

[image: Image 1]

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

[image: Image 7]

[image: Image 8]

Dieter Mergel

Physics with Excel

and Python

Using the Same Data Structure

Volume I: Basics, Exercises and Tasks

Physics with Excel and Python

Dieter Mergel

Physics with Excel

and Python

Using the Same Data Structure

Volume I: Basics, Exercises and Tasks

Dieter Mergel

Fakultät für Physik

Universität Duisburg-Essen

Duisburg, Nordrhein-Westfalen, Germany

ISBN 978-3-030-82324-5

ISBN 978-3-030-82325-2 (eBook)

https://doi.org/10.1007/978-3-030-82325-2

Based on the German language edition: Physik mit Excel und Visual Basic by Dieter Mergel,

© 2017 2017. Published by Springer-Spectrum. All Rights Reserved, and extended with Python solutions.

© Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

 Ψ E xcel —as powerful as necessary, Python—as simple as possible.

This book treats a series of physics exercises that were developed for

courses at the University of Duisburg-Essen for students training to become

physics/mathematics teachers or physics engineers. The exercises were intended to

introduce computational physics based on spreadsheet calculation combined with

simple VBA macros and also to broaden the beginner’s knowledge of physics.

This approach garnered positive reactions from practitioners and resulted in a text-

book in German. 1 Furthermore, the methods developed turned out to be powerful enough to treat a broad range of topics in undergraduate physics, resulting in a

second volume with exercises on particles, waves, fields, and random processes. 2

Referees found the exercises interesting and ambitious enough to serve for

undergraduate education. However, concerns arose that spreadsheet techniques,

although useful in the business world, might be a dead end for students who would

be required to use scientific computing in their future research work. Therefore,

the concept has been changed for the present English version. Programming in

Python is now included from the beginning, while the same topics are addressed

as in the German textbook.

The key to all of the exercises is data structures, developed in introductory sec-

tions that explain the physical problems. They serve as an interface to both Excel

and Python, and potentially also to other applications for scientific computation.

To enable this approach, the Excel solutions in this edition use vectorized code

and matrix formulas to mimic broadcasting, an essential Python technique for

creating new arrays.

We feel that this approach is suitable as a low-threshold introduction to scien-

tific computing as early as high school all the way up to undergraduate physics

1 Dieter Mergel, Physik mit Excel und Visual Basic Grundlagen, Beispiele und Aufgaben, Springer Spektrum (2017), https://doi.org/10.1007/978-3-642-37857-7.

2 Dieter Mergel, Physik lernen mit Excel und Visual Basic, Anwendungen auf Teilchen, Wellen,

Felder und Zufallsprozesse, Springer Spektrum (2018), https://doi.org/10.1007/978-3-662-575

13-0.

v

vi

Preface

classes at the university and may also be a good start for students who later choose

to specialize in computational physics.

Our approach is intended to make the student fit for a computer-oriented world,

be it for spreadsheet calculations in business, scientific computing in research, or

mathematics and physics teaching in high school. We take into account that not all

students have the same attitude towards programming; some have to be encouraged

to venture into a new world, whereas others have to be cautioned not to rush into

blind programming.

Duisburg, Germany

Dieter Mergel

Contents

1

Introduction .

1

1.1

A Two-Track Didactical Approach .

1

1.2

What Can You Expect? .

2

1.3

What Do You Need? .

3

1.4

Tim, Alac, and Mag .

3

1.5

Didactic Concept .

5

1.6

Subject Matter .

7

1.7

Getting Started with Excel .

8

1.7.1

Start Menu .

8

1.7.2

Spreadsheet Presentation .

9

1.8

Getting Started with Python .

10

1.9

Skills to Be Trained .

11

2

Data Structures, Excel and Python Basics .

15

2.1

Introduction: Named Ranges in Excel, Arrays in Numpy

15

2.2

Characteristics of a Parabola .

17

2.2.1

Different Definitions of a Parabola .

17

2.2.2

Data Structure and Nomenclature .

19

2.3

Basic Exercise in Spreadsheet Calculation .

19

2.3.1

Cell Addressing .

19

2.3.2

Graphical Representation of a Function

22

2.3.3

Smart Legends in Figures .

24

2.3.4

Scroll Bars .

24

2.3.5

Summary: Cell References and Name Manager

26

2.3.6

What Have We Learned so Far, and How

to Proceed Further? .

30

2.3.7

Python Program .

30

2.4

Python and NumPy Basics .

31

2.4.1

Basic Exercise .

31

2.4.2

Data Structures .

34

2.4.3

Python Libraries .

35

2.4.4

Numpy Constructions .

36

vii

viii

Contents

2.4.5

Standard Plot Program .

39

2.4.6

Formatted Output .

41

2.5

Matrix Calculations in Excel and Python .

41

2.5.1

Data Structure and Nomenclature .

41

2.5.2

Operations on Arrays .

42

2.5.3

Matrices in Spreadsheets .

43

2.5.4

Matrices in Python .

45

2.6

Four Parabolas and Their Upper Envelope .

49

2.6.1

Graphical Representation .

50

2.6.2

Data Structure and Nomenclature .

51

2.6.3

Spreadsheet Calculation .

51

2.6.4

Python Program .

52

2.6.5

Extrema Along Different Axes .

56

2.7

Sum of Four Cosine Functions .

57

2.7.1

Sound and a Cosine Identity .

57

2.7.2

Data Structure and Nomenclature .

62

2.7.3

Spreadsheet Layout .

62

2.7.4

Python Program .

64

2.7.5

Producing Labels (as Strings) in Excel and Python

68

2.8

Questions .

69

3

Formula Networks and Linked Diagrams .

75

3.1

Introduction: Well-Structured Sheets and Programs

75

3.2

Image Construction for Focusing and Diverging Lenses

78

3.2.1

Straight Line Equation .

78

3.2.2

Geometrical Image Construction for a Thin

Focusing Lens .

80

3.2.3

Imaging Equation with Correct Signs

82

3.2.4

Beam Through a Converging Lens that Really

Contributes to the Image .

83

3.2.5

Data Structure and Nomenclature .

86

3.2.6

Spreadsheet Calculation .

86

3.2.7

Python Program .

88

3.3

Doppler Effect .

92

3.3.1

A Formula for All Cases .

92

3.3.2

A Sound Source Passes a Remote Receiver

95

3.3.3

Data Structure and Nomenclature .

96

3.3.4

Spreadsheet Calculation “Remote Receiver”

97

3.3.5

Python Program “Remote Receiver”

97

3.4

Exponentials .

99

3.4.1

Explosive Character of Exponentials

99

3.4.2

General Exponential Function .

101

3.4.3

Representation in a Diagram .

102

3.4.4

Diode Characteristics I(U) .

103

3.4.5

Data Structure and Nomenclature .

104

Contents

ix

3.4.6

Spreadsheet Calculation .

105

3.4.7

Python Program .

107

3.5

Questions .

109

4

Macros with Visual Basic and Their Correspondences in Python . . .

115

4.1

Introduction: For, If, Sub/Def .

115

4.2

Basic Exercise: For- Loops . 118

4.2.1

Visual-Basic-Editor 1: Editing .

118

4.2.2

Programming .

119

4.3

Macro-Controlled Drawings with For, Sub, If 123

4.3.1

Macro Recorder .

124

4.3.2

Visual-Basic Editor 2: Macro Recording,

Debugging .

127

4.3.3

Programming Elements .

128

4.4

A Checkerboard Pattern (Excel) .

132

4.4.1

Checkerboard, Same-Colored and Multi-colored

132

4.4.2

Global Variables .

134

4.5

A Checkerboard Pattern (Python) .

135

4.5.1

Turtle .

135

4.5.2

Differences to Visual Basic .

137

4.5.3

Checkerboard with Squares, Triangles, and Circles

139

4.6

Drawing Densely-Packed Atomic Layers; Crystal Physics

143

4.6.1

Program Structure and Geometry .

143

4.6.2

Data Structure and Nomenclature .

146

4.6.3

Excel .

146

4.6.4

Python .

148

4.7

Text Processing .

151

4.7.1

Cutting and Joining Strings .

151

4.7.2

Data Structure and Program Flow .

153

4.7.3

Excel .

154

4.7.4

Programming Step by Step .

156

4.7.5

VBA Constructs .

157

4.7.6

Python .

157

4.8

Processing the Protocol of a Measuring Device

160

4.8.1

Protocol of a Measuring Device .

161

4.8.2

Detection of Code Words .

162

4.8.3

Data Structure and Nomenclature .

162

4.8.4

Excel .

163

4.8.5

Python .

165

4.9

User-Defined Functions .

168

4.9.1

User-Defined Functions as Add-In .

168

4.9.2

Scalar Product and Vector Product .

170

4.9.3

Python .

173

4.10

Questions and Tasks .

174

x

Contents

5

Basic Mathematical Techniques .

181

5.1

Introduction: Calculus, Vectors, and Linear Algebra

181

5.2

Straight-Line Segment Under a Magnifying Glass

182

5.2.1

Under a Magnifying Glass .

182

5.2.2

Data Structure and Nomenclature .

183

5.2.3

Spreadsheet Calculation .

184

5.2.4

Plotting Vectors with Python Matplotlib

185

5.3

Differentiation .

185

5.3.1

First and Second Derivative .

186

5.3.2

Data Structure and Nomenclature .

190

5.3.3

Spreadsheet Layout .

190

5.3.4

Python Program .

191

5.4

Integration .

192

5.4.1

Area Under a Curve .

192

5.4.2

Length of a Curve .

194

5.4.3

Data Structure and Nomenclature for the Arrays

in the Integration .

194

5.4.4

Python Program .

195

5.4.5

Spreadsheet Solution .

197

5.5

Vectors in the Plane .

198

5.5.1

Vectors .

198

5.5.2

Data Structure and Nomenclature .

200

5.5.3

Spreadsheet Layout .

200

5.5.4

Python Program .

202

5.6

Tangents to and Perpendiculars on a Curve .

204

5.6.1

At/On a Polynomial and an Ellipse

204

5.6.2

Data Structure and Nomenclature .

205

5.6.3

Python Program .

205

5.6.4

Spreadsheet Solution .

206

5.7

Banked Curve .

207

5.7.1

Cross-Section of the Road .

207

5.7.2

Data Structure and Nomenclature .

209

5.7.3

Python Program .

209

5.7.4

Spreadsheet Solution .

211

5.8

Weighted Average .

211

5.8.1

A Mobile with Two Arms .

212

5.8.2

Data Structure and Nomenclature .

213

5.8.3

Python Program .

213

5.8.4

Spreadsheet Calculation .

214

5.9

Systems of Linear Equations .

215

5.9.1

Polynomial and Electrical Network

215

5.9.2

Data Structure and Nomenclature .

218

5.9.3

Spreadsheet Solutions .

219

5.9.4

Python Programs .

220

Contents

xi

5.10

Some Mathematical Functions .

222

5.11

Questions and Tasks .

224

6

Superposition of Movements .

227

6.1

Introduction: Translations and Rotations .

227

6.2

Projectile Trajectory with Velocity Vectors (T-T)

229

6.2.1

Projectile Trajectory and Velocity Vectors

229

6.2.2

Data Structure and Nomenclature .

230

6.2.3

Spreadsheet .

231

6.2.4

Python .

233

6.2.5

Animation of Figures with FuncAnimation

234

6.3

Cycloid, Rolling Curve (R-T) .

238

6.3.1

Trace of a Writing Point Fixed at a Rolling Wheel

238

6.3.2

Data Structure and Nomenclature .

241

6.3.3

Excel .

242

6.3.4

Python .

244

6.4

Foucault’s Pendulum (T-R) .

246

6.4.1

A Lecture Experiment .

246

6.4.2

Data Structure and Nomenclature .

248

6.4.3

Excel .

248

6.4.4

Python .

250

6.5

Anchor, Deflected Out of Its Rest Position (R-R)

251

6.5.1

Deflected Anchor .

251

6.5.2

Data Structure and Nomenclature .

254

6.5.3

Excel .

255

6.5.4

Python .

256

6.6

Wavefronts, Sound Barriers, and Mach Cone (T-T)

258

6.6.1

Emitting Sound Waves .

259

6.6.2

Data Structure and Nomenclature .

261

6.6.3

Spreadsheet Solution .

261

6.6.4

Python .

264

6.7

Questions and Tasks .

265

7

Integration of Newton’s Equation of Motion .

269

7.1

Introduction: Approximated Mean Value Instead of Exact

Integration .

269

7.1.1

Newton’s Equation of Motion .

269

7.1.2

Four Methods for Estimating the Average

Acceleration in a Time Segment .

271

7.1.3

Tactical Approaches in Python and Excel

272

7.2

Harmonic Oscillation with “Progress with Look-Ahead”

and “Runge–Kutta” .

272

7.2.1

Equation of Motion .

273

7.2.2

Data Structure and Nomenclature .

275

7.2.3

Spreadsheet Calculation .

275

7.2.4

Python .

276

xii

Contents

7.3

Falling from a (Not Too) Great Height .

278

7.3.1

Limiting Cases, Analytically Solved

279

7.3.2

Data Structure and Nomenclature .

280

7.3.3

Spreadsheet .

280

7.3.4

Python .

282

7.4

Stratospheric Jump .

283

7.4.1

Data Structure and Nomenclature .

285

7.4.2

Spreadsheet Calculation .

285

7.4.3

Python .

286

7.5

A Car Drives with Variable Power .

286

7.5.1

Various Types of Power .

287

7.5.2

Data Structure and Nomenclature .

291

7.5.3

Excel .

291

7.5.4

Python .

295

7.6

Bungee Jump .

298

7.6.1

Simulation of the Motion .

298

7.6.2

Analytical Calculations .

300

7.6.3

Data Structure and Nomenclature .

302

7.6.4

Excel .

302

7.6.5

Python .

304

7.7

Questions and Tasks .

304

8

Random Numbers and Statistical Reasoning .

307

8.1

Introduction: Statistical Experiments Instead of Theoretical

Derivations .

307

8.2

Equi-Distributed Random Numbers, Frequencies

of Occurrence, Chi2 Test .

310

8.2.1

A Spreadsheet Experiment with Random Numbers

310

8.2.2

Data Structure and Nomenclature .

315

8.2.3

Python .

315

8.3

Points Randomly Distributed in a Unit Square

318

8.3.1

Creation and Distribution of the Points

318

8.3.2

Data Structure and Nomenclature .

321

8.3.3

Excel .

321

8.3.4

Python .

324

8.3.5

Why Calculate Twice? .

326

8.4

Set Operations in Numpy .

327

8.4.1

Sets .

327

8.4.2

Data Structure and Nomenclature .

330

8.4.3

Python .

330

8.5

Normally Distributed Random Numbers .

332

8.5.1

Normal Distribution, Probability Density

and Distribution Function .

333

8.5.2

Random-Number Generator and Frequencies

of Occurrence .

336

Contents

xiii

8.5.3

Where Do Observed and Theoretical Frequencies

Fit Better Together? .

337

8.5.4

Data Structure and Nomenclature .

340

8.5.5

Python .

341

8.5.6

Excel .

342

8.6

Random-Number Generator, General Principle

345

8.7

Diffraction of Photons at a Double-Slit .

348

8.7.1

Physical Background: Wave-Particle Dualism

348

8.7.2

Cos2 Distribution .

350

8.7.3

Data Structure and Nomenclature .

351

8.7.4

Python .

351

8.7.5

Excel .

353

8.7.6

Simulation in a Spreadsheet .

355

8.8

Chi2 Distribution and Degrees of Freedom .

358

8.8.1

Data Structure, Nomenclature .

359

8.8.2

Python .

360

8.9

Questions and Tasks .

361

9

Evaluation of Measurements .

365

9.1

Introduction: We Know Everything and Play Stupid

365

9.2

Weighing a Glass Substrate .

369

9.2.1

Discussion on the Accuracy of a Balance

369

9.2.2

Data Structure and Nomenclature .

370

9.2.3

Excel .

370

9.2.4

Python .

371

9.3

A Procedure for Rounding to Relevant Digits

372

9.3.1

Numerical Evaluations .

372

9.3.2

Spreadsheet Calculation .

372

9.3.3

Python Function .

373

9.3.4

VBA Function .

373

9.4

Increasing the Measuring Accuracy Through Repetition

374

9.4.1

Standard Deviation and Standard Error

of the Mean Value of a Measurement Series

375

9.4.2

Data Structure and Nomenclature .

379

9.4.3

Python Program .

379

9.4.4

Spreadsheet Layout for This Task .

380

9.4.5

How to Report a Measurement Result

381

9.5

The t Statistics Connects Confidence Interval

with Confidence Level .

382

9.5.1

Student’s t Distribution .

382

9.5.2

Data Structure and Nomenclature .

386

9.5.3

Spreadsheet Calculation .

386

9.5.4

Python Program .

388

9.6

Combining Results from Several Measurement Series

389

9.6.1

Combining Two Measurement Results

390

xiv

Contents

9.6.2

Data Structure and Nomenclature .

393

9.6.3

Spreadsheet Calculation .

394

9.6.4

Python, Internally and Externally Consistent Error

of the Combined Result .

395

9.7

Propagation of Standard Deviations .

397

9.7.1

Rules for Propagation of Standard Deviations

397

9.7.2

Data Structure and Nomenclature .

402

9.7.3

Spreadsheet Calculation .

402

9.7.4

Python Program .

404

9.8

Propagation of Confidence Intervals .

407

9.8.1

From Variance to Confidence .

407

9.8.2

Sum and Product of Two Measurands

408

9.9

Mass of a Thin Film on a Glass Substrate .

409

9.9.1

Instructions for Use for Accurate Measurements

and Their Results .

410

9.9.2

Data Structure and Nomenclature .

413

9.9.3

Spreadsheet Solution .

413

9.9.4

Python Program .

415

9.10

Questions and Tasks .

417

10

Fitting Trend Curves to Data Points .

419

10.1

Introduction: Linear and Nonlinear Regression

419

10.1.1

Straight Line Through Data Points by Sight

419

10.1.2

Multilinear Regression .

420

10.1.3

Nonlinear Regression .

421

10.1.4

Coefficient of Determination R 2 .

422

10.1.5

C-spec Error with Iterative t Adaptation

423

10.2

Linear Trend Line .

424

10.2.1

Creating Data Points and Evaluating Them

424

10.2.2

Data Structure and Nomenclature .

426

10.2.3

Spreadsheet Calculation with Linest

426

10.2.4

Python Program .

429

10.3

Fitting a Polynomial Trend Line to Data Points

with Multilinear Regression .

431

10.3.1

Introduction .

431

10.3.2

Data Structure and Nomenclature .

435

10.3.3

Spreadsheet Solution .

436

10.3.4

Python Solution .

437

10.4

Exponential Trend Line .

440

10.4.1

Exponential and Logarithm .

440

10.4.2

Exponential or Polynomial? .

444

10.4.3

Data Structure and Nomenclature .

445

10.4.4

Python Program .

445

10.4.5

Spreadsheet Solution .

447

Contents

xv

10.5

Solving Nonlinear Equations .

448

10.5.1

Intersection of Straight Lines with a Parabola

448

10.5.2

Data Structure and Nomenclature .

449

10.5.3

Spreadsheet Calculation .

450

10.5.4

Python Program .

455

10.6

Temperature Dependence of the Saturation Magnetization

of a Ferromagnet .

456

10.6.1

Langevin Function .

456

10.6.2

Data Structure and Nomenclature .

458

10.6.3

Spreadsheet Layout .

458

10.6.4

Python .

459

10.7

Fitting Gaussians to Spectral Lines with Nonlinear

Regression .

460

10.7.1

Fitting the Sum of Two Gaussians to Data Points

460

10.7.2

C-spec Errors of the Coefficients by a Statistical

Simulation .

463

10.7.3

Data Structure and Nomenclature .

464

10.7.4

Python .

465

10.7.5

Spreadsheet .

468

10.7.6

C-spec Error of the Optimized Coefficients

by Simulation-Based t Adaptation .

470

10.8

Questions and Tasks .

472

Index .

475

About the Author

Dieter Mergel studied physics in Göttingen, obtained his doctorate at the Techni-

cal University of Clausthal in the field of solid-state physics, and worked 11 years

in the Philips Research Laboratories Hamburg/Aachen on automatic speech recog-

nition and optical data storage. Since 1993, he is Professor of Technical Physics

at the University of Duisburg-Essen. His professional activities include research

in the field of solid-state layers and lectures for students in teaching and medical

professions.

xvii

[image: Image 9]

Introduction

1

Possible errata and corrections in the internet at: go.sn.pub/Ob4vCR.

For every chapter, solutions for each two exercises in Excel and Python can be

found at internet adresses.

1.1

A Two-Track Didactical Approach

History

The exercises in this book arise from a German textbook that emerged from courses

for prospective teachers and students of Technical Physics at the University of

Duisburg-Essen with the intention to prepare the students for a computerized world.

The participants in the courses had already been studying physics for at least one

year. However, the explanations of the exercises are so explicit that they should also

be suitable for beginners.

Said courses are based on excel and Visual Basic (VBA). The current English

version includes Python from the very beginning so as to make it more generally

useful for students who later choose to dive deeper into Scientific Computation.

Exercises

The subject matter is presented in nine chapters as a series of exercises. Every exercise consists of three steps:

1. The physical concept is introduced with mathematical equations and diagrams.

2. An adequate data structure is set up independent of the implementation in a

particular programming platform, but taking care that the same nomenclature

can be used in both mathematical equations and programming. This serves as an

interface to any programming application.

3. Solutions in excel and Python are designed so that a solution in one application

can directly be translated into the other one.

© Springer Nature Switzerland AG 2022

1

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_1

2

1

Introduction

To enable this approach, training in excel emphasizes vectorized code, matrix for-

mulas, and constructs that allow for broadcasting in the same way as Python.

Furthermore, programming VBA macros interacting with spreadsheets introduces

looping, logical queries, and functions.

Didactical advantages of the two-track system

We strive to combine the didactical advantages of both programming applications:

– Spreadsheets are interactive; charts react immediately to changes, and data

structures (but not formulas) are immediately visible in spreadsheets.

– In Python, formulas (but not data structures) are immediately visible.

– The VBA interpreter allows us to run the program step by step and to watch

intermediate results in a spreadsheet, or read the content of variables by mouse-

over in the code.

Our guideline: spreadsheet calculations as powerful as necessary, Python program-

ming as simple as possible.

Emphasis is not on mere computational techniques, but on exercises that may

be regarded as small projects so that project-related difficulties manifest and can be

addressed, e.g., by checking the consistency of equations and numerical solutions

with limiting cases that can be solved analytically.

We maintain that this approach is not only suitable as a low-threshold introduction

to scientific computing as early as High School and up to undergraduate Physics

classes at University. It should also be a good start for students who later choose to

specialize in Computational Physics or, more generally, for professional use.

1.2

What Can You Expect?

What can you, dear reader, expect from this book?

You can expect to be introduced to the world of Python and excel by:

– training to work with numpy arrays, list slicing and broadcasting in Python,

– working with similar constructs, vector structures, and matrix operations also

in excel,

– learning how to write programs with looping, logical queries, and functions in

Python and VBA for excel,

– training how to lay out spreadsheets clearly so that they are apt for simple

scientific computing,

– developing VBA macros that exchange data with spreadsheets,

– applying standard mathematical methods numerically.

and, with that,

– getting a better understanding of certain mathematical and physical concepts.

1.2

What Can You Expect?

3

After having successfully completed the exercises, you should have gained so

much self-confidence that you can answer the question “Programming practice?”

with an enthusiastic “Yes!”.

1.3

What Do You Need?

You will need a Physics textbook (anyone will do, e.g., the one you have at hand

during your studies anyway) and two more books on programming as indicated

below.

EXCEL

To work with excel, you only need a computer in which excel has been imple-

mented (any version; the exercises in this book have been checked in excel 2010

and excel 2019) and an introduction to excel (do not buy one before having done

the basic exercise in Sect. 2.3). In particular, you do not need a special development environment for visual basic, because it is included in all versions of excel.

Python

You will need to install Anaconda, a free and open-source distribution of the Python

and R programming languages that also comprises the Jupyter Notebook by

default. The examples in this book were obtained with Python 3.7 in Jupyter.

You are advised to use both a book and internet courses to broaden your training

systematically. Make your choice after having gone through Exercises 2.4 and 2.5.

1.4

Tim, Alac, and Mag

You will soon meet two types of students and a tutor who will accompany

us throughout this book. The character named Tim (which stands for “timidus”

or “timida”, meaning shy)) represents those students who are somewhat hesi-

tant, fearing that they may fall short of the requirements, although they study

hard. The character named Alac (which stands for “alacer”, meaning alacritous,

high-flying) is typical of those vehemently self-confident students (men are gen-

erally over-represented) who believe that they already have a superior overview

and do not have to deal with what they consider mere bits and pieces. Mag

(for Magister/Magistra, i.e., the tutor who runs the course) tries to engage with

both characters, encouraging Tim and cautioning Alac, and clarifying that both

approaches are valuable and that every Physics student should venture into the

Computer world.

4

1

Introduction

Tim: Computers are not my thing

Tim I see how well some fellow students are juggling programming tools, but

I’d rather stand back. I prefer to learn the stuff from textbooks.

Mag This course is not intended to turn you into a computer nerd. You will not

learn any cool tricks. We restrict ourselves to some basic techniques that are prac-

ticed again and again. The computational techniques do not stand by themselves,

but are always taught in connection with physical problems.

Tim But I have often heard that programming is a black art for which you have

to be specially talented.

Mag Here, you will learn the most basic computer techniques that every

scientist, engineer, and science teacher must master to succeed in their profession.

Alac Why excel and Python?

Mag All algorithm-oriented computer languages have a similar structure.

Knowledge of specific commands is not the most important thing. You have to

learn how to translate physical and technical problems into a computational struc-

ture. Furthermore, the mistakes that beginners make are always the same in all

computer languages. The most important thing is to track, correct, and, finally,

avoid them. Anyhow, as we shall have spreadsheet solutions and Python pro-

grams in parallel, you will be sensitized more towards common structures than the

peculiarities of specific software.

Alac: How do I become a master programmer?

Mag A master can be recognized by how he/she deals with errors. Any unno-

ticed error in spreadsheet formulas and programs can lead to disaster. It is essential

that you gain experience with data structures and programming constructs.

Alac And that is what this course will accomplish?

Mag Yes! By using data structures in spreadsheets and Python programs and

setting up graphical representations that are comprehensible, even when you look

at them after some time. And by developing simple procedures that control the

program flow.

Tim Data structures, procedures, controlling; that sounds pretty challenging.

How can I learn all of that?

Mag Let’s compare this course with learning a foreign language. How do you

learn foreign languages?

1.4

Tim, Alac, and Mag

5

Alac Learning? For foreign languages, academic learning is useless in the long

run. You simply have to go abroad; the rest follows by itself.

Tim Oh, I couldn’t learn like that. I couldn’t form a proper sentence in a for-

eign language without profound foreknowledge. I would have to learn the correct

grammar and vocabulary first before I would dare to speak.

A good balance

Mag We are trying to find a good balance. You will learn the most straightfor-

ward “sentence” structures, but will also be “sent abroad” right off, and you will

have to make your way there. If you pass this test, you can be confident of being

able to learn the more complex “grammar” if necessary.

Tim Is that thorough enough?

Alac Will I learn the more tricky constructions too late?

Mag Don’t worry! Working through this book will make you fit for a computer-

oriented world, be it for spreadsheet calculations in business or scientific comput-

ing in research. This can be tedious, but it will be worthwhile, whether it be as

early as learning at school or working for a Bachelor’s or Master’s, or even as late

as working on a Ph.D. thesis.

Tim Can I manage this in addition to my studies in Physics?

Mag I think so. Anyway, this course is about physics and will help you to pass

your exams.

1.5

Didactic Concept

Workshop atmosphere

Having cleared up the doubts harbored by Tim and Alac, we now explain the didactic

concept of this book.

In the courses at the University of Duisburg-Essen on Physics with Excel and

 visual basic, learning was mostly done in a workshop, such as in physics labs for beginners. The students dealt with the tasks alone or in pairs while in a computer

lab, ideally also helping each other out across groups and consulting the supervisor

when needed. Students could continue to work on their tasks outside of attendance

time so that everyone could work according to their learning progress.

Experience shows that the students enjoy the tasks, and the learning progress is

fastest when all three aspects—programming, physics, and mathematics—are com-

bined. The systematic practice of various isolated spreadsheet and programming

techniques is often perceived as too dull. The combination of calculations and graphs,

realized in nearly all exercises in this book, proved to be particularly instructive.

6

1

Introduction

Courses with 30 attendance hours

At the University of Duisburg-Essen, two excel-based courses were offered, each

with 30 attendance hours:

– a basic course for beginners, in which two tasks from each of the six Chaps. 2, 3,

4, 8, 9 and 10 were worked on and had to be presented to the supervisor;

– an advanced course with two tasks each from Chaps. 5, 6 and 7, and one task that had not yet been worked on from the chapters of the beginner’s course. Sometimes,

two short exercises were combined into one task.

Subjects from a one-year physics course

The exercises rely on the subject matter from the first year of undergraduate physics.

We do not intend to repeat physics that can be found in standard textbooks. Therefore,

the introductions to the tasks are concise, but the solutions are presented in great

detail. Experience shows that this creates the risk that the students might work through

the exercises mechanically without caring about the physics context. To counteract

this tendency, simple questions regarding physics and programming are asked in the

middle of the text and answered in footnotes.

In Chaps. 8, 9 and 10, statistical concepts are illustrated in greater detail through simulations, because many students lack basic knowledge in this area. Although

no theorems are logically derived, their structure should become clear, because the

simulations follow the mathematical ideas.

Simple solutions preferred

The material is presented in nine chapters, each featuring about five detailed exer-

cises. The aim is to pursue clear and simple solutions in which the physical

justification for each step is traceable. To achieve this, suboptimal solutions, sub-

optimal with respect to computational efficiency and numerical precision, are often

presented instead of solutions that are perfect from the outset. It has proven to be

didactically more efficient to point out the shortcomings of this first approach and

give the reader tools for improvements.

Broom rules

To many beginners, spreadsheet calculations and, especially, computer programming

seem like witchcraft. We like to address this idea by setting up “broom rules” that

the students hopefully will not forget so easily. Some examples: “ Half, half, full;

 the halves count twice” (Runge–Kutta of the 4th order) or “ Mostly, not always.

(“fundamental rule” of statistical reasoning, no statement is 100% sure).

In addition, Mag puts stumbling blocks along the learning path, in talks with the two student characters, Tim, who learns the material from the beginner’s course dili-gently, and Alac, who does not hesitate to implement premature ad-hoc solutions. It is important to emphasize that both attitudes have their advantages and shortcomings, and neither student should feel denigrated. It is just that some students have

to be encouraged to venture into the programming world, whereas others have to be

cautioned against rushing too quickly into coding.

1.5

Didactic Concept

7

Exam questions

At the end of every chapter, a collection of rehearsals and tasks is presented, typically requested in written and oral examinations.

1.6

Subject Matter

Block A, Fundamentals (Chaps. 2, 3 and 4)

 Ψ The dollar makes it absolute.

The student will learn how to organize spreadsheets, design charts reasonably,

and implement simple programming procedures. The necessary computational tech-

niques are embedded in Physics tasks and trained with clearly arranged formula

calculations, presentations, interpretations of curves, and simple mathematics. The

reader should consult, in parallel, systematic introductions to Excel and Python

for help.

Block B, Physics and Mathematics

 Ψ Half, half, whole, the halves count twice.

In Chap. 5, the reader will find exercises for analysis and vector and matrix calculations in the form of a spreadsheet-specific introduction to mathematics with

parallel Python programs.

In Chap. 6, the knowledge gained in Chaps. 2 to 5 is applied to the kinematic superposition of movements, including animated charts.

In Chap. 7, we deal with various methods for solving Newton’s equation of motion and apply them to one-dimensional motions, such as a jump from the stratosphere,

Exercise 7.4, or a bungee jump, Exercise 7.6.

Block C, Simulation and analysis of experiments

 If in doubt, count!

Evaluation of measurements is regarded as a critical skill to be exercised at the

beginning of studies in Physics. Therefore, this block is particularly detailed and

illustrated with simulations based on chance, because, as experience shows, many

students’ most significant knowledge gaps are in the field of probability and statistics.

Furthermore, statistics is the branch of mathematics that is most important outside

of technical professions.

We intend to develop a good understanding of concepts through statistical experi-

ments with random numbers without going deep into formal mathematics. Statistical

rules are intended to be illustrated and checked through multiple repetitions of sim-

ulations designed to test the hit rate (“Does the error range capture the true value?”).

For this purpose, random number generators are introduced in Chap. 8, e.g., for normal distributions.

The student will learn how to analyze and graphically represent measurements

(Chap. 9), emphasizing the precise meaning of error ranges (“C-spec errors” related to confidence levels). Before this can be done, the measurement process must be

[image: Image 10]

8

1

Introduction

simulated realistically to obtain data that can be evaluated. Our tools for simulation

are random numbers generated according to the desired distribution.

With linear regression, mathematical functions are fitted to sets of measured values

to get trend lines through data points (Chap. 10). Furthermore, an introduction to the important technique of non-linear regression with solver functions will be given,

again, in both excel and Python.

Follow-up book A follow-up book, “Physics with Excel and Python, Using the

Same Data Structure. Applications”, is being prepared, dealing, in the same style,

with advanced topics, structured according to physical and mathematical aspects,

such as:

– properties of oscillations,

– motions in the plane,

– the steady-state Schrödinger equation,

– partial differential equations,

– Monte Carlo methods,

– wave optics,

– statistical physics, and

– variational calculus.

1.7

Getting Started with Excel

1.7.1

Start Menu

In Fig. 1.1, you see the start menu of excel 2019, where the main tab formulas has been activated, and the cursor has been positioned over the group

Ribbon

Formula bar

Command

Column header

Active cell

Handle

Row number

Fig. 1.1 The start menu of excel, with the main tab formulas activated

1.7

Getting Started with Excel

9

function library to show the command math&trig. Arrows indicate the dif-

ferent elements of the start menu, namely ribbon, tab, group, formula bar, and

command, as well as elements of the working area, column header, row num-

ber, active cell, and handle of a cell. To indicate a “click path” in the text,

we write a sequence tab/group/command/function, e.g., formulas/function

library/math&trig/cos to call the cosine function.

Throughout this book, we will take screenshots from excel 2019. Experience

has shown that students can work with these instructions in every version of excel

without major difficulties.

1.7.2

Spreadsheet Presentation

 structure of a spreadsheet

In Fig. 1.2 (S), a spreadsheet organization in the structure, often employed in our exercises, is shown. With (“gamma”), we refer to the straight lines above C14:G14

and to the left of C14: C174.

Above :

– the parameters of the task are defined in the range C2:C6,

– these cells get the names in B2:B6, with which they can be called in formulas,

– the most informative parameters of the exercise are integrated into a text, here, in

cell E4 (with the formula in E5) that can be taken as a legend in a figure.

Left of :

– the values for the independent variable t are in B14: B174.

A

B

C

D

E

F

G

H

1 Prespecifications

2

Amplitude of pendulum

Ap

1.50

3

Period of pendulum

Tp

1.20

4

Period of rotation

Tr

9.00

Tp=1.2; Tr=9

5

Time interval

dt

0.0173

 ="Tp="&Tp&"; Tr="&Tr

6

Suspension point vs. rot. axis

xSh

0.00

7 Calculated therefrom

8

Angular frequency pendulum

wP

5.24 =2*PI()/Tp

9

Angular frequency rotating disc

wR

-0.70 =-2*PI()/Td

10

 ot. disc

11

 Pendulum Trace pend. on r

 Trace stylo on rot. disc

)

 S(wP*t)+xSh(wR*t)

12

 =B14+dt =Ap*CO

 =xP*COS

 =xP*SIN(wR*t)

 =Ap*COS(wR*t)

 =Ap*SIN(wR*t

13

t

xP

xT

yT

xSt

ySt

14

0.000

1.50

1.50

0.00

1.50

0.00

15

0.017

1.49

1.49

-0.02

1.50

-0.02

174

2.768

-0.52

0.18

0.49

-0.53

-1.40

Fig. 1.2 (S) Typical structure of a spreadsheet, here, for the calculation of the trace of a Foucault pendulum; rows 16–173 are hidden

10

1

Introduction

1 Sub Protoc()

Range("C3") = Tp

8

2 r2 = 13

Cells(r2, 10) = Tp

9

3 Cells(r2, 10) = "Tp"

Cells(r2, 11) = Range("D174")

10

4 Cells(r2, 11) = "xT"

Cells(r2, 12) = Range("E174")

11

5 Cells(r2, 12) = "yT"

r2 = r2 + 1

12

6 r2 = r2 + 1

Next Tp

13

7 For Tp = 1 To 9

End Sub

14

Fig. 1.3 (P) Log procedure, changes the period of the rotational motion in Fig. 1.2 (S) and logs the values of x T and y T at the last instant of the calculation period

Below :

– values are calculated from the parameters and independent variables,

– the range C14:G174 contains five columnar vectors of length 171 with the names

in row 13,

– row 12 includes, in oblique orientation and in italics, the text of the formulas in the bold-printed cells of the column below. If no cell is printed in bold, the formula

applies to the entire column.

Nomenclature

Python-typical terms are printed in the Courier font.

When excel-typical terms are referred to in the text, e.g., function names, they are

set in small caps; examples: if(condition; then; else) . Spreadsheet formulas

are given in the form B15 = [=B14 + d t]. The expression in rectangular brackets

corresponds exactly to the entry in the cell, including the equal sign. The equal sign

specifies that it is a formula that is in the cell.

Three types of figure are distinguished, two of which are denoted by suffixes, (S)

for spreadsheets, e.g., Fig. 1.2 (S), and (P) for the code of Visual Basic programs, e.g., Fig. 1.3 (P). Figures without a suffix are line drawings or screenshots, e.g., Fig. 1.1.

Names given by the programmer are printed in the text in italics, e.g., f, d. Sometimes in excel, names are used that contain a dot, e.g., “T.1” or “x.2”. This is because

T1 and X2 are reserved for cell addresses. The associated variables are referenced

in the text without a dot, but with subscripts, i.e., as T 1 and x 2.

Physical units

Sometimes, no physical units are specified in the axis labels of the figures. They can

then be deduced from the physical units of the parameters.

1.8

Getting Started with Python

You first have to install Anaconda with Python. There are many instructions on

the Internet as to how to achieve that, e.g., https://docs.anaconda.com/anaconda/ins

tall/windows/ or https://www.jcchouinard.com/install-python-with-anaconda-on-

windows/ (2020-09-02).

[image: Image 11]

1.8

Getting Started with Python

11

Fig. 1.4 Window opened to create a new program file

When the Jupyter Notebook is opened, an overview of the filers and single

files on the localhost is shown. The programs used for this book are in a sub-filer

“Py PhExI” of the main filer “Python”. When we click Python/Py PhEx I, the

window in Fig. 1.4 pops up. To edit an already existing file, we have to click on that file.

To create a new file, we open the list “New” and click on “Python 3”. A new

window pops up, opening a new file “Untitled22” with an empty program

cell “In []”. The version in Fig. 1.5 is displayed after a small program has been written into that cell. “In [5]” indicates that the 5th version of the code is

shown. This program is executed by clicking the button “Run”. The result of the

instruction print[x] is displayed in the output cell created automatically below

the program cell.

1.9

Skills to Be Trained

The different programming techniques are distributed over various exercises. For

the purpose of learning about them and how to revise them, the following lists

of keywords and broom rules have been compiled. They are meant to assist

the readers with the revision of subjects and, of course, their preparation for

examinations.

Spreadsheet operations (Exercise 2.3)

– Using cell addressing, absolute, relative, indirect

– The dollar makes it absolute.

– Naming cell ranges and using the names in formulas

[image: Image 12]

12

1

Introduction

Fig. 1.5 A program creating an output just below the program cell

– Using sliders to change cell contents

– Scaling and formatting XY scatter diagrams

– Creating smart legends by linking text and variables, “Text” & Variables.

– Gamma structure of tables (Sect. 1.7.2)

– Empty lines separate curves.

– Ctrl + Shift + Enter. Magic “chord” to complete the entry of matrix functions in excel (Exercise 2.6).

Python constructs (explained mainly in Exercises 2.4 and 2.5)

– Use of numpy arrays

– Ab-initio constructors np.arange, np.linspace

– Creating one and two-dimensional arrays with np.array (row vectors, column

vectors, matrices)

– Broadcasting row vectors, column vectors, and matrices together in algebraic

operations

– Slicing of lists

– List comprehension

– Creating smart legends by linking text and variables

– Applying a standard function to create scatter diagrams

– Creating animated figures (Exercise 6.2).

VBA-macros and Python instructions (Chap. 4)

The terms ‘routines’, ‘programs’, and ‘procedures’ are all used synonymously here.

The term ‘macro’ is for VBA only.

1.9

Skills to Be Trained

13

– For, if , Sub/def , basic structures of programming: loops, logical queries, subroutines (Exercises 4.4 and 4.5)

– Loop2i, loops with a loop index and a running index incremented within the loop (Exercises 4.2 and 4.8)

– Systematically modifying parameters and recording the results of the spreadsheet

calculations with rep-log procedures

– Processing and decoding texts for evaluation of the protocols of measuring

instruments (Exercises 4.8 and 4.9)

– Writing formulas into cells with procedures (Exercises 4.1 and 4.2)

– Creating user-defined functions and using them in spreadsheet calculations

(Exercise 4.9)

– Linking macros to control elements (command buttons, sliders) in spreadsheets

(Sect. 4.3.3).

Mathematical techniques

 Ψ Imaging equation for lenses with plus and minus! (Exercise 3.2).

– Using the line equation constructively (Exercise 3.2)

– Calculating with vectors in the plane and displaying them in diagrams (Exercises

5.5, 5.6, 5.7)

– Calculating with matrices (Exercise 5.9)

– Converting polar coordinates and Cartesian coordinates into one another (Chap. 6)

– Ψ Doppler effect with plus and minus (Exercise 3.3)

– Differentiating (Exercise 5.3) and integrating (Exercise 5.4) numerically

– Weighted sum (Exercises 5.8 and 6.5) and weighted mean (Exercise 6.5).

Functions

– Properties of the exponential function (Exercise 3.4)

– First, the tangent at x = 0! (Exercise 3.4)

– Plus 1 becomes times e. (Exercise 3.4)

– Use of the logarithm function for different computing tasks (Exercise 9.3)

– Addition of sines and cosines: overtones and beats (Exercise 2.7)

– Cos plus Cos equals mean value times half the difference. (Sum rule of cosines, Exercise 2.7).

Integration of Newton’s equation of motion (Chap. 7)

– Approximated average value instead of exact integral

– Four numerical methods (Sect. 7.1.2, Exercise 7.2):

– Euler

– Progress with look-ahead (our standard procedure in a spreadsheet calculation)

– Half-step

– Runge-Kutta of fourth order, Ψ half, half, whole, the halves count twice. (our

standard procedure as a Python function).

14

1

Introduction

Statistics (mainly Chap. 8)

– Mostly, not always. Fundamental rule of statistical reasoning

– If in doubt, count!

– Ψ Come to a decision! You may be wrong. (Exercise 9.6)

– Generating random numbers with specified distribution (Exercises 8.5, 8.6, 8.7)

– Ψ Chance is blind and checkered. (Exercise 8.3)

– Empirical frequency distribution (Exercise 8.2), in excel: Always one more!

 Yes, but of what and than what? In Python: Always one less!

– Chi2 test for comparing theoretical and empirical frequency distributions (Exer-

cises 8.2, 8.8)

– Multiple repetitions of random experiments to test for uniform distribution of the

results of Chi2 tests (Exercise 8.2).

Evaluation of measurements (mainly Chaps. 9, 10)

– We know everything and play stupid.

– Simulating measuring processes and evaluating the generated data sets statistically

(Exercises 9.2, 9.9).

– Mean, standard deviation, Two within, one out of (the standard error range) (Exercises 9.4 to 9.8)

– Specifying measurement uncertainty (Exercises 9.2, 9.7 and 9.8)

– Multiple repetition of random experiments to test for error rate (Exercises 9.4,

9.5 and 10.3)

– For only a few repetitions of measurements, taking the t-value into account

(Exercise 9.5).

– Twice as good with four times the effort (Exercise 9.4).

– Error propagation (Exercises 9.7, 9.8), Ψ Calculate with variances, report the

 C-spec error!

– Ψ From variance to confidence with Student’s t value (Exercise 9.8).

– Reducing measurement uncertainty by combining measurement series (Exercise

9.6).

– Worse makes good even better.

– Linear regression, trend lines, coefficients with uncertainty (Sect. 10.2, 10.3 and

10.4).

– Applying non-linear regression using solver in excel and curve_fit in

Python (Exercises 10.5, 10.6 and 10.7).

– Decoding textual logs of measuring instruments and writing the relevant data into

tables using VBA macros or Python programs (Exercise 4.8).

[image: Image 13]

Data Structures, Excel and Python

Basics

2

This chapter aims to develop computational solutions for physics problems,

parallel in excel and Python based on the same data structure and the

same type of list processing. In this way, excel may serve as a low-threshold

entry into scientific computation with a smooth transition to professional

platforms. We proceed in three steps: (1) Basic spreadsheet techniques are

introduced: absolute and relative addressing and naming of cells, creating

charts, and using sliders (scroll bars), with the didactic goal of addressing

variables in functions by their names, just as in mathematical formulas. (2)

Python basics are explained, with emphasis on the manipulation of Numpy

arrays essential for scientific computation. (3) Matrix operations are intro-

duced in excel, equivalent to those in Python. Finally, in one exercise,

a set of four parabolas and, in another exercise, a group of four cosines

(to simulate acoustic phenomena) are calculated and displayed in parallel in

both applications.

2.1

Introduction: Named Ranges in Excel, Arrays in Numpy

Solutions of Exercises 2.3 (Excel), 2.4 (Python), 2.5 (Excel), and 2.6 (Python) can

be found at the internet address: go.sn.pub/9Rtzxi.

Spreadsheet technology

This chapter is about how cells are addressed, figures are created and formatted,

and sliders are used to change cell contents. This will be easy for you if you are

already familiar with excel and know how to write formulas into cells. If you are

less experienced, you will first have to go through the basic exercise step by step. If

necessary, consult the excel help guide, and, finally, after having gone through the

© Springer Nature Switzerland AG 2022

15

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_2

16

2

Data Structures, Excel and Python Basics

basic exercise, find a textbook about excel techniques that is best suited for your

learning style.

Required and practiced excel techniques are:

– relative and absolute cell addressing,

– direct and indirect cell addressing,

– naming of cells and cell ranges,

– creation of diagrams,

– application of sliders.

We first exercise different types of cell addressing. Our goal, however, is to write

formulas as mathematically as possible, i.e., with letters representing variables.

Then, they will be identical to formulas in Python. For this purpose, individual

cells, ranges of cells within rows (row vectors) or columns (column vectors), and

two-dimensional cell ranges (matrices) are to be designated by names. All of these

techniques will be introduced step by step in the individual exercises and summa-

rized again in Sect. 2.3.5. The systematic use of vectors and matrices is the reason why spreadsheet calculations can be translated nearly literally into Python.

Figures representing spreadsheets are characterized by the supplement (S), e.g.,

Fig. 2.2 (S).

Formulas in spreadsheets

Formulas in spreadsheets are reported in italic and often in oblique orientation, valid

for a cell in the neighborhood in bold font. They will be written in the text in brackets; e.g., for the content of cell A11, we write A11 = [=A10 + dx]. We have to distinguish

whether or not an equality sign is written in the cell. For the expressions A9 = [x]

and A10 = [3], no equal sign is written in the cell; [x] is thus interpreted as text and

[3] as a number.

Python constructs

We will learn Python programming by working with the program cell structure

of the Jupyter notebook, first dealing with list processing and then focusing on

operations on arrays in Numpy. The explanations are less technically detailed than

for excel, because list processing is the core business of Python and has been

well described in numerous textbooks and online courses. However, our examples

are designed so that the essence of the definitions and procedures should become

obvious.

The Python constructs for list generation (np.linspace and np.arange

in the numpy library) will be used to define vectors that are later transformed with

standard functions into other vectors using list comprehension and broadcasting. To

mimic the column vectors in spreadsheets, a two-dimensional list with only one row

has to be introduced and transposed.

2.1

Introduction: Named Ranges in Excel, Arrays in Numpy

17

Matrix operations

Having provided excel with the necessary matrix formulas, we can finally demon-

strate broadcasting for algebraic operations and some operations of linear algebra

parallel in excel and Python (Exercise 2.5).

Applications

We practice our newly acquired knowledge in an exercise on four parabolas and

their upper envelope. The chapter concludes with a physically meaningful exercise

treating the sum of four cosines so as to demonstrate overtones, beats, and the addition

theorem of cosines.

2.2

Characteristics of a Parabola

Starting from its vertex form, we set up a data structure to tabulate and plot

a parabola, together with its characteristic features focus and directrix. The data structure set up here is to be used in Exercise 2.3 for a single parabola

and in Exercise 2.6 for a set of 4 parabolas.

2.2.1

Different Definitions of a Parabola

Parabola from vertex

A parabola is to be presented in a diagram. Its standard form is defined as

 y = a + b · x + c · x 2

(2.1)

It is, however, more intuitive to start from its vertex form

 y = yV + c · (x − xV) 2

(2.2)

because its shape is immediately clear: its vertex is at (x V, y V), and its curvature is proportional to c (positive or negative). Transforming into the standard form yields a = yV + c · x 2 V and b = −2 · c ∗ xV

(2.3)

In Fig. 2.1a, a parabola is shown with its vertex marked with a diamond.

Question

What are the coordinates (x V, y V) of the vertex and the value of c in Fig. 2.1a?1

18

2

Data Structures, Excel and Python Basics

10

10

y

y

8

8

6

6

4

4

directrix

vertex

6.2+-0.4x+-0.1x²

2

24.572+-1.56x+-0.3x²

focus

rays

0

0

-8

-4

0

x

4

8

-8

-4

0

x

4

8

Fig. 2.1 a (left) A parabola with its maximum at (−2.6, 6.6). b (right) Connecting the parabola with its focus and its directrix; compare Fig. 2.10

Focus and directrix

A parabola may also be defined as the locus with equal distance to the focus (x F, y F) and to the directrix (y = y D), both of which are depicted in Fig. 2.1b. The coordinates of the focus and the directrix are:

 xF = xV yF = yV + c yD = yV − c

(2.4)

4

4

Ignoring reflection, all rays incident parallel to the symmetry axis of the parabola

have the same length up to the directrix, e.g., when calculated from the line y = 0.

By definition, they all have the same length up to the focus when reflected at the

parabola. This is why light incident parallel to the optical axis is focused in the focus of a parabolic mirror.

Calculation points of a curve

Equations 2.1 and 2.2 represent continuous functions. In numerical calculations, however, the function values y are calculated on only a finite number of discrete x-values, x i (see the inset picture in Fig. 2.1a). The points (x i, y i) are called the calculation points of the function. They are the vertices of the polyline representing

the graph. In most of our exercises, the adjacent calculation points are equidistant on

the x axis , i.e., they all have the same distance to their respective neighbors, usually specified in a parameter d x.

1 x V ≈ −2, y V ≈ 6.5 from visual inspection in the coordinate system; c = −0.1 from the legend in the figure.

2.2

Characteristics of a Parabola

19

2.2.2

Data Structure and Nomenclature

(x V, y V)

coordinates of the vertex of the parabola

 a, b, c

coefficients of the parabola in standard form

 y D

ordinate value of the directrix of the parabola

(x F , y F)

focus of the parabola

d x

distance between adjacent x values of calculation points

 x

sequence of x values

 y P

values of the polynomial for x

 y A , y B, y C, y D

values of the same polynomial but calculated in Excel with

column names

 y Max

upper envelope of y A , y B, y C, y D.

2.3

Basic Exercise in Spreadsheet Calculation

With the example of tabulating a parabola and displaying it in a diagram, we

train the basic spreadsheet techniques: absolute and relative cell addressing,

providing cells with names, connecting text and numeric variables to get

informative legends for diagrams, applying scroll bars to change cell contents

without typing numbers. After performing these exercises, the reader should

be able to select a more detailed textbook on excel techniques that is best

suited to her/his taste and needs. At the end of the exercise, an analogous

Python program with the same data structure is presented.

2.3.1

Cell Addressing

Spreadsheet layout

A spreadsheet layout for generating a parabola y P = f (x) is displayed in Fig. 2.2 (S).

We are going to review three regions successively: A1:B6 (to explain cell addressing),

D1:H3 (to name cells and apply sliders), and A8:E169 (to name cell ranges). All

relevant cells and the ranges x, y P, and y A get names from the beginning. The formulas in cells are printed in neighboring cells in italic to keep track of the calculations.

Relative and absolute cell addressing

The coefficients of the vertex form of the parabola, x V, y V, and c, are defined in B1:B3

and recalculated in B4:B5 into b and a of the standard form, with the formulas in C4:C5. The value in B6 specifies the horizontal distance d x between the calculation points.

[image: Image 14]

20

2

Data Structures, Excel and Python Basics

Fig. 2.2 (S) Tabulation of a parabola with the parameters c, b, a in B3:B5; F1:H3, sliders to determine the parameters x V, y V, c; E8:E169, alternative tabulation of the parabola using the named cells a, b, c _ and the column range x

The independent variables x (left of) are in A9:A169. They are obtained by entering the initial value, here −8.0, into the first cell A9 of the range and the

formula A10 = A9 + B6 or A10 = [=A9 + dx] into the next cell and copying this

formula into the whole range. Copying is done by seizing the handle of A9 (see the

small black square at the lower right edge in the subpicture in column C) with the

pointer and dragging it down to A169.

Task Change the contents of cell B6, named “d x”! All x values in cells A10:A169 should adjust themselves immediately.

The values for y P are obtained by entering the formula reported in B7 into B10

and dragging it up to B9 and down to B169. The formula is most conveniently

obtained by first entering [=], and then by clicking on the corresponding cells and

continuing with the operators * for multiplication and ˆ for potentiation, resulting

in B10 = [=B5 + B4*A10 + B3*A10ˆ2]. In the last term, the variable taken from

A10 must be squared. This is done with the power operator ˆ. You have to press

the button with the ˆ-sign and then the desired power, “2” in our case. Only after

the second step does the operator [ˆ2] appear in the cell.

When this formula is copied into another cell, the cell addresses change accord-

ingly. Copying into C11 would yield C11 = [=C6 + C5*B11-C4*B11ˆ2), realizing

 relative addressing but not giving the desired result, because we would like to keep the cells with the coefficients constant. This is achieved by making the references

to B3:B5 absolute, with dollars as prefixes: B5, B4, B3, either by introducing the $ sign explicitly before the column letter or the row number or by pressing

the function key F4, resulting in the formula reported in B7.

2.3

Basic Exercise in Spreadsheet Calculation

21

Having now copied this into C11, we would get C11 = [=B5 + B4*B10-

B3*B10ˆ2], with the values for x copied incorrectly (A10 becomes B10),

because they are still relatively addressed. Making the address of column A abso-

lute is achieved with $A10, B10 = [=$B$5 + B4*$A10-B3*$A10ˆ2]. If we

now copy this formula into another cell, only the row number 10 changes, e.g.,

into 12 when copied into any column in row 12.

Making a cell reference absolute can also be achieved by pressing the function

key F4 several times. Key words for the excel help: Absolute, relative, and mixed

cell references.

There is a more elegant way to copy a formula down a column: clicking onto

the “fill handle” (the bottom right corner) of the cell that contains the formula.

Then, the cell contents are immediately continued down to the 169th row, i.e., for

all cells for which there is an entry in the neighboring column, here column A,

until the first empty neighbor cell is encountered.

Questions

Questions concerning Fig. 2.2 (S):

From A9 to A10, x increases by d x = 0.1. Why is the increase 15.7 for the next jump from −7.9 to + 8.0? 2

Where is d x defined? 3

Why is the name c_ in E7 provided with an underscore? 4

Having gotten this far, we have programmed our first function. Changing the values

of x V , y V , and c in B1, B2, B3, the function values in column B adapt immediately. We may now proceed to the section “Graphical representation” to see the

resulting curve, but should come back to learn about naming cells.

Naming cells

In the range B1:B6 of Fig. 2.2 (S), parameters are defined that are accessed in various parts of the worksheet. To call them like variables in mathematical equations, we

provide the cells with the names written to the left of them. This is done by activating

the range A1:B6 comprising names and values and clicking through (excel 2019):

formulas/defined names/create from selection.

A prompt appears, “create names from values in the left column?”.

The answer is yes, that the agent has correctly detected, and we confirm this by

clicking ok. For more about the name manager, see Sect. 2.3.5. We can now refer to these cells by their names, anywhere in the spreadsheet and, indeed, throughout

the whole book.

When writing, e.g., [=a] into a cell somewhere in the spreadsheet and pressing

enter, this cell immediately gets the numerical value corresponding to a, in our

2 Rows 11 to 168 are hidden. The jump is over 159 advances of d x; -7.9 + 15.9 = 8.0.

3 The value for d x is set in cell B6, which is given the name in A6.

4 The name c is protected for excel-internal use. A name c in a cell intended to become an identifier is automatically extended by an underscore.

[image: Image 15]

22

2

Data Structures, Excel and Python Basics

example, 6.2. When the content of cell B5 is changed, the value of all cells with [=a]

changes as well.

We can even name cell ranges, e.g., A9:A169 with the name x and B9:B169 with

 yP. When activating A8:B169 and proceeding as above, the Name Manager prompts

us: "create names from values in the top row?”, and we confirm this

by clicking OK.

We may now write = a + b* x + c _* x ˆ2 into E9, more elegant and clearer than the formula in B7, with absolute and relative cell addressing, and copy down to D

169 to get the same values as for y P. For x, the formula in a cell takes the value in the same row in column A. The name manager has changed c into c because the letter c conflicts with a protected name in excel.

2.3.2

Graphical Representation of a Function

After having created the function table of a parabola so beautifully, we would like

to visualize the curve. To do so, we set the cursor into an empty cell, away from

the filled cells, and click in the insert tab on insert/ charts/, and on scatter

within the charts section. A blank chart is inserted.

Upon our activation of design/select data (see Fig. 2.5b), a select data source window opens. We click add, and a window as shown in Fig. 2.3 opens.

For series name, we click on cell B8 of Fig. 2.2, and for series x values, we activate A9:A169 and hit return. For series y values, we activate B9:B169 and

hit return. The empty chart changes to that shown in Fig. 2.4.

As the legend “yP” has been taken from a cell in the spreadsheet, it will adapt

immediately when the cell entry is changed. If a legend in a chart is identical to

that in the spreadsheet indicating the data, it helps in keeping the overview.

Spreadsheet

symbol

Fig. 2.3 Insertion of a data series into a chart; the series name is best taken from the worksheet by activating the relevant range, not by entering it as text

[image: Image 16]

2.3

Basic Exercise in Spreadsheet Calculation

23

yP

08

06

04

02

yP

00

-10

-05

00

05

10

-02

-04

Fig. 2.4 Scatter plot after completing Fig. 2.3

Fig. 2.5 Tabs, which are important for diagrams, after insert/charts/scatter/with

only

markers in the Start menu (excel 2019, excel 2010 similar) or after activating an existing chart, a (left) format/current selection, to the left of the start bar, to format an element of the diagram, b (center left) design tab / data group /select data to select data to be entered into the diagram, c (center right) design tab /chart styles, d (right) format/size, appears after activating a diagram, to the right of the start bar, to specify the size of the diagram

Formatting the chart

We reshape the diagram according to our taste, e.g., as in Fig. 2.1a. After clicking on the diagram and home/format, the following components change:

– Size (7 cm high, 8 cm wide) (in the start bar to the far right, see Fig. 2.5d).

Also, after clicking on the relevant element of the diagram or selecting it from

the leftmost register in the format tab (Fig. 2.5a, at first, only chart area appears, but after opening the list by clicking on ▼, all items of the diagram

appear), we choose before clicking format selection:

– Format/Chart Area/Border /No line

– Format/Plot Area/Border Color/Solid line/Color/Black and Width/1pt

24

2

Data Structures, Excel and Python Basics

– Format/Data Series/Marker Options / Built in/Diamond, Size 4 and Marker

Fill/Solid Fill/ Black

– Format/Horizontal (Value) Axis/Axis Options/Minimum /-8, /Maximum /8,

/Major Unit/4.

Task Change the value of the parameters x V , y V , c in Fig. 2.2 (S) and observe how the spreadsheet entries and the chart change!

Alac That’s cool! The diagram is alive!

Tim Once created, it’s always up-to-date!

2.3.3

Smart Legends in Figures

Smart legends are created by concatenating variables and text. In Fig. 2.4, we have specified the parabola with its name in the spreadsheet, in simple text. In

Fig. 2.1a, however, the legend contains the actual parabola equation generated in D6 of Fig. 2.2 (S) with “Text” &variable.

= a&” + ”& b&” x + ”& c _&“x” in D6 yielding 6 . 2 + −0 . 4 x + −0 . 1 x If text is to be inserted, it must be enclosed in quotation marks, e.g., as above, “x

+ “. The concatenation operator is “&”. When the parameters a, b, or c _ change, the text in D6 and the legend in the chart will immediately follow.

excel Ψ “Text“& Variable

concatenation with &

Python Ψ „ Text “ + Str(Variable)

concatenation with +

Often, float values have to be rounded. When, e.g., B3 = [= 1/3], then only 0.33

is displayed in the cell. However, if B3 is inserted into a legend, 0.333333333

appears. Setting round(B3, 2), 0.33 is returned: [= “c_ = “&round(B3; 2)]

results in the cell content [c_ = 0.33].

2.3.4

Scroll Bars

Cell contents are changed with a slider (a scroll bar)

We can play even more impressively with the curves when we change their parameters

with sliders. To introduce sliders, we select developer/controls/insert/activex

controls to get the tabs in Fig. 2.6a.

If the tab does not appear in your toolbar, you have to supplement the toolbar by

making a tick in file\options\customize ribbon in the box before developer.

We need the slider to be an activex control element, and we click on the

icon for the slider in the top line on the far right, with the design mode turned on,

[image: Image 17]

2.3

Basic Exercise in Spreadsheet Calculation

25

Fig. 2.6 (excel 2019, excel 2010 similar) a (left) Tab after going through developer/controls/insert/activex

controls. A slider is listed in the upper row on the right,

at the foot of the arrow. b (center) In J1:L1, a slider has been installed by clicking on the control element and pulling it up in said spreadsheet area. c (right) Menu for defining the properties of the slider (scrollbar). It appears after we click on properties in a; important parameters: linkedcell, minimum and maximum values

and then pull up a rectangle with the mouse at the desired place in the spreadsheet.

In Fig. 2.6b, this is done in cells J1:L1. Now, with the design mode still on, we can configure the slider. In Fig. 2.6c, the properties list of the activated scrollbar is shown. We specify that it is cell I1 (linkedcell) into which the number is to be

written, and that the number should be between 0 (min) and 100 (max). We then

turn the design mode off by clicking on this icon again (see Fig. 2.6a) and move the slider’s thumb with the mouse. Immediately, a number appears in I1.

design

mode is activated and deactivated by clicking on the icon. When

activated, existing control elements can be modified, or new ones added. When

deactivated, the control elements can be operated.

When we grab the thumb (the rectangular bar

in the middle of the slider)

with the cursor and move it, the output in the linked cell changes. SmallChange

specifies the jumps (to the left or the right) of the numbers when we click on the

⍓

(left

or right ⍓) edge of the slider. LargeChange sets the jumps’ size when

we click within the slider bar left or right of the thumb. Try it out!

Conversely, if we change the contents of a linkedcell, the new value is entered

into the slider’s memory, and its thumb will move.

We can use a slider (scroll bar) to enter integers between 0 and 32,767 (=

215 − 1) into a cell (LinkedCell). Settings are specified in the properties group:

26

2

Data Structures, Excel and Python Basics

For linkedcell, specify the address of the cell to be written into. min and max

can limit the value range.

Sliders in Fig. 2.2 (S)

In Fig. 2.2 (S), three sliders are introduced with linked cells E1:E3, wherefrom the parameters a, b, and d x in B1:B3 are calculated. When one of the sliders is operated, the cells’ value and the curve in Fig. 2.1a adapt immediately.

A slider can produce only positive integers. If other numbers are needed, plug the

value of the linkedcell into a formula in another cell. In Fig. 2.2 (S), the value of the linkedcell (E3), set between 0 and 100, is changed with B3 = [=(E3−50)/10]

to the range −5 to 5, with intervals of 0.1.

Questions

Which numbers can appear in I1 (range and minimum distance to each other),

according to the information in Fig. 2.6c? 5

What is the range of the numbers for x V in Fig. 2.2 (S), provided that Min

= 0 and Max = 80 for the slider in F1:H1. What is the minimum step size? 6

Connecting a VBA macro to a control element

The following will be important in later chapters: We can connect a VBA routine to the

slider (an example is given in Exercise 10.5). A routine sub scrollbar1_change(

) … end sub is executed each time we move the scrollbar1 slider. To enter a

code, click on view code (Fig. 2.6b) and select the considered slider’s name in the left-hand drop-down window that has popped up, then click change (or some other

action to trigger the routine) in the right-hand drop-down window.

2.3.5

Summary: Cell References and Name Manager

 The dollar makes it absolute.

Cell references, relative, absolute, indirect

The following formulas in a cell, C3 = [=A4], C3 = [=$A4], C3 = [=A$4], C3 =

[=A4], yield the same result: the value of cell A4 is written into the active cell C3.

However, if these formulas are copied into another cell, they change. For example, in

D4, there will be: [=B5], [=$A5], [=B$4], [=A4]. A $ sign before a column label

or a row number has the effect that the label or number are held fixed when copied.

A dollar makes a cell reference absolute. If the $ is missing, the label is incremented 5 MIN = 0; MAX = 100; integers between 0 and 100 can appear in I1, distance = 1.

6 B1 = [=(E1-40)/5] (see D1), range -8 (for E1 = 0) to + 8 (for E1 = 80) in steps of 1/5 = 0.2.

2.3

Basic Exercise in Spreadsheet Calculation

27

by the column or line spacing between the old and new cells; this is a relative cell reference.

The spreadsheet function indirect(cell) expects a cell address as an argument.

It writes the contents of the cell with this address into the current cell. For example,

with A4 = [=indirect(A5)] ; A5 = [X7]; X7 = [3.4] the value in A4 will be 3.4.

Assigning names to cell ranges

[=a*x + b] instead of [=B$2*$A6 + B$3]

Individual cells, ranges in a column (“column vectors”) or a row (“row vec-

tors”), and rectangular ranges (“matrices”) can be named and then inserted with

their names into formulas and worksheet functions as arguments. Naming is done

with the name manager by going through formulas/name manager. For details

on the name manager, see below. Make extensive use of this feature! Doing so, you

can write formulas and functions in mathematical language, e.g., [= A*sin(k*x)]

instead of [=A$1*sin($A5*B$2)]! Such a formula is valid for a set of sine functions

whose amplitudes A and wave number vectors k are stored in two row vectors with names “A” and “k” and where the independent variable x is stored in a column vector with the name “x”.

Name Manager of Excel

As an example to demonstrate the properties of the name nanager, we calculate

the electric field E x in x-direction of a point charge at (x 1, 0) in the xy-plane: Ex =

 x − x 1

(2.5)

3

 (x − x 1) 2 + y 2

The definition of variables and constants and the calculation are distributed over

two sheets, “Dist” and “E.x”. The values of r =

 (x − x 1) 2 + y 2, representing the

planar distance to point (x 1, 0) for x and y from -2 to 2, are calculated in Fig. 2.7a

(S) (Sheet “Dist”).

The x values are in B3 to F3, the y values in A4 to A8. The value for x 1 is specified in B1. The calculation can be performed with mixed cell references, as in cell B5:

B5 = = SQRT (B$3 − Dist!$B$1)∧2 + A$5∧2

(2.6)

The formula is, however, more intuitive when cell names are used, as in D6,

displayed in D2:

D6 = = SQRT (x − x . 1)∧2 + y∧2

(2.7)

To achieve this, we have to designate, e.g., range B3:F3 with the name x,

already present in cell G3. We activate B3:G3 and follow the menu formu-

las/defined

names/create

from

selection. To “activate” the range means

[image: Image 18]

[image: Image 19]

28

2

Data Structures, Excel and Python Basics

Fig. 2.7 (S) a (left) Sheet “Dist”; the values in the matrix B4:F8 are calculated with the values in the horizontal vector x = B3:F3 and the vertical vector y = A4:A8, together with the value of x 1 in cell B1, using mixed cell references in B5 and variable names in D6. b (right) After activating B3:G3 in a, the dialogue box of formulas/ defined names suggests providing B3:F3 with the name in G3 (right column)

that the cells are marked with the left mouse button pressed. A window like the

one shown in Fig. 2.7b (S) pops up. The assistant has already recognized a potential name in the immediate neighborhood of the activated range, namely, in the

right-most column of the activated range. This name corresponds to our intention,

and we click OK.

The matrix range B4:F8 is named by activating it and selecting formu-

las/defined names/define name. A window marked new name pops up with

the refers to field already filled in, because a cell range was activated before the

selection. We have to fill in the name field, in our case, with “r.0”.

The formulas/defined

names/name

manager

window, displayed in

Fig. 2.8 (S), gives us an overview of all of the named ranges.

Fig. 2.8 (S) The name manager lists all names and ranges (“refers to”) and the scopes for which they are valid

2.3

Basic Exercise in Spreadsheet Calculation

29

A

B

C

D

E

F

G

I

J

K

L

M

N

O

1

Sheet E.x

14

2

=(x-x.1)/r.0^3

15

{=(x-x.1)/r.0^3}

as matrix formula

3

#VALUE! 16

-0.1

-0.1

0.0

0.1

0.1 #N/A #N/A

4

-0.1

-0.1

0.0

0.1

0.1 #VALUE! 17

-0.2

-0.3

-0.1

0.4

0.2 #N/A #N/A

5

-0.2

-0.3

-0.1

0.4

0.2 #VALUE! 18

-0.2

-0.8 -100.0

1.2

0.3 #N/A #N/A

6

-0.2

-0.8

-100

1.2

0.3 #VALUE! 19

-0.2

-0.3

-0.1

0.4

0.2 #N/A #N/A

7

-0.2

-0.3

-0.1

0.4

0.2 #VALUE! 20

-0.1

-0.1

0.0

0.1

0.1 #N/A #N/A

8

-0.1

-0.1

0.0

0.1

0.1 #VALUE! 21 #N/A #N/A #N/A #N/A #N/A #N/A #N/A

9

22

Fig. 2.9 a (left, S) Sheet “E.x”. The x component of the electric field of a point charge at (x 1, 0) is calculated. In row 3 and column G, the index is outside of the permitted range. b (right, S) Alternative calculation in an arbitrary position with a matrix formula

The names are valid in the entire workbook when they are first defined. The

names “x” and “y” appear twice. When they were first defined in the “Dist” spread-

sheet, they were valid throughout the workbook, as shown in the scope column.

When they are defined a second time in another sheet, here, “MMult”, their scope

is limited to this spreadsheet, and the previous definitions of x and y do not apply here, although they still do in the rest of the workbook.

Calculating an electric field

In sheet “E.x” [Fig. 2.9 (S)], the x-component E x of the electric field is calculated: Ex (x, y) = x − x 1

 r 3

0

Tim Which definitions for x, x 1, and r 0 are valid in sheet “E.x”?

Mag You can find this out by trial and error or by using filter in the name

manager. 7

Referring to names in a cell

The ranges (vectors x and y, matrix r 0, constant x 1) defined in the two sheets can be called in each sheet cell-wise, however, they cannot be so within the complete range

of the sheet, but only within a range that matches the range in the sheet in which the

name is defined, for example, the matrix r 0 only within the range B4:F8. Outside of this range, errors are reported (see Fig. 2.9a). The horizontal vector x may, for the current definition of its coordinates, only be called in columns B to F, the vertical

vector y only in rows 4 to 8. The constant x 1 designates only a single cell and may be called in the whole file without restriction.

7 The named ranges in sheet “Dist” are valid throughout the whole workbook, except for “MMult”, so they are also so in “E.x”.

30

2

Data Structures, Excel and Python Basics

Referring to names in a matrix function

The matrix r 0 can be called within any range of a spreadsheet when entering the

formulas as a matrix function, e.g., in I16:M20 in Fig. 2.9b (S). To do so, activate the desired range, write the desired formula into the formula bar, in our case [=(x-x.1)/r.0ˆ3], and finish with the “magic chord"! The matrix formula is enclosed in

curly brackets: {=(x − x.1)/r.0ˆ3}.

Magic chord for completing matrix functions: ctrl + shift +

enter.

2.3.6

What Have We Learned so Far, and How to Proceed

Further?

Alac That’s all really super easy. Worksheet calculation seems to be a children’s

game. That wasn’t clear to me until now.

Tim Well. Might we have acquired knowledge in only a narrow section for

particular tasks?

Mag We have traveled quickly across a wide area on a narrow path. This is

actually a fast track to success, at least for the tasks we intend to tackle.

Tim Is it not better to learn thoroughly so that one does not become lost when

the tasks are set a little differently?

Alac You can always tackle modified tasks through trial and error.

Mag Yes, trial and error is a possibility. You should do this anyway with all of

the programming constructs with which you are not already familiar. Nevertheless,

you should also go to a bookstore or into the internet and find books that instruct

you in excel. Browse along the learning path you have just gotten to know. It will

not take long for you to figure out which of the books explains the computational

procedures in a way that you can understand. You should buy that book!

The same advice holds for Python, which you will get to know in the next

section.

2.3.7

Python Program

Table 2.1 presents a Python program corresponding to Fig. 2.2 (S) for completeness. The reader may study it after having gone through Exercise 2.4.

The program consists of a list of simple assignments of type x V = -2, with the

name x V being called the identifier, or simple formulas assigned to an identifier,

2.3

Basic Exercise in Spreadsheet Calculation

31

Table 2.1 Specifications corresponding to Fig. 2.2 (S)

1

xV=-2

Coordinates of vertex

2

yV=6.6

3

c=-0.1

Curvature

4

b=-2*c*xV

Coefficients of standard form

5

a=yV+c*xV**2

6

dx=0.1

Horizontal distance between x

7

x=np.arange(-8,8+dx,dx)

Array of x values

8

yP=a+b*x+c*x**2

Array of y values

9

print('a ={:5.2f}'.format(a),'; b ={:5.2f}'.format(b))

a = 6.20 ; b =-0.40

Table 2.2 Calculating the coordinates (for Fig. 2.1b) of the focus and the directrix 10

xF=xV

Coordinates of the focus

11

yF=yV+1/4/c

12

yD=yV-1/4/c

y Coordinate of directrix

e.g., b = −2* c* x V recurring to variables specified earlier. The calculated values of a and b (printed into the second cell) are the same as in Fig. 2.2 (S).

The term ‘a = {:5.2f}’ indicates that the printout starts with the text string ‘a

= ’ and that the value of the variable a in format(a) is to be printed right aligned (:) in float format (f) with length 5 and 2 decimal places (5.2).

The coordinates of the focus and the directrix are calculated in Table 2.2 with the same formulas as in Fig. 2.2 (S). A plot corresponding to Fig. 2.1b is produced with the standard program FigStd explained in Sect. 2.4.5.

2.4

Python and NumPy Basics

We will learn how to work with program cells in the Jupyter notebook,

and get acquainted with arrays in numpy. For more detailed information

about Python specifics, the reader is referred to Stewart, J. (2014). Python

 for Scientists. Cambridge: Cambridge University Press. https://doi.org/10.

1017/CBO9781107447875, Chap. 3 (A Short Python Tutorial), Chap. 4

(NumPy), and Chap. 5 (Two-Dimensional Graphics) or other textbooks treating the same subjects.

2.4.1

Basic Exercise

Table 2.3 displays a simple Python program developed in the Jupyter

notebook.

[image: Image 20]

32

2

Data Structures, Excel and Python Basics

Table 2.3 Cell structure of Python in the Jupyter notebook

We can start running the program with any cell. However, if referring to vari-

ables or functions, we have to define them ahead of time. Starting Cell 1 before

Cell 2, or Cell 3 before Cell 4, leads to a # NameError.

We are now running the program cell by cell in sequence.

Cell 1: The print statement tries to get y A from the memory. As y A is not yet defined, a # NameError message is returned.

2.4

Python and NumPy Basics

33

Cell 2: Three lists, characterized by square brackets, are defined, and their con-

tents are printed out. When we now run Cell 1 again, no error message appears,

but the contents of y A are printed out.

Cell 3: The statement tries to assign a value to variable z by calling a function add2 that is not yet defined, so that a name error occurs.

Cell 4: The function add2 is defined. Now, running Cell 3 does not result in an

error message.

Cell 5: Function add2 is applied to variables x and y, and the result is printed out. When applied to lists, the formula 2*a + b is not an algebraic function; list x is concatenated twice and then list y once to yield the list [x, x, y].

Cell 6: The numpy library is imported under the abbreviation np. Two numpy

arrays are created from the lists x and y. The function add2 is applied to x np and y np, yielding an error message. When applied to arrays, it is the algebraic

operations addition and multiplication that are performed element-wise. As the

two arrays have different size, this does not work, and a # ValueError message

results: “Operands could not be broadcast together with shapes (4,) and (3,)”.

Cell 7: List y is extended with a new element to have the same length as xnp.

The function add2 can now be applied, with the result now being an array of the

same length and a linear combination of the two initial arrays. The formula 2*a

+ b is now interpreted as an algebraic operation and performed element-wise on

the arrays.

Copy

Parts of the memory may get various names, e.g., the statement AddTwo = add2

assigns the additional identifier AddTwo to the function add2 defined in Cell 4 of Table 2.3, so that this function may also be called by AddTwo. Such assignments are different from making a copy, as is demonstrated in Table 2.4. The statement YA

= Y[3:5] produces only a name (an identifier) for part of list Y, whereas with YC

= np.copy(Y[3:5]), a new object with its own memory space is created. Y C

is an object of its own and is not affected by subsequent changes of Y.

Table 2.4 Identifier of a subarray vs. copying a subarray into a new object; only one print statement is reported in the first cell; the other print statements are similar. The results of all print statements are reported in the second and the fourth cells

1

Y=np.array([0,1,2,3,4,5,6,7,8,9])

2

YA=Y[3:5]

3

YC=np.copy(Y[3:5])

4

print("Y ", Y)

5

Y [0 1 2 3 4 5 6 7 8 9]

6

YA [3 4]

7

YC [3 4]

8

9

Y[3]=8

Another program line

Y [0 1 2 8 4 5 6 7 8 9]

YA [8 4]

YC [3 4]

YC is independent of Y

34

2

Data Structures, Excel and Python Basics

2.4.2

Data Structures

Data types

The following data types are available in Python:

– Int (integer, unlimited size),

– float (8 Bytes),

– bool (boolean),

– string (text),

– complex (only in numpy).

Lists

Lists contain one or more items. They:

– may contain items of different type: z = [1, 3.14, ‘abc’. 2 + 4],

– are

mutable,

e.g.,

can

be

changed

by

append

or

delete;

x.append(‘new’) → [x, ‘new’],

– can be concatenated by +: [x] + [y] → [x, y],

– can be concatenated by *: 3*[x] → [x, x, x],

– can be sliced, i.e., subarrays can be addressed with new identifiers: x2 =

[3:-1], from the fourth (indices 0,1,2,3,...) to the

penultimate element of x.

 Append, add, and multiply result in longer lists. The new identifier x2 points to a sublist of x from the 3rd to the penultimate (−1) element. The method append, as well as the operators + and *, are demonstrated in Table 2.3 (def add2). Lists can be multidimensional, but in our exercises, only one- and two-dimensional lists are

used.

Sets {}

Sets contain unordered collections of unique elements to which standard mathe-

matical set operations can be applied. These are intersection, union, difference, and symmetric difference. Examples are given in Exercise 8.4. Sets do not record element position and, as a consequence, do not support indexing, slicing, or other

sequence-like behavior.

Dictionaries {}

Dictionaries comprise pairs of an identifier (data type string) and an object (arbitrary

data type). The objects are addressed by their identifiers:

–

We do not use dictionaries in this book.

2.4

Python and NumPy Basics

35

2.4.3

Python Libraries

Python libraries are collections of pre-compiled functions. They are open-source,

supported by a community of programmers, who are always there to answer

questions, e.g., on stackoverflow.com. We shall sometimes directly refer to such

advice.

Numpy

Numpy is a fast and efficient array-processing package designed for numerical com-

puting that provides functionalities comparable to MATLAB. We are using it as our

standard. It is usually imported under the name np: import numpy as np, see

Cell 6 in Table 2.3.

Numpy.random

Random number routines produce pseudo-random numbers. We import

Numpy.random as npr and make use of two functions:

– npr.rand(N) generates an array of N random numbers between 0 and 1,

(Exercises 8.2 and 8.3).

– npr.randn(N) generates an array of N normally distributed random num-

bers (Exercise 8.5).

Matplotlib

Matplotlib is a package for designing a variety of charts or even arrays of charts. We

import matplotlib.pyplot as plt. We restrict ourselves to producing

simple scatterplots with a user-defined function (Sect. 2.4.5) that is able to display nearly all results of our exercises, similar to excel charts. In order to plot arrows,

we introduce a second user-defined function (Sect. 3.2.7).

Scipy

Scipy is designed for scientific computing and is especially suited for machine

learning. We need only certain functions for optimization [minimize (Exer-

cise 10.6), fsolve (Exercise 10.5), curve_fit (Exercise 10.7)], linear algebra

[solve (Exercise 5.9)], and statistics (Chisquare from Scipy.stats).

Pandas

Pandas mimics spreadsheet calculation within Python, enabling input to and

output from excel files and text files. We use it only occasionally, e.g., in Exercise

4.8, to make the reader aware that such things exist and are useful.

36

2

Data Structures, Excel and Python Basics

Table 2.5 Data types in numpy demonstrated with arrays built with lists from Cell 2 of Table 2.3

1

import numpy as np

2

xInt = np.array(x,dtype=int)

3

yFloat = np.array(y,dtype=float)

4

yAfloat = np.array(yA,dtype=float)

5

xBool = np.array(x,dtype=bool)

6

xComplex = np.array(x,dtype=complex)

7

xStr = np.array(x,dtype=str)

xInt [0 1 2 3] shape (4,)

yFloat [0.00 4.00 5.00 -1.00] shape (4,)

yAfloat [0.00 4.00 5.00] shape (3,)

xBool [0 1 1 1]

xComplex [0.+0.j 1.+0.j 2.+0.j 3.+0.j]

xStr ['0' '1' '2' '3']

xInt*yFloat [0. 4. 10. -3.]

xInt*yAfloat ValueError: operands could not be broadcast

together with shapes (4,) (3,)

2.4.4

Numpy Constructions

Numpy is usually imported under the name np: import numpy as np.

Ndarrays

Ndarrays are, in general, n-dimensional arrays. One- and two-dimensional ones

have analogies in spreadsheets. For scientific computing, they have an advantage

over spreadsheets when the data becomes large.

They:

– are immutable, with size and datatype specified when the object is introduced,

– are operated element-wise in algebraic operations: x + y → [x + y],

– can be arguments in mathematical functions.

In Table 2.5, one-dimensional arrays of various data types are built with the function np.array(.) expecting a list as an argument, here taken from Table 2.3.

Two numerical arrays can be multiplied element-wise when they have the same

shape, e.g., x Int and y float, but not x Int and yA Float.

Question

How do the entries of xBool in Table 2.5 arise? 8

8 Numerical 0 becomes False, = 0 becomes True. False is output as 0, True as 1.

2.4

Python and NumPy Basics

37

Ab-initio constructors

The following five functions construct an array from the specifications in the

argument list.

– np.ones(N) 1D-array of N ones

– np.zeros(N) 1D-array of N zeros

– np.linspace (start, stop, number of steps, endpoint =

True)

np.linspace(1.5, 3.5, 3) → [1.5 2.5 3.5], True is default.

np.linspace (1.5,3.5,2, endpoint = False) → [1.5 2.5].

– np.logspace

np.logspace(1, 3, 3, base = 10) → [10. 100. 1000.]

– np.arange (start, stop, step)

np.arange (0.0, 4.5, 1.5) → [0.0 1.5 3.0].

In np.arange, the stop value is not included. This is favorable when stacking

np.aranges together:

np.hstack([np.arange(1,4,1),np.arange(4,10,2)])

–

→ [1 2 3 4 6 8]

We can start the second np.arange with the stop of the first np.arange and

have the stop/start value only once.

The following two functions construct arrays of the same shape as Array in the

argument:

– np.ones_like(Array) 1D-array of ones

– np.zeros_like(Array) 1D-array of zeros.

From the numpy.random library, imported as npr, we shall use:

– npr.rand(N) generating an array of N random numbers between 0 and 1.

– npr.randn(N) generating an array of N standard normally distributed random

numbers.

Identifiers to elements of 2-dimensional arrays

In Table 2.6, we construct 1-dimensional arrays with np.linspace and stack them together to form a 2-dimensional array consisting of two rows. Furthermore,

identifiers to single rows, elements, columns, and 2D subarrays are specified.

38

2

Data Structures, Excel and Python Basics

Table 2.6 Constructing a 2D array with two 1D arrays obtained with linspace; identifiers to single rows, elements, columns, and 2D subarrays; only one print statement reported in Cell 1

1

X=np.linspace(0,3,4)

2

Y=np.linspace(10,13,4)

3

Lis=np.array([X,Y])

4

print(“np.shape(Lis) “, np.shape(Lis))

np.shape(Lis) (2, 4) # 2 Rows with 4 entries each

Lis

[[0.00 1.00 2.00 3.00]

[10.00 11.00 12.00 13.00]]

Lis[0] [0.00 1.00 2.00 3.00]

Lis[0][2] 2.0

Lis[:,1] [1.00 11.00]

Lis[0][2:3] [2.00]

Lis[1][1:3] [11.00 12.00]

Lis[0:1][1:3]

[[1.00 2.00]

[11.00 12.00]]

Recommendation: Use this type of presentation, printing out the shape

and content of matrices, to get an overview of your data structure!

Lis[0][2] means: from the first row (index 0), take the third element (index 2).

Alternative interpretation: take the matrix element from row = 0, column = 2.

Lis[1] [1:3] means: from the second row (index 1), take the second (index 1)

to the third (index 2, index 3 exclusive) elements.

Lis[0][1:-1] means: from the first row (index 0), take the second (index 1) to

the penultimate (index -1) elements.

Lis[:,1] means: take the second column (index 1).

Information on arrays

– np.size(array) returns the total number of elements.

– np.shape(array)returns the shape, for 2-dimensional arrays in the form (r, c), number r, c of rows and columns, respectively.

Stacking

– np.hstack ([list of arrays]) concatenates the 1D-arrays horizon-

tally into a long 1D-array, is defined more generally for multidimensional

arrays

– np.stack([list of 1D-arrays]) stacks the arrays (all of the same size

by necessity) in the list as rows into a 2D-array, is defined more generally for

multidimensional arrays.

2.4

Python and NumPy Basics

39

Functions

– np.sin, np.cos, np.tan, np.atan2

– np.power

– np.dot.

The function np.dot(A, B) performs a matrix multiplication of the two

matrices A and B. The same can be achieved with the operator@: A@B. Matrix

multiplication is dealt with in Exercise 2.5 in detail.

Atan2 is arcus tangens calculating the angle from the x-axis given the point (x, y) . The order of arguments is atan2(y;x), different from excel:

np.arctan2(y, x) (Python) = atan2(x; y) (excel)

np.arctan2(3, 2) = 0.980.98 = atan2(2; 3).

np.arctan2(2, 3) = 0.590.59 = atan2(3; 2).

np.arctan2(4, 1) = 1.331.33 = atan2(1; 4).

2.4.5

Standard Plot Program

We create charts by using the library matplotlib.pyplot imported under the

name plt. As we deal almost exclusively with scatter diagrams for functions of

the form y = f(x), we do not need the full versatility of matplotlib. To profit from this restriction, we have devised a function to plot a standard figure, FigStd,

in Table 2.7, where all necessary style information is coded within the function Table 2.7 User-defined function for creating a scatter plot; this cell is run in all programs at the beginning

1

import numpy as np

2

import matplotlib.pyplot as plt

3

np.set_printoptions(precision=2, threshold=10,edgeitems=3,

4

formatter={'float': '{: 7.2f}'.format})

5

6

def FigStd(xlabel, xmin, xmax, dx,

7

ylabel, ymin, ymax,dy,

8

xlength=4,ylength=4):

9

plt.figure(figsize=(xlength, ylength))

10

plt.axis([xmin, xmax, ymin, ymax])

11

plt.rcParams.update({'font.size': 10,

12

'font.style':'italic'})

13

plt.xlabel(xlabel)

14

plt.xticks(np.arange(xmin, xmax+dx, dx))

15

plt.ylabel(ylabel)

16

plt.yticks(np.arange(ymin, ymax+dy, dy))

17

plt.plot([xmin,xmax],[0,0],'k-',lw=1) # x Axis through 0

18

plt.plot([0,0],[ymin,ymax],'k-',lw=1)

[image: Image 21]

40

2

Data Structures, Excel and Python Basics

Fig. 2.10 Parabola (the same

as in Fig. 2.1b) specified in

Tables 2.1 and 2.2 and plotted

with Table 2.8

Table 2.8 Applying our standard function for scatter plots

1

FigStd('x',-8,8,4,'y',0,10,2)

2

lblP="y=%4.2f+%4.2fx+%4.2fx²"%(a,b,c) # Label for parabola

3

plt.plot(x,yP,'k-',label=lblP) #’k-‘ Black full line

4

plt.plot(xV,yV,'kd') #’kd’ Black diamond

5

plt.plot([-8,8],[yD,yD],'k-',lw=0.5)

6

#’lw’ Line width

7

plt.plot(xF,yF,'kx')

8

for i in range(-7,-3,1):

9

plt.plot([i,i,xF],[yD,a+b*i+c*i**2,yF],

10

'k--',lw=0.5) #’k—-‘ Black dashed line

11

plt.legend()# Plots the labels for the curves within the fig

body, and the information concerning the x-axis and the y-axis has to be specified in positional arguments. The axes’ lengths in the figure have default values

(xlength = 4, ylength = 4) that can optionally be specified otherwise.

The plot in Fig. 2.10, corresponding to Fig. 2.1b, is produced with the program in Table 2.8 (continuation of Table 2.1 and Table 2.2).

In the instruction [yD, a + b*i + c*i**2,yF], the values are cre-

ated implicitly within the list.

Extensions

In Sect. 3.4.7, we introduce two extensions of our standard figure: a secondary y-

axis, a logarithmic scaling of the y-axis with the statement plt.yscale(value

= ”log”).

2.4

Python and NumPy Basics

41

Table 2.9 Formatted output with %

1

a1,a2,a3=1.2345,3.4567,-4.5678

2

label="y=%4.2f*x**%4.2f +%6.1f"%(a1,a2,a3)

3

print(label)

y=1.23*x**3.46 + -4.6

2.4.6

Formatted Output

The example in Table 2.9 shows how a formatted output can be achieved. There is a format string with three text variables “y = $*x**$ + $”. The $ here is a proxy;

it starts with a “%” and is followed by a format, e.g., 4.2f for a floating number

4 characters long and to be displayed with 2 decimal places. Following the string

is a % sign and the name of the variables as a tuple, here %(a1, a2, a3) with the

three entries replacing the three % in the format string.

2.5

Matrix Calculations in Excel and Python

We define row and column vectors and 2-dimensional matrices, and explain

operations on them, parallel in excel and Python. We apply broadcasting

in excel and Python to adapt the shape of operands so as to fit with each

other in the intended operation. Finally, we get to know and apply the matrix

operations transposition and inversion of linear algebra.

2.5.1

Data Structure and Nomenclature

Data structure

The data structure in scientific computing is based on arrays. Python, especially its

numpy library, is designed for vectorized code, so that the programmer is forced to

work with it from the first line of a code. This is its core business, described in all

introductory textbooks, so we do not need to explain it here in detail.

Spreadsheet software, in contrast, is primarily designed for business calculations.

In order to make it suitable for scientific computing, we have to create said vectorized

data structure. This is achieved by identifying cell ranges with names so that most of

the operations on vectors and matrices known from Python programs can also be

applied in spreadsheet calculations. This is the essence of our approach to making

spreadsheet calculations suitable for elementary scientific computing.

The treatment in this book is restricted to 1-dimensional arrays called vectors and

2-dimensional arrays called matrices. Vectors are of two types, row and column. We

designate the shape of vectors and matrices with a tuple (r, c), where r and c are the number of rows and columns, respectively. In Python, a row vector is regarded as

42

2

Data Structures, Excel and Python Basics

a 1-dimensional array, e.g., of shape (2,), whereas a column vector is represented as

a 2-dimensional array with only one column, e.g., of shape (3, 1).

Nomenclature

We not only strive to use the same notation of variables in Python and excel, but

also to use a similar one in mathematical equations in the text. For this exercise, we

have chosen the following nomenclature:

 U, V

column vectors, shape (3, 1) 3 rows, 1 column

 W, X

row vectors, shape (2,) 2 entries in the array

 L, M

matrices, shape (3, 2) 3 rows, 2 columns

 N , O

square matrices, shape (2, 2).

In the text, vectors are characterized by an underline, matrices by a double underline.

Additionally, we apply subscripts and underlines to make the variable names more

similar to the usual mathematical notation.

2.5.2

Operations on Arrays

Element-wise operation

Functions with scalar arguments, e.g., cos(x), are applied element-wise on vectors and matrices, resulting in an output of the same shape as the argument. The same

holds for the algebraic operations addition and multiplication on arrays of the same

shape. Function names and operations are usually the same in excel and Python,

with one important exception: arcus tangens, as already mentioned in Sect. 2.4.4.

Broadcasting

Broadcasting is a technical term for an essential tool in Python, but the underlying

operations are also available in excel. If two operands of an operation are of different

but compatible shapes, they can be broadcast together. For a row vector of size n

and a column vector of size m, this is done by repeating the row vector vertically and the column vector horizontally so as to get the same shape as an (n, m)-matrix.

When such vectors are, e.g., multiplied, the result is a matrix of shape (n, m), with the elements being the element-wise product of the broadcast matrices.

Also, other operations, such as the multiplication of two vectors or the exponen-

tiation of a vector with another vector, are performed as if each of the operands were

repeated, so that matrices with a common shape are obtained that are then processed

element-wise.

Linear Algebra

Functions applied in linear algebra comprise determinant, inverse, and matrix multiplication. Their names are listed in Table 2.10.

2.5

Matrix Calculations in Excel and Python

43

Table 2.10 Functions of linear algebra

EXCEL

Python

TRANSPOSE(M)

np.transpose(M)

INDEX(M; r; c)

 M[r, c] or M[r][c]

Indexing starts in EXCEL with 1, and in Python with 0 in square brackets:

EXCEL: INDEX(W;1)

Python W[0]

MDETERM(N)

np.linalg.det(N)

MINVERSE(N)

npl.linalg.inv(N)

MMULT(M1, M2)

 M1 @ M2 or np.dot (M 1 ,M 2)

In Python, a matrix is constructed as a list of row vectors. So, indexing M[2][0]

points to the first element [0] in the third row M[2]. The abbreviation stands for numpy.linalg that is imported under that name.

Spreadsheet first

We start our overview of matrix calculations with spreadsheet constructs because the

data structure there is immediately visible on the screen.

2.5.3

Matrices in Spreadsheets

Row and column vectors, matrices

In the upper half of Fig. 2.11 (S), two column vectors U, V of shape (3,1), two row vectors W, X of shape (2,), and two matrices L, M of shape (3,2) are defined, using the notation for shapes in Python. In the lower half of the figure, elements of the

defined entities are singled out, with spreadsheet functions index(vector; index)

and index(matrix; row index; column index). In the last two rows, the scalar

product of the vectors W and X is calculated in Cartesian and polar coordinates.

The length l of a vector is determined with the equation l =

 x 2, obtained

 i

by nesting two functions: sqrt(sumsq(W). A 2-dimensional vector can be inter-

preted as a straight line in the xy-plane directed from (0,0) to (x, y). Its angle to the horizontal is determined with the arcus tangens function, = atan2(x,y), which,

for vector W, reads as = atan2(index(W;1);index(W;2).

44

2

Data Structures, Excel and Python Basics

U

V

W

1

2

L

M

1

4

1

2

6

5

2

5

X

3

4

3

4

4

3

3

6

5

6

2

1

DEX(W;2))

W))

X(W;1);IN

(U;3)

(M;1;2)

MSQ(

=INDEX

=INDEX

=SQRT(SU

=ATAN2(INDE

3

5

lW 2.24

aW

1.1

lX

5.00

aX

0.93

11.0 {=SUM(W*X)}

11.0 =lW*lX*COS(aW-aX)

Fig. 2.11 (S) Column vectors U, V, row vectors W, X, and matrices L, M are defined as named ranges, and some operations are applied to them in the lower half of the figure

Broadcasting

Addition and multiplication of a row vector and a column vector, and of two matrices,

is demonstrated in Fig. 2.12 (S).

In the upper half of Fig. 2.12 (S), two vectors are added with the operator + or multiplied with the operator *. When the operations are performed on two vectors

of the same type, row or column, they must be of the same size. The operations

are then performed element-wise, and the result is a vector of the same shape.

Activating a larger range leads to a repetition of the 1-dimensional result [see U*V

in Fig. 2.12 (S)]. Algebraic operations on matrices of the same shape result in a matrix of the same shape (see L∗ M).

All operations in Fig. 2.12 (S) are of the spreadsheet matrix type, as indicated by the fact that they are enclosed in curly brackets. To recall: You have to activate

a range of size suitable for the result, enter the formula, and finish with the magic

chord: Ψ Ctrl, Shift, Enter.

Multiplying or adding a column vector (r,) (e.g., V) and a row vector (, c) (e.g., W) results in a matrix of shape (r,c) (see the results for W*V and V + W) . The operations are performed as if each of the operands is repeated, so that matrices

with a common shape are obtained that are then multiplied or added element-wise.

{=U*V}

{=V*W}

{=W*V}

{=V+W}

4

4

4

8

4

8

5

6

10

10

5

10

5

10

6

7

18

18

6

12

6

12

7

8

scal

2

{=L+M}

{=L*M}

{=L*scal}

{=L^2}

{=SQRT(L)}

7

7

6

10

2

4

1

4

1.00 1.41

7

7

12

12

6

8

9

16

1.73 2.00

7

7

10

6

10

12

25

36

2.24 2.45

Fig. 2.12 (S) Arithmetic operations on vectors and matrices defined in Fig. 2.11 (S)

2.5

Matrix Calculations in Excel and Python

45

{=L*V}

{=V*L}

{=L*W}

{=TRANSPOSE(L)}

4

8

4

8

1

4

1

3

5

15

20

15

20

3

8

2

4

6

30

36

30

36

5

12

Fig. 2.13 (S) Operations on vectors and matrices with different shapes, defined in Fig. 2.11 (S) after broadcasting

)}

LT(W;N

{=MMULT(N;O)} {=MMU

{=MINVERSE(O)}

N

O

I

1

2

4

3

8

5

7

10

-0.5

1.5

3

4

2

1

20

13

7

10

1

-2

#N/A #N/A

7

10

-2 =MDETERM(N)

1

0 =MMULT(O;I)

0

1

Fig. 2.14 (S) Mathematical matrix operations on the square matrices N and O

The same holds for the multiplication of a vector or a matrix with a scalar (see

 L*scal). Functions applied to vectors or matrices are also performed element-wise and yield a range of the same shape as the argument (see {= L ˆ2} or {=sqrt(L)}).

In Fig. 2.13 (S), operations combining a vector and a matrix are performed.

Before an element-wise operation, the vectors are repeated so as to obtain the

same shape as the matrix that also becomes the result’s shape.

A matrix is transposed with the function {=transpose(Matrix)}. In Fig. 2.13

(S), this is applied to L.

Operations of Linear Algebra

Operations and functions on mathematical matrices are shown in Fig. 2.14 (S). On square matrices, the determinant can be obtained with mdeterm and its inverse

matrix with minverse.

Two matrices of suitable shapes, (n 1 ,n 2) and (n 2 ,n 3), can be multiplied with MMult (Matrix1, Matrix2) ; the result is of shape (n 1 , n 3). Multiplying the original matrix O with its inverse I yields the unit matrix.

2.5.4

Matrices in Python

Before operating with numpy, we have to import this library (see line 1 in Table

2.11, where we also set the printoptions for arrays that are to be printed, here, in the float format 0.2f with 2 decimal places and one blank between the

printed numbers. The “0” in 0.2f indicates that the number of characters is not

fixed but adapted to the current number. Additional separating blanks are obtained

by inserting them between ‘ and {, or after {: as in line 3. In the following, print

46

2

Data Structures, Excel and Python Basics

Table 2.11 Importing numpy and setting a print option for arrays

1

import numpy as np

2

np.set_printoptions(formatter={'float':'{: 0.2f}'.format})

3

x=np.linspace(0,10,4)

4

print(‘x \n’,x) #\n Makes a line feed

x

[0.00 3.33 6.67 10.00]

statements similar to that in line 5 of Table 2.11 are not explicitly reported, but only the results, as in the bottom cell of Table 2.11. The key word “\n” induces a line feed.

Row vectors

In Table 2.12, row vectors W and X are created as an array with the same elements as in Fig. 2.11.The length of W, calculated correspondingly with np.sqrt(np.sum(W*W)), is the same. The scalar product of two vectors

can be calculated with the function np.dot or with the operator @ for matrix

multiplication: W @ W.

Column vectors

Row vectors can be transformed into column vectors by transposition, most

simply with the function np.transpose(), but also with the extension

.transpose(1,0) fixed to the identifier of a vector (or, more generally, of a

matrix) (see Table 2.13). The original vector U R is not defined as a row vector, but as a matrix with only one row, characterized by enclosing the list within double square

brackets, [[…]]. This (1, 3)-matrix can be transposed with np.transpose(UR)

or UR.transpose(1, 0) to become a (3,1)-matrix equivalent to a column

vector. The transpose operation can also be applied to more-dimensional matrices.

In said table, we also demonstrate the element-wise multiplication of two column

vectors U, V and the broadcasting that occurs when a row vector (W from Table

2.12) and a column vector V are multiplied. An instruction [1,2,3]*[1,2] results in an error message: “Operands could not be broadcast together”. The operation * is

commutative: W* V = V* W.

Table 2.12 Creating row vectors in Python and determining their scalar product; print statements are not reported in Cell 1, and only their results are reported in Cell 2

1

W = np.array([1, 2])

W, np.shape(W) [1 2]

2

X = np.array([3, 4])

(2,)

3

lW = np.sqrt(np.sum(W*W))

lW 2.24

4

ld = np.dot(W, W)

ld 5

1

W @ W 5

2.5

Matrix Calculations in Excel and Python

47

Table 2.13 Creating column vectors in Python, multiplication of two column vectors and multiplying column vector V with row vector W (from Table 2.12). The entries in the lower cells are obtained by print statements in the top cell that are not reported there, e.g., print("np.shape(UR)", np.shape(UR))

1

UR = np.array([[1, 2, 3]])

2

U1 = np.transpose(UR)

3

U = UR.transpose(1, 0)

4

V = np.array([[4, 5, 6]]).transpose(1,0)

np.shape(UR) (1, 3)

V

UR

[[4]

[[1 2 3]]

[5]

[6]]

np.shape(U1) (3, 1)

U1

U*V

[[1]

[[4]

[2]

[10]

[3]]

[18]]

np.shape(U) (3, 1)

V*W

U

[[4 8]

[[1]

[5 10]

[2]

[6 12]]

[3]]

np.sum(U*V) 32

U[0][0] [1]

Matrices

In Table 2.14, we see how 2-dimensional matrices are created with the function np.array(…) . The argument of np.array is a list of 1-dimensional lists all

of the same size. Algebraic operations such as L* M on matrices with equal shape are again performed element-wise.

In Table 2.15, multiplication of L [shape (3,2)] with V [shape (3,1)] and W

[shape (2,)] is demonstrated. These are some further examples of broadcasting.

The effect of matrix transposition, np.transpose(L) , is also reported. Shape

(3,2) indicates 3 rows with 2 elements each, and may also be interpreted as a

matrix with 3 rows and 2 columns.

Linear Algebra

In Table 2.16, we learn about linear algebra operations on square matrices (shape (n, n)) using the functions inv and det of the linalg sublibrary of numpy

that is often imported as np. Np.linalg.det returns the determinant and

np.linalg.inv() the inverse of a square matrix.

48

2

Data Structures, Excel and Python Basics

Table 2.14 Creating 2-dimensional matrices in Python and performing algebraic operations on them; the entries in the bottom cells are obtained by print statements in the top cell that are not reported there, e.g., print("L\n",L)

1

L = np.array([[1, 2], [3, 4], [5, 6]])

2

M = np.array([[6, 5], [4, 3], [2, 1]])

np.shape(L) (3, 2)

L*M

[[6 10]

L

[12 12]

[[1 2]

[10 6]]

[3 4]

[5 6]]

L**2

[[1 4]

M

[9 16]

[[6 5]

[25 36]]

[4 3]

[2 1]]

np.sqrt(L)

[[1.00 1.41]

[1.73 2.00]

[2.24 2.45]]

Table 2.15 Product of a 2-dimensional matrix (L defined in Table 2.14) with 1-dimensional vectors V, W defined in Tables 2.13 and 2.12, respectively; the entries are obtained with, e.g., print("L*V\n", L*V)

L

L*V

[[1 2]

[[4 8]

[3 4]

[15 20]

[5 6]]

[30 36]]

V

L*W

[[4]

[[1 4]

[5]

[3 8]

[6]]

[5 12]]

W

np.transpose(L)

[1 2]

[[1 3 5]

[2 4 6]]

The determinant of matrix N is 1·4 – 2·3 = −2. Python deviates from that value

in the 16th decimal. This is because the calculations are performed in the binary

system.

The operator @ stands for matrix multiplication. The matrix product of a matrix

with its inverse yields the unit matrix (see lines 18 to 20 in Table 2.16). The difference to the algebraic multiplication with the operator *, operating element-wise, is

demonstrated in Table 2.17, L*W vs. L@ W.

2.5

Matrix Calculations in Excel and Python

49

Table 2.16 Operations of linear algebra on square matrices

1

N=np.array([[1, 2], [3, 4]])

2

O=np.array([[4, 3], [2, 1]])

3

I=np.linalg.inv(N)

N

np.linalg.det(N)

[[1 2]

-2.0000000000000004

[3 4]]

O

[[4 3]

N @ I # Mathematical matrix multiplication

[2 1]]

[[1.00 0.00]

[0.00 1.00]]

I

[[-2.00 1.00]

[1.50 -0.50]]

Table 2.17 Array multiplication with * versus mathematical matrix multiplication with @

L

L*W

[[1 2]

[[1 4]

[3 4]

[3 8]

[5 6]]

[5 12]]

W

L @ W

[1 2]

[5 11 17]

Questions concerning Tables 2.15, 2.16, and 2.17

What are the shapes of L, W, L*W, np.transpose(L)? 9

What is the shape and the type of N@ I? 10

What are the shapes of L, W, L@ W ? 11

2.6

Four Parabolas and Their Upper Envelope

Four parabolas are represented in a figure, together with their upper

envelope, first produced by a spreadsheet calculation and then by an anal-

ogous Python program intended to serve as a basic exercise in Python

programming and developed step by step in great detail.

9 Shape(L) = (3, 2), shape(W) = (2,), shape(L*W) = (3, 2), shape (np.transpose(L)) = (2, 3).

10 N@ I is a diagonal matrix, shape = (2, 2).

11 Shape(L) = (3, 2), shape(W) = (2,), shape(L@ W) = (3,).

50

2

Data Structures, Excel and Python Basics

2.6.1

Graphical Representation

Figure 2.15 shows four parabolas with their vertices marked with diamonds and their upper envelope always running on the, at the respective position, top parabola.

The spreadsheet for producing this figure is given in Fig. 2.16 (S). It is briefly described in the following section on the basis of Exercise 2.2. The corresponding

10

J

K

L

M

(xV, yV)

y

17

-10.0

2.4

4.8

-96.4

yA

8

yB

18

-8.8

2.4

4.7

-94.8

yC

19

-7.7

2.3

4.7

-93.3

yD

177

-330.0

5.0

1.0

-0.4

6

yMax

4

2

0

-8

-4

0

x

4

8

Fig. 2.15 a (left) Four parabolas for the parameters specified in Fig. 2.16 (S). b (S, right) Coordinates for the four parabolas obtained with a matrix formula, J17:M177 = [{=a + b*x + c_*xˆ2}]

A

B

C

D

E

F

G

H

1

xV

-5

-2

4

5

2

yV

8

1

0.5

5

(xV, yV)

3

c_

-2

0.04

0.03

-0.6

4

b

-20

0.16

-0.24

6

5

a

-42

1.16

0.98

-10

6

dx

0.1

*$A10^2

$A11+D$3$A11^2

A10+E$3

7 =A9+dx

=B$5+B$4*$A9+B$3*$A9^2

=C$5+C$4*$A10+C$3*$A10^2

=D$5+D$4 =E$5+E$4*$

=MAX(B10:E10)

=a+b*x+c_*x^2

8

x

yA

yB

yC

yD

yMax

9

-8.0

-10.0

2.4

4.8

-96.4

4.8

10

-7.9

-8.8

2.4

4.7

-94.8

4.7

11

-7.8

-7.7

2.3

4.7

-93.3

4.7

169

8.0

-330.0

5.0

1.0

-0.4

5.0

170

Fig. 2.16 (S) Four parabolas defined by the parameters in row vectors in rows 1 to 5; the formula reported in G7 is a better alternative for the formulas in B7:E7

2.6

Four Parabolas and Their Upper Envelope

51

Python program is developed in detail in Sect. 2.6.4, serving as the basic exercise in Python programming.

2.6.2

Data Structure and Nomenclature

 x V, y V

arrays of the coordinates of the vertices of 4 parabolas

 a, b, c

arrays of the coefficients of 4 parabolas y = a + bx + cx 2

 x

array of x values (here, 161 from -8 to 8), separated by d x

 y A, y B, y C, y C

four parabolas defined over x

 G

matrix comprising y A, y B, y C, and y D as columns

 y Max

maximum of y A, y B, y C, and y D at the x values.

2.6.3

Spreadsheet Calculation

Figure 2.16 (S) shows a spreadsheet tabulating four parabolas for the values of x in A9:A169 and the parameters in rows 1 to 5, valid for the y-values of the parabolas in the respective column.

Question

What are the formulas for b in B4:E4 and a in B5:E4 of Fig. 2.16 (S)? 12

The task is to write a formula into cell B9 with relative and absolute addresses

so that it can be copied into the whole range B9:E169 to produce the values of

the four parabolas y A, y B, y C, y D with the parameters c _, b, and a in range B3:E5.

Parameter vector c _ is specified directly by entering the desired values into B3:E3.

Parameter vectors b and a are obtained from the coordinates of x V and y V of the vertex with the same formula as in Fig. 2.2 (S), realizing Eq. 2.3. In column F, the maximum y Max of the four parabolas is built, giving their upper envelope. The result is shown in Fig. 2.15a.

The column vector x is defined in A9:A169 in 161 steps of d x = 0.1. The

values of the four parabolas are then generated by typing the equation reported in

B7 into B9 and copying right and down to E169, the range spanned by x and the

row vectors a, b, c _. The resulting curves are shown in Fig. 2.15a, together with the vertices (x V, y V) and the curve y Max calculated in column F.

Naming cell ranges

Row and column ranges can be provided with names (see Sect. 2.3.5). Activating A1:E5 and going through formulas/create from selection/create names

12 b = - c· x

2

V; a = y V + c· x V , see Fig. 2.2 (S) or Table 2.1.

52

2

Data Structures, Excel and Python Basics

Table 2.18 Specification of the coefficients of 4 parabolas and composition of their labels 1

import numpy as np

2

Specify position (xV,yv) of vertices!

3

xV=np.array([-5.0,-2.0,4.0,5.0])

4

yV=np.array([8.0, 1.0,0.5,5.0])

5

Define coefficients of y=a+bx+cx³

6

c=np.array([-2.0,0.04,0.03,-0.6])

7

b=-2*c*xV

8

a=yV+c*xV**2

9

Compose labels for the figure

10

lbl_1=str(a[0])+"+"+str(b[0])+"⋅x+"+str(c[0])+'*x²'

11

lbl_2=str(a[1])+"+"+str(b[1])+"⋅x+"+str(c[1])+'*x²'

12

lbl_3=str(a[2])+"+"+str(b[2])+"⋅x+"+str(c[2])+'*x²'

13

lbl_4=str(a[3])+"+"+str(b[3])+"⋅x+"+str(c[3])+'*x²'

14

print(lbl_1)

15

-42.0+-20.0⋅x+-2.0*x²

from

values

in

the/left

column

does the job. Proceeding correspondingly

with A8:A169 gives us a column vector named x. The formula can now be B9 = [=a

+ b*x + c_*xˆ2] instead of B9 = [B$5 + …], and remains the same when copied

into the whole range B9:E169.

Application as a matrix formula

The formula [=a + b*x + c_*xˆ2] can be applied as a matrix formula within any

range of suitable size. In Fig. 2.15b, the range J17:M177 has been activated, the formula entered and the process finished with the magic chord: Ψ Str + Alt + Enter.

The same numbers appear as in B9:E169 of Fig. 2.16 (S).

2.6.4

Python Program

Now, how to do all this in Python?

In the first cell of Table 2.18, we import the numpy library. We run the cell so that the features and functions of numpy are available in the following cells.

Questions

What are the formulas to get a and b from the coordinates of the vertex? 13

What are the shapes of c, b, and a in Table 2.18?14

13 a = yv + c · x 2 v and b = −2 · c · xv.

14 Shape(c) = (4,), c with 4 explicit entries; b and a have the same shape, because they are constructed with c.

2.6

Four Parabolas and Their Upper Envelope

53

Table 2.19 Creation of a column vector x

1

xS=np.linspace(-8,8,161) # Is a vector = 1D array

2

xR=np.array([xS]) # Is a matrix = 2D array with one row

3

x=xR.transpose(1,0) # Creates a column vector

4

5

np.set_printoptions(edgeitems=2,

6

formatter={'float': '{: 6.1f}'.format})

7

print(‘xS ‘,xS)

8

print(‘xR ‘,xR,'\n')

9

print(" x\n",x,'\n')

xS [-8.0 -7.9 ... 7.9 8.0]

x

xR [[-8.0 -7.9 ... 7.9 8.0]]

[[-8.0]

[-7.9]

...

[7.9]

[8.0]]

The next cell contains that part of the main program that reproduces the def-

initions and the data structure of the spreadsheet solution. The parameters x V,

 y V and a are specified exactly as before in numerical row vectors with four elements. The parameters b and c are obtained with the formulas mentioned above (in Sect. 2.2.1), also as row vectors.

In the third cell, the labels of the four curves in Fig. 2.15 are composed.

Remember: the concatenation operator in Python is + (contrary to & in

excel), and numerical values have to be converted explicitly into a string, e.g.,

str(a[0]). They are used as the legend in the chart.

In Table 2.19, the column vector x, representing the independent variable, is constructed. We could achieve that in one statement:

x = np.array ([np.linspace(0.0,1.0,11)]).transpose(1,0)

but use the three lines in the first cell instead, so as to make the construction

clearer. First, a simple list x S with 161 items equally spaced between −8 and 8, including 8 as the last element, is generated. In the output (bottom) cell, it shows

up as a 1-dimensional row vector. To get a column vector, we first have to make

it a matrix (2-dimensional array) x R by defining an np.array with just one row

showing up in the output cell as a list within double square brackets [[…]]. This

matrix is transposed, with x = xR.transpose(1,0), indicating that the axes

0 and 1 are interchanged, now yielding a matrix x with just one column. This is

the desired column vector.

In Table 2.20, a two-dimensional array named G is constructed with G = a

+ b*x + c*x**2. It has the same shape and the same content as the range

B9:E169 in Fig. 2.16 (S). The four columns of array G get additional names y A to y D, as in the spreadsheet. Remember: Python is zero-addressing; first index is 0.

In column F of Fig. 2.16 (S), we have calculated the maximum of the four parabolas for each value of x. The same is achieved in Python with the statement

[image: Image 22]

54

2

Data Structures, Excel and Python Basics

Table 2.20 Creating the y values of all 4 parabolas; G[:,0] indicates first column 1

G=a+b*x+c*x**2

5

print(G,'\n')

2

yA=G[:,0] #1st col.

6

print(yA)

3

yB=G[:,1] #2nd col.

7

yMax=G.max(axis=1)

4

yC,yD=G[:,2],G[:,3] # Max. across the columns for every x

8

print(yMax)

G

[[-10.0 2.4 4.8 -96.4]

[-8.8 2.4 4.7 -94.8]

...

[-324.8 4.9 1.0 -0.0]

[-330.0 5.0 1.0 -0.4]]

yA [-10.0 -8.8 ... -324.8 -330.0] # First column

yMax [4.82 4.74 ... 4.92 5.0] # For every x

yMax = G.max(axis = 1). G is a two-dimensional array, and we have to

specify the axis along which the maximum value has to be found. Axis = 1

indicates that it is across columns for every entry in a row. The resulting curve is

shown in Fig. 2.17 as a bold gray line.

Figure 2.17 is similar to Fig. 2.15 obtained with excel, but now created by the Python program FigStd described in Sect. 2.4.5.

Fig. 2.17 Similar to

Fig. 2.15, but produced with

the Python program in

Table 2.21

2.6

Four Parabolas and Their Upper Envelope

55

Table 2.21 Program for plotting Fig. 2.17

1

import matplotlib.pyplot as plt

2

FigStd('x',-8,8,4,'y',0,10,2)

3

plt.plot(xV,yV,'kd')

4

#’kd’ means points as black diamonds

5

plt.plot(x,yMax,color='gray',lw=4,label='yMax')

6

plt.plot(x,yA,'k-', lw=1, label=lbl_1) # ’k-‘ Black Line

7

plt.plot(x,yB,'k--',lw=1.5,label=lbl_2) #-- Dashed line

8

plt.plot(x,yC,'k-.',lw=2, label=lbl_3) #-. Dash-dotted

 9

plt.plot(x,yD,'k:', lw=3, label=lbl_4) #: Dotted

10

plt.legend()

11

plt.savefig('PhEx2-2 parabolas.png',dpi=1200)

Plotting four parabolas

The program for plotting Fig. 2.17 is given in Table 2.21, with the function FigStd called in the second line. It produces a figure of size 4 cm × 4 cm with scaling and

labeling of the axes as specified in the arguments. The figure is made with the entries

 label, minimum, maximum, and distance between the ticks, each for the x-axis and the y-axis.

We add five curves with the statement plt.plot(). The plot statements all

get the pre-syllable plt, the short form under which the matplotlib library

has been imported. The x-values and the y-values of the curve to be plotted are positional arguments and have to be the two first arguments of plt.plot. The

third argument specifies the color and style of the curve. The keyword ‘ ks’ in line 2 specifies that the points (x Ext, y Ext) are to be marked with black (‘k’) squares (‘s’). The next plot statements contain more keyword arguments, lw for linewidth, and label for the curve’s label to be displayed in the legend. Additionally, in the last plot statement, the curve’s color is explicitly specified with color=’gray’.

For more information on plot styles and options, consult Python Help!

The legend with all labels is plotted by calling the function plt.legend().

Generally, you can specify its position in the figure. The default is ‘loc’ =

0, indicating that the program should choose an optimum position. Specifying

‘loc’ = 2 would place the legend at the top-left part of the figure. Various style

specifications can also be incorporated with keyword arguments, e.g., fontsize

= 10. With the last statement, the figure is saved under the indicated name and

with the indicated resolution.

Question

The statement plt.legend will not plot the legend. Why? 15

15 The statement plt.legend() calls a function, and function identifiers have to be supplemented with parentheses.

56

2

Data Structures, Excel and Python Basics

Table 2.22 Extrema of matrix G along different axes

1

yMax=G.max(axis=1) # Across columns, for every x

2

3

yMaxCol=G.max(axis=0) # Down the rows, for every column

4

iMaxCol=G.argmax(axis=0) # Index of Max in the row

5

xMaxCol=x[iMaxCol] # Corresponding x value

6

7

yMinCol=G.min(axis=0)

8

xMinCol=x[G.argmin(axis=0)] # Two statements in one

9

np.set_printoptions(precision=2)

xMaxCol

yMax [4.82 4.75 ... 4.92 5.]

[[-5.]

1 Max. for every column:

[8.]

yMaxCol [8. 5. 4.82 5.]

[-8.]

xMaxCol[:,0] [-5. 8. -8. 5.]

[5.]]

1 Min. for every column:

yMinCol [-330. 1. 0.5 -96.4]

xMinCol[:,0] [8. -2. 4. -8.]

2.6.5

Extrema Along Different Axes

In Table 2.22, we determine the extrema of the 2-dimensional matrix G, defined in Table 2.20 and containing the y values of the parabolas. The variable yMax contains the maxima for axis 1, i.e., across the columns (index 1), for every entry

in the rows, i.e., for the same value of x. This is the upper envelope of the four parabolas.

