2009). For example, the use of a perfluorinated iodine compound in an alkyne carbopalladation reaction allowed the synthesis of perfluorinated derivatives of estrone and tocopherol. 

However, the carbopalladation of an alkyne in this case does not obey a  syn- addition process, but would rather be of a radical nature, involving a perfluoroalkyl radical, and preferentially generating the  E 

isomer (Figure 1.14b) (Li  et al.  2015). 
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Figure 1.14.   Carbopalladation of alkynes: regio- and stereoselective synthesis of polysubstituted alkenes 

 Reversibly formed intermediates: multicomponent catalytic reactions may involve, in an initial non-catalyzed step, intermediates that cannot be isolated because they are reversibly formed. The catalyst will make it possible to convert these  in situ and irreversibly into the final product. In these domino reactions, all components will be present from the beginning of the reaction. Michael-type conjugated addition reactions have been widely used as initiation steps for various multicomponent transformations (Liéby-Muller  et al.  

2006). In particular, it is worth noting their involvement in the multicomponent synthesis of various tetrahydrofuran precursors of natural products of the lignan family (Figure 1.15). This is based on a 
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30     Multi-component Reactions in Molecular Diversity tandem Michael addition reaction of a propargyl alkoxide to an arylidene (or alkylidene) malonate followed,  in situ,  by a palladium-catalyzed cyclization ending with a coupling step with an aryl derivative; this process allows the creation in a single operation of a C-O bond and two C-C bonds. Michael adducts, resulting from the reaction of propargyl alcohol on the activated double bond, are not isolable. Indeed, in the absence of the third component (arylpalladium complex formed by oxidative addition of aryl iodide to zerovalent palladium), a retro-Michael reaction occurs regenerating the starting materials (Figure 1.15a) (Bottex  et al.  2001). This method provides access to highly substituted arylidene tetrahydrofuran compounds and has been applied to the synthesis of various natural products including burseran, which has anti-tumor properties, isoyatein, as well as tricyclic compounds capable of preventing peroxidation of membrane lipids, such as 13-hydroxy-14-nordehydrocacalohastin (Figure 1.15b) (Garçon  et al.  2001; Doe  et al.  2005). 



Figure 1.15.   Multicomponent reaction initiated by a Michael-type addition reaction. Application to the synthesis of lignans 
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 Isolable intermediates: multicomponent processes very often result from the integration of two independent steps into a single one-pot protocol. Although these reactions produce potentially isolable intermediates, the two reactions are combined in order to save steps, or because of the instability, toxicity or hazardousness of these intermediates, as in the case of organic azides discussed above (Figure 1.6c). The most classic cases combine stoichiometric (non-catalyzed) transformations with catalytic processes. For example, by combining the first two components, a catalyst will generate a reaction intermediate, which will then undergo an uncatalyzed transformation during which it will incorporate a third component. Conversely, the first step may be non-catalytic, with the catalyst only participating in the last step. For this type of sequential or consecutive multicomponent reaction, it will be possible to delay the addition of a component, reagent, catalyst or ligand, as well as to modulate the experimental parameters during the course of the reaction. 

Many sequential multicomponent processes catalyzed by palladium are based on Sonogashira coupling reactions due to the great diversity of transformations that can later be performed on the acetylenic fragment, notably, cyclization reactions, as we have just seen, or cycloaddition reactions (Lessing and Müller 2015). The discovery of an unusual reactivity of electrodeficient organic halides during Sonogashira-type coupling reactions with propargyl alcohols has led to the development of a multicomponent process giving access to various highly functionalized heterocyclic compounds (Figure 1.16). It has indeed been demonstrated that under Sonogashira reaction conditions, the substitution of these propargyl derivatives by electron-deficient  π  systems leads to the formation of α,β-ethylenic ketones by an isomerization process promoted by the presence of triethylamine. These enones can be treated  in situ with various nucleophilic species compatible with the reaction medium, including N- methylhydrazine, amidinium salts, or 2-amino-, 2-hydroxy, or 2-mercaptoanilines to obtain, after heating, the corresponding heterocyclic derivatives (respectively: pyrazolines, pyrimidines, and 1,5-benzoheteroazepines). The same type of strategy is used to generate enimines from the corresponding propargyl amines. These compounds may participate in cycloaddition reactions, particularly in 
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32     Multi-component Reactions in Molecular Diversity the presence of  N,  S-ketene-type dienophiles, leading to the formation of annulated pyridines (Müller and D’Souza 2008). 



Figure 1.16.   (In situ) reactivity of enones and enimines towards nitrogen nucleophiles 

1.3.3.1.2. Bicatalytic reactions 

Bicatalytic multicomponent reactions combine two independent and sequential catalytic transformations carried out with the aid of one or more catalysts; they therefore involve isolable intermediates. In 2004, Fogg and Dos Santos (Fogg and Dos Santos 2004) undertook the   classification of one-pot, coupled catalytic transformations  and proposed on this occasion the concept of  tandem catalysis to define the reactions for which a product from one first catalytic cycle becomes the substrate of the next catalytic cycle, all catalysts (or precatalysts) being introduced from the beginning of the reaction. This 
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concept, which has only been in use for a few years, therefore also applies to multicomponent reactions involving two metal-catalyzed transformations (Figure 1.17). These reactions will thus be illustrated according to the tandem catalysis mode used. 

The multicomponent process can involve a combination of two catalysts operating in synergy, each of which is selective for a particular transformation. Thus, a first catalyst participates in the formation of a reaction intermediate which will then be subjected  in situ   to the second catalyst; this will be called  orthogonal tandem catalysis (Figure 1.17b-1) (Lee  et al.  2004; Lohr and Marks 2015). It should be noted that in this type of process, although at the level of a given substrate the catalytic transformations follow one another, on a macroscopic level the two catalytic cycles can operate simultaneously as soon as the product of the first cycle begins to be formed. The development of such a process is therefore complex, because in addition to the compatibility problem of the various reactants, there is also the problem of catalytic systems (catalysts/ligands) likely to interact with each other; the optimization of such a process will be particularly difficult. In addition, the use of a dual catalytic system poses the problem of recycling both metals. A representative example of this type of catalysis is the synthesis of cyclopentenones using an allylation reaction involving a propargyl amine and allyl acetate, followed by a Pauson-Khand annelation reaction under a carbon monoxide atmosphere (Figure 1.18a). In a homogeneous catalytic system, the challenge of such a protocol lies in the identification of two metal catalysts compatible with each other under given reaction conditions. Thus, the allylation step is generally facilitated by the use of zerovalent, electron-rich palladium, while the Pauson-Khand reaction requires a Lewis acid catalyst. The catalytic systems Pd(0)(dppb) and [RhClCO(dppp)]2  were selected as the best catalyst/ligand combination capable of catalyzing the two successive operations in tandem (Jeong  et al.  2000). A bimetallic system composed of nanoparticles of Pd and Co immobilized on silica was subsequently developed to catalyze this same reaction, which proved particularly interesting with the possible reuse of this heterogeneous catalytic system (Park  et al.  2002). 
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34     Multi-component Reactions in Molecular Diversity Figure 1.17.   Illustration of the various tandem catalysis modes applied to a conventional bicatalytic multicomponent reaction Ideally, processes based on the use of a single catalyst involved in all catalytic transformations under the same reaction conditions will be sought. In this type of situation, the catalyst will be able to operate 
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simultaneously in both catalytic cycles; we will refer to  auto-tandem catalysis (or  concurrent tandem catalysis) (Figure 1.17b-2) (Wasilke et al.  2005; Shindoh  et al.  2009). 



Figure 1.18.   Tandem catalysis of allylation/Pauson-Khand annulation reactions using a dual or single catalyst system Figure 1.19.   Tandem catalysis of two sequential gold-catalyzed reactions Reactions to this type of catalysis are also difficult to develop. The choice of an optimal catalyst for both transformations under the same reaction conditions is delicate; the selectivity of each of the reactions 

36     Multi-component Reactions in Molecular Diversity will be difficult to control, thus favoring the formation of by-products. 

A very good example of auto-tandem catalysis concerns the synthesis of amino-indolizines (Figure 1.19) in which a gold complex sequentially catalyzes a three-component Barbier-Grignard reaction (Figure 1.12b) leading to the production of propargyl pyridines, followed by their cycloisomerization through nucleophilic attack of the pyridine nitrogen atom onto the triple bond, which is made more electrophilic by the metal. The latter therefore plays two distinct roles by successively activating the nucleophilic and electrophilic character of the terminal alkyne through the formation of gold acetylides and by π-coordination (Yan and Liu 2007). Interestingly, the reaction has been optimized to be feasible in water but also in the absence of a solvent, which in both cases is environmentally friendly. 

In most cases, it will be preferable, if not necessary, to intervene in the reaction process in order to force the two catalytic cycles to operate sequentially and not concurrently. Thus, once the first catalytic transformation has been carried out, the second will be triggered by a modification of the catalyst function, either by adding a reagent, ligand or co-catalyst, or more simply by a modification to the reaction conditions; in this case we will speak of  assisted tandem catalysis (when the nature of the catalyst is modified) or  sequential tandem catalysis (Figure 1.17b-3) (Ajamian and Gleason 2004). As the two transformations can no longer be in competition, the optimization of such processes will be less problematic and the selectivity easier to control. Thus, an alternative to the previous tandem allylation/Pauson-Khand annulation reaction involving only a single Rh catalyst has been proposed (Figure 1.18b). It has been shown that the rhodium complex [RhClCO (dppp)]2 previously used in the cyclization step could also catalyze a first allylation step involving allyl carbonate. Thus, a single simple catalyst is likely to be used to facilitate these two transformations sequentially; however, for good efficiency, it has proved necessary to modify the reaction conditions in order to modulate the activity of the catalyst: the allylation step is performed at 30°C, while the cyclization step requires a reaction medium at 80°C (Evans and Robinson 2001). 

The ability of palladium to catalyze reactions at various oxidation levels makes it particularly interesting for the development of 
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processes based on tandem catalysis involving catalyst modification (Figure 1.20). For example, the derivatization of quinoxalin-2(1 H)-

ones was performed using two successive palladium-catalyzed coupling reactions. The first, a reductive C-arylation reaction involving a boronic acid, follows a catalytic cycle involving palladium at oxidation state +2. The second, a Buchwald-Hartwig  N- arylation reaction using an aryl bromide, requires initiation by a palladium complex at oxidation state 0. Tandem catalysis of these two transformations was made possible by the addition of a palladium ligand (X-Phos) during the reaction whose role is to reduce the PdII species and thus trigger the second coupling reaction (Figure 1.20a) (Carrër  et al.  2014). 



Figure 1.20.   Tandem catalysis of sequential coupling reactions using a palladium complex at different oxidation levels This type of strategy has also been used in the preparation of substituted olefins from alkynes. The first step involving allyl bromide and an internal alkyne is catalyzed by a divalent palladium complex and leads to the formation of a vinyl bromide derivative. In optimization experiments, the authors observed that palladium remained completely homogeneous during the reaction and did not deposit when the reaction was complete. This observation suggested the possibility of involving this brominated derivative  in situ  in a second coupling reaction. For example, a Sonogashira coupling reaction requiring the presence of a zerovalent palladium complex was 

38     Multi-component Reactions in Molecular Diversity performed by adding, in the course of the reaction, a terminal acetylenic compound, diisopropylamine and catalytic amounts of copper iodide and ligand P( t Bu)3, the latter allowing the formation of the Pd0[P( t Bu)3]2  complex (Figure 1.20b) (Thadani and Rawal 2002). 

For other reactions, the catalyst introduced at the beginning of the reaction will be able to function in both catalytic cycles without requiring any modification; the second catalytic transformation can be triggered by adding a reactant – in this case one of the partner components of the multicomponent reaction – that the catalyst will activate and transform, thereby modifying its function. This type of approach has been used in many heterocyclic derivative syntheses combining a Sonogashira coupling reaction with a cyclofunctionalization step. Thus, among the methods currently available to synthesize the benzofuran ring, a unit present in many bioactive molecules, palladium-catalyzed cyclofunctionalization reactions involving an  ortho- acetylenic phenolic derivative and an organic halide are of prime importance (Figure 1.21) (Cacchi  et al.  

2006). 

However, one of the recurring problems with this type of reaction is that  ortho- alkynyl phenols are relatively unstable and tend to spontaneously cycloisomerize under the reaction conditions to produce non-functionalized heterocyclic compounds, ultimately becoming co-products of the reaction; the presence of a palladium complex or copper salt may aggravate this phenomenon by catalyzing it (Figure 1.21a). This also complicates the preparation of these alkynyl derivatives, which consists of a Sonogashira coupling reaction of a terminal alkyne with an  ortho- iodophenol. Indeed, steps of protection/deprotection of phenolic function are generally required to avoid cycloisomerization of the coupling product under Sonogashira conditions. Thus, several steps are required, including two catalyzed by palladium, to reach the targeted structures with generally relatively low yields (Arcadi  et al.  1996). An interesting solution to this problem has been proposed as part of a research program aimed at discovering new molecules that have an inhibitory effect on tubulin polymerization and are therefore likely to inhibit the proliferation of cancer cells. It involves developing a multicomponent approach that, 
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in addition to reducing the number of steps to a single step, inhibits the formation of unwanted benzofurans. 



Figure 1.21.   Tandem catalysis: synthesis and cyclofunctionalization of ortho-alkynyl phenols. Application to the synthesis of frondosin B 

The strategy employed is to perform the Sonogashira coupling reaction directly on an unprotected phenolic precursor using methylmagnesium chloride as the base in THF in order to generate a magnesium phenolate that is not prone to cycloisomerization. The cyclofunctionalization step is carried out consecutively,   in situ,  using 
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40     Multi-component Reactions in Molecular Diversity the same catalyst by adding an organic halide. The latter is not introduced at the beginning of the reaction so that it does not compete with iodophenol in the Sonogashira coupling reaction. In addition, the introduction of DMSO as a co-solvent facilitates the cyclofunctionalization step. Interestingly, the incorporation of carbon monoxide can also be considered to diversify the reaction products (Figure 1.21b) (Chaplin and Flynn 2001). This multicomponent process has also been applied to the synthesis of frondosin B, an antagonist of the interleukin-8 receptor, an important mediator of inflammation (Kerr  et al.  2004). 

This type of strategy combining a Sonogashira coupling reaction with a cyclofunctionalization step was also applied to the synthesis of biaryl furopyridones from 4-benzyloxy-3-iodo-2-pyridones (Figure 1.22). 



Figure 1.22.   Catalysis of three successive transformations using a single palladium complex: synthesis of furopyridones and furopyridines The two steps are carried out sequentially, as before, to lead in this case to furopyridiniums. The latter are then debenzylated  in situ, without modification of the reaction conditions, by an SN2 reaction involving the halide counterion. It has been shown that the palladium  
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present in the reaction medium also plays a role in this process as Lewis acid. Overall, three successive stages are catalyzed by palladium, based on a single complex of this metal introduced at the beginning of the reaction (Figure 1.22a) (Bossharth  et al.  2003). This process was used to develop a library of amino furopyridines with interesting biological activity as kinase inhibitors. These compounds are obtained through post-condensation reactions, which use the carbonyl function to introduce various amino groups via another pallado-catalyzed coupling reaction (Figure 1.22b) (Martin  et al.  2007). 

1.3.3.2.   Post-condensation reactions: towards more complexity Monocondensation reactions that are found to be compatible with a large number of functional groups are of particular interest because of the many opportunities for derivatization they offer  through post-condensation reactions. These allow molecular targets of increasing complexity to be reached. Thus, for example, the combination of a monocondensation reaction with a sequentially performed metal-catalyzed reaction offers a multitude of possible post-condensation options. Significant efforts have thus been devoted to the design of substrates with latent reactive functions (not reactive with respect to the monocondensation step), which will be expressed in a second step thanks to the use of a transition metal that will activate the monocondensation product and thus induce the planned transformation. 

To date, the most attractive strategies in this area are undoubtedly those that exploit the Ugi reaction; in this case, they will be called post-Ugi modification reactions (Sharma  et al.  2015). In most cases, the catalyzed step will bring a structural modification to reinforce the peptide structure resulting from the Ugi step, with the aim of diversifying potential applications ( drug-like molecules). This can be achieved through a multitude of metal-catalyzed cyclization reactions, including olefin metathesis reactions allowing stereoselective synthesis of peptidomimetic macrocycles (Figure 1.23a) (Kazmaier et al.  2005), as well as domino cyclization reactions leading to the formation of complex polycyclic structures (Figure 1.23b) (Modha et al.  2012). 
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42     Multi-component Reactions in Molecular Diversity Figure 1.23.   Illustrations of post-Ugi modification reactions involving various metal-catalyzed cyclizations However, few experimental protocols in this field propose the integration of Ugi and post-Ugi reactions into a single one-pot process. A synthesis of 3-arylidene-2-indolones involving six components illustrates the potential value of this type of approach very well (Figure 1.24) (Bararjanian  et al.  2010). 

These donor-acceptor ( push-pull) compounds that have solid-state luminescence properties (D’Souza  et al.  2010) are prepared using a process that combines two consecutive multicomponent reactions: Ugi condensation, followed by a Heck/Sonogashira cyclofunctionalization reaction, and finally by the conjugated addition of an amine to the newly formed enynone system. Interestingly,  the two post-Ugi steps are compatible with the use of methanol as a solvent, which is generally used in the Ugi reaction. They also allow the incorporation 
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of additional components, thus contributing to the complexity and diversity of the products. 



Figure 1.24.   One-pot reaction of indolones combining two consecutive multicomponent reactions (Ugi and post-Ugi) 

Despite the constraints inherent in the consecutive nature of this type of process – in particular the need to monitor each step with sequential additions of reagents and catalysts and temperature regulation during the reaction – this approach allows stereoselective, one-pot access to high value-added compounds that are not easily synthesized by traditional methods. 

1.3.3.3.   Polycondensation reactions: multicomponent polymerizations 

Organometallic multicomponent reactions have also proven useful in the field of polymer chemistry. Indeed, multicomponent 
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44     Multi-component Reactions in Molecular Diversity polymerization reactions offer multiple opportunities for the design of new highly functionalized polymer materials, and the emergence of new applications (Kakuchi 2014). These reactions inherit the many advantages of multicomponent reactions – efficient and orderly assembly of multiple and modular reactants (selectivity/diversity/ 

complexity), atom economy, ease of implementation – and therefore allow the control of monomer sequences incorporated in the final structure, thus limiting structural defects. Each monomer will thus consist of a single assembly of the various reaction components (Figure 1.25). 



Figure 1.25.   Principle of a catalytic multicomponent polymerization reaction 

These processes are proving to be a new tool for the rapid preparation of polyfunctionalized polymer libraries with well-defined structures that are very useful in the search for specific properties. 

Once again, attention has been drawn to the chemistry of alkynes in this new field of research (Hu  et al.  2016). For example, we mentioned earlier the high synthetic potential of Huisgen-type copper-catalyzed cycloaddition reactions involving alkynes and organic azides (figures 1.6 and 1.7). While alkyl azides lead to the formation of cycloaddition adducts – triazoles – the use of sulfonyl azides modifies the classical reaction path of this reaction and the incorporation of a third nucleophilic component – an amine or an alcohol – to finally lead to the synthesis of amidines or imidates, respectively. The latter reaction, which produces only nitrogen as the sole by-product, has proven particularly interesting for the design of polycondensation reactions directed towards the synthesis of poly( N- sulfonylamidines) (Lee  et al.  2013) or poly( N-sulfonylimidates) (Kim and Choi 2014) with high molecular weights and free of any structural defects, from diynes , sulfonyl azides and diamines (Figure 1.26). 
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46     Multi-component Reactions in Molecular Diversity Much more complex structures can be obtained using this method, for example, by generating the diyne component  in situ using an initial multicomponent polycondensation reaction (Figure 1.27). By offering various additional molecular diversity sites, this approach significantly increases the functional and structural richness of potentially accessible polymers (Zhang  et al.  2015). 



Figure 1.27.   One-pot synthesis of a highly functionalized polymer using two multicomponent reactions performed consecutively Multicomponent polymerization reactions are particularly well suited to the synthesis of conjugated polymers. Due to their optical and electronic properties, these polymers have many applications: semiconductors, chemical sensors, photovoltaic cells, organic electroluminescent screens (OLEDs). However, the design of new functionalized conjugated polymers for specific applications is often based on a multi-step approach. We have previously discussed a method for the preparation of 1,3-dipolar münchnones based on the palladium-
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catalyzed reaction of imines and acid chlorides under CO atmosphere (Figure 1.8). This method has been elegantly adapted to the synthesis of poly-münchnones, which can be reacted with various dipolarophiles  in situ to induce cycloaddition reactions. These post-polymerization reactions produce a variety of structurally rich polyheterocyclic conjugated polymers (Figure 1.28) (Leitch  et al.  2015). 



Figure 1.28.   Palladium-catalyzed synthesis of polyheterocyclic conjugated polymers 

48     Multi-component Reactions in Molecular Diversity 1.4. Conclusion 

Metal-catalyzed multicomponent reactions have witnessed remarkable progress in the past 20 years, notably driven by the announcement of the principles of green chemistry in the early 1990s, which they largely satisfy, but above all by the tremendous potential of transition metal catalysis processes for the design of new processes capable of creating multiple bonds and cycles in a single synthetic operation with often high degrees of chemo-, regio-, diastereo- and enantioselectivity. These processes allow impressive degrees of complexity/diversity to be achieved that are difficult to achieve using traditional chemistry, especially when coupled with other multicomponent or post-condensation reactions. However, an increase in process complexity is necessarily accompanied by selectivity issues, thus increasing the probability of side reactions. Beyond the choice of the type of catalytic system and the reaction medium (conventional or non-conventional), various parameters such as the time of addition of certain reactants, catalysts or ligands, temperature, microwave or ultrasonic irradiation can modulate this selectivity. 

Flow chemistry in particular, thanks to automation, which enables precise control of reaction parameters, is proving to be a very promising tool in this field. New and innovative processes will continue to emerge in this highly stimulating research field. 

Multicomponent reactions have proven their usefulness in  lead discovery (pharmaceuticals), the improvement of existing syntheses, the total synthesis of natural products, and new applications are emerging in the field of macromolecules (peptidomimetics, polymers); other uses are also possible, particularly in the multicomponent synthesis of complex fluorinated molecules incorporating fluoroalkylation steps. Many innovations are likely to benefit from current efforts in the field of catalysis to couple organometallic catalysis with other types of catalyses, including  organocatalysis (Du and Shao 2013) and  photocatalysis (Hopkinson  et al.  2014), which should provide access to new transformations that are still inaccessible today. Efforts will have to continue to be focused on the recycling of metal complexes. 
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Use of 1,3-Dicarbonyl Derivatives in 

Stereoselective Domino and 

Multicomponent Reactions  

2.1. Introduction 

For billions of years, nature has created and transformed molecules for living organisms, but it was not until 1828 with Friedrich Wöhler’s work on urea that the first synthesis of an organic molecule by human action (Wöhler 1828) was done in a chemical laboratory. Since then, knowledge of chemistry, and more particularly of organic synthesis, has increased considerably to the point where it can be said today, just under two centuries later, that any sufficiently stable molecule, whatever its structural complexity, can be prepared in the laboratory. 

Nevertheless, the construction of complex molecules by chemical syntheses from simple starting materials often requires a high number of elementary transformations, most of which involve the creation of a single new covalent bond. This iterative approach leads to high costs in terms of raw materials, energy and human resources, while generating a significant amount of waste. However, practices have changed considerably over the past two or three decades, with the structuring of  Green Chemistry (Anastas and Wagner 1998) and the development of eco-compatibility, where the prefix “eco” refers to Chapter written by Damien BONNE, Thierry CONSTANTIEUX, Yoann COQUEREL and Jean RODRIGUEZ. 
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60     Multi-component Reactions in Molecular Diversity both ecological and economic criteria that are part of chemistry for sustainable development. In this context, new synthetic tools allowing the creation of several covalent bonds in a single operation by reactions between two (or even three and more) different substrates, such as the Multiple Bond-Forming Transformations (MBFT) (Rodriguez and Bonne 2015), have been developed and have enabled the development of innovative methodologies. These modern strategies make it possible to meet the requirements of both process cleanliness and efficiency. In addition to the “classical” criteria of yield and selectivity, the efficiency of a transformation is now assessed on additional criteria such as energy demand, the nature and quantity of raw materials but also waste, reaction time, or the number of new covalent bonds created. 

Among the new tools available to the organic chemist, domino and multicomponent reactions are of prime importance. A domino reaction is a transformation involving at least two successive elementary reactions, without changing the operating conditions and without adding reagents (Tietze  et al.  2006). The notion of multicomponent reactions also implies that at least three substrates are introduced into the reaction medium at the beginning of the transformation (Zhu  et al.  

2015). These methodologies allow the production of collections of compounds incorporating a substantial part of the substrates in their structure, through the creation of at least two new covalent bonds. 

This approach often eliminates the need for functional protection/deprotection steps, as well as the purification of reaction intermediates generated during multi-step syntheses. This satisfies essential   Green Chemistry criteria, such as the notion of atom economy or step economy. 

To develop methodologies that allow the creation of several covalent bonds in a single operation, it is necessary to use simple, easily accessible substrates with several reaction sites (Figure 2.1). If isonitriles, offering both an electrophilic and nucleophilic character, are substrates of choice for multicomponent reactions (Dömling  et al.  

2012), as a result of work by Passerini (1921) and Ugi (1959), 1,3-dicarbonyl derivatives (or β-oxo-carbonyl derivatives) such as diketones or ketoesters have also proven to be attractive substrates, 
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with no less than four potentially mobilizable functions. These synthetic platforms, simple and easy to access, have two electrophilic carbonyl functions and two nucleophilic functions in positions α and γ, and by a judicious choice of reaction partners and operating conditions, they can be engaged in highly chemo-, regio- and stereoselective reactions allowing access to many families of widely functionalized complex molecules with high added value. In addition, with β-ketoamides, the nitrogen atom can be exploited as an additional nucleophilic site allowing access to many heterocyclic systems of synthetic and biological interest. 



Figure 2.1.   Synthetic potential of 1,3-dicarbonyl derivatives In this chapter, we illustrate the synthetic potential of 1,3-dicarbonyl derivatives in domino and multicomponent reactions. A selection of the most relevant results, from pioneering work to significant recent developments, is presented. We will distinguish diastereoselective sequences from enantioselective sequences, for which enantiocontrol is ensured by a chiral organocatalyst. 

2.2. Domino reactions 

2.2.1.   Diastereoselective domino reactions 

Domino reactions involving 1,3-dicarbonyl derivatives as substrates allow at least two new covalent bonds to be formed via the reaction of enolates intermediates. These sequences lead either to the formation of two  C-C bonds or to the formation of a  C-C bond and a C-O bond due to the ambivalent nature of enolates. 1,3-Dicarbonyl 
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62     Multi-component Reactions in Molecular Diversity derivatives are often used to initiate domino reactions through a conjugated addition step. A pioneering and very elegant example of this approach was developed by the Danishefsky group during the diastereoselective domino synthesis of the bridged tricyclic compound 4 (Figure 2.2) (Danishefsky 1973). The reaction cascade is carried out from two simple precursors  1 and  2   in the presence of a strong Brønsted base (dimsyl sodium prepared by the reaction between NaH 

and DMSO) and is initiated by a conjugated 1,6-addition of the most stable α−enolate of the 1,3-dicarbonyl derivative  1 to the diene ester  2 

to give a sodium dienolate intermediate. The tautomerism of this dienolate allows the activation of the γ  position, resulting in an intramolecular 1,4-conjugated addition that generates the intermediate sodium enolate  3, which evolves through Dieckmann cyclization with the release of sodium methanolate to give the tricyclic product  4. 



Figure 2.2.   1,6-conjugate addition/1,4-conjugate addition/Dieckmann cascade More recently, the Rodriguez group developed and generalized a similar approach to synthesize bridged bicyclic compounds of the 8-oxo-bicyclo[3.2.1]octanes   7 type (Figure 2.3, left part) as well as seven-membered rings  8 or   9 (Figure 2.3, right part) from cyclopentanic  β-ketoesters   5 and  α,β-unsaturated aldehydes  6 in the presence of an inorganic (K2CO3) or organic (1,8-diazabicyclo 

[5.4.0]undec-7-ene: DBU) base. As before, the reaction is initiated by a conjugate addition step, in this case a 1,4-Michael addition, to give an enolate intermediate which by tautomerism activates the γ position 
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of the 1,3-dicarbonylated precursor and triggers cyclization  by intramolecular aldolization (Figure 2.3, left part) leading to the final bridged bicyclic product 

 7 (Filipini 

 et al. 

1995). 

The 

diastereoselectivity of the reaction depends on the nature of the R1 and R2 groups present on the initial α,β-unsaturated aldehyde 6. If the same  reaction is carried out in methanol, a nucleophilic solvent (Figure 2.3, right  part), the bridged bicyclic compound   7  also undergoes retro-Dieckmann fragmentation to give the corresponding seven-membered rings  8 or  9 as final products. The reversibility of the first two steps of this domino sequence (Michael addition  and aldolization), combined with a final highly selective retro-Dieckmann fragmentation, allows highly diastereoselective access to a wide variety  of polysubstituted and functionalized seven-membered rings, including in heterocyclic series (X or Y = NR, O, S) (Coquerel  et al.  

2006;  2008). The proposed acronym for this reaction is the  MARDi cascade based on the Michael-Aldolization-Retro-Dieckmann domino sequence used. Note that in the case of metacrylic aldehydes (R1 = H, R2 ≠ H), the  MARDi cascade is extended by lactonization followed by elimination to give cycloheptene derivatives  9 with a carboxylic acid functional group. 



Figure 2.3.   Michael-Aldolization sequence (left) and MARDi cascade (right) 
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64     Multi-component Reactions in Molecular Diversity The synthetic value of the  MARDi cascade has been demonstrated by its application to the accelerated synthesis of the bicyclic molecules 10 and  11 constituting the central structure of natural products in the guaianolides family (Reboul  et al.  2008; Santana  et al.  2015) and 2,3-secoaromadendranes (Figure 2.4) (Boddaert  et al.  2011). 



Figure 2.4.   Applications of the MARDi cascade As part of the total synthesis of ouabain (Figure 2.5), a natural glycosilated steroid with cardiotonic properties, Deslongchamps laboratory developed a significantly different approach to the reactivity of 1,3-dicarbonyl derivatives, again for the formation of two C-C bonds (Zhang  et al.  2008). As before, the reaction cascade is initiated by a Michael addition under basic conditions, in this case between a complex allylic β-ketoester  12 used as a pronucleophile and an electrophilic α,β-unsaturated-ketoaldehyde   13 to give the first enolate intermediate. This elementary step occurs with a high degree of diastereoselectivity ( anti addition relative to the silylated DMPS 

group). The particularity of this approach lies in the introduction of a vinyl electrophilic position on the initial allylic β-ketoester. Thus, the enolate intermediate can immediately react through a new Michael addition, now intramolecular, to give the highly functionalized  cis-
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decalin bicyclic skeleton  14 precursor of the natural product. It is remarkable that the two entities in this reaction are 1,3-dicarbonyl derivatives that react alternately as nucleophiles and electrophiles. 



Figure 2.5.   Synthesis of ouabain via a Michael-Michael sequence In 2016, the Samanta group reported the diastereoselective synthesis of functionalized chromene derivatives  17 by a domino reaction performed from 1,3-dicarbonyl compounds  15 and nitroolefins functionalized with an alkyne  16 in the presence of a catalytic amount of DABCO (1,4-diazabicyclo[2.2.2]octane) involving the successive formation of a  C-C bond and a  C-O bond (Figure 2.6) (Biswas   et al.  2016). The domino sequence is again initiated by a Michael addition of the 1,3-dicarbonyl derivative to give a nitronate intermediate (rather than enolate as we saw previously) that evolves by tautomerism to give a new nitro-allene intermediate prone to react by intramolecular oxa-Michael type addition to give the final product. 

This reaction is illustrated in Figure 2.6 for dimedone (5,5-dimethyl-cyclohexane-1,3-dione), but many other 1,3-dicarbonyl derivatives can be used with comparable efficacy and diastereoselectivity, providing simple and rapid synthesis of a wide range of chromene derivatives. 
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66     Multi-component Reactions in Molecular Diversity The very good diastereoselectivities observed originate from the thermodynamic control of the final reprotonation after the oxa-Michael addition and the isomerization of the enol ether unit with the Ar1 substituent. 



Figure 2.6.   Michael-oxa-Michael cascade Still in the context of domino reactions initiated by a conjugate addition involving the formation of a  C-C bond and a  C-O   bond, an interesting example is the total synthesis of (–)-penicipyrone recently performed by the Tong group (Figure 2.7) (Song  et al.  2013). The domino sequence leading to the natural product, or rather its enantiomer because the natural product is (+)-penicipyrone, involves a highly diastereoselective Michael addition of 4-hydroxy-6-methyl-2-pyrone   18 on the optically active α,β-unsaturated ketone  19  in the presence of Amberlyst-15 (a very acidic ion exchange resin) to give the intermediate adduct which this time undergoes an intramolecular acetalization reaction leading directly to the desired product. Other similar cascades have been developed on the basis of this concept (Yao  et al.  2014). 
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Figure 2.7.   Synthesis of (–)-penicipyrone by a Michael-acetalization sequence As presented in the introduction, a large number of 1,3-dicarbonyl derivatives bear two enolizable positions: α and γ. In the presence of two strong Brønsted bases, it is thus possible to deprotonate these two positions to give the corresponding dianion (or dienolate) (Figure 2.8). 

The reactivity of these dianions as bis-nucleophiles has been widely studied, among others by the groups of Langer and Rodriguez. For kinetic and thermodynamic reasons, this type of dianion reacts with electrophiles primarily by the γ position  (Altel and Voelter 1995; Lavoisier and Rodriguez 1996; Lavoisier  et al.  2001; Langer and Bellur 2003; Langer and Freiberg 2004). These reactions are essentially limited to the synthesis of five-membered oxygenated heterocyclic compounds for reasons of favorable stereoelectronic control (Baldwin’s rules). For example, the dianion of β-ketoester  20 

reacts with  (E)-1,4-dibromo-but-2-ene by an initial SN2 reaction to give diastereoselectively the  trans intermediate C-alkylated product, which evolves to dihydrofuran  21 by a diastereoselective   

 O- cyclization step (Langer  et al.  2002). 



Figure 2.8.   Synthesis of vinyldihydrofurans  

[image: Image 3428]

[image: Image 3429]

[image: Image 3430]

[image: Image 3431]

[image: Image 3432]

[image: Image 3433]

[image: Image 3434]

[image: Image 3435]

[image: Image 3436]

[image: Image 3437]

[image: Image 3438]

[image: Image 3439]

[image: Image 3440]

[image: Image 3441]

[image: Image 3442]

[image: Image 3443]

[image: Image 3444]

[image: Image 3445]

[image: Image 3446]

[image: Image 3447]

[image: Image 3448]

[image: Image 3449]

[image: Image 3450]

[image: Image 3451]

[image: Image 3452]

[image: Image 3453]

[image: Image 3454]

[image: Image 3455]

[image: Image 3456]

[image: Image 3457]

[image: Image 3458]

[image: Image 3459]

[image: Image 3460]

[image: Image 3461]

[image: Image 3462]

[image: Image 3463]

[image: Image 3464]

[image: Image 3465]

[image: Image 3466]

[image: Image 3467]

[image: Image 3468]

[image: Image 3469]

[image: Image 3470]

[image: Image 3471]

[image: Image 3472]

[image: Image 3473]

[image: Image 3474]

[image: Image 3475]

[image: Image 3476]

68     Multi-component Reactions in Molecular Diversity In some cases, dianions derived from β-ketoesters presented above may react not as  bis-nuclophiles but as nucleophiles and electrophiles. 

This is the case, for example, in Sakai’s work, which showed that in the presence of aldehydes, dianion derived from  22,  reacts first at position  γ  (as previously) in an aldolization reaction to give an alcoolate, which then evolves via lactonization to β-oxo-δ-lactones  23 

(Figure 2.9) (Kashihara  et al.  1986). 



Figure 2.9.  Synthesis of  β -oxo- δ -lactones by an aldolization/lactonization sequence 

In all the above examples, and the vast majority of those to follow, the domino sequence is initated by the reaction of the 1,3-dicarbonyl derivative thanks to its nucleophilic properties. It is indeed very rare that a domino sequence starts by a nucleophilic addition to a 1,3-dicarbonyl derivative acting as an electrophile. However, this is the case of reactions with α-oxoketenes, a class of particularly reactive electrophilic 1,3-dicarbonyl compounds. The latter can be generated   in situ by thermal or photochemical transposition of the corresponding 2-diazo-1,3-dicarbonyl derivatives known as the Wolff rearrangement according to the name of its discoverer (Kirmse 2002; Coquerel and Rodriguez 2015; Ford  et al.  2015). Among recent developments in this area, α-oxoketenes derived from 2-diazo-1,3-diketones  24 have been used as 2π partners in formal aza-Diels-Alder with 2-aza-dienes  25 to prepare a series of spirobicyclic compounds 26   in a highly diasteroselective manner (Figure 2.10) (Galvez  et al.  

2014). A theoretical study (DFT) of the reaction mechanism showed that the transformation actually results from a two-step domino process involving an intramolecular Friedel–Crafts/Mannich sequence from the α-oxoketene intermediate, and rationalizes the diastereoselectivity of the reaction. 
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Figure 2.10.   Friedel–Crafts/Mannich domino reaction of  α -oxoketenes 2.2.2.   Enantioselective domino-domino reactions 

The growing interest of pharmaceutical and agrochemical companies in the production of enantiopure molecules, that is in a single enantiomeric form, has led to an unprecedented demand for new enantioselective synthesis methods. The two enantiomers of a chiral molecule (a drug for example) can have different physiological effects. In particular, aspartame, used to replace sugar, is of ( S,S) configuration because the ( R,R) enantiomer has no sweetening power (Figure 2.11). Another example is thalidomide, a drug marketed in the 1950s whose dextrogenic ( R) form has sedative properties while the levogyric ( S) form was responsible for teratogenic deformities in children (Brynner and Stephens 2001). Consequently, the legislation has gradually imposed strict control over the use of racemates, now considered as mixtures of two different compounds whose biological properties must be rigorously studied. 



Figure 2.11.   Importance of chirality It has therefore become crucial to control molecular chirality. 

Historical methods that use, for example, metal catalysts or biocatalysts (enzymes), even if they work well at the laboratory level, 
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70     Multi-component Reactions in Molecular Diversity can be difficult to transfer at the industrial level for various reasons (cost, toxicity, laborious processes, etc.). 

The advent of organocatalysis in the early 2000s, which uses small organic molecules to promote chemical reactions, has brought many advantages and is perfectly in line with the concept of  Green Chemistry with recent applications in the production of molecules for the pharmaceutical industry (Berkessel  et al.  2005). The advantages of organocatalyzed reactions are very low sensitivities to oxygen or moisture, minimization of by-products, low cost and generally low toxicity of organocatalysts. In addition, if the organocatalyst is chiral and non-racemic, then there are vast possibilities for enantioselective catalysis. One of the first and most significant organocatalyzed enantioselective reactions was proposed in 1971 by the two independent teams of Hajos-Parrish and Weichert-Sauer-Eder (Figure 2.12) (Eder  et al.  1971; Hajos and Parrish 1971; 1974). It is an enantioselective aminocatalyzed intramolecular aldolic condensation by (L)-proline from a prochiral triketone  27 which is transformed into β-ketol  28 with excellent performance and enantiomeric excess. 



Figure 2.12.   Pioneering use of organocatalysis It should be recalled that the concept of organocatalysis, and more particularly aminocatalysis, was only formalized in the early 2000s by MacMillan (Ahrendt  et al.  2000) and List (List  et al.  2000) and their groups. It is actually a new name for an old methodology, but this conceptualization has brought unprecedented enthusiasm and an explosion in the number of publications reporting the use of organocatalysis. It has recently been considered as the third pillar of catalysis along with metal and enzyme catalysis. 
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The purpose of this section is to present recent advances in the use of 1,3-dicarbonyl derivatives in reaction cascades or domino processes involving enantioselective organocatalysts. The reactions will be presented according to the activation mode involved. 

The discovery by Hajos and Parrish, although extraordinary at the time, was not really exploited until the early 2000s by Barbas, Lerner and List with the identification of the enamine activation mode (Figure 2.13) (List  et al.  2000). This allowed them to propose the first enantioselective organocatalyzed domino reaction from methylvinyl ketone   29 and 2-methyl-1,3-cyclohexanedione  30   via a Michael addition-aldolization-crotonization sequence catalyzed by (L)-proline and leading directly to the Wieland-Miescher ketone (Bui and Barbas 2000). 

 

Figure 2.13.   Enantioselective domino Michael-aldolization-dehydration sequence 

When a chiral pyrrolidine organocatalyst is used, an iminium-enamine activation mode is used to explain the observed enantioselectivity. This covalent activation is currently the most commonly used strategy for the development of new enantioselective aminocatalyzed reactions (Figure 2.14). The concerned substrates are α,β-unsaturated derivatives (enal or enones) whose activation in the form of an iminium ion is carried out using a secondary amine (proline type organocatalyst). The activated intermediate can then undergo the conjugate addition of a nucleophile to give an enamine whose condensation onto an electrophile (E+) leads to a compound with two contiguous stereogenic centers of controlled absolute configurations and restoration of the aminocatalyst after hydrolysis. 
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72     Multi-component Reactions in Molecular Diversity Figure 2.14.   Iminum and enamine activations Concerning the nature of nucleophiles, 1,3-oxoamides are substrates particularly well adapted to the design of new domino transformations because they have many reaction sites that can be used successively during the domino reaction to create several  C-C or C-X bonds (X = heteroatom) (Bonne  et al.  2013a). 



Figure 2.15.   Domino synthesis of quinolizidines In this context, the Franzén group showed that some activated amides could effectively participate in domino transformations to obtain optically active quinolizidines  34 (Figure 2.15) (Franzén and Fisher 2009; Zhanga and Franzén 2010). Initially, the enantioselective Michael addition of a functionalized β-amidoester   31 to an α,β-unsaturated aldehyde catalyzed by Hayashi-Jørgensen's diphenylprolinol silylated ether  via iminium activation leads to adduct 32  as a cyclic hemiaminal. Treatment with hydrochloric acid generates an acyl iminium ion  33 which is then diastereoselectively trapped by the electron-rich aromatic group according to a Pictet-Spengler 
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reaction. A similar strategy has been developed by the Ye team for the diastereo- and enantioselective construction of oxazines and oxazolidines involving respectively benzyl alcohol or phenol as a nucleophilic internal function (Jin  et al.  2011a; Jin  et al.  2011b). In this case, activation by hydrogen bonding with a trifunctional thiourea is used to control chirality in the final products; this will be detailed later. 

The Wang (Xie  et al.  2007), Córdova (Rios  et al.  2007) and Ley (Hansen   et al.  2006) groups have all independently developed an intramolecular Michael-alkylation sequence for the synthesis of highly functionalized chiral cyclopropanes  36 (Figure 2.16). These domino reactions generally use a α-brominated   malonate   derivative  35 (or α-chlorinated) and an α,β-unsaturated aldehyde. These chemo- and enantioselective cyclopropanations give very good yields (74–96%) and excellent enantioselectivities (93–99%). Here, the malonic carbon atom successively plays the role of both a nucleophile and an electrophile. This ambivalent character is similar to that of carbenes or isonitriles. 



Figure 2.16.   The Michael-alkylation cyclopropanation cascade 
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74     Multi-component Reactions in Molecular Diversity The Rovis team has developed a methodology of increased complexity by combining two different organocatalysts  cat1 and  cat2 

that operate simultaneously for the synthesis of polysubstituted cyclopentanones  38 with good yields and enantioselectivities  via a Michael/benzoin domino reaction (Figure 2.17) (Lathrop and Rovis 2009). In this process, the chiral secondary amine  cat1 is responsible for enantioselectivity by the formation of an iminium ion which undergoes a Michael addition to form adduct  37. Then, benzoin condensation is initiated by the N-heterocyclic carbene  cat2, generated in situ by deprotonation of the triazolium salt  precat2, to form the Breslow intermediate (Grossmann and Enders 2012). The result is an inversion of polarity ( umpolung) of the carbon atom of the aldehyde functional group which is now electron-rich and allows the formation of the second C-C bond with  cat2 release. The reaction tolerates both aromatic and aliphatic aldehydes. On the other hand, aliphatic, cyclic or acyclic ketones can be used, activated by a second ketone, an ester or a thioester group. 



Figure 2.17.   Bicatalytic synthesis of cyclopentanones 
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A very complementary sequence to that of Rovis has recently been developed by Rodriguez and Coquerel and uses the same substrates as before, only the nature of the N-heterocyclic carbene catalyst differs (Figure 2.18) (Ren  et al.  2016). This is the stable and commercial sterically hindered imidazolylidene  39, which, from the Michael adduct intermediate, allows to change the reaction process (reactivity switch). Thus, the sequence also begins with an enantioselective Michael addition, but continues with a diastereoselective intramolecular aldolization and allows synthesis of bridged bicyclo[3.2.1]octanes   40 with good yields and selectivities. The products of the Michael-aldolization sequence are oxidized (PCC) to corresponding diketones, simplifying product analysis. This methodology was also applied to the first enantioselective total synthesis of (1 R)-suberosanone, a natural product of the quadrane family known for its cytotoxic activities (Presset  et  al.  2010a). 



