

About the Authors

Thomas Carroll is a senior software engineer, programmer who works with tech

enthusiasts, & passionate to learn more about programming and machine

learning. After spending nearly a decade working for big companies , Jeffrey

gained an in-depth knowledge of software systems and applications. As our

society becomes increasingly reliant on technology, he believes that technology

is at the very core of our life and is profoundly changing the way we live and

work.

Table of Contents

Contents
Table of Contents

Python Web Applications with Flask

PART 1: Flask Setup & Installation

CHAPTER 1: Introduction to Web development using Flask

CHAPTER 2: Install Flask in Windows

Install Virtual Environment

Install Flask on Windows or Linux

PART 2: Flask Quick Start

CHAPTER 1: Creating first simple application

Building a webpage using python.

CHAPTER 2: Run a Flask Application

Run Flask application Syntax

Run a Flask Application

Run the app in the debugger

CHAPTER 3: Flask App Routing

CHAPTER 4: Flask – HTTP Method

Flask HTTP Methods

GET Method in Flask

Example of HTTP GET in Flask

POST Method in Flask

Example of HTTP POST in Flask

CHAPTER 5: Flask – Variable Rule

Dynamic URLs Variable In Flask

Simple flask program

String Variable in Flask

Integer Variable in Flask

Float Variable in Flask

CHAPTER 6: Redirecting to URL in Flask

Redirect to a URL in Flask

Syntax of Redirect in Flask

How To Redirect To Url in Flask

url_for() Function in Flask

CHAPTER 7: Python Flask – Redirect and Errors

Syntax of Redirect

Import the redirect attribute

Flasks Errors

Syntax of abort() method

Example to demonstrate abort

CHAPTER 8: Change Port in Flask app

CHAPTER 9: Changing Host IP Address in Flask

Changing the IP address in a Flask application using the “host” parameter

Changing IP from the command line while deploying the Flask app

PART 3: Serve Templates and Static Files in Flask

CHAPTER 1: Flask Rendering Templates

Rendering a Template in a Flask Application

Setting up the Virtual Environment

Creating Templates in a Flask Application

Adding Routes and Rendering Templates

Templating With Jinja2 in Flask

Flask – Jinja Template Inheritance Example

If statement in HTML Template in Python Flask

CHAPTER 2: CSRF Protection in Flask

What is CSRF?

Solution for Preventing CSRF Attacks

Example of CSRF Protection in Flask

CHAPTER 3: Templating With Jinja2 in Flask

Templating with Jinja2 in Flask

Main Python File

Jinja Template Variables

Syntax of Jinja Template Variables

Jinja Template if Statements

Syntax of Jinja Template if Statements

Jinja Template for Loop

Syntax of Jinja Template for Loops

Jinja Template Inheritance

Syntax of Jinja Template Inheritance

Jinja Template url_for Function

Syntax of Jinja Template url_for Function

CHAPTER 4: Placeholders in jinja2 Template

Template Variables in Jinja2

Syntax of Template Variables in Jinja2

Example

Conditionals and Looping in Jinja2

Syntax of Conditionals and Looping

Template Inheritance in Jinja2

Syntax of Jinja extend block

CHAPTER 5: Serve static files in Flask

Serving Static Files in Flask

HTML File

Serve CSS file in Flask

Serve JavaScript file in Flask

Serve Media files in Flask (Image, Video, Audio)

Images

Video Files

Audio Files

Complete Flask Code

CHAPTER 6: Uploading and Downloading Files in Flask

Uploading and Downloading Files in Flask

Templates File

app.py

Complete Code

CHAPTER 7: Upload File in Python-Flask

Stepwise Implementation

CHAPTER 8: Upload Multiple files with Flask

Stepwise Implementation

CHAPTER 9: Flask – Message Flashing

What is Message Flashing

app.py File

Templates File

CHAPTER 10: Create Contact Us using WTForms in Flask

Advantages of WT-FORM:

Installation

Stepwise Implementation

Adding Bootstrap

CHAPTER 11: Sending Emails Using API in Flask-Mail

PART 4: User Registration, Login, and Logout in Flask

CHAPTER 1: Add Authentication to Your App with Flask-Login

Stepwise Implementation

Complete Code

CHAPTER 2: Add User and Display Current Username in Flask

Display Username on Multiple Pages using Flask

Templates Files

app.py

Complete Code

CHAPTER 3: Password Hashing with Bcrypt in Flask

Stepwise Implement with Bcrypt in Flask

Complete Code

CHAPTER 4: Role Based Access Control

Creating the Flask Application

CHAPTER 5: Use Flask-Session in Python Flask

Flask Session –

Installation

Configuring Session in Flask

Remember User After Login

Complete Project –

Output –

You can also see your generated session.

CHAPTER 6: Using JWT for user authentication in Flask

CHAPTER 7: Flask Cookies

Setting Cookies in Flask:

Getting Cookies in Flask:

Login Application in Flask using cookies

Getting website Visitors counted through cookies

CHAPTER 8: Return a JSON response from a Flask API

PART 5: Define and Access the Database in Flask

CHAPTER 1: Connect Flask to a Database with Flask-SQLAlchemy

Installing Flask

Creating app.py

Setting Up SQLAlchemy

Creating Models

Creating the database

Making Migrations in database

Creating the Index Page Of the Application

Creating HTML page for form

Function to add data using the form to the database

Display data on Index Page

Deleting data from our database

CHAPTER 2: Build a Web App using Flask and SQLite in Python

Steps to Build an App Using Flask and SQLite

CHAPTER 3: Sending Data from a Flask app to MongoDB Database

Configuring MongoDB

Setup a Development Environment

Installing Dependencies for the Project

Creating a Flask App

Connecting Flask App to Database

Sending Data from Flask to MongoDB

CHAPTER 4: Build a Web App using Flask and SQLite in Python

Steps to Build an App Using Flask and SQLite

CHAPTER 5: Login and Registration Project Using Flask and MySQL

CHAPTER 6: Execute raw SQL in Flask-SQLAlchemy app

Installing requirements

Syntax

PART 6: Flask Deployment and Error Handling

CHAPTER 1: Subdomain in Flask

CHAPTER 2: Handling 404 Error in Flask

Automatically Redirecting to the Home page after 5 seconds

CHAPTER 3: Deploy Python Flask App on Heroku

CHAPTER 4: Deploy Machine Learning Model using Flask

Python Web Applications

with Flask

PART 1: Flask Setup &

Installation

CHAPTER 1: Introduction to Web

development using Flask

What is Flask?

Flask is an API of Python that allows us to build up web-applications. It was

developed by Armin Ronacher. Flask’s framework is more explicit than

Django’s framework and is also easier to learn because it has less base

code to implement a simple web-Application. A Web-Application Framework

or Web Framework is the collection of modules and libraries that helps the

developer to write applications without writing the low-level codes such as

protocols, thread management, etc. Flask is based on WSGI(Web Server

Gateway Interface) toolkit and Jinja2 template engine.

Getting Started With Flask:

Python 2.6 or higher is required for the installation of the Flask. You can

start by import Flask from the flask package on any python IDE. For

installation on any environment, you can click on the installation link given

below.

To test that if the installation is working, check out this code given below.

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/')

def student():

return render_template('student.html')

@app.route('/result', methods = ['POST', 'GET'])

def result():

if request.method == 'POST':

result = request.form

return render_template("result.html", result = result)

if __name__ == '__main__':

app.run(debug = True)

‘/’ URL is bound with hello() function. When the home page of the webserver

is opened in the browser, the output of this function will be rendered

accordingly.

The Flask application is started by calling the run() function. The method

should be restarted manually for any change in the code. To overcome this,

the debug support is enabled so as to track any error.

Routing:

Nowadays, the web frameworks provide routing technique so that user can

remember the URLs. It is useful to access the web page directly without

navigating from the Home page. It is done through the

following route() decorator, to bind the URL to a function.

from flask import Flask

app = Flask(__name__)

/login display login form

@app.route('/login', methods = ['GET', 'POST'])

login function verify username and password

def login():

error = None

if request.method == 'POST':

if request.form['username'] != 'admin' or \

request.form['password'] != 'admin':

error = 'Invalid username or password. Please try again !'

else:

flashes on successful login

flash('You were successfully logged in')

return redirect(url_for('index'))

return render_template('login.html', error = error)

If a user visits http://localhost:5000/hello URL, the output of the

hello_world() function will be rendered in the browser.

The add_url_rule() function of an application object can also be used to bind

URL with the function as in above example.

Using Variables in Flask:

The Variables in the flask is used to build a URL dynamically by adding the

variable parts to the rule parameter. This variable part is marked as. It is

passed as keyword argument. See the example below

from flask import Flask

app = Flask(__name__)

routing the decorator function hello_name

@app.route('/hello/<name>')

def hello_name(name):

return 'Hello %s!' % name

if __name__ == '__main__':

app.run(debug = True)

Save the above example as hello.py and run from power shell. Next, open

the browser and enter the URL http://localhost:5000/hello/GeeksforGeeks.

Output:

Hello GeeksforGeeks!

In the above example, the parameter of route() decorator contains the

variable part attached to the URL ‘/hello’ as an argument. Hence, if URL like

http://localhost:5000/hello/GeeksforGeeks is entered then ‘GeeksforGeeks’

will be passed to the hello() function as an argument.

In addition to the default string variable part, other data types like int,

float, and path(for directory separator channel which can take slash) are

also used. The URL rules of Flask are based on Werkzeug’s routing module.

This ensures that the URLs formed are unique and based on precedents

laid down by Apache.

Examples:

from flask import Flask

app = Flask(__name__)

@app.route('/blog/<postID>')

def show_blog(postID):

return 'Blog Number %d' % postID

@app.route('/rev/<revNo>')

def revision(revNo):

return 'Revision Number %f' % revNo

if __name__ == '__main__':

app.run()

say the URL is http://localhost:5000/blog/555

Output :

Blog Number 555

Enter this URL in the browser ? http://localhost:5000/rev/1.1

Revision Number: 1.100000

Building URL in FLask:

Dynamic Building of the URL for a specific function is done

using url_for() function. The function accepts the name of the function as first

argument, and one or more keyword arguments. See this example

from flask import Flask, redirect, url_for

app = Flask(__name__)

@app.route('/admin') #decorator for route(argument) function

def hello_admin(): #binding to hello_admin call

return 'Hello Admin'

@app.route('/guest/<guest>')

def hello_guest(guest): #binding to hello_guest call

return 'Hello %s as Guest' % guest

@app.route('/user/<name>')

def hello_user(name):

if name =='admin': #dynamic binding of URL to function

return redirect(url_for('hello_admin'))

else:

return redirect(url_for('hello_guest', guest = name))

if __name__ == '__main__':

app.run(debug = True)

To test this, save the above code and run through python shell and then

open browser and enter the following URL:-

Input: http://localhost:5000/user/admin

Output: Hello Admin

Input: http://localhost:5000/user/ABC

Output: Hello ABC as Guest

The above code has a function named user(name), accepts the value

through input URL. It checks that the received argument matches the

‘admin’ argument or not. If it matches, then the function hello_admin() is

called else the hello_guest() is called.

Flask support various HTTP protocols for data retrieval from the specified

URL, these can be defined as:-

Metho

d Description

GET
This is used to send the data in an without encryption of the

form to the server.

HEAD provides response body to the form

POST
Sends the form data to server. Data received by POST method

is not cached by server.

PUT Replaces current representation of target resource with URL.

DELE

TE
Deletes the target resource of a given URL

Handling Static Files :

A web application often requires a static file such as javascript or a CSS file

to render the display of the web page in browser. Usually, the web server is

configured to set them, but during development, these files are served as

static folder in your package or next to the module. See the example in

JavaScript given below:

from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")

def index():

return render_template("index.html")

if __name__ == '__main__':

app.run(debug = True)

The following HTML code:

This will be inside templates folder which will be sibling of the python file

we wrote above

<html>

<head>

<script type = "text/javascript"

src = "{{ url_for('static', filename = 'hello.js') }}" ></script>

</head>

<body>

<input type = "button" onclick = "sayHello()" value = "Say Hello" />

</body>

</html>

The JavaScript file for hello.js is:

This code will be inside static folder which will be sibling of the templates

folder

function sayHello() {

alert("Hello World")

}

The above hello.js file will be rendered accordingly to the HTML file.

Object Request of Data from a client’s web page is send to the server as a

global request object. It is then processed by importing the Flask module.

These consist of attributes like Form(containing Key-Value Pair),

Args(parsed URL after question mark(?)), Cookies(contain Cookie names

and Values), Files(data pertaining to uploaded file) and Method(current

request).

Cookies:

A Cookie is a form of text file which is stored on a client’s computer, whose

purpose is to remember and track data pertaining to client’s usage in order

to improve the website according to the user’s experience and statistic of

webpage.

The Request object contains cookie’s attribute. It is the dictionary object of

all the cookie variables and their corresponding values. It also contains

expiry time of itself. In Flask, cookie are set on response object.See the

example given below:-

from flask import Flask

app = Flask(__name__)

@app.route('/')

def index():

return render_template('index.html')

HTML code for index.html

<html>

<body>

<form action = "/setcookie" method = "POST">

<p><h3>Enter userID</h3></p>

<p><input type = 'text' name = 'nm'/></p>

<p><input type = 'submit' value = 'Login'/></p>

</form>

</body>

</html>

Add this code to the python file defined above

@app.route('/setcookie', methods = ['POST', 'GET'])

def setcookie():

if request.method == 'POST':

user = request.form['nm']

resp = make_response(render_template('cookie.html'))

resp.set_cookie('userID', user)

return resp

@app.route('/getcookie')

def getcookie():

name = request.cookies.get('userID')

return '<h1>welcome '+name+'</h1>'

HTML code for cookie.html

<html>

<body>

Click me to get Cookie

</body>

</html>

Run the above application and visit link on Browser http://localhost:5000/

The form is set to ‘/setcookie’ and function set contains a Cookie name

userID that will be rendered to another webpage. The ‘cookie.html’

contains hyperlink to another view function getcookie(), which displays the

value in browser.