Next, we will find the individual extrema (minima and maxima) of the four

parabolas. To do so, we have to build the maxima y MaxCol and minima y MinCol for every single curve. This is done down the rows (index 0), for axis = 0. The

arrays y MaxCol and y MinCol contain 4 entries each. The indices i MaxCol at which the maxima occur in the columns of G are found with iMax = G.argmax(axis

= 0); x MaxCol = x[i MaxCol] gives the corresponding x values. For the coordinates y minCol and x minCol of the minima, we proceed accordingly with argmin.

In the printout cell, we realize that x Max is a column vector, i.e., a matrix with only one column. The slice xMaxCol[:,0] extracts the column within the matrix

and displays it as a row.

Questions

Are the values for (x Min, y Min) and (x Max, y Max) consistent with the prespecified values of the vertices (x V, y V)? Compare with Fig. 2.17! 16

16 The four vertices show up as the 1st and 4th point in (x Max, y Max) and the 2nd and 3rd point in (x Min, y Min). The other points are at the boundaries of the x range.

2.6

Four Parabolas and Their Upper Envelope

57

Fig. 2.18 Illustration to

demonstrate indexing of

G[0,:]

matrices

G[:,0]

axis = 0

axis = 1

The indexing of rows, columns, and axes seems not to be very intuitive.

Therefore, we illustrate it in Fig. 2.18. G[0,:] addresses the first row: axis = 0

means across the rows yielding a number of values corresponding to the num-

ber of columns. G[:,0] addresses the first column, axis = 1 means across the

columns yielding a number of values corresponding to the number of rows , in

our example for every value of x.

2.7

Sum of Four Cosine Functions

We sum up four cosine functions with different angular frequencies ω i. When

the frequencies are multiples (overtones) of a fundamental frequency, such

sums mimic the time signals of sound. Beats are generated when the fre-

quencies are equally spaced within a small frequency range. The formula

for the addition of cosines is illustrated by setting each two frequencies as

equal, with the result being described by the broom rule “C os plus cos

 yields mean times half the difference”.

2.7.1

Sound and a Cosine Identity

Vibrations of a string

Mag Take a look at the microphone signal in Fig. 2.19a! How would you describe the signal?

Alac Well, a peak is repeated periodically, and in between, there is a lot of

fidgeting.

Mag Yes and no. Yes, there is a fundamental frequency of repetition, and no,

sound is not fidgeting; it is composed of harmonics.

Figure 2.19a is the record of the sound of a guitar string. What is the fundamental frequency in this case?

[image: Image 23]

58

2

Data Structures, Excel and Python Basics

Fig. 2.19 a (left) Oscilloscope image of a microphone signal of a vibrating guitar string as a function of time (courtesy of Norbert Renner, University of Duisburg-Essen), time unit of the grid =

5 ms., b (right) Fundamental) and first harmonic oscillations (first overtones) of a reed of length l fixed on one end (top), l = (λ n/4)·(2 n + 1) and a string of length l fixed on both ends (bottom), l

= (λ n/2)·(n + 1); n indicates the number of internal nodes Tim The period is one-and-a-half grid distance, 7.5 ms, corresponding to a

frequency of 133 Hz. But what are harmonics?

Mag Let’s consider the vibrations of a guitar string. How does a string vibrate?

Tim It is sinusoidally excited, as in the bottom part of Fig. 2.19b.

Mag Yes.

Figure 2.19b suggests that there are only discrete values of the wavelength with which a string can vibrate. You can determine them by considering the boundary

conditions.

Tim The sine must go through zero, where the string is clamped.

Alac In between, it may also go through zero.

Mag Exactly. The zero-crossings are called nodes. The boundary conditions

require that the string length l be a multiple of half the wavelength, l = (n + 1) ·

 λn/ 2, n = 0, 1, 2, … The possible frequencies are multiples of the fundamental frequency c/(2 l)), where c is the velocity of sound on the string. The corresponding vibrations are called harmonics. The mode with n = 0 is called the fundamental

mode. Now, let me repeat my question: How do you now describe the microphone

signal?

2.7

Sum of Four Cosine Functions

59

3

3

ω0=1, all

ω0=0.5, odd

2

2

y

y

1

1

0

t

0

t

0

10

20

30

0

10

20

30

-1

-1

-2

-2

Fig. 2.20 a (left) Sum of a fundamental tone with ω 0 = 1 and three overtones at 2 x, 3 x, 4 x ω 0.

The time unit is 1 s when the values for ω are given in 1/s. b (right): Sum of a fundamental tone with ω 0 = 0.5 and three overtones with 3 x, 5 x, 7 x ω 0. Time unit = 1 s Alac I guess it is the sum of the harmonics.

Mag Right, it is the sum of the allowed vibrations with individual amplitudes.

In the case of a string clamped on both ends, the frequencies are multiples (1, 2,

3, …) of the fundamental frequency, f n = f 0 · (n + 1), or correspondingly for the circular frequencies ω n. In cases in which one end of the vibrating medium is free, such as, for example, in a saxophone reed clamped on one side, the frequencies

are odd multiples (1, 3, 5, …) of the fundamental frequency, f n = f 0 · (2 n +

1). Examples are given in Fig. 2.20. There, you see the sum of four cosines with a fundamental frequency ω 0 = 1 and multiples 2 ω 0, 3 ω 0, 4 ω 0 (Fig. 2.20a) or multiples 3 ω 0, 5 ω 0, 7 ω 0 (Fig. 2.20b).

Task in this exercise

Tim Now, are we going to emulate the microphone signal?

Mag Yes, but in the more general context of summing up four cosine functions

whose frequencies satisfy certain conditions.

In this exercise, we shall use the form y = A·cos (ω · t + φ) with the parameters amplitude A, circular frequency ω, and zero phase φ. We set up a calculation model with four cosines, with their circular frequencies specified by a fundamental

frequency and either three multiples thereof (to get harmonics) or three more

frequencies at a distance of d ω (to get beats or demonstrate the addition theorem of cosines) .

Beats and the uncertainty relation

Beats are shown in Fig. 2.21a. The four frequencies are again equidistant, but packed together in a small frequency range ω. As control parameters for the calculation, to be systematically varied later, we take the lowest frequency ω 1 and the width of the frequency range ω, i.e., the difference between the highest and the lowest

60

2

Data Structures, Excel and Python Basics

w.0=4; Delta.w=3

w.0=2; Delta.w=1

4

4

y

y

2

2

0

0

0

10

20

30

0

10

20

30

t

t

-2

-2

-4

-4

Fig. 2.21 a (left) Beats arising from four cosine functions; the initial angular frequency ω 0 = 4, the width in the frequency range ω = 3, b (right) another beat with initial angular frequency ω 0

= 2, and width in the frequency range ω = 1

frequencies. As a result, the signal clusters together into wave packets. In Fig. 2.21,

they are separated by black markings. We shall determine the width of such wave

packets based on an uncertainty rule.

Mag The amplitudes of the cosine components of a beat are not freely chosen,

but rather derived from binomial coefficients. How do you get such coefficients?

Alac Well, with Pascal’s triangle. Why so precise rules for the amplitudes?

Can’t we choose them as we like?

Mag With said choice of amplitudes, we get a clear picture of the beat in the

time domain, with the envelope being similar to a bell curve. Initially, you are to

change only the lowest frequency ω 0 and the spectral width ω and observe the function’s behavior in the time domain. Later, you may select the amplitudes at

will and see whether the observed regularity is preserved.

Task You are to insert points into the diagrams at the position of the nodes

of the oscillations. To do so, you may create formulas that specify the marker

points’ coordinates when the width of a packet t and an initial time offset t 0 are specified. In a spreadsheet, it would be best for you to use sliders that change the

coordinates so that the points in the diagram lie precisely on the nodes of the beat.

Mag Have you figured out the rule for the width of a wave packet?

Tim The time interval t for a packet is proportional to the inverse of the spectral width t = 3π /ω = 1 . 5 / f . The width is certainly smaller, because the signal goes to zero well before the marker points.

2.7

Sum of Four Cosine Functions

61

Mag With that statement, you have found an uncertainty relation: f · t =

3 / 2 ≥ 1.

Tim Heisenberg’s uncertainty relation?

Mag Yes, it is related to the commutation relation of time t and energy E =

 h f , E · t = 3 h ≥ h.

2

Sum of cosines

Mag How do you write cos(x) + cos(y) as a product of two trigonometric functions?

Alac Is it necessary to know such things? You can look it up in handbooks.

Tim I’ve memorized it: “the mean times half the difference.”

 Cos plus Cos yields the mean, times half the difference.

Mag This broom rule is a useful mnemonic if you can reconstruct the full form

from it:

 x + y

 x − y

 cos(x) + cos (y) = 2 · cos

cos

(2.8)

2

2

Alac I’m certainly never going to forget such a crazy saying. The first cosine

in the product has the average of the two primary cosines, the second half the

difference.

Mag Exactly, and if x = 0 and y = 0, then 1 + 1 = 2 must be the result.

This explains the pre-factor on the right-hand side of Eq. 2.8. We can test the sum formula for two cosines with our calculation model by making each two of our

four frequencies equal so that only two different frequencies remain and setting all

amplitudes to 0.5. The result of such a calculation can be seen as the thick gray

curve in Fig. 2.22.

The black dotted curve corresponds to the function.

2 cos

 w 0 + dw t (the mean frequency)

2

and the dashed curve to.

 dw

2 · cos

· t (half the difference of the frequencies).

2

We see that the cosine with half the difference frequency (dashed line)

envelopes the sum. The curve oscillates with the mean frequency (dotted line).

The product of the two curves experiences a phase shift π after each zero crossing of the envelope.

62

2

Data Structures, Excel and Python Basics

3

2

y 1

0

0

10

20

30

-1

t

-2

w.0=2; Delta.w=1

w=w.0+dw/2

w=dw/2

black diamonds

-3

Fig. 2.22 Thick gray curve: the sum of two cosine functions with the frequencies ω 1 and (ω 1 +

 ω); black dotted curve: cosine function with the mean frequency; black solid curve: envelope with half the difference of the frequencies

2.7.2

Data Structure and Nomenclature

d t

distance between adjacent points of time

 t

vector of 801 equidistant points of time

 c 1, c 2, c 3, c 4

cosine functions at t

 c

matrix [c 1, c 2, c 3, c 4]

 A

array of 4 amplitudes

 ω

array of 4 circular frequencies

 ω 0

lowest frequency

 Δω

width of the frequency range of a beat

d ω

distance between frequencies

 φ

array of 4 phase shifts.

 sumC

sum c 1 + c 2 + c 3 + c 4

2.7.3

Spreadsheet Layout

From the very beginning: a clear layout!

We set up a worksheet calculation to sum up four cosine functions, with their ampli-

tudes A, angular frequencies ω, and zero phases φ to be chosen freely. The functions are to be calculated from t = 0 to t = 32 s for 801 sampling points. The basic -

structure of a suitable spreadsheet set-up can be seen in Fig. 2.23 (S). The names c 1, c 2, c 3, c 4 of the cosine functions are written in the spreadsheet with a dot separating the letter and the number, c.1, etc., because C1, etc., are cell addresses.

Overtones

The problem of generating overtones (higher harmonics) is a special case of the

general task. The functions are to be calculated within a matrix range of, in our

2.7

Sum of Four Cosine Functions

63

A

B

C

D

E

F

G

H

I

J

1

=w.0

=2*w.0 =3*w.0 =4*w.0

, all

2

A

0.23

0.75

0.63

0.72

3

w

1.00

2.00

3.00

4.00

w.0

1.00

ω0

4

phi

0

0

0

0

ω0=1, all =J3&"="&w.0&G1

5

0.04

$5

*t+phi) *t+phi) *t+phi)

6

=A8+$A =A*COS(w=A*COS(w=A*COS(w=A*COS(w*t+phi)

=SUM(B9:E9)

7

t

c.1

c.2

c.3

c.4

sumC

8

0.00

0.23

0.75

0.63

0.72

2.33

Write formula into B8!

9

0.04

0.23

0.75

0.63

0.71

2.31

Dragg into B8:E808!

808

32.00

0.19

0.29

-0.11

-0.50

-0.13

Fig. 2.23 (S) Four cosine functions c 1 to c 4 are calculated in the matrix range B8:E808 (below), the cells of which always contain the same formula. The four functions are summed up in column F.

The formulas in the columns are displayed in row 6 in oblique orientation. The time t (the independent variable) is defined as column vector A8:A808 (left of) with the name t. The amplitudes A, the angular frequencies ω, and the zero phases ϕ are defined as row vectors B2:E2, B3:E3, B4:E4, respectively (above). Here, the angular frequencies are multiples of the fundamental frequency ω 0

particular case, width 4 (number of functions) and height 801 (number of data points)

. We write the desired values for amplitudes A, circular frequencies ω, and zero phase φ in rows above the matrix range and the independent variable t in a column to the left of the matrix range.

You are to organize the worksheet calculation such that you need to write a formula

into only one cell that is then copied to the entire calculation area (here B8:E808)

for the four functions by dragging down and to the right.

Beats

The parameters for beats are specified in H2:I4 of Fig. 2.24 (S), namely, the first frequency ω 1 and the frequency range ω, from which d ω, the distance between neighboring frequencies, is obtained. The amplitudes A are binomial coefficients (up to a factor of 2) and can be determined using Pascal’s triangle.

Cosine identity

Figure 2.25 (S) presents a spreadsheet layout for obtaining the cosine identity shown in Fig. 2.22, the same as for beats. Here, however, c 1 = c 3; c 2 = c 4, and all amplitudes A

B

C

D

E

F

G

H

I

J

1

=w.0

=B3+dw =C3+dw =D3+dw

=Delta.w/3

2

A

0.5

1.5

1.5

0.5

Delta.w

1.00

3

w

2.00

2.33

2.67

3.00

dw

0.33

4

phi

0

0

0

0

w.0

2

5

0.04

w.0=2; Delta.w=1

Fig. 2.24 (S) Parameters for a beat; ω (“omega”) is coded as w

[image: Image 24]

64

2

Data Structures, Excel and Python Basics

Fig. 2.25 (S) Parameter set for a sum of two cosine functions; c 1 = c 3; c 2 = c 4; H5 displays the legend for one of the curves in Fig. 2.22, while there are formulas in K6:L6 for the angular frequencies of the fast oscillation and the envelope according to the sum formula, Eq. 2.8, applied in K8:K808 and L8:L808; the amplitudes are taken from cell F8. K4 and L5 contain the legend for the other two curves in Fig. 2.22

are equal (= 0.5). The legends for the fast oscillation (with medium frequency) and

the envelope (with half the difference frequency) are assembled in K1:L5.

2.7.4

Python Program

Program flow in Jupyter

The program flow in the cell structure of Jupyter is shown in Fig. 2.26. The parameters for five subtasks are specified in five program cells. The identifiers of the

parameters are the same in all five cells shown in Table 2.26 and Table 2.27. The main program gets the parameter values from the cell that has been run immediately

before the main program is started. To keep track of the program flow, labels that

contain all relevant parameters are created in all subtasks and displayed in the main

program as legends in figures.

Fig. 2.26 Program flow: the

Overtones, all

parameters for five subtasks

are specified in five cells and

Main program

alternatively fed into the main

Overtones, odd

program

Columnar vector t

Beats 1

Calculate c, sumC

Beats 2

Plot sumC

Add Cosines

2.7

Sum of Four Cosine Functions

65

Table 2.23 Main program for calculating 4 cosine functions and plotting their sum sumC ; y Min, y Max, and FigName are specified in Tables 2.25–2.27

1

t0=np.linspace(0,32,801)

2

t1=np.array([t0])

3

t=t1.transpose(1,0)

4

c=A*np.cos(w*t+phi)

5

sumC=np.sum(c,axis=1)

6

7

FigStd('t',0,30,10,'y',ymin,ymax,dy)

8

plt.plot(t,sumC,'k-',label=lbl_0)

9

plt.legend(loc=0,fontsize=11) # loc = 0, best free place

10

plt.savefig(FigName) # Store figure as a file!

Main program

The main program for calculating the four cosine functions and plotting their sum is

given in Table 2.23. We assume that we have imported the two libraries numpy and matplotlib.pyplot under the shortcuts np and plt, as well as the function

 FigStd described in Sect. 2.4.5. This shall be done in all future programs and shall not be reported explicitly. The coefficients A, ω, φ, as well as the label lbl 0 for the curve and the name FigName of the file name under which the figure is saved, have to be specified ahead of time. Figures 2.20, 2.21, and 2.22 all have different scaling of the y axis, so that the corresponding axis parameters y min, y max, d y must also be specified in the subtask cells before calling FigStd.

This is done in the program cells for the different situations: harmonics (Table

2.25), beats (Table 2.26), and the addition of cosines (Table 2.27).

In order to get the same data structure as in the spreadsheet solution, we have

to construct t as a column vector. We first define our discrete time points according to column A in Fig. 2.23 (S). This is done with t0 = np.linspace(0, 32, 801) specifying that the range from 0 to 32 is scanned with 801 equidistant points. The endpoint 32 is included by default. If we do not want that, we

have to include “endpoint = False” as an entry behind the three positional

arguments: np.linspace (0, 32, 801, endpoint = False), but we

won’t do that here.

The variable t 0 is now a row vector. To make it a column vector, we first

transform it into a two-dimensional array by including the array t 0 within square brackets as the argument for t1 = np.array(), with one row only (shape =

(1, 801); axis 0 has one element, a list with 801 elements. We then transpose the

array between the two axes 1 and 0 by t1.transpose(1,0). The shape and the

first and last elements of the three vectors are reported in the second cell of Table

2.24. The column vector t has the same shape and contains the same numbers as the variable t in A8:A808 of Fig. 2.23 (S). The same holds for the matrix c

66

2

Data Structures, Excel and Python Basics

Table 2.24 Second cell: data structure of the variables of the main program, printed with instructions similar to those in the first cell. Third cell: matrix of the y values of four cosines 1

print("t0, shape:", np.shape(t0))

2

print(t0)

t0, shape: (801,)

c, shape: (801, 4)

[0.00 0.04 ... 31.96 32.00]

[[0.23 0.75 0.63 0.72]

[0.23 0.75 0.63 0.71]

t1, shape: (1, 801)

...

[[0.00 0.04 ... 31.96 32.00]]

[0.20 0.35 -0.04 -0.41]

[0.19 0.29 -0.11 -0.50]]

t, shape: (801, 1)

[[0.00]

sumC,shape: (801,)

[0.04]

[2.33 2.31 ... 0.10 -

...

0.13]

[31.96]

[32.00]]

calculated as c = A*np.cos(w*t + phi) and for sumC reported in the

third cell of Table 2.24.

Question

Which parameters relevant in the main program in Table 2.23 have to be specified in the sub-programs executed immediately before the main program? 17

To calculate the four cosines, we apply the same formula, an operation on

three row vectors and one column vector as in range B8:E808 in the spreadsheet

(Fig. 2.23 (S)).

excel: [range] = [=a*cos(w*t + phi)]

Python:c = A*np.cos(w*t + phi)

Both operations yield a 2D array, excel by dragging into a 2D range, Python

by automatic broadcasting.

You should have noticed that our spreadsheet layout has been translated line-

by-line into Python. The striking similarity between the two platforms when using

vector notation is the reason why mathematical-physical calculations can be sensi-

bly performed in excel. training such calculations is a good introductory exercise

for computational physics.

There is a difference between the spreadsheet and the Python solution

presented here:

17 (1) Labels that contain information on the characteristic frequency and frequency range. (2) Scalings of the y-axis. (3) Name under which the resulting figure is stored. (4) Parameters A, w, phi.

2.7

Sum of Four Cosine Functions

67

– In excel, the four column ranges get the names c.1, c.2, c.3, c.4, with which

they can be called.

– In Python, all four curves are stored in the columns of the two-dimensional

list c and can be called by c[:,i] with i = 0, 1, 2, 3.

Summing up the four cosines is done in excel with the formula in F9 =

[=Sum(B9:E9)] of Fig. 2.23 (S) and in Python with np.sum(c,axis = 1).

The resulting variable s umC is a 1D vector. It is the sum across the columns (axis

= 1) for a specific value of t, and has the rows’ length. Attention: The choice of axes does not seem intuitive, but becomes apparent when sumC is plotted versus

 t; both have to be of the same length. For an overview, see Fig. 2.18.

Same data structure in Excel and Python

In spreadsheets, the formulas behind the values in the cells are usually hidden. To

report them in our figures, we have copied their text in italic into neighboring cells.

Contrastingly, in Python, the formulas are evident, but the data are hidden. To

make them visible, we print them out in a well-structured manner (see Table 2.24).

A comparison with Fig. 2.23 (S) shows that we have reached our goal to implement the same data structure in excel and Python.

Harmonics

In Table 2.25, we specify the harmonics’ parameters in the same way as in the spreadsheet, in the first cell for all multiples (of ω 0 = 1) and in the second cell for odd multiples of the lowest frequency ω 0 = 0.5. The values for amplitude A, circular frequency ω, and zero phase φ are specified as vectors, in Python realized as lists (characterized by square [] brackets). From these parameters, we compose a

label lbl 0, later to be reported in the figure showing the result of our calculation.

Furthermore, we specify in FigName the name under which the corresponding chart

is to be stored. In lines 5 and 11, we specify the scale of the y-axis according to Fig. 2.20.

Table 2.25 Specifications of the parameters for harmonics

1

A=[0.23,0.75,0.63,0.72]

2

w=[1,2,3,4]

Overtones, all

3

phi=[0,0,0,0]

4

lbl_0="ω0="+str(w[0])+", all"

5

ymin,ymax,dy=-2,3,1 # Scaling the y-axis

6

FigName="PhExI 7-4 Overtones all" # File name for later use

7

A=[0.23,0.75,0.63,0.72]

 8

w=[0.5,1.5,2.5,3.5] # Overtones, odd

9

phi=[0,0,0,0]

10

lbl_0="ω0="+str(w[0])+" (odd)"

11

ymin,ymax,dy=-3,3,1

12

FigName="PhExI 7-4 Overtones odd" # In plt.savefig(FigName)

68

2

Data Structures, Excel and Python Basics

Table 2.26 Specifications of the parameters for beats

1

Beats 1

2

A=[0.5,1.5,1.5,0.5]

3

Delta_w=1

4

dw=Delta_w/3

5

w1=2

6

w=[w1,w1+dw,w1+2*dw,w1+3*dw]

7

phi=[0,0,0,0]

8

lbl_0=("ω1="+str(w1)+"; Δω="+str(Delta_w)) # Label for curve

9

ymin,ymax,dy=-4,4,2

10

FigName="PhExI 2-7-4 Beats1"

File name in savefig()

11

Beats 2

12

A=[0.5,1.5,1.5,0.5]

13

Delta_w=3

14

dw=Delta_w/3

15

w1=4

16

w=[w1,w1+dw,w1+2*dw,w1+3*dw]

17

phi=[0,0,0,0]

18

lbl_0=("ω1="+str(w1)+ "; Δω="+str(Delta_w))

19

ymin,ymax,dy=-4,5,2

20

FigName="PhExI 2-7-4 Beats2"

File name

Table 2.27 Specification of the parameters for the addition of cosines

1

Addition of cosines

2

A=[0.5,0.5,0.5,0.5]

3

Delta_w=1

4

dw=Delta_w/3

5

w1=2

6

w=[w1,w1+dw,w1,w1+dw]

7

phi=[0,0,0,0]

8

lbl_0=("ω1="+str(w1)+"; dω="+str(np.round(dw,2)))

9

ymin,ymax,dy=-3,3,1 # Scaling of y axis

10

FigName="PhExI 2-7-4 Sum Cos" # File name

Beats and the addition of cosines

The parameters for the other situations are set in Table 2.26 (beats) and Table 2.27

(addition theorem of cosines).

2.7.5

Producing Labels (as Strings) in Excel and Python

When producing labels, the following differences between excel and Python

have to be taken into account:

[image: Image 25]

2.7

Sum of Four Cosine Functions

69

excel (G4 in Fig. 2.23 (S)) A1 = [=”w0 & w.0 & “, all”]

The concatenation operator is & (ampersand), and numeric values are automat-

ically converted into a string.

Python (Table 2.25):lbl_0 = “ω0” + str(w[0]) + “, all”

The concatenation operator is + ; numeric values have to be converted explicitly

into a string. In both applications, text is enclosed in quotation marks.

When numbers x have to be rounded to n decimal places, we can use

round(x;n) in excel and np.round(x,n) in numpy.

2.8

Questions

Cell references

1. What does the broom rule Ψ The dollar makes it absolute tell us?

2. What formula must be written in cell B5 of Fig. 2.27 (S), with absolute and relative references, so that copying this formula into the range B5:E205 creates four sine

functions?

3. (Python) Specify arrays A, ω, t, so that an instruction C = A*np.cos(ω* t) generates the four cosines C a, C b, C c, C d of Fig. 2.27(S) in one matrix C. How do you replace the # in F sum = np.#(C, axis = #) to get the sum of the four cosines?

A

B

C

D

E

F

G

H

1

1

2

3

4 Amplitude

2

4

3

2

1 Angular frequency

3

4

Ca

Cb

Cc

Cd

5

0

=A*COS(w*t)

6

1

7

2

205

200

Fig. 2.27 (S) structure of a spreadsheet for displaying four cosine functions Fig. 2.28 The sum of the

four cosines specified in

Fig. 2.27 (S)

[image: Image 26]

70

2

Data Structures, Excel and Python Basics

A

B

C

D

E

F

1

a

2.00

y=1x+2

2

m

1.00

10.00

3

y=1x+2

8.00

4

x

y

5

6.00

1.00

3.00

6

2.00

4.00

4.00

7

3.00

5.00

2.00

y=1x+2

8

4.00

6.00

9

5.00

7.00

0.00

10

6.00

8.00

0.00 2.00 4.00 6.00 8.00

Fig. 2.29 a (left, S) A straight line is defined in the spreadsheet and displayed in the diagram. b (middle) Standard chart of the data in a. c (right) The design/select data/edit dialog box,

which is used to insert the data series x, y from a into the diagram 4. (Python) Write a program that realizes the spreadsheet calculation in

Fig. 2.27 (S), using an instruction C = A* np.cos (w*t)! Calculate the sum of the four cosines and plot them as shown in Fig. 2.28, with a statement plt.plot(t,Ctot,’k-’)!

Spreadsheet function Indirect

5. Look at the entries in eight cells of a table: A1 = 5; B2 = K; E1 = 5; K5 = 7; W1

= “E"&1; W2 = indirect(W1); W3 = B2&A1; W4 = indirect(W3). Which

numbers appear in cells W2 and W4?

Arrays in Python

6. Array x is specified as x = np.arange (-8,8 + dx,dx) with d x = 1.

How many elements does x comprise and what are its first and last elements?

7. What are the elements of np.linspace (0,3,4)?

8. What is the shape of arrays U = np.array([1,2,3]), UR =

np.array([[1,2,3]]) and UT = UR.transpose(1,0)?

9. What is the shape of np.array([[1,2],[2,3],[3,4]])?

10. Let V = np.array([[1,2,3]] and W = np.array([3,2,1]).

What is the shape of U = V * W and V.transpose(1,0)?

Diagrams

In Fig. 2.29a (S), you see data series x and y, in Fig. 2.29b, the corresponding chart, and in Fig. 2.29c, the dialog box with which the data series was inserted into this diagram.

11. Which spreadsheet ranges contain series name, series x values, and series

y values?

12. How do you create the expression y = 1x + 2 in the spreadsheet, and how do you insert it into the chart in Fig. 2.29b as a legend?

13. (Python) Below, you find a program for plotting a chart similar to the one

in Fig. 2.29a, additionally with labels ‘x’ for the horizontal and ‘y’ for the vertical axis. Fill in the missing entries! The graph should be a straight line with

diamonds, all black.

[image: Image 27]

2.8

Questions

71

A

B

C

D

E

F

27

1000

5.00

A

B

C

D

E

F

27

0

-5.00

Fig. 2.30 Two settings of a slider

FigStd(…)

x=[…]

y=[…]

plt.plot(x,y, …)

14. (Python) How do you produce the string y = 1x + 2 when a = 2.0023 and m

= 1.001 are specified?

15. (Python) How do you produce a string 3.0*exp(t/-30.0) when A = 3.001 and t A = -30.0 are specified?

Sliders (scroll bars)

In Fig. 2.30, you can see two settings of a slider.

16. Which is the linked cell?

17. What are the minimum and maximum values of the slider?

18. The formula in F27 accesses cell D27. How does it look like?

19. The formula = (A5-500)/100 is used to generate decimal numbers between -5

and 5 recurring to a slider. What is the linked cell, and what are min and max

of this slider? What is the distance between two decimal numbers.

Polar coordinates

20. The coordinates of a circle are best given in polar coordinates with the angle φ

and the radius r. How do you get the cartesian coordinates x and y needed for an xy diagram?

The figure in Fig. 2.31a is generated by the spreadsheet organization in Fig. 2.31b

(S). Cells C11 and E11 have the names shown to their left. The column area B14:B26

gets the name phi.

21. How big are the numbers d Phi and r K?

Apply names for cell ranges, if defined, in the answers to the next three questions!

22. What formulas are in cells B15 and B26?

23. Which formula is in column C below x?

72

2

Data Structures, Excel and Python Basics

15

B

C

D

E

y

11

10

dPhi

0.5236

rK

10

12

5

13

phi

x

y

14

0.00

10.00

0.00

0

15

0.52

8.66

5.00

-15

-10

-5

0

5

10

15

16

1.05

5.00

8.66

x

-5

17

1.57

0.00

10.00

24

5.24

5.00

-8.66

-10

25

5.76

8.66

-5.00

26

6.28

10.00

0.00

-15

Fig. 2.31 a (left) Representation of a circle with 12 line segments; b (right, S) Coordinates for the circle in a

24. Which formula is in column D below y?

25. (Python) Complete the following program by replacing # to get a figure similar

to Fig. 2.31a:

rK=10

phi = np.arange(0,#,dPhi)

x=rK*#

y=rK*#

FigStd(#,#,#,#,#,#,#,#)

Cosine functions

Figures 2.32a and b display two cosine functions.

15

15

CosA

CosB

10

10

y

y

5

5

0

0

-10

0

10

20

30

t

-10

0

10

20

30

t

-5

-5

-10

-10

-15

-15

Fig. 2.32 a (left) Cosine function Cos A. b (right) Cosine function Cos B

2.8

Questions

73

26. What are the amplitudes and cycle times of the functions Cos A and Cos B shown in Fig. 2.32?

27. What are the angular frequencies of the two functions shown in Fig. 2.32?

28. What are the overtones to the fundamental with the frequency f = 100 Hz?

29. How do you interpret the broom rule: Ψ Cos plus Cos = mean value times half the difference?

30. A second cosine function is added to a cosine function with f = 100 Hz. What

frequency must the second cosine function have to produce a beat of 1 Hz?

[image: Image 28]

Formula Networks and Linked

Diagrams

3

In this chapter, we practice clearly-structured calculations with formulas. Our

aim for spreadsheets:—formulas in cells should be similar to mathematical

formulas, a feat that is achieved by naming variables, calling them by their

name, and clearly separating independent and dependent variables. As in

every chapter, parallel solutions in Python are presented. For both excel

and Python, we aim to document intermediate results step by step from

top to bottom and accompany them with charts. This way, the results are

checked during the implementation of the formulas, and the calculation is

easy to understand, even weeks later. With these rules in mind, we treat

image construction for lenses, the Doppler effect, and exponential growth.

3.1

Introduction: Well-Structured Sheets and Programs

Solutions of Exercises 3.2 (Excel), 3.3.1 (Python), 3.3.5 (Python), and 3.4 (Excel)

can be found at the internet address: go.sn.pub/McoItP.

Physical tasks with networks of formulas

Many tasks in secondary education, or in physics courses at colleges, or even in

regard to minor subjects at universities, are based on simple formulas used to solve

practical tasks. In this chapter, we solve such tasks through spreadsheet calculations

and Python programs:

– image constructions for optical lenses,

– the Doppler effect with a general formula and for an observer off a race track, and

– exponential diode characteristics.

© Springer Nature Switzerland AG 2022

75

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_3

76

3

Formula Networks and Linked Diagrams

3

A

B

C

D

E

F

G

y [m]

1

2

Designation Name Value Unit

x

y

2

Width

w

2

m

-1

-1.5

3

Height

h

3

m

-1

1.5

1

4

1

1.5

5

Area

A

6

m²

=h*w

1

-1.5

0

6

-1

-1.5

-3

-2

-1

0

1

2

3

-1

x [m]

-2

-3

Fig. 3.1 a (left) A rectangle around the origin of the coordinate system b (right, S) Calculation of the area of a rectangle; Independent variables in B2:C3; coordinates x, y for the representation in a are calculated in columns F and G. b (right) Spreadsheet solution; coordinates for the rectangle shown in a, symmetrical to the origin of the coordinate system

For this purpose, a system of formulas has to be built using the results of other

formulas. The spreadsheet set-ups and the Python programs should reflect the line

of thought and be easily traceable, even weeks later.

Solve step by step and write it down in mathematical language!

The student shall learn to keep an overview by developing the solution step by step

and displaying the results graphically, e.g., as optical ray construction. The diagrams

should adapt automatically to any change in the parameters of the task.

Illustration: Draw a rectangle!

We consider a simple task: Specifying the width w and height h of a rectangle, calculating its area A, and drawing the rectangle as a chain of straight lines with vertices (x, y), with its center at the origin of the coordinate system (see Fig. 3.1a).

Python program

In Python, every object has to have an identifier (a name) so that, from the outset, the

implementation is similar to mathematical formulas. For Fig. 3.1a, we apply Table

3.1.

Formula network in spreadsheets

In spreadsheet calculations, we have to pay special attention in order to achieve our

goal. It is necessary to call all variables by names such that the cell formulas can

be written like mathematical formulas. It is often useful to present the calculation

in four columns: designation of the quantity, variable name as an identifier for cells,

numerical value, and physical unit. An example is given in Fig. 3.1b. All independent variables are in a block at the top left of the sheet, with names in B2:B5 and units in

D2:D5.

If one of the independent variables is changed, the entire calculation and all

diagrams should follow, without corrections having to be made somewhere in the

3.1

Introduction: Well-Structured Sheets and Programs

77

Table 3.1 Specifying the coordinates of a rectangle around (0, 0)

1

w=2 #[m] Width

2

h=3 #[m] Height

3

A=h*w #[m²] Area

4

x=[-w/2, -w/2, +w/2, +w/2, +w/2]

5

y=[-h/2, +h/2, +h/2, -h/2, -h/2]

sheet. We call a spreadsheet structure corresponding to these requirements a ‘formula

network’. It is often useful to change independent variables with sliders that can

quickly be used to get an impression of the trend of the solution (not realized in

Fig. 3.1b).

The area is calculated as F = h * w = height by width. If you write “= h * b”

into cell C5, C5 = [= h * w], then immediately “6” appears after you hit Enter.

In columns F and G of Fig. 3.1b, the coordinates for the graphical representation in Fig. 3.1b are calculated. The formulas are the same as for x and y in Table 3.1. Cells and cell areas must be named, e.g., F2:F6 with “x”. A good formula network must

not only be correct, but also clear!

Provide cells in spreadsheets with names

There are several ways to name cell areas. We already became acquainted with this in

the last chapter in Exercise 2.1 and Sect. 2.3.5. You can also find out more about this in the excel help under the keyword “Create a name”. We prefer to use the variant

formulas/defined

names/create

from

selection, which has the advantage

that the names given in the name manager are visible in the spreadsheet, and thus

contribute to the clarity of the calculation.

Check the solution with diagrams

For the representation of the rectangle in a diagram, here, Fig. 3.1a, the coordinates x, y are calculated from the values for width w and height h. The drawings should adapt automatically to any change in the parameters of the task. Therefore, in the

spreadsheet of Fig. 3.1b, columns F and G contain formulas and not just numbers.

The entries for w and h control all computations in the sheet and the figure, giving the impression of a “living spreadsheet”.

Experience has shown that it is especially appealing to many students to work on

the tasks until the diagram “obeys on command”. In the case of more complex tasks,

it is also easier to see whether the formula is correct.

Question

What are the formulas for x and y in Fig. 3.1b (S)? 1

1 x = + w/ 2 or x = – w/ 2; y = + h/ 2 or y = – h/ 2, always correctly combined.

78

3

Formula Networks and Linked Diagrams

Mathematical functions

In this chapter, we apply four mathematical functions:

– straight lines for image constructions of geometrical optics,

– exponentials for diode characteristics,

– polar coordinates with sine and cosine.

3.2

Image Construction for Focusing and Diverging Lenses

We construct the image point that a lens generates from an object point with

three characteristic rays, applying the general imaging equation valid for both

a focusing lens and a diverging lens. Lens equation with plus and minus.

We draw the bundle of rays through the lens, which actually contributes to

the image point. After this exercise, the reader should be able to master the

straight-line equation blindfolded.

3.2.1

Straight Line Equation

In this exercise, a straight line is defined by two points (x 1, y 1) and (x 2, y 2). For a given third coordinate x 3, a coordinate y 3 is to be calculated so that the point (x 3, y 3) lies on the straight line.

Straight line equation

Given two points (x 1, y 1) and (x 2, y 2) of a straight line, the straight-line equation is y(x) = y 1 + m · (x − x 1)

(3.1)

or

 y(x) = y 2 + m · (x − x 2)

(3.2)

both times with the slope

 m = y 2 − y 1

(3.3)

 x 2 − x 1

We call the respective points (x 1 , y 1) in the first straight-line equation and (x 2 , y 2) in the second the reference points of the straight line.

[image: Image 29]

3.2

Image Construction for Focusing and Diverging Lenses

79

A

B

C

D

E

F

6

1

x.1

-1.91

209

2

y.1

3.00

 y.1; y.2

y.1; y.2

4

3

y.3

4

x.2

2.00

Straight line

5

y.2

-2

200

2

6

7

m

-1.28 =(y.2-y.1)/(x.2-x.1)

8

x.3

1.63

563

0

9

y.3

-1.53 =y.2+m*(x.3-x.2)

-4

-2

0

2

4

10

11 Straight line

-2

12

-10

13.35 =y.2+m*(B12-x.2)

13

10 -12.23 =y.3+m*(B13-x.3)

-4

Fig. 3.2 a (left, S) Spreadsheet layout for the diagram in b; the values of x 1 and y 1 are obtained by means of sliders. b (right) The point “y.3” is to lie on a straight line given by the two points

“y1; y2”

We demonstrate Eq. 3.1 through the spreadsheet in Fig. 3.2a. The y-value y 1 of the first and the x- value x 2 of the second defining point are directly written into cells B2 and B4, respectively. The associated values x 1 and y 2 in B1 and B5 are determined using the two sliders in D1:F1 and D5:F5. From these coordinates, the

slope m is calculated in B7 with Eq. 3.3. The x value x 3 of the third point in B8

is selected with the slider in D8:F8, and the corresponding y-value y 3 in B9 is obtained with the straight-line equation Eq. 3.2. These three points are represented in Fig. 3.2b with diamonds.

In range B12:C13 of Fig. 3.2a (S), the straight-line coordinates are calculated for x values −10 to 10 extending beyond the range of the x-axis in Fig. 3.2b so that the straight line goes through the whole picture. The straight line is entered

into the figure with series x- values: (B12:B13), series y- values: (C12:C13).

Questions

 Questions concerning Fig. 3.2a (S):

What are the linked cells for the three sliders? 2

Which number range (the same for all) is presumably covered by the

sliders? 3

If the coordinates, to be set by sliders with min = 0 and max = 800, take

on values between −4 and 4, what are the formulas in cells B1, B5, and B8,

with which the coordinates are calculated from the cells linked to the sliders? 4

2 The linked cells are C1, C5, and C8.

3 The number range of all sliders runs from 0 to 800.

4 B1 = [=(C1 − 400)/100]; B5 = [=(C5 − 400)/100]; B8 = [=(C8 − 400)/100].

80

3

Formula Networks and Linked Diagrams

10

5

0

-20

-16

-12

-8

-4

0

4

8

12

16

20

Focal points

Rays

-5

Object arrow

Image arrow

-10

Fig. 3.3 Image construction for a focusing lens with parallel, central and focus rays In C12 and C13, the y coordinates of the straight line are calculated with

two different formulas. Why do both formulas describe the same straight line? 5

If we have done everything correctly, the graphic presentation in Fig. 3.2a

should adapt to every change of the values for y 1, x 2, x3 by the three sliders, and the three points should lie on a straight line every time.

3.2.2

Geometrical Image Construction for a Thin Focusing Lens

Image construction by ray drawing

Figure 3.3 illustrates how the image of an object point is constructed with three characteristic rays in the xy-plane.

The x-axis represents the optical axis and also the axis of the circularly shaped lens. A thin lens is represented by its principal plane and its focal length. The shape

of the lens does not play a role anymore. The principal plane is the plane x = 0 in which the y-axis is situated.

Question

How does the parallel ray in an image construction run? 6

5 The slopes are the same for both straight lines. As reference points, (x 2, y 2) has been chosen for C12 and (x 3, y 3) for C13. As both lie on the straight line, the third point also lies on the same line.

6 The parallel ray runs from the object point parallel to the x- axis (that is, the optical axis) up to x

= 0 and then through the image-side focus.

3.2

Image Construction for Focusing and Diverging Lenses

81

10

10

5

5

0

0

-10

-5

0

5

10

-10

-5

0

5

10

Focal

Focal

-5

points

-5

points

Rays

Rays

-10

-10

Fig. 3.4 a Converging lens, a (left) real inverted image for an object distance outside double the focal length. b (right) Virtual, upright image for an object distance within the focal length; corresponds to a look through a magnifying glass from the right

Mag Do you remember how to determine the image point of an object point

geometrically?

Alac Yes, as in Fig. 3.4a. We draw two rays starting from the object point, one through the center of the lens and another parallel to the optical axis up to the

principal plane and then through the focal point on the right side of the lens. The

image point is where the two rays intersect.

Mag So you can do it. Your construction is valid for a converging lens. How-

ever, a lens has two focal points, one on the image-side and another one on the

object-side. In the image construction just described, you have exploited the fact

that all rays incident parallel to the optical axis go through the image-side focus

after having passed through the lens.

Tim We have often drawn a third ray from the object point through the focal

point on the left of the lens, which imagine is called the object-side focal point.

After passing through the lens, this ray is parallel to the optical axis and then

passes through the image point.

Mag Yes, all three construction rays intersect at the image point, as in Fig. 3.4.

That’s what we want to reproduce with our exercise.

In Fig. 3.4, the image construction for a converging lens using the principal rays (parallel, central, and focal) is represented in a Cartesian coordinate system. By

convention, the optical axis is the x-axis. The optical center and the lens’s principal plane are respectively located in the origin of the coordinate system in the plane

 x = 0. We take it as given that the object is always to the left of the lens, i.e., the object distance is always negative.

82

3

Formula Networks and Linked Diagrams

We know (from physics courses) that an inverted real image is formed to the

right of the lens when the object distance is bigger in magnitude than the focal

length (Fig. 3.4a). If the object distance is smaller in magnitude than the focal length, the result is an erect virtual image to the left of the lens (Fig. 3.4b). The general imaging equation for optical lenses considers these relationships by sign

conventions for the variables that enter the imaging equation, Eq. 3.4.

 Lens equation with plus and minus!

3.2.3

Imaging Equation with Correct Signs

Mag Do you know the imaging equation for lenses?

Alac Sure, I’ve already learned it at school:

1 + 1 = 1

(3.4)

 xO

 xI

 f

where x O and x I are the object and the image distance, respectively, and f is the focal length.

Mag This equation is useful only for handmade geometric constructions. For

an analytical calculation, we must use a more accurate one, namely, Eq. 3.5, in which two modifications with respect to Eq. 3.4 have been introduced. Now, f I is the image-side focal length, x I the image distance, and x O the object distance.

The object distance is, in principle, negative, because the object is, by convention,

placed to the left of the lens.

Alac With the old equation, we always got the correct values for image distance

and image size.

Mag Yes, the absolute values are calculated correctly. However, no signs, plus

or minus, are considered. Let’s adopt the more general notation. The object dis-

tance x o is negative if the object is to the left of the lens. The image is often upside down. This is automatically considered in Eq. 3.6, which calculates the image size y I from the object size y O.

Furthermore, Eqs. 3.5 and 3.6 are also valid for a diverging lens if a negative image-side focal length is introduced, f I < 0.

3.2

Image Construction for Focusing and Diverging Lenses

83

General imaging equation for lenses

For the analytical computation of images of lenses, the imaging equation has

to be written with signs:

− 1 + 1 = 1

(3.5)

 xO

xI

 f I

The x-axis is the optical axis. The principal plane of the lens is in the

plane x = 0; the object distance x O is negative. The image-side focal length f I is positive for converging lenses and negative for diverging lenses. The image distance x I may result positive or negative. The imaging scale is

yI = xI

(3.6)

 yO

 xO

with y O being the object size and y I the image size that can be positive or negative.

Converging lens

In Fig. 3.4, you see the usual image construction for a focusing lens (f I > 0) employing parallel, center, and focus rays.

Diverging lens

For the image construction of a diverging lens, you can use the same spreadsheet

calculation or Python program as for a converging lens. You only have to enter

a negative image-side focal length f I. Figure 3.5 shows two examples (obtained from Table 3.3).

3.2.4

Beam Through a Converging Lens that Really Contributes

to the Image

Mag In your geometric ray constructions, you did not draw the cross-section of

the lens. What can you say about the lens?

Alac In all cases, the center is thicker than the edge; otherwise, it would not be a converging lens.

Tim The principal plane of the lens is located in the plane x = 0. The center of the lens is at the origin of the coordinate system.

Mag How big should the diameter of the lens be, e.g., in Fig. 3.4?

[image: Image 30]

84

3

Formula Networks and Linked Diagrams

Fig. 3.5 Imaging with a diverging lens, the geometric construction being the same as for a converging lens, but with negative focal length (f I < 0) (drawings obtained with the Python program in Table 3.4). a (left) upright image for an object distance larger than the focal length. b (right) As with a, but for an object distance smaller than the focal length

Table 3.2 Specifications for an image construction with a converging lens, resulting in a figure similar to Fig. 3.3

6

Converging lens

7

fI=6.0

8

xO=-15

9

yO=6

10

xMin, xMax, Dx = -20, 20, 5 # Scaling of figure axes

11

yMin, yMax, Dy = -10, 10, 2.5

12

FigName='Converging lens'

File name in plt.savefig()

Table 3.3 Specifications for image constructions with a diverging lens, resulting in Fig. 3.5

1

Diverging lens, Object beyond focal length

2

fI=-6

3

xO=-10

4

yO=12

5

xMin, xMax, Dx = -12, 12, 4

6

yMin, yMax, Dy = -8, 16, 4

7

FigName='Diverging lens, outside' # In plt.savefig()

8

Diverging lens, Object within focal length

9

fI=-6

10

xO=-5

11

yO=12

12

xMin, xMax, Dx = -12, 12, 4

13

yMin, yMax, Dy = -8, 16, 4

14

FigName='Diverging lens, inside' # In plt.savefig()

[image: Image 31]

3.2

Image Construction for Focusing and Diverging Lenses

85

Alac I would draw the lens from y = −7 to y = 7 so that the three constructing rays pass through the lens. The diameter would be roughly the same as those of

the lenses used for lecture experiments.

Mag Be cautious; think of cameras! In that case, the lens diameter is much

smaller than, for example, the elephant you are photographing.

Tim That’s right. But does it mean that the construction rays do not go through

the lens?

Mag They don’t, indeed. They exist only in thought and on paper. Which rays

actually do contribute to the image point for a camera lens?

Alac Only the central ray, or perhaps other rays that really do pass through the

lens.

Mag Yes, the image point is formed by a bundle of rays through the lens, as

we will draw now. The lens itself has not shown up in the figures presented so

far. The size of the lens is irrelevant to the image construction; only the principal

plane and the focal length are needed to construct the image point.

Figure 3.6 shows the ray construction of the image point, together with the cross-section of the lens and eleven rays going from the object point through positions in the lens’s full span and finally focusing in the image point. The parallel

ray and the focus ray run outside the lens. They do not exist in physical reality.

Fig. 3.6 (By program in Tables 3.4 and 3.5) Light beam contributing to the image formation in Fig. 3.3

86

3

Formula Networks and Linked Diagrams

Cross-section of the lens

We are going to add the cross-section of the lens to the drawings. To do so, we need

to construct segments of a circle. We make use of the circle equation:

 x 2 + y 2 = r 2

(3.7)

The parameters are the coordinates x 0 of the center point on the x-axis, the radius r K of the circle determining the lens’s curvature, and the lens diameter D L = 2 r L (in front view). With x 0 =

 r 2

− r 2, we calculate the distance of the center of the

 Lens

 L

sphere, limiting the surface of the lens to the origin of the drawing. With

 x =

 r 2

− y 2 − x

 Lens

0 ,

(3.8)

we get the x-coordinate for a given y-coordinate on the surface of the lens.

3.2.5

Data Structure and Nomenclature

 f I

image-side focal length

(x O, y O)

coordinates of the object point

(x I, y I)

coordinates of the image point, to be calculated with the imaging

equation.

Three rays for the geometrical construction of the image, without prior knowledge

of the coordinates of the image point, are defined by f I and the object point from which characteristic slopes have to be calculated.

 x Par, y Par

3 characteristic points of the parallel ray

 x Cen, y Cen

3 characteristic points of the central ray

 x Foc, y Foc

3 characteristic points of the object-side focal ray

 m Par , m Cen , m Foc

slopes of the non-horizontal parts of the three rays

 x Lens , y Lens

cross-section of a converging lens, calculated with Eq. 3.8.

3.2.6

Spreadsheet Calculation

Imaging equations

We calculate the ray path coordinates for imaging with a converging lens, and there-

with set up an image construction that should adapt automatically whenever the

parameters are changed. The coordinates of the three constructing rays’ defining

points are shown in Fig. 3.7 (S).

3.2

Image Construction for Focusing and Diverging Lenses

87

A

B

C

D

E

F

G

H

I

J

K

L

M

1 Specifications

Rays

2 Image-side focal length

fI

6.0

Central ray

3

Object distance xO

-15.0

slope

-15 =xO

6 =yO

4

Object height yO

6.0

0 =0

0 =0

5 Imaging equation

mCen

-0.4

20

-8 =mCen*J5

6

Image distance

xI

10.0 =(1/fI+1/xO)^-1

=yO/xO

Parallel ray

7

Image height

yI

-4.00 =yO*xI/xO

-15 =xO

6 =yO

8

0 =0

6 =yO

9 Focal points

6 =fI

0

mPar

-1

20

-14 =yO+mPar*J9

10

-6 =-fI

0

=-yO/fI

Focal ray

11 Object arrow

-15 =xO

0

-15 =xO

6 =yO

12

-15 =xO

6 =yO

-6 =-fI

0 =0

13 Image arrow

10 =xI

0 =0

mFoc

-0.67

0

-4 =yO+mFoc*-xO

14

10 =xI

-4 =yI

=yO/(xO+fI)

20

-4 =L13

Fig. 3.7 (S) Imaging equation for a converging lens; the quantities related to the object and the image are designated with the indices O and I. x = 20 in column J indicates the right border of Fig. 3.3

The five parameters (focal length, object distance, and height, as well as the

image distance and height that are dependent on them) are provided with the names

in column B, with which they are entered into the image equations (B6:C7) and the

coordinates of the construction rays (J:M).

The coordinates of the focal, central, and parallel rays are introduced as data series

into the diagrams of Fig. 3.4a, b. We may enter the column range J3:J14 as series x

values and L3:L14 as series y values to get three separate straight lines,

because empty rows separate their coordinates. The designations Central ray, etc., are in column K, not in column J or column L.

 Ψ Empty rows separate curves.

Note that, in most cells, there are formulas. So, you cannot simply copy the

numbers from the spreadsheets displayed in this text. If you have done the

implementation correctly, images such as those in Fig. 3.4a, b should result, automatically adapting whenever you change the parameters of focal length, object

distance, and object height.

Alac A fascinating experience!

The parameters in Fig. 3.7 (S) are for a converging lens (f I = 6.0) and an object distance (x O = −15) beyond the focal length (Fig. 3.3). With f I = 3.0, x O = −9, and y O = 7, Fig. 3.4a results. With f I = 3.0, x O = −2 (within the focal length), and y O = 3, Fig. 3.4b results.

For a diverging lens (Fig. 3.5), we choose f I = −6 and x O = −10 (a) or x O =

−5 (b).

[image: Image 32]

88

3

Formula Networks and Linked Diagrams

Fig. 3.8 (P) Drawing rays from the object point through the lens to the image point; the coordinates of the object point and the image point are read from column C of a spreadsheet, e.g., Fig. 3.7

(S). Dy is the distance between rays at x = 0

Ray bundle through the lens

We use a VBA subroutine7 as in Fig. 3.8 (P) to draw the ray bundle that physically contributes to the image. The rays run from the object point (x O, y O) to a point in the lens, and finally to the image point (x I, y I). The coordinates of the points are in C3:C7

of a spreadsheet; they are read in the first lines of the sub-routine. The parameters

of the lens are specified within the subroutine. The defining points of the rays are

written into columns 6 (c 2, F) and 7 (c 2 + 1, G) of the spreadsheet.

3.2.7

Python Program

Specifications for three different types of images

The Python program is organized into four cells. The first three cells contain the

specifications and a filename to store the resulting figure, each for

– a converging lens (Table 3.2, resulting in a figure similar to Fig. 3.3),

– a diverging lens with the object outside the focal length (Table 3.3 top, resulting in Fig. 3.5a),

– a diverging lens with the object inside the focal length (Table 3.3 bottom, resulting in Fig. 3.5b).

The fourth cell, represented in Tables 3.4 and 3.5, draws arrows representing the image and the object, together with the image construction, with rays using

the specifications of one of the three initial cells that were run earlier.

The specifications in the three cells comprise not only focal length and the

coordinates of the object point, but also parameters for axis scaling of the image

and the name of the file wherein the image is to be stored. When the program in

one of these cells is run, the resulting parameters are valid for the following image

construction in Fig. 3.4. So, each of the three situations can be the basis of an image.

7 VBA macros are introduced in Chap. 4.

3.2

Image Construction for Focusing and Diverging Lenses

89

Table 3.4 Drawing object and image arrows, function ArrowP presented at the end of this section 1

FigStd('x',xMin,xMax,Dx,'y',yMin,yMax,Dy,xlength=8)

2

plt.plot((-fI,fI),(0,0),'ko',

markersize=4,label="$f_I=$"+str(fI))

3

ArrowP((xO,0),(xO,yO),lw=1.5) #O bject

4

lbl_1=r'x_O='+str(xO)+r', y_O='+str(yO)

’x_O=’ becomes xO=

5

plt.text(xO,yO+0.5,r"(x_O,y_O)",fontsize=10)

6

#Calculated image

7

xI=1.0/(1.0/fI+1.0/xO)

8

yI=yO*xI/xO

9

Arrow((xI,0),(xI,yI),lw=1.5,ls='--') # Image

10

lbl_2=(r'x_I='+str(round(xI,2))

11

+r', y_I='+str(round(yI,2))) #x_I as xI in legend

12

plt.text(xI+0.5,yI+0.5,"(x_I,y_I)",fontsize=10)

Table 3.5 Continuation of Table 3.4; setting up the image construction with the parameters specified in other cells without explicitly referring to the image point

13

Parallel ray

14

xPar=[xO,0,1.5*xI]

15

mPar=-yO/fI # Slope in image space

16

yPar=[yO,yO,yO+mPar*xPar[2]]

17

plt.plot(xPar,yPar,ls='-',color='k',

18

lw=1,label=lbl_1)

19

Central ray

20

xCen=[xO,0,1.5*xI]

21

mCen=yO/xO

Slope in whole space

22

yCen=[yO,0,mCen*xCen[2]]

23

plt.plot(xCen,yCen,ls='-',

24

color='k',lw=1.,label=lbl_2)

25

Ray through object-side focus

26

xFoc=[xO,-fI,0,1.5*xI]

27

mFoc=-yO/(xO+fI) # Slope in object space

28

yg0=yO+mFoc*xO

29

yFoc=[yO,0,yg0,yg0]

30

plt.plot(xFoc,yFoc,ls='-', color='k',lw=1.)

31

plt.legend(loc=4,fontsize=10)

loc= 4 ,”Lower right”

32

plt.axis('scaled')

33

plt.savefig(FigName)

General program for drawing the image construction

The main program is in Table 3.4; it performs the image construction according to the specifications in the cell executed earlier. Arrows representing the object and the

image are drawn. The coordinates of the object follow directly from the specifications

90

3

Formula Networks and Linked Diagrams

Table 3.6 User-defined function for drawing an arrow from point P0 to point P1 in the xy-plane (construct explained in Chap. 4)

1

def Arrow(P0,P1,c="k",ls='-',lw=1,hw=0.4):

2

(x0,y0)=P0

3

(x1,y1)=P1

4

c has to be given as c="k", not c='k'

5

plt.arrow(x0,y0,x1-x0,y1-y0,

6

length_includes_head=True,

7

head_width=hw,fill=False,

8

linestyle=ls, color=c,linewidth=lw)

in Table 3.2 or Table 3.3, whereas those of the image have to be calculated with the image equation (lines 7 and 8).

The program reproduced in Tables 3.4 and 3.5 calculates with the values obtained in one of the three cells in Tables 3.2 and 3.3. The ray constructions in Fig. 3.1 are obtained with the specifications in Table 3.5. The arrows are drawn with a function reproduced in Table 3.6 at the end of this section.

The three characteristic rays are drawn with the Python program in Table 3.5.

Plotting an arrow in Python

A user-defined function for drawing an arrow from point P 0 to point P 1 is shown in Table 3.6.

The arrow is plotted from P 0 to P 1, with color c, linewidth lw, and headwidth hw entered as keyword arguments. If the function call does not specify the values of the keywords, the default values specified in the header are taken. The coordinates of the two points have to be translated into the expected entries of the

function plt.arrow of the MatPlotLib library.

Cross-section of the lens

The program for drawing the cross-section of a lens is given in Table 3.7.

The arrays y and x specify only one-quarter of the cross-section (see the values in the bottom cell). They run from (2.0, 0.0) up to (0.0, 6.0). For a complete

cross-section, we need three more curves. They are obtained with the help of the

functions

np.flipud (“flip up down”) reversing the order of the elements in an array,

and

np.hstack concatenating arrays to one long array, x Lens resp. y Lens.

The concatenated arrays x Lens and y Lens are used for the drawing performed in Table 3.8, line 21. The curve begins at (0.0, 6.0), runs to (2.0,0.0), continues to (0.0, −6.0), then to (−2.0, 0.0), and closes the cross-section by running to (0.0,

6.0).

3.2

Image Construction for Focusing and Diverging Lenses

91

Table 3.7 Coordinates of the cross-section of a lens with radius r L of the disk and radius r O of curvature of the surface of the lens

1

rL=6

2

rO = 10

3

xO=np.sqrt(rO**2-rL**2)

4

y=np.linspace(0,rL,3)

5

x=np.sqrt(rO**2-y**2)-xO

6

xf=np.flipud(x)

 #First becomes last

7

yf=np.flipud(y)

8

FigStd('x',-20,20,5,'y',-10,10,2.5,xlength=8)

9

xLens=np.hstack([xf, x,-xf,-x])

One long array

10

yLens=np.hstack([yf,-y,-yf, y])

x [2.00 1.54 0.00]

y [0.00 3.00 6.00]

Bundle of rays through the lens

The coordinates of the n R = 11 rays going through the lens are calculated in Table

3.8 with pre-specified coordinates of the object and the image point, e.g., in Table

3.4. The rays are drawn in a for-loop, starting with a y-coordinate at the bottom of the lens and increasing it by y = 2· r L/(n R − 1). The cross-section of the lens is drawn with the plot-statement in line 21, using the coordinates x Lens, y Lens calculated in Table 3.7. The complete drawing, i.e., image construction, lens, and ray bundle, is shown in Fig. 3.6.

Table 3.8 Drawing a bundle of rays from the object point through the lens to the image point 11

Bundle of rays through the lens

12

Object point and image point are known.

 13

nR=11

Number of rays

14

rL=3 # Diameter of lens

15

x=np.zeros(3)

16

y=np.zeros(3)

17

(x[0], y[0])=(xO, yO) # Object point

18

(x[2], y[2])=(xI, yI) # Image point

19

x[1]=0

20

FigStd('x',-20,20,5,'y',-10,10,2.5,xlength=8)

21

plt.plot(xLens,yLens,'k')

22

Arrow((xO,0),(xO,yO),lw=1.5) # Object

23

Arrow((xI,0),(xI,yI),lw=1.5,ls='--') # Image

24

Dy=2*rL/(nR-1)

25

for i in range(nR):

Bundle of rays

26

y[1]=-rL+i*Dy # Position in lens

27

plt.plot(x,y,'k-',lw=0.5)

92

3

Formula Networks and Linked Diagrams

3.3

Doppler Effect

When a sound source (a “sender”) and a receiver move relative to air, the

receiver perceives a frequency that is different from the transmitted one. We

set up a formula for all cases of movements of the two agents on a straight

line. We determine the frequency trajectory recorded at a receiver off the

sender’s track.

3.3.1

A Formula for All Cases

When a sound source (in the following, designated as sender S) and a receiver R

are approaching or moving away from one another on a straight line, the receiver

perceives a frequency different from that emitted. In the following, we develop a

formula for the cases when sender and receiver move on the same straight line.

Formula for intuitive use (Doppler)

The relationship between frequencies f (frequency ratio) and speed v is given by the following formula:

 f R = c ± vR

(3.9)

 fS

 c ∓ vS

The letters f, c, and v denote the frequency, the speed of sound, and the speed (≥0) of the agents relative to air. The upper sign in the formula is valid when the

agents are approaching each other and the lower sign when they are moving apart.

Note, as a mnemonic, that, above the fraction bars, there are quantities with index R

and, below the fraction bars, quantities with index S, for both sides of the equation.

 Doppler effect with plus and minus

It is best to consider which signs are to be used for every individual case. An

example: S → R →; the sender moves towards the receiver, and the frequency

increases (/(c − v S)); the receiver moves away from the sender (c − v R), and the frequency decreases; thus f R /f S = (c − v R)/(c − v S).

Questions

How may Eq. 3.9 be simplified when the receiver is stationary and the sender is approaching him?8

8 fR/ fS = c/(c − vS), the received frequency becomes higher.

3.3

Doppler Effect

93

What frequency does the receiver hear when he travels at the same speed as

the sender, (a) in front of and (b) behind the sender? 9

Sender overtakes receiver

Let us apply Eq. 3.9 to the situation in which the sender and receiver both move in the same direction, and the sender overtakes the receiver.

Before overtaking, the sender is approaching the receiver, thereby increasing the

received frequency (minus sign in the denominator). The receiver is moving away

from the sender, also reducing the received frequency (minus sign in the numerator):

 f R = c − | vR|

 fS

 c − | vS|

(3.10)

After overtaking, it is the other way around: The sender is moving away, the

receiver is approaching, and a plus sign must be inserted in both the numerator and

denominator:

 f R = c + | vR|

 fS

 c + | vS|

(3.11)

Remember: | v R| und | v S| are speeds (amount of the velocities).

Motion on a straight line, analytical formula (Doppler)

We formulate a general formula in which the signs are automatically correct:

 f R = c − vR · sgn(xR − xS)

(3.12)

 fS

 c − vS · sgn(xR − xS)

with x S, x R being the positions of the sender and the receiver, respectively, on the x-

axis. The mathematical function sgn (“signum”) is available as a spreadsheet function sign and as np.sign in numpy. To be able to better compare the formula with the

previous calculations, we rewrite it with the speeds (amounts):

 f R = c − | vR| · sgn(vR) · sgn(xR − xS)

(3.13)

 fS

 c − | vS| · sgn(vS) · sgn(xR − xS)

Tim I could never develop a formula like that. I would always set the wrong

sign or change the correct order.

Mag Nor could I. I’ve been toying around with this, checking whether the

outcome corresponds to the intuitive formula Eq. 3.9 in ten different situations.

9 (a) fR/ fS = (c− vR)/(c − vR) = 1; (b) fR/ fS = (c+ vR)/(c + vR) = 1; the received frequency is, in both cases, equal to the sent frequency.

94

3

Formula Networks and Linked Diagrams

A

B

C

D

E

F

G

H

I

J

K

L

M

1

 =(c.s-vR*s.vR*xRel)/(c.s-v.S*s.vS*xRel)

2

 =SIGN(x.R-x.S)

3

 fE/fS

s.vR s.vS

x.S

x.R xRel

4

cs

340 m/s

S-->

R*

1.05 =(cs)/(cs-vS)

0

1

-1

1

1

1.05

5

vS

17 m/s

R*

S-->

0.95 =(cs)/(cs+vS)

0

1

1

-1

-1

0.95

6

vR

10 m/s

S*

R-->

0.97 =(cs-vR)/(cs)

1

0

-1

1

1

0.97

7

R-->

S*

1.03 =(cs+vR)/(cs)

1

0

1

-1

-1

1.03

8

S-->

R-->

1.02 =(cs-vR)/(cs-vS)

1

1

-1

1

1

1.02

9

R-->

S-->

0.98 =(cs+vR)/(cs+vS)

1

1

1

-1

-1

0.98

10

S-->

<--R

1.08 =(cs+vR)/(cs-vS)

-1

1

-1

1

1

1.08

11

<--R

S-->

0.92 =(cs-vR)/(cs+vS)

-1

1

1

-1

-1

0.92

12

<--S

R-->

0.92 =(cs-vR)/(cs+vS)

1

-1

-1

1

1

0.92

13

R-->

<--S

1.08 =(cs+vR)/(cs-vS)

1

-1

1

-1

-1

1.08

Fig. 3.9 (S) Frequency ratio for ten cases, in column F, calculated with Eq. 3.9 and with individual considerations for each case, in column M, calculated with the general formula Eq. 3.13

Alac Proof by trial and error? You can’t do that in math!

Mag With trial and error, proof is not possible, but serious mistakes can be

uncovered. You can later rigorously prove the formula.

Check the analytical formula in a spreadsheet

In Fig. 3.9 (S), ten situations are listed (D:E) in which sender and receiver move to the left or the right or one of them is at rest, and it is also distinguished as to whether the sender is to the left or the right of the receiver. In column F, the frequency ratio

is calculated according to Eq. 3.9, “for intuitive use”, considering which signs are to be used for each formula. In column M, the analytical formula Eq. 3.13 is applied relating to the values 1, 0, or −1 indicating the direction of the movements (s.vR,

s.vS) and the relative position (x.S, x.R), with respect to the zero of the straight line, of receiver and sender. The quantity x Rel is defined as sign(x R − x S).

Checking in Python

In the Python program of Table 3.9, a function Dopple r is defined realizing Eq. 3.12,

taking the velocities v S and v R (with correct sign + or −), respectively, of the sender and the receiver, together with a keyword argument pos as input and returning the frequency ratio f R/ f S. The string argument pos specifies the relative position of sender and receiver, ‘SR’ indicating that the receiver is to the right and ‘RS’ to the

left of the sender. The same parameters as in Fig. 3.9 (S) are specified successively in a list var1 that is passed to Doppler expecting three positional arguments; so, the list var1 has to be unwrapped (*var1 in line 11). The results of Doppler are the same as in Fig. 3.9 (S).

Unwrapping a list with *

The function Doppler defined in Table 3.9 expects three positional arguments. The parameters of our lists are, however, specified in one object, the list var1. Calling Doppler(var1) results in an error message: TypeError: Doppler() missing

1 required positional argument: ‘vR’. In the call of Doppler in line

11, list var1 has, therefore, been unwrapped (*var1) so that the elements of var1

are transferred and not the list as one object.

3.3

Doppler Effect

95

Table 3.9 A general formula for calculating the Doppler shift for sender and receiver moving on the same straight line

1

def Doppler(vS,vR,pos = 'SR'):

2

if pos == 'SR': sgnX=1

3

if pos == 'RS': sgnX=-1

4

fR=c-vR*sgnX

5

fS=c-vS*sgnX

6

return fR/fS

7

c=340.0

8

vS=17.0

9

vR=10.0

10

var1=[vS,0.0,'SR']

11

print(var1,'{:5.2f}'.format(Doppler(*var1)))

[17.0, 0.0, 'SR']

1.05

[17.0, 10.0, 'RS'] 0.98

[17.0, 0.0, 'RS']

0.95

[17.0, -10.0, 'SR'] 1.08

[0.0, 10.0, 'SR']

0.97

[17.0, -10.0, 'RS'] 0.92

[0.0, 10.0, 'RS']

1.03

[-17.0, 10.0, 'SR'] 0.92

[17.0, 10.0, 'SR']

1.02

[-17.0, 10.0, 'RS'] 1.08

3.3.2

A Sound Source Passes a Remote Receiver

Figure 3.10a illustrates the ride of a car on a straight road, on the line y = 0 from x

= −100 m to x = 100 m. At a distance of y R = 30 m off the road, a receiver is at position (0, 30). The car constantly sends out a tone of 200 Hz. Which frequency

does the receiver perceive when the car passes by?

1.2

Track

f /f

R

S

Connection to receiver

vS=55.56m/s

1.1

; yR=20m

y [m]

yR=50m

30

yR=100m

1.0

0.9

0

0.8

-100

-50

0

50

100

-100

-50

0

50

100

x [m]

x [m]

Fig. 3.10 a (left) An observer (receiver) at point (0; 30) hears a car (sender) passing on the x-axis (in the figure compressed). The velocity along the current connection line (dashed) determines the perceived frequency. b (right) The perceived frequency, relative to the frequency of the source, when a sound source passes the receiver at different distances y R at speed v S = 55.56 m/s

96

3

Formula Networks and Linked Diagrams

Velocity on line connecting sender and receiver

The velocity along the current connection line (dashed) determines the perceived

frequency. The quantities v R (receiver) and v S (sender) in Eq. 3.9 are the velocity components on the current connecting line between sender and receiver, i.e., on the

dashed lines in Fig. 3.10a.

The velocity must have the correct sign. The upper signs in Eq. 3.9 apply when the car is approaching, and the lower signs when it is driving away. For the situation

described above, the sender’s velocity component in the direction of the stationary

receiver is to be determined by differentiating the distance with respect to time. This

yields a negative velocity when the car is left of x = 0 and a positive velocity when is it right of x = 0, so that the frequency ratio

 f R = 1

(3.14)

 fS

1 + vSc

is valid for the whole track.

Frequency curves for the distances y R = 20, 50, and 100 m are displayed in

Fig. 3.10b. The closer the receiver is to the track, the stronger the frequency varies with the position of the car. When the sender is at the receiver’s height, the received

frequency is identical to the sent frequency.

The interesting thing about the computation model in this exercise is that the time-

dependent distance of the sender to the receiver is to be calculated (with Pythagoras)

at each interval boundary. Then, the velocity component on the connecting line is

obtained through numerical differentiation. In this way, more complicated geometries

can also be treated, e.g., when the transmitter is moving at varying speed on a circular

path, or if transmitter and receiver are moving on different paths.

3.3.3

Data Structure and Nomenclature

 c

speed of sound in air

 v S

velocity of sender in x direction

 v R

velocity of receiver in x direction

 f S

frequency of sender

 f R

frequency at receiver

 x S

position of sender

 x R

position of receiver

 x

array of 201 equidistant positions of a sender on the x-axis

 t(x)

points of time corresponding to x

 y R

distance of the receiver to the x-axis

 dist

current distance sender-receiver, di st =

 x 2 + y 2 .

 R

 v

relative speed along the line connecting sender and receiver

3.3

Doppler Effect

97

A

B

C

D

E

F

G

H

I

1

200.00 km/h

2

Velocity of sender

vS

55.56 m/s

3

Frequency of sender

fS

200.00 Hz

=B2&"="&ROUND(vS;2)&"m/s; "

4

Speed of sound

c_

340.00 m/s

&B5&"="&yR&"m"

5

Distance of receiver

yR

20.00 m

vS=55.56m/s; yR=20m

(t-C9)

7

=B9+1

=C9+(x-B9)/vS

=SQRT(x^2+yR^2)

st-D9)/

=(di

=fS/(1+v/cs)

=f/fS

=(x+B9)/2

8

x

t

dist

v

f

fNorm

xC

9

-100

0

101.98

10

-99

0.02

101.00 -54.47

238.15

1.19 -99.50

209

100

3.60

101.98

54.47

172.38

0.86

99.50

Fig. 3.11 (S) A sound source moves on the x-axis past an observer at a distance d R. The x position in column B is the independent variable. From that, the time (column C), the distance source-observer (column D), the velocity of the sender in the direction of the connecting line (E), and the observed frequency (F, G) are calculated with Eq. 3.14. Attention: The time in column C depends on the speed of the source! In column H, x C is the center of the intervals

3.3.4

Spreadsheet Calculation “Remote Receiver”

A possible calculation model is shown in Fig. 3.11 (S), where we have chosen the x-coordinate of the car on the track as the independent variable, and time, distance, and velocity along the connecting line as dependent variables. You could just as

easily choose time as the independent variable. The x in the formula C10 = [=

C9 + (x - B9)/vS] refers to B10, the entry of the column vector x in the same

row.

Mag The frequency ratio is calculated numerically in columns F and G. Over

which local coordinates do you plot the calculated frequencies? Perhaps over x in column B?

Tim Well, since you asked it in that way, it probably isn’t. I remember this

much: We take the centers of the considered distance intervals because the speeds

were calculated with the (t, x) coordinates of the interval boundaries.

Mag Right! The centers of the intervals are calculated as x C in column H.

3.3.5

Python Program “Remote Receiver”

A Python program that solves the task is given in Table 3.10, the main program in the upper cell, the function FreqLine for realizing Eq. 3.14 for the complete frequency curve in the lower cell. List slicing is used to calculate the interval centers

 x C in the main program, and the velocities v when differentiating the distance dist in FreqLine.

98

3

Formula Networks and Linked Diagrams

Table 3.10 a (top) Specifications of the situation in which a receiver is at rest at a distance y R off the sender’s track. b (bottom) Function for calculating the frequency curve when y R is given 1

vS=55.56

Speed of sender

2

fS=200

Frequency of sender

3

c=340

Speed of sound

4

5

x=np.linspace(-100.0,100.0,201)

6

Center xC of path segments

7

xC=(x[1:]+x[:-1])/2

8

9

Time segments Dt

10

Dt=(x[1:]-x[:-1])/vS

11

Time t

12

t=np.cumsum(Dt)

Integrates over dt

13

def FreqLine(yR):

14

dist=np.sqrt(x**2+yR**2)

15

v=((dist[1:]-dist[:-1])/Dt)

16

fRS=1/(1+v/c)

17

return fRS

Frequency ratio

Questions

concerning Table 3.10:

What are the arguments and the global parameters accessed in FreqLine? 10

The local variable x C over which the received frequency is to be plotted

is calculated in the main program. Would it be more consistent to calculate

 x C in FreqLine and return it together with the normalized frequency (def FreqLine(x, yR) …. return xC,fRes)?11

Question

concerning Table 3.11

What does the keyword argument lw=1.5 in the plot function specify? 12

What does the label in line 8 look like? 13

How do we specify that the figure is saved with a resolution of 1200 dpi? 14

The plot program in Table 3.11 calculates and displays the frequency curves for the three distances y R = 20, 50, and 100 m.

10 FreqLine, argument: y R, global parameters x, dist, c, Dt.

11 Discuss!

12 Line width lw = 1.5 point.

13 The label is “yR = 20”.

14 plt.savefig (’Doppler off, multiple.png’, dpi=1200), dpi is a key

word argument.

3.4

Exponentials

99

Table 3.11 Plotting several frequency trajectories with the parameters specified in Table 3.10

1

FigStd('x',-100,100,25,'f/fQ',0.8,1.2,0.1)

2

plt.plot([-100, 100],[1,1],ls='-',color='k',lw=1)

3

Horizontal through y=1

4

yR=20 # Distance to track

5

fRS=FreqLine(yR)

6

plt.plot(xC,fRS,'k-', lw=1.5,label='yR='+str(yR))

7

yR=50; fRS=FreqLine(yR)

8

plt.plot(xC,fRS,'k--',lw=1.5,label='yR='+str(yR))

9

yR=100; fRS=FreqLine(yR)

10

plt.plot(xC,fRS,'k-.',lw=1.5,label='yR='+str(yR))

11

plt.legend(loc=0,fontsize=10)

12

#plt.savefig('Doppler off, multiple.png')

3.4

Exponentials

For exponential functions, apply Plus 1 yields times e; plus 1 in the argu-

ment yields times e in the value. An exponential function A · exp (− t/t 0) is best drawn by hand (Really? Yes, also by hand!), beginning with its tangent at t = 0. Diode characteristics seemingly exhibit a “kink voltage” that

depends on the scaling of the y-axis; more generally, exponential functions

seem to explode.

3.4.1

Explosive Character of Exponentials

Rice grains on a chessboard

In a classic bet from far eastern literature, a clever chess player agreed with his

king that his winnings would be paid by placing a rice grain on the first square of

a chessboard and then doubling the number of grains repetitively on each of the

following 63 squares.

In Fig. 3.12a (S), the doubling of the number of rice grains is simulated with a spreadsheet calculation. In A3:A66, the 64 squares of the checkerboard are numbered

from n = 0 to 63. In B3, a rice grain is placed on the first field (n = 0, B3 = [1]). In the following cells, the preceding number is doubled until the huge number 263 =

9.22 × 1018 is reached in B66 (n = 63), on the 64th square.

 Ψ Plus (in the argument) yields times (in the result) for exponentials.

For y = 2x, plus 1 (in the argument) yield times 2 (in the result).

100

3

Formula Networks and Linked Diagrams

A

B

C

D

E

1,E+19

1

 =A3+1

 =B3*2

=2^n

=2^D3

2

n

y

y =2^n

2^62.4

8,E+18

y =2^n

3

0

1

1

62.4 6.1E+18

y

2^62,4

4

1

2

2

5

2

4

4

6,E+18

6

3

8

8

7

4

16

16

4,E+18

8

5

32

32

9

6

64

64

66

63 9.22E+18 9.22E+18

2,E+18

67

64 1.84E+19 1.84E+19

1025

1022 4.5E+307 4.5E+307

1026

1023 9.0E+307 9.0E+307

0,E+00

0

16

32

48

n 64

80

1027

1024 #NUM!

#NUM!

Fig. 3.12 a (left, S) Powers of 2, y = 2n, obtained by repetitive multiplication by 2 (column B) and by potentiation (C: E). The formula in E1 refers to E3 b (right) Graphical representation of the powers of 2 of a

The values are graphically displayed in Fig. 3.12b. You can see that the explosion by a factor 1019 takes place on the last few squares. On squares 0–62, there are

263–1 grains, on all squares together, 264−1 grains.

Profit

Question

What would be the share of the internationally traded rice in 2016 if the loser

of the game (a wealthy medieval Sultan) had been able to deliver? 15

What is the value of 10E3 in excel and 10e3 in Python? Be careful! 16

Mag Can the winner satisfy his hunger with his win?

Alac Perhaps once.

Tim I’ve heard that exponential growth means explosion. So, maybe the winner

can live well on his heap of rice for a week.

Mag World rice production in 2015/16 was 470 million metric tons, but only

about 5% were traded on the world market. Unlike wheat, rice is consumed by

more than 95% of the population in the cultivating countries.

15 For 64 fields, the winner would have received 264–1 = 18 × 1018 grains, corresponding to about 1018 g = 1012 tons of rice. This is the 2000-fold amount of the rice harvest 2015/16 of 470 million tons.

16 10E3 = 10 × 103 = 104 = 10,000, the same with 10e3 in Python.

3.4

Exponentials

101

Tim I’ve counted. One kilogram of rice contains about 40,000 = 4× 104 grains.

According to the rule of the game, more than 10,000 times the volume of one

year’s world trade of rice should pile up on the chessboard. Incredible!

Alac Crazy! A disaster! This cannot be true! What’s the catch?

Mag There is no catch. The catastrophe results from the rule plus 1 yields

 times 2 governing the exponential 2n.

The power function y = 2n is calculated in column C of Fig. 3.12a (S). It is entered as the worksheet formula [= 2ˆn] and yields the same results as the

repetitive multiplication by 2 in column B. The argument of the power function

does not have to be an integer. In E3, the value for the power in D3 (= 62.4) is

calculated and inserted as a filled diamond in Fig. 3.12b.

Maximum float number

We continue doubling the preceding number in the worksheet beyond n = 63 until

the application can no longer store the resulting number. As of row 66 in Fig. 3.12a

(S), the numbers are represented in exponential form, 9.22E+18+18 = 9.22 × 1018.

The number 21024 can no longer be calculated in excel2019; see the error message

#num! in row 1027.

In Python 3, the int format can store arbitrarily large numbers. However, if

the number is to be calculated as float, the same limit holds as in Excel: 2**1023 gives

8.988e+307 and 2**1024 returns the OverflowError: int too large to

convert to float.

3.4.2

General Exponential Function

The power function can be generalized to y = a x, where a and x are real numbers. If a is Euler’s number e = 2.718, then the power function becomes the known exponential function with the formula [= exp(…)] (excel) or np.exp()

(Python).

Exponential function with characteristic length

The normalized exponential function is usually written in mathematical textbooks

as follows:

 f (x) = | a| · exp(ax) = | a| · eax

(3.15)

The letter e denotes Euler’s number e =

∞ 1

0 n! = 2 . 718. Normalized means that

the integral from 0 to +∞ (for a < 0) or from 0 to −∞ (for a > 0) is 1. The integral is dimensionless because the product of the units of d x and a is 1.

[image: Image 33]

102

3

Formula Networks and Linked Diagrams

It is, however, often physically more sensible to write the exponential with a

characteristic x value x 0:

1

 x

1

 x

 f (x) =

=

 x 0

(3.16)

 x · exp

· e

0

x0

 x 0

Thus, the unit of x 0 is equal to the unit of x, e.g., a length or a time, and has an intuitive meaning: the tangent at x = 0 intersects the y-axis at the amplitude |1 /x 0|, and the x-axis at the characteristic length x 0.

When the function is specified with an amplitude A

| x 0| , its integral from 0 to,

respectively, +∞ (for a < 0) or −∞ (for a > 0), is A.

3.4.3

Representation in a Diagram

First, the tangent at t = 0!

Two exponential functions, together with their tangents at t = 0, are shown in

Fig. 3.13a. Here, the independent variable is time t.

Mag Do you now know how to draw an exponential function A e· exp(t/ t 0) by hand on a piece of paper?

Alac Sure! First, mark the amplitude A e on the vertical axis and the characteristic time t 0 on the horizontal and pass a straight line through the two points.

The exponential curve approaches the tangent at t = 0 and the horizontal axis for t → ∞ or t → –∞, depending on the characteristic parameter’s sign.

4

3

3·exp(t/-30)

y

1·exp(t/15)

2

tangents

1

0

-20

0

20

40

60

80

t

Fig. 3.13 a (left) Two exponential functions A e· exp(t/ t 0) with their tangents at the intersections with the y-axis. b (right) How to draw an exponential function by hand: First, the tangent as a straight line with its intersections with the x- and y-axes!

[image: Image 34]

3.4

Exponentials

103

Mag Correct, just as in Fig. 3.13b! Keep in mind:

 Plus one in x, times e in y

 Expo with kink and straight line

Tim “Plus one” and “Straight line” are clear, but why “kink”?

Mag You have seen this in Fig. 3.12b; it will be explained in Sect. 3.4.4. An essential feature of an exponential is an explosion on a suitably scaled y-axis.

3.4.4

Diode Characteristics I(U)

The current I through a semiconductor diode depends exponentially on the applied voltage U. The I (U) characteristics of a semiconductor diode are described by an exponential function passing through zero:

 U

 I = Is · exp

− 1

(3.17)

 UT

This function has two parameters: the strength of the reverse current I s also

called the saturation current, and the thermal voltage U T, which is given by k B T/e, with k B being the Boltzmann constant, e the elementary charge, and T the absolute temperature. At room temperature, U T = 25 mV. The current through a diode is

zero when the applied voltage is zero.

We will represent such a function for I s = 1 × 10–14 A and U T = 0.025 V in various plots (see Fig. 3.14).

Fig. 3.14 a (left) Diode characteristics and associated exponential function, representation for small currents. b (right) Twice the same exponential as in a, but with different scaling of the I axes; left y-axis for the left curve, right y-axis for the right curve; the vertical grid lines have a distance U T = 25 mV

104

3

Formula Networks and Linked Diagrams

Questions

Which of the curves in Fig. 3.14a, b are exponential functions? Which are shifted on the I-axis? Which are shifted on the U-axis? 17

At which U-values in Fig. 3.14b are you most likely to find the “kink points”, in electronic engineers’ jargon? 18

Also shown in Fig. 3.14a is an exponential function without the term −1 in the parentheses of Eq. 3.17. This function intersects the I-axis at I s. It grows by a factor of exp(1) ≈ 2.7 whenever U progresses by d U. The curves in Fig. 3.14a

appear to be exponential, the way they are usually represented.

For exponential functions to the base e, the broom rule is Plus 1 yields times e. In the concrete case, this means that, if U advances by U T (the distance between the vertical gridlines in Fig. 3.14), exp increases by a factor of about 2.7.

In Fig. 3.14b, the same data as in Fig. 3.14a are shown twice, only with different scaling of the two I-axes: I Max is now at 2.5 × 10–5 A (left vertical axis) or 2.5 ×

10–3 A (right vertical axis); the curves seem to exhibit a kink at about 0.5 and

0.6 V. In electrical engineering, this voltage is called the “kink voltage”, “knee

voltage” or “cut voltage”.

The increase of the U-value by a factor of 2.7 when progressing from U =

0.475 to U = 0.500 V looks like a steep rise. It increases, however, by the same

factor when it progresses from U = 0 to U = 0.025 V but then appears like the familiar soft curvature of the exponential. The position of the seeming kink on the

 U-axis is a function of the scaling of the I-axis.

In Fig. 3.15a, the I-axis is logarithmic. In this representation, the diode characteristics appear as a straight line, except for the points below U = 0.05, because, there, the term −1 is quantitatively significant. A kink is nowhere to be seen.

3.4.5

Data Structure and Nomenclature

Exponential function

 A, B

amplitudes of functions exp A and exp B

 t A, t B

time constants of exp A and exp B

d t

length of time interval

 t

array of instants of time, separated by d t

 exp A, exp B

values at times t.

17 All curves represent exponential functions. The diode curve in Fig. 3.14a is shifted downwards on the I-axis by the saturation current I s, so that it passes through zero. The curves in Fig. 3.14b

have not been shifted on the U-axis.

18 At about 0.5 and 0.6 V.

[image: Image 35]

3.4

Exponentials

105

Fig. 3.15 a (left) Diode characteristics, logarithmic scale of the I axis (semi-log plot). The curve can only be represented for I > 0, because the logarithm is defined only for positive values. b (right) Spreadsheet layout for calculating diode characteristics, I s = saturation current, U T = temperature voltage, d U = U T

Diode characteristics

 I s

saturation current

 U T

thermal voltage, 25 mV at room temperature, characteristic parameter of the

exponential

d U

interval width, here, d U = U T

 U

sequence of voltages, d U apart

 exp

exponential function with I s and U T as amplitude and characteristic voltage I

diode current, I(U).

3.4.6

Spreadsheet Calculation

Initial slope of the exponential function

In Fig. 3.16 (S), two exponential functions are calculated for 51 points equidistant in t,

 t

 t

 ex p (

=

 t

 A t) = A · ex p

 A · e A

(3.18)

 tA

and exp B correspondingly. The characteristic time, t A or t B, may be positive or negative. The distance d t between the points is set in B3.

For the exponential function y = e x, applies; Plus 1 (in the

 argument) yields times e (in the value).

For the power of 2, y = 2n holds: Plus 1 yields times 2.

106

3

Formula Networks and Linked Diagrams

A

B

C

D

E

F

G

H

I

1

A

3.0

tA

-30.0

3·exp(t/-30) =A&"·exp(t/"&tA&")"

2

B

1.0

tB

15.0

1·exp(t/15)

3

dt

2.0

4

=A6+dt =A*EXP(t/tA)

=B*EXP(t/tB)

5

t

expA

expB

tangents

6

-20.0

5.8

0.3

30 =-tA

0.0

7

-18.0

5.5

0.30

0.0

3 =A

8

-16.0

5.1

0.34

-30 =tA

6 =2*A

56

80.0

0.2

207.13

Fig. 3.16 (S) Two exponential functions whose independent variable t is specified as column vector A6:A56 and their parameters amplitude A, B and time constant t A, t B are given in A1:D2. The legends for the functions are compiled in F1 and F2 with the formula in G1 of type “Text” & Variables

The table in Fig. 3.16 (S) has a typical layout. The 51 values of the independent variable time t are located to the left of in a column vector named “t”. The parameters A, B, and t A , t B of the curves are specified above , as well as the time interval d t, the distance on the horizontal axis between the calculation points.

The initial value of t, here, −20, has to be entered into cell A6. The values for the remaining 50 t values are determined successively from the respective predecessor.

The t-predecessor for cell A7 is cell A6, A7 = [=A6 + d t]. In the formula, A6 is not provided with a dollar sign. It is a relative reference, so that the address of the

addressed cell adapts during copying. Therefore, A56 = [=A55 + d t].

Questions

Suppose that A6 contains an initial time t = 5 and the length of a time segment

is stored in a cell with the name d t and has the value 2. What values for time t are in cells A7 and A8? 19

How can the coordinates of the tangent to the exponential A e· exp(t/ t 0) at t

= 0 be derived from the parameters of the exponential function? 20

What is the distance on the horizontal axis between the functions’ calculation

points in Fig. 3.13a created from Fig. 3.16 (S)? 21

∞

What is the value of

3 · exp − t dt? 22

0

30

Task Change the parameters A, t A, and d t and check whether the diagram reacts accordingly! This is the case if each cell contains the correct formula. Remember:

19 A6 = [5], A7 = [= A6 + dt] = 7; A8 = [= A7 + dt] = 9.

20 Straight line through the points (0, A) und (− t e, 0).

21 The distance of adjacent points is d t = 2 (see Fig. 3.16 (S), B3).

22 The definite integral is 90, based on Eq. 3.16, because 3 = 1 · 90.

30

3.4

Exponentials

107

you cannot merely transfer the numbers from the figures to your worksheet. Most

cells contain a formula; only sometimes are numerical values entered directly.

Diode characteristics

A possible calculation model is presented in Fig. 3.15b (S).

The parameters I s and U T of the diode characteristics are set in the named cells C1:C2. In C3, the horizontal distance between neighboring sampling points

is defined. Here, we have chosen d U = U T = 0.025 V that is valid for room temperature. The I-U characteristics are illustrated in Fig. 3.14. They intersect the I-axis at 0, showing that no current flows without applied voltage.

Formatting the axis of a diagram

The axis of a diagram is formatted by activating it with the left mouse button and

then clicking format. In the current selection group to the left of the ribbon,

vertical (value) axis shows up in the bar. Upon clicking format selection,

a window opens that allows you to set the minimum, maximum and other param-

eters of the axis. If the axis is to be scaled logarithmically, the appropriate box,

logarithmic scale, must be activated with a checkmark.

3.4.7

Python Program

Initial slope

A Python program for drawing the exponentials of Fig. 3.13a and their slopes at t

= 0 is given in Table 3.12.

The list t of time instants is created by np.arange (−20, 80 + d t, d t), mimicking the construction of the time vector in the spreadsheet of Fig. 3.16 (S) with, e.g., A8

= [=A7 + d t]. The lower limit −20 corresponds to the value in A6. To come to

80 (in A56), we have to specify 80 + dt as the upper limit, because np.arange

creates an interval that is open at its right end with the endpoint excluded . Exp A and exp B are constructed from t with the corresponding amplitudes and time constants Table 3.12 a (top) Specifications of two exponential functions, equivalent to rows 1 through 3 in Fig. 3.16 (S); b (bottom) labels for the two functions created in lines 7 and 8

1

dt=2.0

2

A,tA= 3.0,-30.0 # Amplitude and time constant

3

B,tB=1.0,15.0

4

t=np.arange(-20,80+dt,dt)

5

expA=A*np.exp(t/tA)

6

expB=B*np.exp(t/tB)

7

lblA=(str(A)+'*'+'exp(t/'+str(tA)+')')

8

lblB=(str(B)+'*'+'exp(t/'+str(tB)+')')

lblA 3.0*exp(t/-30.0)

lblB 1.0*exp(t/15.0)

108

3

Formula Networks and Linked Diagrams

Table 3.13 Specifications for diode characteristics, the same as in Fig. 3.15b

1

Is=1e-14

2

UT=2.5e-2

3

dU=2.5e-2

4

U=np.arange(-0.2,1.05+dU,dU)

5

exp=Is*np.exp(U/UT)

6

I=Is*(np.exp(U/UT)-1)

Diode characteristics

(A, t A) and (B, t B). The curves can be plotted with our standard function StdFig.

In Fig. 3.13a, they are represented with open symbols. In Python, this is specified by plt.plot(…., fillstyle=’none’, …).

Questions

What are the instructions for plotting the tangents in Fig. 3.13a? 23

What are the size and last element of:

– L1 = np.arange(−20, 80+dt, dt) with d t = 1, 24

– L2 = np.linspace (−20, 80, 100), 25

– L3 = np.linspace (−20, 80, 101)26

– L2 = np.linspace (−20, 80, 100, endpoint=False). 27

Diode characteristics

A Python program corresponding to the spreadsheet layout in Fig. 3.15b is shown in Table 3.13.

Subplots

A plot like Fig. 3.14b with two vertical axes cannot be achieved with our standard figure, the function FigStd defined in Sect. 2.4.5. We have to refer to the function subplots of the pyplot library (see Table 3.14). I(U) is plotted twice, with ax1.axis([0.3, 0.7, 0, 2e-5]) for the primary (left) y-axis from 0 to

2e−5 and with ax2.axis([0.3,0.7,0,2e-3]) for a second y-axis from 0 to

2e−5, declared with ax2 = ax1.twinx() as the secondary (right) y-axis.

Logarithmic scaling

Logarithmic

scaling

of

an

axis

can

be

achieved

with

plt.yscale

(value=”log”) and plt.xscale(value=”log”).

23 plt.plot([0,tA],[A,0],’k-‘), compare F5:H8 in Fig. 3.16 (S)!

24 L1, size 101, last element L1[−1] is 80.

25 L2, size 100, last element 80.

26 L3, size 101, last element 80.

27 L4, size 100, last element 80 − 100/100 = 79.

3.4

Exponentials

109

Table 3.14 Setting up a diagram similar to Fig. 3.14b with primary and secondary axes, variables specified in Table 3.13

1

fig, ax1 = plt.subplots()

2

ax1.plot(U, I, 'k-')

3

ax1.axis([0.3, 0.7, 0, 2e-5])

4

for x in np.arange(0.3,0.7,dU):

5

ax1.plot([x,x],[0,2e-5],'k-',lw=0.6)

6

7

ax2 = ax1.twinx()

Secondary axis

8

ax2.axis([0.3,0.7,0,2e-3])

9

ax2.plot(U, I, 'r--')

10

plt.show()

3.5

Questions

General advice

1. To practice programming, translate the spreadsheet solutions of this chapter into

Python and compare with the suggested programs!

Python-specific

2. Let x=np.linspace(−100,100,101). What is the distance between

neighboring elements? What does x[1:]−x[:−1] look like? What are the first

and last elements of (x[1:] + x[:−1])/2 ?

3. Let A = 3.001 and t A = −30.0. How can we produce a label “3.0*exp(t/−30)”?

Concerning Table 3.15:

4. What is the size of the list col?

5. What are the first two elements of col?

6. What are the last two elements of col?

7. How do you compile the four lines into one line with list comprehension?

Check your answers by programming!

Table 3.15 Producing a list x*y

1

col=[]

2

for x in range(1,11):

3

for y in range(1,6):

4

col.append(x*y)

110

3

Formula Networks and Linked Diagrams

2

2

y.1 y.2

y

y.1 y.2

y.1 y.2 y.3

y

Einheitsvektoren

unit vectors

1

y.3

1

0

0

-2

-1

0

1

2

x

-2

-1

0

1

x

2

-1

-1

-2

-2

Fig. 3.17 a (left) The segment defined by two points (x 1, y 1) and (x 2, y 2) is extended to a third point whose x-coordinate x 3 can be selected arbitrarily. b (right) The unit vectors in the direction of the line and perpendicular to the line are attached to the line, defined in Fig. a, at the left point Broom rules

8. Explain the broom rules:

 Ψ Lens equation with plus and minus.

 Ψ Blank lines separate curves.

 Ψ Doppler effect with plus and minus.

Straight-line equation

A straight line is defined by two points (x 1, y 1) and (x 2, y 2) (see Fig. 3.17a).

9. What is the equation for determining the distance between the two points?

10. Which equation must be used to find the value y 3 for a given horizontal position x 3 so that (x 3, y 3) lies on the straight line?

11. Deduce from the coordinates of the two points the direction vector (D x, D y) of the straight line normalized to length 1!

12. How do the coordinates of the two points result in the vector (P x, Py), the

perpendicular to the straight line and normalized to length 1?

A spreadsheet layout for three points on a straight line is shown in Fig. 3.18

(S).

13. What is the linked cell and min and max of the slider in F4:H4?

14. What formulas are in B3 (input from E3) and D4 (input from E4)?

15. Write a Python program that performs the calculations of Fig. 3.18 (S)! Replace the function of the sliders with simple assignments with random functions: E1=

… ; E4= … !

[image: Image 36]

3.5

Questions

111

A

B

C

D

E

F

G

H

I

J

K

M

N

P

1 Three points on a straight line

 Unit vectors

2

x.1

-0.6

y.1

-0.5

 along the straight line

3

x.2

0.92

y.2

0.57

92

x.1

-0.6

y.1

-0.5

4

x.3

1.5

y.3

0.98

57

x.p

-0.03

y.p

-0.1

5

 perpend. to the straight line

6 Length of segment 1-2

 Slope of segment 1-->2

x.1

-0.6

y.1

-0.5

7

l.12

2.66

m.12

0.70

x.v

-0.2

y.v

-1.07

Fig. 3.18 (S) Spreadsheet layout used to create the coordinates for Fig. 3.17a and b, B3 and D4

depend on the outputs on the sliders. The slider in F4:H4 goes from 0 to 80

4

0

-8

-4

0

4

8

Object and image

Lens

-4

Fig. 3.19 Incomplete image construction for imaging with a converging lens

Image construction with converging and diverging lenses

16. In school, one usually learns the equation 1/ f = 1/ o + 1/ i for imaging with converging lenses (o is object distance, i is image distance). How is this imaging equation modified according to DIN 133528 and made suitable for numerical calculation in spreadsheets and Python both for converging and diverging

lenses?

17. How is the magnification factor defined in DIN 1335?

18. What characterizes a converging lens in the imaging equation?

19. What characterizes a diverging lens in the imaging equation?

20. Draw the rays for the image construction in Fig. 3.19!

21. What is the image-side focal length?

22. Draw the bundle of rays that contributes to the image formation!

28 Equations 3.5 and 3.6.

112

3

Formula Networks and Linked Diagrams

Fig. 3.20 Gravitational F g

and centrifugal F c force

8

Bank line

when driving through a curve

Fg, Fc

6

4

2

0

0

2

4

6

8

10

Forces when driving through a curve

23. What are the formulas for the gravitational force F g and the centrifugal force F c on a car of mass m, traveling with speed v through a curve with radius r?

24. What do you have to do to get a true-angle display when the x-axis is scaled

from −2 to 8 km and the y-axis from 10 to 15 km, in excel and in Python?

25. How is the static friction force defined? What does a static friction coefficient

 μ = 0.5 mean?

26. Draw in Fig. 3.20, with a triangle ruler, the resulting force, the force in the plane, and the force perpendicular to the plane! Which force determines the

static friction?

27. Draw a vector in the bank line and another one perpendicular to it!

28. What are the vector equations for determining the quantities of Question 26?

Doppler effect

 f E = c ± vE

(3.19)

 f Q

 c ∓ vQ

29. What do the letters in Eq. 3.19 stand for? Which signs are to be used when?

Adjust the formula for the three cases in Fig. 3.21!

A car (sender S) drives along the x-axis. Its position at time t is specified in an array named x S. A pedestrian (receiver R) moves along the y-axis towards the x-axis. Its position at time t is indicated in an array named y R.

S R

R S R S

Fig. 3.21 A sound source S and a sound receiver R move on a straight line

3.5

Questions

113

30. What is the distance d SR between car and pedestrian as a function of t?

31. What is the formula for calculating the relative velocity v SR in the direction of the link line? To answer this question, you have to define vectors x R, y R and d SR.

Exponential function

32. To draw an exponential function freehand on paper, it is useful to start with a

straight line as a guide. How is this straight line determined by the exponential

function parameters, amplitude A and time constant τ ?

33. An exponential function increases from 1 to 2 when the argument is increased

from t = 0.0 to 0.1 s. How much does it increase if the argument is increased

from 0.0 to 0.2 s? Think binary! How much does it increase if the argument is

increased from t = 0.8 to 1.0 s? Sketch the same exponential function twice,

each time with the t-axis from 0 to 1.2, but with a y-axis scaling from 0 to 4 for the first sketch and from 0 to 16 × 4 for the second sketch! What do you see in

the second sketch that is not obvious in the first sketch?

[image: Image 37]

Macros with Visual Basic and Their

Correspondences in Python

4

We practice the basic programming structures: loops, branches, sub-routines

(FOR, IF, SUB/def), with particular emphasis on data exchange between

spreadsheets and procedures. We will learn to obtain the sequences for

EXCEL-typical spreadsheet operations by recording the associated commands

with a macro recorder. With this knowledge, we will:

– draw dense-packed crystal planes,

– decode protocols of measuring instruments and compile clear summaries

of the results,

– systematically modify the parameters of calculation models with log and

control procedures and continuously enter the results of the calculations

into another range of the spreadsheet, and

– outsource complicated formulas into user-defined spreadsheet functions

in order to arrange the tables more clearly.

We will present parallel solutions in Python creating the drawings with

the library turtle.

4.1

Introduction: For, If, Sub/Def

Solutions of Exercises 4.3 (Excel), 4.5 (Python), 4.7 (Excel), and 4.8 (Python) can

be found at the internet address: go.sn.pub/gTtbiH.

Tim worries, Alac brags

Mag This chapter will teach us to program, to let macros interact with

spreadsheet calculations, and to realize parallel solutions in Python.

© Springer Nature Switzerland AG 2022

115

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_4

116

4

Macros with Visual Basic and Their Correspondences in Python

Tim That sounds pretty demanding. Is it at all manageable for beginners like

me?

Mag Quite clearly: Yes. Many people have already achieved that, even students

who had never before written a line of code. Visual Basic is a good-natured pro-

gramming language that does not require much knowledge, at least not for the

tasks that we want to tackle. This chapter will not only take away your fear of

programming, but you will also find it fun to write programs that do amusing

things.

Tim Well, people who had just finished the course told me that they had to deal

with routines, macros, programs, and procedures.

Mag Don’t worry, we don’t make any distinction among those terms, we

use them all synonymously. Our programs include both EXCEL-typical command

sequences and classical algorithmic structures.

Alac I’m not afraid of VISUAL BASIC or Python; after all, I already took a

course about another programming language and used it to write funny programs.

Mag That is certainly a good prerequisite for faster success. You will have an

easier time than Tim. Nevertheless, don’t take the tasks for granted. In our course,

programming tasks are combined with physics exercises (so much for our hopes

for just “funny”:-)). I’ve often experienced instances in which mere programmers

have been discouraged by their limited progress in this kind of programming and

have given up.

Alac So, I’m essentially learning more physics?

Mag Not only that. You should certainly understand more about physics after

the course than before. Nevertheless, the exercises will also familiarize you with

good programming skills: to develop systematically, to document carefully, to

detect and correct mistakes.

Tim One more question. Many workplaces require programming skills in spe-

cial programming languages. Wouldn’t it be better for me to learn such languages

from the onset?

Mag Don’t worry.’ In our tasks with VISUAL BASIC and Python, you will have

room to make a sufficient number of mistakes to learn from so that you can be con-

fident in becoming a computer expert. The algorithmic constructions are the same

in all programming languages. More important than acquiring special knowledge

at an early stage is that you gain the ability to cope with “hard” programming

tasks and master the rules for good programming.

4.1

Introduction: For, If, Sub/Def

117

How do we proceed?

This course cannot give a general introduction to programming, because that would

require an excess of repetition of things that are already well described in specific

textbooks. As in Chap. 2, we will do a basic exercise that you should follow step by step and convert into your own program. It contains all of the commands and constructions that we will need later, but not much more. However, this basic knowledge

will enable you to find your way around in EXCEL help or Python internet aid and

choose suitable textbooks for programming with VISUAL BASIC and Python.

Only a few algorithmic constructions

In our programs, we use constructions that are the same in all algorithmic languages:

 Loops, logical branches, sub-routines (FOR, IF, SUB/def) . Special EXCEL instructions, e.g., for handling files or creating drawings, will be provided to us by the macro

recorder, which records commands that the user makes when setting up spreadsheet

calculations.

Three types of program will be used repeatedly in the following chapters: log

procedures, formula procedures, and user-defined functions.

Rep-log and scan-log procedures

Two tools can be used sensibly for every task in EXCEL: Sliders and log procedures.

With a slider, variables in a spreadsheet can easily be changed manually, and the

user can see how the results change, as we have learned in the basic Exercise 2.2. A

 rep-log procedure systematically changes independent variables in the spreadsheet and continuously writes the calculation results into another spreadsheet range. The

spreadsheet calculation works like a function. The equivalent in Python is functions

that are repetitively called in loops. Scan-log procedures scan a range of a spreadsheet and write the data into another range in a structured manner. The program in

Fig. 4.5 (P) is a simple example. In Chaps. 8 to 10, log procedures repeat stochastic experiments to illustrate statistical rules and laws.

User-defined functions in visual basic

We generally recommend performing calculations step by step in several rows or

columns. If the calculation runs without errors, spreadsheet space and calculation

time can be saved if you execute this calculation in a user-defined spreadsheet func-

tion, with values transferred from the spreadsheet into the program, and with values

written into the spreadsheet by the function, exactly as we learned with built-in

spreadsheet functions, e.g., COS(x) or SIN(x). As examples, we shall implement functions for the scalar and the vector products of three-dimensional vectors, as usual, in

both Visual Basic and Python.

Pandas

Pandas (“Python Data Analysis”) is a library for Python, based on NumPy.

It is designed for data management and analysis and works with structured data

(DataFrame (2-dimensional)) and time series (Series (1-dimensional)), thus

[image: Image 38]

118

4

Macros with Visual Basic and Their Correspondences in Python

mimicking spreadsheet calculations. We shall use it in this book only in Exercise 4.8

“Processing the protocol of a measuring device”.

4.2

Basic Exercise: FOR-Loops

We get to know the VISUAL-BASIC-Editor and practice reading cell con-

tents and filling in cells. We are using For-loops to execute tasks one after

the other with systematically changed parameters. This often involves incre-

menting a running index in the loop that indicates a cell’s position in

the spreadsheet. Such loops are called loop2i, obeying the broom rule

 Continue counting in the loop!

4.2.1

Visual-Basic-Editor 1: Editing

In the menu ribbon (see Sect. 1.7), click on the main group DEVELOPER and then on the tab VISUAL BASIC; the “SHEET1 (CODE)” window appears (Fig. 4.1).

If the right lower rectangle (below “(General)”) is gray, double-click the SHEET1

line in the MICROSOFT EXCEL OBJECTS so that it turns white. Instructions that you

write into this sheet in the VISUAL BASIC editor are executed in Sheet1.

Fig. 4.1 Spreadsheet and associated VISUAL BASIC sheet after executing DEVELOPER/VISUAL BASIC

(EXCEL 2019)

[image: Image 39]

4.2

Basic Exercise: FOR-Loops

119

4.2.2

Programming

Enter values and formulas into cells

Write SUB Name into the first line of the white area! For “Name”, enter your own name. The editor adds one line END SUB. You can now write statements between SUB

Name and END SUB. In Fig. 4.2b, SUB Annegret has been created with four instructions.

Cell B1 in a spreadsheet can be addressed in two ways, with CELLS(1,2) or with

RANGE(“B1”). CELLS(r,c) addresses the cell in the r th row and c th column. Cell A1

(= CELLS(1,1)) is filled with a text in quotation marks, here, with “Annegret”. Of

course, you should write your own name.

Individual cells can also be addressed with instructions of the type

[RANGE(“A1”) = …], as in lines 3 and 5 of the macro in Fig. 4.2b. In loops, the addressing with CELLS(r,c) can be used more effectively, if, e.g., the row index r or the column index c is to be scanned systematically.

Task First, write only this one line [CELLS(1,1) = “Annegret”] into the VBA sheet

and start the program by pressing the start button (high-lighted in Fig. 4.2b). For the procedure to be executed, the pointer | must be somewhere in the procedure.

Then, insert the other lines of SUB ANNEGRET one after the other, execute the macro

after each line and observe what happens in the spreadsheet:

– a number is written into Cell B1, here, 12.25.

– CELLS(2,1) = CELLS(1,2) means that cell A2 (CELLS(2,1)) is being filled in with

the contents of cell B1 (CELLS(1,2)). The content of B1 is transferred once to

A2 by the program, and A2 remains unchanged, even if the content of B1 is

changed later.

– The text “ = A1” is written into cell B2, interpreted in the spreadsheet as a

formula. The corresponding cell is filled in with the contents of cell A1, B2 =

Fig. 4.2 SUB Annegret in b (right) writes into range A1:B3 in a (left). The text after the apostro-phe’ is interpreted by the VBA interpreter as a comment and not as program code

120

4

Macros with Visual Basic and Their Correspondences in Python

[=A1]. If the contents of A1 in the spreadsheet are now changed, the new value

also appears in cell B2.

Task Delete all entries in the spreadsheet again and then run through the pro-

gram step by step by placing the cursor | in the program and repeatedly pressing

the function key F8 (also obtained and explained in the VBA developer, Fig. 4.9, by DEBUG/ STEP INTO). Step by step, the previously deleted entries will appear again in

the spreadsheet.

FOR loops The macros in Fig. 4.4 (P), Fig. 4.5 (P), and Fig. 4.6 (P), wherein FOR loops are used, fill in the spreadsheet in Fig. 4.3 (S).

SUB Protoc1 in Fig. 4.4 (P) fills in column A. Line 2: the text “x” is written into A1. In the FOR loop, the variable x is incremented from 3 to 9.5 in steps of 0.25 and written into cells in A. The variable x takes on 3 as the first value and is then incremented by 0.25 each time the loop is traversed until the value 9.5 is

reached. The variable of the FOR loop, here, x, is called the loop index. In line 9, a formula is entered into C6, normal text enclosed in quotation marks but starting

with an equal sign.

A

B

C

D

E

F

G

H

I

J

K

1

x

9.50

x Cos(x) Sin(x) Tan(x)

2

3.00

-1.00 =COS(C1)

3.00

-0.99

0.14

-0.14

3

9.50

3

3.25

-0.08 =SIN(C1)

3.25

-0.99

-0.11

0.11

4

4

3.50

0.08 =TAN(C1)

3.50

-0.94

-0.35

0.37

5 x

5

3.75

3.75

-0.82

-0.57

0.70

6 Cos(x)

6

4.00

0.99 =COS(C1)^2

4.00

-0.65

-0.76

1.16

7 Sin(x)

7

4.25

4.25

-0.45

-0.89

2.01

8 Tan(x)

8

4.50

4.50

-0.21

-0.98

4.64

23

8.25

8.25

-0.39

0.92

-2.39

3

0.08

24

8.50

8.50

-0.60

0.80

-1.33

4 =TAN(C1)

25

8.75

8.75

-0.78

0.62

-0.80

5

3.50

26

9.00

9.00

-0.91

0.41

-0.45

6

-0.94

27

9.25

9.25

-0.98

0.17

-0.18

7

-0.35

28

9.50

9.50

-1.00

-0.08

0.08

8

0.37

Fig. 4.3 (S) Column A is filled in by SUB Protoc1 in Fig. 4.4 (P). The formula in C6 has also been entered by SUB Protoc1. The list in columns E:H is obtained from the spreadsheet calculation in C1:C4 by executing SUB Protoc2 in Fig. 4.5 (P). The range C1:H4 is transferred by SUB ScanCopy in Fig. 4.6 (P) into the two columns J and K

1 Sub Protoc1()

r2 = r2 + 1

6

2 Cells(1, 1) = "x"

Next x

7

3 r2 = 2

8

4 For x = 3 To 9.5 Step 0.25

Range("C6") = "=Cos(C1)^2"

9

5 Cells(r2, 1) = x

End Sub

10

Fig. 4.4 (P) SUB Protoc1 fills in A in Fig. 4.3 (S) and a formula into C6. Syntax for calling a cell: CELLS (ROW, COLUMN)

4.2

Basic Exercise: FOR-Loops

121

1 Sub Protoc2()

Cells(r2, 6) = Cells(2, 3) '6 = column F

7

2 r2 = 2 'Running index for writing to cells

Cells(r2, 7) = Cells(3, 3) '7 = column G

8

3 Cells(1, 6) = "Cos(x)"

Cells(r2, 8) = Cells(4, 3) '8 = column H

9

4 For x = 3 To 9.5 Step 0.25

r2 = r2 + 1

10

5 Cells(1, 3) = x 'Column C

Next x

11

6 Cells(r2, 5) = x 'Column E

End Sub

12

Fig. 4.5 (P) SUB Protoc2 changes the value in cell C1 (line 5) and writes the function values from C2:C4 consecutively into the columns F (6th) to H (8th) of the spreadsheet in Fig. 4.3 (S) Loop2i structure

In Fig. 4.4 (P) , we have introduced a running index r 2, which specifies the row of the cell to be filled in. It is set in line 2 to 2 before the start of the loop and is incremented by 1 in line 6 at the end of each loop cycle, so that the values of x are sequentially written into lines 2 to 28. We will often use such structures, call them

 Loop2i, because they comprise two indices, and we memorize them with a broom

rule .

 Loop2i: Continue counting (the running index) in the loop!

Spreadsheet calculation used as a function

In cells C2:C4 of Fig. 4.3 (S), formulas with the trigonometric functions COS, SIN, and TAN are written by hand with the argument in C1, e.g., C1 = [9.50] and C2 =

[=COS(C1)]. These spreadsheet calculations are used by SUB Protoc2 in Fig. 4.5 (P) as a function. It is a typical rep-log procedure, changing a parameter in a spreadsheet calculation and writing the calculation results to another range of the spreadsheet.

SUB Protoc2 changes the value in cell C1 in the (x =)-loop, which is used as an argument in the functions in C2:C4, and transfers the results of the spreadsheet

calculation from C2:C4 (one below the other) to F to H (side by side).

The statement in line 3 is: CELLS(1,6) = ”Cos(x)”. The quotation marks indi-

cate a text in between, which is to be written as text into the cell. An instruction

CELLS(1,6) = COS(x) would cause the program first to calculate the cosine of the

variable x, to which one would have to have assigned a value somewhere earlier

in the procedure, and then write the result, a number, into the cell. An instruction

CELLS(1,6) = ‘ = COS(x)’ would write a formula into the cell, similar to line 9 in Fig. 4.4 (P).

All cell references with fixed row and column indices can also be expressed

with RANGE, e.g., RANGE(“C2”) instead of CELLS(2,3).

Questions

concerning SUB Protoc2, Fig. 4.5 (P)

122

4

Macros with Visual Basic and Their Correspondences in Python

1 Sub ScanCopy()

Cells(r2, c2 + 1) = Cells(r, c)

7

2 r2 = 2 'Row 2

r2 = r2 + 1

8

3 c2 = 10 'Column J

Next c

9

4 For r = 1 To 4 'Rows 1 to 4

r2 = r2 + 1

10

5 For c = 3 To 8 'columns C to H

Next r

11

6 Cells(r2, c2) = c

End Sub

12

Fig. 4.6 (P) SUB ScanCopy writes the contents of the range A1:F4 of Fig. 4.3 (S) consecutively into columns J and K of the same spreadsheet. CELLS (2,3) corresponds to C2 in the spreadsheet What do the instructions in lines 3 and 5 have to be if you want to address

with RANGE? 1

Which instructions must be added to the code to write the headings in G1

and H1 of Fig. 4.3 (S)? 2

How would you have to change the for-loop in lines 4 to 11 if you want to

read the x values from column A? 3

Nested loops

SUB ScanCopy in Fig. 4.6 (P) transfers the range (r = 1 to 4: c = 3 to 8), i.e., C1:H4

of the table, to columns J and K of Fig. 4.3 (S).

Range C1:H4 is read horizontally, row by row, and written consecutively verti-

cally into column K (c 2 + 1 = 11) with the (c =) loop; line 8: The running index r 2 is incremented, indicating the next free row in the spreadsheet.

To be read, the range with the two coordinates row number r (from 1 to 4) and

column number c (from 3 to 8) must be scanned with the cells being addressed

with CELLS(R,C). This is done with two nested loops, an outer loop (FOR r =), and an inner loop (FOR c =) that is called within the outer loop and ends in line 9

with NEXT C. SUB ScanCop y also writes the index c into column J (line 6, c 2 = 10

from line 3).

The line index r 2 is incremented by one at the end of each of the two loops FOR

 c = and FOR r = . The increment in the inner loop (FOR r =) causes the adjacent entries in a row of the table, e.g., C1:H1, to be written consecutively into rows 2

to 7 of J, J2:J7. The increment in the outer loop (FOR c =) causes a row, e.g., row 8 in the table in Fig. 4.3 (S), to be skipped.

1 RANGE(„F1“) = “Cos(x)”: RANGE(„C1“) = x.

2 RANGE(„G1“) = “Sin(x)”: RANGE(„H1“) = „Tan(x)“; do not forget the quotation marks!

3 FOR r = 2 TO 28: x = CELLS(r, 1): … To put multiple statements on one line in VBA, separate the statements by a colon “:”!

4.2

Basic Exercise: FOR-Loops

123

Questions

Using the variables x and r 2 in the loop2i in SUB Protoc2 in Fig. 4.5 (P), explain the broom rule: Loop2i: Continue counting (the running index) in the loops! 4

It would have been easier to specify the columns in SUB ScanCopy in Fig. 4.6

(P) as numbers, i.e. CELLS(r 2, 11) instead of CELLS(r 2, c 2 + 1). Does the variant CELLS(r 2, c 2 + 1) offer any advantage? 5

Why is J8:K8 in Fig. 4.3 (S) not filled in? 6

What is the value of r 2 at the end of SUB ScanCopy in Fig. 4.6 (P)? 7

How do we proceed further?

In this basic exercise, we have learned how to read content from cells into proce-

dures and fill in cells. We have also become familiar with FOR loops and the special

construction of loop2i with a loop index and a running index. In this chapter’s next exercises, we will get to know sub-routine calls (SUB) and logical queries (IF) . FOR,

SUB, IF are already the essential basic structures of programming, which we will

repeat in Python (def instead of SUB) and apply in the following chapters over and

over again.

4.3

Macro-Controlled Drawings with FOR, SUB, IF

We construct a macro for drawing filled circles of variable diameter at dif-

ferent coordinates in the spreadsheet. The required instructions are obtained

by recording macros generated when a circle is inserted and formatted as

a shape by hand. They are combined in a sub-routine to be called from

the main program, specifying the circles’ position. Similarly, we get the

instructions for drawing rectangles and triangles. We are practicing the basic

structures of programming: FOR, IF, SUB.

4 The rows from r = 1 to 4 and the columns from c = 3 to 8 are scanned in the nested for-loops. The 24 scanned values are stored in successive rows. The index of these rows, r 2, must be incremented in the inner FOR loop after every entry.

5 If the data is to be output to another range of the spreadsheet, only one parameter for the columns, namely, c 2, must be adjusted in addition to r 2.

6 Because, in ScanCopy in Fig. 4.6 (P), at the end of the loop FOR r = 1 to 4, the index r 2 is incremented without data having previously been written into cells in that row.

7 At the end of ScanCopy, the following applies: r 2 = 2 (initial value) + 4 × 6 = 24 (c-loop) + 4

(r- loop) = 28 (Row 28 in Fig. 4.3 (S)).

[image: Image 40]

124

4

Macros with Visual Basic and Their Correspondences in Python

4.3.1

Macro Recorder

We are going to record the commands that are executed when we insert an ellipse

into a spreadsheet and format it. The recorded macro is converted into a sub-

routine that is called several times by the main program with modified coordinates.

In Fig. 4.7a, you see a decorative spiral drawn with the tools acquired in this exercise. The starting point is a macro (Fig. 4.7b), recorded when an ellipse was inserted and formatted.

What do We Learn in This Exercise?

Mag Once you have completed this task, you can create images like the one in

Fig. 4.7a.

Alac Great, that will amaze my friends!

Mag More importantly, you will master Visual Basic statements such as those

in Fig. 4.7b (P).