Figure 2.18.   Enantioselective synthesis of bicyclo[3.2.1]octane units Other combinations of complementary catalysts are possible to make conjugate additions of ketoesters  42 to allyl alcohols  41 (Figure 2.19). Thus, Rodriguez and Quintard have developed a cooperative catalysis methodology involving Knölker’s iron catalyst (Quintard and Rodriguez 2014) capable of oxidizing allyl alcohols  in   situ   to  α,β-unsaturated aldehydes (Quintard  et al.  2014) according to the borrowing hydrogen concept by producing a reducing complex  
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[Fe]-H2   in situ (Quintard and Rodriguez 2016). The presence of the second catalyst derived from proline then generate a chiral iminium ion that undergoes the enantioselective 1,4-addition. The catalytic process ends with the chemoselective reduction of the aldehyde function of the Michael adduct 43 by the [Fe]-H2 complex allowing the formation of the final product, isolated in its lactol form 44, and the regeneration of the active metal catalyst. 

  

Figure 2.19.   Cooperative iron-amine catalyst for the functionalization of allyl alcohols 

In addition to the iminium activation of Michael acceptors, the Luo group recently demonstrated that the use of a primary amine  47 

derived from  tert-leucine also activates 1,3-dicarbonyl derivatives as a chiral enamine (Figure 2.20) (Rodriguez and Coquerel 2015; Zhang et al.  2015). Thus, enantioselective radical α-alkylation of 1,3-ketoamides   45 with α-bromoacetophenones  46 could be performed under light irradiation in the presence of a ruthenium photocatalyst (Prier  et al.  2013; Zhu  et al.  2014). The domino sequence ends with a diastereoselective hemiaminalization reaction leading to spirolactams  

 48 with good yields and excellent enantioselectivities. 
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Figure 2.20.   Dual enamine-photoredox catalysis for the synthesis of spirolactams 

In the domino reactions presented so far, one of the reaction partners is  covalently activated by the formation of an iminium ion or an enamine intermediate. However, in the early 1980s, several enantioselective catalytic processes showed that  non-covalent activation of the substrate and organization of the transition state could take place through the establishment of hydrogen bonds, as in the case of the thia-Michael reaction between cyclohexenone  49 and thiophenol   50, catalyzed by cinchonidine to achieve 75% 

enantiomeric excess (Figure 2.21) (Hiemstra and Wynberg 1981; Oku and Inoue 1981; Dolling  et al.  1984). 



Figure 2.21.   Thia-Michael reaction catalyzed by cinchonidine 
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78     Multi-component Reactions in Molecular Diversity These pioneering works in the discovery of this mode of activation were for some time considered as exceptions and marginal. Indeed, the hydrogen bond was considered too weak (~ 5 kcal.mol-1) to be able to activate the substrate strongly enough and have a significant impact on enantioselective catalysis. This idea was swept away by the independent publications of the Corey and Jacobsen groups, both of which reported an enantioselective version of the Strecker reaction by clearly defining the role of a chiral bicyclic guanidine  52 which acts as an organocatalyst by activating imine  51 by hydrogen bonding (Figure 2.22) (Sigman and Jacobsen 1998; Corey and Grogan 1999). Four years later, Jacobsen showed that thiourea could also implement the same activation mode in other transformations such as the enantioselective Mannich reaction (Wenzel and Jacobsen 2002). 



Figure 2.22.   First organocatalyzed enantioselective Strecker reaction The advantage of this non-covalent activation mode compared to covalent iminium-enamine activation mode is the use of an often much smaller amount of catalyst (0.1-5 mol%) (Giacalone  et al.  

2012). For the past 10 years, this activation method has been one of the most popular in enantioselective organocatalysis. Various organocatalysts have been developed and many studies have shown their effectiveness (Zhang and Schreiner 2009; Selig 2013; Chauhan  

 et al.  2015). 

In particular, Hong’s team used this activation mode in 2011 in an elegant domino reaction using 2-oxocyclohexane carbaldehydes  53 

whose iminium or enamine activation is not effective (Figure 2.23) (Hong  et al.  2011). These particular 1,3-carbonyl derivatives can thus react with 2-hydroxynitrostyrenes  54   in the presence of a catalytic  
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amount of Takemoto’s  thiourea  55 (Tomotaka  et al.  2003) in an enantioselective Michael-hemiacetalization domino sequence. The hemiacetals thus obtained are easily oxidized into tricyclic spirolactones  56 with good yields and excellent enantioselectivities. 



Figure 2.23.   Synthesis of spirolactones Bifunctional organocatalysts containing a squaramide H-bond donor group  have also shown their efficiency in activating nitroolefins by hydrogen bonds, whose first applications in enantioselective synthesis were proposed by the Rawal group in 2008 

(Malerich   et al.  2008). Recently, this type of organocatalyst  60 has been exploited in a domino Michael nucleophilic (SN2’ type) reaction between 2-hydroxychromenone  57 as a 1,3-dicarbonyl derivative and nitroalkene   58 to give highly functionalized  59 dihydropyrans with good yields and very good diastereo- and enantioselectivities (Figure 2.24) (Nair  et al.  2014). The simultaneous double activation by hydrogen bonding of the 1,3-dicarbonyl derivative with tertiary amine function and nitroolefin with squaramide allows enantioselective Michael addition releasing acetic acid. This is followed by an  
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80     Multi-component Reactions in Molecular Diversity intramolecular oxa-Michael reaction to give the final product after diastereoselective reprotonation of the nitronate anion intermediate. 



Figure 2.24.   Synthesis of functionalized dihydropyrans The use of ketoamides as 1,3- C,N- bis-nucleophilic derivatives has extended the scope of these reactions to other less conventional Michael acceptors such as, α,β-unsaturated acyl cyanides  62 (Figure 2.25). Indeed, these species behave as 1,3-bis-electrophiles with respect to β-ketoamides  61 in the presence of Takemoto’s bifunctional thiourea  55 (Tomotaka  et al.  2003) to lead to spiranic glutarimides  63, a pattern found in certain natural products such as meloscandonin and lycoflexin (Goudedranche  et al.  2014). This reaction is quite general and various substitutions (aryl, heteroaryl, alkyl, vinyl, vinyl, ester) on acyl cyanide are tolerated and lead to good yields and selectivities. A transition state showing the activation of acyl cyanide by the protonated tertiary amine and activation of the 1,3-dicarbonyl derivative by the thiourea functional group has been proposed and helps to explain the stereoselectivity of the reaction. 
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Figure 2.25.   Synthesis of spiranic glutarimides 2.3. Multicomponent reactions 

2.3.1.   Diastereoselective multicomponent reactions 

1,3-dicarbonyl derivatives of the acyclic or cyclic malonic type have been known for more than a century as pronucleophilic species of particular importance in organic synthesis (Perkin 1884). Nature itself has been exploiting this reactivity for centuries, particularly with malonyl-coenzyme A, to develop many families of polyketides with important medicinal properties (Khosla  et al.  2014). 

However, it was not until 1882, with Hantzsch’s pioneering work, that the first use of a 1,3-dicarbonyl derivative was reported in a multicomponent reaction leading to symmetrical  1,4-dihydropyridines (1,4-DHPs)  66 (Figure 2.26) (Hantzsch 1882). It involves two equivalents of a β-ketoester, one equivalent of an aldehyde and one equivalent of ammonia usually in a protic solvent. 

The four compounds react in pairs to form an α,β-unsaturated derivative   64 (Knoevenagel adduct) and an enaminoester  65 which evolve by conjugate addition followed by cyclodehydration leading to  
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82     Multi-component Reactions in Molecular Diversity the corresponding 1,4-DHP  66. These heterocyclic compounds, known as “Hantzsch esters”, are synthetic equivalents of nicotinamide adenine dinucleotide-H (NADH) and have more recently found synthetic applications as a surrogate for hydrogen in reduction reactions (Zheng and You 2012). 



Figure 2.26.   Synthesis of Hantzsch 1,4-DHPs To overcome long reaction times and high temperatures, various activation methods such as Lewis acids (Bagley and Singh 2002) or baker’s yeast (Lee 2005) have been proposed, acetaldehyde being generated   in situ from D-glucose. It is also possible to carry out the reaction on a solid support (Gordeev 1996), which makes it possible to adapt it to combinatorial synthesis or to produce supported hydrogen surrogates for reduction reactions (He  et al.  2008). Transformation can also be carried out in the absence of solvents, by replacing ammonia with ammonium acetate (Zolfigol and Safaiee 2004), or in ionic liquids (Legeay  et al.  2005). 

The important pharmacological properties of 1,4-DHPs such as calcium antagonist, vasodilator, or anti-tumor activities (Sausins and Duburs 1988) have led to numerous studies aimed at generalizing access to functionalized non-symmetric and chiral derivatives. This was made possible by combining the reactivity of two different 1,3-dicarbonyl derivatives allowing various synthetic applications and industrial developments (Bossert  et al.  1981). 

Thus, using cyclohexane-1,3-dione and the mandelic acid-derived ketoester  67, it was possible to obtain bicyclic 1,4-DHP  68 with a 67% 

efficiency and excellent diastereoselectivity (Figure 2.27) (Rose and Draeger 1992). 
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Figure 2.27.  Diastereoselective synthesis of 1,4-DHPs from a chiral  β -ketoester 

A more recent alternative is a three-component, L-proline-catalyzed reaction involving the condensation of an aldehyde on a 1,3-diketone equivalent in the presence of a previously formed enaminoester  69.  In this case, the presence of a chiral substrate results diastereoselectively in unsymmetrical 1,4-DHPs  71   as shown in Figure 2.28 with C-glycosyl aldehyde  70 (Dondoni and Massi 2006; Dondoni et  al.  2007; Ducatti  et al.  2009). 



Figure 2.28.   Diastereoselective synthesis of 1,4-DHPs from a chiral aldehyde Another interesting application of the Hantzsch reaction concerns the use of 5-aminopyrazoles  72 as partners in a three-component reaction with dimedone derivatives (R = H, Me) and an aromatic aldehyde  73 (Figure 2.29) (Bremner and Organ 2007; Chebanov  et al.  

2008). The diastereoselective formation of pyrazoloquinolizinones  75  

is then possible under microwave irradiation, in the presence of potassium   tert- butoxide which allows the  in situ fragmentation and rearrangement of the initial Hantzsch   adduct  74. 
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84     Multi-component Reactions in Molecular Diversity Figure 2.29.   Diastereoselective synthesis of pyrazoloquinolizinones Like the Hantzsch reaction, the three-component Biginelli reaction (Biginelli 1893; Kappe 2000) between an aldehyde, urea and a  β-ketoester proposed in 1893 for the synthesis of 3,4-dihydropyrimidin-2( 1H)-ones (DHPM) has also considerably increased in popularity given the many biological activities of DHPMs such as monastrol (Dondoni  et al.  2002a), or ( R)-SQ 32,547 (Bibbs and Rao 2004) with anti-cancer or antihypertensive properties (Figure 2.30). 



Figure 2.30.   Biologically active 3,4-dihydropyrimidin-2(1H)-thiones Condensation is generally carried out in a protic solvent and in the presence of a strong Brønsted acid but allows access to a great functional diversity by adjusting the experimental conditions. The use of Lewis acid catalysts (Narsaiah  et al.  2004) or transition metal catalysts (Gohain  et al.  2004) is also effective. Activation of the reaction can be performed under microwave irradiation to reduce reaction times (Mirza-Aghayan  et al.  2004), in ionic liquids (Peng and Deng 2001), or on a solid support by grafting urea or the 1,3-dicarbonyl derivative onto a resin (Dallinger  et al.  2004; Bataille and Beauvineau 2009). Concerning the mechanism, the involvement of an N- acyliminium   ion  76  was demonstrated by 1H and 13C NMR (Figure 2.31) (Kappe 1997). The condensation of the enol form of β-ketoester  
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 77   results in the formation of an acyclic ureide  78, which evolves through cyclodehydration to the final product  79, with the creation of a stereogenic center. 



Figure 2.31.   Synthesis of Biginelli's 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) 

The study of the diastereoselectivity of this sequence, by introducing a stereogenic element on one of the three entities, led to relatively modest results with diastereomeric ratios of up to 10:1 when combining the β-ketoester  80 and the chiral aldehyde 81 derived from sugars (Figure 2.32) (Dondoni  et al.  2002b). 



Figure 2.32.   Diastereoselective synthesis of 3,4-dihydropyrimidin-2(1H)-ones (DHPM) 

In 1978, the Yonemitsu group proposed a complementary three-component reaction based on the reactivity of indoles  82 in the presence of aldehydes and Meldrum’s    acid   83 as a 1,3-dicarbonyl compound leading to adducts that may have multiple stereogenic centers (Figure 2.33) (Oikawa  et al.  1978; Gerencsér  et al.  2006; Lipson and Gorobets 2009). The reaction initially catalyzed by racemic proline is done without chirality induction and has been  
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86     Multi-component Reactions in Molecular Diversity generalized to other malonic derivatives using the Ti(IV)/Et3N system (Sapi and Laronze 2004; Gerard  et al.  2010). The sequence evolves through Knoevenagel condensation followed by Friedel–Crafts regioselective alkylation or intermolecular Michael addition. The use of structures with a stereogenic element such as Garner    aldehyde derivatives   84 provides high diastereoselectivities (Dardennes  et al.  

2003). 



Figure 2.33.   Diastereoselective Yonemitsu reaction with Garner’s aldehyde At the end of this pioneering work, it was not until the early 1990s that another important contribution in this field emerged, with Tietze’s work on the synthesis of functionalized dihydropyrans (DHPs)  88 

involving the reactivity of electron-rich olefins  85   in a hetero-Diels-Alder reaction (Figure 2.34) (Tietze  et al.  2006). The proposed sequence evolves via the Knoevenagel condensation of a carbonyl derivative on the 1,3-dicarbonyl compound  86, usually catalyzed by an ammonium salt or a Lewis acid (Tietze  et al.  2004). The heterodiene  87 thus generated can then react with dienophile  85 by a 

[4 + 2] cycloaddition. The sequence is thus referred to the Knoevenagel-hetero-Diels-Alder domino reaction (KHDA). It tolerates many substrates and can be adapted in the solid phase by grafting the 1,3-dicarbonyl derivative (Tietze and Steimetz 1996). The generally good diastereoselectivity of the sequence could be used for the total synthesis of natural products such as preethulia coumarin in six steps from adduct  88.  This compound is obtained with excellent diastereoselectivity and a yield of 79% when Yb(OTf)3 is used as a catalyst in the presence of molecular sieves (4Å-MS) (Appendino et al.  2001). 
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Figure 2.34.   Multicomponent diastereoselective synthesis of (±)-preethulia coumarin 

More recently, a novel three-component approach involving aromatic aldehydes and 1,2-diamines  89 for the diastereoselective synthesis of 1,4-diazepanes  91 has been proposed independently by the Kita (Fujioka  et al.  2007; Murai  et al.  2008) and Constantieux-Rodriguez (Figure 2.35) groups (Sotoca  et al.  2008; Sotoca  et al.  

2009). While the first authors use  para- toluene sulfonic acid as a catalyst with β-ketoesters as 1,3-dicarbonyl derivatives, the second group proposes molecular sieves (4Å-MS) as heterogeneous reaction promoters allowing extension to β-ketosulfones and β-ketoamides. In the latter case, the reaction can be carried out without a solvent or catalyst at 120°C with excellent diastereoselectivity in favor of tricyclic 1,4-diazepines  91   with four stereogenic centers when 1,2-trans-cyclohexanediamine  89 is used. It has been shown that the reaction evolves by an imino-enamine  90, which can be isolated at room temperature, but which under the reaction conditions undergoes an intramolecular Mannich type reaction. In addition to this work, the use of bromodimethylsulfonium bromide as a catalyst has allowed the extension of the reaction to  ortho- phenylenediamines (Sakar  et al.  

2013). 



Figure 2.35.   Diastereoselective synthesis of functionalized 1,4-diazepines  
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88     Multi-component Reactions in Molecular Diversity The different sequences presented above involve classical organic chemical reactions such as the Mannich reaction or Knoevenagel condensation to generate reactive intermediates  in situ.  In addition to these approaches, multicomponent reactions initiated by a Michael addition (Lieby-Müller  et al.  2006; Bonne  et al.  2013b) of stabilized anions derived from 1,3-dicarbonyl compounds (Simon  et al.  2004; Allais  et al.  2013) have appeared in the literature much more recently. 

Since 2001, the group of Rodriguez has been interested in the development of these new reactions, which involve a 1,3-dicarbonyl derivative, an α,β-unsaturated aldehyde and a ω-functionalized primary amine in the presence of 4Å-MS, which acts both as a desiccant agent and a heterogeneous promoter of Michael addition. 

These original sequences allow direct and diastereoselective accesses to several families of functionalized polyheterocycles (Sanchez-Duque et al.  2010; Bonne  et al.  2011) under neutral conditions with water forming as the only co-product. 

From a mechanistic point of view, imine  92 is never isolated and probably evolves towards the formation of iminium ions  93a,b which, depending on the nature of the primary amine, can lead either to fused systems   94 or to spiranic derivatives  95 with excellent diastereoselectivity (Figure 2.36). 



Figure 2.36.   Diastereoselective synthesis of polyheterocyclic compounds The general synthetic sequence has been extended to the use of amines functionalized with a carbon nucleophile such as ethylaminopyrrole   96, thus allowing the establishment of new  C-C 
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bonds by trapping intermediate iminium ions, according to Pictet-Spengler-type reactions (Figure 2.37) (Lieby-Müller  et  al.  2007). The products  97  thus obtained, in a diastereoselective manner, contain the pyrrolopiperazine unit, present in many compounds with psychotropic or anti-amnesic activities. 



Figure 2.37.   Diastereoselective synthesis of the pyrrolopiperazine skeleton An additional degree of complexity can be achieved by using β-ketoamides   98 as bis-pronucleophiles whose nitrogen atoms are likely to be involved in the trapping of intermediate iminium ions  99a and   99b (Figure 2.38). Thus, for example, in the presence of ethanol amine and acrolein, β-ketoamide  98 has allowed the development of an effective diastereoselective synthesis of original 2,6-diazabicyclo-

[2.2.2]octane (2,6-DABCO) functionalized derivative  100 (Lieby-Müller  et al.  2005). The reaction is conducted in refluxing toluene, in the presence of 4Å-MS but can also be performed in ionic liquids (El Asri  et al.  2011). 



Figure 2.38.   Diastereoselective approach for the synthesis of 2,6-DABCOs Recently, the 1,3-bis-nucleophilic character of acyclic  β-ketoamides  101 has been exploited by the Shi group for the 





[image: Image 5444]

[image: Image 5445]

[image: Image 5446]

[image: Image 5447]

[image: Image 5448]

[image: Image 5449]

[image: Image 5450]

[image: Image 5451]

[image: Image 5452]

[image: Image 5453]

[image: Image 5454]

[image: Image 5455]

[image: Image 5456]

[image: Image 5457]

[image: Image 5458]

[image: Image 5459]

[image: Image 5460]

[image: Image 5461]

[image: Image 5462]

[image: Image 5463]

[image: Image 5464]

[image: Image 5465]

[image: Image 5466]

[image: Image 5467]

[image: Image 5468]

[image: Image 5469]

[image: Image 5470]

[image: Image 5471]

[image: Image 5472]

[image: Image 5473]

[image: Image 5474]

[image: Image 5475]

[image: Image 5476]

[image: Image 5477]

[image: Image 5478]

[image: Image 5479]

[image: Image 5480]

[image: Image 5481]

[image: Image 5482]

[image: Image 5483]

[image: Image 5484]

[image: Image 5485]

[image: Image 5486]

[image: Image 5487]

[image: Image 5488]

[image: Image 5489]

[image: Image 5490]

[image: Image 5491]

[image: Image 5492]

[image: Image 5493]

[image: Image 5494]

[image: Image 5495]

[image: Image 5496]

[image: Image 5497]

[image: Image 5498]

[image: Image 5499]

[image: Image 5500]

[image: Image 5501]

[image: Image 5502]

[image: Image 5503]

[image: Image 5504]

[image: Image 5505]

[image: Image 5506]

[image: Image 5507]

[image: Image 5508]

[image: Image 5509]

[image: Image 5510]

[image: Image 5511]

[image: Image 5512]

[image: Image 5513]

[image: Image 5514]

[image: Image 5515]

[image: Image 5516]

[image: Image 5517]

[image: Image 5518]

[image: Image 5519]

[image: Image 5520]

[image: Image 5521]

[image: Image 5522]

[image: Image 5523]

[image: Image 5524]

[image: Image 5525]

[image: Image 5526]

[image: Image 5527]

[image: Image 5528]

[image: Image 5529]

[image: Image 5530]

[image: Image 5531]

[image: Image 5532]

[image: Image 5533]

[image: Image 5534]

[image: Image 5535]

[image: Image 5536]

[image: Image 5537]

[image: Image 5538]

[image: Image 5539]

[image: Image 5540]

[image: Image 5541]

[image: Image 5542]

[image: Image 5543]

[image: Image 5544]

[image: Image 5545]

[image: Image 5546]

[image: Image 5547]

[image: Image 5548]

[image: Image 5549]

[image: Image 5550]

[image: Image 5551]

[image: Image 5552]

[image: Image 5553]

[image: Image 5554]

[image: Image 5555]

[image: Image 5556]

[image: Image 5557]

[image: Image 5558]

[image: Image 5559]

[image: Image 5560]

[image: Image 5561]

[image: Image 5562]

[image: Image 5563]

[image: Image 5564]

[image: Image 5565]

[image: Image 5566]

[image: Image 5567]

[image: Image 5568]

[image: Image 5569]

[image: Image 5570]

[image: Image 5571]

[image: Image 5572]

[image: Image 5573]

[image: Image 5574]

[image: Image 5575]

[image: Image 5576]

90     Multi-component Reactions in Molecular Diversity diastereoselective synthesis of [1,8]-naphthyridines  104 with four contiguous stereogenic centers (Figure 2.39) (Feng  et al.  2015a). This pseudo-four-component cyclocondensation is done in the presence of glutaraldehyde and two malononitrile equivalents under microwave irradiation. The transformation is initiated by a double Knoevenagel condensation to give tetracyano diolefin  102 which undergoes a sequence of inter- and intramolecular Michael additions releasing key intermediate  103. 



Figure 2.39.   Pseudo-four-component synthesis of  

 [1,8]-naphthyridine compounds 

Under similar conditions but with only one equivalent of malononitrile and in the presence of a catalytic amount of triethylamine (Et3N), a different evolution is observed leading to polyhydroisoquinolines   107 with good yields and as a single diastereomer (Figure 2.40) (Feng  et al.  2015b). Presumably, the reaction sequence could involve an α-oxoketene  106 as a key intermediate, resulting from the fragmentation of  105  in the presence of Et3N.  N-aryl   β- ketoamides ( 101: R = Ar) lead exclusively to derivatives   107a   while  N- alkyl amide analogues ( 101: R = alk) provide octahydroisoquinolines  107b after isomerization of the exocyclic double bond. 



Figure 2.40.   Diastereoselective synthesis of polyhydroisoquinolines 
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In addition to the traditional 1,3-dicarbonyl derivatives such as 1,3-diketones,  β-ketoesters and β-ketoamides,  α-oxoketenes  106 

postulated as intermediates also constitute a particularly original class of 1,3-dicarbonyl compounds. However, their instability means that they must be generated  in situ (see Figure 2.10 above). Their high reactivity towards many nucleophilic partners (Presset  et al.  2009a) or in cycloaddition reactions as 4π partners has allowed the development of new multicomponent reactions for the diastereoselective synthesis of functionalized polycyclic skeletons (Presset  et al.  2009b). Thus, in the presence of allylamine, diazodimedone  108 reacts with heteroaromatic aldehydes  109 under microwave irradiation to give pentacyclic oxazinones  112a,b (Figure 2.41). The sequence involves the  in situ formation of α-oxoketene   110 and aldimine  111, which evolve through an oxa-Diels-Alder-type cycloaddition followed by a Diels-Alder cycloaddition allowing the diastereoselective formation of six covalent bonds, four cycles and four stereogenic centers in a single reaction. 

O

R

R

X

R

O

H

R

O

X

X

O

H

N

O

X

2

109

toluene, 140 °C

N

H

N

O

O

O

(microwaves), 5 min

O

O

O

O

O

N

N2

NH

H2O

108

2

110

111

112a : X = CH, R = H, 20%

112b : X = N, R = Ph, 30%  

Figure 2.41.   Diastereoselective synthesis of pentacyclic oxazinones In the continuity of these studies, it was shown for the first time that  α-oxoketenes were also 2π partners in aza-Diels-Alder cycloadditions. The discovery of this periselectivity inversion allowed the development of a three-component reaction for the diastereoselective synthesis of α-spiro-δ-lactams  115 from diazo compounds   113,  α ,  β-unsaturated aldehydes and primary amines (Figure 2.42) (Presset  et  al.  2010b). Similarly, the rapid formation of 1-aza-diene   114 and α-oxoketene, which evolve by aza-Diels-Alder cycloaddition, is observed. 
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92     Multi-component Reactions in Molecular Diversity Figure 2.42.   Diastereoselective synthesis of  α -spiro- δ -lactams Finally, this particular reactivity of α-oxoketenes has been used in 1,3-dipolar cycloadditions with  in situ generated hydrazones (Presset et al.  2011). Thus, under the same experimental conditions, condensation between diazodimedone  108,  N- benzylisatin   116 and functionalized hydrazine  117 provided easy access to the corresponding bis-spiro-pyrazolidinone  118 with 74% yield and excellent diastereoselectivity (Figure 2.43). 



Figure 2.43.   Diastereoselective synthesis of an isatin-derived bis-spiro-pyrazolidinone 

2.3.2.   Enantioselective multicomponent reactions 

As mentioned above, pharmaceutical and agrochemical industries are showing a strong interest in the discovery of enantiopure chiral molecules in the process of developing new active ingredients. If a chiral organocatalyst is used to activate a multicomponent reaction, which by definition makes it possible to synthesize complex molecules from simple substrates, then it is theoretically possible to access molecules of very high added value in optically pure forms in a single operation, while respecting several criteria for sustainable chemistry (de Graaf  et al.  2012; Marson 2012). Nevertheless, the synthetic challenges are important because it is necessary, on one hand, to know the various elemental steps involved in the process in 
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order to identify the step that makes it possible to control the absolute configuration of the product by the organocatalyst. On the other hand, it is also necessary to ensure that the other partners in the reaction do not interfere with this enantiodiscriminating operation. 

In the field of chemistry of 1,3-dicarbonyl derivatives, the proof of concept was established during the rise in enthusiasm for organocatalysis in the early 2000s. Thus, in 2001, the Barbas group described the enantioselective conjugated addition of acetone to the Knoevenagel    adduct   119 formed  in situ from benzaldehyde and dimethyl malonate (Figure 2.44) (Betancort  et al.  2001). The sequence is catalyzed by a chiral secondary amine, activating the acetone into an enamine. Product  120, is obtained with a yield of 52% and an enantiomeric excess of 49%. While far from the very high levels of enantioselectivity control achievable today through the use of chiral organocatalysts, this three-component reaction was the first example of an organocatalytic enantioselective multicomponent sequence, thus validating the hypotheses formulated above. 



Figure 2.44.   First organocatalytic enantioselective multicomponent reaction This first result paved the way to the development of synthetic methodologies combining the technique of multicomponent sequences and the control of stereoselectivity by small chiral organic molecules. 

In the rest of this section, we will describe the most significant advances obtained by using 1,3-dicarbonyl derivatives as substrates. 

The reactions will be grouped by major families of products formed, starting with some significant results in the field of spirocyclic compounds. 

Spiro compounds are generally complex molecular structures found in the natural environment, with diverse biological activities. 

[image: Image 5772]

[image: Image 5773]

[image: Image 5774]

[image: Image 5775]

[image: Image 5776]

[image: Image 5777]

[image: Image 5778]

[image: Image 5779]

[image: Image 5780]

[image: Image 5781]

[image: Image 5782]

[image: Image 5783]

[image: Image 5784]

[image: Image 5785]

[image: Image 5786]

[image: Image 5787]

[image: Image 5788]

[image: Image 5789]

[image: Image 5790]

[image: Image 5791]

[image: Image 5792]

[image: Image 5793]

[image: Image 5794]

[image: Image 5795]

[image: Image 5796]

[image: Image 5797]

[image: Image 5798]

[image: Image 5799]

[image: Image 5800]

[image: Image 5801]

[image: Image 5802]

[image: Image 5803]

[image: Image 5804]

[image: Image 5805]

[image: Image 5806]

[image: Image 5807]

[image: Image 5808]

[image: Image 5809]

[image: Image 5810]

[image: Image 5811]

[image: Image 5812]

[image: Image 5813]

[image: Image 5814]

[image: Image 5815]

[image: Image 5816]

[image: Image 5817]

[image: Image 5818]

[image: Image 5819]

[image: Image 5820]

[image: Image 5821]

[image: Image 5822]

[image: Image 5823]

[image: Image 5824]

[image: Image 5825]

[image: Image 5826]

[image: Image 5827]

[image: Image 5828]

[image: Image 5829]

[image: Image 5830]

[image: Image 5831]

[image: Image 5832]

[image: Image 5833]

[image: Image 5834]

[image: Image 5835]

[image: Image 5836]

[image: Image 5837]

[image: Image 5838]

[image: Image 5839]

[image: Image 5840]

[image: Image 5841]

[image: Image 5842]

[image: Image 5843]

[image: Image 5844]

[image: Image 5845]

[image: Image 5846]

[image: Image 5847]

[image: Image 5848]

[image: Image 5849]

[image: Image 5850]

[image: Image 5851]

[image: Image 5852]

94     Multi-component Reactions in Molecular Diversity They are a source of inspiration for the organic chemist in search of new original molecules that can become potentially active ingredients. 

The development of methods for enantioselective access to spirocyclic compounds is therefore a topical issue, to which organocatalysis associated with multicomponent sequences can provide very interesting solutions. 

In 2003, as part of research into the use of chiral secondary amines for the activation of carbonyl derivatives, the Barbas group published a three-component reaction between an aldehyde, an enone and Meldrum’s acid, catalyzed by different amino acids, leading to the enantioselective formation of spirocyclic ketones (Figure 2.45) (Ramachary  et al.  2003). Enone is activated into a conjugate enamine 121, while a Knoevenagel adduct  122 is formed between the 1,3-dicarbonyl derivative and the aldehyde. The formation of the spirocyclic compound  123 is finally ensured by a Diels-Alder reaction. If (L)-proline allow the synthesis of the products with good yield and enantioselectivity, thiazolidinium 5,5-dimethyl-4-carboxylate  124 [(L)-DMTC] leads to the best enantioselectivities and yields. The reaction could be advantageously extended to other 1,3-dicarbonyl derivatives such as indane-1,3-dione, dimedone or spirobislactone. A four-component version of this sequence has also been developed, involving the  in situ formation of the enone partner via a Wittig reaction, without any adverse influence on yield and high level of enantioselectivity (Ramachary and Barbas 2004). 



Figure 2.45.   Three-component synthesis of spirocyclic ketones 
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More recently, a similar sequence, also involving an enamine-type activation, has been developed by replacing enone with an alkynone and Meldrum’s acid with indane-1,3-dione, leading to the synthesis of spirocyclic cyclohexenones containing up to six contiguous stereogenic centers (Ramachary  et al.  2012). 

Finally, in 2015, Chen’s team described a pseudo-four-component sequence allowing highly diastereo- and enantioselective access to complex spiropolycyclic 1,3-diketones  126 (Figure 2.46) (Chang  et al.  

2015). Thus, two equivalents of indane-1,3-dione react with an aromatic aldehyde and a prochiral cyclohexanone, in the presence of a bifunctional acid-base catalyst derived from quinine  125, to yield the final product in a Knoevenagel-Michael-aldol-aldol sequence. 



Figure 2.46.   Three-component synthesis of spiropolycyclic 1,3-diketones Among other types of spirocyclic products, those containing the spirooxindole structure have recently received particular attention because of their many biological properties (Galliford and Scheidt 2007), particularly as anticancer agents (Yu  et al.  2015). As a result, many efforts have been made by synthetic organic chemists (Santos  
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96     Multi-component Reactions in Molecular Diversity 2014) to develop stereoselective access to these products (Hong and Wang 2013). Organocatalysis combined with the multicomponent approach is particularly effective in accessing chiral optically enriched spirooxindoles (Rios 2012). Thus, in 2009, the Gong group described a three-component reaction between a 3-methylene indolinone  127 

derivative, an aldehyde and an α-aminodiester, leading to the formation of products containing the spiro(pyrrolidin-3,3’-oxindole) 128 unit (Figure 2.47) (Chen  et al.  2009). The key step in this sequence catalyzed by chiral phosphoric acids (B*-H) is a cycloaddition reaction between an azomethine ylide, formed  in situ from the amino derivative and aldehyde, and the exocyclic  C=C 

double bond of indolinone. The products, obtained in a highly regioselective manner and with excellent enantioselectivities, have a complex polyfunctionalized structure, including three stereogenic centers, two of which are contiguous quaternary centers. 



Figure 2.47.   Chiral phosphoric acid-catalyzed synthesis of spirooxindoles Another series of optically enriched products  130 containing the spiro[ 4H- pyran - 3,3’-oxindole] structure could be prepared by Yuan’s team through a Knoevenagel - Michael-cyclization domino sequence catalyzed by cupreine from isatin derivatives  129 (Figure 2.48) (Chen  

 et al.  2010). Once again, the products are obtained with excellent enantioselectivities under very mild reaction conditions, and the power of the method can be widely appreciated by comparing the complexity of the structures formed with the simplicity of the three substrates. 
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Figure 2.48.   Synthesis of spirooxindoles –  

 catalysis with a bifunctional catalyst  

Finally, a three-component enantioselective organocatalyzed reaction for the synthesis of the tetracyclic compounds  132 containing the spirooxindole unit can be found in the literature (Figure 2.49) (Jiang   et al.  2010). This highly diastereoselective sequence, which involves two different enals and an isatin derivative  131 containing an α,β-unsaturated ester, is catalyzed by Hayashi-Jørgensen diphenylprolinol silyl ether in the presence of benzoic acid, which accelerates the formation of enamine or iminium ion intermediates. 



Figure 2.49.   Enantioselective aminocatalytic synthesis of spirooxindoles With the recent renewed interest in dihydropyrimidines (DHPMs) and their various biological properties, many teams have focused their efforts on the development of new synthesis pathways. 

Organocatalysis has made it possible to make significant progress in  
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98     Multi-component Reactions in Molecular Diversity controlling the stereoselectivity of these approaches (Gong  et al.  2007; Heravi   et al.  2013). A first enantioselective organocatalyzed version (Huang  et al.  2005) of the Biginelli reaction was developed in 2006 by Gong’s team. By performing a three-component reaction between an aromatic aldehyde, a β-ketoester, and urea or thiourea in the presence of a chiral phosphoric acid, the desired products  133 are obtained with good yields and enantiomeric excesses exceeding 90% (Figure 2.50) (Chen   et al.  2006). The absolute configuration of Biginelli’s product 133 can be controlled by judicious modulation of the substituents (Ar) in position 3 and 3’ of the catalyst aromatic skeleton (Li  et al.  2009). 

The essential point of the mechanism ensuring excellent control of enantioselectivity is the association of the catalyst with the key N- acyliminium ion intermediate resulting from the reaction between the aldehyde and urea or thiourea. 



Figure 2.50.   First enantioselective version of the Biginelli reaction As a result of this pioneering work, many other catalytic systems have been developed to control enantioselectivity in Biginelli reactions. Thus, different catalysts (Figure 2.51) were used, such as phosphoric acids derived from SPINOL (Xu  et al.  2012b), secondary amines derived from proline (Wu  et al.  2009), primary amines derived from quinine (Ding and Zhao 2010), or bifunctional catalysts containing a primary or secondary amine and a hydrogen bond donor unit made of amide (Saha and Moorthy 2011; Xu  et al.  2012a) or thiourea (Wang  et al.  2009a). In some cases, the addition of a  
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Brønsted (Xin  et al.  2008) or Lewis acid (Cai  et al.  2010) as co-catalyst was necessary. 



Figure 2.51.   Different chiral organocatalysts used in the Biginelli reaction As commented above, the recent development of the multicomponent approach in organic chemistry has revived interest in old reactions such as the Hantzsch synthesis. 

In this context, the Gong team showed in 2008 that the enantioselective synthesis of 1,4-dihydropyridines (1,4-DHPs)  134 

can be performed  via a modified Hantzsch reaction between a primary amine, an β-ketoester and an α,β-unsaturated aldehyde, in the presence of a chiral phosphoric acid organocatalyst (Figure 2.52) (Jiang  et al.  2008). The sequence involves the  in situ formation of an α,β-unsaturated imine from an amine and an aldehyde. This intermediate product, activated by hydrogen bonding with the hydroxyl group of the organocatalyst, then undergoes a conjugate addition of the enol form of the β-ketoester to lead, after cyclization and dehydration, to the final product. Enantioselectivity is generally excellent. 
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100     Multi-component Reactions in Molecular Diversity Figure 2.52.   Modified Hantzsch reaction for the enantioselective synthesis of 1,4-DHPs 

The presence of an enaminoester unit on the 1,4-dihydropyridine  

nucleus of  135 suggests a protonation that would lead to a tautomeric balance between two different forms of iminium ions (Figure 2.53). If the starting amine is otherwise substituted by a nucleophilic function, then intramolecular trapping of each of the two iminium ions can be considered to lead to the formation of either products  136 containing a 1,4,5,6-tetrahydropyridine    skeleton or products  137 of the 1,2,3,4-tetrahydropyridines family, containing three contiguous stereogenic centers. 



Figure 2.53.   Possible functionalization of 1,4-DHPs This hypothesis could first be verified by combining a β-ketoester and an α,β-unsaturated aldehyde with 2-aminoethylpyrrole  96   in the presence of the Hayashi-Jørgensen catalyst (Figure 2.54) (Du  et al.  

2014). The reaction is not diastereoselective, but the two diastereomers can be isolated and are both obtained with high 
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enantiomeric excesses (>90% ee). These tricyclic 1,4,5,6-tetrahydropyridines  136 contain the pyrrolopiperazine unit, known to generate important biological properties. This pattern is formed in the last step of the sequence, via a Pictet-Spengler cyclization. 



Figure 2.54.   Enantioselective synthesis of 1,4,5,6-tetrahydropyridines Interestingly, the regioselectivity of the iminium ion trapping can be completely reversed by using β-ketoamides   139 instead of β-ketoesters, and variously substituted  ortho-aminophenols  138 instead of aminopyrrole (Figure 2.55) (Dudognon  et al.  2015). This results in highly diastereo- and enantioselective tricyclic 1,2,3,4-tetrahydropyridines  137 containing three contiguous stereogenic centers, whose relative and absolute configurations are very effectively controlled. 



Figure 2.55.   Enantioselective synthesis of 1,2,3,4-tetrahydropyridines As we have just seen, the approach of combining the multicomponent reaction methodology with enantioselective 
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102     Multi-component Reactions in Molecular Diversity organocatalysis provides stereoselective access to various families of high value-added compounds. By playing on the reaction parameters, in particular the catalytic activation mode and/or by modulating the nature of the substrates, it is possible to move towards systems allowing the enantioselective synthesis of even more complex molecules. Several covalent bonds and several stereogenic centers are thus created, with nearly perfect stereocontrol. 

In 2009, the Dixon and Xu teams described the enantioselective synthesis of polysubstituted cyclohexanes  141 containing four stereogenic centers by involving a three-component reaction involving two different catalysts (cat*1/cat*2) (Figure 2.56) (Wang  et al.  

2009b). The sequence consists of combining a malonic derivative with two different Michael acceptors, namely an enal and a nitroolefin  140. 

A first conjugate addition, catalyzed by  cat*1 containing a basic tertiary amine and a thiourea-based H-bond donor group, controls a first stereogenic center. The intermediate product then adds to the enal, activated as an iminium ion, thanks to  cat*2 containing a secondary amine. This step enables the control of two additional stereogenic centers. The sequence ends with cyclization under basic conditions, allowing the last stereogenic center to be installed under thermodynamic control. In each case, a diastereomer is predominantly isolated, with excellent enantiomeric excesses. 



Figure 2.56.   Dual catalytic enantioselective synthesis of polysubstituted cyclohexanes 
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The pseudo-three-component reaction described by the Jørgensen group in 2008 between an enal and two equivalents of dimethyl 3-oxopentanedioate  142 (Bertelsen  et al.  2008) is also worth mentioning in this section because it represents a spectacular example of a three-component reaction that is totally stereocontrolled by the Hayashi-Jørgensen catalyst (Figure 2.57). Indeed, in each case related to the variation of the substituent of the enal, only one diastereomer of the bicyclo[3.3.1]nonane  143 derivative is isolated among the 64 possible, and the enantiomeric excess is greater than 90%, while no less than six stereogenic centers are created during the reaction sequence. A first step, via activation of the enal in the form of an iminium ion, leads to the formation of an intermediate with a cylohexenone structure. The latter then reacts in the presence of piperidine with the second dimalonic derivative equivalent to yield the final bridged bicyclic product  143. 



Figure 2.57.   Enantioselective synthesis of bridged bicyclo[3.3.1]nonenes Finally, a very high degree of complexity was achieved with the enantioselective synthesis of bicyclic compounds containing a 2,6-diazabicyclo[2.2.2]octanone unit (2,6-DABCO)  145 (Sanchez-Duque et al.  2013), via a three-component reaction catalyzed by Takemoto   

thiourea  55 (Figure 2.58) (Tomotaka  et al.  2003). Thus, by combining a β-ketoamide  144 with acrolein and an  ortho- aminophenol  138, it is possible to develop a reaction sequence resulting in the formation of five new bonds and the creation of three stereogenic centers to obtain highly diastereo- and enantioselective polycyclic compounds with high functionalities. The enantiodiscriminant step is the initial Michael addition. Two iminium ion intermediates are then successively formed, the first reacting with the secondary amide 
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104     Multi-component Reactions in Molecular Diversity moiety of the 1,3-dicarbonyl substrate, and the second being intercepted by the phenol function. This sequence is very efficient as it meets most of the chemical criteria for sustainable development, with water being the only by-product of the reaction. 



Figure 2.58.   Enantioselective synthesis of 2,6-diazabicyclo[2.2.2]octanones (2,6-DABCO) 

2.4. Conclusion 

We hope that through these few selected examples, the reader will be able to measure the unique synthetic potential of 1,3-dicarbonyl (or β-dicarbonyl) compounds. These easily accessible derivatives are ideal synthetic platforms for developing domino and multicomponent transformations allowing the concomitant creation of several covalent bonds in one single operation. Their polyfunctionality confers complementary nucleophilic and electrophilic characteristics that can be enhanced in reaction sequences involving several simple reactions whose sequences operate in a regio-, chemo- and stereocontrolled manners. More recently, the use of enantioselective catalysis, and more particularly organocatalysis, has made it possible to carry out specific activations opening the way to the development of original 
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transformations, and allowing access to many families of optically enriched products that are otherwise difficult to access. 

The fact that these domino and multicomponent sequences are carried out with an excellent economy of atoms and steps, often under very mild conditions with a minimum waste, is a considerable advantage in terms of chemistry for sustainable development. The eco-compatibility of these reaction cascades is further enhanced by their efficiency, ease of use and high tolerance to moisture and oxygen. 

It is thus possible to easily access original molecular architectures with a wide functional diversity and high molecular complexity, from simple substrates that are often inexpensive or easily accessible. This has many applications in the field of combinatorial chemistry and heterocyclic synthesis for medicinal purposes. 

The emergence of new activation modes, and more particularly the use of multicatalysis with several cooperative catalysts, should make it possible to considerably extend the scope of application of multicomponent domino reactions, particularly in the field of targeted total synthesis and industrial developments which are still relatively underdeveloped. 
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3 

Multicomponent Radical Processes: 

Recent Developments 

Multicomponent reactions (MCR) date back to the beginning of the last century with the advent of the Mannich reaction. Other remarkable developments such as Robinson’s three-component synthesis of tropinone are also worth mentioning in this context. More recently, the four-component reactions of Ugi and Passerini have attracted particular attention, providing access to important libraries of molecules. However, it is process automation and parallel synthesis that have enabled the most significant developments in multicomponent reactions over the past 20 years. The pharmaceutical industry has played a predominant role, with the preparation of thousands of new molecules associated with high throughput screening offering new opportunities in the search for new therapeutic agents. An increasing number of new transformations are now based on the so-called multicomponent strategy, giving access to new molecular architectures. MCR is a form of “grail” for the organic chemist, being considered as the optimal process in terms of convergent synthesis, perfectly in phase with the concepts of step and atom economy, foundations of “green” chemistry. While many multicomponent reactions are based on ionic and/or organometallic processes, few use radical reactions. This chapter is intended to bring Chapter written by Yannick LANDAIS. 
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122     Multi-component Reactions in Molecular Diversity together, albeit in a non-exhaustive way, the various multicomponent reactions based on radical processes and using environmentally friendly processes. In particular, the various methods for assembling three, four or more fragments in so-called “one-pot” processes using radical or associating radical and ionic processes, or radical and organometallic processes, will be described. Particular attention will be paid to “tin-free” processes, an area that is constantly evolving due to the perceived toxicity of tin derivatives. 