Sessions in Flask:

In Session, the data is stored on Server. It can be defined as a time interval

in which the client logs into a server until the user logs out. The data in

between them are held in a temporary folder on the Server. Each user is

assigned with a specific Session ID. The Session object is a dictionary that

contains the key-value pair of the variables associated with the session. A

SECRET_KEY is used to store the encrypted data on the cookie.

For example:

Session[key] = value // stores the session value

Session.pop(key, None) // releases a session variable

Other Important Flask Functions:

redirect(): It is used to return the response of an object and redirects the user

to another target location with specified status code.

Syntax: Flask.redirect(location, statuscode, response)

//location is used to redirect to the desired URL

//statuscode sends header value, default 302

//response is used to initiate response.

abort: It is used to handle the error in the code.

Syntax: Flask.abort(code)

The code parameter can take the following values to handle the error

accordingly:

400 – For Bad Request

401 – For Unauthenticated

403 – For Forbidden request

404 – For Not Found

406 – For Not acceptable

425 – For Unsupported Media

429 – Too many Requests

File-Uploading in Flask:

File Uploading in Flask is very easy. It needs an HTML form with enctype

attribute and URL handler, that fetches file and saves the object to the

desired location. Files are temporary stored on server and then on the

desired location.

The HTML Syntax that handle the uploading URL is :

form action="http://localhost:5000/uploader" method="POST" enctype="multipart/form-data"

and following python code of Flask is:

from flask import Flask, render_template, request

from werkzeug import secure_filename

app = Flask(__name__)

@app.route('/upload')

def upload_file():

return render_template('upload.html')

@app.route('/uploader', methods = ['GET', 'POST'])

def upload_file():

if request.method == 'POST':

f = request.files['file']

f.save(secure_filename(f.filename))

return 'file uploaded successfully'

if __name__ == '__main__':

app.run(debug = True)

Sending Form Data to the HTML File of Server:

A Form in HTML is used to collect the information of required entries which

are then forwarded and stored on the server. These can be requested to

read or modify the form. The flask provides this facility by using the URL

rule. In the given example below, the ‘/’ URL renders a web

page(student.html) which has a form. The data filled in it is posted to the

‘/result’ URL which triggers the result() function. The results() function

collects form data present in request.form in a dictionary object and sends

it for rendering to result.html.

from flask import Flask, render_template, request

app = Flask(__name__)

@app.route('/')

def student():

return render_template('student.html')

@app.route('/result', methods = ['POST', 'GET'])

def result():

if request.method == 'POST':

result = request.form

return render_template("result.html", result = result)

if __name__ == '__main__':

app.run(debug = True)

<!doctype html>

<html>

<body>

<table border = 1>

{% for key, value in result.items() %}

<tr>

<th> {{ key }} </th>

<td> {{ value }} </td>

</tr>

{% endfor %}

</table>

</body>

</html>

<html>

<body>

<form action = "http://localhost:5000/result" method = "POST">

<p>Name <input type = "text" name = "Name" /></p>

<p>Physics <input type = "text" name = "Physics" /></p>

<p>Chemistry <input type = "text" name = "chemistry" /></p>

<p>Maths <input type ="text" name = "Maths" /></p>

<p><input type = "submit" value = "submit" /></p>

</form>

</body>

</html>

Message Flashing:

It can be defined as a pop-up or a dialog box that appears on the web-page

or like alert in JavaScript, which are used to inform the user. This in flask

can be done by using the method flash() in Flask. It passes the message to

the next template.

Syntax: flash(message, category)

message is actual text to be displayed and category is optional which is

to render any error or info.

Example :

from flask import Flask

app = Flask(__name__)

/login display login form

@app.route('/login', methods = ['GET', 'POST'])

login function verify username and password

def login():

error = None

if request.method == 'POST':

if request.form['username'] != 'admin' or \

request.form['password'] != 'admin':

error = 'Invalid username or password. Please try again !'

else:

flashes on successful login

flash('You were successfully logged in')

return redirect(url_for('index'))

return render_template('login.html', error = error)

CHAPTER 2: Install Flask in

Windows

Flask is basically a Python module. It can work with Python

only and it is a web-developing framework. It is a collection

of libraries and modules. Frameworks are used for

developing web platforms. Flask is such a type of web

application framework. It is completely written in Python

language. Unlike Django, it is only written in Python. As a

new user, Flask is to be used. As it is easier to handle. As it

is only written in Python, before installing Flask on the

machine, Python should be installed previously.

Features of Python Flask:

Flask is easy to use and easily understandable for

new users in Web Framework.

It can also be used as any third-party plugin

extension.

It is also used for prototyping purposes.

Install Virtual Environment

We use a module named virtualenv which is a tool to create

isolated Python environments. virtualenv creates a folder

that contains all the necessary executables to use the

packages that a Python project would need.

pip install virtualenv

Create Python virtual environment

Go to the local directory where you want to create your

Flask app.

virtualenv venv

Activate a virtual environment based on your OS

For windows > venv\Scripts\activate

For linux > source ./venv/bin/activate

Install Flask on Windows or Linux

Step 1: Make sure that Python PIP should be installed on

your OS. You can check using the below command.

pip -V

or

pip –version

Step 2: At first, open the command prompt in administrator

mode. Then the following command should be run. This

command will help to install Flask using Pip in Python and

will take very less time to install. According to the machine

configuration, a proper Flask version should be installed.

Wait for some time till the process is completed. After

completion of the process, Flask is completed successfully,

the message will be displayed. Hence Installation is

successful.

pip install flask

Step 3: After that, also the following two commands should

be run. These commands will start Flask in the command

prompt. Hence, the process is completed successfully.

python

import flask

PART 2: Flask Quick Start

CHAPTER 1: Creating first simple

application

Building a webpage using python.

There are many modules or frameworks which allow building your

webpage using python like a bottle, Django, Flask, etc. But the real

popular ones are Flask and Django. Django is easy to use as compared to

Flask but Flask provides you with the versatility to program with.

To understand what Flask is you have to understand a few general terms.

1. WSGI Web Server Gateway Interface (WSGI) has been adopted as

a standard for Python web application development. WSGI is a

specification for a universal interface between the web server and

the web applications.

2. Werkzeug It is a WSGI toolkit, which implements requests,

response objects, and other utility functions. This enables building

a web framework on top of it. The Flask framework uses Werkzeug

as one of its bases.

3. jinja2 jinja2 is a popular templating engine for Python. A web

templating system combines a template with a certain data source

to render dynamic web pages.

Flask is a web application framework written in Python. Flask is based on

the Werkzeug WSGI toolkit and Jinja2 template engine. Both are Pocco

projects.

Installation:

We will require two packages to set up your environment. virtualenv for a

user to create multiple Python environments side-by-side. Thereby, it can

avoid compatibility issues between the different versions of the libraries

and the next will be Flask itself.

virtualenv

pip install virtualenv

Create Python virtual environment

virtualenv venv

Activate virtual environment

windows > venv\Scripts\activate

linux > source ./venv/bin/activate

For windows, if this is your first time running the script, you

might get an error like below:

venv\Scripts\activate : File C:\flask_project\venv\Scripts\Activate.ps1

cannot be loaded because running scripts is disabled on this system. For

more information, see about_Execution_Policies at

https:/go.microsoft.com/fwlink/?LinkID=135170.

At line:1 char:1

+ venv\Scripts\activate

 + FullyQualifiedErrorId : UnauthorizedAccess

This means that you don’t have access to execute the scripts.

To solve this error, run the powershell as admin, when you right click on

powershell icon, choose the option ‘Run as adminstrator’. Now, the

powershell will open in the admin mode.

Type the following command in Shell

set-executionpolicy remotesigned

Now, you will be prompted to change the execution policy. Please type A.

This means Yes to all.

Flask

pip install Flask

After completing the installation of the package, let’s get our hands on

the code.

Python3

Importing flask module in the project is mandatory

An object of Flask class is our WSGI application.

from flask import Flask

Flask constructor takes the name of

current module (__name__) as argument.

app = Flask(__name__)

The route() function of the Flask class is a decorator,

which tells the application which URL should call

the associated function.

@app.route('/')

‘/’ URL is bound with hello_world() function.

def hello_world():

return 'Hello World'

main driver function

if __name__ == '__main__':

run() method of Flask class runs the application

on the local development server.

app.run()

Save it in a file and then run the script we will be getting an output like

this.

Then go to the URL given there you will see your first webpage displaying

hello worldthereonyourlocalserver.

Digging further into the context, the route() decorator in Flask is used to

bind a URL to a function. Now to extend this functionality our small web

app is also equipped with another method add_url_rule() which is a

function of an application object that is also available to bind a URL with a

function as in the above example, route() is used.

Example:

def gfg():

 return ‘geeksforgeeks’

app.add_url_rule(‘/’, ‘g2g’, gfg)

Output:

geeksforgeeks

You can also add variables in your web app, well you might be thinking

about how it’ll help you, it’ll help you to build a URL dynamically. So let’s

figure it out with an example.

Python3

from flask import Flask

app = Flask(__name__)

@app.route('/hello/<name>')

def hello_name(name):

return 'Hello %s!' % name

if __name__ == '__main__':

app.run()

And go to the URL http://127.0.0.1:5000/hello/geeksforgeeks it’ll give you

the following output

.

We can also use HTTP methods in Flask let’s see how to do that

The HTTP protocol is the foundation of data communication on the world

wide web. Different methods of data retrieval from specified URL are

defined in this protocol. The methods are described down below.

GET : Sends data in simple or unencrypted form to the server.

HEAD : Sends data in simple or unencrypted form to the server without

body.

HEAD : Sends form data to the server. Data is not cached.

PUT : Replaces target resource with the updated content.

DELETE : Deletes target resource provided as URL.

By default, the Flask route responds to the GET requests. However, this

preference can be altered by providing methods argument to route()

decorator. In order to demonstrate the use of the POST method in URL

routing, first, let us create an HTML form and use the POST method to

send form data to a URL. Now let’s create an HTML login page.

Below is the source code of the file:

HTML

<html>

<body>

<form action = "http://localhost:5000/login" method = "post">

<p>Enter Name:</p>

<p><input type = "text" name = "nm" /></p>

<p><input type = "submit" value = "submit" /></p>

</form>

</body>

</html>

Now save this file HTML and try this python script to create the server.

Python3

from flask import Flask, redirect, url_for, request

app = Flask(__name__)

@app.route('/success/<name>')

def success(name):

return 'welcome %s' % name

@app.route('/login', methods=['POST', 'GET'])

def login():

if request.method == 'POST':

user = request.form['nm']

return redirect(url_for('success', name=user))

else:

user = request.args.get('nm')

return redirect(url_for('success', name=user))

if __name__ == '__main__':

app.run(debug=True)

After the development server starts running, open login.html in the

browser, enter your name in the text field and click submit button. The

output would be the following.

The result will be something like this

And there’s much more to Flask than this. If you are interested in this web

framework of Python you can dig into the links provided down below for

further information.

CHAPTER 2: Run a Flask

Application

The backend server Flask was created fully in Python. It is a framework

made up of Python modules and packages. With its characteristics, it is a

lightweight Flask application that speeds up the development of backend

apps. We will learn how to execute a Flask application in this tutorial.

Run Flask application Syntax

We can run the Flask application using the below command.

flask –app <hello> run

flask run

python <app_name>.py

File Structure

Here, we are using the following folder and file.

Run a Flask Application

In this example, we have an application called helloworld.py below is

the basic code for Flask.

Python3

import flast module

from flask import Flask

instance of flask application

app = Flask(__name__)

home route that returns below text when root url is accessed

@app.route("/")

def hello_world():

return "<p>Hello, World!</p>"

if __name__ == '__main__':

app.run()

Output:

Using flask –app <app_name> run

Using flask run

Using the python app_name.py

Run the app in the debugger

We will use the below command to run the flask application with debug

mode as on. When debug mode is turned on, It allows developers to

locate any possible error and as well the location of the error, by logging

a traceback of the error.

if __name__ == ‘__main__’:

 app.run(debug = True)

CHAPTER 3: Flask App Routing

App Routing means mapping the URLs to a specific function that will

handle the logic for that URL. Modern web frameworks use more

meaningful URLs to help users remember the URLs and make navigation

simpler.

Example: In our application, the URL (“/”) is associated with the root

URL. So if our site’s domain was www.example.org and we want to add

routing to “www.example.org/hello”, we would use “/hello”.

To bind a function to an URL path we use the app.route decorator. In the

below example, we have implemented the above routing in the flask.

main.py

from flask import Flask

app = Flask(__name__)

Pass the required route to the decorator.

@app.route("/hello")

def hello():

return "Hello, Welcome to GeeksForGeeks"

@app.route("/")

def index():

return "Homepage of GeeksForGeeks"

if __name__ == "__main__":

app.run(debug=True)

The hello function is now mapped with the “/hello” path and we get the

output of the function rendered on the browser.

Step to run the application: Run the application using the following

command.

python main.py

Output: Open the browser and visit 127.0.0.1:5000/hello, you will see

the following output.

Dynamic URLs – We can also build dynamic URLs by using variables in

the URL. To add variables to URLs, use <variable_name> rule. The

function then receives the <variable_name> as keyword argument.