Tim Terribly complicated! I will never be able to keep all of that in my head at

the same time.

Mag You’re not supposed to. Figure 4.7b (P) contains a series of instructions that the Macro Recorder has recorded when an ellipse has been inserted by hand.

Fig. 4.7 a (left) Decorative spiral, drawn by a macro. b (right, P) Macro recorded by the macro recorder while an ellipse is inserted into the spreadsheet. Superfluous instructions have been deleted. If possible, do not write such code by hand! Get it using DEVELOPER/ RECORD MACRO and modify it as needed!

[image: Image 41]

4.3

Macro-Controlled Drawings with FOR, SUB, IF

125

Alac So, everything is done by the macro recorder?

Mag No, you still have to modify the recorded code, introduce variables and

learn the basic program constructions: loops (FOR i = … TO …), logical branches

(IF THEN … ELSE …), and sub-routines. (CALL SUB(a, b, c, …)).

The tab DEVELOPER/RECORD MACRO

We want to apply a VBA macro to draw a series of filled circles. First, we have to

get the elementary commands for drawing a circle. These can be found, in principle,

in manuals for VISUAL BASIC FOR APPLICATIONS. Nevertheless, we make life easier for

us and use the macro recording function. You can find it in the main register tab

DEVELOPER, (see Fig. 4.8). Further explanations can be found in EXCEL help under the keyword CREATE A MACRO.

If the main tab DEVELOPER does not appear in your ribbon, you must activate it in

the EXCEL options, with FILE/OPTIONS/CUSTOMIZE RIBBON/MAIN TABS/ DEVELOPER.

Circles, Squares, Triangles, by Hand and by Macro

After turning on the macro recording function, we draw a circle by hand

(INSERT/ILLUSTRATIONS/SHAPES) and format it. For example, we select the color of the

filling and the thickness and color of the border. When we have finished the drawing,

we end the macro recording by clicking the STOP RECORDING button, which appears in

the toolbar in place of RECORD MACRO. The recorded macro is in a project MODULE (see

Fig. 4.9 under “Modules”), not in a VBA sheet connected with a spreadsheet.

Fig. 4.8 The DEVELOPER/RECORD MACRO tab records all program code associated with

the spreadsheet operations performed by the user, e.g., introducing a rectangle as in

F1:H2 (INSERT/ILLUSTRATIONS/SHAPES). The VISUAL BASIC button (far left) activates the

VISUAL BASIC EDITOR (see Fig. 4.1)

[image: Image 42]

126

4

Macros with Visual Basic and Their Correspondences in Python

Fig. 4.9 Visual basic editor. You have to activate PROJECT EXPLORER (with VIEW/PROJECT EXPLORER) to see all open files. The recorded macro is located in Module 1 (hidden in the group MODULES) of the VBA project (4–2 Basic Exercise Annegret)

VBA is the abbreviation for “Visual Basic for Applications”. The addition “for

applications” indicates that the application’s instructions, here, EXCEL, are available

as internal instructions, e.g., ACTIVESHEET. ADDSHAPE, with which a geometric form

is inserted into the spreadsheet.

Select Objects and Edit them Together

You can select objects with the arrow cursor. To do this, click

HOME/FIND AND SELECT/SELECT OBJECTS at the ribbon’s far-right. With the

new mouse pointer held down, you can now span a rectangle within which

all drawing objects are selected and edit this set of objects as a whole, for

example, color them, group them, or delete them.

Within a VBA macro, use the command ACTIVESHEET.DRAWINGOBJECTS.SELECT

to select all drawing objects in the active worksheet. With SELECTION.DELETE, you

can delete all objects.

4.3

Macro-Controlled Drawings with FOR, SUB, IF

127

4.3.2

Visual-Basic Editor 2: Macro Recording, Debugging

We can review the result of our macro recording in the Visual Basic editor. This

editor is activated when you click on DEVELOPER/VISUAL BASIC (far left in Fig. 4.1)

or press ALT F11. A window like that in Fig. 4.9 appears when the program page of a sheet or a module is additionally double-clicked. SHEET1 has been clicked here,

which already contains SUB Annegret from Sect. 4.3.2.

Upon clicking on the “View” tab, a menu opens up that has been placed over

SUB Annegret in Fig. 4.9.

We click on the PROJECT EXPLORER button, and the PROJECT—VBAPROJECT sub-

window appears. In this window, each worksheet (SHEET1, SHEET2, SHEET3, SHEET4)

is assigned a VBA sheet in which Visual Basic code can be generated and edited.

In Fig. 4.9, SHEET1 (Tabelle1(Annegret)) has been clicked, and in the editor, the macro SUB ANNEGRET from Sect. 4.2.2 has popped up.

Since we have already recorded a macro, another object MODULE1

appears under Modules . It contains the program code SUB MACRO1, which we

have transferred to Fig. 4.7b (P), with four instructions:

– Lines 3 and 4: An ellipse (MSOSHAPEOVAL) has been created. The first two num-

bers in the argument list are the x and y coordinates; both are measured from the upper left corner of the spreadsheet. The next two numbers in the list are

the two diameters of the ellipse.

– Line 7: The area within the ellipse is colored.

– Line 13: The border of the ellipse is colored.

– Line 18: The thickness of the border of the ellipse is specified.

You can edit the macro commands in the editor like normal text. The syntax must,

of course, comply with the rules of the VBA interpreter.

Debug/Step Into

Let the macro run again; best if you do it step by step! If you place the cursor in a

program in the Visual Basic Editor and press the function key F8, each step of the

program is executed individually (DEBUG/STEP INTO). You can then see exactly what

is happening and check whether the drawing is changing as you expect. You can

also change the instructions before they are executed. Going through a macro step

by step is a good way to detect programming errors.

If you place the cursor on a variable name, the value of that variable will pop up.

Task Change the coordinates and the size of the diameters by modifying the

instructions!

Mag Now, the real programming starts, with loops and sub-routines!

128

4

Macros with Visual Basic and Their Correspondences in Python

4.3.3

Programming Elements

Variables Instead of Numbers

In SUB MACRO2 in Fig. 4.10 (P), we have replaced the current numbers in ADDSHAPE

with variables x, y, d x and d y, to which we have assigned values in lines 2 to 5. If we run this macro, one of the shapes in Fig. 4.11a (S) is created, or a similar one if other values have been chosen.

The colors in lines 9, 12, 32, and 35 are composed of red, green, and blue com-

ponents (intensity between 0 and 255) via the specification RGB (red, green,

blue).

1 Sub Macro2()

Sub Circles()

20

2 x = 400

For i = 1 To 3

21

3 y = 20

Call Disc(i * 50 + 60, i * 25)

22

4 dx = 100

Next i

23

5 dy = 50

End Sub

24

6 ActiveSheet.Shapes.AddShape(msoShapeOval, _

25

7

x, y, dx, dy).Select

Sub Disc(x, y)

26

8 With Selection.ShapeRange.Fill

'x and y are the coordinates of the center

27

9 .ForeColor.RGB = RGB(220, 220, 220)

d = 50 'diameter of the circle

28

10 End With

ActiveSheet.Shapes.AddShape(msoShapeOval, _

29

11 With Selection.ShapeRange.Line

x - d / 2, y - d / 2, d, d).Select

30

12 .ForeColor.RGB = RGB(180, 0, 0)

With Selection.ShapeRange.Fill

31

13 .Weight = 1

.ForeColor.RGB = RGB(220, 220, 220)

32

14 End With

End With

33

15 End Sub

With Selection.ShapeRange.Line

34

16

.ForeColor.RGB = RGB(180, 0, 0)

35

17 Private Sub CommandButton1_Click()

.Weight = 1

36

18 Call Circles

End With

37

19 End Sub

End Sub

38

Fig. 4.10 a (left, P) Variable names are introduced, MACRO1() from Fig. 4.7b (P) becomes Macro2(). The macro SUB CommandButton1 is triggered by the command button in Fig. 4.11b.

b (right, P) Macro2() is converted into a sub-routine Disc(x,y), which is called repeatedly by the main program Circles with various values for x and y, with the result in Fig. 4.11b

A

B

C

D

A

B

C

D

1

1

2

2

3

3

4

4

5

5

CommandBuon1

6

6

7

drawn by Macro1

7

Fig. 4.11 a (left, S) Circle and ellipse after executing SUB Macro2 in Fig. 4.10a (P). b (right, S) Result of the procedure Circles in Fig. 4.10b (P)

4.3

Macro-Controlled Drawings with FOR, SUB, IF

129

Questions

Which color is created with RGB(180, 0, 0)? 8

Which color is created with RGB(220,220,220)? 9

How can you tell that a circular disc, and not an elongated ellipse, is

produced with SUB Disc? 10

Sub-routines

We want to summarize the relevant instructions in a sub-routine “Disc”, which con-

tains, in the procedure header, the coordinates (x, y) of the center of the circle in the parameter list, Disc(x, y). This sub-routine is called from a main program with different values for (x, y). Figure 4.10b (P) suggests a solution for this task, with the main program SUB Circles and the sub-routine SUB Disc. Superfluous specifications in the recorded macro have been deleted.

The diameter of the circular disc is set to d = 50 in SUB Disc (line 28). Grey is now selected as the fill color, lines 31, 32. The line width remains as before

(… LINE.WEIGHT = 1). These parameters cannot be changed by the main program,

because they are not in the procedure header.

When placing the circular disc in the spreadsheet, note that the center of the

circle is passed via the procedure header (SUB Disc(x,y)), but that it is the upper left corner of the shape that must be specified in the drawing command.

The ratio of the scaling in Visual Basic to the grid scale in the spreadsheet can

be seen from the following data:

– A circle with diameter 100 points has a diameter of 3.53 cm.

– 28.4 point correspond to 1 cm.

– 28.5; 28.6; 28.7 point all correspond to 1.01 cm.

– 28,8 point correspond to 1.02 cm.

Transferring parameters to sub-routines

When parameters are passed to sub-routines, the order in the argument

list in the procedure header is decisive; the names in the main program

are not significant.

A procedure header in Fig. 4.10b (P) reads SUB Disc(x,y). This sub-routine is called in SUB Circles() with CALL Disc(I*50 + 60, I*25). The first entry in the header in SUB

 Disc is taken over as x, and the second entry as y. We often name the variables 8 RGB(180, 0, 0) is a strong red, intensity 180 of 255.

9 RGB(220,220,220) is a light grey; red, green and blue are equally present.

10 In lines 29, 30, ACTIVESHEET.SHAPES.ADDSHAPE(…,., d, d), the same variable d is used for both diagonals of the ellipse.

130

4

Macros with Visual Basic and Their Correspondences in Python

in the main program the same as in the sub-routine. So, we could write x = i*50

+ 60 and y = i*25 within the loop in SUB Circles() and then call CALL Disc(x, y), with the same result as above.

If we executed CALL Disc(y, x), the first entry, here, y from the main program, would be interpreted as x in the subprogram and the second entry as y. The row of the three circular discs would start at A8 and go down more steeply. In the main

program, we could also choose completely different variable names, e.g., a and b, and then proceed with CALL Disc(a, b) or CALL Disc(b, a).

Name the variables such that you are best able to keep an overview!

Questions

concerning Fig. 4.10b (P)

Which three circle centers are passed to SUB Disc(x,y) in SUB Circles?11

Which argument in CELLS(a,b) stands for the row index in the spreadsheet? 12

Main Program

A main program is characterized by the fact that it contains no parameters in the

procedure header. Only main programs are executable programs. Sub-routines gen-

erally contain parameters in the header that must be assigned values by a higher-level

program. Examples:

– SUB circles() in Fig. 4.10b (P) is a main program that the user can start.

– SUB disc(x,y) in Fig. 4.10b (P) is a sub-routine with x and y in the procedure header. It cannot run on its own, but can only be called by another procedure with

specified values for the parameters x and y.

Task Change the procedure so that, in addition to the coordinates of the cen-

ter point, the diameter d of the circle and the thickness w of the boundary (SHAPE OUTLINE) are selected in the main program and are transferred to the

sub-routine as parameters in the procedure header! 13

FOR loop

The main program Circles calls the sub-routine DISC in the loop (FOR i =) three times. The centres of the circular disks are set to (110, 25), (160, 50) and (210,75)

for i = 1, 2, 3. The drawing resulting from these specifications is shown in Fig. 4.11b.

11 (x, y) = (110, 25), (160, 50) and (210, 75).

12 The first argument, a, stands for the row: CELLS(row, columns).

13 SUB DISC(X,Y,D,W), LINE 36, WEIGHT = W.

4.3

Macro-Controlled Drawings with FOR, SUB, IF

131

A FOR loop is used in the macro Circles. The general syntax for a FOR loop is:

FOR x = xmin TO xmax STEP delta_x

{LIST OF COMMANDS}

NEXT x

An example with integers:

 r2 = 10

FOR N = –211 TO 453 STEP 12

CELLS(R2, 2)=N

R2 = R2 +1

NEXT N

When this loop is executed, the loop index n assumes the values −211, −199,

…, 437, 449. CELLS(10,2) to CELLS(65,2) are filled in. In the argument of CELLS,

the row number comes first and the column number second. Cells B10 to B65 are

therefore filled in with −211, −199, …, 449.

A further example is the loop in SUB Circles(), in which the sub-routine Disc is called three times:

FOR I = 1 TO 3

CALL DISC(I*50+60, I*25)

NEXT I

Task Develop a macro for drawing a row of rectangles! “Develop” means that

you get the instructions with RECORD MACRO and redesign the recorded macro using

variables, sub-routines, and loops.

Task Write a macro that draws a (4× 4) array of filled circles, the colors thereof being composed of fractions of red and green, with the green fraction systematically increasing in each row and the red fraction systematically increasing in each

column!

Command Button, Design Mode On/Off

In Fig. 4.11b, a command button has been inserted in "Design mode" in A5:B6 with DEVELOPER/INSERT/ACTIVEX CONTROLS/COMMAND BUTTON (visible when the mouse is

over the ▭ icon).

In

the

PROPERTIES

card,

revealed

by

right-hand

clicking

on

COMMAND BUTTON/PROPERTIES, COMMANDBUTTON1 (as text) is assigned both as

a NAME and a CAPTION for the command button. As is usually the case with

controls, with the DESIGN MODE turned on (click the DESIGN MODE button on the

DEVELOPER tab, see Fig. 4.1 and Fig. 1.1 of Sect. 1.7), the PROPERTIES can be changed, e.g., name and caption. When the design mode is switched off (by

clicking the DESIGN MODE button again), the control can be operated.

132

4

Macros with Visual Basic and Their Correspondences in Python

The procedure SUB COMMANDBUTTON1_CLICK in Fig. 4.10a (P) is assigned to the command button. In detail, proceed as follows: In the VISUAL BASIC Editor (Fig. 4.9), click on the arrow ▿ at (GENERAL). A list opens up in which SUB COMMANDBUTTON1 appears. This entry is activated by clicking on it. Next,

click on the arrow ▼ next to the cell with the inscription “Annegret” (as shown in

Fig. 4.9, or the name you have chosen). A list opens up in which CLICK appears, together with other commands. Click on this entry, and SUB COMMANDBUTTON1

is immediately completed to SUB COMMANDBUTTON1_CLICK. The upper line in the

VBA editor will now read COMMANDBUTTON1 ▼; CLICK().

In our case, in Fig. 4.10a (P), only one procedure, SUB Circles, is called. We could omit SUB COMMANDBUTTON1_CLICK by naming the command button Circles

and completing SUB Circles() to SUB Circles _CLICK(). Please note that we would have to change the name of the button, which is independent of its caption.

4.4

A Checkerboard Pattern (Excel)

We obtain the VBA commands for drawing elementary geometric shapes

by recording macros and incorporate them into a sub-routine that executes

the drawing in the desired layout. The shapes’ position in the spreadsheet is

passed to the procedure via its header or via global variables. The respec-

tive shapes, as well as the color of their borders and interiors, are selected

randomly.

4.4.1

Checkerboard, Same-Colored and Multi-colored

Checkerboard with same-colored shapes

In this exercise, a checkerboard of rectangles, triangles, and circles, as shown in

Fig. 4.12a, is to be drawn. The procedure for this is shown in Fig. 4.13 (P).

SUB DRAWI1 in Fig. 4.13 (P) is the main program that randomly calls one of the subroutines Rect, Ova, or Tria, ten times in each of eight rows, drawing a rectangle, ellipse, or triangle at the current position of x and y. Its core is a nested loop with two loop indices, k for the row and i for the column address within a row.

The variable ROT in SUB drawi1 determines whether a rectangle, an ellipse (oval) or a triangle shall be drawn. In line 5, the variable ROT is randomly assigned a value 0, 1, or 2. Chance is brought in by the function RND() generating a random

number between 0 and 1, which is then multiplied by 3. This real number is turned

into an integer by INT (into the variable ROT). To give some examples: INT(0.75*3)

= INT(2.25) = 2; INT(0.22*3) = INT(0.66) = 0; INT(0.54*3) = INT(1.53) = 1.

[image: Image 43]

4.4

A Checkerboard Pattern (Excel)

133

Fig. 4.12 a (left) A checkerboard pattern of rectangles, circles and triangles, all equally formatted, drawn with SUB drawi1 in Fig. 4.13 (P). b (right) Like a, but with forms differently formatted, filled with different colors, and surrounded with borders of different thickness and different color, drawn with SUB drawi in Fig. 4.14 (P)

1 Sub drawi1()

If ROT = 2 Then Call Tria(x, y)

8

2 x = 100

x = x + 15

9

3 For k = 1 To 8 'next row

Next i

10

4 For i = 1 To 10'within row

x = 100 'reset left position

11

5 ROT = Int(Rnd() * 3) '0, 1 or 2

y = y + 15 'advance top position

12

6 If ROT = 0 Then Call Rect(x, y)

Next k

13

7 If ROT = 1 Then Call Ova(x, y)

End Sub

14

Fig. 4.13 (P) Procedure SUB drawi1 with which Fig. 4.12a is drawn In lines 6 to 8, logical IF queries determine which shape is drawn. After the

shape has been drawn, the x value is increased by 15 (line 9).

Task First, draw only one row by omitting the loop (FOR k = …)! The sub-

routines Rect(x,y), Ova(x,y) and Tri(x,y) should be written according to the model of sub Disc(x,y) in Fig. 4.10b (P). Apart from MSOSHAPEOVAL, MSOSHAPERECTANGLE

and MSOSHAPETRIANGLE have to be used.

Task Draw the complete checkerboard pattern!

A randomly more colored checkerboard pattern

We draw 8 rows with 10 shapes each, such as shown in Fig. 4.12b. The format of the shapes, namely, the color to be filled in and the color and thickness of the border, is

now determined using a random number. In addition, the positions (left, top) of the

shapes are not passed to the sub-routines through the procedure header, but via global

variables. The main procedure can be found in Fig. 4.14 (P), a typical sub-routine in Fig. 4.15 (P).

134

4

Macros with Visual Basic and Their Correspondences in Python

1 Private x, y As Single

If ROT = 0 Then Call Rect

10

2 'Position of the shape to be currently drawn

If ROT = 1 Then Call Ova

11

3

If ROT = 2 Then Call Tria

12

4 Sub drawi()

Next i

13

5 x = 100 'left position

x = 100 'reset left position

14

6 y = 100 'top position

y = y + 15 'advance top position

15

7 For k = 1 To 8 'next row

Next k

16

8 For i = 1 To 10 'within row

End Sub

17

9 ROT = Int(Rnd() * 3) '0, 1 or 2

18

Fig. 4.14 (P) SUB drawi is the main program calling, 10 times in each of 8 rows, one of the subroutines Rect, Ova, or Tria, which draw a rectangle, ellipse, or triangle at the current position of x and y. Similar to Fig. 4.13 (P), but with parameters stored in global variables x, y defined in line 1

1 Sub Rect() ' Draws a rectangle of width 10 and height 10

1

2 ActiveSheet.Shapes.AddShape(msoShapeRectangle, x, y, 10, 10).Select

2

3 Call Lin(255 * Rnd(), 63 * Rnd(), 63 * Rnd(), 10) 'Rim of shape

3

4 'Formats rim: Red fully varied, green and blus, half intensity, strength

4

5 Call Interi(63 * Rnd(), 128 + 127 * Rnd(), 63 * Rnd()) 'Interior of shape

5

6 'Formats interior: Green always more intense than 50%

6

7 x = x + 15 'Advances position in the row

7

8 End Sub

8

Fig. 4.15 (P) SUB Rect draws a rectangle with a fixed size, but with randomly selected colors for the border (line 3) and interior (line 5). The instructions for coloring are executed in the Lin and Interi sub-routines in Fig. 4.16 (P)

4.4.2

Global Variables

Global variables are also valid in sub-routines. They must be declared as PRIVATE

or PUBLIC before the routines (see line 1 in Fig. 4.14 (P)). Variables of type PRIVATE

are only available in the module in which they are declared, those of type PUBLIC

in the whole workbook. The positions (Left, Top) of the shapes are now stored in

global variables x and y that can be read and modified by each sub-routine.

The data type SINGLE in line 1 of Fig. 4.14 (P) denotes a single-precision floating-point number stored in 4 bytes. Decimal numbers of the data type DOUBLE

are stored in 8 bytes. You can find out more about other data types with EXCEL

help in the VBA-Editor.

Don’t just copy the macros if you already have some programming

practice! Rehearse the sequence of instructions in your mind and get

the commands for drawing shapes through macro recording!

In SUB Rect in Fig. 4.15 (P), a square is drawn, and its interior and border are formatted with the sub-routines Lin and Interi in Fig. 4.16 (P). The position is taken from the global variables (x, y) and passed to MSOSHAPERECTANGLE through the procedure header of AddShape. Both side lengths are fixed to 10. The arguments

4.4

A Checkerboard Pattern (Excel)

135

1 Sub Lin(r, g, b, w)

Sub Interi(r, g, b)

8

2 red, green, blue and weight w

'red, green, blue

9

3 With Selection.ShapeRange.Line

With Selection.ShapeRange.Fill

10

4 .ForeColor.RGB = RGB(r, g, b)

.ForeColor.RGB = RGB(r, g, b)

11

5 .Weight = w

End With

12

6 End With

End Sub

13

7 End Sub

14

Fig. 4.16 (P) SUB Lin and SUB Interi color the border and the interior of the shape (line 2), respectively, according to the variables r (red), g (green), and b (blue). The thickness (weight) of the border is specified in w, set to 10 in Fig. 4.15 (P)

in the headers of Lin and Interi are generated in SUB Rect(...) with RND() which returns a random number between 0 and 1.

Questions

concerning Fig. 4.15 (P):

The procedure header of SUB Rect is empty. How does the sub-routine know

the position in the spreadsheet where the rectangle is to be drawn? 14

Which color dominates the border of the shapes? 15

4.5

A Checkerboard Pattern (Python)

We draw a multi-colored checkerboard pattern using the Python library

 turtle, setting up a similar program structure as for EXCEL in Sect. 4.4, but considering the differences in code from Visual Basic.

4.5.1

Turtle

In order to draw a set of shapes with Python, we use the library turtle. This

simple plot program’s illustrative idea is that of turtles running across the screen,

thereby creating colorful traces.

In Table 4.1, the libraries turtle and numpy.random are imported and a turtle named t is created. This will be the first cell in every program; it must be run before the functions are compiled, because they resort to these libraries.

Generally, several turtles can be active at the same time. We use, however, only

14 SUB Rect accesses the global variables x, y.

15 Line 5 in Fig. 4.15 (P): Green = 128 + 127*RND() is represented at least with strength 128.

[image: Image 44]

136

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.1 Importing relevant libraries; creating a screen with a title; the internet address in line 1 points to an introduction to Turtle graphics

1

#https://docs.python.org/3.3/library/turtle.html

2

import turtle

3

import numpy.random as npr

4

t=turtle.Turtle() #Creates a turtle with name t

5

turtle.title("Checkerboard")

Fig. 4.17 a (left) Turtle screen created by the Python program in this section, in a frame spanned by the points (−400, −400) and (400, 400). b (right) Triangles of different size and at different positions in a square

one turtle instance called t. In the second cell in Table 4.1, a screen is created with a program-specific name, here, Checkerboard.

The standard size of the screen is 1000 pt × 800 pt spanned between (−500,

−400) to (500, 400). Such a screen with a checkerboard pattern is shown in

Fig. 4.17a. Turtle and EXCEL apply coordinate systems with different origins.

In EXCEL, it is at the upper left corner of the spreadsheet, and all coordinates are

positive. In Turtle, the origin is at the center of the screen, and the coordinates

are positive or negative.

Attention: The turtle window may be below the Python window.

Different types of triangle

The centroid (x C, y C) of a triangle, corresponding to its center of gravity, is calculated as

 xC = x 1 + x 2 + x 3 , yC = y 1 + y 2 + y 3

3

3

It is marked in Fig. 4.17b with dots.

The function drawTria, used to draw Fig. 4.17a, draws an equilateral triangle (bottom left in Fig. 4.17b) whose centroid does not coincide with the square’s center,

4.5

A Checkerboard Pattern (Python)

137

in contrast to the equilateral triangle at top left. The bottom right triangle has its top point at the midpoint of the upper side of the square. It is shifted in the upper right

figure so that its centroid coincides with the square’s center.

Basic functions and measurements

The basic functions (always completed with parentheses ()), attributed to the instance

of a turtle, e.g., t.penup() or t.pos(), are.

Settings:

.pen(…)

specifying speed, pensize, pencolor, fillcolor

.pu()

pen up

.pd()

pen down

.setpos(x,y)

moving to the specified position

.setheading(φ)

setting the orientation as angle φ in ° with respect to the

 x-axis

.rt(φ)

right turn by angle φ in °

.lt(φ)

left turn by angle φ in °

.fd(r)

step forward by r pixels

.bk(r)

step backward by r pixels

.dot(s,c)

plots a dot with diameter s and color c at current position

.begin_fill()

beginning to fill in the contour

.end_fill()

ending to fill in the contour

Measurements:

.pos()

returns Cartesian coordinates of turtle

.heading()

returns angle of direction

.distance(x,y)

returns distance to point (x, y)

Question

How do you get the position of a turtle named doro in polar coordinates? There

are two possibilities. 16

4.5.2

Differences to Visual Basic

We will demonstrate some syntactic differences between Python and

VISUAL BASIC by means of the function drawSquare, which creates a square shape.

16 r = doro.distance(0,0), phi = doro.heading()/180*np.pi() or x

= doro.pos(0), y = doro.pos(1), r = np.sqrt(x**2 + y**2), phi =

np.arctan2(y,x)

138

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.2 Function drawSquare in Python, drawing a square with center (x, y) and size sz that is filled if the keyword variable fill is set to True

1

def drawSquare(x,y,sz,fill=False):

2

r=sz/2

3

t.pu() # Pen up!

4

t.setpos(x-r,y-r) # Run to position!

5

t.pd() # Pen down!

6

if fill==True: t.begin_fill()

7

for i in range(4):

8

t.fd(sz) # Forward!

9

t.lt(90) # Turn left!

10

if fill==True: t.end_fill() # Fill square with color!

11

t.pu()

12

t.setpos(x,y)

In Table 4.2, it is implemented in Python with four segments of equal length and a 90° turn after each segment; the features of the pen have been specified

in a superordinate program. In Fig. 4.18 (P), this is realized in a Visual Basic sub-routine that is called from the main program SUB DSQ().

Positional and keyword arguments

The procedure headers in both cases, Python and VBA, contain positional arguments

 x, y, sz, and a keyword argument fill that decides whether or not the contour is filled (with the default set to False).

The first three positions in the header must contain appropriate values when the

function is called. It is the position in the header that determines the variable in the

procedure to which the value is assigned. In Fig. 4.18 (P), a variable y with value 40 is passed through the third position to the procedure, where it is assigned to a

variable named sz.

The keyword argument fill is defined in the procedure header with a default value taken in the procedure, if not specified otherwise.

1 Dim col(2) As Integer

Sub drawSquare(x, y, sz, _

13

2

Optional fill As Boolean = False)

14

3 Sub dSq()

ActiveSheet.Shapes.AddShape(_

15

4 col(0) = 100

msoShapeRectangle, x, y, sz, sz).Select

16

5 col(1) = 200

Selection.ShapeRange.fill.Visible = msoFalse

17

6 col(2) = 0

If fill = True Then

18

7 y = 40

With Selection.ShapeRange.fill

19

8 For a = 100 To 200 Step 50

.Visible = msoTrue

20

9 Call drawSquare(a, 100, y, fill:=True)

.ForeColor.rgb = rgb(col(0), col(1), col(2))

21

10 Next a

End With

22

11 Call drawSquare(100, 100, y, fill:=True)

End If

23

12 End Sub

End Sub

24

Fig. 4.18 (P) DrawSquare realized in visual basic for EXCEL

4.5

A Checkerboard Pattern (Python)

139

Global parameters

The first line in the VISUAL BASIC program in Fig. 4.18, before the procedures, defines an array col of integers with three elements accessible in the whole module. It is written in the main program on lines 4 to 6 and read in drawSquare on line 21.

In Python, arrays can be declared anywhere in the program, e.g., by col = [100,

200, 0]. All variables, as well as arrays, are valid in subordinate functions unless the

variable name is again declared in a function with an equal sign, e.g., col = [10, 100, 10], creating a new object with own memory space.

Grouping blocks of code

In Python, indentation has a syntactic function. A block of code is necessar-

ily grouped by the same amount of indentation. In Table 4.2, there are two examples: the statements of the function are all indented by 4 spaces; the two statements to be

executed in the for-loop are further indented by another 4 spaces.

EXCEL uses code words to state the end of a block. In Fig. 4.18 (P), the procedure (sub-routine) ends with END SUB, the IF block with END IF, and the WITH block with

END WITH. The (FOR A =) block in the main program ends with NEXT A. Although

indentation does not have a syntactic function in Visual Basic, we use it to maintain

a better overview of the program structure.

Case-sensitivity

Python is case-sensitive: True and False have to be written with capital T and F;

 x and X are two different variables. Visual Basic is case-insensitive: an input “true”

is automatically changed to “TRUE”; x and X are regarded as the same variable. When we change the case of the first letter anywhere in the program, names in other places

will automatically adapt.

4.5.3

Checkerboard with Squares, Triangles, and Circles

User-defined functions for square, triangle, circle, dash

To draw a checkerboard pattern as in Fig. 4.17a, we need functions that draw, besides the rectangle already realized in Table 4.2, a triangle and a circle. They should have the same procedure header as drawSquare, with the center point (x,y) and the size sz as positional arguments and fill as a keyword argument.

Drawing a triangle in Table 4.3 is similar to how it is done in drawSquare. Drawing a circle with radius r is achieved with the built-in function circle(r) (see Table

4.4). There, the turtle runs along a circle of radius r, starting at its current position and with its current direction.

In the three functions mentioned above, the turtle runs along a shape, starting

at its current position and with its current direction. It was, however, intended by

the programmer that the turtle start running straight to the right. This is indeed

140

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.3 Drawing a triangle with center (x, y)

13

def drawTria(x,y,sz,fill=False):

14

r=sz/2

15

t.pu()

16

t.setpos(x-r,y-r)

Left lower edge

17

t.pd()

18

if fill==True: t.begin_fill()

19

for i in range(3):

20

t.fd(sz)

Forward!

21

t.lt(120)

Turn left!

22

if fill==True: t.end_fill()

23

t.pu()

24

t.setpos(x,y)

Table 4.4 Drawing a circle with center (x, y)

25

def drawCircle(x,y,sz,fill=False):

26

r=sz/2

27

t.penup()

28

t.setpos(x,y-r)

29

t.pendown()

30

if fill==True: t.begin_fill()

31

t.circle(r)

Is a function within turtle

32

if fill==True: t.end_fill()

33

t.penup()

34

t.setpos(x,y)

assured in our current main program, but nevertheless, not making this intention

explicit is considered a big mistake in Software Engineering.

Questions

The turtle named t in Tables 4.2, 4.3, and 4.4 is a global instance accessed within the functions. This is possible because you have only one turtle running.

What do you do if several turtles are on the field? 17

In Table 4.4, it is implicitly assumed by the programmer that the turtle is heading straight to the right at start, a big programming mistake. How do you

avoid this bug? 18

17 The turtle name has to be an argument, e.g. t, def drawSquare(t, x, y, sz, fill

= false), so that it is no longer regarded as a global instance in the functions.

18 Introduce t.setheading(0) before the turtle starts running. If necessary, store the original direction at the beginning, e.g., phi0 = t.heading() and reset it at the end with

t.setheading(phi0).

4.5

A Checkerboard Pattern (Python)

141

Table 4.5 Drawing a dash

35

def dash(ds):

36

t.rt(90)

Right turn

37

t.fd(ds)

38

t.rt(180)

180° to the right

39

t.fd(2*ds)

40

t.rt(180)

41

t.fd(ds) # Back to zero

42

t.lt(90)

#90° to the left, original direction

Table 4.6 Drawing the checkerboard pattern with a nested loop; when lines 3 and 20 are activated, the turtle runs faster

1

turtle.clearscreen()

2

t=turtle.Turtle()

3

#turtle.tracer(0, 0)

4

#Draw checkerboard pattern

5

for rn in range(-280,285,80):

6

for c in range(-360,365,80):

7

r=npr.rand()

8

g=npr.rand()

9

b=npr.rand()

10

tup=(r,g,b)

Red, green, blue

11

tup2=(g,b,r)

#g= Red, b=green, r=blue

12

t.pen(pencolor=tup2, fillcolor=tup,

13

pensize=4, speed=0)

14

if r<0.33:

15

drawTria(c,rn,60,fill=True)

16

elif r<0.67:

17

drawSquare(c,rn,60,fill=True)

18

else: drawCircle(c,rn,60,fill=True)

19

t.dot()

20

#turtle.update()

The function dash in Table 4.5 draws a dash at the current position perpendicular to the current turtle heading, of extension d s to both sides.

Main program

The main program has three parts. The first part is shown in Table 4.1, importing the necessary libraries and creating a screen with the title Checkerboard. Then, in Table

4.6, the checkerboard pattern is drawn with a nested loop over 10 x positions and 8

 y positions, with randomly choosing one of our three shapes.

Before we call the draw* functions, the pen specifications have to be set in the main program, pencolor and fillcolor in our program, by rgb (red, green, blue) in

standard mode with values between 0 and 1, randomly chosen with npr.rand().

142

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.7 Drawing a frame with dashes around the checkerboard

21

#Draw frame with dashes

22

t.pen(pencolor="black", pensize=1, speed=10)

23

t.penup()

24

t.setpos(-400,-400) # Left bottom corner

25

t.pendown()

26

for k in range(4): # 4 straight lines

27

for i in range(10): # 10 segments with dashes

28

dash(6)

29

t.fd(80) # Forward!

30

dash(6)

31

t.lt(90) # Left turn 90°!

32

#turtle.update()

Table 4.8 Drawing the axes of the coordinate system

33

#Axes of the coordinate system

34

t.pu(), t.setpos(-400,0), t.pd()

35

t.fd(800) # Forward!

36

t.pu(), t.setpos(0,-400), t.pd()

37

t.setheading(90) # Direction 90° to x axis

38

t.fd(800)

39

#turtle.update()

The keyword variable pencolor expects a tuple with 3 elements to specify the

color. The individual variables r (red), g (green), b (blue) are set in lines 7 to 9 and assembled into two different tuples, tup for fillcolor and tup2 for pencolor.

Frame around the figure in Turtle

The main program is continued in Tables 4.7 and 4.8, through drawing of a frame around the checkerboard and the axes of the coordinate system, respectively.

Questions

What type of triangle is specified in drawTria, Table 4.3: equilateral, or acute-angled? 19

How do you draw a triangle touching a square at two neighboring corners

and the center of the opposite side (see Fig. 4.17b, bottom right)? 20

19 The function drawTriangle draws a triangle with all angles equal to 60° so that it becomes equilateral.

20 Let the turtle run with setpos(..) along (x-sz/2,y-sz/2), (x + xz/2,

y-sz/2), (0, y + sz/2), back to (x-sz/2,y-sz/2)!

4.5

A Checkerboard Pattern (Python)

143

What is the direction of the turtle after having been guided by the code

snippet in Table 4.7? 21

How do we speed up Python’s turtle function?

The answer is found with an internet search (2020):

https://stackoverflow.com/questions/16119991/how-to-speed-up-pythons-turtle-

function-and-stop-it-freezing-at-the-end

with the answers:

– (1) Set turtle.speed() to fastest.

– (2) Use the turtle.mainloop() functionality to do work without screen

refreshes.

– (3) Disable screen refreshing with turtle.tracer(0, 0), then, at the end,

do turtle.update()

We trigger variant (3) when we activate lines 8 and 25 in Table 4.6. The instruction turtle.tracer(0,0) eliminates the millisecond delays that occur when the

screen is updated after every turtle change. The screen is refreshed with the complete

picture by turtle.update() (Table 4.8).

4.6

Drawing Densely-Packed Atomic Layers; Crystal Physics

We draw two different stackings of three planes with densely packed spheres

that correspond to the cubic face-centered (fcc) or hexagonal dense-packed

(hdp) crystal structure.

4.6.1

Program Structure and Geometry

In this task, a top view of a close-packed plane of atoms is to be drawn with a

program based on a nested For-loop. The subordinate loop draws a horizontal row

of discs, representing the atoms, touching each other. This is achieved by shifting

a new disk to the right by the diameter d relative to the previous disc. In a higher-level loop, the rows are to be shifted one after the other in the plane so that the

circular disks touch each other in a hexagonal arrangement, as shown in Fig. 4.19.

In a second development step, the main program resulting from the first step is

to be converted into a procedure that draws a plane and to which the coordinates

21 The turtle turns 90 + 180 + 180 – 90 = 360° = 0° toward its original direction.

[image: Image 45]

144

4

Macros with Visual Basic and Their Correspondences in Python

A

B

C

D

E

F

G

H

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 4.19 (S) Hexagonally packed plane, drawn with SUB DIEB from Fig. 4.22 (P), here, however, in half-size

Fig. 4.20 Two densely packed planes and only two “atoms” in the third plane; dark grey “atom”

with dotted border top left: position as in the hexagonal close packing (hcp); middle grey “atom”

with black border: position as in the face-centered cubic (fcc) shape; the drawing is obtained with Tables 4.11 and 4.12

of the first disc are passed. An extended main program puts a second plane onto

the gaps in the first plane, and ultimately places two discs, one at a position typ-

ical of the face-centered cubic (fcc) structure and the other one characteristic of hexagonal densest packing (hdp), resulting in Fig. 4.20.

Questions

How many neighbors does a sphere in a close-packed plane have? 22

22 Six nearest neighbours.

[image: Image 46]

4.6

Drawing Densely-Packed Atomic Layers; Crystal Physics

145

Fig. 4.21 a (left) Geometry of a hexagonal packing in a plane, displacement of the second row of atoms with respect to the first row of atoms. b (right) Position of an atom in the second plane How many neighbors does a sphere in a stack of close-packed planes have? 23

The drawings in Fig. 4.21 indicate the coordinates of the centers of the circular disc in the planes. Figure 4.21a gives the position of a disc in a row relative to the previous row, and Fig. 4.21b that of a disc in a plane relative to the previous plane.

Three stacked planes

The first row of circular disks starts at (x 0, y 0). The second row is offset from the first row in the x- and y-directions by distances indicated in the geometric construction in Fig. 4.21a. A second plane is to be placed over the first one, with the circular disks lying over the gaps in the first plane (see Fig. 4.21b), resulting in the assembly of light grey discs in Fig. 4.20.

For the third plane, there are two possibilities:

– It lies exactly above the first plane, as in the crystal structure of hexagonal close

packing (hcp). For the drawing in Fig. 4.20, only one circular disk is placed in the correct position (dark grey, top left in the picture).

– It lies above the still visible gaps in the first plane, as in the cubic face-centered

(fcc) crystal structure. In Fig. 4.20, this is done only for one circular disk, drawn in middle grey with a black border. The displacement of the third plane

in the x- and y-directions is, for fcc, twice as large as the displacement of the second plane, both with respect to the first plane.

23 12 nearest neighbours, 6 of them in its own plane, 3 below and 3 above.

146

4

Macros with Visual Basic and Their Correspondences in Python

4.6.2

Data Structure and Nomenclature

The positions of the discs in the following list are deduced from Fig. 4.21:

 d

disc diameter

(x 0, y 0)

position of the first disc, top left

(del X, del Y)

shift of a plane with respect to (x0, y0)

del X = 0, del Y = 0

for the 1st plane

del X = d/2

for the 2nd plane (see Fig. 4.21b)

del Y = − d/2· tan(30/180·π)

for the 2nd plane (see Fig. 4.21b)

 x = x 0 + del X + d x + i· d position of disc i.

d x = del X + 0

1st and 3rd rows (see Fig. 4.21a)

= del X + d/2

2nd and 4th rows (see Fig. 4.21a)

 y = y 0 + d y

 y position of disc i (see Fig. 4.21a)

d y = del Y + d 34 · n

 n th row (see Fig. 4.21a and Eq. 4.1)

with:

d34 = d ·

3 / 4

(4.1)

read from Fig. 4.21a.

4.6.3

Excel

A row of discs

We draw four rows of circular disks so that the disks touch each other, using four

consecutive FOR-loops (see SUB DiEb Fig. 4.22 (P)).

The sub-routine SUB Disc(x,y), already reported in Fig. 4.10b, is called with individual positions x, y passed via the procedure header. Contrary to the figure, the disc’s diameter is set in the main procedure to d = 100. In each row, the x-

position of the following circle is shifted to the right by a circle’s diameter. The

 y-position is always the same for a row.

Stacking planes

To draw several planes, one on top of the others, we convert the main program DiEb

described above into the sub-routine SUB Plane(delX, delY) (repeated in Fig. 4.23

(P)) to which the coordinates of the top left disc are transferred. The displacements

 delX and delY can be determined with the help of Fig. 4.21b.

4.6

Drawing Densely-Packed Atomic Layers; Crystal Physics

147

1 Sub DiEb()

15

2 x0 = 100

'3rd row of discs

16

3 y0 = 100

dx = 0 'shift with respect to 1st row

17

4 d = 100 'diameter of the disc

dy = d * Sqr(3 / 4) * 2

18

5 '1st row of discs

For i = 0 To 7

19

6 For i = 0 To 7

Call Disc(x0 + dx + i * d, y0 + dy)

20

7 Call Disc(x0 + i * d, y0)

Next i

21

8 Next i

'4th row of discs

22

9 '2nd row of discs

dx = d / 2 'shift with respect to 1st row

23

10 dx = d / 2 'shift with respect to 1st row

dy = d * Sqr(3 / 4) * 3

24

11 dy = d * Sqr(3 / 4)

For i = 0 To 6

25

12 For i = 0 To 6

Call Disc(x0 + dx + i * d, y0 + dy)

26

13 Call Disc(x0 + dx + i * d, y0 + dy)

Next i

27

14 Next i

End Sub

28

Fig. 4.22 (P) SUB Dieb for drawing a plane; the four rows of atoms are drawn using four loops, result shown in Fig. 4.19 (S)

1 Sub Plane(delX, delY)

15

2 x0 = 100 'Offset to left upper corner

dx = 0 + delx

16

3 y0 = 100 'of the worksheet

dy = d * Sqr(3 / 4) * 2 + dely

17

4 d = 100 'Diameter of the disc

For i = 0 To 7

18

5 dx = delx

Call Disc(x0 + dx + i * d, y0 + dy)

19

6 dy = dely

Next i

20

7 For i = 0 To 7

dx = d / 2 + delx

21

8 Call Disc(x0 + dx + i * d, y0 + dy)

dy = d * Sqr(3 / 4) * 3 + dely

22

9 Next i

For i = 0 To 6

23

10 dx = d / 2 + delx

Call Disc(x0 + dx + i * d, y0 + dy)

24

11 dy = d * Sqr(3 / 4) + dely

Next i

25

12 For i = 0 To 6

End Sub

26

13 Call Disc(x0 + dx + i * d, y0 + dy)

27

14 Next i

28

Fig. 4.23 (P) SUB DiEb is converted into a sub-routine Plane to which the initial coordinates are transferred by a higher-level program

In the main program SUB hcp fcc in Fig. 4.24 (P), SUB Plane is called twice, for the initial layer with del X = 0 and del Y = 0 and for the second layer with its 1 Sub hcp_fcc()

dy = 0

10

2 x0 = 100

dx = 100 * 1

11

3 y0 = 100

Call Disc(x0 + dx, y0 + dy)

12

4 Call Plane(0, 0)

'fcc

13

5 delx = 100 / 2

dy = 100 * Sqr(3 / 4) - 100 / 2 * Tan(30 _

14

6 dely = 100 / 2 * Tan(30 _

/ 180 * 3.14159265)

15

7 / 180 * 3.14159265)

dx = 100 * 5

16

8 Call Plane(delx, dely)

Call Disc(x0 + dx, y0 + dy)

17

9 hdp

End Sub

18

Fig. 4.24 (P) Main program, which calls SUB Plane twice, places two atoms on top (with SUB Disc from Fig. 4.10b (P)), and thus draws a picture similar to Fig. 4.20

148

4

Macros with Visual Basic and Their Correspondences in Python

discs on the gaps of the first layer. There are two possibilities for the third plane,

 hcp or fcc, represented with one disc each in lines 12 and 17.

Questions

In Fig. 4.23 (P), the variables in the header are called delX and delY. In the body of the procedure, the formulas refer to different names, delx and dely.

Will this discrepancy lead to error messages? 24

How do you have to change SUB Disc in Fig. 4.10b (P) so that d becomes a global variable? 25

Grouping and copying shapes in various picture formats

To group the shapes into an integrated picture, activate the white arrow

SELECT OBJECTS in the FIND&SELECT tab (far right in the HOME tab of the EXCEL rib-

bon, Fig. 1.1 in Sect. 1.7), drag the selection rectangle around the shapes, then click FORMAT/GROUP. You can now copy the group as one graphic into other applications,

e.g., into a Word file or a PowerPoint file.

Task Group your drawing into an image of type png, tif , or some other image format, and copy this image to another area of the spreadsheet or to another application, e.g., to a PowerPoint file! To do so, select the object, click COPY, move

the cursor to another location in the table, click PASTE/PASTE SPECIAL, and select the

desired format.

4.6.4

Python

In the first cell of Table 4.9, the relevant libraries are imported. In the next cell, a screen with the name “Crystal planes” is created, and global parameters are

specified, with the disc diameter d being set to 50 and the position of the first disc in the upper left corner at (x 0, y 0) = (−175, 175). In the third cell, the first row of discs is drawn, comprising eight discs drawn from left to right, using the function

 drawCircle in Table 4.4. When developing the program, you should check this snippet of code and see whether a row of gray discs is really plotted from left to

right.

Comments concerning Table 4.9:

– Line 1, link for an introduction into the basic features of turtle,

– Line 5, the screen is cleared. This is important when developing a program,

and you have to improve the code and repeat it again and again until it runs

error-free.

24 No, Visual Basic is case-insensitiv e, contrary to Python.

25 Skip line 28 “d = 50”, insert dim d AS INTEGER as the first program line, and specify d = …

somewhere in the program before SUB Disc is called for the first time.

4.6

Drawing Densely-Packed Atomic Layers; Crystal Physics

149

Table 4.9 Importing relevant libraries; creating a screen and setting global parameters; drawing 1st row of discs, function disc from Table 4.4

1

#https://docs.python.org/3.3/library/turtle.html

2

import turtle

3

import numpy as np

4

import numpy.random as npr

5

turtle.clearscreen()

6

t=turtle.Turtle()

Create turtle with name t!

7

turtle.title("Crystal planes")

8

tup=(0.9,0.9,0.9)

Light grey

9

t.pen(pencolor="black", fillcolor=tup, pensize=1, speed=10)

10

11

x0=-175

12

y0=175

13

d=50

Disc diameter

14

#1st row of discs

15

dx=0

16

dy=0

17

for i in range(8):

18

drawCircle(x0+dx+i*d,y0+dy,d,fill=True)

19

print(t.pos())

Current position

Table 4.10 Function for drawing a close-packed plane; del X, del Y position of top left disc with respect to (x 0, y 0), drawCircle from Table 4.4

1

def Plane(delX,delY):

2

#1st row of discs

3

dx=0+delX

4

dy=0+delY

5

for i in range(8):

6

drawCircle(x0+dx+i*d,y0+dy,d,fill=True)

7

#2nd row of discs

8

dx=d/2+delX

9

dy=-d*np.sqrt(3/4)+delY

10

for i in range(7):

11

drawCircle(x0+dx+i*d,y0+dy,d,fill=True)

12

#3rd row of discs

13

dx=0+delX

14

dy=-d*np.sqrt(3/4)*2+delY

15

for i in range(8):

16

drawCircle(x0+dx+i*d,y0+dy,d,fill=True)

17

#4th row of discs

18

dx=d/2+delX

19

dy=-d*np.sqrt(3/4)*3+delY

20

for i in range(7):

21

drawCircle(x0+dx+i*d,y0+dy,d,fill=True)

150

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.11 Plotting the first and second planes

22

Plane(0,0)

23

delX=50/2

24

delY=-50/2*np.tan(30/180*np.pi)

25

Plane(delX,delY)

Questions

concerning Table 4.9

What is the position of the turtle after having drawn the first row? 26

What are the pen color and fill color of the turtle? 27

What is the global parameter accessed in drawCircle? 28

To produce a figure like that in Fig. 4.20, two planes and, additionally, two discs have to be placed at appropriate positions. The function for drawing a close-packed plane is shown in Table 4.10. Its arguments are the shifts delX and delY of the first disc’s position with respect to (x 0, y 0). The four rows of discs are drawn with loops calling drawCircle (from Table 4.4), always with the same variables, but with d x and d y set for each row individually, according to Eq. (4.1).

The first two planes are drawn with the program in Table 4.11. Two atoms in the third plane representative of the hexagonal-dense packed and face-centered cubic

structures, respectively, are drawn in Table 4.12. For hdp, the position is just on top of a disc in the first plane, whereas for fcc, x and y get a double shift from a disc in the first plane, whereby the x position becomes identical to the neighboring disc in the first plane and the y position is in the center of a gap in the second plane.

Question

In line 29 of Table 4.12, d x = 50*1 is specified; the number 50 is precisely the disc diameter. Nevertheless, what is bad about this instruction, and likewise

about the instructions in lines 36 and 37, and lines 23 and 24 in Table 4.11?29

26 The position of the turtle after the first row is x = -175 + 7·50 = +175; y = 175, as can be deduced from lines 18 and 19 in Tab. 4.9.

27 pencolor = "black", fillcolor = tup, tup = (0.9, 0.9, 0.9), a light gray.

28 The disc diameter d is a global parameter accessed in drawCircle. It is also used in line 18

to specify the shift of the position of the current disc with respect to the preceding one.

29 When the value of the global parameter d is changed, these instructions do not follow. Set dx =

 d*1 in lines 47, 48, 53, 60, 61 instead!

4.7

Text Processing

151

Table 4.12 Drawing an atom of the third plane, either hdp or fcc

26

#hdp

27

tup=(0.3,0.3,0.3) # Dark grey

28

t.pen(pencolor="black", fillcolor=tup,pensize=1, speed=0)

29

dx=50*1

30

dy=0

31

drawCircle(x0+dx,y0+dy,d,fill=True)

32

33

#fcc

34

tup=(0.6,0.6,0.6) # Middle grey

35

t.pen(pencolor="black", fillcolor=tup,pensize=1, speed=0)

36

dx=50*5

37

dy=-50/2*np.tan(30/180*np.pi)*2

38

drawCircle(x0+dx,y0+dy,d,fill=True)

4.7

Text Processing

Operations on strings (texts) are practiced by the example of swapping letters

within words. We will use the functions Len, Split, Join in both Visual Basic and Python. The functions LEFT, RIGHT, and MID are used in VISUAL BASIC to

cut out pieces of strings, achieved in Python through list slicing.

4.7.1

Cutting and Joining Strings

Swirling characters

Text It is siad taht a txet can be undesrtood eevn if you lvaee olny the begiinnng and the end lteter in ecah wrod in plcae but exahcnge middle lettsre. Do you

beileve taht or is it nonnesse?

Task Write a pogrram that fsirt rades a text from a sersadehept. This text is then to be bokren down into wsodr. The idnuvidial words are tnorsfarmed so that the

frsit and last letrets raiemn in pcela, but the iennr ltrtees are ramlondy swapped.

We are going to write a program that exchanges letters in an originally correctly

written text. Such a program has already swirled the first two paragraphs of this

description. The number of letter swappings in the above text: 1 (Text), 2 (Task).

152

4

Macros with Visual Basic and Their Correspondences in Python

Plain text of the first two paragraphs

Text It is said that a text can be understood even if you leave only the beginning and the end letter in each word in place but exchange middle letters. Do you

believe that, or is it nonsense?

Task Write a program that first reads a text from a spreadsheet. This text is then to be broken down into words. The individual words are transformed so that the

first and last letters remain in place, but the inner letters are randomly swapped.

VBA instructions for text processing

We need the following VBA instructions that affect character strings:

LEN(…), SPLIT(…), JOIN(…) , LEFT(…), RIGHT(.) and MID(…).

An overview is given in the box. For more information, refer to VBA help! There,

you can find out, for example, about the MID function:

 Returns a Variant (String) containing a specified number of characters from a string.

Syntax MID (STRING, START [, LENGTH]).

STRING

Required. String expression from which characters are returned.

START

Required; Long. Character position in STRING at which the part to be

taken begins.

LENGTH

Optional; Variant (Long). Number of characters to return.

Text processing in VBA and Python

VISUAL BASIC

Python

SPLIT(STRING, [SEPARATOR…)

String.split(“separator”)

Splits a string expression into words and stores them in an array. Unless

otherwise specified, a space is interpreted as a separator between words.

LEN(STRING)

len(String)

Determines the length of a given string.

LEFT(STRING, LENGTH)

String[:Length]

Cuts out a piece of length Length from a character string starting from the

left.

RIGHT(STRING, LENGTH)

String[-Length:]

4.7

Text Processing

153

Cuts out a piece of length Length from a character string starting from the

right.

MID(STRING, START, LENGTH)

String[Start: Stop]

Cuts out a piece of length LENGTH or (Stop – Start) from a charac-

ter string starting from position START and to the right of it. Attention:

VISUAL BASIC starts indexing from 1, Python from 0.

JOIN(ARRAY[, DELIMITER)

‘Delimiter’.join(Array)

Returns a string created by joining several substrings contained in an array.

If ‘Delimiter’ is omitted, the space character (“ ”) is used.

Questions

Let the variable Tx contain the text “Cutting out”. With which instructions do

you get the first, last, and second characters of Tx? How do you copy the string

“ing” from Tx to a new variable Wd? In Visual Basic, 30 in Python? 31

Consider the string Sente = “This is. Our goal.” How do you separate the

string into the two sentence fragments terminated by full stops? Use the Split

command! How do you get a new string JS = “This is.” including a full stop?

EXCEL? 32 Python? 33 Compare!

4.7.2

Data Structure and Program Flow

 Text

text to be processed, words separated by spaces

 Words

list of the words in Text

For every Word in Words:

Exchange two letters

with function ExchLett(Word)

Split Word

→ Letters list of letters in Word

Join Letters

→ NewWord

Join sequence of NewWord

→ NewSentence

30 LEFT(Tx, 1), RIGHT(Tx, 1), MID(Tx,2, 1), Wd = MID(Tx, 5, 3); the first character has index 1.

31 Tx[0], Tx[-1], Tx[1], Wd = Tx[4:7]; the first character has index 0.

32 SINGSENT = SPLIT(SENTE, "."): DIM NEWSENT(1) AS STRING: NEWSENT(0) = SINGSENT(0): NEWSENT(1) = ".": JS = (NEWSENT, ""), 5 statements; the colon is the separator between statements in a line.

33 SingSent = Sente.split(“.”); JS = ‘’.join ([SingSent[0], “.”]),

2 statements; the semicolon is the separator between statements in a line.

154

4

Macros with Visual Basic and Their Correspondences in Python

In the VISUAL BASIC program in Sect. 4.7.3, we use one array of words containing the original words at the beginning and the new words at the end. In Python

in Sect. 4.7.6, we are using two arrays: Words, with original data remaining unchanged, and WordsNew obtained consecutively by appending one scrambled

word after the other.

4.7.3

Excel

In the following, first, a complete program (main program Scramble and sub-

routine XWord) that solves the task is introduced. Do not copy it, but rather

continue reading! Then, the program is developed step by step in test macros to

follow the effect of the individual instructions.

Please be aware that, in the following continuous text, according to our spelling

convention, the words in SMALL CAPS are VBA internal terms, while the words in

 italics are invented by the programmer.

Split (Sentence)

The main program Scramble() (Fig. 4.25 (P)) reads a text from cell A1 of the spreadsheet (Text = CELLS(1,1)), splits it into words (Words = SPLIT(Text), line 3) and passes the words one by one to the sub-routine XWord(Word) (line 7) which exchanges

two letters. If two letters are to be exchanged for a second time, line 8, now com-

mented out, has to be activated. The instruction SPLIT specifies the variable Words

automatically as an array. For the data type array, see Sect. 4.7.5.

The sub-routine XWord (Word) (Fig. 4.26 (P)) splits the word transferred via the header into individual letters (lines 18–22), randomly exchanges two inner

letters (lines 23–28), puts together the new word in lines 30 to 34, and returns

the modified word to the higher-level procedure from which the sub-routine was

called.

1 Sub Scramble()

Call XWord(Words(lS)) 'Letters are exchanged

7

2 Text = Cells(1, 1)

'Call XWord(Words(lS)) '... a second time

8

3 Words = Split(Text)

Next lS

9

4 For lS = 0 To UBound(Words)

newText = Join(Words, " ")

10

5 'Cells(lS + 1, 2) = Words(lS)

Cells(7, 1) = newText

11

6 'activate for Scramble_test

End Sub

12

Fig. 4.25 (P) SUB Scramble reads a text from cell A1, splits it into words stored in the array Words, and passes the words one by one to the sub-routine XWord. The words returned by XWord (in the variable Word in the header) are assembled into a new sentence in line 10 and output to cell A7

(CELLS(7,1)) of the spreadsheet. Line 8, now a comment, has to be activated when two letters are to be exchanged for a second time

4.7

Text Processing

155

13 Sub XWord(Word)

'Random positions 2 to lWord-1

25

14 Dim Letter(20) As String

L0 = Letter(n1)

26

15 Debug.Print (Word)

Letter(n1) = Letter(n2)

27

16 lWord = Len(Word) '#Letters in the word

Letter(n2) = L0

28

17 If lWord >= 4 Then

29

18 For n = 1 To lWord

For n = 1 To lWord

30

19 'Letters are singled out.

Word = Join(Letter, "")

31

20 Letter(n) = Mid(Word, n, 1)

'Cells(n, 4) = Letter(n)

32

21 'Cells(n, 3) = Letter(n)

'Output to spreadsheet in Xword_test

33

22 Next n

Next n

34

23 n1 = Int(Rnd() * (lWord - 2)) + 2

End If

35

24 n2 = Int(Rnd() * (lWord - 2)) + 2

End Sub

36

Fig. 4.26 (P) SUB XWord detects the length of the transferred word (line 16), splits it into letters (lines 18–22), swaps two inner letters (lines 23–28), and reassembles the letters into the modified word (line 31). Commented lines 21 and 32 have to be activated to obtain SUB XWord Test, mentioned in Sect. 4.7.4

Join (Sentence)

The main program SUB Scramble in Fig. 4.25 (P) reassembles the modified words into a text (newText = JOIN(Words, “ ”), line 10) and writes it into cell A7 (Cells(7,1)

= newText). The second entry “ ” in JOIN causes a space to be inserted after each element of the array Words.

VBA terms and user-defined variable names

In the procedures Scramble and XWord, there are terms that VBA assigns a precisely defined meaning to:

– CELLS(r, c): cell in the row r and column c of the current spreadsheet,

– FOR … TO …; DO WHILE … LOOP; ON ERROR GOTO;

– The functions SPLIT(…); JOIN(…); INT(…); RND().

Such terms are printed in the text in SMALL CAPS.

There are also eleven variable names, which the programmer has invented

himself/herself:

– Text, Words, lSent, newText, lWord, Letter, n 1, n 2, L 0, x, n.

He might as well have taken eleven letters:

– a, b, c, d, e, f, g, h, i, j, k,

or eleven combinations of letters and numbers:

– a1, a2, a3, a4, b5, b6, b7, b8, × 1, × 2, × 3.

156

4

Macros with Visual Basic and Their Correspondences in Python

All combinations of letters and numbers are allowed as variable names, but the

first character must be a letter. Such names are italicized in the text. To keep the program clear, you should choose variable names that easily convey their meaning

in the program.

Attention: l (small el) and I (capital i) can easily be confused! Variable names in different places of the program then look the same but designate two different

variables. So, it is better to use a capital L: LWord instead of lWord.

Questions

What should lines 2 and 11 of Fig. 4.25 (P) be if the statement is formulated with RANGE instead of CELLS? 34

Which variable names in Fig. 4.25 (P) did the programmer come up with himself/herself? 35

Which variable names in Fig. 4.26 (P) did the programmer come up with himself/herself? 36

Do lines 23 and 24 of Fig. 4.26 (P) guarantee that two letters are always exchanged? 37

4.7.4

Programming Step by Step

Step by step, we develop a program that performs the text swirling described in

Sect. 4.7.1. It interacts with the spreadsheet, i.e., reads from cells and fills in the spreadsheet cells as shown in Fig. 4.27 (S).

A

B

C

D

1 A sentence is to be decomposed.

A

s

s

2

sentence

e

e

3

is

n

n

4

to

t

t

5

be

e

n

6

decomposed.

n

e

7 A sentnece is to be decomposed.

c

c

8

e

e

Fig. 4.27 (S) A1 contains the sentence to be processed. B, C, D, and cell A7 are filled in by the program. The individual words are in B, the individual letters of the second word are in C, those of the swirled word in D

34 Text = RANGE(“A1”); RANGE(“A7”) = newText.

35 Text, Words, lS, newText.

36 Word, Letter, lWord, n, n1, n2, L0.

37 No, n 1 and n 2 can be identical, so that there is no effective exchange.

4.7

Text Processing

157

We modify the procedures SUB Scramble in Fig. 4.25 (P) by activating the still out-commented line 5 (filling in column B of Fig. 4.27 (S)) and SUB XWord by activating lines 21 (filling in column C) and 32 (filling in column D).

The sub-routine XWord Test(Word) is the same as XWord(Word) in Fig. 4.26

(P), however, with the lines 21, 22, and 33 to 35 activated that now output

intermediate results into the spreadsheet.

Question

concerning Fig. 4.26 (P):

Which program lines guarantee that the first and last letter of a word are not

displaced? From which range of the spreadsheet is the text to be processed read?

Into which ranges of the spreadsheet are the individual words of the text, the

individual letters of a word, the swirled letters, and the modified text written? 38

After checking these macros to see if they do what we want them to do, we

transform them into a procedure that reads a sentence from cell A1 and outputs the

changed sentence in A2, like SUB Scramble in Fig. 4.25 (P). We now only swap letters from the word’s interior, i.e., leave the first and last letters as they are.

Task Do this exercise with other texts as well, and surprise your friends with

playful letters!

4.7.5

VBA Constructs

The data type Array in VBA

Arrays are declared in VBA as follows:

DIM Variable name(shape) AS data type

For example, [DIM Fel(2) AS DOUBLE] defines an array with three cells (to be

addressed with 0, 1, 2), where each cell can contain a real number of type DOUBLE.

DIM AR(2,3) AS INTEGER defines a two-dimensional array of integers of shape 3 rows ×

4 columns.

4.7.6

Python

The basic functions and methods for text processing, namely, splitting a text into

words, a word into letters, and, the other way around, joining letters to form a new

38 Text read from A1 (CELLS(1,1)), words written into B, letters of the selected word into C, swirled letters into D (CELLS(R,4)), modified text into A7. Compare with Fig. 4.27 (S)!

158

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.13 Basic functions for text processing

1

Text="""A sentence is decomposed."""

2

Words=Text.split()

3

Letters=list(Words[1])

4

L=Letters[4]

5

NewWord=':'.join(Letters[1:-1]) # Concatenate with “:”

6

print(Words)

['A', 'sentence', 'is', 'decomposed.']

7

print(Letters)

['s', 'e', 'n', 't', 'e', 'n', 'c', 'e']

8

print(L)

e

9

print(NewWord)

e:n:t:e:n:c

word, are presented in Table 4.13. The join() method creates a new string from

“precursor strings”, e.g., a list of letters. The letters in the new word are separated

by a colon as specified in a prefix to join (see lines 5).

These basic functions are again applied in Table 4.14 to split a longer text into words, pass each individual word to the function ExchLett (reported in Table

4.15), and join the scrambled words into a new text, with blanks as separators. The content of the variable Text starts with three quotation marks """, indicating that the following text covering several lines up to the next three quotation marks """

is a string. To enter multi-line strings, use triple codes to start and end them! 39

The function ExchLett in the third cell of Table 4.15 uses the function random.sample from the random library to choose two different internal

letters and then exchange them. This function was found with a search in stack-

 overflow. com. Its syntax and mode of action can be deduced from the second cell, which presents the result of line 23.

In lines 30 to 32, the temporary variable L 0 is introduced in order to swap two

variables. The code in line 34 does the same, but without the use of any temporary

variable. In Python, a backslash (\) indicates that the instruction line is continued.

Statements can also be split up after a comma.

39 https://stackoverflow.com/questions/10660435/pythonic-way-to-create-a-long-multi-line-

string.

4.7

Text Processing

159

Table 4.14 Rewriting scrambled words in a text a (left) program; b (right) result 10

Text="""It is said that you can read a text also if you

leave only the beginning and the end letter in each word as

they are and swirl two middle letters. Do you believe that

or is it nonsense?"""

11

12

Words=Text.split()

13

WordsNew=[]

14

for i in range(len(Words)):

15

WN= ExchLett(Words[i])

16

WordsNew.append(WN)

17

sentNew=' '.join(WordsNew)

Concatenate with blank

18

print(sentNew, "\n")

It is siad taht you can raed a txet aslo if you lvaee olny the

beginning and the end lteter in ecah wrod as tehy are and

swril two mildde ltteers. Do you belveie taht or is it

noesnnse?

Table 4.15 Swapping internal letters

19

#https://stackoverflow.com/questions/9755538/

20

#how-do-i-create-a-list-of-random-numbers-without-

duplicates

21

22

import random

23

random.sample(range(0,10), 10)

[7, 2, 5, 9, 0, 6, 3, 4, 8, 1]

24

def ExchLett(Word):

25

#Split a word into letters

26

Letters=list(Word)

27

#Exchange two internal letters of a word

28

if len(Letters)>=4:

29

n=random.sample(range(1,len(Letters)-1), 2)

30

L0=Letters[n[0]]

31

Letters[n[0]]=Letters[n[1]]

32

Letters[n[1]]=L0 # Join letters into a word!

33

return ''.join(Letters)

34

Letters[n[0]],Letters[n[1]=\

Letters[n[1]],Letters[n[0]]

160

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.16 Scrambling a text passage

1

Task="""Write a program that first reads a text from a

spreadsheet. This text is then to be broken down into

words. The individual words are transformed so that the

first and last letters remain in their place, but the inner

letters are randomly swapped."""

2

Words=Task.split()

3

WordsNew=[]

4

for i in range(len(Words)):

5

WN= ExchLett(Words[i])

6

WordsNew.append(WN)

7

sentNew=' '.join(WordsNew)

8

print(sentNew)

Wrtie a porgram taht frist rdaes a txet form a sprdaesheet.

Tihs txet is tehn to be broekn dwon itno worsd. The indaviduil

wodrs are transofrmed so taht the fisrt and lsat lettres

remian in thier palce, but the inner lettres are rdnaomly

seappwd.

Questions

Write lines 30 to 32 of Table 4.16, swapping two variables using the temporary variable L0, as one statement! 40

How can lines 5 and 6 of Table 4.15 be merged into one statement? 41

How can you introduce an additional line of code into Table 4.16 to achieve two letter swappings in a word? 42

Table 4.16 processes the second text passage, now performing two letter exchanges.

4.8

Processing the Protocol of a Measuring Device

Continuous text is decomposed and rearranged in tables. Knowledge

acquired by processing texts in the previous exercise is applied to separate

text and numbers in reports created by measuring instruments, with the aim

to recognize code words and rearrange the essential results in tables.—The

Python program is based on the library Pandas.—A piece of advice: With

40 Letters[n[0]], Letters[n[1]] = Letters[n[1]], Letters[n[0]].

41 WN = EXCHLETT(EXCHLETT(WORDS[I]).

42 Introduce WN = ExchLett(WN) after line 5!

4.8

Processing the Protocol of a Measuring Device

161

the knowledge gained in this exercise, you may earn a small bit of extra

income from a side job in scientific projects!

4.8.1

Protocol of a Measuring Device

Many measuring devices output a plain-text file as a protocol containing both text

and numbers. As an example, we will use the output of chemical analysis with RBS

(Rutherford Back Scattering) concerning the composition of four Nb-doped TiO2

layers on a silicon substrate (spreadsheet in Fig. 4.28 (S)). Every layer contains different fractions of Ti (titanium), O (oxygen), Nb (niobium), and Ar (argon). We

will convert this information into a table, as in Fig. 4.29 (S).

A

B

C

D

1 T1.lay

T2.lay

T3.lay

T4.lay

2 !----------------- !----------------- !----------------- !------------------

3 d=0.20E18

d=0.25E18

d=0.30E18

d=0.35E18

4

5 Ti#,1

Ti#,1

Ti#,1

Ti#,1

6 O#,2.5

O#,2.4

O#,2.3

O#,2.2

7 Nb#,0.03

Nb#,0.05

Nb#,0.07

!------------------

8 Ar#,0.01

!----------------- Ar#,0.008

s=

9 !----------------- s=

!----------------- Si#,1

10 s=

Si#,1

s=

11 Si#,1

Si#,1

Fig. 4.28 (S) Protocol of RBS measurements, transferred into an EXCEL spreadsheet; row 1 =

names of four different samples; parameters: d = number of atoms per cm2; Ti, O, Nb, Ar =

elements found in the layer with their indices in the chemical formula

A

B

C

D

E

F

1

2 SampNam

NAtoms

Ti

O

Nb

Ar

3

T1

2,00E+17

1

2,5

0,03

0,010

4

T2

2,50E+17

1

2,4

0,05

5

T3

3,00E+17

1

2,3

0,07

0,008

6

T4

3,50E+17

1

2,2

7

Fig. 4.29 (S) The data from Fig. 4.28 (S) have been written into this table in a spreadsheet with the name “TabLay”. Each sample has its own row. The first row is left blank in order to insert an index for the next free row later

162

4

Macros with Visual Basic and Their Correspondences in Python

36 For r = 3 To r2

cll = Left(cl, 2) 'take first two letters

39

37 cl = Cells(r, sample) 'e.g.: d=0.20E18

If cll = "d=" Then NAtoms = Right(cl, Le - 2)

40

38 Le = Len(cl) 'length of the string

Next r

47

Fig. 4.30 (P) Cuts off the first two letters of a data string (line 39) and checks whether this is the code word “d =”

1 Sub DecodeRBS()

For sample = 1 To 4

15

2 'Original data in sheet "RBS-data"

Sheets("RBS-data").Select 'original data

16

3 'Table with sample characteristics in "TabLay"

'Get sample name!

17

4 Dim cl, cll As String

SampNam = Cells(1, sample) 'sample name

18

5 'Write headers!

Le = Len(SampNam) 'length of the name

19

6 r3 = 2

SampNam = Left(SampNam, Le - 4)

20

7 Sheets("TabLay").Select

' ".lay" is removed

21

8 Cells(r3, 1) = "SampNam"

'Identify range with information on sample!

22

9 Cells(r3, 2) = "NAtoms"

For r1 = 3 To 30 'scans rows 3 to 30

23

10 Cells(r3, 3) = "Ti"

cl = Cells(r1, sample) 'Content of cell

24

11 Cells(r3, 4) = "O"

cll = Left(cl, 5)

25

12 Cells(r3, 5) = "Nb"

If cll = "!----" Then r2 = r1 - 1

26

13 Cells(r3, 6) = "Ar"

'r2 = last row of information on the sample

27

14 r3 = r3 + 1 ' next free row for output

Next r1

28

Fig. 4.31 (P) Complete program for rearranging the raw data from Fig. 4.28 (S) into a table as in Fig. 4.29 (S); continued in Fig. 4.32 (P)

4.8.2

Detection of Code Words

The information in a column of Fig. 4.28 (S) is to be decoded and stored in a row of Fig. 4.29 (S). The main task is to identify certain code words that indicate the physical or technical quantity to which the following numbers refer. An extract

from the complete Visual Basic decoding program (Fig. 4.32 (P)) can be found in Fig. 4.30 (P).

The data set for a layer is read line by line. The data strings “d = 0.20E18” and

“Ti#,1” contain information about the number of atoms per cm2 and the titanium

content in the sample, respectively. When the program processes the file, it is not

clear from the outset what type of data string is currently involved. For decoding,

therefore, the first parts of the data line are separated (line 39 in Fig. 4.30 (P)), and it is queried as to whether this part is “d =” (line 40). If this is the case,

the following string is interpreted as a number and written into the corresponding

variable; for “d =”, this is NAtoms (line 40 in Fig. 4.30 (P)).

In Python, the task is tackled with the library Pandas, which mimics

spreadsheet calculation.

4.8.3

Data Structure and Nomenclature

wb

name in Pandas of the workbook containing the data

sh

name in Pandas of the worksheet within the workbook

T1, T2, T3, T4

identifiers of samples

4.8

Processing the Protocol of a Measuring Device

163

„!----“

code word to indicate the end of useful information

“d=”

two-character code word for atomic coverage, atoms per

cm2

“O#,”

three-character code word for oxygen

“Ti#,”, “Nb#,”, “Ar#,”

four-character code words for titanium, niobium, and

argon

 r 2

last row of useful information

 r 3

current row in the spreadsheet for output

NAtoms

number of atoms per cm2

O, Ti, Nb, Ar

fraction of the respective element

4.8.4

Excel

The complete decoding procedure can be found in Fig. 4.31 (P) and Fig. 4.32 (P).

SUB DecodeRBS writes headings into the spreadsheet “TabLay” (lines 7 to 13),

successively reads rows 3 through 30 from the spreadsheet “RBSData” (line 23,

index r1), determines the last row of useful data (line 26), decodes the useful data

(FOR loop in rows 36 through 47), and finally writes the decoded data row by row

(index r 3) into the spreadsheet “TabLay” (rows 49 through 55).

The loops are of type loop2i, with the loop index r and the running index r 3, indicating the next free row in the table and set to 2 at the beginning (line 6)

and incremented in line 56 after the extracted values for the parameters have been

entered into the output table within the For-loop with the index r scanning the

input table.

Since the code words have different lengths (“d =” has two letters, “Ti#,” has

four letters), in lines 39, 41, and 43, two, three, and four letters are, one after the

other, cut off from the beginning of the data string and it is checked as to whether

they correspond to one of the code words. The part of the data string following

29

'Remove old information!

If cll = "Ti#," Then Ti = Right(cl, Le - 4) 44

30 NAtoms = Empty

If cll = "Nb#," Then Nb = Right(cl, Le - 4)

45

31 O = Empty

If cll = "Ar#," Then Ar = Right(cl, Le - 4) 46

32 Ti = Empty

Next r

47

33 Nb = Empty

'Write decoded data into a different sheet!

48

34 Ar = Empty

Sheets("TabLay").Select

49

35

'Decode information in rows 3 to r2!

Cells(r3, 1) = SampNam

50

36 For r = 3 To r2

Cells(r3, 2) = NAtoms

51

37 cl = Cells(r, sample) 'e.g.: d=0.20E18

Cells(r3, 3) = Ti

52

38 Le = Len(cl) 'length of the string

Cells(r3, 4) = O

53

39 cll = Left(cl, 2) 'take first two letters

Cells(r3, 5) = Nb

54

40 If cll = "d=" Then NAtoms = Right(cl, Le - 2)

Cells(r3, 6) = Ar

55

41 cll = Left(cl, 3) 'take first three letters

r3 = r3 + 1 'next free row

56

42 If cll = "O#," Then O = Right(cl, Le - 3)

Next sample

57

43 cll = Left(cl, 4) 'take first four letters

End Sub

58

Fig. 4.32 (P) Continuation of Fig. 4.31 (P)

164

4

Macros with Visual Basic and Their Correspondences in Python

the cut-off contains a number separated with RIGHT(..) and then assigned to the

corresponding variable (e.g ., NAtoms, Ti, …). This separation is easy because all numbers have the same format.

Questions

Which code word is queried in Fig. 4.30 (P)? 43

Which code words in Fig. 4.32 (P) have length 4? 44

Module in VBA

Since the program SUB DecodeRBS refers, with SHEETS(“RBS-data”).SELECT and

SHEETS(“TabLay”).SELECT, to two different spreadsheets, it must be operated in a

module. If it stands in the VBA sheet associated with a spreadsheet, it operates only

in that spreadsheet with instructions like CELLS(r,c) = .

VBA keyword empty

In lines 36 to 47 of Fig. 4.32 (P), the variables O, Ti, Nb and Ar are only filled in if the assigned code words occur in the original protocol. If a code word does not occur in

the current data line, the content of the associated variable is not overwritten, and the old value persists. To prevent this from happening, we have entered the assignments

in lines 30 to 34, e.g., Nb = EMPTY. EMPTY is a VBA keyword, to ensure that the

variables do not contain any value when a new sample is processed.

Sample T4 does not contain any Nb; cell E6 in Fig. 4.29 (S) thus remains empty. If we had not set Nb = EMPTY before decoding, then Nb would still contain the value 0.07 of the previous sample and would have been incorrectly entered into

the table of results. This would be a grave error in content!

The table is continued the next time the macro is called

Tim The presented program sorts the data of exactly four samples into another

table. What if a new set of samples comes in and the table is to be continued? Can

the program remember the value of the index r 3 for the next free row and use it

for the next call?

Mag No, the program forgets the values of the variables when it finishes its

execution.

Alac Then, I will simply adapt the code before each new call. In line 14, the

next free row in the table of Fig. 4.29 (S) is entered, r 3 = 7, and for the last FOR

loop index in line 15, I will enter the current number of samples.

43 „d = “ is queried.

44 The code words „Ti#,“, „Nb#,“ and „Ar#,“ have the length 4.

4.8

Processing the Protocol of a Measuring Device

165

Mag That’s a practical idea, and it works. But it can also be done more elegantly

with the following two pieces of program.

You can use the first row in Fig. 4.29 (S), still empty, e.g., cell A1, to store the number of the first free row after the previous entries, and cell D1 to specify the

number of new samples. This information is then read with r 3 = RANGE(“A1”) in

line 14 and … TO RANGE(“D1”) in line 15. Cell A1 is now overwritten with the

value of r 3 by a new instruction at the end of SUB DecodeRBS. The number of new samples must be entered manually in D1 when a new data series is to be decoded,

or the programmer can devise a query to automatically determine the number of

samples in the raw data of Fig. 4.28 (S).

DO … LOOP UNTIL

The next free row can also be determined by querying the current cell content in a

loop to see if the current cell is empty:

DO

 r 3 = r 3 + 1

LOOP UNTIL CELLS(r 3, 1) = EMPTY

Similarly, the number of NOT EMPTYs in a new raw data file can be obtained.

For more information on the instructions DO … LOOP, DO WHILE … LOOP, and

DO … LOOP UNTIl, see EXCEL help!

4.8.5

Python

Pandas (“Python Data Analysis”) is a library for Python, based on NumPy.

It is designed for data management and analysis and works with structured data

(DataFrame (2-dimensional)) and time series (Series (1-dimensional)), thus

mimicking spreadsheet calculations. We use it only in this exercise to read data

from an EXCEL book, decode the measurement protocol, and write the results into

an EXCEL sheet, in the same form as in Fig. 4.29 (S).

R1C0 in Pandas

In Table 4.17, the EXCEL workbook ‘RBS_data.xlsx’ (Fig. 4.28 (S)) is opened, so that its data are available in Pandas. Without further specification, the workbook must

be in the same directory as the Python program. The data in Sheet1 are entered into a two-dimensional matrix sh. This matrix can be addressed in A1 or R1C0 reference style (see second cell). In A1 style, a column is addressed by a letter and a row by a

number starting at 1; in R1C0 style, both are addressed by numbers, with columns

 being numbered starting at 0.

With the statement in line 5, the contents in the cells will be copied directly. If

a cell contains a formula, this formula will be transferred. If it is desired that all

166

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.17 a (top cell) opening an EXCEL workbook; b (bottom cell) addressing cells and ranges and reading their content

1

import numpy as np

2

import pandas as pd

3

import openpyxl #A Python library to read/write Excel 2010

4

5

wb=openpyxl.load_workbook(‘RBS_data.xlsx')

6

sh=wb['Sheet1']

Sh: <Worksheet "Sheet1">

sh['A1'].value: T1.lay

sh[1][0].value: T1.lay

7

for r in range(1,4):

8

print(sh[r][0].value)

range(1,6):

T1.lay

!--------------------------

d=0.20E18

None

Ti#,1

formulas be evaluated and only the results transferred, the opening has to include

a keyword argument data_only = True:

wb = openpyxl . load_workbook (RBS_data . xlsx , data_only = True).

In Table 4.18, the sample name is extracted from the first entry in c = 0 (column A), reported in the second cell. The content of the bottom cell is produced by the

print statements shown explicitly in lines 5 to 9. In contrast to this, print statements

Table 4.18 Extracting the sample name from the first entry in column c; print statements resulting in the output cell (bottom cell) are explicitly reported in lines 5 to 9

1

c=0

2

SN=list(sh[1][c].value)[:-4] # Delete “.lay”

3

SampNam=''.join(list(SN))

4

5

print("sh[1][c] ",sh[1][c])

6

print("sh[1][c].value ",sh[1][c].value)

7

print("list(sh[1][c].value)",list(sh[1][c].value))

8

print("SN ",SN)

9

print("SampNam ",SampNam)

sh[1][c] <Cell 'Sheet1'.A1>

sh[1][c].value T1.lay

list(sh[1][c].value) ['T', '1', '.', 'l', 'a', 'y']

SN ['T', '1']

SampNam T1

4.8

Processing the Protocol of a Measuring Device

167

Table 4.19 Getting the last row of useful information; line 5 contains an error

1

def LastRow(c):

2

for r1 in range(2,15):

3

cl=sh[r1][c] # Cell address

4

if cl.value!=None:

5

cll=''.join(list(cl.value)[:5])

6

#Indentation 4 spaces!

7

if cll=='!----': r2=r1-1

8

return r2

are usually omitted in our tables reporting Python programs; only the results are

usually reported in an output cell.

Questions

What

are

the

values

of

sh[1][0].value

and

list(sh[1][0].value)[0]? 45

Line 5 of Table 4.19 contains a bug. Which one? 46

In Table 4.19, column c is scanned for the occurrence of “!––”, the code word signaling the end of the information on the first layer.

Table 4.20 reports the function for decoding the string in the cell in column c, row r 2. The Python code mimics the VBA procedure in Fig. 4.32 (P).

In Table 4.21, a data frame out is created reproducing the EXCEL sheet in Fig. 4.29 (S). A For loop runs over sample with sample data, determining the last row r 2 with useful information and decodes the range rows 3 to r 2 of the column. The print statement in line 11 produces the output in the lower cell.

Output from Pandas to an Excel file

Writing our results into an EXCEL file requires some care. The simple statement

in Table 4.22a creates a new file RBS data3.xlsx and writes our frame out into a sheet with the name Sheet3. If a file with said name already exists, it is overwritten.

The keyword arguments header = False, index = False cause row 1 and

column 1 of Table 4.21 (bottom cell) not to be output.

To write the data into an already existing file, we have to open that file and

specify a writer (lines 8 and 9 in Table 4.22).

45 sh[1][0].value -> T1.lay, list(sh[1][0].value)[0] -> T.

46 Indentation with respect to the if line is only 3 spaces; it must be 4 spaces.

168

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.20 Function for decoding a string

1

def decode(c,r2): # Column c, row r2

2

nAtoms=None

3

O=None

4

Ti=None

5

Nb=None

6

Ar=None

7

#Decode information in rows 3 to r2!

8

#First index in array starts with 0

9

for r in range(2,r2+1):

10

cl=sh[r][c] # Cell address

11

if cl.value!=None: # != means “not equal”

12

cll=''.join(list(cl.value)[:2])

13

if cll=='d=':

14

nAtoms=''.join(list(cl.value)[2:])

15

cll=''.join(list(cl.value)[:3])

16

if cll=='O#,': O =''.join(list(cl.value)[3:])

17

cll=''.join(list(cl.value)[:4])

18

if cll=='Ti#,': Ti=''.join(list(cl.value)[4:])

19

if cll=='Nb#,': Nb=''.join(list(cl.value)[4:])

20

if cll=='Ar#,': Ar=''.join(list(cl.value)[4:])

21

nAtoms=float(nAtoms)

22

return(nAtoms,Ti,O,Nb,Ar)

4.9

User-Defined Functions

We code functions in VISUAL BASIC that can be applied in spreadsheets just

like built-in functions. As examples, we realize the vector operations scalar

product and cross-product with three-component vectors as arguments and

with, respectively, a scalar and a vector as the return variable.

4.9.1

User-Defined Functions as Add-In

Functions in modules

We often call built-in functions in cells, e.g., trigonometric functions with formulas

like B5 = [=B$1*cos(B$2*$A5]). We can also create functions ourselves and apply

them in the same way. As an example, we implement a function CosSq(x), calcu-

lating the square of a cosine. This has to be done in a module that we create with

INSERT/MODULE in the project explorer (see Fig. 4.33a).

The function is implemented in the corresponding Visual Basic sheet MODULE1. The

qualifier is FUNCTION, not SUB, as for procedures. For a function, a value must be

4.9

User-Defined Functions

169

Table 4.21 Data frame reproducing the structure of the EXCEL sheet in Fig. 4.29 (S); NaN stands for “Not a number”

1

out = pd.DataFrame(index=range(1,8), s=list('ABCDEF'))

2

title=['SampNam','NAtoms','Ti','O','Nb', 'Ar']

3

out.iloc[1]=title

#iloc is integer position from 0 to length-1 of the axis

4

for sample in range(4):

5

SampNam=sh[1][sample].value

6

SampNam=SampNam[:-4] # Remove .lay

7

r2=LastRow(sample)

8

nAtoms,Ti,O,Nb,Ar=decode(sample,r2)

9

result=[SampNam,nAtoms,Ti,O,Nb,Ar]

10

out.iloc[sample+2]=result

11

print(out)

12

out.to_excel("output.xlsx",sheet_name="Sheet2",

13

header=False,index=False) # A…F and 1…7 not transferred

NaN means “Not a number”

A B C D E F

1 NaN NaN NaN NaN NaN NaN

2 SampNam NAtoms Ti O Nb Ar

3 T1 2e+17 1 2.5 0.03 0.01

4 T2 2.5e+17 1 2.4 0.05 None

5 T3 3e+17 1 2.3 0.07 0.008

6 T4 3.5e+17 1 2.2 None None

7 NaN NaN NaN NaN NaN NaN

Table 4.22 a (top cell) Creates a new file and writes the data into the specified sheet; b (bottom cell) Opens an existing file and adds a new sheet

14

out.to_excel('RBS_data3.xlsx',sheet_name="Sheet3",

15

header=False,index=False)

16

#Creates a new workbook with one sheet “Sheet3”.

17

#Overwrites 'RBS_data3.xlsx' if it exists already.

18

"""https://stackoverflow.com/questions/20219254/

19

how-to-write-to-an-existing-excel-file-

20

without-overwriting-data-using-pandas"""

21

wb2 = openpyxl.load_workbook('RBS_data2.xlsx')

22

writer = pd.ExcelWriter('RBS_data2.xlsx',

engine='openpyxl')

23

writer.book = wb2 #Necessary for not deleting other sheets

24

out.to_excel(writer, "data3",header=False,index=False)

25

writer.save()

[image: Image 47]

170

4

Macros with Visual Basic and Their Correspondences in Python

Fig. 4.33 a (left) PROJECT-EXPLORER window; the user-defined spreadsheet function CosSq is in MODULE1. b (right) CosSq pops up after typing “=Cos” among the other functions starting with cos assigned to the function identifier within the function’s body, in our case cosSq =

COS(x)ˆ2. When now “=Cos” is written into a cell, a list pops up with all functions

starting with Cos, including our CosSq (see Fig. 4.33b).

If you want to use your functions in every EXCEL file, they must be saved as an

ADD-IN. To do so, create an EXCEL file, enter your function codes into VBA mod-

ules, and finish with: SAVE AS/EXCEL ADD-IN. This add-in must be activated in the

EXCEL options. Upon selecting FILE/OPTIONS/ADD-INS/ a list appears with an entry “

Dieter’s Functions” that must be included by ticking the box . In the VBA edi-

tor, VBA PROJECT Dieters Funktionen.xlam now also appears in the project explorer under PROJECT–VBA PROJECT (see Fig. 4.33a, bottom line).

4.9.2

Scalar Product and Vector Product

We are developing functions for the scalar and vector products of two three-

dimensional vectors stored in cell ranges that are entered as arguments in the

functions. Let’s consider two three-dimensional vectors:

 r = (

= (

1

 x 1 , y 1 , z 1) and r 2

 x 2 , y 2 , z 2)

Their scalar product is defined as.

 r ·

=

1

 r 2

 x 1 · x 2 + y 1 · y 2 + z 1 · z 2

(4.2)

Their vector product (or cross product) is defined as.

 r ×

= (

1

 r 2

 y 1 · z 2 − y 2 · z 1 , z 1 · x 2 − z 2 · x 1 , x 1 · y 2 − x 2 · y 1) (4.3)

4.9

User-Defined Functions

171

1 Function Scl(r1 As Range, r2 As Range)

Function Crsm(r1 As Range, r2 As Range)

12

2 Scl = r1(1) * r2(1) + r1(2) * r2(2) + r1(3) * r2(3)

Dim cs(2, 2)

13

3 End Function

cs(0, 0) = r1(2) * r2(3) - r1(3) * r2(2)

14

4

cs(1, 0) = r1(3) * r2(1) - r1(1) * r2(3)

15

5 Function Crs(r1 As Range, r2 As Range)

cs(2, 0) = r1(1) * r2(2) - r1(2) * r2(1)

16

6 Dim cs(2)

cs(0, 1) = cs(1, 0)

17

7 cs(0) = r1(2) * r2(3) - r1(3) * r2(2)

cs(0, 2) = cs(2, 0)

18

8 cs(1) = r1(3) * r2(1) - r1(1) * r2(3)

Crsm = cs

19

9 cs(2) = r1(1) * r2(2) - r1(2) * r2(1)

End Function

20

10 Crs = cs

21

11 End Function

22

Fig. 4.34 (P) User-defined functions for the scalar product Scl and the vector product Crs of two three-dimensional vectors r 1 and r 2;; the function Crsm can process and output both column and row vectors

The output of the scalar product is one number returned into the cell with the

corresponding formula; that of the vector product is a set of three components to

be entered into a row range or a column range.

These two products are calculated with the two user-defined spreadsheet

functions Scl and Crs in Fig. 4.34 (P).

Questions

How many components does the array cs(2) in Fig. 4.34 (P) have? 47

What are the differences between the arrays named cs in the functions Crs

and Crsm in Fig. 4.34 (P)?48

Scalar product

The scalar product is easy to program. It can be calculated in one code line (line 2

in Fig. 4.34 (P)). Two three-dimensional cell ranges must be entered as arguments.

These can both be column ranges or both row ranges or one column range and one

row range (see Fig. 4.35 (S)). Consequently, the variables in the function header are declared as RANGE.

Vector product

The result of a vector product is again a vector. In Fig. 4.36 (S), two column vectors a and b are defined in range A2:B4. The row vectors c and d in range B6:D7 contain the same coefficients as a and b. In column D, the cross-product a x b is calculated with spreadsheet formulas.

47 The array DIM cs(2) has the three components cs(0), cs(1), cs(2).

48 In Crs, a one-dimensional array (type cs(2)) is written, in Crsm, a two-dimensional array (type cs(2,2)).

172

4

Macros with Visual Basic and Their Correspondences in Python

A

B

C

D

E

F

G

H

I

J

K

L

1

a

b

12 =Scl(A2:A4;B2:B4)

2

1

2

c_

1

2

3

12 =Scl(A2:A4;E3:G3)

3

2

2

d

2

2

2

12 =Scl(a;b)

4

3

2

12 =Scl(c_;d)

5

12 =Scl(a;d)

Fig. 4.35 (S) Contains the results of the user-defined spreadsheet function Scl, which calculates the scalar product of two three-dimensional vectors

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

1

a

b

a x b

 =crs(a;b)=crs(c_;d)

 =crs(c_;b)

 =crsm(a;b)

 =crsm(c_;d)

 =crsm(c_;b)

2

3,0

-2,0

-10,0 =A3*B4-B3*A4

-10,0 -10,0 -10,0

-10,0 -10,0 -10,0

3

2,0

8,0

-20,0 =A4*B2-B4*A2

-10,0 -10,0 -10,0

-20,0 -20,0 -20,0

4

2,5

5,0

28,0 =A2*B3-B2*A3

-10,0 -10,0 -10,0

28,0

28,0

28,0

5

6

c_

3,0

2,0

2,5

-10,0 -20,0

28,0 =crs(a;b)

-10,0 -20,0

28,0 =crsm(a;b)

7

d

-2,0

8,0

5,0

-10,0 -20,0

28,0 =crs(c_;d)

-10,0 -20,0

28,0 =crsm(c_;d)

8

-10,0 -20,0

28,0 =crs(a;d)

-10,0 -20,0

28,0 =crsm(a;d)

Fig. 4.36 (S) The vector product a x b is calculated in column D using spreadsheet formulas; the range G2:I8 contains results of the user-defined function crs, which can only output row vectors (wrong results in G2:I4); the range L2:N8 contains results of the user-defined spreadsheet function crsm, which can accept and output row and column vectors

In columns G to I, the function Crs is used. As you can see from the results, this function accepts row and column vectors as input, but only returns correct values

if they are output as row vectors (see G6:J8); the results in G2:I4 are wrong.

In columns L to N, the function Crsm from Fig. 4.34 (P) is applied, which can output the result either as a row vector (e.g., L6:N6) or as a column vector (e.g.,

L2:L4). This is because, in this function, a 3 × 3 matrix is written into the range

declared with DIM cs(2,2), of which only one row or one column is output if only

one row range or one column range is activated.

The functions Crs and Crsm must be called as matrix functions. In Fig. 4.36

(S), for example, the area G6:I6 was activated, the formula entered according to

J6 and closed with the magic chord (Ctl + Shift) + Enter. In L2:L4, a column area was activated, and in L6:N6, a row area, so that in each case, vectors with

three components are returned by crsm.

Questions

Why is cs(2,2) in FUNCTION Crsm sufficient as an array for a 3 x 3 matrix? 49

49 DIM cs(2,2) is a (0, 1, 2) x (0, 1, 2)-Matrix. The indices begin at 0.

4.9

User-Defined Functions

173

Table 4.23 Two column vectors a, b and two row vectors c, d are specified 1

a=np.array([[1,2,3]]).transpose(1,0)

2

b=np.array([[2,2,2]]).transpose(1,0)

3

c=np.array([1,2,3])

4

d=np.array([2,2,2])

a

b

[[1]

[[2]

c [1 2 3]

[2]

[2]

[3]]

[2]]

d [2 2 2]

Table 4.24 Scalar product, line 8 deactivated

5

def Scl(r1,r2):

6

o=r1[0]*r2[0]+r1[1]*r2[1]+r1[2]*r2[2]

7

out=o

8

#if type(o) == np.ndarray: out = o[0]

9

return out

Scl(a,b) [12]

Scl(c,d) 12

Scl(a,d) [12]

How can this function be used to output row and column vectors to a

spreadsheet? 50

4.9.3

Python

Scalar product

The specifications in Table 4.23 for column vectors a, b, and row vectors c, d are the same as in Fig. 4.35 (S).

The function Scl (for “scalar product”) as reported in Table 4.24 corresponds literally to the Visual Basic function of the same name (Fig. 4.34 (P)). Its output is, however, only a scalar if two row vectors are multiplied.

Column vectors are two-dimensional arrays; a scalar product with one of them

is broadcast into a one-dimensional array (see lines 10 and 12 of Table 4.24). If a scalar is always desired, line 8 has to be activated by removing the # character.

Vector product or cross product

A function Crsm for calculating the cross-product of two three-dimensional vectors is reported in Table 4.25.

50 Because internally a 3 × 3-matrix is created, see explanations for Fig. 4.36 (S)!

174

4

Macros with Visual Basic and Their Correspondences in Python

Table 4.25 Cross product of two three-dimensional vectors, output optionally transposed in line 16 to become a column vector

1

def Crsm(r1, r2, C):

2

cs=np.empty(3)

3

cs[0]=r1[1]*r2[2]-r1[2]*r2[1]

4

cs[1]=r1[2]*r2[0]-r1[0]*r2[2]

5

cs[2]=r1[0]*r2[1]-r1[1]*r2[0]

6

if C==True:cs=np.array([cs]).transpose(1,0)

7

return cs

Table 4.26 Cross-product of row and column vectors

1

a=np.array([[3,2,2.5]]).transpose(1,0)

2

b=np.array([[-2,8,5]]).transpose(1,0)

3

c=np.array([3,2,2.5])

4

d=np.array([-2,8,5])

Crsm(c,b,True)

Crsm(a,b) [-2.00 4.00 -2.00]

[[-2.00]

[4.00]

Crsm(c,d) [-2.00 4.00 -2.00]

[-2.00]]

In Table 4.26, again, two column vectors a, b and two row vectors c, d are specified. Their pairwise cross-product, obtained with Crsm, is reported in the

lower cells of the table. If only the vectors are transferred to the function, row

vectors are returned (bottom left cell), whereas a column vector is returned if the

optional parameter C is assigned “True” (bottom right cell).

4.10

Questions and Tasks

Densely packed planes

1. How many neighbors does a sphere have in a closely-packed plane?

2. How many neighbors does a sphere have in a stack of closely-packed planes?

Program-controlled drawings

3. Write a macro that writes the numbers 1 to 20 in a diagonal of a table, e.g., in

cells A1, B2, etc.

4. What does the broom rule Empty lines separate curves mean?

Record macro

The diagram in Fig. 4.37 (S) has been created with the macro recorder switched on.

The program code can be found in Fig. 4.38 (P). The diagram has been formatted

4.10

Questions and Tasks

175

A

B

C

D

E

F

G

H

I

1

Curve

2

x

y

120

3

1

1

100

4

2

4

5

3

9

80

 y

6

4

16

60

7

5

25

40

8

6

36

Curve

9

7

49

20

10

8

64

0

11

9

81

0

5

10

15

 x

12

10

100

Fig. 4.37 (S) Diagram of the data in columns A and B

1 Sub Macro1()

1

2 ActiveSheet.Shapes.AddChart2(240, xlXYScatterLines).Select

2

3 ActiveChart.SeriesCollection.NewSeries

3

4 ActiveChart.FullSeriesCollection(1).Name = "=Diagram!B1"

4

5 ActiveChart.FullSeriesCollection(1).XValues = "=Diagram!A3:A12"

5

6 ActiveChart.FullSeriesCollection(1).Values = "=Diagram!B3:B12"

6

7 End Sub

7

Fig. 4.38 (P) Instructions recorded by the macro recorder when the diagram in Fig. 4.37 (S) was created

with the programs in Fig. 4.38 (P) and Fig. 4.40 (P). Your task is to analyze the VISUAL BASIC programs and redraw the diagram with our standard FigStd and plt

(matplotlib.pyplot) commands in Python.

Plotting a diagram

5. Of what type is the diagram in Fig. 4.37 (S) (LINE, BAR, or SCATTER)?

6. What is the equation for y?

7. How do you create the arrays x and y in Python?

8. With SUB MACRO1 in Fig. 4.38 (P), retrace how the chart was created and interpret the program lines 3 to 6!

9. (Python) What does a header in FigStd (numpy and matplotlib) look

like when leading to a diagram like that in Fig. 4.37 (S)?

10. SUB MACRO2 in Fig. 4.39 (P) has recorded the instructions executed to format the data series in the diagram of Fig. 4.37 (S). Interpret the formatting instructions!

How do you implement them in the plot command of plt.plot(?) of the

plotlib library?

11. SUB MACRO3 in Fig. 4.40 (P) has recorded the commands executed to format the x-axis in the diagram of Fig. 4.37 (S). Interpret the instructions that follow the two WITH SELECTION commands!

176

4

Macros with Visual Basic and Their Correspondences in Python

8 Sub Macro2()

.ForeColor.ObjectThemeColor _

13

9 ActiveChart.FullSeriesCollection(1).Select

= msoThemeColorText1

14

10 Selection.MarkerStyle = 2

.Weight = 1.25

15

11 Selection.MarkerSize = 7

End With

16

12 With Selection.Format.Line

End Sub

17

Fig. 4.39 (P) SUB MAKRO2 contains the commands that were recorded by the macro recorder when the data series for the diagram in Fig. 4.37 (S) was formatted

18 Sub Macro3()

ActiveChart.Axes(xlValue).Select

25

19 ActiveSheet.ChartObjects("Chart 1").Activate

With Selection.Format.Line

26

20 ActiveChart.Axes(xlCategory).Select

.ForeColor.ObjectThemeColor \

27

21 With Selection.Format.Line

'= msoThemeColorBackground1 28

22 .ForeColor.ObjectThemeColor \

.ForeColor.Brightness = -0.5

29

23 '= msoThemeColorText1

End With

30

24 .Weight = 1#

End Sub

31

Fig. 4.40 (P) SUB MACRO3 contains commands recorded by the macro recorder when the diagram in Fig. 4.37 (S) was formatted

12. Write a Python program that produces a similar diagram with FigStd

(numpy and matplotlib) ! It should include formatting the data series in

the function header and changing the thickness of the x-axis within FigStd.

Text processing in VISUAL BASIC and Python

The following three questions refer to both Visual Basic for EXCEL and Python.

The variable Tx contains the text “We are cutting.”

13. With which instructions do you get the first, the last, and the 4th letters of Tx?

14. How do you copy the fragment “re cu” from Tx to a new variable Wd?

15. Of what type are the variables A, B, C, and D in the commands A = Split(B) and C = Join(D)?

 Loop2i; continue counting in the loop!

16. Write a macro SUB XY1() that writes all products x· y from x = 1 to 10 and from y = 1 to 5 successively into a spreadsheet, with x and y being integers!

17. Do the same in another macro SUB XY2() for x and y being half-integers (1, 3/2, 2, 5/2, …)!

18. Do the same as in SUB XY2() in a new macro SUB XY3(), but insert a blank line after every third entry into the spreadsheet!

19. Create a similar Python program using the.append method and nested loops

running over arrays x and y created by np.linspace! For the equivalent of inserting an empty row into a spreadsheet, append ‘None’ to the list!

20. Make a hand-drawn sketch of straight-line segments in the xy plane, with the x values in line 1 and the y values in line 2 of Fig. 4.41 (S)!

[image: Image 48]

4.10

Questions and Tasks

177

Fig. 4.41 (S) Coordinates for straight-line segments in the xy plane

Rep-log procedure

In Fig. 4.42a, a circle is represented, calculated in the spreadsheet in Fig. 4.43 (S) in columns G:I. The coordinates of the centers of these circles are taken from the

table in Fig. 4.41 (S). Figure 4.42b shows four circles whose coordinates have been obtained from the table in Fig. 4.43 (S) with a rep-log procedure that systematically changes the center point and the radius.

20

20

y

Circle

y

10

10

0

0

-10

0

10

20

30

-10

0

10

20

x

30

x

-10

-10

Circles

Centers

-20

-20

Fig. 4.42 a (left) A circle with r 0 = 4 and x 0 = 3. b (right) The circle from a was enlarged three times and shifted along the x-axis; in the diagram, all four circles are represented as one data series A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

1

r.0

4.00

c.s

4.00

2

x.0

3.00

v.F

3.00

Circle

Circles

Centers

3

=G5+dphi

=r.0*COS(phi)+x.0

=r.0*SIN(phi)

4

30 °

phi

x

y

x

y

xC

yC

5

dphi 0.524

0.00

7.00

0.00

7.00

0.00

3

0

6

0.52

6.46

2.00

6.46

2.00

6

0

17

6.28

7.00

0.00

7.00

0.00

Fig. 4.43 (S) Spreadsheet calculation for Fig. 4.42. The variable c s contains the factors with which the radius of the circle is increased. The variable v F is the velocity with which the circle center is shifted on the x-axis

178

4

Macros with Visual Basic and Their Correspondences in Python

21. What are the radii and the coordinates of the circles’ center points in

Fig. 4.42b?

22. The coordinates of the circle are to be calculated four times by changing the

parameters in the table and then to be stored successively in columns Q and

R (column indices 17 and 18, respectively) of the spreadsheet and graphically

displayed in a diagram as one data series (to yield Fig. 4.42b). The centers’

coordinates are in columns N and O (column indices 14 and 15, respectively).

The circle radius should increase with r 0 = v s· t, and the center point should be shifted on the x-axis with x 0 = v F· t. Write such a log procedure in Visual Basic!

23. For the answer of Question 23 in Python, create empty lists Q and R and extend them with the.append method in a nested loop! Instead of an empty

line, insert “None”! Finally, plot (Q, R) with a correct label and observe whether four separated circles show up!

Formula-generating routine

In Fig. 4.44b, you see a parabola connected to the horizontal axis by vertical lines.

The spreadsheet calculation for the coordinates is shown in Fig. 4.44a (S).

24. The y-value of the parabola is calculated in the usual way with named cell

ranges (see the formula in B5). Every tenth point of the parabola is connected

to the horizontal axis with a vertical line (“Dashes”). Write a routine that

writes the formulas for the vertical lines’ coordinates into columns D and E!

25. Create a corresponding Python program with two variants. (a) The vertical

lines are plotted one after the other in a loop. (b) The coordinates of all vertical

lines are stored in lists named D and E separated by empty cells, and plotted

as one data series.

80

A

B

C

D

E

1

a.1

2.00

c.1

4.00

y=2(x-4)²+4

2

b.1

4.00

dx

0.10

y

3

60

Dashes

4

y=2(x-4)²+4

Dashes

5

=a.1*(x-b.1)^2+c.1=A17

=B17

40

6

x

y

x.s

y.s

7

0.00

36.00

0.00

36.00

8

0.10

34.42

0.00

0.00

9

0.20

32.88

20

10

0.30

31.38

1.00

22.00

11

0.40

29.92

1.00

0.00

12

0.50

28.50

13

0.60

27.12

2.00

12.00

0

107

10.00

76.00

0

2

4

6

8

x

10

Fig. 4.44 a (left, S) Polynomial y = a 1 (x − b 1) 2 + c 1 in columns A and B; coordinates x s, y s for the vertical lines of Fig. b in columns D and E. b (right) Display of the data from a

4.10

Questions and Tasks

179

4

A

B

C

D

E

F

G

H

I

J

y

1

G, 2P

2

x

y

3

1

-1.8

2.3

2

4

2

3.20

-1

4

5

6

G, 3.P

S

S, mirrored

0

-4

-2

0

2

x 4

G, 2P

0;F10)}

7

=-4+8*RAND()

=Straight(B3;C3;B4;C4;B10)

=RAND()*F4

=RAND()*F4

={Mirr(E1

G, 3.P

-2

8

x

y

xS

yS

xSm

ySm

S

9

1.89 -0.14

3.72

2.58

-3.72

-2.58

S, mirrored

10

3.27 -1.05

3.60

3.85

-3.60

-3.85

11

1.63

0.03

1.81

1.11

-1.81

-1.11

12

0.76

0.61

2.97

0.62

-2.97

-0.62

-4

Fig. 4.45 a (left) Two points “G, 2P” define a straight line (18a); the points in the third quadrant are mirrored at the zero point into the first quadrant (18b). b (right, S) Spreadsheet calculation for a; the coordinates for the points on the straight line are in columns B and C; the coordinates in columns H and I are the mirror images of the coordinates in columns E and F

User-defined spreadsheet functions

In Fig. 4.45a, the results of two user-defined spreadsheet functions are displayed.

One function adds additional points, “G, 3.P”, onto a straight line “G, 2P” defined

by two points. The other function mirrors points in the first quadrant at (0, 0) into

the third quadrant. The coordinates of the points in Fig. 4.45a are calculated in the spreadsheet of Fig. 4.45b (S).

26. What are the names of the two user-defined functions reported in line 7 in

Fig. 4.45b (S)?

27. Write a function (VISUAL BASIC or Python) of the type y 3 = f(x 1, y 1, …) that calculates the y-value y 3 of a third point from the coordinates of the two defining points of a straight line and the x-value x 3 of the third point!

28. Write a function (VISUAL BASIC or Python) of the type (x sp, y sp) = f(x,y) that mirrors the coordinates x and y of a point at the origin of the coordinate system!

Macros

29. You want to trigger a macro whenever a slider named SCROLLBAR1 is changed.

What is the name of the associated macro? 51

30. At a mail-order company, some data from all outgoing packets are entered in the

spreadsheet of Fig. 4.46 (S). Write a protocol routine (Visual Basic or Python) that reads some data from Fig. 4.46 (S) and enters it into a table as in Fig. 4.47

(S)! The packets have to be numbered consecutively.

51 SUB SCROLLBAR1_CHANGE().

180

4

Macros with Visual Basic and Their Correspondences in Python

A

B

C

D

E

F

G

H

I

1

Name

Mary B.

2

Running number

46

Protoc

3

4

Width (cm)

w

5

Volume (l)

V

1.80 =w*l*h/1000

5

Length (cm)

l

18

Surface (m²)

S

0.11 =(w*l+w*h+l*h)*2/10^4

6

Hight(cm)

h

20

Time

07.09.2020 17:21 =NOW()

Fig. 4.46 (S) Table section in which the width, length, and height of packages, as well as the sender’s name, are to be entered

K

L

M

N

O

P

Q

R

S

6

12 next free row

7

Number Name

Time

Width/cmLength/cm

Height/cm

Volume/l Surface/m²

8

43 Otto L.

7.9.20 17:03

17

17

14

4.05

0.15

9

44 James L.

7.9.20 17:16

20

10

10

2.00

0.10

10

45 Henry M.

7.9.20 17:16

18

28

8

4.03

0.17

11

46 Mary B.

7.9.20 17:21

5

18

20

1.80

0.11

Fig. 4.47 (S) The data from Fig. 4.46 (S) are to be reorganized in this way

[image: Image 49]

Basic Mathematical Techniques

5

With the methods learned in Chaps. 2–4 (list processing, programming constructs for, if, sub/def), we practice differentiation, integration, and calculating with vectors. We get to know a new technique: solving systems of

linear equations with matrix calculation.

5.1

Introduction: Calculus, Vectors, and Linear Algebra

Solutions of Exercises 5.3 (Excel), 5.5 (Python), 5.6 (Python), and 5.7 (Excel) can

be found at the internet address: go.sn.pub/VYYbJL.

Straight-line segment

Straight-line segments are central for vector calculation, and also for calculus,

because we approximate all curves by sequences of such elements. In the intro-

ductory Exercise 5.2, we calculate vector entities related to a straight-line segment,

e.g., line vector and mid-perpendicular, as well as length, slope, and area enclosed

with the x-axis.

Differentiation and integration

We get to know simple techniques with which the first and second derivatives of a

function can be obtained (Exercise 5.3) and with which a function can be integrated.

With integration, the area between the curve of a function and the x-axis (Sect. 5.4.1)

and the length of a curve (Sect. 5.4.2) can be calculated. We pay special attention to the x-value over which the results must be plotted: at the beginning, in the middle, or at the end of the interval for which the elementary calculation was done.

© Springer Nature Switzerland AG 2022

181

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_5

182

5

Basic Mathematical Techniques

Vectors in the plane

We discuss the addition and the scalar product of two vectors and convert planar

Cartesian and planar polar coordinates one into the other (Exercise 5.5). In Exercise

5.6, the tangents to and the perpendiculars on a polynomial are drawn. As a physically

relevant example, we calculate the forces acting on a car running through a banked

curve (Exercise 5.7). In Exercise 5.8, we calculate a mobile’s equilibrium by using

the mathematical construction of a weighted average.

Systems of linear equations

Systems of linear equations (with small rank) are solved by bringing them into matrix

form and forming the inverse matrix of the coefficient matrix (Exercise 5.9). With

this method, we get the coefficients of a polynomial from a given set of points on

the curve and determine currents in electrical networks with Kirchhoff’s rules. In

Python, we also use functions from the numpy.linalg library for these tasks.

Mathematical functions

In Sect. 5.10, some useful mathematical functions are listed, both in excel and numpy notation, together with short descriptions.

5.2

Straight-Line Segment Under a Magnifying Glass

A straight-line segment is specified by its two endpoints. Its center, line

vector, and perpendicular vector are obtained with vector operations. The

basic pieces of calculus, d x, d y, d A (the area under the curve), are calculated.

5.2.1

Under a Magnifying Glass

The functions we are investigating in this textbook are all continuous. They are

approximated as polylines, i.e., as sequences of straight-line segments. Therefore,

all operations of calculus, such as differentiation, integration, and integration along

a line, are based on such properties of segments as length, slope, line vector, and

mid-perpendicular.

In this exercise, we specify a straight segment in a plane by its two endpoints A, B formulated as positional vectors. The unit line vector AB of the segment and its perpendicular AB _ p to be erected at the midpoint AB _ C are calculated with matrix operations. An example is shown in Fig. 5.1.

The equation of the line passing along the segment is

 y = yA + m · (x − xA)

(5.1)

5.2

Straight-Line Segment Under a Magnifying Glass

183

4

4

y

y

2

2

0

0

-4

-2

0

2

4

x

-4

-2

0

2

4

x

segment AB

segment AB

AB_

AB_

-2

-2

AB_p

AB_p

{=AB_p+AB_C}

{=AB_p+AB_C}

on line

on line

-4

-4

Fig. 5.1 Line vector and mid-perpendicular of a straight-line segment. The cross is drawn with a function based on the coordinates of the two endpoints, a (left) with the settings from Fig. 5.2 (S), b (right) other settings

with m being the slope of the segment and (x A, y A) the coordinates of point A.

In Fig. 5.1a, the point (y s, x s) on this line for x s = −1.76 is represented by a cross. We use vector calculation, e.g., P· AB to obtain the unit vector perpendicular to the segment with P, the 90° rotation matrix, and AB, the unit line vector.

5.2.2

Data Structure and Nomenclature

 A, B

the two endpoints of a straight segment in the plane

 x A, y A

coordinates of point A

 x B, y B

coordinates of point B

d x = (x B – x A)

their distance in the x-direction

d y= (y B – y A)

their distance in the y-direction

d s =

d x 2 + d y 2

length of the segment

 m

slope d y/d x

 y = y A + m · (x − x A)

function describing the line through the segment

 A = (y A + y B)/ 2 · d x area between the segment and the x-axis A = (x A, y A)

vector representation of point A

 B = (x B, y B)

vector representation of point B

 AB C = (A + B)/2

center of the segment

 AB = (B - A)/ds

unit line vector

0 −1

 P =

90°- rotation matrix.

1 0

 A B _ p _ = P · AB

unit vector perpendicular to the segment.

[image: Image 50]

[image: Image 51]

184

5

Basic Mathematical Techniques

5.2.3

Spreadsheet Calculation

In the spreadsheet calculation of Fig. 5.2 (S), the coordinates of the starting point A are determined with sliders in A2:B3, ranging from 0 to 100. The values in the linked cells are transformed into coordinates ranging from −4 to 4 (G2:G3). The

coordinates of the endpoint B are typed directly into cells J2:J3.

The cells G2:G3 get multiple identifiers: x A and y A refer to single cells, whereas A refers to the whole range and can be processed as a column vector. The same

applies to B.

The length d s of the segment is calculated in A6 from the coefficients of A and B. It can also be calculated with the matrix formula {=sqrt(sumxmy2(B; A))}.

sumxmy2 stands for “Sum of all individual (x – y)2”. The innermost operation A

– B involves two matrices, but the output is only a scalar. So, we have to enclose the formula in curly brackets and finish with the magic chord Ψ Ctl + Shift +

 Return.

The result of this calculation is shown in Fig. 5.1a. The perpendicular unit vector AB p is also drawn from the center AB C of the line to AB C + AB p (J6:J7).

In Fig. 5.3 (S), we calculate the primary segments of calculus d x, d y, and the area d A between the segment and the x-axis. Furthermore, we set up the equation A

B

C

D

E

F

G

H

I

J

K

1

A_

B_

2

55.00

xA

0.40 =(D2-50)/12.5

xB

-3.00

3

92.00

yA

3.36 =(D3-50)/12.5

yB

-3.50

yB)^2+(xB-xA)^2)

_)

_;AB

LT(P

B_)/2}

AB_C}

4

=SQRT((yA-

{=(A_-B_)/length_AB}=MMU

{=(A_+ {=AB_p+

5

ds

AB_

AB_p

AB_C

6

7.66

0.00

0.44

0.00

0.90 =D7

-1.30

-0.40

7

0.00

0.90

0.00

-0.44 =-D6

-0.07

-0.51

8

Fig. 5.2 (S) Coordinates of points A and B, line vector AB and center position vector AB C; the perpendicular vector AB p is obtained from AB through matrix multiplication with P, the 90°

rotational matrix P presented in Fig. 5.3 (S)

L

M

N

O

P

Q

R

S

T

5

area

dA

0.24 =(yA+yB)/2*dx

P_

6

dx

-3.40 =xB-xA

0

-1

7

dy

-6.86 =yB-yA

1

0

8

slope

m

2.02 =dy/dx

9

10

on line

x

-1.76

28

11

y

-1.00 =yA+m*(x-xA)

Fig. 5.3 (S) Continuation of Fig. 5.2 (S). Characteristics of a straight-line segment important for calculus, and the equation for the line running along the segment

5.2

Straight-Line Segment Under a Magnifying Glass

185

 y = y A + m·(x − x A) of the line along the segment. The value of x is determined with a slider so that the cross in Fig. 5.1 runs along this line.

5.2.4

Plotting Vectors with Python Matplotlib

To plot vectors with Python, we have to use the function arrow of the library

pyplot,to be imported with import matplotlib.pyplot as plt. We inte-

grate this function into a user-defined function ArrowP with standard formatting parameters (see Table 5.1).

In excel, arrowheads are a design feature of a line: … line/end arrow type.

The constructor arguments of plt.arrow comprise, among others, the

keyword arguments:

width

float (default: 0.001) width of full arrow tail

fill

bool

linestyle or ls

{’-’, ’–’, ’-.’, ’:’, ”, (offset, on–off-seq), …}

linewidth or lw

float or None

head_length

float or None (default: 1.5 * head_width) length of

arrow head

overhang

float (default: 0, triangular) fraction that the arrow is swept

back

Some arrows are plotted in Fig. 5.4 to demonstrate the effect of the constructors. The arrow pointing upwards is drawn with our standard function ArrowP

(overhang = 1) in Table 5.1.

5.3

Differentiation

We learn how to approximate the first and second derivatives of a function

 f(x) numerically with difference quotients between neighboring calculation

Table 5.1 User-defined function ArrowP for drawing an arrow from point P 0 to point P 1 in a plane; the argument list of plt.arrow does not contain all possible keyword arguments (similar to Tables 5.3, 5.4, 5.5 and 5.6)

1

def ArrowP(P0,P1,c="k",ls='-',lw=1,hw=0.2):

2

(x0,y0)=P0 # Decomposes the foot position vector

3

(x1,y1)=P1 # Decomposes the tip position vector

4

print(lw,hw)

5

c has to be given as c="k", not c='k'

6

plt.arrow(x0,y0,x1-x0,y1-y0,

7

length_includes_head=True,

8

head_width=hw,overhang=1,fill=False,

9

linestyle=ls, color=c, linewidth=lw)

[image: Image 52]

186

5

Basic Mathematical Techniques

Fig. 5.4 Arrows plotted with

different constructor

arguments in the procedure

head of plt.arrow

points. The first derivative must be plotted over the middle between two grid

points, the second derivative over the central of three grid points.

5.3.1

First and Second Derivative

The first derivative of a curve is the slope of its tangent to the curve at the specified x-value. The derivative of a function f(x) with respect to x is defined as d f (x) =

 f (x + x) − f (x)

lim

(5.2)

 d x

 x→0

 x

More specifically, Eq. 5.2 is called the right derivative.

Such an approach to the limit cannot be carried out for discrete functions; they

are specified as a list of x-values (x = [… x i…]) and y-values (y = [… y i…]).

Instead, we calculate the difference quotient of neighboring grid points i and i +

1:

 d f xi + xi+1

2

≈ f (xi+1) − f (xi) = yi+1 − yi

(5.3)

 d x

 xi+1 − xi

 xi+1 − xi

For our discrete functions, the first derivative in the center of a segment is

approximated by y/ x, the slope of the segment between adjacent points. The values are to be plotted over the center of the interval. It is evident that the smaller

 x is, the better the accuracy of the approximation.