3.1. Polar effects: electrophilic and nucleophilic radical scales 

The development of radical cascade reactions has led to some remarkable breakthroughs, particularly in the field of total synthesis of natural products, but their use is often compromised by the long and tedious preparation of precursors (Tietze  et al.  2007). In contrast, radical MCRs are very convergent processes leading to complex molecules from simple precursors. However, the design of a MCR, whether radical or not, leads to difficulties, including the potential formation of many by-products. The chemo-selectivity of each elementary step is therefore an essential parameter that must be controlled. However, modern radical chemistry is based on the use of kinetic and thermodynamic data accumulated since the 1970s, which makes it easier to predict the reactivity of the species involved and thus to develop radical MCRs. Based on the knowledge of the reactivity of the radical species generated, it is thus possible to predict a series of events and thus influence the course of MCRs. The latter are generally classified according to the number of reagents used. The description of a radical process therefore generally has the following nomenclature: 3-RC, 4-RC and 5-RC which refer to reactions with 3, 4 and 5 components respectively. In order to predict the behavior of a radical species and the radicals generated in the subsequent multicomponent process, it is useful to assess the nature of a radical, including its polarity. Figure 3.1 gathers the different radical species that will be described later in the chapter with a classification based on the polarity of radicals (De Vleeschouwer  et al.  2007; Godineau and Landais 2009), whether electrophilic, nucleophilic, or both 
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(ambiphilic such as thiyl radicals), as well as those of radical acceptors (olefins, etc.). It is important to note that, unlike ionic organic chemistry, all combinations are possible between electrophilic and nucleophilic radicals and electron-rich or poor species. An electrophilic radical species can react with an electron-deficient olefin if no other option is available, but the reaction between this electrophilic radical and an electron-rich olefin is kinetically more favorable (Fleming 1976; Giese 1986). 



Figure 3.1.   Electrophilic and nucleophilic radicals and radical acceptors involved in a MCR 

3.2. Multicomponent radical reactions 

3.2.1.   Three-component radical reactions: radical additions 

 to olefins 

Olefins are a source of radical acceptors that provide access to highly developed synthetic intermediates in a single transformation. 

This chapter describes some radical additions to olefins that result in  





124     Multi-component Reactions in Molecular Diversity the formation of new C-C and C-N bonds under mild and mostly non-polluting conditions. 

3.2.1.1.   Carboazidation, carbo-oximation and carbodiazenylation reactions 

Carboazidation of olefins has only recently been developed (Ollivier and Renaud 2001; Renaud  et al.  2002; Panchaud and Renaud 2004a; Panchaud and Renaud 2004b; Panchaud  et   al.  2004). The reaction involves the addition of an electron-poor carbon residue (Figure 3.2a) to the least substituted (usually monosubstituted) carbon of an olefin (Figure 3.2b), which leads to the formation of a new alkyl 5ii nucleophilic radical. The latter then reacts with an electrophilic sulfonylazide   3, producing the expected azide  4 in good yields. The complementary polarity of the different partners makes it possible to operate under typical MCR conditions, that is by the simple mixing of the components. For example, PhSO2N3 does not react with the initial 5i radical, but instead only with the more nucleophilic  5ii alkyl radical. This reaction, although very effective, convergent and allowing rapid synthesis of complex structures from simple precursors, requires the presence of (Bu3Sn)2, which allows propagatation of the radical chain. The phenylsulfonyl radical generated by the reaction of  5ii with PhSO2N3 reacts with ditin to generate the Bu3Sn radical, which propagates the chain by the abstraction of iodine from  1 and formation of  5i. This carboazidation reaction has been used several times (as a key-step) in the synthesis of biologically relevant alkaloids, thus demonstrating its synthetic value (Chabaud  et al.  2005; Schar and Renaud 2006). Finally, a tin-free variant of this reaction has been developed from iodides such as  1 in the presence of Et3B (Panchaud  et al.  2004). The use of alkylboranes, discussed in detail later, allows the carboazidation reaction to be carried out in water or in an organic solvent if the reagents are poorly soluble in aqueous media. This modification avoids toxic tin derivatives and benzene, a carcinogenic solvent. An increase in reaction rate has also been observed in some cases. It should be noted, however, that this variant is limited to the use of reactive iodides leading to more stable radical species than the ethyl radical generated from Et3B. 
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a) 

b) 



Figure 3.2.   Carboazidation a) and carbo-oximation b) of olefins. For color versions of the figures in this book, see www.iste.co.uk/malacria/reactions.zip A similar mechanism can be mentioned for carbo-oximation reactions (Figure 3.2b) (Godineau and Landais 2007; Landais  et al.  

2013), carboalkenylation (Liautard  et al.  2011; Poittevin  et al.  2013; Beniazza   et al.  2017), carboalkynylation (Liautard  et al.  2011) and carbocyanation (Hassan  et al.  2017) recently developed in this laboratory. These multicomponent reactions thus make it possible to incorporate in a single step two new functional groups on the carbon skeleton of an alkene with the formation of two new C-C bonds. For example, the carbo-oximation reaction was used in the total synthesis of eucophylline, an alkaloid recently isolated from  Leuconotis eugenifolius (Apocynaceae) (Hassan  et al.  2015). The carbodiazenylation reaction is, like carboazidation, a 3-RC. This transformation involves the addition of a carbon residue to an olefin and, as above, the trapping of the radical thus formed by a nitrogen 
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126     Multi-component Reactions in Molecular Diversity derivative, in this case a diazonium salt (Figure 3.3) (Blank and Heinrich 2006; Heinrich  et al.  2006). The mechanism involves the  in-situ formation of the diazonium salt, which is reduced by TiCl3 to a highly reactive aryl radical. The removal of iodine from  1 by this aryl radical generates species  5i (Figure 3.3a), which is then added to olefin   7. The nucleophilic radical  9i formed is finally trapped by the excess diazonium salt, followed by a second monoelectronic transfer from TiCl3, leading to the addition product  10. A variant of the reaction presented above was recently developed by the same team (Blank  et al.  2010), generating the radical  5i  from a hydroperoxide in the presence of iron (II) sulfate in water (Figure 3.3b). Fe(II) breaks down the hydroperoxide prepared  in situ to give an alkoxy radical, which fragments to give  5i and AcOH.   5i is added to olefin  7 to give 9i, which can react with the diazonium salt in the presence of Fe(II). 

This process leads to the expected products with slightly lower yields than those obtained with the method below. However, this strategy is very attractive from an environmental point of view as the co-solvents of the reaction are water and acetic acid, with the mediator being a non-toxic iron salt. 

(a)





(b)



Figure 3.3.   Carbodiazenylation of olefins The carbodiazenylation reactions (Figure 3.3) were developed on the basis of previous knowledge of the Meerwein arylation reaction, in 
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which an aryl residue, generated from a diazonium salt, and a second equivalent of the same salt are added to an olefin (Figure 3.4) (Heinrich   et al.  2006). In this case, the 3-RC uses the same reagent twice. It is interesting to note that these additions of aryls to olefins operate in water as co-solvents and may be followed by the incorporation of halogenated, sulfur or oxygenated residues on the second olefin carbon (Heinrich 2009). The synthetic scope of these radical transformations is therefore very interesting. 
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Figure 3.4.   Meerwein arylation of an olefin 3.2.1.2.   Carboallylation reaction 

The addition of electron-rich radical species to electrodeficient olefins proceeds with a complementary polarity similar to those described above. The radical carboallylation reaction allows the introduction of two carbon residues onto an olefin with the formation of two C-C bonds. In this sense, it mimics a classic process in organometallic chemistry, that of adding 1,4–cuprates to enones with the trapping of the resulting metal enolate by a reactive halide (Noyori and Suzuki 1984). Mizuno and Otsuji were the first to introduce a radical version of this highly synthetic process (Figure 3.5) (Mizuno et al.  1988). In this transformation (a), a nucleophilic radical  14i, generated from the corresponding iodide  14, effectively combines with an electrodeficient olefin such as  15, leading to a new electrophilic radical species  15i, which is finally trapped by an electron-rich olefin  16. This allyltin compound regenerates the Bu3Sn 
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128     Multi-component Reactions in Molecular Diversity radical by fragmentation, which can abstract iodine from  14 in order to reform  14i. A recent example illustrates the value of this strategy with the development of a key intermediate in the total synthesis of a complex daphnane diterpenoid (Figure 3.5b) (Urabe  et al.  2011; Urabe   et al.  2012; Murai  et al.  2013). A highly substituted selenyl compound is thus added to an enone ( anti   to the resident OTBS 

group), followed by allylation with an allyltin. The treatment of the resulting 3-component adduct with K2CO3 finally provides the desired intermediate after removal of TBSOH and deacetylation. 



Figure 3.5.   Carboallylation of electrodeficient olefins This approach was originally developed using tin derivatives. 

Variants have recently emerged that use the chemistry of boron and sulfur. An example of a multicomponent radical cascade based on the use of organoboranes is illustrated in Figure 3.6 (Schaffner  et al.  

2006). Organoborane  18, resulting from the hydroboration of 
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cyclohexene by catecholborane, is added to maleimide to generate an electron-deficient radical that is trapped by allylsulfone. The β-fragmentation (similar to that of tin Figure 3.5) produces the allyl derivative  21 with excellent stereocontrol as well as the radical PhSO2, which attacks the boron atom to regenerate the cyclohexyl radical and thus propagate the radical chain. In a green chemistry context, the safety of boron and sulfur derivatives makes this approach very attractive. 
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Figure 3.6.   Carboallylation of olefins with boron and sulfur derivatives 3.2.1.3.   Carbo-oxidation reaction of styrenes: enantioselective radical organocatalysis 

This new radical addition reaction on styrenic derivatives is a perfect illustration of the growing field of combined use of radical chemistry and organocatalysis (see also section 3.5). McMillan’s pioneering work on “SOMO-catalysis” is summarized in Figure 3.7 

(Graham   et al.  2006). The addition of an aldehyde  22 to a styrenic derivative   23 proceeds via    the formation of a  3-electron- π  26i cation radical, formed by oxidation of the corresponding enamine  26 with ammonium and cerium nitrate (CAN: (Ce(NH4)2(NO3)6)). The radical intermediate  26iii is thus formed by attacking the olefin on the  Re side of   26i, then oxidized by a second equivalent of CAN, producing a benzylic cation  26iii trapped by the NO -

3  anion from the CAN. The 

latter can therefore be considered as the third component of this 3-RC. 
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130     Multi-component Reactions in Molecular Diversity This carbo-oxidation reaction occurs in water in the presence of a catalytic amount of a chiral amine  24 at the origin of the asymmetric induction. Diastereoselectivity levels are modest but yields and enantioselectivities are remarkable. Except for the presence of the cerium-based oxidant, which can be problematic, in particular due to its toxicity, this carbo-oxidation is noticable and allows the formation of new C-C and C-O bonds between two partners  22 and  23 which are inert towards each other. 



Figure 3.7.   Carbo-oxidation of styrenic derivatives 3.2.1.4.   Three-component radical carbonylation reactions Carbon monoxide is an excellent acceptor in multicomponent reactions. Its use has been popularized by Sonoda and then Ryu, who have developed a large number of MCRs in which CO is an a1 partner (Ryu   et al.  1996; Ryu 2005). It is important to note that the acyl radical such as  27ii, generated by the reaction of the alkyl radical  27i with CO, is a nucleophilic species. It therefore efficiently reacts with a variety of electrophilic species, including thio- and cyanosulfones, to give thioesters and acyl cyanide (Figure 3.8) (Kim  et al.  2005a; Kim et al.  2005b). Note in this example the original method to generate the 27i radical from the corresponding allylsulfone, which avoids the use of toxic tin derivatives. 
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Figure 3.8.   Cyano- and thiocarbonylation of alkylsulfones As mentioned above, nucleophilic radicals can also react with electron-rich species if no other options are available. The 3-RC MCR 

presented below is based on this principle (Figure 3.9). Silylated radicals are nucleophilic and easily attack the least substituted carbon of olefins and 1,5-dienes such as  29, generating a new nucleophilic radical  29i, which is trapped by CO. The acyl radical  29ii evolves via a 5- exo-type cyclization to give a C-centered radical  29iii which is reduced by the silane, which propagates the chain (Ryu  et al.  1997). 

This radical cascade is not limited to the use of 1,5-dienes but can be extended to 1,5-enyne (Fukuyama  et al.  2004). 
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Figure 3.9.   Silylcarbonylation of 1,5-dienes 

132     Multi-component Reactions in Molecular Diversity While these examples (see above) illustrate the nucleophilic reactivity of acyl radicals, in some cases, the same radicals exhibit instead electrophilic reactivity (Tojino  et al.  2003; Schiesser  et al.  

2007). This is particularly the case in aza-enyne cyclizations initiated by thiols, tin and silicon hydrides (Figure 3.10). The reaction of azaenyne   31 in the presence of thiol  32 thus produces lactam  33 with good yield and total stereoselectivity in favor of the  E-isomer. The ambiphilic thiyl radical attacks the alkyne function of  31 and generates the vinyl radical  31i, which does not cyclize but is trapped by CO under pressure to give an acyl radical  31ii. The latter is attacked by the imine nitrogen to give a new  31v radical, which is finally reduced to lactam  33. This azaphilic regioselectivity can be rationalized by invoking a complementary polarity between the imine and the ketene form of the acyl α,β-unsaturated radical  31iii. 

Cyclization of this species would lead to the zwitterionic radical  31iv, a resonance form of  31v. This research involving polar intermediates thus makes it possible to better understand this apparent conversion of a dissonant reactivity into a consonant reactivity. 
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Figure 3.10.   Thiol-initiated carbonylation of aza-enynes 
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It is interesting to note that this three-component reaction involves the use of thiols but can also be carried out using silylated derivatives as illustrated in Figure 3.11 (Tojino  et al.  2003; Schiesser  et al.  2007). 

Tin derivatives lead to similar results but with selectivity in favor of the  Z-isomer. The stereochemistry of this radical cascade is explained by steric interactions in the case of sulfur and silicon in the intermediate   31ii between the oxygen of the acyl radical and the heteroatoms (S and Si). When this heteroatom is tin,  Z-selectivity is favored by a complexation between the oxygen of the acyl radical and tin. 

a) 

b) 

c) 



Figure 3.11.   Carbonylation of aza-enynes and tin-free halides 

134     Multi-component Reactions in Molecular Diversity Many multi-component carbonylation reactions are based on tin derivatives, which are used to propagate radical chains. Silicon derivatives, of similar polarity (Figure 3.1), are much less toxic than tin derivatives and can, where possible, advantageously replace the latter. 

Tin-free reactions have also been recently developed, as illustrated in Figure 3.11 with an example of a Giese reaction based on the use of n-Bu4NBH3CN as a source of hydride (b) (Ryu  et al.  2008). Bromides and chlorides do not react under these conditions; the atom transfer step being probably too slow in these cases. Aryl iodides can also be used in similar reactions, but using NHC-boranes as a hydrogen donor (c) (Kawamoto  et al.  2013). NHC-boranes are better than borohydrides in this context because of their lower capacity to give hydrogen, thus avoiding premature reduction of the aryl radical. The mechanism is also slightly different. The C-centered radical probably removes a hydrogen atom from the NHC-borane to form the desired product with the formation of an NHC-borane radical anion, which propagates the radical chain by abstraction of an iodine atom. 

3.2.1.5.   Oxygen in multicomponent radical reactions Like carbon monoxide, oxygen is a good radical acceptor, leading to the formation of hydroperoxides by attacking carbon radicals. A good example is the exothermic oxidation of cumene by oxygen in air to cumene hydroperoxide (a precursor in the industrial preparation of phenol and acetone). During the process below (Figure 3.12), two oxygen molecules are incorporated into monoterpene  34 after initiation by a thiyl radical (Kharasch  et al.  1951; Beckwith and Wagner 1979; Bertrand and Ferreri 2001). The C-centered radical  34i formed, reacts with the first oxygen molecule to give the hydroperoxy radical   34ii, which cyclizes via a 6- exo-trig process leading to the bicyclic unit  34iii. This carbon radical evolves by reaction with a second oxygen molecule, generating the hydroperoxy  34iv radical which is trapped by thiophenol to give hydroperoxides  35 and the thiyl radical, which propagates the radical chain. This thiol-oxygen co-oxidation process named by these authors “TOCO” (thiol-monoterpene co-oxygenation) allows, in a single operation, the  
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formation of 5 new bonds giving access to peroxides with remarkable antimalarial activities (Bachi  et al.  2003; Szpilman  et al.  2005). A three-component reaction involving thiol, alkyne and oxygen, initiated electrochemically, and based on the same principle has also been described, giving access to α-thioaldehydes (Yoshida  et al.  1993). 

These reactions conducted in a single-compartment cell, in acetic acid and under a flow of oxygen, are very interesting from an environmental point of view, the molten salt (Et4NOTs) being the only reagent apart from substrates of the multicomponent process. 
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Figure 3.12.   Co-oxygenation of monoterpenes in the presence of thiols (TOCO) 

3.2.2.   Three-component radical reactions: radical additions 

 on imines 

Radical additions on the C = N group have only been studied from the 1980s onwards, which is surprising considering that these additions are faster (about three orders of magnitude) than those on olefins (Fallis and Brinza 1997; Friestad 2001). Intermolecular additions to imines are rarer than cyclizations of the same type. 

Additions to oximes and hydrazones, or acylhydrazones, are generally preferred because the latter are more stable and less subject to hydrolysis and tautomerization. Imines also lack substituents that can stabilize the resulting aminyl radical. Activation by acid catalysis  



136     Multi-component Reactions in Molecular Diversity nevertheless makes it possible to carry out radical additions on imines under mild conditions to lead to the corresponding amines with good yields. The following section describes a radical version of well-known ionic addition reactions onto imines. These reactions are remarkable because they are carried out in water following very simple protocols. 

3.2.2.1.   Strecker synthesis of radical  α -aminoamides The Strecker reaction is a very good example of a multicomponent process, allowing access to α-amino-acids from an aldehyde, a cyanide and an ammonium salt. The addition of the cyanide ion to the iminium salt leads to α-cyanoamine, which after hydrolysis gives the corresponding α-aminoamide or an α-amino acid. 

A radical version of this Strecker reaction in aqueous medium has recently been developed (Cannella  et al.  2006; Pastori  et al.  2010), based on the addition of a formamidyl radical  38i to an iminium salt (Figure 3.13). This radical is generated by abstraction of an hydrogen atom from formamide  38 by a hydroxyl radical, itself produced from hydrogen peroxide. The process is therefore carried out in water, a titanium (III) salt in stoichiometry being necessary to produce the hydroxyl radicals required by the reaction. The Ti(III)/H2O2 system thus makes it possible to assemble an aldehyde  36, an amine  37 and a formamide  38  in a one-pot process, giving access to α-amino amides 39, precursors of the corresponding amino acids. The initiation step involves the one-electron reduction of H2O2 by TiCl3 to give the hydroxyl radical. The latter quickly removes a hydrogen atom from formamide  38, leading to the nucleophilic formamidyl radical 38i, which attacks the iminium salt formed by condensation of the amine on the aldehyde. It should be noted that TiCl4 generated in this way is very oxophilic. It accelerates the formation of imine and increases its reactivity toward the attack of the carbamoyl radical by also coordinating with the nitrogen atom. The radical ion  38ii is finally reduced by a second equivalent of TiCl3 to give  39 with satisfactory to very good yields. This methodology is also applicable to ketones, thus providing access to quaternary α-amino amides (Pastori  et al.  2010). 
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Figure 3.13.   Radical Strecker reaction 3.2.2.2.   Radical Mannich reaction 

The reaction developed by Carl Mannich at the beginning of the last century was one of the first examples of multicomponent reactions (Mannich and Kröschl 1912; List 2001). This ionic process involves the addition of an enol to an imine generated  in situ by the condensation of an amine and an aldehyde. Organocatalyzed versions have recently been developed that allow access to enantioenriched secondary amines with remarkable optical purity (Pastori  et al.  2010). 

138     Multi-component Reactions in Molecular Diversity Radical versions of this reaction have been developed and described in detail in several reviews (Fallis and Brinza 1997; Friestad 2001). In this chapter, we will describe two examples that illustrate current trends in the development of variants of this reaction, taking into account environmental aspects. Thus, the protocol described above for the Strecker reaction has been adapted to the Mannich reaction. The authors observed that alkoxy radicals allowed the abstraction of hydrogen from ether and alcohol precursors (Clerici  et al.  2006; Clerici   et al.  2008; Spacini  et al.  2010). As before, the Ti(III)/ t-

BuOOH couple plays a crucial role, with titanium acting as a radical initiator. The generation of  t-BuO radicals is achieved by decomposition of  t-BuOOH through a one-electron reduction (Figure 3.14). 
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Figure 3.14.   Radical Mannich reaction using the Ti(III)-t-BuOOH couple 
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This highly electrophilic radical then allows the abstraction of a hydrogen atom from an alcohol leading to the formation of the nucleophilic radical  40i. The latter can then be added to the iminium salt activated by the titanium (IV) to give the radical ion  40ii, which is reduced by TiCl3, leading to the expected amino alcohol  41 with moderate to satisfactory yields. It is important to note that this protocol applies to both aromatic and aliphatic aldehydes and amines, demonstrating the broad scope of the approach. Initial studies involved methanol, but other alcohols ( i-PrOH, etc.) can also be used although the diastereomeric ratio in these cases is quite low (Spacini et al.  2010). It is also possible to use alcohol both as an aldehyde precursor and as a nucleophilic radical. 

Alkoxy radicals such as  42i also have a nucleophilic character and attack imines. Tomioka has recently developed a radical Mannich reaction based on the use of Me2Zn as an initiator in the presence of oxygen (Figure 3.15) (Yamada  et al.  2003; Akindele  et al.  2009). The methyl radical thus generated allows the abstraction of hydrogen atoms from ethers such as THF  42. The  42i alkoxy radical thus formed adds to imines without activation, other than that of Me2Zn. 

The complete mechanism is depicted in Figure 3.15. 
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Figure 3.15.  Radical Mannich reaction using Me2Zn/O2  

140     Multi-component Reactions in Molecular Diversity The addition of  42i to imine leads to an aminyl radical  42ii, which performs homolytic substitution (SH) onto zinc to give zinc amide 42iii and the methyl radical that propagates the chain. THF is used as a solvent and reagent, as the radical reaction does not require tin. The abstraction reaction is made possible by the difference in bond dissociation energy between the C-H bond α to the oxygen of THF 

(385 KJ/mol) compared to that of CH4 (440 KJ/mol). Me2Zn is a very promising initiator in the context of the development of tin-free radical chemistry because it also allows the removal of hydrogen atoms from certain alkanes (e.g. cyclohexane; C-H 400 KJ/mol) and halogens, more efficiently than Et3B or Et2Zn, which is generally used. 

3.2.3.   Four- and five-component radical reactions: 

 carbonylation reactions 

As mentioned above, CO under pressure has very often been used in multicomponent processes. It is thus possible to insert into a carbon skeleton, one or even two molecules of CO, acting as an a1 radical acceptor. Unfortunately, these processes often require tin chemistry. 

However, some protocols have been developed by Ryu and Sonoda, the pioneers in the field, based on the use of chain transfer reactions using sulfonyl derivatives. 

3.2.3.1.   Incorporation of a CO molecule 

The 4-RC reactions are less developed than the three-component reactions. However, their synthetic potential is great, giving access to useful synthetic intermediates, via one-pot synthesis, with the formation of four new intermolecular bonds. Once again, CO occupies a prominent place in these processes because it allows impossible reactions with other reagents. The formation of α-ketoximes   46 

(Figure 3.16) is a good example of this potential. The addition of an electron-rich carbon radical to CO leads to the acyl radical  44i, which is also nucleophilic. This is added to sulfonyloxime  45, a very useful class of radical acceptors, to produce monosulfonyloxime 45i after β-fragmentation of one of the sulfonyl groups. The additional treatment of  45i with the ethyl radical generated from  
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ethyl iodide allows the introduction of a second carbon residue, providing  α-ketoxime  46.  It is worth noticing that the fourth component is added sequentially and therefore this reaction is similar to a sequential multicomponent reaction and in this case bidirectional. 
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Figure 3.16.   Four-component reaction with the incorporation of a CO molecule 

The use of malonyl radicals  47i allows a modification of the course of the previous reaction through an initiation with an electrophilic rather than nucleophilic radical (Figure 3.17) (Kim  et al.  2005). Thus, in the presence of an olefin, such as allylsilane  48, which is electron-rich and a good radical acceptor, the adduct  47ii is easily obtained, which cyclizes in a 5- exo-trig fashion to give intermediate  47iii. This cyclization is faster than the addition of CO, which occurs only in a second stage on the nucleophilic radical  47iii. The acyl radical thus formed can finally trap the sulfur residue of thiophenylsulfone  28a to yield thioester  49 with good yield and satisfactory diastereoselectivity. 

Three C-C bonds and one C-S bond are thus formed in a single operation from simple precursors including the incorporation of a single CO molecule. The use of sulfonyl derivatives allows the chain to be propagated without the use of toxic tin; the PhSO2 radical expelled in the last step reacts with the allylsulfone    precursor   47 to regenerate the malonyl radical  47i. 
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Figure 3.17.   Four-component reaction with incorporation of a CO molecule and an allylsilane 
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Figure 3.18.   Four-component reaction initiated by a selenyl group Selenium is an element often used in radical chemistry. The PhSe group, in particular, is a nucleophilic radical that reacts well with electrodeficient olefins. This selenium reactivity was used in a cascade involving two electronically differentiated olefins and an alkyne 
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(Figure 3.18) (Tsuchii  et al.  2005). The process is initiated by the selective addition of the PhSe radical to alkyne  51. This type of addition is known to be reversible (β-fragmentation) and although the addition of the PhSe radical to  51 and  53 proceeds at similar rates, the greater thermodynamic stability of  51i implies a higher concentration of this species in the environment. The stabilized vinyl radical  51i then reacts with the electron-rich olefin  52 due to more favorable SOMO-HOMO interactions. The electron-rich radical species  52i thus formed then reacts with acrylonitrile  53 to give  52ii. A 5- exo-trig cyclization followed by the reaction of the α-selenylated radical with diphenyldiselenide   50, via an SH2 process, provides cyclopentane  54 

in the form of a mixture of three stereoisomers. Although the stereoselectivity of this multicomponent radical cascade is modest, the convergence and the bond-forming efficiency are quite remarkable. 

3.2.3.2.   Incorporation of two molecules of CO 

A judicious choice of partners based on their nature also allows the incorporation of two molecules of CO. The use of allylsulfones, such as those mentioned above (Figure 3.17) offers the opportunity to generate radicals of determined polarity and allows tin-free chain transfer reactions to be carried out. Thus, the reaction of allylsulfone 55 leads to the formation of the electron-rich radical  55i, which can react with the first CO molecule to give the acyl radical  55ii (Figure 3.19) (Kim  et al.  2005a). 
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Figure 3.19.   Four-component reaction with incorporation of two molecules of CO 

144     Multi-component Reactions in Molecular Diversity The latter cyclizes via a 5- exo-trig process to give an alkyl radical 55iii, capable of trapping a second molecule of CO, leading to  55iv. 

The latter then has no alternative but to react with thiophenylsulfone 28a producing cyclopentanone  56 with a satisfactory yield of 66%. 

The alternation of the polarities allows the formation of three C-C 

bonds and one C-S bond in a single operation, in the presence of CO. 

It is worth noting that the pressure of carbon monoxide plays an important role in the radical cascade and must be adjusted. 
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Figure 3.20.   Five-component reaction with incorporation of two CO molecules 

The complexity of these processes can be further increased by adding a fifth component. However, it should be noted that of these five components, two are incorporated twice. The radical cascade is quite similar to the one described in Figure 3.16. An alkyl radical is trapped by the first molecule of CO leading to the corresponding acyl radical  44i (Figure 3.20) (Ryu  et al.  1999; Kim  et al.  2007). The latter, a nucleophile, is added to bis-sulfonyloxime  45   to give the corresponding  α-cetoxime  45i. The operation is repeated a second time on the remaining  45i sulfone function, producing 1,3-diketone  57 

with 70% yield. This radical cascade is a good example of the bidirectional functionalization of these bis-sulfones, giving access to highly functionalized compounds in a single operation and under mild conditions. The use of methylsulfones avoids the use of tin, the methyl radical being regenerated at the end of the reaction, propagating the reaction by abstraction of iodine  44. Although the MeSO2 radical is  
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more difficult to fragment than the EtSO2 radical (Horowitz and Rajbenbach 1975; Kim  et al.  2001), the methyl radical formed allows an efficient abstraction of iodine from primary derivatives, and does not compete with the addition of the primary radical formed to oxime  45. 

3.3. Multi-component radical-ionic reactions 

3.3.1.   Multi-component radical-anionic reactions 

3.3.1.1.   Introduction – Tandem radical-anionic processes – 

 “Poorly or non-sustainable” metals  

During a radical reaction between two components, the newly generated radical species can then be reduced, leading to a new nucleophilic entity (carbanion, enolate, etc.), which can be used in ionic processes. Given the relatively inert nature of radicals under ionic conditions and vice versa, it is not surprising that multicomponent reactions incorporating both radical and ionic processes have attracted great interest. Such processes involve a subtle control of the different steps involved. The few examples of multicomponent radical-ionic reactions described below recognize the importance of metal species capable of selectively reducing or oxidizing the radical present in the environment. We will first discuss some of these radical-anionic reactions based on the use, in stoichiometric quantities, of metal salts having significant toxicities, and being conceivable only at the laboratory level. These examples are nevertheless interesting, highlighting the power of these cascade processes. In this context, chromium (II) salts have shown their usefulness as mild and selective reducers. Single electron transfer (SET) in the presence of Cr(II) salts are thus much faster with allyl radicals than with secondary or tertiary radicals. Such discrimination between radical species has been used by Takai to achieve a three-component reaction involving a diene, an iodide and an aldehyde, these three substrates being inert towards each other in the absence of a specific initiation (Figure 3.21) (Takai  et al.  1998). However, the presence of CrCl2 makes it possible to generate a nucleophilic alkyl  
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146     Multi-component Reactions in Molecular Diversity radical   58i  by

y single electron transfer, which can attack the diene to give a new allyl radical  59i. The latter reacts very quickly via a second electron transfer with CrCl2 to give allylchrome   59ii. The stereoselective allylation of aldehyde  60 by  59ii  provides homoallyl alcohol   61  with a 76% yield and total diastereocontrol, rationalized invoking a chair-like intermediate (Zimmerman-Traxler). Two new C-C bonds and two stereocenters are thus formed in a single operation, the regioselectivity determined during the attack of the radical  58i  on the diene, however, reaching only 80:20. 



Figure 3.21.   Three-component allylation reaction by chromium(II) salts 

Titanium  complexes  such as titanocene (Takai   et al.   1998) or cobalt complexes (Terao  et al.  1998a; Terao  et  al.  1998b; Nii   et al.   

2000) behave in a similar way towards benzylic and allylic radicals, allowing the corresponding benzylation and allylation. Unfortunately, although remarkable in terms of selectivity, efficiency, convergence and ease of implementation, these methods offer few prospects for environmentally friendly chemistry  if these heavy, non-renewable, often toxic metals are used in stoichiometric quantities. Cobalt in catalytic amounts has therefore recently been used in a three-component reaction to combine a diene, a halide and a silyl derivative giving access to homoallylsilanes, very useful intermediates in organic  
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synthesis (Figure 3.22) (Mizutani  et al.  2003). Only 5 mol % of CoCl2 

used with a diphosphine is required to catalyze the process. This precatalyst is reduced to a low valency cobalt complex by Grignard reagent  64. A single electron transfer between the cobalt catalyst and halide  62 generates the cyclohexyl  62i radical, which attacks the diene to give the allyl radical  63i. The recombination of the latter and the cobalt complex produces allylcobalt  63iiii, which is alkylated by  64 to give   63iii. The subsequent reductive elimination regenerates the low valency complex and provides the expected product  65. Primary, secondary and tertiary radicals can thus be added, bromides are preferred to iodides, and chlorides do not react well. A very similar mechanism has been proposed for the three-component carbosilylation reaction, catalyzed by titanocene, involving a halide, a styrene or diene derivative and a chlorosilane (Terao  et al.  1998a; Terao  et al.  

1998b; Nii  et al.  2000). 
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Figure 3.22.   Three-component coupling reaction catalyzed by CoCl2 

Takai proposed a catalytic version of the process described above (Figure 3.21) and thus offered a potential solution to the problem of heavy metal emission (Takai  et al.  1996). The PbCl2 salt used in catalytic amount (instead of CrCl2) is subsequently reduced by metallic manganese, with much lower toxicity (Figure 3.23). This reaction applied to activated olefins rather than diene  59 allows  



148     Multi-component Reactions in Molecular Diversity the addition of an alkyl residue and a ketone  66 on the double bond of 53 with good yields but low diastereoselectivities in the case of aldehydes. Although very toxic, PbCl2  is  used  here  in  very  small quantities (2 mol %); chlorosilane allows the activation of metallic manganese whose reactivity is attenuated by the presence of an oxide layer. 
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Figure 3.23.   Three-component radical anionic reaction catalyzed by Pb(II) salts 

However, the use of chromium or lead, or even cobalt in catalytic quantities, remains problematic. Less polluting metals such as zinc or even copper offer more interesting prospects. Carbonylation and then addition of alkyl radicals can thus be initiated using these metals during a mechanism involving a double monoelectronic transfer (Figure 3.24) (Tsunoi  et al.  1995). The Zn/Cu alloy allows the generation of alkyl radicals such as  68i, which, trapped by CO, leads to the nucleophilic acyl radical  68ii. The latter then reacts with the alloy with transfer of a second electron to give an acyl anion  68iii which is then added to the acrylonitrile, providing γ-ketonitrile  69  in moderate yield. It is interesting to note that this Michael addition reaction is carried out in an aqueous medium, this double 
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monoelectronic transfer allowing to generate acyl anions and thus to carry out an “umpolung” process in one-pot. 



Figure 3.24.   Michael addition of an acyl anion catalyzed by the Zn/Cu alloy 

Masked acyl anions can be generated using three-component radical-anionic processes initiated by samarium and its derivatives. 

Itoh and his collaborators were the first to propose the formation of an α-hydroxyacetyl anion equivalent from isonitriles in the presence of SmI2 (Figure 3.25) (Murakami  et al.  1990; Murakami  et al.  1993). 

Samarium allows the formation, by single electron transfer, of alkyl radicals such as  70i which are very rapidly reduced by a second equivalent of SmI2 to give the alkylsamarium (III)  70ii species, reacting with isonitrile  71 (Procter  et al.  2010). Alkylimino samarium (III)   70iii is relatively inactive and can be added to aldehydes and enolisable ketones to lead to imines such as  73 with good yields. A simple acid hydrolysis then generates the corresponding ketone. In this protocol, it is useful mentioning that the ketone is added sequentially after formation of the putative intermediate  70iii. In addition, several equivalents of HMPA (Hexamethylphosphoramide) are added to the medium. The carcinogenicity of this solvent, despite being considered here as an additive, is one of the limitations of the samarium chemistry (Procter  et al.  2010). As the latter is a single-electron reducer, it is also used in stoichiometric quantities (2 equivalents). 

150     Multi-component Reactions in Molecular Diversity O

SmI2, THF

N

BnOCH2-Cl

+

+

OH

N

BnO

HMPA, -15°C

70

71

72

73 (86%)

 S.E .T . 

SmI2

Ar

72

SmI2

71

N

BnOCH

SmI

2

BnOCH2

SmI2

2

BnO

70i

70ii

70iii



Figure 3.25.  Preparation of masked acyl anions using SmI2 

3.3.1.2.   Tandem radical-anionic processes: the advent of boron and zinc derivatives 

Zinc derivatives such as R2Zn (R= Me, Et,  i-Pr) and boron (mainly Et3B) are currently undergoing significant development due to their relative safety and that of their by-products (Bazin  et al.  2006; Darmency and Renaud 2006). Boron derivatives can also be used in water, and are active at very low temperatures (-78°C), making them radical initiators of choice, particularly in stereoselective processes. 

Their main interest lies in their ability to react easily with oxygen traces (air can also be used) and thus produce alkyl radicals, which can then initiate a radical chain. In this chapter, we will describe some multicomponent reactions, in particular those combining radical additions followed by aldolization or carbocyclization. As below, the radical species resulting from the addition are transformed into carbanions (or enolates) by homolytic substitution reaction on zinc or boron. This process already partially described in Figure 3.15, with hydrogen abstraction by Me2Zn, will be explained in the context of new multicomponent reactions below. 

3.3.1.2.1. Tandem process: radical addition-aldolization The radical addition-aldolization cascade was first studied by Mukaiyama (Mukaiyama  et al.  1973) based on Brown’s pioneering work (Suzuki  et al.  1967) on the radical reactivity of boranes in the 
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presence of oxygen. The decomposition of ( n-Bu)3B   74 in the presence of oxygen leads to the formation of the  n- butyl radical  74i, which is added to methyl-vinyl-ketone  75 to give the enolate radical 75i (Figure 3.26). The latter then reacts with trialkylborane   via an SH2 

mechanism to give the boron enolate  75ii and regenerates  74i which sustain the radical chain (Suzuki  et al.  1967). The addition of benzaldehyde to the enolate prepared  in situ gives the aldol product with good yields but modest diastereoselectivities. It should be noted that the reaction between  74 and  75 is not spontaneous and requires the presence of oxygen, which reacts with borane (Figure 3.26). This strategy, although easy to implement, is restricted to cheap boranes because only one alkyl group is transferred, the reaction being thus stoichiometric in borane. 

Ph

OH

O

THF

 n-Bu

( n-Bu)3B

+

+

Ph

H

O2, 10°C

O

74

60

O

75

76

(91%)

 d.r. 3:1

O2

60

75

 n-Bu

( n-Bu)3B

 n-Bu

 n-Bu

O

 SH2

O

74i

75i

75ii

B( n-Bu)2

 n-Bu

 n-Bu

O

 n-Bu

2

( n-Bu)

B

3B

 n-Bu B O O

 n-Bu

O O

+

 n-Bu

 n-Bu



Figure 3.26.   Three-component borane-mediated radical addition-aldolization 

Similar to boranes, dialkylzinc compounds are sources of alkyl radicals when exposed to traces of oxygen. Under these conditions, Et2Zn effectively reacts with activated imines or esters and α,β-unsaturated amides, the latter also being activated by the Lewis acidity  



152     Multi-component Reactions in Molecular Diversity of the organozinc derivative. This reactivity has been put to use by Bertrand  et al. (Bazin  et al.  2002; Bazin  et al.  2005; Bazin  et al.  2007) in a 3-component reaction involving radical addition followed by aldolization. When a chiral auxiliary is connected to the α,β-unsaturated precursor, excellent levels of stereocontrol are achieved, after recycling the auxiliary upon basic treatment and lactonization (Figure 3.27). 
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Figure 3.27.  Et2Zn-mediated three-component radical addition-aldolization  

The mechanism is very similar to that described for trialkylboranes (Figure 3.26), except that the Et2Zn ethyl radical reacts with tertiary iodide to form the more stable  t- butyl radical (Bazin  et al.  2007). The latter is added in the same way as  74i onto an electron-deficient olefin to give an electron-poor radical, which will react with a second Et2Zn molecule to give the corresponding enolate (Figure 3.28). These processes are called radical-polar crossover processes. The use of Et3B and Et2Zn allows the generation of electron-rich ethyl radicals in the medium, which can be directly added to electron-poor radical traps. These ethyl radicals can also react with halides (usually iodides) to generate other alkyl radicals. However, this last reaction is limited by the nature of the radicals produced, which must be more stable than the ethyl radical. This is the case for secondary and tertiary radicals. For primary iodides, Me2Zn can possibly be used instead of Et2Zn. It is clear from these few examples and the abundant literature on the subject, that dialkylzinc compounds and trialkylboranes offer an attractive range of reactivity and their low toxicity is attractive in the context of the development of a tin-free radical chemistry. 
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Figure 3.28.  Radical addition-aldolization initiated by Et2Zn 3.3.1.2.2. Tandem process: radical addition-carbocyclization When the electrodeficient olefin bears an additional unsaturation, the radical addition of an alkyl unit may be followed by cyclization. 

Normant and Chemla (Denes  et al.  2003; Denes  et al.  2006) showed, from type  77 precursors, that the 5- exo-trig cyclization reaction was faster than the reduction of the radical to enolate. From this observation, they developed a three-component reaction based on a radical addition-carbocyclization process (Figure 3.29). A first  n- butyl radical derived from a dialkylzinc compound is added to the electrodeficient olefin  77 to give a stabilized radical  77i, which does not form an enolate as in the two previous cases, but cyclizes via a 5-exo-trig process to give the alkyl radical  77ii. The latter is finally transformed into the dialkylzinc compound  77iii by homolytic substitution on  R2Zn. Since the organozinc compounds are relatively inert, transmetallation with copper (I) is finally carried out before adding allyl bromide, which completes the tandem process. Three C-C 

bonds are thus formed to give pyrrolidine  78 with good yield and modest selectivity. A very similar cascade has been described by the same authors on enynes (Pérez-Luna  et al.  2008). It is interesting to note that in the presence of Mn(0),  77i type electrophilic radicals are 

154     Multi-component Reactions in Molecular Diversity reduced to enolate, with 5- exo-trig cyclization not observed in this case (Takai  et al.  1996). 
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Figure 3.29.   Three-component radical-polar crossover reaction 

3.3.1.2.3. Hydroxysulfenylation and hydroxyalkylation reaction of unsaturated oximes 

The hydroxysulfenylation reaction of olefins, also called thiol-olefin co-oxygenation reaction, is generally limited to electron-rich olefins and dienes as shown above (Figure 3.12) (Kharasch  et al.  

1951; Beckwith and Wagner 1979; Yoshida  et al.  1993; Bertrand and Ferreri 2001; Bachi  et al.  2003; Szpilman  et al.  2005). In the presence of electrodeficient olefins, the Michael (ionic) reaction of thiol on the olefin disrupts the formation of the hydroxysulfenylation product. 

However, recent work by Naito  et al.  has shown that the use of unsaturated oximes, in place of the corresponding carbonyl derivative, avoids this Michael reaction (Figure 3.30) (Ueda  et al.  2008). 

The addition of the thiyl radical on these oximes (such as  79) results in an alkoxyaminyl radical  79ii,  which is much more stable than the alkoxy radical resulting from the addition of the same thiyl radical on an α,β-unsaturated olefin. These reactions being initiated by Et3B, the alkoxyaminyl radical then generates (by homolytic  
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substitution on boron) the corresponding boron enamide 79 iii whose N-B bond is much easier to dissociate than the O-B bond, facilitating subsequent reactions. Oxygen reacts on this boron enamide 79 iii, forming the peroxy radical  79iv, which is trapped by PhSH to give hydroperoxide   79v. The reduction of the latter by a further thiol equivalent leads to  trans adduct  80 and disulfide. Additional experiments have shown that PhSBEt2 is the true radical initiator of this cascade, formed by rapid reaction between thiol and Et3B. This addition reaction applies to both cyclic and acyclic enoximes as well as hydrazones, the nature of the substituents on thiol being also modulable. 
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Figure 3.30.   Three-component radical-polar crossover hydroxysulfenylation reaction 

A domino process has also been developed from vinylcyclopropyl oximes analogues such as  81 (Figure 3.31) (Rahaman  et al.  2009). 

The addition of the thiyl radical to the least substituted end of the olefin generates a radical α to cyclopropane which fragments to give an alkoxyaminyl radical  81i. The latter reacts as previously with  Et3B, leading to enamide  81ii, which can then be trapped at will by an aldehyde or oxygen to yield the expected products  82 and  83, via the same radical chain as shown in Figure 3.30. Variations are possible in thiol and aldehydes. Diastereoselectivity can be rationalized by a six-membered ring cyclic transition state, with AlMe3 activating the aldehyde due to its stronger Lewis acidic character than Et3B. 
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Figure 3.31.   Hydroxysulfenylation reaction of vinylcyclopropyloximes 
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Figure 3.32.   Three-components radical polar-crossover hydroxyalkylation reaction 

The principle of the hydroxysulfenylation reaction has recently been extended by the same team to the hydroxyalkylation reaction (Ueda   et al.  2009). The  i-Pr radical is generated by abstraction of iodine by the ethyl radical from the Et3B reaction with oxygen (Figure 3.26). This nucleophilic radical is added to the electrodeficient olefin to form the intermediate radical  84i (Figure 3.32). The latter is  
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hydroxylated by O2   via the mechanism illustrated in Figure 3.30. Two new C-C and C-O bonds are thus formed with diastereoselectivities that are, however, relatively weak. 