Example: Consider the following example to demonstrate the dynamic

URLs.

main.py

from flask import Flask

app = Flask(__name__)

@app.route('/user/<username>')

def show_user(username):

Greet the user

return f'Hello {username} !'

Pass the required route to the decorator.

@app.route("/hello")

def hello():

return "Hello, Welcome to GeeksForGeeks"

@app.route("/")

def index():

return "Homepage of GeeksForGeeks"

if __name__ == "__main__":

app.run(debug=True)

Step to run the application: Run the application using the following

command.

python main.py

Output: Open the browser and visit 127.0.0.1:5000/user/geek, you will

see the following output.

Additionally, we can also use a converter to convert the variable to a

specific data type. By default, it is set to string values. To convert use

<converter:variable_name> and following converter types are supported.

string: It is the default type and it accepts any text without a

slash.

int: It accepts positive integers.

float: It accepts positive floating-point values.

path: It is like a string but also accepts slashes.

uuid: It accepts UUID strings.

Example: Consider the following example to demonstrate the converter

type.

main.py

from flask import Flask

app = Flask(__name__)

@app.route('/post/<int:id>')

def show_post(id):

Shows the post with given id.

return f'This post has the id {id}'

@app.route('/user/<username>')

def show_user(username):

Greet the user

return f'Hello {username} !'

Pass the required route to the decorator.

@app.route("/hello")

def hello():

return "Hello, Welcome to GeeksForGeeks"

@app.route("/")

def index():

return "Homepage of GeeksForGeeks"

if __name__ == "__main__":

app.run(debug=True)

Step to run the application: Run the application using the following

command.

python main.py

Output: Open the browser and visit 127.0.0.1:5000/post/13, you will see

the following output.

The add_url_rule() function – The URL mapping can also be done using

the add_url_rule() function. This approach is mainly used in case we are

importing the view function from another module. In fact,

the app.route calls this function internally.

Syntax:

add_url_rule(<url rule>, <endpoint>, <view function>)

Example: In the below example, we will try to map the show_user view

function using this approach.

main.py

from flask import Flask

app = Flask(__name__)

def show_user(username):

Greet the user

return f'Hello {username} !'

app.add_url_rule('/user/<username>', 'show_user', show_user)

if __name__ == "__main__":

app.run(debug=True)

Step to run the application: Run the application using the following

command.

python main.py

Output: Open the browser and visit 127.0.0.1:5000/user/pulkit, you will

see the following output.

CHAPTER 4: Flask – HTTP Method

In this article, we will learn how to handle HTTP methods, such as GET

and POST in Flask using Python. Here, we will understand the concept

of HTTP, GET, and HTTP POST, and then we will the example and

implement each in Flask. Before starting let’s understand the basic

terminology:

GET: to request data from the server.

POST: to submit data to be processed to the server.

PUT: A PUT request is used to modify the data on the server. It

replaces the entire content at a particular location with data that is

passed in the body payload. If there are no resources that match

the request, it will generate one.

PATCH: PATCH is similar to a PUT request, but the only difference

is, it modifies a part of the data. It will only replace the content

that you want to update.

DELETE: A DELETE request is used to delete the data on the

server at a specified location.

Flask HTTP Methods

In a Client-Server architecture, there is a set of rules, called a protocol,

using which, we can allow the clients, to communicate with the server,

and, vice-versa. Here, the Hyper Text Transfer Protocol is used, through

which, communication is possible. For example, Our browser, passes our

query, to the Google server, receiving which, the Google server, returns

relevant suggestions. The commonly used HTTP methods, for this

interconnection, are – GET and POST.

GET Method in Flask

The request we type, in the browser address bar, say: ‘http://google.com’

is called the Uniform Resource Locator. It mentions the address we are

looking for, in this case, the Google landing(starting) page. The browser,

sends a GET request, to the Google server, which returns the starting

webpage, in response. The GET request is simply used, to fetch data from

the server. It should not be used, to apply changes, to the server data.

Example of HTTP GET in Flask

Let us discuss, the execution of the GET method, using the Flask library.

In this example, we will consider, a landing page, that gives us facts,

about Math calculations, and, allows us to enter a number, and, return its

square. Let us see the example:

Step 1: The ‘squarenum.html‘ file, has a form tag, that allows the user

to enter a number. The form data is sent, to the page mentioned, in the

‘action’ attribute. Here, the data is sent, to the same page, as indicated

by ‘#’. Since we are using the GET method, the data will be appended, to

the URL, in the name-value pair format. So, if we enter number 12, and,

click on Submit button, then data will be appended, as

‘http://localhost:5000/square?num=12&btnnum=Submit#’

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Square Of Number!</title>

</head>

<body>

<h1><i> Welcome to the Maths page!</i></h1>

<p>Logic shapes every choice of our daily lives.

Logical thinking enables someone to learn and

make decisions that affect their way of life. !</p>

<form method="GET" action ="#">

Enter a number :

<input type="text" name="num" id="num"></input>

<input type="submit" name="btnnum" id="btnnum"></input>

</form>

</body>

</html>

Step 2: The answer.html code file looks as follows:

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Answer Page!</title>

</head>

<body>

<h1>Keep Learning Maths!</h1>

<h2>Square of number {{num}} is :{{squareofnum}}</h2>

</body>

</html>

Step 3: Here, we have written a view function, called ‘squarenumber’.

The view function returns an HTTP response. The function is decorated

with ‘app.route(‘/square’)’. This decorator, matches the incoming request

URLs, to the view functions. Thus, incoming requests like

‘localhost:5000/’ will be mapped to the view squarenumber() function.

In this case, we have used a GET, hence we mention ‘methods=[‘GET’]’ in

the app.route decorator. The HTML form will append the number, entered

by the user, in the URL. Hence, we check if data is present. To do so, we

have to use the if-elif-else logic. When data is not present, the value of

argument “num” will be None. Here, we will display, the webpage to the

user. If the user has not entered, any number, and right away clicked the

Submit button, then, we have displayed the error message. We have to

use the Flask Jinja2 template, to pass the result, and, the number entered

into the HTML file.

Python3

import the Flask library

from flask import Flask, render_template, request

Create the Flask instance and pass the Flask

constructor the path of the correct module

app = Flask(__name__)

The URL 'localhost:5000/square' is mapped to

view function 'squarenumber'

The GET request will display the user to enter

a number (coming from squarenum.html page)

@app.route('/', methods=['GET'])

def squarenumber():

If method is GET, check if number is entered

or user has just requested the page.

Calculate the square of number and pass it to

answermaths method

if request.method == 'GET':

If 'num' is None, the user has requested page the first time

if(request.args.get('num') == None):

return render_template('squarenum.html')

If user clicks on Submit button without

entering number display error

elif(request.args.get('num') == ''):

return "<html><body> <h1>Invalid number</h1></body></html>"

else:

User has entered a number

Fetch the number from args attribute of

request accessing its 'id' from HTML

number = request.args.get('num')

sq = int(number) * int(number)

pass the result to the answer HTML

page using Jinja2 template

return render_template('answer.html',

squareofnum=sq, num=number)

Start with flask web app with debug as

True only if this is the starting page

if(__name__ == "__main__"):

app.run(debug=True)

Output:

The user requests ‘localhost:5000/square’ and enters a number

On clicking the Submit button, one can notice, the value entered,

appended, to the URL, and, the output displayed.

Data entered is appended in the URL and output is displayed.

POST Method in Flask

Suppose, we need to register our details, to a website, OR, upload our

files, we will send data, from our browser(the client) to the desired server.

The HTTP method, preferred here, is POST. The data sent, from HTML, is

then saved, on the server side, post validation. The POST method should

be used, when we need to change/add data, on the server side.

Example of HTTP POST in Flask

In this example, we will consider, the same landing page, giving us facts,

about Math calculations, and, allowing us to enter a number, and, return

its square. Let us see the example:

Step 1: The same HTML page, called ‘squarenum.html‘, is in the

templates folder. At the backend side, we will write, appropriate logic, in a

view function, to get the number, entered by the user, and, return the

same, in the ‘answer.html’ template. The frontend code file is as shown

below:

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Square Of Number!</title>

</head>

<body>

<h1><i> Welcome to the Maths page!</i></h1>

<p>Logic shapes every choice of our daily lives.

Logical thinking enables someone to learn and

make decisions that affect their way of life. !</p>

<form method="POST" action ="#">

Enter a number :

<input type="text" name="num" id="num"></input>

<input type="submit" name="btnnum" id="btnnum"></input>

</form>

</body>

</html>

Step 2: The view function squarenumber(), now also contains value

POST in the ‘methods’ attribute, in the decorator. Thus, when the user

requests the page, the first time, by calling

“http://localhost:5000/square”, a GET request will be made. Here, the

server will render, the corresponding “squarenum.html”, webpage. After

clicking on Submit, on entering a number, the data is posted back, to the

same webpage. Here, the POST method, sends data, in the message

body, unlike GET, which appends data in the URL. In the view function,

the If-Else condition block, retrieves the number, by accessing the ‘form’

attribute, of the request. The square of the number is calculated, and, the

value is passed to the same “answer.html” webpage, using the Jinja2

template.

Python3

import the Flask library

from flask import Flask, render_template, request

Create the Flask instance and pass the Flask constructor the path of the correct module

app = Flask(__name__)

@app.route('/', methods=['GET', 'POST'])

def squarenumber():

If method is POST, get the number entered by user

Calculate the square of number and pass it to answermaths

if request.method == 'POST':

if(request.form['num'] == ''):

return "<html><body> <h1>Invalid number</h1></body></html>"

else:

number = request.form['num']

sq = int(number) * int(number)

return render_template('answer.html',

squareofnum=sq, num=number)

If the method is GET,render the HTML page to the user

if request.method == 'GET':

return render_template("squarenum.html")

Start with flask web app with debug as True only

if this is the starting page

if(__name__ == "__main__"):

app.run(debug=True)

Output:

The user enters a number when the page is rendered for URL ‘localhost:5000/square’

On clicking the Submit button, the data is posted back, to the server, and,

the result page is rendered. Please note, the value entered, is not visible

in the URL now, as the method used, is POST.

CHAPTER 5: Flask – Variable Rule

In this article, we will discuss Flask-Variable Rule using Python. Flask is a

microweb framework written in Python it is classified as a micro

framework because it doesn’t require particular tools or libraries, and it

has no database abstraction layer form validation or any other

components where pre-existing third-party libraries provide common

functions it is designed to make getting started quick and easy with the

ability to scale up complex application.

Flask -Variable Rules:

By using variable rules we can create a dynamic URL by adding

variable parts, to the rule parameter.

We can define variable rule by <variable-name> using this syntax

in our code.

Variable is always passed as a keyword argument to the function

with which the rule is properly associated.

Dynamic URLs Variable In Flask

The following converters are available in Flask-Variable Rules:

String – It accepts any text without a slash(the default).

int – accepts only integers. ex =23

float – like int but for floating point values ex. = 23.9

path – like the default but also accepts slashes.

any – matches one of the items provided.

UUID = accepts UUID strings.

Simple flask program

In this code, we import the first Flask and then we initialize the Flask

function and then we return the simple welcome line we need to run the

Flask run command in the terminal to execute our code.

Python3

first we import flask

from flask import Flask

Initialize flask function

app = Flask(__name__)

@app.route('/')

def msg():

return "Welcome To The GreeksForGreeks"

we run code in debug mode

app.run(debug=True)

Output:

String Variable in Flask

In this code, we import the first Flask and then we initialize the Flask

function after that we made a string function string is already defined in

the code we don’t need to specify the string and then we execute our

code by a run in the terminal Flask run. and in URL we need to

write 127.0.0.1:5000/vstring/<name> to run our vstring function.

Python3

First we import flask

from flask import Flask

initialize flask

app = Flask(__name__)

Display first simple welcome msg

@app.route('/')

def msg():

return "Welcome"

We defined string function

@app.route('/vstring/<name>')

def string(name):

return "My Name is %s" % name

we run app debugging mode

app.run(debug=True)

Output :

Integer Variable in Flask

In this code, we import the first Flask, and then we initialize the Flask

function after that we made an int function, int is not defined in a Flask so

we need to first define it then we return the int function and run Flask run

in terminal and for int page, we need to write function name in URL and

also the integer value.

Python3

first we import flask

from flask import Flask

Initialize flask function

app = Flask(__name__)

@app.route('/')

def msg():

return "Welcome"

define int function

@app.route('/vint/<int:age>')

def vint(age):

return "I am %d years old " % age

we run our code in debug mode

app.run(debug=True)

Output:

Float Variable in Flask

In this code, we import the first Flask and then we initialize the Flask

function after that we made a float function float is not defined in a Flask

so we need to first define it then return the float function and run the

Flask run in the terminal and for float page, we need to write function

name in URL and also the floating value.

Python3

first we import flask

from flask import Flask

Initialize flask function

app = Flask(__name__)

@app.route('/')

def msg():

return "Welcome"

define float function

@app.route('/vfloat/<float:balance>')

def vfloat(balance):

return "My Account Balance %f" % balance

we run our code in debugging mode

app.run(debug=True)

Output:

CHAPTER 6: Redirecting to URL in

Flask

Flask is a backend server that is built entirely using Python. It is a

 framework that consists of Python packages and modules. It is

lightweight which makes developing backend applications quicker with its

features. In this article, we will learn to redirect a URL in the Flask web

application.

Redirect to a URL in Flask

A redirect is used in the Flask class to send the user to a particular URL

with the status code. conversely, this status code additionally identifies

the issue. When we access a website, our browser sends a request to the

server, and the server replies with what is known as the HTTP status

code, which is a three-digit number.