5.3

Differentiation

187

The second derivative of a function is the derivative of the first derivative, thus,

 d 2 f (x) = d d f (x)

(5.4)

 d x 2

 d x

 d x

which is equivalent to applying Eq. 5.2 twice. The second derivative describes the change of the slope, and is thus a measure of the curvature of the curve. The

difference equation for grid points x i at equal intervals x is

 d 2 f (x) ≈ 1 f (xi+1) − f (xi)) − f (xi) − f (xi−1) d x 2

 x

 x

 x

= f (xi+1) − 2f (xi) + f (xi−1)

(5.5)

 x2

The second derivative at point x can be calculated directly without a detour via the first derivative with function values at the grid points x, x – d x and x + d x.

It must be plotted over point x (x i in Eq. 5.5), the coordinate of the middle grid point.

Sine function

To give an example, we differentiate the sine function, knowing beforehand that its

first and second derivatives are the cosine and the negative sine, respectively. So, we

can check whether our numerical calculations reproduce this result. This is indeed

confirmed in Fig. 5.5, with 100 calculation points in one period 2π. The shape of a cosine is clearly visible in the numerically calculated y 1d in Fig. 5.5a, and that of a negative sine in y 2d in Fig. 5.5b.

Oscillation of a mass-spring-system

Consider the oscillation z(t) of a mass-spring system. The second derivative ¨ z with respect to time is the acceleration a, which, in turn, is proportional to the restoring 1.5

1.5

y = sin(x)

y = sin(x)

y2d

1.0

y1d

1.0

-Sin(x)

0.5

0.5

0.0

0.0

0

2

4

6

0

2

4

6

-0.5

-0.5

x

x

-1.0

-1.0

-1.5

-1.5

Fig. 5.5 Derivatives of a sine function a (left) first derivative, b (right) second derivative, numerically (dashed line) and theoretically (x) calculated, d x = 2π/100

188

5

Basic Mathematical Techniques

force − kz of the spring. The curvature of the displacement is thus proportional to the force. This leads to the simple equation of a harmonic oscillator based on Newton’s

law:

 F = − k · z = m · a = m · ¨ z

or

¨

 k

 z = −

· z

(5.6)

 m

The curvature of the displacement is thus proportional but opposed to the force.

A sine function is a solution to this differential equation, as can be seen in Fig. 5.5b.

Question

Let y = sin(x) in Fig. 5.5 be the displacement of an oscillator. At which positions x is the speed of the oscillator maximum, and at which positions is it

zero? 1

Composite function

We are now considering a composite function, i.e., for which the argument is not

just an independent variable, but also a function. For the numerical derivative, there

is no difference from a simple function. We build the two arrays x and y = sin(f(x)) and proceed with y/ x.

In Fig. 5.6a, the function y = A · sin(kx) with A = 0.1 and k = 2π is differentiated first once and then twice. The results are again the cosine and the negative

sine, however, with different amplitudes, 0.1 · 2π and -0.1 · (2π)2, respectively.

Questions

What is the amplitude A of the curve A · sin(kx) in Fig. 5.6a? 2

Let A be 10 times bigger than it is in Fig. 5.6a. How do you have to change the scale of the left and the right y-axes to get the same appearance in the

figure? 3

Why might it be advantageous to display a function f (t) = sin(2 πt) instead of f (x) = sin(x)? 4

1 The speed is maximum at zero crossings (x = 0, π, 2π in Fig. 5.5, at the extrema in y 1d) and zero at turning points (x = π/4, 3π/4 in Fig. 5.5).

2 A = 0.1.

3 Both axes also have to be scaled by a factor of 10: −4 to 4 and −40 to 40.

4 Then, a period duration has the length 1, a quarter period (π/2) the length 0.25, and a half period (π) the length 0.5, thus always at simple rational numbers that are clearly visible on the x-axis.

5.3

Differentiation

189

0.4

4

0.4

4

<-- y=A∙sin(kx)

<-- y=A·sin(b∙x²)

y1d -->

y1d -->

0.2

y2d -->

2

0.2

y2d -->

2

y2d_th

0.0

0

0.0

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50 x

0.75

1.00

x

-0.2

-2

-0.2

-2

-0.4

-4

-0.4

-4

Fig. 5.6 a (left) y= A · sin(2πx) and its first and second derivative. b (right) y = A · sin(bx2) with A = 0.1 and b = 4. its first and second numerical derivative, together with the analytical second derivative Eq. 5.7. For the derivatives, the right y-axis is valid.

Why might it be advantageous to divide the values of f (t), the second

derivative of sin(2 πt), by 4π2?5

In Eq. 5.7, we have chosen a parabola as an argument for the sine:

 y = A · sin bx 2

(5.7)

The function y = A · sin bx 2 and its numerically obtained derivatives are displayed in Fig. 5.6b with continuous lines.

Analytical derivatives with the chain rule

The derivatives of a composite function y = f (z), z = g(x) are obtained with the chain rule:

 d y = df · dg

(5.8)

 d x

 d z

 d x

For y = sin (2 π x), we get

 y = − cos (2 π x) · 2 π and y = − sin (2 π x) · (2 π) 2

(5.9)

and for y = sin b · x 2 :

 y = − cos bx 2 · 2 bx

 y = − sin bx 2 · (2 bx) 2 + cos bx 2 · 2 b

(5.10)

5 Then, we would expect an amplitude −1, which is easier to verify in the diagram.

190

5

Basic Mathematical Techniques

A

B

C

D

E

F

A

B

C

D

E

F

3

2

A

0.10

4

dx

0.0628 =2*PI()/100

3

k

6.28

4

dx

0.01

-C7)

5

-C7)

=A7+dx =SIN(x) =(x+A9)/2

=(B9-y)/(A9-x)

=(y1d-D7)/(xc

=-SIN(x)

6

x

y

xc

y1d

y2d

-sin(x)

5

=A7+dx =A*SIN(k*x)

=(x+A9)/2

=(B9-y)/(A9-x)

=(y1d-D7)/(xc

7

0.00

0.00

0.03

1.00

0.00

6

x

y

xc

y1d

y2d

8

0.06

0.06

0.09

1.00

-0.06

-0.06

7

0.00

0.00

0.01

0.63

9

0.13

0.13

0.16

0.99

-0.13

-0.13

8

0.01

0.01

0.02

0.63

-0.25

105

6.16

-0.13

6.19

1.00

0.13

0.13

105

0.98

-0.01

0.99

0.63

0.49

106

6.22

-0.06

6.25

1.00

0.06

106

0.99

-0.01

1.00

0.63

107

6.28

0.00

0.00

107

1.00

0.00

Fig. 5.7 (S) Spreadsheet layout for calculating the first (y 1d) and second (y 2d) derivatives of the sine function a (left) for sin(x) and b (right) for sin(kx)

Some points of y are also displayed in Fig. 5.6b with crosses. They lie on the curve obtained with numerical differentiation, indicating that our procedure is correct,

especially our decision to plot the result over the middle of the three points from

which the second derivative is obtained.

5.3.2

Data Structure and Nomenclature

 x, y

arrays specifying the points of the curve, x values d x apart,

 x C

array with the x-values of the center of the segments,

 y 1d

array containing the values of the first derivative,

 y 2d

array containing the values of the second derivative.

5.3.3

Spreadsheet Layout

A spreadsheet layout for the differentiation of the sine function is given in Fig. 5.7

(S).

Questions

concerning Fig. 5.7 (S):

Interpret the formula in C5, valid for C8! 6

What are the lengths of the arrays x, x C, y 1d, and y 2d? 7 Also, compare with Table 5.2!

6 The spreadsheet formula in C5 calculates the x-value of the centre of the interval.

7 len(x) = R107 – R6 = 101, len(xC) = 100, len(y1d) = 100, len(y2d) = 99 (see also Table 5.2).

5.3

Differentiation

191

Table 5.2 a (top) Function deri for determining the derivative of y = f(x); b (bottom left) First and second derivatives of y = sin(2πx); c (bottom right) Lengths of the arrays x, y1d, and y2d 1

def deri(x,y):

2

dx=x[1:]-x[:-1]

3

dy=y[1:]-y[:-1]

4

xC=(x[1:]+x[:-1])/2 # x Center of segment

5

return xC,dy/dx

len(x) 101

6

x=np.linspace(0,1,101,

endpoint=True)

len(y1d) 100

7

y=np.sin(2*np.pi*x)

len(x1) 100

8

x1,y1d=deri(x,y)

len(y2d) 99

9

x2,y2d=deri(x1,y1d)

len(x2) 99

The formula in D8 is D8 = [=(B9-y)/(A9- x]. Which value does excel take

for x and y? 8

How do you get a selection of – sin (x) in column F of 10 points, as presented in Fig. 5.5b? 9

We plot (x c, y 1d). Show that the formulas in E5 (valid for E8) is correct!10

5.3.4

Python Program

In the Python program corresponding to Fig. 5.7 (S), the derivatives are built with a function deri, shown in Table 5.2a, requiring x and y as input and returning x C, the center of the intervals, and y/ x. The Python program in Table 5.2b

treats y = sin (2 π x).

The quantities d x, d y, and x C are obtained by slicing the arrays x and y. Their length is, by construction, one less than that of x and y, as can be verified in Table

5.2c. We no longer have to think about the values of x for which the derivative is a good approximation, because this is already done within the function and returned

as x C. For the second derivative, we apply deri twice.

Composite function

In Table 5.3, we are considering the composite function y = A · sin bx 2 (Eq. 5.10).

The results for the 10 x-values specified in line 7 are shown in Fig. 5.6b. The numerically calculated values (marked –) and the theoretical ones (marked with x)

8 For x and y in C8 and D8, the values in the same (8th) row are taken from the column ranges with names x (A8) and y (B8).

9 With a VBA procedure comprising a loop of the type: for r = 7 to 107, …, r2 = r2 +

1.

10 Row n-1: x-dx, xc = x-dx/2, y1d.

Row n: x, xc = x + dx/2,y1d,y2d.

To get y 2d at the position x, we have to calculate the difference quotient for y at x + d x/2 and x-d x/2.

192

5

Basic Mathematical Techniques

Table 5.3 First and second derivatives of A · sin bx 2

1

x=np.linspace(0,1,101,endpoint=False)

2

A=0.1

3

b=4

4

yf=A*np.sin(b*x**2)

5

x1,yf1d=deri(x,yf)

6

x2,yf2d=deri(x1,yf1d)

7

xx=np.linspace(0,1,10)

8

yf2d_th=(A*np.cos(b*xx**2)*2*b

9

-A*np.sin(b*xx**2)*(2*b*xx)**2)

10

Theoretical second derivative

of the second derivative coincide, indicating that our simple numerical recipe yields

sufficiently accurate derivatives.

Question

Over which arguments, type x or x c, must the function y f2 d th in Table 5.3 be plotted so that it correctly represents the second derivative of the function y? 11

5.4

Integration

We determine the area under a sine curve and the length of a polynomial.

5.4.1

Area Under a Curve

Integral function, definite integral

The integral of a function f(x) between x 1 and x 2 corresponds, in the simple cases we are dealing with, to the area limited by the curve, the x-axis, and two vertical boundaries. It can be positive or negative. The area under a curve between two adjacent

interpolation points is calculated using the trapezoid rule visualized in Fig. 5.8a. The area of a trapezoid of width x is

 FΔx (x) = f (x − Δx) + f (x) · Δx

(5.11)

2

The integral from x 1 to x 2 is the sum of all trapezoids in that region. It must be represented in the diagram over x 2, the end of the integration interval.

11 The function y f2 d th has to be plotted over x x, the equivalent of x, because it is the analytically determined second derivative of A · sin(bx 2) at position xx.

[image: Image 53]

5.4

Integration

193

1.0

yS

y

2

YsInt

d(YsInt)/dx

y

1

0.9

Trapez; dx

=0.251

0

0

2

4

6

x

0.8

-1

1.0

1.2

1.4

1.6

x

1.8

Fig. 5.8 a (left) Numerical calculation of an integral with the trapezoidal rule, d x = 0.251. b (right) Integral of the sine function and differentiation of the integral displayed over x (column A in Fig. 5.11 (S))

Figure 5.9 shows the integral function (a) of a sine function and (b) of a polynomial. The integral function of a sine is a cosine. The integral in Fig. 5.9a is theoretically F(x) = (1 − cos(x)). The integral function of a polynomial of the n th order is a polynomial of the (n + 1)th order.

Fig. 5.9 Curves obtained with the Python program in Table 5.4. a (left) Integration of the sine function. b (right) Integration of a 3rd order polynomial (lower curve) (here, negative values of the integral)

194

5

Basic Mathematical Techniques

Questions

What is the analytical integral function of a sine? 12

What is the area under a sine arc? 13

In Fig. 5.8b, the numerically obtained derivative of the integral function is shifted with respect to the original curve, contrary to the fundamental theorem

of calculus. What, do you suspect, is the reason for this? 14

5.4.2

Length of a Curve

The length s of a straight segment is easily calculated as

 s =

 x 2 + y 2

(5.12)

 d y 2

d s =

1 +

· d x

(5.13)

 d x

The length of a curve may be approximated by the length of the sequence of

segments used to approximate it, i.e., the sum of the lengths of all segments.

How is the function "length of a curve" correlated with the derivative of that

curve? Looking at Fig. 5.10a, we may state that the slope of the length is always positive; and the bigger the absolute value of the derivative of the function, the bigger the derivative of the length. Looking at Eq. (5.13), we see that the slope d s/d x of the length is equal to the absolute value of the slope of y(x) if (d y/ d x) 2

1.

Question

Where does the curve "Length of a circle" as a function of the y value of the circle in Fig. 5.10b cross the x-axis? 15

5.4.3

Data Structure and Nomenclature for the Arrays

in the Integration

d x

horizontal distance between the vertices

12

sin (x)dx = cos (x).

13 The area under a sine arc is 2, as can be seen form the value of the integral function at x = π in b

Fig. 5.9a, based on the theorem

 f (x)dx = F(b) − F(a).

 a

14 The derivative is wrongly plotted over the end of the intervals, not correctly over their center.

15 The “Length of a circle” crosses the x-axis at x = 0 (for y = 0), x = π (for y = 0 after having gone through a half circle, and x = 2π (for y = 0, after having gone through a full circle).

[image: Image 54]

5.4

Integration

195

Fig. 5.10 a (left) Length of a polynomial, calculated with Eq. (5.12); with def lenCurve and a second time as len2 in line 12 in Table 5.5. b (right) Length of a circle (reported on the x axis) as a function of the y-value of the circle; attention: the horizontal axis represents the dependent variable

 x P

 x coordinates of a polynomial

 y P

 y coordinates of the polynomial

 Y pInt

integral function of the polynomial

 len P

length of yP

 x

 x coordinates of a sine and a cosine

 y S

 y coordinates of a sine function

 y c

 y coordinates of a cosine function

 Y sInt

integral function of the sine function

 len Circ

length of the circle defined by polar coordinates: x = y C and y = y S.

5.4.4

Python Program

Area under a curve

A Python function, def inte, for performing the integration of a discretized function y = f(x) with the trapezoid approximation is shown in Table 5.4. The returned array integ has the same length as x. Its first element is zero, because that was introduced by np.zeros(len(x)), and the first element is not overwritten. With the Python

program in the next cells, we perform integrations of a sine function (middle cell) and a 3rd order polynomial (bottom cell). The results are displayed in Fig. 5.9.

Length of a polynomial

The approximation of Eq. 5.12 is implemented in the Python function def lenCurve(x,y) in Table 5.5, returning the cumulated sum of the individual elements d s (np.cumsum(ds)) as a function of x.

In the second cell of Table 5.5, the length of the polynomial y P(x) of Table 5.4 is calculated, to be displayed in Fig. 5.10a. First, with lenP = lenCurve(x,yP) and then (line 12) as len2, applying Eq. (5.13).

196

5

Basic Mathematical Techniques

Table 5.4 First cell: function for performing an integration of y = f(x); second cell: f(x) = sin(x; third cell: f(x) is a 3rd order polynomial

1

def inte(x,y):

2

dx=x[1:]-x[:-1]

3

yC=(y[1:]+y[:-1])/2 # y Center of segment

4

integ=np.zeros(len(x))

5

integ[1:]=np.cumsum(yC*dx)

6

return integ

7

x=np.linspace(0,2*np.pi,101, endpoint=True)

8

ys=np.sin(x)

9

yc=np.cos(x)

10

YsInt=inte(x,ys)

11

x=np.linspace(0,2,100,endpoint=True)

12

a,b,c,d=-1,2,-9,8

13

yP=a+b*x+c*x**2+d*x**3

14

YpInt=inte(x,yP)

Table 5.5 Function returning the length of the curve y = f(x); x and y P are defined in Table 5.4

1

def lenCurve(x,y):

2

ds=np.zeros(len(x))

3

dx2=(x[:-1]-x[1:])**2

4

dy2=(y[:-1]-y[1:])**2

5

ds[1:]=np.sqrt(dx2+dy2)

6

return(np.cumsum(ds))

7

FigStd('x',0,1,0.2,'y',-1.5,2.5,0.5)

8

plt.plot(x,yP,'k--')

9

lenP=lenCurve(x,yP)

10

plt.plot(x,lenP,'k-')

11

xC,y1d=deri(x,yP) # Derivative

12

len2=inte(xC,np.sqrt(1+y1d**2)) # Length accord. to formula

13

plt.plot(x[:-1],len2,'k+')

14

plt.show

Questions

Express lines 3 and 4 of Table 5.4 in one instruction! An nd.array is to be returned! 16

Design suitable labels for the plots in lines 8, 10, and 13 of Table 5.5!

Length of a circle

In Table 5.6, we calculate the length of a circle. The full length is reported in the second cell. It is within 0.2 ‰ of the value of 2π. The length lenCirc (value on the x-axis) as a function of the y coordinate y C of the circle (regarded as the independent variable) is displayed in Fig. 5.10b.

16 Integ = np.array([0,*np.cumsum(yC*dx)])

5.4

Integration

197

Table 5.6 Calculating the length of a circle and plotting it as a function of the y-values of the circle

1

phi=np.linspace(0,2*np.pi,101, endpoint=True)

2

yS=np.sin(phi) # x-coordinates of the circle

3

yC=np.cos(phi) # y-coordinates of the circle

4

lenCirc=lenCurve(yC,yS)

5

FigStd('x, lenCirc',-1,7,1,'y',-4,4,1)

6

plt.plot(yC,yS,'k--')

7

plt.plot(lenCirc,yS,'k-')

lenCirc[-1] 6.282

(2*np.pi) 6.283

5.4.5

Spreadsheet Solution

Area under the curve

A spreadsheet solution corresponding to Table 5.4 for the sine function is given in Fig. 5.11a. The integration is performed in column C by operating on the individual cells of y and taking the constant d x for all x i+1 − x i. If the horizontal distance between the vertices is not constant, we have to replace d x in D8 by (x-A7), and so on.

The integration in Fig. 5.11a (S) starts at x = 1.005 (A7). The corresponding start value for the integration, zero, was entered into C7. The following cells accumulate

the areas of the trapezoids. The resulting integral Y sInt is shown in Fig. 5.8b, together with y S, this, however, for dx = 0.251/10.

Question

According to the first fundamental theorem of calculus, the derivative of the

integral over f(x) should again yield the function f(x). In Fig. 5.8b, however, A

B

C

D

E

F

G

Sub Trapez()

1

4

dx

0.251

r2 = 7

2

For r = 7 To 11 Step 1

3

Cells(r2, 6) = Cells(r, 1) 'x

4

5

Cells(r2, 7) = 0

5

=A7+dx =SIN(x) =C7+(y+B7)/2*dx

=(YsInt-C7)/dx Sub Trapez()

r2 = r2 + 1

6

6

x

yS

YsInt d(YsInt)/dx

Trapez Cells(r2, 6) = Cells(r, 1) 'x

7

7

1.005

0.844

0

1.005

0.000 Cells(r2, 7) = Cells(r, 2) 'y

8

8

1.256

0.951

0.23

0.90

1.005

0.844 r2 = r2 + 1

9

9

1.508

0.998

0.47

0.97

1.256

0.951 Cells(r2, 6) = Cells(r + 1, 1) 'x.next 10

10

1.759

0.982

0.72

0.99

1.256

0.000 Cells(r2, 7) = Cells(r + 1, 2) 'y.next 11

11

2.010

0.905

0.96

0.94

1.256

0.951 r2 = r2 + 1

12

12

2.262

0.771

1.17

0.84

1.508

0.998 Next r

13

107

26.138

0.844

0.00

0.76

End Sub

14

Fig. 5.11 a (left, S) Integration of y = sin(x), columns F and G contain the data series for the trapezoids shown in Fig. 5.8a. b (right, P) VBA procedure for writing the coordinates of the trapezoids into columns F and G

198

5

Basic Mathematical Techniques

d(YsInt) / d x is shifted relative to the function y S(x) to the right. Inspecting Fig. 5.11a, find out why that’s the case! 17

In column D, the integral is differentiated, and the result is also displayed

in Fig. 5.8b as a function of x listed in column A. In this plot, the derivative d(Y sInt)/d x is shifted to the right with respect to the original function. The reason for this flaw is that the derivative is plotted over x (D8 is plotted over A8), the end of the interval in which the derivative is built, instead of over the center of the

interval.

Coordinates of the trapezoids by a scan-log procedure

Figure 5.11b (P) shows the program code for a procedure that writes the coordinates for the trapezoids from the table data for x and d Y sInt/d x in Fig. 5.11a into the columns F and G of Fig. 5.11a (S). Rows 7–12 of columns A and C are scanned with the loop index r, and three points of a trapezoid are transferred with each loop cycle to F and G, with the running index r 2 being incremented three times in each run. The result

“Trapez” is shown in Fig. 5.8a.

5.5

Vectors in the Plane

Polar and Cartesian coordinates are converted one into the other. Two vec-

tors are added, and their scalar product is built. Perpendicular bisectors

are erected on line segments. Arrows representing forces are attached to

application points in the xy- plane.

5.5.1

Vectors

Vectors in polar and Cartesian coordinates

Vectors have a magnitude l and a direction that, in the plane, can be determined by the angle α to the positive x-axis. Alternatively, a vector can be defined by Cartesian coordinates (V x, V y). The two coordinate systems can be transformed one into the other by

 Vx = l · cos (α)

 Vy = l · sin (α)

(5.14)

17 The derivative d(Y sInt) / d x is plotted versus x listed in column A. The derivative calculated for a segment is, however, to be plotted over the horizontal center of this segment.

5.5

Vectors in the Plane

199

 l =

 V 2 +

 x

 V 2

 y

 α = arcus tangens Vx, Vy

(5.15)

Attention: The order of the arguments in arcus tangens is different in the excel and Python functions:

excel

Python

atan2(x, y)

np.arctan2(y, x)

Vector addition

Two vectors are added by adding their Cartesian coordinates individually:

 W = V + U ,

 W x , W y = V x + U x , V y + U y .

Vector addition is illustrated for forces in Fig. 5.12a with the axes F x and F y scaled in units of N (Newton). The vectors are represented as arrows with their bases

in the origin of the coordinate system and the coordinates of their head points being

the coordinates of the vector. The resulting vector W points to the corner of the parallelogram spanned by V and U.

In Fig. 5.12b, the plane xy is displayed, scaled in units of m with the arrows representing the vectors of Fig. 5.12a attached at a point of application, here, (2, 4), after being scaled with a scalar with the physical dimension m/N (here, 0.8 m/N)

to get the same physical unit as the axes, namely, m (meter). The scaling factor is

chosen so that arrows of convenient length result that fit into the chart.

10

10

Fy [N]

y [m]

5

5

0

0

-10

-5

0

5

F

10

x [N]

-10

-5

0

5 x [m] 10

U_

W_

-5

-5

V_

scal=0.8;

Attack=(2,4)

-W_

-10

-10

Fig. 5.12 a (left) Vector addition of forces in the (F x, F y) plane with axes in physical units N; two vectors U and V are added to produce the resulting vector W. b (right) Vector arrows attached to a point in the xy-plane with axes in physical units m

200

5

Basic Mathematical Techniques

Question

What is the physical unit of the scaling factor for forces in the xy-plane? 18

Scalar product

The scalar product of two vectors V and U can be calculated in two ways:

– by multiplying their Cartesian coordinates and summing up the products:

 U · V = Ux · Vx + Uy · Vy

(5.16)

– or using polar coordinates with the included angle γ = α U - α V: U · V = lU · lV · cos (γ)

(5.17)

5.5.2

Data Structure and Nomenclature

 U, V, W

vectors with two components

 l U, l V, l W

length of U, V, and W

aU, aV, aW

angles of U, V, and W to the x-axis

 Attack

point of application in the plane, vector with two components (x

and)

 U at, V at, W at

coordinates of heads of arrows attached to the point of application.

5.5.3

Spreadsheet Layout

Fig. 5.13 (S) shows the spreadsheet layout for the drawings in Fig. 5.12.

The lengths and the angles of the two vectors are specified with sliders (scroll

bars). These polar coordinates are transformed into Cartesian coordinates in rows

7 and 8, where the scalar product of the two vectors is also calculated in two ways

(U· V and Scp), according to Eqs. (5.16) and (5.17), respectively. W is the sum of U + V, written into C11:C12 with the matrix formula in curly brackets {=U_

+ V_}. The Cartesian coordinates are transformed into the polar coordinates (l W, α W) in I10:I12. The length l W is calculated with W(1) 2 + W(2) 2.

Questions

concerning Fig. 5.13 (S):

18 The physical unit of the scaling factor is m/N, so that the length of the arrows is in m.

[image: Image 55]

5.5

Vectors in the Plane

201

A

B

C

D

E

F

G

H

I

J

1

50

length

lU

5.00 =E1/10

2

140

angle

aU

0.87 =(E2-90)/180*PI()

3

71

lV

7.10 =E3/10

4

17

aV

-1.27 =(E4-90)/180*PI()

5

6

U_

V_

7

.x

0.00

3.21 =lU*COS(aU)

0.00

2.08 =lV*COS(aV)

U∙V

-19.33 =SUMPRODUCT(U_;V_)

8

.y

0.00

3.83 =lU*SIN(aU)

0.00 -6.79 =lV*SIN(aV)

Scp

-19.33 =lU*lV*COS(aU-aV)

9

10

W_

-W_

lW

6.0614 =SQRT(INDEX(W_;1)^2

11

0.00

5.29 {=U_+V_}

0.00 -5.29 {=-W_}

+INDEX(W_;2)^2)

12

0.00

-2.96

0.00

2.96

aW

-0.51 =ATAN2(C11;C12)

Fig. 5.13 (S) Specification of two vectors U and V by their length and their angle to the x-axis with sliders (rows 1–4); transformation to Cartesian coordinates (C7:F8); their scalar product (twice in H7:I8); their sum (C11:D12); and the polar coordinates of the sum (I10:I12)

What is the apparent range of the numbers generated by the slider in

A2:D2? 19

How do you get positive and negative angles between –π/2 and π/2 from an

always positive output of a slider with a range of 0–180?20

Where are the length and angle of the vector W = U + V calculated?21

With which instruction do you get the first entry in the named range W ? 22

In rows 11 and 12 of Fig. 5.13 (S), the vector sum of the two vectors is built with a matrix formula W _ {= U + V}. Addition is not possible in polar coordinates; if the vectors are specified by length and angle, they must be converted to

Cartesian coordinates before addition.

Figure 5.14 (S) contains the extension of the calculation for obtaining the coordinates of arrows representing vectors applied at a point (Attack) in the plane.

 Attack is specified in Z4:Z5. The vector arrows in the xy-plane go from Attack to Attack _ + U · scal, and so on. All four arrows can be entered into a chart together as one series by specifying AB4:AL4 as series x- values and AB5:AL5 as

series y- values, because the respective ranges in the spreadsheet are separated

by empty cells.

 Empty cells separate curves.

19 The slider in A2:D2 ranges from 0 to 180, angles in degree.

20 With a formula as in I2 = [=(E2-90)/180*Pi()], one can get positive or negative values.

21 The length and angle of the new vector W are calculated in I10 (l W) and I12 (a W).

22 index(w_;1); in excel, the first entry is indexed as 1, contrary to Python where indexing starts with 0.

202

5

Basic Mathematical Techniques

Z

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

AM

2

scal

0.8

{=U_*scal+Attack_} {=V_*scal+Attack_} {=W_*scal+Attack_}{=-W_*scal+Attack_}

3

Attack_

U_

V_

W_

-W_

4

2.00

2.00

4.57

2.00

3.66

2.00

6.23

2.00 -2.23

5

4.00

4.00

7.06

4.00 -1.43

4.00

1.63

4.00

6.37

Fig. 5.14 (S) Calculating the coordinates of arrows representing the vectors U, V, W in the xy-

plane of Fig. 5.12a

5.5.4

Python Program

The Python program corresponding to Fig. 5.13 (S) is given in the first two cells of Table 5.7. The results of the calculation are shown in the third cell (bottom right) of that table. They correspond exactly to the values in Fig. 5.13 (S). Lines 16-19

calculate the coordinates of the vector arrows in the plane, similar to Fig. 5.14

(S). W_.shape = (2,) indicates that W is an array with two elements. The values

for the scalar product and the polar coordinates of W are exactly the same as in Fig. 5.13 (S).

Notice! The argument order of arcus tangens is different in the excel and

Python functions (see Sect. 5.5.1).

The main program in Table 5.8 calls ArrowP (Table 5.1 in Sect. 5.2.4) four times. It is a continuation of Table 5.7 and can refer to the data, e.g., U at, specified therein. The resulting diagram is shown in Fig. 5.15.

Table 5.7 a (top) Python program for defining two vectors with their length and their angle to the x- axis, being transformed into Cartesian coordinates and their scalar product being built; b (bottom left) the sum of the two vectors is built and the coordinates of all vectors are calculated when attached to a point of attack in the plane; c (bottom right) reports values and shapes of some variables

1

lU=5.0 # Length of vector U

2

aU=0.8727 # Angle to x-axis

3

U_=lU*np.array([np.cos(aU),np.sin(aU)])

4

lV=7.10

5

aV=-1.274

6

V_=lV*np.array([np.cos(aV),np.sin(aV)])

7

8

Scp=lU*lV*np.cos(aU-aV)

9

UV=U_@V_ # Dot product

10

W_=U_+V_

UV -19.33

11

lW=np.sqrt(np.sum(W_**2))

Scp -19.33

12

aW=np.arctan2(W_[1],W_[0])

13

W_ 5.29 -2.96

14

Attack_=np.array([2.00,4.00])

W_.shape (2,)

15

scal=0.8

16

U_at=U_*scal+Attack_

lW 6.06

17

V_at=V_*scal+Attack_

aW -0.51

18

W_at=W_*scal+Attack_

19

W_at_opp=-W_*scal+Attack_

[image: Image 56]

5.5

Vectors in the Plane

203

Table 5.8 Continuation of Table 5.7; the program plots four arrows and the parallelogram of forces, Arrow P from Table 5.1

20

FigStd('x',-10,10,5,'y',-10,10,5)

21

ArrowP(Attack_,U_at,lw=1.5)

22

ArrowP(Attack_,V_at,lw=1.5)

23

ArrowP(Attack_,W_at,lw=1.5)

24

ArrowP(Attack_,W_at_opp,lw=1.5)

25

plt.plot([U_at[0],W_at[0],V_at[0]],

[U_at[1],W_at[1],V_at[1]],'k--')

Parallelogram, 3 sides

26

plt.axis('scaled') # Axis lengths to scale

Fig. 5.15 Vector diagram

corresponding to Fig. 5.12b,

but drawn with the Python

program in Table 5.8

Questions

How do you produce the labels shown in Fig. 5.12b (excel) and Fig. 5.15

(Python)? 23

What is the effect of the statement plt.axis(‘scaled’)? 24

23 Excel: “scal = ”&scal&”; Attack = (“&Index(Attack_,1)&”,”&Index(Attack_,2)&”)”.

Python: lbl = "scal = " + str(scal) + "\nAttack = " +

str(Attack_).

24 The lengths of the axes in the figure correspond to the scaling of the axes specified in the program (see Fig. 5.15).

204

5

Basic Mathematical Techniques

-1

0

1

2

3

4

5

-2

-1

0

1

2

2

2

x=1.6·cos(φ); y=1·sin(φ)

0.5+1x+-1x²+0.2x³

1

1

0

0

-1

-1

-2

Fig. 5.16 Tangents and perpendiculars, a (left) for a polynomial as obtained from the spreadsheet in Fig. 5.18 (S), and b (right) on an ellipse constructed using polar coordinates (see legend) 5.6

Tangents to and Perpendiculars on a Curve

Tangents are fixed to a curve and perpendiculars are erected on it, taking a

third-degree polynomial as an example. All calculations are performed with

vectors. Python uses a loop to draw a multitude of segments. In contrast,

in the excel realization, the curve is calculated in a spreadsheet, and the

segments’ coordinates are generated with a scan-log procedure.

5.6.1

At/On a Polynomial and an Ellipse

We determine and display tangents to and perpendiculars on a polynomial, first

with a Python program and then through the combination of a spreadsheet cal-

culation and a VBA procedure. An example is shown in Fig. 5.16a. In Fig. 5.16b,

the same construction is shown for an ellipse.

The coordinates of the ellipse are obtained with

 x = aX · cos (φ); y = aY · sin (φ)

(5.18)

Questions

What are the coefficients a X and a Y of Eq. 5.18 for the ellipse in Fig. 5.16b25

25 From the legend, we infer a X = 1.6 and a Y = 1.

5.6

Tangents to and Perpendiculars on a Curve

205

Table 5.9 Program for determining the endpoints of segments representing the tangents to and the perpendiculars on a curve

1

Define polynomial of 3rd order

2

a,b,c,d=0.5,1.0,-1,0.2

3

dx=0.1

4

x=np.arange(0,4+dx,dx)

5

y=a+b*x+c*x**2+d*x**3

6

7

Segments, their centers and lengths

8

xC=(x[1:]+x[:-1])/2

9

yC=(y[1:]+y[:-1])/2

10

Dx=x[1:]-x[:-1]

11

Dy=y[1:]-y[:-1]

12

13

scal=5 # Scaling the length of arrows

14

Tangentials

19

Perpendiculars

15

xL=xC[1:]-Dx[1:]*scal

20

xpL=xC[1:]-Dy[1:]*scal

16

xR=xC[1:]+Dx[1:]*scal

21

xpR=xC[1:]+Dy[1:]*scal

17

yL=yC[1:]-Dy[1:]*scal

22

ypL=yC[1:]+Dx[1:]*scal

18

yR=yC[1:]+Dy[1:]*scal

23

ypR=yC[1:]-Dx[1:]*scal

In Fig. 5.16a, the perpendiculars do not seem to be perpendicular to the curve, contrary to Fig. 5.16b. What is the reason for this? 26

5.6.2

Data Structure and Nomenclature

 a, b, c, d

coefficients of the polynomial y = a + b · x + c · x 2 + d · x 3

 x

 x-coordinates of the vertices, d x apart

 y

 y values of the function

 x C, y C

center of the segments

d x, d y

lengths of the segments in the x and y directions

 x L, y L

left coordinates of the tangential segments

 x R, y R

right coordinates of the tangential segments

 x PL, y PL

left coordinates of the perpendicular segments

 x PR, y PR

right coordinates of the perpendicular segments.

5.6.3

Python Program

A Python program for our task is given in Table 5.9. The segments’ centers and lengths are elegantly obtained with one instruction each through slicing, as are,

again, the arrays for the coordinates of the tangential and perpendicular segments.

26 In Fig. 5.16a, the lengths of the x- and y-axes do not conform to the scaling (-1 to 5) and (-1 to 2). In Fig. 5.16b, the lengths of the axes have been adjusted to the scaling.

[image: Image 57]

206

5

Basic Mathematical Techniques

Table 5.10 Program for plotting the results of Table 5.9

1

FigStd('x',-1,5,1,'y',-1,2,0.5)

2

plt.plot(x,y)

3

for i in range(0,len(xC)-1):

4

plt.plot([xL[i],xR[i]],

[yL[i],yR[i]],'k-',lw=0.5)

5

for i in range(0,len(xpL)-1):

6

plt.plot([xpL[i],xpR[i]],

7

[ypL[i],ypR[i]],'k-',lw=0.5)

8

plt.axis('scaled') # Only effective downstream (at the end)

9

plt.savefig('PhEx 5.5 polynomial.png',dpi=1200)

Fig. 5.17 Tangents to and

perpendiculars on a

polynomial; the coordinates

are calculated in Table 5.9

and drawn with the program

in Table 5.10

Tangents are drawn through the center (x C, y C) of a segment ranging from (x C − dx · scal, y C − dy · scal) to (xc + dx · scal, yc + dy · scal).

 Scal is a scalar chosen to give a suitable length to the segments representing

the tangents and perpendiculars in the figure. No explicit for-loop is necessary to

determine the various coordinates, contrary to the VBA code in Sect. 5.6.4. In Python, this is implicitly done with slicing.

The result of the calculation in Table 5.9 is plotted by the program in Table

5.10 with the resulting chart in Fig. 5.17. Here, looping over all tangents and all perpendiculars is chosen, contrary to Fig. 5.18b (S), where all coordinates are written into one column for x and another one for y, with empty cells separating segments so that they can be entered as one series into the figure. With the

statement plt.axis(’scaled’), the axes’ lengths are adapted to the axes’

scaling. Here, the perpendiculars are visibly orthogonal to the curve, contrary to

Fig. 5.16a. With the last statement in Table 5.10, the diagram in Fig. 5.17 is stored as a png file.

5.6.4

Spreadsheet Solution

In the spreadsheet of Fig. 5.18a (S), the coefficients of a polynomial of the 3rd degree are specified, and 41 points (x, y) on that curve are calculated similar to

5.6

Tangents to and Perpendiculars on a Curve

207

A

B

C

D

E

1 Sub TangVert()

Cells(r2, 5) = yC - dy 16

1

a

0.50

cc

-1.00

2 scal = 5

r2 = r2 + 1

17

2

b

1.00

d

0.20

3 r2 = 8

Cells(r2, 4) = xC + dx 18

3

0.5+1x+-1x²+0.2x³

4 For r = 8 To 47

Cells(r2, 5) = yC + dy 19

4

dx

0.10

5 xA = Cells(r, 1)

r2 = r2 + 2

20

5

6 yA = Cells(r, 2)

'perpendiculars

21

6

=a+b*x+cc*x^2+d*x^3

7 xB = Cells(r + 1, 1)

Cells(r2, 4) = xC - dy 22

8

7

yB = Cells(r + 1, 2)

Cells(r2, 5) = yC - dx 23

x

y

by VBA procedure

9 'center

r2 = r2 + 1

24

8

0.0

0.50

-0.15

0.36

10 xC = (xA + xB) / 2

Cells(r2, 4) = xC + dy 25

9

0.1

0.59

0.25

0.73

11 yC = (yA + yB) / 2

Cells(r2, 5) = yC + dx 26

10

0.2

0.66

12 dx = (xB - xA) * scal r2 = r2 + 2

27

47

3.9

1.05

0.66

0.98

13 dy = (yB - yA) * scal Next r

28

48

4.0

1.30

0.64

0.58

14 'tangentials

End Sub

29

15 Cells(r2, 4) = xC - dx

30

Fig. 5.18 a (S, left) Table for calculating the x and y coordinates of a 3rd order polynomial; the columns D and E from row 8 contain the outputs of the VBA procedure in (b). b (P, right) VBA procedure for calculating the coordinates of the segments representing the tangents and perpendiculars to the curve y = f(x) and storing them all in columns D and E

Table 5.9. The coordinates of the segments, representing the tangents at and the perpendiculars on the curve, are calculated in a VBA procedure sub TangVert in

Fig. 5.18b (P).

The subroutine is of the type scan-log and applies the construction loop2i The loop index r runs down A8:A47, scanning the values in columns 1 and 2. The

index r 2 specifies the row of the output in columns D and E and is incremented

in lines 17, 20, 24, and 27. In each cycle, the coordinates of the tangent and

those of the perpendicular are calculated and written one after the other into the

same columns, always separated by blank lines so that they are plotted as isolated

segments when entered as one series into a chart.

5.7

Banked Curve

We calculate the forces acting on a vehicle running through a banked curve.

The gravitational and centrifugal forces are decomposed into vectors on the

road and perpendicular to it. The components are combined to get the forces

pressing the vehicle onto the road and pushing it perpendicular to its track on

the road.

5.7.1

Cross-Section of the Road

Turns on roads are generally banked so that the surface is inclined towards the

inside of the turn. The reason for this is that the car is in less danger of being

pushed out of the turn if the centrifugal force C is not fully working parallel to the road’s surface. In addition, the gravitational force G also has a component parallel

208

5

Basic Mathematical Techniques

0

0

0

2

4

x 6

8

10

0

2

4

6

8

10

x

plane

-2

-2

I, O

y

y

G C

-4

-4

G+C

Itot, Otot

-6

-6

plane

-8

-8

G C

Components in the plane

orthogonal to the plane

-10

-10

Fig. 5.19 a (left) The total force G + C is decomposed into components parallel and orthogonal to the line (cross-section of the road). b (right) The two vectors G and C are decomposed individually into components parallel and orthogonal to the bank line. Inclination angle α = 40°

to the surface towards the inside of the turn. We represent the situation with a

straight line ("bank line") describing the road’s cross-section.

We treat the task with 2-dimensional vectors, namely, unit vectors parallel and

orthogonal to the bank line and vectors representing the forces acting on the car,

gravitational mg and centrifugal – mv2/r, where m, v, and r are the mass and velocity of the vehicle and the radius of the curve, respectively. The signs are valid for

the situation of Fig. 5.19. As the mass occurs in both forces, we need not consider it explicitly when interested in comparisons between the two forces. So, we use

accelerations with sizes G = g and C = v 2/ r. The components of the accelerations in the bank line and perpendicular to it are calculated with scalar products with

the in-plane and out-of-plane unit vectors.

The acceleration parallel to the road drives the car out of its track. The accel-

eration perpendicular to the bank line presses the vehicle onto the road, thus

determining the frictional force.

Questions

What are convenient physical units of G and C? 27

Is it sensible to interpret G and C as accelerations? 28

27 As we have defined these quantities as accelerations, their unit is N/kg.

28 Open to debate. Pro: The mass does not play any role. But does the frictional force depend on the mass?

5.7

Banked Curve

209

5.7.2

Data Structure and Nomenclature

α

inclination of the track towards the horizontal

 I = [cos(α), -sin(α)]

unit line vector

 O = [sin(α), cos(α)]

unit vector orthogonal to the bank line

 G = [0, 9.81]

gravitational acceleration [N/kg] = [m/s2]

 rr

radius of the curve

 v

speed of the car

 C = [−v2/rr, 0]

centrifugal acceleration

 Attack

point of attack of the forces

 G I, C I

components in the plane

 I tot = G I+ C I

total force in the plane

 G O, C O

components orthogonal to the plane

 O tot = G O+ C O

total force orthogonal to the plane.

5.7.3

Python Program

In the first cell of Table 5.11, the four basic vectors, line vector I, orthogonal vector O, gravitational acceleration G, and centrifugal acceleration C, are determined from the parameters of the exercise: inclination angle α, gravitational acceleration g, speed v of the car and radius rr of the curvature of the road. In the second and third cell of that table, vector operations are applied to decompose the accelerations into components parallel and orthogonal to the bank line. G@ I is a matrix multiplication, for one-dimensional vectors equivalent to the scalar product. The

resulting values are listed in Table 5.12. They have the same values as those in the spreadsheets in Sect. 5.7.4.

In Table 5.13, the coordinates of the arrows, representing the vectors in the xy-

plane with suitable length, are calculated. The starting point Attack of all arrows is given as multiple PoA of the unit line vector, starting at the origin (0, 0) of Table 5.11 First cell: specifying line vectors I (in-plane) and O (orthogonal to plane), and gravitational G and centrifugal C acceleration

1

a=40 # Angle of inclination, degrees

2

lbl_1="α="+str(a)+"°"

3

a*=np.pi/180 # Angle in radian

4

rr=100 #[m], Radius of curve

5

v=40 #[m/s], S peed of car

6

7

I_=np.array([np.cos(a),-np.sin(a)])

8

O_=np.array([-I_[1],I_[0]])

9

G_=np.array([0,-9.81]) # Gravitational acceleration

10

C_=np.array([-v**2/rr,0]) # Centrifugal acceleration

11

GI_=G_@I_*I_

14

GO_=G_@O_*O_

12

CI_=C_@I_*I_

15

CO_=C_@O_*O_

13

Itot_=GI_+CI_

16

Otot_=GO_+CO_

210

5

Basic Mathematical Techniques

Table 5.12 Numerical values of the vectors specified in Table 5.11, values for GO_ and CO_ are the same as in Fig. 5.21 (S)

I_ [0.77 -0.64]

GI_ [4.83 -4.05]

O_ [0.64 0.77]

CI_ [-9.39 7.88]

G_ [0.00 -9.81]

Itot_ [-4.56 3.83]

C_ [-16.00 0.00]

Otot_ [-11.44 -13.64]

Table 5.13 Calculating the coordinates of the arrows in Fig. 5.19; PoA is a scalar determining the point of attack on the bank line

1

PoA=7

7

CI=CI_*scal+Attack_

2

scal=0.3

8

Itot=Itot_*scal+Attack_

3

Attack_=np.array(I_*PoA)

9

GO=GO_*scal+Attack_

4

G=G_*scal+Attack_

10

CO=CO_*scal+Attack_

5

C=C_*scal+Attack_

11

Otot=Otot_*scal+Attack_

6

GI=GI_*scal+Attack_

12

GpC=(G_+C_)*scal+Attack_

Table 5.14 Plotting the arrows that represent the various accelerations in Fig. 5.19a with ArrowP

1

FigStd('x',0,10,2,'y',-10,0,2)

2

PoA=7

3

4

plt.plot([0,20*I[0]],[0,20*I[1]],c='0.7',lw=3,ls='-')

Plane

5

At_=I_*3 # Attack point of the unit vectors

6

scal=1

7

Arrow(At_[0],At_[1],

8

At_[0]+I_[0]*scal, At_[1]+I_[1]*scal)

9

Arrow(*At_,*(At_+O_*scal)) # * Decomposes the array

10

11

At_=Attack_

12

Arrow(*At_,*G_)

13

Arrow(*At_,*C_)

14

Arrow(*At_,*GpC_)

15

Arrow(*At_,*Itot_)

16

Arrow(*At_,*Otot_)

17

#Parallelogram of forces:

18

plt.plot([C[0],GpC[0],G[0]],[C[1],GpC[1],G[1]],'k:')

19

plt.plot([Itot[0],GpC[0],Otot[0]],

[Itot[1],GpC[1],Otot[1]],'k:')

the bank line. The endpoints are obtained with instructions like G = G *scal +

 Attack. Plotting the arrows is achieved with Table 5.14.

Question

Interpret the statement in Table 5.11: G_@I_*I_! 29

29 G_@I_is a matrix multiplication of two vectors, equivalent to G_[0]*I_[0] + G_[1]*I_[1], yielding a scalar. G_@I_*I_is the multiplication of the vector I_ with this scalar.

5.7

Banked Curve

211

5.7.4

Spreadsheet Solution

A spreadsheet solution of the banked-curve problem is shown in Fig. 5.20 (S).

We specify the line vectors I and O and the forces G and C as column vectors with two components. We have to pay attention to operator precedence when calculating the centrifugal force –v2/rr. The values of the coordinates are the same as in Table 5.12, left cell.

In excel, the sign operator – has precedence over the power operator

ˆ. We therefore have to enter = −(v ˆ2/ rr). In Python, − v**2/rr will accomplish the task.

In Fig. 5.21 (S), G and C are decomposed into components parallel and orthogonal to the banked curve’s characteristic line. The scalar product is obtained with

sumproduct. In Fig. 5.22 (S), the components of the corresponding arrows in the plane are calculated.

 Attack is the starting point of all arrows, and G, C, GI, CI, I tot, GO, CO, O tot are the endpoints of the arrows representing the various accelerations in the xy-plane.

We can create a living figure by introducing sliders to vary the parameters α,

 rr, and v.

5.8

Weighted Average

 Inclinaon of road

angle 40 °

I_

O_

G_

C_

a

0.70 radian

0.77 =COS(a)

0.64 =SIN(a)

0

-16 =-(v^2/rr)

 Radius of curve

rr

100 m

-0.64 =SIN(a)

0.77 =-COS(a)

-9.81

0

 velocity of car

v

40 m/s

plane

144 km/h

0

15.32 {=I_*20}

0 -12.86

Fig. 5.20 (S) Specifying line vectors I and O, and gravitational G and centrifugal C acceleration, same specifications as in Table 5.11, same values as in Table 5.12

 Components in the plane

 orthogonal to the plane

)*O_

 CT(C_;I_)*I_

 CT(C_;O_

 _

 =SUMPRODUCT(G_;I_)*I_

 =SUMPRODU

 =GI_+CI_

 =SUMPRODUCT(G_;O_)*O_

 =SUMPRODU

 =GO_+CO

GI_

CI_

Itot_

GO_

CO_

Otot_

4.83

-9.39

-4.56

-4.83

-6.61

-11.4

-4.05

7.88

3.83

-5.76

-7.88

-13.6

Fig. 5.21 (S) Continuation of Fig. 5.20 (S), decomposing the gravitational and centrifugal forces into components parallel and orthogonal to the bank line

[image: Image 58]

212

5

Basic Mathematical Techniques

poA

7

scal

0.3

 k_}

 k_}

 k_}

 k_}

 scal+Aac

 scal+Aac

 =I_*poA

 {=G_*scal+Aac {=GI_*scal+Aac{=Itot_*

 {=Otot_*

 {=Aack_+(G_+C_)*scal}

Aack_

G

C

GI

CI

Itot

GO

CO

Otot

G+C

5.36

5.36

0.56

6.81

2.55

3.99

3.91

3.38

1.93

0.56

-4.50

-7.44

-4.50

-5.72

-2.14

-3.35

-6.23

-6.86

-8.59

-7.44

Fig. 5.22 (S) Continuation of Fig. 5.21 (S), calculating the coordinates of the vector arrows to be drawn in the xy-plane; the values of the coefficients are to be compared with the corresponding values in Table 5.12, right cell

The equilibrium of a mobile with two arms is calculated with the law of

the lever. The mathematical construct is a weighted average. The calculation

uses vectors for forces and arms.

5.8.1

A Mobile with Two Arms

Figure 5.23a shows a mobile with one horizontal crossbar and weights attached at its left and right ends, balanced by a counter-force applied at the center of gravity

of the construction. The crossbar is supposed to be weightless. The equilibrium is

calculated with the law of the lever:

 g · mL · xL = g · m R · xR

2

Crossbar

Left weight

1

Right weight

y

Counterweight

0

-1

-0.5

0.0

x

0.5

Fig. 5.23 a (left) Mobile with one horizontal crossbar. b (right) excel menu for editing the series “Crossbar” in a; the arrowheads are introduced by format

data

series/series

options/fill&line/end arrow type

5.8

Weighted Average

213

where m L and m R are the masses attached at the ends of the bars and x L and x R

their distance to the fulcrum.

We use the vector formulation for the equilibrium of torques:

 W ×

=

×

L

 X L

 W R

 X R

The construction is to be done with all positions and forces specified as two-

dimensional vectors. Weights and counter-force are to be represented as arrows in

the xy-plane.

The x-coordinate x C of the equilibrium point, where the counter-force has to be applied to hold the mobile in equilibrium, is calculated as a weighted average

with the masses as weights:

 xC = mL · xL + m R · xR

(5.1)

 m L + m R

5.8.2

Data Structure and Nomenclature

 L

left arm of the crossbeam

 R

right arm of the crossbeam

 x L, x R

length of the arms of the crossbeam from x = 0

 m L, m R

masses at the crossbeam

 w L

weight at the left arm

 w R

weight at the right arm

 CoG

center of gravity (x C, 0)

 x C

horizontal position of center of gravity, from x = 0

 w Anti

upward counter force applied at CoG.

All underlined entities are two-dimensional vectors represented in the programs

with an underscore at the end, e.g. L _.

5.8.3

Python Program

In Table 5.15, the horizontal positions (distance to x = 0) of the end of the arms of the crossbar on the horizontal y = 0 and the forces are specified.

In Table 5.16, the arrows representing the weights at the crossbar’s ends and the counter-force to be applied at the equilibrium point are plotted with ArrowP from Sect. 5.2.4. A diagram like the one in Fig. 5.23a results (lines 16–18 ignored).

214

5

Basic Mathematical Techniques

Table 5.15 Specifying the vectors (arms of the crossbar, weights and counter-force) of the mobile in Fig. 5.23a

1

Scalars

7

Vectors

2

xL = -0.25

8

L_ = np.array([xL,0])

3

xR = 0.274

9

R_ = np.array([xR,0])

4

mL = 0.88

10

CoG_ = np.array([xC,0])

5

mR = 0.33

11

wL_ = np.array([0,-mL])

6

xC =(mL*xL+mR*xR)/(mL+mR)

12

wR_ = np.array([0,-mR])

13

wAnti_= np.array([0,mL+mR])

Table 5.16 Plotting the vectors of Table 5.15 as arrows in the plane of Fig. 5.23a

14

FigStd('x',-0.5,0.5,0.5,'y',-1,2,1)

15

plt.plot([xL,xR],[0,0],'k-')

16

plt.plot(*(L_+wL_),'kd',fillstyle="none")

17

plt.plot(*(R_+wR_),'kd',fillstyle="none")

18

plt.plot(*(CoG_+wAnti_),'ks',fillstyle="none")

19

ArrowP(L_,L_+wL_,hw=0.03)

20

ArrowP(R_,R_+wR_,hw=0.03)

21

ArrowP(CoG_,CoG_+wAnti_,hw=0.03)

Questions

concerning Table 5.16:

What are the arguments transferred by *(L_+wL_) to plt.plot(…)? 30

What do the instructions in lines 16–18 do (result not appearing in

Fig. 5.23a). 31

5.8.4

Spreadsheet Calculation

A spreadsheet calculation corresponding to the Python program in Table 5.15 is laid out in Fig. 5.24 (S). All vectors are specified as column vectors with two coordinates, one for the x and the other for the y direction. In the lower half from left to right, we have the arms L and R of the crossbar, the arrows representing the weights at the left and the right end, and the counter-force applied at the center of

gravity.

30 L_ + wL_= [xL, -mL] (an array), *[xL, -mL] = xL, -mL (the elements of an

array).

31 The instructions plot diamonds at the tips of the weights and a square at the tip of the counter-force.

5.8

Weighted Average

215

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

1

xL

-0.25

 {=-(wL_+wR_)}

2

xR

0.274

L_

R_

CoG_

wL_

wR_

wAn_

3

mL

0.88

-0.3 =xL

0.27 =xR

-0.1 =xC

0

0

0

4

mR

0.33

0

0

0

-0.9 =-mL

-0.3 =-mR

1.21

5

6

xC

-0.107 =(mL*xL+mR*xR)/(mL+mR)

7

8

 =L_

 =R_

 =L_

 =L_+wL_

 =R_

 =R_+wR_

 =CoG_ =CoG_+wAn_

9

10

 x

-0.3 0.27

-0.3 -0.3

0.27 0.27

-0.11 -0.1

11

 y

0

0

0 -0.9

0 -0.3

0 1.21

12

Fig. 5.24 (S) Defining the elementary vectors and calculating the anti-force

Question

How do you enter the three arrows into a figure as in Fig. 5.23a? 32

5.9

Systems of Linear Equations

We treat two problems resulting in a system of linear equations solved

with matrix inversion: calculating the standard form of a polynomial of the

3rd degree from four points and determining the currents in a network of

resistances, voltage, and current sources with Kirchhoff’s rules.

5.9.1

Polynomial and Electrical Network

Polynomial

A third-degree polynomial is specified by 4 coefficients:

 y = f (x) = a + b · x + c · x 2 + d · x 3

(5.19)

They can be calculated if 4 points (xPi, yPi) are specified in a plane, leading to 4

linear equations:

 yi = a · 1 + b · xi + c · x 2 +

 i

 d · x 3 i i = 1 , 2 , 3 , 4

(5.20)

Two examples are shown in Fig. 5.25.

32 G10:N10 as an X-series and G11:N11 as a Y-series.

[image: Image 59]

216

5

Basic Mathematical Techniques

Fig. 5.25 3rd-order polynomials generated, a (left) with the Python program in Sect. 5.9.4 and b (right) with the excel spreadsheet in Sect. 5.9.3

Matrix of powers of x

The system of linear equations is put into matrix form, with the matrix P composed of the powers (0, 1, 2, 3) of x i (“matrix of powers”) and the known y i as a vector on the right side of the equation:

⎡

⎤ ⎡ ⎤

⎡ ⎤

1 x 1 x 2 x 3

 a

 y 1

⎢

1

1

⎢

·

⎥ ⎢ b ⎥ ⎢ y ⎥

2

⎣

⎥ ⎢ ⎥

⎢ ⎥

·

⎦ · ⎣ c ⎦ = ⎣ y ⎦

(5.21)

3

1 x 4 x 2 x 3

 d

 y

4

4

4

 P · coe f f = y P

The vector of unknowns contains the coefficients: [a, b, c, d]. The coefficients

may be obtained by applying P−1, the inverse of P, to y P:

 coe f f = P−1· y

(5.22)

P

The matrix of powers has to be non-singular; otherwise, its inverse cannot be

built. A square matrix is nonsingular if and only if its determinant is nonzero. The

determinant is obtained with mdet (excel) or npl.det (Python).

Question

What is the determinant (< 0, = 0, > 0) of the matrix of powers if two x values of the four defining points are identical? 33

33 The determinant is zero because it is impossible to draw a polynomial through two points when one is above the other one.

5.9

Systems of Linear Equations

217

Fig. 5.26 Electrical circuit

I2

comprising a current source

I0, a voltage source U0, and

three ohmic resistors R1, R2,

I1

R2

I4

I3

I0

and R3

U0

R3

R1

Electrical Networks

In Fig. 5.26, an electrical network with three ohmic resistors R 1, R 2, and R 3, a constant current source I 0, and a constant voltage source U 0 is shown. We are going to calculate the currents I 1, I 2, I 3, and I 4 in the different branches. The directions of these currents (i.e., the directions of the arrows in the figure) are arbitrary, but they must be chosen at the very beginning. The signs of the currents are with respect to

these directions.

Kirchhoff’s rules as matrix equation

The four linear equations for the four unknown currents I 1, I 2, I 3, and I 4 are obtained with the help of Kirchhoff’s rules, namely, with two mesh rules (the voltage around

a closed circuit must be zero):

 R 3 · I 3 − U 0 = 0 and − R 1 · I 1 + R 2 · I 2 + U 0 = 0

(5.23)

and two junction rules (the currents flowing into a junction must equal the currents

flowing out of the junction):

− I 1 − I 2 + I 0 = 0 and I 2 + I 4 − I 3 = 0

(5.24)

These four equations are transformed so that the known source voltage U 0 (or 0)

is on the right side of the mesh rules and the known source current I 0 (or 0) is on the right side of the junction rules so that they can be expressed as a matrix equation:

 Res · I = Srcs

(5.25)

 Res is a matrix with components 0 or 1 or the resistances of the circuit, I is the vector of the unknown currents, and Srcs is a vector whose coefficients are zero or the known source voltages and currents. An example for the network in Fig. 5.26 is given in the spreadsheet of Fig. 5.27 (S).

Questions

concerning Fig. 5.27 (S):

218

5

Basic Mathematical Techniques

Fig. 5.27 (S) Eq. (5.25) applied to the network of Fig. 5.26. The matrix equation is presented in rows 1–5 in general form and in rows 8–11 with the concrete values from column B. The vertical lines, and the dots in column H, are intended to indicate matrix calculation. They have no computational function in the spreadsheet

Verify that the matrix calculation in rows 8–11 is identical to Eqs. 5.23 and

5.24!

What are the formulas in D10:G10?34

5.9.2

Data Structure and Nomenclature

Polynomial

 x P, y P

coordinates of 4 points in the plane, specified as two vectors

 A

4 × 4 matrix (“matrix of powers of x"), powers of x P in rows

 A

the inverse of matrix A

Inv

 coeff

solution a, b, c, d of the system of linear equations, coefficients of the

polynomial

Electrical circuit

 R 1, R 2, R 3, R 4

four ohmic resistances

 I 0

current of a constant-current source

 U 0

voltage of a constant-voltage source

 Res

square matrix containing resistances, zeros, and ones

 Res I nv

inverse of Res

 Srcs

vector containing the voltage and current sources or zero

 Currents

vector containing the currents to be determined with the system of

linear equations.

34 D10 = [=-R.1], E10 = [=R.2], F10 = [0], G10 = [0].

5.9

Systems of Linear Equations

219

We need functions to build the inverse of a square matrix and to multiply matrices.

excel:

minversemmult

Python:

np.inv@ operator (or np.matmul)

5.9.3

Spreadsheet Solutions

Polynomial

The solution of Eq. 5.22 is implemented in the spreadsheet of Fig. 5.28 (S). The coordinates of the defining points are stored in column vectors named x P and y P. The matrix A is composed of column vectors obtained as powers of x P. To solve for the coefficients of the polynomial, we have to build the inverse A

of A to be applied

Inv

to y P in a matrix multiplication.

Electrical network

For the network of Fig. 5.26, the spreadsheet layout in Fig. 5.27 (S) applies, in rows 2–4 in general form and in rows 8 to 11 with the values from A7:B11. The indices

of the resistances and the constant current and constant voltage are separated from

the letters by a dot, because a name like R1 would be interpreted as a cell address.

The unknown currents are obtained by forming the inverse matrix to M to be

applied to the vector S of sources:

 M−1 · M · I = M−1 · S or

 M−1 · S = I

The solution for the matrix equation in Fig. 5.27 (S), applying the excel matrix functions minverse to get the inverse matrix and mmult to perform matrix multiplication, is given in Fig. 5.29 (S) where, in column N, we check whether Kirchhoff’s rules are satisfied.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

2

 =xP^3 =xP^2 =xP

 1

 {=MINVERSE(A)}

 =MMULT(Ainv;yP)

3

xP

yP

A

Ainv

coeff

4

1

1

1

1

1

1

-0.01

0.03 -0.02

0.01

0.14 dd

5

3

5

27

9

3

1

0.23 -0.44

0.29 -0.07

-2.04 cc

6

6

2

216

36

6

1

-1.24

1.92 -0.87

0.19

8.30 bb

7

9

9

729

81

9

1

2.03 -1.50

0.60 -0.13

-5.40 aa

8

Fig. 5.28 (S) Spreadsheet implementation of Eq. 5.22; A

is the inverse matrix of A; the result-

inv

ing polynomial is presented in Fig. 5.25b

220

5

Basic Mathematical Techniques

C

D

E

F

G

H

I

J

K

L

M

N

O

12

13

 {=MINVERSE(Res)}

 {=MMULT(ResInv;Srcs)}

14

ResInv

Scrs

Cur

15

0.40

0.00

-0.01

0.00

I.0

0.23

I.1

-5.00 =-R.1*I.1+R.2*I.2

16

0.60

0.00

0.01

0.00

∙

U.0

=

0.27

I.2

-0.50 =-I.1-I.2

17

0.00

0.01

0.00

0.00

-U.0

0.06

I.3

5.00 =R.3*I.3

18

-0.60

0.01

-0.01

-1.00

0

-0.21

I.4

0.00 =I.2+I.4-I.3

19

Fig. 5.29 (S) Solving the matrix equation in Fig. 5.27 (S) with the inverse of Res. In column N, Kirchhoff’s rules are checked

Table 5.17 Calculating the coefficients coeff of a polynomial of the 3rd order when 4 points (in arrays (x P, y P)) are given

1

import numpy.linalg as npl

2

xP=np.array([1,3,6,9]) # Defining points

3

yP=np.array([[2,6,2,2]])

4

xP0_= np.array([1,1,1,1])

5

xP1= xP

6

xP2= xP**2

7

xP3= xP**3

8

9

A=np.array([xP0,xP1,xP2,xP3]).transpose(1,0)

10

yPt_= yP.transpose(1,0)

11

coeff_= npl.solve(A,yPt)

A

coeff

yPt

[[1 1 1 1]

[[-4.00]

[[2]

[1 3 9 27]

[7.67]

[6]

[1 6 36 216]

[-1.78]

[2]

[1 9 81 729]]

[0.11]]

[2]]

Question

The calculations in column N (reported in column O) of Fig. 5.29 (S) are intended to check whether Kirchhoff’s rules are fulfilled. Which of the four

equations Eq. 5.23 left or right and Eq. 5.24 left or right are checked in N15–N18? 35

5.9.4

Python Programs

Polynomial from defining points

In Table 5.17, the coordinates of the defining points are specified in the arrays x P and y P. The matrix A is put together in line 9, first as a list of the rows x P0, x P1, x P2, x P3

that is then transposed to get a form as in Eq. (5.21); see also the printout in the lower cell. Likewise, the vector y P is generated. In line 11, the system of linear equations 35 N15: Eq. 5.23 right; N16: Eq. 5.24 left; N17: Eq. 5.23 left; N18: Eq. 5.24 right.

5.9

Systems of Linear Equations

221

Table 5.18 Python program for plotting the polynomial specified by the coefficients in Table 5.17

1

x=np.linspace(0,10,100)

2

y=coeff[0]*x**3+coeff[1]*x**2+coeff[2]*x+coeff[3]

3

FigStd('x',0,10,2,'y',0,10,2)

4

plt.plot(x,y,'k-')

5

plt.plot(xP,yP,'kx') # Defining points of the parabola

is solved with the function solve of the numpy.linalg library. Alternatively,

the coefficients can be obtained by applying the inverse of the "powers of x" matrix to the vector of pre-specified y values:

 coe f f

= P @ y

2

Inv

P

The results of the two methods are identical. The coefficients are used to generate

the coordinates of the polynomial shown in Fig. 5.25a. The entities in the lower cell of Table 5.17 are arranged so that they correspond to the equation:

 P · coe f f = y Pt

The entity yPt is the transposed row vector yP. At least the first coefficient of y Pt can be checked by mental calculation.

Questions

The coefficients in Fig. 5.28 (S) are the same as in the Python solution in Table 5.17, however, in reverse order. What is the reason for this? 36

What is the more versatile version: (a) y = coeff[0]*x**3 + … or (b)

y = coeff[0] + coeff[1]*x? 37

The program for realizing the plot in Fig. 5.25a is shown in Table 5.18.

Electrical network

A Python program for solving Kirchhoff’s equations corresponding to the spread-

sheet layout in Fig. 5.27 (S) and Fig. 5.29 (S) is presented in Table 5.19. The matrix Res is defined as in the spreadsheet in Fig. 5.27 (S), whereas the vector of the sources is first defined as a row vector Src and then transposed into a column vector Srcs equal to the one in Fig. 5.27 (S) and to Srcs in column K of Fig. 5.29 (S). Lines 9

and 10 can be combined into one instruction.

36 The matrix of powers P in Fig. 5.28 (S) contains the columns in reverse order to Table 5.17.

37 Version (b) is more versatile, because it can easily be extended to higher order, … +

coeff[3]*x**4 + ….

222

5

Basic Mathematical Techniques

Table 5.19 Solving Kirchhoff’s equation

1

import numpy.linalg as npl

9

Srcs=Src.transpose(1,0)

2

R1,R2,R3=100,68,90

10

ResInv = npl.inv(Res)

3

I0,U0=0.5,5

11

Cur=ResInv@Srcs

4

Res=np.array([[1,1,0,0],

12

CurS=npl.solve(Res,Srcs)

5

[0,0,R3,0],

6

[-R1,R2,0,0],

7

[0,-1,1,-1]])

8

Src=np.array([[I0,U0,-U0,0]])

ResInv:

[[0.40 -0.00 -0.01 -0.00]

[0.60 0.00 0.01 0.00]

[0.00 0.01 0.00 0.00]

[-0.60 0.01 -0.01 -1.00]]

 Cur with ResInv (inverse matrix)

 CurS with linalg (solve)

[[0.23]

[[0.23]

[0.27]

[0.27]

[0.06]

[0.06]

[-0.21]]

[-0.21]]

The system of linear equations is solved in two ways, in line 11 with the

inverse matrix ResInv as in the spreadsheet calculation and in line 12 with the

function solve of the numpy.linalg library. Both methods yield the same

result (second cell in Table 5.19) as the spreadsheet procedure.

5.10

Some Mathematical Functions

Numpy, np.*

excel

 Basic numeric information

abs

abs(x)

absolute value

sign

sign(x)

sign (+1, −1 or 0)

 Basic mathematical operations

sum

sum(x; x 2)

 x + x 2 (no matrix function)

prod

product(x; x 2)

 x · x 2 (no matrix function)

quotient(x; x 2)

integer portion of x/ x 2, no matrix function

mod

(x; x 2)

Modulo, remainder from x/ x 2

sqrt

sqrt(x)

Positive square root

 Rounding functions

round

round(x; N)

Up or down, to N digits

roundup(x; N)

Up to bigger absolute value, to N digits

rounddown(x; N)

Down to smaller absolute value, to N digits

mround(x; x 2)

Up or down to a multiple of x 2, no matrix function

5.10

Some Mathematical Functions

223

Numpy, np.*

excel

Ceil

ceiling(x; x 2)

Up versus ∞ to a multiple of x 2

Floor

floor(x; x 2)

Down versus −∞ to a multiple of x 2

Rint

int(x)

Down to the next integer

fix

trunc(x)

Towards zero to the next integer

 Trigonometric functions

pi

pi()

Constant value of pi

rad2deg

degrees

Converts radians to degrees

deg2rad

radians

Converts degrees to radians

cos

cos(α)

Cosine of a given angle (rad)

arccos

acos

Inverse cosine [−1, 1] → [0, π]

sin

sin(α)

Sine of a given angle (rad)

arcsin

asin

Inverse sine [−1, 1] → [−π/2, π/2]

tan

tan(α)

Tangent of a given angle (rad)

arctan

atan

inverse tangent (arcus tangens)

[−∞, ∞] → [-π/2,π/2]

arctan2(y,x)

atan2(x; y)

Angle of a given pair of x and y coordinates;

attention: Order of arguments is different in excel

and Python!

 Exponents and logarithms

Exp

exp(x)

 e raised to the power of x

Log

ln(x)

Natural logarithm, inverse of exp

log(x; b)

Logarithm of x to base b

log(x; b) = log(x; b) * log(b ; b)

1

2

2

1

log10

log10

Base 10 logarithm

log2

log(x; 2)

Base 2 logarithm

 Sums

Footnote 38

sumif

Adds the cells in a supplied range that satisfy a

given criterium

Footnotea

sumifs

Adds the cells in a supplied range that satisfy

multiple criteria

sum(x * y)

sumproduct(x; y)

 x * y over arrays

sum(x * x)

sumsq(x)

 x 2 over arrays

sum(x2-y2)

sumx2my2(x; y)

 x 2 minus y 2 over arrays

sum(x2 + y2)

sumx2py2(x; y)

 x 2 plus y 2 over arrays

sum((x–y)2)

sumxmy2(x; y)

(x – y)2 r arrays

Cumsum

Footnoteb

Cumulated sum

Functions of linear algebra

npl.det

mdeterm

Determinant of a square matrix

npl.inv

minverse

Inverse of a square matrix

np.matmul(A,B) (a;b)

Matrix product of two matrices

or A@B

224

5

Basic Mathematical Techniques

Numpy, np.*

excel

np.dot(x,y)

sumproduct(x;y)

Dot product of two vectors

a

Can be achieved with list comprehension, as in the following example: Rng =

np.linspace(1,20,20) ; x = [×1 for × 1 in Rng if ×1 > 3 if × 1 <

6]; sum(x)

b In a spreadsheet operation, B1 = [=A1]; B2 = [=B1 + A2]; … cumulates in column B the

values in column A

5.11

Questions and Tasks

1. How do you get the anchor points of the inverse function of y = y(x)? 38

Differentiation and integration

2. You have calculated the difference quotient between the boundaries of an interval.

Over which value do you plot the result?

3. What is the formula for the numerical second derivative of a function, specified

at equidistant positions with distance d x?

4. Over which positions of an interval (beginning, middle, end) are values for the

first derivative, the second derivative, and the integral to be plotted?

5. What does the trapezoidal rule of integration stand for?

Vectors

6. What are the Cartesian coordinates of vectors of length 1 (one) pointing in the

 x direction, the negative y direction, and 45° from the x-axis?

7. What are the components of a vector pointing from (x 1) = (4, 5) to (x 2) = (6, 3)?

8. What are the lengths of the two vectors pointing from (0, 0) to (1, 1), and from

(0, 0) to (3, 4)?

9. How do you form a scalar product of two vectors A and B in two different ways, (i) component by component, and (ii) using the angle φ between the two vectors?

10. What is the angle between two vectors if the scalar product is zero?

11. What are the coordinates of a unit vector in the direction of the segment from

[x 1, y 1] to [x 2, y 2]?

12. What are the coordinates of the perpendicular to the vector (x, y)?

38 The inverse function is x = x(y). To get its interpolation points, you only have to swap the two columns for x and y in the spreadsheet or the two lists in Python.

5.11

Questions and Tasks

225

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

1 A

B

D

2

1

0

1

1

0

0

1

2

3

 =MMULT(E2:G4;I2:K4)

3

0

1

0

0

1

0

4

5

6

4

0

0

1

7

8

9

 =MMULT(A2:C3;I2:K4)

5

Fig. 5.30 (S) Five matrix ranges, named cell ranges: A = [A2:C3], B = [E2:G4], C = [I2:K4], D

= [I2:J4], x = [I2:K2], y = [I3:K3]

System of equations

13. Which arguments does the excel function mmult(?) have, which multiplies two

matrices? What is the equivalent in Python? What are the relations between

the widths and heights of the two matrices?

14. You have set up a system of equations M · I = I , with known matrix M and known source vector S, but unknown vector I. By which instructions of type matrix operation do you get the coefficients of I in excel and Python? 39

Functional expressions

Calculate the values of the following expressions in excel:

15. arctan2(1;1), log10(0.001),

16. product(2;3;4;5), power(10;3).

17. round(3.74638,2), int(17.453), remainder(127; 2).

The functions in Questions 18 and 19 refer to Fig. 5.30 (S). What values result for:

18. sumproduct(x; y) , sumxmy2(B; C)? What are the corresponding expressions in Python?

19. mmult(B; C), mmult(A; D)? What are the corresponding expressions in Python?

20. You are to determine the derivative d y/d x of a function defined by x =

np.linspace (0,10,11) and y = x**2. How do you determine d y and

d x with list slicing? What are the first two elements of d y/d x, and over which values do they have to be plotted?

21. Define the arrays A, B, and C, in Python corresponding to the three ranges A2:C3, E2:G4, and I2:K4, respectively, in Fig. 5.30 (S)! Calculate B@ C and A@ C!

22. What are the two arguments in the function to calculate the angle of the vector

(1, 2) to the x axis in excel and Python?

39 excel: I = mmult (M); S). Python: I = npl.inv(M)@ S; npl stands for numpy.linalg, M and S are of type np.array.

[image: Image 60]

Superposition of Movements

6

We learn how to compose complicated movements from simple ones, namely

translations and rotations in a plane. The exercises honor famous scientists:

Bernoulli (cycloid), Foucault (pendulum) , and Steiner (moment of inertia).

In spreadsheets, we systematically use sliders and macros with which we

have familiarized ourselves in previous chapters.

6.1

Introduction: Translations and Rotations

Solutions of Exercises 6.2 (Python), 6.3 (Excel), 6.4 (Excel), and 6.5 (Python) can be found at the internet adress: go.sn.pub/or1CXF.

Simple movements

In this chapter, we put together movements in a plane from two simple movements:

 Translations T, straight-line movements in one direction, generally defined by a

two-dimensional velocity vector (v x, v y);

 Rotations R, rotations in the xy-plane, described by an angular velocity ω z and the radius r of the trajectory.

Polar coordinates

We use polar coordinates (r, ϕ) to describe rotations and convert them, e.g., for graphical representation in charts, to Cartesian coordinates (x, y):

 x = r · cos (φ); y = r · sin (φ)

(6.1)

Projectile motion, T-T (Exercise 6.2)

A projectile trajectory is composed of two linear movements. If friction is not taken

into account, these are a vertical one accelerated by gravity and a uniform horizontal

© Springer Nature Switzerland AG 2022

227

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_6

228

6

Superposition of Movements

one. We attach a velocity vector and its vertical and horizontal component to the

trajectory at a freely chosen point.

Cycloid, rolling curve, T-R (Exercise 6.3)

We calculate the trace of a point on a wheel rolling on a plane, resulting from a

translation of the wheel axis on a straight line and a rotation about the wheel axis,

with translation speed and angular speed being dependent on each other.

The resulting curve, called a rolling curve or cycloid, represents the brachistochrone (the fastest path to fall from one point to a lower point) , as shown by

Johann Bernoulli. This will be treated in the follow-up book Physics with Excel and

 Python, Using the Same Data Structure. Applications in the chapter “Calculus of

Variations”.

Foucault’s pendulum, T-R (Exercise 6.4)

What is the trace of a swinging pendulum on a rotating surface? It is obtained by

superposing the movement of the linear oscillation in the laboratory system with a

rotation of the base table on which the motion is recorded. Oscillation and rotation

are independent of each other.

This experiment has historical significance. Michel Foucault demonstrated with

a 67-m long pendulum suspended from the dome of the Pantheon in Paris that the

earth rotates against the fixed stars.

Swinging anchor, R-R (Exercise 6.5)

We consider an anchor in the form of a hanging T with three mass points attached,

one at each end of the T and one at the junction of the two lines. The mass points are

supposed to be connected by massless struts. We hang the rigid anchor at the upper

end of the stem or hold it at its center of gravity.

The anchor’s motion results from a superposition of the rotation of a selected

point of the anchor, e.g., the center of gravity, around the suspension point, and a

rotation of the anchor around the selected point. A rotational matrix describes this

motion.

We calculate the center of gravity of the anchor and, with Steiner’s theorem, 1 its moment of inertia when rotating around the upper end of the stem and when rotating

around its center of gravity.

Sound emitted from a moving source, T-T (Exercise 6.6)

In the last exercise of this chapter, we investigate the circular wavefronts emitted

from a moving acoustic source.

1 Also known as the parallel axis theorem or Huygens-Steiner theorem.

6.1

Introduction: Translations and Rotations

229

Animations

The movements treated in this chapter are well suited to be animated. The basic tech-

nique for this with FuncAnimation of the matplotlib.animation library

is explained in Sect. 6.2.5 in connection with the projectile trajectory.

6.2

Projectile Trajectory with Velocity Vectors (T-T)

We calculate and plot the trajectory of a projectile composed of two lin-

ear motions (T), a uniform horizontal one and a vertical one accelerated by

gravity. The parameters are launch height, angle, and speed. Vectors for the

horizontal, vertical, and total velocities are attached at three points to the

trajectory.

6.2.1

Projectile Trajectory and Velocity Vectors

Trajectory and attached arrows

In Fig. 6.1a, a projectile trajectory is shown with arrows representing velocity vectors attached for three different time points. The parameters are launch height and angle,

and speed. In Fig. 6.1b, two trajectories for different launch angles are displayed.

The trajectories are, in all cases, downwardly open parabolas. Figure 6.1b shows that maximum height and maximum distance depend on the launch angle.

4

4

aL=65° ; vL=5m/s;

y

y

aL=65° ; vL=5m/s;

velocity vectors

aL=25°; vL=5m/s

2

2

0

0

0

2

4

x 6

0

2

4

x

6

-2

-2

Fig. 6.1 a (left) Projectile trajectory, coordinates at different equidistant times; velocity vectors at three different times. b (right) Two trajectories for two different launch angles

230

6

Superposition of Movements

Our task is to plot a projectile trajectory with given values for launch height y L, angle α L, and velocity v L. In Fig. 6.1a, we have chosen y L = 2 m, α L = 65°, and v L

= 5 m/s. The time distance d t between the calculation points is 0.05 s.

Coordinates of the projectile trajectory

The coordinates of the parabola are calculated from

 vx = vLx with vLx = vL · cos (αL);

 vy = vLy − g · t with vLy = vL · sin (αL) (6.2)

as

 x(t) = v L x · t

(6.3)

 y(t) = y L + vLy · t − 1 g · t 2

(6.4)

2

In the x-direction, there is a uniform motion with the horizontal initial velocity v Lx. The movement in the y-direction is the sum of a uniform motion with velocity v Ly, determined by the initial velocity and a downward motion accelerated by gravity.

Tasks For a given speed and launch height, change the angle such that (a) the

height and (b) the width reached will be maximum!

Calculate the impact velocity for the two trajectories in Fig. 6.1b!

Determine the maximum height and width analytically and compare them with

the value of the simulation!

Attach the tangential vector of the velocity and the decomposition of this vector

into x and y components at the point of the trajectory corresponding to a specific time t = tt! The arrow representing the velocity vector (v Xtt, v Ytt) is drawn in the xy-plane

from (x tt , y tt) to (x tt , y tt) + (V Xtt , VYtt) · scal (6.5)

The lengths of the arrows in the figure are to be adapted to the diagram with a

scaling factor scal.

6.2.2

Data Structure and Nomenclature

 y L, a L, v L

launch height, angle, speed

 v Lx, v Ly

horizontal and vertical components of v L

 t

equidistant (d t) series of instants of time

 x(t), y(t)

trajectory as a function of t

 tt

list of three specific times

 x tt, y tt

position at tt

[image: Image 61]

6.2

Projectile Trajectory with Velocity Vectors (T-T)

231

A

B

C

D

E

F

B

C

D

E

F

1

Time interval

dt

0.05 s

11 ="aL="&aL&"° ; vL="&vL&"m/s;"

2 Prespecifications

12 aL=65° ; vL=5m/s;

3

Launch height

yL

2 m

4

Launch angle

aL

65 °

5

Launch speed

vL

5.00 m/s

13 =B15+dt =vLx*t

=yL+vLy*t-g/2*t^2

6

Gravitational acceleration

g

9.81 m/s²

14

t

x

y

7 Deduced therefrom

15

0

0.00

2.00

8

vLx

2.11 m/s

16

0.05

0.11

2.21

9

vLy

4.53 m/s

44

1.45

3.06

-1.74

Fig. 6.2 a (left, S) The parameters for the task are defined and used to calculate the horizontal, v Lx, and vertical, v Ly, initial velocities. The launch angle α L is set with a slider. b (right, S) Continuation of a. Coordinates of the parabola (t, x, y) in equidistant time steps d t in columns B, C and D; the label for the figure is generated in B12 with the formula reported in B11

 v Xtt, v Ytt

velocity vectors at tt (3 instances)

 scal

scaling factor [s] for the velocity vectors in the xy-plane

 x Att, y Att

coordinates of the tips of the arrows representing the vectors.

6.2.3

Spreadsheet

Trajectory

A possible spreadsheet calculation is shown in Fig. 6.2 (S).

The freely selectable parameters initial height, angle, and speed of the launch are

in C3:C6. From this, the initial horizontal and vertical velocities, v Lx, and v Ly, are calculated in C8:C9.

Questions

Which formulas are in C8 and C9 of Fig. 6.1a (S)? 2

How is the legend “aL = ...” in Fig. 6.2b (S) generated? 3

Velocity-vector coordinates

Task Calculate the x- and y-components of the velocity for a given time tt! In Fig. 6.3 (S), this is done for tt = 0.818 s, a time set with a slider.

In Fig. 6.3a, the coordinates of the arrows representing the velocity vector at t =

 tt and its horizontal and vertical components are calculated according to Eq. 6.2.

This is repeated in Fig. 6.3b for two other time points. The resulting arrows are displayed in Fig. 6.1a. As of excel 2007, line segments in charts can be provided with arrowheads (excel 1019: format data series/fill & line/end arrow

type), and consequently our vector arrows.

2 vLx = C8 = [= vL*cos(aL/180*pi())]; vLy = C9 = [= vL*sin(aL/180*pi())].

3 See cell B11! Concatenation of text and variables.

[image: Image 62]

232

6

Superposition of Movements

H

I

J

K

L

H

I

J

K

14 velocity vectors

27

0.1

0.21

2.40

15 scaling factor

scal

0.2

28

0.1

0.63

3.11

16

tt

xAtt

yAtt

29

17

818

30

0.21

2.40

18

0.818

1.73 =vLx*tt

2.42 =yL+vLy*tt-g/2*tt^2

31

0.63

2.40

19

0.818

2.15 =I18+scal*vLx

1.73 =K18+scal*(vLy-g*tt)

32

20

33

0.21

2.40

21

1.73 =I18

2.42 =K18

34

0.21

3.11

22

2.15 =I19

2.42 =K18

35

23

36

1.1

2.32

1.05

24

1.73 =I18

2.42 =K18

37

1.1

2.75

-0.20

25

1.73 =I18

1.73 =K19

38

26

39

2.32

1.05

Fig. 6.3 a (left, S) Coordinates (in I18:K19) of an arrow representing a velocity vector and its vertical and horizontal components (I21:K25) at time tt, defined in H18; tt, x Att, and y Att are the names for the areas H18:H42, I18:I42, and K18: K42, containing the coordinates of the three vectors in Fig. 6.1a. b (right, S) Continuation of a. Another velocity vector at another time, this time set directly in H27 without a slider; the formulas are structurally the same as those reported in J18:J25

and L18:L25, but with references to different cells

Questions

concerning Fig. 6.3 (S):

The time at which velocity vectors are calculated and attached to the trajec-

tory is set with a slider. What is the linked cell of this slider, and what

are probable min and max? What are the formulas in H18 and H19? 4

Change the time tt with the slider so that the height y = 0 is reached for the discharge height and speed in Fig.6.1a and a launch angle 65°. At what time does this occur, and at what speed does the projectile hit the ground? 5

What is the purpose of the quantity scal in the formulas in row 15? How

big is it, and what physical unit does it have? 6

An Excel trick

When you want to specify vectors for several instants of time, you can copy the

range H18:K25 in Fig. 6.3a if the formulas are written with relative and absolute cell references so that they remain valid when copied. In Fig. 6.3 b (S), the formulas have been copied into the area H27:K34. Regarding cells H27:H28, corresponding

4 In Fig. 6.3a (S), H17 is the cell linked to the slider (linked cell). min = 0, max = 1500, as can be estimated from the position of the rider and the number in H17. H18 = H17/ 1000; H19 =

H18.

5 The projectile reaches the ground at t i = 1.25 s and hits with v = 8.01 m/s, calculated with.

2

 v =

 v 2 + v

0 x

0 y − g · ti

6 Scal = 0.2 s. This parameter determines the length of the velocity vectors in their representation in the plane (x [m], y [m]); see also Exercise 5.5. It occurs in an equation of the kind x [m] = x 0

[m] + scal * v [m/s]; scal has the unit [s].

6.2

Projectile Trajectory with Velocity Vectors (T-T)

233

to H18:H19, the desired time is entered directly into H27 and H36. As the range

H18:K25 has been copied twice, vectors are attached at a total of three points.

6.2.4

Python

Projectile trajectory

In the left cell of Table 6.1, the parameters of the exercise are specified. A label lbl1

for the legend in a figure is generated. In the right cell, initial horizontal and vertical velocities are determined and the projectile trajectory (x(t), y(t)) is calculated.

Drawing arrows that represent vectors

Table 6.2 draws a figure that is similar to Fig. 6.1a. The time instants for the three velocity vectors are specified in list t 2. The coordinates of the arrows representing these vectors are calculated in a for-loop.

In Python, in order to draw an arrow, we have to make use of the function

plt.arrow, which requires, among others, the initial position (x 0, y 0) and the length of the vectors in the x- and y-directions as input. As we prefer to enter begin-and end-points, we have defined a new function ArrowP, reported in Table 6.3, with two positional arguments P 0 and P 1, and some keyword arguments with default values.

 ArrowP has two positional arguments, tail point P 0 and head point P 1, and three keyword arguments, ls = line style, lw = line width, and hw = head width. In the current situation, the default head width is too large and we have specified hw = 0.1

in the function calls (lines 30–32 in Table 6.2).

Table 6.1 Projectile trajectory, with the same data structure as in the spreadsheet of Fig. 6.2

1

dt=0.05 # Time interval

8

Deduced

2

Prespecified

9

aL*=np.pi/180 # Radian

3

yL=2.0 # Launch height

10

vLx=vL*np.cos(aL)

4

aL=65 # Launch angle

11

vLy=vL*np.sin(aL)

5

vL=5.0 # Launch speed

Projectile trajectory:

6

g=9.81 # Gravit. accel.

12

t=np.arange(0,1.45+dt,dt)

7

lbl1="aL="+str(aL)+";

13

x=vLx*t

vL="+str(vL)

14

y=yL+vLy*t-g/2*t**2

234

6

Superposition of Movements

Table 6.2 Python program for drawing arrows representing velocity vectors at the trajectory; the loop in the right cell corresponds to Fig. 6.3

15

FigStd('x',0,6,1,'y',-2,4,1)

16

plt.plot(x,y,'kD-',ms=2,label=lbl1)

17

plt.legend()

18

19

Velocity vectors at three time instants t2

20

t2=[0.1,0.8,1.1]

21

scal=0.2

22

for tt in t2:

23

vXtt=vLx # Constant horizontal velocity

24

vYtt=vLy-g*tt # Uniform vertical motion

25

xtt=vXtt*tt

26

ytt=yL+vLy*tt-g/2*tt**2

27

P1=[xtt,ytt] # Foot position of arrow

28

Ax=xtt+vXtt*scal # Tip position of arrow

29

Ay=ytt+vYtt*scal

30

ArrowP(P1,[Ax,Ay], hw=0.1)

31

ArrowP(P1,[Ax,ytt],hw=0.1)

32

ArrowP(P1,[xtt,Ay],hw=0.1)

Table 6.3 User-defined function for drawing arrows

1

def ArrowP(P0, P1, c="k", ls='-' ,lw=1, hw=0.4):

2

c has to be given as c="k", not c='k' (2020)

3

(x0,y0)=P0

4

(x1,y1)=P1

5

plt.arrow(x0,y0,x1-x0,y1-y0,

6

length_includes_head=True,

7

head_width=hw, fill=False,

8

linestyle=ls, color=c, linewidth=lw)

6.2.5

Animation of Figures with FuncAnimation7

We are going to set up an animated version of Fig. 6.1a by extending the program presented in Table 6.1 that provides all data x(t), y(t), v x(t), and v y(t) that are accessed in the following program as global arrays.

Creating a figure and a subplot object

In Table 6.4, the sublibrary animation is imported from matplotlib. A figure object fig is set up and its default font size is set to 7 points (lines 4 and 5). In general, an array of r x c subplots can be introduced into the frame of a figure. The instruction is add_subplot(rcn) with r and c specifying the number of rows and columns. The index n indicates the individual subplot, starting at 1 in the upper left 7 Matplotlib.pyplot.subplots—Matplotlib 3.4.1 documentation

[image: Image 63]

6.2

Projectile Trajectory with Velocity Vectors (T-T)

235

Table 6.4 Setting up a figure and a subplot object

1

%matplotlib notebook

2

import matplotlib.animation as animation

3

cm = 1/2.54 # Centimeter in inches

4

fig=plt.figure(figsize=(9*cm,9*cm))

5

plt.rcParams.update({'font.size': 7})

6

ax=fig.add_subplot(111) # 1 row, 1 column, 1=top left

7

ax.set_xlim(0,6)

8

ax.set_ylim(-2,4)

9

ax.set_xlabel('x [m]',size=9)

10

ax.set_ylabel('y [m]',size=9)

Fig. 6.4 Presenting the objects arr, dot, and ln a (left) with toy data, b (right) at the end of the animation

corner and increases to the right. We need only one subplot, so the instruction is

add_subplot(111). Resulting figures are shown in Fig. 6.4 with different plot objects.

%matplotlib is a magic function that renders the figure in a notebook instead

of displaying a dump of the figure object. 8

Creating plot objects

We first create some toy data. In Table 6.5, three two-dimensional print objects arr, dot, ln are created. In Table 6.5a, the lists provided for the x and y data are empty but the styles (line or dot) are already specified. Furthermore, a legend object leg is created with captions for the three plot objects. In Table 6.5b, the three plot objects are provided with some toy data. Running this cell, yields Fig. 6.4a.

8 https://stackoverflow.com/questions/43027980/purpose-of-matplotlib-inline.

236

6

Superposition of Movements

Table 6.5 Creating plot objects a (top) with empty lists b (bottom) with toy data, result shown in Fig. 6.4a

11

Creating plot objects

12

arr,=ax.plot([],[],'k-',lw=0.5)

13

dot,=ax.plot([],[],'ko',ms=3)

14

ln, =ax.plot([],[],'k--',lw=1)

15

leg = ax.legend(['arr','dot','ln'])

16

17

leg.set_title('trajectory',prop={'size':6})

18

arr,=ax.plot([1,2,1,1,1,2],[0,0,0,-0.5,0,-0.5],

'k-',lw=0.5)

19

dot,=ax.plot([3],[3],'ko',ms=3)

20

ln, =ax.plot([2,3,4,5],[2,1,0,-1],'k--',lw=1)

21

plt.savefig("PhEx 6-2 Trajectory initial",dpi=1200)

Making an animation

We get a “living figure” by applying the function FuncAnimation

that creates an animation by repeatedly calling a function.9 Its variables are FuncAnimation(fig, func, frames = None, interval = 200, init func = None, …). Fig is a figure object . func is a callable, or, more precise, a function that refreshes the plot objects for every frame. The first argument in func will be the next value in frames. Interval specifies the delay between successive frames in ms.

In Table 6.4, we have specified the figure as fig and in Table 6.7a, the refresh function as animDotLine. The delay time is set to 100 ms. The frames parameter is given as an integer that gives the index of the position and velocity arrays up to a

certain time. The final result is shown in Fig. 6.4b (from Table 6.6).

The refresh function animDotLine is given in Table 6.7a. The variable in the function header is taken as index for the global arrays for position and velocity.

The plot objects are refreshed with the instruction set_data. For the projec-

tile (dot) it is just the current position (one point) . The trajectory itself (ln) is represented by the curve traversed so far; the data are obtained by appending the

current position to the lists x Lin and y Lin. The data x Arr and y Arr for the velocity arrows are calculated in another function coArr, reported in Table 6.7b.

We take the plot objects in this exercise as prototypes for other exercises:

 dot

single point,

 arr

new picture,

 ln

continued curve.

9 https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimation.html

6.2

Projectile Trajectory with Velocity Vectors (T-T)

237

Table 6.6 Creating an animation object recurring to the figure object fig and the function animDotLine; plotting arrows for indices in a list (here only one element)

1

xLin, yLin =[],[]

2

xArr, yArr =[],[]

3

scal=0.2

4

dotAnim=animation.FuncAnimation(fig,animDotLine,

frames=int(len(t)*0.6),interval=100, repeat=False)

5

6

for k in [2,11,20]:

7

xArr,yArr=coArr(k)

8

for i in np.arange(0,5,2):

9

ArrowP([xArr[i],yArr[i]],[xArr[i+1],yArr[i+1]])

10

plt.show()

11

plt.savefig("PhEx 6-2 Trajectory Anim partly",dpi=1200)

Table 6.7 a (left) Refresh function in the animation b (right) Function called in animDotLine for each frame

1

def animDotLine(i):

10

def coArr(i):# Coeff. arrow

2

xLin.append(x[i])

11

xi,yi=x[i],y[i]

3

yLin.append(y[i])

12

vxi,vyi=vx[i],vy[i]

4

dot.set_data(x[i],y[i]) 13

xArr=[xi,xi+vxi*scal]

5

ln.set_data(xLin,yLin)

2 elements

6

xArr,yArr=coArr(i)

14

yArr=[yi,yi+vyi*scal]

7

arr.set_data(xArr,yArr) 15

xArr+=(xi,xi+vxi*scal)

8

x,y from Table 6.1

4 elements

9

xLin,yLin from Table 6.6 16

yArr+=(yi,yi)

17

xArr+=(xi,xi)

6 elements

18

yArr+=(yi,yi+vyi*scal)

19

return xArr, yArr

Questions

The font size for the axis titles in Fig. 6.4b seems to be too small. What is the reason and how can you change it? 10

How to provide the velocity vectors with arrow heads? 11

10 The default font size was set with plt.rcParams.update({font.size’:7}). With

such an instruction you can change the whole font, not only its size.

11 Use unit-line and perpendicular vectors, see Chap. 5.

238

6

Superposition of Movements

Does the time development of the animation reflect the true development? 12

In this exercise and most easily in all other exercises, all coordinates of the

plot objects are calculated in the main program and stored in arrays that are then

accessed for the animation. The animation is thus an addition to the main program.

The advanced programmer can calculate the coordinates on the run, individually

and temporarily for every frame.

6.3

Cycloid, Rolling Curve (R-T)

We consider the movement of a point fixed on a wheel rolling along a straight

horizontal line. Viewed from the laboratory system, it is composed of a rota-

tion about the wheel axis and a uniformly progressing translation of the axis

parallel to the line. The speed of the point depends on its current altitude

above the line.

6.3.1

Trace of a Writing Point Fixed at a Rolling Wheel

We are going to examine the movement of a point (“writing point”) on a wheel

that rolls along a straight line in a plane as, e.g., shown in Fig. 6.5. The movement of the rolling wheel is composed of a rotation (R) about its axis and a translation

(T) of the axis parallel to the plane (“the road”). Rotation period T W of the wheel and velocity v A of its axis are related as follows:

 vA = 2 πrW with r W = radius of the wheel

(6.6)

 TW

10

[m]

trace of point

y

5

wheel at t=0

wheel at t=tt

0

-10

0

10

20

30

40

50

x [m]

Fig. 6.5 Trace of a writing point on a wheel rolling along a straight line, always with the same time interval between two adjacent marks

12 The time development of the animation reflects the true time development because the frames variable i is proportional to the time.

6.3

Cycloid, Rolling Curve (R-T)

239

During a circulation period T W, the wheel unrolls once on the road so that the

axis covers a distance 2π r W, the length of the circumference.

For the coordinates (x P, y P) of the writing point and its speed v T along its trajectory, the following equations hold:

xP = xArA + xC = rp · cos (ωWt) + xA

y =

=

P

yArA

rP · sin (ωWt)

(6.7)

 s

 x2 + y2

vt =

=

(6.8)

 t

 t

The index “ArA” designates rotation around the center (the axis), and x A the

translation of the axis.

Tasks Represent the wheel and the writing point graphically at any time, to be

set with a slider in the spreadsheet! Set-up a corresponding Python program with

animation!

Show the trajectory y = y(x) of the writing point in the same diagram!

Determine the writing point’s speed along its trajectory by numerical differen-

tiation!

Speed of the writing point

The speed of a writing point on the wheel’s rim along its trajectory is shown in

Fig. 6.6a, together with its average speed.

3.2

2.5

2.0

2.4

vP

A 1.5

/v

1.6

v Av 1.0

0.8

vt

(1, 1.27)

0.5

vAv

0.0

0.0

0.0

0.5

1.0

1.5

2.0

0

10

20

30

40

t [s]

r /r

P

W

Fig. 6.6 a (left) Speed v P of a point on the rim of the wheel in [m/s] as a function of time (r P =

 r W = 5 m). b (right) Mean trajectory velocity v Av of the point relative to the velocity v A of the axis, as a function of the distance r P of the point P to the wheel axis relative to the radius r W of the wheel

240

6

Superposition of Movements

Questions

At which points of the wheel is the writing point’s speed minimum and at which

is it maximum? 13

How do you calculate the speed v T(t) of the writing point along its trajectory numerically from x P (t) and y P (t) at time t, when the distance between the interpolation points is t? 14

Over which t value is the numerically calculated path velocity to be

plotted? 15

What is the orbital period of the wheel in Fig. 6.6a? 16

What is the speed v A of the axis in Fig. 6.6a? 17

When the writing point touches the ground, its speed disappears, here, at T =

10 s and 30 s. Its speed is maximum (v = 2 v Axis = π m/s) when it is at the rotating wheel’s highest point.

The average speed of the writing point is indicated in Fig. 6.6a by the horizontal dashed line. To get the average speed numerically, it is essential to average over

whole cycle times, e.g., over two cycle times, as in Fig. 6.6a.

The average speed depends on the distance of the writing point from the axis

of the wheel. In Fig. 6.6b, the average speed of the point relative to the speed of the axis is plotted as a function of the distance of the writing point from the axis.

When the writing point is on the axis, its average speed is equal to the speed of

the axis. When it is on the rim, the speed ratio is 1.273 = 4/π.

Task Determine the point’s mean path velocity as a fraction of the axis velocity

for different distances of the point to the axis as in Fig. 6.6b!

Several trajectories with a procedure

Task Vary the distance of the writing point r P from the axis at time t = 0

systematically, e.g., as in Fig. 6.7. The distance can be greater than the radius, and also negative. In excel, use a rep-log procedure; in Python, define a function

with r P as the argument!

13 Minimum speed: point on the road (v = 0); maximum speed (v = 2 v Axis): at the highest point of the wheel.

14 vT = vx ; vy = ((x(t) − x(t − t))/t; (y(t) − y(t − t))/t) then | vT | = v 2 +

 x

 v 2 y.

15 The speed is plotted over the center of the interval for which the velocity is numerically calculated.

16 T = 20 s, period of the speed profile, speed of the axis = 2·π · 5/20 = 1,57 [m/s].

17 Speed of the axis v

 m

 A = 2 π · r A = 2 π ·5 = π

 Tw

20

2

 s

6.3

Cycloid, Rolling Curve (R-T)

241

16

rP = 9 to -3

12

y

8

4

0

0

10

20

30

40

50

60

x

-4

Fig. 6.7 Trajectories of writing points on a wheel with various distances r P to the axis Brachistochrone

Johann Bernoulli discovered, in 1696, that cycloids solve the brachistochrone prob-

lem. A brachistochrone curve is a trajectory on which a body in the homogeneous

gravitational field of the earth glides fastest from a starting point to a lower endpoint.

To describe such trajectories with our data structure, we would have to set ω W

positive and y R = − r R, so that the wheel, hanging from a ceiling, unrolls to the right.

The resulting curve is essentially part of one of the curves in Fig. 6.7 reflected at the x-axis. It indeed has the property of a brachistochrone, as we shall see in the chapter

“Variational Calculus” of the follow-up textbook “Physics with Excel and Python.

Applications”.

6.3.2

Data Structure and Nomenclature

 r W

radius of the wheel

 r P

distance of the writing point to the wheel axis

 T W, w W

cycle time, and angular velocity of the wheel

 v A=(2π r W)/ T W

velocity of the axis

 t

series of equidistant (d t) time instants

 t C

center of the time intervals of t

 x ArA, y ArA

rotation of the point around the axis

 x A

horizontal position of the axis

 x P, y P

trace of the writing point in the xy-plane

 v P

velocity of the writing point along its trajectory

 tt

one specific time point.

242

6

Superposition of Movements

A

B

C

D

E

F

1 Prespecifications

2

Radius of the wheel

rW

5.00 m

3

Distance of the point from the axis

rP

5.00 m

4

Cycle time of the wheel

TW

20.00 s

5

Time interval

dt

1.00 s

6 Calculated therefrom

7

Angular frequency

wW

-0.31 1/s

=-2*PI()/TW

8

Velocity of the axis

vA

1.57 m/s

=2*PI()*rW/TW

Fig. 6.8 (S) Parameters for the rolling curve in Fig. 6.5

6.3.3

Excel

Parameters of the motion

In Fig. 6.8 (S), the movement parameters are specified in named cells, in particular, the radius r W and the cycle time T R of the wheel. From the given parameters, we derive angular frequency ω W, height y P, and velocity v A of the axis. The distance of the writing point to the axis of the wheel r P need not be equal to the radius r R

of the wheel. It may be bigger or smaller. The wheel will move on the plane to the

right, rotating clockwise. The angular frequency ω R, with which the polar angle is calculated, is therefore negative.

Questions

From which axis is the angle ϕ of the plane polar coordinates measured? 18

What is the angle ϕ when the writing point is at the highest point of the

wheel? 19

What is the angle ϕ when the writing point is at the height of the axis? 20

What sign does ω W have in a right-handed coordinate system when the

wheel rotates clockwise? 21 Compare with Fig. 6.8 (S)!

Trace of the writing point

In Fig. 6.9 (S) , the coordinates (x P y P) of the writing point are calculated for 41

instants of time, with intermediate calculations for the rotation (x ArA, y AA) of the point about the axis of rotation (C:D) and for the translational motion (x A) of the axis (column E).

18 The angle ϕ is measured from the positive x axis.

19 ϕ = π/2 = 90°, 90° + 360°, 90° + 360° + 360°, …

20 ϕ = 0 = 0°.

21 The angular frequency is negative when the point runs clockwise.

6.3

Cycloid, Rolling Curve (R-T)

243

B

C

D

E

F

G

H

I

J

9

vAv

1.99 m/s

=AVERAGE(vP)

10

wheel at t=0.5

trace of point

1.268

=vAv/vA

2)/dt

F13)^2+(yP-G13)^

11 =B15+dt =rP*COS(wW*t+PI()/2)

=rP*SIN(wW*t+PI()/2)+rW

=vA*t

=xArA+xA=yArA

=SQRT((xP-

=(t+B13)/2

12

t

xArA

yArA

xA

xP

yP

vP

tC

13

0.5

0.78

9.94

0.79

1.57

9.94

14

1.5

2.27

9.46

2.36

4.63

9.46

3.10

1

53

40.5

0.78

9.94

63.62

64.40

9.94

3.14

40

Fig. 6.9 (S) Coordinates of a writing point when unrolling the wheel; rotation of the point around the wheel axis (x ArA; y ArA); translation of the axis of the wheel (x A); addition of the two movements yields (x (t); y (t)); speed along the path v t

The corresponding equations are

 xar A(t) = rP cos (ωt) + xR; yar A(t) = rP sin (ωt) + rW

(6.9)

Here, it is assumed that, at t = 0, the writing point is vertically above the axis.

An example can be found in Fig. 6.5. You can extend the solution by allowing the selected point to assume any position at t = 0 by choosing the phase shift within the circular functions!

In column E, there is the displacement of the x-coordinate of the center of the

wheel over time (translation in the x-direction). The coordinates of the rotating point in the laboratory system are in columns F and G, calculated from the superposition (component-wise addition of the Cartesian coordinates) of the rotation

about the wheel axis (x arA, y arA) and the translation of the axis (x M, 0): x(t) = x A + x arA y(t) = y arA

(6.10)

The resulting trajectory is called a cycloid (rolling curve).

Question

In which cell of Fig. 6.9 (S) is the mean path velocity calculated? 22

Task Determine the mean path speed of the point relative to the axis’ speed for

different distances of the point to the axis! A typical evaluation can be seen in

Fig. 6.6a, b. It is best to use a VBA rep-log procedure that varies the distance and logs the average speed!

22 The mean speed v Av is calculated in H9 of Fig. 6.9 (S).

[image: Image 64]

244

6

Superposition of Movements

Fig. 6.10 (S) Position of the

K

L

M

N

O

P

point (x(t 2); y(t 2)) at time tt;

10

point at t=tt

axis at tt wheel at t=tt

wheel at t = 0 (x rad) and tt =

 t 2 (x t2); tt is set with the

slider. The formulas are the

same as in Table 6.10

11

=rP*COS(wW*tt+PI()/2)+xAtt

=rP*SIN(wW*tt+PI()/2)+rW

=vA*tt

=xArA+xAtt

12

tt

xPtt

yPtt

xAtt

xWtt

13

15

18.56

5.00

23.56

24.34

14

25.83

15

27.10

53

24.34

Wheel at time tt

In Fig. 6.5, the wheel is shown at t = 0 and at a second time tt. In Fig. 6.10 (S), the coordinates of the wheel are determined for tt specified with a slider. The writing point has the coordinates (x Ptt, y Ptt). The coordinates of the wheel are (x Wtt, y W), with y W being the y-coordinates calculated for t = 0. If you put the pointer into the right part of the slider and keep it pressed down, the wheel rolls to the right.

6.3.4

Python

The Python program exhibits the same structure as the formula network in the

spreadsheet. In Table 6.8, the parameters of the task are set.

In Table 6.9, the wheel’s coordinates at the start and the trace of the writing point are calculated. The velocity v P = d s/d t along the trace of the point is calculated in line 15. The length d s of the trace sections is obtained by slicing x P and y P.

The coordinates of the wheel and the writing point at a specific time t = tt

are obtained with the function WheelAt in Table 6.10, which has only tt as an argument and resorts otherwise to global variables.

The plot program for yielding a figure like Fig. 6.5, with the arrays calculated in Table 6.9, is given in Table 6.11. The coordinates for the wheel and the writing point at a specific time t = tt are obtained by calling the function WheelAt(...) in Table 6.10.

Table 6.8 Setting the parameters for the rolling wheel, the same as in Fig. 6.8 (S) 1

Prespecified:

2

rW=5.0 # Radius of the wheel

3

rP=5.0 # Distance of the point from the axis

4

TW=20 # Period of wheel rotation

5

dt=1.0 # Time increment

Calculated therefrom:

6

wW=-2*np.pi/TW # Angular frequency

7

vA=2*np.pi*rW/TW # Velocity of the axis

6.3

Cycloid, Rolling Curve (R-T)

245

Table 6.9 Calculation of the coordinates of the wheel at its start and of the trace of the writing point

8

Coordinates of point vs. time:

9

t=np.arange(0,40+dt,dt)

Coordinates of the wheel at start:

10

xArA=rW*np.cos(wW*t+np.pi/2)

11

yArA=rW*np.sin(wW*t+np.pi/2)+rW

12

xA=vA*t # From velocity of axis

13

xP=xArA/rW*rP+xA # Writing point

14

yP=rP*np.sin(wW*t+np.pi/2)+rW

Veloc. along the trajectory of the point:

15

vP=np.sqrt((xP[1:]-xP[:-1])**2+(yP[1:]-yP[:-1])**2)/dt

16

tC=(t[1:]+t[:-1])/2 # Valid for vP

Table 6.10 Function for specifying the coordinates of the wheel and the writing point at t = tt 1

def WheelAt(tt):

Wheel and point at t = tt:

2

xAtt=vA*tt # Position of axis

3

xPtt=rP*np.cos(wW*tt+np.pi/2)+xAtt

4

yPtt=rP*np.sin(wW*tt+np.pi/2)+rW

5

xWtt=xArA+xAtt # x Coordinates of the rim

6

return xAtt,xPtt,yPtt,xWtt

Table 6.11 Plot program yielding a figure like Fig. 6.5

1

FigStd('x',-10,50,10,'y',0,10.0,2.5,xlength=12,ylength=4)

2

plt.plot(xArA,yArA,'k-') # Wheel at t = 0

3

plt.plot(xP[0],yP[0],'ko') # Point at t = 0

4

plt.plot(xP,yP,'k-') # Trace of point

5

6

xAtt,xPtt,yPtt,xWtt=WheelAt(tt=15)

7

plt.plot([xP[0],xAtt],[rW,rW],'ko', fillstyle='none')

8

Pos. of axis

9

plt.plot(xWtt,yArA,'k--') # Wheel

10

plt.plot(xPtt,yPtt,'ko') # Selected point

11

plt.axis('scaled')

246

6

Superposition of Movements

A meaningful animation could comprise the functions dot for the writing point,

 ln for the cycloid, arr for the wheel from Sect. 6.2.5.

6.4

Foucault’s Pendulum (T-R)

We calculate the trace of a pendulum swinging in the laboratory system (T)

on a rotating table (R).

6.4.1

A Lecture Experiment

In a lecture experiment about Foucault’s pendulum, a thread pendulum swings over

a rotating plate, writing a trace thereon. In the laboratory system, the pendulum

swings in a plane, with its suspension point being located in the axis of rotation

of the plate.

Figure 6.11a shows the trace of the pendulum for a period of oscillation of T p

= 1.2 s and a rotation time of the table of T r = 9 s. The partial circle “Stylo”

represents the trace of a pen, resting in the laboratory system, along the rotating

plate to indicate the sense of rotation.

2

2

Trace pend. on rot. disc

Trace pend. on rot. disc

c

Trace stylo on rot. disc

c

Trace stylo on rot. disc

is

is

d

d

n

1

n

1

yo

yo

0

0

-2

-1

0

1

2

-2

-1

0

1

2

-1

-1

-2

-2

x on disc

x on disc

Fig. 6.11 a (left) Traces of a pendulum oscillating in the laboratory system (T P = 1.2 s) and of a stylus at rest in the laboratory system on a rotating plate (T T = 9 s), the suspension point of the pendulum being in the axis of rotation of the plate; the unit length is 1 cm, as explained in the main text. b (right) Closed track of a pendulum whose suspension point is not in the axis of rotation (T P

= T T/9)

6.4

Foucault’s Pendulum (T-R)

247

Questions

A thread pendulum is swinging with a period of 12.7 s. How long is the

pendulum? 23

In what period of time does the earth rotate by 1°? 24

What are the amplitude of the pendulum and the horizontal displacement of

the suspension point against the rotation axis in Fig. 6.11b? 25

Under what condition do closed tracks occur in the lecture experiment on

Foucault’s pendulum? What is the concrete condition in Fig. 6.11b? 26

For simplification, we assume that the trace of the pendulum on the plate at rest

or, more generally, in the laboratory system is described by

 x p = A p · cos (ωpt)

(6.11)

Then, we let the plate rotate around its vertical axis. The trace of the pendulum

on the rotating table is composed of the oscillation in the x-direction (T, in the laboratory system)

and an angular displacement on the table according to its

rotation (R). The equations for the conversion of the coordinates (x L, y L) in the laboratory system into the coordinates (x T, y T) of the rotating table are xT = xP · cos (ωT t) and yT = x p · sin (ωT t) (6.12)

where ω T is the angular frequency of the rotating table. These equations are a

special case of the general form for a counter-clockwise rotation by φ applying a rotational matrix:

 xT

= cos φ − sin φ · xP

(6.13)

 yT

sin φ cos φ

 yP

Where have all the units gone?

Tim In Fig. 6.11, we have not specified any physical units for the lengths.

Alac That’s no problem: Times in seconds, lengths in meters. That’s standard.

√

23 T = 12,7 s, ω = 2 π/T = g/l, → length l of the pendulum = 40 m.

24 The earth rotates by 360° in one day, → in 4 min, by 1°; t = 1°/360° * 24 * 60 * 60 s = 240 s.

25 The deflection of the pendulum is from 0.5 cm to 1.5 cm. The suspension point of the pendulum is shifted by a distance 1 cm against the center. The amplitude is 0.5 cm.

26 The ratio of the period of the pendulum and the circulation time of the plate must be a natural number. In Fig. 6.11b, the ratio is 9 to 1. The pendulum makes nine oscillations during one turn of the plate.

248

6

Superposition of Movements

Mag Concerning calculation, everything is clear. But does that make sense

physically? How long is the pendulum?

Tim From the oscillation period, T P = 1.2 s, as stated in the caption, it follows that l = 36 cm.

Mag How does the maximum swing fit in with that?

Alac I admit: A deflection of 1.8 m does not fit with the pendulum length. So,

let’s decide that the pendulum should be deflected by just 1.8 cm.

Mag So, the unit of length in Fig. 6.11 is 1 cm. Indeed, this is experimentally difficult to record, but at least our calculation is consistent.

Tasks Create a spreadsheet calculation/a Python program for the experiment

described above and vary the pendulum’s oscillation duration and the table’s cycle

time!

Check if the pendulum track is as expected (a) when the rotation period of the

table is large compared to the period of oscillation and (b) when the oscillation

period and rotation period are identical!

Change the calculation for the case in which the table’s rotational axis is still in

the plane of the swinging pendulum but no longer passes through the suspension

point of the pendulum! An example can be seen in Fig. 6.11b.

6.4.2

Data Structure and Nomenclature

 A p

amplitude of the pendulum

 T p, w P

oscillation period of the pendulum and corresponding angular velocity

 T r, w r

rotation period of the table and corresponding angular velocity

 x Sh

shift of the suspension point with respect to the rotational axis

 t

series of equidistant (d t) time instants

 x P

position of the pendulum at t in the lab system

 x T, y T

trace of the pendulum on the table

 x St, y St

trace of a stylus at rest in the lab system on the table, to check the

direction of rotation of the table.

6.4.3

Excel

Setting the parameters

The parameters for the movement in Fig. 6.11 are specified in Fig. 6.12 (S). The quantity x Sh (in C6) determines the displacement of the suspension point against the plate’s axis of rotation.

6.4

Foucault’s Pendulum (T-R)

249

A

B

C

D

E

1 Prespecifications

2

Amplitude of pendulum

Ap

1.50

0.50

3

Period of pendulum

Tp

1.20

1.00

4

Period of rotation

Tr

9.00

9.00

5

Time interval

dt

0.0173

0.09

6

Suspension point vs rot. axis

xSh

0.00

1.00

7 Calculated therefrom

8

Angular frequency pendulum

wP

5.24 =2*PI()/Tp

9

Angular frequency rotating disc

wR

-0.70 =-2*PI()/Td

Fig. 6.12 (S) Specifications for the movement presented in Fig. 6.11; values in column C for partial picture a, those in column E for partial picture b

B

C

D

E

F

G

H

)

)

 (wR*t)

 S(wR*t)

12 =B14+dt =Ap*COS(wP*t)+xSh

 =xP*COS(wR*t

 =xP*SIN =Ap*CO

 =Ap*SIN(wR*t

13

t

xP

xT

yT

xSt

ySt

14

0.000

1.50

1.50

0.00

1.50

0.00

15

0.017

1.49

1.49

-0.02

1.50

-0.02

174

2.768

-0.52

0.18

0.49

-0.53

-1.40

Fig. 6.13 (S) In column C, the pendulum motion x P (t) is calculated in the laboratory system. In columns D and E, this movement is transformed (to x T, y T) into the coordinate system of the rotating table. In columns F and G, the coordinates on the rotating plate of a point (“Stylo”) fixed in the laboratory system are calculated

Question

How long is the pendulum in Fig. 6.12 (S) when the oscillation period T P is given in seconds? 27

Trace of pendulum

The movement itself is calculated in Fig. 6.13 (S) for the pendulum swinging in the x-direction.

Task Complete the diagram with two points representing the pendulum’s posi-

tions and the pen at a selectable time! In Fig. 6.11a, this was done for t = 0.2249

(arrow close to x = 1). A suggestion: Use a slider to select a row from 14 to 174

and copy the coordinates from that line to an area added to the diagram as a point.

You can use the reference type indirect for this purpose.

√

27 T = 1.2 s, ω = 2 π/T = g/l, length l of the pendulum = 0.36 m.

250

6

Superposition of Movements

Table 6.12 Foucault’s pendulum, specification of the parameters, the same as in Fig. 6.12 (S) 1

Prespecified:

2

Ap=1.5 # Amplitude of the pendulum

3

Tp=1.2 # Period of the pendulum

4

Tr=9.0 # Period of the rot. disc

5

dt=0.0173 # Time interval

6

xSh=0.0 # Shift of suspension point

7

Calculated therefrom:

8

wP=2*np.pi/Tp # Circ. freq. of the pendulum

9

wR=-2*np.pi/Tr # Circ. freq. of the disc

Table 6.13 Setting up the arrays describing the motion of the pendulum in the laboratory system and its trace on the rotating table

1

t=np.arange(0,2.768+dt,dt)

2

Traces:

3

xP=Ap*np.cos(wP*t)+xSh # Pendulum in lab

4

xT=xP*np.cos(wR*t) # Trace of pendulum on table

5

yT=xP*np.sin(wR*t)

6

xSt=Ap*np.cos(wR*t) # Trace of stylus on table

7

ySt=Ap*np.sin(wR*t)

6.4.4

Python

In Table 6.12, the parameters of the swinging pendulum are specified, with the same values as in Fig. 6.12 (S).

The arrays describing the motion of the pendulum in the laboratory system and

its trace on the rotating table are set up in Table 6.13, together with the trace of a stylus fixed in the laboratory system

To get figures such as those in Fig. 6.11, we apply the program in Table 6.14.

The parameters in Table 6.12 are for Fig. 6.11a. To get Fig. 6.11b, the parameters in column E of Fig. 6.12 (S) have to be inserted into Table 6.12.

Remember: Within brackets or parentheses, line breaks are allowed after punc-

tuation marks, as is applied in Table 6.14, line 5. Explicit line breaks are possible after a backslash (\) as in line 2.

Questions

concerning Table 6.14:

How many positional arguments are in the header of ArrowP? 28

What is the first argument in the header of ArrowP in line 9?29

28 ArrowP(P0,P1,…) has two positional arguments, foot point P 0 and head point P 1.

29 P0 = [xT[−2],yT[−2]].

6.4

Foucault’s Pendulum (T-R)

251

Table 6.14 Plotting the arrays obtained in Table 6.13 to get a picture like that in Fig. 6.11a,

 ArrowP from Table 6.3

1

FigStd('x',-2.0,2.0,0.5,'y',-2.0,2.0,0.5)

2

plt.plot(xT,yT,'k-x',ms=3,label='pend\

3

ulum on disc')

4

plt.plot(xSt,ySt,'k--',label='stylo on disc')

5

ArrowP([xSt[-2],ySt[-2]],[xSt[-1],

6

ySt[-1]],hw=0.1)

7

i=10

8

ArrowP([xT[i],yT[i]],[xT[i+1],yT[i+1]],hw=0.1)

9

ArrowP([xT[-2],yT[-2]],[xT[-1],yT[-1]],hw=0.1)

10

plt.legend()

To which arrows in Fig. 6.11a do the three calls of the function ArrowP

correspond? 30

Task Set up an animation in the laboratory system, with the pendulum swinging

horizontally and the table rotating! The frames should be the equidistant time

instants t to mimic the oscillation.