3.3.2.   Multi-component radical-cationic reactions 

Tandem radical-cationic processes are based on the ability of an organometallic species to selectively oxidize certain types of radicals with respect to others. Ryu and Alper first established that an electronic transfer from an acyl radical to a metal such as manganese (III) was faster than the transfer from an alkyl radical. This observation allowed them to develop a four-component reaction (water being one of the components) that best exploits the characteristics of manganese (III) salts (Figure 3.33) (Okuro and Alper 1996; Ryu and Alper 1993). Thus, Mn(OAc)3 first generates the malonyl radical, which is added to the electron-rich olefin  87. The radical  87i thus formed is not oxidized by Mn(III) but reacts with CO 

to give the acyl radical  87ii, which is oxidized into the acylium cation 87iii, finally trapped by a water molecule to form acid  88 in moderate yield. 
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Figure 3.33.   Three-component radical-cationic reaction. 

 Oxidation of acyl radicals by Mn(III) 

The one-electron oxidation can also proceed via the transfer of an iodine atom from an alkyl iodide. This process was used by Ryu and Sonoda in the synthesis of esters by radical carboxylation (Figure 3.34) (Nagahara  et al.  1997). 
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Figure 3.34.   Three-component radical carboxylation reaction 

The initial radical  89i is formed by irradiation with a Xenon lamp. 

This radical is carbonylated to give the nucleophilic radical  89ii, which abstracts the iodine atom from the precursor  89 to give back the radical   89i and thus propagate the chain. The acyl iodide  89iii thus formed reacts with the alcohol in the presence of a base to give the ester   90. It is important to note that the final esterification is important, allowing the equilibrium to be shifted. The irradiation of an iodide with the sole presence of CO does not lead to acyl iodide. It should also be noted that the transfer of iodine to the acyl radical is quite slow with primary halides but much faster with secondary and tertiary halides. This method is carried out without a catalyst and therefore represents a very environmentally friendly method of ester synthesis by simple radical carboxylation of a halide. Amide synthesis can be performed under similar conditions (Ryu  et al.  1998). 

The previous process, although quite efficient, is more efficient when catalyzed by metal complexes such as [Mn2(CO)10] or Pd(PPh3)4. The association between Pd(0) and irradiation allows the generation of radicals by single electron transfer. This catalysis is illustrated with the formation of the bicyclic system  92 (Figure 3.35) (Ryu   et al.  2002). The authors suggest that after adding CO to the radical   91i, then cyclization into  91iii and trapping of a second CO  

molecule, the acyl radical  91iv is converted into an acyl-palladium  91v which reacts with alcohol to give the ester after reductive elimination and regeneration of the palladium catalyst (Figure 3.35). 
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Figure 3.35.   Radical carboxylation reaction catalyzed by Pd(0) This methodology has been extended to the formation of amides by amine carboxylation and successfully applied to a rapid synthesis of dihydrocapsaicin  95, the molecule responsible for the spicy aroma of red pepper (Figure 3.36) (Fukuyama  et al.  2006). 

Hexamethyldisilazane is used both as a base and as an  in situ silylating agent for phenol  94, in order to avoid the subsequent formation of the phenolic ester. The Me3Si group is then removed in a second step by reacting with TBAF. It should be noted that the starting amine  94 is used in excess (3 eq.), the starting iodide being primary. 
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Figure 3.36.   Synthesis of dihydrocapsaicin by amine radical carboxylation 

160     Multi-component Reactions in Molecular Diversity 3.4. Sequential multicomponent radical reactions It seemed desirable to also include in this review two types of recently developed reactions that are grouped here under the term sequential reactions. These processes are multicomponent processes and include a radical chemistry step. We have distinguished between radical multicomponent reactions followed by a transformation that can be radical, ionic or organometallic and non-radical multicomponent reactions (Ugi, Passerini) terminated by a radical process. These sequential processes (the different components are not added at the beginning of the reaction at the same time) thus contribute, in a single operation, to the increase in molecular complexity and significantly extend the scope of application of conventional multicomponent reactions. These few examples also suggest a wide range of perspectives for the construction of new carbon skeletons by combining multicomponent processes and post-functionalization of the adducts formed. 

3.4.1.   Organometallic-radical sequential reactions 

A final category of multicomponent reactions, which has so far been little explored, is described in this chapter. These methodologies are based on the orthogonality of the reaction conditions of radical and ionic reactions. It is therefore possible to combine these sequentially in a one-pot process. The upcoming example illustrates this type of emerging strategy (Figure 3.37) (Godineau and Landais 2007; Landais et  al.  2013). 

The radical chain transfer reaction occurs first, giving access to an oxime, which is then subjected to treatment with an organometallic reagent, in this case an organozinc compound. The addition of the organometallic reagent in solution in THF is compatible with the residues of the radical process preceding it, allowing the reaction to be carried out in one-pot. This minimizes the number of operations and thus limits the number of costly purification steps. The process can be carried out without tin by using Kim’s oxime  98 (Horowitz and Rajbenbach 1975). The radical  96i, generated  in situ by the addition of DLP (dilauroyl peroxide), is added to the electron-rich olefin to 
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provide the nucleophilic radical  97i, which reacts with sulfone  98. The addition, followed by the fragmentation of the SO2Et radical, produces oxime   97ii, which is not isolated but directly treated by an allylzinc compound in solution in THF. The addition via a six-membered ring cyclic transition state leads, after lactamization, to piperidinone  100 in moderate yield and good diastereoselectivity. The fragmentation of oxime   98 regenerates the ethyl radical that propagates the chain by reacting with  96. The modest yield is due to the low reactivity of oxime towards organometallic reagents. It is interesting to note that the three-component reaction can also be followed by the addition of a new radical, which in the presence of BF3-OEt2, reacts with oxime 97ii to give analogues    of piperidinone  100. This radical cascade provides piperidinones, precursors of piperidines, present in a large number of alkaloids of biological interest. In terms of efficiency, the cascade is also remarkable with three new C-C bonds and one C-N 

bond formed in a single operation. 
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Figure 3.37.   Four-component radical-ionic reaction 3.4.2.   Ugi reactions: radical reactions 

The Ugi reaction is a four-component process based on the use of isonitriles and often associated with the synthesis of peptide fragments 

162     Multi-component Reactions in Molecular Diversity (Dömling and Ugi 2000). Recent developments in the field include the development of post-functionalization processes for Ugi reaction adducts and in particular the use of radical chemistry. El Kaim  et al. 

have thus developed a series of four, even five-component processes based on a conventional Ugi reaction (involving an aldehyde, an isonitrile, an amine and a carboxylic acid) followed by a transformation of the multicomponent reaction product by a radical process (El Kaim  et al.  2007). In the following example, the product of Ugi  101 is thus treated with a malonate in the presence of Mn(III). 

As described above (Figure 3.33), the malonyl radical  86i is added to the least substituted carbon in the olefin  101 to yield indane  102 after cyclization (Figure 3.38). The interest of this strategy lies in the reconstruction of the Ugi adduct to form indane intermediates very useful in organic synthesis. The reaction is not limited to the use of malonates, since β-ketoesters also give rise to the expected indanes. 

Preliminary tests indicate that a substituent ortho to the aldehyde is a necessary condition for the implementation of the radical step. 
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Figure 3.38.   Four-component ionic-radical sequential reaction The detailed mechanism of this reaction (Figure 3.38) involves a 

[1,4]- transfer of the aryl group, followed by the loss of fragment  103. 

However, this loss is compensated by the introduction of the corresponding malonate  86 or β-ketoester. The intermediate resulting from the addition of the malonyl radical on the olefin cyclizes on the aromatic ring to give the spiranic intermediate  101ii which fragments. 

It is worth noticing that the importance of the ortho substituent mentioned above is probably due to the stabilization of the radical 101ii by this same substituent (here OMe). The aryl [1,4]-transfer leads to the radical  101iii which is oxidized by a second equivalent of Mn(OAc)3 with incorporation of an acetate residue. The intermediate 
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 101iv  thus formed loses fragment   103,  leading to product   104. 

When  the number of Mn(III) equivalents is not sufficient, this intermediate is isolated, reinforcing the mechanistic hypothesis proposed by the authors. The excess of Mn(OAc)3  allows  the formation of the malonyl radical  104i, which cyclizes on the arene via a 5- exo-trig process to give a new radical on the six-membered ring, leading to the expected indane  102 after oxidation of the radical and rearomatization. This five-component process is easy to implement and allows the construction of indane structures in a one-pot process without isolation of the intermediate Ugi product. However, it should be noted that there is a large excess of metal salt required for the different oxidation steps, which limits the value of the method (Figure 3.39). 



Figure 3.39.   Mechanism of the Ugi-radical oxidation reaction 3.4.3.   Passerini reaction using radicals 

Like the Ugi reaction, the Passerini reaction is based on isonitrile chemistry and allows the formation of acyloxy-carboxamides in a one-pot process (Bienaymé  et al.  2000; Zhu and Bienaymé 2005; Zhu et   al.   2015). This three-component process involves an aldehyde, an 

164     Multi-component Reactions in Molecular Diversity isonitrile and a carboxylic acid. Some aldehydes, non-commercial, difficult to synthesize or too unstable to be purified, cannot be used directly in the Passerini reaction. Zhu  et al.  recently developed a modification of the Passerini reaction using as precursors alcohols oxidized   in situ. In their original procedure (Ngouansavanh and Zhu 2006), oxidation was carried out using IBX, an oxidant based on hypervalent iodine. Although the latter and its by-products are easily eliminated at the end of the reaction, the process requires an excess of IBX. A second version, with a catalytic oxidant, has been developed more recently, with oxygen being the terminal oxidant (Brioche  et al.  

2010). The catalytic system includes a copper(II) salt, an additive, NaNO2, and molecular oxygen. It is worth noting that isonitriles can give rise to oxidation reactions in the presence of CuCl2 in an aerobic environment; this competitive reaction is not observed here. These mild, catalytic conditions offer an access to a wide variety of Passerini adducts, including some whose precursor aldehydes are unstable or easily racemizable. This is the case with alcohol  105, which under Zhu conditions leads to amide  106 without racemization with a very satisfactory yield of 75% (Figure 3.40). The case of alcohol  107 is also interesting because it suggests that the mechanism is not radical but rather ionic, with no opening product observed. Similarly, hex-5-enol does not lead to the 5- exo-trig cyclization product. However, some substrates that are prone to cyclization (through a radical pathway) have been oxidized by metals under aerobic conditions via processes known to be radical. Also, the authors propose that in these Passerini reactions, the oxidation step is effectively radical. 

The mechanism involves an exchange of ligands on copper. The action of TEMPO on Cu(II) salt leads to complex  109i, which exchanges one of its ligands with the alcohol  110   to be oxidized     to form intermediate  109ii. The radical abstraction of hydrogen from alcohol releases, after fragmentation, aldehyde and a copper(I) complex   109iii, which is reoxidized by NO2 to the    complex  109i. 

NO2 is formed by reaction between the carboxylic acid and NaNO2. 

The NO thus formed is finally reoxidized to NO2 by the action of molecular oxygen, which is the terminal oxidant. The aldehyde finally combines with an acid and isonitrile to give the product of the Passerini reaction (Figure 3.41). This reaction is a good example of 
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the clean oxidation processes that organic chemists attempt to develop, but each additive is used in catalytic amounts, with several bonds formed from more than two components in stoichiometry, oxygen being the terminal oxidant. 
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Figure 3.40.   Passerini reaction – radical oxidation LnCuCl2
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Figure 3.41.   Mechanism of the Passerini – radical oxidation reaction 

166     Multi-component Reactions in Molecular Diversity 3.5. Multicomponent reactions by photoredox catalysis Photoredox catalysis using visible light is attracting increasing interest, enabling the activation of many substrates under mild and environmentally acceptable conditions (Narayanam and Stephenson 2011; Xi  et al.  2013). This technique, described in the 1980s but since forgotten, is experiencing a renaissance that is having a major impact on the field of radical chemistry. In the remainder of this chapter, we will attempt to describe the latest developments in this approach and its application to multi-component processes. The reader should have a look at the following reviews for a thorough understanding of this rapidly evolving strategy (Prier  et al.  2013; Romero and Nicewicz 2016). While most organic molecules do not absorb visible light, photocatalysts based on Ru2+ and Ir3+ complexes or organophotocatalysts (eosin, methylene blue, etc.) enable activation by photo-induced electron transfer (PET). The synergistic effect of light and these catalysts thus opens up new avenues for the generation of radical species and also for radical organic synthesis. This activation mode can be summarized as described in Figure 3.42 (with the photocatalyst denoted PC). These ruthenium and iridium or organic (eosin, etc.) catalysts are only efficient in their excited state. 

Visible light irradiation allows the transfer of an electron from the metal (d orbital) to the ligand (π* orbital) in the Ru2+ and Ir3+ 

complexes, or from an electron from HOMO to LUMO in the organophotocatalysts, thus leading to a metal complex or organophotocatalyst in its excited state (noted PC*). The quenching of the excited state of the photocatalysts, by a molecule that does not absorb light at visible wavelengths, can be oxidative or reductive depending on the nature of the substrates and their respective redox potential. 

Trialkylamines (NEt3,  i-Pr2NEt) but also anilines (ArNMe2) are efficient reductive quenchers. In the first example (Figure 3.43), the radical addition of a bromomalonate to an ene carbamate  111 was performed under photocatalytic conditions (using an Ir3+ catalyst), using NEt3, as a reducing inhibitor (Courant and Masson 2012). The treatment of a mixture of bromomalonate and  111, in the presence of EtOH, results in the three-component    adduct   112 with excellent results, but no diastereoselectivity. The reaction proceeds via the reductive quenching of *Ir3+ by NEt3, leading to Ir2+ and the 
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corresponding ammonium radical-cation. The transfer of an electron from Ir2+ to the bromomalonate (acceptor) then leads to the corresponding electrophilic radical, which is added to the electron-rich olefin. The transfer of bromine atom followed by the formation of the acyliminium ion and the trapping of the latter by EtOH provides  112. 

The reduction of *Ir3+ (with formation of the acyliminium) can also be considered as an alternative pathway. 

Reductive extinction 



Figure 3.42.   Photo-redox catalysis under visible light: oxidative and reducing cycles 



Figure 3.43.   Addition of a malonate and an alcohol to an olefin 
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168     Multi-component Reactions in Molecular Diversity The reducing amine used can also act as one of the partners in the multicomponent process, as shown by the synthesis of α-aminoamides and imides by a multicomponent reaction between an aromatic amine, an isonitrile  113 and H2O or PhCO2H (Figure 3.44a) (Rueping and Vila 2013). The intermediate ammonium cation-radical generated by reduction of the catalyst *Ir3+ thus generates, in the presence of oxygen, the corresponding aryliminium, which reacts with isonitrile to form a highly electrophilic nitrilium ion (b) easily trapped by water or a carboxylic acid, finally giving access to α-aminoamides  114a and imides  114b respectively. 



Figure 3.44.   Formation of  α -aminoamides by addition of amine to an isonitrile in the presence of an alcohol The incorporation of a fluorine atom or substituents containing one or more fluorine atoms into organic molecules is an important objective for the pharmaceutical and agrochemical industry. 

Photoredox catalysis in the presence of visible light is an effective method for introducing the CF3 group onto a carbon skeleton (Studer 2012). Reactions of hydroxy- and aminotrifluoromethylation of olefins based on this approach are two prominent examples (Yasu  et al.  2012; Yasu  et al.  2013). The addition of Togni or Umemoto reagents  116 and 119 to olefins under visible light irradiation results in the corresponding fluorinated compounds  117 and  120 with excellent yields and a satisfactory level of diastereocontrol (Figure 3.45). 

The reduction of reagents  116 or  119 by the ruthenium catalyst in the excited state generates the electrophilic CF3 radical, which is then added to styrenes  115 or  118, leading to a new benzylic radical, which 
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can then be oxidized into a benzylic cation or react with  116 or  119 

(via a single electron transfer mechanism). The cation is finally trapped by a nucleophile such as water to form  117 (a) or acetonitrile to produce  120  via a Ritter reaction (Figure 3.45b). 



Figure 3.45.   Three-component hydroxy- and aminotrifluoromethylation of olefins 

Allenes also react under these conditions to give vinyltrifluoromethyl fragments (Tomita  et al.  2017). The same laboratory very recently described the addition, by a similar approach, of the CF2H substituent by photoredox catalysis using perylene as a photosensitizer or the SCF3 unit (Li  et al.  2017; Noto  et al.  2017). 

Hydrotrifluoromethylation of olefins has also been developed using the same approach (Mizuta  et al.  2013). Using  119 as a source of CF3 

and MeOH as a hydrogen donor, the addition of CF3 and H to the π 

system of various olefins proceeds with moderate to good yields. It should be noted that the latter methodology is not limited to styrene-

170     Multi-component Reactions in Molecular Diversity type olefins. Deuteration experiments also showed that the C-H bond of MeOH was the source of hydrogen atom. 1,4-cyclohexadiene is a viable alternative source of hydrogen, as shown by the hydrotrifluoromethylation of olefins via a multicomponent process using CF3SiMe3 as a CF3 source (Wu  et al.  2013). 

Photoredox catalysis can also be carried out using organophotocatalysts, thus bypassing the problem of cost and durability of Ruthenium and Iridium catalysts. Among these catalysts, cheap eosin has been used for many years in organic chemistry and has recently received renewed interest (Hari and König 2014; Majek et al.  2014). The following example describes the anti-Markovnikov addition of thiols ( 121) to alkynes ( 122) in an eosin-catalyzed process in the presence of green light (= 530 nm) (Figure 3.46) (Zalesskiy et al.  2016). 
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Figure 3.46.   Eosin-catalyzed Addition of thiols to alkynes The reaction is regioselective and very stereoselective in favor of the   E-isomer  123. Thiol reduces eosin in its excited state to give, in the presence of a base, the thiyl (or sulfanyl) radical, which reacts with the triple bond. The vinyl radical formed is then reduced by thiol. This 
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transformation can be considered as a three-component process, the thiol transferring its hydrogen in the last step. Finally, the oxygen in the air allows the oxidation of the anion-radical of eosin, thus regenerated in its ground state. 

Acridinium salt photocatalysts have also been shown to be particularly efficient. It has thus been demonstrated that the hydrotrifluoromethylation of inactivated styrenes and olefins (e.g.  124) provides the corresponding fluorinated product (e.g.  125) with moderate to good yields, using the Langlois reagent (CF3SO2Na) as a source of CF3 and the acridinium salt as a photoredox catalyst (Figure 3.47) (Wilger  et al.  2013). Trifluoroethanol (TFE) serves as both a co-solvent and a source of hydrogen as a third component. Thiophenol (1.0 equivalent) is also added to promote hydrogen transfer. Due to the low dissociation enthalpy of the S-H bond (BDE) (79 kcal/mol), it is proposed that thiol regenerates TFE by transferring hydrogen from thiol to the α-hydroxytrifluoromethyl radical. 



Figure 3.47.   Hydro-trifluoromethylation of alkenes 

172     Multi-component Reactions in Molecular Diversity 3.6. Conclusion 

Multicomponent reactions already have a long history and are very useful for molecular diversity-oriented synthesis, offering a rapid access to a wide variety of targets, including those of biological interest. In this context, cascade radical processes occupy a privileged place and have not yet revealed their full potential. Radical reactions are generally carried out under mild conditions, compatible with a large number of functional groups and do not require, most of the time, protective groups. In addition, the orthogonality of the reaction conditions of radical and ionic reactions allows, in a sequential manner, the subsequent functionalization of substrates generated by multicomponent reactions, without purification of intermediates. The advent of sequential multicomponent processes thus opens up a wider field of investigation, giving access to complex polyfunctional substrates while minimizing the number of operations. The multicomponent reactions are therefore totally in line with the concept of atom economy, which is now key in any process, from the laboratory to the pilot scale. The few examples gathered in this chapter illustrate and strongly demonstrate the validity of this strategy. 

These studies, which spanned some thirty years, laid the foundations and are an important step towards the discovery of new processes for assembling several precursors in a one-pot process. The development of sustainable chemistry now also requires a look at chemistry and its major reactions in the light of recent work on multicomponent processes (Bienaymé  et al.  2000; Zhu and Bienaymé 2005; Tietze et al.  2007; Zhu  et al.  2015). 

3.7. References 

Akindele, T., Yamada, K.-I., Tomioka, K. (2009). Dimethylzinc-Initiated Radical Reactions.  Acc. Chem. Res. , 42, 345–355. 

Bachi, M.D., Korshin, E.E., Hoos, R., Szpilman, A.M., Ploypradith, P., Xie, S., Shapiro, T.A., Posner, G.H. (2003). A Short Synthesis and Biological Evaluation of Potent and Nontoxic Antimalarial Bridged Bicyclic β-Sulfonyl-Endoperoxides.  J. Med. Chem. , 46, 2516–2533. 

Multicomponent Radical Processes: Recent Developments     173 

Bazin, S., Feray, L., Bertrand, M.P. (2006). Dialkylzincs in Radical Reactions.  Chimia, 60, 260–265. 

Bazin, S., Feray, L., Siri, D., Naubron, J.-V., Bertrand, M.P. (2002). Tandem radical addition–aldol condensations: evidence for the formation of zinc enolates in diethylzinc mediated radical additions to N-enoyloxazolidinones.  Chem. Comm. , 21, 2506–2507. 

Bazin, S., Feray, L., Vanthuyne, N., Bertrand, M.P. (2005). Dialkylzinc mediated radical additions to chiral N-enoyloxazolidinones in the presence of benzaldehyde. Mechanistic investigation, structural charac-terization of the resulting gamma-lactones.  Tetrahedron, 61, 4261–4274. 

Bazin, S., Feray, L., Vanthuyne, N., Siri, D., Bertrand, M.P. (2007). α,β-Unsaturated diesters: radical acceptors in dialkylzinc-mediated tandem radical addition/aldol condensation. A straightforward synthesis of rac-nephrosteranic acid.  Tetrahedron, 63, 77–85. 

Beckwith, A.L.J., Wagner, R.D. (1979). Formation of cyclic peroxides by oxygenation of thiophenol-diene mixtures.  J. Am. Chem. Soc. , 101, 7099–

7100. 

Beniazza, R., Liautard, V., Poittevin, C., Ovadia, B., Mohammed, S., Robert, 

F., Landais, Y. (2017). Free-radical Carbo-alkenylation of Olefins. Scope, Limitations and Mechanistic Insights.  Chem. Eur. J. , 23, 2439–2447. 

Bertrand, M.P., Ferreri, C. (2001). Sulfur-centered Radicals. In  Radicals in organic synthesis, Renaud, P., Sibi, M.P. (eds). Wiley-VCH, Weinheim, 2, 485–504. 

Bienaymé, H., Hulme, C., Oddon, G., Schmitt, P. (2000). Maximizing Synthetic Efficiency: Multi‐Component Transformations Lead the Way. 

 Chem. Eur. J. , 6, 3321–3329. 

Blank, O., Heinrich, M.R. (2006). Carbodiazenylation of Olefins by Radical Iodine Transfer and Addition to Arenediazonium Salts.  Eur. J. Org. 

 Chem. , 4331–4334. 

Blank, O., Raschke, N., Heinrich, M.R. (2010). Hydroperoxides and aryl diazonium salts as reagents for the functionalization of non-activated olefins.  Tetrahedron Lett. , 51, 1758–1760. 

Brioche, J., Masson, G., Zhu, J. (2010). Passerini Three-Component Reaction of Alcohols under Catalytic Aerobic Oxidative Conditions.  Org. Lett. , 12, 1432–1435. 

174     Multi-component Reactions in Molecular Diversity Cannella, R., Clerici, A., Panzeri, W., Pastori, N., Punta, C., Porta, O. (2006). 

Free-Radical Version of the Strecker Synthesis of α-Aminoamides Promoted by Aqueous H2O2/TiCl3/HCONH2 System.  J. Am. Chem. Soc. , 128, 5358–5359. 

Chabaud, L., Landais, Y., Renaud, P. (2005). Total Synthesis of Hyacinthacine A1 and 3-epi-Hyacinthacine A1.  Org. Lett. , 7, 2587. 

Clerici, A., Cannella, R., Pastori, N., Panzeri, W., Porta, O. (2006). A free radical Mannich type reaction: selective α-C-H aminomethylation of ethers by Ti(III)/t-BuOOH system under aqueous acidic conditions. 

 Tetrahedron Lett. , 62, 5986–5994. 

Clerici, A., Ghilardi, A., Pastori, N., Punta, C., Porta, O. (2008). A New One-Pot, Four-Component Synthesis of 1,2-Amino Alcohols: TiCl3/t-BuOOH-Mediated Radical Hydroxymethylation of Imines.  Org. Lett. , 10, 5063–

5066. 

Courant, T., Masson, G. (2012). Photoredox‐Initiated α‐Alkylation of Imines through a Three‐Component Radical/Cationic Reaction.  Chem. Eur. J. , 18, 423–427. 

Darmency, V., Renaud, P. (2006). Tin-free radical reactions mediated by organoboron compounds. In  Radicals in synthesis I, Gansaüer, A. (ed.). 

 Topics in Current Chemistry, Springer-Verlag, Berlin-Heidelberg, 263, 71–106. 

Denes, F., Chemla, F., Normant, J.F. (2003). Domino 1,4-addition/ 

carbocyclization reaction through a radical-polar crossover reaction. 

 Angew. Chem. Int. Ed. , 42, 4043–4046. 

Denes, F., Cutri, S., Perez-Luna, A., Chemla, F. (2006). Radical-Polar Crossover Domino Reactions Involving Organozinc and Mixed Organocopper/Organozinc Reagents.  Chem. Eur. J. , 12, 6506–6513. 

Dömling, A., Ugi, I. (2000). Multicomponent Reactions with Isocyanides. 

 Angew. Chem. Int. Ed. , 39, 3168–3210. 

El Kaim, L., Grimaud, L., Vieu, E. (2007). From Simple Ugi Adducts to Indanes and δ-Amidomalonates:  New Manganese(III)-Induced Radical Cascades.  Org. Lett. , 9, 4171–4173. 

Fallis, A.G., Brinza, I.M. (1997). Free radical cyclizations involving nitrogen. 

 Tetrahedron, 53, 17543–17594. 

Fleming, I. (1976).  Frontier orbitals and organic chemical reactions. Wiley, New York, 182–186. 

Multicomponent Radical Processes: Recent Developments     175 

Friestad, G.K. (2001). Addition of Carbon-Centered Radicals to Imines and Related Compounds.  Tetrahedron, 57, 5461–5496. 

Fukuyama, T., Uenoyama, Y., Oguri, S., Otsuka, N., Ryu, I. (2004). Radical Carbonylation of 1,5-Enynes Using TTMSS as a Chain Carrier. 

Unexpected Formation of Persistent 3-Silyl-1-siloxyallyl Radicals Serving as a Chain Breaking Path.  Chem. Lett. , 33, 854–855. 

Fukuyama, T., Nishitani, S., Inouye, T., Morimoto, K., Ryu, I. (2006). 

Effective Acceleration of Atom Transfer Carbonylation of Alkyl Iodides by Metal Complexes. Application to the Synthesis of the Hinokinin Precursor and Dihydrocapsaicin.  Org. Lett. , 8, 1383–1386. 

Giese, B. (1986).  Radical organic synthesis: Formation of carbon-carbon bonds. Pergamon Press, Oxford, 4–35. 

Godineau, E., Landais, Y. (2007). Multicomponent Radical Processes:  Synthesis of Substituted Piperidinones.  J. Am. Chem. Soc. , 129, 12662–

12663. 

Godineau, E., Landais, Y. (2009). Radical and Radical–Ionic Multicomponent Processes.  Chem. Eur. J. , 15, 3044–3055. 

Graham, T.H., Casey, M.J., Jui, N.T, McMillan, D.W.C. (2008). Enantioselective Organo-Singly Occupied Molecular Orbital Catalysis: The Carbo-oxidation of Styrenes.  J. Am. Chem. Soc. , 130, 16494–16495. 

Hari, P.D., König, B. (2014). Synthetic applications of eosin Y in photoredox catalysis.  Chem. Comm. , 50, 6688–6699. 

Hassan, H., Mohammed, S., Robert, F., Landais, Y. (2015). Total Synthesis of (±)-Eucophylline. A Free-Radical Approach to the Synthesis of the Azabicyclo [3.3.1]nonane Skeleton.  Org. Lett. , 17, 4518–4521. 

Hassan, H., Pirenne, V., Wissing, M., Khiar, C., Hussain, A., Robert, F., Landais, Y.  (2017).  Free-Radical Carbocyanation of Olefins.  Chem. 

 Eur. J. ,  23, 4651–4658. 

Heinrich, M.R. (2009). Intermolecular Olefin Functionalisation Involving Aryl Radicals Generated from Arenediazonium Salts.  Chem.    Eur. J. , 15, 820–833. 

Heinrich, M.R., Blank, O., Wölfel, S. (2006). Reductive Carbodiazenylation of Nonactivated Olefins via Aryl Diazonium Salts.  Org. Lett. , 8, 3323–

3325. 

176     Multi-component Reactions in Molecular Diversity Horowitz, A., Rajbenbach, L.A. (1975). Free radical mechanism of the decomposition of alkylsulfonyl chlorides in liquid cyclohexane.  J. Am. 

 Chem. Soc. , 97, 10–13. 

Kawamoto, T., Okada, T., Curran, D.P., Ryu, I. (2013). Efficient Hydroxymethylation Reactions of Iodoarenes Using CO and 1,3-Dimethylimidazol-2-ylidene Borane.  Org. Lett. , 15, 2144–2147. 

Kharasch, M.S., Nudenberg, W., Mansell, G.J. (1951). Reactions of atoms and free radicals in solution. XXV. The reactions of olefins with mercaptans in the presence of oxygen.  J. Org. Chem. , 16, 524–532. 

Kim, S., Song, H.-J., Choi, T.-L., Yoon, J.-Y. (2001). Tin‐Free Radical Acylation Reactions with Methanesulfonyl Oxime Ether.  Angew. Chem. 

 Int. Ed. , 40, 2524–2526. 

Kim, S., Kim, S., Otsuka, N., Ryu, I. (2005a). Tin-Free Radical Carbonylation: Thiol Ester Synthesis Using Alkyl Allyl Sulfone Precursors, Phenyl Benzenethiosulfonate, and CO.  Angew. Chem. Int. 

 Ed. , 44, 6183–6186. 

Kim, S., Cho, C. H., Kim, S., Uenoyama, Y., Ryu, I. (2005b). Radical cyanocarbonylation using Alkyl allyl sulfones precursors.  Synlett, 3160–

3162. 

Kim, S., Lim, K.C., Kim, S., Ryu, I. (2007). Tin‐Free Radical Carbonylation: Synthesis of Acylated Oxime Ethers Using Alkyl Allyl Sulfone Precursors, Carbon Monoxide, and Phenylsulfonyl Oxime Ether.  Adv. 

 Syn. Catal. , 349, 527–530. 

Landais, Y., Robert, F., Godineau, E., Huet, L., Likhite, N. (2013). Free-radical Carbo-oximation of Olefins and Subsequent Radical-ionic Cascades.  Tetrahedron, 69, 10073–10080. 

Li, Y., Koike, T., Akita, M. (2017). Photocatalytic Trifluoromethylthiolation of Aromatic Alkenes Associated with Hydroxylation and Alkoxylation. 

 Asian J. Org. Chem. , 6, 445–448. 

Liautard, V., Robert, F., Landais, Y. (2011). Free-Radical Carboalkynylation and Carboalkenylation of Olefins.  Org. Lett. , 13, 2658–2661. 

List, B. (2001). Asymmetric Aminocatalysis.  Synlett, 1675–1686. 

Majek, M., Filace, F., Von Wangelin, A.J. (2014). On the mechanism of photocatalytic reactions with eosin Y.  Beilstein J. Org. Chem. , 10, 981–

989. 

Multicomponent Radical Processes: Recent Developments     177 

Mannich, C., Kröschl, W. (1912). Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin.  Arch. Pharm. , 250, 647–667. 

Mizuno, K., Ikeda, M., Toda, S., Otsuji, Y. (1988). Regioselective double vicinal carbon-carbon bond forming reactions of electron-deficient alkenes by use of allylic stannanes and organoiodo compounds.  J. Am. 

 Chem. Soc. , 110, 1288–1290. 

Mizuta, S., Verhoog, S., Engle, K.M., Khotavivattana, T., O’Duill, M., Wheelhouse, K., Rassias, G., Médebielle, M., Gouverneur, V. (2013). 

Catalytic hydrotrifluoro-methylation of unactivated alkenes.  J. Am. Chem. 

 Soc. , 135, 2505–2508. 

Mizutani, K., Shinokubo, H., Oshima, K. (2003). Cobalt-Catalyzed Three-Component Coupling Reaction of Alkyl Halides, 1,3-Dienes, and Trimethyl-silylmethylmagnesium Chloride.  Org. Lett. , 5, 3959–3961. 

Mukaiyama, T., Inomata, K., Muraki, M. (1973). Vinyloxyboranes as Synthetic Intermediates.  J. Am. Chem. Soc. , 95, 967–968. 

Murai, K., Katoh, S.-I., Urabe, D., Inoue, M. (2013). A radical-based approach for the construction of the tetracyclic structure of resiniferatoxin.  Chem. Sci. , 4, 2364–2368. 

Murakami, M., Kawano, T., Ito, Y. (1990). [2-Benzyloxy)-1-(N-2,6-xylylimino) ethyl]samarium as a synthetic equivalent to α-hydroxyacetyl anion.  J. Am. Chem. Soc. , 112, 2437–2439. 

Murakami, M., Kawano, T., Ito, H., Ito, Y. (1993). Synthesis of α-hydroxy ketones by samarium(II) iodide-mediated coupling of organic halides, an isocyanide, and carbonyl compounds.  J. Org. Chem. , 58, 1458–1465. 

Nagahara, K., Ryu, I., Komatsu, M., Sonoda, N. (1997). Radical Carboxylation:  Ester Synthesis from Alkyl Iodides, Carbon Monoxide, and Alcohols under Irradiation Conditions.  J. Amer.  Chem.  Soc. , 119, 5465–5466. 

Narayanam, J.M.R., Stephenson, C.R.J. (2011). Visible light photoredox catalysis: applications in organic synthesis.  Chem. Soc. Rev. , 40, 102–

113. 

Ngouansavanh, T., Zhu, J. (2006). Alcohols in Isonitrile‐Based Multicomponent Reaction: Passerini Reaction of Alcohols in the Presence of O‐Iodoxybenzoic Acid.  Angew. Chem. Int. Ed. , 45, 3495–3497. 

178     Multi-component Reactions in Molecular Diversity Nii, S., Terao, J., Kambe, N. (2000). Titanocene-Catalyzed Carbosilylation of Alkenes and Dienes Using Alkyl Halides and Chlorosilanes.  J. Org. 

 Chem. , 65, 5291–5297. 

Noto, N., Koike, T., Akita, M. (2017). Metal-free di- and tri-fluoromethylation of alkenes realized by visible-light-induced perylene photoredox catalysis.  Chem. Sci. , 8, 6375–6379. 

Noyori, R., Suzuki, M. (1984). Prostaglandin Syntheses by Three-Component Coupling. New Synthetic Methods.  Angew. Chem. Int. Ed. 

 Engl. , 23, 847–876. 

Okuro, K., Alper, H. (1996). Intramolecular and Intermolecular Mn(III)-

Induced Carbon Monoxide Trapping Reactions of Alkynes with Malonate and Cyano Ester Units.  J. Org. Chem. , 61, 5312–5315. 

Ollivier, C., Renaud, P. (2001). A Novel Approach for the Formation of Carbon−Nitrogen Bonds:  Azidation of Alkyl Radicals with Sulfonyl Azides.  J. Am. Chem. Soc. , 123, 4717–4727. 

Panchaud, P., Renaud, P. (2004a). Tin-Free Radical Carboazidation.  Chimia, 57, 232–233. 

Panchaud, P., Renaud, P. (2004b). A Convenient Tin-Free Procedure for Radical Carboazidation and Azidation.  J. Org. Chem. , 69, 3205–3207. 

Panchaud, P., Chabaud, L., Landais, Y., Ollivier, C., Renaud, P., Zigmantas, 

S. (2004). Radical Amination with Sulfonyl Azides: A Powerful Method for the Formation of C-N Bonds.  Chem. Eur. J. , 10, 3606–3614. 

Pastori, N., Greco, C., Clerici, A., Punta, C., Porta, O. (2010). Free-Radical Addition to Ketimines Generated In Situ. New One-Pot Synthesis of Quaternary  α-Aminoamides Promoted by a H

−

2O2/TiCl4 Zn/HCONH2 

System.  Org. Lett. , 12, 3898–3901. 

Pérez-Luna, A., Botuha, C., Ferreira, F., Chemla, F. (2008). Radical‐Polar Crossover Domino Reaction Involving Alkynes: A Stereoselective Zinc Atom Radical Transfer.  Chem. Eur. J. , 14, 8784–8788. 

Poittevin, C., Liautard, V., Beniazza, R., Robert, F., Landais, Y. (2013). Free-Radical Carbo-alkenylation of Enamides and Ene-carbamates.  Org. Lett. , 15, 2814–2817. 

Prier, C.K., Rankic, D.A., MacMillan, D.W.C. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.  Chem. Rev. , 113, 5322–5363. 

Multicomponent Radical Processes: Recent Developments     179 

Procter, D.J., Flowers, R.A., Skrydstrup, T. (2010).  Organic synthesis using samarium diodide. RSC Publishing. 

Rahaman, H., Ueda, M., Miyata, O., Naito, T. (2009). Two Novel Domino Reactions Triggered by Thiyl-Radical Addition to Vinylcyclopropyl Oxime Ether.  Org. Lett. , 11, 2651–2654. 

Renaud, P., Ollivier, C., Panchaud, P. (2002). Radical carboazidation of alkenes: an efficient tool for the preparation of pyrrolidinone derivatives. 

 Angew. Chem., Int. Ed. , 41, 3460–3462. 

Romero, N.A., Nicewicz, D.A. (2016). Organic Photoredox Catalysis.  Chem. 

 Rev. , 116, 10075–10166. 

Rueping, M., Vila, C. (2013). Visible Light Photoredox-Catalyzed Multicomponent Reactions.  Org. Lett. , 15, 2092–2095. 

Ryu, I. (2005). Multicomponent radical reactions. In  Multicomponent reactions, Zhu, J., Bienaymé, H. (eds). Wiley-VCH, Weinheim. 

Ryu, I., Alper, H. (1993). The first examples of carbon monoxide trapping in a manganese(III)-induced oxidation system.  J. Am.  Chem.  Soc. , 115, 7543–7544. 

Ryu, I., Sonoda, N., Curran, D.P. (1996). Tandem Radical Reactions of Carbon Monoxide, Isonitriles, and Other Reagent Equivalents of the Geminal Radical Acceptor/Radical Precursor Synthon.  Chem. Rev. , 96, 177–194. 

Ryu, I., Nagahara, K., Kurihara, A., Komatsu, M., Sonoda, N. (1997). Silylcarbonylation of 1,5-dienes accompanied by acyl radical cyclization. 

 J. Organomet. Chem. , 548, 105–107. 

Ryu, I., Nagahara, K., Kambe, N., Sonoda, N., Kreimerman, S., Komatsu, M. 

(1998). Metal catalyst-free by design. The synthesis of amides from alkyl iodides, carbon monoxide and amines by a hybrid radical/ionic reaction. 

 Chem. Comm. , 18, 1953–1954. 

Ryu, I., Kuriyama, H., Minakata, S., Komatsu, M., Yoon, J.-Y., Kim, S. 

(1999). New Radical Cascade Reactions Incorporating Multiple One-Carbon Radical Synthons:  A Versatile Synthetic Methodology for Vicinal Singly and Doubly Acylated Oxime Ethers.  J. Am.  Chem.  Soc. , 121, 12190–12191. 

180     Multi-component Reactions in Molecular Diversity Ryu, I., Kreimerman, S., Araki, F., Nishitani, S., Oderaotoshi, Y., Minakata, S., Komatsu, M. (2002). Cascade Radical Reactions Catalyzed by a Pd/Light System:  Cyclizative Multiple Carbonylation of 4-Alkenyl Iodides.  J. Am. Chem. Soc. , 124, 3812–3813. 

Ryu, I., Uehara, S., Hirao, H., Fukuyama, T. (2008). Tin-Free Giese Reaction and the Related Radical Carbonylation Using Alkyl Iodides and Cyanoborohydrides.  Org. Lett. , 10, 1005–1008. 

Schaffner, A.P., Sarkunam, K., Renaud, P. (2006). Radical‐Mediated Three‐Component Coupling of Alkenes.  Helv. Chim. Acta, 89, 2450–

2461. 

Schar, P., Renaud, P. (2006). Total Synthesis of the Marine Alkaloid (±)-

Lepadiformine via a Radical Carboazidation.  Org. Lett. , 8, 1569. 

Schiesser, C.H., Wille, U., Matsubara, H., Ryu, I. (2007). Radicals Masquerading as Electrophiles: Dual Orbital Effects in Nitrogen-Philic Acyl Radical Cyclization and Related Addition Reactions.  Acc. Chem. 

 Res. , 40, 303–313. 

Spacini, R., Ghilardi, A., Pastori, N., Clerici, A., Punta, C., Porta, O. (2010). 

Efficient radical domino approach to β-aminoalcohols from arylamines and alcohols triggered by Ti(III)/t-BuOOH.  Tetrahedron, 66, 2044–2052. 

Studer, A. (2012). A “Renaissance” in radical trifluoromethylation.  Angew. 

 Chem. Int. Ed. , 51, 8950–8958. 

Suzuki, A., Arase, A., Matsumoto, H., Itoh, M., Brown, H.C., Rogic, M.M., Rathke, M.W. (1967). Facile reaction of organoboranes with methyl vinyl ketone. Convenient new ketone synthesis via hydroboration.  J. Amer. 

 Chem. Soc. , 89, 5708. 

Szpilman, A.M., Korshin, E.E., Rozenberg, H., Bachi, M.D. (2005). Total Syntheses of Yingzhaosu A and of Its C(14)-Epimer Including the First Evaluation of Their Antimalarial and Cytotoxic Activities.  J. Org. Chem. , 70, 3618–3662. 

Takai, K., Ueda, T., Ikeda, N., Moriwake, T. (1996). Sequential Generation and Utilization of Radical and Anionic Species with a Novel Manganese-Lead Reducing Agent. Three-Component Coupling Reactions of Alkyl Iodides, Electron-Deficient Olefins, and Carbonyl Compounds.  J. Org. 

 Chem. , 61, 7990–7991. 

Multicomponent Radical Processes: Recent Developments     181 

Takai, K., Matsukawa, N., Takahashi, A., Fujii, T. (1998). Three‐Component Coupling Reactions of Alkyl Iodides, 1,3‐Dienes, and Carbonyl Compounds by Sequential Generation of Radical and Anionic Species with CrCl2.  Angew. Chem., Int. Ed. , 37, 152–155. 

Terao, J., Kambe, N., Sonoda, N. (1998a). Titanocene-catalyzed double silylation of dienes and aryl alkenes with chlorosilanes.  Tetrahedron Lett. , 39, 9697–9698. 

Terao, J., Saito, K., Nii, S., Kambe, N., Sonoda, N. (1998b). Regioselective Double Alkylation of Styrenes with Alkyl Halides Using a Titanocene Catalyst.  J. Am. Chem. Soc. , 120, 11822–11823. 

Tietze, L.F., Brasche, D.G., Gericke, K.M. (2007).  Domino reactions in organic synthesis. Wiley-VCH, Weinheim, 542–565. 

Tojino, M., Otsuka, N., Fukuyama, T., Matsubara, H., Schiesser, C.H., Kuriyama, H., Miyazato, H., Minakata, S., Komatsu, M., Ryu, I. (2003). 

Cyclizative radical carbonylations of azaenynes by TTMSS and hexanethiol leading to α-silyl- and thiomethylene lactams. Insights into the E/Z stereoselectivities.  Org. Biomol. Chem. , 1, 4262–4267. 

Tomita, R., Koike, T., Akita, M. (2017). Photoredox-catalyzed oxytrifluoromethylation of allenes: stereoselective synthesis of 2-trifluoromethylated allyl acetates.  Chem. Comm. , 53, 4681–4684. 

Tsuchii, K., Doi, M., Ogawa, I., Einaga, Y., Ogawa, A. (2005). Diphenyl Diselenide as a Useful Reagent for Intermolecular Domino Reactions of Various Unsaturated Compounds under Photoirradiation Conditions.  Bull. 

 Chem. Soc. Jpn. , 78, 1534–1548. 

Tsunoi, S., Ryu, I., Fukushima, H., Tanaka, M., Komatsu, M., Sonoda, N. 

(1995). Free-Radical Carbonylation Using a Zn(Cu) Induced Reduction System.  Synlett, 1249. 

Ueda, M., Miyabe, H., Shimizu, H., Sugino, H., Miyata, O., Naito, T. (2008). 