Syntax of Redirect in Flask

Syntax: flask.redirect(location,code=302)

Parameters:

location(str): the location which URL directs to.

code(int): The status code for Redirect.

Code: The default code is 302 which means that the move is only

temporary.

Return: The response object and redirects the user to another target

location with the specified code.

The different types of HTTP codes are:

Cod

e Status

300 Multiple_choices

Cod

e Status

301
Moved_permanentl

y

302 Found

303 See_other

304 Not_modified

305 Use_proxy

306 Reserved

307 Temporary_redirect

How To Redirect To Url in Flask

In this example, we have created a sample flask application app.py. It

has two routes, One is the base route \ and another is \helloworld route.

Here when a user hits the base URL \ (root) it will redirect

to \helloworld.

app.py

Python3

import flast module

from flask import Flask, redirect

instance of flask application

app = Flask(__name__)

home route that redirects to

helloworld page

@app.route("/")

def home():

return redirect("/helloworld")

route that returns hello world text

@app.route("/helloworld")

def hello_world():

return "<p>Hello, World from \

redirected page.!</p>"

if __name__ == '__main__':

app.run(debug=True)

Output:

We hit the base URL in the browser as shown below. As soon we hit the

URL flask application returns the redirect function and redirects to the

given URL.

url_for() Function in Flask

Another method you can use when performing redirects in Flask is the

url_for() function URL building. This function accepts the name of the

function as the first argument, and the function named user(name)

accepts the value through the input URL. It checks whether the received

argument matches the ‘admin’ argument or not. If it matches, then the

function hello_admin() is called else the hello_guest() is called.

Python3

from flask import Flask, redirect, url_for

app = Flask(__name__)

decorator for route(argument) function

@app.route('/admin')

binding to hello_admin call

def hello_admin():

return 'Hello Admin'

@app.route('/guest/<guest>')

binding to hello_guest call

def hello_guest(guest):

return 'Hello %s as Guest' % guest

@app.route('/user/<name>')

def hello_user(name):

dynamic binding of URL to function

if name == 'admin':

return redirect(url_for('hello_admin'))

else:

return redirect(url_for('hello_guest'

, guest=name))

if __name__ == '__main__':

app.run(debug=True)

Output:

hello_guest function

hello_user function

CHAPTER 7: Python Flask –

Redirect and Errors

We’ll discuss redirects and errors with Python Flask in this article. A

redirect is used in the Flask class to send the user to a particular URL with

the status code. conversely, this status code additionally identifies the

issue. When we access a website, our browser sends a request to the

server, and the server replies with what is known as the HTTP status

code, which is a three-digit number, The different reasons for errors are:

Unauthorized access or poor request.

Unsupported media file types.

Overload of the backend server.

Internal hardware/connection error.

Syntax of Redirect

flask.redirect(location,code=302)

Parameters:

location(str): the location which URL directs to.

code(int): The status code for Redirect.

Code: The default code is 302 which means that the move is only

temporary.

Return: The response object and redirects the user to another target

location with the specified code.

The different types of HTTP codes are:

Cod

e Status

300 Multiple_choices

Cod

e Status

301
Moved_permanentl

y

302 Found

303 See_other

304 Not_modified

305 Use_proxy

306 Reserved

307 Temporary_redirect

Import the redirect attribute

We can redirect the URL using Flask by importing redirect. Let’s see how

to import redirects from Flask

Python3

from flask import redirect

Example:

Let’s take a simple example to redirect the URL using a flask

named app.py.

Python3

importing redirect

from flask import Flask, redirect, url_for, render_template, request

Initialize the flask application

app = Flask(__name__)

It will load the form template which

is in login.html

@app.route('/')

def index():

return render_template("login.html")

@app.route('/success')

def success():

return "logged in successfully"

loggnig to the form with method POST or GET

@app.route("/login", methods=["POST", "GET"])

def login():

if the method is POST and Username is admin then

it will redirects to success url.

if request.method == "POST" and request.form["username"] == "admin":

return redirect(url_for("success"))

if the method is GET or username is not admin,

then it redirects to index method.

return redirect(url_for('index'))

if __name__ == '__main__':

app.run(debug=True)

login.html

Create a folder named templates. In the templates, creates a

templates/login.html file. On this page, we will take input from the user

of its username.

HTML

<!DOCTYPE html>

<html lang="en">

<body>

<form method="POST", action="\login">

Username: <input name=username type=text></input>

<button type="submit">Login</button>

</form>

</body>

</html>

Now we will deploy our code.

python app.py

Output:

Case 1: If the Username is admin and the method is POST then it will

redirect to the success URL and display logged in successfully.

Case 2: In the other case, if the Username is something like xyz or

anything then it will redirect to the index method i.e., it will load the form

again until the username is admin.

Flasks Errors

If there is an error in the address or if there is no such URL then Flask has

an abort() function used to exit with an error code.

Syntax of abort() method

Syntax: abort(code, message)

code: int, The code parameter takes any of the following values

message: str, create your custom message Error.

The different types of errors we can abort in the application in your Flask.

Cod

e Error

400 Bad request

401 Unauthenticated

403 Forbidden

404 Not Found

Cod

e Error

406 Not Acceptable

415
Unsupported Media

Type

429 Too Many Requests

Example to demonstrate abort

In this example, if the username starts with a number then an error code

message will through, else on success “Good username” will be printed.

Example 1:

Python3

importing abort

from flask import Flask, abort

Initialize the flask application

app = Flask(__name__)

@app.route('/<uname>')

def index(uname):

if uname[0].isdigit():

abort(400)

return '<h1>Good Username</h1>'

if __name__ == '__main__':

app.run()

Output:

Case 1: If the username doesn’t start with a number.

Case 2: If the username starts with a number.

Example 2:

In the above Python code, the status code to the abort() is 400, so it

raises a Bad Request Error. Let’s try to change the code to 403. If the

username starts with a number then it raises a Forbidden Error.

Python3

importing abort

from flask import Flask, abort

Initialize the flask application

app = Flask(__name__)

@app.route('/<uname>')

def index(uname):

if uname[0].isdigit():

abort(403)

return '<h1>Good Username</h1>'

if __name__ == '__main__':

app.run()

Output:

CHAPTER 8: Change Port in Flask

app

In this article, we will learn to change the port of a Flask application.

The default port for the Flask application is 5000. So we can access our

application at the below URL.

http://127.0.0.1:5000/

We may want to change the port may be because the default port is

already occupied. To do that we just need to provide the port while

running the Flask application. We can use the below command to run the

Flask application with a given port.

if __name__ == ‘__main__’:

 app.run(debug=True, port=port_number)

In this example, we will be using a sample flask application that returns a

text when we hit the root URL.

helloworld.py

Python3

import flask module

from flask import Flask

instance of flask application

app = Flask(__name__)

home route that returns below text

when root url is accessed

@app.route("/")

def hello_world():

return "<p>Hello, World!</p>"

if __name__ == '__main__':

app.run(debug=True, port=8001)

Output:

We are running the flask application on port 8001.

CHAPTER 9: Changing Host IP

Address in Flask

In this article, we will cover how we can change the host IP address in

Flask using Python. The host IP address is the network address that

identifies a device on a network. In the context of a Flask application, the

host IP address is the address that the application listens to for incoming

requests. By default, Flask applications listen on the localhost

address 127.0.0.1:5000, which means they can only be accessed from

the same machine that the application is running on.

However, it is often useful to be able to access the application from other

devices on the same network, or even from the internet. In these cases,

the host IP address can be changed to allow the application to be

accessed from other devices. This is done by specifying the host IP

address in the app.run() function of the Flask application.

Changing the IP address in a Flask application using the

“host” parameter

Here are the steps for changing the host IP address in a Flask application

using the “host” parameter in the app.run() function. Open the Flask

application in a text editor. Locate app.run() function in the main script

file. Add the “host” parameter to the app.run() function, followed by the

desired IP address, such as: app.run(host=’192.168.0.105′) this is the

local address of your system. This will only allow the application to be

accessed from the specified IP address.

Python3

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello():

return 'Hello, World! this application runing on 192.168.0.105'

if __name__ == '__main__':

app.run(host='192.168.0.105')

Output:

Changing IP from the command line while deploying the

Flask app

Here, the app.run() function does not specify an IP address or a port, so it

will use the defaults of localhost (127.0.0.1) and port 5000. You can run

this application by setting the FLASK_APP environment variable to the

name of your application file and then using the flask run command and

then you can change the IP address and port number while running the

command

set FLASK_APP=app.py

flask run

flask run --host=192.168.0.105 --port=5000

Python3

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello():

return 'Hello, World!'

if __name__ == '__main__':

app.run()

Output:

This will run the server on IP address 192.168.0.105 and port 5000.

PART 3: Serve Templates

and Static Files in Flask

CHAPTER 1: Flask Rendering

Templates

Flask is a backend web framework based on the Python programming

language. It basically allows the creation of web applications in a Pythonic

syntax and concepts. With Flask, we can use Python libraries and tools in

our web applications. Using Flask we can set up a web server to load up

some basic HTML templates along with Jinja2 templating syntax. In this

article, we will see how we can render the HTML templates in Flask.

Rendering a Template in a Flask Application

Setting up Flask is quite easy. We can use a virtual environment to create

an isolated environment for our project and then install the Python

packages in that environment. After that, we set up the environment

variables for running Flask on the local machine. This tutorial assumes

that you have a Python environment configured, if not please follow

through for setting up Python and pip on your system. Once you are

done, you are ready to develop Flask applications.

Setting up the Virtual Environment

To set up a virtual environment, we can make use of the Python Package

Manager “pip” to install the “virtualenv” package.

pip install virtualenv

This will install the package “virtualenv” on your machine. The pip

command can be different on the version of your Python installed so

please do look at the different syntax of the pip for your version here.

Creating Virtual Environment:

After the package has been installed we need to create a virtual

environment in our project folder. So you can locate an empty folder

where you want to create the Flask application or create an empty folder

in your desired path. To create the environment we simply use the

following command.

virtualenv venv

Here, venv is the name of the environment, after this command has been

executed, you will see a folder named “venv” in the current folder. The

name “venv” can be anything(“env”) you like but it is standard to

reference a virtual environment at a production level.

Activating Virtual Environment:

Now after the virtual env has been set up and created, we can activate it

by using the commands in CMD\Powershell or Terminal:

Note: You need to be in the same folder as the “venv” folder.

For Windows:

venv\Scripts\activate

For Linux/macOS:

source venv/bin/activate

This should activate the virtualenv with “(venv)” before the command

prompt.

Screenshot of the entire virtualenv setup

As we can see we have successfully created the virtualenv in Windows

Operating System, in Linux/macOS the process is quite similar. The (venv)

is indicating the current instance of the terminal/CMD is in a virtual

environment, anything installed in the current instance of a terminal

using pip will be stored in the venv folder without affecting the entire

system.

Installing Flask:

After the virtual environment has been set up, we can simply install

Flask with the following command:

pip install flask

This should install the actual Flask Python package in the virtual

environment.

Adding Flask to Environment Variables: We need to create an app for

Flask to set it as the starting point of our application. We can achieve this

by creating a file called “server.py” You can call this anything you like,

but keep it consistent with other Flask projects you create. Inside the

server.py paste the following code:

Python

from flask import Flask

app = Flask(__name__)

if __name__ == "__main__":

app.run()

This is the code for actually running and creating the Flask app. This is so-

called the entry point of a Flask web server. As you can see we are

importing the Flask module and instantiating with the current file name in

“Flask(__name__)”. Hence after the check, we are running a function

called run().

After this, we need to set the file as the Flask app to the environment

variable.

For Windows:

set FLASK_APP=server

For Linux/macOS:

export FLASK_APP=server

Now, this will set up the Flask starting point to that file we created, so

once we start the server the Flask server will find the way to the file

“server.py”

To run the server, enter the command :

flask run

This will run the server and how smartly it detected the server.py file as

our actual flask app. If you go to the URL “http://localhost:5000”, you

would see nothing than a Not Found message this is because we have not

configured our web server to serve anything just yet. You can press CTRL

+ C to stop the server

Flask set up for webserver

Creating Templates in a Flask Application

Now, we can move on to the goal of this article i.e. to render the

template. To do that we need to first create the templates, you can use

any HTML template but for simplicity, I am going with a basic HTML

template. Before that, create a folder called “templates” in the

current folder. Inside this “templates” folder, all of the templates will

be residing. Now let us create a basic HTML template: This template

must have some Jinja blocks that can be optionally replaced later. We

start with a single block called the body.

templates\index.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>FlaskTest</title>

</head>

<body>

<h2>Welcome To GFG</h2>

<h4>Flask: Rendering Templates</h4>

<!-- this section can be replaced by a child document -->

{% block body %}

<p>This is a Flask application.</p>

{% endblock %}

</body>

</html>

Adding Routes and Rendering Templates

A route is a mapping of a URL with a function or any other piece of code

to be rendered on the webserver. In the Flask, we use the function

decorate @app.route to indicate that the function is bound with the URL

provided in the parameter of the route function.

Creating the basic route: In this case, we are binding the URL

“/” which is the base URL for the server with the function “index”, you

can call it whatever you like but it makes more sense to call it index here.

The function simply returns something here it calls the function

render_template. The render_template finds the app by default in the

templates folder. So, we just need to provide the name of the template

instead of the entire path to the template. The index function renders a

template index.html and hence we see the result in the browser.