6.5

Anchor, Deflected Out of Its Rest Position (R-R)

The rotation of an anchor about its suspension point is described as a rotation

(R) of the center of gravity about the suspension point and a rotation (R) of

the anchor about the center of gravity (if the anchor is not suspended there).

The moment of inertia is calculated using Steiner’s theorem.

6.5.1

Deflected Anchor

Coordinates of the deflected anchor

We consider the rotation of an anchor about a point located in the origin of the

coordinate system. In Fig. 6.14a, the anchor is held at the end S of the stem, in Fig. 6.14b, at its center of gravity C g. The construction of the anchor is simplified with four mass points attached to the ends of a hanging T (see the inset in Fig. 6.14b).

30 First: end of trace “stylo”; second: initial phase (i = 10) of trace “pend”; third: end of trace

“pend”.

252

6

Superposition of Movements

1

1

α=40°

Center of gravity Cg

0

0

-1

0

1

2

3

-1

0

1

2

3

 α

 α

 α

S

-1

-1

 α

L - M - R

-2

-2

α=40°

Center of gravity Cg

-3

-3

Fig. 6.14 An anchor is deflected by an angle α = 40°, held a (left) at the upper end of the stem, b (right) at its center of gravity. The four characteristic point masses are designated by the letters S, L-M-R. The center of gravity is marked by an open circle

In the following programs, the anchor’s characteristic points are listed as [L, M,

S, M, R] (Left, middle, top, middle, right; see Fig. 6.14b). We have doubled M

because the anchor can then be drawn in one uninterrupted line. The distances L-M

= M-R and S-M are specified, respectively, as r A and l A, so that the coordinates of the anchor at rest are defined as

 x A = [− r A , 0 , 0 , 0 , r A]

 y A = [− l A , − I A , 0 , − l A , l A]

(6.14)

Rotation about the suspension point S

If the anchor is rotated about its top point S (Fig. 6.14a) , the displacement of any point R of the anchor, with Cartesian coordinates (− r A, − l A) at rest, may be considered the sum of two rotations:

Rotation of point R around M : (− r A , 0)

→ (− r A · cos (α), r A · sin (α))

Rotation of point M around S : (0 , − l A)

→ (l A · sin (α] , − l A · cos (α)

With the sum :

 (− r A , − l A) → (− r A · cos (α) + l A · sin (α), r A · sin (α) − l A · cos (α))

The total rotation can be presented as a matrix multiplication:

= (− rA, − lA) · [Rot Mat]

(6.15)

with the rotational matrix defined as

cos (α) sin (α)

 Rot Mat = −

(6.16)

sin (α) cos (α)

6.5

Anchor, Deflected Out of Its Rest Position (R-R)

253

The rotational matrix can be applied to any point in the plane:

 (xR, yR) = (x, y) · [Rot Mat]

(6.17)

Here, we have chosen to present the coordinates as row vectors, because this is

more convenient in spreadsheet calculations where coordinate vectors (a pair of two

numbers) can more clearly be stored in successive rows.

Task Calculate the coordinates of the anchor for the freely selectable parame-

ters: length l A of the stem (A-M), half the length r A of the crossbar (M-R or M-L), and angle α!

Center of gravity as weighted sum

The center of gravity is defined as the sum over the coordinates of the characteristic

points weighted with their mass:

 mi · xi

 x

 i

 G =

 m

 i

 i

 mi · yi

 y

 i

 G =

(6.18)

 m

 i

 i

This is achieved in excel with

 y G = sumproduct(y, m)/sum(m)

and in Python with

 y G = np.dot(y, m)/np.sum(m)

The function np.dot returns the dot product of two arrays. For 1-D arrays, it is

the inner product of the vectors, i.e., the sum of the products of the components, the

equivalent of sumproduct. For 2-D arrays, it is equivalent to matrix multiplication.

The anchor is held at its center of gravity

In Fig. 6.14b, the anchor is held at its center of gravity by a rod (considered to be massless) that can rotate around S and is currently rotated by an angle α. The coordinates of the deflected anchor are the coordinates of the anchor at rest shifted

by the coordinates of the center of gravity after rotation by α according to Eq. 6.17

applied to (x G, y G). Now, only one rotation is effective.

Moment of inertia

The moment of inertia I is defined as

 I =

 r 2 ·

 i

 mi

(6.19)

 i

254

6

Superposition of Movements

where r i is the distance to the axis of rotation, here, r 2 = x 2 + y 2.

 i

 i

 i

It is calculated

in Python as:

np.sum((x**2+y**2)*m)

in excel as:

sumproduct(x; x; m) + sumproduct(y; y; m)

We calculate the moment of inertia by applying the formulas:

– (a) to a rotation of the anchor about the point S (corresponding to Fig. 6.14a),

– (b) to a rotation of the anchor about its center of gravity,

– (c) to a rotation of the total mass, concentrated in the center of gravity, about S

(corresponding to Fig. 6.14b).

The sum of (b) and (c) should be equal to (a), according to Steiner’s law.

Animation

We set up an animation with the anchor swinging correctly with sinusoidal time

dependence about its suspension point.

6.5.2

Data Structure and Nomenclature

 r A

distance L-M = M-R

 l A

distance M-S

 x A, y A

coordinates of the anchor at rest (5 elements, combinations of r A and

 l A)

 xy A

= [x A, y A] (2D range)

 α

angle of rotation

 x R, y R

coordinates of the deflected anchor, rotated around the suspension point

 x G, y G

coordinates of the center of gravity for the anchor at rest

 x Gr, y Gr

coordinates of the center of gravity rotated around S, at the origin of

the coordinate system

 RotMat

rotational matrix

Equivalence:

excel:

[x R, y R] = mmult(xy A, RotMat), xy A = [x A, y A]

Python:

[x R, y R] = RotMat @ [x A ,y A] or np.matmul (RotMat,[xA,yA])

[image: Image 65]

6.5

Anchor, Deflected Out of Its Rest Position (R-R)

255

6.5.3

Excel

Specs

The parameters of the exercise are specified in columns A:E of Fig. 6.15 (S), with the rotation angle being adjusted with a slider. The coordinates of the anchor at rest

are specified in columns G:H by inserting—± l A or ± r A, or 0 when appropriate. The masses attached to these points are given in column I. The coordinates of point M

appear twice in x and y, but the second time with zero mass so that the center of gravity and moment of inertia may be calculated in formulas in Fig. 6.16 (S), taking the whole arrays x A, y A , and m as input.

The anchor can be made to oscillate by running the time t with a slider and

calculating the deflection angle α in C4 with α = A · cos (ω · t) with suitable A and ω.

Rotational matrix

The coordinates (x R, y R) of the deflected anchor are calculated by applying the rotational matrix RotMat in Fig. 6.16 (S) to the coordinates (x A, y A) of the anchor at rest.

Center of gravity

The center of gravity C g and the moments of inertia are calculated in Fig. 6.17 (S). B5

= [“Deflection angle =”&C3&“°”. The moment of inertia for a rotation about the

suspension point S is calculated twice:

A

B

C

D

E

F

G

H

I

1

Length of rod

lA

2.50 m

xA

yA

m

2

Half-length of cross bar

rA

0.50 m

L

-0.50

-2.50

1.0

3

220

40.00 °

=B3-180

M

0.00

-2.50

1.0

4

a

0.70 rad

=C3/180*PI()

S

0.00

0.00

1.0

5

Deflection angle α=40°

M

0.00

-2.50

0.0

6

R

0.50

-2.50

1.0

Fig. 6.15 (S) Anchor parameters in B1:C4; the deflection angle α is determined with the slider in A3 (linked cell = B3) . he coordinates x, y of the line connecting the characteristic points are in columns G and H with the associated masses in column I, set to 1 except for the second reference to point M. B5 = “Deflection angle =”&C3&“°”

K

L

M

N

O

P

1 RotMat

xR

yR

2

0.77

0.64

1.22

-2.24 =MMULT(xyA;RotMat)

3

-0.64

0.77

1.61

-1.92

4

0.00

0.00

5 =COS(a)

=SIN(a)

1.61

-1.92

6 =-SIN(a)

=COS(a)

1.99

-1.59

Fig. 6.16 (S) Continuation of Fig. 6.15 (S). The rotational matrix RotMat is applied to the coordinates x A and y A, bound together in Fig. 6.15 (S) in one matrix xy A = [G2:H6] in Fig. 6.15

(S)

256

6

Superposition of Movements

AA

AB

AC

AD

AE

1 Center of gravity Cg

Moment of inertia for rotation about Cg

2

xG

yG

5.19 =SUMPRODUCT(xA-xG;xA-xG;m)

3

0.00

-1.88 =SUMPRODUCT(yA;m)/SUM(m)

+SUMPRODUCT(yA-yG;yA-yG;m)

4

xGr

yGr

for rotation of Cg

5 1.21 -1.44 =MMULT(xGyG;RotMat)

14.06 =(xG^2+yG^2)*SUM(m)

6

7 Moment of inertia for rotation about S

8

19.25 =SUMPRODUCT(x;x;m)

19.25 =AD2+AD5

9

+SUMPRODUCT(y;y;m)

Fig. 6.17 (S) Continuation of Figs. 6.15 (S) and 6.16 (S). AA:AC: center of gravity, moment of inertia for rotation about the point S = (0, 0); AD:AE: moment of inertia with Steiner’s theorem as the sum of two rotations calculated with the spreadsheet functions sumproduct and sum

– in AB8, with the coordinates (x, y) of the anchor at rest,

– in AD2:AD8, as the sum of the moments of inertia for rotation about the center

of gravity C g and a rotation of the total mass in the center of gravity about (0,0).

Both calculations should yield, according to Steiner’s theorem, the same result, and

they do.

6.5.4

Python

Specs and rotational matrix

A Python solution corresponding to Figs. 6.15 (S) and 6.16 (S) is given in Table

6.15.

Table 6.15 Swinging anchor, specs as in Fig. 6.15 (S)

1

Prespecified:

2

lA=2.5 # Length of stem

3

rA=0.5 # Half-length of crossbar

4

a=40 # Angle of deflection in °

5

a*=np.pi/180 # in rad

6

7

Coordinates of the anchor at rest:

8

L-M-S-M-R

9

xA=np.array([-rA,0,0,0,rA])

10

yA=np.array([-lA,-lA,0,-lA,-lA])

11

12

Rotational matrix:

13

RotMat=np.array([[np.cos(a),-np.sin(a)],

14

[np.sin(a), np.cos(a)]])

15

Coordinates of the deflected anchor:

16

[xR,yR]=RotMat@[xA,yA]

6.5

Anchor, Deflected Out of Its Rest Position (R-R)

257

Animation

In Table 6.16, a function ancRot is defined that is applied in the animation. It calculates the coordinates of the anchor and its center of gravity for an angle α. The function anim called within FuncAnimation converts the frame number i into the angle α through a sine function that mimics an oscillation.

Center of gravity

In Table 6.17, the coordinates of the center of gravity C g are calculated, at rest and rotated. The dot product is used to calculate the nominator in the fraction for the

center of gravity (Eq. 6.18).

A program for drawing the rotated anchor as shown in Fig. 6.14a is presented in Table 6.18.

In Table 6.19, the moments of inertia are calculated when the anchor is rotated:

– (a) about S, the upper end of the stem,

– (b) about Cg, the center of gravity; and

– (c) when the center of gravity is rotated about (0, 0).

Table 6.16 The anchor swings with sinusoidal time dependence about S

1

def ancRot(a): # Angle a=alpha

2

Rotational matrix:

3

RotMat=np.array([[np.cos(a),-np.sin(a)],

4

[np.sin(a), np.cos(a)]])

5

Coordinates of the deflected anchor:

6

[xR,yR]=RotMat@[x,y]

7

[xGr,yGr]=RotMat@[xG,yG]

8

return xR, yR, yGr, yGr

9

anc,=plt.plot(xR,yR,'k-o')

10

11

def anim(i):

12

a=np.pi/4*np.sin(i*0.1)

13

xR, yR, xGr, yGr = ancRot(a)

14

anc.set_data(xR,yR)

15

16

AnchorAnim=animation.FuncAnimation(figA,anim,

17

frames=range(180),interval=100,repeat=False)

Table 6.17 Coordinates of the center of gravity, at rest and rotated

1

Center of gravity Cg

2

m=np.array([1,1,1,0,1]) # Masses of L-M-S-M-R

3

xG=np.dot(xA,m)/np.sum(m) # Coordinates of c of g

4

yG=np.dot(yA,m)/np.sum(m)

5

[xGr,yGr]=RotMat@[xG,yG] # Coordinates of rotated anchor

258

6

Superposition of Movements

Table 6.18 Program for drawing a figure like Fig. 6.14a

1

FigStd('x',-1.0,3.0,1,'y',-3.0,1.0,1.0)

2

plt.plot(xA,yA,'k-o',label="α=0") # At rest

3

plt.plot(xR,yR,'k:o',fillstyle='none',

4

lw=2,label="α="+str(round(a,2))) # Rotated by α

5

plt.plot(xG,yG,'ko',ms=4,

6

label='c of grav.') # Center of gravity

7

plt.plot(xGr,yGr,'ko',ms=4)

8

plt.legend()

9

plt.axis('scaled')

Table 6.19 Moment of inertia

1

Momentum of inertia, around S

2

IS=np.sum((x**2+y**2)*m)

IS 19.25

3

4

Rotated coord. of center of gravity:

xG 0.0

5

[xGr,yGr]=RotMat@[xG,yG]

yG -1.875

6

7

Moment. of inertia, around c of grav

8

IarCg=np.dot((x-xG)**2,m) \

IarCg 5.19

9

+np.dot((y-yG)**2,m)

10

11

Rotation of center of gravity

12

ICg=(xG**2+yG**2)*np.sum(m)

ICg 14.06

13

14

Itot=IarCg+ICg

Itot 19.25

We confirm again that (b) is smaller than (a) and that (b) + (c) equals (a).

Table 6.20 displays a program for plotting the anchor held at its center of gravity, as in Fig. 6.14b.

6.6

Wavefronts, Sound Barriers, and Mach Cone (T-T)

We draw the wave crests of sound waves emitted by a source moving at a

certain speed and direction in the xy-plane and demonstrate the breaking of

the sound barrier for supersonic speed. Polar coordinates are used for the

calculation, and Cartesian coordinates for the scatter diagrams.

6.6

Wavefronts, Sound Barriers, and Mach Cone (T-T)

259

Table 6.20 Program for plotting the anchor gripped at its center of gravity (Fig. 6.14b)

1

x_Cg=xA+(xGr-xG)

2

y_Cg=yA+(yGr-yG)

3

4

FigStd('x',-1.0,3.0,1,'y',-3.0,1.0,1.0)

5

plt.plot(xA,yA,'k-o') # Anchor at rest

6

plt.plot(xG,yG,'kx',ms=8,label='c of g') # Cent. of grav ity

7

plt.plot(x_Cg,y_Cg,'k:o',fillstyle="none")# Rotated anchor

8

plt.plot([0,xGr],[0,yGr],'k--',label="α="+str(a))

Rotated rod

9

plt.plot(xGr,yGr,'kx',ms=8)

10

plt.plot()

11

plt.legend()

12

plt.axis('scaled')

6.6.1

Emitting Sound Waves

In Fig. 6.18, crests of sound waves in a plane emitted from a moving source are shown, in b, for supersonic speed. One wave crest is emitted in every period of

the sound signal.

Sound barrier and Mach cone

Mag Are the motions linear or rotational?

3000

3000

vS=80; alpha=30°

vS=500; alpha=10°

Centers

Centers

2000

[m]

2000

[m]

y

y

1000

1000

0

0

-3000

-1000

1000

3000

-6000

-4000

-2000

0

-1000

x [m]

-1000x [m]

-2000

-2000

-3000

-3000

Fig. 6.18 a (left) Wavefronts of acoustic waves emitted by a moving sound source that has reached the position (0, 0) at t = 0; airspeed v S (here, below the velocity of sound) and angle α of flight direction against the horizontal axis. b (right) As in a, but with α = 10° and at supersonic speed

260

6

Superposition of Movements

Alac The motion of the airplane is along a straight line.

Mag Ok, so it’s translational. But what about the sound?

Tim Sound is a longitudinal wave, so it’s a linear motion.

Alac Ok. But how do the circles arise?

Mag As wave propagation is isotropic, the wave crests are circles.

Tim And the circles are described with polar coordinates.

Alac I understand, polar coordinates but no circular motion.

Tim Ok, that’s clear. The airplane, modeled as a point in the plane, moves

linearly in two dimensions. Sound is a wave and propagates isotropically in air.

Mag Another point: What happens if the aircraft flies at exactly the speed of

sound?

Alac Then a sound barrier builds up, and there is a loud bang.

Mag Simulate this situation! The best way to do so in a spreadsheet is to install

a slider and increase the speed v S, of the sound source slowly, starting from zero up to the speed of sound!

Tim What does “breaking the sound barrier ” mean?

Mag When an airplane speeds up to the speed of sound, all sound waves arrive

at a particular place at the same time and enforce each other to become the “sound

wall”.

Coordinates of the circular wave crests

The flying object (the “source”) is traveling at speed v S relative to the air and at an angle α to the horizontal axis (the x-axis), emitting sound waves in every period that propagate in the air at the speed of sound c. In our representation, Fig. 6.18, the source t is located at t = 0 at the site (0, 0), and circular wave crests are calculated for every second, going back in time (negative time).

The center of the circle is given by the position of the flying object at the (negative)

time of emission:

 xS(t) = (vS · cos (α)) · t

 yS(t) = (vS · sin (α)) · t

(6.20)

6.6

Wavefronts, Sound Barriers, and Mach Cone (T-T)

261

The expressions in parentheses decompose the distance v Q· t traveled into horizontal (x) and vertical (y) components. x S (t) and y S (t) are smaller than 0 because t < 0 for our settings.

Starting from the trajectory of the object, waves are spreading with velocity c and have covered a distance r up to time t:

 r = − c · t for t ≤ 0

(6.21)

so that (in our drawing plane) a circular wavefront arises. In three-dimensional

reality, the wavefronts are, of course, spherical surfaces. For our two-dimensional

representation, the quantities r become the radii of the circles in Fig. 6.18.

6.6.2

Data Structure and Nomenclature

 c

speed of sound

 v S

speed of sound source

 α

angular deviation of the linear track of the source from the x-axis

 t

array of instants of time, negative; the current time is 0

 r

array of radii of wave crests emitted at times t

 x S, y S

arrays of coordinates of the source at times t; the position at t = 0 is (0, 0)

 phi

list of the polar angles for drawing the wave crests

 x, y

2D matrices containing the coordinates of a set of wave crests, shape

 size(phi) · size(t).

6.6.3

Spreadsheet Solution

Calculating circles

In the spreadsheet of Fig. 6.19 (S), we produce eight circles to represent the crests of waves that have been sent out at instants t = −1, −2, …, −8 s. Two examples are shown in Fig. 6.18.

The definition of the coordinates of a circle is best done in polar coordinates. In

Fig. 6.19 (S), the angle is defined in [A13:A43] from ϕ = 0 to 2π in 31 steps of d ϕ

= 0.209 = 2π/30, set in A10. The three parameters of the task (sound speed c, speed v S of source, flight angle α) are defined in B1:B4 and get named in A1, A2, A4.

The worksheet in Fig. 6.19 (S) has the typical structure indicated by the bold

- shaped line. The calculation range below spans B13:R43. The column-specific

parameter set, coded as row vectors r, x S, y S, for the eight functions is in B7:I9 above

 , controlled by the time t (see the formulas reported in J7:J9). The independent variable ϕ, the polar angle of the circles, is in A13:A43, to the left of .

262

6

Superposition of Movements

A

B

C

D

E

F

G

H

I

J

K

L

R

S

1

c_

340 m/s

Sound speed

2

vS

500 m/s

Speed of source

="vS="&vS&"; alpha="&B3&"°"

3

10 °

Direction angle

vS=500; alpha=10°

4

alpha

0.175 rad

=B3/180*PI()

5

6

t

-1

-2

-3

-4

-5

-6

-7

-8

7

r_

340

680

1020

1360

1700

2040

2380

2720 =-c_*t

8

xS

-492.4

-985

-1477

-1970

-2462

-2954

-3447

-3939 =vS*COS(alpha)*t

9

yS

-86.82

-174 -260.5 -347.3 -434.1 -520.9 -607.8 -694.6 =vS*SIN(alpha)*t

10

0.209

=2*PI()/30

i)+yS}

11

=A13+A10

=r_*COS(phi)+xS

{=r_*SIN(ph

12

phi

x

y

13

0.000

-152

-305

-457

-610

-762

-914

-1067

-1219

-87

-174

-695

14

0.209

-160

-320

-480

-639

-799

-959

-1119

-1279

-16

-32

-129

43

6.283

-152

-305

-457

-610

-762

-914

-1067

-1219

-87

-174

-695

Fig. 6.19 (S) Coordinates (x, y) of circles with their centers shifted in the xy-plane (below);

starts at B13 and is extended to the right and downwards; the x-coordinates in B13:I43 are generated with the formula reproduced in B11. The corresponding y values are in columns K:R. The angular coordinates ϕ for all curves are in A13:A43 (independent variable left of) . The time in row 6 controls the radius (row 7) and the coordinates of the center (in rows 8 and 9)

This table can be enlarged row by row beyond row 43, for example, to allow for

a finer angular scale, because it is downwards open. It cannot be broadened column

by column, because, starting with column K, another calculation range follows, in

which the y-coordinates of the circles are calculated.

Remember: If you have written the formula in a cell correctly with

relative and absolute references or with variable names, you can drag

it into a larger cell range without changing it.

Questions

concerning Fig. 6.19 (S):

What is the meaning of the formula in cell B4, reported in D4? 31

What is the formula in cell D7? 32

What is the formula in cell D9? 33

Wouldn’t it be nicer to have the wave crests cover the whole cone in

Fig. 6.18b? How would you do that? 34

31 Transformation of the angle from degrees to radians: 360° = 2π, 180° = π.

32 [D7] = [= −c_*t], see J7!

33 [D9] = [=vS*sin(alpha)*t], see J9!

34 Specify the number of time instants to go from −1 to −12 in 12 steps.

6.6

Wavefronts, Sound Barriers, and Mach Cone (T-T)

263

Below , eight circles around the origin with the radii r from line 7 are calculated from the column vector polar angle φ and the row vectors r, x S and y S.

The x values in B13:I43 are calculated with the simple formula [=r_*cos(phi)

+ xS]; the current values are taken from the same row or the same column as the

current cell.

Matrix formula

The formulas in range B13:I43 of Fig. 6.19 (S) refer, for each cell, to the same column (when named row vectors are addressed) and the same row (when the named

column vectors are addressed). The same formula network can be generated in any

range with a matrix formula. An example is given in K13:I43 (= [{=r_*cos(phi) +

yS}]). To do so, activate the range, enter the formula, and complete with Ctrl +

 Shift + Enter!

Task sliders Install two sliders to adjust the source’s direction and speed and

observe how the diagram reacts to changes in both parameters and a change in

sound velocity.

Discussion EXCEL

Tim The wave crests in my diagram do not change when I change the speed of

the aircraft.

Mag You have copied the numbers from Fig. 6.19 (S) into range B7:I9. However, these cells have to contain formulas, not just numbers. Then, the values in these cells change as the parameters of the problem are changed. The formulas for

column I can be found in column J. If you drag cells I7:I9 (with the formulas in

J7:J9) to the left all the way to column B, the formula network for the parameters

is complete.

Tim What exactly is our task?

Mag The polar angle is in column A, independent of the time. Your task is to

enter a formula into cell B13 that creates the x coordinates of all eight circles at time t by dragging to the right and down to cell I43. To get the y coordinates, you have to apply a matrix formula, such as in K11 in Fig. 6.19.

At time t = 0, the aircraft shall be at the origin (0, 0) of the coordinate system.

The time in row 6 of Fig. 6.19 (S) is counted backward. So, the coordinates (x S; y S) in rows 8 and 9 indicate where the flying object was 1, 2, etc., seconds ago.

They are calculated, as discussed above, from the speed v S of the source, the angle α, and the time t. The respective location of the flying object at this past instant is also the center of the circles representing the crests of the emitted sound waves.

264

6

Superposition of Movements

Table 6.21 Coordinates of wave crests

1

c=340 #[m/s] speed of sound

2

vS=500 #[m/s] speed of source

3

alpha=10 #[Degree]

4

alpha*=np.pi/180 #[rad]

5

6

t=np.linspace(-1,-8,8,endpoint=True)

7

r=-c*t # Radius

8

xS=vS*np.cos(alpha)*t # Center

9

yS=vS*np.sin(alpha)*t

10

11

ph=np.array([np.linspace(0,2*np.pi,31)])

12

phi=ph.transpose(1,0)

13

14

x=r*np.cos(phi)+xS # Coord. of circle

15

y=r*np.sin(phi)+yS

6.6.4

Python

The Python program for calculating the coordinates of the wave crests is shown

in Table 6.21. After specifying the parameters speed of sound c, speed of source v S, and deviation of the track of the source from the horizontal by an angle α, we specify the instants t of time at which the source is supposed to emit a signal.

From t, we get the radii r of the circular sound crests and the Cartesian coordinates of their centers x S and y S, i.e., the current positions of the sender, all as arrays broadcast from t.

In ph, we define, as an array, the 31 angles with which circles are to be drawn

as regular polygons. This array is transposed into a column vector phi. With these constructs and the two instructions

x = r*np.cos(phi) + xS

y = r*np.sin(phi) + yS

we reproduce the spreadsheet data structure of Fig. 6.19 (S) with the four row vectors t, r, x S, y S, and one column vector phi. The values of the different arrays are reported in Table 6.22. They coincide with those of the spreadsheet calculation in Fig. 6.19 (S).

Tangent to a circle

With Fig. 6.20, we complete Fig. 6.18b with tangents to the circles that represent the Mach cone. The construction of the tangent to a circle is illustrated in Fig. 6.20a and realized in Table 6.23.

Task Verify the instructions in Table 6.23 with the help of Fig. 6.20a!

[image: Image 66]

6.7

Questions and Tasks

265

Table 6.22 Structure of the arrays in Table 6.21

alpha 0.175

t [-1 -2 -3 -4 -5 -6 -7 -8]

r [340 680 1020 … 2040 2380 2720]

xS [-492 -985 -1477 … -2954 -3447 -3939]

yS [-87 -174 -260 … -521 -608 -695]

x[0] [-152 -305 -457 … -914 -1067 -1219]

Fig. 6.20 a (left) Construction of a tangent to a circle. b (right) Mach cone with the sound barrier drawn as a tangent to the circles

Table 6.23 Tangent to a circle, drawn as straight lines from (0, 0) to (x T, y T) and from (0, 0) to (x Tu, y Tu)

1

Tangent, angle beta

6

xT=-np.cos(-alpha+beta)*b

2

xM0=vS*t[-1]

7

yT=np.sin(-alpha+beta)*b

3

r0=r[-1]

8

xTu=-np.cos(-alpha-beta)*b

4

b=np.sqrt(xM0**2-r0**2)

9

yTu=np.sin(-alpha-beta)*b

5

beta=np.arcsin(r0/-xM0)

6.7

Questions and Tasks

1. What are the polar coordinates for the Cartesian coordinates (0, 5) and (1, 1)?

2. What are the Cartesian coordinates for the polar coordinates r = 2, and φ =

45° or φ = 135°?

3. The spreadsheet formula = cos(90) returns −0.44807362. Is excel thus

wrong? However, np.cos(90) similarly returns −0.4480736161291701.

Why?

4. Given the vector (3, 4), you are to attach this vector and its x- and y-

components as arrows to point (1, 1) . What does the data series in a

spreadsheet look like? What are the three lists in Python for the coordinates?

[image: Image 67]

266

6

Superposition of Movements

Fig. 6.21 Vector (2, 1) attached to (1, 0.5)

Table 6.24 Program snippet for attaching arrows at a point in the plane

1

FigStd('x',0,4,1,'y',0,2,0.5)

2

plt.plot(xO[0],xO[1],'kx')

3

plt.plot([xO[0],Arrow[0]],[xO[1],Arrow[1]],'k-')

4

plt.plot(…)

5

plt.plot([…,'k-.')

6

plt.axis('…')

5. In Fig. 6.21, the vector v A = (2, 1) and its components are attached to the point x O = (1, 0.5). Specify the variables x O, v A, and Arrow and complete the program snippet in Table 6.24!

6. You are to draw the path (x, y) of a point in the plane, which moves with speed v in the xy-plane at an angle α = 30° to the x axis. What are the formulas in the parameter representation (x, y) = f (v,α)?

7. Describe the rotation of a point on a circle around the origin with rotation

time T, both in polar and in Cartesian coordinates!

8. Which formulas apply to the Cartesian coordinates of a circle with diameter

 d, moving with velocity v along the x-axis?

9. A point moves with constant velocity v along the y axis of a laboratory system.

What are its polar and Cartesian coordinates, in the laboratory system, and

in a system moving relative to the laboratory system, with constant angular

velocity ω D, around an axis through the origin of the laboratory system?

10. Calculate the moments of inertia of the two dumbbells in Fig. 6.22! The two points represent masses of equal size. The connections between the masses

and to the suspension points are supposed to be massless.

6.7

Questions and Tasks

267

Fig. 6.22 A dumbbell, (left)

suspended on the (massless)

middle stem fixed to it,

(right) suspended on two

threads at its ends

4

4

4

4

11. Explain Steiner’s theorem on the basis of Fig. 6.22a, b, together with Fig. 6.14!

12. How do you calculate the center of gravity of an arrangement of point masses

 m i at (x i, y i)?

[image: Image 68]

Integration of Newton’s Equation

of Motion

7

The Newtonian equation for one-dimensional motions of point masses is

numerically integrated by estimating the mean acceleration < a> in the time intervals between the supporting points of the time trajectory. Four methods

are used: Euler, half step, “Progress with look-ahead” and Runge-Kutta of the 4th order. Three examples from an adventurous life are simulated realistically: Stratosphere jumping, bungee jumping, and car in a racing start.

Different friction models (dry, viscous, Newtonian) are applied.

7.1

Introduction: Approximated Mean Value Instead

of Exact Integration

Solutions of Exercises 7.2 (Python), 7.3 (Excel), 7.4 (Python), and 7.6 (Excel) can

be found at the internet adress: go.sn.pub/THdoLU.

7.1.1

Newton’s Equation of Motion

We investigate the motion of a point mass on a straight line. According to Newton’s

laws, the acceleration at a certain point in time is determined by the forces acting

on the body at that point in time. These forces F are generally dependent on the location x, e.g., due to a spring, or on the velocity ˙ x, e.g., due to friction, or on both, so that, generally, we have F = F(x, ˙ x).

Newton’s equation of motion for one dimension is

¨ x(t) = F(x, ˙ x)

(7.1)

 m

© Springer Nature Switzerland AG 2022

269

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_7

270

7

Integration of Newton’s Equation of Motion

where ¨ x = a is the acceleration, ˙ x = v the velocity, x the location, and m the mass of the body. If all forces within a period of time are known, as well as

the location and velocity of the point mass at the beginning of the period, the

differential equation of motion, Eq. 7.1, can be solved. Then, the values of x and

˙ x at the end of the time period can be calculated.

The forces in some of the exercises in this chapter depend only on velocity or

only on location, making the calculations simpler and easier to follow.

We learn how Newton’s equation of motion can be solved numerically in a

sufficiently precise way over a period of time. To introduce the different methods,

we work on tasks that can be analytically solved so that we can check the results

of our calculations: Vibrations of a mass-spring system without friction (Exercise

7.2) and falling through air with friction (v 2-proportional, Exercise 7.3).

Mean value instead of integral

The numerical solution we are striving for is based on difference equations in which

time progresses by finite amounts t. If the location and the velocity of the body at the beginning t 0 of a time interval are known, the values at the end t 0 + t of the interval follow as

 t 0+ t

 v(t 0 + t) = v(t 0) +

 a(t)dt = v(t 0) + a · t

(7.2)

 t 0

 t 0+ t

 x(t 0 + t) = x(t 0) +

 v(t)dt = x(t 0) + v · t

(7.3)

 t 0

Equations 7.2 and 7.3 are exact. The expressions with the mean values < a> and < v> correspond exactly to the integral, because the mean value is simply defined like that.

Our task is to estimate the mean acceleration < a> and the mean velocity < v> in the time interval under consideration. The numerical estimation is an approximation

for which we present four different methods in the next section.

 Approximated mean instead of exact integral.

Friction

To consider friction, we use the general formula:

 aFric = − sgn(v) · a f · | v| n

The acceleration due to friction is proportional to a power n of the speed (the

absolute value of the velocity). The first term −sgn(v) guarantees that friction always

tries to decrease the speed. The exponent n depends on the type of friction:

– n = 0 for internal friction, applied for the losses in a bungee rope (Exercise 7.6)

– n = 1 for viscous friction, applied for the damping of a harmonic oscillator

(Exercise 7.2)

7.1

Introduction: Approximated Mean Value Instead of Exact Integration

271

– n = 2 for Newtonian friction, active when dragging a body rapidly through a

viscous medium, in our exercises, air (Exercises 7.3, 7.4, and 7.5).

Observe the influence of the different types of friction on the time trajectory!

7.1.2

Four Methods for Estimating the Average Acceleration

in a Time Segment

In the simple Euler method, the mean acceleration in the time segment [t n, t n+1]

is approximated by the acceleration at the beginning of the time segment:

 v(tn+1) = v(tn) + a(tn) · t

(7.4)

 x(tn+1) = x(tn) + v(tn) · t

(7.5)

This procedure can be improved if the values from Eq. 7.4 and Eq. 7.5 are taken only as a “preview” for the velocity vp(tn + t) and the location x p(tn + t), from which the acceleration ap(tn + t) at the end of the considered time period is calculated. For this “Progress with look-ahead”, the quantities at the beginning of the next interval are estimated as:

 a(tn) + ap(tn + t)

 v(tn+1) = v(tn) +

· t

(7.6)

2

 v(tn) + vp(tn + t)

 x(tn+1) = x(tn) +

· t

(7.7)

2

The half-step procedure has a similar structure; the values at the beginning of

an interval are used to estimate the values in the middle of the interval, which then

represent the entire interval.

A further improvement can be achieved with the fourth-order Runge-Kutta

 method, in which three projections are made in an interval, the first two into the middle and the third to the end of the interval. Then, a weighted average of four

values is taken as representative of the whole interval.

All methods are trained

We shall apply all four methods in Exercise 7.3 (Falling from a great height; the

force depends only on the speed) and compare the results with each other. There are

analytical solutions for this task, so that we can check the precision of our numerical

methods.

All methods provide sufficiently accurate solutions if the distance between the

supporting points, which mark the time segments’ boundaries, is made sufficiently

small. The bigger the effort with which the mean acceleration in a time segment is

272

7

Integration of Newton’s Equation of Motion

calculated, the longer the time segments can be. Consequently, it must be checked,

for each method, whether the selected length of the time segment is short enough.

As standard procedure in excel, we shall use Progress with look-ahead, because

it proves to be sufficiently efficient and can be implemented clearly in a spreadsheet.

However, experienced readers may also use the half-step procedure, which provides the same accuracy and is also explained in detail in Exercise 7.3.

In Python, we shall use a function that implements the 4th-order Runge–Kutta

method.

Adventurous life

In the course of this chapter, we will deal with three cases from an adventurous life:

stratospheric jumping, bungee jumping, and a car in a racing start. In the follow-up

volume Physics with Excel and Python, Using the Same Data Structure. Applications, the procedures from this chapter come into full fruition, with the treatment of motions

in the plane, all kinds of oscillation, field lines, and wave functions of the Schrödinger equation.

7.1.3

Tactical Approaches in Python and Excel

In Python, the steps from t to t + d t are done in a progress loop that calls a progress function, invariably called progr in all exercises. It does not have a proper code, but is assigned to one of the existing functions for Euler, look-ahead, or Runge-Kutta. Within the progress functions, the acceleration is invariably called acc, again, without proper code, but with an assignment to a function that is specific for the physical problem under consideration (accSpring, accFall, accJump, accPwr, accBungee). This approach is typical of Software solutions in which functions are embedded within a larger body.

The excel approach is less general and must be adapted individually to each

problem. The preview calculations for the current time interval are done in a row

with specific formulas for acceleration. The values at the beginning of a new time

interval in a new row have to be calculated from values in the preceding row.

Animations

The motions calculated in this chapter can easily be animated with the methods

presented in Sect. 6.2.5.

7.2

Harmonic Oscillation with “Progress with Look-Ahead”

and “Runge–Kutta”

We integrate Newton’s equation of motion for a mass-spring system by cal-

culating the acceleration in a time interval, (a) as an average of two values,

7.2

Harmonic Oscillation with “Progress with Look-Ahead” …

273

one at the beginning of the interval and the other calculated for the end of

the interval with the values at the beginning, and (b) as an average over four

values with the Runge-Kutta method.

7.2.1

Equation of Motion

The equation of motion for a mass fixed to a linear-elastic spring is as follows:

 a = ¨ x = D − d · v = − f · x − d · v (7.8)

 m

Here, x is the deflection out of the rest position, and D and m are the spring constant and the mass. Damping is set proportional to the velocity v and opposite to it: – d· v.

Questions

What is the physical unit of the “spring constant” f in Eq. 7.8 in SI units?1

What is the physical unit of the damping constant d in Eq. 7.8 in SI units? 2

What are the initial conditions x(0) and v(0) in Fig. 7.1a? 3

The solution for vanishing friction (d = 0) is a stationary oscillation with con-

stant amplitude. We use this knowledge to check whether our numerical solutions

are good enough. An example is shown in Fig. 7.1 for an oscillation with f = 0.10

calculated with LookAhead.

The zoom in Fig. 7.1b shows that the amplitude for n = 100 has increased over the initial value, indicating that 100 points for a time span of 80 are not good

enough, but that n = 400 does the job. The position of the fourth maximum is at t

√

= 79.5, corresponding reasonably well to the theoretical value of 4 π/ (0 . 1) =

79 . 48. We may therefore rely on LookAhead with this segmentation of time and can play around with the parameters.

In Fig. 7.2, we have doubled the spring constant and introduced damping, caus-ing a strong decay of the amplitude. In the zoom, we see furthermore that the

period of the damped oscillation is bigger than for the undamped oscillation.

Task Vary the constant f = D/m and observe whether the period duration

√

behaves as predicted by the formula T = (2 π)/

 f (for vanishing friction)!

1 [f] = [a/x] = (m/s2)/m = 1/s2.

2 [d] = [a/v] = (m/s2)/(m/s) = 1/s.

3 x(0) = 1 (maximum deflection), v(0) = 0 (slope of x(t)).

274

7

Integration of Newton’s Equation of Motion

(a)

(b)

1.5

1.05

n=100

n=400

1.0

x

x

0.5

1.00

0.0

0

20

40

60

80

t

-0.5

n=100

n=400

-1.0

0.95

78

79

t 80

-1.5

Fig. 7.1 a (left) Oscillation calculated with LookAhead. b (right) Zoom of a (a)

(b)

1.5

f=0.2, d=0

0.05

f=0.2, d=0

d=0.2

1.0

d=0.2

x

x

0.5

0.0

0.00

0

20

40

60

80

t

65

70

75

t

-0.5

-1.0

-1.5

-0.05

Fig. 7.2 Oscillation of a harmonic oscillator. a (left) Undamped and damped. b (right) Zoom of damped oscillation

In the following sections, we present LookAhead in a spreadsheet and LookA-

 head, Euler, and Runge-Kutta in Python. Varying the number n of points as in Fig. 7.1, reliable results are obtained with:

n = 20,000 for Euler,

n =

400 for Progress with Look-ahead,

n =

60 for Runge-Kutta.

There is a reduction of about 50 going from Euler to LookAhead and about 8 going further to Runge-Kutta. Therefore, we choose LookAhead as standard in spreadsheet calculations with only four additional columns (see Fig. 7.3), thus keeping the programming effort to be repeated in every new spreadsheet small. We

choose Runge-Kutta as standard in Python because the 12 necessary statements

(Table 7.2) have to be implemented only once in a function that can be used in all further exercises.

7.2

Harmonic Oscillation with “Progress with Look-Ahead” …

275

A

B

C

D

E

F

G

H

1

n

400

f

0.10 spring constant

2

dt

0.20 =80/n

d

0.00 damping constant

3

n=400 ="n="&n

 *vD

4 =A6+dt =B6+(C6+F6)/2*dt

 =C6+(D6+G6)/2*dt

 =-f*x-d*v =x+v*dt

 =v+aA*dt =-f*xD-d

5

t

x

v

aA

xD

vD

aD

6

0.00

1.00

0.00

-0.10

1.00

-0.02

-0.10

7

0.20

1.00

-0.02

-0.10

0.99

-0.04

-0.10

406

80.00

0.98

-0.06

-0.10

0.97

-0.08

-0.10

Fig. 7.3 (S) An oscillation of a mass-spring system is calculated with LookAhead. The time runs vertically down, the look-ahead to the end of the current time segment is performed horizontally to the right. The mass is assumed to be m = 1

7.2.2

Data Structure and Nomenclature

 n

number of points for a time span of 80 s

 f, d

spring and damping constants

d t

= 80/ n, length of the time interval

 t

array of time points, (n + 1) elements, d t apart

 x

deflection of the mass at t (array)

 v

velocity of the mass at t (array)

 a

acceleration at t (array)

 xA, vA

deflection and velocity at a specific time t A

 x D, v D

deflection and velocity predicted for time t + d t

 x B , x C

deflection predicted at time t + d t/2 (Runge-Kutta)

 v B , v C

velocity predicted for time t + d t/2 (Runge-Kutta)

All calculations are performed for t = 0 to t = 80 s.

7.2.3

Spreadsheet Calculation

The basic spreadsheet layout for integrating Newton’s equation of motion with

 LookAhead is shown in Fig. 7.3 (S), with the resulting deflection displayed in Fig. 7.1.

The time t in column A runs from top to bottom, and thus so does the deflection

 x(t) of the mass in column B and its velocity v(t) in column C. For a step from t n to t n+1:

– the acceleration a at the beginning of the time segment beginning with t n is calculated in each row from the values of x and v at that time (column D),

– with these values, the deflection x D and the velocity v D at the end tn + d t of the time segment are predicted (columns E and F),

– with these new values, the acceleration a D at the end of the time interval is

estimated in column G.

276

7

Integration of Newton’s Equation of Motion

All calculations reported for columns D to G use formulas with named variables

referring to the same row. The new values for x and v at the next instant t n+1 of time are calculated in the following row with information from the previous row;

see the formulas in B4 and C4 valid for B7 and C7, e.g., B7 = [=B6 + (C6 +

F6)/2*dt].

The estimation of the mean value at the time t n+1 = t n + d t can be improved by predicting further values for speed and acceleration in the current time segment [t n, t n + d t) in further columns, especially with the more efficient fourth-order RungeKutta method. However, due to the simpler table layout, we use LookAhead as our standard in spreadsheet calculations.

7.2.4

Python

Progress functions

In the second cell of Table 7.1, we have implemented the LookAhead method as a function, similar to the spreadsheet calculation of Fig. 7.2 (S). In the first cell of Table 7.1, the Euler method is implemented. In both functions, the acceleration is not calculated explicitly, but is rather outsourced to another function acc that must be specified in the main program.

The Runge-Kutta method of the 4th order is implemented in a function reported

in Table 7.2, with two jumps into the center of the interval (x B, v B and x C, v C) and one jump to the end of the interval (x D, v D). The values (x R, v R) for the next time instants to be returned are calculated as a weighted average over the velocities or

the accelerations.

 Ψ Half, half, whole; the halves count twice.

The main program is shown in Table 7.3. In the first 4 lines, the parameters of the exercise are defined, followed by the definition of the function accSpring for the acceleration which makes use of the global parameters f and d. The arrays t, x, v are defined with their length corresponding to the specified number n of time instants, with the first entries containing the initial conditions set in lines 12–14.

Table 7.1 Functions performing the Euler and the lookAhead methods; the current values of x(t) and v(t) are passed as x A and v A

1

def Euler(xA,vA):

1

def lookAhead(xA,vA):

2

aA=acc(xA,vA)

2

aA=acc(xA,vA)

3

xR=xA+vA*dt

3

xD=xA+vA*dt

4

vR=vA+aA*dt

4

vD=vA+aA*dt

5

return xR,vR

5

aD=acc(xD,vD)

6

xR=xA+(vA+vD)/2*dt

7

vR=vA+(aA+aD)/2*dt

8

return xR,vR

7.2

Harmonic Oscillation with “Progress with Look-Ahead” …

277

Table 7.2 Function implementing the Runge-Kutta method

1

def RungeKutta(xA,vA):

2

aA=acc(xA,vA)

3

xB=xA+vA*dt/2 # Half step i nto center of interval

4

vB=vA+aA*dt/2

5

aB=acc(xB,vB) # Accel. at center of interval

6

xC=xA+vB*dt/2 # Second half step

7

vC=vA+aB*dt/2 #

8

aC=acc(xC,vC) # Accel. at center of interval

9

xD=xA+vC*dt # Full step

10

vD=vA+aC*dt #

11

aD=acc(xD,vD) # Accel. at end of interval

12

xR=xA+(vA+2*vB+2*vC+vD)*dt/6

13

vR=vA+(aA+2*aB+2*aC+aD)*dt/6

14

return xR,vR # Position, velocity at end of interval

Table 7.3 Calculating the motion of an oscillator

1

n=30 # Number of time instants

2

dt=80/n

3

f=0.10 # Spring constant

4

d=0.0 # Damping constant

5

6

def accSpring(x,v):

7

return -f*x-d*v

8

9

t=np.zeros(n)

10

x=np.zeros(n)

11

v=np.zeros(n)

12

t[0]=0 # Initial conditions

13

x[0]=1

14

v[0]=0

15

acc=accSpring # acc = Name in progress function

16

17

for i in range(n-1): # Progress loop

18

t[i+1]=t[i]+dt

19

#progr=Euler; lbl1="Euler, n="+str(n)

20

#progr=lookAhead; lbl1="lookAhead, n="+str(n)

21

progr=RungeKutta; lbl1="RungeKutta, n="+str(n)

22

x[i+1],v[i+1]=progr(x[i],v[i])

Progress loop

The integration is performed in a progress loop (line 17–22) progressing by time

steps d t. It recurs to the progress function progr that has no code of its own but is linked to one of the progress functions Euler, l ookAhead, or RungeKutta. To keep

[image: Image 69]

278

7

Integration of Newton’s Equation of Motion

Fig. 7.4 Oscillation of a mass-spring system calculated with 4th order Runge–Kutta (with Table

7.3)

track of the program flow it is necessary to create the labels for the corresponding

figures in the same program cell.

Within the progress functions, in Table 7.1, the acceleration is invariably taken from a function acc that, again, has no code of its own but must be linked to a

function that is specific to the physical problem under consideration, here, in line

15, to accSpring. This increases the versatility of programming in that different approaches can be tried out.

To get stable results, we have to choose n = 20,000 for Euler, 400 for LookAhead, and 60 for 4th order Runge-Kutta (n = 30 is not good enough). The results of Runge-Kutta calculations are shown in Fig. 7.4.

7.3

Falling from a (Not Too) Great Height

Two forces act on a body falling from a great height: constant gravity and

friction proportional to the square of the velocity. For these settings, the

acceleration depends only on the velocity of the body, so that the location

does not have to be calculated synchronously but can be determined subse-

quently by integration over the velocity. Initial acceleration and stationary

velocity are compared with analytical solutions.

[image: Image 70]

7.3

Falling from a (Not Too) Great Height

279

7.3.1

Limiting Cases, Analytically Solved

We drop a body from a great height and let two forces act on it: the gravity – m· g, assumed to be independent of the height, and a friction force k· v 2, proportional to the square of the speed (Newtonian friction) and opposite to its direction. With

these assumptions, the equation of motion results as

 a = − g − k v 2 · sgn(v) = − g − k v · | v|

(7.9)

 m

 m

where sgn (signum) is a function that calculates the sign of the argument. The

force m· a depends only on the speed, because we assume, simplifying, that gravity and friction forces do not depend on the height. So, we don’t have to consider

the location in the calculation and may calculate it afterward by integrating the

velocity trajectory. For a fall through air, k = ρ A/2 is valid with the density ρ of the air and the cross-sectional area A of the body.

In Fig. 7.5a, velocities v(t) obtained with Runge-Kutta of the 4th-order (“RK4”) for two interval lengths d t = 2 and d t = 4 and with LookAhead for d t = 0.5 coincide at their points of calculation. Halving the interval length does not change the RK4

solution, so d t = 4 is good enough. For LookAhead, an interval length eight times smaller is necessary to obtain the same result.

In Fig. 7.5b, v(t) trajectories are shown for three different initial velocities: zero, upwards, and downwards. The final speed is independent of the initial velocity.

(a)

(b)

-40

5

10

15

t [s]

RK4; dt=2

[m/s]v

RK4; dt=1

lookAhead; dt=0.5

-45

final speed. for

k/m=0.004

-50

Fig. 7.5 a (left) Velocity of the falling object calculated in a spreadsheet with Runge-Kutta of the 4th order (RK4) and l ookAhead. b (right) Velocity of the falling object as a function of time for different initial velocities, calculated with RK4 in Python

280

7

Integration of Newton’s Equation of Motion

If, at the beginning of the fall, the velocity is 0, v(0) = 0, the initial gradient of the velocity curve is - g; the initial acceleration is the acceleration due to gravity close to the surface of the earth.

After a certain time, the body falls at a constant speed, because the frictional

force equals gravity. This final velocity results from the condition a = 0 (no further acceleration):

 m · g

 vFin = −

(7.10)

 k

7.3.2

Data Structure and Nomenclature

 g

acceleration due to gravity

 c V

= k/ m, (see Eq. 7.9) pre-factor of friction

 t

array of time instants d t apart

 v A

velocity at t

Accelerations

 a A

at the beginning of the calculation interval

 a B, a C

in the center

 a D

at the end.

7.3.3

Spreadsheet

Runge-Kutta of the 4th order

The Runge-Kutta method implemented in a function requires 10 additional statements (1 for A, 3 × 3 for B, C, D, see Table 7.1). A corresponding spreadsheet layout would require 10 additional columns. As our problem is independent of the location, we

need only 1 + 3 × 2 = 7 columns. This is realized in Fig. 7.6 (S).

The values in any row within the range 6–26 of columns C to I are valid for

the interval [t n, t n+1) and are obtained as follows:

– (1) The acceleration a A at time t n is calculated from the velocity at that time (column C).

– (2) The velocity v B is calculated with the values v A and a A for the middle of the interval, i.e., for t n + d t/2, and from that, the corresponding acceleration a B (first half-step, column E) is obtained.

7.3

Falling from a (Not Too) Great Height

281

A

B

C

D

E

F

G

H

I

J

1

g

9.81 m/s²

cV=k/m:=0.004

2

cV

0.004 1/m

3

dt

2.00

RK4; dt=2 ="RK4; dt="&dt

 (vC)

 2*E6+2*G6+I6)*dt/6

4 =A6+dt

 =B6+(C6+ =-g-cV*vA^2*SIGN(vA)

 =vA+aA*dt/2

 =-g-cV*vB^2*SIGN(vB)

 =vA+aB*dt/2

 =-g-cV*vC^2*SIGN

 =vA+aC*dt=-g-cV*vD*ABS(vD)

5

 t

 vA

 aA

vB

aB

vC

aC

vD

aD

6

0.0

0.00

-9.81

-9.8

-9.43

-9.4

-9.45

-18.9

-8.38

7

2.0

-18.65

-8.42

-27.1

-6.88

-25.5

-7.20

-33.1

-5.44

26

40.0

-49.52

0.00

-49.5

0.00

-49.5

0.00

-49.5

0.00

Fig. 7.6 (S) Calculation with 4th order Runge-Kutta; v B, a B, v C and a C are predicted values in the middle of the time interval, v D and a D are predicted values at the end of the time interval

– (3) The velocity v C and, from that, the acceleration a C for t n + d t/2 are calculated a second time (second half step, columns F and G), now with the values

 a B and v B.

– (4) The velocity v D at the end of the interval, i.e., for t n + d t, is calculated with the values a C and v C and, from that, the acceleration a D (whole step, columns H and I)

The new value of the velocity at t n+1 is calculated in the next row (e.g., in B7

with the formula in B5) from the velocity at t n and a weighted average of the four accelerations calculated in the previous row (here row 6) for the interval [t n, t n+1): vn+1 = vn + a · dt with a = (1 aA + 2 aB + 2 aC + 1 aD)/ 6

(7.11)

The accelerations from the half steps count twice. We remember the procedure

with a broom rule:

 Half, half, whole, the halves count twice. (4th order Runge-Kutta).

“Halves” means half-steps.

Questions

concerning Fig. 7.6 (S):

Which accelerations from steps (1)–(4) are used in the formulas for

velocities reported in F4, H4, and B4? 4

Why is the sum in B7 divided by 6 to get the average, although only four

accelerations enter the formula? 5

4 a B in the center of the time interval after the first jump; a c in the center after the second; a A, 2 a B, 2 a C, a D for t = 2.

5 Half, half, whole; the halves count twice. The sum of the weights is 6.

282

7

Integration of Newton’s Equation of Motion

Fig. 7.5a shows two solutions obtained with Fig. 7.6 (S) for d t = 4 and d t = 2.

Task Determine the height fallen until you reach 95% of the final speed! You

have to integrate the speed over time!

To get the three functions v(t) displayed in Fig. 10.5b, we have to run the calculation three times with different initial values written into B6 and store the

results v A(t) in extra columns (copy, paste special/contents).

7.3.4

Python

Table 7.4 reports the preparatory instructions for the progress loop. A special feature of the code is the stacking of x and v into a 2D matrix to store the fall trajectories for three initial conditions.

In lines 1–4 of Table 7.4, the fall parameters and the function for the acceleration are defined. In lines 8–10, the elementary arrays t, x, v are specified. In order to calculate the motion for three different initial velocities, position x and velocity v are replicated in np.stack constructions so that they can be addressed by the

same index as the curve itself. Labels and line styles for the three curves in a

diagram are also organized as lists with three entries in lines 16 to 19 in Table 7.5.

The progress of motion for the three initial velocities 0, 40, and—80 m/s is

calculated in Table 7.5 in a nested loop. In the first loop over k, line 17, labels are created for the three initial velocities and in line 19, line styles before the progress

is calculated.

The program for plotting the three time-curves is given in Table 7.6. The line styles and the labels have been specified in Table 7.5 so that curves, styles, and labels can all be addressed with the same index.

Table 7.4 Parameters for the fall and function for calculating the acceleration during the fall 1

g=9.81 #[m/s²] Gravitational acceleration

2

cV=0.004 #[1/m] Friction coefficient

3

def accFall(x,v):

4

return -g-cV*v**2*np.sign(v)

5

acc=accFall # Link to acc in progress function

6

7

dt=0.05 #[s] Time increment

8

t=np.arange(0,20+dt,dt)

t sets the structure also for x and v, and determines the

 length of the progress loop.

9

x=np.zeros(len(t))

10

v=np.zeros(len(t))

11

xM=np.stack((x,x,x)) # For 3 initial conditions

12

vM=np.stack((v,v,v))

7.3

Falling from a (Not Too) Great Height

283

Table 7.5 Progress loop for the fall; “Runge–Kutta” is the function defined in Table 7.2

13

vM[0,0]=0

14

vM[1,0]=40

15

vM[2,0]=-80

16

lbl1=[0,1,2]

17

for k in range(3): # Labels for three curves

18

lbl1[k]='cV='+str(cV)+' v[0]='+str(vM[k,0])

19

linStyle=['k-','k--','k-.']

20

for k in range(3): # Over all initial conditions

21

for i in range(len(t)-1): # Progress loop over t

22

xM[k,i+1],vM[k,i+1]= RungeKutta(xM[k,i],vM[k,i])

Table 7.6 Plotting three time-curves

23

FigStd('t[s]',0,20,5,'v[m/s]',-80,40,40)

24

for k in range(3): # Over initial conditions

25

plt.plot(t,vM[k],linStyle[k],label=lbl1[k])

26

plt.plot([0,20],[0,-20*g],'k:', label = "slope -g")

Straight line with slope -g

27

plt.legend()

Questions

What is the shape of x M and v M in Table 7.4 and what are the first and last two elements of t?6

What does “linStyle[k]” in line 25 of Table 7.6 do?7

How can the two k-loops in Table 7.5 be merged into one?8

7.4

Stratospheric Jump

When considering jumps from great altitudes, it must be taken into account

that the coefficient of friction changes with height according to changes in

air density. The friction force is, therefore, a function of both location and

velocity. We model the air density in a simplified way with the barometric

formula for a constant temperature (15 °C). In this model, the maximum

speed for a jump from 39 km altitude is reached after a 50 s fall.

6 The shape of x M and v M is (401, 3), len(t) = 401, t = [0, 0.05, …, 19.95, 20.00].

7 linStyle[k] selects the k-th element of the list linStyle defined in line 19.

8 Insert line 18 between lines 20 and 21. The indentation with respect to line 20 is already correct.

[image: Image 71]

284

7

Integration of Newton’s Equation of Motion

(a)

(b)

0

40,000

[m/s]

[m]

v

h

-100

30,000

hE=8400m

-200

20,000

f = fF

-300

hE=8400m

10,000

The engineer's

pulse

-400

0

0

100

200

300

t [s]

0

100

200

300

t [s]

Fig. 7.7 a (left) Velocity for a fall from 38,969 m, compared with the data from Baumgartner’s jump (“The engineer’s pulse”, Fig. 7.8a); the dashed line “f=fF” is valid for constant friction. b (right) Altitude as a function of time for the velocity calculated in a

A

B

C

D

E

F

G

H

I

J

3

dt

0.4 s

fF

0.004 1/m

4

g

9.81 m/s²

hE

8400 m

hE=8400m

 *dt

 (-hD/hE)

5

 +(E7+I7)/2

 =A7+dt

 =B7+(D7+H7)/2*dt

 =fF*EXP(-h/hE)

 =D7

 =-g+f*v^2 =h+v*dt =fF*EXP =v+a*dt =-g+fD*vD^2

6

 t

 h

 f

 v

 a

 hD

 fD

 vD

 aD

7

0.0

38969 0.0000

0.00

-9.81

38969 0.0000

-3.92

-9.81

8

0.4

38968

0.0000

-3.92

-9.81

38967 0.0000

-7.85

-9.81

807

320.0

-150 0.0041

-49.45

0.15

-170 0.0041

-49.39

0.15

Fig. 7.8 a (top) Measured data of the jump of October 14, 2012 (The engineer’s pulse, Oct.15, 2012, Mechanical analysis of Baumgartner’s dive (Part B)). b (bottom, S) Spreadsheet layout for a jump from a high altitude, when the friction coefficient (f and f D in columns C and G) is height-dependent

On October 14, 2012, the Austrian adventurer Felix Baumgartner ascended into

the stratosphere in a helium balloon. He jumped out at a height of about 39 km

and fell about 34 km in free flight, reaching supersonic speed before opening

his parachute. Some measurement data are reported in Fig. 7.8a and plotted in Fig. 7.7a as a dashed line. We are going to simulate this jump with a simple model for height-dependent friction.

Height-dependent friction force

The coefficient of friction depends on the altitude, because the density of air, and, with it, the coefficient of friction, decreases with increasing altitude. We apply a height-dependent friction coefficient that directly corresponds to the barometric formula:

 f (h) = f F · exp − h

(7.12)

 he

7.4

Stratospheric Jump

285

with f F = 0.004 1/m valid for h = 0 (the same as in Exercise 7.3). With h e = 8400 m (valid for an air temperature of 15 °C), we get the best coincidence with the empirical

data for the velocity as a function of altitude (see Fig. 7.7a).

Our simple model can well reproduce the essential characteristics of the time

trajectory of the velocity. In the beginning, the fall is free, i.e., without friction,

showing up as a linear increase in speed. After about 50 s, the maximum fall speed

is reached; in the real experience, it exceeded the speed of sound. After that, the

speed decreases sharply because of increasing friction due to increasing air density

and approaches the stationary speed we calculated for f = f H = c 0 in Exercise 7.3.

For a more realistic simulation, we have to consider that the atmosphere consists

of different air layers with different temperatures. But we are content to find the

main characteristics of the jump when applying just the barometric formula with

constant temperature.

7.4.1

Data Structure and Nomenclature

 t

array of time points, d t apart, independent variable

 h E

characteristic height of the barometric formula

 f F

friction at h = 0

 h

height for t

 f

friction coefficient at h

 v

velocity at t

 a

acceleration at t

 h D, f D, v D, a D

values predicted for the end of the interval.

7.4.2

Spreadsheet Calculation

The spreadsheet layout for the integration of the equation of motion is presented in

Fig. 7.8b. The integration method is LookAhead. The main change from Exercise 7.3.2 is that the height is now calculated simultaneously with the velocity. This is

necessary because the coefficient of friction is height-dependent.

The height is calculated in column B from the height and the speed in the

preceding rows; from that, in column C, the coefficient of friction f , which is then used to calculate the acceleration a in column E. Analogously, the same applies to the “looked-ahead” values in columns F to I.

286

7

Integration of Newton’s Equation of Motion

Table 7.7 Parameters for the stratospheric jump, together with a function for the acceleration 1

n=801 # Number of calculation points

2

dt=320/(n-1) # Time span 320 s

3

g=9.81 #[m/s²], Gravitational acceleration

4

hE=8400 # Characteristic barometric height

5

fF=0.004 #[1/m] Damping constant

6

7

def accJump(xi,vi): # x represents height

8

f=fF*np.exp(-xi/hE) # Barometric formula

9

ac=-g+f*vi**2

10

return ac

Questions

Which thermodynamic quantities determine the characteristic height h E?9

The formulas for a and a D in Fig. 7.8b (S) are valid only when the velocity is always negative, so that the body is always falling. Sloppy programming!

How do the formulas have to be changed when the body can also rise? 10

Interpret the formula in B8:B807 in the form h(t+d t)=! 11

The calculated velocity is shown in Fig. 7.7a as a function of time and compared with the empirical data of the stratospheric jump by Baumgartner.

7.4.3

Python

The parameters for the Python program are specified in Table 7.7, together with a function for the acceleration, accJump.

The main program is reported in Table 7.8 with the specification of the arrays t, h, and v and their initial values for t = 0. The for-loop is identical to all our programs for integrating the equation of motion. We have to assign the name acc,

called in our standard function RungeKutta, to the acceleration function specific to the current problem.

7.5

A Car Drives with Variable Power

A driver wants to accelerate his vehicle at full throttle, but making sure that

the wheels are not spinning (a “racing start”). We consider two approxima-

tions for this behavior, constant power and speed-proportional power. We

9 The height h E arises from the Boltzmann distribution of air molecules in the atmosphere: air density ρ(h) = ρ(0) · exp (− mgh/kB T); hE = kB T /mg, where m is the average mass of the air molecules.

10 Instead of [=… + v2] one sets [=… + abs(v)ˆ2*SIGN(v)] or [=…−v*abs(v)].

11 Formula in B8:B807: h(t + d t) = h(t) + (v(t) + v D(t))/2·d t.

7.5

A Car Drives with Variable Power

287

Table 7.8 Progress loop for the stratospheric jump

11

t=np.empty(n) # n determines the length of t, h, and v

12

h=np.empty(n)

13

v=np.empty(n)

14

t[0]=0

15

h[0]=38969 #[m] Jump height

16

v[0]=0

17

18

acc = accJump #a cc() accessed within RungeKutta

19

for i in range(n-1):

20

t[i+1]=t[i]+dt

21

h[i+1],v[i+1]=RungeKutta(h[i],v[i])

answer the following two questions: How does the final speed depend on

the frictional resistance? How do longer-term fluctuations in power become

noticeable? The programming challenge is to realize case distinctions.

7.5.1

Various Types of Power

Analytical solution for vanishing sliding friction

In this section, we characterize the racing start of a car (“full throttle”) by a constant power P during the whole process (not by constant acceleration, as is usually assumed in textbook exercises). Without friction, the work W is converted into kinetic energy: 2 P √

 W = P · t = m v 2 → v =

· t

(7.13)

2

 m

The resulting velocity v and the acceleration a = d v/d t are shown in Fig. 7.9a

for P = 100 kW and a car with mass m = 1500 kg. The velocity increases with the square root of time, and the acceleration becomes infinitely large at t = 0.

Non-zero motion friction and limited acceleration

In the real case, two effects have to be considered: (1) motion-inhibiting friction

(rolling friction, driving resistance) and (2) the condition that the driving force must

never be greater than the static friction force between the tire and the road. The

second effect is taken care of by limiting the acceleration to a maximum value a Max.

We generally set the frictional force that inhibits motion proportional to v nF so that the exponent n F can later be selected as a parameter, e.g., n F = 2 for friction caused by an air stream.

288

7

Integration of Newton’s Equation of Motion

100

6

100

6

80

80

[m/s]

4

4

v 60

60

[m/s]v

11.55√t

40

40

<-- v; μ=0

a -->

2

v-End

2

<-- v; μ=0.5

20

20

v=aMax·t

[m/s²]

[m/s²]

a -->

a

a

0

0

0

0

0

20

40

60

80

0

20

40

60

80

t [s]

t [s]

Fig. 7.9 a (left) Speed and acceleration for a constant power of P = 100 kW, without friction losses, calculated according to 7.13. b (right) Speed and power if driving friction is taken into account and acceleration is limited to a max; numerically calculated

The power needed to increase the kinetic energy and to overcome friction is

 m

 P = d

 v 2 + v · FR

(7.14)

 dt

2

 FR = µ · vnF → P = m · v · dv + µ · vnF+1

(7.15)

 dt

The acceleration

µ

 a(t) = dv =

 P

−

· v(t)nF

(7.16)

 dt

 m · v(t)

 m

does not depend on the location. It can be calculated from the power and the current

velocity alone.

Question

The velocity in this task is always greater than or equal to zero. How do

Eqs. 7.15 and 7.16 have to be changed if negative velocities are allowed? 12

For stationary motion (v = const.), we get

 a(t) = dv = 0 → vs(t) = nF+1 P/ µ

(7.17)

 dt

The stationary velocity v s can easily be calculated analytically with Eq. 7.17,

which we use to check the numerical calculation. This check also works the other

12 v(t) → Abs(v(t); v(t)nF → Abs(v(t))nF · sgn(v(t))

[image: Image 72]

7.5

A Car Drives with Variable Power

289

way around, because, if numerically and analytically calculated values do not

match, this may also indicate that our mathematical derivations are erroneous.

It is, therefore, doubly good to compare the results of the two methods; we check

whether our logical reasoning and our numerical calculation are consistent.

The calculated curves for the acceleration and the speed under friction can be

seen in Fig. 7.9b. The acceleration at the beginning of the journey is at its pre-set maximum value 5 m/s2 (for the acceleration, the right ordinate is valid) and goes

practically to zero within 80 s. The speed is limited; the numerically calculated

curve converges towards the stationary value obtained from Eq. 7.17. We can, therefore, assume that we did not make any gross programming mistakes. Without

friction (μ = 0), the velocity would continue to increase as in Fig. 7.9a.

Fluctuating power

What is the impact of power fluctuations on the speed? The answer is found in

Fig. 7.10a, similar to Fig. 7.9b, yet with the power always fluctuating by 10% after a time span DelT = 3.5 s. Although the acceleration fluctuates on this scale, the speed hardly fluctuates. Speed is the integral of acceleration and, as such, averages over

fluctuations. The fluctuations of the acceleration influence the speed more strongly

when they remain constant over a longer duration.

Task Change the time period DelT during which the power remains constant

and observe the time course of a and v!

Speed-proportional power

For internal combustion engines, the power depends on the number of revolutions of

the engine, and thus on the speed. If a function is known for this dependence, it can

be included in the formula for the power. We investigate the simple case in which

100

6

vEnd

80

<-- v;μ=0.5

[m/s²]

a; DelT=3,5 -->

a

4

60

40

2

[m/s]v

20

0

0

0

20

40

60

80

t [s]

Fig. 7.10 a (left) Five different starting processes with a fluctuation of the power by about 10%; the power remains constant within DelT = 3.5 s = 10 x d t. b (right) A starting process for speed-proportional power for the parameter values P min = 1000, P max = 100,000 and p V = 2000

290

7

Integration of Newton’s Equation of Motion

the power P is proportional to the speed v:

 P = pv · v

(7.18)

Tim If the car is at a standstill, the power is zero, i.e., the car does not start at all.

Alac That’s why you put your foot down when you’re idling and then let the

clutch come.

Tim How are we supposed to include that in our calculation model?

Mag With a case distinction: If the power, according to Eq. 7.18, is too small, we use a constant value P min; in real life, this would be achieved by letting the clutch slide.

Alac That’s for low speed. On the other end, at high revs, the engine runs out

of breath.

Mag Then we apply a constant power when exceeding a certain speed.

Tim Is that really the way to do it?

Mag Anyway, this is our model assumption. If this were a research project,

we would have to compare the curves calculated according to the model with

measured curves, and probably also consider that the gear would be changed at a

certain speed.

In our model, we distinguish three cases:

– v · pv ≤ P min

 P = P min , clutch slides

– v · pv ≥ P max

 P = P max , engine at power limit

–

 P min < v · pv ≤ P max P = v · pv, speed - proportional power The time curves velocity v(t) and acceleration a(t) are shown in Fig. 7.10b. The differences from Fig. 7.9b (and Fig. 7.10a) are clearly visible. At the beginning, with sliding clutch, the acceleration remains approximately constant, and then decreases

linearly with time.

Question

What is the physical unit of p V? 13

13 [p V] = [P/ v] = Ws/m = J/m.

7.5

A Car Drives with Variable Power

291

7.5.2

Data Structure and Nomenclature

 m

mass of the car

 μ

friction coefficient for air resistance

 n F

power in friction law

 P

default constant power

 P min

power when the clutch slides

 P max

engine at the power limit

 p V

coefficient for speed-proportional power

 a Max

maximum acceleration to avoid sliding

 t

sequence of times, d t apart, independent variable

 P var

varying power as a function of t

 a

acceleration at t

 v

velocity at t

 v S

stationary velocity

 x

distance travelled since t = 0

7.5.3

Excel

Constant power

For the numerical calculation, we use our standard method, “Progress with look-

ahead” (see Fig. 7.11 (S)). The condition “driving force < static friction force” is taken into account by limiting the acceleration using a min function, a = Min(a(t); aMax), where, for a(t), Eq. 7.16 is to be used. The corresponding spreadsheet formula, valid for C6:C235, is reported in C4.

We do not set the velocity at time t = 0 in B6 to zero, but rather to 0.00001,

so that, in C6, there is no division by 0. The value calculated in column C is

A

B

C

D

E

F

G

H

1

dt

m

µ

n

P

aMax

2

0.35

1500

0.5

2

100000

5.00

3

<-- v; μ=0.5

a -->

4 =A6+dt =B6+(C6+E6)/2*dt

=MIN(P/m/v-μ/m*v^n;aMax)

=v+a*dt =MIN(P/m/vD-μ/m*vD^n;aMax)

5

t

v

a

vD

aD

<-- v; μ=0

6

0.00

0.00001

5.00

1.75

5.00

0.00001

7

0.35

1.75

5.00

3.50

5.00

1.75

235

80.15

58.25

0.01

58.26

0.02

102.09

Fig. 7.11 (S) Acceleration and velocity are calculated using the method “Progress with look-ahead”. The parameters of the problem are defined in row 2 with their names in row 1. The values in column G were copied from column B when μ was set to 0

292

7

Integration of Newton’s Equation of Motion

thereby not affected, because, from the min condition, the maximum permissible

acceleration a Max results anyway.

Remember: In the calculation of the velocity v in a row (time t), only values from the previous row (time t−d t) are used. Therefore, the formula in B7 (reported in B4) gets input only from B6, C6, and E6. Formulas should only be entered into

the cells in bold, here in A7 and B7. The rest of the respective columns is obtained

by copying (“dragging down”). The initial values in A6 and B6 are entered as

numbers. The formulas reported in C4:E4 are valid in their entire columns, e.g.,

C6:C235, because they do not refer to cell addresses, but rather to names for

variables (cells and column ranges).

Questions

concerning Fig. 7.11 (S):

When is the acceleration in column C of constant?14

Examine and describe the expressions for a and a D!15

Another technical note for the spreadsheet calculation: 10/5/2 = 1. So, the

formula is divided consecutively: 10/5 = 2, then 2/2 = 1. According to the rules

of fractional calculation, the formula could be interpreted as 10/(5/2) = 4, which

is not so in excel.

Task Determine time and distance as a function of the power needed to accel-

erate to 95% of the final speed! To calculate the distance, you must integrate the

velocity.

Temporally fluctuating power with the Mod function

How do the curves a(t) and v(t) change when the power does not remain constant, but rather fluctuates over time?

When the power fluctuates over time, we cannot treat it as a global constant P,

but must insert an extra column in the spreadsheet, P var, into which the power can be entered at any time. To calculate the acceleration, we must access this variable,

and not the global parameter P.

In Fig. 7.12 (S), a calculation is presented in which the power fluctuates over a longer period of time, i.e., remains constant over a time interval t (Del T). The two variables r T and P var have been inserted into columns B and C for this purpose.

The formulas for v, a, v p and a p are exactly the same as in Fig. 7.11 (S), but with the time-dependent power P Var instead of the constant power P.

14 As long as the acceleration calculated in column C according to Eq. 7.16 is greater than the value a Max given in F2.

15 Think about it and read on!

[image: Image 73]

7.5

A Car Drives with Variable Power

293

A

B

C

D

E

F

G

H

I

J

K

1

dt

DelT

P

DelP

m

µ

n

aMax

2

0.35

3.4

100000

10000

1500

0.5

2

5.00

<-- v;μ=0.5

3

a; DelT=3,5 -->

elP);C6)

lT))

4 =A6+dt =ABS(MOD(t;De

=IF(rT <=0.2;NORM.INV(RAND();P;D

=D6+(E6+G6)/2*dt

=MIN(Pvar/m/v-μ/m*v^n;aMax)

=v+a*dt =MIN(Pvar/m/vD-μ/m*vD^n;aMax)

a; DelT=3,5

5

t

rT

Pvar

v

a

vD

aD

t.R

v.R

a.R

6

0.00

0.00

115530 0.00001

5.00

1.75

5.00

0.00

0.00

5.00

7

0.35

0.35 115530

1.75

5.00

3.50

5.00

1.75

8.75

5.00

15

3.15

3.15

115530

15.72

4.82

17.40

4.32

15.75

40.17

1.23

16

3.50

0.10

125449

17.32

4.73

18.97

4.29

17.50

42.20

0.98

235

80.15

1.95

104604

58.13

0.07

58.16

0.07

71.75

56.94

-0.11

Fig. 7.12 (S) The calculation of Fig. 7.11 (S) is extended with columns B and C, in which a time-dependent power is calculated, remaining constant over the time period DelT. Columns I, J and K

are written by sub Vari in Fig. 7.13 (P) with a selection of the data from columns A, B and C

In our model, we require that the power remain constant over a period of time

Del T. This condition can be fulfilled with the mod function (performing a modulo operation) , whose action is visible in column B of Fig. 7.12 (S). The time t is divided by DelT and the remainder is returned; e.g., in row 16 t/DelT = 3.5/3.4

= 0.1, remainder (modulus) is 0.1, and 0.1 is returned.

The expression in C4 of Fig. 7.12 (S), valid for C7, outputs a new value for P var only at certain times, otherwise, the value from the previous time is carried over. It is structured as follows:

if (rT ≤ 0.2) then (P var new) else (old value from the previous cell C6) with P var new = norm.inv(rand (); P; DelP), setting a new power, fluctuating around the mean value P with a standard deviation Del P.

In columns I, J, and K, time t R, velocity v R, and acceleration a R are entered successively for five start processes using a macro (protocol procedure sub Vari in Fig. 7.13 (P)): The curves are graphically represented in Fig. 7.10a. In every run, Fig. 7.13 (P) Rep-log procedure, copies five start operations (for rep = 1 to 5) continuously into columns 9 to 11 (= I, J, K) of Fig. 7.12 (S). Only the data for every fifth time are transferred (line 11, … step 5)

[image: Image 74]

294

7

Integration of Newton’s Equation of Motion

Fig. 7.14 (S) Speed-proportional power P v = v· p V if it is bigger than P min and smaller than P max only every fifth data point (“Step 5”) is transmitted.

Questions

What would the curves of v in Fig. 7.10a look like if, in Fig. 7.13 (P), line 17

were missing? 16

How does delP appear as a standard deviation in the fluctuating power in

Fig. 7.12 (S)? 17

Speed-proportional power

To get a power that is proportional to the speed of the car, Fig. 7.14 (S), we replace the formula in C4 of Fig. 7.11 (S) , valid for C6:C235, with a nested if-loop with the outputs v· p V, P Max, P Min:

[= IF (v∗ pv > Pmin;

 (IF (v∗ pv < Pmax; v∗pV;

Pmax));

Pmin)]

The power is v· p V, i.e., proportional to the speed, if it is bigger than P min and smaller than P max.

16 There would be no empty line separating the data sets, so that the last point of a curve would be connected to the first point of the following curve.

17 See formula in C4 where a formula for normal noise is applied.

7.5

A Car Drives with Variable Power

295

Table 7.9 Parameter specification for driving with constant power

1

dt=0.35

2

m=1500 #[kg] Mass of the car

3

mu=0.5 # Friction coefficient

4

nF=2 # Power coefficient in friction law

5

P=100000 #[W] Power

6

aMax=5.0 #[m/s²] max. acceleration

7

8

def accPwr(x,v): # v is always positive

9

a=min(P/m/v-mu/m*v**nF,aMax)

10

return a

11

12

t=np.arange(0,80.15+dt,dt)

13

x=np.zeros(len(t))

14

v=np.zeros(len(t))

15

a=np.zeros(len(t))

Table 7.10 Progress loop with RungeKutta for constant power

16

v[0]=0.00001

17

acc=accPwr # acc is name for acceler. within RungeKutta

18

for i in range(len(t)-1):

19

a[i]=accPwr(x[i],v[i])

20

x[i+1],v[i+1]=RungeKutta(x[i],v[i])

7.5.4

Python

Constant power

The setting of the parameters for driving with constant power is shown in Table

7.9. The size of the arrays is specified with np.arange(0,80.15 + dt,dt) to yield exactly the same range as in the excel spreadsheet of Fig. 7.11 (S). The acceleration is executed in a function accPwr that is assigned the additional name acc (line 17 in Table 7.10) expected in RungeKutta.

Progress of motion is achieved in Table 7.10 with the usual progress loop.

Question

Why do we calculate a[i] separately in line 19 of Table 7.10, although it is already calculated within Runge-Kutta? 18

18 We want to plot a(t), e.g., in Figs. 7.9 and 7.10.

296

7

Integration of Newton’s Equation of Motion

Fluctuating power

To calculate the car’s velocity for fluctuating power, the additional parameters DelT, DelP, and Pc are specified in Table 7.11. To store the results of five different runs, matrices v M and a M are built by stacking five times the arrays v and a, respectively (lines 6 and 7). Their shape is 5 rows × 231 columns. The usual progress-loop

contains an inner loop (k =) running over the 5 rows and calling RungeKutta successively with the individual vM[k,i] so that, in the end, five time series of velocity

and acceleration will have been calculated.

The contents of a M and v M are completely calculated in Table 7.11 and plotted with the program in Table 7.12.

Table 7.11 Calculation of five time series of v and a for motion with fluctuating power 1

import numpy.random as npr

2

DelT=3.5 # Fluctuation period

3

DelP=10000 # Fluctuation amplitude

4

Pc=100000 # Mean power

5

P=Pc

6

vM=np.stack((v,v,v,v,v))

7

aM=np.stack((a,a,a,a,a))

8

for i in range(len(t)-1):

9

for k in range(5):

10

aM[k,i]=accPwr(x[i],vM[k,i])*10

11

PBef=P # Setting the (new?) power

12

rem=np.mod(t[i],DelT) # 0 ≤ rem ≤ DelT

13

P=Pc+DelP*npr.randn() if rem<=DelT else PBef

14

x[i+1],vM[k,i+1]=RungeKutta(x[i],vM[k,i])

np.shape(vM) (5, 231)

np.shape(vM[0]) (231,)

Table 7.12 Plotting five time series of velocity and acceleration for motion with fluctuating power 1

FigStd('t',0,80,20,'v',0,60,20)

2

print('np.shape(t) ',np.shape(t))

3

print('np.shape(vM[0]) ',np.shape(vM[0]))

4

for k in range(5):

5

plt.plot(t,vM[k],'k-') # Full black

6

plt.plot(t,aM[k],'k:') # Dotted black

np.shape(t) (231,)

np.shape(vM[0]) (231,)

7.5

A Car Drives with Variable Power

297

Table 7.13 Definitions for speed-proportional power

1

Pv=np.zeros(len(t))

2

Pmin=1000 # Min. power

3

Pmax=100000 # Max. power

4

pv=2000 # Pn=v*pv, proportionality factor

5

aMax=1.5 # Max. acceleration

6

7

def accPwrV(x,v): # Pn is specified in progress loop

8

a=min(Pn/m/v-mu/m*v**nF,aMax)

9

return a

Table 7.14 Loop for progress with RungeKutta for speed-proportional power 1

v[0]=0.00001

2

acc=accPwrV # acc is name in RungeKutta

3

for i in range(len(t)-1):

4

if (Pmin<v[i]*pv<Pmax): Pn=v[i]*pv

5

elif (v[i]*pv<Pmin): Pn=Pmin

6

else: Pn=Pmax

7

Pv[i]=Pn

8

a[i]=accPwrV(x[i],v[i])

9

x[i+1],v[i+1]=RungeKutta(x[i],v[i])

Questions

How do you change the arguments in line 1 of Table 7.12 to get the same axis titles as in Fig. 7.10? 19

How does the changing power P enter accPwr(...)? 20

Speed-proportional power

The additional parameters for driving with speed-proportional power are given in

Table 7.13, together with a function accPwrV(x, v) for calculating the acceleration with the input variables x and v, as is expected for the function acc applied in RungeKutta. The function accPwrV makes use of global parameters. To keep control of the situation, the global parameters and the function should be defined

in the same program cell. This is actually the case in Tab. 7.13, except for P v, the speed-dependent power that depends on the speed calculated in the progress loop.

The progress loop for speed-proportional power in Table 7.14 contains a nested if … elif … else query to assign the correct value of the power to the

variable P n accessed as a global parameter in accPwrV.

19 FigStd(’t [s]’,0,80,20,’v [m/s]’,0,60,20).

20 The power P is a global variable changed within the progress loop.

298

7

Integration of Newton’s Equation of Motion

7.6

Bungee Jump

A bungee jumper falls in free fall until the rope becomes tight; only gravity

acts. When the rope is stretched, two additional forces come into play: the

back-driving rope force and the friction force due to the inner friction of the

rope. We neglect air friction so that the force depends only on the location,

and not on the speed. The form of motion is, at times, a free fall or a damped

vibration.

7.6.1

Simulation of the Motion

In a bungee jump, a person hangs on an elastic rope and lets her/himself fall from

a great height into the depths. As an example, we consider a bungee jumper (mass

 m = 60 kg, size 1.65 m) jumping from a height of 50 m. The bungee rope is l

= 25 m long in relaxed condition and has an elastic constant (corresponding to

a spring constant) of k = 100 N/m. The zero of the z-axis is at the point where the rope is fixed. The jumpers move in free fall until the elastic rope is fully

expanded but not yet stretched. For l = 25 m, this is at z = −25 m.

No friction

We first consider the situation without friction in which the jumper starts at height

 z = −25 m (fully elongated rope, not yet stretched; see Fig. 7.15a). The jumper

√

oscillates like a mass-spring system with a period of T = 2 π/ k/m = 4 . 87 s or 4· T

= 19.47 s.

(a)

(b)

-20

0

0

5

10

15

20

t [s]

0

5

10

15

20

t [s]

[m]

[m]

z

z

-20

-30

-40

zero rope

zero rope

l25; k100; fR0; m60

l25; k100; fR0; m60

-40

-60

Min (Formula)

Fig. 7.15 a (left) Oscillation when the jumper starts with a fully elongated rope. b (right) Sequence of free fall and oscillation when the jumper starts at the fixing point of the rope

7.6

Bungee Jump

299

When the jumpers start at the fixing point of the rope at the height of z = 0 m,

Fig. 7.15b, they:

– fall freely until the rope is fully elongated (z = −25 m),

– complete a half-period oscillation driven back by the elasticity of the rope to

the zero-rope position (z = −25 m),

– and overshoot up to the original height z = 0 in free fall (starting upwards

because of the initial upward velocity), where the height is a parabolic function

of time.

This sequence of motions repeats periodically.

Friction force of the rope

We assume a friction work W F proportional to the elongation or relaxation path of the rope, because, during elongation and relaxation, rope components are shifted

against each other, thus dissipating energy. Consequently, the frictional force f R =

d W F/d h is constant. For the example of Fig. 7.16, we have chosen f R = 220 N.

The motion with unexpanded rope (above z = - l) is still a free fall, whereas, with expanded rope, a dampened oscillation is observed.

The horizontal lines in Fig. 7.16 are obtained from analytical calculations of:

– the maximum height fallen,

– the top speed of the jumper,

– the rest position at the stretched rope.

(a)

(b)

0

20

0

5

10

15

20

t [s]

[m]

z

[m/s]v

-20

0

0

5

10

15

20

t [s]

-40

-20

zero rope

v

vMax

rest position

vD

l25; k100; fR220; m60

Min (Formula)

-60

-40

Fig. 7.16 a (left) Height as a function of time during a bungee jump, “zero rope” = length of unexpanded rope. b (right) Velocity as a function of time; v D (dotted line) = look-ahead to end of the time segment, calculated with the acceleration at the beginning. Parameters specified in Fig. 7.18 and Table 7.15.

300

7

Integration of Newton’s Equation of Motion

Question

What do you think: is rope friction effective only for elongation or also for

relaxation of the rope? 21

Reverse problem: The properties of the rope are deduced from the observed

motion

In this exercise, we have specified values for the spring constant and the friction force of the rope and therewith calculated the time curves for the position and velocity of

the jumper.

More interesting from a physical point of view is the reversal of the problem, in

which the properties of the rope are deduced from an actually possible observation.

A possible approach is to observe the oscillation period and measure the time it takes

for the jumper to come to rest, and then adjust the parameters of the simulation model

so that the simulation fits the measured results. We could then possibly see whether

our assumptions about the rope’s elastic and frictional properties and our neglect of

air friction are justified.

7.6.2

Analytical Calculations

We calculate the minimum and the rest position, as well as the maximum speed

by setting up the equation of motion with the starting point at z = 0:

 m · ¨ z = − m · g for z > − l

(7.19)

 m · ¨ z = − m · g − (z − l) · k − fR for z ≤ − l (7.20)

The parameter k is the spring constant coming into play when the jumper’s

position is lower than the length of the unexpanded rope.

First minimum by energy balance

The lowest point of the jump can be calculated from the energy balance. The kinetic

energy disappears at the lowest point, being a reversal point; the gravitational energy

has passed into the elastic energy of the rope and the friction energy. With h = height fallen, the following quadratic equation applies:

 (h − l) 2 k

 m · g · h =

+ fR(h − l)

(7.21)

2

21 Elongation: gravitational energy is converted into kinetic, elastic, and friction energy.

Relaxation (rope becomes shorter): elastic and kinetic energy is converted into gravitational and frictional energy.

7.6

Bungee Jump

301

2 l

 h 2 + h · −2 l + 2 fR − 2 mg

+ l 2 − fR

= 0

(7.22)

 k

 k

 k

It is solved in Fig. 7.17 (S), Eq. A, for the parameters of Fig. 7.18.

Maximum speed of the Bungee jumper

The maximum speed of the jump is obtained by considering the dependence of the

kinetic energy on the height of the fall:

 Ekin = m v 2 = mgh − k (h − l) 2 − fR(h − l) (7.23)

2

2

The gravitational energy goes into the kinetic energy of the jumper, the elastic

energy and the friction work of the rope.

The derivative of the kinetic energy with respect to the height gives the position

of the maximum velocity:

 d Ekin = mg − k(h − l) + fR = 0

(7.24)

 dh

 h = mg + kl + fR

(7.25)

 k

The maximum speed is calculated from the kinetic energy T max at this altitude:

2 Tmax

 vmax =

(7.26)

 m

The value of v max is calculated in Fig. 7.17 (S), Eq. (B), for the parameters of Fig. 7.16, specified in Fig. 7.18 (S).

Eq. (A)

Terms of the

p

-57.37 =-2*l+2*fR/k-2*m*g/k

quadratic equation

q

515.0 =l^2-fR*2*l/k

h+

-11.14 =p/2+SQRT((p/2)^2-q)

Deepest point

h-

-46.23 =p/2-SQRT((p/2)^2-q)

Eq. (B)

Hight for max. speed

hVm

33.09 =(m*g+k*l+fR)/k

Max. kinetic energy

Tmax

14426 =m*g*hVm-k/2*(hVm-l)^2-fR*(hVm-l)

Max. speed

vMax

21.93 =SQRT(2*Tmax/m)

Eq. (C)

Rest position

hRest

30.89 =m*g/k+l

Fig. 7.17 (S) Analytical calculation of the lowest point, the maximum speed, and the rest position of the bungee jump; p is the first parenthesis of Eq. 7.22, q the second. Eq. (A) = Eq. 7.22, Eq. (B)

= Eq. 7.25 and Eq. 7.26, Eq. (C) = Eq. 7.28

302

7

Integration of Newton’s Equation of Motion

Final position of the bungee jumper

When the jumper has come to rest, there is a balance between the weight force and

the elastic rope force:

 m · g = k · (h − l)

(7.27)

 h = m · g + l

(7.28)

 k

calculated in Eq. (C) of Fig. 7.17 for the parameters of Fig. 7.18 (S).

Task Determine the time until the jumper is at rest as a function of jump height!

Task Vary k and F R and observe how the number of oscillations and the time until rest change!

7.6.3

Data Structure and Nomenclature

 g

gravitational constant 9.81 m/s2

 l

length of the rope

 k

elastic constant of the rope

 f R

friction force of the rope, constant, energy = f R·(h – l)

 m

mass of the jumper

 t

sequence of times, d t apart

 z

position of the jumper at t, rope fixed at z = 0

 z Min

minimum position of the jumper

 z End

final rest position of the jumper

 v

velocity of the jumper as a function of t

 v Max

maximum speed

 T Max

maximum kinetic energy.

7.6.4

Excel

The parameters m, l, k, f R, and g (= 9.81 m/s2) are specified in named cells in A1:F2 of Fig. 7.18 (S). H3 displays the formula (concatenation of text and variables) for obtaining the legend in H2.

The equation of motion of the bungee jump is integrated with our standard

method, “Progress with look-ahead”. The result of the calculation is shown in

Fig. 7.16.

7.6

Bungee Jump

303

A

B

C

D

E

F

G

H

I

J

K

L

M

1

dt

g

l

k

m

fR

;

2

0.05

9.81

25

100

60

220

l25; k100; fR220; m60

3

s

m/s²

m

N/m

kg

N

=C1&l&H1&D1&k&H1&"fR"&fR&H1&"m"&m 4

5

a=IF(z<-l;-g-SIGN(v)*fR/m-k/m*(z+l);-g)

6

aD=IF(zD<-l;-g-k/m*(zD+l)-SIGN(vD)*fR/m;-g)

9)/2*dt

7

=A9+dt =B9+(D9+G

=C9+(B9+E9)/2*dt =v+a*dt =z+(v+vD)/2*dt

=MIN(v) =MIN(z) =INDEX(z;401)

8

t

v

z

a

vD

zD

aD

vMax

zMin

zEnd

9

0.00

0.00

0.00

-9.81

-0.49

-0.01

-9.81

Simu

-22.70 -46.28 -30.95

10

0.05

-0.49

-0.01

-9.81

-0.98

-0.05

-9.81

Formula

-21.93

-46.23

-30.89

409

20.0

0.15

-30.9

-3.56

-0.03

-30.9

3.77

Fig. 7.18 (S) Calculation model for a bungee jump; l = length of the rope; k = spring constant; m = mass of the jumper; f R = friction constant of the rope; acceleration is inhibited by friction only when the rope is stretched; the formulas a = if(…) in row 5 and a D = if(…) in row 6 are valid for the column vectors a and a D, respectively. Bewegung wird gehemmt Questions

Analyze the formula “a = … ” in B5 of Fig. 7.18 (S) applied in column D.

What is the logical structure of the formula? When does only gravity act? 22

Which forms of the time trajectory do you observe for an unstretched and a

stretched rope?23

The spreadsheet set-up presented here applies the same friction force for relax-

ing and stretching rope. Friction losses are likely to occur only when the rope is

longer than in the unstretched state (discuss!); this is taken into account through

an if query.

The calculated height is shown in Fig. 7.16a as a function of time. For checking purposes, the prominent points of the jump calculated analytically, namely,

maximum depth (= minimum height) and rest position, are entered into the dia-

gram as horizontal lines. The agreement with the simulated curve is quite good,

which indicates that neither our analytical calculations nor our simulation within

the framework of our model contain gross errors;-) or, less likely, both errors

cancel each other out.

In Fig. 7.16b, the velocity is plotted as a function of time, and also, as a horizontal line, the maximum velocity analytically calculated according to Eq. 7.26.

The dashed curve represents the velocity foreseen at the end of the interval calcu-

lated with the acceleration at the beginning of the interval. The full curve shows

the velocity at the beginning of the next interval, calculated from the mean of the

two accelerations, the one at the beginning of the interval and the estimated one

22 if(logical_test, [value_if_true], [value_if_false]). If the amount of the deflection is smaller than the rope length, then only the acceleration due to gravity acts; neither the elastic rope force nor the friction force are active. In the if function, this is the [value_if_false] case, i.e., when the condition (z < − l) is not fulfilled.

23 Unstretched: free fall, parabola; stretched: damped oscillation around the rest position.

304

7

Integration of Newton’s Equation of Motion

Table 7.15 Parameters and function for calculating the acceleration during a bungee jump 1

g=9.81 #[m/s²]

2

l=25 #[m] Length of rope

3

k=100 #[N/m] Spring constant

4

m=60 #[kg] Mass of jumper

5

Fr=220 #[N] Frictional force

6

7

def accBungee(z,v): # v positive, negative, or 0

8

if z<-l: # Tensioned rope

9

a=-g-k/m*(z+l)-np.sign(v)*Fr/m # np.sign(0)==0

10

else: a=-g

11

return a

12

13

lbl_1=("l"+str(l)+"; k"+str(k)+"; fR"+str(Fr)+"; m"+str(m)) lbl_1 l25; k100; fR220; m60

Table 7.16 Progress of the bungee jump

14

dt=0.251 #[s] Time increment

15

t=np.arange(0,100+dt,dt)

16

v=np.zeros(len(t)) # Velocity

17

z=np.zeros(len(t)) # Height

18

acc=accBungee # acc(…) is accessed in RungeKutta

19

v[0]=0 # Initial conditions

20

z[0]=0

21

for i in range(len(t)-1):

22

z[i+1],v[i+1]=RungeKutta(z[i],v[i])

at the end of the interval. The difference between the two curves illustrates the

difference between the Euler and the lookAhead methods.

7.6.5

Python

The parameters of the bungee jump and the function accBungee for calculating

the acceleration of the jumper are given in Table 7.15. The progress of the motion of the jumper is calculated in Table 7.16.

7.7

Questions and Tasks

From integration to numerical averaging

1. How is the velocity v(t) related to the acceleration a(t)?

7.7

Questions and Tasks

305

2. How is the mean value of a continuous function f (t) within the range t 1 to t 2

defined?

3. Interpret the formula v(tn + dt) = v(tn)+[a(tn) + a(tn + dt)] / 2· dt with respect to the previous two questions!

4. What does the broom rule (Ψ half, half, whole, the halves count twice) tell us about the 4th order Runge-Kutta method?

Half-step procedure in a spreadsheet

In Fig. 7.19 (S), you can see a spreadsheet structure for the numerical integration of Newton’s equation of motion for a fall with friction using the half-step method.

The spreadsheet calculation is structured in the same way as for our "Progress with

Forecast" procedure. However, the predicted acceleration a P is calculated for the middle of the interval and is considered representative of the entire time interval.

5. What are the formulas for x P, v P, and a P?

6. What are the formulas for x and v at the beginning of the next time interval (in C7 and D7)?

Function for “Progress with look-ahead” or “half step”

In Table 7.17, you can see the code of a Python function for calculating the progress from t to t + d t. However, in lines 4 to 8, the formulas have been replaced by 1.

7. Insert the appropriate formulas if “Progress with look-ahead” is to be used!

B

C

D

E

F

G

H

I

J

1

g

9.81 m/s²

gravitational acceleration

2

cV

1.5 1/m

friction coefficient

3

dt

0.005 s

time increment

4

=B6+dt =C6+G6*dt

=D6+H6*dt

=-g-cV*v^2*SIGN(v)

=x+v*dt/2+a/8*dt^2

=v+a*dt/2=-g-cV*vP^2*SIGN(vP)

5

t

x

v

a

xP

vP

aP

6

0.000

4.000

1.000

-11.31

4.00

0.97

-11.23

4.000

7

0.005

4.005

0.944

-11.15

4.01

0.89

-10.99

4.005

406

2.000

-0.361

-2.557

0.00

-0.37

-2.56

0.00 -13.620

Fig. 7.19 (S) Falling with friction, half-step procedure: The velocity v P and the acceleration a P

in the middle of the interval are calculated. Formula in C4 is valid for C7

Table 7.17 Function for numerical integration of the Newtonian equation of motion

1

dt=0.1

2

def ForcA(x,v):

6

aA=1

3

a=acc(x,v)

7

xN=1

4

xA=1

8

vN=1

5

vA=1

9

return(xN,vN)

306

7

Integration of Newton’s Equation of Motion

8. Insert the appropriate formulas if the half-step method is to be used!

Power and work

9. How are work W and power P related to the force F, the body’s displacement x, and the velocity v?

Bungee jumping

10. What are the formulas for: a) the elastic energy of a spring with constant k, b) the gravitational energy of a mass m near the earth’s surface, and c) the kinetic energy of a mass m?

Consider the statement: “The frictional energy when stretching or relaxing a rope is

proportional to the change in length (absolute value) of the rope.”

11. How is this approach justified?

12. Which function results for the frictional force?

Mathematical pendulum

The oscillation equation for a mass-spring system is

 ∂ 2 x(t) = − k · x(t)

(7.29)

 ∂t 2

 m

The oscillation equation for a mathematical pendulum is

 ∂ 2 φ(t) = − g · sin (φ)

(7.30)

 ∂t 2

 l

13. Why does no mass appear in Eq. 7.30 as does in Eq. 7.29?

14. Why does sin(φ) turn up on the right side of Eq. 7.30, and not simply φ, as one might expect in analogy to Eq. 7.29?

[image: Image 75]

Random Numbers and Statistical

Reasoning

8

We perform statistical experiments by applying functions that generate

uniformly distributed, normally distributed, and cos2 distributed random

numbers. We set up frequency distributions of a set of random num-

bers and compare them quantitatively with model distributions by means

of the Chi2 test, the interpretation of which will be explored. (Random-

number generators are used in later chapters to simulate measurement

inaccuracies and noise, e.g., in Chap. 9 (Evaluation of measurements) and Chap. 10 (Trend lines).) Required spreadsheet functions are: RAND(), FREQUENCY() as a matrix function, and CHISQ.TEST(), as well as the logical functions AND and OR, together with their counterparts in the Python

libraries numpy.random and scipy.stats.

8.1

Introduction: Statistical Experiments Instead

of Theoretical Derivations

Solutions of Exercises 8.2 (Excel), 8.3 (Python), 8.5 (Excel), and 8.8 (Python) can

be found at the internet address: go.sn.pub/zHV7Ko.

Russian proverb: Dovep, no ppovep! Trust but verify!

German variant: Vertrauen ist gut, Kontrolle ist besser. Trust is good, control is

 even better.

 Ψ If in doubt, count!

 Ψ Mostly, not always. “Fundamental rule of statistical reasoning”.

Random-number generators

In Python, two libraries have to be imported to make statistical functions available:

© Springer Nature Switzerland AG 2022

307

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_8

308

8

Random Numbers and Statistical Reasoning

numpy.random (npr) for the functions rand (random numbers between 0

and 1) and randn (normally distributed random numbers).

scipy.stats (sct)for the functions norm(0,1) (normal distribution)

and chisquare (Chi2 test).

The spreadsheet function RAND and the Python function npr.rand return ran-

dom numbers x that are equally distributed between 0 and 1 (0 ≤ x < 1). Other distributions are obtained when these random numbers are redistributed with suitable

functions, namely, with the inverse of the distribution function of the desired proba-

bility density. For the Gaussian, exponential and Cauchy-Lorentz distributions, these

inverse functions are available as NORM.INV, LN and TAN in EXCEL, and sct.norm

(0,1).ppf, np.log, and np.tan in Python.

The distribution function can be approximated with a polyline in a user-defined

 function. This is important for cases in which no predefined function for the inverse of a cumulated distribution function exists. As an example, we calculate the diffraction

image of photons that have passed through a double-slit where they are distributed

along a line perpendicular to the slits in cos2-shaped maxima.

What is to be learned?

After having worked through this chapter, you should be able to handle the following

safely:

– generating a set of random numbers that obey a given distribution model,

– determining the frequencies of occurrence of a data set, and displaying them

graphically,

– quantitatively comparing observed frequency distributions with model distribu-

tions. To this end, we practice the cautious use of the Chi2 test with the correct

degree of freedom dof .

Statistical experiments instead of theoretical derivations

Alac Numbers, numbers, numbers. They’re quite tiring. Is it worth the effort?

Mag Yes. This is the basis of the evaluation of experiments.

Alac Evaluation of Lab-course experiments? I’m happy when I have the annoy-

ing protocols behind me. I just want to memorize a few answers from the

introduction to the exercises to get through the exam talks scot-free.

Mag We only practice what is absolutely necessary—but understanding that

well is quite important, not only for studying physics, but for all empirical sciences

and political statements.

Alac Understand it well? Do we have to reproduce mathematical proofs?

8.1

Introduction: Statistical Experiments Instead …

309

Mag No. We perform experiments to grasp the essence of certain theorems of

statistics.

Tim “Statistical experiments”, that sounds interesting. Nevertheless, probability

theory is not my thing. Nobody in my study group understands the Chi2 test yet.

Mag I can understand that. Appearances are often deceptive, and no statement

is a hundred percent certain. Nevertheless, you have to be able to move on this

unsteady ground. In this chapter, we will start with gait exercises.

We use two types of statistical test in which a random experiment is repeated many

times:

– multiple tests for equal distribution and

– multiple tests for error probability.

In Exercise 8.2, multiple tests for equal distribution will be used to check whether

the results of Chi2 tests are equally distributed, as it should be when the model

distribution corresponds to the population from which the samples are taken.

Multiple tests for error probability are used in Chap. 9, “Evaluation of measurements”, and Chap. 10, “Fitting of trend curves to measurement points”, to check whether the experimental confidence intervals of a measurement result match the

assumed confidence levels.

Statistical functions in Python and Excel

import numpy.random as npr

import scipy.stats as sct.

Functions concerning the normal distribution:

sct.norm(xm,xd).pdf(x)

NORM.DIST (x;xm;xd; FALSE)

−∞ < x < ∞, probability density function

sct.norm(xm,xd).cdf(x)

NORM.DIST(x;xm;xd; TRUE)

–∞ < x < ∞, cumulative density function (distribution function)

sct.norm (xm, xd).ppf(p)

NORM.INV(p; xm; xd)

0 ≤ p ≤ 1, percent point function, inverse of cdf .

Functions generating random numbers:

npr.rand(n)

RAND() (matrix function)

random numbers equi-distributed between [0 and 1)

npr.randn(n)

NORM.INV(RAND();0;1) (matrix function)

normally distributed

RANDBETWEEN (no matrix function)

between two given integers,

npr.choice(2, 100, p = [0.2, 0.8])

310

8

Random Numbers and Statistical Reasoning

chooses numbers from a list with specified probabilities, here, 100 numbers 0 or

1

npr.choice (10, 10, replace = False)

without replacement; every number occurs only once.

Nomenclature

 pdf

probability density function

 cdf

cumulative density function (distribution function)

 ppf

percent point function, inverse of cdf

 dof

degrees of freedom, by default number of measurements minus 1

 ddof

delta degrees of freedom, 0 by default, greater than 0 if parameters of

the model distribution other than the sample mean are estimated from the

empirical distribution of the frequencies of occurrence.

8.2

Equi-Distributed Random Numbers, Frequencies

of Occurrence, Chi2 Test

We generate numbers randomly between 0 and 1, determine their frequency

of occurrence in intervals of width 0.1, and check, with the Chi2 test, whether

they are equally distributed.

8.2.1

A Spreadsheet Experiment with Random Numbers

In this exercise, we shall perform experiments with random numbers. They will

be explained by means of the spreadsheet in Fig. 8.1, where the data structure is clearly laid out, and repeated in Sect. 8.2.3 in Python.

(1) We generate 1000 random numbers named Rnd in column A, equally

distributed between 0 and 1, with the spreadsheet function RAND().

(2) We determine the empirical frequency distribution FrqObs of these numbers in intervals with 11 specified boundaries I b = 0.0, 0.1, …., 0.9, 1.0 in column C.

The 10 intervals between 0 and 1 all have the same width of 0.1. Principally,

however, the intervals may be of different widths.

(3) We perform a Chi2 test to check how close the observed frequencies FrqObs

are to FrqXpt, the frequencies expected for an equi-distribution. This is done in Range H6:I9. In H9, the Chi2 test for the equi-distribution. It yields the same

value as performed with the function ChiSq.Test on FrqObs and FrqXpt. In H8, this is performed via the value of ChiSqr in I6 and the function CHISQ.DIST.RT.

8.2

Equi-Distributed Random Numbers, Frequencies of Occurrence, Chi2 Test

311

A

B

C

D

E

F

G

H

I

J

K

FrqXpt)^2/FrqXpt

2

=RAND()

{=FREQUENCY(Rnd;Ib)}

=(FrqObs-

3

Rnd

Ib FrqObs FrqXpt

CSq

FrqStep

4

0.38

0

0

5

0.57

0.1

111

100

1.21

dof ChiSqr

90

6

0.80

0.2

92

100

0.64

9

10.10 =SUM(CSq)

90

7

0.34

0.3

90

100

1

90

8

0.72

0.4

85

100

2.25

0.34 =CHISQ.DIST.RT(ChiSqr;dof)

90

9

0.35

0.5

98

100

0.04

0.34 =CHISQ.TEST(FrqObs;FrqXpt)

90

10

0.95

0.6

117

100

2.89

110

11

0.44

0.7

102

100

0.04

0.30 =CHISQ.TEST(FrqObs;Frqstep)

110

12

0.04

0.8

97

100

0.09

110

13

0.54

0.9

95

100

0.25

110

14

0.05

1

113

100

1.69

110

15

0.04

0

1003

0.69

Fig. 8.1 (S) In A4:A1003, named Rnd, 1000 random numbers are generated. In D4:D15, the spreadsheet function FREQUENCY is used to count how many of these random numbers fall into intervals whose limits I b are specified in C4:C14. Column E shows the frequencies expected for equal distribution. In H8, the Chi2 test with FrqXpt is performed. In H11, the Chi2 test is performed against a step function FrqStep in column K, dof (in H6) = degrees of freedom Empirical frequency distribution

In EXCEL, empirical frequencies of occurrence are determined with the matrix func-

tion FREQUENCY(DATA_ARRAY; BINS_ARRAY). It outputs 12 frequencies (in D4:D15 in

Fig. 8.1 (S)) for the 11 boundaries I b (BINS_ARRAY), because it also determines the frequencies of the data below the lowest and above the highest boundaries.

The first value in BINS_ARRAY gives the number of occurrences in the examined

data set that lie below the first interval boundary, that is, from −∞ on. The last

value specifies the number of occurrences that lie above the last interval limit, i.e.,

up to ∞.

 Ψ Always one more in Excel! O.k., but of what and than what? 1

The spreadsheet function FREQUENCY is a matrix function. Before it is entered,

a spreadsheet range must be activated that can capture all output data, and the

operation must be concluded with a magic chord:-) , Ψ (Ctl + Shift) + Enter.

Read the box to get an answer to the important question: “What is a matrix

function?”

What is a matrix function in Excel?

1 For the output of the matrix function Frequenc y, a range has to be activated comprising one cell more than the number of interval boundaries.

312

8

Random Numbers and Statistical Reasoning

FREQUENCY is a matrix function. In terms of spreadsheet calculation, this

means that a cell range must be selected that is large enough to contain

the amount of the returned data. In the spreadsheet of Fig. 8.1 (S), the area D4:D15 was marked, then the function was entered (see D2), and

the process was completed with the “magic chord” for matrix functions:

(CTL + SHIFT) + ENTER.

Questions

What is the formula in A4:A1003? 2

What set of numbers is sorted into the intervals in Fig. 8.1 (S). 3

The Chi2 test as a judge

If the random numbers are evenly distributed between 0 and 1, we may expect that,

below 0 and above 1, there will be no values, and that in each of the ten intervals of

width 0.1, 100 values will occur. This is specified in the variables FreqXpt. A Chi2

test can be used to check how well the observed distribution, here, FrqObs, and the expected one, here, FrqXpt, match.

To this end, we calculate the value of χ 2 (Chi2, “Chi square”) defined as

 (

 χ

 N

 O

2 =

 i − Ei) 2

(8.1)

 i =1

 Ei

with O i and E i being the observed and expected frequencies, respectively, and N

the number of intervals considered for the comparison. In our implementations, O i

= FreqObs = [D5:D14], excluding the intervals with zero occurrence, and E i =

 FreqExp = [E5:E14] (only non-zero numbers), with the same size as FreqObs. χ 2

is termed ChiSqr and calculated in I6 as the sum over the individual terms CSq in column F.

The Chi2 test is listed in the literature under various names, e.g., χ 2-Test, Chitest. We call it the Chi2 test, because it is based on a distribution of the quantity χ 2 = chi2 (“chi squared”), defined in Eq. 8.1.

We perform such a Chi2 test in two ways:

– by introducing the calculated value of ChiSqr into the distribution function

CHISQ.DIST.RT (in H8), and

– by applying a special function for that test, CHISQ.TEST (in H9).

2 = RAND().

3 The 1000 numbers in A4:A1003.

8.2

Equi-Distributed Random Numbers, Frequencies of Occurrence, Chi2 Test

313

The values of such tests are between 0 and 1, giving the probability that χ 2 of

the current sample fits better with the model distribution of the whole population than any other sample. If the Chi2 test results in values significantly smaller than 0.01, it is generally concluded that observation and expectation do not match, i.e.,

the sample is not from the assumed model population. The values in H8 and H9

are 0.34, so that there is no reason to doubt that the random numbers are equally

distributed.

The result 0.34 means that, for 34% of other samples of the same population,

 χ 2 will be greater, i.e., the frequency distribution of these samples fits worse with the theoretical one. A more precise explanation is given in Exercise 8.8.

In H8, the Chi2 test is performed by explicitly entering the value of ChiSqr and the degrees of freedom dof into the inverse function of the integral distribution function of Chi2. In EXCEL, we use CHISQ.DIST.RT(CHISQR,DOF). The suffix.RT means

that a right-tailed distribution function is to be used. The left-tailed distribution

function is addressed with CHISQ.DIST. The meaning of these terms will become

clearer in Exercise 8.8.

DOF is the degree of freedom. For our test, dof = 9, corresponding to the 10

intervals in which the frequencies are compared minus 1; minus 1 because the

frequency in the tenth interval is no longer independent of the other frequencies,

but is rather determined by the total number of events.

Questions

 FrqObs in Fig. 8.1 (S) is defined for 12 intervals. Why is the degree of freedom for the Chi2 test not 11, but rather 9? 4

The spreadsheet function ChiSq.Test

EXCEL provides the spreadsheet function CHISQ.TEST(ACTUAL_RANGE, EXPECTED_RANGE)

for the Chi2 test. The test is employed in H9 of Fig. 8.1 (S) and results in the same value p = 0.34 as the first test. This function calculates the value of ChiSqr internally and assumes a degree of freedom one less than the number of intervals. It must not

be applied when parameters of the expected distribution are calculated from the

data set.

To repeat: The spreadsheet function CHISQ.TEST may only be used if the parame-

ters of the model distributions are defined in advance, as is the case in our example,

and not estimated from the sample.

Does a step distribution also fit?

In addition to comparing our observed frequencies with an equi-distribution, we also

compare them with the step distribution FrqStep in column K of Fig. 8.1 (S).

4 The comparison is only between numbers in the 10 intervals with nonzero value, D5:D14 and E5:E14; dof = 10 − 1 =9.

314

8

Random Numbers and Statistical Reasoning

Tim Looking at Fig. 8.1 (S), we see that the Chi2 test provides a larger value (p = 0.34 in H9) for the correct distribution than for the incorrect step distribution (p = 0.30 in H11).

Alac Well, that’s to be expected. A good reliability check must deliver a lower

probability value for a wrong model distribution than for the right one!

Mag Let’s wait and see! The correct distribution does not always fit best.

Repetition of the statistical experiment

We are going to generate the random numbers anew. To this end, we place the cursor

into an empty cell and “delete” its content. EXCEL reacts as if the calculation had been

changed, generates all 1000 random numbers anew, and recalculates the distribution

 FreqObs. The Chi2 test sometimes gives higher values for the comparison with

 FrqStep than for the one with FrqXpt.

Within the VBA rep-log procedure in Fig. 8.2b, we copy 1000 results of Chi2

tests into columns 13 and 14. Furthermore, we count how often the step function

fits better with the observed data than the equi-distribution. This holds true in about

10% of the tests.

The frequency distribution of the results of the two times 1000 Chi2 tests is

shown in Fig. 8.2a. The values for the comparison with the equi-distribution scatter around 100, i.e., they seem to be equi-distributed, whereas the test against the step

distribution delivers mostly values below 0.1. These results are also reflected in

the average values of the Chi2 tests: 0.5 for the equi-distribution and 0.13 for the

step distribution.

Repetitions of statistical experiments are generally not possible in real life, in

which there is mostly only one sample and one result of a Chi2 test. This is, how-

ever, possible in our exercises, because we invent our population ourselves with the

1,000

1 Sub protoc()

1

2 StepBetter = 0

2

800

3 For r = 4 To 1003

3

cEq

4 ChiSqr_Eq = Range("H9")

4

600

5 Cells(r, 13) = ChiSqr_Eq

5

ncy

cSt

6 ChiSqr_Step = Range("H11")

6

7 Cells(r, 14) = ChiSqr_Step

7

400

Freque

8 If ChiSqr_Step > ChiSqr_Eq _

8

9 Then StepBeer = StepBeer + 1

9

200

10 Next r

10

11 Range("N1") = StepBeer

11

0

12 End Sub

12

0

0.2

0.4

0.6

0.8

1

chi²-test

Fig. 8.2 a (left) Frequency distribution of the results of Chi2 tests against an equi-distribution (cEq) and a step distribution (cSt). b (P, right) The VBA procedure for 1000 repetitions of the two Chi2 tests in Fig. 8.1 (S)

8.2

Equi-Distributed Random Numbers, Frequencies of Occurrence, Chi2 Test

315

Table 8.1 Interval boundaries and theoretical frequencies of occurrence

1

db=0.1

2

Ib=np.arange(0,1+db,db)

3

FrqXpt=np.ones(10)*100

Equidistribution, expected freqs.

4

FrqStep=np.ones(10)

Step distribution

5

FrqStep[5:]*=110

Entries 5 to 9

6

FrqStep[:5]*=90

Entries 0 to 4

function RAND(), meaning we have a didactical method at hand for demonstrating

the peculiarities of statistics.

8.2.2

Data Structure and Nomenclature

 Rnd

1000 numbers supposedly randomly distributed between 0 and 1

 I b

11 boundaries for 10 intervals (“bins”) between 0 and 1

 FrqObs

frequencies of occurrence for Rnd

 FrqXpc

frequencies expected for an equi-distribution

 FrqStep

frequencies expected for a step distribution

 dof

Degrees Of Freedom, number of intervals minus 1

 ddof

Delta Degrees Of Freedom, to be deduced from dof if parameters of

the distribution are estimated from the sample.

8.2.3

Python

Standard histogram in Python

The interval boundaries I b and the expected frequencies of occurrence for an equidistribution (FrqXpt) and a step function (FrqStep) are specified in Table 8.1. We know that there are 10 intervals with numbers greater than zero, so that we specify

 FrqXpt and FreqStep with size 10.

Questions

What is the value of FrqStep[5] in Table 8.1?5

In Table 8.2, 1000 Chi2 tests are performed in a for loop on Rnd, an array with 1000 random numbers created with the Python function

npr.rand (1000). The frequency distribution is obtained with

np.histogram(Data;boundaries). This function returns an array of shape

(2, 10) with the frequencies reported in row number 0 and the boundaries repeated

5 FrqStep[5] is 110. FrqStep[:5] relates to the first 5 elements, FrqStep[0] to FrqStep[4].

316

8

Random Numbers and Statistical Reasoning

Table 8.2 Performing 1000 Chi2 tests of 1000 random numbers Rnd versus equi-distribution FrqXpc and versus step function FrqStep

7

import scipy.stats as sct

8

import numpy.random as npr

9

N=1000

10 cEq=np.zeros(N) # Chi² values for equi

11 cSt=np.zeros(N) # Chi 2 values for step

12 StepBetter=0

13 for i in range(N): # N Chi² tests

14 Rnd=npr.rand(1000) # Sample

15 FrqObs=np.histogram(Rnd,Ib)[0] # Freq. of occurrence

16 ChiSqr_Eq=sct.chisquare(FrqObs[0],FrqXpt,ddof=0)[1]

17 ChiSqr_Step=sct.chisquare(

FrqObs[0],FrqStep,ddof=0)[1]

18 cEq[i]=ChiSqr_Eq

19 cSt[i]=ChiSqr_Step

20 if ChiSqr_Step > ChiSqr_Eq: StepBetter+=1

21 print(„StepBetter „, StepBetter)

StepBetter 57 # Better Chi² test for step distribution

in row number 1. We therefore specifiy the returned variable with index 0:

FrqObs = np.histogram (Rnd,Ib)[0] to get the observed number of

frequencies.

Contrary to the EXCEL function FREQUENCY, only the 10 frequencies in the

intervals between the lowest and highest boundaries are returned, and not the fre-

quencies of occurrence below the lowest and above the highest interval boundaries.

The size of FreqObs[0] is, therefore, one less than the number of the specified

boundaries (Ib, reproduced in FreqObs[1]).In a diagram, we would plot them

over the 10 centers of the intervals with, e.g., plt.plot(Ic, FrqObs).

The

Chi2

test

is

performed

with

the

function

sct.chisquare

(FreqObs,FreqExp,ddof).The parameter ddof specifies a reduction

in dof , the degrees of freedom. If no parameter of the theoretical distribution is calculated from the observed sample, ddof = 0. This is the case for our model

distributions because we estimate only the mean from the sample. So, dof is set

internally to the number of sorting intervals (“bins”) minus 1.

The tests are performed within a for-loop with N = 1000 iterations and their

results are stored in arrays c Eq and c St (lines 20, 21). Plots of c Eq and c St over the center of the intervals look like Fig. 8.2a. We get qualitatively the same results: The chi2 values of the “Test of the 1000” versus the equi-distribution (FrqEq) are equally distributed between 0 and 1, while those vs. the step distribution (FrqStep) increase strongly for Chi2 test approaching zero.

 Ψ Always one more in Excel! O.k., but from what and than what? 6

6 For the output of the matrix function FREQUENCY, a range has to be activated comprising one cell more than the number of interval boundaries. Frequencies of occurrence are returned for values below the lowest interval boundary and for values above the highest boundary.

8.2

Equi-Distributed Random Numbers, Frequencies of Occurrence, Chi2 Test

317

 Ψ Always one less in Python! O.k., but from what and than what? 7

All-including intervals

The Python function np.histogram can cover, similarly to the EXCEL func-

tion FREQUENCY, the whole range of real numbers from minus infinite to infinite by

extending the definition of the interval boundaries with [-np.inf, ….,]. This is

recommended, because it allows for checking whether the sum of all frequencies is

equal to the total number of data points considered.

Questions

Regarding Table 8.2: In what percentage of cases does the Chi2 test in our Python program give a higher value for Step than for Eq? 8

How does the code have to be changed if 10,000 random numbers are to be

considered?9

Degree of freedom

What is the degree of freedom for the Chi2 tests in lines 16 and 17 of Table 8.2?