Regioselective hydroxysulfenylation of α,β-unsaturated imines: enhanced stability of an intermediate radical.  Angew. Chem.    Int. Ed. , 47, 5600–

5604. 

Ueda, M., Miyabe, H., Kimura, T., Kondoh, E., Naito, T., Miyata, O. (2009). 

Aerobic hydroxylation of N-borylenamine: triethylborane-mediated hydroxyalkylation of α,β-unsaturated oxime ether.  Org. Lett. , 11, 4632–4635. 

Urabe, D., Yamaguchi, H., Inoue, M. (2011). Application of α-Alkoxy Bridgehead Radical for Coupling of Oxygenated Carbocycles.  Org. Lett. , 13, 4778–4781. 

182     Multi-component Reactions in Molecular Diversity Urabe, D., Yamaguchi, H., Someya, A., Inoue, M. (2012). Intermolecular Radical Reaction of O,Se-Acetals Generated via Seleno-Pummerer Rearrangement.  Org. Lett. , 14, 3842–3845. 

De Vleeschouwer, F., Van Speybroeck, V., Waroquier, M., Geerlings, P., De 

Proft, F. (2007). Electrophilicity and Nucleophilicity Index for Radicals.  Org. Lett. , 9, 2721–2724. 

Wilger, D.J., Gesmundo, N.J., Nicewicz, D.A. (2013). Catalytic hydrotrifluoro-methylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system.  Chem. Sci. , 4, 3160–3165. 

Wu, X., Chu, L., Qing, F.-L. (2013). Silver‐Catalyzed Hydrotrifluoromethylation of Unactivated Alkenes with CF3SiMe3.  Angew. Chem. Int. 

 Ed. , 52, 2198–2202. 

Xi, Y., Yi, H., Lei, A. (2013). Synthetic applications of photoredox catalysis with visible light.  Org. Biomol. Chem. , 11, 2387–2403. 

Yamada, K.-I., Yamamoto, Y., Tomioka, K. (2003). Initiator-Dependent Chemo-selective Addition of THF Radical to Aldehyde and Aldimine and Its Application to a Three-Component Reaction.  Org. Lett. , 5, 1797–1799. 

Yasu, Y., Koike, T., Akita, M. (2012). Three‐component Oxytrifluoromethylation of Alkenes: Highly Efficient and Regioselective Difunc-tionalization of C=C Bonds Mediated by Photoredox Catalysts.  Angew. 

 Chem. Int. Ed. , 51, 9567–9571. 

Yasu, Y., Koike, T., Akita, M. (2013). Intermolecular Aminotrifluoromethylation of Alkenes by Visible-Light-Driven Photoredox Catalysis. 

 Org. Lett. , 15, 2136–2139. 

Yoshida, J.-I., Nakatani, S., Isoe, S. (1993). Electroinitiated oxygenation of alkenyl sulfides and alkynes in the presence of thiophenol.  J. Org. Chem. , 58, 4855–4865. 

Zalesskiy, S.S., Shlapakov, N.S., Ananikov, V.P. (2016). Visible light mediated metal-free thiol-yne click reaction.  Chem. Sci. , 7, 6740–6745. 

Zhu, J., Bienaymé, H. (ed.) (2005).  Multicomponent reactions. Wiley-VCH, Weinheim. 

Zhu, J., Wang, Q., Wang, M.-X. (ed.) (2015).  Multicomponent reactions in organic synthesis. Wiley-VCH, Weinheim. 



 

List of Authors 

Damien BONNE  

Max MALACRIA 

iSm2 (Institute of Molecular 

IPCM (Parisian Institute for 

Sciences of Marseille) 

Molecular Chemistry) 

Aix-Marseille University 

Sorbonne University 

France 

Paris 



France 

Thierry CONSTANTIEUX 



iSm2 (Institute of Molecular 

Nuno MONTEIRO 

Sciences of Marseille) 

ICBMS (Institute of Molecular 

Aix-Marseille University 

and Supramolecular Chemistry 

France 

and Biochemistry) 



Claude Bernard University Lyon 1 

Yoann COQUEREL 

France 

iSm2 (Institute of Molecular 



Sciences of Marseille) 

Cyril OLLIVIER 

Aix-Marseille University 

IPCM (Parisian Institute for 

France 

Molecular Chemistry) 



Sorbonne University 

Jean-Philippe GODDARD 

Paris 

LIMA (Laboratory of Molecular 

France 

Innovation and Applications) 



University of  Upper Alsace 

Jean RODRIGUEZ 

Mulhouse 

iSm2 (Institute of Molecular 

France 

Sciences of Marseille) 



Aix-Marseille University 

Yannick LANDAIS 

France 

ISM (Institute of Molecular 



Sciences) 

University of Bordeaux 

France 

 Multi-component Reactions in Molecular Diversity, First Edition. Edited by Jean-Philippe Goddard, Max Malacria and Cyril Ollivier. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 

 



 

Index 

α-amino acids,  5 

alkynes, 10, 27, 44 

α-oxocetenes,  68, 91 

allene(s), 10, 27 

β-fragmentation, 129 

allylation,  33 

1,2,3 triazoles, 13 

allylsulfone, 141 

1,4-diazabicyclo[2.2.2]octane,  65 

amidation,  17 

1,4-diazepanes, 87 

amidines, 44 

1,4-dihydropyridines,  99 

amino-indolizines, 36 

2,6-diazabicyclo[2.2.2]octane,  89 

aminonitriles, 6 

2,6-diazabicyclo[2.2.2]octanones, 

aminyl, 135 

103 

amphibilic, 123 

5- exo-trig,  153 

azide, 13, 31, 44, 124 

A 

B 

abstraction,  136, 164 

Baldwin’s rules, 67 

acid 

Barbier-Grignard, 22 

Lewis, 41 

benzofurans, 39 

Meldrum’s, 85 

benzoin,  74 

phosphoric, 98 

bicyclo[3.2.1]octanes, 62 

acides phosphoriques chiraux,  96 

Biginelli,  6, 84, 98 

acridinium salt, 171 

bis-imidazoline, 24 

acyl, 149 

bis-oxazoline,  21 

addition(s), 123 

borohydrides, 134 

conjugate, 29 

borrowing hydrogen, 75 

Michael, 64, 65, 74, 86, 88 

Breslow,  74 

aldolization, 150 

burseran, 30 

alkenes, 10 



 Multi-component Reactions in Molecular Diversity, First Edition. Edited by Jean-Philippe Goddard, Max Malacria and Cyril Ollivier. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 

186     Multi-component Reactions in Molecular Diversity C 

D 

C-H activation, 24 

DABCO, 89 

carbanion, 150 

Danishefsky, 62 

carbo-alcynylation,  125 

dehydropyrimidones, 6 

carbo-oxidation, 129 

desymmetrization,  19 

carbo-oximation,  125 

DHPM, 84 

carboalkenylation,  125 

dialkylzinc, 151 

carboallylation,  127 

diazonium, 126 

carbocyanation, 125 

Dieckmann,  62, 63 

carbodiazenylation, 125 

Diels-Alder, 68, 91, 94 

carbon monoxide, 17, 33 

dihydropyrans,  86 

carbonylation,  17, 130 

dihydropyridines, 6 

carbopalladation, 11, 28 

dihydropyrimidines,  97 

cascade, 122 

dipolar cycloaddition 1, 3, 13 

catalysis 

dipolarophiles, 47 

cooperative, 75 

dissociation,  140, 171 

tandem,  32 

diversity and molecular 

catalyst, 12 

complexity, 9 

bifunctional,  95 

diynes, 44 

chiral, 19 

domino, 77 

cationic, 157 

chemical libraries, 1, 7 

E 

chemistry 

economy 

click,  14 

atom, 4 

combinatorial, 1, 7 

step, 3 

flow, 5 

electrophilic, 123 

fluorine, 28 

enantioselective, 129 

in water, 21 

enolate, 150 

chemo-selectivity, 122   

enones, 31 

chiral ligand(s), 13, 20, 21, 24   

enthalpy, 171 

chirality, 69, 73, 85   

eosin, 166 

complex(es) 

esterification,  17 

hydrosoluble, 22 

estrone, 28 

copper, 13, 164 

excited,  166, 168, 170 

cyclizations, 135 

extinction,  166 

cycloismerization, 38 

cyclopentanones, 74 

cyclopropanes, 73 

F, G, H 

fluorine, 68, 86, 168 

Friedel–Crafts, 68, 69, 86 



Index     187 

frondosin B, 40 

L 

furopyridones,  40, 41 

lactamization,  161 

Garner aldehyde, 86 

Laurent Auguste, 6 

Gerhardt, Charles, 6 

Lazabemide, 18 

Green Chemistry, 59, 70 

leukotriene,  11 

Hajos,  see also Parrish, 71 

ligand chiral, 20 

Hantzsch, 6, 81, 83, 99 

ligands chiraux, 21 

Hayashi-Jørgensen,  72, 97, 100, 

light, 166 

103 

lignan,  29 

Heck, 10 

List, 70 

hetero-Diels-Adler, 86 

high throughput screening, 1,  7 

HOMO, 143 

M 

homolytic, 140 

MacMillan,  70 

Huisgen, 13 

macrocycles, 41 

hydroboration,  128 

manganese, 147 

hydroformylation, 22 

Mannich, 6, 68, 87 

hydrogen, 170 

MARDi, 63 

hydrogen bonds, 77, 78, 98 

micellar media,  24 

hydroperoxide(s), 134, 155 

micelles, 24 

hydroxyalkylation,  154 

Michael, 29, 30, 62, 66, 148 

hydroxysulfenylation,  154 

microwave, 5 

multicomponent, 121 

I, K 

multiple bond-forming 

transformations, 60 

imidates, 44 

münchnones, 17 

imines, 22 

iminium-enamine, 71 

indanofan, 26 

N 

initiation,  29, 37, 134, 136, 141, 

 N-acyliminium, 98 

145, 

 N-arylation,  37 

initiator, 138 

 N-heterocylic carbene, 75 

intermolecular, 135 

nifedipine, 7 

ionic, 122 

norbornadiene,  11 

ionic liquids, 5 

norbornene,  19 

iridium,  166 

nucleophilic, 122 

irradiation,  158 

isonitriles, 6, 19, 149 

O 

Knoevenagel,  86, 90, 93, 96 

Knoevenagel–hetero-Diels-Alder, 

organoboranes,  128 

86 

organocatalysis, 70 



188     Multi-component Reactions in Molecular Diversity organocuprate,  9 

domino, 25, 26 

organozinc, 153 

monocatalytic,  26 

oubain, 64 

monocondensation, 25 

oxidation,  163 

multicomponent, 92 

oxime, 154 

organometallic, 9 

oxygen,  164 

one-pot,  2 

polycondensation, 43 

P 

polymerization, 43 

post-condensation,  41 

palladium, 10, 158 

post-polymerization, 47 

Passerini, 6 

sequential, 25 

Pauson-Khand,  33 

solvent-free, 5 

pencipyrone, 66 

rearomatization,  163 

peptidomimetic, 41 

recombinaison, 147 

phenols, 38 

reduction,  153 

phenylsulfonyl, 124 

Robinson,  7 

photo-induced, 166 

ruthenium,  166 

photocatalyst, 166 

photocatalytic, 166 

S 

Pictet-Spengler, 73, 101 

polyethylene glycol, 5 

samarium, 149 

polymers,  43 

silylcarbonylation, 131 

post-Ugi,  41 

single electron, 145 

potential, 166 

sodium dodecylsulfate, 24 

process safety, 4 

solvents 

prostaglandins,  9 

biosourced, 5 

pyrazolines, 31 

eco-compatible, 5 

pyridines, 32 

SOMO, 143 

pyrimidines, 31 

sonication,  5 

Sonogashira,  31 

Q, R 

SPINOL, 98 

spirolactams, 76 

quinolizidines,  72 

spirolactones, 79 

quinoxalin-2(1 H)-ones, 37 

spirooxindole, 97 

radical, 122 

squaramides, 79 

radical-cation, 167 

stereogenic centers, 19 

reactions 

Strecker, 5 

asymmetric, 19 

suberosanone,  75 

bicatalytic, 32 

surfactant, 24 

consecutive,  25 

 syn-addition,  11, 28 

coupling,  11, 37 

 syn-β-elimination, 11 

cyclofunctionalization, 38 

Index     189 

T 

transfer, 134 

transition metals, 9 

Takemoto, 80, 103 

trialkylborane, 151 

tamoxifen,  28 

tropinone, 7 

telaprevir, 8 

TEMPO, 164 

U, V, W 

thalidomide, 69 

thiocarbonylation, 131 

Ugi,  6, 41 

thiyl, 123,  154 

 umpolung, 74, 149 

tin, 122 

visible, 166 

titanocene, 147 

water-soluble phosphine,  22 

tocopherol,  28 

Wieland-Miescher ketone, 71 



































































Other titles from  



in 

Chemistry 

2019 

PIVA Olivier 

 Retrosynthetic Analysis and Synthesis of Natural Products 1: Synthetic Methods and Applications  

2017 

VALLS Robert 

 Inorganic Chemistry: From Periodic Classification to Crystals 

 

 

 

 

 

[image: Image 8101]





Document Outline


	Cover

	Half Title

	Multi-component Reactions in Molecular Diversity

	Copyright

	Contents

	1. Organometallic Multicomponent Reactions

	1.1 Introduction

	1.2. Multicomponent reactions: concept and applications 

	1.2.1. Concept and correlation with the principles of green chemistry

	1.2.2. Origins and areas of application





	1.3. Merging multicomponent and organometallic transformations

	1.3.1. History: the predominant role of palladium

	1.3.2. Contribution of catalysis in multicomponent reactions

	1.3.3. Multicomponent catalytic reactions: design and applications





	1.4. Conclusion

	1.5. References





	2. Use of 1,3-Dicarbonyl Derivatives in Stereoselective Domino and Multicomponent Reactions

	1.1 Introduction

	2.2. Domino reactions 

	2.2.1. Diastereoselective domino reactions

	2.2.2. Enantioselective domino-domino reactions





	2.3. Multicomponent reactions 

	2.3.1. Diastereoselective multicomponent reactions

	2.3.2. Enantioselective multicomponent reactions





	2.4. Conclusion

	2.5. References





	3. Multicomponent Radical Processes: Recent Developments

	3.1. Polar effects: electrophilic and nucleophilic radical scales

	3.2. Multicomponent radical reactions 

	3.2.1. Three-component radical reactions: radical additions to olefins

	3.2.2. Three-component radical reactions: radical additions on imines

	3.2.3. Four- and five-component radical reactions: carbonylation reactions





	3.3. Multi-component radical-ionic reactions 

	3.3.1. Multi-component radical-anionic reactions

	3.3.2. Multi-component radical-cationic reactions





	3.4. Sequential multicomponent radical reactions

	3.4.1. Organometallic-radical sequential reactions

	3.4.2. Ugi reactions: radical reactions

	3.4.3. Passerini reaction using radicals





	3.5. Multicomponent reactions by photoredox catalysis

	3.6. Conclusion

	3.7. References





	List of Authors

	Index

	Other titles iSTE in Chemistry






index-71_18.png





index-86_67.png





index-86_68.png





index-71_20.png





index-86_65.png





index-71_19.png





index-86_66.png





index-71_26.png





index-71_25.png





index-86_73.png





index-71_27.png





index-86_74.png





index-71_22.png





index-86_71.png





index-71_21.png





index-86_72.png





index-71_24.png





index-86_69.png





index-71_23.png
DIVIP





index-86_70.png





index-71_29.png





index-86_78.png





index-71_28.png
DIVIP





index-86_79.png





index-71_31.png





index-86_76.png





index-71_30.png





index-86_77.png





index-86_75.png





index-71_37.png





index-71_36.png





index-86_84.png





index-71_33.png





index-86_82.png





index-71_32.png





index-86_83.png





index-71_35.png





index-86_80.png





index-71_34.png





index-86_81.png





index-70_79.png
AR





index-70_78.png





index-86_44.png





index-101_38.png





index-86_45.png





index-101_39.png





index-86_46.png





index-70_80.png





index-101_37.png





index-101_46.png





index-71_4.png





index-86_53.png





index-71_3.png





index-86_54.png





index-101_44.png





index-71_6.png





index-86_51.png





index-101_45.png





index-71_5.png





index-86_52.png





index-101_42.png





index-70_82.png





index-86_49.png





index-101_43.png
(-3





index-70_81.png





index-86_50.png





index-101_40.png





index-71_2.png





index-86_47.png





index-101_41.png





index-71_1.png





index-86_48.png





index-71_7.png





index-86_56.png





index-86_57.png





index-71_9.png
DIVIP





index-71_8.png





index-86_55.png





index-71_15.png





index-86_64.png





index-71_14.png





index-71_17.png
AcC





index-86_62.png





index-71_16.png





index-86_63.png





index-71_11.png





index-86_60.png





index-71_10.png





index-86_61.png





index-71_13.png





index-86_58.png





index-71_12.png





index-86_59.png





index-70_57.png





index-86_24.png





index-70_56.png





index-101_15.png





index-70_59.png





index-86_22.png
squaramiae





index-101_16.png





index-70_58.png





index-86_23.png





index-101_17.png





index-101_24.png





index-70_64.png





index-86_31.png





index-101_25.png





index-70_63.png





index-86_32.png





index-101_22.png





index-70_66.png
Plagiochilin





index-86_29.png





index-101_23.png





index-70_65.png





index-86_30.png





index-101_20.png





index-70_60.png
Plagiochilia





index-86_27.png





index-101_21.png





index-86_28.png





index-101_18.png





index-70_62.png





index-86_25.png
nal





index-101_19.png





index-70_61.png





index-86_26.png
loxane





index-70_68.png





index-70_67.png





index-101_26.png





index-86_33.png





index-70_69.png





index-86_34.png





index-101_27.png





index-101_28.png





index-86_35.png





index-101_35.png





index-70_75.png
atu





index-86_42.png





index-101_36.png





index-70_74.png





index-86_43.png





index-101_33.png





index-70_77.png





index-86_40.png





index-101_34.png
pelelly





index-70_76.png





index-86_41.png





index-101_31.png





index-70_71.png





index-86_38.png





index-101_32.png





index-70_70.png





index-86_39.png





index-101_29.png





index-70_73.png





index-86_36.png





index-101_30.png





index-70_72.png
Xemp





index-86_37.png





index-86_4.png





index-100_76.png
amino





index-86_2.png





index-100_77.png
acIds





index-86_3.png





index-100_74.png
arou:





index-85_1.png
CF3

Jouve
NO;  FiC NJ\N ;
o o HoOH
NMey
i Ho, o el (55 10 mol%), CHCl,
!
=
o b ©OH 2iEes 51-72%
rd > 20:1

lcﬁ‘-l activation ee = 83-99%

oxidation W






index-100_75.png





index-86_1.png





index-101_2.png
2X





index-86_9.png





index-101_3.png





index-86_10.png





index-100_81.png





index-86_7.png





index-101_1.png
@)





index-86_8.png





index-100_79.png





index-86_5.png





index-100_80.png





index-86_6.png





index-100_78.png





index-101_6.png





index-86_13.png





index-86_14.png





index-101_4.png





index-86_11.png





index-101_5.png





index-86_12.png





index-101_13.png





index-70_53.png





index-86_20.png





index-101_14.png





index-70_52.png





index-86_21.png
Iral





index-101_11.png





index-70_55.png





index-86_18.png





index-101_12.png





index-70_54.png





index-86_19.png





index-101_9.png





index-86_16.png





index-101_10.png





index-86_17.png





index-101_7.png





index-70_51.png





index-101_8.png





index-70_50.png





index-86_15.png





index-72_2.png





index-72_1.png





index-72_4.png





index-72_3.png





index-71_58.png





index-71_60.png





index-71_59.png





index-72_6.png





index-72_5.png





index-72_7.png





index-71_40.png





index-71_39.png





index-71_42.png





index-71_41.png





index-71_38.png





index-71_47.png





index-71_44.png





index-71_43.png





index-71_46.png





index-71_45.png





index-71_51.png





index-71_50.png





index-71_53.png





index-71_52.png
uabain





index-71_49.png





index-71_48.png





index-71_55.png
Michae





index-71_54.png
Michae





index-71_57.png





index-71_56.png





index-177_88.png





index-177_89.png
alt





index-197_1.png
ECO-COMPATIBILITY OF ORGANIC SYNTHESIS SET
Coordinated by Max Malacria

While very useful for studying syntheses of molecular diversity,
multi-component reactions also offer rapid access to a variety of
complex molecules that are relevant for biological applications.

Multi-component Reactions in Molecular Diversity analyzes these
reactions, whether they are realized by organometallic, ionic or
even radical processes. It highlights popular methods based on
monotype reactions (cascade, tandem, domino) and their
efficiency and academic industrial domain are illustrated. This
book also investigates the most efficient ways to prepare complex
molecules.

Multi-component reactions are in tune with the concepts of atom
and steps economy, which are of prior importance in all the
reported processes — from the laboratory to the pilot scale. The
essential criteria for green chemistry are also examined in the book
in detail.

Jean-Philippe Goddard is Professor of Molecular Chemistry at the
University of Upper Alsace, France, and Deputy Director of LIMA
(Laboratory of Molecular Innovation and Applications), France.

Max Malacria is Emeritus Professor at Sorbonne University,
France, where his research deals with catalysis, radical chemistry

and aromaticity.

Cyril Ollivier is Director of CNRS Research at the IPCM (Parisian
Institute for Molecular Chemistry) at Sorbonne University.

== wirLey I

www.iste.co.uk 9781786130511 4






index-102_17.png





index-87_7.png





index-87_8.png





index-102_15.png





index-87_5.png





index-102_16.png





index-87_6.png
ele





index-102_13.png





index-87_3.png





index-102_14.png





index-87_4.png





index-102_22.png





index-87_12.png
AN





index-102_23.png





index-87_13.png





index-102_20.png





index-87_10.png





index-102_21.png





index-87_11.png





index-102_18.png





index-102_19.png





index-87_9.png





index-87_18.png





index-102_26.png





index-87_16.png





index-102_27.png





index-87_17.png





index-102_24.png





index-87_14.png





index-102_25.png





index-87_15.png





index-102_33.png





index-72_10.png





index-87_23.png





index-102_34.png





index-72_9.png





index-87_24.png





index-102_31.png





index-72_12.png





index-87_21.png





index-102_32.png





index-72_11.png





index-87_22.png





index-102_29.png





index-87_19.png





index-102_30.png





index-87_20.png





index-72_8.png





index-102_28.png





index-101_76.png





index-101_74.png





index-101_75.png





index-101_72.png
rotonizatior,





index-101_73.png





index-101_70.png





index-101_71.png
alaolizatiol





index-101_79.png





index-86_86.png





index-102_1.png
@)





index-86_87.png





index-101_77.png





index-101_78.png





index-86_85.png





index-86_94.png
- S





index-102_6.png





index-86_92.png





index-102_7.png





index-86_93.png





index-102_4.png





index-86_90.png





index-102_5.png





index-86_91.png





index-102_2.png





index-86_88.png





index-102_3.png





index-86_89.png





index-102_11.png





index-87_1.png





index-102_12.png





index-87_2.png





index-102_9.png





index-86_95.png





index-102_10.png





index-86_96.png





index-102_8.png





index-101_54.png





index-101_55.png





index-101_52.png





index-101_53.png





index-101_50.png





index-101_51.png





index-101_48.png





index-101_49.png





index-101_56.png





index-101_57.png





index-101_58.png





index-101_65.png





index-101_66.png





index-101_63.png





index-101_64.png





index-101_61.png





index-101_62.png





index-101_59.png





index-101_60.png





index-101_68.png
vitchai





index-101_69.png





index-101_67.png





index-101_47.png





index-41_102.png





index-73_11.png





index-73_10.png





index-41_104.png





index-73_13.png





index-41_103.png





index-73_12.png





index-41_110.png





index-73_19.png





index-41_109.png





index-73_18.png





index-41_111.png





index-41_106.png





index-73_15.png





index-41_105.png





index-73_14.png





index-41_108.png





index-73_17.png





index-41_107.png





index-73_16.png





index-41_113.png





index-73_22.png





index-41_112.png





index-73_21.png
»-Penicipy





index-41_115.png





index-73_24.png





index-41_114.png





index-73_23.png





index-73_20.png





index-41_121.png





index-41_120.png
30





index-73_29.png
Michace





index-41_117.png





index-73_26.png





index-41_116.png





index-73_25.png





index-41_119.png





index-73_28.png





index-41_118.png





index-73_27.png





index-41_81.png





index-41_80.png





index-72_57.png
Michae





index-87_70.png





index-87_71.png





index-41_82.png





index-72_59.png
auromeri





index-72_58.png





index-87_69.png





index-41_88.png





index-72_65.png





index-87_78.png





index-41_87.png





index-72_64.png





index-41_90.png





index-72_67.png





index-87_76.png





index-41_89.png





index-72_66.png





index-87_77.png





index-41_84.png





index-72_61.png
oxa-Mic





index-87_74.png





index-41_83.png





index-72_60.png





index-87_75.png





index-41_86.png





index-72_63.png





index-87_72.png





index-41_85.png





index-72_62.png





index-87_73.png





index-41_91.png





index-72_68.png





index-87_81.png





index-87_82.png





index-41_93.png





index-73_2.png





index-87_79.png





index-41_92.png
or





index-73_1.png





index-87_80.png





index-41_99.png





index-73_8.png





index-41_98.png





index-73_7.png





index-41_101.png





index-87_87.png





index-41_100.png





index-73_9.png





index-87_88.png





index-41_95.png





index-73_4.png





index-87_85.png
at





index-41_94.png





index-73_3.png





index-87_86.png





index-41_97.png





index-73_6.png





index-87_83.png





index-41_96.png
sysiem





index-73_5.png





index-87_84.png
ransition





index-72_36.png





index-72_35.png





index-102_57.png





index-87_47.png





index-72_37.png





index-87_48.png





index-102_58.png
7o





index-102_59.png





index-87_49.png





index-102_66.png





index-41_66.png





index-72_43.png





index-87_56.png





index-102_67.png





index-41_65.png





index-72_42.png





index-87_57.png





index-102_64.png





index-41_68.png
and





index-72_45.png





index-87_54.png





index-102_65.png





index-41_67.png





index-72_44.png





index-87_55.png





index-102_62.png





index-41_62.png





index-72_39.png





index-87_52.png





index-102_63.png





index-72_38.png





index-87_53.png





index-102_60.png





index-41_64.png





index-72_41.png





index-87_50.png





index-102_61.png





index-41_63.png





index-72_40.png





index-87_51.png





index-41_70.png





index-72_47.png





index-41_69.png





index-72_46.png





index-87_58.png





index-41_71.png





index-87_59.png





index-87_60.png





index-72_48.png





index-41_77.png





index-72_54.png





index-87_67.png





index-41_76.png





index-72_53.png





index-87_68.png





index-41_79.png
atm





index-72_56.png





index-87_65.png





index-41_78.png





index-72_55.png





index-87_66.png





index-41_73.png





index-72_50.png





index-87_63.png





index-41_72.png





index-72_49.png





index-87_64.png
HINN





index-41_75.png
SIHIC





index-72_52.png





index-87_61.png





index-41_74.png





index-72_51.png





index-87_62.png





index-72_17.png





index-102_37.png





index-72_14.png





index-87_27.png





index-72_13.png





index-87_28.png





index-102_35.png





index-72_16.png





index-87_25.png





index-102_36.png





index-72_15.png





index-87_26.png





index-102_44.png





index-72_21.png





index-87_34.png





index-102_45.png





index-72_20.png





index-87_35.png





index-102_42.png





index-72_23.png





index-87_32.png





index-102_43.png





index-72_22.png





index-87_33.png





index-102_40.png





index-87_30.png





index-102_41.png





index-87_31.png





index-102_38.png





index-72_19.png





index-102_39.png





index-72_18.png





index-87_29.png





index-72_25.png





index-87_38.png





index-72_24.png





index-102_46.png





index-72_27.png





index-87_36.png





index-102_47.png





index-72_26.png





index-87_37.png





index-102_48.png





index-102_55.png





index-72_32.png





index-87_45.png





index-102_56.png





index-72_31.png





index-87_46.png





index-102_53.png





index-72_34.png





index-87_43.png





index-102_54.png





index-72_33.png





index-87_44.png





index-102_51.png





index-72_28.png





index-87_41.png





index-102_52.png





index-87_42.png





index-102_49.png





index-72_30.png





index-87_39.png





index-102_50.png





index-72_29.png





index-87_40.png





index-41_146.png





index-41_145.png





index-41_148.png





index-41_147.png





index-41_142.png





index-41_144.png





index-41_143.png
sysiem





index-41_150.png





index-41_149.png
atm





index-41_151.png





index-41_157.png





index-41_156.png





index-41_159.png





index-41_158.png





index-41_153.png





index-41_152.png





index-41_155.png





index-41_154.png





index-41_161.png





index-41_160.png





index-41_124.png





index-73_33.png





index-41_123.png





index-73_32.png





index-41_126.png





index-73_35.png
e





index-41_125.png





index-73_34.png





index-41_122.png





index-73_31.png
Acetaliza





index-73_30.png





index-41_131.png





index-41_128.png





index-73_37.png





index-41_127.png





index-73_36.png





index-41_130.png





index-73_39.png





index-41_129.png





index-73_38.png





index-41_135.png





index-41_134.png





index-41_137.png





index-41_136.png





index-41_133.png





index-41_132.png





index-41_139.png





index-41_138.png





index-41_141.png





index-41_140.png





index-73_49.png





index-73_48.png





index-88_20.png





index-73_45.png





index-88_18.png





index-73_44.png





index-88_19.png





index-73_47.png





index-88_16.png





index-73_46.png





index-88_17.png





index-73_52.png





index-88_25.png





index-73_51.png





index-88_26.png





index-73_54.png





index-88_23.png





index-73_53.png





index-88_24.png





index-88_21.png





index-88_22.png





index-73_50.png





index-73_59.png
tO





index-73_56.png





index-88_29.png





index-73_55.png





index-88_30.png





index-73_58.png





index-88_27.png





index-73_57.png





index-88_28.png





index-73_63.png
A4





index-88_36.png





index-73_62.png
Qo





index-88_37.png





index-73_65.png
20





index-88_34.png





index-73_64.png
49





index-88_35.png





index-88_32.png





index-88_33.png





index-73_61.png





index-73_60.png





index-88_31.png





index-87_108.png





index-87_106.png





index-87_107.png





index-87_104.png





index-87_105.png





index-87_102.png





index-87_103.png
ycoflex





index-88_3.png





index-88_4.png





index-88_1.png





index-88_2.png





index-88_9.png





index-88_10.png





index-88_7.png





index-88_8.png





index-88_5.png





index-88_6.png





index-73_41.png
DA





index-88_14.png





index-73_40.png





index-88_15.png





index-73_43.png





index-88_12.png





index-73_42.png





index-88_13.png





index-88_11.png





index-87_89.png





index-87_90.png





index-87_97.png





index-87_98.png





index-87_95.png





index-87_96.png





index-87_93.png
eloscandoni





index-87_94.png





index-87_91.png





index-87_92.png





index-87_100.png





index-87_101.png





index-87_99.png





index-67_23.png





index-67_22.png
utlibriu





index-83_37.png





index-83_38.png
rragiatt





index-98_92.png





index-83_39.png
on





index-98_93.png





index-67_24.png
sonltrile





index-98_91.png





index-67_30.png





index-83_46.png
\A





index-98_100.png





index-67_29.png





index-83_47.png





index-67_32.png





index-83_44.png





index-98_98.png





index-67_31.png





index-83_45.png





index-98_99.png





index-67_26.png
[ez=]y





index-83_42.png





index-98_96.png





index-67_25.png





index-83_43.png





index-98_97.png





index-67_28.png
derivativ





index-83_40.png





index-98_94.png





index-67_27.png





index-83_41.png
vV





index-98_95.png





index-67_33.png





index-83_49.png





index-98_103.png





index-83_50.png





index-98_104.png





index-67_35.png





index-98_101.png





index-67_34.png





index-83_48.png





index-98_102.png





index-67_41.png





index-83_57.png





index-67_40.png
ectrophl





index-67_43.png





index-83_55.png





index-98_109.png





index-67_42.png
ectrophl





index-83_56.png





index-98_110.png





index-67_37.png





index-83_53.png





index-98_107.png





index-67_36.png





index-83_54.png





index-98_108.png





index-67_39.png





index-83_51.png





index-98_105.png





index-67_38.png





index-83_52.png





index-98_106.png





index-83_17.png





index-83_15.png





index-98_69.png





index-110_41.png





index-83_16.png





index-98_70.png





index-110_43.png





index-110_42.png





index-98_71.png





index-110_51.png





index-83_24.png





index-98_78.png





index-110_50.png





index-83_25.png





index-98_79.png





index-110_49.png





index-83_22.png





index-98_76.png





index-110_48.png





index-83_23.png





index-98_77.png





index-110_47.png





index-83_20.png
cnamine-photo





index-98_74.png





index-110_46.png





index-83_21.png





index-98_75.png





index-110_45.png





index-83_18.png





index-98_72.png





index-110_44.png





index-83_19.png





index-98_73.png





index-83_26.png





index-98_80.png





index-83_27.png





index-110_54.png





index-98_81.png





index-110_53.png





index-83_28.png





index-98_82.png





index-110_52.png
39





index-67_19.png





index-83_35.png





index-98_89.png





index-110_61.png





index-67_18.png





index-83_36.png





index-98_90.png





index-110_60.png





index-67_21.png





index-83_33.png





index-98_87.png





index-110_59.png





index-67_20.png
eto-enc





index-83_34.png





index-98_88.png





index-110_58.png





index-67_15.png





index-83_31.png





index-98_85.png





index-110_57.png





index-67_14.png





index-83_32.png





index-98_86.png





index-110_56.png





index-67_17.png





index-83_29.png





index-98_83.png





index-110_55.png





index-67_16.png





index-83_30.png





index-98_84.png





index-98_49.png





index-110_21.png





index-98_50.png





index-110_20.png





index-98_47.png





index-110_19.png





index-98_48.png





index-110_29.png





index-83_2.png





index-98_56.png





index-110_28.png





index-83_3.png





index-98_57.png





index-110_27.png





index-82_136.png





index-98_54.png





index-110_26.png





index-83_1.png





index-98_55.png





index-110_25.png





index-82_134.png
=





index-98_52.png





index-110_24.png





index-82_135.png
—





index-98_53.png





index-110_23.png
NIV





index-110_22.png





index-98_51.png





index-83_6.png





index-98_60.png





index-83_7.png





index-110_31.png





index-83_4.png





index-98_58.png





index-110_30.png





index-83_5.png





index-98_59.png





index-110_32.png





index-110_40.png





index-83_13.png





index-98_67.png





index-110_39.png





index-83_14.png





index-98_68.png





index-110_38.png
ene






index-83_11.png





index-98_65.png





index-110_37.png





index-83_12.png





index-98_66.png





index-110_36.png





index-83_9.png





index-98_63.png





index-110_35.png





index-83_10.png





index-98_64.png





index-110_34.png
Mol





index-98_61.png





index-110_33.png





index-83_8.png





index-98_62.png





index-98_29.png





index-110_1.png
@)





index-98_30.png





index-109_73.png





index-98_27.png





index-109_72.png





index-98_28.png





index-109_71.png





index-98_25.png





index-109_70.png





index-98_26.png





index-110_7.png





index-98_34.png





index-110_6.png





index-98_35.png





index-110_5.png





index-98_32.png





index-110_4.png





index-98_33.png





index-110_3.png





index-110_2.png





index-98_31.png





index-98_40.png





index-110_11.png





index-98_38.png





index-110_10.png





index-98_39.png





index-110_9.png





index-98_36.png





index-110_8.png





index-98_37.png





index-110_18.png





index-98_45.png





index-110_17.png





index-98_46.png





index-110_16.png





index-98_43.png





index-110_15.png





index-98_44.png





index-110_14.png





index-98_41.png





index-110_13.png





index-98_42.png





index-110_12.png





index-68_49.png





index-68_55.png





index-68_54.png





index-68_57.png





index-68_56.png





index-68_51.png





index-68_50.png





index-68_53.png





index-68_52.png





index-68_58.png





index-68_33.png





index-68_32.png





index-68_35.png





index-68_34.png





index-68_29.png





index-68_31.png





index-68_30.png





index-68_37.png





index-68_36.png





index-68_38.png





index-68_44.png





index-68_43.png





index-68_46.png





index-68_45.png





index-68_40.png





index-68_39.png





index-68_42.png





index-68_41.png





index-68_48.png





index-68_47.png





index-68_11.png





index-83_82.png
on





index-68_10.png





index-83_83.png





index-68_13.png





index-83_80.png





index-68_12.png





index-83_81.png
rragiatt





index-83_78.png





index-83_79.png





index-68_9.png





index-68_18.png





index-68_15.png





index-83_86.png





index-68_14.png





index-83_87.png





index-68_17.png





index-83_84.png





index-68_16.png





index-83_85.png
formati





index-68_22.png





index-83_93.png





index-68_21.png





index-83_94.png





index-68_24.png





index-83_91.png





index-68_23.png





index-83_92.png





index-83_89.png
lolf]





index-83_90.png





index-68_20.png





index-68_19.png





index-83_88.png





index-68_26.png





index-83_97.png





index-68_25.png





index-68_28.png





index-83_95.png
formati





index-68_27.png





index-83_96.png





index-67_44.png
ectrophl





index-83_60.png





index-98_114.png





index-83_61.png





index-98_115.png





index-67_46.png
ectrophl





index-83_58.png





index-98_112.png
iy





index-67_45.png





index-83_59.png





index-98_113.png





index-98_111.png





index-67_52.png
ucleophi





index-67_51.png





index-83_66.png





index-99_1.png





index-67_53.png





index-83_67.png





index-67_48.png
ucleophi





index-83_64.png





index-98_118.png





index-67_47.png





index-83_65.png





index-98_119.png





index-67_50.png
ucleophi





index-83_62.png





index-98_116.png





index-67_49.png





index-83_63.png





index-98_117.png





index-67_55.png





index-83_71.png





index-67_54.png
ucleophi





index-83_72.png
rganocata





index-68_2.png





index-83_69.png





index-68_1.png





index-83_70.png





index-83_68.png





index-68_8.png





index-68_7.png





index-83_77.png





index-68_4.png





index-83_75.png





index-68_3.png





index-83_76.png





index-68_6.png





index-83_73.png
yst





index-68_5.png





index-83_74.png





index-99_11.png





index-99_9.png





index-99_10.png





index-99_7.png





index-99_8.png





index-99_5.png





index-99_6.png





index-99_14.png





index-99_15.png





index-99_12.png





index-99_13.png





index-99_20.png





index-99_21.png





index-99_18.png





index-99_19.png





index-99_16.png





index-99_17.png





index-99_25.png





index-99_26.png





index-99_23.png





index-99_24.png





index-99_22.png





index-99_3.png





index-99_4.png





index-99_2.png





index-68_88.png





index-100_20.png





index-84_15.png





index-100_21.png





index-84_16.png
oluene





index-100_18.png





index-68_90.png





index-100_19.png





index-68_89.png





index-84_14.png





index-68_96.png





index-84_23.png





index-68_95.png





index-100_26.png





index-68_98.png





index-84_21.png





index-100_27.png





index-68_97.png





index-84_22.png





index-100_24.png





index-68_92.png





index-84_19.png





index-100_25.png





index-68_91.png





index-84_20.png





index-100_22.png





index-68_94.png





index-84_17.png





index-100_23.png





index-68_93.png





index-84_18.png





index-68_99.png





index-84_26.png





index-84_27.png





index-68_101.png





index-84_24.png





index-68_100.png





index-84_25.png





index-69_5.png





index-69_4.png





index-84_32.png





index-69_6.png





index-84_33.png





index-69_1.png





index-84_30.png





index-68_102.png
=





index-84_31.png





index-69_3.png
3ase

v
or
etone






index-84_28.png





index-69_2.png
b

ace





index-84_29.png





index-68_67.png





index-68_66.png





index-83_136.png





index-99_71.png





index-68_68.png





index-83_137.png
incnoniai





index-99_72.png





index-83_138.png





index-99_73.png





index-100_6.png





index-68_74.png





index-84_1.png





index-100_7.png





index-68_73.png





index-84_2.png





index-100_4.png





index-68_76.png





index-83_143.png





index-100_5.png





index-68_75.png





index-83_144.png
o0





index-100_2.png





index-68_70.png





index-83_141.png
[ransition





index-100_3.png





index-68_69.png





index-83_142.png
tate





index-68_72.png





index-83_139.png





index-99_74.png





index-100_1.png
@)





index-68_71.png





index-83_140.png





index-68_78.png





index-68_77.png





index-84_3.png





index-100_9.png





index-84_4.png





index-100_10.png





index-84_5.png





index-68_79.png





index-100_8.png





index-100_17.png





index-68_85.png





index-84_12.png





index-68_84.png





index-84_13.png





index-100_15.png





index-68_87.png





index-84_10.png





index-100_16.png





index-68_86.png





index-84_11.png





index-100_13.png





index-68_81.png





index-84_8.png





index-100_14.png





index-68_80.png





index-84_9.png





index-100_11.png





index-68_83.png





index-84_6.png





index-100_12.png





index-68_82.png





index-84_7.png





index-83_116.png





index-99_51.png





index-83_117.png





index-83_114.png





index-99_49.png





index-83_115.png





index-99_50.png





index-83_123.png





index-99_58.png





index-83_124.png





index-99_59.png





index-83_121.png





index-99_56.png





index-83_122.png





index-99_57.png





index-83_119.png





index-99_54.png





index-83_120.png





index-99_55.png





index-99_52.png





index-83_118.png





index-99_53.png





index-83_127.png





index-83_125.png





index-99_60.png





index-83_126.png





index-99_61.png





index-99_62.png
o





index-68_63.png





index-83_134.png





index-99_69.png





index-68_62.png





index-83_135.png





index-99_70.png





index-68_65.png





index-83_132.png





index-99_67.png





index-68_64.png





index-83_133.png





index-99_68.png
o





index-68_59.png





index-83_130.png





index-99_65.png





index-83_131.png





index-99_66.png





index-68_61.png





index-83_128.png





index-99_63.png





index-68_60.png





index-83_129.png





index-99_64.png





index-99_31.png





index-99_29.png





index-99_30.png
o





index-99_27.png





index-99_28.png





index-83_101.png





index-99_36.png





index-83_102.png
=





index-99_37.png





index-83_99.png
lolf]





index-99_34.png





index-83_100.png





index-99_35.png





index-99_32.png





index-83_98.png





index-99_33.png





index-83_107.png





index-83_105.png





index-99_40.png





index-83_106.png





index-99_41.png





index-83_103.png
=





index-99_38.png





index-83_104.png





index-99_39.png





index-83_112.png
inchonidi





index-99_47.png





index-83_113.png





index-99_48.png





index-83_110.png





index-99_45.png





index-83_111.png





index-99_46.png





index-83_108.png





index-99_43.png





index-83_109.png





index-99_44.png





index-99_42.png





index-70_45.png





index-70_44.png





index-70_47.png





index-70_46.png





index-70_41.png
atu





index-70_40.png





index-70_43.png





index-70_42.png





index-70_49.png





index-70_48.png





index-70_23.png





index-70_22.png





index-70_25.png





index-70_24.png





index-70_21.png





index-70_20.png





index-70_27.png





index-70_26.png





index-70_29.png





index-70_28.png





index-70_34.png





index-70_33.png





index-70_36.png
este





index-70_35.png





index-70_30.png





index-70_32.png





index-70_31.png





index-70_38.png
Xamp





index-70_37.png





index-70_39.png





index-70_1.png





index-84_37.png





index-69_7.png





index-84_38.png





index-70_3.png





index-84_35.png





index-70_2.png





index-84_36.png





index-84_34.png





index-70_9.png





index-70_8.png





index-84_43.png





index-70_5.png





index-84_41.png
acid





index-70_4.png





index-84_42.png





index-70_7.png
AR





index-84_39.png





index-70_6.png





index-84_40.png





index-70_12.png





index-84_48.png





index-70_11.png





index-84_49.png





index-70_14.png





index-84_46.png





index-70_13.png





index-84_47.png





index-84_44.png





index-84_45.png





index-70_10.png





index-70_19.png





index-70_16.png





index-84_52.png





index-70_15.png





index-84_53.png





index-70_18.png





index-84_50.png





index-70_17.png





index-84_51.png





index-177_15.png





index-177_16.png





index-177_17.png





index-177_8.png





index-177_9.png





index-177_10.png





index-177_11.png





index-177_12.png





index-177_13.png





index-177_14.png





index-177_26.png





index-177_27.png





index-177_18.png





index-177_19.png





index-177_20.png





index-177_21.png





index-177_22.png





index-177_23.png





index-177_24.png





index-177_25.png





index-174_58.png





index-174_59.png





index-174_60.png





index-174_61.png





index-174_62.png





index-174_53.png





index-174_54.png
AT





index-174_55.png





index-174_56.png





index-174_57.png





index-177_4.png





index-177_5.png





index-177_6.png





index-177_7.png





index-175_1.png
116 (1.1 eq.)