Now, we need a way to actually link the template with a specific route or

URL. This means whenever the user goes to a specific URL then a specific

template should be rendered or generated. Now, we need to change the

“server.py” with the following:

Python

from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")

def index():

return render_template("index.html")

if __name__ == "__main__":

app.run()

Output:

We have imported the render_template function from the Flask module

and added a route.

render the basic template

Templating With Jinja2 in Flask

Now, we’ll create a new route for demonstrating the usage of the Jinja

template. We need to add the route, so just add one more chunk of the

code to the “server.py file”

Python

@app.route("/<name>")

def welcome(name):

return render_template("welcome.html", name=name)

Now, this might look pretty easy to understand, we are simply creating a

route “/<name>” which will be bound to the welcome function. The

“<name>” is standing for anything after the “/”. So we take that as the

parameter to our function and pass it to the render_template function as

name. So, after passing the variable name in the render_template

function, it would be accessible in the template for us to render that

variable. You can even perform an operation on the variable and then

parse it.

No, we need to create another template called “welcome.html” inside the

template folder. This file should contain the following markup

HTML

<!DOCTYPE html>

<html>

<head>

<title>FlaskTest</title>

</head>

<body>

<h2>Welcome To GFG</h2>

<h3>Welcome, {{name}}</h3>

</body>

</html>

Using Jinja template

Flask – Jinja Template Inheritance Example

Now, we need a way to actually inherit some templates instead of reusing

them, we can do that by creating the blocks in Jinja. They allow us to

create a template block and we can use them in other templates with the

name given to the block.

So, let us re-use our “index.html” and create a block in there. T do that

we use “{% block <name> %} (where name = ‘body’) to start the block,

this will take everything above it and store it in a virtual block of

template, to end the block you simply use “{% endblock %}” this will

copy everything below it.

templates/index.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>FlaskTest</title>

</head>

<body>

<h2>Welcome To GFG</h2>

<h4>Flask: Rendering Templates</h4>

Home

Index

{% block body %}

<p>This is a Flask application.</p>

{% endblock %}

</body>

</html>

So, here we are not including the <p> tags as everything below the {%

endblock %} and everything above the {% block body %} tag is copied.

We are also using absolute URLs. The URLs are dynamic and quite easy to

understand. We enclose them in “{{ }}” as part of the Jinja2 syntax. The

url_for function reverses the entire URL for us, we just have to pass the

name of the function as a string as a parameter to the function.

Now, we’ll create another template to reuse this created block “body”,

let’s create the template “home.html” with the following contents:

templates/home.html

HTML

{% extends 'index.html' %}

{% block body %}

<p> This is a home page</p>

{% endblock %}

This looks like a two-liner but will also extend (not include) the

index.html. This is by using the {% extends <file.html> %} tags, they

parse the block into the mentioned template. After this, we can add the

things we want. If you use the include tag it will not put the replacement

paragraph in the correct place on the index.html page. It will create an

invalid HTML file, but since the browser is very forgiving you will not

notice unless you look at the source generated. The body text must be

properly nested.

Finally, the piece left here is the route to home.html, so let’s create that

as well. Let’s add another route to the “server.py file”

Python

@app.route("/home")

def home():

return render_template("home.html")

So, this is a route bound to the “/home” URL with the home function that

renders the template “home.html” that we created just right now.

Demonstrating block and URLs

As we can see the URL generated is dynamic, otherwise, we would have

to hardcode both the template page paths. And also the block is working

and inheriting the template as provided in the base templates. Open the

page source in the browser to check it is properly formed HTML.

<!DOCTYPE html>

<html>

<head>

<title>FlaskTest</title>

</head>

<body>

 <h2>Welcome To GFG</h2>

 <h4>Flask: Rendering Templates</h4>

 Home

 Index

 About

 Documentation

<p> This is a home page</p>

<p>must use extends not include</p>

</body>

</html>

Inducing Logic in Templates: We can use for loops if conditions in

templates. this is such a great feature to leverage on. We can create

some great dynamic templates without much of a hassle. Let us create a

list in Python and try to render that on an HTML template.

Using for loops in templates: For that, we will create another route,

this time at “/about”, this route will bind to the function about that

renders the template “about.html” but we will add some more things

before returning from the function. We will create a list of some dummy

strings and then parse them to the render_template function.

Python

@app.route("/about")

def about():

sites = ['twitter', 'facebook', 'instagram', 'whatsapp']

return render_template("about.html", sites=sites)

So, we have created the route at “/about” bound to the about function.

Inside that function, we are first creating the list “Sites” with some

dummy strings and finally while returning, we parse them to the

render_template function as sites, you can call anything you like but

remember to use that name in the templates. Now, to create the

templates, we’ll create the template “about.html” with the following

contents:

templates/about.html

HTML

{% extends 'index.html' %}

{% block body %}

{% for social in sites %}

{{ social }}

{% endfor %}

{% endblock %}

We can use for loops in templates enclosed in “{% %}” we can call them

in a regular Pythonic way. The sites are the variable(list) that we parsed in

the route function. We can again use the iterator as a variable enclosed in

“{{ }}”. This is like joining the puzzle pieces, the values of variables are

accessed with “{{ }}”, and any other structures or blocks are enclosed in

“{% %}.

Now to make it more accessible you can add its URL to the index.html like

so:

HTML

<!DOCTYPE html>

<html>

<head>

<title>FlaskTest</title>

</head>

<body>

<h2>Welcome To GFG</h2>

<h4>Flask: Rendering Templates</h4>

Home

Index

About

{% block body %}

<p>This is a Flask application.</p>

{% endblock %}

</body>

</html>

This is not mandatory but it creates an accessible link for ease.

Demonstrating for loop-in templates

As we can see it has dynamically created all the lists in the template. This

can be used for fetching the data from the database if the app is

production ready. Also, it can be used to create certain repetitive tasks or

data which is very hard to do them manually.

Corrected extends file

This correctly defined extends file removed the placeholder paragraph

and replaces it in the body of the HTML.

If statement in HTML Template in Python Flask

We can even use if-else conditions in flask templates. Similar to the

syntax for the for loops we can leverage that to create dynamic

templates. Let’s see an example of a role for a website.

Let’s build the route for the section contact. This URL is “contact/<role>”,

which is bound to the function contact which renders a template called

“contacts.html”. this takes in the argument as role. Now we can see some

changes here, this is just semantic changes nothing new, we can use the

variable person as a different name in the template which was assigned

as the values of the role.

Python

@app.route("/contact/<role>")

def contact(role):

return render_template("contact.html", person=role)

So, this creates the route as desired and parses the variable role as a

person to the template. Now let us create the template.

template/contact.html

HTML

{% extends 'index.html' %}

{% block body %}

{% if person == "admin" %}

<p> Admin Section </p>

{% elif person == "maintainer" %}

<p> App Source Page for Maintainer</p>

{% elif person == "member" %}

<p> Hope you are enjoying our services</p>

{% else %}

<p> Hello, {{ person }}</p>

{% endif %}

{% endblock %}

So, in the template, we are checking the value of the variable person

which is obtained from the URL and parsed from the render_template

function. The if-else syntax is similar to Python with just “{% %}”

enclosed. The code is quite self-explanatory as we create if-elif and else

ladder, checking for a value and creating the HTML elements as per the

requirement.

So, we can see that the template is rendering the contents as per the role

variable passed in the URL. Don’t try to create a URL link for this as it

would not work since we need to enter the role variable manually. There

needs to be some workaround done to use it.

So that was about using and rendering the templates in Flask. We have

leveraged the Jinja templating syntax with Python to create some

dynamic templates.

CHAPTER 2: CSRF Protection in

Flask

Let’s see how you can manually protect your data using CSRF protection

by doing a mini-project in Flask. In this, we will have to create a webpage

containing 2 forms using Python one of them is having protection. By

creating forms like these we can easily see the results and advantages of

using CSRF protection for our application.

What is CSRF?

Cross-Site Request Forgery(CSRF) is a weighty exposure that results from

weak gathering administration. If that requests shipped by an application

aren’t rare, it’s likely for an aggressor to art a certain request and

transmits that to a consumer. If the consumer communicates

accompanying the workout request, and gatherings aren’t controlled

correctly, an aggressor grant permission within financial means to acquire

the gathering similarity of that consumer and complete activity requests

on their side.

Solution for Preventing CSRF Attacks

Cross-Site Request Forgery (CSRF) attacks are comparably smooth to

diminish. One of the plainest habits to manage this is through the use of

CSRF tokens, which are uncommon principles dynamically created by a

server-side request and shipped to the customer. Since these principles

are rare for each request, and uniformly changeful, it is almost hopeless

for a raider to pre-generate the URLs/requests for an attack.

recreate image

Example of CSRF Protection in Flask

Step 1: Create a Virtual environment for our application and install the

following packages.

Step 2: Installing Packages.

pip install flask, flask-wtf

Step 3: You should have to create a folder structure like this.

Step 4: app.py

In Flask, we are having generally 2 ways to create a form one by using

FlaskForm and another by creating forms manually. FlaskForm processes

the request that already getting CSRF Protection. Csrf requires a secret

key by default, it uses the Flask app’s Secret Key. If you like to set up a

separate token then you can use WTF_CSRF_SECRET_KEY instead of using

a flask app’s secret key. While using FlaskForm, you will have to render

the forms CSRF field.n You can disable the CSRF Protection in all views by

default, then set WTF_CSRF_CHECK_DEFAULT to False in the app.py

file.

Python3

from flask import Flask, render_template, request

from flask_wtf import CSRFProtect

app = Flask(__name__)

app.secret_key = b'_53oi3uriq9pifpff;apl'

csrf = CSRFProtect(app)

@app.route("/protected_form", methods=['GET', 'POST'])

def protected_form():

if request.method == 'POST':

name = request.form['Name']

return (' Hello ' + name + '!!!')

return render_template('index.html')

@app.route("/unprotected_form", methods=['GET', 'POST'])

def unprotected_form():

if request.method == 'POST':

name = request.form['Name']

return (' Hello ' + name + '!!!')

return render_template('index.html')

if __name__ == '__main__':

app.run(debug=True)

Step 5: templates/index.html

A simple HTML page is set up for the app to show the unprotected and

protected submission of the form.

HTML

<html>

<head></head>

<body>

<form action="{{ url_for('protected_form') }}" method="POST">

<label for="Name">Your Name Please ? </label>

<input type="text" name="Name">

<input type="hidden" name="csrf_token" value = "{{ csrf_token() }}" />

<button type="submit">Submit</button>

</form>

<form action="{{ url_for('unprotected_form') }}" method="POST">

<label for="Name">Your Name Please ? </label>

<input type="text" name="Name">

<button type="submit">Submit</button>

</form>

</body>

</html>

Step 6: Now run it to see the webpage and perform the practice.

python app.py

Output:

Visit ‘127.0.0.1:5000/protected_form‘ and try submitting both forms

and one by one you should get the following outputs. While submitting

the first form we applied the token inside the form so that it checks the

token if it presents it serves the request else it generates an error.

CHAPTER 3: Templating With

Jinja2 in Flask

Flask is a lightweight WSGI framework that is built on Python

programming. WSGI simply means Web Server Gateway Interface. Flask is

widely used as a backend to develop a fully-fledged Website. And to make

a sure website, templating is very important. Flask is supported by inbuilt

template support named Jinja2. Jinja2 is one of the most used Web

template engines for Python. This Web template engine is a fast,

expressive, extensible templating engine. Jinja2 extensively helps to write

Python code within the HTML file. Further, it also includes:

Async support for generating templates that automatically handle

sync and async functions without extra syntax.

Template inheritance and inclusion.

The Template engine makes debugging easier.

Support of both High-level and Low-level API support.

Install the required package

To install the Jinja2 package in Python, check your latest pip version and

stay updated. Install Jinja2 using the following command:

pip install Jinja2

But since we are dealing with the Templating with Jinja2 in Flask, there is

no need to separately install Jinja2. When you install the Flask framework,

the Jinja2 comes installed with it.

pip install flask

Templating with Jinja2 in Flask

Before we proceed with the coding part, this is how our project directory

should look like:

Main Python File

Here is the common app.py file that interfaces with all the HTML files.

Python3

from flask import Flask, render_template, redirect, url_for

app = Flask(__name__)

@app.route("/")

def home():

return render_template("index.html")

@app.route("/default")

def default():

return render_template("layout.html")

@app.route("/variable")

def var():

user = "Geeksforgeeks"

return render_template("variable_example.html", name=user)

@app.route("/if")

def ifelse():

user = "Practice GeeksforGeeks"

return render_template("if_example.html", name=user)

@app.route("/for")

def for_loop():

list_of_courses = ['Java', 'Python', 'C++', 'MATLAB']

return render_template("for_example.html", courses=list_of_courses)

@app.route("/choice/<pick>")

def choice(pick):

if pick == 'variable':

return redirect(url_for('var'))

if pick == 'if':

return redirect(url_for('ifelse'))

if pick == 'for':

return redirect(url_for('for_loop'))

if __name__ == "__main__":

app.run(debug=False)

Jinja Template Variables

To declare the variable using Jinja Template we

use {{variable_name}} within the HTML file. As a result, the variable

will be displayed on the Website.

Syntax of Jinja Template Variables

{{any_variable_name}}

variable_example.html

HTML

<html>

<head>

<title>Variable Example</title>

</head>

<body>

<h3>Hello {{name}}</h3>

</body>

</html>

Output

Jinja Template if Statements

Just like declaring the variable in the Jinja2 template, if conditions have

almost similar syntax. But here we specify the beginning and end of the if

block.

Syntax of Jinja Template if Statements

{% if conditions %}

...

...

...