From Fig. 8.1 (S) and Fig. 8.2a (S), we deduce that the degree of freedom is 9. Is it correct to set ddof = 0? We may not be sure what the description means and check

this question with the program in Table 8.3, a modified version of parts of Tables 8.1

and 8.2. In lines 8 and 9, we sum up the results of Chi2 tests of 10,000 repetitions of the statistical experiment, in ChiS0 with ddof = 0 and ChiS1 with ddof =

1. The average values in the lower cell show that, with ddof = 0, we are closer

to the theoretical average 0.5 of Chi2 tests than with ddof = 1. So, ddof = 0

seems to be true, so that we may conclude that the default degree of freedom in

sct.chisquare is 9, number of intervals minus 1, dof = n – 1, as for the EXCEL

function CHISQ.TEST.

Consider also the improvement of the code in Table 8.3 over that in Tables 8.1

and 8.2: The number of repetitions can be changed by changing N alone.

7 Numpy’s np.histogram outputs a number of frequencies that is one less than the number of boundaries; frequencies of occurrence are returned only for internal intervals.

8 Bottom cell of Table 8.2: StepBetter = 57, of 1000 runs, makes about 6%. StepBetter is updated in line 20 within the for-loop.

9 Line 9: N = 10,000; line 14: npr.rand(10,000), line 16 FrqXpc*10; line 17: FrqStep*10. It would be better to use the variable N instead of specific numbers.

318

8

Random Numbers and Statistical Reasoning

Table 8.3 Checking the degree of freedom with N = 10,000

1

N=10000

2

FrqXpt=np.ones(10)/10 # Freq. in each of ten bins = FrqXpt*N

3

ChiS0=0

4

ChiS1=0

5

for i in range(N):

6

Rnd=npr.rand(N)

7

FrqObs=np.histogram(Rnd,Ib)[0]

8

ChiS0+=sct.chisquare(FrqObs,FrqXpt*N,ddof=0)[1]

9

ChiS1+=sct.chisquare(FrqObs,FrqXpt*N,ddof=1)[1]

10

11 print("ChiS0 ", np.round(ChiS0/N,3)) # Average value of

12 print("ChiS1 ", np.round(ChiS1/N,3)) #

 Chi² tests

ChiS0 0.501

0.50 expected for correct dof

ChiS1 0.429

8.3

Points Randomly Distributed in a Unit Square

We create coordinates of points randomly distributed in a unit square, use

the logical functions AND, OR, NOT to separate points in sub-regions of the

unit square, and illustrate the broom rule: Chance is blind and checkered.

8.3.1

Creation and Distribution of the Points

Chance is blind and checkered

Figure 8.3a displays a sample of 2000 points (x, y), randomly distributed in the unit square. The cross + indicates the center of the distribution obtained with the mean

(x m, y m) of the coordinates. The vertical bars (“devi bars”) are at x = x m ± x Sd, with x Sd being the standard deviation of the sample. The region within the vertical bars is called V. Figure 8.3b displays the same points, with the addition of horizontal bars at y = y m ± y Sd (y devi bars), and marks points in the inner rectangle, called VH, with open diamonds. The region within the horizontal bars is called H.

Questions

 concerning Fig. 8.3:

Do the points give the impression of being equally distributed?

Do the white spots and the point clusters disturb the impression of equal

distribution?

What fraction of points in Fig. 8.3a lies within the vertical lines? More or less than 50%?

8.3

Points Randomly Distributed in a Unit Square

319

1.0

1.0

0.8

0.8

y

y

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

x

Fig. 8.3 a (left) 2000 points (x, y) are randomly distributed in the unit square; the empirically determined center is marked by “+”. The vertical lines mark the standard deviation from the center in the x-direction. b (right) As in a, but with the addition of horizontal lines marking the standard deviation from the center in the y-direction and the points in the inner rectangle marked with open diamonds

How many points lie within the inner rectangle vH in Fig. 8.3b? Is it more or less than 25%? 10

Calculate a theoretical estimate for the number of points in the rectangle

√

with xSd = 1 / 12! 11

How do you generate the sets of numbers x and y anew, in Python and in

EXCEL? 12

Mag Take a look at Fig. 8.3, where the distribution of points is intended to be random. You need to place another point, but in such a way that the distribution

looks genuinely random. Where would you put it?

Alac In no case would I place it where there are already many points heaped

up, but rather into one of the white areas, where there aren’t any points yet.

Mag You must not do that under any circumstances. Chance is blind and does

not see where it has already struck before.

10 Solution in Fig. 8.5 (S), cell P3, 672/2000 = 0.336.

11

2

√

· 2

√

= 1 (see also Eq. 8.6).

12

12

3

12 EXCEL: Place the cursor in an empty cell and press “Del”, i.e., “delete” the contents of an already empty cell. Then, all formulas in the spreadsheet are recalculated, including the spreadsheet function RAND(). -Python:The numpy function np.rand(..) has to be executed in a loop or in a

user-defined function.

320

8

Random Numbers and Statistical Reasoning

Tim Now I’m confused. So that I don’t make any mistakes, I’ll close my eyes

before I set my point.

Alac But then you’re much more likely to hit a spot outside the predefined

rectangle.

Tim So, I’ll keep putting down points until you tell me that I’ve landed a hit

within the rectangle.

Mag This is, in fact, a way of randomly placing points within the target

rectangle.

Tim But using this blind method, even more clusters can arise.

Mag That’s all right. Ψ : Chance is blind and checkered.

Statistical characteristics of a sample

The average value or mean x m of a sample is defined, with the number n of elements in the sample, as

 xi

 x

 i

 m =

(8.2)

 n

The variance σ 2 (or var X in the notation that we will later use) of a sample is calculated with the mean as

 (x

 σ 2 =

 i − xm) 2

 var

 i

 x =

(8.3)

 (n − 1)

and therefrom the standard deviation as the square root:

 (xi − xm) 2

 x

 i

 Sd = σ =

(8.4)

 (n − 1)

The number of elements in the denominator of the variance is reduced by 1, (n

– 1), because one parameter, the mean, has been estimated from the sample and not

been fixed a priori.

In mathematical literature, the standard deviation is usually called σ. We use the term x Sd (or y Sd) instead, because it has the same physical unit as the sample members x i (y i).

In EXCEL, the corresponding functions are AVERAGE for the mean, VAR.S for

the variance of a sample with (n-1) in the denominator, and, correspondingly, STDEV.S for the standard deviation. In Python, the functions are np.mean and

8.3

Points Randomly Distributed in a Unit Square

321

np.std(x, ddof = 1), ddof = 1 being necessary to get the correct denom-

inator (n − 1). When the standard deviation of an entire population is to be determined, we have to use STDEV in EXCEL and ddof = 0 in the Python

function.

According to statistical theory, for a uniform distribution between 0 and 1, we

get

 Mean x m = 1

(8.5)

2

 Standar d devi ati on xSd =

1

√

≈ 0 . 289

(8.6)

12

8.3.2

Data Structure and Nomenclature

 x, y

random coordinates of points in the unit square

 x m, y m

mean of x and y

 x Sd, y Sd

standard deviation of x and y

 in X

true if x m – x Sd ≤ x < x m + x Sd

 in Y

true if y m – y Sd ≤ y < y m + y Sd

 in XY

true if in X == True and in Y == True

 V

inner vertical stripe of points with in X == True

 H

inner horizontal stripe of points with in Y == True

 VH

inner rectangle, points with in XY == True

 in V, in H, in VH

number of points in V, H, VH

 x I, y I

coordinates of points in VH

 L, R, B, T

left, right, bottom, top stripe defined by x ≤ x m - x Sd, x ≥ x m +

 x Sd, …

8.3.3

Excel

With the spreadsheet function RAND(), 2000 random numbers are generated each in

columns A and B of Fig. 8.4 (s), designated x and y, and displayed as 2000 points (x, y) in the plane (Fig. 8.3a).

The mean values x m and y m of 2000 between 0 and 1 equally distributed random numbers are (not surprisingly) about 0.5. The standard deviations are found

to be x Sd = 0.29 and y Sd = 0.29, corresponding within 2% to the theoretical value of 0.289 (Eq. 8.6). So, there is a fraction 2 × 0.29 = 0.58 to be expected within the vertical bars or within the horizontal bars, and a fraction 0.582 ≈ 0.33

2

√

· 2

√

= 1 within the inner rectangle of Fig. 8.3b.

12

12

3

322

8

Random Numbers and Statistical Reasoning

A

B

C

D

E

F

G

H

I

J

K

L

Sd)

1

=RAND()

=RAND()

=AND(xm-xSd<=x;x<xm+xSd)

=AND(ym-ySd<=y;y<ym+y

=AND(G4;H4)

=IF(I4;x;NA())

=IF(I4;y;NA())

=COUNT(yI)

2

x

y

xm

0.51 =AVERAGE(x)

inX

inY

inXY

xI

yI

3

0.24

0.57

xSd

0.29 =STDEV.S(x)

TRUE

TRUE

TRUE

0.24

0.57

672

4

0.38

0.55

ym

0.49 =AVERAGE(y)

TRUE

TRUE

TRUE

0.38

0.55

0

5

0.89

0.22

ySd

0.29 =STDEV.S(y)

FALSE

TRUE

FALSE

#N/A

#N/A

=SUM(inY)

2002

0.12

0.02

FALSE

FALSE

FALSE

#N/A

#N/A

Fig. 8.4 (S) In columns A and B, each 2000 random numbers between 0 and 1 are generated, and in C3:F3, their mean value (x m, x m) and standard deviations x Sd and y Sd are determined. The columns G to I check whether the points are within certain boundaries. L4 contains the formula SUM(INY). “#N/A” means “Not available”. The name of this worksheet is “calc” and is addressed as such in VBA procedures

M

N

O

P

Q

R

S

T

U

UE)

;TRUE)

1

TIF(inX;TR

TIF(inY;TRUE)

TIF(inXY

=COUN =COUN

=COUN

=inVH/2000

=COUNTIF(x;"<="&xm-xSd)

=COUNTIF(x;">"&xm+xSd)

=COUNTIF(y;"<="&(ym-ySd))

=COUNTIF(y;">"&ym+ySd)

2

inV

inH

inVH

fVH

nL

nR

nB

nT

3

1157

1179

672

0.336

409

434

408

413

Fig. 8.5 (S) COUNTIF is applied, counting how often the data x and y in Fig. 8.4 (S) are less away from the center than the standard deviation, in M:O with the logical data in x in, y in, and xy in. In Q:T, the data x and y themselves are taken for the logical query if the data are further away. We get inV + nL + nR = 2000

Check with And

In column G, for each individual x-coordinate, we check whether it deviates less than the standard deviation downwards or upwards from the mean value x m. In column

H, the same is done for the y-component. For these checks, the logical function

AND(LOGICAL1, [LOGICAL2], …) is used. The corresponding formulas are.

 in X = AND(x m -x Sd < = x; x < x m + x Sd) in y = AND (y m -y Sd < = y; y < y m + y Sd) In column I, we mark the points within the devi limits of both x m and y m. We cannot use the statement AND(x in; y in), because it returns TRUE if all elements of the column vectors x in and y in are true. So, we have to write, e.g., I4 = AND(G4;H4), and so on, to check individually whether the contents of both cells are true.

Logical functions

In columns J and K, we extract the coordinates of the points within the inner rectangle

with a statement like K4 = [=If(I4; x; NA())], returning the value of x if I4 = = True and #N/A else. The column ranges in K and J can be entered as data series into a

figure with the cells with #N/A being ignored.

8.3

Points Randomly Distributed in a Unit Square

323

A check COUNT(yI) (in L3) yields 672, although the queried range y I comprises 2000 entries, because only the cells with numbers, and not those with #N/A, are

counted. The function SUM(inY) returns 0 because only numbers are summed up and

logical values are ignored.

Logical Functions

We have used two logical functions so far:

IF(LOGICAL_TEST, [VALUE_IF_TRUE], [VALUE_IF_FALSE]);

in [VALUE_IF_TRUE] and [VALUE_IF_FALSE] may appear numbers, or functions

whose result is then processed.

AND(LOGICAL1, [LOGICAL2], …)

expects logical values as input and outputs TRUE or FALSE.

Please refer to EXCEL help to inform yourself about the other functions in

the category LOGIC: OR; FALSE; TRUE; NOT; IFERROR.

Count the Trues

In Fig. 8.5 (S), the logical calculations of Fig. 8.4 (S) are continued. The spreadsheet function COUNTIF(RANGE, CRITERIA) counts the non-empty cells of a range whose

contents match the search criteria. In M3:O3, the ranges in X , in Y , and in XY are queried as to how often their cells contain TRUE. In P3, the relative frequency f VH of points within the inner rectangle in Fig. 8.3b is reported (f VH = 0.336).

In the subsequent columns Q to T, the number of points in the lower n L,

right n R, bottom n B, and top n T stripe is calculated. Here, logical expressions formulated as a character string are used as criteria. In the formula S3 =

[=COUNTIF(y&" < = "& y m − y d)], the criterion is [" < = "& y m − y d]. The expression is of the form “Text”&Variable, composed of the comparison symbol in

quotation marks “<” and the arithmetic expression y m − y d.

In Fig. 8.6 (S), the results of Fig. 8.5 (S) are evaluated to estimate the relative amount of points within the inner rectangle with a probabilistic calculation. In

columns V and W, the number of points outside the x and y devi boundaries is obtained through addition; in X and Y, it is converted into the numbers inside the

devi bars (the same as in Fig. 8.5 (S)) from which the relative amount is obtained in Z and AA. These relative amounts are interpreted as probabilities.

Fig. 8.6 (S) Continuation of

V

W

X

Y

Z

AA

AB

Fig. 8.5 (S)

1 =nL+nR =nB+nT =2000-U3=2000-V3 =W3/2000=X3/2000 =pV*pH

2

==inV

==inH

pV

pH

pVH

3

843

821

1157

1179

0.58

0.59

0.341

324

8

Random Numbers and Statistical Reasoning

Product of probabilities

As the x and y coordinates are independent of each other, the probability of finding a point in the inner rectangle may be calculated as the product of the two probabilities

mentioned above:

 p VH = p v · p H

We get p VH = 0.341 (AB3). This is to be compared with the relative frequency

of occurrence f VH = 0.336 in Fig. 8.5 (S) and with the theoretical value of 1/3 =

0.333 (from Eq. 8.6).

Keep in mind the differences:

– The theoretical probability i s logically derived from the theoretical values of the mean and the standard deviation of an equi-distribution independent of the

current experiment with 2000 points.

– The quantity p VH is estimated from the relative occurrence of points in V and H in our current experiment.

– The relative frequency of occurrence in VH is empirically determined in our

current experiment.

Due to these methodological differences, the three values are not necessarily the

same; but, as they evaluate the same set of points, their values should be close

together.

8.3.4

Python

In Python, we have to import the numpy.random library as npr (see Table

8.4) for our exercise. The generation of the 2000 points is straightforward with npr.random (2000).

The logical queries as to whether the points are in the areas V or H are

performed in three different ways, all resulting in a Boolean array with length

2000:

– in

line

6,

“inX = np.logical_and ((xm-xSd) < x,

x < (xm + xSd))”, identical to the spreadsheet formulas in Fig. 8.4

(S), with the result being shown in the bottom cell of Table 8.4,

– in line 7, “inX2 = ” as list comprehension with identical results to those

in line 6, as checked with the instruction “inX == inX2", resulting in a

Boolean array of Trues,

– in line 8, “inY = ” as a different type of list comprehension.

The query as to whether a point is in the inner rectangle is done by means of the

list comprehension in line 9.

8.3

Points Randomly Distributed in a Unit Square

325

Table 8.4 Python: 2000 points (x, y) randomly distributed in a unit square, the points (x, y) are depicted in Fig. 8.3a, as are the points (x I, y I) in Fig. 8.3b

1

import numpy.random as npr

2

x=npr.random(2000)

3

xm,xSd = np.mean(x),np.std(x)

4

y=npr.random(2000)

5

ym,ySd = np.mean(y),np.std(y)

6

inX=np.logical_and(xm-xSd<x,x<xm+xSd)

Within std error?

7

inX2=[(xm-xSd<x) & (x<xm+xSd)]

8

inY=[(ym-ySd < yi < ym+ySd) for yi in y]

9

inXY=[inX & inY]

Arrays of coordinates of points within error range:

10 xI=np.extract(inXY,x)

11 yI=np.extract(inXY,y)

inX [True True True ... False False True]

len(inX) 2000

inX==inX2

[[True True True ... True True True]]

len(yI) 649

The coordinates of the points in the inner rectangle are obtained, in lines10

and 11, with the function np.extract(condition, array). The condition

here is that inXY == True. The length of x I, i.e., the number of points in the inner rectangle, is 649, to be compared to 672 = COUNT(YI) in the EXCEL sheet

of Fig. 8.4 (S). The theoretical expectation for a binomial question (point in VH

or not in VH) is xm = n · p = 667 and xSd = √ npq = 21, so that the above values are within the standard error range. The meaning of these statements will

be discussed in Chap. 9.

Logical operations on lists and arrays in Python

The operators & (and), | (or), and ~ (not) operate item-wise on lists of Booleans

and create new lists of Booleans. In Table 8.4, however, the numpy functions np.logical_and, np.logical_or, and np.logical_not are applied;

they do the same, except that they create arrays. The difference becomes apparent

when we try to combine two of them, e.g., with &. This is not possible for lists; in

trying to do so, we get the error message "Unsupported operand type(s)

for &: ’list’ and ’list’". But it works well with arrays, e.g.,

inXY=[inX & inY]

yielding a Boolean array with "True" if the point lies within the inner rectangle in Fig. 8.3b. With the instruction.

xI = np.extract(inXY,x)

326

8

Random Numbers and Statistical Reasoning

Table 8.5 Size of the Boolean arrays denoting the various partial areas in Fig. 8.3b

12 inV=sum(inX)

inV 1124

13 inH=sum(inY)

inH 1153

14 inVH=sum(inXY)

inVH 649

fVH 0.32

15 inL=sum(xi<xm-xSd for xi in x)

inL 437

16 inR=sum(xm+xSd<xi for xi in x)

inR 439

17 inB=sum(yi<ym-ySd for yi in y)

inB 433

18 inT=sum(ym+ySd<yi for yi in y)

inT 414

a new array is created containing the x coordinates of the points in the inner

rectangle.

The points in the inner square are plotted with an open diamond (see Fig. 8.3b)

with the instruction

plt.plot(xI,yI,’kd’, fillstyle=’none’).

In Table 8.5, we have calculated the numbers of points within the various partial areas V, H, VH, L, R, B, T of the unit square, defined in Sect. 8.3.2.

The values TRUE and FALSE in a Boolean array are coded as 1 and 0 in a

binary list. So, the number of TRUEs is equal to the sum over the list. This is not

possible in Excel; = SUM(INY) in L4 of Fig. 8.4 (S) yields 0.

Questions

How are in V and in H related to in L, in R, in B, in T? 13

How do you estimate the probability of finding points in VH from in V and

 in H? Compare the constructions in lines 6 to 9 in Table 8.4! 14

8.3.5

Why Calculate Twice?

Alac In Sect. 8.3.3, we calculate the probability of finding a point in the inner rectangle one time too many, once as f VH in O3 of Fig. 8.5 (S) and a second time as p V· p H in Fig. 8.6 (S). We could have saved work.

Tim There is a difference: f VH estimates the probability from the relative frequency in VH, whereas p VH relies on the product rule of probability.

Mag Tim is right. Anyhow, it is always good to follow two calculation paths

that are expected to deliver the same result. In this way, we can check whether

13 in V = 2000 – in L – in R; in H = 2000 – in T - in B.

14 p VH = p V· p H = in V/2000 · in H/2000 = 0.324.

8.3

Points Randomly Distributed in a Unit Square

327

our thoughts have been logical and whether we have correctly transferred our

thoughts into the calculation. This is especially advisable when using functions

and formulas for the first time.

Practical advice Before you seriously use functions for the first time, check

their operation with examples for which you can do the arithmetic mentally!

Product rule of probability

As can be seen in Fig. 8.5 (S) (and Table 8.5), only about p H = 59% (inH/2000

= 0.59) of the points lie within the two horizontal lines in Fig. 8.3b. Within the vertical lines, the proportion is also 0.59 (0.56). Within the rectangle (p VH), it is less.

According to the rules of probability, it should be the product of the probabilities

within the vertical and horizontal lines, p VH = p V· p H, provided the two events are independent of each other. This is indeed the case, because the x- and y-coordinates have been created independent of each other. We estimate the probabilities with

the point frequencies (0.59 × 0.59) = 0.348. If there is a difference between this

probability and that obtained with the number of points in the inner rectangle, it is

due to the fact that the probabilities are not exact, but simply estimated from the

number of points in the considered areas.

8.4

Set Operations in Numpy

Python provides a data format for sets, and the operations that will be

performed on them. With such sets, we illustrate basic rules for the prob-

abilities of unions and intersections, as well as Bayes’ rule on conditional

probabilities and apply logical queries.

8.4.1

Sets

In the program underlying Fig. 8.7, 400 points are created in the unit square, with their x- and y-coordinates being two arrays of independent, equally distributed random numbers. In Fig. 8.7a, only the points in three subsets are displayed: the top stripe T with y > 0.8 (marked with +), the right stripe R for x > 0.6 (marked with x, and the points in the right upper rectangle RT (additionally marked with

open squares).

The points in the ranges R and T are defined in Python as sets with their coordinates obtained through logical queries x > 0.6 and y > 0.8 (see Table 8.7).

The number of points in the sets is obtained with the function len:

len(R) → 158, len(T) → 85.

[image: Image 76]

328

8

Random Numbers and Statistical Reasoning

Fig. 8.7 Points in T, R, and RT. a (left) Plotted with their coordinates, e.g., plt.plot(xT, yT,

…); b (right) Plotted as two sets, symdiff and sect = RT mirrored at (0.5, 0.5) (see Table 8.8)

The probability that a new point will be in one of the sets may be estimated as:

p(R) = 158/400 = 0.395, p(T) = 85/400 = 0.213

Now, we perform set operations on R and T (Table 8.8):

– Union, defined in Python as R|T; comprising the points in R or T

– Section, defined in Python as R&T, comprising the points in R and T, marked above in Fig. 8.7a with open squares.

For the situation in Fig. 8.7, we get:

len(R|T) = 211, p(R|T) = 211/400 =0.528

len(R&T) = 32, p(R&T) = 32/400 = 0.080

Applying the addition rule for the union yields:

 p(R| T) = p(R) + p(T)− p(R& T)

(8.7)

which holds exactly true for our special case:

211/400 == 158/400 + 85/400 – 32/400

The multiplication rule for independent sets reads:

 p(R& T) = p(R) · p(T)

(8.8)

8.4

Set Operations in Numpy

329

The precondition for the multiplication rule is that the two events are inde-

pendent of each other. R and T are indeed independent sets, because x and y are generated independently, and the membership in R and T depends exclusively on x or y. As an illustrative counter-example, consider RT where x and y are not independent of each other.

Checking the multiplication rule for our special case gives us

p (R&T) = 32 / 400 = 0 . 080

p (R) · p (T) = 158 / 400 × 85 / 400 = 0 . 084

There is no exact coincidence between these probabilities, because they are

based on an estimate using a sample size of 400. Increasing the number of points

lets the two probabilities come closer together.

Other set operations are:

– Difference, defined as R-T, points in R but not in T:

– len(R-T)= len(R) - len(R&T)

– Symmetric difference, defined in Python as RˆT, points either in R or in T, indicated in Fig. 8.7b with x:

– len(RˆT)=len(R|T)-len(R&T).

For our specific case, we get: len(R-T) = 126, len(RˆT) = 179.

Conditional probabilities, Bayes’ rule

What is the probability p(T\R) of finding a point in set T when we know that it is in set R? Graphically, this is the area of RT divided by the area of T, formulated with probabilities as

 p(T \ R) = p(R& T)

(8.9)

 p(R)

For our specific case, we get

p (T\R) = (32 / 400)/(158 / 400) = 0 . 202

p (R\T) = (32 / 400)/(85 / 400) = 0 . 376

The two conditional probabilities are interconnected by Bayes’ rule:

 p(R\ T) = p(T \ R) ∗ p(R)

(8.10)

 p(T)

330

8

Random Numbers and Statistical Reasoning

Questions

What is the theoretical probability of finding a point in the upper-right rectangle

RT of Fig. 8.7? 15

Check the rules for difference and symmetric difference for the numbers of

our specific case! 16

Check Bayes’ rule for the numbers of our specific case! 17

8.4.2

Data Structure and Nomenclature

 x, y

coordinates, random between 0 and 1

 R

set of points in the right stripe

 x Rt

left boundary of R

 in R

Boolean array, TRUE if the point is in the right stripe

 x R, y R

coordinates of points in R

 R tup

array of tuples (x R, y R)

 T

set of points in the top stripe

 yTp

bottom boundary of T

 RT

section of R and T

 x T, y T

coordinates of points in T.

8.4.3

Python

In Table 8.6, random coordinates (x, y) of N = 400 points are generated from which those points are selected that lie in a vertical stripe R right of x Rt. To achieve this, first, a logical array in R is determined containing True when the condition x Rt < x is fulfilled. Then, the coordinates x R and y R are extracted from the True positions.

In Table 8.7, two sets R and T are built based on the coordinate lists x R, y R and x T, y T. We first zip the coordinates into tuples (result in Table 8.10) and then define R and T as sets with these tuples as elements. In our specific case, an array with 158 (out of 400) entries results. The same is done for a horizontal stripe T above y Tp. In the following, the set operations union, section, difference, and symmetric difference are performed. The size of the resulting sets is reported in the right cell of Table 8.7.

15 The probability of finding a point in RT is its area 0.2 × 0.4 = 0.08 in the unit square.

16 len(R-T) = len(R) - len(R&T); 126 = 158 -32.

len(RˆT) = len(R|T)-len(R&T); 179 = 211 - 32.

17 32/85 = 32/158 * 158 / 85.

8.4

Set Operations in Numpy

331

Table 8.6 Coordinates of the three sections R, T, and RT in Fig. 8.7

1

N=400

2

x= npr.random(N)

3

y= npr.random(N)

4

5

xRt = 0.6

Right border

6

inR=[xRt<x]

Right stripe

7

xR=np.extract(inR,x)

8

yR=np.extract(inR,y)

9

10 yTp = 0.8

Top border

11 inT=[yTp<y]

Top stripe

12 xT=np.extract(inT,x)

13 yT=np.extract(inT,y)

14

15 inRT=np.logical_and(inR,inT) # Top-right rectangle

16 xRT=np.extract(inRT,x)

17 yRT=np.extract(inRT,y)

Table 8.7 Defining the sets R and T and combined sets

18 Rtup=zip(xR,yR) # Right str.

19 R=set(Rtup)

len(R) 158

20

21 Ttup=zip(xT,yT) # Top stripe

22 T=set(Ttup)

len(T) 85

23

24 union = R|T

len(R|T) 211

25 sect = R&T

len(R&T) 32

26 differ = R-T

len(R-T) 126

27 symdiff = R^T

len(R^T) 179

28 un_m_sc = union-sect

len(un_m_sc) 179

Questions

In Table 8.6, two variables with nearly identical names occur, x Rt (a scalar) and x RT (an array). Why is there no name conflict? 18

Table 8.8 reports the instructions for plotting Fig. 8.7b.

Bayes’ rule is numerically checked in Table 8.9.

18 Python is case-sensitive; xRt and xRT are two different names. Nevertheless, this is bad naming.

332

8

Random Numbers and Statistical Reasoning

Table 8.8 Plotting the sets in Fig. 8.7b

1

FigStd('x',0,1,0.1,'y',0,1,0.1)

2

x4,y4=zip(*symdiff)

For effect of zip(* see:

 https://stackoverflow.com/questions/29139350/difference-

 between-ziplist-and-ziplist

3

plt.plot(x4,y4,'kx',label="symdiff")

4

x5,y5=zip(*sect)

5

x6,y6=np.array(x5),np.array(y5)

6

plt.plot(1-x6,1-y6,'kD',fillstyle="none",

label="sect, mirrored")

Table 8.9 Bayes’ rule

1

T_given_R=len(sect)/len(R)

0.203

2

R_given_T=len(sect)/len(T)

0.376

3

Bayes=T_given_R*len(R)/len(T)

0.376

Table 8.10 Data structure of R tup and R defined in Table 8.7

xR [0.86 0.78 0.86 ... 0.99 0.73 0.97]

yR [0.79 0.24 0.14 ... 0.09 0.43 0.48]

*zip(xR,yR) (0.86, 0.79) (0.78, 0.24) …

Rtup <zip object at 0x000001E3C57F7B48>

R

{(0.85, 0.17), (0.9, 0.09), … }

Some Python constructs

The function np.extract (Boolean_array, Value_array), applied in

Table 8.6, extracts those values of the Value_array for which the corresponding position in a Boolean_array contains True.

Table 8.10 elucidates the data structure of a zip object and a set. The zip() function pairs together the items of iterators passed as arguments. An iterator is an

object that contains a countable number of values; in our case, we pair the two arrays

 x R and y R. The set R contains the same tuples as R tup, but in a different order because the order does not play any role in sets.

8.5

Normally Distributed Random Numbers

The

functions

NORM.INV(RAND();0;1)

(EXCEL),

as

well

as

sct.norm.ppf(npr.random(…))and npr.randomn(…)

8.5

Normally Distributed Random Numbers

333

(Python), generate numbers that are standard-normally distributed.

We check this statement by comparing a frequency distribution of a set

of such numbers with the theoretical distribution using the Chi2 test. The

expected frequency of occurrence in an interval is calculated in two ways:

 Exactly, with the values of the cumulative distribution function (cdf) at the interval boundaries, and approximately, with the probability density (pdf) in the middle of the interval. The inaccuracy of the approximation will only

become visible with more than 10,000 random numbers.

8.5.1

Normal Distribution, Probability Density and Distribution

Function

This section presents the mathematical background of the formulas applied later

in this exercise.

Normal distribution

The following nominations and specifications hold:

 x m, x Sd

mean value and standard deviation

–∞ < x < ∞

argument range

0 < p < 1

probability, value range

EXCEL provides two spreadsheet functions, one with a Boolean parameter

CUMULATIVE? for calculations with normal distributions, corresponding to three

Python functions available from the scipy library:

– probability density function pdf , x → p

NORM.DIST (X, xM, xSD, CUM), cum = False or 0

sct.norm(xm, xSd).pdf(x)

– cumulated density function cdf (distribution function), x → p

NORM.DIST (X, xM, xSD,CUM),), cum = True or 1,

sct.norm(xm, xSd).cdf(x)

– the inverse of the distribution function, p → x

NORM.INV(P, xM, xSD) ,

sct.norm(xm, xSd). ppf(p)

334

8

Random Numbers and Statistical Reasoning

1.0

1.0

pdf(0,1)

pdf(0,1)

cdf(0,1)

0.8

cdf(0,1)

0.8

∫ x≤1

p

ppf

p(Ic)

0.6

0.6

p

0.4

0.4

0.2

0.2

0.0

0.0

-4

-2

0

2

4

-4

-2

0

2

4

x

x

Fig. 8.8 a (left) Solid line (bell curve): pdf (0, 1)) , probability density of the standard normal distribution (i.e., x m = 0 and x d = 1); dashed line: cdf (0, 1), distribution function of the normal distribution; the content of the grey area under the probability density is indicated by the diamond at the end of the vertical bar ending in a diamond on the distribution function cdf . b (right) The grey area below the probability density pdf is equal to the difference of the two y-values of the diamonds on the distribution function cdf . The horizontal bar indicates the value of the probability density in the middle of the considered interval

The extension ppf stands for “percent point function”. However, most people

in statistics use “quantile function”.

In mathematical textbooks, the normal distribution is often referred to as N(μ,

 σ 2), where μ is the mean value and σ 2 is the variance. However, since it is the standard deviation that has to be entered as a parameter into the spreadsheet and

Python functions, we shall use the abbreviations pdf (xm, xSd) in the text and

in legends for the probability density of the standard normal distribution that is

defined by the equation

 x − x

2

 m

 pd f (xm, xSd) =

1

√

· exp −1

(8.11)

2 π · xSd

2

 xSd

The bell-shaped pdf (0, 1) is shown in Fig. 8.8, together with the corresponding S-shaped cdf (0, 1) (dashed line).

Questions

What is the physical unit of the argument of exp in Eq. 8.11?19

What is the physical unit of pdf and pdf ·d x? 20

19 The argument in exp is dimensionless, because the nominator and denominator have the same unit.

20 [pdf] = 1/[x d], a density; [pdf ·d x] = unit-less, a probability.

8.5

Normally Distributed Random Numbers

335

Do the following two spellings yield different results in EXCEL: Y = EXP(-2ˆ2)

and Y = EXP(-(2ˆ2))?

Same question for np.exp (-2**2) and np.exp (-(2**2)) in

Python.21

Distribution function or cdf

In mathematical literature, the integral of a probability density is called the distribu-

tion function; it is monotonously increasing and spans the value range (the range of

the output values) from 0 to 1. In Python, it is called cdf , “cumulated (probability) density function”. We shall adopt this notation together with pdf and ppf in this text.

The distribution function of the normal distribution cannot be represented in a

closed form, but this is not a disadvantage for us, since EXCEL offers a spread-

sheet function NORM.DIST(x; x m ; x d; TRUE) and Python offers sct.norm(x M, xSd).cdf(x) , which are good approximations.

In Fig. 8.8a, the probability density of the normal distribution is shown up as a bell curve and the distribution function as a monotonously increasing S-shaped

curve. The open diamond marks the distribution function at x = 1, corresponding

to the value of the integral over the probability density from −∞ to 1, which is

represented as a grey-filled area under the bell curve, representing the probability

of finding a value of the random number below x = 1.

The function ppf(p) is the inverse of the distribution function cdf(x), giving the value of x for a specified p, as demonstrated by the kinked line in Fig. 8.8a: A value p 0 on the vertical axis between 0 and 1 is assigned a value x 0 on the horizontal axis (see arrow). It is the probability of finding a value x ≤ x 0, corresponding to the grey area under the probability density.

Probability that a random number falls into an interval

What is the probability p(x 1, x 2) that a normally distributed random number lies in the interval [x 1, x 2)? To calculate this, we have to integrate over the probability density pdf(x) :

 x 2

 p(x 1 , x 2) = ∫ pd f (x)dx = cd f (x 2) − cd f (x 1) (8.12)

 x 1

The integral in Eq. 8.12 is the difference of the distribution function at the two interval limits. To give an example: in Fig. 8.8b, an interval from 0.2 to 0.7 has been selected. The probability of finding a normally distributed random number in this

interval corresponds to the grey area under the probability density pdf , which, in turn, corresponds to the difference of the values of the distribution function cdf at the two positions marked with open diamonds.

21 Yes, there is a difference, but only in EXCEL. In a spreadsheet, the argument of the Gaussian function must be spelled as (-(xˆ2)), because negation has operator precedence over potentiation, quite surprisingly for mathematically-educated readers and an annoying error source, so: –2ˆ2 =

4; –(2ˆ2) = –4.

[image: Image 77]

336

8

Random Numbers and Statistical Reasoning

The integral over an interval can be approximated by the product of the

probability density in the center x C of the interval and the width x of the interval: x 2 − x 1

 p(x 1 , x 2) ≈ pd f

· (x 2 − x 1) = pd f (xC) · Δx

(8.13)

2

In Fig. 8.8b, this value is indicated by the horizontal line between the interval limits. The more linear the probability density between the selected interval limits

and the narrower the interval, the better this approximation. The frequency of

occurrence in that interval for a sample of size N is pd f (xC) · Δx · N .

8.5.2

Random-Number Generator and Frequencies of Occurrence

The function npr.randn(N) of the library numpy.random returns an array

of N numbers randomly distributed according to the standard normal distribution

with x m = 0 and x Sd = 1. In EXCEL, there is no simple function for doing this, and thus a nested function, NORM.INV(RAND();0;1), has to be used. The literal equivalent

in Python is sct.norm.ppf (npr.random(N)).

Figure 8.9 displays the two frequency distributions of 10,000 random numbers created with the two Python functions randn and ppf (random), together

with the theoretically expected distribution. We see that, indeed, the two functions

act alike, and the numbers provided seem to be normally distributed.

Fig. 8.9 a (left) Frequency distribution of the numbers generated with the two generators of normally distributed random numbers in Table 8.12 (randn and ppf (random)); the vertical bars represent the interval boundaries; the polyline connects the frequencies freq XpC expected for a normal distribution (obtained with cdf (0, 1)). b (right) Data for pdf (x) , cdf (x), and ppf (p) of the standard normal distribution obtained from Table 8.11.

8.5

Normally Distributed Random Numbers

337

250

25000

pdf(0;1)*N*dx

pdf(0;1)*N*dx

N=1024

N=102400

200

20000

frequency

frequency

150

15000

100

10000

50

5000

0

0

-3.0

-1.5

0.0

1.5

3.0

-3.0

-1.5

0.0

1.5

3.0

x

x

Fig. 8.10 a (left) Frequency distribution for 1024 random numbers. b (right) Frequency distribution for 100 times more random numbers than in a

8.5.3

Where Do Observed and Theoretical Frequencies Fit Better

Together?

Figure 8.10a displays experimentally determined frequencies of occurrence for 1024 random numbers generated in EXCEL with NORM.INV(RAND();0;1) as data points

over the interval centers x c. The numbers of events outside of the minimum and

maximum interval boundaries are shown in the picture on these interval boundaries

(here, −3 and 3). Figure 8.10b shows a similar picture for a hundred times more random numbers.

The polylines in Figs. 8.10a and Fig. 8.10b represent the frequencies of occurrence in the interval [x 1, x 2):

 f r eq(x 1 to x 2) = pp f (x c) · N · x (8.14)

where N is the total number of data and x c and x are the center and width, respectively, of the sorting intervals, also called the “bins”.

Questions

What additional information would significantly increase the information con-

tent of the legends Fig. 8.10a, b? Compare Fig. 8.16b! 22

Mag Where do observed and theoretical frequencies fit better together, in the

left or right picture of Fig. 8.10?

Alac Quite clearly, in the right picture. The experimental and theoretical points

are much closer together than in the left picture.

22 Indicating the result of a Chi2 test would considerably increase the information in the figure.

338

8

Random Numbers and Statistical Reasoning

Tim This surely is a trick question.

Mag Indeed. Many unbiased observers believe, like Alac, that, in Fig. 8.10b,

model distribution and experimental frequencies coincide better than in Fig. 8.10a.

Alac Sure.

Mag Well, it’s an optical illusion. For Fig. 8.10a, the Chi2 test yields a value of 0.333, giving no reason to doubt that Eq. 8.14 correctly describes the random experiment with 1024 single values. For 100 times more single values, e.g.,

Fig. 8.10b, the Chi2 test yields a value of 0.0001, i.e., only in 1 of 10,000 cases does an even greater deviation occur between the data of a sample and the model

for the population.

Alac Then, we can presumably no longer claim that the theoretical distribution

describes the experimental distribution well. Why not?

Mag For 102,400 individual values, the approximation of Eqs. 8.13 and 8.14 is not good enough. For so many data, statistical science expects a deviation that is

even smaller than we can note with the eye.

Exactly calculated frequencies of occurrence

The probability of finding a random number in an interval is determined exactly by

the difference of the cumulative distribution function cdf at the interval boundaries, as prescribed in Eq. 8.12. To determine the frequency in the interval, the probability must be multiplied by the total number N of the analyzed data:

 f r eq(x 1 to x 2) = (cd f (x 2) − cd f (x 1)) · N

(8.15)

In this formula, the interval width x does not show up, in contrast to Eq. 8.14.

A comparison of the frequencies expected according to Eq. 8.15 with the experimental frequencies in the intervals in Fig. 8.10b results in CHISQ.TEST = 0.37. So, everything is fine again.

The more individual data are available for a statistical test, i.e., the

larger N is, the easier it is to detect discrepancies between experimental

frequencies and those predicted by a model distribution. For only a few

measurements, deviations from a wrong model distribution may not be

noticeable, because deviations from the correct model distribution can

also be large.

8.5

Normally Distributed Random Numbers

339

What is exact, and what is practical?

Mag We have often calculated the theoretical frequency in an interval with

Eq. 8.14 as (pdf in the center of the interval) times (interval width) times (total number of data). What can you say about this approach?

Tim It’s wrong. You have to take the difference of the distribution function at

the interval limits times the total number, according to Eq. 8.15.

Alac However, this is a little cumbersome to program. The approximate method

gives faster results, and you can graphically display the probability density with a

polygon line.

Mag That’s true. The path via probability density is an approximation. But in

many cases, especially in experiments with smaller amounts of data, it does not

lead to noticeable differences from the exact method with the distribution function

 cdf .

Alac That’s what I’m saying. So, it’s more practical.

Tim Agreed! Nevertheless, I only use this as a first approximation and will take

the trouble to apply the method with the cdf at the end of my work.

What can we learn philosophically ;-)?

The philosopher Karl Popper stated that scientific theories cannot be confirmed, but

only falsified. We find an example of this in our exercise. Let us forget the arguments

in the above dialogue and again accept Eq. 8.14 as a valid theory.

In Chi2 tests, this model provides sufficiently large values for small amounts of

data. However, this finding does not confirm the theory; it only gives us no reason to reject it. It is only for large amounts of data that the Chi2 test yields such small values that we may reject the theory with a very small probability of error.

In the history of physics, there have always been cases in which only a refined

measuring technique was able to falsify a theory that then turned out to be merely

an approximation. An example: In Newtonian mechanics, the mass of a body is

independent of the velocity of the body, but this is not so in Einstein’s theory of

special relativity.

Chi2 test with ever bigger sample sizes

We are going to perform an experiment in which, four times for each integer Smp100N

(= 1 to 100), we:

– create an array with 1024* Smp100N normally distributed random numbers

– determine their observed frequencies of occurrence f Obs

– compare f Obs with frequencies f Xpt expected from the probability density pdf (x c) in the center x c of the intervals by means of Chi2 tests.

[image: Image 78]

340

8

Random Numbers and Statistical Reasoning

Fig. 8.11 Results of

Chi2 tests for sets with ever

more samples (1024* N)

The results of the Chi2 test are shown in Fig. 8.11 as a function of N. The number of random numbers is 1024* Smp100N. For a small size of the set (≤ 10*1024 for

 Smp100N ≤ 10), the values of the Chi2 test seem to be equally distributed, so that there is no reason to doubt that our approximation describes the empirical results

correctly. For increasing size, the values of the Chi2 test tend to be low, indicating that the theoretical model is not correct. The bigger the size of the set, the less probable

the high values of the Chi2 test are. Nevertheless, values above 0.5 may occur.

Take some time to think about this exercise! It will tell you a lot about the reli-

ability of a Chi2 test, a model for other statistical tests, about statistical reasoning

and the Philosophy of Science.

8.5.4

Data Structure and Nomenclature

The normal distribution

 x m , x Sd

mean and standard deviation of the normal distribution

 pdf(x m , x Sd)

 x → p, probability density function

 cdf(x m , x Sd)

 x → p, distribution function

 ppf(x m , x Sd)

 p → x, inverse of cdf , “percent point function”

 x

array of arguments, equally spaced

 p D

 pdf of x

 pC

 cdf of x

 p

array of probabilities, equally spaced between 0 and 1.

8.5

Normally Distributed Random Numbers

341

Normally distributed random numbers

 N

size of the set of random numbers

 x N

array of numbers created with randn(N)

 freq N

frequency of occurrence of x

 x P

array of numbers created with ppf(npr.random(N))

 x b

boundaries of sorting intervals (bins)

 freq P

frequencies of occurrence of x P

 freq XpC

frequencies of occurrence expected from cdf

 freq XpP

frequencies of occurrence expected from ppf .

8.5.5

Python

Normal distribution

Table 8.11 shows the program for generating arrays with values of these functions to be displayed as three data series in Fig. 8.9. The functions concerning the normal distribution have to be made available from the library scipy.stats, usually imported under the abbreviated name sct with import scipy.stats as

sct.

Random Gaussian generator

The Python program in Table 8.12 creates a random sample of 10,000 normally distributed numbers in two ways, first, with the function npr.randn(10,000) , and

second, with the function npr.random (generating random numbers between 0

and 1) inserted into sct.norm.ppf, the inverse of the distribution function. The

second version corresponds to the nested EXCEL function and can generally be applied

to other distributions, e.g., to get the cos2-distribution needed in Exercise 8.7.

Next, the empirical frequency distribution of the two samples is determined within

23 intervals with the boundaries Ib = −∞, −3, −2.7, …, 2.7, 3, ∞. This is done with

the function np.histogram that expects the sample and the interval boundaries as

input and returns the empirical frequencies on row 0 (freq[0] in Table 8.12) and the unchanged interval boundaries on row 1. The data obtained on x and x P are displayed in Fig. 8.9a, together with the theoretically expected frequencies freq XpC.

Table 8.11 Python functions related to the normal distribution

1

import scipy.stats as sct

2

xN=np.linspace(-4,4,41)

3

pD=sct.norm(0,1).pdf(xN) # Probability density function

4

pC=sct.norm(0,1).cdf(xN) # Cumulated density function

5

xP=sct.norm(0,1).ppf(pC) # Percent point function

342

8

Random Numbers and Statistical Reasoning

Table 8.12 Normally distributed random numbers x and x P

6

N=10000

7

xN=npr.randn(N)

8

xP= sct.norm.ppf(npr.random(N)) # Corresp. to Excel formula

9

10 b=np.linspace(-3,3,21)

11 dx=b[1]-b[0]

Interval width

12 xb=np.empty(len(b)+2)

Interval boundaries

13 (xb[0], xb[1:-1], xb[-1])=(-np.inf,b, np.inf)

14 freqXpC=(sct.norm(0,1).cdf(xb[1:])

Expected freqs.

15

-sct.norm(0,1).cdf(xb[:-1]))*N

16 xc=np.ones(len(xb)-1)

Centers of intervals (“bins”)

17 xc[1:-1]=(xb[1:-2]+xb[2:-1])/2

18 xc[0],xc[-1]=xb[1],xb[-2]

19

20 freqN =np.histogram(xN,bins=xb)

21 freqP =np.histogram(xP,bins=xb)

x [1.20 0.88 1.67 ... -0.78 -1.82]

xb [-inf -3.00 -2.70 ... 3.00 inf]

freqN[0] [17 22 50 ... 16 18]

freqXpC [13.5 21.2 47.3 .. 21.2 13.5]

8.5.6

Excel

Normal distribution

We create maps of the probability density of the normal distribution and its distribu-

tion function. In the following spreadsheet, Fig. 8.12 (S), 41 values of the probability density pdf and the distribution function cdf are generated and shown in the diagrams of Fig. 8.8.

A

B

C

D

E

F

G

2

dx

0.2

ST(x;0;1;FALSE)

ST(x;0;1;TRUE)

3 =A5+dx

=NORM.DI =NORM.DI

=NORM.INV(p;0;1)

4

x

 pdf(0,1)

 cdf(0,1)

 p

5

-4.0

0.000

0.000

0.0 #NUM!

6

-3.8

0.000

0.000

0.1

-1.28

14

-2.2

0.035

0.014

0.9

1.28

15

-2.0

0.054

0.023

1.0 #NUM!

45

4.0

0.000

1.000

Fig. 8.12 (S) Function table for the normal distribution (probability density pdf(0,1)) with the mean value 0 and the standard deviation 1, column B), the associated cumulative (integral) normal distribution or distribution function (cdf(0,1), column C), and the inverse of the distribution function in column F

8.5

Normally Distributed Random Numbers

343

A

B

C

D

E

F

G

H

1 =COUNT(xN)

dx

0.5

2

1024

N

1024 =SUM(freq)

;1)

}

*dx

(RAND();0

(xc;0;1;0)*N

3

=NORM.INV =AVERAGE(D5:D6)

=D5+dx {=FREQUENCY(xN;xb)

=NORM.DIST

=CHISQ.TEST(E6:E17;freqXpC)

4

xN

xc

xb

freq freqXpP

5

-0.38

-3

-3

0

6

-1.72

-2.75

-2.5

4

4.7

0.51

17

1.41

2.75

3

6

4.7

18

-0.64

3

0

1028

-1.14

Fig. 8.13 (S) Table layout used to generate normally distributed random numbers and to determine their experimental (column E) and theoretical (column F) frequencies; the Chi2 test is performed in G6

A spreadsheet function for a Gaussian random generator

To create a set of normally distributed numbers in EXCEL, we use

Norm . Inv (Rand (); 0; 1)

corresponding to sct.norm(0,1).ppf (npr.rand()) in Python. It claims

to return random numbers distributed according to the probability density of a Gaus-

sian bell curve with the mean value 0 and the standard deviation 1 (standard normal

distribution).

We check this claim in Fig. 8.13 (S) by entering the above function into 1024

cells named x N, thus generating 1024 random numbers. A frequency distribution

 freq is calculated from them for the interval boundaries x b and displayed in a diagram over the interval centers x c (see Fig. 8.10a). The expected theoretical frequency distribution freq XpP is calculated with the probability density in the center of the intervals.

For a normal distribution with mean value 0 and standard deviation 1 (standard

normal distribution) , frequencies as those for freq XpP in column F are expected.

The corresponding formula (F3) is composed of three terms:

– NORM.DIST(x C; 0; 1; 0) , the probability density pdf in the center x c of the interval, where the second and third positions indicate the mean value (here,

0) and standard deviation (here, 1) of the Gaussian curve. The fourth position

(FALSE or 0, TRUE or 1) determines whether the probability density or, otherwise,

the distribution function is to be returned.

– The width d x of an interval (here, 0.5).

– The total number N of random numbers (here, 1024).

These expected frequencies are shown in Fig. 8.10a as a polyline. The Chi2

test in G6 gives a value of 0.51. So, we have no reason to doubt that

our function NORM.INV(RAND();0;1) produces standard normally distributed (=

344

8

Random Numbers and Statistical Reasoning

A

B

C

D

E

F

1 Sub SumHist()

1

1

50

15000 =SUM(fSum)

2 For rep = 1 To 100

2

3 Application.Calculation = xlCalculationManual

3

acro

2

4 For r = 4 To 13

4

=RAND()

{=FREQUENCY(x;xb)}

from M

3

x

Ib

Freq

fSum

5 Cells(r, 5) = Cells(r, 5) + Cells(r, 4)

5

4

0.30

0.1

3

1511

6 Next r

6

5

0.31

0.2

6

1530

7 Application.Calculation = xlCalculationAutomatic

7

11

0.73

0.8

9

1523

8 Next rep

8

12

0.17

0.9

7

1468

9 End Sub

9

13

0.71

6

1538

53

0.76

10

10

Fig. 8.14 a (left, S) The frequency of 50 numbers x in column A is determined in column D.

The sum of the frequencies in column E has been obtained with SUB SumHist in b (P). b (right, P) Procedure adding up the frequencies in column D into f Sum. Two nested loops apply: (FOR r

= …) adds up the frequencies once, the superordinate loop (FOR rep = …) repeats this process.

CELLS(4,5) IN THE LOOP (FOR R = 4 …) in the procedure is cell E4 in the spreadsheet

Gaussian-distributed) random numbers, and that their frequency of occurrence is

theoretically described using the probability density in the center of the intervals.

We shall use this function in later chapters with various standard deviations to

simulate noise during measurements.

Questions

The distribution of 102,400 random numbers is displayed in Fig. 8.10b. How can you supplement the EXCEL solution in Fig. 8.13 (S) designed for 1024

random numbers so as to also get such a large number? 23

Summing Up Frequencies with a VBA Routine

It is often practical to set up a calculation model in which frequencies are first

determined on a small sample. If the spreadsheet calculation runs without errors,

then the statistics can be made more extensive by repeating the random experiment

several times and adding up the frequencies found. An example is given in Fig. 8.14.

The procedure SumHist adds, in the inner loop (r = …), the values in Freq to the values in f Su m and repeats this 100 times. Before the (r = …) loop, the automatic calculation is switched off (line 3), because, otherwise, all random numbers

would be generated anew and every entry in the spreadsheet and all frequencies

recalculated. This would make the check number in E1 unequal to the total number

of sample points as it should not be. Such a discrepancy could therefore be used to

identify incorrect programming. After finishing the (r = …) loop, the automatic

calculation is switched on again to generate the random numbers x anew.

Questions

 Questions concerning Fig. 8.14 :

23 With a rep-log procedure adding up the frequencies in freq 100 times. Continue reading!

8.5

Normally Distributed Random Numbers

345

How often was SumHist of (P) called to yield the results in Fig. 8.14a (S)? 24

Why is the automatic calculation in SUB SumHist Fig. 8.14b (P) switched off before adding the frequencies? 25

What would happen if the automatic calculation were not switched on again

after a summation of the frequencies?26

Task Write a log procedure for repeating the random experiment of the previous

task in Fig. 8.13 one hundred times and add up the frequencies! Do not forget to switch off the automatic calculation while the current frequency distribution is

added to the sum! Next, create a frequency distribution and do a Chi2 test!

8.6

Random-Number Generator, General Principle

A random-number generator for a desired probability distribution pdf can be

created if the inverse function ppf of the associated cumulative distribution

function cdf exists and is “fed” with random numbers equally distributed

between 0 and 1.

Why do Norm.Inv(Rand();0;1) and sct.norm.ppf(npr.random) generate nor-

mally distributed random numbers?

The answer to this question is made plausible with Fig. 8.15. There, the probability density pdf of the standard normal distribution is represented with a bell curve, and the kink points of the right angles lie on the distribution function cdf . The interval limits of the uniformly subdivided x- axis are transferred to the y-axis by the cdf of the normal distribution.

The width of the intervals on the y-axis is y = d cdf (x) / d x)· x. So, if the y-

axis is “fed” with random numbers between 0 and 1 and transferred by ppf to

the x-axis, a distribution of the x-values corresponding to d cdf (x)/d x results, i.e., according to the derivative of the cdf , and thus a distribution proportional to the associated probability density pdf (x) = d cdf (x)/d x.

24 SUB SumHist ran three times. Each time, the random experiment was repeated one hundred times, so that the summed frequency distribution captures 3 × 100 × 50 = 15,000 numbers (see cell E1 in Fig. 8.14a).

25 Every single summation would otherwise lead to a recalculation of all random numbers, and thus to changed frequencies of occurrence. This would be noticed thanks to the fact that, in cell E1 of Fig. 8.14a (S), there would be no number corresponding to 3 x 100 x 50. The sum in cell E1 is therefore a check as to whether an error has been made in the spreadsheet or in the procedure.

26 The random numbers would not be determined anew, and the same frequencies would always be added up.

346

8

Random Numbers and Statistical Reasoning

1

0.98

0.96

 p

0.94

0.92

0

0.90

-2

0

2

1.2

1.4

1.6

1.8

2.0

 x

Fig. 8.15 a (left) Bell curve: Normal distribution. b (right) Blow-up of a, y = (d y/ d x)· x A

B

C

D

E

F

G

H

3000

1

dx

0.3

N

10000 =SUM(fSum)

fSum

fSum

 ure

 /2

 g-proced

fTheo, Chi² test=0.67

2

 =-LN(RAND())=(D4+xb)=D4+dx {=FREQUENCY(x;xb)}

 by lo

 =EXP(-xc/1)*N*dx

2000

3

x

xc

xb

freq

fSum

fTheo

Chi² test

4

4.60

0

0

0

5

1.30

0.15

0.3

301

2579

2582

0.67

6

0.24

0.45

0.6

196

1932

1913

1000

13

0.58

2.55

2.7

16

254

234

14

0.15

2.85

3

14

171

174

15

0.04

47

465

1003

0.34

0

0

0.6

1.2

1.8

2.4

3

x

Fig. 8.16 a (S) Generating exponentially distributed random numbers. b (right) Display of data from a

Distributions generated with simple mathematical functions

We generalize our findings: The inverse function ppf (p) of a distribution function cdf (x) can be used as a random generator for the associated probability density ppf (x)

:

 y = PI (x) (distribution function , cd f)

 d y = p(x) (probability density , pdf)

 d x

 x = P−1 (y) (ppf , inverse of the distribution function) I

All distributions for which the inverse function of its distribution function can

be built can be generated using standard functions. We still have to make sure that

the argument range of the inverse function is correctly covered by the range from

0 to 1. Examples can be found in Table 8.13.

8.6

Random-Number Generator, General Principle

347

Table 8.13 Some functions, their integrals, and the inverse functions of the integral, suited to generating random number distributions (EXCEL)

SGI[

FGI[

SSIS

(TXLGLVWULEXWLRQWR

5$1'

1RUPDOGLVWULEXWLRQ

1250',67;;0;'758(

1250,195$1'

([SRQHQWLDO

([SRQHQWLDO

/15$1'

QDWXUDOORJDULWKP

&RVLQXV

6LQXV

$UFXVVLQXV5DQG

1

[IRU[WR

[t

(

())21

[tIRU[WR

[u

(

())3

1/(⋅ (1 + 2)

$UFXVWDQJHQV[

7DQ˭5DQG

&DXFK\/RUHQW]

Questions

How do you construct a distribution p(x) = c· x3 for 0 ≤ x < 1? How big is c? 27

Exponential distribution

As an example, we construct a random-number generator that produces a decreasing

exponential distribution from x = 0 to ∞. We know that

pdf (x) = exp (−x) → cdf (x) = 1 − exp (−x) → ppf (p) = −ln (x) So, –IN(RAND()) should do the job in EXCEL; it is implemented in Fig. 8.16a (S) with the results shown in b.

Questions

How many random numbers are generated in Fig. 8.16a under the name x? 28

What is the total size of f Sum displayed in Fig. 8.16b? 29

How was f Sum most likely calculated from freq? 30

Task Generate random numbers that are distributed according to a cosine arc

and check the results with a Chi2 test!

27 The antiderivative of p(x) is P(x) = c/ 4· x 4; P(1) must be 1 → c = ¼. The inverse

√

function of P(x) is 4 Rand(). The random function is thus [=RAND()ˆ0.25] in EXCEL or np.random(N)**0.25 in Python.

28 The array x comprises 1000 numbers (rows 4 to 1003).

29 The array f Sum comprises N = 10,000 numbers (cell F1).

30 By a rep-log procedure summing up freq 10 times (similar to Fig. 8.14b).

[image: Image 79]

348

8

Random Numbers and Statistical Reasoning

Task Generate random numbers distributed between 0 and 1 according to p(x)

= 3 x2. Determine the theoretically expected frequencies, approximated with the

probability density, Eq. 8.14, as well as exactly with the distribution function, Eq. 8.15. Perform Chi2 tests to see if the formulas given in the table are correct and for what number of random numbers the approximation of Eq. 8.14 is good enough! In EXCEL, use a rep-log procedure that repeats the random experiment!

8.7

Diffraction of Photons at a Double-Slit

We simulate the diffraction of photons at a double-slit, intending to demon-

strate the wave-particle duality of light. For this, we need a random-number

generator distributing the impact points of the phonons on a screen according

to a cos 2 probability density. The goal concerning programming is to learn

how to implement such a random-number generator using a finite polyline.

8.7.1

Physical Background: Wave-Particle Dualism

In Fig. 8.17a, b, the diffraction of electrons or photons at a double slit is simulated to illustrate the wave-particle dualism. The diffraction image is created by many

particles that hit a screen behind the double-slit randomly. The image does not

consist of stripes behind each slit, but is rather an interference pattern with a

maximum behind the middle position between the two slits.

Fig. 8.17 a (left) Two diffraction images of ten photons each. b (right) Top: Diffraction image of 1000 photons, bottom: Distribution of the x-coordinate of the 1000 photons (the y-coordinate is evenly distributed)

8.7

Diffraction of Photons at a Double-Slit

349

In physical reality, the distance of the screen to the slits is large against the

distance between the slits, and the independent variable of the interference pattern

is the angle with respect to the mid-perpendicular of the double-slit.

We may imagine the screen upon which the diffraction image is captured as

a gelatine film with silver grains or as a modern CCD detector with pixels. The

impact of a photon is shown by the fact that a single silver grain or a single pixel

is activated. Figure 8.17a shows two typical images after the impact of 10 photons.

Such experiments in the real world show that light is “granular”, i.e., consists of

energy packets that are locally confined.

The events in Fig. 8.17a seem to be evenly but randomly distributed over the entirety of the detector surface. However, after 1000 photons have been detected,

a pattern like that in Fig. 8.17b emerges; the positions x = −1/2 and x = 1/2 have never been hit by any photon. This is a consequence of the wave character of light

resulting in a diffraction image consisting of a central maximum and secondary

maxima of the same width. The distance between the maxima is determined by

the reciprocal of the distance between the two slits. The ratio of the intensities

depends on the width of a single slit. Here, we have arbitrarily chosen a ratio of 2

to 1 between the central maximum and the side maxima.

If … then … else …

The x-coordinates x Cos generated by a cos 2-generator are to be distributed according to the diffraction figure:

– 50% in the central maximum of width 1 (position at x = 0),

– 25% in the right side-maximum of width 1 (position at x = 1), and

– 25% in the left side-maximum of width 1 (position at x = –1).

This can be achieved with a random number rnd between 0 and 1 and a logical query: If 0.5 < rnd, then x = x Cos (in 50% of cases).

else If rnd < 0,75, Then x = x Cos + x 0 (in 75% – 50% = 25% of cases).

else, x = x Cos - x 0 (in the remaining 25% of cases).

Questions

How do the critical numbers in the IF query have to be changed when the

maxima are to occur at x 0, x 0 + 1, and x 0 + 2 and intensity ratios of 6:3:1 are to be obtained? 31

In a spreadsheet, we can make a “living picture”; with each change of the

spreadsheet (e.g., when an already empty cell is “deleted”), the coordinates are

31 If rnd < 0.6, then x = x Cos + x 0; Else, if rnd < 0.9, then x = x Cos + x 0 + 1; Else, x = x Cos +

 x 0 + 2.

[image: Image 80]

350

8

Random Numbers and Statistical Reasoning

recalculated and the points in the diffraction image with ten photons, Fig. 8.17a,

jump around erratically. The attentive observer may suspect that the points stay

away from the straight lines x = −1 and x = 1, but this observation is not convincing.

In Python, we can create such a “living picture” through animation as shown

in Sect. 6.2.5.

8.7.2

Cos2 Distribution

Our task is to build a random generator that distributes the particles according

to the diffraction pattern. We only want to simulate the central maximum of the

diffraction figure at x = 0 and the first two secondary maxima around − x 0 and

+ x 0 (here x 0 = 1, arbitrary units on the screen). The intensity distribution in each maximum shall be approximated by the same cos 2 probability density (see

Fig. 8.18a),

 Cos Sq _ pd f (x) = 2 · cos 2 (π x)

(8.16)

however, with different amplitudes.

The distribution function cdf (x) is the integral of this probability density function pdf (x) with an argument range from -0.5 to 0.5 and a value range from 0 to 1:

 Cos Sq _ cd f (x) = sin (2 π x) + x + 1

(8.17)

2π

2

It is shown in Fig. 8.18a (“CosSq_cdf”).

Fig. 8.18 a (left) Functions related to the cos2 distribution, data from Table 8.15. b (right) The frequencies of occurrence of 100,000 outputs of the function CosSq ppf(rand)) are actually cos2

distributed

8.7

Diffraction of Photons at a Double-Slit

351

Questions

How big are the values CosSq cdf (−0.5), CosSq cdf (0), CosSq cdf (0.5) in Eq. 8.1732

How big is the area under the curve CosSq pdf in Fig. 8.18a? 33

For our random-number generator, we need the inverse function of

 CosSq cdf(x) in Eq. 8.17.

Solution in three steps

– We create a function that distributes cos2-distributed values in the range −0.5 to

0.5.

– We generate ten points according to the desired diffraction image (as in Fig. 8.17a).

– We repeat the random experiment with the ten points one hundred times and

determine the frequency distribution of the x-values (as in Fig. 8.17b).

The gradual emergence of the diffraction pattern can be demonstrated with animation.

8.7.3

Data Structure and Nomenclature

 CosSq _ pdf (x)

 p(x) = 2* cos 2(π· x)

 CosSq cdf (x)

integral of CosSq pdf (x)

 CosSq ppf (p)

inverse of CosSq cdf (x)

 x I

array of x, 33 values from −0.5 to 0.5

 p I

 CosSq cdf (x I)

 m[0], …

slope of p I in interval x I[0] to x I[1]

 x Cos

 x-values, random according to a cos 2 distribution.

8.7.4

Python

We define the three functions related to the cos2 distribution:

– CosSq pdf(x) , probability density function, argument range from −

0.5 ≤ x ≤ 0.5, normalized so that the area under the curve is 1.

32 p(–0.5) = 0; p(0) = ½; p(0.5) = 1.

33 (Area under cos2) = (triangle (0.5 – (-0.5))·2/2) = 1. This is the condition for a probability density function.

352

8

Random Numbers and Statistical Reasoning

Table 8.14 Python functions related to the cos2 distribution

1

def CosSq_pdf(x):

2

return 2*(np.cos(x*np.pi)**2)

3

4

def CosSq_cdf(x):

5

return np.sin(2*np.pi*x)/(2*np.pi)+x+1/2

6

7

xI=np.linspace(-0.5,0.5,33)

8

pI=CosSq_cdf(xI)

9

m=((pI[1:]-pI[:-1])/

10

(xI[1:]-xI[:-1])) # Slope

11 # m[0] is slope of interval pI[0] to pI[1]

12

13 def CosSq_ppf(p):

14

for i in range(1,33):

15

x0=0

16

if pI[i-1]<=p<=pI[i]:

17

x0=xI[i-1]+1/m[i-1]*(p-pI[i-1])

18

return x0

Why return within if?

– CosSq cdf(x), cumulative density function (distribution function), argument

range from −0.5 ≤ x ≤ 0.5, monotonously increasing from 0 to 1.

– CosSq ppf(p),

percent point function, the inverse of cdf , argument range

0 ≤ p ≤ 1.

These are all displayed in Fig. 8.18a.

The three functions are defined in Table 8.14. The probability density function CosSq pdf essentially returns a value of cos2; CosSq cdf is its antiderivative. For the inverse of the distribution function (cdf), a closed expression does not exist.

We therefore approximate it with a polyline with 33 vertices. CosSq cdf for the x-

values of the vertices is calculated in array p I and the slope within the 32 intervals in m. The three arrays thus obtained are used to get the linear approximation for Cos2 ppf , with p as the independent variable and x as the dependent variable, and the slope 1/ m between the vertices.

Questions

Is there a variant of CosSq ppf that can suffice with 5 if queries for the 32

intervals? 34

How do you plot the results of Table 8.15? 35

34 See the program code in Table 8.16.

35 Plot with: plt.plot(xC,hist[0],’kx’); plt.plot(xC,theo,’k- ‘).

8.7

Diffraction of Photons at a Double-Slit

353

Table 8.15 N = 100,000 outputs of the cos2-generator

19 N=100000

20 rn=npr.random(N)

21 xCos=list(CosSq_ppf(r)for r in rn)

22 dx=0.05

Interval width

23 xb=np.arange(-0.5,0.5+dx,dx) # Endpoint not included

24 xc=(xb[1:]+xb[:-1])/2

25 hist=np.histogram(xCos,xb)

Empirical frequencies

26 theo=N*dx*CosSq_pdf(xc)

Theoretical frequencies

Table 8.16 Interval search with five queries

1

def CosSq_ppf2(p):

2

iLow=0

3

iHigh=32

4

for i in range(5):

5

iMid=np.int((iLow+iHigh)/2)

6

if p <= pI[iMid]:iHigh=iMid

7

else:iLow=iMid

8

x0=xI[iLow]+1/m[iLow]*(p-pI[iLow])

9

return x0

 CosSq ppf is used in Table 8.15 to create 100,000 random numbers, the frequency distribution of which is displayed in Fig. 8.18b, together with the theoretical curve obtained with CosSq ppf .

Interval search with five queries

Table 8.16 realizes the search in 32 intervals with 5 queries.

8.7.5

Excel

User-defined spreadsheet function

We develop a user-defined spreadsheet function that approximates the random-

number generator for a cos2-distribution piecewise linearly (see Fig. 8.19 (P)), as has been done in the Python program. Remember: a user-defined spreadsheet function

must be in a module. It must not be assigned to a specific worksheet (see Exercise

4.9).

Global data arrays for x I, p I, and m are defined at the top of the VBA sheet, in lines 1 to 3 of Fig. 8.19 (P), and can be called by all procedures and functions in the same VBA sheet or module. They must be initialized with the correct numbers

before the first call of the function.

354

8

Random Numbers and Statistical Reasoning

1 Public xI(32) As Single

Sub init()

14

2 Public pI(32) As Single

xI(0) = -0.5

15

3 Public m(32) As Single

xI(1) = -0.46875

16

4

……..

17

5 Function CosSq_ppf(p0)

xI(32) = 0.5

18

6 For i = 1 To 32

19

7 If (pI(i - 1) <= p0 And p0 <= pI(i)) Then _

pI(0) = 0

20

8 co = xI(i - 1) + m(i) * (p0 - pI(i - 1))

pI(32) = 1

21

9 Next i

22

10 CosSq_ppf = co

For i = 1 To 32

23

11 End Function

m(i) = (xI(i) - xI(i - 1)) / (pI(i) - pI(i - 1))

24

12

Next i

25

13

End Sub

26

Fig. 8.19 (P) Function cossq ppf approaches the inverse function of pI(x), CosSq cdf (x) in Eq. 8.17, piecewise linearly as a polyline. The global fields x I, p I , and m must be initialized with the correct values, here, with SUB init, before the first call of the function. The text of the statements in init is generated in a spreadsheet (see Fig. 8.20 (S), columns E and F) The function COSSQ_PPF corresponds to the Python function of the same name.

The (FOR i = ..) loop queries in lines 7 and 8 for each of the 32 intervals whether

 p 0 lies in this interval. If this is the case, the value of the function is calculated as a linear interpolation between the vertices of the segment, the coordinates of

which are stored globally in the data arrays x I(32) and p I(32). The slopes in the intervals are in the global array m(32).

Questions

Is there a variant of Cos2 ppf that can suffice with five If queries for the 32

intervals? 36

VBA code generated in a spreadsheet

Initialization of the global arrays x I and p I is done in a total of 66 lines in the procedure init(), also shown in Fig. 8.19 (P). The array m(I) contains the slope of the curve between points i − 1 and i and is calculated from x and p I within init (lines 23 to 25).

We could enter all 66 lines by hand, which is, of course, tedious and unpleasant,

although it would not be much more time-consuming than tracking down errors in

spreadsheets and other programs. But there is a more elegant way: we let EXCEL

work for us. In various tasks, we have had a VBA procedure write formulas into a

spreadsheet. Text in cells preceded by an = sign is interpreted as a formula. Now,

we will simply do it the other way around: A text is assembled in a spreadsheet and

copied into a VBA procedure to be interpreted there as a formula. This is done in

Fig. 8.20 (S).

36 Compare the Python code in Table 8.16.

8.7

Diffraction of Photons at a Double-Slit

355

A

B

C

D

E

F

G

H

1

0.031 =2/32

xI+0.5

2/PI()+

5)

$1

2

=A4+$A =SIN(2*PI()*xI)/

="xI("&n&") = "&xI ="pI("&n&") = "&pI

=cosSq_ppf(B

3

xI

pI

n

Array x

Aray y

4

-0.500

0.000

0

xI(0) = -0.5

pI(0) = 0

0.000

5

-0.469

0.000

1

xI(1) = -0.46875

pI(1) = 0.00020041090

0.000

6

-0.438

0.002

2

xI(2) = -0.4375

pI(2) = 0.00159404009

0.000

35

0.469

1.000

31

xI(31) = 0.46875

pI(31) = 0.9997995890

0.000

36

0.500

1.000

32

xI(32) = 0.5

pI(32) = 1

0.000

Fig. 8.20 (S) In columns A and B, there are 33 points on the curve p I(x), Eq. 8.17; in columns D, E, and F, the VBA code for initialization of the arrays x I and p I is generated from columns A and B. This text is to be copied into the VBA editor, SUB Init in Fig. 8.19 (P) A program is just a text, composed of code words, that is translated into

computer instructions.

The column vectors x I and p I correspond to the lists with the same names as in the Python program (Table 8.14). The code for the VBA -function of the inverse ppf (p) of the distribution function cdf (x) (x I(0) = …, p I0) = …) in columns E and F is generated in the spreadsheet with text processing and copied into SUB init()

IN Fig. 8.19 (P), which initializes the global data arrays x I, p I, and m.

In columns E and F of Fig. 8.20 (S), text corresponding to VBA code is generated. The spreadsheet formulas in the individual cells consist of text elements and

numbers, e.g., in E5: [="xI("&n&") = "&xI], and yields [xI(1) = −0.4687]. The ranges E4:E36 and F4:F36 written in this way are then transferred to the Visual

Basic editor by text copying.

Alac The values can be calculated in the routine itself using Eq. 8.17.

Mag Yes, that is possible. But by detouring via the spreadsheet, we have

practiced the way in which code is generated as text in a spreadsheet and trans-

formed into formulas. Code is nothing more than structured text interpreted by a

programming language interpreter.

8.7.6

Simulation in a Spreadsheet

We will simulate the evolution of an interference pattern in a spreadsheet with two

figures like the upper two in Fig. 8.17. Ten new photon impacts are shown every second in a snapshot (left); they are accumulated for the right figure.

Random experiment with 10 to 1000 photons

In Fig. 8.21 (S), we calculate the coordinates of ten photon impacts to be presented in the snapshot. The preliminary to the x-component is calculated as x Cos with the user-defined spreadsheet function [= cossq ppf(rand()]. The random numbers x 0

356

8

Random Numbers and Statistical Reasoning

A

B

C

D

E

F

G

H

I

J

K

1

=IF(rn<0.5;xCos;IF(rn<0.75;xCos+1

1004

400;bnd)

0.16

1000

;xC

n<0.75

AND())

;xCos;IF(r

$1

2

=cosSq_ppf(R

=RAND() =IF(rn<0.5

=RAND()

=AVERAGE(J5;J4)

=J4+$J =FREQU

3

xCos

rn

x

y

x.1000 y.1000

bndC

bnd

freq

4

-0.22

0.09

-0.22

0.08

-0.28

0.51

-2.00

-2.00

0

5

-0.09

0.84

-1.09

0.75

-0.22

0.29

-1.92 -1.84

0

13

-0.32

0.90

-1.32

0.91

-0.04

0.56

-0.64

-0.56

20

29

0.98

0.23

1.92

2.00

0

30

1.14

0.81

2.00

0

31

-0.07

0.86

Fig. 8.21 (S) Ten random points within the diffraction image of a double-slit are generated in C:D.

The total 1000 points in F, G have been accumulated (a 100 times) by SUB More10 in Fig. 8.22 (P).

The formula in K2 is = FREQUENCY (x.1000;bnd)

are distributed over the three maxima at 0, 1, and −1 by means of a second random

number rn with (see formula in C2 and C1).

x = [= IF (0 , 5 < rn; xCos;

IF (m < 0 , 75; xCos + 1;

xCos − 1))]

according to the specified ratio of the intensity of the maxima 0.5:

0.25: 0.25. Remember: the structure of the logical query in EXCEL is

[=IF(LOGICAL_TEST; VALUE_IF_TRUE; VALUE_IF_FALSE)].

The y-component is distributed uniformly between 0 and 1. The points (x, y) are shown in Fig. 8.17a; they change their position with every change in the spreadsheet.

Sub More 10

The upper picture in Fig. 8.17b shows the accumulated photon impacts with the coordinates (x.1000, y.1000) from Fig. 8.21 (S). This range (columns F and G) is successively filled by SUB More10 in Fig. 8.22 (P). It transfers the ten random coordinate pairs (x, y) from columns C and D consecutively to columns F and G

using an index r 2 updated in G1 of the spreadsheet.

Sub Run, random experiment with 1000 photons

With a rep-log procedure, SUB Run in Fig. 8.23 (P), we repeat the random experiment More 10 with 10 photons 100 times and display the increasing number of points in the cumulating diagram, Fig. 8.17b (top), getting at recognizing the pattern better and better.

Over the course of time, we recognize the diffraction pattern more and more

clearly. The frequency distribution of the 1000× values in Fig. 8.17b reveals the cos2 distribution in the main maximum and in the two side maxima.

8.7

Diffraction of Photons at a Double-Slit

357

1 Sub More10()

1

2 r2 = Sheets("Coord").Cells(1, 7) 'G1

2

3 Application.Calculation = xlCalculationManual

3

4 For i = 0 To 9

4

5 Sheets("Coord").Cells(i + r2, 6) = Sheets("Coord").Cells(i + 4, 3) 'C4 -> F4, etc.

5

6 Sheets("Coord").Cells(i + r2, 7) = Sheets("Coord").Cells(i + 4, 4) 'D4 -> G4, etc.

6

7 Next i

7

8 Application.Calculation = xlCalculationAutomatic

8

9 Wait

9

10 Sheets("Coord").Cells(1, 7) = r2 + 10 'index for columns F und G

10

11 End Sub

11

Fig. 8.22 (P) SUB More10 writes the ten random coordinate pairs in columns C and D of Fig. 8.21

(S) successively into columns F, and G. SUB Wait is reported in Fig. 8.23(P). The pointer r 2 for the next free row is updated in CELLS(1,7) = G1

1 Sub Run()

Sub Wait()

9

2 init

Dim m As Integer

10

3 Sheets("Coord").Range("F4:G6000").ClearContents

h = Hour(Now)

11

4 Sheets("Coord").Cells(1, 7) = 4

m = Minute(Now)

12

5 For n = 1 To 100

s = Second(Now) + 1

13

6 More10

waittime = TimeSerial(h, m, s)

14

7 Next n

Application.Wait waittime

15

8 End Sub

End Sub

16

Fig. 8.23 (P) In the master procedure SUB Run, the coefficients for CosSq ppf are generated by calling SUB Init of Fig. 8.19 (P); the old coordinates are deleted in line 3. SUB More10 (Fig. 8.22

(P)) is called in a loop a hundred times

SUB Run is a log procedure that first deletes the old data in columns F and G

in Fig. 8.21 (S). These are the coordinates of the points in Fig. 8.17a (top), so that the chart is now empty, and then calls the procedures More10 and Wait a 100

times so that the chart fills up again (within 100 s) with 1000 points. We may call

it a “master procedure”, because it controls the program flow.

SUB Wait in Fig. 8.23 (P) stops the calculation for 1 s, so that the viewer can better follow how Fig. 8.21b top is filled up with new points and the frequency distribution in Fig. 8.21b bottom takes shape.

Questions

concerning Fig. 8.22 (P):

The VBA procedure reads the index r 2 of the next free line in the range

into which the new coordinates of the photon impacts are to be written from

the spreadsheet (G1). Alternatively, the index r 2 could also be updated in the

358

8

Random Numbers and Statistical Reasoning

main program SUB RUN() in Fig. 8.23(P). What is the difference between the two alternatives? 37

How would you change Sub More10 if only 5 photons are to pass the double-

slit?38

8.8

Chi2 Distribution and Degrees of Freedom

Distributions of χ 2 values, obtained from statistical experiments on

normally-distributed random numbers, are compared with theoretical distri-

butions with appropriate degrees of freedom. The degree of freedom is the

number of intervals reduced by 3 if the mean and standard deviation are

estimated from the sample and reduced by 1 if they are fixed a-priori.

In this experiment, we generate N = 1000 standard-normally distributed random

numbers, determine their frequencies of occurrence in 10 intervals, and com-

pare them in Chi2 tests with theoretically expected frequencies obtained from two

models.

In the first model, we use the values 0 and 1 for mean x m and standard deviation x Sd so that no parameters of the distribution are estimated from the sample, and the degree of freedom is dof = 9 = number of intervals – 1. The reduction by 1

is due to the fact that the frequency in the last interval is not free but determined

by the total number and the frequencies in the other intervals.

In the second model, we estimate x m and x Sd from the sample so that dof =

9 – 2 = 7. We repeat the statistical experiment with 1000 data N c = 10,000 times and determine the frequencies of occurrence of the values of Chi2.

The result of the statistical experiments is shown in Fig. 8.24a. The lines represent frequencies obtained with the theoretical probability density function of Chi2, available from the library scipy.stats, usually imported as

sct, here, sct.chi2.pdf(xc,dof = 9) and sct.chi2.pdf(xc,dof

= 7), where x c are the centers of the sorting intervals. 39 We see that the results of our simulation fit very well with the theoretical curves. So, we have got the dof

right.

Fig. 8.24b presents the pdf of the Chi2 distribution for dof = 5 and dof =

15. The shaded areas represent the results of Chi2 tests. They are the accumulated

37 Update of r 2 in Sub Run(): initial index always starts at a fixed value of r 2; old data are overwritten.

Read r 2 from the spreadsheet: old data remain; new data are appended below the already existing data.

38 Change: line 4 → i = 0 to 4; line 10 … r2 + 5. The program becomes more flexible if an additional variable N is introduced: i = 0 to N-1; … r2 + N.

39 The sorting intervals are often called bins into which the data set is to be sorted.

[image: Image 81]

8.8

Chi2 Distribution and Degrees of Freedom

359

Fig. 8.24 a (left) Empirical (x,) and theoretical (…, —) distribution of values of Chi2 for 7 and 9 degrees of freedom. b (right) Pdf of Chi2; the P- value returned in a Chi2 test corresponds to the shaded area (P = 0.32 for dof = 5 and P = 0.7 for dof = 15) probabilities that a sample drawn from the population yields a higher value of Chi2

when compared to the theoretical distribution of the population.

Keep in mind that, for 10 sorting intervals for normally distributed random

numbers,

– dof = 9 when x m = 0 and x Sd = 1 are a-priori fixed,

– dof = 7 when x m and x Sd are estimated from the sample.

What is the Chi2 test good for?

We check the hypothesis that empirical frequencies of occurrence arise from a the-

oretical distribution. The error probability to reject that hypothesis is given by the

result of a Chi2 test.

8.8.1

Data Structure, Nomenclature

 N

number of random numbers

 X N

sample of N random numbers, standard-normally distributed

 x m

estimated mean of the sample

 x Sd

estimated standard deviation of the sample

 x b

interval boundaries, including −∞ and ∞, defining 10 sorting inter-

vals (“bins”)

 f O

observed frequencies of x N in the sorting intervals

 fx 9

frequencies expected for a normal distribution norm(0, 1) in 10 intervals

 fx 7

frequencies expected for norm(x m, x Sd) with x m and x Sd estimated from the sample.

 N rep

number of repetitions of the statistical experiment

 dof

degree of freedom

360

8

Random Numbers and Statistical Reasoning

 cS 7

array for storing N rep Chi2 values comparing f O and fx 7

 cD 7

theoretically expected frequencies of cS 7, pdf of Chi2 for dof = 7

 cS 9

array for storing N c Chi2 values comparing f O and fx 9, pdf of Chi2 for dof

= 9

 cD 9

theoretically expected frequencies of cS 9.

8.8.2

Python

The basic set-up is given in Table 8.17. 10 intervals from −∞ to ∞ are specified and the frequencies of occurrence for a standard-normal distribution therein for N

= 1000.

The interval boundaries x b specified in lines 6 and 7 range from −∞ to ∞, to

capture the whole value range of normally distributed random numbers. They are

reported in the lower cell of Table 8.17. The frequencies expected in the intervals are calculated with the cumulated density function at the interval boundaries. For

the first and last interval, we have to consider that cdf (-∞) = 0 (line 9) and

 cdf (∞) = 1 (line 12), which is true, by the way, for any cdf .

The program in Table 8.18 organizes the repetition (N rep = 10,000 times) of the statistical experiment in a for-loop. For every iteration i, a sample x n of N random numbers is generated, and their frequency distribution f O, mean x m, and standard deviation x d are determined. The frequencies f O are compared with a Chi2 test to:

– fx9, expected when 0 and 1 are taken as the mean and standard deviation,

calculated before the loop (Table 8.17), lines 8 to 11;

Table 8.17 Expected frequencies fx 9 of a normal distribution in 10 intervals with boundaries x b, x m = 0, x Sd = 1 set a-priori

1

import numpy.random as npr

2

import scipy.stats as sct

3

N=1000

Size of the set of random numbers

4

db=0.5

Width of the sorting intervals

5

xbb=np.arange(-2.0,2.0+db,db)

6

xb=np.zeros(len(xbb)+2) # Interval boundaries

7

(xb[0],xb[1:-1],xb[-1])=(-np.inf,xbb,np.inf)

8

fx9=np.zeros(len(xb)-1)

9

fx9[0]=sct.norm(0,1).cdf(xb[1])*N

Below first bound.

10 fx9[1:-1]=(sct.norm(0,1).cdf(xb[2:-1])

11

-sct.norm(0,1).cdf(xb[1:-2]))*N

12 fx9[-1]=(1-sct.norm(0,1).cdf(xb[-2]))*N # Above last bound.

xb [-inf -2.00 -1.50 -1.00 -0.50 0.00

0.50 1.00 1.50 2.00 inf]

8.8

Chi2 Distribution and Degrees of Freedom

361

Table 8.18 Histograms of cS9 and cS7, together with the theoretical probability densities CD9Th and CH7Th of Chi2 for dof = 9 and 7 degrees of freedom

13 Nrep=10000

Number of repetitions

14 cS9=np.zeros(Nrep)

15 cT9=np.zeros(Nrep)

16 cS7=np.zeros(Nrep)

17 for i in range(Nrep):

18

xn=npr.randn(N)

Std-normal distribution

19

fO=np.histogram(xn,xb) # Empirical frequencies

20

21

ChiSq=sct.chisquare(fO[0],fx9,ddof=0)

22

cS9[i]=ChiSq[0]

23

24

fx7=np.zeros(len(fO[0])) # For expected frequencies

25

xm=np.average(xn)

26

xd=np.std(xn,ddof=1)

27

fx7[0]=sct.norm(xm,xd).cdf(Ib[1])*N

28

fx7[1:-1]=(sct.norm(xm,xd).cdf(Ib[2:-1])

29

-sct.norm(xm,xd).cdf(Ib[1:-2]))*N

30

fx7[-1]=(1-sct.norm(xm,xd).cdf(Ib[-2]))*N

31

ChiSq7=sct.chisquare(fO[0],fx7,ddof=2)

32

cS7[i]=ChiSq7[0]

33 xbC=np.linspace(0,20,21)

For distrib. of Chi²

34 xc=(xbC[1:]+xbC[:-1])/2

Centers of intervals

35 CD9=np.histogram(cS9,xbC)

Empirical freqs.

36 CD9Th=sct.chi2.pdf(xc,df=9)*Nrep

Theoretical freqs.

37 CD7=np.histogram(cS7,xbC)

38 CD7Th=sct.chi2.pdf(xc,df=7)*Nrep

– fx7, expected when x m and xSd are estimated from the sample, calculated individually for every iteration within the loop.

The results of the Chi2 tests are stored in cS9 and cS7. The frequency distributions

CD9 and CD7 thereof are determined in Table 8.18. The results are shown in Fig. 8.24a.

8.9

Questions and Tasks

Explain the following broom rules:

1. Chance is blind and checkered

2. Always one more! But of what and than what? (Concerning frequency

 distribution.)

3. Come to a decision! Sometimes, it will be wrong.

362

8

Random Numbers and Statistical Reasoning

Frequencies of occurrence

Initial situation: In the range A1:A1000 of a spreadsheet, named data, there are

1000 numbers. In range D2:D10, three interval boundaries I b = 0.1; 0.2 and 0.3 are specified.

4. How many intervals are defined by the interval boundaries?

5. Which numbers are captured in the second and last intervals?

6. The frequencies are to be calculated in a column range starting with E2. Which

range must be activated for the spreadsheet function FREQUENCY if all numbers

are to be sorted into intervals? With which “chord” do you complete the formula

input?

7. Over which x values should the frequencies be displayed in a diagram?

8. We want to determine the same frequency distribution with the numpy function

np.histogram(data; Ib np) . How are the interval boundaries Ib np to be defined?

The 1000 numbers are now supposed to be random numbers equally distributed

between 0 and 0.5.

9. Which equations do you use in EXCEL and numpy to generate such random

numbers?

10. What mean value do you expect for the 1000 numbers?

11. What frequencies do you expect in the first and last intervals for interval limits

of 0.1, 0.2, and 0.3 in the EXCEL function?

Normal distribution

Figure 8.25a shows the distribution function norm.cdf(0;1) and the probability density norm.pdf(0;1) of the standard normal distribution. Assume that you have

generated 1 million normally distributed random numbers and answer the following

questions within the reading accuracy of the figure:

1.0

1.0

norm.pdf(0;1)

Distribution function

0.8

norm.cdf(0;1)

Probability density

0.8

p

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0

-4

-2

0

2

4

x

-4

-2

0

2

4

x

Fig. 8.25 a (left) Distribution function norm.cdf(0;1) and probability density norm.pdf(0;1) of the standard normal distribution. b (right) A distribution function and its probability density; the distribution function is not displayed above, and the probability density not below x = 2

8.9

Questions and Tasks

363

12. How many numbers may be expected to have precisely the value 0?

13. How many numbers are expected to have a value between −0.1 and 0.1?

14. How many numbers are expected to have a value between −0.5 and 0.5?

Distribution function and random-number generators

15. Within what range do you expect 95% of the output of a function generating

normally distributed random numbers?

16. Consider the EXCEL function NORM.INV(X;5;3)! What is its argument range?

Where is the maximum of the distribution that results if x = RAND()? How do

you generate 1000 such numbers in a Range B1:B1000? What is the equivalent

function for 1000 numbers in the numpy.random library?

17. Figure 8.25b shows an incomplete distribution function and an incomplete probability density. Complete the two functions!

18. What are the inverse functions of y = cos(x) for x = 0 to π and of y = exp(− x) for x ≥ 0? Which are their argument ranges and which are their value ranges?

19. Which distribution is generated by the spreadsheet function (arcus cosinus)

ACOS((RAND()-1)*2)?

User-defined spreadsheet function

In Fig. 8.26a, you find a spreadsheet layout for calculating a house-shaped polyline (see Fig. 8.26b). Implement a function House(x) for calculating the y-values from the x-values!

The entry in cell A25 of Fig. 8.26a is 6.38E–16, instead of the expected zero.

This deviation is due to the sum of the rounding errors in the binary addition of

d x = 0.10. In the user-defined spreadsheet function House(x), the value of x must therefore be rounded, with ROUND(X,14).

A

B

y

1

dx

0.10

2

2

3

 se(A6)

 =A5+dx

 =Hou

4

x

y

1

5

-2.00E+00

0

6

-1.90E+00

0

24

-1.00E-01

1.9

25

6.38E-16

2

0

45

2.00E+00

0 -2

-1

0

1

2

x

Fig. 8.26 a (left) The values of y are calculated with a user-defined spreadsheet function House(x).

b (right) Graph of the House(x) function with the data from Fig. 8.26a

[image: Image 82]

364

8

Random Numbers and Statistical Reasoning

Fig. 8.27 a (left) Two shapes produced by a function House partly shown in b (right) 20. Why does the 20-fold addition of 0.10 to −2.00 not yield the smooth value

0.00, but rather 6 × 10–16? 40

21. Which statement can be used to make the function House(x) zero for x ≤ −1

and x ≥ 1?

22. Write a user-defined spreadsheet function that produces a shape like the

“House” in Fig. 8.26b!

23. Figure 8.27a shows two shapes produced with a Python function House partly displayed in Fig. 8.27b. Complete the code!

40 The numbers are binary coded so that decimal “smooth” numbers are not binary “smooth”.

[image: Image 83]

Evaluation of Measurements

9

We simulate measurement experiments by assuming “true” (known) val-

ues of a quantity and masking them with different noise levels that enter

as standard deviation into normally distributed random numbers. Then, we

“forget” the true values and estimate the measurand’s now unknown value

from the noisy signal. ψ We know everything and play stupid. This way, the

students should get an impression of how unreliable measurements can be,

learn to indicate the reliability, and understand how measurement uncertain-

ties propagate. The importance of t statistics, connecting confidence interval

and confidence level (or error range and error probability), is illustrated in

several exercises.

9.1

Introduction: We Know Everything and Play Stupid

Solutions of Exercises 9.2 (Excel), 9.3 (Python), 9.4 (Excel), and 9.5 (Python) can

be found at the internet adress: go.sn.pub/E3k8Ps.

Alac Statistics? That’s all Greek to me.

Mag Ψ If in doubt, count!

 Ψ Calculate with variances, report the standard error!

A simple measurement?

We shall determine the mass of a thin film on a glass substrate by weighing the

substrate before and after coating. Estimating the mass is straightforward. However,

stating a confidence interval requires this whole chapter, with t statistics and error propagation.

© Springer Nature Switzerland AG 2022

365

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_9

366

9

Evaluation of Measurements

How should the poor student learn statistics?

Many students find it challenging to understand statistical statements. They are con-

fronted with mathematically accurate but awkward-looking formulations and have

to work according to strict rules.

In this chapter, the rules for statistical evaluation are not derived mathemati-

cally, but illustrated through simulations, particularly by multiple tests for hit rates.

By repeating a noisy measurement series several times, we determine how often

the standard error of the series’s mean value captures the true value to specify the

confidence level.

We know everything and play stupid

A writer of crime novels thinks up a criminal case, blurs the traces, and lets the

detective reconstruct the case. So do we, by specifying the “true” values ourselves,

turning them into measured values by adding noise, and then evaluating the noisy

data. Finally, we report the measurement result with specified uncertainty. The true

value may lie outside the confidence interval (the “error range” in laboratory jargon)

of the measurement series’ mean value. However, since we know the “true” value,

we notice this and can observe regularities for our error.

Sherlock Holmes or Inspector G. Lestrade?

Some crime novel authors who want to be well received by the reader let the sharp-

witted gentleman detective (Sherlock Holmes) or the curious lady detective (Miss

Marple) appear alongside police officers, who stubbornly follow the rules and come

to false results.

Tim To which type does our evaluation belong?

Alac To the smart detective, I hope.

Mag No, unfortunately not! We must proceed strictly according to the rules.

After all, intuition is often misleading when it comes to statistical issues. To get

the best of both worlds, we follow the broom rule: Ψ Trust (your intuition), but

 verify!

Standard formulas

We apply the following formulas for a set of n measurements x = { x i}.

The mean x m of the set:

 n xi

 x

 i =1

 m =

(9.1)

 n

The variance var x of a set x = { x i}:

 n

 varx =

 (xi − xm) 2 ·

1

 , n P = 1 in this chapter

(9.2)

 n − n P

 i =1

9.1

Introduction: We Know Everything and Play Stupid

367

where n P is the number of parameters estimated from the data set. In this chapter, n P = 1, because only one parameter, the mean, is estimated. In Chap. 10, trendlines are calculated and n P is equal to the number of their parameters.

The standard deviation of the set:

√

 xSd =

 varx

(9.3)

The standard error of the mean x m of the set:

 xSe = xSd

√

(9.4)

 n

Standard error range

The standard error has the same physical unit as the elements of the sample and

their mean value. Therefore, the mean x m plus-minus the standard error x Se is often reported as the result of a series of measurements:

 Standar d err or r ange = xm ± xSe

(9.5)

The standard error x Se is calculated straightforward from Eqs. 9.2 (variance) and 9.3 (standard error).

Not to be forgotten: in your report, you also have to state the number of mea-

surements. If at least eight measurements have been made, the following broom rule

applies:

 Ψ Two within and one out of (the standard error range).

The standard error range captures the true value of the measured quantity with a

probability of about 2/3.

C-spec error

For statistically more precise reasoning, we have to connect confidence level and

confidence interval by Student’s1 t statistics. We specify:

 C − spec error range = xm ± t · xSe

(9.6)

For example, with eight measurements, the error range xm ± 2 . 4 xSe captures the true value of the measurand with a probability of 95%. The interval

[xm − t xSe, xm + t xSe] is called the confidence interval (or error range) of the mean value x m and the associated probability (95% in the example) confidence level C. The complementary probability (5% in the example) is called the error probability E:

 C + E = 100%

1 Student is the pseudonym of W.S. Gosset.

368

9

Evaluation of Measurements

We call the error for a well-specified confidence level C-spec error (“confidencespecified error”).

The parameter determining the t distribution is the degree of freedom dof defined as

 do f = n − n P

(9.7)

where n is the number of measurements and n P the number of parameters estimated from the data series. In the exercises in this chapter, n P is 1 because only 1 parameter, the mean, is estimated from the data series. In the next chapter, coefficients of trend

lines are estimated from the data and n P > 1.

Multiple tests for obtaining hit rates

Statistical laws specify error probabilities for hypotheses. In this chapter’s exercises, the hypothesis is that the estimated error range does not capture the true value. We

do not derive such laws from axioms, but apply multiple tests for hit rates instead.

They repeat statistical experiments multiple times and check whether the empirical

hit or miss rates are compatible with the corresponding theoretical probabilities.

Tim If this is not the case, then we have falsified the theoretical assumption.

Mag Or have made a programming error. More about that later.

Simulation-based t adaptation

Many statistical laws are based on assumptions that are often not justified in our

exercises or in real-life experiments, e.g., because the number of measurements is

too small or the noise is too large. In such cases, the formally calculated error ranges

may not exhibit the expected confidence level, e.g., in Exercise 9.9 where error

propagation plays a role. In Exercise 9.8, we present a method to get C-spec errors,

by adapting the t-factor so that a hit rate corresponding to a pre-specified confidence level is achieved. This method is suited also for real-world experiments.

 Calculate with variances, report the C-spec error!

Mathematical formulas concerning confidence are formulated for variances. Statis-

tical rules are based on properties of variances. We calculate with them to grasp the

basic mathematical dependencies. For the final result, we strive to report the C-spec

error because it is related to a confidence level and has the same physical unit as

the measurand. In this way, we simulate the error propagation in sums, products and

powers (Exercises 9.7 and 9.8).

Broom rules for measurements

We start with an exercise on a simple experiment, weighing a glass substrate, and

end with a more challenging one, determining the mass of a thin film on such a glass

9.1

Introduction: We Know Everything and Play Stupid

369

substrate. In between, we have to improve our understanding of statistics with the

following broom rules:

 Ψ Mostly, but not always. No statistical statement is 100% certain .

Mag This is the fundamental rule of statistical reasoning. More rules:

 Ψ Always round to relevant digits; to convey the result concisely! (Exercises 9.2 and 9.3).

 Ψ Twice as good with four times the effort. The measurement inaccuracy is

halved if measurements are made four times as often (Exercise 9.4).

 Ψ Two within and one out of. In one-third of all tests, the measurand’s true value is outside of the standard error range if at least 8 measurements have been made

(Exercise 9.5).

 Bad makes good even better, usually, but not always. Even measurement results

with a relatively large statistical uncertainty may improve the overall result by

entering a weighted mean (Exercise 9.6).

9.2

Weighing a Glass Substrate

The weighing process is simulated by adding noise to the glass substrate’s

true weight and estimating the weight from the noisy data. We determine the

standard error of the result and round the result to the relevant number of

digits.

9.2.1

Discussion on the Accuracy of a Balance

Mag We are going to determine the weight of a glass substrate with a typical

weight of 1 g. How precise is this procedure if the measuring precision of the

balance is 1 mg?

Alac A simple calculation: the substrate’s mass is about 1 g±1 mg, in other

words, it can be determined with a relative accuracy of 1 per mill.

Mag Be careful! The balance’s specification only states that the mass is dis-

played in grams with 3 digits after the decimal point. However, the accuracy of

the measurement may be lower than the precision of the balance’s display, for

example, due to ventilation or building vibrations.

Tim But we cannot take such influences into account, because they are random

and out of our control.

Mag That’s a good point, because when they are simply random, their influence

on the weighing accuracy can be reduced if we repeat the measurement several

370

9

Evaluation of Measurements

times. With these multiple values, we can also specify the uncertainty of the result,

in addition to the value of the mass.

Tim I’ve experienced that before. In the physics lab course for beginners, we

always have to report all results with measurement errors.

Alac It’s quite simple. We already know the true values from our fellow students in previous semesters, thus we only need to adjust the error range for our measured

values so that the true value lies within the error bars. In this way, we avoid

annoying questions from the supervisors.

Mag That is similar to, but not exactly like, the way that we will do it in

this exercise. As we generate the measurement data ourselves, we know the true

values in advance, but then estimate them again from noisy data. However (!), we

rigorously (!) calculate the standard error according to the rules.

Tim Textbooks on measuring theory emphasize “confidence interval” and

“confidence level”.

Mag We will learn the meaning of these terms later in Exercises 9.4 and 9.5,

in which we will show that if 9 groups present their lab results with standard error

ranges capturing the true value, 3 will probably have cheated.

9.2.2

Data Structure and Nomenclature

 m S

true mass of the substrate

 m Ns

measurement noise (standard deviation of a normal distribution)

 dsp

display precision of the scales

 m X

measurement series

 n

number of measurements in m X

 m M

mass of the substrate estimated from the measurements

 m Se

standard error of m M.

9.2.3

Excel

Fig. 9.1 (S) presents an excel solution, with the parameter specification in a and the process simulation in b. The raw data are generated in E6:E12 with normally

distributed noise obtained with norminv(rand();0;1) (see Exercise 8.5). They

are transformed into the balance display, our measurement data, in column F. In

G6:J6, the data are evaluated with the preliminary result for the estimated mass:

 m S (esti.) = (m M ± mSe)

 m s (esti.) = (0 . 995 ± 0 . 022) g

9.2

Weighing a Glass Substrate

371

A

B

C

D

1

mS

1 g

"true" mass of the substrate

2

dsp

3

display accuracy of the balance, typical display: 1.001 g

3

mNs

0.05 g

noise of the weighing process

E

F

G

H

I

J

K

 E(mX)

 mX)

4

 D(E7;dsp)

 =mS+mNs*NORM.INV(RAND();0;1)

 =ROUN

 =AVERAG

 =STDEV.S(

 =COUNT(mX) =mSd/SQRT(n)

5

mX

mM

mSd

n

mSe

6

1.0062099

1.006

0.995

0.057

7

0.022

7

1.0303005

1.030

12

1.0878611

1.088

Fig. 9.1 (S) Weighing a glass substrate. a (top) Specifications. b (bottom) Simulation of the process

Table 9.1 Weighing the mass of a substrate

1

mS=1 #[g]

2

dsp=3 #Digits displayed

3

mNs=0.05 #[g] Noise

4

n=7 #Number of measurements

5

mX=np.round(mS+mNs*npr.randn(n),3)

mX [1.076 1.050 1.049 0.990 1.010 0.993 1.018]

6

mM=np.mean(mX)

mM 1.027

7

mSd=np.std(mX)

mSd 0.030

8

mSe=mSd/np.sqrt(n) # Standard error

mSe 0.011

still to be rounded to the relevant digits:

 ms(rounded) = (1 . 00 ± 0 . 02) g .

First, the standard error is rounded to one digit, and then, the mean value is

rounded to the same number of decimal places as the standard error.

9.2.4

Python

The Python solution in Table 9.1 is straightforward.

Question

How do you report the results of Table 9.1 sensibly rounded? 2

2 1.027 ± 0.011 becomes 1.03 ± 0.01.

372

9

Evaluation of Measurements

9.3

A Procedure for Rounding to Relevant Digits

A formula network and a Python function are presented that round a mea-

surement result to the relevant number of digits determined by the standard

error. The equations rely on logarithms and powers.

9.3.1

Numerical Evaluations

The numerical evaluation of measurement series generally results in numbers with

many digits, e.g., x m = 0.008702 g and x Se = 0.000602 g. As we have learned in Exercise 9.2, the final result should be (0.87 ± 0.06) × 10–2 g or (8.7 ± 0.0) mg.

We will obtain such results with formulas. To achieve this, we have to calculate

with logarithms and powers of ten and link text and numbers.

9.3.2

Spreadsheet Calculation

The method is shown as a formula network in Fig. 9.2 (S), based on the example of Exercise 9.2, in which the mass of a glass substrate is determined. The estimated

mean value x M and its standard error x Se are specified with 3 digits, the display accuracy of the balance.

The value of x Se (0.022 = 2.22 × 10–2) is broken down into power of ten (n Se =

−2) and first digit (xSeR = 2) and reproduced as x SeRR in decimal form with only one non-zero digit. The value for x M is transformed into an integer x Mr. Thus, the number of relevant digits corresponds to the precision of x SeR, and is reproduced in decimal form with the reduced number of digits. The final result displayed in

D7 is obtained with the formula in D8, concatenating text and variables.

Another variant, reporting the final result in exponential form, i.e., (9.8 ± 0.2)E-

1 g, is shown in Fig. 9.3 (S). The value of x M is transformed into a number x MrP

greater or equal to 1 and smaller than 10 and then rounded to the first non-zero

digit of x Se.

A

B

C

D

E

F

G

1 Name

Weight

Power of xSe

nSe

-2 =INT(LOG10(xSe))

2

xM

0.977

First digit of xSe

xSeR

2 =ROUND(xSe*10^(-nSe);0)

3

xSe

0.022

Reduced xSe

xSeRR

0.02 =ROUND(xSeR*10^nSe;ABS(nSe))

4

Unit

g

xMr

98 =ROUND(xM*10^(-nSe);0)

5

Reduced xM

xMrr

0.98 =ROUND(xMr*10^nSe;ABS(nSe))

6

7

Weight = (0.98 ± 0.02) g

8

=Name&" = ("&xMrr&" ± "&xSeRR&") "&Unit Fig. 9.2 (S) The final result is obtained by rounding with formulas using logarithms

9.3

A Procedure for Rounding to Relevant Digits

373

A

B

C

D

E

F

G

10 Name

Weight

Power of xM

nM

-1 =INT(LOG10(xM))

11

xM

0.977

Reduced xM

xMrP

9.77 =xM/(10^nM)

12

xSe

0.022

Power of xSe

nSe

-2 =INT(LOG10(xSe))

13

Unit

g

Reduced xSe

xSeRP

2.2 =xSe/(10^nSe)

14

Rounded to relevant

xMred

9.8 =ROUND(xMrP;nM-nSe)

15

Rounded to relevant

xSeRed

0.2 =ROUND(xSeRP;0)*10^(nSe-nM)

16

17

Weight = (9.8 ± 0.2) E-1 g

18

=Name&" = ("&xMred&" ± "&xSeRed&") E"&nR&" "&Unit Fig. 9.3 (S) Same as Fig. 9.2 (S); however, separating the power in the result Table 9.2 Function for returning the final result rounded to the relevant digits

1

def FinRes(Name,xM,xSe,Unit):

2

#Power of the standard error:

3

n=int(np.floor(np.log10(xSe)))

4

#First digit of xSe:

5

xSeR=np.round(xSe*10**-n,0)

6

#Rounding to the certain digit:

7

xSeRR=np.round(xSeR*10**n,np.abs(n))

8

#Rounding xM to the certain digits:

9

xMr=np.round(xM*10**-n,0)

10

xMrr=np.round(xMr*10**n,np.abs(n))

11

return str(Name) + '=' + str(xMrr) + "±" \

12

+ str(xSeRR)+ Unit

9.3.3

Python Function

A user-defined function, performing the calculation of Fig. 9.2 (S), is introduced in Table 9.2 and applied in Table 9.3 in which two series of (x M, x Se) pairs are evaluated to check the validity of the formulas implemented in FinRes.

9.3.4

VBA Function

The rounding can also be performed with the user-defined VBA function FinRes

in Fig. 9.4a (P), which reads-in the name, the value, and the uncertainty of the measurement result, and outputs the rounded result as shown in Fig. 9.4b. If this function is inserted into a VBA project module for user-defined functions (in our

case, VBA project (Dieters functions.xlam, Sect. 4.9.1), then it can be called in any excel file.

374

9

Evaluation of Measurements

Table 9.3 a (top) Continuation; applying the program in Table 9.2; b (bottom) Results 1

xM=[100.234, 1.234, -2.334,-0.004, 10000.1233]

2

xSe= [0.5, 0.0002, 0.02, 0.001, 0.0004]

3

for i in range(len(xM)):

4

outpl=FinRes("a"+str(i),xM[i],xSe[i]," mg")

5

print(outpl)

6

print("\n") # Second series

7

xM=[1234.345,-12345.678,2.383,-0.0991297, 0.000930]

8

xSe=[35.023, 34.56, 0.01, 0.00223046,0.000017]

a0=100.2±0.5 mg

a6=1230.0±40.0 mg

a1=1.234±0.0002 mg

a7=-12350.0±30.0 mg

a2=-2.33±0.02 mg

a8=2.38±0.01 mg

a3=-0.004±0.001 mg

a9=-0.099±0.002 mg

a4=10000.1233±0.0004 m

a10=0.00093±2e-05 mg

1 Function FinRes(Name, xM, xSe, Unit)

1

=FinRes(A4;B4;C4;D4)

2 'Input: Name of the variable, mean, uncertainty, physical unit

2

a0=100,2±0,5 mg

3 n = Int(Log(xSe) / Log(10)) 'power of the uncertainty

3

a1=1,234±0,0002 mg

4 xSeR = Round(xSe * 10 ^ -n, 0) 'first digit of the uncertainty

4

a2=-2,33±0,02 mg

5 xSeRR = xSeR * 10 ^ n 'rounding to the certain digit

5

a3=-0,004±0,001 mg

6 xMr = Round(xM * 10 ^ -n, 0) 'rounding the measured value

6

a4=10000,1233±0,0004 mg

7 xMrr = Round(xMr * 10 ^ n, Abs(n))

7

a5=-234,6±0,3 mg

8 FinRes = Name & "=" & xMrr & "±" & xSeRR & Unit 8

a6=12350±40 mg

9 End Function

9

a7=-12350±30 mg

A

B

C

D

E

a8=2,38±0,01 mg

2

=FinRes(A4;B4;C4;D4)

a9=-0,099±0,002 mg

3 a0

100.234

0.5 mg

a0=100,2±0,5 mg

a10=0,0093±0,00002 mg

4 a1

1.234

0.0002 mg

a1=1,234±0,0002 mg

5 a2

-2.334

0.02 mg

a2=-2,33±0,02 mg

Fig. 9.4 a (left, P) The user-defined function FinRe s (top) reads in the name and the value of a measured quantity (columns A and B in the spreadsheet), as well as its measurement error (column C), and (bottom) outputs the rounded measurement result as text (column E). The spreadsheet has to be treated with a main program that calls FinRes. b (right) Ten results of the function FinRes 9.4

Increasing the Measuring Accuracy Through Repetition

We illustrate the meaning of the standard error with repetition procedures

to get the hit rate, i.e., how often the error range captures the true value.

The more often a quantity is measured, the more accurately its value can

be determined. If the same measurement setup is always used, the standard

error of the mean value of the measurement series is inversely proportional

to the root of the number of measurements. Twice as good with four times

 the effort.

9.4

Increasing the Measuring Accuracy Through Repetition

375

9.4.1

Standard Deviation and Standard Error of the Mean Value

of a Measurement Series

How can we halve the standard error?

Alac If we want to be twice as good, we just have to measure twice as often.

Mag No, keep the following broom rule in mind and study the next section:

 Ψ Twice as good with four times the effort.

Tim I remember the reason for this. It is the variance of the mean value of a

measurement series that is inversely proportional to the number of measurements.

The standard error is the square root of the variance.

Mag One more hint: All mathematically justified theorems make statements

about variances. To estimate the measurement error, however, the standard error

with the same physical unit as the mean must be quoted:

 Ψ Calculate with variances, report the C-spec error!

In this section, we learn about the quantities: variance var X of a set of values x

= { x i}, standard deviation x Sd of the data in the set, and standard error x Se of the mean x m of the set.

The standard error x Se of the mean value x m of a set of measured values, used to indicate the measurement result’s uncertainty, is smaller than the standard deviation x Sd of the set, measuring the scatter in the set. The standard deviation x Sd is, in principle, independent of the number n of measurements, while the standard error x Se decreases with increasing square root of n.

Visual estimate

Question

How big do you estimate the uncertainty of the mean value in Fig. 9.5a to be? 3

By what factor is the standard error of the mean smaller than the standard

deviation of the set of measurements? 4

Within which range do you expect a 10th measured point in Fig. 9.5? 5

Calculated error range

Figure 9.6 displays measured data with calculated means (vertical bar), standard deviations of the set of measured values (horizontal square brackets above), and

standard errors of the mean (horizontal square brackets below).

3 To check your judgement, have a look at Fig. 9.6!

√

4 By the factor 1 / n, where n is the number of measurements, as you will learn in the course of this exercise.

5 The 10th measured point should be within the standard deviation of about 1 with a probability of about 2/3.

376

9

Evaluation of Measurements

4 Meas

-2

-1

0

1

2

16 Meas

-2

-1

0

1

2

Fig. 9.5 Estimate! Estimate mean value, standard deviation, and standard error of a (top) a series of 4 measurements and b (bottom) a series of 16 measurements! The standard deviation for both series is about 1

2

2

2

2

1

1

1

1

0

0

- 1

- 1

- 1

- 1

4 Meas

4 Meas

- 2

- 2

- 2

- 2

-2

-1

0

1

2

-2

-1

0

1

2

2

2

2

2

1

1

1

1

0

0

- 1

- 1

- 1

- 1

16 Meas

- 2

16 Meas

- 2

- 2

- 2

-2

-1

0

1

2

-2

-1

0

1

2

2

2

2

2

1

1

1

1

0

0

- 1

- 1

- 1

64 Meas

- 1

64 Meas

- 2

- 2

- 2

- 2

-2

-1

0

1

2

-2

-1

0

1

2

Fig. 9.6 Results for n = 4, 16, and 64 measurements of a physical quantity whose true value is 0; mean value x m indicated by vertical lines, scatter x m ± x Sd of the measurement series by square brackets above, and confidence interval (error range) x m ± x Se of the mean value as square brackets below; the true value 0.00 is a (left) within the standard error range of the mean value or b (right) outside of the standard error range of the mean value

In the analysis and discussion of measurement series, we must clearly distinguish

between

– the standard deviation x Sd of the data set (Eq. 9.3) and

– the standard error x Se of the mean value x m (Eq. 9.4).

The standard deviation of the series characterizes the scatter of the measured

values within the measurement series. A new measurement is expected to lie

approximately within this range, “approximately” meaning:

 Ψ Two within and one out of (the standard deviation). 6

6 Namely, with a probability of 2/3 within plus or minus the standard deviation from the mean.

9.4

Increasing the Measuring Accuracy Through Repetition

377

The mean value x m of all measured values can be determined by visual judgment more precisely than ± x Sd, as is visible in the diagrams in Figs. 9.5 and 9.6.

According to theory, the standard error of the mean value x Se is equal to the standard deviation of the series xS d divided by the square root of the number n of measurements, Eq. 9.4.

The corresponding range

[xm − xSe, xm + xSe]

(9.8)

called the standard error range, is indicated in the diagrams by bottom square

brackets.

In the next section, we examine the meaning of the error range in more detail

by determining hit rates.

Mag What is the informative value of the standard error?

Tim The standard error has the same physical dimension as the measured value.

Therefore, it is possible to specify the measurement uncertainty with plus-minus

the standard error.

Mag Is the true value always within the standard error?

Alac No, only if we’ve done everything right.

Tim I’ve learned that this is only true in about 68% of cases, to be remembered

with:

 Ψ Two within and one out of.

Alac Is that to say that the true value is outside of the standard error limits for every third experiment? There was never any trouble like this in our introductory

lab course.

Mag If the true value for nine lab groups lies within the standard error of the

measurement ± x se, then three groups have cheated, I suspect.

Tim We have also learned that the broom rule applies only if the same quantity

is measured at least eight times. We never measured that often in the beginner’s

lab course. What is the error specification good for, then?

Mag We will learn about that in this exercise by determining hit rates. Anyway,

if you specify the number n of measurements, together with x m and x Se, you can make well-defined statements with t statistics, addressed in Exercise 9.5.

378

9

Evaluation of Measurements

4, 16, or 64 measurements of the same quantity

Let the true value of a quantity be 0 and the standard deviation of the measurement

process be 1. We simulate this process with a Gaussian generator with a mean value

of 0.00 and a standard deviation of 1.00 and determine the mean value x m, standard deviation x Sd, and standard error x Se for measurement series (samples) with different numbers of measurements. The results of the simulation are presented in Fig. 9.6.

In the first row of Fig. 9.6, the physical quantity was measured four times, in the second row, 16 times, and in the third row, 64 times. In the left subpictures, the mean

value’s error ranges include the true mean; in the right subpictures, they do not.

Standard deviation of the measurement series

The measured standard deviation x Sd is approximately the same for all measurement series, independent of the number of measurements. So, if an additional measurement

is made, the expected deviation of this new measurement from the mean value is

independent of how often the measurement has been made before. The dispersion of

the data set does not depend on the number of data.

How precisely can the mean value of a measurement series be determined?

In Fig. 9.6, two measurement series are plotted for each number of measurements.

The mean value fluctuates more strongly for the series with a smaller number (vis-

ible here when comparing the left and right subfigures). The theory states that the

expected measurement error for the mean value of a measurement series is the stan-

dard deviation of this series divided by the root of the number of measurements

(Eq. 9.4). The error range (also called the confidence interval) of the mean value is also included in the diagrams mentioned. It corresponds approximately to the range

in which we would locate the mean value with the eye.

Tim Are we really twice as good with four times the effort?

Mag The formula only states that the standard error of the mean calculated

√

according to the rules decreases with 1 / n, narrowing the confidence interval

(“error range”) correspondingly. We still have to know whether the confidence

level (“hit rate”) changes as well.

– The standard deviation of a measurement series is in principle

independent of the number of measurements; it fluctuates only by

chance.

– The standard error of the mean of the measurement series decreases

with the inverse of the square root of n, the number of measure-

ments.

– The probablity that the standard error range captures the true

value depends on the number of measurements and increases with

increasing n up to 68%.

9.4

Increasing the Measuring Accuracy Through Repetition

379

Hit rate by repetition of the statistical experiment

A simulation repeats the standard error range calculation and determines how often

 x m ± x Se captures the true value. The “hit rates” are:

0.60 (0.61) for 4 measurements,

0.66 (0.67) for 16 measurements,

0.68 (0.68) for 64 measurements,

obtained with Python (excel) in the following sections.

9.4.2

Data Structure and Nomenclature

 x meas

results of 64 measurements, true value = 0

 x m4m

mean value of 4 measurements

 x Sd4m

standard deviation of 4 measurements

 x Se4m

standard error of the mean of 4 measurements

 in 4m

true, if the error range captures the true value

 within4m

counts the in 4M

and correspondingly for 16 and 64 measurements.

 in M

3 values, [in 4m, in 16m, in 64m].

9.4.3

Python Program

Hit rate by repetition of the statistical experiment

In the diagrams of Fig. 9.6b, the true value of the measured quantity (namely, 0.0) is outside of the standard error range. With a rep-log procedure, we examine how often

this happens on average. The function WithinSe in Table 9.4 generates an array of 64

normally distributed random numbers, calculates, in lines 4 to 6, the characteristic

parameters for the first 4 numbers of this array, and determines, in line 7, whether

the standard error range captures the true value (in4m is True or False). The

Table 9.4 Does the standard error range capture the true value? Only the statements for 4 measurements are reported; those for 16 and 64 measurements are the same, but with 16 or 64 instead of 4

1

def WithinSe():

2

x_meas = npr.randn(64)

3

4

xm4m = np.mean(x_meas[0:4])

 #Entries 0, 1, 2, 3

5

xSd4m = np.std(x_meas[0:4],ddof=1)

6

xSe4m = xSd4m/np.sqrt(4)

7

in4m = xm4m- xSe4m < 0 < xm4m+xSe4m

 #0 is the true value

……

18 return in4m, in16m, in64m

380

9

Evaluation of Measurements

Table 9.5 Rep-log procedure for calculating hit rates, WithinSe from Table 9.4

1

within4m =0

2

within16m=0

3

within64m=0

4

Ntrials=10000

5

for i in range(Ntrials):

6

inx=WithinSe()

7

within4m+=inx[0]

within4m 6018 hit rate 0.60

8

within16m+=inx[1]

within16m 6632 hit rate 0.66

9

within64m+=inx[2]

within64m 6759 hit rate 0.68

instructions for the first 16 and first 64 measurements are analogous, resulting in

 in16m and in64m, which are also returned in line 18.

In the numpy function np.std, a parameter ddof must be specified, meaning

 Delta Degrees Of Freedom. The divisor used in calculating the variance in Eq. 9.2

is n - ddof , where n is the number of data points. By default, ddof in np.std is zero. If we determine only the mean of a data series, as we do in this chapter,

 ddof = n P = 1.

In the main program in Table 9.5, we call WithinSe several times (here, N trials

= 10,000) and increment the variables within4m and the like by 1 if the output of WithinSe is true. This is possible because the logical values are coded as binary numbers, 1 for True and 0 for False. We see from the bottom cell output that the hit rate increases with the number of measurements, from 0.60 for 4 measurements

to 0.68 for 64.

Theoretically, the confidence interval for ± x Se is 68.3% when the number of

measurements approaches infinity. In other words: in more than 30% of the cases,

the “true” value is also theoretically outside ± x Se. We simplify to the broom rule: Two within and one out of (the standard error range). It applies if the measurement is repeated at least 8 times. If measurements are taken less often, the hit rate

is lower. For 4 measurements, it is only 60%, according to the bottom cell in Table

9.5.