[Ir(ppy)2(bpY)IPFs
_ (@5mol%)

acetone-| HZO 9:1
Blue LEDs

Ph_ OH
X_CF3

117 (95%, r.d. 10:1)

o [Ru(bpy)sl(PFe)s





index-175_2.png
Ph/\/COQMe +
118

S

1
CF;

119 (1.1 eq.)

Ru(bpy)s®*
Y

(0.5 mol%)

CH3CN-H,0
Blue LEDs

A

Visible light

Lo B R

Ph)\z/COZMe
CF3

120 (80%, r.d. 8:2)

‘Ru(bpy)s®*





index-175_3.png
Ar, Nu Ar

>_\ o + Oxidative cycle 16 ou 119
% CF
CF 3
G RN Donor Oxidative quenching
. Ru(bpy)s**
CF; o (bpy)s .
SET Y — R
CF; s





index-177_1.png
Acridiniu





index-177_2.png





index-177_3.png
alt





index-100_56.png





index-100_57.png





index-100_54.png





index-100_55.png





index-100_52.png





index-100_53.png





index-100_61.png





index-84_56.png





index-100_62.png





index-84_57.png





index-100_59.png





index-84_54.png





index-100_60.png





index-84_55.png





index-100_58.png





index-100_67.png





index-84_62.png





index-84_63.png





index-100_65.png





index-84_60.png
Activall





index-100_66.png





index-84_61.png





index-100_63.png





index-84_58.png





index-100_64.png





index-84_59.png





index-100_72.png
amino





index-84_67.png





index-100_73.png
acIds





index-84_68.png





index-100_70.png





index-84_65.png





index-100_71.png
Ira





index-84_66.png





index-100_68.png





index-100_69.png





index-84_64.png
oonas





index-100_36.png





index-100_37.png





index-100_34.png





index-100_35.png





index-177_68.png





index-100_32.png





index-177_69.png





index-100_33.png





index-177_70.png





index-100_30.png





index-177_71.png





index-100_31.png





index-177_72.png





index-100_39.png





index-177_73.png





index-100_40.png





index-177_74.png





index-177_75.png





index-100_38.png





index-177_76.png





index-177_77.png





index-100_47.png





index-100_45.png





index-177_78.png





index-100_46.png





index-177_79.png
alk





index-100_43.png





index-177_80.png
Ars





index-100_44.png





index-177_81.png





index-100_41.png





index-177_82.png





index-100_42.png
arou:





index-177_83.png





index-100_50.png





index-177_84.png





index-100_51.png





index-177_85.png





index-100_48.png





index-177_86.png





index-100_49.png





index-177_87.png
Acridiniu





index-177_48.png





index-177_49.png





index-177_50.png





index-177_51.png





index-177_52.png





index-177_53.png





index-177_54.png





index-177_55.png





index-177_56.png





index-177_57.png





index-177_58.png





index-177_59.png





index-177_60.png





index-177_61.png





index-100_28.png





index-177_62.png





index-100_29.png





index-177_63.png





index-177_64.png
10





index-177_65.png





index-177_66.png





index-177_67.png





index-177_28.png





index-177_37.png





index-177_29.png





index-177_30.png





index-177_31.png





index-177_32.png





index-177_33.png





index-177_34.png





index-177_35.png





index-177_36.png





index-177_38.png





index-177_39.png





index-177_40.png





index-177_41.png





index-177_42.png





index-177_43.png





index-177_44.png
10





index-177_45.png





index-177_46.png





index-177_47.png





index-95_63.png





index-108_9.png





index-95_64.png





index-108_11.png





index-108_10.png





index-95_65.png





index-108_19.png





index-81_33.png





index-95_72.png





index-108_18.png





index-81_34.png





index-95_73.png





index-108_17.png





index-81_31.png





index-95_70.png





index-108_16.png





index-81_32.png





index-95_71.png





index-108_15.png





index-81_29.png





index-95_68.png





index-108_14.png





index-81_30.png





index-95_69.png





index-108_13.png





index-81_27.png





index-95_66.png





index-108_12.png





index-81_28.png





index-95_67.png





index-81_35.png





index-95_74.png





index-81_36.png





index-108_22.png





index-95_75.png





index-108_21.png





index-81_37.png





index-95_76.png





index-108_20.png





index-81_44.png





index-96_4.png





index-108_29.png





index-81_45.png





index-96_5.png





index-108_28.png





index-81_42.png





index-96_2.png





index-108_27.png





index-81_43.png





index-96_3.png





index-108_26.png





index-81_40.png





index-95_79.png





index-108_25.png





index-81_41.png





index-96_1.png





index-108_24.png





index-81_38.png





index-95_77.png





index-108_23.png





index-81_39.png
WGE





index-95_78.png





index-95_43.png





index-107_165.png





index-95_44.png





index-107_164.png





index-95_41.png





index-107_163.png





index-95_42.png





index-107_173.png





index-95_50.png





index-107_172.png





index-95_51.png





index-107_171.png





index-95_48.png





index-107_170.png





index-95_49.png





index-107_169.png





index-95_46.png





index-107_168.png





index-95_47.png





index-107_167.png





index-107_166.png





index-95_45.png





index-95_54.png
NHF O





index-107_175.png





index-95_52.png





index-107_174.png





index-95_53.png





index-107_176.png





index-108_8.png





index-95_61.png





index-108_7.png





index-95_62.png





index-108_6.png





index-95_59.png





index-108_5.png





index-95_60.png





index-108_4.png





index-95_57.png





index-108_3.png





index-95_58.png





index-108_2.png





index-95_55.png





index-108_1.png
@)





index-95_56.png





index-107_145.png





index-107_144.png





index-107_143.png





index-107_142.png





index-107_141.png





index-107_151.png





index-107_150.png





index-107_149.png





index-107_148.png





index-107_147.png





index-107_146.png





index-107_155.png





index-107_154.png





index-107_153.png





index-107_152.png





index-107_162.png





index-95_39.png





index-107_161.png





index-95_40.png





index-107_160.png





index-95_37.png





index-107_159.png





index-95_38.png
ux





index-107_158.png





index-95_35.png





index-107_157.png





index-95_36.png
oluene





index-107_156.png





index-107_129.png





index-107_128.png





index-107_127.png





index-107_126.png





index-107_135.png





index-107_134.png





index-107_133.png





index-107_132.png





index-107_131.png





index-107_130.png





index-107_140.png





index-107_139.png





index-107_138.png





index-107_137.png





index-107_136.png





index-40_82.png
eaction





index-40_81.png





index-40_84.png





index-40_83.png





index-40_80.png
ulticompon





index-40_89.png





index-40_86.png





index-40_85.png





index-40_88.png
(CYC





index-40_87.png





index-82_20.png





index-82_21.png





index-82_18.png





index-82_19.png





index-82_16.png





index-82_17.png





index-82_14.png





index-82_15.png





index-82_22.png





index-82_23.png





index-40_93.png





index-40_92.png
various





index-40_95.png





index-40_94.png
atalys





index-40_91.png





index-40_90.png





index-82_24.png





index-40_97.png





index-40_96.png





index-40_99.png





index-40_98.png





index-82_31.png





index-82_32.png





index-82_29.png





index-82_30.png





index-82_27.png





index-82_28.png





index-82_25.png





index-82_26.png





index-82_33.png





index-81_91.png





index-96_51.png





index-81_92.png
1a.





index-96_52.png





index-81_89.png





index-96_49.png





index-81_90.png
fermedi





index-96_50.png





index-81_87.png
vichae





index-96_47.png





index-81_88.png
agdu





index-96_48.png





index-96_46.png





index-82_2.png





index-96_55.png





index-82_3.png





index-81_93.png





index-96_53.png





index-82_1.png





index-96_54.png





index-82_9.png





index-82_10.png





index-82_7.png





index-82_8.png





index-82_5.png





index-82_6.png





index-82_4.png





index-82_13.png





index-82_11.png





index-82_12.png





index-81_69.png





index-96_29.png





index-81_70.png





index-96_30.png





index-81_67.png





index-96_27.png





index-81_68.png





index-96_28.png
TOH





index-96_26.png





index-81_75.png





index-96_35.png





index-81_76.png





index-81_73.png





index-96_33.png





index-81_74.png





index-96_34.png





index-81_71.png





index-96_31.png





index-81_72.png





index-96_32.png





index-81_80.png





index-96_40.png





index-81_81.png





index-96_41.png





index-81_78.png
vichae





index-96_38.png





index-81_79.png





index-96_39.png





index-96_36.png





index-81_77.png





index-96_37.png





index-81_86.png





index-81_84.png





index-96_44.png





index-81_85.png





index-96_45.png





index-81_82.png
WGE





index-96_42.png





index-81_83.png





index-96_43.png





index-81_46.png
2,6





index-108_33.png





index-81_47.png





index-96_7.png





index-108_32.png





index-81_48.png





index-96_8.png





index-108_31.png





index-108_30.png





index-96_6.png





index-81_55.png





index-96_15.png





index-81_56.png





index-108_39.png





index-81_53.png





index-96_13.png





index-108_38.png





index-81_54.png





index-96_14.png





index-108_37.png





index-81_51.png





index-96_11.png





index-108_36.png





index-81_52.png





index-96_12.png





index-108_35.png





index-81_49.png





index-96_9.png





index-108_34.png





index-81_50.png





index-96_10.png





index-108_44.png





index-81_58.png





index-96_18.png





index-108_43.png





index-81_59.png





index-96_19.png





index-108_42.png





index-96_16.png





index-108_41.png





index-81_57.png
WGE





index-96_17.png





index-108_40.png





index-81_66.png





index-81_64.png





index-96_24.png





index-108_49.png





index-81_65.png





index-96_25.png





index-108_48.png
olue





index-81_62.png





index-96_22.png





index-108_47.png





index-81_63.png





index-96_23.png





index-108_46.png





index-81_60.png





index-96_20.png





index-108_45.png





index-81_61.png





index-96_21.png





index-12_125.png





index-12_124.png





index-41_51.png





index-12_127.png





index-12_126.png





index-12_121.png





index-41_48.png





index-12_120.png





index-41_47.png





index-12_123.png





index-41_50.png





index-12_122.png





index-41_49.png





index-41_55.png





index-41_54.png





index-12_119.png





index-41_57.png





index-12_118.png





index-41_56.png





index-41_53.png





index-41_52.png





index-12_114.png





index-12_113.png
asserini





index-12_116.png





index-12_115.png





index-12_110.png





index-41_59.png





index-12_109.png





index-41_58.png
atm





index-12_112.png





index-41_61.png





index-12_111.png





index-41_60.png
A





index-12_117.png





index-12_108.png





index-12_103.png





index-41_30.png





index-12_102.png





index-41_29.png





index-12_105.png





index-12_104.png





index-41_31.png





index-12_99.png





index-41_26.png





index-12_98.png





index-41_25.png





index-12_101.png





index-41_28.png





index-12_100.png





index-41_27.png





index-12_107.png





index-12_106.png





index-41_33.png





index-41_32.png





index-41_35.png





index-41_34.png
Condilion





index-12_92.png





index-41_41.png





index-12_91.png





index-41_40.png





index-12_94.png





index-12_93.png





index-12_88.png





index-41_37.png





index-41_36.png





index-12_90.png





index-41_39.png





index-12_89.png





index-41_38.png





index-12_96.png





index-12_95.png





index-12_97.png





index-41_44.png





index-41_43.png





index-41_46.png





index-41_45.png





index-41_42.png





index-12_81.png





index-41_8.png





index-12_80.png





index-41_7.png





index-12_83.png





index-41_10.png





index-12_82.png





index-41_9.png





index-41_4.png





index-41_3.png





index-12_79.png





index-41_6.png





index-12_78.png





index-41_5.png





index-12_85.png





index-12_84.png
Viannic





index-41_11.png





index-12_87.png





index-12_86.png





index-41_13.png





index-41_12.png





index-12_70.png





index-41_19.png





index-12_69.png





index-41_18.png





index-12_72.png





index-41_21.png





index-12_71.png





index-41_20.png





index-41_15.png





index-41_14.png





index-12_68.png





index-41_17.png





index-41_16.png





index-12_77.png





index-12_74.png





index-12_73.png





index-12_76.png





index-12_75.png





index-41_22.png





index-41_24.png





index-41_23.png





index-12_59.png





index-40_104.png





index-12_58.png





index-40_103.png





index-12_61.png





index-40_106.png





index-12_60.png





index-40_105.png





index-40_100.png





index-40_102.png





index-40_101.png





index-12_67.png





index-12_66.png





index-12_63.png





index-40_108.png





index-12_62.png





index-40_107.png





index-12_65.png





index-12_64.png





index-40_109.png





index-12_48.png





index-40_115.png





index-40_114.png





index-12_50.png





index-40_117.png





index-12_49.png





index-40_116.png





index-40_111.png
(CYC





index-40_110.png





index-40_113.png





index-40_112.png





index-12_56.png





index-12_55.png





index-12_57.png





index-12_52.png





index-41_1.png





index-12_51.png





index-40_118.png





index-12_54.png





index-12_53.png





index-41_2.png





index-12_39.png





index-12_38.png





index-12_45.png





index-12_44.png





index-12_47.png





index-12_46.png





index-12_41.png





index-12_40.png





index-12_43.png





index-12_42.png





index-108_52.png





index-108_51.png





index-108_50.png





index-108_59.png





index-108_58.png





index-108_57.png





index-108_56.png





index-108_55.png





index-108_54.png





index-108_53.png





index-108_63.png





index-108_62.png





index-108_61.png





index-108_60.png





index-82_52.png





index-96_105.png





index-82_53.png





index-109_17.png





index-96_106.png





index-109_16.png





index-82_54.png





index-96_107.png





index-109_15.png





index-82_61.png





index-96_114.png





index-109_24.png





index-82_62.png





index-96_115.png





index-109_23.png





index-82_59.png





index-96_112.png





index-109_22.png





index-82_60.png





index-96_113.png





index-109_21.png





index-82_57.png





index-96_110.png





index-109_20.png





index-82_58.png





index-96_111.png





index-109_19.png





index-82_55.png





index-96_108.png





index-109_18.png





index-82_56.png





index-96_109.png





index-82_63.png





index-109_28.png
oluen:





index-82_64.png





index-96_117.png
D2-T17





index-109_27.png





index-82_65.png





index-96_118.png





index-109_26.png





index-109_25.png





index-96_116.png





index-82_72.png





index-96_125.png





index-82_73.png





index-109_34.png





index-82_70.png





index-96_123.png





index-109_33.png





index-82_71.png





index-96_124.png





index-109_32.png





index-82_68.png





index-96_121.png





index-109_31.png





index-82_69.png





index-96_122.png





index-109_30.png





index-82_66.png





index-96_119.png





index-109_29.png





index-82_67.png





index-96_120.png





index-96_85.png
NC





index-108_109.png





index-96_83.png





index-108_108.png





index-96_84.png





index-108_110.png
Viichae





index-109_3.png





index-82_39.png





index-96_92.png





index-109_2.png





index-82_40.png





index-96_93.png





index-109_1.png
@)





index-82_37.png





index-96_90.png





index-108_115.png





index-82_38.png
oluen





index-96_91.png





index-108_114.png





index-82_35.png





index-96_88.png





index-108_113.png





index-82_36.png





index-96_89.png





index-108_112.png
aido.





index-96_86.png





index-108_111.png





index-82_34.png





index-96_87.png





index-82_43.png





index-82_41.png





index-96_94.png





index-109_4.png





index-82_42.png





index-96_95.png





index-109_6.png





index-109_5.png





index-96_96.png





index-109_14.png





index-82_50.png





index-96_103.png





index-109_13.png





index-82_51.png





index-96_104.png





index-109_12.png





index-82_48.png





index-96_101.png





index-109_11.png





index-82_49.png





index-96_102.png





index-109_10.png





index-82_46.png





index-96_99.png





index-109_9.png





index-82_47.png





index-96_100.png





index-109_8.png





index-82_44.png





index-96_97.png





index-109_7.png





index-82_45.png





index-96_98.png





index-96_65.png





index-108_89.png





index-96_63.png





index-108_88.png





index-96_64.png





index-108_87.png





index-96_61.png





index-108_86.png





index-96_62.png





index-108_96.png





index-96_70.png





index-108_95.png





index-96_71.png





index-108_94.png





index-96_68.png





index-108_93.png





index-96_69.png





index-108_92.png





index-96_66.png





index-108_91.png





index-96_67.png





index-108_90.png
Viichae





index-96_74.png





index-108_99.png





index-96_75.png





index-108_98.png





index-96_72.png





index-108_97.png





index-96_73.png





index-108_107.png





index-96_81.png





index-108_106.png





index-96_82.png





index-108_105.png
NO





index-96_79.png





index-108_104.png





index-96_80.png
mi





index-108_103.png





index-96_77.png





index-108_102.png





index-96_78.png





index-108_101.png





index-108_100.png





index-96_76.png





index-108_69.png





index-108_68.png





index-108_67.png
NO





index-108_66.png





index-108_65.png





index-108_64.png





index-108_74.png





index-108_73.png





index-108_72.png





index-108_71.png





index-108_70.png





index-108_79.png





index-108_78.png





index-108_77.png





index-108_76.png





index-108_75.png





index-108_85.png





index-96_59.png





index-108_84.png
NO





index-96_60.png





index-108_83.png





index-96_57.png





index-108_82.png





index-96_58.png





index-108_81.png





index-108_80.png





index-96_56.png





index-82_119.png





index-82_120.png





index-82_117.png





index-82_118.png





index-82_115.png





index-82_116.png





index-82_114.png
reduclic





index-82_123.png





index-82_121.png





index-82_122.png





index-82_130.png





index-82_131.png





index-82_128.png





index-82_129.png





index-82_126.png





index-82_127.png





index-82_124.png





index-82_125.png





index-82_132.png





index-82_133.png
=





index-82_97.png





index-98_15.png





index-82_98.png





index-98_16.png





index-82_95.png





index-98_13.png





index-82_96.png





index-98_14.png
oluen





index-98_11.png





index-82_94.png





index-98_12.png
microwave!





index-82_103.png





index-82_101.png





index-98_19.png





index-82_102.png





index-98_20.png





index-82_99.png





index-98_17.png
nin





index-82_100.png





index-98_18.png





index-82_108.png





index-82_109.png





index-82_106.png





index-82_107.png





index-82_104.png





index-82_105.png





index-82_112.png





index-82_113.png





index-82_110.png





index-82_111.png
iichae:





index-82_75.png





index-96_128.png





index-82_76.png





index-96_129.png
U4





index-96_126.png





index-82_74.png





index-96_127.png





index-82_83.png





index-82_81.png





index-97_1.png





index-82_82.png





index-97_2.png





index-82_79.png





index-96_132.png





index-82_80.png





index-96_133.png





index-82_77.png





index-96_130.png





index-82_78.png





index-96_131.png





index-82_86.png





index-98_4.png





index-82_87.png





index-98_5.png





index-82_84.png





index-98_2.png





index-82_85.png





index-98_3.png





index-98_1.png





index-82_92.png





index-98_10.png





index-82_93.png





index-82_90.png





index-98_8.png





index-82_91.png





index-98_9.png
40





index-82_88.png





index-98_6.png





index-82_89.png





index-98_7.png





cover_image.jpg
Multi-component
Reactions in
Molecular
Diversity

Jean-Philippe Goddard
Max Malacria





index-1_1.png
CHEMISTRY SERIES
ECO-COMPATIBILITY OF ORGANIC SYNTHESIS SET

Multi-component Reactions
in Molecular Diversity

Edited by
Jean-Philippe Goddard
Max Malacria and Cyril Ollivier

Y |— WILEY





index-9_2.png





index-9_1.png





index-9_4.png





index-9_3.png





index-9_6.png





index-9_5.png





index-9_7.png





index-109_54.png





index-109_53.png





index-109_52.png





index-109_51.png





index-109_50.png





index-109_49.png





index-109_48.png





index-109_58.png





index-109_57.png





index-109_56.png





index-109_55.png





index-109_64.png





index-109_63.png





index-109_62.png





index-109_61.png





index-109_60.png





index-109_59.png





index-109_69.png





index-98_23.png





index-109_68.png





index-98_24.png





index-109_67.png





index-98_21.png





index-109_66.png





index-98_22.png





index-109_65.png





index-109_36.png





index-109_35.png





index-109_44.png





index-109_43.png





index-109_42.png





index-109_41.png





index-109_40.png





index-109_39.png





index-109_38.png





index-109_37.png





index-109_47.png





index-109_46.png





index-109_45.png





index-106_166.png





index-106_165.png





index-173_33.png





index-106_164.png





index-173_32.png





index-173_34.png





index-106_174.png





index-173_42.png
ductive





index-106_173.png





index-173_41.png





index-106_172.png





index-173_40.png





index-106_171.png





index-173_39.png





index-106_170.png





index-173_38.png





index-106_169.png





index-173_37.png





index-106_168.png





index-173_36.png





index-106_167.png





index-173_35.png





index-106_176.png





index-106_175.png





index-173_43.png
yel





index-106_177.png





index-173_45.png





index-173_44.png





index-106_185.png





index-173_53.png





index-93_39.png
4+,





index-106_184.png





index-173_52.png





index-93_40.png





index-106_183.png





index-173_51.png





index-93_37.png





index-106_182.png





index-173_50.png
uencni





index-93_38.png





index-106_181.png





index-173_49.png
ductive





index-93_35.png





index-106_180.png





index-173_48.png





index-93_36.png





index-106_179.png





index-173_47.png





index-93_33.png





index-106_178.png





index-173_46.png





index-93_34.png





index-173_13.png





index-173_12.png
eductivi





index-173_11.png
Ing





index-173_10.png
quencl





index-106_152.png





index-173_20.png





index-106_151.png





index-173_19.png





index-106_150.png





index-173_18.png
yC





index-106_149.png





index-173_17.png





index-106_148.png





index-173_16.png
Xidative





index-106_147.png





index-173_15.png





index-173_14.png
yC





index-106_156.png





index-106_155.png





index-173_23.png





index-106_154.png





index-173_22.png
eductivi





index-106_153.png





index-173_21.png





index-106_163.png





index-173_31.png
DI





index-106_162.png





index-173_30.png





index-106_161.png





index-173_29.png





index-106_160.png





index-173_28.png





index-106_159.png





index-173_27.png





index-106_158.png





index-173_26.png





index-106_157.png





index-173_25.png
Ing





index-173_24.png
quencl





index-155_45.png
yC





index-155_44.png





index-155_43.png





index-155_42.png





index-155_41.png
i





index-155_40.png





index-169_4.png





index-169_3.png
101






index-169_2.png
COoM
) CcoMe

104





index-169_1.png
101

Ac

MeC

MeC





index-155_46.png
i





index-173_3.png





index-173_2.png





index-173_1.png





index-169_6.png
COMe
coMe

102 (59%)





index-169_5.png
£BUHNOC—{

Mn(OAC);

AcOH

'® 5010






index-173_9.png





index-173_8.png
Xidative





index-173_7.png





index-173_6.png





index-173_5.png





index-173_4.png





index-155_39.png
i





index-155_38.png





index-155_37.png





index-155_36.png





index-93_108.png





index-94_1.png





index-93_106.png





index-93_107.png
Manni





index-93_104.png





index-93_105.png





index-93_103.png





index-94_4.png





index-94_2.png





index-94_3.png





index-94_11.png





index-94_12.png





index-94_9.png





index-94_10.png





index-94_7.png





index-94_8.png





index-94_5.png





index-94_6.png





index-94_13.png





index-94_14.png





index-107_11.png





index-93_86.png
ata





index-107_10.png





index-93_87.png





index-107_9.png





index-93_84.png
Ligle]





index-107_8.png





index-93_85.png





index-107_7.png





index-107_6.png





index-93_83.png





index-93_92.png





index-107_15.png





index-93_90.png





index-107_14.png





index-93_91.png





index-107_13.png





index-93_88.png





index-107_12.png





index-93_89.png





index-107_22.png





index-93_97.png





index-107_21.png





index-93_98.png





index-107_20.png





index-93_95.png
A4





index-107_19.png





index-93_96.png





index-107_18.png





index-93_93.png





index-107_17.png





index-93_94.png
Q





index-107_16.png





index-93_101.png





index-107_25.png





index-93_102.png





index-107_24.png





index-93_99.png





index-107_23.png





index-93_100.png





index-106_210.png





index-173_78.png





index-93_64.png





index-106_209.png





index-173_77.png





index-93_65.png





index-106_208.png





index-173_76.png





index-106_207.png





index-173_75.png





index-93_63.png





index-173_74.png





index-93_72.png





index-106_216.png





index-93_70.png





index-106_215.png





index-173_83.png





index-93_71.png





index-106_214.png





index-173_82.png





index-93_68.png





index-106_213.png





index-173_81.png





index-93_69.png





index-106_212.png





index-173_80.png





index-93_66.png





index-106_211.png





index-173_79.png





index-93_67.png





index-106_221.png





index-93_75.png





index-106_220.png





index-93_76.png





index-106_219.png





index-93_73.png





index-106_218.png





index-93_74.png





index-106_217.png





index-93_81.png





index-107_5.png





index-93_82.png
solven





index-107_4.png





index-93_79.png





index-107_3.png





index-93_80.png
Ligle]





index-107_2.png





index-93_77.png





index-107_1.png
@)





index-93_78.png





index-93_41.png





index-106_186.png





index-93_42.png





index-106_188.png





index-173_56.png





index-106_187.png





index-173_55.png





index-93_43.png





index-173_54.png





index-106_196.png





index-93_50.png





index-106_195.png





index-173_63.png





index-93_51.png





index-106_194.png





index-173_62.png





index-93_48.png





index-106_193.png





index-173_61.png





index-93_49.png





index-106_192.png





index-173_60.png





index-93_46.png





index-106_191.png





index-173_59.png





index-93_47.png





index-106_190.png





index-173_58.png





index-93_44.png





index-106_189.png





index-173_57.png





index-93_45.png





index-93_52.png
Knoevenag





index-106_199.png





index-173_67.png





index-93_53.png





index-106_198.png





index-173_66.png





index-93_54.png
hetero





index-106_197.png





index-173_65.png





index-173_64.png





index-93_61.png





index-106_206.png





index-93_62.png





index-106_205.png





index-173_73.png





index-93_59.png





index-106_204.png





index-173_72.png





index-93_60.png





index-106_203.png





index-173_71.png





index-93_57.png





index-106_202.png





index-173_70.png





index-93_58.png





index-106_201.png





index-173_69.png





index-93_55.png
iels:






index-106_200.png





index-173_68.png





index-93_56.png





index-38_23.png





index-38_22.png





index-38_24.png





index-38_19.png





index-38_18.png





index-38_21.png





index-38_20.png





index-38_26.png





index-38_25.png





index-38_28.png





index-38_27.png





index-38_34.png





index-38_33.png





index-38_30.png





index-38_29.png





index-38_32.png





index-38_31.png





index-38_37.png





index-38_36.png





index-38_39.png





index-38_38.png





index-38_35.png





index-38_1.png





index-36_130.png





index-38_3.png





index-38_2.png





index-36_127.png





index-36_126.png





index-36_129.png





index-36_128.png





index-38_4.png





index-38_6.png





index-38_5.png





index-16_78.png





index-38_12.png





index-16_77.png





index-38_11.png





index-16_80.png
alkylati





index-38_14.png





index-16_79.png





index-38_13.png





index-16_74.png





index-38_8.png





index-16_73.png





index-38_7.png





index-16_76.png





index-38_10.png





index-16_75.png
andem





index-38_9.png





index-16_81.png





index-38_15.png





index-16_72.png





index-38_17.png





index-38_16.png





index-16_67.png





index-36_109.png





index-16_66.png
ted





index-36_108.png





index-16_69.png





index-36_111.png





index-16_68.png





index-36_110.png





index-16_63.png
eop





index-36_105.png
vViichae





index-16_62.png





index-16_65.png
alogenc





index-36_107.png





index-16_64.png





index-36_106.png





index-16_71.png





index-36_113.png





index-16_70.png





index-36_112.png





index-36_114.png





index-16_56.png





index-36_120.png





index-16_55.png





index-36_119.png





index-16_58.png





index-36_122.png





index-16_57.png





index-36_121.png





index-16_52.png





index-36_116.png





index-36_115.png





index-16_54.png





index-36_118.png





index-16_53.png





index-36_117.png





index-16_60.png





index-36_124.png





index-16_59.png





index-36_123.png





index-16_61.png
anometal





index-36_125.png





index-16_45.png





index-16_44.png





index-16_47.png





index-16_46.png





index-16_43.png





index-16_42.png





index-94_15.png





index-16_49.png





index-16_48.png





index-16_51.png





index-16_50.png





index-94_22.png





index-94_23.png





index-94_20.png





index-94_21.png





index-94_18.png





index-94_19.png





index-94_16.png





index-94_17.png





index-94_24.png





index-16_34.png





index-16_33.png





index-16_36.png





index-16_35.png





index-16_32.png





index-16_41.png





index-16_38.png





index-16_37.png





index-16_40.png





index-16_39.png





index-16_23.png





index-16_22.png





index-16_25.png





index-16_24.png





index-16_31.png





index-16_30.png





index-16_27.png
O





index-16_26.png





index-16_29.png





index-16_28.png





index-16_12.png





index-16_14.png





index-16_13.png





index-16_20.png





index-16_19.png





index-16_21.png





index-16_16.png





index-16_15.png





index-16_18.png





index-16_17.png





index-173_86.png





index-173_85.png





index-173_84.png
RZH





index-16_3.png





index-16_2.png





index-16_9.png





index-16_8.png





index-16_11.png





index-16_10.png





index-16_5.png





index-16_4.png
O





index-16_7.png





index-16_6.png





index-16_1.png





index-13_54.png





index-13_60.png





index-13_59.png





index-13_62.png





index-13_61.png





index-13_56.png





index-13_55.png





index-13_58.png





index-13_57.png





index-13_53.png





index-13_52.png





index-38_63.png





index-38_62.png





index-38_64.png





index-13_49.png





index-13_48.png





index-13_51.png





index-13_50.png





index-13_45.png





index-13_44.png





index-13_47.png





index-13_46.png





index-38_70.png





index-38_69.png





index-38_72.png





index-38_71.png





index-38_66.png





index-38_65.png





index-38_68.png





index-38_67.png





index-38_74.png





index-38_73.png





index-38_44.png





index-38_41.png





index-38_40.png





index-38_43.png





index-38_42.png





index-38_48.png





index-38_47.png





index-38_50.png
{1





index-38_49.png





index-38_46.png





index-38_45.png





index-38_52.png





index-38_51.png





index-38_54.png





index-38_53.png





index-38_59.png





index-38_58.png





index-38_61.png





index-38_60.png





index-38_55.png





index-38_57.png





index-38_56.png





index-94_34.png





index-107_65.png





index-94_32.png





index-107_64.png





index-174_22.png





index-94_33.png





index-107_66.png





index-174_24.png





index-174_23.png





index-107_74.png





index-174_32.png





index-94_41.png





index-107_73.png





index-174_31.png





index-94_42.png





index-107_72.png





index-174_30.png





index-94_39.png





index-107_71.png
oD





index-174_29.png





index-94_40.png





index-107_70.png





index-174_28.png





index-94_37.png





index-107_69.png
Lo,





index-174_27.png





index-94_38.png





index-107_68.png





index-174_26.png





index-94_35.png





index-107_67.png





index-174_25.png





index-94_36.png





index-94_43.png





index-107_75.png





index-94_44.png





index-107_77.png





index-174_35.png





index-107_76.png





index-174_34.png





index-94_45.png





index-174_33.png





index-107_85.png





index-94_52.png





index-107_84.png





index-174_42.png





index-94_53.png





index-107_83.png





index-174_41.png
AT





index-94_50.png
o





index-107_82.png





index-174_40.png





index-94_51.png





index-107_81.png





index-174_39.png





index-94_48.png





index-107_80.png





index-174_38.png





index-94_49.png





index-107_79.png





index-174_37.png





index-94_46.png





index-107_78.png





index-174_36.png





index-94_47.png





index-107_45.png





index-107_44.png





index-174_2.png





index-107_43.png





index-174_1.png





index-107_42.png





index-173_131.png
er





index-107_52.png





index-174_10.png





index-107_51.png





index-174_9.png





index-107_50.png





index-174_8.png





index-107_49.png





index-174_7.png





index-107_48.png





index-174_6.png





index-107_47.png





index-174_5.png





index-107_46.png





index-174_4.png





index-174_3.png
bpy





index-107_55.png





index-107_54.png





index-174_12.png





index-107_53.png





index-174_11.png





index-174_13.png





index-107_63.png





index-174_21.png





index-94_30.png





index-107_62.png





index-174_20.png





index-94_31.png
ux





index-107_61.png





index-174_19.png





index-94_28.png





index-107_60.png





index-174_18.png





index-94_29.png





index-107_59.png





index-174_17.png
bd

0





index-94_26.png





index-107_58.png





index-174_16.png





index-94_27.png





index-107_57.png
Frctel-Spengl





index-174_15.png





index-107_56.png





index-174_14.png





index-94_25.png





index-173_113.png





index-173_112.png





index-173_111.png





index-173_110.png





index-173_109.png
2

vV





index-107_30.png





index-173_119.png





index-107_29.png





index-173_118.png





index-107_28.png





index-173_117.png





index-107_27.png





index-173_116.png





index-107_26.png





index-173_115.png





index-173_114.png
RZH





index-107_35.png





index-107_34.png





index-173_123.png





index-107_33.png





index-173_122.png





index-107_32.png





index-173_121.png





index-107_31.png





index-173_120.png





index-107_41.png





index-173_130.png
ransi





index-107_40.png





index-173_129.png
Atom





index-107_39.png





index-173_128.png





index-107_38.png





index-173_127.png





index-107_37.png





index-173_126.png





index-107_36.png





index-173_125.png





index-173_124.png





index-173_93.png





index-173_92.png





index-173_91.png





index-173_90.png





index-173_89.png





index-173_88.png





index-173_87.png





index-173_97.png





index-173_96.png





index-173_95.png





index-173_94.png





index-173_103.png





index-173_102.png





index-173_101.png





index-173_100.png





index-173_99.png





index-173_98.png





index-173_108.png





index-173_107.png





index-173_106.png





index-173_105.png





index-173_104.png





index-80_120.png





index-95_31.png





index-80_121.png





index-95_32.png





index-80_118.png
ng





index-95_29.png





index-80_119.png





index-95_30.png





index-80_116.png





index-95_27.png





index-80_117.png





index-95_28.png





index-95_25.png





index-80_115.png





index-95_26.png





index-80_124.png





index-80_122.png





index-95_33.png





index-80_123.png





index-95_34.png





index-81_3.png





index-81_4.png





index-81_1.png





index-81_2.png





index-80_127.png





index-80_128.png





index-80_125.png





index-80_126.png





index-81_5.png





index-81_6.png





index-80_98.png





index-95_9.png





index-80_99.png





index-95_10.png





index-80_96.png





index-95_7.png





index-80_97.png





index-95_8.png





index-95_5.png





index-80_95.png





index-95_6.png





index-80_104.png





index-80_102.png





index-95_13.png





index-80_103.png





index-95_14.png





index-80_100.png





index-95_11.png





index-80_101.png





index-95_12.png





index-80_109.png
resiow





index-95_20.png





index-80_110.png
niermeqti





index-95_21.png





index-80_107.png





index-95_18.png





index-80_108.png





index-95_19.png





index-80_105.png





index-95_16.png





index-80_106.png





index-95_17.png





index-95_15.png





index-80_113.png





index-95_24.png





index-80_114.png





index-80_111.png
a





index-95_22.png





index-80_112.png
Nversion





index-95_23.png





index-107_110.png





index-80_76.png





index-94_77.png





index-107_109.png





index-80_77.png





index-94_78.png





index-107_108.png





index-94_75.png





index-107_107.png





index-80_75.png





index-94_76.png





index-107_106.png





index-80_84.png





index-80_82.png





index-94_83.png





index-107_115.png





index-80_83.png





index-94_84.png





index-107_114.png





index-80_80.png





index-94_81.png





index-107_113.png





index-80_81.png





index-94_82.png





index-107_112.png





index-80_78.png





index-94_79.png





index-107_111.png





index-80_79.png





index-94_80.png





index-107_121.png





index-80_87.png





index-94_88.png





index-107_120.png





index-80_88.png





index-94_89.png





index-107_119.png





index-80_85.png





index-94_86.png





index-107_118.png





index-80_86.png





index-94_87.png





index-107_117.png





index-107_116.png





index-94_85.png





index-80_93.png





index-95_4.png





index-80_94.png





index-107_125.png





index-80_91.png





index-95_2.png





index-107_124.png





index-80_92.png





index-95_3.png





index-107_123.png





index-80_89.png





index-94_90.png





index-107_122.png





index-80_90.png





index-95_1.png





index-94_54.png





index-107_88.png





index-174_46.png





index-94_55.png





index-107_87.png





index-174_45.png





index-80_55.png





index-94_56.png





index-107_86.png





index-174_44.png





index-174_43.png





index-80_62.png





index-94_63.png





index-107_95.png





index-80_63.png





index-94_64.png





index-107_94.png





index-174_52.png





index-80_60.png





index-94_61.png





index-107_93.png





index-174_51.png





index-80_61.png





index-94_62.png





index-107_92.png





index-174_50.png





index-80_58.png





index-94_59.png
NU





index-107_91.png





index-174_49.png





index-80_59.png





index-94_60.png





index-107_90.png





index-174_48.png





index-80_56.png





index-94_57.png





index-107_89.png





index-174_47.png
AT





index-80_57.png





index-94_58.png





index-12_136.png





index-12_135.png





index-12_137.png





index-12_132.png





index-12_131.png





index-12_134.png





index-80_64.png





index-12_133.png





index-107_99.png





index-80_65.png





index-94_66.png





index-107_98.png





index-80_66.png





index-94_67.png





index-107_97.png





index-107_96.png





index-94_65.png





index-12_128.png





index-80_73.png





index-94_74.png





index-80_74.png





index-107_105.png





index-12_130.png





index-80_71.png





index-94_72.png





index-107_104.png





index-12_129.png





index-80_72.png





index-94_73.png





index-107_103.png





index-80_69.png





index-94_70.png





index-107_102.png





index-80_70.png





index-94_71.png





index-107_101.png





index-80_67.png





index-94_68.png





index-107_100.png





index-80_68.png





index-94_69.png





index-40_49.png





index-40_48.png





index-40_45.png





index-40_44.png





index-40_47.png





index-40_46.png





index-40_52.png





index-40_51.png





index-40_54.png





index-40_53.png





index-40_50.png





index-13_41.png





index-13_40.png





index-40_59.png





index-13_43.png





index-13_42.png





index-13_37.png





index-40_56.png





index-13_36.png





index-40_55.png
[arn





index-13_39.png





index-40_58.png





index-13_38.png





index-40_57.png





index-40_63.png





index-40_62.png





index-13_35.png





index-40_65.png
Assisied





index-13_34.png
f






index-40_64.png





index-40_61.png





index-40_60.png
Aulo-tand





index-13_30.png





index-40_27.png





index-13_29.png





index-40_26.png





index-13_32.png





index-40_29.png





index-13_31.png





index-40_28.png





index-13_26.png





index-40_23.png





index-13_25.png





index-40_22.png
ycle





index-13_28.png





index-40_25.png





index-13_27.png





index-40_24.png





index-13_33.png





index-40_30.png





index-13_24.png





index-40_32.png





index-40_31.png





index-13_19.png





index-40_38.png





index-13_18.png





index-40_37.png
ycle





index-13_21.png





index-13_20.png





index-40_39.png
ycle





index-13_15.png





index-40_34.png





index-13_14.png





index-40_33.png





index-13_17.png





index-40_36.png





index-13_16.png





index-40_35.png





index-13_23.png





index-13_22.png





index-40_41.png





index-40_40.png





index-40_43.png





index-40_42.png





index-13_8.png





index-40_5.png
ycle





index-13_7.png





index-40_4.png





index-13_10.png





index-40_7.png
ycle





index-13_9.png





index-40_6.png





index-13_4.png





index-40_1.png





index-38_95.png





index-13_6.png





index-40_3.png





index-13_5.png





index-40_2.png





index-13_12.png





index-40_9.png





index-13_11.png





index-40_8.png





index-13_13.png





index-40_10.png





index-12_191.png
Irs





index-40_16.png





index-12_190.png





index-40_15.png





index-12_193.png





index-40_18.png





index-12_192.png
ulicompon





index-40_17.png





index-40_12.png





index-40_11.png





index-12_189.png
sonitriles





index-40_14.png





index-12_188.png





index-40_13.png





index-13_1.png





index-12_194.png
reactions





index-40_19.png





index-13_3.png





index-13_2.png





index-40_21.png





index-40_20.png
ycle





index-12_180.png





index-38_78.png





index-12_179.png





index-38_77.png





index-12_182.png
Dase(





index-38_80.png





index-12_181.png
Reactions





index-38_79.png





index-12_178.png





index-38_76.png





index-38_75.png





index-12_187.png





index-81_7.png





index-12_184.png





index-38_82.png





index-12_183.png





index-38_81.png





index-12_186.png





index-38_84.png





index-12_185.png





index-38_83.png





index-81_14.png





index-81_15.png





index-81_12.png





index-81_13.png





index-81_10.png





index-81_11.png





index-81_8.png





index-81_9.png





index-81_16.png





index-12_169.png





index-38_89.png





index-12_168.png





index-38_88.png





index-12_171.png





index-38_91.png





index-12_170.png





index-38_90.png





index-38_85.png





index-38_87.png





index-38_86.png





index-12_177.png





index-81_17.png





index-12_176.png





index-81_18.png





index-12_173.png





index-38_93.png





index-12_172.png





index-38_92.png





index-12_175.png





index-12_174.png





index-38_94.png





index-81_25.png





index-81_26.png





index-81_23.png





index-81_24.png





index-81_21.png





index-81_22.png





index-81_19.png





index-81_20.png





index-12_158.png





index-12_160.png





index-12_159.png





index-12_166.png





index-12_165.png





index-12_167.png





index-12_162.png





index-12_161.png





index-12_164.png





index-12_163.png





index-12_149.png





index-12_148.png





index-12_155.png





index-12_154.png





index-12_157.png





index-12_156.png





index-12_151.png





index-12_150.png





index-12_153.png





index-12_152.png





index-12_147.png





index-12_138.png





index-12_144.png





index-12_143.png





index-12_146.png





index-12_145.png





index-12_140.png





index-12_139.png





index-12_142.png





index-12_141.png





index-40_67.png





index-40_66.png
[arn





index-40_69.png





index-40_68.png





index-40_74.png





index-40_73.png





index-40_76.png





index-40_75.png





index-40_70.png





index-40_72.png





index-40_71.png





index-40_78.png





index-40_77.png





index-40_79.png





index-136_105.png





index-136_104.png





index-136_103.png





index-136_102.png





index-18_82.png





index-18_81.png





index-18_84.png





index-18_83.png
S YT





index-18_80.png





index-18_79.png





index-139_7.png





index-139_6.png





index-139_5.png





index-139_4.png





index-139_3.png





index-139_2.png





index-139_1.png





index-139_10.png





index-139_9.png





index-139_8.png





index-139_18.png





index-139_17.png





index-139_16.png





index-139_15.png





index-139_14.png





index-139_13.png





index-139_12.png





index-139_11.png





index-136_101.png





index-136_100.png





index-136_99.png





index-136_98.png





index-136_97.png





index-136_96.png





index-35_38.png





index-35_40.png





index-35_39.png





index-35_46.png





index-35_45.png





index-35_47.png





index-35_42.png





index-35_41.png





index-35_44.png





index-35_43.png





index-106_12.png





index-139_87.png





index-91_84.png





index-106_11.png





index-139_86.png





index-91_85.png





index-106_10.png





index-139_85.png





index-91_82.png





index-106_9.png
7%





index-139_84.png





index-91_83.png





index-106_8.png





index-139_83.png





index-106_7.png





index-139_82.png





index-91_81.png





index-139_81.png





index-91_90.png





index-106_16.png





index-91_88.png





index-106_15.png





index-139_90.png





index-91_89.png





index-106_14.png





index-139_89.png





index-91_86.png





index-106_13.png





index-139_88.png





index-91_87.png





index-106_23.png





index-91_95.png





index-106_22.png





index-91_96.png





index-106_21.png





index-91_93.png





index-106_20.png





index-91_94.png





index-106_19.png





index-91_91.png





index-106_18.png





index-91_92.png





index-106_17.png





index-91_99.png





index-106_26.png





index-91_100.png





index-106_25.png





index-91_97.png





index-106_24.png





index-91_98.png





index-105_84.png
amines





index-139_65.png





index-91_62.png





index-105_83.png





index-139_64.png





index-91_63.png





index-105_82.png
Prime





index-139_63.png





index-105_81.png
unctiona





index-139_62.png





index-91_61.png





index-139_61.png





index-91_70.png





index-105_90.png
aerive





index-91_68.png





index-105_89.png





index-139_70.png





index-91_69.png





index-105_88.png
amines





index-139_69.png





index-91_66.png





index-105_87.png





index-139_68.png





index-91_67.png





index-105_86.png





index-139_67.png





index-91_64.png





index-105_85.png





index-139_66.png





index-91_65.png





index-106_1.png
@)





index-139_76.png





index-91_73.png





index-105_94.png





index-139_75.png





index-91_74.png





index-105_93.png





index-139_74.png





index-91_71.png





index-105_92.png





index-139_73.png





index-91_72.png





index-105_91.png





index-139_72.png
(N
—





index-139_71.png





index-91_79.png





index-106_6.png





index-91_80.png





index-106_5.png





index-139_80.png





index-91_77.png





index-106_4.png





index-139_79.png
(N
—





index-91_78.png





index-106_3.png





index-139_78.png





index-91_75.png





index-106_2.png





index-139_77.png





index-91_76.png





index-105_60.png





index-105_62.png





index-139_43.png





index-105_61.png





index-139_42.png





index-139_41.png





index-105_70.png





index-105_69.png





index-139_50.png





index-105_68.png





index-139_49.png





index-105_67.png





index-139_48.png





index-105_66.png





index-139_47.png





index-105_65.png





index-139_46.png





index-105_64.png





index-139_45.png





index-105_63.png





index-139_44.png





index-105_73.png





index-139_54.png





index-91_51.png





index-105_72.png





index-139_53.png





index-91_52.png





index-105_71.png





index-139_52.png





index-139_51.png





index-91_59.png





index-105_80.png
A
C





index-91_60.png





index-105_79.png
A
C





index-139_60.png





index-91_57.png





index-105_78.png





index-139_59.png
atm





index-91_58.png





index-105_77.png





index-139_58.png





index-91_55.png





index-105_76.png





index-139_57.png





index-91_56.png





index-105_75.png





index-139_56.png





index-91_53.png





index-105_74.png





index-139_55.png





index-91_54.png





index-139_20.png





index-139_19.png





index-139_21.png





index-105_48.png





index-139_29.png





index-105_47.png





index-139_28.png





index-105_46.png





index-139_27.png





index-105_45.png
orol





index-139_26.png





index-105_44.png





index-139_25.png





index-105_43.png





index-139_24.png





index-105_42.png
aerive





index-139_23.png





index-105_41.png





index-139_22.png





index-105_50.png





index-105_49.png





index-139_30.png
atm





index-105_51.png





index-139_32.png





index-139_31.png





index-105_59.png





index-139_40.png





index-105_58.png
aerive





index-139_39.png





index-105_57.png





index-139_38.png





index-105_56.png
amines





index-139_37.png





index-105_55.png





index-139_36.png





index-105_54.png
Prime





index-139_35.png





index-105_53.png





index-139_34.png





index-105_52.png





index-139_33.png





index-35_54.png





index-53_16.png
Fr





index-35_53.png





index-53_15.png





index-35_56.png





index-53_18.png





index-35_55.png





index-53_17.png





index-35_50.png





index-53_12.png





index-35_49.png





index-53_11.png





index-35_52.png





index-53_14.png





index-35_51.png
arbopalladatic





index-53_13.png





index-35_57.png





index-53_19.png





index-35_59.png
Synthe:





index-53_21.png





index-35_58.png





index-53_20.png





index-35_65.png





index-53_27.png





index-35_64.png





index-53_26.png





index-35_67.png





index-35_66.png





index-53_28.png





index-35_61.png





index-53_23.png





index-35_60.png





index-53_22.png





index-35_63.png





index-53_25.png





index-35_62.png
amaoxire





index-53_24.png





index-35_68.png





index-53_30.png





index-53_29.png





index-35_70.png





index-53_32.png





index-35_69.png





index-53_31.png





index-52_89.png





index-52_88.png





index-52_91.png





index-52_90.png





index-52_85.png





index-52_84.png





index-52_87.png





index-52_86.png





index-91_142.png





index-91_143.png





index-91_141.png





index-52_93.png





index-52_92.png





index-91_150.png





index-91_148.png





index-91_149.png





index-91_146.png





index-91_147.png
pelelly





index-91_144.png





index-91_145.png





index-52_94.png





index-53_5.png





index-53_4.png





index-53_7.png





index-53_6.png





index-53_1.png





index-52_95.png





index-53_3.png





index-53_2.png





index-53_8.png





index-35_48.png





index-53_10.png





index-53_9.png





index-91_121.png





index-91_128.png





index-91_129.png





index-91_126.png





index-91_127.png





index-91_124.png





index-91_125.png





index-91_122.png





index-91_123.png





index-91_130.png





index-52_78.png





index-52_77.png





index-52_80.png





index-52_79.png





index-52_74.png





index-52_76.png





index-52_75.png





index-91_131.png





index-91_132.png





index-52_82.png





index-52_81.png





index-52_83.png





index-91_139.png





index-91_140.png





index-91_137.png





index-91_138.png
24





index-91_135.png





index-91_136.png





index-91_133.png





index-91_134.png





index-106_34.png





index-91_106.png





index-106_33.png





index-91_107.png





index-106_32.png





index-91_104.png





index-106_31.png





index-91_105.png





index-106_30.png





index-91_102.png





index-106_29.png





index-91_103.png





index-106_28.png





index-106_27.png





index-91_101.png





index-91_110.png





index-106_36.png





index-91_108.png





index-106_35.png





index-91_109.png





index-21_36.png





index-21_35.png





index-21_38.png





index-21_37.png





index-21_32.png





index-21_34.png





index-21_33.png





index-106_37.png





index-21_40.png





index-21_39.png





index-21_41.png





index-106_45.png





index-91_117.png





index-106_44.png





index-91_118.png





index-106_43.png





index-91_115.png





index-106_42.png





index-91_116.png





index-106_41.png





index-91_113.png





index-106_40.png





index-91_114.png





index-106_39.png





index-91_111.png





index-106_38.png





index-91_112.png





index-91_119.png





index-106_46.png
ren






index-91_120.png





index-21_25.png





index-21_24.png





index-21_27.png





index-21_26.png





index-35_137.png





index-21_23.png





index-21_22.png





index-21_29.png





index-21_28.png





index-21_31.png





index-21_30.png





index-35_139.png





index-35_138.png





index-36_2.png





index-36_1.png





index-36_4.png





index-36_3.png





index-35_141.png





index-35_140.png





index-35_143.png





index-35_142.png





index-21_14.png





index-21_13.png





index-21_16.png





index-21_15.png





index-21_12.png





index-21_21.png





index-21_18.png





index-21_17.png





index-21_20.png





index-21_19.png





index-21_3.png





index-21_2.png





index-21_5.png





index-21_4.png





index-35_116.png
0oCOo






index-53_78.png





index-35_115.png
and





index-53_77.png





index-35_117.png
2ro





index-21_11.png





index-21_10.png





index-21_7.png





index-21_6.png





index-21_9.png
at.