{% endif %}

Our app.py will stay the same. Just only one change instead of

Geeksforgeeks tries giving Geeks so that we can verify the else block.

if_example.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>If example</title>

</head>

<body>

{% if(name == "Geeksforgeeks") %}

<h3> Welcome </h3>

{% else %}

<h3> Unknown name entered: {{name}} </h3>

{% endif %}

</body>

</html>

Output:

Jinja Template for Loop

Jinja for loop syntax is similar to the if statements, the only difference is

for loop requires sequence to loop through.

Syntax of Jinja Template for Loops

{% for variable_name in sequence%}

...

...

...

{% endfor %}

for_example.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>For Example</title>

</head>

<body>

<h2> Geeksforgeeks Available Course </h2>

{% for course in courses%}

<h4> {{course}} </h4>

{% endfor %}

</body>

</html>

Output:

Jinja Template Inheritance

If you closely check the project files, you will find the index.html and

layout.html. In this example, we gonna take look into Template

Inheritance. In most of the websites, if you notice, the footer and header

remain the same, which means they share similar formats. In this

example, layout.html will contain the default design that is common to all

the pages, but here we will keep it specifically for index.html to

understand how it works.

The syntax for layout.html contains the default text, along with the block

contain, that will be inherited by other HTML files. You can think of

layout.html as the parent and index.html as a child.

Syntax of Jinja Template Inheritance

layout.html

{% block content %}

{% endblock %}

index.html

{% extends "layout.html" %}

 {% block content %}

{% endblock %}

Example

In layout.html we define the top block and specify a template to insert

block content that acts as parent HTML files.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Jinja2 and Flask</title>

</head>

<body>

<h1>Welcome to Geeksforgeeks</h1>

<h4>A Computer Science portal for geeks.</h4>

{% block content %}

{% endblock %}

</body>

</html>

In index.html using the layout.html as the parent file, we shall derive all

its content and add the block content to the existing HTML file.

Note: No need to define the HTML, head, and body tag in the child HTML

file.

HTML

{% extends "layout.html" %}

{% block content %}

 Check Layout(Inheritance)

 Try Variable Example

 Try If-else Example

 Try For Example

 Try URL Example

{% endblock %}

Output:

layout.html

index.html

Jinja Template url_for Function

To build a dynamic website you need multiple re-direction within the

website. url_for function is a very handy method that helps in re-direction

from one page to another. url_for is also used to link HTML templates with

static CSS or JavaScript files.

In our example since we have multiple choice for example, i.e., variable,

if and for. Using url_for, we can create a custom function in which the user

can alter the URL to get the specific result. For example, we shall define a

function inside app.py and in example 2 we will take link HTML with CSS.

Syntax of Jinja Template url_for Function

url_for(function_name)

Example 1:

In the below example, if the user enters choice/<his choice> then it will

redirect to that HTML file. Make sure redirect and url_for are imported.

Python3

@app.route("/choice/<pick>")

def choice(pick):

if pick == 'variable':

return redirect(url_for('var'))

if pick == 'if':

return redirect(url_for('ifelse'))

if pick == 'for':

return redirect(url_for('for_loop'))

Output:

Example 2:

In example 1 we used url_for inside a Python file. Now we shall use url_for

inside the layout.html (parent file) HTML file, it will follow the variable

define syntax i.e., to be enclosed within {{}}. Just like templates, create

a static file for CSS.

{{ url_for('static', filename='<path of the file>') }}

HTML

<!DOCTYPE html>

<html>

<head>

<title>Template with Jinja2 and Flask</title>

<link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='style.css')

}}">

</head>

<body>

<h1>Welcome to Geeksforgeeks</h1>

<h4>A Computer Science portal for geeks.</h4>

{% block content %}

{% endblock %}

</body>

</html>

Output

CHAPTER 4: Placeholders in jinja2

Template

Web pages use HTML for the things that users see or interact with. But

how do we show things from an external source or a controlling

programming language like Python? To achieve this templating engine

like Jinja2 is used. Jinja2 is a templating engine in which placeholders in

the template allow writing code similar to Python syntax which after

passing data renders the final document. In this article we will cover

some of the points as mentioned below:

Template Variables

Template if Statements

Template for Loops

Template Inheritance

Let’s start by creating a virtual environment. It’s always a good idea to

work in a virtual environment as it will not cause changes to the global

system environment. For using Jinja2 in Python, we need to install the

Jinja2 library.

pip install Jinja2

Template Variables in Jinja2

Jinja2 is a Python library that allows us to build expressive and extensible

templates. It has special placeholders to serve dynamic data. A Jinja

template file is a text file that does not have a particular extension.

Syntax of Template Variables in Jinja2

For a placeholder, we have the following syntax in Jinja2.

{{variable_name}}

Example

In an HTML file called index_template.html, write the following code.

HTML

<!-- index_template.html -->

Hello {{pl_name}}! Your email is: {{pl_email}}

app.py

We open this HTML file in Python and read its content to a variable called

content. Pass the content to Template, and store it in

the template variable. Now, we will pass the name and email to render

and replace the placeholders {{pl_name}} and {{pl_email}}

respectively, by using template.render; and store this in rendered_form.

Python3

app.py

import Template from jinja2 for passing the content

from jinja2 import Template

variables that contain placeholder data

name = 'John'

email = 'you@example.co'

Create one external form_template html page and read it

File = open('index_template.html', 'r')

content = File.read()

File.close()

Render the template and pass the variables

template = Template(content)

rendered_form = template.render(pl_name=name, pl_email=email)

save the txt file in the form.html

output = open('index.html', 'w')

output.write(rendered_form)

output.close()

The index.html file is created in the variable output. Write the content to

this HTML file using output.write(rendered_form). Below are the two files

before running the Python program.

Now, run app.py using the following command:

python app.py

A new file is created named index.html. Open it and see the code. The

placeholder text is changed to the values that we passed.

Conditionals and Looping in Jinja2

Jinja in-line conditionals are started with a curly brace and a % symbol,

like {% if condition %} and closed with {% endif %}. You can optionally

include both {% elif %} and {% else %} tags, and for loop, we use {%

for index in numbers %} and end with {% endfor %}.

Syntax of Conditionals and Looping

For conditions, we have the following syntax in Jinja2.

For loop If condition

{% for i in numbers

%}

{% endfor %}

{% if i % 2== 0

%}

{% endif %}

Example

A list can also be passed using Jinja. To iterate through the list and for

using conditions, similar to Python we use loop and if-condition. Let’s pass

a list of numbers as well:

Python3

app.py

import Template from jinja2 for passing the content

from jinja2 import Template

variables that contain placeholder data

name = 'John'

email = 'you@example.co'

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Create one external form_template html page and read it

File = open('index_template.html', 'r')

content = File.read()

File.close()

Render the template and pass the variables

template = Template(content)

rendered_form = template.render(pl_name=name,

pl_email=email, numbers=numbers)

save the txt file in the form.html

output = open('index.html', 'w')

output.write(rendered_form)

output.close()

index_template.html

Here we will iterate the number and print the even number from the list.

HTML

<!-- index_template.html -->

Hello {{pl_name}}! Your email is: {{pl_email}}

Even numbers:

{% for i in numbers %}

{% if i%2==0 %}

{{i}}

{% endif %}

{% endfor %}

Output:

Template Inheritance in Jinja2

Template inheritance is a very good feature of Jinja templating. All that is

needed is to add a {% extend %} tag. The home page {% extends “base.

html” %} inherits everything from the base template.

Syntax of Jinja extend block

For Inherit the base page, we have the following syntax in Jinja2.

{% block content %}

<Code>

{% endblock %}

{% extends "base.html" %}

{% block content %}

 <Code>

{% endblock %}

Example

Here, we want to use the same HTML content across pages like a Website

name or a search bar without repeating the HTML code. For this Jinja2 has

a feature called template inheritance. Suppose we need this heading and

search bar on every page without repeating the code:

base.html: This is the code of the website name and search bar.

HTML

<!-- base.html -->

<h1>My Blog</h1>

<input type="search">

<button>Search</button>

<!-- Child page code goes between this -->

{% block content %}{% endblock %}

<!-- You can continue base.html code after this if you want -->

Let’s include this in our index_template.html. In the child template or

the page, you want to include the website name and search bar.

HTML

<!-- index_template.html -->

<!-- include base.html -->

{% extends "base.html" %}

<!-- Write any code only in this block -->

{% block content %}

Hello {{pl_name}}! Your email is: {{pl_email}}

Even numbers:

{% for i in numbers %}

{% if i%2==0 %}

{{i}}

{% endif %}

{% endfor %}

<!-- end the block -->

{% endblock %}

Output:

CHAPTER 5: Serve static files in

Flask

Flask is a lightweight Web Server Gateway Interface or WSGI framework

for web applications written in Python. It is designed to make web

application development fast and easy and can scale to complex

applications. This article describes and demonstrates how to serve

various static files in Flask.

Serving Static Files in Flask

Let’s configure the virtual environment first. Although this step is

optional, we always recommend using a dedicated development

environment for each project. This can be achieved in a Python virtual

environment.

Now that we have created our Flask app, let’s see how to serve static files

using the Flask app we just created. First, static files are files served by a

web server and do not change over time like CSS and Javascript files used

in web applications to improve user experience. Below you will find a

demonstration of various static files served by the Flask app.

File Structure

HTML File

Serving HTML files using Flask is fairly simple just create a templates

folder in the project root directory and create the HTML files,

as templates/index.html. Here, we are passing text, and with the help

of Jinja {{message}}, we are printing text that is present in the

variable.

HTML

<html>

<head>

<title>Flask Static Demo</title>

</head>

<body>

<h1>{{message}}</h1>

</body>

</html>

main.py

In main.py we render the HTML file when we run it, we are using the

render_template() function provided by Flask to render the HTML file. The

final code looks like this:

Python3

from flask import Flask

from flask import render_template

creates a Flask application

app = Flask(__name__)

@app.route("/")

def hello():

message = "Hello, World"

return render_template('index.html',

message=message)

run the application

if __name__ == "__main__":

app.run(debug=True)

Output:

The Flask is up and running on localhost port http://127.0.0.1:5000/

Serve CSS file in Flask

Now serving a CSS file is the same as an HTML file but instead of

/templates folder, we create a static folder in the root directory and add

all CSS files to it, For simplicity, we have used a very simple CSS file.

CSS

h1{

color: red;

font-size: 36px;

}

Now, let us link it with the HTML template file using the link tag referring

to the CSS file in the static folder.

HTML

<html>

<head>

<title>Flask Static Demo</title>

<link rel="stylesheet" href="/static/style.css" />

</head>

<body>

<h1>{{message}}</h1>

</body>

</html>

Output:

Serve JavaScript file in Flask

To serve Javascript it is the same as a CSS file create a javascript file in

the static folder.

Javascript

document.write("This is a Javascript static file")

Now link it with the HTML and run the Flask app.

HTML

<html>

<head>

<title>Flask Static Demo</title>

<link rel="stylesheet" href="/static/style.css" />

</head>

<body>

<h1>{{message}}</h1>

<script src="/static/serve.js" charset="utf-8"></script>

</body>

</html>

Output:

Serve Media files in Flask (Image, Video, Audio)

You can also use Flask to serve media files such as images, videos, audio

files, text files, and PDFs. You can use the same /static folder that you

used for CSS and Javascript to serve these kinds of files.

Place all media files in a static folder and associate them with their

respective HTML files as shown below. Once all template files have been

processed, create routes in main.py for all static files you want to render.

Images

Create an image.html file in the templates folder and add the following

code to the main.py and image.html respectively.

Python3

Images

@app.route("/image")

def serve_image():

message = "Image Route"

return render_template('image.html', message=message)

templates/images.html

HTML

<html>

<head>

<title>Flask Static Demo</title>

<link rel="stylesheet" href="/static/style.css" />

</head>

<body>

<h1>{{message}}</h1>

<script src="/static/serve.js" charset="utf-8"></script>

</body>

</html>

Output:

Video Files

To serve a video file, create a video.html file in your templates folder and

add the following code to your main.py and video.html files.

Python3

video

@app.route("/video")

def serve_video():

message = "Video Route"

return render_template('video.html', message=message)

templates/video.html

As you see the mp4 video file is been served by Flask over localhost.

HTML

<html>

<head>

<title>Flask Static Demo</title>

<link rel="stylesheet" href="/static/style.css" />

</head>

<body>

<h1>{{message}}</h1>

<video width="320" height="240" controls>

<source src="/static/ocean_video.mp4" type="video/mp4" />

</video>

<script src="/static/serve.js" charset="utf-8"></script>

</body>

</html>

Output:

Audio Files

Respectively an audio file can be served by creating

an audio.html template file and adding the following code to

the main.py.

Python3

audio

@app.route("/audio")

def serve_audio():

message = "Audio Route"

return render_template('audio.html', message=message)

templates/audio.html

HTML

<html>

<head>

<title>Flask Static Demo</title>

<link rel="stylesheet" href="/static/style.css" />

</head>

<body>

<h1>{{message}}</h1>

<audio controls>

<source src="/static/audio.mp3" />

</audio>

<script src="/static/serve.js" charset="utf-8"></script>

</body>

</html>

Output:

Complete Flask Code

For simplicity, we have created a simple Flask application for a better

understanding of how to serve static files in Flask.