9.4.4

Spreadsheet Layout for This Task

The spreadsheet layout corresponding to the Python program in Table 9.4 is shown in Fig. 9.7 (S). Columns A to H reproduce the calculation of the Python function WithinSe with the result in column H.

The role of the main program in Python is played in excel by the VBA

procedure in Fig. 9.8 (P), taking the logical values in H3:H5 as input and, if True, incrementing the counts in I3:I5 individually.

9.4

Increasing the Measuring Accuracy Through Repetition

381

A

B

C

D

E

F

G

H

I

J

K

L

;1)

0<xm_m+xSe_m)

(RAND();0

1

=NORM.INV

=AVERAGE(A3:A6)

=STDEV.S(A3:A18)

=xSd_m/SQRT(n) =AND(xm_m-xSe_m < 0;

from rep-log procedure

=within_m/Ntrials

2 x_meas

n

xm_m xSd_m

xSe_m

in_m within_m

hitrate Ntrials

3

2.04

4

0.87

1.22

0.61

4 Meas

FALSE

6116

0.612

10000

4

0.30

16

0.12

0.96

0.24 16 Meas

TRUE

6738

0.674

5

1.71

64

0.02

0.91

0.11 64 Meas

TRUE

6840

0.684

66

0.02

Fig. 9.7 (S) 64 random measurements x meas are generated in column A, while subsets of these are evaluated in columns D to H. The logical values in column H are read by sub Protoc3 in Fig. 9.8

(P) and summed in column I after a 10,000-fold generation of new measurement series

1 Sub Protoc3()

12

2 Ntrials = Range("K3")

13

3 Range("I3:I5").ClearContents

14

4 For i = 1 To Ntrials

15

5 Application.Calculation = xlCalculationManual

16

6 If Range("H3") = True Then Range("I3") = Range("I3") + 1

17

7 If Range("H4") = True Then Range("I4") = Range("I4") + 1

18

8 If Range("H5") = True Then Range("I5") = Range("I5") + 1

19

9 Application.Calculation = xlCalculationAutomatic

20

10 Next i

21

11 End Sub

22

Fig. 9.8 (P) Rep-log procedure for incrementing the number of hits in I3:I5 of Fig. 9.7 (S); if a value in H3:H5 is True, the corresponding cell in column I is incremented by 1

Questions

concerning Fig. 9.7 (S)

How does the “true” value of the measurand enter the simulation of the

measurement process in A3:A66? 7

What is the formula in H5? 8

9.4.5

How to Report a Measurement Result

Tim People often say that our rule Two within and one out of only applies if measurements are taken more than seven times. We never measure that often in

our lab course, at most, four times.

7 As mean of a normal distribution in column H generated with norm.inv (random(), Mean, StDev). Here, Mean = 0 and StDev = 1.

8 See formula printed in H1; the expression is True if the error range does capture the true value.

The formula in H5 processes entries in row 5 of xm m and xSe m.

382

9

Evaluation of Measurements

Alac That doesn’t matter. Even if you measure a quantity only twice, you can

apply the formulas for mean value and standard error. That’s enough.

Mag Not quite. You have to specify the number of measurements in addition

to the mean value and the standard error. An example of a complete measurement

protocol: The acceleration due to gravity in our laboratory was measured twice

with a pendulum, resulting in an average value of 9.8 m/s2 with a standard error

of 0.2 m/s2.

Tim Should we report the details of the experimental setup as well? For exam-

ple: How exactly we determined the length of the pendulum and the period of

oscillation.

Mag Of course, to allow for conclusions about systematic errors. The three

aforementioned statistical specifications are enough to make statistically relevant

statements. E.g., for the two measurements referred to by Alac, the calculated

standard error must be doubled to achieve a measurement uncertainty according

to Two within and one out of . 9

9.5

The t Statistics Connects Confidence Interval

with Confidence Level

The t-value of Student’s t distribution relates an extended confidence interval t times the standard error to a confidence level (or an error probability) . For at least eight measurements, our rule for the standard error range Two

 within and one out of (the standard error range) applies.

9.5.1

Student’s t Distribution

Practical handling

The following list explains the terms that play a role in t statistics:

– Standard error rangexm ± xSe with the standard error calculated from the standard deviation of the measurement series xSd as xSe = xSd

√ .

 n

– Degree of freedom do f = n − n P with n being the number of measurements, and n P the number of parameters estimated from the measurement series. In this

chapter, n P = 1, because only the mean x m is estimated.

9 The degree of freedom for 2 measurements is dof = 1 and the t value for this is t = 1.84 for a probability of error of 38% (see Exercise 9.5). For an error probability of 5%, the t value is 12.7.

9.5

The t Statistics Connects Confidence Interval with Confidence …

383

– C-spec error range xm± tC · xSe, standard error multiplied by a factor t C determined by a pre-specified confidence level C or error probability E and the degree of freedom dof .

– Confidence level C(t, do f), corresponds to the hit rate in our statistical experiments. The error probability has the complementary value: E(t, do f) = 1 −

 C(t, do f).

Error probability, confidence level, and t-value are obtained with the following

functions, with dof being the degree of freedom:

excel

e(t,dof) = t.dist.2t(t;dof)

c(t,dof)= 1- t.dist.2t(t;dof)

t(e,dof) = t.inv.2t(e,dof)

Python

E(t,dof) = (1-sct.t.cdf(t,df=dof))*2

C(t,dof) = 2*sct.t.cdf(t,df=dof)-1

T(E,dof) = sct.t.ppf(1-E/2,df=dof)

In Fig. 9.9a, the error probability E is obtained for different degrees of freedom f and t values of 1 and 1.96. The t value for pre-specified E and dof is given in b (F:H).

For 4 measurements, the degree of freedom is 3, and a hit rate 1–0.391 ≈ 0.61

for t = 1 is expected. Actually, in Sect. 9.4.1, hit rates of 0.60 for the Python simulation and 0.61 for the excel one come close to this expectation.

Mathematics of the t distribution

The entity t is defined as

 t = (xm − xTrue)/xSe

(9.9)

A

B

C

D

E

F

G

H

I

1

=(E-1/3)*3

=T.INV.2T(Et;dofT)

2

dof

E

Et

dofT

t

3

100000

0.317 =T.DIST.2T(1;dof)

-0.05

0.317 100000

1.00

4

7

0.351 =T.DIST.2T(1;dof)

0.05

0.317

7

1.08

5

3

0.391 =T.DIST.2T(1;dof)

0.17

0.317

3

1.20

6

100000

0.050 =T.DIST.2T(1.96;dof)

0.05 100000

1.96

7

7

0.091 =T.DIST.2T(1.96;dof)

0.05

7

2.36

8

3

0.145 =T.DIST.2T(1.96;dof)

0.05

3

3.18

Fig. 9.9 a (left, A:D) Error probability E for t values 1 and 1.96, each for various degrees of freedom dof . b (right, F:H) t values for E t values of 0.317 and 0.05, as well as various degrees of freedom dof T

[image: Image 84]

384

9

Evaluation of Measurements

200

160

120

cyne

Frequ

80

40

simulated

=T.DIST(Ic;3;0)*N*dt

0

-3.00

-1.00

1.00

3.00

t

Fig. 9.10 a (left) Frequency of occurrence of t values obtained in a series of simulations with 4

measurements together with the theoretically predicted values for dof = 3; b (right) ppf and cdf (dashed line) of Student’s t distribution for dof = 3 (dof is named f in the legend); the right-angled straight lines indicate t.cdf(1,dof) and t.ppf (0.975,dof) (dotted line)

describing the distance of the sample mean x m to the true value x True, divided by the standard error x Se of the mean value.

In order to get an idea of t statistics, we:

– perform a simulation of a series of 4 measurements with a noise level between

0 and 1 from which a single value of t can be obtained,

– repeat the single experiment to get a representative set of t values, with each time a new noise level,

– and determine their frequencies of occurrence.

The result (diamonds) is shown in Fig. 9.10a together with the values predicted by the theoretical t distribution for dof = 3 (line).

Figure 9.10b displays the ppf and cdf of Student’s t distribution for dof =

3; the right-angled straight lines indicate t.cdf(1,dof) starting at t = 1 and

t.ppf (0.975,dof) (dotted line, starting at cdf = 0.975). We get.

sct . t . cdf (1 , 3) = 0 . 8045

C (1 , 3)

= 2 ∗ sct . t . cdf (1 , 3)−1 = 0 . 609

T (0 . 05 , 3) = sct . t . ppf ({0 . 975 , 3})= 3 . 18}

We see that for t = 1, the cdf is about 0.8, i.e., in about 80% of the experiments a measurement result is below the upper limit of the error range; 20% are above.

As the pdf is symmetric to t = 0, likewise 20% are below the lower limit of the error range so that the error probability is E = 0.4 and correspondingly C(1, 3) ≈

0.6.

For dof = 1,000,000, we get

9.5

The t Statistics Connects Confidence Interval with Confidence …

385

sct.t.cdf(1,1,000,000) = 0.841,

 p = 0.16 that xTrue > xm + 1 · xSe.

 C(1, 1,000,000) = 2* sct.t.cdf(1,1,000,000) – 1 = 0.683.

 E(1, 1,000,000) = (1–0.683) = 0.317,

 p = 0.317 that x True is outside of the error range xm ± 1 · xSe.

 T(0.05, 1,000,000) = Sct.t.ppf (0.975,1,000,000) =

1.96.

a confidence level of C = 0.95 (error probability 0.05 = 2·0.025) is

obtained for an error range xm ± 1 . 96 · xSe.

Set-up of the simulations to determine C-spec errors

We are simulating measurement series according to We know everything and

 play stupid by generating normally distributed random numbers with mean = 0

and standard deviation = 1, and determining the experimental hit rate, for series

comprising 2 to 16 measurements, within error ranges with t values that correspond to error probabilities 0.317 and 0.05.

Proven or not disproven? 8 = ∞?

Tim Summarizing: with the mean value and its standard deviation, and the num-

ber of measurements, statistically correct statements with confidence levels can be

made.

Alac Our simulation proves that.

Tim No, our simulation simply gives us no reason to doubt that statement.

Alac Your nitpicking’s a pain in the neck.

Mag But it is indispensable, because we don’t do logical derivations.

Tim Let’s trust in statistical textbooks.

Alac In the case of measurement series, we are content with a rough estimate:

infinity already starts with 8 measurements.

Tim 8 = ∞? Isn’t that twisting the facts?

Mag Discuss!

386

9

Evaluation of Measurements

Questions

concerning Fig. 9.9 (S) By what factor t should the standard deviation of 4

measurements be increased so that the true value is within the C - spec error

range with a probability of 68.3%? 10

What is the probability of error if, for eight measurements, the standard error

is specified as the measurement uncertainty? 11

What is the error probability for four measurements if the standard error

times 1.96 is used to specify the error range? 12

9.5.2

Data Structure and Nomenclature

 x True

True value of a measurand

 n

Number of measurements in a series

 x

Series of n measurements

 x m

Mean value of the measurement series

 x Se

Standard error of x m

 dof

Degrees of freedom, dof = n − 1

 C

Confidence level

 E

Error probability, E = 1 − C

 t

 t-value (Student’s) for the C-spec error range, determined by C and dof x SeT

 x Se multiplied with a t-value appropriate for C and E

 n T

Number of trials (repetitions of a statistical experiment)

 hitRate

Counts how often the error range captures the true value

 p Out

(n T- hitRate/ n T, probability that the error range misses the true value.

9.5.3

Spreadsheet Calculation

In column A of Fig. 9.11 (S), 32 normally distributed random numbers (mean =

0, standard deviation = 1) are generated. Subsets of 2 to 32 of them are specified

by cell range addresses in column C. Indirect addressing of these ranges is used

to calculate their mean (in column D) and their C-spec error for E = 0.317 (in

column F).

Questions

concerning Fig. 9.11 (S)

10 Figure 9.9 (S), the degree of freedom for four measurements is dof = 3, t = 1.20 in cell C5.

11 Figure 9.9 (S), dof = 7, B4 = 35%.

12 Figure 9.9 (S), dof = 3, B8 = 14.5%.

9.5

The t Statistics Connects Confidence Interval with Confidence …

387

A

B

C

D

E

F

G

H

I

J

K

_

(n_)*t

;1)

edur

(RAND();0

p-Log proc

1

=NORM.INV ="A3:A"&B4+2

=AVERAGE(INDIRECT(Rng))

=T.INV.2T(0.317;n_-1)

=STDEV.S(INDIRECT(Rng))/SQRT

=OR(xm<-xSeT;xm>xSeT)

from Re

Rep-Log

2

x

n_

Rng

xm

t_

xSeT

outSeT

pOut 100,000

t0.05 pOut0.05

3

-0.44

2

A3:A4

0.34

1.84

1.45

FALSE

0.317

12.7

0.049

4

1.13

4 A3:A6

0.73

1.20

0.60

TRUE

0.317

3.2

0.050

5

0.33

8 A3:A10

-0.19

1.08

0.58

FALSE

0.317

2.4

0.049

6

1.88

16 A3:A18

-0.02

1.04

0.30

FALSE

0.314

2.1

0.050

7

-2.97

32 A3:A34

-0.11

1.02

0.20

FALSE

0.318

2.0

0.049

34

0.35

Fig. 9.11 (S) Evaluation of series from column A with 2 to 32 measurements; in column F, C-spec error ranges are listed for an error probability of E = 0.317. The formula in column G checks whether the true value (here, 0) lies outside of the error limits. In column H, the experimental error rate is recorded after 100,000 repetitions of the statistical spreadsheet experiment (Multiple tests for hit rates) . The simulation is repeated for an error probability E = p Out of 0.05 (t values in column J), with the results reported in column K

Which numbers addressed in D6 are averaged?13

How is the argument of the spreadsheet function average in column D

constructed? 14

Which cells does the statement in F4 refer to? 15

In column E, the spreadsheet function t = t.inv.2t(E; dof) reports the t value for an error probability of E = 0.317. The extension “.2T” indicates that deviations of x m to both sides of the error range are taken into account.

In column F, the mean value’s standard error is multiplied by t, so that the

error rate is expected to be p Out = E = 0.317. Column G contains the logical expression [=or(x m < - x SeT; x m > x SeT)], true if x mTrue, namely, 0, is outside of the error range. In the example of Fig. 9.11 (S), this is the case (by chance) only for one measurement series. With a rep-log procedure, we perform the random

experiment 100,000 times and get the error rates in column H. They are actually

close to the expected 0.317.

In column J, t values that correspond to an expected error probability of E =

0.05 are calculated. Repeating the simulation with the corresponding C-spec error

range leads to experimental error probabilities, column K, close to the theoretical

value.

13 The mean value of the numbers in A3:A18 is calculated.

14 The argument of average is defined using indirect from the column range with name Rng.

From Rng, the value in the same row is taken.

15 The statement in F4 (1) calculates the standard deviation of the subset A3:A6 (addressed with

√

indirect(rng) , Rng in C4), (2) divides the result by

 n (B4) to get the standard error, (3) mul-

tiplies the standard error with a t (E4) for E = 0.317 and dof = n − 1 = 3, appropriate for n =

4).

388

9

Evaluation of Measurements

Table 9.6 a (top) Specification of arrays for taking up the results of simulations with t statistics; b (bottom) A single run of the simulation

1

nList=[2,4,8,16,32]

2

lnL=len(nList)

3

E=0.317

4

t=np.empty(lnL)

t values for E

5

for n in range(lnL):

6

t[n]=sct.t.ppf(1-E/2,df=nList[n]-1)

7

out=np.zeros(lnL)

8

x=npr.randn(32)

9

xm=np.array([np.average(x[0:n]) for n in nList])

10

xSeT= np.array([np.std(x[0:n],ddof=1)/np.sqrt(n)

for n in nList])*t

11

outSeT=np.logical_or((xm<-xSeT),(xm>xSeT))

12

out+=outset

Boolean added as 0 or 1

Table 9.7 Results of a run of the program in Table 9.6b

E 0.317

t [1.839 1.198 1.077 1.035 1.017]

xm [-1.026 -0.871 -0.279 -0.079 -0.04]

xSeT [1.784 0.547 0.347 0.277 0.196]

outSeT [False True False False False]

out [0. 1. 0. 0. 0.]

9.5.4

Python Program

Single experiment

The program for checking the consistency of confidence intervals and confidence

levels and its result is distributed over three cells. In the first cell of Table 9.6, three lists of the same length (nList, t, out) are generated, with their elements specific to the 5 series with different numbers of measurements. In the second cell, the simulation

is run once; all logged lists are reported in Table 9.7 A numerical array out is created to sum the logical values of outSeT as numbers 0 or 1. It counts the number of

missed hits, i.e., when the true value is outside of the extended error range when the

simulation is repeated.

Questions

Why does t have to be an array? Why is it not sufficient to specify it as a list?16

Replace lines 4 to 6 of Table 9.6a with a list comprehension! 17

Which columns of Fig. 9.11 (S) are equivalent to Table 9.6b?18

16 Line 10 of Table 9.6 multiplies the array of standard errors with t, element-wise. This must be a numerical multiplication. Therefore, t has to be an array.

17 t = np.array ([sct.t.ppf(1-E/2,df = n-1) for n in nList])

18 Columns A, D, F, G; set x in A, x m in D, x SeT in F, outSeT in G.

9.5

The t Statistics Connects Confidence Interval with Confidence …

389

Table 9.8 Multiple repetition of the simulation experiment; a (top cell) program code; b (middle cell) Table 9.6b changed into a function; and c (bottom cell) results for t values theoretically valid for an error probability of E = 0.317 (b) and E = 0.05 (c)

13

nOut=np.zeros(lnL)

14

nT=10000 # Number of trials

15

for m in range(nT): nOut+=Check_if_out()

16

np.set_printoptions(precision=3)

1

def Check_if_out():

2

x=npr.randn(nList[-1])

3

xm=np.array([np.average(x[0:n]) for n in nList])

4

xSeT= np.array([np.std(x[0:n],ddof=1)/np.sqrt(n) \

5

for n in nList])*t # nList and t from table above

6

outSeT=np.logical_or((xm<-xSeT),(xm>xSeT))

7

return outSeT

E 0.317 nT 100000

nOut/nT [0.318 0.316 0.319 0.319 0.319]

E 0.05 nT 100000

nOut/nT [0.0501 0.05 0.05 0.0493 0.0493]

How do you have to change the logical query in line 11 of Table 9.6b if you want to count the hits instead of the misses? 19

Error rates

The statistical experiment is multiply repeated in Table 9.8, in a for-loop calling the function Check if out() and summing up its logical output in a numerical array n Out.

The statistical experiment is performed twice, first with E = 0.317 in line 3 of Table

9.6a (results in Table 9.8b) and second with E = 0.05 (results reported in Table 9.8c).

The experimentally found miss rates p Out = n Out/ n T are close to the expectations, E

= 0.317 and E = 0.05.

Questions

Which lines of Table 9.6 have to be integrated into the function Check if out?

What variable has to be returned? 20

9.6

Combining Results from Several Measurement Series

A combined result of two measurement series is obtained as a weighted aver-

age of the individual results with the squares of the reciprocal C-spec errors

19 inSeT = np.logical_and(-xSeT < xm,xm < xSeT); the true value of x m is 0.

20 Lines 8 to 11 with return outSeT. The excel equivalent is a rep-log procedure that calculates p out.

390

9

Evaluation of Measurements

as weights. The C-spec errors are derived from internally and externally

consistent variances.

 Ψ Worse makes good even better. Mostly, but not always.

9.6.1

Combining Two Measurement Results

Calculating with variances

Mag Two research groups use different methods, A and B, to determine the

value of the same measurand. They report their non-identical results with different

standard errors. For example, the acceleration due to gravity at a particular location

has been determined by a drop test and a pendulum. As the head of the two groups,

which result do you write in the project’s final report?

Alac Clearly the one with the smaller standard error.

Tim I simply report both results, each with its own number of measurements

and standard errors. The readers can then decide for themselves.

Mag Neither answer is correct. As a supervisor, you should know how to com-

bine both measurements and specify a value for the measurand whose standard

error is even smaller than that for the better of the two measurements.

Tim Alright, I have found a formula in the internet. The final result x mAB is a weighted mean of the two results x mA and x mB, with the reciprocals of the variances var A and var B of the measurement series as weights w, Eq. 9.10.

xmAB = wA · xm (A) + wB · xm (B)

wA + wB

 wA =

1

 wB =

1

(9.10)

 var A

 varB

Furthermore, the reciprocal value of the combined results’ variance is calculated

as the sum of the reciprocals of the individual variances:

 var −1 = var−1 + var−1 = w

AB

 A

 B

 A + wB

√

 xSd (AB) =

 wA + wB

(9.11)

Alac Equation 9.3 is another neat formula, plus, it’s trustworthy, because it fits our rule Ψ Calculate with variances, report the standard error.

Tim Do we have to take Student’s t-value into account? That’s the t-question.

My internet resource does not deal with it.

9.6

Combining Results from Several Measurement Series

391

Alac Let’s check it with Ψ Two within and one out of .

Mag Good idea. By the way, Eq. 9.11 is called the internally consistent variance. The greater the variance, the lower the measurement’s weight in the

combined result.

Questions

Due to Eq. 9.11, will the combined result’s variance be greater or smaller than the variance of the best measurement? 21

Provided the noise is the same for two measurement series with n = 4 and n

= 16, by what factor should the standard errors of their mean values differ? 22

Calculation with C-spec errors

Equation 9.11 makes a statement about the variances of measurement series. We are, however, interested in confidence intervals and know already that the standard error

is:

 xSe = xsd

√

(9.12)

 n

and the C-spec error, with the t value obtained from the confidence level C and the degrees of freedom dof is:

 xCe = xSe · t(C, do f)

(9.13)

Furthermore, we recall our broom rule:

 Ψ Calculate with variances, report the C-spec error!

Consequently, we use in the formulas for mean and C-spec error the weights:

 weight w = 1

(9.14)

 x 2 Ce

and check the results with hit rates.

Simulation

We set up two independent measurement series for the same measurand, one, A, with 16 individual measurements and the other one, B, with 4 individual measurements,

so that they exhibit different variances. They are combined into a third series C of size 20. Furthermore, the respective results of A and B are combined into AB using the method described above.

21 The reciprocals of the variances are added; the variance of the overall result becomes smaller.

22 The standard errors of the mean values should differ by a factor of two (the ratio of the square roots of the numbers of measurements).

392

9

Evaluation of Measurements

Fig. 9.12 a (left) A result for one measurement series each for A, B, and AB; the length of the vertical lines indicates the respective weight in the weighted sum; the true value is x m = 6. b (right) Deviation of the mean values of the measurement series A, B, C, and AB from the true value, ordered according to the deviation | x mC- x mTrue|

We calculate the mean values x mA, x mB, and x mC together with the squares of the C-spec errors according to Sect. 9.5.1. The combined result x mAB is calculated as the weighted mean according to Eq. 9.10, together with its C-spec error according to Eq. 9.13, both with the weights in Eq. 9.14. The results for one random experiment are graphically shown in Fig. 9.12a. The “true” value of the measurand is 6. If the random experiment is repeated, different positions and heights of the vertical lines

result.

The positions of the vertical lines in Fig. 9.12a correspond to the mean value x m of the measurement series, the height to 1/ x

2

mCe* . In this example, the value of the

combined measurements, x mAB, is closest to the true value of 6.0.

We repeat the random experiment 20 times with a rep-log procedure and note

the deviations of the four mean values for A, B, C, and AB from the true value; the

result is shown in Fig. 9.12b. The experiments are ordered according to the outcome of experiment C, the direct evaluation of 20 measurements. The value for the series

with four measurements (B) is usually farther away from, but sometimes closer to,

the true value than the results of the series with 16 measurements (A).

 Ψ Mostly, but not always! Fundamental rule of statistical reasoning:-).

The weighted mean values of (A) are joined with a solid line. We see that they

are sometimes better and sometimes worse than those for the combined series (AB).

Tim So, it would sometimes be better to report the result of experiment (A)

instead of the combined result?

Mag Keep in mind that we perform simulations according to Ψ We know every-

 thing and play stupid. In real life, the true value is unknown, and we have to be content with Ψ Decide! Sometimes it will be wrong. Let’s have a look at the hit

rates from the rep-log procedures in Table 9.9. and Fig. 9.14 (S).

9.6

Combining Results from Several Measurement Series

393

Table 9.9 Internally (left two cells) and externally (right two cells) consistent evaluation of the measurement series; the first line corresponds to a variant of line 8 in Table 9.11

vABmax=vABint

vABmax=vABint

vABmax=vABext

vABmax=vABext

Theor. 0.683

Theor. 0.950

Theor. 0.683

Theor. 0.950

Hits A 0.682

Hits A 0.950

Hits A 0.682

Hits A 0.952

Hits B 0.684

Hits B 0.950

Hits B 0.681

Hits B 0.951

Hits C 0.683

Hits C 0.950

Hits C 0.681

Hits C 0.951

HitsAB 0.633

HitsAB 0.932

HitsAB 0.448

HitsAB 0.406

Alac The hit rates of A, B, and C are close to the theoretical value of 0.683

and 0.950, but AB’s hit rates are only about 0.63 and 0.93; they do not meet the

expectation.

Tim Therefore, the estimation of the standard error according to Eq. 9.11, called

“internally consistent”, must be wrong.

Mag It is not wrong but does not fully satisfy our requirements. Before drawing

conclusions, let’s evaluate another formula to estimate a combined mean’s variance

called “externally consistent”. Take a look at Eq. 9.15.

Tim But that’s even worse. Look at the right two cells in Table 9.9 with HitsAB

= 0.406.

Mag That’s right. In the end, we have to calculate both variances and choose

the bigger one to avoid too small an error range. In doing so, we yield hit rates

 HitsAB = 0.667 and 0.935, slightly better than those reported when taking the

internally consistent variances alone.

Externally consistent variance

The externally consistent variance is calculated with the mean values x mA and x mB

of series A and B and the combined mean value x mAB:

 vABext = wA · (xm A − xm AB) 2 + wB · (xm B − xm AB) 2

(9.15)

 (M − 1) · (wA + wB)

with M being the number of measurement series whose results are to be combined,

here, M = 2, and w A, w B being the weights defined in Eq. 9.14.

9.6.2

Data Structure and Nomenclature

A

series A, N A values

B

series B, N B values

394

9

Evaluation of Measurements

C

A and B together as one series

 AB

results of A and B combined into one result

 x True

true value of the measurand

 x mA, x mB, x mC

mean values of series A and B

 x CeA, x CeB, x CeC

C-spec errors errors of x mA, x mB, and x mC

 w A, w B

weights of series x mA and x mB, Eq. 9.14

 x mAB

mean value of x mA and x mB combined

 v ABint

internal variance of the combined result

 v ABext

external variance of the combined result.

9.6.3

Spreadsheet Calculation

In Fig. 9.13 (S), two data sets A and B are generated, comprising, respectively, 16 and 4 normally distributed random numbers and the union C = A|B (see cell

E3) with mean x m

and standard deviation x

true

Ns. They are evaluated for mean

values x m, and C-spec errors x Ce, here for an error probability E = 0.05.

A

B

C

D

E

F

G

H

1 xmTrue

6

xmA

6.06 =AVERAGE(A)

E

0.05

2

xNs

1

xmB

5.69 =AVERAGE(B)

tA

2.13 =T.INV.2T(E;15)

3

xmC

5.99 =AVERAGE(A;B)

tB

3.18 =T.INV.2T(E;3)

4

tC

2.09 =T.INV.2T(E;19)

5 =NORM.INV(RAND();xAtrue;xNs)

xCeA

0.55 =STDEV.S(A)/SQRT(16)*tA

6

A

B

xCeB

0.75 =STDEV.S(B)/SQRT(4)*tB

7

6.42

5.15

xCeC

0.44 =STDEV.S(A;B)/SQRT(20)*tC

22

4.98

Fig. 9.13 (S) Sets A and B, normally distributed random numbers; evaluation of the data sets and C = A|B for mean value (C1:D3), as well as the C-spec error of the mean (F5:G7) for E in G1

I

J

K

L

M

N

O

P

1

wA

3.55 =1/xCeA^2 xmAB

6.01 =(xmA*wA+xmB*wB)/(wA+wB)

2

wB

0.51 =1/xCeB^2

vAB

0.25 =(wA+wB)^-1

3

wC

4.62 =1/xCeC^2

xsAB

0.50 =SQRT((wA+wB)^-1)

4

100000

5

hitA

TRUE =AND(xmA-xCeA<xmTrue;xmTrue<xmA+xCeA)

0.941

6

hitB

TRUE =AND(xmB-xCeB<xmTrue;xmTrue<xmB+xCeB)

0.950

7

hitC TRUE =AND(xmC-xCeC<xmTrue;xmTrue<xmC+xCeC)

0.944

8

hitAB

TRUE =AND(xmAB-xsAB<xmTrue;xmTrue<xmAB+xsAB)

0.925

9

0.950 =1-E

Fig. 9.14 (S) In O5:O8 are the hit rates of the experiments with the four sets A, B, C, and AB for 100,000 repetitions. The value expected from statistical theory is given in O9

9.6

Combining Results from Several Measurement Series

395

Table 9.10 Defining four measurement series A, B, C, and AB; calculating their means, variances, and C-spec errors; t A, t B, t C are global variables from the main program in Table 9.12;

continued in Table 9.11

1

import numpy.random as npr

2

3

def measurements():

4

A=xmTrue+xNs*npr.randn(16)

5

B=xmTrue+xNs*npr.randn(4)

6

C=np.concatenate([A,B]) # Not independent of A and B

7

xmA=np.mean(A)

8

xmB=np.mean(B)

9

xmC=np.mean(C)

#C-spec errors by considering t:

10

xCeA=np.std(A,ddof=1)/np.sqrt(len(A))*tA

11

xCeB=np.std(B,ddof=1)/np.sqrt(len(B))*tB

12

xCeC=np.std(C,ddof=1)/np.sqrt(len(C))*tC

13

hitA=(xmA-xCeA)<xmTrue<(xmA+xCeA)

14

hitB=(xmB-xCeB)<xmTrue<(xmB+xCeB)

15

hitC=(xmC-xCeC)<xmTrue<(xmC+xCeC)

Question

Which two of the three sets A, B, and C are pairwise independent? 23

In Fig. 9.14 (S), first, the results of A and B are combined into one final result x mAB with a calculated error x sAB. Then, the statistical experiment is repeated 100,000 times with a rep-log procedure to count how often the error ranges

 x m ± x Ce capture the true value for the sets A, B, C, and AB. The theoretical rate is 0.950, which is closely reached for A, B, C, but with ≈ 0.925 not for AB.

We conclude that the internally consistent variance is not sufficient to estimate

the error range. Therefore, in the following section with Python programs, the

alternative with externally-consistent error is also considered.

9.6.4

Python, Internally and Externally Consistent Error

of the Combined Result

The Python function in Tables 9.10 and 9.11 simulates the measurement process.

In the function in Table 9.10, the data sets A, B, and C are generated and evaluated for mean value x m, variance v, and C-spec error x Ce of the mean.

Table 9.11 continues the function measurements begun in Table 9.10. The combined result x mAB, x sAB is built, where x sAB is obtained as the maximum of the 23 A and B are independent of each other, because their members are generated in two different ranges. C, A, and C, B are not independent, because C is the union of A and B.

396

9

Evaluation of Measurements

Table 9.11 Continuation of Table 9.11; line 22 is varied according to which variance is to be calculated

16

wA=(xCeA)**-2

Weight

17

wB=(xCeB)**-2

18

xmAB=(xmA*wA+xmB*wB)/(wA+wB)

19

vABint=(wA+wB)**-1 # Variances combined

20

vABext=(wA*(xmA-xmAB)**2

21

+wB*(xmB-xmAB)**2)/(wA+wB)

22

vABmax=max(vABint,vABext) #=vABint

23

xsAB=np.sqrt(vABmax)

#Confid. level not yet clear. Hit rate to be determ.:

24

hitAB=(xmAB-xsAB)<xmTrue<(xmAB+xsAB)

25

return hitA,

hitB,

hitC, hitAB

hits

(True, False, True, True)

Table 9.12 Main program calling the function measurements in a for-loop. The values in the right cell are for the current specification E = 0.05 and for another run with E = 0.317

1

import scipy.stats as sct

2

E=0.05

theor. 0.950

3

tA =sct.t.ppf(1-E/2,df=15)

Hits A 0.951

4

tB =sct.t.ppf(1-E/2,df=3)

Hits B 0.951

5

tC =sct.t.ppf(1-E/2,df=19)

Hits C 0.948

6

Hits AB 0.936

7

xmTrue=6

True mass

8

xNs=1

9

Nrep=10000

10

hitA,hitB,hitC,hitAB=0,0,0,0

theor. 0.683

11

for rep in range(Nrep):

Hits A 0.677

12

hits=measurements()

Hits B 0.682

13

hitA+=hits[0]

Hits C 0.683

14

hitB+=hits[1]

Hits AB 0.688

15

hitC+=hits[2]

16

hitAB+=hits[3]

internally and externally consistent variances. Line 24 checks whether the true

value x mTrue is captured by x mAB ± x sAB, and the four Boolean values are returned.

In the main program in Table 9.12, the statistical experiment is repeated N rep =

10,000 times for a specified error probability E, and the hit rates are determined.

The results are shown in the right cell. The hit rate for AB with 0.936 is not much

closer to the theoretical value of 0.950 than the 0.925 reported in Fig. 9.14 (S) for the internally consistent variance.

9.7

Propagation of Standard Deviations

397

9.7

Propagation of Standard Deviations

You cannot prevent errors from propagating. It is in their nature. Learn to

live with it! We simulate the propagation of variances and standard devia-

tions in sums, products, and powers with statistical experiments on sets with

100 elements. Note: For products, the relative variances add up; for sums,

the absolute variances. The propagation of confidence intervals is treated in

Exercise 9.8.

9.7.1

Rules for Propagation of Standard Deviations

General Rule

The final result z of a measurement series is often a function of one or more measured physical quantities x: z = f(x 1, x 2, …). The standard theory of error propagation considers the x i as random variables, normally distributed around the “true” value, with the result:

The variance of the final result is a weighted sum of the variances

 var (xi) of the measured values of the individual variables x i.

Remember: It is the variances that propagate through the formu-

las to the final result. But, ultimately, the C-spec error has to be

reported together with the estimate of the mean.

For two variables, x and y, the equation is

 ∂ z 2

 ∂ z 2

 varz = wx varx + wyvary with wx =

and w

(9.16)

 ∂

y =

x

 ∂ y

which can straightforwardly be extended for more variables. The variables v denote the empirical variance of the data series, Eq. 9.2. The weights w in the sum are the squares of the derivatives of z with respect to the associated variables; the greater the slope, the greater the weight.

As an example, we consider the calculation of the volume V K of a sphere from

its diameter d K: VK = π d 3

6

 K

 π 2

var (VK) =

 d 2

· var (dK)

(9.17)

2 K

398

9

Evaluation of Measurements

10

100

8

y = 0.93x

80

R² = 0.99

y = 1.00x

6

R² = 1.00

60

4

40

xTy_Sd_calc

xPy_Sd_calc

xPy; xTrue=10;

xTy; xTrue=10;

2

20

yTrue=10

yTrue=10

0

0

0

2

4

6

8

10

0

20

40

60

80

100

xPy_Sd

xTy_Sd

Fig. 9.15 a (left) Standard deviation of the sum x P y = x + y, calculated versus empirical values. b (right) Standard deviation of the product x T y = x· y, calculated versus empirical values. The standard deviation is up to ten times greater than the mean value. X True, y True are the true values Question

What are the physical units on both sides of Eq. 9.17? 24

In the following sections, we examine the propagation of the standard deviations

of sets of 100 measurement points into the final result.

Error propagation in sums

For a sum z = x + y, the weights in Eq. 9.16 are w x = 1 and w y = 1 so that var z =

 var x + var y. For a difference z = x − y, the coefficients are the same because the partial derivatives are squared so that we get the rule:

The variance of a sum or difference is the sum of the variances of the

summands.

 Ψ Calculate with variances, report the C-spec error!

For the data in Fig. 9.15a, two data sets x and y with various standard deviations for a normally distributed noise are added element-wise to get x P y (x Plus y). The standard deviations of the set of the sums, as derived from the standard

deviations of x and y, are plotted against the empirically determined standard deviations xPy Sd of the set xPy. The trend line has a slope 1.00, indicating accordance with the theoretical expectation. In general, that cannot be taken for granted, as

24 The dimensional analysis m6 = m4·m2 shows that Eq. 9.17 does not contain gross errors.

9.7

Propagation of Standard Deviations

399

can be seen in Fig. 9.15b for x T y (x Times y), where the trend line through a corresponding plot has a slope of only 0.93.

Questions

Let the two measurands x and y have standard deviations x Sd and y Sd, respectively. How large is, according to the propagation rules, the standard deviation

of the sum x + y, and how large is the standard deviation of the difference x -

 y? 25

The proportionality factor in the trend line in Fig. 9.15b is, with 0.93, clearly smaller than 1. Does this contradict theory? 26

Task Vary the mean values and standard deviations of x and y and log the mean value and standard deviation of the sum xPy! Which regularity do you assume?

Derive the expected result from Eq. 9.16!

Error propagation in products

In Fig. 9.15b, the experimentally determined standard deviation xTy Sd of the set x T y is compared with the theoretical standard deviation xTy Sd calc calculated from the standard deviations of x and y. For the product z = x· y, Eq. 9.16 yields the weights

 ∂z 2

 ∂z 2

 wx =

= y 2 and w

= x 2

(9.18)

 ∂

 y =

 x

 ∂ y

hence,

 varz = y 2 · varx + x 2 · vary

var z

var

= var x +

 y

 z 2

 x 2

 y 2

 z

2

2

2

 Sd

= xSd

+ ySd

(9.19)

 zm

 xm

 ym

The square of the relative standard variations of a product is the sum

of the relative standard variations of the factors.

 Ψ Calculate with variances, report the standard error!

 Ψ Even better: report confidence level and confidence interval!

25 The standard deviations of the sum and the difference are equal: (x + y)

= (

=

 Sd

 x − y)Sd

 x 2 + y 2 .

 Sd

 Sd

26 The formulas for error propagation, here, the square root of Eq. 9.19 for products, are based on a Taylor series development and are, therefore, valid only for small variances of the independent variables, a condition no longer satisfied here.

400

9

Evaluation of Measurements

Standard deviations that are too large distort the result

In Fig. 9.15b, the standard deviation of the product, calculated according to the propagation formula, is plotted against the empirical one. The slope of the regression

line is 0.93, significantly smaller than 1. This is because the standard deviations of

the measurands are too large. The formulas for error propagation are based on a

Taylor series development of the function, in Eq. 9.16 only to the first order. So, they are valid only for a small interval around the independent variables. The standard

deviations in Fig. 9.15b become too large. For small standard deviations (< 60), the slope is greater than that of the trend line drawn in the figure, actually 0.99, as an

appropriate check shows.

Error propagation in powers

We now investigate the power function

 z = xn

(9.20)

The variance of the power function is derived from Eq. 9.16 to

 ∂z 2

2

 varz = a x varx with a x =

= n xn−1

(9.21)

 ∂ x

 m

Thus, the expected standard deviation of z is

 zSd = n · xn−1 ·

 m

 xSd

(9.22)

Figure 9.16 displays the empirical standard deviation for a power n = 2 (in a) and n = 4 (in b), both for a noise level x Ns = 0.1, as a function of the mean value x m.

2.0

300

y=x^2; xNs=0,1

y=x^4; xNs=0,1

1.5

y = 0.20x1.00

y = 0.47x2.90

200

R² = 0.99

R² = 1.00

1.0

xPWn_Sd

xPWn_Sd

100

0.5

0.0

0

0

2

4

6

8

10

0

2

4

6

8

10

x

x

m

m

Fig. 9.16 a (left) Standard deviation of the second power of the random variable x with the noise level x Ns = 0.1 as a function of the empirical mean x t of the data set. b (right) Same as a, but with a power of n = 4

9.7

Propagation of Standard Deviations

401

Question

Do the formulas for the trend lines in Fig. 9.16a and b agree with the theoretical

expectation? 27

Experimental procedure

We set up two data series (x, y) (size 100 each), defined as a true value (x True or y True) plus a normally distributed noise (standard deviations x Ns, y Ns). We then determine their mean values (x m, y m) and standard deviations (x Sd, y Sd).

We add and multiply the two sets pairwise to get the new series xPy (“x Plus y”) and xTp (“x Times y”) and determine their mean values xPy m and xTy m and standard deviations xPy Sd and xTy Sd, respectively. Furthermore, we create a new series x PW n by raising the elements of x to the power n and determine its mean value x PW n m and standard deviation x PW n Sd.

We vary the noise levels and log the mean values and standard deviations of the

sets with a rep-log procedure. This is achieved:

– in excel with a VBA routine that repetitively changes the parameters of the

spreadsheet calculation,

– in Python by outsourcing the parts of the program equivalent to the spreadsheet

into a function, repetitively called by the main program.

We plot the theoretically calculated standard deviations of xPy and xTy versus the empirical ones in a scatter plot and lay a straight trend line through the

data points (see Fig. 9.15). The slope of such trend lines is 1 if the theoretically calculated values correspond to the empirical ones.

We set up another set x PW n by raising the elements of the series x to the n th power and present its standard deviation as a function of the mean value x m of the series x, together with a power trend line through the data (see Fig. 9.16).

Questions

We have called the collections x, y, x P y, x T y data series, not data sets. Why is the term “set” inappropriate here? 28

As a result of our simulations, we plot the standard deviations of sums and

products against the standard deviations of the summands or factors, without

considering either the number n of measurements or the t values. Why does that not hinder the illustration of the laws of error propagation? 29

27 Yes, we expect zSd ∝ x 3 for f (x) ∝ x 4 and zSd ∝ x for f (x) ∝ x 2 and find y = 0.47 x 2,90 und y = 0.20 x.1.00.

28 A set is an unordered collection. However, our data are ordered. The n th element of xPy and xTy is obtained from the n th elements of x and y.

29 The sets for all terms have the same number n of measurements, so that the factors n and t are common to all of them and to the results.

402

9

Evaluation of Measurements

9.7.2

Data Structure and Nomenclature

 x True, y True

true values

 x Ns, y Ns

noise levels (standard deviation of a normal distribution)

 x, y

two series of true values plus noise

 x m, y m

mean of x and y

 x Sd, y Sd

standard deviations of x and y

 x Py

series x Plus y

 x Ty

series x Times y

 x PWn

series x to the PoWer of n

 x P y _ m, xPy _ Sd

mean and standard deviation of x P y, correspondingly for x T y and y PW n

 xPy _ Sd _ calc

standard deviation of x P y calculated from x s and y s, correspondingly for x T y and y PW n.

9.7.3

Spreadsheet Calculation

In A13:B112 of Fig. 9.17 (S), we create two series x and y of normally distributed numbers, regarded as measurement values specified by their means (“true values”)

and standard deviations (“noise”) in A1:B4. The series x and y are evaluated for mean value and standard deviation in D1:E4.

We then create three new data series in D13:E112 by adding x and y (xPy), multiplying x and y (xTy), and raising x to the power n (x PW n) specified in B5. These series are evaluated in Fig. 9.18 (S). There, the standard deviations xPy _Sd_calc, xTy _Sd_calc, and xPWn _Sd_calc are also reported, theoretically derived from the standard deviations of the original series.

Error propagation in sums

In Fig. 9.18 (S), the empirical standard deviation x P y _Sd is calculated from the series x P y. The theoretical standard deviation xPy Sd calc is calculated as the root of the sum of the squares of the summands’ standard deviations. The two values are

identical to the second decimal.

A

B

C D

E

F

G

A

B

C D

E

F

1 xTrue

10.00

xm

10.00 =AVERAGE(x)

2

xNs

0.10

xSd

0.11 =STDEV.S(x)

3 yTrue

10.00

ym

9.54 =AVERAGE(y)

4

yNs

7.50

ySd

7.56 =STDEV.S(y)

11 =NORM.INV(RAND();xTrue;xNs)

=x+y =x*y

=x^n

5

n

2.00

12

x

y

xPy

xTy xPWn

13

10.06

17.89

27.95 180.02

101

112

10.00

17.31

27.31 173.07

100

Fig. 9.17 (S) Two normally distributed data series x and y of size 100, defined by their means x True and yTrue (“true” values) and standard deviations x Ns and y Ns (“noise”).in a Gaussian

9.7

Propagation of Standard Deviations

403

We vary the standard deviations of x and y independently of each other systematically with a rep-log procedure, record the empirical and calculated standard deviations of the sum, and plot both as data points in Fig. 9.15a. The trend through the data points is a straight line with a slope very close to 1. Thus, we have retrieved

the theoretical statement with our simulation; at least, we cannot object to it.

Error propagation in products

The product of x and y is stored as a new series xTy in column E of Fig. 9.17 (S) and evaluated in column M of Fig. 9.18 (S).

We vary the standard deviations of x and y independently of each other systematically with a log procedure and record the product’s empirical and calculated standard

deviations. The standard deviation xTy Sd calc of the product xTy is calculated from those of the factors as (see Eq. 9.19)

 x T ySdCalc = zSdCalc =

 (ym xSd) 2 + (xm ySd) 2

(9.23)

The results are shown in Fig. 9.15b. The trend line has a slope of 0.93, less than the expected 1.00. The reason for this is that the standard deviations x Sd and y Sd are too large (see discussion in Sect. 9.7.1).

Error propagation in powers

Task Change n in Fig. 9.17 (S) or Table 9.13 and review your interpretation!

In Fig. 9.17 (S), column F, x is raised to the n th power; the result is stored as xPWn. The standard deviation x PW n _ Sd of this series is determined in Fig. 9.18

(S) in M8 together with the theoretical one xPWn Sd calc in M9.

In a rep-log procedure, the value of x True is varied from 0.5 to 10 for a noise

level of 0.1. The results for n = 4 and n = 2 are shown in Fig. 9.16a and b, respectively; they are approximated by a power function as a trend line.

I

J

K

L

M

N

1

x+y

x*y

2

xPy_m

20.34 =AVERAGE(xPy)

xTy_m

103.51 =AVERAGE(xTy)

3

20.34 =xm+ym

103.39 =xm*ym

4

xPy_Sd

7.79 =STDEV.S(xPy)

xTy_Sd

77.78 =STDEV.S(xTy)

5 xPy_Sd_calc

7.77 =SQRT(xSd^2

xTy_Sd_calc

77.65 =SQRT((ym*xSd)^2

6

+ySd^2)

+(xm*ySd)^2)

7

x^n

8

xPWn_m

100 =AVERAGE(xn)

xPWn_Sd

1.75 =STDEV.S(xPWn)

9

xm^n

100 =xm^n

xPWn_Sd_calc

1.75 =n*xm^(n-1)*xSd

Fig. 9.18 (S) Continuation of Fig. 9.17 (S); evaluation of the data sets xPy (“x P lus y”), xTy (“x T imes y”) and xPWn (“x to the power of n”)

404

9

Evaluation of Measurements

Table 9.13 Python function, part corresponding to Fig. 9.17 (S) continued in Fig. 9.18 (S) 1

import numpy.random as npr

2

I=np.zeros(14)

3

xTrue, yTrue, n = 10, 10, 2 # True values

4

def simu(xNs,yNs):

5

x=xTrue+xNs*npr.randn(100) # Array with 100 items

6

y=yTrue+yNs*npr.randn(100)

7

xm=np.mean(x)

8

xSd=np.std(x)

9

ym=np.mean(y)

10

ySd=np.std(y)

11

12

xPy=x+y

13

xTy=x*y

14

xPWn=x**n

Question/task

Write the formula in N9 of Fig. 9.18 (S) in mathematical form!30

9.7.4

Python Program

The spreadsheet calculations can be translated directly into a Python program,

Tables 9.13 and 9.14. The program’s core is the function simu calculating with the parameters x True, y True, n, x Ns, y Ns. The parameters x Ns and y Ns are chosen to be handed over in the function head, whereas x True, y True, and n are treated as global parameters.

The arrays x and y are created anew within the function with every call, and consequently, the scalars and arrays derived from them are recalculated. The means,

empirical, and calculated standard deviations for every set are returned as an array

 I with 14 elements (Table 9.14).

Error propagation for sums and products

The main program for calculating the standard deviations of the sum, displayed in

Fig. 9.15a, is given in Table 9.15. The standard deviations x Ns and y Ns are varied, whereas the true values x True, y True are specified before the for-loop and remain constant during the whole experiment.

Similar main programs work for the product with:

xTy.append(I[7]).

30 Z = xn; ZSd = n xn−1 xSd.

9.7

Propagation of Standard Deviations

405

Table 9.14 Continuation of Table 9.13, part of the function simu corresponding to Fig. 9.18 (S) 15

I[1]=np.mean(xPy)

16

I[2]=xm+ym

17

I[3]=np.std(xPy)

18

I[4]=np.sqrt(xSd**2+ySd**2)

19

I[5]=np.mean(xTy)

20

I[6]=xm*ym

21

I[7]=np.std(xTy)

22

I[8]=np.sqrt((ym*xSd)**2+(xm*ySd)**2)

23

I[9]=np.mean(xPWn)

24

I[10]=xm**n

25

I[11]=xSd**n

26

I[12]=np.std(xPWn)

27

I[13]=n*xm**(n-1)*xSd

28

return I #Mean and standard deviation

(empirical and theoretical) of x*y, x*y, and xn

Table 9.15 Main program for calculating the standard deviation of a sum x + y for varying standard deviations of x and y

29

xPy_Sd=[]

30

xPy_Sd_calc=[]

31

#Variation of the noise levels xNs and yNs

32

#Constant xTrue, yTrue

33

xTrue=10.0

34

yTrue=10.0

35

for noiseX in np.arange(0.5,8,1):

36

for noiseY in np.arange(0.5,8,1):

37

I=simu(noiseX,noiseY)

38

xPy_Sd.append(I[3])

39

xPy_Sd_calc.append(I[4])

xTy_Sd.append(I[8]).

Table 9.16 presents a program for achieving a plot such as that in Fig. 9.15a.

Power-law trend line

A power-law trend line y = a· x n is obtained with the function fitPowLaw in Table

9.17, by fitting a linear trend line logy = a + m· logx to the logarithmized data logx

= log(x) and logy = log(y). The transformation to y = aRxpR is achieved with p R =

 m and a R = exp(a).

Error propagation for powers

Table 9.18 shows the main program for calculating the standard deviation of a power x n as a function of the true value x True. A program similar to Table 9.16 achieves a fit to the data points and results in a plot corresponding to Fig. 9.16.

406

9

Evaluation of Measurements

Table 9.16 a (top) Program for producing a figure as in Fig. 9.15a, b (bottom) function to draw a straight line through (x, y)

1

FigStd('xPy_Sd',0,10,2,'xPy_Sd_calc',0,10,2)

2

plt.plot(xPy_Sd,xPy_Sd_calc,'kD',ms=3,

3

label='StDev Sum;\nxTrue='+str(xTrue)+\

4

';yTrue='+str(yTrue))

5

PlotLin(xPy_Sd,xPy_Sd_calc,a=False)

6

plt.legend()

7

import statsmodels.api as sm

8

9

def PlotLin(x,y,a=False): # Linear regression line

10

if a==False: # No y-axis intercept

11

model=sm.OLS(y,x)

12

results=model.fit()

13

mR=results.params[0]

14

yLin=mR*np.array(x)

15

plt.plot(x,yLin,'k-',label="y=%.2f*x"%mR)

16

if a==True: # y-axis intercept allowed

17

xx=sm.add_constant(x)

18

model=sm.OLS(y,xx)

19

results=model.fit()

20

aR=results.params[0]

21

mR=results.params[1]

22

yLin=aR+mR*np.array(x)

23

lbl="y=%.2f+%.2fx"%(aR,mR)

24

plt.plot(x,yLin,'k-',label=lbl)

Table 9.17 Plotting a power-law trend line by a straight line through logarithmized data 1

def fitPowLaw(x,y):

2

logx=np.log(x)

3

logx=sm.add_constant(logx)

y-axis intercept allowed

4

logy=np.log(y)

5

model=sm.OLS(logy,logx)

Linear regression

6

results=model.fit()

7

aR=np.exp(results.params[0])

Amplitude

8

pR=results.params[1]

Power

9

R2=results.rsquared

10

#print(pR)

Only in test phase

11

yPow=aR*x**pR

12

lbl="y=%.2f*x**%.2f,R²=%.2f"%(aR,pR,R2)

13

plt.plot(x,yPow,'k-',label=lbl)

9.7

Propagation of Standard Deviations

407

Table 9.18 a (top) Main program for the power series x PW n, simu from Table 9.13; b (bottom) Plotting the original data and a power trendline through the data

1

xPWn=[]

2

xPWn_Sd=[]

3

xtp=[]

4

n=2

5

Variation of xTrue for constant noise level

6

xNs=0.1

7

for x_1 in np.arange(0.25,10,0.25):

8

for rep in np.arange(2):

9

xTrue=x_1

10

I=simu(0.1,0.1)

11

xtp.append(I[10]**(1/n))

12

xPWn.append(I[12])

13

xPWn_Sd.append(I[13])

14

15

FigStd('xTrue',0,10,2,'xPWn_Sd',0,2,0.5)

16

plt.plot(xtp,xPWn_Sd,'kD',ms=3)

17

fitPowLaw(xtp,xPWn_Sd) # Function in table above

18

plt.legend()

9.8

Propagation of Confidence Intervals

We learn how to get from variances of two data sets to a confidence interval

for a combined result, sum or product of the two measurands. We use a

statistical simulation for the last step to get confidence-specified errors (“C-

spec errors”).

9.8.1

From Variance to Confidence

In Exercise 9.7, we investigate the propagation of standard variations in sums,

product, and powers by means of series of 100 elements. In real-world experi-

ments, usually much less measurements are performed so that t factors have to be taken into account. Furthermore, the number of measurements can be different for

the different operands. As a consequence, the C-spec error of the result cannot be

deduced straightforwardly from the standard deviation of the result; we have to

calculate with C-spec errors also for the operands.

Measurement series for single measurands

In Fig. 9.19 (S), two measurement series x Ai and x Bi are simulated, with the true values x A and x B and the noise levels ns A and ns B, specified in rows 1 and 2,

408

9

Evaluation of Measurements

A

B

C

D

E

F

G

H

I

J

K

1

xAi

xBi

xA

4

xB

2

2

3.81

1.85

nsA

0.2

nsB

0.1

3

3.98

1.89

4

3.83

1.98

nA

4 =COUNT(xAi)

nB

10 =COUNT(xBi)

5

3.84

1.92

xAm

3.87 =AVERAGE(xAi)

xBm

1.94 =AVERAGE(xBi)

6

1.98

xAse

0.04 =STDEV.S(xAi)/SQRT(nA)

xBse

0.03 =STDEV.S(xBi)/SQRT(nB)

7

1.98

8

2.12

Con

0.683

9

1.83

tA

1.20 =T.INV.2T(1-Con;nA-1)

tB

1.06 =T.INV.2T(1-Con;nB-1)

10

1.97

xAce

0.05 =xAse*tA

xBce

0.03 =xBse*tB

11

1.88

12

FALSE

6852

FALSE

6865

13

 =AND(xAm-xAce<xA;xA<xAm+xAce)

 =AND(xBm-xBce<xB;xB<xBm+xBce)

14

10000

10000

Fig. 9.19 (S) Confidence intervals x Ace and x Bce for a confidence level Con for two measurement series x Ai and x Bi

entering our standard function x Ai = [=norm.inv(rand();xa;nsa)] and x Bi =

[=norm.inv(rand();xb;nsb)] for the simulation of noisy measurements.

In rows 4 to 6, the number of elements (n A, n B), the mean values (x Am, x Bm), and the standard errors (x ASe, x BSe) of x Ai and x Bi are determined. Remember: the standard error of the mean is obtained as square root of the variance of the series (their standard deviation) divided by the square root of the number of elements in

the series, Eq. 9.12.

To come from the standard error x Se of the mean to a confidence interval x Ce around the mean, we have to specify a confidence level. This is done in E8 with Con

= 0.683, valid for the standard error when the number of measurements is large.

Student’s t-values for this confidence level are determined in line 9 and multiplied in line 10 with the standard error to yield the C-spec errors x Ace and x Bce of the confidence intervals.

In E12 and I12, we check in the usual way whether the confidence intervals capture

the true values. Furthermore, with a rep-procedure, we check how often that is the

case for 10,000 repetitions of the statistical experiment (reported in F12 and J12).

The numbers are close to the expected values.

9.8.2

Sum and Product of Two Measurands

In Fig. 9.20 (S), we determine product AtP (“A times B”) and sum ApB (“A plus B”) of the means x Am and x Bm of the two measurement series x Ai and x Bi and calculate C-spec errors AtB ce and ApB ce for the errors obtained according to the rules of error propagation explained in Exercise 9.7. They include tentative t factors t AxBemp and t ApBemp, first set to 1 in N5 and S5. With these intervals, we get hit rates of more than 7000 for 10,000 repetitions of the statistical experiment,

9.8

Propagation of Confidence Intervals

409

M

N

O

P

Q

R

S

T

U

V

1

AtBtrue

8.00 =xA*xB

ApBtrue

6.00 =xA+xB

2

AtBemp

8.10 =xAm*xBm

ApBemp

6.01 =xAm+xBm

3

varA

0.001 =(xAce/xAm)^2

varAp

0.01 =xAce^2

4

varB

0.000 =(xBce/xBm)^2

varBp

0.00 =xBce^2

5

tAtBemp

0.959

tApBemp

0.986

6

AtBce

0.26

Apbce

0.12

7

 =SQRT(varAp+varBp)*tApBemp

8

 =AND(AtBemp-AtBce<AtBtrue;AtBtrue<AtBemp+AtBce)

9

TRUE

6805

10000

TRUE

6833

10000

10

1.03 =T.INV.2T(1-O9/P9;16)

1.00 =T.INV.2T(1-T9/U9;1000)

11

1.03 =T.INV.2T(1-Con;16)

1.00 =T.INV.2T(1-Con;1000)

12

1.01 =O11/O10

1.00 =T11/T10

13

0.96 =O12*tAxBemp

0.99 =T12*tApBemp

Fig. 9.20 (S) Product AtB (“times”) and Sum ApB (“plus”) of the results of the two measurement series of Fig. 9.19 (S)

significantly larger than expected from a confidence level Con = 0.683. The rea-

son for this discrepancy is that the rules for error propagation set up in Exercise

9.7 are mathematically correct only if the number of measurements is big enough.

C-spec error by adapting the t factor

We do not delve deeper into the mathematical derivation but reduce the hit rates by

adapting the tentative t factors. To do so, we calculate Student’s t value:

– for the empirically obtained hit rates (O12 and T12); they should approach the

confidence level after some iterations,

– for the envisaged confidence level Con (O11 and T11); they do not change in the course of the simulation.

We build the ratio of the two t values and multiply with the current tentative t values (results in P13, T13) and copy/paste the results into t AtBemp and t ApBemp (N5, S5).

We repeat the statistical simulation and get hit rates 6738 (with t = 0.940 for A B) and 6708 (with t = 0.962 for ApB). After a second iteration, the results are 6805

(with t = 0.959) and 6833 (with t = 0.986), indeed close to the values expected for the specified confidence level. The quantities AxBce and ApBce are called the

confidence-specified errors, or short C-spec errors.

9.9

Mass of a Thin Film on a Glass Substrate

Our task is to determine the mass of a thin film on a glass plate. To this

end, the glass plate is weighed several times on a microbalance, before and

410

9

Evaluation of Measurements

after being coated. The mass of the film is obtained with recursion to error

propagation and t statistics.

9.9.1

Instructions for Use for Accurate Measurements and Their

Results

A measuring process …

In an ideal coating process, a glass substrate of mass m Sub = 1 g is coated with a thin film of mass m F = 1 mg. To determine the film’s mass, the substrate is weighed before and after coating. The balance’s nominal accuracy is 1 μg, which means that

the mass is displayed in grams, with six digits after the decimal point. However, the

measurement’s actual accuracy is significantly lower, e.g., due to disturbances by air

currents or building vibrations.

Questions

What is the ratio of the masses of the substrate and the thin film? 31

How many digits after the decimal point can the layer’s mass be determined

nominally, if given in mg? 32

By what percentage does the coating increase the mass of the sample? 33

… and its simulation

The substrate is weighed n times before and n times after being coated. The process is simulated by series m Bef = m Sub + noise and m Aft = m Sub + m F + noise, where the noise is normally distributed with m Ns as the standard deviation.

excel quotes each number with 15 digits, something like 0.569410526368089,

Python even with 16 digits. Therefore, the results of the simulated weighing have

to be rounded to six digits after the decimal point to mimic the display resolution of

the balance: round(…;6) = 0.569411 and np.round(…,6).

The following explanations are valid for the preceding simulation but also for real

measurements.

Immediate evaluation of the measurement results

The standard errors of the masses of the uncoated and coated substrate are calculated as the standard deviation of the measurement series divided by the square root of

the number n of measurements in the series. In order to get the C-spec errors m BefCe and m AftCe (half the width of the confidence intervals), the standard error has to be 31 1 g/1 mg = 1000; the substrate is 1000 times heavier than the film.

32 Displaying an accuracy of 1 μg, the films’ mass could naively be specified as, e.g., 1.001 mg.

33 1 mg of 1 g, corresponding to 0.1%.

9.9

Mass of a Thin Film on a Glass Substrate

411

multiplied by Student’s t- factor that is determined by the degree of freedom (dof =

 n – 1) and the specified confidence level Con. In this exercise, we choose Con =

0.683 which corresponds to the confidence level of the standard error if the number

 n of measurements is big enough.

The mass of the film is estimated as the difference in the means of the two

measurement series,

 m fest = m aft − m Befm

Confidence interval of the estimated mass of the film

In a first approach, we estimate an error range ± m Fc0 of the film’s mass with the rule for sums and differences as square root of the sum of the squares of the C-spec

 errors of the summands:

 m Fc 0 =

 m 2

+ m 2

(9.24)

 Be f Ce

 A f tCe

We know from Exercise 9.8, that the confidence level of this estimate does not

necessarily correspond to the confidence level Con of the estimated masses of the substrate before and after coating. In order to correct that, we have to multiply m Fc0

with a t factor that is to be determined through a statistical simulation.

For this simulation, we take as parameters the estimated masses m BefM of the

uncoated substrate and m Fest of the film, and a noise level m Ns estimated as the standard deviation of the measurement series of the uncoated and coated substrate.

In this exercise, these values are the result of a simulation but in laboratory praxis

such are the results of real measurements.

The number of trials in the simulation must be big enough so that the fluctuations

of the hit rate for the same t value are sufficiently small to avoid too large jumping of the hit rate and assure improvement in the iterative adaptation of the t value.

Rounding the numerical results to relevant digits

The layer’s mass and its C-spec error are to be determined from the simulated mea-

surement data and written as a final result with rounded numbers. To give an example:

If the layer’s mass is determined as the difference of the weighings to be 0.0009748 g

with an error of 6.57 × 10–5, the final result is 9.7(7) × 10–4 g or 9.7 ± 0.7 × 10–4 g:

0 . 0009748 0 . 00097

±0 . 0000657 ±0 . 00007

This means that the result can only be expressed sensibly with two digits and

that the uncertainty in the last digit is ± 7. An alternative notation is 0.97(7) mg. For completeness, the confidence level of the reported error must be noted.

412

9

Evaluation of Measurements

Questions

You get the following results for a single measurand: Mean value 0.0010818

g, standard error of the mean value 4 × 10−5 g. How do you report the final

result? 34

Is 1.033 ± 0.037 more precise than 1.03 ± 0,04? 35

“Official” provisional measurement result

In the report of the measurement results, you should state the result, here the film’s

estimated mass, and its C- spec error, and the level of confidence:

Mass of the film (C = 0 . 683) = 1 . 01 ± 0 . 06mg If you do not calculate the C-spec error, you must state all values necessary for

the simulation.

Question

Which results of a measurement series for determining the film’s mass do you

have to state if you do not calculate the C-spec error? 36

Syntactical differences between Excel and Python

In excel, [= round(norm.inv(rand();msub;mns);dsp)] is written into n = 5

cells with range name m Bef, whereas in python, there is only one statement:

mBef = np . round (mSub + mNs ∗ npr . randn (nBef), dsp) using the function npr.randn to generate normally distributed random numbers

that have to be multiplied by m Ns to get the right scale of the measurement noise.

excel uses the function std.s to get the variance of a sample, whereas Python

uses np.std with ddof, the deduction of the degrees of freedom, to be specified

as a key argument; ddof = 1, in our case, e.g., np.std (mBef,ddof = 1).

34 1.08 × 10–3 g; 0.04 × 10–3 g → (1.08 ± 0.04) mg; uncertainty of measurement given as one standard error. Ψ Two inside and one out of applies if enough repetitions of the measurement have been made or the error is extended by a t factor.

35 No, the standard error is also only an estimate and is affected by statistical error.

36 (1) Estimated masses of the uncoated substrate and the film, (2) the noise level of the measurement series. These are the parameters necessary to perform a simulation for getting the C-spec error.

9.9

Mass of a Thin Film on a Glass Substrate

413

9.9.2

Data Structure and Nomenclature

 m Sub

true mass of the substrate

 m F

true mass of the film

 m Ns

measurement noise (standard deviation of a normal distribution)

 dsp

display precision of the scales

 n Bef, n Aft

number of measurements before and after coating

 m Bef

array of the results of the weighing before coating

 m Aft

array of the results of the weighing after coating

 m BefM, m AftM

means of m Bef and m Aft

 m BefSe, m AftSe

standard errors of m Bef and m Aft

Con

confidence level

 m BefCe, m AftCe

C-spec errors of m BefM and m AftM for Con

 m Fest

Estimated mass of the film, = m AftM − m BefM

 m FSe

standard error of m Fest

 m Fce

C-spec error of m Fest.

9.9.3

Spreadsheet Solution

Simulation of the weighing process

The parameters of the exercise are specified and the measurement series simulated

in Fig. 9.21 (S). All values are stored in named cells, with the names listed in column A and in D1:E1. The uncoated substrate’s mass is measured as m Bef = m Sub +

noise, that of the coated substrate as m sub + m F + noise. The noisy measurement is simulated with the spreadsheet function norm.inv(rand();msub;mns), with mean

value m Sub (or m Sub + m F for the coated substrate) and standard deviation m Ns.

Evaluation of the simulated or real-world weighing process

The calculation with these parameters is shown in Fig. 9.22 (S). The values in D:E could also be the results of real measurement. The following evaluation and

simulation would be the same.

A

B

C

D

E

F

1

mSub

1 g

mBef

mA

2

mF 1.0E-03 g

0.999934

1.000833

3

mNs 1.0E-04 g

1.000047

1.001021 =ROUND(NORM.INV(RAND();mSub;mNs);dsp)

4

0.999899

1.001115

5

dsp

6

0.999952

1.000912 =ROUND(NORM.INV(RAND();mSub+mF;mNs);dsp)

6

1.000154

1.000854

Fig. 9.21 (S) A:C, “True” values of the masses of the substrate and the film and an assumed value for the noise of the measurement process; dsp = number of digits in the scale display; D:E, simulated results of measurement series for the uncoated and coated substrate.

414

9

Evaluation of Measurements

H

I

J

K

L

M

1

mBefM

0.999997 =AVERAGE(mBef)

2

mAM

1.000947 =AVERAGE(mA)

3

nBef

5 =COUNT(mBef)

Con

0.683

4

nA

5 =COUNT(mA)

tBef

1.14 =T.INV.2T(1-Con;nBef-1)

5

tA

1.14 =T.INV.2T(1-Con;nA-1)

6

mBefSe

4.62E-05 =STDEV.S(mBef)/SQRT(nBef)

mBefCe

5.28E-05 =mBefSe*tBef

7

mASe

5.32E-05 =STDEV.S(mA)/SQRT(nA)

mACe

6.08E-05 =mASe*tA

8

noise

1.11E-04 =(STDEV.S(mBef)+STDEV.S(mA))/2

Fig. 9.22 (S) Evaluation of five weighing processes each of the uncoated and the coated substrate, here simulated in Fig. 9.21 (S). The results m BefSe and m AftSe are standard errors. The report could also be the result of a real-world experiment

O

P

Q

R

S

T

1

varBef

2.79E-09 =mBefCe^2

TRUE

 =AND(mFest-mFce<mF;mF<mFest+mFce)

2

varA

3.69E-09 =mACe^2

HitRate

673 From procedure

3

mFc.0

8.05E-05 =SQRT(varBef+varA)

Trials

1000

4

tAd

0.891

tHR

1.12 =T.INV.2T(1-HitRate/Trials;4)

5

mFce

7.17E-05 =mFc.0*tAd

tF

1.14 =T.INV.2T(1-Con;4)

6

mFest

9.50E-04 =mAM-mBefM

tAd.New

0.91 =tAd*tF/tHR

Fig. 9.23 (S) Setting an error m Fce and determining its hit rate and therefrom its t factor t HR. The t factor t F for the confidence level Con is calculated in S5

Questions

Why are the measurement results rounded to six decimal places in Fig. 9.21

(S)? 37

Which parameter in Fig. 9.22 (S) characterizes the measuring accuracy of the weighing process? 38

Confidence interval by statistical simulation

In Fig. 9.23 (S), we first calculate an error m Fc0 for the film mass (P3) with the rule of error propagation for sums and differences and then multiply it with a tentative

 t-value t Ad to calculate a C-spec error m Fce (P5).

In the beginning, we had set t Ad = 1 and obtained a hit rate 731 for 1000 trials, more than the 683 expected from the confidence level Con. For the first iteration, we replaced t Ad with t AdNew to get a hit rate of 673, close enough to the expected 683 to state the resulting m Fce = 7E-05 as the C-spec error for the confidence level Con =

0.683. The old tentative C-spec error is multiplied by the ratio of the t value t F for the desired confidence level and the t value for the current hit rate.

37 This corresponds to the display accuracy of the balance.

38 The accuracy of the current measuring process is characterized by the noise during weighing.

In the case of Fig. 9.22 (S) I8, it is 1.11E-4 g, estimated as the average standard deviation of the measurement series.

9.9

Mass of a Thin Film on a Glass Substrate

415

Table 9.19 Parameters chosen for the simulation

1

mSub=1.00 #[g] True mass of the substrate

2

mF=1.0e-3 #[g] True mass of the film

3

mNs=1.0e-4 #[g] Measurement noise

4

dsp=6 # Number of displayed digits

 5

nBef=5 # Number of measurements

 6

 nAft=5

7

8

Con=0.683 # Confidence level

9.9.4

Python Program

The parameters for the simulation of the weighings are specified in Table 9.19.

The main program to determine the hit rates of the confidence intervals is given

in Table 9.20. It is essentially a for-loop calling a function InRange which takes the t factor t Ad as input and returns a Boolean inRa that states whether the confidence interval captures the true value, and the C-spec error m Fce.

The function InRange is given in Table 9.21. It recurs to two functions MassBefore and MassAfter reported in Table 9.22. MassBefore simulates the measuring process and returns the estimated mass m BefM of the substrate before coating

together with its C-spec error m BefC. MassAfter does the equivalent for the mass of the substrate after coating.

The result of the for-loop is a hit rate that is used to calculate a new t value t AdNew expected to be related to the specified confidence level. For the next

iteration, the value of t AdNew is inserted into line 3 by hand.

The final result is rounded with the function FinRes from Sect. 9.3.3 to the relevant number of digits (see Table 9.23).

Table 9.20 Main program to determine the hit rate and the C-adjusted t value t AdNew. For a new run to iteratively improve t, insert t Adnew manually in line 3

1

Trials=10000

2

HitRate=0

3

tAd=1

To be adjusted for chosen C

4

for i in range(Trials):

5

inRa,mFce=InRange(tAd) # Defined in table below

6

if inRa==True: HitRate+=1

7

8

tF=sct.t.ppf(1-(1-Con)/2,nAft-1) # Target value of t

9

tHR=sct.t.ppf(1-(1-HitRate/Trials)/2,nAft-1)

10

tAdNew=tAd*tF/tHR

tAd 1.00 HitRate 7171

tF 1.14

tHR 1.24

tAdNew 0.92 HitRate 6725

416

9

Evaluation of Measurements

Table 9.21 Function to determine the C-spec error m Fce of the film mass and the logical value whether the confidence interval captures the true value, recurs to functions in Table 9.22 that perform the simulations

11

def InRange(tAd):

12

Estimate mass of the film!

13

mBefM,mBefCe=MassBefore() # In table below

14

mAftM,mAftCe=MassAfter() # In table below

15

mFest=mAftM-mBefM

Film mass

16

varBef=mBefCe**2

17

varAft=mAftCe**2

18

mFc0=np.sqrt(varBef+varAft)

19

mFce=mFc0*tAd # C-spec error

20

inRa=mFest-mFce<mF<mFest+mFce

21

return inRa,mFce

Table 9.22 Simulation of the weighing of the substrate before and after being coated 1

import scipy.stats as sct

2

3

def MassBefore():

4

Mass of the substrate before coating:

5

mBef=np.round(mSub+mNs*npr.randn(nBef),dsp)

6

mBefM=np.average(mBef) # Mean

7

mBefSe=np.std(mBef,ddof=1)/np.sqrt(nBef)

8

tBef=sct.t.ppf(1-(1-Con)/2,nBef-1)

9

mBefCe=mBefSe*tBef # C-spec error

10

return mBefM,mBefCe

11

12

def MassAfter():

13

Mass of the substrate after coating:

14

mAft=np.round(mSub+mF+mNs*npr.randn(nAft),dsp)

15

mAftM=np.average(mAft) # Mean

16

mAftSe=np.std(mAft,ddof=1)/np.sqrt(nAft)

17

tAft=sct.t.ppf(1-(1-Con)/2,nAft-1)

18

mAftCe=mAftSe*tAft # C-spec error

19

return mAftM,mAftCe

mAftM 1.000913 mAftCe

8.06e-05

mBefM 0.999904 mBefCe

4.08e-05

mFest 0.001009

Table 9.23 Rounding the result to the relevant number of digits with the function defined in Exercise 9.3

1

Result=FinRes('Mass of the film (C=0.683) ',

mFest*1000,mFc*1000," mg")

Mass of the film (C=0.683) =1.01±0.06 mg

9.10

Questions and Tasks

417

9.10

Questions and Tasks

Explain the broom rules:

1. Ψ Twice as good with four times the effort.

2. Ψ Two within and one out of .

3. Ψ Worse makes good even better.

4. Ψ Mostly, not always.

5. Ψ Report the C-spec errors but calculate with their squares!

Evaluation of a measurement series

A quantity x was measured 9 times, with the resulting mean value x m = 10 and standard deviation of the nine individual measurements xS d = 1.8.

6. Which spreadsheet and which Python function do you use to simulate this

measurement series?

7. What is the standard error of the mean value?

8. A measurement series yields, as the mean value, x m = 7.12546 × 104 and, as

the standard error of the mean value, x Se = 6.28743 × 102. How do you specify

the measurement result correctly rounded?

9. Does the formula x1 =round(0.847; 1) - round(0.155; 1) yield the same value

as x

= round(0.847--0.155; 1)

2

?

10. In a departing airplane, the acceleration a is measured with two different methods, ten times each. The measurement results are a 1 = 20 ± 1 m/s2 and a 2 =

21 ± 0.5 m/s2. Which value and which measurement uncertainty should the crew

report to the ground station?

Error propagation

11. A quantity z is the difference of two quantities z = s 1 – s 2. The results of the summands are s1 = 10 ± 2.24; s2 = 20 ± 2. How large are the difference z and its error z Se calculated from the standard errors of the summands?

12. A quantity is the product of two quantities, p = p 1· p 2. Measurements with many repetitions result in p 1 = 10 ± 1 and p 2 = 20 ± 3.5. How big are the product p and its error p Se calculated from the standard errors of the factors?

13. What is the difference between the C-spec error of a quantity that is calculated

as a function of several measurands and its error calculated from the standard

error of the measurands?

[image: Image 85]

Fitting Trend Curves to Data Points

10

We create points on user-specified functions, transform them into measure-

ment points by adding noise to their y-values, and then fit appropriate trend

lines to the noisy data. Confidence intervals of the trend lines’ coefficients

are obtained using t statistics. In doing so, we learn how far we can trust the

parameters of the trend lines. We use functions for linear regression, linest

of Excel and OLS of the statsmodel library of Python, and nonlinear

regression, olver and curve_fit.

10.1

Introduction: Linear and Nonlinear Regression

Solutions of Exercises 10.2 (Excel), 10.3 (Python), 10.4 (Excel), and 10.6 (Python)

can be found at the internet adress: go.sn.pub/26leyH.

10.1.1 Straight Line Through Data Points by Sight

From the beginner’s physics lab course, we are familiar with a procedure for

getting physical parameters from measured data by suitably plotting them and

drawing a straight line through the data points with a ruler. This way, the two char-

acteristic parameters of a straight line, slope and y-axis intercept, can be obtained.

Below are two examples.

(a) The Curie–Weiss law for the temperature dependence of the magnetic suscep-

tibility χ m of a ferromagnet above the Curie–Weiss temperature ,

© Springer Nature Switzerland AG 2022

419

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2_10

420

10

Fitting Trend Curves to Data Points

 χm = C

(10.1)

 T − θ

leads to a linear plot of the reciprocal of the measured data, 1/ χ m, versus T

1

= 1 · T −

(10.2)

 χm

 C

 C

from which the parameters C (Curie–Weiss constant) and Θ can be obtained.

(b) The reaction rate R of a chemical reaction as a function of the absolute

temperature T, with k being the Boltzmann constant

 R = R 0 · exp − E 0

(10.3)

 kT

is logarithmized and plotted over 1/ T (Arrhenius plot):

 E 0

ln R = ln R 0 −

· 1

(10.4)

 k

 T

from which the collision rate R 0 of the reactants and the activation energy E 0 of the reaction can be obtained.

These are examples of linear regression.

10.1.2 Multilinear Regression

One method for finding an optimum linear function through data points is linear

regression. The linear regression models in excel and Python apply to functions

with several independent variables x i. They are based on the general multilinear form:

 y = a + m 1 x 1 + m 2 x 2 + m 3 x 3 + . . .

(10.5)

We will apply multilinear regression to points scattered around a straight line,

a parabola y = a + b· x + c x2, and an exponential function ln(y) = ln(A) + m· x.

10.1

Introduction: Linear and Nonlinear Regression

421

Trend lines in charts, spreadsheets, Python

In excel, you can insert trend lines of the linear, exponential, potential, logarithmic,

polynomial, or power type into xy-diagrams (“scatter diagrams”). Coefficients of

a multilinear trend line are obtained, together with their standard errors, with the

linest function of excel or the corresponding OLS (“ordinary least squares”) in

Python.

Both methods, linest and ols, output a standard error for each coefficient whose exact meaning depends on the number of data points and the number of parameters

estimated from the data set, generally speaking, on the degrees of freedom. In our

exercises, we check, with multiple repetitions of a random experiment, whether we

have correctly recognized the degrees of freedom and correctly set the confidence

limits. If this is the case, our broom rule Two within and one out of (the standard

 error range) must hold.

This check is possible because our data points are generated with “true” values

on a curve and newly blurred with random noise for every repetition; then, the

trend parameters are again estimated from the noisy data set. Ψ We know everything

 and play stupid.

Procedure of a random experiment

In order to check whether the hit rate corresponds to an expected confidence level,

we

– generate “true” data points (x, y) from x-values and a function y = f(x),

– blur them with normally distributed noise,

– transform the noisy values into a linear form,

– calculate the coefficients of a linear trend line through the noisy data, together

with their standard errors extended by a t-value,

– check whether the error ranges capture the true values,

– determine the hit rate, i.e., how often in a series of simulations the error range of

the trend line’s coefficients does capture the true values.

10.1.3 Nonlinear Regression

If the measurements are subject to background noise, a constant must be added to

the trend function. Then, no straight-line equations, such as those in Eq. 10.2 or Eq. 10.4, can be obtained by coordinate transformations. In these cases, nonlinear regression must be applied. Likewise, if the function itself is not linearizable by a

coordinate transformation as, e.g., y = cos ω 1 t + cos ω 2 t.

In such cases, we generate the trend function to be adjusted with preselected

parameters and vary them so that the function passes through the measured data.

This can be done by hand and visual judgment, but also automatically with the

excel functions goal seek and solver, or with the functions curve_fit from

scipy.stats or minimize from the scipy.optimize library of Python.

422

10

Fitting Trend Curves to Data Points

For fitting trend lines to measurement data, there are special program packages,

e.g., Origin for the general case, SCOUT for fitting model dielectric functions

to optical spectra, and other programs for Rutherford backscatter spectra or

impedance spectroscopy. However, it has proven to be very useful for improving

their judgment when the students can organize simple adjustments in spreadsheets

or computer programs themselves. This way, they are experiencing nonlinear

regression behavior with examples in which they have all of the parameters in

their own hands.

10.1.4 Coefficient of Determination R2

Explained and residual variance

The coefficient of determination for any trend line is defined as

 (vTot − vRes)

 R 2 = ex plained variance =

(10.6)

 t otal var i ance

 vT ot

The terms in this formula are explained by means of Fig. 10.1 for a linear trend line through the data points y Ns. In part a, the distances to the horizontal y = y m (mean y) are marked with vertical lines. The sum of the square of these distances is v Tot = 61.4, entering Eq. 10.6 as total variance v Tot of the data set. In part b, the trend line within the chart is plotted, together with its formula and the value of the

coefficient of determination R 2 = 0.71 in the legend. Here, it is the distance of the data points to the trend line that is marked with vertical lines. The sum of the squares

of these distances is v res = 17.9, entering Eq. 10.6 as residual variance v Res of the trendline.

10

10

y = 0.94x + 2.05

R² = 0.71

8

8

y

y

6

6

4

4

y=1x+2

yNs

yNs

2

(xm, ym)

2

Vres=17.9

Vtot=61.4

0

0

0

2

4

x

6

8

0

2

4

x

6

8

Fig. 10.1 a (left) Original curve and noisy data points; distances of the data points to the line y =

 y m are marked by vertical lines. b (right) The same data as in (a), together with a linear trend line.

Distances of the data points to the trend line are marked with vertical lines

10.1

Introduction: Linear and Nonlinear Regression

423

The variance explained by the trend line is the difference between the residual

variance and the total variance. In our example, Eq. 10.6 results in R 2 = (61.4 –

17.9)/61.4 = 0.71, the same value as reported in Fig. 10.1b.

Adjusted R2

For the above calculation, the same degree of freedom has been supposed for v Tot and v Res, namely, N – 1, the number of data points minus 1. This is justified for v Tot because only one parameter, the mean value, is estimated from the data set. Still,

it is questionable for v Res because more parameters describing the trend line are estimated from the data set, two for a straight line (ddof = 2 in Python). If the variances are calculated with the actual degree of freedom N − ddof , adjusted R 2

values result:

 v

 N −1

 T ot − vRes ·

 N − ddo f

 R 2

=

 ad j

(10.7)

 vT ot

leading to an expression with the easily obtainable entities R 2, N, and ddof .

 N − 1

 R 2

=

·

 ad j

1 − 1 − R 2

(10.8)

 N − ddo f

The term ddof stands for “delta degrees of freedom”. For a set of N data points, we have the following degrees of freedom:

 f = N – 1

for the variance of the data set,

 f = N – 2

for the coefficients of a linear trend line (and an exponential trend line;

see Exercise 10.4),

 f = N – 3

for the coefficients of a parabolic trend line.

10.1.5 C-spec Error with Iterative t Adaptation

Real-world data

We can apply the procedure of a random experiment presented in Sect. 10.1.2 (

 We know everything and play stupid) to real-world data when making two steps

beforehand:

– taking the experimental trend line through the data points as the “true” line and

– estimate the noise level as standard deviation of the residuals. The residuals are

the difference between the y values of the data points and the trend line.

For multilinear trend lines, we can check whether our assumptions about the

confidence level are correct.

424

10

Fitting Trend Curves to Data Points

Experimental t factors

The solver function in excel does not return standard errors of the optimized coef-

ficients, contrary to the function curve_fit of scipy.stats. Therefore, in

Sect. 10.7.6, we determine C-spec errors (“confidence-specified”) by a random experiment with tentative error ranges that are iteratively adapted to yield a hit rate that

corresponds to the desired confidence level.

10.2

Linear Trend Line

We generate a set of points on a straight line (“generating line”), add nor-

mally distributed noise to their y-values, and then lay a straight trend line

through these “data points”. The coefficients of such a line and their standard

errors are determined with the spreadsheet function linest. In Python, this

is achieved with the function OLS (“ordinary least squares”) of the library

Statsmodels. The didactically most important message: Ψ Two within

 and one out of , meaning that in about 1/3 of the cases, the “true” coefficients

of the generating line lie outside the standard error range of the estimated

coefficients.

10.2.1 Creating Data Points and Evaluating Them

A linear trend line is to be laid through data points, minimizing the square devia-

tion of the y-values. We generate the data points ourselves by randomly choosing

 x-values within a specific range, calculating the corresponding y-values on a straight-line ("true values"), and blurring them with normally distributed noise.

Then, we estimate the coefficients of an optimum linear trend line through the data

points and check whether the coefficients’ error ranges capture the true values.

Data points are generated

We generate a set of data points scattered around a straight line defined by

 y = a + m · x

(10.9)

with m being the slope and a the y-intercept. The independent variable x is randomly equi-distributed between 0 and x Max. The values of y are blurred with a normally-distributed noise specified by a standard deviation Ns:

 yNs = y + noise

(10.10)

The formula for noise is:

10.2

Linear Trend Line

425

– Ns * randn(n) in Python, n being the size of the array generated, and

– norm.inv(rand; 0; Ns) in excel, to be written into a range comprising n cells.

In excel, y Ns could also be specified as a whole as

 y Ns (x) = norm.(rand(); y; N s) .

The set (x, y Ns) is our data cloud.

Linear trend line through the data points

Our task is to determine a linear trend line

 yR = m R · x + aR

(10.11)

through the data cloud, which minimizes the sum of the quadratic deviations of y Ns to this line. This procedure is called linear regression.

Two examples are shown in Fig. 10.2, together with the linear trend line (by definition, going through the center (x m, y m) of the data cloud) and two straight lines with coefficients with + or – their standard errors. The equations and the coefficients

of determination R 2 of the trend line are reported in the legend. The trend line is called the “linear regression line”. Its slope m R is called the regression coefficient.

We start with the “true” function y = 1 x + 2 to finally get the trend line for the noisy data:

 yr = 1 . 16 x + 0 . 98 with R 2 = 0.78 for a noise level Ns = 1.4, yr = 0 . 89 x + 2 . 42 with R 2 = 0.28 for a noise level Ns = 2.0.

Hit rates and degree of freedom dof

Statistical theory states that the “true” value is captured by the standard error range,

plus-minus standard error from the estimated value, in 68.2% of the cases. This

10

10

y = 0.89x + 2.42

y = 1.16x + 0.98

R² = 0.28

8

R² = 0.78

8

y

y

6

6

4

yNs

4

yNs

(xm, ym)

(xm, ym)

2

a+da; m-dm

2

a+da; m-dm

a-da; m+dm

a-da; m+dm

0

0

0

2

4

x

6

8

0

2

4

x

6

8

Fig. 10.2 Noisy data (diamonds) around the “true” line (y = 2 + x) with linear trend lines (solid) and lines for coefficients + or – their standard errors. a (left) Noise level 1.4. b (right) Noise level 2.0; noise level enters as standard deviation into a normal distribution

426

10

Fitting Trend Curves to Data Points

statement applies exactly only if the number of measurements goes to infinity, but

our broom rule Two within and one out of applies as of 9 measuring points on a

straight line.

Tim Why now suddenly as of 9 measurement points? For measurement series,

we have learned that the rule holds as of 8 measurements.

Mag That’s because of a different degree of freedom. For measurement series,

the degree of freedom is the number of measurements -1, because only one param-

eter, the mean value, is estimated from the measurement series. For straight lines,

however, two parameters are estimated, namely, slope m R and y-axis intercept a R.

The degree of freedom dof = 7 is thus reached with 9 data points.

10.2.2 Data Structure and Nomenclature

 x

set of independent variables starting at 1 and randomly increased by

a value < d x

 a, m

coefficients of a straight-line equation, "true values"

 y

 y = a + m· x

 Ns

noise level entering as the standard deviation in a normal distribution

 y Ns

 y blurred with noise

 x m, y m

average of the sets of x and y Ns

 a R, m R

coefficients estimated from a trend line through y Ns

 a S e, m Se

standard error of a R and m R

 R 2

coefficient of determination

 in A, in M

true, if the error range captures the true value

 hitA, hitM

number of hits, counting how often in A, in M are true.

 dof

degrees of freedom, number of points – 2 for a linear trend line.

10.2.3 Spreadsheet Calculation with Linest

The program sketched in Sect. 10.2.1 is realized in the spreadsheet in Fig. 10.3 (S).

The values of x start at 1.00 and progress with random interspaces ≤ d x, as can be seen from the formula in A7 valid for A10. The 10 x-values in A9:A18 start at 1

and are randomly increased by d x*rand(). The corresponding y-values in column B are calculated with Eq. 10.9. A normally-distributed noise is finally added (y Ns in column C, Eq. 10.10) to yield the “data points” presented in Fig. 10.2 with diamonds.

The coefficients m R, a R of the linear trend line through the data cloud are calculated with linest in G4:H6, together with their standard errors m Se, a Se, and the coefficient of determination R 2. With in M and in A (F9:G9), we check whether the error range captures the true values of m and a. For in M, we take the standard

10.2

Linear Trend Line

427

A

B

C

D

E

F

G

H

I

J

1

y intercept

a

2.00 y=1x+2

=LINEST(yNs;x;;1)

2

Slope

m

1.00

mR

aR

3

0<= x <=xMax

dx

1.40

mSe

aSe

4

Noise

Ns

2.00

Estimated

0.864

3.362

5

Standard error

0.194

0.883

6

R²

0.713

1.304

mR+mSe)

AND()

7

=A9+dx*R

=m*x+a

=y+NORM.INV(RAND();0;Ns)

=AVERAGE(x)

=AVERAGE(yNs)

=AND(mR-mSe<m;m<

=AND(aR-t.95*aSe<a;a<aR+t.95*aSe)

10000 10000

8

x

y

yNs

xm

ym

in_m

in_a

hitM

hitA

9

1.00

3.00

4.55

4.03

6.85

TRUE

TRUE

6502 9474

10

1.67

3.67

5.98

t.95

2.31 =T.INV.2T(0.05;8)

18

8.17 10.17

9.36

Fig. 10.3 (S) A linear function y = m· x + a is blurred with noise. linest in G4:H6 determines the coefficients of a linear trend line through the data cloud. In F9:G9, we check whether the standard error range captures the true values of m or the t-extended error range the true values of a. Hit M

and hit A are returned from a VBA routine repeating the spreadsheet calculation 10,000 times error m Se whereas for in A, we take the confidence interval for an error probability E = 0.05. Hit M and hit A are returned from a VBA rep-log procedure running the spreadsheet calculation 10,000 times.

Question

Questions concerning Fig. 10.3 (S):

What is the formula for y Ns, the y-values of the data points, in C9:C18? 1

Which parameter of the normal distribution is set by the parameter Ns in this

formula? 2

Trend line in the diagram

In Fig. 10.2, linear trend lines have been drawn through the “data points”, together with their equations and coefficients of determination R 2. This is achieved by activating the data points and going through design/add

chart

ele-

ment/trendline/linear (excel 2019). Proceed further with activating the trend

line, going through format/series 1 trendline 1/ and setting check-marks in

display equation on chart and

display r- squared value on chart.

Each time the spreadsheet is modified (for example, by “clearing” the contents of

an already empty cell), the noise is recalculated, and, accordingly, all data points in

the graph change, yielding a new trend line.

1 C9:D18 = [= y + norm.inv (rand(); 0; Ns)].

2 Ns indicates the standard deviation of the normal distribution.

428

10

Fitting Trend Curves to Data Points

Linest as matrix function

What are the standard errors in the coefficients of the trend line? They are not reported in the legend for the trend line. To get them, we apply the linest spreadsheet function

implemented in G4:H6 of Fig. 10.3 (S), performing linear regression. Its syntax is linest (known_ys; [known_xs]; [const]; [stats])

(10.12)

linest is a matrix function taking, as input, the Y-values (here, y Ns from Fig. 10.3

(S)) and the X-values (here, x from Fig. 10.3 (S)) and outputting a matrix with 4 rows and 2 columns, of which only the first three rows are of interest to us here.

As a reminder: To insert a matrix function into a spreadsheet, first, mark the range

into which the results are to be written; in Fig. 10.3 (S), it is the (3R × 2C) matrix G4:H6 (highlighted in grey). Then, write [= linest (. After the parenthesis “(“,

the function window opens, indicating the expected input, Eq. 10.12. After entering the ranges for the Y and X-values, you may enter control parameters that determine whether the trend line should go through the origin (const = false or 0; default

is true) or whether statistical characteristics should be output (stats = true or 1;

default is false).

If const = 0 or false, then the straight line is drawn through the origin. If stats

= true, additional regression characteristics are output, e.g., the standard errors of

the coefficients and the coefficient of determination R 2. In our case, the trend line should not be forced to go through zero; therefore, the corresponding site remains

empty. Regression characteristics are to be output; therefore, we set a 1 as the last

argument, thus the function is called as linest (y Ns; x;; 1).

Mag How do you confirm the input of a matrix function?

Alac With the magic chord! 3

In the first row of the output matrix of linest are the estimates m R and a R for m and a (note the order!). In the second row are the standard errors m Se and a Se of these coefficients. In the third row on the left is the coefficient of determination

 R 2, and on the right, the prediction error. The coefficients m R and a R, and R 2

correspond exactly to those of the trend line in a diagram with the same values for

 x and y Ns.

The R 2 values reported in the figures and by linest are not adjusted for the

reduced degree of freedom. To get R 2adj, use Eq. 10.8!

Hit rates and degree of freedom

How often does the standard error range capture the true value?

With a rep-log procedure, we count how often in m and in a in F9:G9 are true.

They are true if the respective error intervals (m R – m E, m R + m E) and (a R – aE, 3 ctl + shift + return.

10.2

Linear Trend Line

429

 a R + a E) capture the true coefficients. We get hit rates of hitM = 6502 for 10,000

trials , closely corresponding to the theoretical value C = 0.653 for 8 degrees of freedom obtained with 1-t.dist.2t(1; 8) = 0.653 (2 * sct.t.cdf(1, 8)-1

in Python). The 8 degrees of freedom are given by 10, the number of data points,

diminished by 2, because the 2 parameters m R and a R are estimated from the data set.

The hit rate for a is calculated with the standard error multiplied with 2.31, the t factor for E = 0.05. It corresponds closely to the expected 9500.

Rounding to a meaningful number of digits

In the diagrams, the coefficients of the trend line are given with 2 digits. By com-

parison with the standard errors from linest, we see that this assumes an accuracy

that is greater than the uncertainty allows. The equation of the straight trend line is

now, according to the results of linest in G4:H4 of Fig. 10.3 (S) and rounded to the number of significant digits,

 yR = (0 . 9 ± 0 . 2)x + 3 . 4 ∓ 0 . 9

We have rounded by inspection and written the result down by hand. However,

this can also be achieved with mathematical formulas specified in the spreadsheet

calculation in Exercise 9.3 or with the help of the user-defined function FinRes in Sects. 9.3.3 and 9.3.4. For more information about linest, see excel help for this feature.

10.2.4 Python Program

The Python program in Table 10.1 generates 10 noisy data points (x, y Ns) around a straight line (cell a) and evaluates them with sm.OLS (cell b). If OLS is called as = sm.OLS(yNs, x), a trend line yR = mR x is fitted to the data. To get a fit

to yR = aR + mR x, we have to create a new set of independent variables xx =

sm.add_constant(x) . The output in cell c is arranged so that it resembles

the output of linest in excel.

A figure corresponding to Fig. 10.2, as obtained with the program presented in Table 10.2.

Question

Where are the results in lines 13 and 14 in Table 10.1 needed? 4

In Fig. 10.4a, R 2 = 0.74 is reported. How big is R 2adj? 5

4 The coordinates x m and y m of the center of the data cloud are not needed in the presented program. They are necessary for a figure like Fig. 10.2.

5 With Eq. 10.8 and N = 10 and ddof = 2, we get R 2adj = 0.7075 ≈ 0.71.

430

10

Fitting Trend Curves to Data Points

Table 10.1 a (top) Generation of noisy data points (x, y Ns) around a straight line; b (bottom left) Linear regression line through the data points; c (bottom right) Results of the linear regression OLS

1

import numpy.random as npr

2

import statsmodels.api as sm

3

a,m = 2.0,1.0

4

x=np.zeros(10)

5

dx=1.4

6

Ns=1.4 # Noise level

7

x[0]=1

8

for i in range(1,10):

9

x[i]=x[i-1]+dx*npr.rand() # Uneven spacing of x values

10

11

y=m*x+a

12

yNs=y+Ns*npr.randn(len(x))

13

xm=np.average(x)

xx [[1.00 1.00]

14

ym=np.average(yNs)

[1.00 1.18]

15

xx=sm.add_constant(x)

. . .

16

model=sm.OLS(yNs,xx)

[1.00 3.86]

17

results=model.fit()

[1.00 4.54]]

18

aR=results.params[0] # y=a+mx

19

mR=results.params[1]

mR aR

20

aE=results.bse[0] # Errors

est 0.98 2.05

21

mE=results.bse[1]

mE,aE 0.21 0.57

22

r2=results.rsquared

r² 0.74

23

r2_ad=results.rsquared_adj

r²_adj 0.70

24

in_a=(aR-aE < a) \

in_m,in_a True True

25

and (a < aR+aE)

26

in_m=(mR-mE < m < mR+mE)

Table 10.2 Python program for plotting Fig. 10.4a, variables specified and results reported in Table 10.1

1

lblT="y="+str(np.round(mR,2))\

2

+"x+"+str(np.round(aR,2))\

3

+"\n"+"R²="+str(np.round(r2,2))

4

5

FigStd('x',0,6,2,'y',0,8,2)

6

plt.plot(x,yNs,'kx')

7

ylin=x*mR+aR

8

plt.plot(x,ylin,'k-', label = lblT)

9

plt.legend()

10

plt.savefig("PhEx 9-2 trend line",dpi=1200)

[image: Image 86]

10.2

Linear Trend Line

431

Fig. 10.4 Chart with trend

line and formula produced

with the Python program in

Table 10.2

10.3

Fitting a Polynomial Trend Line to Data Points

with Multilinear Regression

We generate points on a parabola and add normally distributed noise to their

 y-values. A polynomial of the second degree is fitted to these simulated

data, first, as a trend line within a diagram, and then with the spreadsheet

function linest in excel and with OSL of the statsmodel library of

Python. These functions return, in addition to the coefficients of the poly-

nomial, their standard errors. - Confidence intervals and confidence levels are

interrelated through Student’s t statistics. - Experience teaches us that measurement points must extend beyond the parabola vertex for its coefficients

to be estimated reliably.

10.3.1 Introduction

Noisy data points around a parabola

The formula of a parabola is

 y = a + bx + cx 2

 y = ax 0 + bx 1 + cx 3

(10.13)

The second variant emphasizes the powers of x.

Figure 10.5 shows 9 data points around a parabola generated with Eq. 10.13 and blurred with normally-distributed noise to yield values y Ns, in a for a noise level (standard deviation of a normal distribution) of Ns = 1 and in b for Ns = 2.

432

10

Fitting Trend Curves to Data Points

20

20

y=0.6x²+-3.5x+8

y=0.6x²+-3.5x+8

Ns=1

Ns=2

ym

ym

15

15

y = 0.50x2 - 2.56x + 6.79

y = 0.79x2 - 4.55x + 8.05

y

y

R² = 0.95

R² = 0.95

10

10

5

5

0

0

0

2

4

6

x

8

0

2

4

6

x

8

Fig. 10.5 Nine data points around a parabola (grey lines), together with polynomial trend lines (thin black lines) of degree 2. a (left) Noise level Ns = 2. b (right) Noise level Ns = 4

Trend parabola

Trend parabolas yR = aR · x 0+ bR · x 1+ cR · x 2 are obtained by multilinear regression, in which the function is regarded as linearly depending on three variables x 0, x 1 and x 2 that formally have to be stacked together in a matrix with three columns, e.g., in Python, with xxx = np.array([1, x, x2]) . The multilinear regression

functions return the values a R, b R, c R, together with their standard errors a Se, b Se, c Se, and the coefficient of determination R 2.

In excel diagrams, polynomial trend lines can be fitted to the data, with their equa-

tions and R 2 being reported in its legend, as in Fig. 10.5. Attention: R 2 is unadjusted for a reduced degree of freedom.

Questions

Consider two data sets A and B, with the same number of points around the

same parabola, but with the noise level of B being higher than that of A. What

do you expect for the R 2 values for a fit with a parabola to A and B? Which

one is higher? 6

What is the degree of freedom for regression analysis of our parabola with

9 data points? 7

The coefficient of determination R 2 is reported in the figures, together with

the equation of the trend parabolas. Describe how R 2 is calculated with the data points (x, y Ns) and the points (x, y R) on the trend line! Consider the different variances, total, residual, explained!8

6 The R 2 for a fit to the data set with a lower noise level is expected to be higher, contrary to Fig. 10.5. Average values of 0.97 for a and 0.90 for b are to be expected.

7 Degree of freedom dof = 9 (number of data points) – 3 (parameters estimated from the data set)

= 6.

8 Consult Eq. 10.6! Total variance v Tot = var(y Ns) = (y Ns- y m)/ dof , residual variance v Res =

 sum(y Ns- y Trend)2/ dof , R 2 = (v Tot- v Res)/ v Tot = explained variance/ total variance.

10.3

Fitting a Polynomial Trend Line to Data Points …

433

What are the degrees of freedom to be set for adjusted R 2? 9

Hit rates, with and without the t factor

The hit rates for, e.g., (a R – a E < a < a R + a E) are around 0.64, as will be seen later in Fig. 10.7, and thus significantly smaller than suggested by our rule Two within and one out of . This is because the degree of freedom for the parabola with 9

(points) − 3 (coefficients of the parabola) = 6 is too small for this rule to apply. For

a degree of freedom f = 6, a hit rate of 0.644 (= 1- t.dist.2 t(1; 6) in excel or 1

− (1 – 2 * sct.t.cdf(1, 6) in Python) is actually expected according

to Student’s t-distribution.

Tim I’m confused. What should I state as the result?

Alac Don’t bother. Nobody knows about degrees of freedom and the t-value

anyway.

Mag If you specify the coefficients’ standard error and the number of data

points, an expert can derive statistically relevant statements. You can become such

an expert yourself with our exercises.

The t-value for six degrees of freedom is t = 1.091 obtained with

t.inv.2s(0.318; 6)] (excel) or sct.t.ppf (1–0.318/2,6) (Python) for

an error probability of 0.318 (confidence level 0.682) and t = 2.45 for an error

probability of 0.05 (confidence level 0.95). Tests with an uncertainty given by the

standard error multiplied by the t-values (“t-extended standard error”) indeed give hit rates that correspond to the confidence levels.

Mag What is the degree of freedom when calculating the variance of y Ns or (y Ns – y Trend)?

Alac I would again say 6, but I’m not sure.

Tim To calculate the variance of a set, we have to estimate the mean of this set.

So, I conclude that the degree of freedom is 9 – 1 = 8.

Mag Tim is correct. Calculating vTot =

 (yNs − ym) 2 / 8 and vRes =

 (yNs − yR) 2 / 8 yields the same value for R 2 = (vTot − vRes)/vTot as that reported in the figures or obtained with the multilinear regression functions.

Alac OK, that’s clear.

9 Dof = N – 1 for the total variance, dof = N – 3 for the residual variance, because 3 parameters are estimated from the data set.

434

10

Fitting Trend Curves to Data Points

Mag But take care! For the adjusted R 2 value, you have to adjust the degrees of freedom, see Sect. 10.1.4!

Reliable fit of a parabola to the data points

In Fig. 10.6, trend parabolas are drawn through 9 data points. In Fig. 10.6a, the trend parabola differs more from the original parabola than in Fig. 10.6b, although R 2 =

0.99 is the same for both. The reason is that the characteristic feature of a parabola,

the region around an extremum, is less well represented in the data points in a.

Questions

Why do the coefficients of the trend parabola fitted to the data points in

Fig. 10.6a differ so much (≈20%) from the true values (see the legend), although R 2 = 0, 99 is achieved? 10

Why does the trend curve in Fig. 10.6b capture the "true"parabola better than the one in Fig. 10.6a?11

Higher-order polynomials

One can insert polynomials of higher degree as a trend line in diagrams. This is

also possible with linest in the spreadsheet or with OLS in Python. You have

to create column vectors x, x 2, …, and x n, and enter the whole set as an argument for known_x’s in linest. For OLS, you have to extend the matrix with x 0, i.e., a sequence of ones. This procedure can be generalized to other functions of x.

25

25

y=0.3x²+-3x+8

y=0.4x²+-6x+24

20

yNs

20

yNs

y

y = 0.25x2 - 2.36x + 6.09

y

y = 0.39x2 - 5.85x + 23.43

15

R² = 0.99

15

R² = 0.99

10

10

5

5

0

0

0

5

10

15

x

0

5

10

15

x

-5

-5

Fig. 10.6 a (left) Original parabola, simulated data points and trend line (second-degree polynomial) for unfavorably located data points. b (right) As in a, but for favorably located data points

10 The differences in the coefficients are so big because the data points do not capture the minimum well.

11 In Fig. 10.6b, the characteristic property of the parabola, an extremum, is captured.

10.3

Fitting a Polynomial Trend Line to Data Points …

435

A

B

C

D

E

F

G

H

I

J

1

a

8.00

=LINEST(yNs;xx;;1)

2

b

-3.50

cR

bR

aR Estimated

3

c_

0.60

cSe

bSe

aSe Stand. Error

4

y=0.6x²+-3.5x+8

0.66

-4.33

10.14 Estimated

5

Ns

1.00

0.04

0.34

0.58 Stand. Error

6

Ns=1

R²

0.98

0.71

#N/A

7

dx

1.00

N

NinC

NinB

NinA

t.32

1.09 =T.INV.2T(0.317;6)

8

1000

654

949

956

t.05

2.45 =T.INV.2T(0.05;6)

ND();0;1)

V(RA

R-t.05*aSe<a;a<aR+t.05*aSe)

9

=A11+dx =x^2

=a+b*x+c_*x2p

=y+Ns*NORMIN

=AND(cR-t.32*cSe<c_;c_<cR+t.32*cSe)

=AND(bR-t.05*bSe<b;b<bR+t.05*bSe)

=AND(a =AVERAGE(yNs)

10

x

x2p

y

yNs

inC

inB

inA

ym

11

0.00

0.0

8.00

10.06

FALSE

FALSE

FALSE

7.86

12

1.00

1.0

5.10

6.46

19

8.00

64.0

18.40

18.30

Fig. 10.7 (S) In columns A:D, data points around a parabola y = a + b· x + c· × 2 are created. In E4:G6, the noisy data y Ns = f(x) are fitted with a parabola. The results in E8:G8 are reported by a rep-log procedure that counts how often in C, in B, in A are true for N repetitions of the experiment.

The formulas for in C, in B, and in A are different! N inC is for t = 1, N inB for t = 1.09, N inC for t =

2.45. Data points and the trend line are shown in Fig. 10.5

10.3.2 Data Structure and Nomenclature

 a, b, c

“true” coefficients of a parabola y = a + b · x + c· x 2

 x

array of independent variables

 x 2p

 x to the second power

xx

[x, x 2p] for excel

xxx

[1, x, x 2p] for Python

 y

 y(x, x 2p), function of two variables, values of the parabola for x and x 2p

 Ns

noise level, entering as standard deviation in a normal distri-

bution

 y Ns

 y blurred with normally distributed noise

 a R, b R, c R

coefficients of a regression (trend) line through the data points

(x, y Ns)

 m Se, a Se. c Se

standard error of m R, a R, and c R

inA, inB, inC

TRUE, if the error range captures the true value

 N inA, N inB, N inC

number of hits, counting how often in A, in B, in C are true

 dof

degrees of freedom = number of points – 3 for a parabolic

trend line

 t 32, t 05

 t values for confidence levels 0.68 and 0.95.

The argument structure is different for excel and Python:

436

10

Fitting Trend Curves to Data Points

Excel

Linest (yNs;xx;;1)

Python

sm.OLS(yNs, xxxT) with xxx T being the inverse of xxx.

10.3.3 Spreadsheet Solution

Generating the data set

In Fig. 10.7 (S), a spreadsheet layout for fitting a parabola trend line to data points is presented. The formula for y accesses the two variables x 1 = x and x 2 = x 2 (= x 2p), as well as the constant a. The y-values are masked with Gaussian noise with standard deviation Ns and stored in y Ns. Now, our data set is (x, y Ns).

Evaluating the data set

The noisy data set is evaluated in E4:G6 with

linest(yNs;xx;;1).

to obtain the estimated coefficients c R, b R, a R, together with their standard errors c Se, b Se, a Se. Note the argument for the independent variables in the formula reported in E1! The independent variables x and x 2p have to be put together in one range, here, in a range A11:B19 named xx.

We calculate the error range of the coefficients for different confidence levels, i.e.,

we have to multiply the standard error with an appropriate t-value, and count, with a rep-log procedure, how often the error ranges capture the true values. The counts

are stored in variables named N in C, N in B, N in A.

The t-value for a confidence level of 0.95 is obtained with t.inv(0.05; dof), where dof is the degree of freedom; see the formula in J8, valid for I8.

Question

concerning Fig. 10.7 (S):

Which are the independent variables in linest? 12

Where are the t-values calculated, and what is their value for inC, inB, inA?

What is the confidence level of in C, in B, in A? Are the numbers of true in N inC, N inB, N inA in agreement with expectation? 13

12 The independent variables are x in A11:A19 and x 2 in B11:B19, put together as argument xx =

A11:B19 for linest.

13 In C is calculated with t.32, valid for a confidence level of 1–0.317 = 0.683 close to the empirical N inC/ N = 0.654; in A with t.05 for a confidence level of 1–0.05 = 0.95 close to N inA/ N = 0.956.

10.3

Fitting a Polynomial Trend Line to Data Points …

437

How do you use linest to determine the coefficients of a trend line for the

function y = a · x 5 + b · log (x

1

2)? 14

Trend line in the diagram

To lay a parabola through the nine data points, design/add chart ele-

ment/trendline/

format

trendline/trendline

options/

offers, among oth-

ers, polynomial/ order 2. With appropriate clicks, the obtained regression

equation and the coefficient of determination R 2 of the fit are reported in the diagram.

Hit rates

We apply a rep-log procedure to the spreadsheet calculation reading the values TRUE

or FALSE in E11:G11 N times and returning the counts into NinC, N i nB, N in A (E8:G8). The hit rates 6422/10000 = 0.642, 6837/10000 = 0.684, 9501/10000 =

0.95 correspond to the confidence levels expected for the different t-values applied for in C, in B, in A (see Footnote 13).

10.3.4 Python Solution

Generation of noisy data

In Table 10.3, noisy data y Ns are generated around a parabola, the coefficients of which are specified all together in a list abc, not separately as a, b, c. The variables are specified as three row vectors x 0, x, and x 2P, with x 0 being a list of ones and x 2P the squares of x; they are gathered in a matrix xxx that is transposed to xxxT

to become a list of column vectors (see lines 7–11) required as entry into the OLS

function, together with y Ns.

Polynomial through the noisy data

In Table 10.4, the data set (xxxT, y Ns) is evaluated with the OLS (ordinary least squares) function of scipy.stats, returning the results into est = sm.OLS(…)

consisting of

– a list of the estimated parameters (est.params),

– a list of their standard errors (est.bse),

– some characteristics of the fit (e.g., est.rsquared).

The results for a run are shown in the bottom cell of Table 10.4.

14 A two-column range is calculated for x 5

1

and log(x 2) and entered as known_x’s in linest.

438

10

Fitting Trend Curves to Data Points

Table 10.3 Python program, generating the data set (xxxT, y Ns) from (x, y) 1

import numpy as np

2

import numpy.random as npr

3

4

abc=[8.0,-3.5,0.6] # Coeffs. of parabola

5

Ns=1

6

dx=1

7

x=np.linspace(0,8,9)

8

x2p=x**2

9

x0=np.ones(len(x))

10

xxx=np.array([x0,x,x2p])

11

xxxT=xxx.transpose(1,0)

12

13

y=abc[0]*x0+abc[1]*x\+abc[2]*x2p # True parabola

14

yNs=y+Ns*npr.randn(len(y)) # Blurred with noise

yNs:

[7.44 6.15 1.76 5.14 3.42 5.13 8.74 12.32 16.80]

xxxT:

[[1.00 0.00 0.00]

[1.00 1.00 1.00]

[1.00 2.00 4.00]

...

[1.00 6.00 36.00]

[1.00 7.00 49.00]

[1.00 8.00 64.00]]

Table 10.4 Evaluation of the data set (xxxT, y Ns) with OLS (ordinary least squares) of scipy.stats 15

import statsmodels.api as sm

16

import scipy.stats as sct

17

18

est=sm.OLS(yNs,xxxT).fit()

19

t05 = sct.t.ppf(0.975,6)

t value for E = 0.05

20

inABC=np.zeros(3)

For the three coeffs.

21

for i in range(3):

22

inABC[i]=(est.params[i]-t05*est.bse[i] <

23

abc[i] < est.params[i]+t05*est.bse[i])

In error range?

24

par=list(est.params)

25

err=list(est.bse)

26

rSq=est.rsquared

abc 8.00 -3.50 0.60

par 7.38 -3.39 0.60

err 0.87 0.51 0.06

rSq 0.97

t05

2.447

in 1 1 1

10.3

Fitting a Polynomial Trend Line to Data Points …

439

Table 10.5 Program lines of Tables 10.3 and 10.4 are assembled into a function returning the logical list in ABC

1

t05 = sct.t.ppf(0.975,6)

t value for E=0.05

2

t32 = sct.t.ppf(0.8415,6)

t value for E=0.318

3

t=[1.0,t32,t05]

4

def FitToPol():

5

yNs=y+Ns*npr.randn(len(y))

6

est=sm.OLS(yNs,xx).fit()

Linear regression

7

inABC=np.zeros(3)

8

for i in range(3):

Coeffs. in error range?

9

inABC[i]=(est.params[i]-t[i]*est.bse[i]

10

< abc[i] <

11

est.params[i]+t[i]*est.bse[i])

12

return inABC

Questions

How do you calculate Student’s t value for a parabola’s coefficients for a

confidence level of 2/3 and 12 data points? 15

How is the regression line in Table 10.4 (coefficients in bottom cell) sensibly reported with uncertainties in the coefficients? 16

Which lines in Tables 10.3 and 10.4 have to be gathered in a function, to be called in a loop to get hit rates for E = 0.05? Which variable has to be returned and then summed up in the main program? 17

Hit rates

In Table 10.5, generation of y Ns and evaluation of the data set are transferred into a function that returns the logical values in ABC. This function is called in the main program of Table 10.6 in a loop in order to determine the hit rates. We have chosen three different t values for the three coefficients, 1, t 32, and t 05, corresponding to confidence levels of 0.644, 0.683 (= 1 − (1 – 0.8415) * 2), and 0.95, respectively.

In a loop in Table 10.6, we check whether the error ranges capture the true values. To do this efficiently, parameters concerning the coefficients a, b, c are put together in lists of shape comparable to the list in est:

– a, b, c in abc, see Table 10.3,

– the logical values in A, in B, in C in in ABC, see Table 10.4,

15 sct.t.ppf (1-1/6, 12-3) = 1.02.

16 y R = 7.4(9) − 3.4(5) x + 0.60(6)· x 2.

17 Lines 14, 18–23 have to be gathered in a function; in ABC has to be returned and summed up in the main program, see Table 10.5.

440

10

Fitting Trend Curves to Data Points

Table 10.6 Main program for getting hit rates for a, b, c; NinA = NinABC[0], etc.

13

nRep=10000

14

NinABC=np.zeros(3)

15

for n in range(nRep):

16

inABC=FitToPol()

t 1.00 1.09 2.45

17

NinABC[0]+=inABC[0]

N NinA NinB NinC

18

NinABC[1]+=inABC[1]

10000 6438 6888 9524

19

NinABC[2]+=inABC[2]

and are addressed in Tables 10.4, 10.5 and 10.6 with their indices in these lists, e.g., NinABC[0]+ = inABC[0].

The t-value for a confidence level of 0.95 is calculated according to

t05 = sct.t.ppf (0.975, 6).

t.ppf returns the value for a one-sided test. As we are checking whether the

true values are larger than the lower error limit and smaller than the upper error

limit, we have to enter an error probability 0.05/2 = 0.025 instead of 0.05. The

above formula returns t 05 = 2.45.

The hit rates in the bottom cell of Table 10.6 are, with 0.64, 0.69, and 0.95, close to the theoretical confidence levels 0.642, 0.69, and 0.950 (see also Footnote

13).

10.4

Exponential Trend Line

We generate noisy data points (x, y Ns) around an exponential and fit a trend

line to the data, (1) as an exponential trend line in an excel diagram, (2)

with linest, and OLS of the statsmodel library of Python as a

fit of a straight line through the logarithmized y Ns data, and (3) with the

spreadsheet matrix function logest with a corrected standard error for the

amplitude. For the exponential function to be clearly distinguishable from a

parabola, the data points must cover a sufficiently large x-range.

10.4.1 Exponential and Logarithm

An exponential curve is defined by

y = g · exp (h · x)

(10.14)

10.4

Exponential Trend Line

441

200

6

lnYns

yNs, Ns=0.2

8∙exp(3∙x)

Linear (lnYns)

150

4

y = 8.97e2.92x

R² = 0.96

100

2

y = 2.92x + 2.19

50

R² = 0.96

0

0

0

0.2

0.4

0.6

0.8

1

x

0

0.2

0.4

0.6

0.8 x

1

Fig. 10.8 a (left) Data points obtained from an exponential function blurred with noise on the y values, together with an exponential trend line. b (right) Natural logarithm of the values in a, together with a linear trend line

with g being the amplitude and h a characteristic growth parameter.

To simulate measured data, we add normally distributed noise to the function

values y. A fit to the noisy data is most easily obtained by adding an exponential trend line in an excel diagram, with the formula and coefficient of determination

 R 2 displayed as a legend. An example is shown in Fig. 10.8a.

Linear trend of the logarithmized data

By logarithmizing y, Eq. 10.14 can be converted into a straight-line equation of the form z = a + m· x:

ln (y) = ln (g) + h · x

(10.15)

with z = ln(y), a = ln(g), and m = h.

The logarithmized noisy y Ns values of Fig. 10.8a are shown in Fig. 10.8b, together with a linear trend line. The output in the legend is essentially the same as in a, considering that a = exp(2.19) = 8.97. This indicates that the exponential trend line is indeed obtained by a least-squares fit to the logarithmized data.

Question

When fitting an exponential trend line in a diagram, sometimes, the following

error message appears: trendline can not be calculated for negative

values or for zero. When and why is that the case? 18

18 The y Ns values are logarithmized within the function that computes the exponential trend line.

An error occurs when a y-value is negative or zero what occurs if the noise value is negative and its absolute value bigger than the signal.

442

10

Fitting Trend Curves to Data Points

Two aspects of this approach are problematic:

– The noise added to the exponential function is independent of the y-value, so

that the logarithmized data scatter more around the trend line for smaller y-

values, indicating that the noise is no longer evenly distributed along the straight

line.

– The coefficient of determination is the same for both scales. This is problematic,

because R 2 may be obtained as (Explained variance)/(Total variance), and the explained variance should be different for different curves.

Uncertainty in the coefficients

We get the coefficients a and m of the linear trend, together with their standard errors, as usual, with linest and OLS and have to transform them into the coefficients g

and h of the exponential function with h = m and g = exp(a).

As the coefficient m is identical to h, so is the standard error h Se = m Se. The standard error g Se, however, must be calculated according to the error-propagation law. We have g = exp (b) and dgE /db = exp (b) so that

 gSe = exp (bR) · bSe

(10.16)

Due to the problems arising from logarithmizing the noisy data and deriving the

uncertainty in the coefficient of the exponential from those of the linear trend of the

logarithmized data, we have to be careful with the confidence level.

Influence of noise on the confidence level

For reasonable estimates of the standard error, the hit rate should be about 0.657

(Two within and one out of). With a rep-log procedure repeating the random

experiment, “Eleven points around an exponential” 1000 times, we check how often

this is actually the case for our experiment. The result can be seen in Fig. 10.9, below the label “const. noise”.

For the fitting of an exponential trend to 11 data points, the degree of freedom

is dof = 11 − 2 = 9. This results in a confidence level for the standard error range of 0.657, calculated as 1-t.vert.2s(1; 9) (excel) or 2 * sct.t.cdf(1,9)-1

const. noise

prop. noise

h=3

h=1.7

h=0.5

h=0.1

h=3

h=1.7

Total

1000

1000

1000

1000

1000

1000

Hits h

460

547

651

652

650

651

Hits g

383

463

601

641

643

659

Fig. 10.9 How often are the true values of h and g captured by the error range, for signals with constant noise level (const. noise) and noise proportional to the y-values of the exponential (prop.

 noise)?