index-21_8.png





index-35_123.png





index-35_122.png





index-35_125.png





index-35_124.png





index-35_119.png





index-35_118.png
(Vitami





index-35_121.png





index-35_120.png





index-18_129.png





index-18_131.png





index-18_130.png
S YT





index-35_127.png





index-35_126.png





index-18_137.png





index-18_136.png
arbopalladat





index-21_1.png





index-18_133.png





index-18_132.png
elimination





index-18_135.png
{ A





index-18_134.png





index-35_128.png





index-35_134.png





index-35_133.png





index-35_136.png





index-35_135.png





index-35_130.png





index-35_129.png





index-35_132.png





index-35_131.png





index-35_97.png





index-18_120.png





index-18_119.png
Dy





index-35_94.png





index-53_56.png





index-35_93.png





index-53_55.png





index-35_96.png





index-53_58.png





index-35_95.png





index-53_57.png





index-18_126.png





index-18_125.png





index-18_128.png
eucotrien





index-18_127.png





index-18_122.png





index-18_121.png





index-18_124.png





index-18_123.png
eaction





index-18_118.png
nspired





index-35_101.png





index-53_63.png





index-35_100.png





index-53_62.png





index-35_103.png





index-53_65.png





index-35_102.png





index-53_64.png





index-53_59.png





index-35_99.png





index-53_61.png





index-35_98.png





index-53_60.png





index-18_109.png





index-35_105.png
Synthe:





index-53_67.png





index-35_104.png





index-53_66.png





index-35_107.png





index-35_106.png





index-53_68.png





index-18_115.png





index-18_114.png





index-18_117.png





index-18_116.png
strateg





index-18_111.png





index-18_110.png





index-18_113.png





index-18_112.png
eactio





index-18_108.png





index-18_107.png





index-35_112.png
derived





index-53_74.png





index-35_111.png





index-53_73.png





index-35_114.png
estrone





index-53_76.png





index-35_113.png





index-53_75.png





index-35_108.png





index-53_70.png





index-53_69.png





index-35_110.png
ompoun





index-53_72.png





index-35_109.png





index-53_71.png





index-35_76.png





index-53_38.png





index-35_75.png





index-53_37.png





index-35_77.png





index-35_72.png





index-53_34.png





index-35_71.png





index-53_33.png





index-35_74.png





index-53_36.png





index-35_73.png





index-53_35.png





index-18_104.png





index-18_103.png





index-18_106.png





index-18_105.png





index-18_100.png





index-18_99.png





index-18_102.png





index-18_101.png





index-18_97.png





index-18_96.png





index-18_98.png





index-35_79.png





index-53_41.png





index-35_78.png





index-53_40.png





index-35_81.png





index-53_43.png





index-35_80.png





index-53_42.png





index-53_39.png





index-35_87.png





index-35_86.png





index-53_48.png





index-35_83.png





index-53_45.png





index-35_82.png





index-53_44.png





index-35_85.png





index-53_47.png





index-35_84.png





index-53_46.png





index-18_93.png





index-18_92.png





index-18_95.png





index-18_94.png





index-18_89.png





index-18_91.png





index-18_90.png





index-18_86.png





index-18_85.png
elimination





index-18_88.png





index-18_87.png





index-35_90.png





index-53_52.png





index-35_89.png





index-53_51.png





index-35_92.png





index-53_54.png





index-35_91.png
f






index-53_53.png





index-35_88.png





index-53_50.png





index-53_49.png





index-139_120.png





index-139_119.png





index-139_118.png





index-106_53.png





index-139_128.png





index-106_52.png
I





index-139_127.png





index-106_51.png
nitrile





index-139_126.png





index-106_50.png





index-139_125.png





index-106_49.png





index-139_124.png
m.





index-106_48.png





index-139_123.png
$59





index-106_47.png
at”





index-139_122.png





index-139_121.png





index-106_56.png





index-106_55.png





index-139_130.png





index-106_54.png





index-139_129.png





index-139_131.png





index-106_64.png





index-139_139.png





index-106_63.png





index-139_138.png





index-106_62.png





index-139_137.png





index-106_61.png





index-139_136.png





index-106_60.png





index-139_135.png





index-106_59.png





index-139_134.png





index-106_58.png





index-139_133.png





index-106_57.png





index-139_132.png





index-139_100.png





index-139_99.png





index-139_98.png





index-139_97.png





index-139_96.png





index-139_106.png





index-139_105.png





index-139_104.png





index-139_103.png





index-139_102.png





index-139_101.png





index-139_110.png





index-139_109.png





index-139_108.png





index-139_107.png





index-139_117.png





index-139_116.png





index-139_115.png





index-139_114.png





index-139_113.png





index-139_112.png





index-139_111.png





index-139_95.png





index-139_94.png





index-139_93.png
m.





index-139_92.png
$59





index-139_91.png





index-106_133.png





index-92_46.png





index-106_132.png





index-92_47.png





index-106_131.png





index-92_44.png





index-106_130.png





index-92_45.png





index-106_129.png





index-92_42.png





index-106_128.png





index-92_43.png





index-106_127.png





index-92_50.png





index-106_136.png





index-92_51.png





index-106_135.png





index-92_48.png





index-106_134.png





index-92_49.png





index-106_144.png





index-92_57.png





index-106_143.png





index-92_58.png





index-106_142.png





index-92_55.png





index-106_141.png





index-92_56.png





index-106_140.png





index-92_53.png





index-106_139.png





index-92_54.png





index-106_138.png





index-106_137.png





index-92_52.png





index-93_2.png





index-106_146.png





index-92_59.png





index-106_145.png





index-93_1.png





index-106_111.png





index-155_31.png





index-92_24.png





index-106_110.png





index-155_30.png





index-92_25.png





index-106_109.png
at”





index-155_29.png
n/





index-92_22.png





index-106_108.png





index-155_28.png





index-92_23.png





index-106_107.png





index-155_27.png





index-155_26.png





index-92_30.png





index-106_116.png





index-92_31.png





index-106_115.png





index-155_35.png





index-92_28.png





index-106_114.png





index-155_34.png





index-92_29.png





index-106_113.png





index-155_33.png





index-92_26.png





index-106_112.png





index-155_32.png
yC





index-92_27.png





index-106_122.png





index-92_35.png





index-106_121.png





index-92_36.png





index-106_120.png





index-92_33.png





index-106_119.png





index-92_34.png





index-106_118.png





index-106_117.png





index-92_32.png





index-92_41.png





index-106_126.png





index-92_39.png





index-106_125.png





index-92_40.png





index-106_124.png





index-92_37.png





index-106_123.png





index-92_38.png





index-92_1.png





index-106_89.png





index-155_9.png





index-92_2.png





index-106_88.png





index-155_8.png





index-92_3.png
at.





index-106_87.png





index-155_7.png





index-155_6.png
a





index-92_10.png





index-106_96.png





index-92_11.png





index-106_95.png





index-155_15.png





index-92_8.png





index-106_94.png





index-155_14.png





index-92_9.png





index-106_93.png





index-155_13.png





index-92_6.png





index-106_92.png





index-155_12.png





index-92_7.png





index-106_91.png





index-155_11.png





index-92_4.png





index-106_90.png





index-155_10.png
n/





index-92_5.png





index-106_100.png





index-155_20.png





index-92_13.png





index-106_99.png





index-155_19.png





index-92_14.png





index-106_98.png





index-155_18.png





index-106_97.png





index-155_17.png





index-92_12.png





index-155_16.png





index-92_21.png





index-106_106.png





index-92_19.png





index-106_105.png





index-155_25.png





index-92_20.png





index-106_104.png





index-155_24.png
i
Tw





index-92_17.png





index-106_103.png





index-155_23.png
yC





index-92_18.png





index-106_102.png





index-155_22.png





index-92_15.png





index-106_101.png





index-155_21.png
yC





index-92_16.png





index-106_66.png





index-106_65.png





index-139_140.png





index-106_67.png





index-139_142.png





index-139_141.png





index-106_75.png





index-152_2.png
Prl +

jeftser





index-106_74.png





index-152_1.png





index-106_73.png





index-139_148.png





index-106_72.png





index-139_147.png





index-106_71.png





index-139_146.png





index-106_70.png





index-139_145.png





index-106_69.png





index-139_144.png





index-106_68.png





index-139_143.png





index-106_76.png





index-106_78.png





index-152_5.png
(Cl,, DMF, 2C

(66%)
jioselectivity:
d.r.>98:2

e
-

9ii





index-106_77.png





index-152_4.png
|
-

Ph

g o
10

i-Pr\)





index-91_151.png





index-152_3.png





index-106_86.png





index-91_158.png





index-106_85.png





index-155_5.png





index-91_159.png





index-106_84.png





index-155_4.png





index-91_156.png





index-106_83.png





index-155_3.png





index-91_157.png





index-106_82.png





index-155_2.png





index-91_154.png





index-106_81.png





index-155_1.png
yC-





index-91_155.png
(-3





index-106_80.png





index-152_7.png





index-91_152.png





index-106_79.png





index-152_6.png
iPr—,

- Ph\/

80:20





index-91_153.png





index-36_32.png





index-53_137.png





index-36_31.png





index-53_136.png





index-36_34.png





index-36_33.png





index-53_138.png





index-36_28.png





index-53_133.png





index-36_27.png





index-53_132.png





index-36_30.png





index-53_135.png





index-36_29.png





index-53_134.png





index-36_35.png





index-53_140.png





index-53_139.png





index-36_37.png





index-53_142.png





index-36_36.png





index-53_141.png





index-36_43.png





index-53_148.png





index-36_42.png





index-53_147.png





index-36_44.png





index-36_39.png





index-53_144.png





index-36_38.png





index-53_143.png





index-36_41.png





index-53_146.png





index-36_40.png





index-53_145.png





index-36_46.png





index-53_151.png





index-36_45.png





index-53_150.png





index-36_48.png





index-53_153.png





index-36_47.png





index-53_152.png





index-53_149.png





index-36_10.png





index-53_115.png





index-36_9.png





index-53_114.png





index-36_12.png





index-53_117.png





index-36_11.png





index-53_116.png





index-36_6.png





index-53_111.png





index-36_5.png





index-53_110.png





index-36_8.png





index-53_113.png





index-36_7.png





index-53_112.png





index-36_14.png





index-36_13.png





index-53_118.png





index-36_15.png





index-53_120.png





index-53_119.png





index-36_21.png





index-53_126.png





index-36_20.png





index-53_125.png





index-36_23.png





index-53_128.png





index-36_22.png





index-53_127.png





index-36_17.png





index-53_122.png





index-36_16.png





index-53_121.png





index-36_19.png





index-53_124.png





index-36_18.png





index-53_123.png





index-36_24.png





index-53_129.png





index-36_26.png





index-53_131.png





index-36_25.png





index-53_130.png





index-53_93.png





index-53_92.png





index-53_95.png





index-53_94.png





index-53_89.png





index-53_91.png





index-53_90.png





index-93_23.png





index-93_24.png
diOxane





index-53_97.png





index-53_96.png





index-53_98.png





index-93_31.png





index-93_32.png
(ca





index-93_29.png





index-93_30.png





index-93_27.png





index-93_28.png





index-93_25.png





index-93_26.png





index-18_74.png





index-53_104.png





index-18_73.png





index-53_103.png





index-18_76.png





index-53_106.png





index-18_75.png





index-53_105.png





index-18_70.png





index-53_100.png





index-18_69.png





index-53_99.png





index-18_72.png





index-53_102.png





index-18_71.png





index-53_101.png





index-18_78.png





index-53_108.png





index-18_77.png





index-53_107.png





index-53_109.png





index-18_63.png





index-18_62.png





index-18_65.png





index-18_64.png





index-18_59.png





index-18_61.png





index-18_60.png





index-18_67.png





index-18_66.png





index-18_68.png





index-93_9.png





index-93_10.png
ouma





index-93_7.png





index-93_8.png





index-93_5.png





index-93_6.png





index-93_3.png





index-93_4.png





index-93_11.png





index-93_12.png





index-18_52.png





index-53_82.png





index-18_51.png





index-53_81.png





index-18_54.png





index-53_84.png





index-18_53.png





index-53_83.png





index-18_50.png





index-53_80.png





index-18_49.png





index-53_79.png





index-93_13.png





index-18_56.png





index-53_86.png





index-18_55.png





index-53_85.png





index-18_58.png





index-53_88.png





index-18_57.png





index-53_87.png





index-93_20.png





index-93_21.png





index-93_18.png





index-93_19.png





index-93_16.png





index-93_17.png





index-93_14.png





index-93_15.png





index-93_22.png





index-18_41.png





index-18_40.png





index-18_43.png





index-18_42.png





index-18_39.png





index-18_48.png





index-18_45.png





index-18_44.png





index-18_47.png





index-18_46.png





index-18_30.png





index-18_29.png





index-18_32.png





index-18_31.png





index-18_38.png





index-18_37.png





index-18_34.png





index-18_33.png





index-18_36.png





index-18_35.png





index-18_19.png





index-18_21.png





index-18_20.png





index-36_94.png





index-36_93.png
ignans





index-18_27.png





index-18_26.png





index-18_28.png





index-18_23.png





index-18_22.png





index-18_25.png





index-18_24.png





index-36_95.png





index-36_101.png





index-36_100.png
etrahydrof





index-36_103.png





index-36_102.png





index-36_97.png





index-36_96.png





index-36_99.png





index-36_98.png





index-18_10.png





index-18_9.png
S YT





index-36_104.png





index-18_16.png





index-18_15.png





index-18_18.png





index-18_17.png





index-18_12.png





index-18_11.png





index-18_14.png





index-18_13.png





index-18_8.png





index-16_102.png





index-36_72.png





index-67_12.png





index-36_71.png





index-67_11.png





index-36_74.png





index-36_73.png





index-67_13.png





index-18_5.png





index-18_4.png





index-18_7.png





index-18_6.png





index-18_1.png





index-16_103.png





index-18_3.png





index-18_2.png





index-16_101.png





index-16_100.png





index-36_79.png





index-36_78.png





index-36_81.png





index-36_80.png





index-36_75.png





index-36_77.png





index-36_76.png





index-36_83.png





index-36_82.png





index-36_84.png





index-16_97.png





index-16_96.png





index-16_99.png





index-16_98.png





index-16_93.png





index-16_92.png





index-16_95.png





index-16_94.png





index-16_90.png





index-16_89.png





index-16_91.png
prostaglant





index-36_90.png





index-36_89.png





index-36_92.png





index-36_91.png





index-36_86.png





index-36_85.png





index-36_88.png





index-36_87.png





index-36_54.png





index-36_53.png





index-53_158.png





index-36_50.png





index-53_155.png





index-36_49.png





index-53_154.png





index-36_52.png





index-53_157.png





index-36_51.png





index-53_156.png





index-16_86.png





index-16_85.png





index-16_88.png





index-16_87.png





index-16_82.png
eaction





index-16_84.png





index-16_83.png





index-36_57.png





index-53_162.png





index-36_56.png





index-53_161.png





index-36_59.png





index-53_164.png





index-36_58.png





index-53_163.png





index-36_55.png





index-53_160.png





index-53_159.png





index-36_64.png





index-36_61.png





index-67_1.png





index-36_60.png





index-53_165.png





index-36_63.png





index-67_3.png





index-36_62.png





index-67_2.png





index-36_68.png





index-67_8.png





index-36_67.png





index-67_7.png





index-36_70.png





index-67_10.png





index-36_69.png





index-67_9.png





index-67_4.png
ectrophl





index-36_66.png





index-67_6.png
ucleophi





index-36_65.png
13-Hvadroxv-14-nordehvdro-c





index-67_5.png





index-21_187.png





index-21_186.png





index-21_189.png





index-21_188.png
€gI0Iso





index-21_183.png





index-21_182.png





index-21_185.png
€gI0Iso





index-21_184.png





index-21_180.png





index-21_179.png





index-21_181.png





index-21_176.png





index-21_175.png





index-21_178.png





index-21_177.png





index-21_172.png





index-21_174.png





index-21_173.png
[





index-21_169.png





index-21_168.png





index-21_171.png





index-21_170.png





index-21_165.png





index-21_164.png





index-21_167.png





index-21_166.png





index-21_163.png





index-21_162.png





index-29_85.png
DM





index-21_161.png





index-29_84.png





index-29_87.png





index-29_86.png





index-21_158.png





index-21_157.png





index-21_160.png





index-29_83.png





index-21_159.png





index-29_92.png





index-29_89.png





index-29_88.png
oluel





index-29_91.png





index-29_90.png





index-21_154.png





index-21_153.png





index-21_156.png





index-21_155.png





index-21_152.png





index-21_151.png





index-21_150.png





index-21_147.png





index-21_146.png
tor





index-21_149.png





index-21_148.png





index-21_143.png





index-21_142.png





index-21_145.png





index-21_144.png





index-29_63.png





index-29_65.png





index-29_64.png





index-29_71.png





index-29_70.png





index-29_72.png





index-29_67.png





index-29_66.png





index-29_69.png





index-29_68.png





index-29_74.png





index-29_73.png





index-29_76.png





index-29_75.png





index-29_82.png





index-29_81.png





index-29_78.png





index-29_77.png





index-29_80.png





index-29_79.png
onversion





index-29_42.png





index-29_41.png





index-48_86.png





index-29_43.png
synihes





index-48_88.png





index-48_87.png





index-29_49.png





index-48_94.png





index-29_48.png





index-48_93.png





index-29_51.png





index-48_96.png





index-29_50.png
heneticia





index-48_95.png





index-29_45.png
atalyze





index-48_90.png





index-29_44.png





index-48_89.png





index-29_47.png
Py





index-48_92.png





index-29_46.png





index-48_91.png





index-29_52.png





index-48_97.png





index-29_54.png
wate





index-48_99.png





index-29_53.png





index-48_98.png





index-29_60.png





index-48_105.png





index-29_59.png





index-48_104.png





index-29_62.png





index-29_61.png





index-48_106.png





index-29_56.png





index-48_101.png





index-29_55.png





index-48_100.png





index-29_58.png





index-48_103.png





index-29_57.png





index-48_102.png





index-103_113.png





index-134_47.png





index-103_112.png





index-134_46.png





index-103_111.png





index-134_45.png





index-103_110.png





index-134_44.png





index-134_43.png





index-103_119.png





index-103_118.png





index-134_52.png





index-103_117.png





index-134_51.png





index-103_116.png





index-134_50.png





index-103_115.png





index-134_49.png





index-103_114.png





index-134_48.png
{3





index-103_124.png
iichae:





index-134_58.png





index-103_123.png





index-134_57.png





index-103_122.png





index-134_56.png





index-103_121.png





index-134_55.png





index-103_120.png





index-134_54.png





index-134_53.png





index-103_129.png





index-103_128.png





index-134_62.png





index-103_127.png





index-134_61.png





index-103_126.png





index-134_60.png





index-103_125.png





index-134_59.png





index-103_91.png





index-134_25.png





index-103_90.png
Ichloroethan:





index-134_24.png





index-134_23.png





index-103_99.png





index-103_98.png





index-134_32.png





index-103_97.png





index-134_31.png





index-103_96.png





index-134_30.png





index-103_95.png





index-134_29.png





index-103_94.png





index-134_28.png





index-103_93.png





index-134_27.png





index-103_92.png





index-134_26.png





index-103_102.png





index-134_36.png





index-103_101.png





index-134_35.png





index-103_100.png





index-134_34.png





index-134_33.png





index-103_109.png





index-103_108.png





index-134_42.png





index-103_107.png





index-134_41.png





index-103_106.png





index-134_40.png





index-103_105.png





index-134_39.png
{3





index-103_104.png





index-134_38.png





index-103_103.png





index-134_37.png





index-134_2.png





index-134_1.png





index-134_3.png





index-134_11.png





index-134_10.png





index-134_9.png





index-134_8.png





index-134_7.png





index-134_6.png





index-134_5.png





index-134_4.png





index-134_12.png





index-134_14.png





index-134_13.png





index-134_22.png





index-134_21.png





index-134_20.png





index-134_19.png





index-134_18.png





index-134_17.png





index-134_16.png





index-134_15.png





index-132_108.png





index-132_107.png
AcC





index-132_106.png





index-132_105.png





index-132_104.png





index-132_103.png





index-132_102.png





index-132_101.png
1O





index-79_115.png





index-79_116.png





index-79_113.png





index-79_114.png





index-79_111.png





index-79_112.png





index-79_109.png





index-79_110.png





index-79_117.png





index-79_118.png





index-79_119.png





index-48_107.png





index-48_113.png





index-79_126.png





index-48_112.png





index-79_127.png





index-48_115.png





index-79_124.png





index-48_114.png





index-79_125.png





index-48_109.png





index-79_122.png





index-48_108.png





index-79_123.png





index-48_111.png





index-79_120.png





index-48_110.png





index-79_121.png





index-48_116.png





index-79_129.png





index-79_130.png





index-48_118.png
acrocycle





index-48_117.png





index-79_128.png





index-79_93.png





index-79_94.png





index-79_91.png





index-79_92.png





index-79_89.png





index-79_90.png





index-79_88.png





index-103_171.png





index-103_170.png





index-79_97.png





index-79_95.png
v





index-79_96.png





index-104_7.png





index-104_6.png





index-104_5.png





index-104_4.png





index-104_3.png





index-104_2.png





index-104_1.png
@)





index-103_172.png





index-79_104.png





index-79_105.png





index-79_102.png





index-79_103.png





index-79_100.png





index-79_101.png





index-79_98.png





index-79_99.png





index-104_10.png





index-104_9.png





index-104_8.png





index-79_106.png





index-79_107.png





index-104_17.png





index-104_16.png





index-104_15.png





index-104_14.png





index-104_13.png





index-104_12.png





index-104_11.png





index-79_108.png





index-134_83.png





index-103_157.png





index-134_91.png
CO





index-103_156.png





index-134_90.png





index-103_155.png
iichae:





index-134_89.png





index-103_154.png





index-134_88.png





index-103_153.png





index-134_87.png





index-103_152.png





index-134_86.png





index-103_151.png





index-134_85.png





index-103_150.png





index-134_84.png





index-103_159.png





index-103_158.png





index-134_92.png





index-103_160.png





index-103_168.png
09





index-103_167.png





index-103_166.png





index-103_165.png





index-103_164.png





index-103_163.png
7%





index-103_162.png





index-103_161.png
30





index-103_169.png





index-103_135.png





index-134_69.png





index-103_134.png





index-134_68.png
oluen:





index-103_133.png





index-134_67.png





index-103_132.png





index-134_66.png





index-103_131.png





index-134_65.png





index-103_130.png





index-134_64.png





index-134_63.png
teps,





index-103_139.png





index-103_138.png
iichae:





index-134_72.png





index-103_137.png





index-134_71.png





index-103_136.png





index-134_70.png





index-103_146.png





index-134_80.png





index-103_145.png





index-134_79.png





index-103_144.png





index-134_78.png





index-103_143.png





index-134_77.png





index-103_142.png





index-134_76.png





index-103_141.png





index-134_75.png





index-103_140.png





index-134_74.png





index-134_73.png





index-103_149.png





index-103_148.png





index-134_82.png





index-103_147.png





index-134_81.png





index-29_141.png
20





index-49_45.png





index-29_140.png





index-49_44.png





index-29_142.png





index-49_46.png





index-29_148.png





index-49_52.png





index-29_147.png





index-49_51.png





index-29_150.png





index-49_54.png





index-29_149.png
ater.





index-49_53.png





index-29_144.png





index-49_48.png





index-29_143.png
W





index-49_47.png





index-29_146.png





index-49_50.png





index-29_145.png





index-49_49.png





index-29_152.png





index-29_151.png





index-49_55.png





index-29_153.png





index-49_57.png





index-49_56.png





index-29_159.png





index-49_63.png





index-29_158.png





index-49_62.png





index-29_161.png





index-49_65.png





index-29_160.png





index-49_64.png





index-29_155.png





index-49_59.png





index-29_154.png
ater.





index-49_58.png





index-29_157.png





index-49_61.png
"4





index-29_156.png





index-49_60.png





index-29_122.png





index-29_119.png





index-49_23.png





index-80_44.png





index-29_118.png





index-49_22.png





index-29_121.png





index-49_25.png





index-80_42.png





index-29_120.png





index-49_24.png





index-80_43.png





index-29_126.png





index-49_30.png





index-80_51.png





index-29_125.png





index-49_29.png





index-80_52.png





index-29_128.png





index-49_32.png
20"





index-80_49.png





index-29_127.png





index-49_31.png
W





index-80_50.png





index-49_26.png





index-80_47.png





index-80_48.png





index-29_124.png





index-49_28.png





index-80_45.png





index-29_123.png





index-49_27.png





index-80_46.png





index-22_45.png





index-22_44.png
S0





index-22_47.png





index-22_46.png





index-29_130.png





index-49_34.png





index-29_129.png





index-49_33.png





index-22_43.png





index-29_132.png





index-80_53.png





index-29_131.png





index-49_35.png





index-80_54.png





index-22_52.png





index-22_49.png





index-22_48.png





index-22_51.png





index-22_50.png





index-29_137.png





index-49_41.png





index-29_136.png





index-49_40.png





index-29_139.png





index-49_43.png





index-29_138.png





index-49_42.png





index-29_133.png





index-49_37.png





index-49_36.png





index-29_135.png





index-49_39.png





index-29_134.png
jalelly





index-49_38.png





index-22_34.png





index-29_101.png





index-49_5.png





index-22_33.png





index-29_100.png





index-49_4.png





index-22_36.png





index-80_24.png





index-22_35.png





index-29_102.png





index-29_97.png





index-49_1.png





index-80_22.png





index-29_96.png





index-48_141.png





index-80_23.png





index-29_99.png





index-49_3.png





index-80_20.png





index-29_98.png





index-49_2.png





index-80_21.png





index-22_42.png





index-22_41.png





index-22_38.png





index-22_37.png





index-22_40.png





index-22_39.png





index-29_104.png





index-49_8.png





index-80_29.png





index-29_103.png





index-49_7.png





index-80_30.png





index-29_106.png





index-49_10.png





index-80_27.png





index-29_105.png





index-49_9.png





index-80_28.png





index-80_25.png





index-80_26.png





index-49_6.png





index-22_23.png





index-29_112.png





index-29_111.png





index-49_15.png





index-22_25.png





index-22_24.png





index-29_108.png





index-49_12.png





index-80_33.png





index-29_107.png





index-49_11.png





index-80_34.png





index-29_110.png





index-49_14.png





index-80_31.png





index-29_109.png





index-49_13.png





index-80_32.png





index-22_31.png





index-22_30.png





index-22_32.png





index-22_27.png





index-22_26.png





index-22_29.png
S0





index-22_28.png





index-29_115.png





index-49_19.png





index-80_40.png





index-29_114.png
[





index-49_18.png





index-80_41.png





index-29_117.png
jalelly





index-49_21.png





index-80_38.png





index-29_116.png





index-49_20.png





index-80_39.png





index-80_36.png





index-80_37.png





index-29_113.png





index-49_17.png





index-49_16.png





index-80_35.png





index-48_124.png





index-80_4.png





index-48_123.png





index-22_14.png





index-48_126.png





index-80_2.png





index-22_13.png





index-48_125.png





index-80_3.png





index-48_120.png
synthes





index-79_133.png





index-48_119.png





index-80_1.png





index-48_122.png





index-79_131.png





index-48_121.png





index-79_132.png





index-22_20.png





index-22_19.png





index-22_22.png





index-22_21.png





index-22_16.png





index-22_15.png





index-22_18.png





index-22_17.png





index-22_12.png





index-48_127.png





index-80_7.png





index-80_8.png





index-48_129.png





index-80_5.png





index-48_128.png





index-80_6.png





index-48_135.png
mino





index-48_134.png





index-22_3.png





index-80_13.png





index-48_136.png





index-80_14.png





index-48_131.png





index-80_11.png





index-48_130.png
synthes





index-80_12.png





index-48_133.png





index-80_9.png





index-48_132.png





index-80_10.png





index-22_9.png





index-22_8.png





index-22_11.png





index-22_10.png





index-22_5.png





index-22_4.png





index-22_7.png





index-22_6.png





index-22_2.png





index-22_1.png





index-29_93.png





index-48_138.png
(Isolate





index-80_18.png





index-48_137.png





index-80_19.png





index-29_95.png





index-48_140.png
(Isolate





index-80_16.png





index-29_94.png





index-48_139.png





index-80_17.png





index-80_15.png





index-21_66.png





index-21_65.png





index-21_68.png





index-21_67.png





index-21_62.png
ariants





index-21_64.png





index-21_63.png





index-21_59.png





index-21_58.png





index-21_61.png





index-21_60.png





index-21_55.png
eaction





index-21_54.png





index-21_57.png





index-21_56.png





index-21_53.png





index-21_52.png





index-21_51.png





index-21_48.png
onceried





index-21_47.png
1on





index-21_50.png





index-21_49.png
mechanism





index-136_2.png





index-136_1.png





index-134_97.png





index-134_96.png





index-134_95.png
-azoblis{cyclohexaneca





index-134_94.png





index-134_93.png





index-21_44.png





index-21_43.png





index-21_46.png
yClOo:





index-21_45.png





index-21_42.png





index-33_11.png





index-33_10.png





index-33_13.png





index-33_12.png





index-33_19.png





index-33_18.png





index-33_15.png





index-33_14.png





index-33_17.png





index-33_16.png
u





index-29_162.png





index-29_164.png
eaction





index-29_163.png





index-29_170.png





index-29_169.png





index-29_172.png





index-29_171.png





index-29_166.png





index-29_165.png
atalyze





index-29_168.png





index-29_167.png
Py





index-29_173.png





index-33_2.png





index-33_1.png





index-33_8.png





index-33_7.png





index-33_9.png





index-33_4.png





index-33_3.png





index-33_6.png





index-33_5.png





index-104_62.png





index-136_71.png





index-104_61.png





index-136_70.png





index-104_60.png





index-136_69.png





index-104_59.png





index-136_68.png





index-104_58.png





index-136_67.png





index-136_66.png
S+





index-104_67.png





index-104_66.png





index-136_75.png





index-104_65.png





index-136_74.png





index-104_64.png





index-136_73.png





index-104_63.png





index-136_72.png





index-104_73.png





index-136_82.png





index-104_72.png





index-136_81.png





index-104_71.png





index-136_80.png





index-104_70.png





index-136_79.png





index-104_69.png





index-136_78.png





index-104_68.png





index-136_77.png





index-136_76.png





index-104_77.png





index-104_76.png





index-136_85.png





index-104_75.png





index-136_84.png





index-104_74.png
1a.





index-136_83.png





index-104_40.png





index-136_49.png





index-104_39.png





index-136_48.png





index-104_38.png





index-136_47.png





index-136_46.png





index-104_47.png





index-104_46.png





index-136_55.png





index-104_45.png





index-136_54.png





index-104_44.png





index-136_53.png





index-104_43.png





index-136_52.png





index-104_42.png





index-136_51.png





index-104_41.png





index-136_50.png





index-104_51.png





index-136_60.png





index-104_50.png





index-136_59.png





index-104_49.png





index-136_58.png





index-104_48.png





index-136_57.png





index-136_56.png





index-104_57.png
at”™





index-104_56.png





index-136_65.png





index-104_55.png





index-136_64.png





index-104_54.png





index-136_63.png





index-104_53.png





index-136_62.png





index-104_52.png





index-136_61.png





index-136_25.png





index-104_18.png





index-136_27.png
AN





index-136_26.png





index-104_26.png





index-136_35.png





index-104_25.png





index-136_34.png





index-104_24.png





index-136_33.png





index-104_23.png





index-136_32.png





index-104_22.png





index-136_31.png





index-104_21.png





index-136_30.png





index-104_20.png





index-136_29.png





index-104_19.png





index-136_28.png





index-104_27.png





index-104_29.png





index-136_38.png





index-104_28.png
at”™





index-136_37.png





index-136_36.png





index-104_37.png





index-104_36.png





index-136_45.png





index-104_35.png





index-136_44.png





index-104_34.png





index-136_43.png





index-104_33.png





index-136_42.png





index-104_32.png





index-136_41.png





index-104_31.png





index-136_40.png





index-104_30.png





index-136_39.png





index-136_5.png





index-136_4.png





index-136_3.png





index-136_13.png





index-136_12.png





index-136_11.png





index-136_10.png





index-136_9.png





index-136_8.png





index-136_7.png





index-136_6.png





index-136_15.png





index-136_14.png





index-136_16.png





index-136_24.png





index-136_23.png





index-136_22.png
f






index-136_21.png





index-136_20.png





index-136_19.png





index-136_18.png





index-136_17.png





index-50_5.png





index-50_4.png





index-50_7.png
A





index-50_6.png





index-50_1.png





index-49_77.png





index-50_3.png





index-50_2.png
A





index-50_8.png





index-50_10.png





index-50_9.png





index-52_1.png





index-50_15.png





index-52_3.png





index-52_2.png





index-50_12.png
A





index-50_11.png





index-50_14.png





index-50_13.png





index-52_4.png





index-33_21.png





index-52_6.png





index-33_20.png





index-52_5.png





index-49_71.png





index-49_70.png





index-49_73.png





index-49_72.png





index-49_67.png





index-49_66.png





index-49_69.png





index-49_68.png





index-49_75.png





index-49_74.png





index-49_76.png





index-105_21.png





index-105_29.png





index-105_28.png





index-105_27.png





index-105_26.png





index-105_25.png





index-105_24.png





index-105_23.png





index-105_22.png





index-105_30.png





index-105_32.png





index-105_31.png





index-105_40.png
amines





index-105_39.png
seconoary





index-105_38.png





index-105_37.png





index-105_36.png





index-105_35.png





index-105_34.png





index-105_33.png





index-105_7.png





index-136_93.png





index-105_6.png





index-136_92.png





index-105_5.png





index-136_91.png





index-105_4.png





index-136_90.png





index-105_3.png





index-136_89.png





index-105_2.png





index-136_88.png





index-105_1.png
@)





index-136_87.png





index-136_86.png
S+





index-105_10.png





index-105_9.png





index-136_95.png





index-105_8.png





index-136_94.png





index-105_18.png





index-105_17.png





index-105_16.png





index-105_15.png





index-105_14.png





index-105_13.png





index-105_12.png





index-105_11.png





index-105_20.png





index-105_19.png





index-35_17.png





index-35_16.png
f






index-52_73.png





index-35_18.png





index-35_24.png





index-35_23.png





index-35_26.png





index-35_25.png





index-35_20.png





index-35_19.png
DIV





index-35_22.png





index-35_21.png





index-21_135.png





index-21_134.png





index-21_137.png





index-21_136.png





index-35_27.png





index-21_133.png





index-21_132.png





index-21_139.png





index-21_138.png





index-21_141.png





index-21_140.png
mperatur





index-35_29.png





index-35_28.png





index-35_35.png





index-35_34.png





index-35_37.png





index-35_36.png





index-35_31.png





index-35_30.png





index-35_33.png





index-35_32.png





index-21_124.png





index-21_123.png
rragiatio





index-21_126.png





index-21_125.png
€gI0Iso





index-33_67.png





index-52_52.png





index-33_66.png





index-52_51.png





index-21_122.png





index-33_69.png





index-33_68.png





index-52_53.png





index-21_131.png





index-21_128.png
€gI0Iso





index-21_127.png





index-21_130.png





index-21_129.png





index-35_2.png





index-52_59.png





index-35_1.png





index-52_58.png





index-35_4.png





index-52_61.png
DIV





index-35_3.png





index-52_60.png





index-33_70.png





index-52_55.png





index-52_54.png





index-33_72.png





index-52_57.png





index-33_71.png





index-52_56.png





index-21_113.png





index-21_112.png





index-21_115.png





index-21_114.png





index-35_6.png





index-52_63.png





index-35_5.png





index-52_62.png





index-35_7.png





index-21_121.png
Icrowayv





index-21_120.png





index-21_117.png





index-21_116.png





index-21_119.png
nae





index-21_118.png





index-52_64.png





index-35_13.png





index-52_70.png





index-35_12.png





index-52_69.png





index-35_15.png





index-52_72.png





index-35_14.png





index-52_71.png





index-35_9.png





index-52_66.png





index-35_8.png





index-52_65.png





index-35_11.png





index-52_68.png





index-35_10.png





index-52_67.png





index-21_102.png





index-33_49.png
LY





index-33_48.png





index-52_33.png





index-21_104.png





index-21_103.png





index-33_45.png





index-52_30.png





index-33_44.png





index-52_29.png





index-33_47.png
(=]





index-52_32.png





index-33_46.png





index-52_31.png





index-21_110.png





index-21_109.png





index-21_111.png





index-21_106.png





index-21_105.png





index-21_108.png





index-21_107.png





index-33_52.png





index-52_37.png





index-33_51.png





index-52_36.png





index-33_54.png





index-52_39.png





index-33_53.png





index-52_38.png





index-33_50.png
Ine:





index-52_35.png





index-52_34.png





index-33_59.png





index-21_93.png





index-21_92.png





index-33_56.png
nent





index-52_41.png





index-33_55.png





index-52_40.png





index-33_58.png





index-52_43.png





index-33_57.png





index-52_42.png





index-21_99.png





index-21_98.png





index-21_101.png





index-21_100.png





index-21_95.png





index-21_94.png
at.





index-21_97.png





index-21_96.png





index-21_91.png





index-33_63.png





index-52_48.png





index-33_62.png





index-52_47.png





index-33_65.png





index-52_50.png





index-33_64.png





index-52_49.png





index-52_44.png





index-33_61.png





index-52_46.png





index-33_60.png





index-52_45.png





index-33_27.png





index-52_12.png





index-33_26.png





index-52_11.png





index-21_82.png





index-33_29.png





index-33_28.png





index-52_13.png





index-33_23.png





index-52_8.png





index-33_22.png





index-52_7.png





index-33_25.png





index-52_10.png





index-33_24.png





index-52_9.png





index-21_88.png





index-21_87.png





index-21_90.png





index-21_89.png





index-21_84.png





index-21_83.png





index-21_86.png





index-21_85.png





index-21_81.png





index-21_80.png





index-33_30.png





index-52_15.png





index-52_14.png





index-33_32.png





index-52_17.png





index-33_31.png





index-52_16.png





index-33_38.png





index-52_23.png





index-33_37.png





index-52_22.png





index-33_39.png
DI





index-33_34.png





index-52_19.png





index-33_33.png





index-52_18.png





index-33_36.png





index-52_21.png





index-33_35.png





index-52_20.png





index-21_77.png





index-21_76.png





index-21_79.png





index-21_78.png





index-21_73.png





index-21_72.png





index-21_75.png





index-21_74.png





index-21_70.png





index-21_69.png
at.