Python3

from flask import Flask

from flask import render_template

creates a Flask application

app = Flask(__name__)

@app.route("/")

def hello():

message = "Hello, World"

return render_template('index.html', message=message)

@app.route("/video")

def serve_video():

message = "Video Route"

return render_template('video.html', message=message)

@app.route("/audio")

def serve_audio():

message = "Audio Route"

return render_template('audio.html', message=message)

@app.route("/image")

def serve_image():

message = "Image Route"

return render_template('image.html', message=message)

run the application

if __name__ == "__main__":

app.run(debug=True)

Let’s test the Flask app by running it, to run the app just run the python

main.py which will serve output as shown above:

CHAPTER 6: Uploading and

Downloading Files in Flask

This article will go over how to upload and download files using

a Flask database using Python. Basically, we have a section for uploading

files where we can upload files that will automatically save in our

database. When we upload a file and submit it, a message stating that

your file has been uploaded and displaying the file name on the screen

appears. When we view our Flask SQLite database, we can see that our

file has been automatically saved in the database. We can also download

our files by using the /download /id number using the link. Consequently,

we shall comprehend each phase of this method in this post.

Uploading and Downloading Files in Flask

For our upload and return files with the database in a Flask, first, we

create a templates folder for making choose file and submit button in

HTML file form so let’s get started. To upload and download files with the

database in Flask, first we need to download SQLite DB browser to save

our data in SQLite.

File structure

Templates File

In the templates file, we will create only one HTML file which will operate

our all frontend part code.

index.html

In the index.html file, we make the first heading using h1 for showing

exactly what we are doing and after that, we write one form in which we

declare the method POST action by using URL ‘/’ and after that, we

initialize data type by using Enctype and we take the multipart/form-data

in this so our all file will safely save in database and after that, we write

code for simple input button and also submit button for showing all these

functionalities clearly we are using some CSS in style tag for making our

frontend part beautiful

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>File Upload Example</title>

<style>

.ok{

font-size: 20px;

}

.op{

font-size: 20px;

margin-left: -70px;

font-weight: bold;

background-color: yellow;

border-radius: 5px;

cursor: pointer;

}

</style>

</head>

<body>

<div class="center">

<h1> Uploading and Returning Files With a Database in Flask </h1>

<form method="POST" action="/" enctype="multipart/form-data">

<input class="ok" type="file" name="file">

<button class="op">Submit</button>

</form>

</div>

</body>

</html>

Output:

Html Output

app.py

After writing code for templates we create an app.py file outside of the

templates folder and create app,.py in which we will write our main code

of uploading and returning files with a database in a Flask in Python

language.

Step 1: Import all libraries

In the app.py file we will write our main part of the code through these all

operations will operate easily first in app.py we need to import all

important libraries which are important for doing upload and returning

files with database operations first we import io BytesIO this module will

convert our all pdf files binary in below you can see what type of output

will show in the database when we upload any pdf in the database and

we import render_template for rendering templates and after that, we

are importing send_file module which will help us to send the file to

database and after that, we are importing flask_sqlalchemy for our SQL

data

Python

from io import BytesIO

from flask import Flask, render_template, request, send_file

from flask_sqlalchemy import SQLAlchemy

Step 2: Create a database

After importing all libraries we create an SQL database for uploading and

returning our file we initialize the Flask function and after that, we make a

database sqlite:///db.sqlite3 to save our uploading files and we create one

DB as SQLAchemy saving database

Python3

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3'

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

db = SQLAlchemy(app)

Step 3: Create a table for the database

after creating the database we need to make a table database for which

we create one ID which we make the primary key after making the id we

crate the filename and in the filename we initialize a varchar limit of 50

and after that, we create one data which is a blob which means we can

see our file by click on the blob and for making all these functionalities we

write following lines of code in our app.py file

Python3

class Upload(db.Model):

id = db.Column(db.Integer, primary_key=True)

filename = db.Column(db.String(50))

data = db.Column(db.LargeBinary)

Step 4: Create an index function

We create one index function in which we set the first path ‘/’ and after

that, we pass the request for method functionality in method functionality

we create one var upload in which we initialize the filename and read the

file if we upload a pdf so it will read it in binary form after writing this we

create DB session in our database and also we commit our DB session

after creating and after that we return file name with flashing massage

uploaded ‘ filename’ and we return our render template on index,.html

file

Python3

@app.route('/', methods=['GET', 'POST'])

def index():

if request.method == 'POST':

file = request.files['file']

upload = Upload(filename=file.filename, data=file.read())

db.session.add(upload)

db.session.commit()

return f'Uploaded: {file.filename}'

return render_template('index.html')

After writing the code we need to create db.sqlite in our system to create

a database we need to run the following command in the terminal:

python

from app import app, db

app.app_context().push()

db.create_all()

exit()

by running the above command in the terminal we can create a database

in which our file will save after uploading and submitting the database

and we can see our database in the instance folder automatically created

for running how to run these commands watch a video which is attached

below.

Step 5: Create a download function for downloading the file.

After uploading our file we need to make a download function for

download our uploading file for download file we make one upload

variable in which we add an upload query and we filter our files by id as

we set every id unique so every file has a unique id and after that, we

return our file by using send_file and also for download pdf file we convert

it into binary to our data file by using BytesIO module and after we can

download our file by using the following link

http://127.0.0.1:5000/download/id_number

Python

@app.route('/download/<upload_id>')

def download(upload_id):

upload = Upload.query.filter_by(id=upload_id).first()

return send_file(BytesIO(upload.data), download_name=upload.filename,

as_attachment=True)

Complete Code

Python3

import all libraires

from io import BytesIO

from flask import Flask, render_template, request, send_file

from flask_sqlalchemy import SQLAlchemy

Initialize flask and create sqlite database

app = Flask(__name__)

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db.sqlite3'

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

db = SQLAlchemy(app)

create datatable

class Upload(db.Model):

id = db.Column(db.Integer, primary_key=True)

filename = db.Column(db.String(50))

data = db.Column(db.LargeBinary)

Create index function for upload and return files

@app.route('/', methods=['GET', 'POST'])

def index():

if request.method == 'POST':

file = request.files['file']

upload = Upload(filename=file.filename, data=file.read())

db.session.add(upload)

db.session.commit()

return f'Uploaded: {file.filename}'

return render_template('index.html')

create download function for download files

@app.route('/download/<upload_id>')

def download(upload_id):

upload = Upload.query.filter_by(id=upload_id).first()

return send_file(BytesIO(upload.data),

download_name=upload.filename, as_attachment=True)

To run the above code we need to run the following command in the

terminal:

flask run

Output:

After running these commands in the terminal when we upload files like

pdf and images so following output will show in the database when we

blob SQLite database.

Image upload

When we upload images so following image type interface will display on

the screen when we blob our database.

Database for image

Pdf upload

When we upload any pdf file so database converts our pdf file into the

binary form so the following type of interface will show when we upload

any pdf file in the database and the blob.

Database of pdf file in binary form

CHAPTER 7: Upload File in Python-

Flask

File uploading is a typical task in web apps. Taking care of file upload in

Flask is simple all we need is to have an HTML form with the encryption

set to multipart/form information to publish the file into the URL. The

server-side flask script brings the file from the request object utilizing the

request.files[] Object. On effectively uploading the file, it is saved to the

ideal location on the server.

Install the Flask by writing the command in terminal:

pip install flask

Stepwise Implementation

Step 1: A new folder “file uploading” should be created. Create the

folders “templates” and “main.py” in that folder, which will store our

HTML files and serve as the location for our Python code.

Step 2: For the front end, we must first develop an HTML file where the

user can select a file and upload it by clicking the upload buttons. The

user will click the submit button after choosing the file from their local

computer in order to transmit it to the server.

Index.html

HTML

<html>

<head>

<title>upload the file : GFG</title>

</head>

<body>

<form action = "/success" method = "post" enctype="multipart/form-data">

<input type="file" name="file" />

<input type = "submit" value="Upload">

</form>

</body>

</html>

Step 3: We must make another HTML file just for acknowledgment.

Create a file inside the templates folder called “Acknowledgement.html”

to do this. This will only be triggered if the file upload went smoothly.

Here, the user will receive a confirmation.

Acknowledgement.html

HTML

<html>

<head>

<title>success</title>

</head>

<body>

<p>File uploaded successfully</p>

<p>File Name: {{name}}</p>

</body>

</html>

Step 4: Now inside the ‘main.py’ write the following codes. The name of

the objective file can be obtained by using the following code and then

we will save the uploaded file to the root directory.

main.py

Python3

from distutils.log import debug

from fileinput import filename

from flask import *

app = Flask(__name__)

@app.route('/')

def main():

return render_template("index.html")

@app.route('/success', methods = ['POST'])

def success():

if request.method == 'POST':

f = request.files['file']

f.save(f.filename)

return render_template("Acknowledgement.html", name = f.filename)

if __name__ == '__main__':

app.run(debug=True)

Output:

Run the following command in your terminal.

python main.py

Step 5: Now, to check if it is correctly working or not go to the folder

where ‘main.py‘. Check in that folder you will find the files there.

File structure

CHAPTER 8: Upload Multiple files

with Flask

In online apps, uploading files is a common task. Simple HTML forms with

encryption set to multipart/form information are all that is required to

publish a file into a URL when using Flask for file upload. The file is

obtained from the request object by the server-side flask script using the

request. In this article, we will look at how to upload multiple files

with Python. It allows the user to select multiple files at once and upload

all files to the server. Before proceeding, Install the Flask by writing the

command in the terminal:

pip install flask

Stepwise Implementation

Step 1: Create a new project folder Upload. Inside this folder

create main.py, and create folder templates.

Step 2: Create a simple HTML page index.html to select multiple files

and submit them to upload files on the server. Here, the HTML file

contains a form to select and upload files using the POST method.

The enctype attribute plays an important role here. It specifies how the

form data should be encoded when submitting it to the server. we are

uploading files that’s why we should set the attribute value

to multipart/form-data.

HTML

<html>

<head>

<title>Upload Multiple files : GFG</title>

</head>

<body>

<form action = "/upload" method="POST" enctype="multipart/form-data">

<input type="file" name="file" multiple />

<input type = "submit" value="Upload">

</form>

</body>

</html>

Step 3: Now inside the main.py. Here the list of the file object is

collected and then we will save the uploaded files one by one to the root

directory using the loop and file.save() function.

Python3

from flask import *

app = Flask(__name__)

@app.route('/')

def main():

return render_template("index.html")

@app.route('/upload', methods=['POST'])

def upload():

if request.method == 'POST':

Get the list of files from webpage

files = request.files.getlist("file")

Iterate for each file in the files List, and Save them

for file in files:

file.save(file.filename)

return "<h1>Files Uploaded Successfully.!</h1>"

if __name__ == '__main__':

app.run(debug=True)

Output:

Run the following command in Terminal

python main.py

Index Page

Select multiple files from your folder.

Select Multiple Images

After submitting, a Success message will displayed.

Files Uploaded

Here we can see that four *.png images are uploaded to the root directory

of a project.

Verification

CHAPTER 9: Flask – Message

Flashing

In this article, we will discuss Flask – Message Flashing. As we know best

Graphical User Interface which provides feedback to a user when users

interact, as an example, we can know that desktop applications use the

messages box or JS for an alert purpose. generating like same informative

massage is easy to display in the Flask web application. The flashing

message of the Flask web application makes flask easier and more useful

for users.

What is Message Flashing

Message Flashing means when we click on any button(any website) and

the website showing immediately any massage that can be an error,

alert, or any type of massage that’s call massage Flashing and when that

happens in a flask or we are creating any website which shows an alert,

error type massage than its call Flash-Message Flashing.

A Flask contains a flash() function. which passes a request to the next

user. which generally is a template we are using flash methods in the

above template in which the message parameter is the real message to

be flashed, and another one is the category parameter which is optional,

it will happen “error” or “warning”.

flash(message, category)

To understand flashing message and know about more flashing

messages, we start to write code for flashing massages we take an

example of a login system so let’s write code for flashing massage.

Create a Virtual Environment.

app.py File

Here, we create an app.py file in which we write our main code of Flask.

In app.py first, we import flask then we initialize the flask function and

create a secret key which will help us when we forgot our password then

we made two functions one home() for index.html which will help us to

call and display the home page when we run flask using flask run

command and another one for login login.html we joint both files by

using form action and after that, we use if and else condition for flashing

message (error or warning) and also for redirect on profile page by filling

right password and also right Email ID and after that in if and else

condition we create password GFG we can set any password it up to you

and also write error flashing message which will show when we fill the

wrong password and click on submit button for login and if we fill right

password and email id it will redirect us on profile page were also showing

one welcome flashing message which we create using python code in

app.py file.

That error message which is showing in the above images when we enter

the wrong password is called a flashing message also if we fill right

password and email id and click on submit button then it will redirect us

to the profile page which will also show a welcome flashing message so

this way we can display flashing message in our display screen. for

getting the code and take help completing this flashing message

click here. It will also help to know how to show flashing messages.