10.4

Exponential Trend Line

443

(Python). With 1000 repetitions of the random experiment, one, therefore,

expects that, in 657 cases, the error range of the estimated coefficients will capture

the true value. However, in Fig. 10.9, the greater the coefficient h in the exponent, the less the theoretical value of 657 is reached, independent of the noise level.

Figure 10.8b indicates the reason for this. The deviations from the “true” curve are unevenly distributed on the log-scale. For large values of x, they are smaller, so that the trend line is closer to the “true” curve than for small values of x. This is a consequence of logarithmization. However, the unequal distribution of the

deviations from the “true” values does not correspond to the mathematical model

on which linear regression is based.

If we apply a noise proportional to the y-value, e.g., with

yNs = y + norm.inv(rand();0;ns) * y/4(excel)

or yNs = y + Ns * randn(len(y)) * y/4 (Python),

then the deviations in the logarithmic values are more evenly distributed over

the range of t (see Fig. 10.10b). Now, the deviations in the linear representation, Fig. 10.10a, are distributed unevenly. The number of hits in Fig. 10.9 (under

“prop. noise”) deviates only slightly (less than 4%) from 657, also independent of

the noise level.

Tim When fitting an exponential trend, probably nothing fits at all; not even the

noise is reliable.

Alac I don’t see it that way. You can always give reasonable values for the

coefficients.

Mag In principle, that’s true. For low noise, the uncertainties and the differences among the various types of noise are not so big.

6

z.Rs

200

z.

4

Expon. (z.Rs)

y = 10,88e2,92x

ln.z.Rs

100

R² = 0,95

2

ln.z

Linear (ln.z.Rs)

y = 2,92x + 2,39

R² = 0,95

0

0

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8 t

1

t

Fig. 10.10 a (left) Exponential curve with noise proportional to the y-value. b (right) Logarithmized data of a, together with a linear trend line

444

10

Fitting Trend Curves to Data Points

Tim What exactly does “not so big” mean?

Alac In a given case, we just figure it out with a simulation based on our method

 We know everything and play stupid to get the hit rate.

C-spec error by simulation-based t adaptation

We take the regression curve as the “true” curve, estimate the noise level from the

data as well, and perform a statistical simulation with these parameters, similar to

Sect. 10.7.6.

10.4.2 Exponential or Polynomial?

We fit both an exponential and a polynomial to the same set of data points

generated around an exponential function. Figures 10.11a, b show two examples.

In Fig. 10.11a, both trend lines describe the experimental data equally well, with coefficients of determination R 2 of 0.9942 and 0.9953. When repeating the random experiment (new measurement points are randomly generated), the parabola

sometimes gets an even higher R 2 value, even though the “true” original curve

is exponential. There are not enough measurement points to clearly identify the

exponential character. In Fig. 10.11b, a larger argument range was chosen. Even now, the parabolic trend line does not differ significantly from the measurement

points; but it would predict completely wrong y-values for x greater than 35.

12

12

y=11∙exp(-0,1x)

y=11∙exp(-0,1x)

10

y.Rs

10

y.Rs

Poly. (y.Rs)

Poly. (y.Rs)

y

y

Expon. (y.Rs)

Expon. (y.Rs)

8

8

y = 0,0291x2 - 1,0219x + 11,062

y = 0,0138x2 - 0,7432x + 10,494

R² = 0,9942

R² = 0,9894

6

6

y = 11,243e-0,104x

4

4

R² = 0,9803

2

y = 11,223e-0,107x

2

R² = 0,9953

0

0

0

10

20

30 x 40

50

60

0

10

20

30 x 40

50

60

Fig. 10.11 a (left) Nine points near an exponential function; exponential and parabolic trend line.

b (right) As in a, but with larger argument range

10.4

Exponential Trend Line

445

Question

Why is a parabola not an appropriate choice for the data in Fig. 10.11? 19

Alac In any case, the exponential trend line in Fig. 10.11a yields a good value of the decay constant.

Mag If you are convinced that the underlying physical process is actually

exponential, you may determine the decay constant from Fig. 10.11a.

Tim What does it mean to be “convinced”?

Mag That there is a theory of the physical process that predicts an exponential.

Alac …and then we remember “not disproved but also not proven” …

Tim …but preliminarily accepted. This time, that makes sense to me.

Mag That’s the best one can get out of the experiment. Discuss!

10.4.3 Data Structure and Nomenclature

 x

series of independent variables

 y

exponential values of x; y = g· exp(h· x)

 Ns

noise level entering as a standard deviation into a normal distribution

 y Ns

 y blurred with normally distributed noise

ln Y Ns

 y Ns logarithmized

 m R, a R

coefficient of a straight trend line through (x, lnY Ns)

 m Se a Se

standard error of m R, a R

 h R, g R

coefficients of the exponential trend line (regression line)

 h Se, g Se

standard error of h R, g R, to be calculated from the results of the linear trend.

10.4.4 Python Program

The noisy data points around an exponential are generated in the top cell of Table

10.7 and logarithmized in the middle cell. The logarithmized data are fitted with a linear trendline, the coefficients thereof being presented in the bottom cell.

In Table 10.8, the coefficients of the linear trend fitted to the logarithmized 19 The characteristic of a parabola, its vertex, is not captured (see Sect. 10.2.2 on parabolas).

446

10

Fitting Trend Curves to Data Points

Table 10.7 a (top) Generation of noisy data points around an exponential; b (middle) Linear fit to the logarithmized data with OLS; c (bottom) Results of OLS

1

g,h= 10.0, 3.0

y = g⋅ exp(h⋅ x)

2

Ns=4

Noise level

3

x=np.linspace(0,1,11,endpoint=True)

4

y=g*np.exp(h*x)

5

yNs=y+Ns*np.random.randn(len(x))

6

import statsmodels.api as sm

7

8

lnYns=np.log(yNs) # Natural logarithm

9

xx=sm.add_constant(x)

y intercept allowed

10

model=sm.OLS(lnYns,xx)

#Linear regression

11

results=model.fit()

12

mR=results.params[1]

Optimized coeffs of y=a+mx

13

aR=results.params[0]

14

mE=results.bse[1] # Standard error

15

aE=results.bse[0]

16

r2=results.rsquared

m a

est. 2.78, 2.45

error 0.22, 0.13

r²= 0.95

Table 10.8 Transformation of the coefficients of the linear trend into those of an exponential trend 17

hR=mR

18

hE=mE

h g

19

gR=np.exp(aR)

true 3.00, 10.00

20

gE=aE*gR

est. 2.78, 11.61

21

inG=(gR-gE<g<gR+gR)

error 0.22, 1.49

22

inH=(hR-hE<h<hR+hE)

inG, inH False True

data are transformed into coefficients of the exponential trend. The Boolean vari-

ables inH and inG check whether the estimated standard error ranges of the estimated coefficients capture the true values of h and g.

10.4

Exponential Trend Line

447

To get the hit rates, we have to integrate lines 5, 8–16 and 17–22 into a function

that returns inG and inH and have a loop in the main program running over that function and counting the True s in in G and in H.

10.4.5 Spreadsheet Solution

LINEST with the Logarithmized Data

In Fig. 10.12 (S) , noisy data (x, y Ns) are created, logarihmized, and fitted with a linear trend line with linest in E3:F5. The coefficients m R and a R of the linear trend and their standard errors are transformed in H3:I5 into the values of the exponential

trend. H5:I5 contains the usual check as to whether the error ranges capture the true

values. The numerical values of the coefficients h R, g R correspond to those of an exponential trend line in a figure.

We get the hit rates by applying a rep-log procedure that repeats the statistical

experiment by writing a number into a cell to refresh the spreadsheet calculation and

counts the trues in H5 and I5.

Exponential trend with the spreadsheet function logest

excel provides a spreadsheet function logest that determines the parameters of an

exponential trend and their uncertainties, much like linest does for a linear trend.

The equation of the curve to be fitted is

 y = a · ox = a · exp (h)x = a · exp (hx) (10.17)

Comparing with Eq. 10.14, the following equations are valid:

 h = ln (o) and g = a.

A

B

C

D

E

F

G

H

I

J

1

g

8

mR

aR

hR

gR

2

h

3

mSe

aSe

hSe

gSe

3

Ns

0.2

Estimated

3.08

2.10

3.08

8.19 =EXP(aR)

4

Standard error

0.20

0.12

0.20

0.96 =aSe*EXP(aR)

5

R²

0.96

0.21

TRUE

TRUE

)

s)

AND();0;N

Se<h;h<=hR+hSe

6

=g*EXP(h*x)

=y+NORMINV(R

=LN(yNs) ↑{=LINEST(lnYns;x;;1)}

↑=AND(hR-h

7

x

y

yNs

lnYns

8

0

8.00

7.25

1.98

0.657 =1-T.DIST.2T(1;9)

9

0.1

10.80

12.78

2.55

18

1

160.68

207.88

5.34

Fig. 10.12 (S) The noisy data y Ns are created in columns A:D and logarithmized in D. A linear trend line through (x, y Ns) is calculated with linest (formula in E6). The coefficients of the linear trend are transformed into those of the exponential trend; formula for H5 in H6

448

10

Fitting Trend Curves to Data Points

Fig. 10.13 (S) Use of the

E

F

G

H

I

spreadsheet function logest

21 {=LOGEST(yNs;x;;1)}

=LN(oR)

to determine the coefficients

22

oR

gR

hR

gR

of an exponential trend and

23

oSe

gSe

hSe

gSe

their standard errors; the

matrix formula in E21 applies

24

21.86

8.19

3.08

8.19

to E24:F26

25

0.20

0.12

0.20

0.12

26

0.96

0.21

For multiple independent variables, the function to be fitted is extended to

 y = a · ox 1 · ox 2 · . . .

1

2

(10.18)

In Fig. 10.13 (S), logest is applied to the data of Fig. 10.12 (S). The same value R2 = 0.96 is obtained for the coefficient of determination and the same values for h R

= ln(o R) = 3.08 and g R = 8.19 (calculated in I24) are returned. However, logest outputs a wrong standard error for g R. Comparison with E4 in Fig. 10.12 (S) shows that the error of the ordinate intercept of the linear trend is reported as untransformed.

The same transformation as in I4:J4 of Fig. 10.12, based on Eq. 10.16, should be done.

10.5

Solving Nonlinear Equations

This exercise introduces the nonlinear optimization algorithms solver of

excel and minimize of the Python library scipy.optimize, deter-

mining, as an example, the intersections of a polynomial with a straight

line. This technique is applied in nonlinear regression.

10.5.1 Intersection of Straight Lines with a Parabola

solver of excel is an analysis tool that varies up to 200 independent variables

(“adjustable parameters”) so that the value of a target variable (must be a scalar)

as a function of these parameters becomes optimum, maximum, minimum, or

close to a given value, depending on the setting. The function minimize of

the scipy.optimize library solves the same tasks. We apply it to determine

the intersections of a parabola with straight lines. For the task in this exercise we

apply the function fsolve, also of the scipy.optimize library, that finds the

roots of an equation. Minimize of this library is applied in Exercise 10.6.

[image: Image 87]

10.5

Solving Nonlinear Equations

449

Fig. 10.14 a (left) The intersections of the straight line with the parabola are to be found. The currently selected x-values are not yet the solution. b (right) The intersections of ten straight lines with the parabola were determined with a solver algorithm

In Fig. 10.14a, a parabola and a straight line are shown whose intersections are to be found. This problem leads to a quadratic equation that can be solved analytically (pq solutions of the reduced quadratic equation). Therefore, the numerical method with a solver algorithm is not necessary here, but is very convenient, and

also works for more complicated problems that cannot be solved analytically, e.g.,

for the intersections of a cosine function with a third-degree polynomial.

For the currently selected x-values, x L (left of x = 0) and x R (right of x = 0), the y-values on the straight line y LS and y RS are different from the corresponding y PL and y PR on the parabola. The x-values are to be modified so that the y-values become equal.

The equations for a straight line, and a parabola symmetric to x = 0 are

 yS = cS + mS · x

(10.19)

 yP = bP + aP · x 2

(10.20)

We can manually adjust the x-values of the two points, e.g., with sliders, so

that the y-values on the straight line and the parabola match. The same can be

done with solver by minimizing the quadratic deviations of the two y-values.

Figure 10.14b shows the solutions for 10 straight lines with different ordinate intercept c S. The two intersections for a particular straight line are found in one run by minimizing the sum of the two quadratic deviations of the y values. The 10

solutions are obtained in a rep-log procedure for the spreadsheet and in a for-loop

in the main Python program.

10.5.2 Data Structure and Nomenclature

 a P, b P

coefficients of a parabola y P = a P·x2 + b P

[image: Image 88]

450

10

Fitting Trend Curves to Data Points

 c S, m S

coefficients of a straight line y S = c S + m S· x

 x

sequence of x-values (here 51 values between—6 and 6)

 y P, y S

values of the parabola and the straight line for x

 x L, x R

left and right horizontal positions of the intersections

 y LP, y LS

 y-values at x L, P for parabola, S for straight line

 y Rp, y RS

 y-values at x R.

10.5.3 Spreadsheet Calculation

Layout

A spreadsheet layout for the task is presented in Fig. 10.15 (S). The graphs of the parabola y P(x) and the straight line y S(x) are calculated in D11:F61 for 51 points. The intersections are calculated in D7:F9, first, by adjusting x L and x R with sliders, and then with solver. Later, we will use a rep-log procedure, triggered with the button

“Intersections”, to get the intersections for the ten straight lines in Fig. 10.14b.

Activating Solver in Excel

The solver function must be activated with file/ options/ add- ins/ solver add-

in, then we find go and click (see Fig. 10.16a). When we call data/solver, the table in Fig. 10.16b pops up. The solver function optimizes the target cell’s value (set objective) by varying the parameter cells’ values (by changing variable

cells). The target cell is linked to parameter cells through a set of formulas. If the

value of a parameter cell is changed, the value of the target cell also changes.

A

B

C

D

E

F

G

H

I

J

K

1

aP

1.20 yP=1.2x²+2

mS

0.90 yS=0.9x+6

2

bP

2.00

cS

6.00

3

dx

0.24

Intersections

4

3.9E+02 3.9E+02 =G7+G9

5

=(C9-500)/100

=aP*x^2+bP

=mS*x+cS=(yLP-yLS)^2

Sub Intersections -->

6

xL

yLP

yLS

cS

xLR

yLR

7

409

-3.52

16.84

2.84 2.0E+02

2

-5E-07

2

8

xR

yRP

yRS

0.75

2.675

9

863

4.27

23.84

9.84

2.0E+02

10

x

yP

yS

4 -0.9694 3.12758

11

-6.00

45.20

0.60

1.71936 5.54742

61

6.00

45.20

11.40

Fig. 10.15 (S) The parameters for the parabola are in A1:B2, those for the straight line in E1:F2; arguments and function values in D11:F61; in the range D7:G9, the two intersection points are to be determined; in columns I to K, the intersection points for ten different straight lines with various y-axis intercepts c S are stored. The button “Intersections” triggers the procedure Intersectio in Fig. 10.20 (P)

[image: Image 89]

10.5

Solving Nonlinear Equations

451

Fig. 10.16 a (left) Possible add-ins that can be activated in the excel options. “Dieters Funktionen” are user-defined functions that have been saved as add-ins (see Sect. 4.9.1). b (right) Window after calling the solver function with data/solver (in the Analysis Group); set objective: the target value in the target cell is maximized (max), minimized (min), or adjusted to a given value (value of) by varying the values in the changeable cells (by changing variable cells)

Often, the option make unconstrained variables non-negative is activated as

default. This check-mark must be removed, because the variable x to be optimized can also be negative for our task.

Solver determines intersections

The intersections are now determined with the solver function. To do this, open the

data tab (see Fig. 1.1 in Sect. 1.7) and click on the solver button at the far right of the Analysis group, data/ solver. A window opens, as in Fig. 10.16b. First, we take on only one intersection point and enter G7 (of Fig. 10.15 (S)), containing the left point’s square deviation of the y values of the parabola and the straight line, as the target cell in the solver tab, and the x-value in cell D7 as the changeable cell.

After pressing the solve button, the two points on the parabola and the straight-line

slide together.

We could now determine the right intersection in the same way; but we choose a

different solution, with both intersections determined simultaneously, by summing

up the square deviations of the two points in G4. We enter G4 as the target cell

to be minimized, and the x-values in D7 and D9 as variable cells showing up with

their names x L and x R. When we press solve, the two intersections are determined together in one run.

452

10

Fitting Trend Curves to Data Points

1 Private Sub Intersect_Click()

Private Sub ScrollBar2_Change()

8

2 Call Intersectio

Cells(7, 4) = "=(C7-500)/100" 'xL

9

3 End Sub

End Sub

10

4

11

5

Private Sub ScrollBar3_Change()

12

6

Cells(9, 4) = "=(C9-500)/100" 'xR

13

7

End Sub

14

Fig. 10.17 (P) These procedures are triggered when, in Fig. 10.15 (S), the button “Intersections”

is clicked (…_click) or when one of the sliders is changed (…_change), respectively

Question

F4 of Fig. 10.15 (S) contains a function that calculates the quadratic deviation of the two intersections without accessing column G. Which function can that

be? 20 See Section 5.10 (Mathematical and Trigonometric Functions) for advice!

If the option make unconstrained variables non- negative is activated,

solver cannot find any negative x-values. This option must be unchecked if this

is inadequate for the problem under consideration, as it is in this exercise.

There are two ways to select the changeable cells:

– The solver algorithm varies the values in cells D7 and D9 and overwrites the

original formula. However, throughout this exercise, we want to change these

values with the slider again. To be able to do so, we reinsert the formula

with a macro, that is always triggered when the slider is operated; see sub

scrollbar2_change und sub scrollbar3_change in Fig. 10.17 (P).

– We can have solver vary the values in C7 and C9. Then, the formulas in

D7:D9 remain unchanged.

Mag Let’s choose the first variant!

Alac Why would we start there? The second variant is easier, because no macro

is needed. Are we following the motto: Why be straightforward when we can

complicate things?

Tim Well, the first one teaches us how to link a macro to a control element.

Mag Exactly, sometimes we learn via detours.

Sometimes, solver declares the same x-value as the solution for the two inter-

sections. In such cases, the initial x-values have been unfavorably chosen, e.g., both 20 =sumxmy2(E7:E9; F7:F9) “Sum x minus y squared”

10.5

Solving Nonlinear Equations

453

1 Sub Macro1()

1

2 Sheets("calc").Select

2

3 SolverOk SetCell:="G4", MaxMinVal:=2, ValueOf:=0, ByChange:="D7,D9", _

3

4 Engine:=1, EngineDesc:="GRG Nonlinear"

4

5 SolverSolve

5

6 End Sub

6

Fig. 10.18 (P) Recorded macro when initializing the solver function as in Fig. 10.16b

to be greater than zero. Such fallacies are possible in all optimization programs,

because, primarily, only local optima are found.

Use the sliders to change the changeable cells’ initial values so that an

approximate solution is reached before you start solver!

Questions

Why does the formula in D7 or D9 in Fig. 10.15 (S) need to be re-entered after solver has run? 21

How do you re-enter the formula in D7 or D9? 22

According to Fig. 10.20, what are the initial values of x for a y-axis intercept of 20? 23

Calling Solver from a VBA procedure

The solver function can be called from a macro. To get the corresponding com-

mands, we turn developer/record macro on before calling solver. The result

for our example is presented in Fig. 10.18 (P).

Before starting the program, we must activate the reference to the solver function

in the VBA editor with tools/references/solver (see Fig. 10.19).

We insert the commands recorded in Fig. 10.18 (P) into the intended procedure as in Fig. 10.20 (P).

In a loop in sub Intersectio, the ordinate intercept of the straight line is incremented from 2 to 20 in steps of 2 (line 11), and each time, solversolve calls

the solver function (line 16). The addition userfinish:=true causes the solu-

tion proposed by solver to be accepted immediately. If this addition is missing,

a window pops up after each proposal of the solver function in which the user

can click OK.

21 Because, in the current variant of the optimization process, the formulas in these cells are overwritten by the solver function.

22 By introducing macros like sub scrollbar2_change in Fig. 10.17 (P).

23 The initial values are x = −3 and +3. They are the same for all y-axis intercepts, because they are always reset within the loop “cg=” in lines 13 and 14 in Fig. 10.20 (P). A better solution could be to take the previously optimized x-values as the start, because they are closer to the expected optimized value.

[image: Image 90]

454

10

Fitting Trend Curves to Data Points

Fig. 10.19 Activating the solver function in the VBA editor via tools/references

5 Sub Intersectio()

SolverSolve Userfinish:=True

16

6 r2 = 7 'Row index

Cells(r2, sp2) = cS

17

7 sp2 = 9 'Column index

'ordinate section of the straight line

18

8 Range("I7:K400").Clear

Cells(r2, sp2 + 1) = Cells(7, 4) 'xL

19

9 SolverOk SetCell:="G4", MaxMinVal:=2, _

Cells(r2, sp2 + 2) = Cells(7, 6) 'yLS

20

10 ValueOf:="0", ByChange:="D7;D9"

r2 = r2 + 1

21

11 For cS = 2 To 20 Step 2

Cells(r2, sp2 + 1) = Cells(9, 4) 'xR

22

12 Cells(2, 6) = cS

Cells(r2, sp2 + 2) = Cells(9, 6) 'yRS

23

13 Cells(7, 4) = -3 'left x to start

r2 = r2 + 2

24

14 Cells(9, 4) = 3 'right x to start

Next cS

25

15

End Sub

26

Fig. 10.20 (P) sub Intersectio, working on Fig. 10.15 (S) specifies the parameters for the solver function in lines 9 and 10 and selects the initial value c S of the ordinate intercept of the straight line in the loop (for cS =), calls the solver function in line 16, and saves the coordinates of the intersections in the spreadsheet in the range below I6:K6, starting with r 2 = 7 (line 6). The specifications in lines 9 and 10 have to be defined only once, after which they apply to all subsequent calls of solver

The initial values are x = −3 and +3. They are the same for all y-axis intercepts, as they are always reset within the loop (for cS=) in Fig. 10.20 (P). If they were set before the loop, the previously optimized x-values would be the next y-

axis intercept’s initial values. This could be better, because the values are closer

to the x-values expected for the next y- axis intercept.

Question

What effect does the instruction r2 = r2 + 2 in line 24 of Fig. 10.20 (P) have on range I7:K11 of Fig. 10.15 (S)?24

24 Empty cells are introduced between the coordinates of the points, e.g., J9:K9, so that the data are displayed in the diagram as separate points.

10.5

Solving Nonlinear Equations

455

10.5.4 Python Program

Lambda functions

In Table 10.9, function tables of the parabola (x, y Px) and the straight line (x, y Sx) are set up using the lambda functions Prb and Str. A lambda function is a small function associated with a variable. It may take any number of arguments, but must

only contain a single executable expression. Another example is make 0 in Table

10.10.

Furthermore, in Table 10.9, two x values, x L, and x R, are specified, together with their y-values y RP and y RS, serving later as initial values for the intersections of the parabola with the straight line.

Table 10.9 Function tables of the parabola and the straight line, and two points on each of them 1

x=np.linspace(-6,6,51,endpoint = True)

2

aP,bP=1.2, 2.0

Parabola

3

Prb=lambda x: aP*x**2+bP

4

yPx=Prb(x)

5

mS,cS=0.9, 20.0

Straight line

6

Str=lambda x: mS*x+cS

7

ySx=Str(x)

8

9

xL=-5

Initial x left

10

yLP,yLS=Prb(xL),Str(xL)

11

xR=5

Initial x right

12

yRP,yRS=Prb(xR),Str(xR)

Table 10.10 Plotting initial points and optimized intersections

1

FigStd('x',-6,6,2,'y',0,50,10)

2

plt.plot(x,yPx,'k--',label="parabola")

3

plt.plot(x,ySx,'k-',label="straight line, cS="+str(cS))

4

plt.plot([xL,xL,xR,xR],[yLS,yLP,yRS,yRP],'ks',

5

ms=5, fillstyle='none')

Initial points

6

7

from scipy.optimize import fsolve

8

make_0 = lambda x : Prb(x)-Str(x)

9

10

xL=fsolve(make_0, xL)

Optimized left x

11

yLS=Str(xL)

12

xR=fsolve(make_0, xR)

Optimized right x

13

yRS=Str(xR)

14

plt.plot([xL,xR],[yLS,yRS],'ks',ms=5) # ms, Marker size

15

plt.legend()

456

10

Fitting Trend Curves to Data Points

Function fsolve

In Table 10.10, first, the curves and the initial points are plotted, after which the intersections are determined by fsolve and then plotted in the same figure. The

function scipy.optimize.fsolve (func, x0, …). finds the roots of a

function of the (in general non-linear) equations defined by func(x) = 0 given

a starting estimate x 0. In our case, the lambda function make 0 is the root-defining function.

10.6

Temperature Dependence of the Saturation

Magnetization of a Ferromagnet

The nonlinear Langevin equation relates the saturation magnetization of a

ferromagnet with the temperature. We solve it with solver, called from a

macro, and with the function minimize of the scipy.optimize library

of Python.

10.6.1 Langevin Function

Langevin equation

The Langevin equation describes the temperature dependence of the saturation

magnetization M of a ferromagnet:

 μλM

 M = N µ · tan h

(10.21)

 kB T

with:

 μ

magnetic moment of a magnetic element, e.g., an electron,

 N

density of magnetic elements,

 λ

 μλN = molecular field,

 k B

Boltzmann’s constant,

 T

absolute temperature.

The saturation magnetization M thus appears on both sides of the equation. This is physically justified because a magnetic dipole aligns itself in the entire field and also contributes to the entire field.

10.6

Temperature Dependence of the Saturation Magnetization …

457

Equation 10.21 can be simplified by introducing reduced variables

 m := M μ and t := kB T

(10.22)

 N

 N μ 2 λ

to

 m

 m = tan h

(10.23)

 t

The reduced magnetization m is proportional to the magnetization M. The

reduced temperature t is proportional to the temperature T. The solution m =

 m(t) is called the Langevin function.

Graphical and numerical solution

The Langevin equation, Eq. 10.23, cannot be solved analytically. Still, it can be solved graphically by plotting y = tan h(m/t) for a given value of t as a function of m and by determining the point of intersection with the straight line y = m (see Fig. 10.21a). It is solved numerically by keeping t fixed and varying m with a solver function so that the square deviation (m − tan h(m/t))2 is minimized.

We determine 18 points on the curve m(t) by implementing two peculiarities: (a) all points are optimized simultaneously, and (b) all points are initially on a

quarter circle.

As to (a): The Langevin equation can be solved for each reduced temperature t

independently of the other temperatures. However, we solve it simultaneously for

all points on the curve by adding up the quadratic deviations for the 18 cases and

minimizing this sum by varying the 18 values of m.

1

1.0

m

0.8

0.8

y

0.6

0.6

m

t=0.5

0.4

t=0.6

0.4

Langevin function

t=0.7

0.2

t=0.8

Circular arc

t=0.9

0.2

t=1

0

0.0

0.0

0.2

0.4

0.6

0.8

1.0

m

0.0

0.2

0.4

0.6

0.8

t 1.0

Fig. 10.21 a (left) Graphical solution of the Langevin equation; the y-axis is valid for m and tan h(m/ t). b (right) Langevin function as a varied circular arc

458

10

Fitting Trend Curves to Data Points

As to (b): Since we expect a strongly bent curve, steeply going towards zero

at t = 1, we select starting points (before minimizing) on a circular arc (see

Fig. 10.21b).

Physical interpretation

The Langevin function in Fig. 10.21b is, with respect to the circular arc, flatter for small t and steeper for t approaching 1. The magnetic moments first stabilize each other in parallel alignment, but above a specific temperature, the order collapses.

10.6.2 Data Structure and Nomenclature

 φ

array of 18 angles of a quarter circle

 t

sin(φ)

 m

reduced magnetization to be optimized

 m C

cos(φ), initial values of m

 th

tan hyp(m/ t), tangens hyperbolicus.

The entries m(0) = 1 and m(1) = 0 are held fixed; th(0) is not defined.

10.6.3 Spreadsheet Layout

A spreadsheet solution of the Langevin equation is presented in Fig. 10.22 (S). The initial values m C are on a circular arc and copied (with paste/paste values) into m (E5:E22) before optimization. The solver algorithm is then used to vary these

 m-values so that they equal tanh according to the Langevin equation. If something goes wrong with the optimization, we can start again by copying m C into m.

A

B

C

D

E

F

G

H

1

0.0924 =PI()/17/2

Langevin function

2

Circular arc

$1

3

=A5+$A=SIN(phi)

=COS(phi)

=TANHYP(m/t)

=SUMXMY2(m;th)

4

phi

t

mC

m

th

devi

5

0.00

0.000

1.000

1.000

6

0.09

0.092

0.996

1.000

1.00 2.2E-08

22

1.57

1.000

0.000

0.000

0.00

Fig. 10.22 (S) Solving the Langevin equation; reduced magnetization: initial positions m C on a circular arc, m after optimization; m is defined as [E6:E22]

10.6

Temperature Dependence of the Saturation Magnetization …

459

Table 10.11 Optimizing the Langevin function

1

from scipy.optimize import minimize

2

3

phi=np.linspace(0.01,np.pi/2,18)

4

t=np.sin(phi)

Values on quarter arc (not varied)

5

mC=np.cos(phi)

Initial values on quarter arc

6

7

def objective(m):

8

th=np.tanh(m/t)

9

return sum((m-th)**2)

10

11

m=minimize(objective,mC,method='SLSQP')

12

13

FigStd('m',0,1.0,0.2,'y',0,1,0.2)

14

plt.plot(mC,t,'k+-')

15

plt.plot(m.x,t,'kx-') # m.x, optimized values

16

plt.axis('scaled')

Question

What are the target (objective) and the adjustable variables for solver in

Fig. 10.22 (S)? 25

10.6.4 Python

In Table 10.11, the Langevin equation is solved with the scipy function minimize.

The syntax is

m = minimize (objective,mC, method = ’SLSQP’)

where

 m

list of variables to be varied; shape determined by m C

 m C

list of initial values for m

 objective

name of a function with m as the argument and a scalar as the output

to be minimized

 SLSQP

 Sequential Least-Squares Programming, type of solver to be applied.

The optimization works although m[0] and m[-1] are not excluded from the

optimization because m C = tanh(m C/ t) is already fulfilled.

25 The target is devi (G6) and the variable cells are m, except its first value (E6:E22), because the magnetization m must be 1 at t = 0 and be kept fixed during optimization.

460

10

Fitting Trend Curves to Data Points

10.7

Fitting Gaussians to Spectral Lines with Nonlinear

Regression

We fit a sum of two Gaussians to two overlapping EDX spectral lines, taking

advantage of the additional knowledge that, for physical reasons, both lines

must have the same width. The excel tool is solver; the Python func-

tion is curve_fit from the scipy.stats library. The C-spec errors

of the solver solution are obtained through simulation-based t adaptation

(Student’s t) using the parameters obtained from the fit.

10.7.1 Fitting the Sum of Two Gaussians to Data Points

In this exercise, we use the solver tool of excel and the function curve_fit

from the scipy.stats library to fit functions with several fit parameters to

measurement data, generated artificially in the by now well-proven manner.

Generation of two spectrally overlapping EDX signals

In Fig. 10.23a, a spectrum of an EDX analysis is shown. EDX is the abbreviation for “energy dispersive X-ray analysis”. It means the energy-resolved analysis of

characteristic X-ray radiation with silicon detectors after excitation of the sample

with an electron beam. The count rate y of a detector is recorded as a function of the energy x of the photons arriving at the detector.

Here, the mapped spectra are artificially generated, but are very similar to the

actual data for a SrTiO3 coated Si wafer. The generation is done by specifying two

Gaussian bell curves with the parameters maximum value, centre, and standard

deviation as A = 600, x A = 1.75, x Ad = 0.05 and B = 150, x B = 1.85, x Bd = xAd

= 0.05, respectively, adding them together with a constant background noise level

 y C.

General bell curve

The normal distribution for medium x m and standard deviation x Sd is defined as x − x

2

m

 N (x, xm, xSd) =

1

√

· exp −1

(10.24)

 xSd 2 π

2

 xSd

The pre-factor is chosen so that the integral over the function is 1, as it must be for

a probability distribution. The functions for normal distributions are used to model

the spectra, and later to provide fits to the noisy data. To this end, it is advantageous that maximum A and width x d be chosen independently of each other. The fit function

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

461

is now f (x, xm, xSd) = AN · N (x, xm, xSd). Consequently, A N for N(x, x m , x Sd) becomes

√

 AN = A · xSd ·

2 π

(10.25)

When A and x Sd are independent of each other, the initial parameters can be set with the eye more intuitively.

Question

What is the area under the curve f (x, xm, xSd) = AN · N (x, xm , xSd)? 26

Two different fits to the spectrum

The sum of two bell curves, G a and G b, and a constant background y Ar are fitted to a simulated spectrum by means of a solver algorithm.

Two different fits to the same measurement data can be seen in Fig. 10.24. For Fig. 10.24a, the standard deviations of the two bell curves have both been varied to obtain an optimum fit. For Fig. 10.24b, the two standard deviations have been forced to be equal. Both fits appear to be equally good, with a very high R 2 =

0.99. Therefore, the fit is not unique.

Due to physical considerations, a fit with equal spectral width is more likely,

because the width of the lines is determined by the resolving power of the detector

and should be approximately constant within the considered energy range. So, we

decide to interpret the experimental spectrum with the fit in Fig. 10.24b.

Caution when ftting with many parameters!

The described method of fitting curves with a set of parameters to measurement data

is useful, but also dangerous. If you have enough fit parameters, you can fit almost

any data series without the parameters having a meaningful physical interpretation.

Gain experience! Our exercises offer an excellent practice field for this, as we invent

“true” data ourselves.

Alac Sure, according to the motto: Ψ We know everything and play stupid.

Tim And thereby learn statistics.

Uncertainty in the coefficients

The function curve_fit of the scipy.optimize library returns, in addition

to the parameters of the regression curve, the covariance matrix of the optimized

coefficients from which the standard errors can be obtained as the square root of the

diagonal elements.

26 The area under this curve is A N.

462

10

Fitting Trend Curves to Data Points

The solver function of excel returns only the optimized parameters. The standard

errors in the fitted curves’ parameters can also be determined in a mathematically

exact way in spreadsheets; see, e.g., E. Joseph Billo, excel for Chemists, Wiley–

VCH (1977) ISBN 0-471-18,896-4, Chap. 17 or John Wiley (2011) ISBN 978–0470-

38,123-6, Chap. 15.

In practice, a coefficient can be changed individually by hand until there is no

longer a good fit upon visual inspection. The deviation from the optimum value of

the coefficient may then be reported as the uncertainty. An example can be seen in

Fig. 10.23b, where the center of the left bell curve has been changed from 1.75 to 1.755. Evidently, the total curve G abc no longer fits the data points. So, 0.005 is a rough estimate of the error in x Ar.

800

Ns=20; NsR=20

800

Ga, DxAr=0.005

y

yA

y

yStop

600

yB

600

Gb

yABC

Gabc

yC

400

400

200

200

0

0

1.5

1.6

1.7

1.8

1.9

2.0

1.5

1.6

1.7

1.8

1.9

2.0

x

x

Fig. 10.23 a (left) Simulated EDX spectrum of a Si wafer coated with SrTiO3; G1 and G2 are the underlying “true” spectral lines. b (right) A fit to noisy data with a sum of two bell curves and a constant; the left bell curve has been shifted by changing x Ar by Δx Ar = 0.005 to estimate the error in x Ar

800

800

Gabc, R²=0.99

Gabc, R²=0.99

y

y

Ga

Ga

600

Gb

600

Gb

yStop

yStop

400

400

200

200

0

0

1.5

1.6

1.7

1.8

1.9

2.0

1.5

1.6

1.7

1.8

1.9

2.0

x

x

Fig. 10.24 Fit to an EDX spectrum with two Gaussian curves. a (left) The two standard deviations are varied independent of each other. b (right) The two standard deviations are forced to be equal

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

463

Tim Is that allowed, and is it accurate enough?

Alac Better a rough estimate of the uncertainties of the coefficients than none at all. In my experience, many labs engage in that practice. The researchers feel that

a report of the optimum coefficients without uncertainty is, in any case, useless.

Nevertheless, even this is done in many laboratories, as I have also observed.

Mag Alac is right. However, we will do better with a simulation described in the

next section by determining the hit rates for the assumed errors in the coefficients

and obtaining the hit rates to the C-spec errors for a specified confidence level by

simulation-based t adaptation.

10.7.2 C-spec Errors of the Coefficients by a Statistical Simulation

Figure 10.25 (S) lists standard errors of the parameters of the two bell curves fitted to noisy data, obtained with various methods. The values for Python from row

10 on are obtained as the square root of the diagonal elements of the covariance

matrix that is returned by the function curve_fit of the scipy.optimize

library.

The C-spec errors (“confidence-specified”) for excel are obtained with a

statistical simulation in six steps:

(1) Starting from a fit to the spectrum and taking the resulting parameters of the

optimized bell curves (row 2) as values of a “true” noise-less spectrum, as well

as the residual noise of the fit as the “true” noise level. The residual noise is

A

B

C

D

E

F

G

1

Ar

xAr

xAsdr

Br

xBr

2

625

1.752

0.050

151

1.86

3

DyAr

DxAr

DAsdr

DyBr

DxBr

4

20

0.0050

0.0020

20

0.002 by eye

5

10

0.0019

0.0013

16

0.008 D from row 4

6

11

0.0019

0.0015

16

0.006

7

10

0.0021

0.0015

16

0.007

8

11

0.0016

0.0014

16

0.007 new D from row 7

9

10 Python

11

10

0.0014

0.0014

13

0.006

12

11

0.0013

0.0016

15

0.007

13

12

0.0015

0.0015

19

0.005

Fig. 10.25 (S) [A1:E2]: Results of a fit of two bell curves to experimental data; standard errors of the coefficients—obtained in excel by eye (row 4) or by adjusting the values from row 4 with a t-value (rows 5–8)—in rows 11 to 13 with Python as the square root of the diagonal elements of the covariance matrix

464

10

Fitting Trend Curves to Data Points

calculated as the standard deviation of the difference between the noisy data

and the fitted curve.

(2) Assuming initial errors in the coefficients by changing them by hand until the deviation from the data becomes visible (Figs. 10.24 and 10.25 (S) row 4).

(3) Simulating noisy data with the parameters from (1) and (2) to obtain a fit to

 these data with our model “two bell curves plus constant background noise”.

(4) Repeating the statistical experiment (3) 100 times or more and so determining

the hit rates for the initial error ranges from (2).

(5) Estimating the confidence level from the hit rates in (4), and from that, the t

 values for the desired confidence level.

(6) Adjusting the C-spec errors by dividing the errors assumed in (2) by the t values from (5).

Row 4 of Fig. 10.25 contains the initial values of the errors obtained by visual inspection. The next three rows report the results of statistical simulations with

these errors. After that, the initial values of row 4 were replaced with those of the

fit in row 7 to obtain the values in row 8. They are within the error range obtained

with Python.

So, our method Ψ We know everything and play stupid is also successful for a

task occurring in real laboratory life.

10.7.3 Data Structure and Nomenclature

Generation of a noisy spectrum

 A, x A, x Asd

amplitude, center, standard deviation

 y A

bell curve with the above parameters

 B, x B, x Bsd, y B

second bell curve

 y C

background signal level

 Ns

noise level

 yABC ns

 y A + y B + y C + noise, noisy spectrum.

Best fit to noisy spectrum

 A r, x Ar, x Asdr

amplitude, center, standard deviation of the fit curve

 y Ar

bell curve with the above parameters

 B r, x Br, x Bsdr, y Br

bell curve with the above parameters

 y Cr

background signal level

 y ABCnew

= y Ar + y Br + y Cr

 Ns R

noise level estimated as standard deviation of (y ABCns −

 y ABCnew).

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

465

Visually estimated standard errors of the fit parameters

 Dy Ar, Dx Ar, D Adr

estimated standard errors of A r, x Ar, x Adr

 Dy Br, Dx Br, D Bdr

estimated standard errors of B r, x Br, x Bdr.

C-spec errors of the fit parameters obtained from a statistical experiment

 p out

error rate for the estimated standard errors

 t

Student’s t value calculated from p out

 st E

adapted standard error calculated from p out and t, to get a confidence level 0.68.

10.7.4 Python

For the Python program in Table 10.12, three user-defined functions are needed:

– a bell curve (def gauss) with parameters amplitude A, center x m, and

standard deviation x Sd,

– a function (def gauss2) adding two bell curves with independent parame-

ters,

– a function (def gauss3) adding two bell curves with the same standard

deviation.

In Table 10.13, the function gauss is used to generate two bell curves y A(x) and y B(x) intended to mimic ideal spectral lines. A noisy spectrum is simulated by adding these two curves and a constant background level y C to get y ABC, which is then blurred with normally-distributed noise to become y ABC ns. To avoid negative values that do not occur in reality, a maximum function is applied in line 13.

Table 10.12 Defining a Gaussian and the sums of two Gaussians

1

import scipy.stats as sct

2

3

def gauss(x,A,xm,xd):

4

f=sct.norm(0,1).pdf(0)

5

return A/f*xd*sct.norm(xm,xd).pdf(x)

6

7

def gauss2(x,A,xA,xAd,B,xB,xBd,yC):

8

G2=gauss(x,A,xA,xAd)+gauss(x,B,xB,xBd)+yC

9

return G2

10

11

def gauss3(x,A,xA,xAd,B,xB,yC): # Same width

12

G3=gauss(x,A,xA,xAd)+gauss(x,B,xB,xAd)+yC

13

return G3

466

10

Fitting Trend Curves to Data Points

Table 10.13 Generation of a noisy EDX signal with two spectral lines

1

import numpy.random as npr

2

3

A,xA,xAd =600,1.75,0.05 # Amplitude, position, width

4

B,xB,xBd=150,1.86,0.05

5

yC=20 # Background level

6

Ns=20 # Noise level

7

dx=0.01

8

9

x=np.arange(1.5,2+dx,step=dx)

10

yA=gauss(x,A,xA,xAd)

11

yB=gauss(x,B,xB,xBd)

12

yABC=yA+yB+yC

13

yABCns=np.maximum(yABC+Ns*npr.randn(len(x)),0)

In Table 10.14, a function of type gauss2 is fitted to the noisy data by a nonlinear least-squares fit with curve_fit, returning the optimized coefficients

(here, stored in p opt) and the covariance matrix (here, stored in cov). The standard errors D of the coefficients are obtained as square roots of the diagonal elements of the covariance matrix. The current fit looks like Fig. 10.24a with two bell curves with different widths, x Asd = 0.047 and x Bsd = 0.67, as reported in the bottom cell of Table 10.14.

Table 10.14 Fitting gauss2 (independent widths of the two bell curves) to noisy data; “error”

means standard error

1

from scipy.optimize import curve_fit

2

3

p0=[400,1.7,0.05,200,1.9,0.05,130] # Initial guess

4

popt, cov = curve_fit(gauss2, x, yABCns,p0)

5

D=np.zeros(7)

6

for i in range(7):

7

D[i]=np.sqrt(cov[i][i])

#√ Trace of covariance matrix

A xA xAd

B xB xBd yC

true 600 1.750 0.050

true 150 1.860

0.050 20

estim. 534 1.745 0.047

estim.

180 1.828 0.067 21

error 189 0.006 0.004

error 100 0.062 0.027 6

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

467

Table 10.15 Fitting gauss3 (equal widths of the two bell curves) to noisy data; “error” means standard error

8

coef=[A,xA,xAd,B,xB,yC]

9

inC=np.ndarray(6,dtype=bool)

10

yABCns=np.maximum(yABC+Ns*npr.randn(len(x)),0)

11

ini=[400,1.7,0.05,200,1.85,200]

Initial guess

12

popt3, cov = curve_fit(gauss3, x, yABCns,p0=ini)

13

D=np.zeros(6)

14

for i in range(6):

15

D[i]=np.sqrt(cov[i][i])

16

inC[i]=popt3[i]-D[i]<coef[i]<popt3[i]+D[i]

A xA xAd

B xB xBd yC

true 600 1.750 0.050

true 150 1.860 0.050 20

estim. 597 1.752 0.054

estim. 144 1.869 0.054 12

error 10 0.0015 0.0015

error 14 0.007 0.001 5

in True False False

in True False False False

Question

How can lines 5-7 in Table 10.14 be formulated with list comprehension in one

line?27

A fit with gauss3, Table 10.15, supposing equal widths of the bell curves, results in coefficients close to the “true” ones. In order to determine the confidence levels

of the calculated standard errors in the coefficients, we check whether the error

ranges capture the true values. The variables “in are reported in the bottom cell.

To do that efficiently in a loop, the coefficients are put together in a list coef, to be addressed with the loop index. The list is of the same size as the estimated

coefficients popt3 and their errors D, and the result of the logical check is stored in a list in C of the same size.

Hit rates

Based on the logical check in Table 10.15, we can estimate the hit rates of the error ranges (see Table 10.16). The statements for a fit with gauss3 are assembled into a function hitRates that returns the Boolean array in C, stating, for every coefficient, whether the true value is captured by the standard error range. A loop over rep

= 1000 repetitions counts the number of Trues in N inCC, with the result being

reported in the bottom cell of Table 10.16. The hit rates are close to 668, so that we have no reason to doubt that curve_fit returns the standard errors of the estimated

coefficients.

27 D = [np.sqrt(cov[i][i]) for i in range(len(cov))].

468

10

Fitting Trend Curves to Data Points

Table 10.16 Determining the hit rates for the standard errors obtained in Table 10.15; “function name” should be “variable namefit with gauss3, according”

17

ini=[400,1.7,0.05,200,1.85,200]

18

19

def hitRates():

20

inC=np.ndarray(6,dtype=bool)

21

yABCns=np.maximum(yABC+Ns*npr.randn(len(x)),0)

22

popt3, cov = curve_fit(gauss3, x, yABCns,p0=ini)

23

D=np.zeros(6)

24

for i in range(6):

25

D[i]=np.sqrt(cov[i][i])

26

inC[i]=popt3[i]-D[i]<coef[i]<popt3[i]+D[i]

27

return inC

28

29

coef=[A,xA,xAd,B,xB,yC]

30

NinCC=np.zeros(6)

31

rep = 1000

32

for r in range(rep):

33

inCC=hitRates()

34

Without () only another variable name

35

NinCC+=inCC

inC:

[664.00 679.00 683.00 669.00 680.00 691.00]

Questions

What is the difference between the statements inCC = hitRates and inCC

= hitRates()?28

What is the degree of freedom for a fit with gauss3, according to

Sect. 10.7.2? 29

10.7.5 Spreadsheet

Generation of a noisy spectrum

The ideal spectrum y ABC without noise is generated in Fig. 10.26 (S) with the parameters specified in B1:E5. A standard normal distribution is used for the noise, addressed

as norm.dist(x; xA,. xAsd;0) where “0” stands for pdf. Its amplitude is calculated 28 The statement inCC = hitRates() calls the function hitRates(), whereas inCC =

hitRates simply assigns another name to this variable.

29 From lines 11 of Table 10.12 and 9 of Table 10.13: dof = 51 (points) – 6 (parameters) = 45.

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

469

A

B

C

D

E

F

G

H

I

J

K

1

Amplitude

A

600

B

150

varTot

46158

2

Center

xA

1.75

xB

1.85

varRes

3

StD xAsd

0.05

xBsd

0.05

R²

4

Offset

yC

20

5

Noise level

Ns

20

nD

0.399 =NORM.DIST(0;0;1;0)

6

dx

0.01

Ns=20; NsR=22

0)

xA;xAsd;(x;xB;xBsd;0)

DIST(x;

e;0)

M.DIST

BCns;yABC)/50)

2(yA

xAsd*NORM.

A+yB+yC+Nois

MXMY

7

=B9+dx=A/nD*

=B/nD*xBsd*NOR

=yA+yB+yC

=NORM.INV(RAND();0;Ns)

=MAX(y =SQRT(SU

8

x

yA

yB

yABC

Noise yABCns

NsR

9

1.5

0.00

0.00

20.00

-7

13

22.01

10

1.51

0.01

0.00

20.01

-22

0

59

2

0.00

1.67

21.67

-4

17

Fig. 10.26 (S) Generation of a noisy spectrum y ABCns; step (1) of Sect. 10.7.2

in E5 as n D, guaranteeing that the integral over the function is 1. As we want to handle the maxima A and B of the curves as parameters independent of the widths, the pre-factors for y A and y B are calculated corresponding to Eq. 10.25. With A and the width x Asd (or B and B sd), we have two parameters at hand that have an immediate visual meaning and can independently be adjusted by hand for the bell curves to fit

the experimental curves.

The ideal “true” spectrum y ABC is blurred with noise to become y ABC ns in column G. The signal, a count rate, is never negative in reality; this is guaranteed

with max(*; 0). The residual noise Ns R is calculated as the standard deviation of (y ABCns - y ABC). Its value is close to the pre-specified “true” noise level Ns.

Question

To generate the noisy spectrum in Fig. 10.26 (S), two functions are used: norm.dist (reported in C7) and norm.inv (reported in F7). Which roles do

they play? 30

Fitting bell curves to the spectrum

In Fig. 10.27 (S), the sum of two bell curves, G a plus G b plus an offset y Cr, is fitted to the noisy spectrum created in Fig. 10.26 (S). This is done in a separate spreadsheet into which the vectors x and y ABC ns are copied from Fig. 10.26 (S). The variables for solver are the 7 coefficients in C1:F4 with index r. They are changed in each iteration of solver so that y ABC n s is calculated anew. To have the “experimental” spectrum fixed, the contents of y ABC ns have been value-copied (copy, pastevalues) into y Stop. The variable y ABC ns is no longer needed in the current fit. The target cell for solver is Ns R in G9, the residual noise level for (y Stop – G abc). The coefficient of determination r Sq of the fit is calculated in H1:H3 according to Eq. 10.6.

30 norm.dist produces a smooth Gaussian curve as a function of energy. norm.(rand();0;ns) produces the normally distributed noise of the y-values.

470

10

Fitting Trend Curves to Data Points

A

B

C

D

E

F

G

H

I

J

1

Amplitude

Ar

405.20

Br

268.20

varTot

45495 =VAR.S(yABCns)

2

Center

xAr

1.75

xBr

1.79

varRes

316 =SUMXMY2(yABCns;Gabc)/50

3

Std

xAsdr

0.046

xBsdr

0.080

rSq

0.99 =(varTot-varRes)/varTot

4

Offset

yCr

10.14

5

Noise level

NsR

16.3 =G9

Gabc, R²=0.99

6

;xBsdr;0)

DIST(x;xAr;xAsdr;0)

op;Gabc)/50)

NORM.

2(ySt

xAsdr*

MXMY

7 =x

=yABCns 427

=Ar/nD* =Br/nD*xBsdr*NORM.DIST(x;xBr

=Ga+Gb+yCr

=SQRT(SU

8

x yABCns

yStop

Ga

Gb

Gabc

NsR

9

1.5

21

19

0.0

0.4

10.5

16.3

59

2

26

0

0.0

8.7

18.8

Fig. 10.27 (S) New spreadsheet calculation: fit of the sum of two bell curves to the noisy data of Fig. 10.26 (S); y Stop is the “frozen” result of the fit procedure, reported in Fig. 10.24a

Questions

What is the adjusted coefficient of determination r Sq Adj for Fig. 10.27 (S)?31

Is the procedure reported in Fig. 10.27 (S) a least-squares fit?32

The results for two different fits with the sum of two bell curves, (a) with

individual widths and (b) with identical widths, are shown in Fig. 10.28 (S). Both fits yield a very high coefficient of determination, R 2 = 0.99, so there is no good reason to prefer one particular fit. However, we know that, for physical reasons,

the width of the spectral lines is determined by the resolution of the detector, and

therefore should be the same for both lines; thus, (b) is preferred.

10.7.6 C-spec Error of the Optimized Coefficients

by Simulation-Based t Adaptation

Fig. 10.29 (S), based on Fig. 10.28 (S), presents a spreadsheet calculation for obtaining the errors of the optimized coefficients.

Row 4 lists the optimized coefficients of a fit of the sum of two bell curves

to noisy experimental data. They are now regarded as the true values for a new

 statistical experiment and used as parameters to generate a spectrum in the calculation model of Fig. 10.26 (S) that is then entered into Fig. 10.27 (S). The noise level Ns R, calculated as the standard deviation of the difference between the noisy spectrum and the fitted curve in H9 of Fig. 10.26 (S), is value-copied into G9 of Fig. 10.27 (S).

31 R 2

= 1 − 1 − R 2 · N−1 (Eq. 10.8), here, N = 51 (Fig. 10.26 (S)), ddof = 7 and R 2 =

 ad j

 N − ddo f

0.99 (Fig. 10.27 (S)), so that R 2

= 0 . 989. In this example, the difference between R 2 and R 2

 ad j

adj

is unimportant.

32 Strictly speaking, not because the target is the square root of the squares of the deviations. However, sqrt is a strictly monotonously increasing function so that the minimum in sqrt is also the minimum in the squares.

10.7

Fitting Gaussians to Spectral Lines with Nonlinear Regression

471

A

B

C

D

E

F

G

H

I

J

1

Amplitude

Ar

405.20

Br

268.20

varTot

45495 =VAR.S(yABCns)

2

Center

xAr

1.75

xBr

1.79

varRes

316 =SUMXMY2(yABCns;Gabc)/50

3

Std

xAsdr

0.046

xBsdr

0.080

rSq

0.99 =(varTot-varRes)/varTot

4

Offset

yCr

10.14

5

Noise level

NsR

16.3 =G9

Gabc, R²=0.99

A

B

C

D

E

F

G

H

I

J

1

Amplitude

Ar

621.70

Br

122.50

varTot

44929 =VAR.S(yABCns)

2

Center

xAr

1.75

xBr

1.86

varRes

284 =SUMXMY2(yABCns;Gabc)/50

3

Std

xAsdr

0.052

xBsdr

0.052

rSq

0.99 =(varTot-varRes)/varTot

4

Offset

yCr

15.51

5

Noise level

NsR

16.1 =G9

Gabc, R²=0.99

Fig. 10.28 (S) Copy of instances from Fig. 10.27 (S); results of fitting with bell curves with a (top) individual widths, b (bottom) identical widths; F3 = [=xAsdr]

K

L

M

N

O

P

Q

R

S

3

Ar

xAr

xAsdr

Br

xBr

4

405

1.75

0.046

268

1.79

5

DyAr

DxAr

DAsdr

DyBr

DxBr

6

10

0.0021

0.0015

16

0.0071

;xA<xAr+DxAr)

7

=AND(Ar-DyAr<A;A<Ar+DyAr)

=AND(xAr-DxAr<xA

=AND(xAsdr-DAdr<xAsd;xAsd<xAsdr+DAdr)

=AND(Br-DyBr<B;B<Br+DyBr)

=AND(xBr-DxBr<xB;xB<xBr+DxBr)

8

inA

inxA

inxAd

inB

inxB

9

FALSE

FALSE

FALSE

FALSE

FALSE

10

100

67

79

71

66

67

11

0.67

0.79

0.71

0.66

0.67 =P10/K10

12

pOut

0.33

0.21

0.29

0.34

0.33 =1-P11

13

t

0.99

1.27

1.07

0.96

0.99 =T.INV.2T(pOut;44)

14

stE

11

0.0016

0.0014

16

0.007 =DxBr/t

Fig. 10.29 (S) Continuation of Fig. 10.28 (S); spreadsheet calculation for determining the standard errors of the optimized coefficients; L4:P4 copied from D1:F3

The deviation values reported in row 6 are obtained by changing the optimized

parameters until the trend curve differs visibly from the noisy spectrum to be

pre-supposed as errors for the coefficients obtained in new statistical experiments

with spreadsheet calculations as in Fig. 10.26 (s) and Fig. 10.27 (S) in order to determine whether the supposed confidence intervals capture the true values.

With a rep-log procedure, the new statistical experiment is repeated 100 times

to obtain the hit rates reported in row 10 of Fig. 10.29 (S). From that, we get the confidence levels in row 11 and the error probability p Out into row 12; therefrom, the corresponding t-value in row 13; and finally, the standard errors stE for a confidence level of 0.68 estimated as initial errors (row 6) divided by t.

This simulation with 100 trials is repeated with the stE copied manually as

standard errors in row 6 in the following run. The results of this iterative procedure

are reported in Fig. 10.25 (S).

472

10

Fitting Trend Curves to Data Points

10.8

Questions and Tasks

1. How do you obtain a linear mapping of the function

 x

2

 y = A · exp

 x

and what meaning do the y-axis intercept and slope at x = 0 have?

2. In Fig. 10.30a (S), a straight line is adapted to measurement points with linest.

What is the meaning of the numbers in D1:E2 and D3?

3. A parabola is fitted to 7 data points with linest. How many degrees of freedom

does the fitted parabola have? Does our rule: Two within and one out of ? apply

to the coefficients of the parabola?

4. In Fig. 10.30b, a polynomial y C(x) is fitted to data points (x, y S) with solver. Which is the target cell, and which are the adjustable cells? Which

mathematical formula is behind the spreadsheet formula in S5?

5. In Fig. 10.31 (S), a parabola is fitted with linest to 7 data points (x, y). A rep-log procedure counts 10,000 times how often the true values of a, b, and c are outside of the error range. Which data are in B7:C13? What is the meaning

D

E

F

G

N

O

P

Q

R

S

T

U

1

2.97

1.35 =LINEST(y;x;;1)

2

0.19

1.20

3

0.97

1.76

5

=aS*x^2+bS*x+cS

=SUMXMY2(yC;yS)

6

x

yC

yS

7

0

aS

1.11

1.74

2.49

4.06

8

1

bS

1.66

6.34

5.25

9

2

cS

2.49

10.84

10.24

13

6

52.38

52.41

Fig. 10.30 a (left, S) Output of linest. b (right, S) A polynomial y S is fitted to the data points (x, y C) with solver

A

B

C

D

E

F

G

H

I

J

K

L

M

1

a

1

1.11

1.66

2.49

2

b

2

0.11

0.69

0.88 {=LINEST(A7:A13;B7:C13;;1)}

3

c

3

1.00

1.01

#N/A

4

Ns

1

10000

b<F1+2*F2)

*F2<b;

5

=AND(E1-E2<a;a<E1+E2)

=T.DIST.2T(1;4)

=AND(F1-2

=T.DIST.2T(2;4)

6

y

x

x²

a.1

b.1

c.1

a.2

b.2

c.2

7

1.74

0

0

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

8

6.34

1

1

0.378

0.379

0.383

0.374

0.119

0.120

0.119

0.116

9

10.84

2

4

13

52.38

6

36

Fig. 10.31 (S) A parabola is fitted to the 7 data points (x, y) with linest. The values in E8:G8

and I8:K8 are the result of a rep-log procedure

10.8

Questions and Tasks

473

Table 10.17 Python code snippet for performing a linear least-square fit to data points (x, y Ns) in arrays x and y Ns

1

Data points (x,y) in lists x and yNs

2

model=sm.OLS(yNs,xx)

3

results=model.fit()

4

aR=results.params[0]

5

aE=results.bse[0]

6

r2=results.rsquared

7

r2_ad=results.rsquared_adj

Fig. 10.32 (S) For

A

B

C

D

E

determining the intersection

1

a.1

1

a.2

3

of two straight lines

2

m.1

2

m.2

-2

3

4

x

y.1

y.2

5

1

3

1

4

of the values in E2:G2 and the arguments of the formula for t.dist.2t in H8

and L8? How have the values in E8:G8 and in I8:K8 been obtained?

6. Table 10.17 shows a Python code snippet for performing a linear least-square fit to data points (x, y Ns) in arrays x and y Ns. A linear trend line is fitted to the data points with the OLS function of the statsmodel.api library. What is the

array xx in the argument of OLS? How do you get the coefficients of the linear

trend line and their standard errors? What is the difference between the two

quantities queried in lines 6 and 7?

7. Figure 10.32 (S) shows the spreadsheet layout for determining the intersection of two straight lines with solver. What are the formulas in B5, C5, and the

target cell D5? What are the objective (target) cell and the variable cells in

solver?

8. Figure 10.33a shows a spreadsheet layout for calculating the intersections of three straight lines displayed in b. What are the formulas for y 1, y 2, and y 3?

The target cell to be minimized is E4. What are the formulas in E6, E7, and

E8?

9. Table 10.18 shows a Python program for solving the problem of Fig. 10.33,

namely finding the intersections of three straight lines with a solver algorithm.

It is incomplete. Introduce the 6 missing statements!

474

10

Fitting Trend Curves to Data Points

5

A

B

C

D

E

F

G

y.1

1

y.2

a.1

2

a.2

-1

a.3

8

3

y.3

2

m.1

1.5

m.2

-1

m.3

-4

y1y2

3

y1y3

1

y2y3

4

8.9E-13 =SUM(E6:E8)

5

x

y.1

y.2

y.3

-5

-3

-1

-1

1

3

5

6

-1.20

0.20

0.20

12.80 3.3E-13 =(y.1-y.2)^2

7

1.09

3.64

-2.09

3.64 5.7E-13 =(y.1-y.3)^2

-3

8

3.00

6.50

-4.00

-4.00 0.0E+00 =(y.2-y.2)^2

-5

Fig. 10.33 a (S, left) spreadsheet layout for calculating the intersections of y 1, y 2, and y 3 using solver, the column vector x contains the optimized x-values of the intersections. b (right) Straight lines of a, together with their intersections

Table 10.18 Python program for solving the problem in Fig. 10.33; 6 lines are omitted 8

a1, m1 = 2, 1.5

9

y1 = lambda x: a1+m1*x

10

def target(x):

11

y12=(y1(x[0])-y2(x[0]))**2

12

return y12+y13+y23

13

xI=[-1,1,2.5]

14

x=minimize(target,xI,method='SLSQP')

15

print(x.x)

Index

Symbols

A

 structure, 9, 69, 261

Ab-initio constructors, 12, 37

 Always one more! Yes, but of what and

Absolute cell addressing, 16, 19

than what?, 14

Absolute temperature, 103, 420, 456

ACTIVESHEET.SHAPES.ADDSHAPE, 126

Approximated average value instead of

ActiveX control, 24

exact integral, 13

ACTIVEX CONTROLS, 24, 25, 131

Calculate with variances, report the C-spec

Add-In, 168, 170, 450, 451

error, 14, 368, 375, 391, 398

Addition of cosines, 57, 65, 68

 Chance is blind and checkered, 14, 318, 361

ADDSHAPE, 128, 134

 Come to a decision! You may be wrong, 14

Adjusted R 22, 423, 433, 434

 Cos plus Cos equals mean value times half

AND, 322

the difference, 13

Angle of inclination, degrees, 209

 Ctrl + Shift + Enter, 12, 30

Angular frequency, 60, 242, 247

 Doppler effect with plus and minus, 13, 92,

Animation, 229, 234–239, 246, 251, 254, 257,

110

272, 350, 351

 Empty lines separate curves, 12, 174

Animation object, 237

Antiderivative, 347, 352

First, the tangent at x = 0, 13

Append, 34, 176, 178

 From variance to confidence with Student’s

Application as a matrix formula, 52

t value, 14

Arcus tangens, 39, 42, 43, 199, 202, 223

 half, half, whole, the halves count twice, 7,

Area under a curve, 192, 195

13, 281, 305

argmax, 56

 If in doubt, count!, 7, 14, 307, 365

argmin, 56

 Imaging equation for lenses with plus and

ARRAY in VBA, 157

minus!, 13

Arrays in Numpy, 15, 16, 31

 Mostly, not always, 6, 14, 307, 417

Arrays in Python, 70, 325

 Plus 1 becomes times e, 13

Arrhenius plot, 420

Arrow, 9, 25, 35, 88–90, 126, 132, 148, 185,

The dollar makes it absolute, 7, 11, 69

186, 198–203, 205, 209–215, 217,

 Twice as good with four times the effort, 14

229–234, 236, 237, 249–251, 266,

 Two within, one out of, 14, 367, 369, 376,

335

377, 380–382, 391, 417, 421, 424,

Arrow heads, 185, 212, 231, 237

426, 433, 442, 472

as npr, 35, 37, 309, 324

 We know everything and play stupid, 14,

ATAN2, 39, 43, 199, 223

365, 385, 392, 421, 423, 444, 461,

AVERAGE, 320, 387

464

Axis, 9, 10, 18, 24, 39, 40, 54–57, 65–70,

 Worse makes good even better, 14, 390, 417

79–81, 83, 86, 88, 89, 93, 95–97,

© Springer Nature Switzerland AG 2022

475

D. Mergel, Physics with Excel and Python,

https://doi.org/10.1007/978-3-030-82325-2

476

Index

99, 102–109, 112, 113, 137, 142,

Close-packed plane, 143–145, 149, 150

175–178, 181, 183, 184, 188, 189,

Coefficient of determination, 422, 426, 428,

192, 194–196, 198, 200–203, 206,

432, 437, 441, 442, 448, 469, 470

224, 225, 228, 237–249, 254,

Color, 55, 90, 125, 126, 128, 129, 131–135,

258–261, 266, 297, 298, 335, 345,

137, 150

406, 419, 426, 450, 449, 450, 453,

Column vector, 12, 16, 27, 41–44, 46, 47,

454, 457, 459, 472

51–53, 56, 63, 65, 66, 106,

Axis=1, 54, 67

171–174, 184, 211, 214, 219, 221,

ax1.twinx, 108

263, 264, 303, 322, 355, 434, 437,

474

COMMANDBUTTON, 128, 131, 132

B

Command button, 13, 128, 131, 132

Barometric formula, 283–285

Commutative, 46

Bayes’ rule, 329, 331, 332

Composite function, 188, 189, 191

Beats, 13, 17, 57, 59, 60, 63, 65, 68

Concatenation operator, 24, 53, 69

Bell curve, 60, 334, 335, 343, 345, 346,

Confidence interval, 309, 365–367, 370, 376,

460–467, 469–471

378, 380, 382, 388, 391, 397, 399,

Bernoulli, 227, 228, 241

407, 408, 410, 411, 414–416, 419,

Boltzmann, 103, 286, 420, 456

427, 431

Brachistochrone problem, 241

Confidence level, 7, 309, 365–368, 370, 378,

Broadcasting, 2, 12, 16, 17, 41, 42, 44–47, 66

382, 383, 385, 388, 391, 399, 408,

409, 411, 414, 415, 421, 423, 424,

431, 433, 436, 437, 439, 440, 442,

C

463–465, 467, 471

Cartesian coordinates, 13, 71, 81, 137,

Confidence-specified error, 368, 407, 409

198–202, 224, 227, 243, 252, 258,

Coordinate system, 76, 81, 83, 136, 142, 179,

264–266

198, 199, 242, 249, 251, 254, 263

Case-insensitive, 139, 148

Cosine, 9, 13, 15, 17, 57, 59–70, 73, 78, 121,

Case-sensitive, 139, 331

168, 187, 188, 193, 195, 223, 347,

Cdf, 309, 310, 333–335, 338–342, 345, 352,

449

360, 384

COUNT(, 323, 325

Cell addressing, 11, 16, 19, 22

COUNTIF, 322, 323

Cell references, 21, 26–28, 69, 122, 232

Covariance matrix, 461, 463, 466

Cell references, relative, absolute, indirect, 26

Create a name, 77

Center of gravity, 136, 212–214, 228,

Creation of diagrams, 16

251–259, 267

C-spec error, 7, 14, 367, 368, 375, 383,

Central ray, 85–87

385–387, 389–392, 394, 395, 397,

Centrifugal, 112, 207–209, 211

398, 407–412, 414–417, 422–424,

Chain rule, 189

444, 460, 463–465, 470

CHART STYLES, 23

Cumulative density function, 309, 310, 352

Checkerboard, 99, 132, 133, 135, 136, 139,

Curie–Weiss law, 419

141, 142

Curly brackets, 30, 44, 184, 200

Chemical react, 420

curve_fit, 14, 35, 419, 421, 424, 460, 461,

Chi2, 337

463, 466, 467

Chi2 distribution, 358

Cycloid, 227, 228, 238, 241, 243, 246

Chi2 test, 14, 307–314, 316, 317, 333,

337–340, 343, 345, 347, 348,

358–361

D

CHISQ.DIST.RT, 310, 312

Damping, 270, 273

CHISQ.TEST, 307, 312, 313, 317, 338

Data frame, 117, 165, 167, 169

Chisquare, 35, 308

DataFrame, 117, 165, 169

Circle, 71, 72, 86, 123, 125, 128–133, 139,

Data series into a chart, 22

140, 146, 177, 178, 194–197, 246,

Data types, 34, 36, 134

252, 260–266, 457, 458

Ddof, 310, 315–317, 321, 380, 412, 423

Index

477

Debug, 120, 127, 155

F

DEBUG/ STEP INTO, 120, 127

fcc, 143–145, 147, 148, 150, 151

Decay constant, 445

Fill handle, 21

def ArrowP, 90, 185, 234

fillstyle, 108, 214, 258, 259, 326, 331, 455

Definite integral, 106, 192

FinRes, 373, 374, 415, 429

def StdFig, 108

First derivative, 186, 187, 190, 224

Degrees of freedom, 310, 311, 313, 315, 316,

Focal ray, 86

358, 359, 361, 380, 383, 391, 412,

Focus, 17, 18, 31, 80, 81, 83, 85

421, 423, 426, 429, 433–435, 472

For-loop, 91, 118, 120, 122, 123, 130, 131,

Delete, 34, 120, 126, 314

139, 143, 146, 163, 164, 167, 206,

Delta degrees of freedom, 310, 315, 380, 423

233, 286, 315–317, 360, 389, 396,

DESIGN MODE, 25, 131

404, 415, 449

Determinant, 42, 45, 47, 48, 216, 223

FORMAT/ CURRENT SELECTION, 23

DEVELOPER, 24, 25, 118, 124, 125, 127,

FORMAT DATA SERIES, 212, 231

131, 453

FORMAT SELECTION, 23, 107

Dictionaries { }, 34

Formatted output with %, 41

Difference equations, 270

Formatting the chart, 23

Diffraction pattern, 350, 351, 356

Formula network, 76, 77, 244, 263, 372

DIM, 148, 153, 157, 171, 172

Foucault’s pendulum, 228

Frames, 136, 142, 167, 234, 236–238, 251,

direct cell addressing, 16

257

Directrix, 17–19, 31

Frequencies of occurrence, 308, 310, 311,

Distance to track, 99

315–317, 336–339, 341, 345, 350,

Distribution function, 308–310, 312, 313,

358–360, 362, 384

333–335, 338–343, 345, 346, 348,

FREQUENCY, 14, 57–64, 66, 67, 73, 92–99,

350, 352, 355, 362, 363

307, 308, 310–317, 323, 324, 326,

DO … LOOP UNTIL, 165

333, 336–339, 341, 343–345, 351,

Dollar sign, 106

353, 356–358, 360–362, 384

Dot product, 224, 253, 257

Friction, 112, 227, 269–271, 273, 274,

278–280, 282–285, 287–289, 291,

295, 298–303, 305

E

Frictional force, 208, 280, 287, 299, 306

EDX, 460, 462, 466

Friction force of the rope, 299, 300, 302

Electrical network, 182, 215, 217, 219, 221

fsolve, 35, 448, 456

Ellipse, 124, 127–129, 132, 134, 204

Fundamental frequency, 57–59, 63

EMPTY, 164, 165

Fundamental rule of statistical reasoning, 14,

Equi-distribution, 310, 313–316, 324

307, 369, 392

Equilibrium of torques, 213

Fundamental theorem of calculus, 194, 197

Error propagation in powers, 400, 403

Error propagation in products, 399, 403

Error propagation in sums, 368, 398, 402

G

Error range, 7, 14, 365–370, 374–380, 382,

Global parameters, 98, 139, 148–150, 276,

384–388, 393, 395, 411, 421,

292, 297, 404

424–428, 435, 436, 439, 442, 443,

Global variables, 132–135, 244

446, 447, 464, 467, 472

GOAL SEEK, 421

Euler, 13, 101, 269, 271, 272, 274, 276–278,

Gosset, 367

304

Gravitational force, 112, 207

Explained variance, 442

Gravity, 227, 229, 230, 253–255, 257,

Exponential, 13, 75, 78, 99, 101–107, 113,

278–280, 298, 303, 382, 390

308, 347, 372, 420, 421, 423,

Grid scale in the spreadsheet, 129

440–448

Exponential distribution, 347

Exponential growth, 75, 100

H

Externally consistent, 390, 393, 395, 396

Half-step procedure, 271, 272, 305

478

Index

Harmonics, 57–59, 62, 65, 67

Linear algebra, 17, 35, 41–43, 45, 47, 49, 181,

Height-dependent friction, 284

223

Hit rate, 7, 368, 374, 377–380, 383, 385,

Linear regression, 8, 14, 419, 420, 425, 428,

391–394, 396, 408, 409, 411, 414,

430, 443

415, 421, 424, 425, 428, 429, 433,

Linear trend line, 405, 421–427, 441, 443,

437, 439, 440, 442, 444, 447, 463,

447, 473

464, 467, 468, 471

Line breaks, 250

LINEST, 419, 421, 424, 426–429, 431, 434,

436, 437, 440, 442, 447, 472

I

Line vector, 181–184, 209, 211

Identifier, 21, 30, 33, 34, 37, 38, 46, 55, 64,

Linked cell, 25, 26, 71, 79, 110, 184, 232, 255

76, 162, 170, 184

List comprehension, 12, 16, 109, 224, 324,

If, 10, 13, 14, 115, 117, 123, 167, 224, 303

388, 467

If … then … else, 349

List processing, 15, 16, 181

IF(, 10, 294, 303, 322, 323

Logarithm, 13, 105, 223, 372, 440, 441

Imaging equation for lenses, 13, 82, 83

Logarithmic scale, 105, 107

import numpy as np, 35, 36

Logarithmized data, 405, 406, 441–443,

Indentation, 139, 167, 283

445–447

Independent variable, 9, 10, 20, 27, 53, 63, 76,

LOGEST, 440, 447, 448

77, 97, 102, 106, 117, 188, 196,

Logical branches, 117, 125

261, 262, 285, 291, 349, 352, 399,

Logical IF queries, 133

400, 420, 424, 426, 429, 435, 436,

Longitudinal wave, 260

445, 448

LookAhead, 273–279, 285, 304

INDIRECT, 11, 16, 26, 27, 70, 249, 386, 387

Loop2i, 13, 118, 121, 123, 163, 176, 207

Indirect cell addressing, 11, 16

Integer, 25, 26, 34, 101, 131, 132, 139, 148,

157, 176, 222, 223, 236, 309, 339,

M

372

Mach cone, 258, 259, 264, 265

Integral function, 192–195

Macro recorder, 115, 117, 124, 125, 174–176

Integration along a line, 182

Magic chord, 30, 44, 52, 172, 184, 311, 312,

Internally consistent, 391, 393, 395, 396

428

Interval search with five queries, 353

Mass-spring system, 187, 270, 272, 275, 278,

Inverse matrix, 45, 182, 219, 222

298, 306

Mathematical functions, 8, 36, 78, 93, 182,

222–224, 346

J

Mathematical pendulum, 306

Join, 151–153, 155, 158, 176

Matlab, 35

Jupyter, 3, 11, 16, 31, 32, 64

Matplotlib, 35, 39, 55, 65, 90, 175, 176, 185,

229, 234, 235

matplotlib.pyplot, 175

K

Matrices, 12, 13, 16, 27, 38, 39, 41–49, 57,

Karl Popper, 339

184, 219, 223, 225, 261, 296

Keyword argument, 55, 90, 94, 98, 138, 139,

Matrix equation, 217–220

166, 167, 185, 233

Matrix formula, 2, 17, 29, 30, 50, 52, 184,

Kirchhoff’s rules, 182, 215, 217, 219, 220

200, 201, 263, 448

Matrix function, 12, 30, 172, 219, 222, 307,

309, 311, 312, 316, 428, 440

L

Matrix of powers, 216, 218, 221

Laboratory system, 228, 238, 243, 246, 247,

Matrix operations, 2, 15, 17, 41, 45, 182, 225

249–251, 266

MDETERM, 45, 223

Langevin, 456–459

Mean, 13, 14, 27, 38, 57, 61, 62, 73, 79, 85,

Length l of a vector, 43

100, 101, 104, 119, 131, 137, 174,

Length of a curve, 181, 194

239, 240, 243, 260, 269–271, 276,

linalg, 47

281, 293, 303, 305, 307, 310, 312,

Index

479

313, 316, 318, 320–322, 324, 333,

NORM.INV, 293, 308, 309, 333, 336, 337,

334, 339, 340, 342, 343, 356,

343, 345, 363, 381, 408, 412, 413,

358–360, 362, 366–369, 371, 372,

425, 427, 443, 469

374–378, 380–382, 384–387,

np.append, 109, 176, 196, 225, 388, 432

390–395, 397–402, 404, 407, 408,

np.arange, 12, 16, 37, 70, 107, 108, 295

410–413, 417, 422, 423, 426, 433,

np.arctan2, 39, 137

444, 445, 460, 461

np.array, 12, 36, 47, 53, 65, 70

Microphone signal, 57–59

np.dot, 39, 46, 224, 253

Mid-perpendicular, 181–183, 349

np.exp, 101, 335

Midpoint, 137, 182

np.extract, 325, 332

Minimize, 35, 421, 425, 448, 456, 459

np.flipud, 90

MINVERSE, 45, 219, 223, 225

np.histogram, 315–317, 341, 362

MMULT, 29, 45, 219, 223, 225, 254

np.hstack, 38, 90

Mobile, 182, 212–214

np.inf, 317

np.linspace, 12, 16, 37, 53, 65, 70, 108, 109,

MOD, 222, 292, 293

224, 225

Module in VBA, 164

np.linalg.det, 43, 47, 49

Modulo, 222, 293

np.log, 37, 308

Moment of inertia, 227, 228, 251, 253–256,

np.logical_and, 324, 325, 389

258

np.logical_not, 325

Motion on a straight line, 93

np.logical_or, 325

Multilinear regression, 420, 431–433

np.matmul, 219, 223

Multi-line strings, 158

np.mean, 320

Multiple statements on one line in VBA, 122

npr.choice, 307–309

Multiple tests for error probability, 309

npr.rand, 35, 37, 141, 308, 315, 317, 343

Multiple tests for hit rates, 366, 368, 387

npr.randn, 35, 37, 336, 341, 412

npr.random, 324, 332, 336, 341, 345

np.shape, 38, 47

N

np.std, 321, 380, 412

N/A, 322, 323

np.tan, 39, 308

NameError, 32

np.transpose, 46, 47, 49

Name Manager of EXCEL, 27

npl.linalg.inv, 43

Naming cell ranges, 11, 51

numpy.linalg, 43, 182, 221, 222, 225

Naming cells, 21

Numpy.random, 35, 37, 135, 307–309, 324,

Ndarrays, 36

336, 363

Nested loop, 122, 132, 141, 176, 178, 282, 344

Network of formulas, 75

O

Newton’s equation of motion, 7, 13, 269, 270,

Object-side, 81, 86

272, 275, 305

ON ERROR GOTO, 155

Newton’s law, 188, 269

openpyxl, 166

Newtonian friction, 271, 279

Ordinary Least Squares (OLS), 421, 424, 437,

Nodes, 58, 60

438

Noise, 307, 344, 365, 366, 368–370, 384, 391,

Orthogonal vector, 209

398, 400–403, 407, 410–414, 419,

Oscillation of a mass-spring-system, 187

421, 423–427, 431, 432, 435, 436,

out.to_excel, 169

441–445, 460, 463–465, 468–470

OverflowError, 101

Nonlinear equations, 448

Overtones, 13, 17, 57–59, 62, 73

Nonlinear regression, 419, 421, 422, 460

Normal distribution, 7, 308, 309, 333–336,

340–343, 345, 346, 359, 360, 362,

P

381, 425–427, 431, 435, 445, 460,

Pandas, 35, 117, 160, 162, 165, 167

468

Parabola, 15, 17–20, 22, 24, 40, 49–53, 55, 56,

NORM.DIST, 309, 333, 335, 343, 469

178, 189, 229–231, 420, 431–437,

480

Index

439, 440, 444, 445, 448–451, 455,

378, 382–387, 389, 394, 396, 433,

472

440, 460, 471

Parabola from vertex, 17

Probability Density Function (PDF), 310,

Parallelogram of forces, 203

333–336, 339, 340, 342, 343, 345,

Path velocity, 240, 243

347, 350–352, 358–360, 362, 384

Pendulum, 9, 227, 228, 246–251, 382, 390

Procedure header, 129, 130, 133–135, 138,

Percent point function, 309, 310, 334, 340,

139, 146

352

Product rule of probability, 326, 327

Perpendicular, 110, 112, 141, 182–184,

Program flow in Jupyter, 64

204–208, 224, 237, 308

Progress loop, 272, 277, 282, 283, 287, 295,

Perpendicular bisectors, 198

297

Photons, 308, 348–350, 355, 356, 358, 460

Progress with look-ahead, 13, 269, 271, 272,

Physical unit, 10, 76, 199, 200, 208, 232, 247,

274, 291, 302, 305

273, 290, 320, 334, 367, 368, 375,

PROJECT EXPLORER, 126, 127, 168, 170

398

Projectile motion, 227

Plain-text file, 161

Projectile trajectory, 227, 229, 230, 233

Pythagoras, 96

Plot objects, 234–236, 238

plt.arrow, 185, 186, 233

plt.axis(‘scaled’), 203

Q

plt.legend, 55

Quantile function, 334

plt.rcParams, 237

plt.savefig, 98

plt.xscale(value”log”), 108

R

plt.yscale, 40, 108

R1C0 in Pandas, 165

Points, 6, 8, 18, 19, 27, 29, 39, 43, 55, 60, 62,

Radius of curve, 209, 211

63, 65, 78–81, 85, 86, 88–91, 95,

Ray constructions, 76, 83, 85, 90

110, 124, 130, 137, 139, 177–179,

RBS, 161, 163

183–185, 187, 199–202, 209–211,

rcParams, 39, 235, 237

213, 228, 230, 233, 236, 238–249,

RECORD MACRO, 124, 125, 131, 174, 453

251–256, 260, 265–267, 269, 270,

Rectangle, 25, 76, 77, 118, 123, 125, 126,

294, 298–301, 318–320, 324–330,

131–135, 139, 148, 318–327, 330

369, 375, 410, 451, 457

Referring to names in a cell, 29

Polar coordinates, 13, 71, 78, 137, 182, 195,

Referring to names in a matrix function, 30

200–202, 204, 227, 242, 258, 260,

Regression coefficient, 425

261, 265

Relative addressing, 15, 20

Polynomial, 19, 178, 182, 192, 193, 195, 196,

Rep-log procedure, 13, 117, 121, 177, 240,

204–207, 215, 216, 218–221, 421,

243, 293, 314, 344, 347, 348, 356,

431, 432, 434, 437, 444, 448, 449,

379–381, 387, 389, 392, 395, 401,

472

403, 427, 428, 435–437, 442, 447,

Polynomial from defining points, 220

449, 450, 471, 472

Power fluctuations, 289

Residual variance, 422, 423, 432, 433

Power-law trend line, 405, 406

RGB, 128

Power operator, 20, 211

Rolling curve, 228, 238, 242, 243

Powers of 2, 100

Rope friction, 300

ppf, 308, 310, 333–336, 340, 341, 343,

Rotation, 183, 227, 228, 238, 239, 241–243,

345–347, 350–355, 357, 383, 384,

246–248, 251–256, 266

388, 439, 440

Rotational matrix, 184, 228, 247, 252–256

Printoptions, 45

RotMat, 254

Printoptions for arrays, 45, 46

Round, 222

Probability, 7, 308–310, 313, 314, 323, 324,

Round a measurement result, 372

326–330, 333–336, 338–340,

Row vector, 12, 16, 27, 41–44, 46, 47, 50, 51,

342–346, 348, 350–352, 358, 359,

53, 63, 65, 66, 171–174, 221, 253,

361–363, 365, 367, 368, 375, 376,

261, 263, 264, 437

Index

481

Runge-Kutta, 6, 13, 269, 271–281, 283, 295,

358–360, 365, 367, 375–378, 382,

305

385, 386, 394, 397–405, 407, 408,

410, 411, 413, 417, 423–426, 431,

435, 436, 445, 460–462, 464, 465,

S

469, 470

Scalar product, 46, 168, 170–173, 182, 198,

Standard error, 14, 325, 365–367, 369–372,

200–202, 208, 209, 211, 224

374–380, 382–384, 386, 387, 390,

Scan-log procedures, 117

391, 393, 399, 408, 410–412, 417,

Scipy, 35, 333, 459

421, 424–429, 431–433, 435–437,

scipy.optimize, 421, 448, 456, 461, 463

440, 442, 445–448, 461–463,

Scipy.stats, 35, 307–309, 341, 358, 421, 424,

465–468, 471, 473

437, 438, 460

Standard error range, 367, 369, 370, 376–380,

scipy.stats as sct, 309, 341

382, 421, 424, 425, 427, 428, 442,

SCROLLBAR, 15, 19, 24–26, 71, 179, 200

446

sct.chi2, 358

Static friction, 112, 287, 291

sct.chisquare, 316, 317

STDEV.S, 320

sct.norm, 308

Steiner’s, 228, 251, 254, 256, 267

sct.norm.ppf, 332, 336, 341, 345

Straight line, 9, 43, 70, 76, 78–80, 87, 92–95,

sct.t, 383–385, 388, 396, 415, 416, 429, 433,

102–104, 110, 112, 113, 179, 208,

438–440, 442

228, 238, 260, 265, 269, 350, 384,

sct.t.ppf, 385, 433, 440

403, 406, 419, 420, 423–426,

Secondary y-axis, 40

428–430, 440, 442, 448–451,

Second derivative, 181, 185–187, 189–192,

453–455, 457, 472–474

224

Straight-line segment, 176, 177, 181–184

SET OBJECTIVE, 450, 451

Student’s t, 14, 382, 384, 390, 408, 409, 411,

Sets { }, 34

431, 433, 439, 465

Shape, 17, 36–38, 41–45, 47, 49, 53, 65, 70,

Subplots, 108, 234

80, 123, 129, 133, 135, 137, 139,

SUB SCROLLBAR1_CHANGE(), 26

144, 187, 283, 296, 315, 357, 364,

SUMPRODUCT, 211, 223–225, 253, 254, 256

439, 459

SUMSQ, 223

signum, 93, 279

SUMXMY2, 184, 223

Sine function, 27, 57, 69, 72, 187, 188, 190,

Support points, 269, 271

193, 195, 197, 257

Swinging anchor, 228, 256

SI units, 273

Symmetric difference, 34, 329, 330

Slicing, 2, 12, 34, 97, 151, 191, 205, 206, 225,

System of equations, 225

244

Systems of linear equations, 181, 182, 215

Slider, 12, 13, 15, 16, 19, 20, 24–26, 60, 71,

77, 79, 80, 110, 111, 117, 179, 184,

185, 200, 201, 211, 227, 231, 232,

T

239, 244, 249, 255, 260, 263, 449,

450, 452, 453

t adaptation, 368, 423, 444, 460, 463, 470

SLSQP, 459

Tangent, 13, 99, 102, 106, 108, 182, 186,

sm.add_constant, 429

204–207, 223, 264, 265

sm.OLS, 429

Tangential vector, 230

SOLVER, 14, 419, 421, 448–454, 456, 459,

T.DIST.2T, 383, 473

460, 469, 472–474

Text processing, 151, 152, 157, 158, 176, 355

Solver algorithm, 449, 452, 458, 461, 473

T.INV.2T, 383

Sound, 4, 57, 58, 92, 95–97, 112, 116, 228,

Trace to the predecessor, 106

258–261, 263–265, 285, 309

Translation, 227, 228, 238, 239, 243

Sound barrier, 258–260, 265

TRANSPOSE, 45

Sound wave, 258–260, 263

Trapezoidal rule of integration, 224

stackoverflow.com, 35, 158

TRENDLINE, 367, 407, 422, 427, 437, 441,

Standard deviation, 14, 293, 294, 318–322,

445

324, 333, 334, 340, 342–344,

TRENDLINE OPTIONS, 437

482

Index

Triangle, 60, 63, 112, 123, 125, 132–134, 136,

Vectors, 10, 12, 13, 16, 27, 29, 41–48, 50, 51,

137, 139, 140, 142

53, 63, 65–67, 110, 113, 117, 168,

t statistics, 365, 367, 377, 382, 384, 388, 410,

170–174, 181, 182, 185, 198–202,

419, 431

207–211, 232, 237

Tuple, 41, 142, 330, 332

Vectors in polar and Cartesian coordinates,

Turtle, 115, 135–137, 139–143, 148, 150

198

TypeError, 94

Vectors in the plane, 13, 182, 198

Vectors with Python, 185

Vertex form, 17, 19

U

Uncertainty relation, 59, 61

Uniform motion, 230

W

Union, 34, 327, 328, 330, 394

Wave crests, 258–264

Unit matrix, 45, 48

Wavefronts, 228, 258, 259, 261

Unsupported operand type, 325

Wave-particle dualism, 348

Unwrapping a list, 94

Upper envelope, 17, 19, 49–51, 56

Weighted average, 182, 212, 213, 271, 276,

281, 389

Weighted sum, 13, 253, 392, 397

V

ValueError, 33, 36

Variance, 14, 320, 334, 366, 367, 375, 380,

X

390, 391, 393, 395–398, 400, 407,

xy-plane, 27, 43, 80, 90, 198–202, 209,

408, 412, 422, 423, 433, 442

211–213, 227, 230, 231, 241, 254,

VAR.S, 320

258, 262, 266

VBA macro to a control element, 26

VBA terms, 155

Vector addition, 199

Z

Vector product, 117, 170–173

zip, 330, 332

Document Outline

	Preface

	Contents

	About the Author

	1 Introduction

	1.1 A Two-Track Didactical Approach

	1.2 What Can You Expect?

	1.3 What Do You Need?

	1.4 Tim, Alac, and Mag

	1.5 Didactic Concept

	1.6 Subject Matter

	1.7 Getting Started with Excel

	1.7.1 Start Menu

	1.7.2 Spreadsheet Presentation

	1.8 Getting Started with Python

	1.9 Skills to Be Trained

	2 Data Structures, Excel and Python Basics

	2.1 Introduction: Named Ranges in Excel, Arrays in Numpy

	2.2 Characteristics of a Parabola

	2.2.1 Different Definitions of a Parabola

	2.2.2 Data Structure and Nomenclature

	2.3 Basic Exercise in Spreadsheet Calculation

	2.3.1 Cell Addressing

	2.3.2 Graphical Representation of a Function

	2.3.3 Smart Legends in Figures

	2.3.4 Scroll Bars

	2.3.5 Summary: Cell References and Name Manager

	2.3.6 What Have We Learned so Far, and How to Proceed Further?

	2.3.7 Python Program

	2.4 Python and NumPy Basics

	2.4.1 Basic Exercise

	2.4.2 Data Structures

	2.4.3 Python Libraries

	2.4.4 Numpy Constructions

	2.4.5 Standard Plot Program

	2.4.6 Formatted Output

	2.5 Matrix Calculations in Excel and Python

	2.5.1 Data Structure and Nomenclature

	2.5.2 Operations on Arrays

	2.5.3 Matrices in Spreadsheets

	2.5.4 Matrices in Python

	2.6 Four Parabolas and Their Upper Envelope

	2.6.1 Graphical Representation

	2.6.2 Data Structure and Nomenclature

	2.6.3 Spreadsheet Calculation

	2.6.4 Python Program

	2.6.5 Extrema Along Different Axes

	2.7 Sum of Four Cosine Functions

	2.7.1 Sound and a Cosine Identity

	2.7.2 Data Structure and Nomenclature

	2.7.3 Spreadsheet Layout

	2.7.4 Python Program

	2.7.5 Producing Labels (as Strings) in Excel and Python

	2.8 Questions

	3 Formula Networks and Linked Diagrams

	3.1 Introduction: Well-Structured Sheets and Programs

	3.2 Image Construction for Focusing and Diverging Lenses

	3.2.1 Straight Line Equation

	3.2.2 Geometrical Image Construction for a Thin Focusing Lens

	3.2.3 Imaging Equation with Correct Signs

	3.2.4 Beam Through a Converging Lens that Really Contributes to the Image

	3.2.5 Data Structure and Nomenclature

	3.2.6 Spreadsheet Calculation

	3.2.7 Python Program

	3.3 Doppler Effect

	3.3.1 A Formula for All Cases

	3.3.2 A Sound Source Passes a Remote Receiver

	3.3.3 Data Structure and Nomenclature

	3.3.4 Spreadsheet Calculation “Remote Receiver”

	3.3.5 Python Program “Remote Receiver”

	3.4 Exponentials

	3.4.1 Explosive Character of Exponentials

	3.4.2 General Exponential Function

	3.4.3 Representation in a Diagram

	3.4.4 Diode Characteristics I(U)

	3.4.5 Data Structure and Nomenclature

	3.4.6 Spreadsheet Calculation

	3.4.7 Python Program

	3.5 Questions

	4 Macros with Visual Basic and Their Correspondences in Python

	4.1 Introduction: For, If, Sub/Def

	4.2 Basic Exercise: For-Loops

	4.2.1 Visual-Basic-Editor 1: Editing

	4.2.2 Programming

	4.3 Macro-Controlled Drawings with For, Sub, If

	4.3.1 Macro Recorder

	4.3.2 Visual-Basic Editor 2: Macro Recording, Debugging

	4.3.3 Programming Elements

	4.4 A Checkerboard Pattern (Excel)

	4.4.1 Checkerboard, Same-Colored and Multi-colored

	4.4.2 Global Variables

	4.5 A Checkerboard Pattern (Python)

	4.5.1 Turtle

	4.5.2 Differences to Visual Basic

	4.5.3 Checkerboard with Squares, Triangles, and Circles

	4.6 Drawing Densely-Packed Atomic Layers; Crystal Physics

	4.6.1 Program Structure and Geometry

	4.6.2 Data Structure and Nomenclature

	4.6.3 Excel

	4.6.4 Python

	4.7 Text Processing

	4.7.1 Cutting and Joining Strings

	4.7.2 Data Structure and Program Flow

	4.7.3 Excel

	4.7.4 Programming Step by Step

	4.7.5 VBA Constructs

	4.7.6 Python

	4.8 Processing the Protocol of a Measuring Device

	4.8.1 Protocol of a Measuring Device

	4.8.2 Detection of Code Words

	4.8.3 Data Structure and Nomenclature

	4.8.4 Excel

	4.8.5 Python

	4.9 User-Defined Functions

	4.9.1 User-Defined Functions as Add-In

	4.9.2 Scalar Product and Vector Product

	4.9.3 Python

	4.10 Questions and Tasks

	5 Basic Mathematical Techniques

	5.1 Introduction: Calculus, Vectors, and Linear Algebra

	5.2 Straight-Line Segment Under a Magnifying Glass

	5.2.1 Under a Magnifying Glass

	5.2.2 Data Structure and Nomenclature

	5.2.3 Spreadsheet Calculation

	5.2.4 Plotting Vectors with Python Matplotlib

	5.3 Differentiation

	5.3.1 First and Second Derivative

	5.3.2 Data Structure and Nomenclature

	5.3.3 Spreadsheet Layout

	5.3.4 Python Program

	5.4 Integration

	5.4.1 Area Under a Curve

	5.4.2 Length of a Curve

	5.4.3 Data Structure and Nomenclature for the Arrays in the Integration

	5.4.4 Python Program

	5.4.5 Spreadsheet Solution

	5.5 Vectors in the Plane

	5.5.1 Vectors

	5.5.2 Data Structure and Nomenclature

	5.5.3 Spreadsheet Layout

	5.5.4 Python Program

	5.6 Tangents to and Perpendiculars on a Curve

	5.6.1 At/On a Polynomial and an Ellipse

	5.6.2 Data Structure and Nomenclature

	5.6.3 Python Program

	5.6.4 Spreadsheet Solution

	5.7 Banked Curve

	5.7.1 Cross-Section of the Road

	5.7.2 Data Structure and Nomenclature

	5.7.3 Python Program

	5.7.4 Spreadsheet Solution

	5.8 Weighted Average

	5.8.1 A Mobile with Two Arms

	5.8.2 Data Structure and Nomenclature

	5.8.3 Python Program

	5.8.4 Spreadsheet Calculation

	5.9 Systems of Linear Equations

	5.9.1 Polynomial and Electrical Network

	5.9.2 Data Structure and Nomenclature

	5.9.3 Spreadsheet Solutions

	5.9.4 Python Programs

	5.10 Some Mathematical Functions

	5.11 Questions and Tasks

	6 Superposition of Movements

	6.1 Introduction: Translations and Rotations

	6.2 Projectile Trajectory with Velocity Vectors (T-T)

	6.2.1 Projectile Trajectory and Velocity Vectors

	6.2.2 Data Structure and Nomenclature

	6.2.3 Spreadsheet

	6.2.4 Python

	6.2.5 Animation of Figures with FuncAnimation

	6.3 Cycloid, Rolling Curve (R-T)

	6.3.1 Trace of a Writing Point Fixed at a Rolling Wheel

	6.3.2 Data Structure and Nomenclature

	6.3.3 Excel

	6.3.4 Python

	6.4 Foucault’s Pendulum (T-R)

	6.4.1 A Lecture Experiment

	6.4.2 Data Structure and Nomenclature

	6.4.3 Excel

	6.4.4 Python

	6.5 Anchor, Deflected Out of Its Rest Position (R-R)

	6.5.1 Deflected Anchor

	6.5.2 Data Structure and Nomenclature

	6.5.3 Excel

	6.5.4 Python

	6.6 Wavefronts, Sound Barriers, and Mach Cone (T-T)

	6.6.1 Emitting Sound Waves

	6.6.2 Data Structure and Nomenclature

	6.6.3 Spreadsheet Solution

	6.6.4 Python

	6.7 Questions and Tasks

	7 Integration of Newton’s Equation of Motion

	7.1 Introduction: Approximated Mean Value Instead of Exact Integration

	7.1.1 Newton’s Equation of Motion

	7.1.2 Four Methods for Estimating the Average Acceleration in a Time Segment

	7.1.3 Tactical Approaches in Python and Excel

	7.2 Harmonic Oscillation with “Progress with Look-Ahead” and “Runge–Kutta”

	7.2.1 Equation of Motion

	7.2.2 Data Structure and Nomenclature

	7.2.3 Spreadsheet Calculation

	7.2.4 Python

	7.3 Falling from a (Not Too) Great Height

	7.3.1 Limiting Cases, Analytically Solved

	7.3.2 Data Structure and Nomenclature

	7.3.3 Spreadsheet

	7.3.4 Python

	7.4 Stratospheric Jump

	7.4.1 Data Structure and Nomenclature

	7.4.2 Spreadsheet Calculation

	7.4.3 Python

	7.5 A Car Drives with Variable Power

	7.5.1 Various Types of Power

	7.5.2 Data Structure and Nomenclature

	7.5.3 Excel

	7.5.4 Python

	7.6 Bungee Jump

	7.6.1 Simulation of the Motion

	7.6.2 Analytical Calculations

	7.6.3 Data Structure and Nomenclature

	7.6.4 Excel

	7.6.5 Python

	7.7 Questions and Tasks

	8 Random Numbers and Statistical Reasoning

	8.1 Introduction: Statistical Experiments Instead of Theoretical Derivations

	8.2 Equi-Distributed Random Numbers, Frequencies of Occurrence, Chi2 Test

	8.2.1 A Spreadsheet Experiment with Random Numbers

	8.2.2 Data Structure and Nomenclature

	8.2.3 Python

	8.3 Points Randomly Distributed in a Unit Square

	8.3.1 Creation and Distribution of the Points

	8.3.2 Data Structure and Nomenclature

	8.3.3 Excel

	8.3.4 Python

	8.3.5 Why Calculate Twice?

	8.4 Set Operations in Numpy

	8.4.1 Sets

	8.4.2 Data Structure and Nomenclature

	8.4.3 Python

	8.5 Normally Distributed Random Numbers

	8.5.1 Normal Distribution, Probability Density and Distribution Function

	8.5.2 Random-Number Generator and Frequencies of Occurrence

	8.5.3 Where Do Observed and Theoretical Frequencies Fit Better Together?

	8.5.4 Data Structure and Nomenclature

	8.5.5 Python

	8.5.6 Excel

	8.6 Random-Number Generator, General Principle

	8.7 Diffraction of Photons at a Double-Slit

	8.7.1 Physical Background: Wave-Particle Dualism

	8.7.2 Cos2 Distribution

	8.7.3 Data Structure and Nomenclature

	8.7.4 Python

	8.7.5 Excel

	8.7.6 Simulation in a Spreadsheet

	8.8 Chi2 Distribution and Degrees of Freedom

	8.8.1 Data Structure, Nomenclature

	8.8.2 Python

	8.9 Questions and Tasks

	9 Evaluation of Measurements

	9.1 Introduction: We Know Everything and Play Stupid

	9.2 Weighing a Glass Substrate

	9.2.1 Discussion on the Accuracy of a Balance

	9.2.2 Data Structure and Nomenclature

	9.2.3 Excel

	9.2.4 Python

	9.3 A Procedure for Rounding to Relevant Digits

	9.3.1 Numerical Evaluations

	9.3.2 Spreadsheet Calculation

	9.3.3 Python Function

	9.3.4 VBA Function

	9.4 Increasing the Measuring Accuracy Through Repetition

	9.4.1 Standard Deviation and Standard Error of the Mean Value of a Measurement Series

	9.4.2 Data Structure and Nomenclature

	9.4.3 Python Program

	9.4.4 Spreadsheet Layout for This Task

	9.4.5 How to Report a Measurement Result

	9.5 The t Statistics Connects Confidence Interval with Confidence Level

	9.5.1 Student's t Distribution

	9.5.2 Data Structure and Nomenclature

	9.5.3 Spreadsheet Calculation

	9.5.4 Python Program

	9.6 Combining Results from Several Measurement Series

	9.6.1 Combining Two Measurement Results

	9.6.2 Data Structure and Nomenclature

	9.6.3 Spreadsheet Calculation

	9.6.4 Python, Internally and Externally Consistent Error of the Combined Result

	9.7 Propagation of Standard Deviations

	9.7.1 Rules for Propagation of Standard Deviations

	9.7.2 Data Structure and Nomenclature

	9.7.3 Spreadsheet Calculation

	9.7.4 Python Program

	9.8 Propagation of Confidence Intervals

	9.8.1 From Variance to Confidence

	9.8.2 Sum and Product of Two Measurands

	9.9 Mass of a Thin Film on a Glass Substrate

	9.9.1 Instructions for Use for Accurate Measurements and Their Results

	9.9.2 Data Structure and Nomenclature

	9.9.3 Spreadsheet Solution

	9.9.4 Python Program

	9.10 Questions and Tasks

	10 Fitting Trend Curves to Data Points

	10.1 Introduction: Linear and Nonlinear Regression

	10.1.1 Straight Line Through Data Points by Sight

	10.1.2 Multilinear Regression

	10.1.3 Nonlinear Regression

	10.1.4 Coefficient of Determination R2

	10.1.5 C-spec Error with Iterative t Adaptation

	10.2 Linear Trend Line

	10.2.1 Creating Data Points and Evaluating Them

	10.2.2 Data Structure and Nomenclature

	10.2.3 Spreadsheet Calculation with Linest

	10.2.4 Python Program

	10.3 Fitting a Polynomial Trend Line to Data Points with Multilinear Regression

	10.3.1 Introduction

	10.3.2 Data Structure and Nomenclature

	10.3.3 Spreadsheet Solution

	10.3.4 Python Solution

	10.4 Exponential Trend Line

	10.4.1 Exponential and Logarithm

	10.4.2 Exponential or Polynomial?

	10.4.3 Data Structure and Nomenclature

	10.4.4 Python Program

	10.4.5 Spreadsheet Solution

	10.5 Solving Nonlinear Equations

	10.5.1 Intersection of Straight Lines with a Parabola

	10.5.2 Data Structure and Nomenclature

	10.5.3 Spreadsheet Calculation

	10.5.4 Python Program

	10.6 Temperature Dependence of the Saturation Magnetization of a Ferromagnet

	10.6.1 Langevin Function

	10.6.2 Data Structure and Nomenclature

	10.6.3 Spreadsheet Layout

	10.6.4 Python

	10.7 Fitting Gaussians to Spectral Lines with Nonlinear Regression

	10.7.1 Fitting the Sum of Two Gaussians to Data Points

	10.7.2 C-spec Errors of the Coefficients by a Statistical Simulation

	10.7.3 Data Structure and Nomenclature

	10.7.4 Python

	10.7.5 Spreadsheet

	10.7.6 C-spec Error of the Optimized Coefficients by Simulation-Based t Adaptation

	10.8 Questions and Tasks

	 Index

	Index

index-291_1.jpg
— cV=0.004 v[0}=0.0
€V=0.004 v[0]=40.0
€V=0.004 v[0]=-80.0
+ slope-g

vim/s]

ts]

index-290_1.jpg
— RungeKutta,
RungeKutta,

12

index-301_1.jpg
80

40 (5150

20

index-296_1.jpg
t[s] 0 10 20 30 40 45 50 65 100 150 200 250
v[m/s] 0 -100 -190 -270 -340 -350 -350 -300 -155 90 -70 -55

index-306_1.jpg
A B [<] D [¥ []

7 ® m W W P aMax
2] 03 150 05 2 10000 150
£
in)
L ypm P
P

V<P aFa
o pwé’/ 'ﬂfw T
_p6+dt _pp(vP cé+f MINP! at MNP

t e v a__w __ap

000 1000[000001] 150 053 127

035 1000 0.48 138 097 069

gﬁmmb

80.15 100000 56.87] 0.09 5691 0.09

index-305_1.jpg
1 Sub Vari()

2 The course of velocities is

3 ‘calculated several times and

4 'stored in columns 9-11.

512=6

6 Cells(3, 10) = "a; DelT="& Round(Cells(2, 2), 2)
7Forrep=1To5

s Application Calculation = xiCalculationManual

5

10

For r = 6To 235 Step 5
Cells(r2, 9) = Cells(r, 1) 'tR
Cells(r2, 10) = Cells(r, 4) V.R
Cells(r2, 11) = Cells(r, 5) 'a.R
2=r2+1
Next r
2=12+1
Application.Calculation = xiCalculationAutomatic
Next rep
End Sub

index-340_1.jpg
10 O T ™ K]
09 0.9 4%)%g(xx X
T
08 PO T —
07 07)gxﬁf(*
06 06 < X5 F*
- os) X smat b
: 51 0 sect,mimored P g&?‘
0.4 044 x >
x
03 . 034 X X
hx X
02{ + GTyn s 021 R N g x
0] * R o xoc a5 o% ook
1 0 eeryrn %A BN NES %
0.0 - 0.0+

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
]

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
%

index-319_1.png

index-352_1.jpg
© 3
s S
3392 oD

0 10 20 30 40 50 60 70 80 90 100

Smp10ON

index-348_1.jpg
frequencies

+ randn
® ppftrandom)
— freaxpC

— par

cdf
X x=ppf(p))

cover_image.jpg
Mergel D. Physics
with Excel and
Python Vo

index-230_1.jpg
X [5.401+[8.301'x+[-2.04]'x"2+[0.14]'X**3

5448 X+-2.042+0.14%
x xPyP

10

index-244_1.jpg

index-240_1.png

index-248_1.jpg
ym]

o
o5
.
- === In
% Ea
S >
: *
-
&
%[l i

index-245_1.jpg

index-268_1.jpg

index-257_1.jpg
o

index-279_1.jpg
2.0

154
> 1.0
0.5

0.0

index-278_1.jpg
3000

2000

1000

1000

2000

3000

3000

2000

1000

-1000

-2000

-3000
~6000

index-281_1.png

index-465_1.jpg
References - VBAProject X

vi
I Microsoft Forms 2.0 Object Library
[IRef Edit Control

index-462_1.jpg

index-24_1.jpg
Fle Home Insert Pagelayour (SRS POF Architect d Creator Q) Tell me

Savosom - Blogal- @~ ST precedents 5
1B Recently Used - |11 Text - -5 A 2% Trace Dependents ¥4 -
e Name 4
Funcoon 18 Fnn 1B 0stecTime- [puager 5 st fom Seection 5. Remave Arows - ()
Funcion by oetincatames FomutsAudting
— - o wmary
Add mathrtigonomery
B e e e 2 5

|

=

et | cacmton

Whsio | O
Carciation

index-17_1.png

index-28_1.jpg
7 jupyter Untitled22

=Menu
+(@B+ v [HRn|m Cc»
=
In [5]):
1 import numpy as np
2 x=np.array([[1,2,3],[4,5,6]1)
3 print(x)
23]

[4 5611

Run

e

Trusted

Logout

| Python3 O

Code

v

index-27_1.jpg
Z Jupyter

Files ~ Running Clusters

Select items to perform actions on them.

o |~ i Python/ PyPhEx]
o

O O Untitled

O & 8.1 Variance.ipynb

O @ 9.8 Langevin.ipynb

Name ¥

Quit Logout
Upioad | [New=] <
Notabook
Python 3 B
omer
Text File
Folder 8
Terminal
8

index-36_1.jpg
A B C 3 F | 6 H
1 XV -2 vertex 30]]
2 W 6.6 vertex 66 1 o =
3] o 49/l o l
4] b 2*83*B1
5| a .2 =B2+B3*B1A2 =yV#c_*xVA2
6| ax 01 6.2+-0.4x+-0.1x =a&"+"&b&"x+"&c_&"X*"

"2
L0
sA.Aw*sBs X2

7 Laorss0 _qps513® L™
8 X yP YA
9 80 30 30
0] 79 3.1 ERY
169) 8.0 3.4 E

index-31_1.png

index-360_1.jpg

index-371_1.jpg
0.16

01z ——P=0.7

4 - - dof=15
0.08

0.04

0.00

index-362_1.jpg
20 T
e CosSq_pa. With CosSa_pof
— Cossq_car | — cossq_par
X Cossq_ppt, pox 1
15 .
a10
os
00kt . o 1 |
“oso -025 000 025 050 ~05-04-03-02-01 00 01 02 03 04 05

index-377_1.png

index-376_1.jpg
def House (x0,x1,y0,yl):
x=[]
y=01

return x, y
xMin=-8

xMax=8
x1,yl=House (-5,-3,2,7)

-8

-6

-4

index-430_1.png

index-396_1.jpg
4-3-2-10 1 2 3 4 5

index-460_1.jpg

index-442_1.jpg
4

index-461_1.png

index-1_1.jpg

index-1_3.jpg

index-1_2.jpg
3 ‘

index-1_5.jpg

index-1_4.jpg

index-1_7.jpg

index-1_6.png

index-1_8.jpg

index-99_1.jpg
16

12

(Xo.Yo)

16

12

(Xo.Yo)

index-94_1.jpg

index-103_1.jpg
1 Sub Bundle()
2 %O = Range("C3")

3O = Range("C4")

4 X1 = Range("C6")

5 y1 = Range("C7")

60R =11 'Number of rays
7RL=3 'Lens radius
8Dy=2*RL/(R-1)
912=3 “First row for output
102 =10 'ColumnJ]

Fori=0TonR-1
Cells(r2, c2) = X0
Cells(r2, 2 +1) =y0: 12 =12 + 1
Cells(r2, c2) = 0
Cells(r2, 2 + 1) =RL+ i *Dy: 2 =r2 + 1
Cells(r2, 2) = xI
Cells(r2, 2 + 1) =yl 2 =12 +1
R=r2+1
Next i

End Sub

11
2
13
19
15
16
7
1
1
2

index-100_1.jpg

index-118_1.jpg
8.E14
I1A]
6.E-14

—e— Isexp(UIUT)
- - Isep(UAT-1)

214

S EPRR |

0 vVl 0

2.E-05

- - Isep(UT)

I[A] | —o—1sexpuum

LE-05

T 2.E-03

LE03

0.E+00

index-117_1.jpg

index-126_1.jpg

index-120_1.jpg
2.8-03

A B C)
1 Is 1.00E-14
2606 2| ur 250802
3 du 2.50E-02
I[A] 4
2609 5
U uTH)
e o |t e e
7 u exp I
i e [8] 0200 335618 -L0OE-14
pASLY 9 -0.175 9.12E-18 -9.99E-15
00 01 02 03 04 05 06 07 58 1.050 1.74E+04 1.74E+04

vV

index-87_1.jpg

index-86_1.jpg
Edit Series
Seres pame:

=Sheetisass
Seres Xvalues:

=SheetTISASSSASTO
Series Lvalues:
=Sheet1:5855:58510]

index-90_1.png

index-44_2.jpg
=DistiSBS4:SFS8
=MMuItiSAS2:5AS4
=DistiSBS31SFS3
=DistisBS1
=MMultiSBS 25654
=DistiSAS4:5A58

Workbook
MMutt
Workbook
Workbook
MMt
Workbook

Clear Filter

Names Scoped to Worksheet
Names Scoped to Workbook
Names with Errors

Names without Errors
Defined Names

Table Names
38—

index-56_1.jpg
10

— y=6.20+-0.40x+-0.10x*

index-48_1.jpg
print (yA) 1 &

#NameError: name 'yA' is not defined

y=10,4,5]
vA=[0,4,5]

print ('x

print('y
print (*

2 o, 1, 2, 31
v 10, 4, 5]
yA [0, 4, 5]

z=add2 (x,y) 3 =1
#NameError: name 'add2' is not defined

def add2(a,b): 1
return 2*a+b

print (add2 (x,y)) 5
(05 15:2; 3,705 1,2 370; 4;'5)

import numpy as np 6
xnp=np.array (x)

ynp=np.array (y)

print (add2 (xnp, ynp))

#ValueError: operands could not be broadcast
together with shapes (4,) (3,)

y.append (-1) 7
ynp=np.array (y)

print (ynp)

print (add2 (xnp, ynp))

Oxle36aeceed4s

address e.g.

Memory,

[0 4 5-1]
0 6 9 5]

index-74_1.jpg

index-70_1.jpg
LANe277
—yMaxX
— 42.0+-20.0x+-2.0%¢
—== 1.16+0.16x+0.04*"
—- 0.98+-0.24:x+0.03%
-10.046.0-x+-0.6%7

index-85_1.jpg
10

index-80_1.jpg
A B C D E F_ld H 1 | [3 L M N
1 w0 :B?*dw w0 =D3’*dw Mean value
7 A 0.5 0.5 0.5 0.5 Delta.w 1.00 half the difference
3 w 2.00 233 2.00 233 dw 033
4 phi 0 o 0 0 w.0 2 w=w.0+dw/2
H 0.04 Ww.0=2; Delta.w=1 w=dw/2
2)*)
oh), eesphl). e phi) w0 B 20
B0 L4000 £9) W (0w
& Lag#A5 _prcos A-caﬂ A:LUS“” 0S(& (B9 s Gy
0 d t c1 €2 c3 c4 SumC
8 of 0.50 0.50 [0.50 2.00 2.00 2.00
9 0.04 0.50 0.50 0.50 0.50 1.99 199 2.00
808 32 0.20 0.37. 0.20 0.37 1.14 1.95 1.16

index-39_1.jpg
File Home | Insert

ChartArea
2 Format Selection
3 Reset to Match Style
Cunent selection
Format Selection

Show the Format task par
fine-tune formatting for t
selected chart lement,

Change.
ChartType

index-38_1.jpg
Edit Series

? X
Series name: B

= E -»

Series X values:

=calc1A3:A169] = -o8; 08; 08;...
Series ¥ values:

=calc!$8$9: $8$169 =03; 03; 03; 03...

Co] [o

index-44_1.jpg
& Define Name - o Trace Precedents 5] Show Formulas
5 R Usein Formul o Trace Dependents ¥4 Error Checking ~
ame.

Manager 5 Create from Selection 13, Remove Arrows ~ (%

Defined Names

Formula Auditing

Creste Namesfrom Selecton
0L P L@ L R LS crente names tromvatues inthe:
Olfoprow

Oett column
O gottom row
I Bignt column

e e

7 x

index-41_1.jpg
PDF *

1 s

&J View Code

s Desion 2 Source
3] Run Dialog

Form Controls XML

OfMBEEe

2 pa =

Active!

o
(0]

32 Expansion Pac|
M

bl

a8 <]

Controls
[E2]T)

2= i

> [] %

Scroll Bar (ActiveX Control)
Insert a scroll bar control.

index-198_1.jpg

index-195_1.png

index-200_1.jpg
ArrowP
head_length=0.
| overhang

!
°

index-198_2.jpg

index-209_1.jpg
L+2X+-9 K48 X
lenp
inte(sqrt(1+y1d*+2),
deri i

-0.5

-1.0

-15

x x. lenCirc

index-207_1.jpg
~0.47 === sin(x)
— 1-<cos(x)

-08
+ num. int.

-12

— 142X+ 9X4EX
num. int.

index-217_1.jpg
10

scal=0.8

10

index-215_1.jpg
SEEE

ek

index-226_1.jpg
Series "Crossbar”
2% Format Selecti
Reset to Matcl

Current Selec]

Diagramm 1 ~

Format Data Series
Series Options v

B o m
~ Line ¥ Marker
4 Line
Begin Arrow type
Begin Arrow size

End Arrow type

index-220_1.jpg
2.0
15
1.0
0.5
0.0
-0.5

index-191_1.jpg
B cCIDJ]EJF]G

05 10 15 20
15 20 20 15

index-133_1.jpg
Annegret 1225
1225 Annegret =A1
123

fsub Annegrec ()
Cells(l, 1) = "Annegret” 'Al
Range ("B1") = 12.25 'Cells(l,2)
Cells(2, 1) = Cells(l, 2) 'A2 = Bl
Range ("B2") = "=Al" 'Cells(2,2)

x = 1.234

Cells(3, 1) = x

End Sub

—

index-139_1.jpg
File Home Inset Draw Pagelayout Formulas Review View

GD #7Record Macro a n 1_§ =—.'x'1 /' [Propeties

.\m Relative References &) View Code |
Visual Macros i ccof cou | s oo Source
Basic A\ Macro Security ins Add-ins Addeins |~ Mode 3] RunDialog
Code Addins Controls
ge-o - ‘
Rectangles | Record Macro ‘
Record a macro.
4 A Vo E F H ‘
|

back again

A1 achof the commandsyou
1 perform will be saved into the
2 j macro 50 thatyou can ply them

index-138_1.jpg
1 Sub Macroi()

2 " Macrol Macro

3 ActiveSheet. Shapes.AddShape _

4 (msoShapeOval, 48, 19.5, 142.5, 66.75).Select
5 With Selection.ShapeRange.Fill

6 Visble = msoTrue
7 .ForeColor.RGB = RGB(200, 200, 200)
8 .Transparency = 0

9 .Solid

10 End With

11 With Selection.ShapeRange.Line

12 Visble = msoTrue

13 .ForeColorRGB = RGB(192, 0, 0)

14 Transparency = 0

15 End With

16 With Selection.ShapeRange.Line

17 Visble = msoTrue

18 Weight=1

19 End With
20 End Sub.

index-147_1.jpg
4<4dNCeo00
OHO«EE«E
H4EO <«<4B
04004900
BEOHOEO® <«
4 b LBLE
ISR BRLE
<Hedo <00
4 4E 4940 <<
*FEI Y IY

index-140_1.jpg
£ Microsoft Visual Basic for Applications - 4-2 Basic Exercise Annegretxlsm [design]

Eile Edit Vi Inset Format Debug Run Tools Add-Ins Window Help

& ®E @i,

cells
ode
Hangeq =

cells(EE Object

Object Browser
Immediate Window Ctrl+G.
Locals Window
Watch Window

Project Explorer
Properties Window

index-158_1.jpg

index-150_1.jpg
Checkerb@ Checkerboard

ANmNoomLAOON
. AN

AIAA.IAA..

OHOOAANAEO

00A00A00AA
AANOETAAOEH

HAGAONAGAA

index-184_1.jpg
3 Microsoft Visual Basic for Applications - Book1 - [Module1 (Code))
Edit View | Insert | Format Debug Run Tools Add-Ins

»oua S

(General)

Function CosSq(x)
Cossq = Cos(x) ~ 2
End Function

index-159_1.jpg

index-132_1.jpg
==

Visual Macros
Basic
RS =cx
a1

set Draw Pagelayout Formulas

Developer

7 Record Macro 2 i |/ EPopenie B
e | B & B | S BE STl Despan
Add- Excel COM | Insert Design Source
& Macro Security ins Add-ins Addins |~ Mode (3] Run Dislog 2t
Code Addins Controls
| £ Microsoft Visual Basic for Applications - Book' - [SheetT (Code)]
@ Bl Gt View Imet Fomat Debug Bun Tooks Adddns Window Help
P A §FE 2@ oo

(General)

P [~ o o] [eo] BN

index-129_1.png