index-21_71.png





index-33_41.png





index-52_26.png





index-33_40.png





index-52_25.png





index-33_43.png





index-52_28.png





index-33_42.png





index-52_27.png





index-52_24.png





index-24_112.png





index-24_111.png





index-24_118.png





index-24_117.png





index-24_120.png





index-24_119.png
bar,





index-24_114.png





index-24_113.png





index-24_116.png





index-24_115.png





index-26_54.png





index-26_53.png
aerivative





index-26_56.png





index-26_55.png





index-24_110.png





index-26_52.png





index-26_61.png
AN





index-26_58.png





index-26_57.png





index-26_60.png





index-26_59.png





index-24_101.png





index-24_107.png





index-24_106.png





index-24_109.png





index-24_108.png





index-24_103.png





index-24_102.png





index-24_105.png





index-24_104.png





index-26_65.png





index-26_64.png





index-26_67.png





index-26_66.png





index-24_100.png





index-24_99.png





index-26_63.png





index-26_62.png





index-26_69.png





index-26_68.png





index-26_71.png





index-26_70.png





index-24_96.png





index-24_95.png





index-24_98.png





index-24_97.png





index-24_92.png





index-24_91.png





index-24_94.png





index-24_93.png





index-26_32.png





index-46_14.png





index-46_13.png





index-26_34.png





index-46_16.png





index-26_33.png





index-46_15.png





index-24_89.png





index-24_88.png





index-24_90.png





index-26_40.png





index-46_22.png





index-26_39.png





index-46_21.png





index-26_41.png





index-26_36.png





index-46_18.png





index-26_35.png





index-46_17.png





index-26_38.png





index-46_20.png





index-26_37.png





index-46_19.png





index-24_85.png





index-24_84.png





index-24_87.png





index-24_86.png





index-24_81.png





index-24_83.png





index-24_82.png





index-26_43.png





index-46_25.png





index-26_42.png
Diastereoselec





index-46_24.png





index-26_45.png





index-46_27.png





index-26_44.png
desymmetrizat





index-46_26.png





index-24_78.png





index-24_77.png





index-24_80.png





index-46_23.png





index-24_79.png





index-26_51.png
alogenate





index-26_50.png





index-46_32.png





index-26_47.png





index-46_29.png





index-26_46.png





index-46_28.png





index-26_49.png





index-46_31.png





index-26_48.png





index-46_30.png





index-26_11.png





index-26_10.png





index-45_125.png





index-24_74.png





index-24_73.png





index-24_76.png





index-24_75.png
aza






index-24_72.png





index-24_71.png





index-78_12.png





index-24_70.png





index-78_13.png





index-26_12.png





index-45_127.png
nsitio





index-45_126.png





index-78_11.png





index-24_67.png
amiges





index-24_66.png





index-24_69.png
Application





index-24_68.png





index-26_18.png





index-45_133.png





index-78_20.png





index-26_17.png





index-45_132.png





index-26_20.png





index-46_2.png





index-78_18.png





index-26_19.png





index-46_1.png





index-78_19.png





index-26_14.png





index-45_129.png





index-78_16.png





index-26_13.png





index-45_128.png
eta





index-78_17.png





index-26_16.png





index-45_131.png





index-78_14.png





index-26_15.png





index-45_130.png





index-78_15.png





index-26_21.png





index-24_63.png





index-24_62.png





index-24_65.png





index-24_64.png





index-24_61.png
sonitriles





index-24_60.png





index-46_3.png





index-24_59.png
Application





index-26_23.png





index-46_5.png





index-26_22.png





index-46_4.png





index-24_56.png





index-24_55.png





index-24_58.png





index-24_57.png
sonitriles





index-26_29.png





index-46_11.png





index-26_28.png
nantioselecti





index-46_10.png





index-26_31.png





index-26_30.png
desymmetrizat





index-46_12.png





index-26_25.png





index-46_7.png





index-26_24.png





index-46_6.png





index-26_27.png





index-46_9.png





index-26_26.png





index-46_8.png





index-24_138.png





index-45_104.png





index-24_137.png
NR





index-45_103.png





index-24_140.png





index-77_23.png





index-91_50.png





index-24_139.png





index-45_105.png





index-77_24.png





index-24_52.png
arpe





index-24_51.png





index-24_54.png





index-24_53.png





index-24_49.png
nsertion





index-24_48.png





index-77_25.png





index-24_50.png
eactions





index-24_45.png





index-24_44.png





index-24_47.png





index-24_46.png





index-24_145.png





index-45_111.png





index-77_32.png
etone





index-24_144.png





index-45_110.png





index-77_33.png
(L)-prolin





index-24_147.png





index-45_113.png





index-77_30.png
Y

\





index-24_146.png





index-45_112.png





index-77_31.png





index-24_141.png





index-45_107.png





index-77_28.png





index-45_106.png





index-77_29.png
30





index-24_143.png
DIV





index-45_109.png





index-77_26.png





index-24_142.png





index-45_108.png





index-77_27.png





index-24_149.png





index-45_115.png





index-24_148.png





index-45_114.png





index-77_34.png





index-26_1.png





index-24_41.png





index-24_43.png





index-24_42.png





index-24_38.png





index-78_1.png





index-24_37.png





index-78_2.png





index-24_40.png





index-45_116.png





index-24_39.png





index-24_34.png





index-24_33.png





index-24_36.png





index-24_35.png





index-26_7.png





index-45_122.png





index-78_9.png





index-26_6.png





index-45_121.png





index-78_10.png





index-26_9.png





index-45_124.png





index-78_7.png





index-26_8.png





index-45_123.png





index-78_8.png





index-26_3.png





index-45_118.png





index-78_5.png





index-26_2.png





index-45_117.png





index-78_6.png





index-26_5.png





index-45_120.png





index-78_3.png





index-26_4.png





index-45_119.png





index-78_4.png





index-24_32.png
)





index-24_31.png





index-131_52.png





index-131_51.png





index-131_50.png





index-131_59.png





index-131_58.png





index-131_57.png





index-131_56.png





index-131_55.png





index-131_54.png





index-131_53.png





index-131_63.png





index-131_62.png





index-131_61.png





index-131_60.png





index-131_69.png





index-131_68.png





index-131_67.png





index-131_66.png





index-131_65.png





index-131_64.png





index-131_41.png





index-131_40.png





index-131_49.png





index-131_48.png





index-131_47.png





index-131_46.png





index-131_45.png





index-131_44.png





index-131_43.png





index-131_42.png





index-26_76.png





index-26_75.png





index-26_78.png





index-26_77.png





index-26_72.png





index-26_74.png





index-26_73.png





index-26_80.png





index-26_79.png





index-26_81.png





index-131_132.png





index-131_131.png





index-131_130.png





index-131_139.png





index-131_138.png





index-131_137.png





index-131_136.png





index-131_135.png





index-131_134.png





index-131_133.png





index-78_21.png





index-131_110.png





index-131_118.png





index-131_117.png





index-131_116.png





index-131_115.png





index-131_114.png





index-131_113.png





index-131_112.png





index-131_111.png





index-131_119.png





index-131_121.png





index-131_120.png





index-131_129.png





index-131_128.png





index-131_127.png





index-131_126.png





index-131_125.png





index-131_124.png





index-131_123.png
{ =t





index-131_122.png





index-131_96.png





index-131_95.png





index-131_94.png





index-131_93.png





index-131_92.png





index-131_91.png





index-131_90.png





index-131_99.png





index-131_98.png





index-131_97.png





index-131_107.png





index-131_106.png





index-131_105.png





index-131_104.png





index-131_103.png





index-131_102.png





index-131_101.png





index-131_100.png





index-131_109.png





index-131_108.png





index-131_74.png





index-131_73.png





index-131_72.png





index-131_71.png





index-131_70.png





index-131_79.png





index-131_78.png





index-131_77.png





index-131_76.png





index-131_75.png





index-131_85.png





index-131_84.png
S0





index-131_83.png





index-131_82.png





index-131_81.png





index-131_80.png





index-131_89.png
{ =t





index-131_88.png





index-131_87.png





index-131_86.png





index-26_91.png





index-26_88.png





index-46_70.png





index-78_90.png





index-26_87.png





index-46_69.png





index-26_90.png





index-46_72.png





index-78_88.png





index-26_89.png





index-46_71.png





index-78_89.png





index-26_95.png





index-46_77.png





index-78_97.png





index-26_94.png





index-46_76.png





index-78_98.png
1o1e]





index-26_97.png





index-46_79.png





index-78_95.png





index-26_96.png





index-46_78.png





index-78_96.png





index-46_73.png





index-78_93.png





index-78_94.png





index-26_93.png





index-46_75.png





index-78_91.png





index-26_92.png





index-46_74.png





index-78_92.png





index-26_99.png





index-46_81.png
at.





index-26_98.png





index-46_80.png





index-26_101.png





index-78_99.png





index-26_100.png





index-46_82.png





index-78_100.png





index-78_101.png





index-26_106.png
DME





index-46_88.png





index-78_108.png





index-26_105.png





index-46_87.png
synihes





index-78_109.png
Michae:





index-26_108.png





index-46_90.png
YT





index-78_106.png





index-26_107.png





index-46_89.png





index-78_107.png





index-26_102.png





index-46_84.png





index-78_104.png





index-46_83.png





index-78_105.png





index-26_104.png





index-46_86.png





index-78_102.png





index-26_103.png





index-46_85.png





index-78_103.png





index-46_52.png





index-46_51.png





index-78_70.png





index-46_48.png





index-78_68.png





index-46_47.png





index-78_69.png





index-46_50.png





index-78_66.png
nal





index-46_49.png





index-78_67.png
€N





index-46_55.png





index-78_75.png





index-46_54.png





index-78_76.png





index-46_57.png





index-78_73.png





index-46_56.png





index-78_74.png





index-78_71.png





index-78_72.png





index-46_53.png





index-46_62.png





index-46_59.png





index-78_79.png





index-46_58.png





index-78_80.png





index-46_61.png





index-78_77.png





index-46_60.png
synihes





index-78_78.png





index-26_84.png





index-46_66.png





index-78_86.png





index-26_83.png





index-46_65.png
Inas





index-78_87.png





index-26_86.png





index-46_68.png
CK





index-78_84.png





index-26_85.png





index-46_67.png
nhipbitors





index-78_85.png





index-78_82.png





index-78_83.png





index-26_82.png





index-46_64.png





index-46_63.png





index-78_81.png





index-78_50.png





index-78_48.png





index-78_49.png





index-78_46.png





index-78_47.png





index-78_44.png





index-78_45.png





index-46_33.png





index-78_53.png





index-78_54.png





index-46_35.png





index-78_51.png





index-46_34.png





index-78_52.png





index-46_41.png





index-46_40.png





index-78_59.png





index-46_42.png





index-78_60.png





index-46_37.png





index-78_57.png





index-46_36.png





index-78_58.png





index-46_39.png





index-78_55.png





index-46_38.png





index-78_56.png





index-46_44.png





index-78_64.png





index-46_43.png





index-78_65.png





index-46_46.png





index-78_62.png





index-46_45.png





index-78_63.png





index-78_61.png





index-78_28.png





index-78_29.png





index-78_26.png





index-78_27.png





index-78_24.png





index-78_25.png





index-78_22.png





index-78_23.png





index-78_30.png





index-78_31.png





index-78_32.png





index-24_121.png





index-78_39.png
Chna,





index-78_40.png





index-24_123.png





index-78_37.png





index-24_122.png





index-78_38.png





index-78_35.png
Cnamin





index-78_36.png





index-78_33.png
TN





index-78_34.png





index-24_129.png





index-24_128.png





index-24_130.png





index-24_125.png





index-24_124.png





index-24_127.png





index-24_126.png





index-78_42.png





index-78_43.png





index-78_41.png
&





index-23_29.png





index-23_35.png





index-23_34.png





index-23_37.png
n





index-23_36.png





index-23_31.png





index-23_30.png





index-23_33.png





index-23_32.png





index-27_56.png





index-27_55.png





index-27_58.png





index-27_57.png
4))





index-23_28.png





index-23_27.png
eterocyc





index-27_54.png





index-27_53.png





index-27_60.png





index-27_59.png
Diverse





index-27_62.png





index-27_61.png





index-23_24.png





index-23_23.png





index-23_26.png





index-23_25.png





index-23_20.png





index-23_19.png





index-23_22.png





index-23_21.png





index-23_17.png





index-23_16.png





index-23_18.png





index-23_13.png





index-23_12.png





index-23_15.png





index-23_14.png





index-23_9.png





index-23_11.png





index-23_10.png





index-27_34.png





index-27_33.png





index-27_36.png





index-27_35.png





index-23_6.png





index-23_5.png





index-23_8.png





index-23_7.png





index-27_42.png





index-27_41.png





index-27_38.png





index-27_37.png





index-27_40.png





index-27_39.png





index-23_2.png





index-23_1.png
at.





index-23_4.png





index-23_3.png





index-22_84.png





index-22_83.png





index-27_45.png





index-22_82.png





index-27_44.png





index-27_47.png





index-27_46.png





index-22_79.png





index-22_78.png





index-22_81.png





index-27_43.png





index-22_80.png





index-27_52.png





index-27_49.png





index-27_48.png





index-27_51.png





index-27_50.png





index-27_12.png





index-22_75.png





index-22_74.png
S0





index-22_77.png





index-22_76.png





index-22_73.png





index-22_72.png





index-46_113.png





index-22_71.png





index-27_14.png





index-46_115.png





index-27_13.png





index-46_114.png





index-22_68.png





index-22_67.png





index-22_70.png





index-22_69.png





index-27_20.png





index-46_121.png





index-27_19.png





index-46_120.png





index-27_22.png





index-27_21.png





index-46_122.png





index-27_16.png





index-46_117.png





index-27_15.png





index-46_116.png





index-27_18.png





index-46_119.png
A





index-27_17.png





index-46_118.png





index-22_64.png





index-22_63.png





index-22_66.png





index-22_65.png





index-22_61.png





index-27_23.png





index-46_124.png





index-22_60.png





index-46_123.png





index-27_25.png





index-46_126.png





index-22_62.png





index-27_24.png





index-46_125.png





index-22_57.png





index-22_56.png





index-22_59.png
=





index-22_58.png





index-27_31.png





index-48_6.png





index-27_30.png
penzoqul





index-48_5.png





index-27_32.png





index-27_27.png





index-48_2.png





index-27_26.png





index-48_1.png





index-27_29.png





index-48_4.png





index-27_28.png





index-48_3.png





index-26_110.png





index-46_92.png
re





index-26_109.png





index-46_91.png





index-78_110.png





index-26_111.png
atm





index-22_53.png





index-22_55.png





index-22_54.png





index-78_111.png
hemiaminanzaty





index-78_112.png





index-46_93.png





index-26_117.png





index-46_99.png





index-78_119.png





index-26_116.png
DME





index-46_98.png





index-78_120.png





index-26_119.png





index-46_101.png





index-78_117.png
TR





index-26_118.png





index-46_100.png





index-78_118.png
01





index-26_113.png





index-46_95.png





index-78_115.png





index-26_112.png





index-46_94.png
ransformation





index-78_116.png
Cyi





index-26_115.png





index-46_97.png





index-78_113.png
-ormali





index-26_114.png





index-46_96.png
nvolvin





index-78_114.png
olf





index-27_2.png





index-27_1.png





index-46_102.png





index-27_3.png





index-46_104.png
Conaition





index-46_103.png





index-27_9.png





index-46_110.png





index-27_8.png





index-46_109.png





index-27_11.png





index-46_112.png





index-27_10.png





index-46_111.png





index-27_5.png





index-46_106.png





index-27_4.png





index-46_105.png





index-27_7.png





index-46_108.png
A





index-27_6.png





index-46_107.png





index-102_70.png





index-132_34.png





index-102_69.png





index-132_33.png





index-102_68.png





index-132_32.png





index-132_31.png
1O





index-102_77.png





index-102_76.png





index-132_40.png





index-102_75.png





index-132_39.png





index-102_74.png





index-132_38.png





index-102_73.png





index-132_37.png





index-102_72.png





index-132_36.png





index-102_71.png





index-132_35.png





index-103_3.png





index-132_45.png





index-103_2.png





index-132_44.png





index-103_1.png
@)





index-132_43.png
iU





index-102_78.png





index-132_42.png
it





index-132_41.png





index-103_9.png





index-103_8.png





index-132_50.png





index-103_7.png





index-132_49.png





index-103_6.png





index-132_48.png





index-103_5.png





index-132_47.png





index-103_4.png





index-132_46.png





index-132_10.png





index-132_12.png





index-132_11.png





index-132_20.png





index-132_19.png
1O





index-132_18.png





index-132_17.png





index-132_16.png
|8





index-132_15.png
10





index-132_14.png





index-132_13.png





index-132_23.png
1O





index-132_22.png





index-132_21.png





index-132_30.png





index-132_29.png





index-132_28.png





index-132_27.png





index-132_26.png





index-132_25.png





index-132_24.png





index-132_1.png





index-132_9.png





index-132_8.png





index-132_7.png





index-132_6.png





index-132_5.png





index-132_4.png





index-132_3.png





index-132_2.png





index-78_127.png





index-78_128.png





index-78_125.png





index-78_126.png





index-78_123.png





index-78_124.png





index-78_121.png





index-78_122.png





index-103_72.png





index-103_71.png





index-103_70.png





index-78_129.png





index-78_130.png





index-103_79.png





index-103_78.png





index-103_77.png





index-103_76.png





index-103_75.png





index-103_74.png





index-103_73.png





index-78_131.png





index-79_5.png





index-79_6.png





index-79_3.png





index-79_4.png





index-79_1.png





index-79_2.png





index-78_132.png





index-78_133.png





index-103_83.png





index-103_82.png





index-103_81.png





index-103_80.png





index-79_7.png





index-103_89.png





index-103_88.png





index-103_87.png





index-103_86.png





index-103_85.png





index-103_84.png





index-79_8.png





index-79_9.png





index-103_50.png





index-132_92.png
1O





index-132_91.png
|8





index-103_58.png





index-132_100.png
|8





index-103_57.png





index-132_99.png





index-103_56.png





index-132_98.png





index-103_55.png





index-132_97.png





index-103_54.png





index-132_96.png





index-103_53.png





index-132_95.png





index-103_52.png





index-132_94.png





index-103_51.png





index-132_93.png





index-103_59.png





index-103_61.png





index-103_60.png





index-103_69.png





index-103_68.png





index-103_67.png





index-103_66.png





index-103_65.png





index-103_64.png





index-103_63.png





index-103_62.png





index-103_36.png





index-132_78.png





index-103_35.png





index-132_77.png





index-103_34.png





index-132_76.png
adica





index-103_33.png





index-132_75.png





index-103_32.png





index-132_74.png





index-103_31.png





index-132_73.png
General





index-103_30.png





index-132_72.png





index-132_71.png





index-103_39.png





index-103_38.png





index-132_80.png
1O





index-103_37.png





index-132_79.png





index-132_81.png





index-103_47.png





index-132_89.png





index-103_46.png





index-132_88.png





index-103_45.png





index-132_87.png





index-103_44.png





index-132_86.png





index-103_43.png





index-132_85.png





index-103_42.png





index-132_84.png





index-103_41.png





index-132_83.png





index-103_40.png





index-132_82.png





index-103_49.png





index-103_48.png





index-132_90.png
10





index-103_14.png





index-132_56.png





index-103_13.png





index-132_55.png





index-103_12.png





index-132_54.png





index-103_11.png





index-132_53.png





index-103_10.png





index-132_52.png





index-132_51.png





index-103_19.png





index-103_18.png





index-132_60.png





index-103_17.png





index-132_59.png





index-103_16.png





index-132_58.png





index-103_15.png





index-132_57.png





index-103_25.png





index-132_67.png





index-103_24.png





index-132_66.png





index-103_23.png





index-132_65.png





index-103_22.png





index-132_64.png





index-103_21.png
VS





index-132_63.png





index-103_20.png





index-132_62.png





index-132_61.png





index-103_29.png





index-103_28.png





index-132_70.png





index-103_27.png





index-132_69.png





index-103_26.png





index-132_68.png





index-29_20.png





index-48_65.png





index-29_19.png





index-48_64.png





index-29_22.png





index-79_76.png





index-29_21.png





index-48_66.png





index-79_77.png





index-79_78.png





index-29_27.png





index-48_72.png





index-79_85.png





index-29_26.png





index-48_71.png





index-79_86.png





index-29_29.png





index-48_74.png
at





index-79_83.png





index-29_28.png





index-48_73.png





index-79_84.png





index-29_23.png





index-48_68.png





index-79_81.png





index-48_67.png





index-79_82.png





index-29_25.png





index-48_70.png





index-79_79.png





index-29_24.png
synihes





index-48_69.png





index-79_80.png





index-29_31.png





index-48_76.png





index-29_30.png





index-48_75.png





index-79_87.png





index-29_32.png





index-48_77.png





index-29_38.png
Xampls





index-48_83.png





index-29_37.png





index-48_82.png





index-29_40.png





index-48_85.png





index-29_39.png





index-48_84.png





index-29_34.png





index-48_79.png





index-29_33.png





index-48_78.png





index-29_36.png





index-48_81.png





index-29_35.png





index-48_80.png





index-29_2.png





index-29_1.png





index-48_46.png





index-27_68.png





index-48_43.png





index-79_56.png





index-27_67.png





index-48_42.png





index-79_57.png





index-27_70.png





index-48_45.png





index-79_54.png





index-27_69.png





index-48_44.png





index-79_55.png





index-29_5.png





index-48_50.png





index-79_63.png





index-29_4.png





index-48_49.png





index-79_64.png





index-29_7.png





index-48_52.png





index-79_61.png





index-29_6.png





index-48_51.png





index-79_62.png





index-79_59.png





index-79_60.png





index-29_3.png





index-48_48.png
at





index-48_47.png





index-79_58.png





index-29_12.png





index-29_9.png





index-48_54.png





index-79_67.png





index-29_8.png





index-48_53.png





index-29_11.png





index-48_56.png





index-79_65.png





index-29_10.png





index-48_55.png





index-79_66.png





index-29_16.png
Classica





index-48_61.png





index-79_74.png





index-29_15.png





index-48_60.png





index-79_75.png





index-29_18.png





index-48_63.png





index-79_72.png





index-29_17.png
stoichiom





index-48_62.png





index-79_73.png





index-48_57.png





index-79_70.png





index-79_71.png





index-29_14.png





index-48_59.png





index-79_68.png





index-29_13.png





index-48_58.png





index-79_69.png





index-48_25.png





index-48_24.png





index-79_36.png





index-48_26.png





index-79_37.png





index-48_21.png





index-79_34.png





index-48_20.png





index-79_35.png





index-48_23.png





index-79_32.png





index-48_22.png





index-79_33.png





index-48_28.png





index-79_41.png





index-48_27.png





index-79_42.png





index-48_30.png





index-79_39.png





index-48_29.png





index-79_40.png





index-79_38.png





index-24_22.png





index-48_36.png





index-24_21.png





index-48_35.png





index-24_24.png





index-79_47.png





index-24_23.png





index-48_32.png





index-79_45.png





index-48_31.png





index-79_46.png





index-48_34.png





index-79_43.png





index-48_33.png





index-79_44.png





index-24_30.png





index-24_29.png





index-24_26.png





index-24_25.png





index-24_28.png





index-24_27.png





index-27_64.png





index-48_39.png





index-79_52.png





index-27_63.png





index-48_38.png





index-79_53.png





index-27_66.png





index-48_41.png





index-79_50.png





index-27_65.png





index-48_40.png





index-79_51.png





index-79_48.png





index-79_49.png





index-48_37.png





index-24_11.png





index-79_16.png





index-79_17.png





index-24_13.png





index-79_14.png





index-24_12.png





index-79_15.png





index-79_12.png





index-79_13.png





index-79_10.png





index-79_11.png





index-24_19.png





index-24_18.png





index-24_20.png





index-24_15.png





index-24_14.png
)





index-24_17.png





index-24_16.png





index-79_19.png





index-79_20.png





index-48_8.png





index-48_7.png





index-79_18.png





index-48_14.png





index-79_27.png





index-48_13.png





index-24_2.png





index-48_16.png





index-79_25.png





index-24_1.png





index-48_15.png





index-79_26.png





index-48_10.png





index-79_23.png





index-48_9.png





index-79_24.png





index-48_12.png





index-79_21.png





index-48_11.png





index-79_22.png





index-24_8.png





index-24_7.png





index-24_10.png





index-24_9.png





index-24_4.png





index-24_3.png





index-24_6.png





index-24_5.png





index-23_38.png
{HY





index-48_17.png





index-79_30.png





index-79_31.png





index-48_19.png





index-79_28.png





index-48_18.png





index-79_29.png





index-43_26.png





index-75_16.png





index-43_25.png
ycle





index-75_17.png





index-43_28.png





index-75_14.png





index-43_27.png





index-75_15.png
friede;





index-75_13.png





index-43_34.png





index-43_33.png





index-75_22.png





index-43_30.png
ata





index-75_20.png





index-43_29.png





index-75_21.png





index-43_32.png
ycle





index-75_18.png





index-43_31.png
1ic





index-75_19.png





index-43_37.png





index-43_36.png





index-43_39.png





index-43_38.png





index-43_35.png





index-43_44.png





index-43_41.png





index-43_40.png





index-43_43.png





index-43_42.png
Pr





index-43_4.png





index-9_9.png





index-9_8.png





index-9_11.png





index-9_10.png





index-9_13.png





index-9_12.png





index-74_43.png





index-74_44.png





index-43_6.png





index-43_5.png





index-74_42.png





index-43_12.png





index-75_2.png





index-43_11.png





index-43_14.png





index-74_49.png





index-43_13.png





index-75_1.png





index-43_8.png





index-74_47.png





index-43_7.png





index-74_48.png





index-43_10.png





index-74_45.png





index-43_9.png





index-74_46.png





index-43_15.png





index-75_5.png





index-75_6.png
oluen:





index-43_17.png





index-75_3.png





index-43_16.png





index-75_4.png
microwa





index-43_23.png
ata





index-43_22.png





index-75_11.png





index-43_24.png
1ic





index-75_12.png
Wi





index-43_19.png





index-75_9.png





index-43_18.png





index-75_10.png





index-43_21.png





index-75_7.png





index-43_20.png





index-75_8.png





index-41_180.png





index-41_179.png





index-74_20.png





index-88_60.png





index-41_181.png





index-74_21.png





index-9_29.png
eac





index-9_28.png





index-9_31.png
te





index-9_30.png





index-9_33.png





index-9_32.png





index-9_35.png





index-9_34.png





index-88_61.png





index-9_26.png
solatec





index-74_22.png





index-88_62.png





index-9_25.png





index-9_27.png





index-41_187.png





index-74_29.png





index-89_3.png





index-41_186.png





index-74_30.png





index-89_4.png





index-41_189.png





index-74_27.png





index-89_1.png





index-41_188.png





index-74_28.png





index-89_2.png





index-41_183.png
Ithout





index-74_25.png





index-88_65.png
2X





index-41_182.png





index-74_26.png





index-88_66.png
eat





index-41_185.png





index-74_23.png





index-88_63.png





index-41_184.png
olve





index-74_24.png





index-88_64.png





index-41_191.png





index-41_190.png





index-74_31.png





index-9_18.png
Severa





index-9_20.png
UCCesSSsIVE





index-9_19.png





index-9_22.png





index-9_21.png





index-9_24.png





index-9_23.png





index-74_32.png





index-89_6.png





index-9_15.png





index-74_33.png





index-89_7.png





index-9_14.png





index-41_192.png





index-9_17.png





index-89_5.png





index-9_16.png





index-43_1.png





index-74_40.png





index-89_14.png





index-41_197.png





index-74_41.png





index-43_3.png





index-74_38.png





index-89_12.png





index-43_2.png





index-74_39.png





index-89_13.png





index-41_194.png





index-74_36.png





index-89_10.png





index-41_193.png





index-74_37.png





index-89_11.png





index-41_196.png





index-74_34.png





index-89_8.png





index-41_195.png





index-74_35.png





index-89_9.png





index-73_68.png





index-88_40.png





index-74_1.png





index-73_66.png





index-88_38.png





index-9_49.png
operatio





index-73_67.png





index-88_39.png





index-9_48.png





index-9_51.png





index-9_50.png





index-9_53.png





index-9_52.png





index-9_55.png





index-9_54.png
na





index-9_57.png





index-9_56.png
produ





index-9_47.png





index-41_165.png





index-74_7.png





index-88_47.png





index-41_164.png





index-74_8.png





index-88_48.png





index-41_167.png





index-74_5.png





index-88_45.png





index-41_166.png





index-74_6.png





index-88_46.png





index-74_3.png





index-88_43.png





index-74_4.png





index-88_44.png





index-41_163.png





index-88_41.png





index-41_162.png





index-74_2.png





index-88_42.png





index-41_169.png





index-74_11.png





index-41_168.png





index-41_171.png





index-74_9.png





index-88_49.png





index-9_38.png





index-41_170.png





index-74_10.png





index-88_50.png





index-9_40.png





index-9_39.png





index-9_42.png





index-9_41.png





index-9_44.png





index-9_43.png





index-9_46.png





index-9_45.png





index-9_37.png





index-88_51.png





index-9_36.png





index-41_176.png





index-74_18.png





index-88_58.png





index-41_175.png





index-74_19.png





index-88_59.png





index-41_178.png





index-74_16.png





index-88_56.png
tOH





index-41_177.png





index-74_17.png





index-88_57.png





index-41_172.png





index-74_14.png





index-88_54.png
AcOH





index-74_15.png





index-88_55.png





index-41_174.png
=





index-74_12.png





index-88_52.png





index-41_173.png





index-74_13.png





index-88_53.png





index-12_9.png





index-12_8.png





index-12_11.png





index-12_10.png





index-12_13.png





index-12_12.png





index-12_15.png





index-12_14.png





index-12_17.png





index-12_16.png





index-9_58.png





index-9_60.png





index-9_59.png
solatec





index-12_2.png





index-12_1.png





index-12_4.png





index-12_3.png





index-12_6.png





index-12_5.png





index-12_7.png





index-12_29.png
ZSC





index-12_28.png





index-12_31.png





index-12_30.png





index-12_33.png





index-12_32.png





index-12_35.png





index-12_34.png





index-12_37.png





index-12_36.png





index-12_18.png





index-12_20.png





index-12_19.png





index-12_22.png





index-12_21.png





index-12_24.png





index-12_23.png





index-12_26.png





index-12_25.png





index-12_27.png





index-43_48.png





index-43_47.png





index-43_50.png





index-43_49.png





index-43_46.png





index-43_45.png





index-43_52.png





index-43_51.png





index-43_54.png





index-43_53.png





index-43_59.png





index-43_58.png





index-43_61.png





index-43_60.png





index-43_55.png





index-43_57.png





index-43_56.png





index-43_63.png





index-43_62.png





index-43_64.png





index-110_112.png





index-110_120.png





index-110_119.png





index-110_118.png





index-110_117.png





index-110_116.png





index-110_115.png





index-110_114.png





index-110_113.png
Micha





index-111_1.png
@)





index-113_1.png
@)





index-112_1.png
@)





index-121_1.png
@)





index-120_1.png
@)





index-119_1.png
@)





index-118_1.png
@)





index-117_1.png
@)





index-116_1.png
@)





index-115_1.png
@)





index-114_1.png
@)





index-110_98.png





index-110_97.png





index-110_96.png





index-110_95.png





index-110_94.png





index-110_93.png





index-110_92.png





index-110_101.png





index-110_100.png





index-110_99.png





index-110_109.png





index-110_108.png





index-110_107.png





index-110_106.png





index-110_105.png





index-110_104.png





index-110_103.png





index-110_102.png





index-110_111.png





index-110_110.png





index-110_76.png





index-110_75.png





index-110_74.png





index-110_73.png





index-110_72.png





index-110_81.png





index-110_80.png





index-110_79.png





index-110_78.png





index-110_77.png





index-110_87.png





index-110_86.png





index-110_85.png





index-110_84.png





index-110_83.png





index-110_82.png





index-110_91.png





index-110_90.png





index-110_89.png





index-110_88.png





index-110_65.png





index-110_64.png





index-110_63.png





index-110_62.png





index-110_71.png





index-110_70.png





index-110_69.png





index-110_68.png





index-110_67.png





index-110_66.png





index-75_52.png





index-75_50.png





index-90_29.png





index-75_51.png





index-90_30.png





index-75_48.png





index-90_27.png





index-75_49.png





index-90_28.png





index-43_67.png





index-75_57.png
gene





index-90_36.png





index-43_66.png





index-75_58.png
ra





index-90_37.png





index-43_69.png





index-75_55.png





index-90_34.png





index-43_68.png





index-75_56.png





index-90_35.png





index-75_53.png





index-90_32.png





index-75_54.png





index-90_33.png





index-43_65.png





index-90_31.png





index-43_74.png





index-43_71.png





index-75_61.png





index-90_40.png





index-43_70.png





index-75_62.png





index-43_73.png





index-75_59.png





index-90_38.png





index-43_72.png





index-75_60.png





index-90_39.png





index-43_78.png
bipy,





index-75_68.png





index-90_47.png





index-43_77.png





index-75_69.png





index-90_48.png





index-43_80.png





index-75_66.png





index-90_45.png





index-43_79.png





index-75_67.png





index-90_46.png





index-75_64.png





index-90_43.png





index-75_65.png





index-90_44.png





index-43_76.png





index-90_41.png





index-43_75.png





index-75_63.png





index-90_42.png





index-75_32.png





index-75_30.png





index-90_9.png





index-75_31.png





index-90_10.png





index-75_28.png





index-90_7.png





index-75_29.png





index-90_8.png
min





index-75_26.png





index-90_5.png





index-75_27.png





index-90_6.png





index-75_35.png





index-90_14.png





index-75_36.png





index-90_15.png





index-75_33.png





index-90_12.png





index-75_34.png





index-90_13.png





index-90_11.png





index-75_41.png





index-90_20.png





index-75_42.png





index-75_39.png





index-90_18.png





index-75_40.png





index-90_19.png





index-75_37.png





index-90_16.png





index-75_38.png





index-90_17.png





index-75_46.png





index-90_25.png





index-75_47.png





index-90_26.png





index-75_44.png





index-90_23.png





index-75_45.png





index-90_24.png





index-90_21.png





index-75_43.png





index-90_22.png





index-89_33.png





index-89_34.png
nol%





index-89_31.png





index-89_32.png





index-89_29.png





index-89_30.png





index-89_27.png





index-89_28.png





index-129_19.png





index-129_18.png





index-129_17.png





index-129_16.png





index-129_15.png





index-129_24.png





index-129_23.png
Ph





index-129_22.png





index-129_21.png





index-129_20.png





index-89_36.png





index-89_37.png





index-89_35.png





index-89_44.png





index-89_42.png





index-89_43.png





index-89_40.png





index-89_41.png





index-89_38.png





index-89_39.png





index-75_24.png





index-90_3.png





index-75_25.png





index-90_4.png





index-90_1.png





index-75_23.png





index-90_2.png





index-124_1.png
@)





index-123_1.png
@)





index-122_1.png
@)





index-129_4.png





index-129_3.png





index-129_2.png





index-129_1.png





index-127_1.png
@)





index-126_1.png
@)





index-125_1.png
@)





index-89_15.png





index-89_22.png





index-89_23.png





index-89_20.png





index-89_21.png





index-89_18.png





index-89_19.png





index-89_16.png





index-89_17.png





index-129_8.png





index-129_7.png





index-129_6.png





index-129_5.png





index-89_24.png





index-129_14.png





index-129_13.png





index-129_12.png





index-129_11.png





index-129_10.png





index-129_9.png





index-89_25.png





index-89_26.png





index-45_48.png





index-45_47.png





index-45_50.png





index-45_49.png





index-45_46.png





index-45_55.png





index-45_52.png





index-45_51.png





index-45_54.png





index-45_53.png





index-45_59.png





index-45_58.png
zatio





index-45_61.png





index-45_60.png
ol





index-45_57.png
ctionali





index-45_56.png





index-45_63.png





index-45_62.png





index-45_65.png





index-45_64.png





index-45_26.png





index-75_115.png





index-75_116.png





index-45_28.png





index-75_113.png





index-45_27.png





index-75_114.png





index-45_34.png





index-45_33.png





index-75_121.png
(suga





index-45_35.png





index-75_122.png





index-45_30.png





index-75_119.png





index-45_29.png





index-75_120.png





index-45_32.png





index-75_117.png





index-45_31.png





index-75_118.png





index-45_37.png





index-45_36.png





index-45_39.png





index-45_38.png





index-45_45.png





index-45_44.png





index-45_41.png





index-45_40.png
DIV





index-45_43.png





index-45_42.png





index-45_5.png





index-45_4.png





index-75_92.png





index-75_93.png





index-75_94.png





index-45_6.png





index-45_12.png





index-75_101.png





index-45_11.png





index-75_102.png





index-45_14.png





index-75_99.png





index-45_13.png





index-75_100.png





index-45_8.png





index-75_97.png





index-45_7.png





index-75_98.png





index-45_10.png





index-75_95.png





index-45_9.png





index-75_96.png





index-45_15.png





index-75_104.png





index-75_105.png





index-45_17.png





index-45_16.png





index-75_103.png





index-45_23.png





index-75_112.png





index-45_22.png





index-45_25.png





index-75_110.png





index-45_24.png





index-75_111.png





index-45_19.png





index-75_108.png





index-45_18.png





index-75_109.png





index-45_21.png





index-75_106.png





index-45_20.png





index-75_107.png





index-43_82.png





index-75_72.png





index-43_81.png





index-43_84.png





index-75_70.png





index-90_49.png





index-43_83.png





index-75_71.png





index-90_50.png





index-90_51.png





index-43_89.png





index-75_79.png





index-90_58.png





index-43_88.png





index-75_80.png
ipha-oxoxete





index-90_59.png





index-43_91.png





index-75_77.png





index-90_56.png





index-43_90.png





index-75_78.png





index-90_57.png





index-43_85.png





index-75_75.png





index-90_54.png





index-75_76.png





index-90_55.png





index-43_87.png





index-75_73.png





index-90_52.png





index-43_86.png





index-75_74.png





index-90_53.png





index-43_93.png





index-43_92.png





index-75_81.png





index-90_60.png





index-43_94.png
DV





index-75_82.png





index-90_61.png





index-75_83.png





index-90_62.png





index-45_1.png





index-75_90.png





index-90_69.png





index-43_99.png





index-75_91.png





index-90_70.png





index-45_3.png





index-75_88.png





index-90_67.png





index-45_2.png





index-75_89.png





index-90_68.png





index-43_96.png





index-75_86.png





index-90_65.png





index-43_95.png





index-75_87.png





index-90_66.png





index-43_98.png





index-75_84.png





index-90_63.png





index-43_97.png





index-75_85.png





index-90_64.png





index-129_27.png





index-129_26.png





index-129_25.png





index-129_34.png
Hic





index-129_33.png
‘Nucleop





index-129_32.png





index-129_31.png





index-129_30.png





index-129_29.png





index-129_28.png





index-131_11.png





index-131_10.png





index-131_19.png





index-131_18.png





index-131_17.png





index-131_16.png





index-131_15.png





index-131_14.png





index-131_13.png





index-131_12.png





index-90_77.png





index-90_78.png





index-90_75.png





index-90_76.png





index-90_73.png





index-90_74.png





index-90_71.png





index-90_72.png





index-131_22.png





index-131_21.png





index-131_20.png





index-90_79.png





index-90_80.png





index-131_29.png





index-131_28.png





index-131_27.png





index-131_26.png





index-131_25.png





index-131_24.png





index-131_23.png





index-90_81.png





index-129_82.png
'Y





index-129_81.png





index-129_80.png
Vv





index-129_79.png





index-129_78.png





index-129_77.png





index-129_76.png
ectron-





index-129_75.png





index-129_84.png





index-129_83.png





index-129_85.png





index-131_8.png





index-131_7.png





index-131_6.png
{ =t





index-131_5.png





index-131_4.png





index-131_3.png





index-131_2.png





index-131_1.png





index-131_9.png





index-129_60.png





index-129_59.png





index-129_58.png





index-129_57.png





index-129_56.png





index-129_55.png





index-129_64.png





index-129_63.png





index-129_62.png





index-129_61.png





index-129_71.png





index-129_70.png
S(





index-129_69.png





index-129_68.png





index-129_67.png





index-129_66.png





index-129_65.png





index-129_74.png





index-129_73.png





index-129_72.png





index-129_38.png





index-129_37.png
Electron-ric





index-129_36.png





index-129_35.png
aagica





index-129_44.png





index-129_43.png
Electron-poc





index-129_42.png





index-129_41.png





index-129_40.png





index-129_39.png
yste





index-129_49.png
‘clectrop





index-129_48.png





index-129_47.png
(Acceplo





index-129_46.png





index-129_45.png
yste





index-129_54.png





index-129_53.png





index-129_52.png





index-129_51.png
aagica





index-129_50.png
li{le;





index-45_85.png





index-45_82.png





index-77_3.png





index-91_30.png





index-45_81.png





index-77_4.png





index-45_84.png





index-77_1.png





index-91_28.png





index-45_83.png





index-77_2.png





index-91_29.png





index-45_89.png





index-77_10.png





index-91_37.png





index-45_88.png





index-77_11.png





index-91_38.png





index-45_91.png





index-77_8.png





index-91_35.png





index-45_90.png





index-77_9.png





index-91_36.png





index-77_6.png





index-91_33.png





index-77_7.png





index-91_34.png





index-45_87.png





index-91_31.png





index-45_86.png





index-77_5.png





index-91_32.png





index-45_93.png
at.





index-77_14.png





index-45_92.png





index-45_95.png





index-77_12.png





index-91_39.png





index-45_94.png





index-77_13.png





index-91_40.png





index-91_41.png





index-24_134.png





index-45_100.png





index-77_21.png





index-91_48.png





index-24_133.png





index-45_99.png





index-77_22.png
490





index-91_49.png





index-24_136.png





index-45_102.png





index-77_19.png





index-91_46.png





index-24_135.png





index-45_101.png





index-77_20.png





index-91_47.png





index-45_96.png





index-77_17.png





index-91_44.png





index-77_18.png





index-91_45.png





index-24_132.png
NR





index-45_98.png





index-77_15.png





index-91_42.png





index-24_131.png





index-45_97.png





index-77_16.png





index-91_43.png





index-76_11.png
DIV





index-91_10.png





index-76_12.png





index-76_9.png





index-91_8.png





index-76_10.png





index-91_9.png





index-76_7.png





index-91_6.png





index-76_8.png





index-91_7.png





index-45_67.png





index-76_16.png





index-91_15.png





index-45_66.png





index-76_17.png





index-91_16.png





index-45_69.png





index-76_14.png





index-91_13.png





index-45_68.png





index-76_15.png





index-91_14.png





index-91_11.png





index-76_13.png





index-91_12.png





index-45_75.png





index-45_74.png





index-76_22.png





index-45_71.png





index-76_20.png





index-91_19.png





index-45_70.png





index-76_21.png





index-91_20.png





index-45_73.png





index-76_18.png





index-91_17.png





index-45_72.png
andem





index-76_19.png





index-91_18.png





index-45_78.png





index-76_27.png





index-91_26.png





index-45_77.png





index-76_28.png





index-91_27.png





index-45_80.png





index-76_25.png





index-91_24.png





index-45_79.png





index-76_26.png





index-91_25.png





index-76_23.png





index-91_22.png





index-76_24.png





index-91_23.png





index-45_76.png





index-91_21.png





index-75_131.png





index-90_110.png





index-75_132.png





index-75_129.png





index-90_108.png





index-75_130.png





index-90_109.png





index-75_127.png





index-90_106.png





index-75_128.png





index-90_107.png





index-75_125.png





index-90_104.png





index-75_126.png





index-90_105.png





index-75_134.png





index-90_113.png





index-75_135.png





index-90_114.png





index-90_111.png





index-75_133.png





index-90_112.png





index-76_2.png





index-75_140.png
nactive,





index-90_119.png
N





index-76_1.png





index-90_120.png





index-75_138.png





index-90_117.png





index-75_139.png





index-90_118.png





index-75_136.png





index-90_115.png





index-75_137.png





index-90_116.png





index-76_5.png





index-91_4.png





index-76_6.png





index-91_5.png





index-76_3.png





index-91_2.png





index-76_4.png





index-91_3.png





index-91_1.png





index-90_88.png





index-90_89.png





index-90_86.png





index-90_87.png





index-90_84.png





index-90_85.png





index-90_82.png





index-90_83.png





index-131_33.png





index-131_32.png





index-131_31.png





index-131_30.png





index-90_90.png





index-131_39.png





index-131_38.png





index-131_37.png





index-131_36.png





index-131_35.png





index-131_34.png





index-90_91.png





index-90_92.png





index-90_99.png





index-90_100.png





index-90_97.png





index-90_98.png





index-90_95.png





index-90_96.png





index-90_93.png





index-90_94.png





index-75_123.png





index-90_102.png





index-75_124.png





index-90_103.png





index-90_101.png