Python3

from flask import *

Initialize Flask function

app = Flask(__name__)

app.secret_key = "GeeksForGeeks"

home function for index.html

@app.route("/index")

def home():

return render_template("index.html")

row function for profile.html

@app.route("/profile")

def row():

return render_template("profile.html")

write if and else condition if we provide write password then he will redirect

us in profile page otherwise he will redirect us on same page with

flashing massage Invalid Password

@app.route("/login", methods=['GET', 'POST'])

def login():

error = None

if request.method == "POST":

if request.form['pass'] != "GFG":

error = "Invalid Password"

else:

flash("You are successfully login into the Flask Application")

return redirect(url_for('row'))

return render_template("login.html", error=error)

execute command with debug function

if __name__ == '__main__':

app.run(debug=True)

Templates File

index.html

In this code, we are writing some flashing (error code) massage

command and we connect this page to login by using the URL “/login” in

the app.py file it means when we click on the URL ” login “redirects us to

the login page. where we can log in. and we can enter our profile by filling

right password which we will set in the below code of the app.py file.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Home</title>

</head>

<body>

{% with messages = get_flashed_messages()%}

{% if massages%}

{% for massage in massages%}

<p>{{massage}}</p>

{%endfor%}

{%endif%}

{%endwith%}

<h3>Welcome to the GeeksForGeeks</h3>

login

</body>

</html>

When we run the following command in our terminal.

flask run

Output:

This will show on our display screen and it also shows our flask is

successfully running.

index.html

login.html

In the login page, we create simple input for the password and email

which is required to fill .and also write three lines of python code for

showing a flashing massage when we enter the wrong password and try

to log in and also set both inputs in from tag in which we create one

method post and action “/login” which means when we click on previous

page login link so it will redirect us on this login form page and we write

for one button in which we set the value to submit for submitting our

login form after filling Email and password.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Login</title>

</head>

<body>

{% if error%}

<p>{{error}}</p>

{% endif%}

<form method="post" action="/login">

<table>

<tr>

<td>Email</td>

<td><input type="email" name="email"></td>

</tr>

<tr>

<td>Password</td>

<td><input type="password" name="pass"></td>

</tr>

<tr>

<td><input type="submit" value="Submit"></td>

</tr>

</table>

</form>

</body>

</html>

Output:

login.html

profile.html

In this code, we made a simple message that will show after successful

login. it will also show us the welcome flashing massage which we create

in the app.py file by using the flask function.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Profile</title>

</head>

<body>

<div class="container">

<p>Welcome to your GFG Profile Page</p>

</div>

</body>

</html>

Final Output of unsuccessful Flashing Massage

If we write the wrong Password and press submit button so it will show a

flashing message (error or warning) like the below output image Invalid

Password is called Flashing Massage. and if we fill right password and

email it will redirect us to the profile page which will also show one

flashing welcome message on our display screen.

profile.html

The output of successful Flashing Massage

profile.html

CHAPTER 10: Create Contact Us

using WTForms in Flask

WTForms is a library designed to make the processing of forms easier to

manage. It handles the data submitted by the browser very easily. In this

article, we will discuss how to create a contact us form using WTForms.

Advantages of WT-FORM:

1. We don’t have to worry about validators.

2. Avoidance of Cross-Site Request Forgery (CSRF).

3. WTForms come as classes, so all the good come’s from an object

form.

4. No need to create any <label> or <input> elements manually

using HTML.

Installation

Use the Terminal to install Flask-WTF.

pip install Flask-WTF

Stepwise Implementation

Step 1: Create a class having all elements that you want in your Form in

the main.py.

Python3

from flask_wtf import FlaskForm

from wtforms import StringField, validators, PasswordField, SubmitField

from wtforms.validators import DataRequired, Email

import email_validator

class contactForm(FlaskForm):

name = StringField(label='Name', validators=[DataRequired()])

email = StringField(label='Email', validators=[

DataRequired(), Email(granular_message=True)])

message= StringField(label='Message')

submit = SubmitField(label="Log In")

Step 2: Create the object of the form and pass the object as a parameter

in the render_template

Python3

@app.route("/", methods=["GET", "POST"])

def home():

cform = contactForm()

return render_template("contact.html", form=cform)

Step 3: Add CSRF protection. Add a secret key.

app.secret_key = "any-string-you-want-just-keep-it-secret"

Step 4: Add the fields in the contact.html HTML FILE.

{{ form.csrf_token }} is used to provide csrf protection.

HTML

<!DOCTYPE HTML>

<html>

<head>

<title>Contact</title>

</head>

<body>

<div class="container">

<h1>Contact Us</h1>

<form method="POST" action="{{ url_for('home') }}">

{{ form.csrf_token }}

<p>

{{ form.name.label }}

{{ form.name }}

</p>

<p>

{{ form.email.label }}

{{ form.email(size=30) }}

</p>

<p>

{{ form.message.label }}

{{ form.message }}

</p>

{{ form.submit }}

</form>

</div>

</body>

</html>

Step 5: Validating the Form and receiving the data.

Python3

@app.route("/", methods=["GET", "POST"])

def home():

cform = contactForm()

if cform.validate_on_submit():

print(f"Name:{cform.name.data},

E-mail:{cform.email.data},

message:{cform.message.data}")

else:

print("Invalid Credentials")

return render_template("contact.html", form=cform)

Complete Code:

Python3

from flask import Flask, render_template, request, redirect, url_for

from flask_wtf import FlaskForm

from wtforms import StringField, validators, PasswordField, SubmitField

from wtforms.validators import DataRequired, Email

import email_validator

app = Flask(__name__)

app.secret_key = "any-string-you-want-just-keep-it-secret"

class contactForm(FlaskForm):

name = StringField(label='Name', validators=[DataRequired()])

email = StringField(

label='Email', validators=[DataRequired(), Email(granular_message=True)])

message = StringField(label='Message')

submit = SubmitField(label="Log In")

@app.route("/", methods=["GET", "POST"])

def home():

cform=contactForm()

if cform.validate_on_submit():

print(f"Name:{cform.name.data}, E-mail:{cform.email.data},

message:{cform.message.data}")

return render_template("contact.html",form=cform)

if __name__ == '__main__':

app.run(debug=True)

Output:

Name:Rahul Singh, E-mail:rahuls@gmail.com, message:This is Sample gfg Output!!!

Adding Bootstrap

We can also add the bootstrap to the above form to make it look

interactive. For this, we will use the Flask-Bootstrap library. To install this

module type the below command in the terminal.

pip install Flask-Bootstrap

Step 1: Create base.html

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>{% block title %}{% endblock %}</title>

</head>

<body>

{% block content %}{% endblock %}

</body>

</html>

Step 2: Modify contact.html to

with single line {{ wtf.quick_form(form) }}

HTML

{% extends 'bootstrap/base.html' %}

{% import "bootstrap/wtf.html" as wtf %}

{% block title %}

Contact Us

{% endblock %}

{% block content %}

<div class="container">

<h1>Contact Us</h1>

{{ wtf.quick_form(form) }}

</div>

{% endblock %}l>

Step 3: MODIFY main.py

It is very simple to modify the .py file. We just have to import the module

and add the below line into the code

Bootstrap(app)

Python3

from flask import Flask, render_template, request, redirect, url_for

from flask_wtf import FlaskForm

from wtforms import StringField, validators, PasswordField, SubmitField

from wtforms.validators import DataRequired, Email

from flask_bootstrap import Bootstrap

import email_validator

app = Flask(__name__)

Bootstrap(app)

app.secret_key = "any-string-you-want-just-keep-it-secret"

class contactForm(FlaskForm):

name = StringField(label='Name', validators=[DataRequired()])

email = StringField(label='Email', validators=[DataRequired(),

Email(granular_message=True)])

message = StringField(label='Message')

submit = SubmitField(label="Log In")

@app.route("/", methods=["GET", "POST"])

def home():

cform=contactForm()

if cform.validate_on_submit():

print(f"Name:{cform.name.data}, E-mail:{cform.email.data}, message:

{cform.message.data}")

return render_template("contact.html",form=cform)

if __name__ == '__main__':

app.run(debug=True)

Output:

CHAPTER 11: Sending Emails

Using API in Flask-Mail

Python, being a powerful language don’t need any external library to

import and offers a native library to send emails- “SMTP lib”. “smtplib”

creates a Simple Mail Transfer Protocol client session object which is used

to send emails to any valid email id on the internet. This article revolves

around how we can send bulk customised emails to a group of people

with the help of Flask.

Installation :

Three packages are required for flask mail to work, Install them using pip,

1) virtualenv:

pip install virtualenv

2) Flask:

pip install Flask

3) Flask-Mail :

pip install Flask-Mail

After installing the packages, we have to use virtualenv (optional)

1) Create a virtualenv

Open cmd

Go to the folder you want to use for your project.

Write the following code:

python3 -m venv env (macOS/Linux)

py -m venv env (Windows)

Here env is name of your environment.

2) Activate the environment

On windows :

.\env\Scripts\activate

On macOS/ Linux:

source env/bin/activate

3) Make sure you get the (env) in the beginning displayed in picture

below :

Configuring Flask-Mail

Flask-Mail is configured through the standard Flask config API. These are

the available options (each is explained later in the documentation):

1) MAIL_SERVER : Name/IP address of the email server.

2) MAIL_PORT : Port number of server used.

3) MAIL_USE_TLS : Enable/disable Transport Security Layer encryption.

4) MAIL_USE_SSL : Enable/disable Secure Sockets Layer encryption

5) MAIL_DEBUG : Debug support. The default is Flask application’s

debug status.

6) MAIL_USERNAME : Username of the sender

7) MAIL_PASSWORD : The password of the corresponding Username of

the sender.

8) MAIL_ASCII_ATTACHMENTS : If set to true, attached filenames

converted to ASCII.

9) MAIL_DEFAULT_SENDER : sets default sender

10) MAIL_SUPPRESS_SEND : Sending suppressed if app.testing set to

true

11) MAIL_MAX_EMAILS : Sets maximum mails to be sent

Note : Not all of the configuration is to be set.

Sending Emails using Flask-Mail

Classes in Flask-Mail:

Mail Class : Manages email-messaging requirements

Message Class: encapsulates an email message

Let’s get our hands on the code.

Python3

importing libraries

from flask import Flask

from flask_mail import Mail, Message

app = Flask(__name__)

mail = Mail(app) # instantiate the mail class

configuration of mail

app.config['MAIL_SERVER']='smtp.gmail.com'

app.config['MAIL_PORT'] = 465

app.config['MAIL_USERNAME'] = 'yourId@gmail.com'

app.config['MAIL_PASSWORD'] = '*****'

app.config['MAIL_USE_TLS'] = False

app.config['MAIL_USE_SSL'] = True

mail = Mail(app)

message object mapped to a particular URL ‘/’

@app.route("/")

def index():

msg = Message(

'Hello',

sender ='yourId@gmail.com',

recipients = ['receiver’sid@gmail.com']

)

msg.body = 'Hello Flask message sent from Flask-Mail'

mail.send(msg)

return 'Sent'

if __name__ == '__main__':

app.run(debug = True)

Save it in a file and then run the script in Python Shell or CMD & Visit

http://localhost:5000/.

Note :

Due to Google’s built-in security features, Gmail service may block this

login attempt. You may have to decrease the security level.

Visit https://myaccount.google.com/lesssecureapps?pli=1 to decrease

security.

PART 4: User Registration,

Login, and Logout in Flask

CHAPTER 1: Add Authentication to

Your App with Flask-Login

Whether it is building a simple blog or a social media site, ensuring user

sessions are working correctly can be tricky. Fortunately, Flask-Login

provides a simplified way of managing users, which includes easily

logging in and out users, as well as restricting certain pages to

authenticated users. In this article, we will look at how we can add

Authentication to Your App with Flask-Login in Flask using Python. To

start, install flask, flask-login, and flask-sqlalchemy:

Flask-Login helps us manage user sessions

Flask-SQLAlchemy helps us store our user’s data, such as their

username and password

pip install flask flask-login flask-sqlalchemy

File structure

Stepwise Implementation

Step 1: Import the necessary modules.

We first import the classes we need from Flask, Flask-SQLAlchemy, and

Flask-Login. We then create our flask application, indicate what database

Flask-SQLAlchemy should connect to, and initialize the Flask-SQLAlchemy

extension. We also need to specify a secret key, which can be any

random string of characters, and is necessary as Flask-Login requires it to

sign session cookies for protection again data tampering. Next, we

initialize the LoginManager class from Flask-Login, to be able to log in and

out users.

Python3

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

from flask_login import LoginManager

Create a flask application

app = Flask(__name__)

Tells flask-sqlalchemy what database to connect to

app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db.sqlite"

Enter a secret key

app.config["SECRET_KEY"] = "ENTER YOUR SECRET KEY"

Initialize flask-sqlalchemy extension

db = SQLAlchemy()

LoginManager is needed for our application

to be able to log in and out users

login_manager = LoginManager()

login_manager.init_app(app)

Step 2: Create a User Model & Database

To be able to store users’ information such as their username and

password, we need to create a table with Flask-SQLAlchemy, this is done

by creating a model that represents the information we want to store. In

this case, we first create a Users class and make it a subclass of db.Model

to make it a model with the help of Flask-SQLAlchemy. We also make the

Users class a subclass of UserMixin, which will help to implement

properties such as is_authenticated to the Users class. We will also need

to create columns within the user model, to store individual attributes,

such as the user’s username. When creating a new column, we need to

specify the datatype such as db.Integer and db.String as well. When

creating columns, we also need to specify keywords such as unique =

True, if we want to ensure values in the column are unique, nullable =

False, which indicates that the column’s values cannot be NULL, and

primary_key = True, which indicates that the row can be identified by that

primary_key index. Next, the db.create_all method is used to create the

table schema in the database.

Python3

Create user model

class Users(UserMixin, db.Model):

id = db.Column(db.Integer, primary_key=True)

username = db.Column(db.String(250), unique=True,

nullable=False)

password = db.Column(db.String(250),

nullable=False)

Initialize app with extension

db.init_app(app)

Create database within app context

with app.app_context():

db.create_all()

Step 3: Adding a user loader

Before implementing the functionality for authenticating the user, we

need to specify a function that Flask-Login can use to retrieve a user

object given a user id. This functionality is already implemented by Flask-

SQLAlchemy, we simply need to query and use the get method with the

user id as the argument.

Python3

Creates a user loader callback that returns the user object given an id

@login_manager.user_loader

def loader_user(user_id):

return Users.query.get(user_id)

Step 4: Registering new accounts with Flask-Login

Add the following code to a file name sign_up.html in a folder called

templates. To allow the user to register an account, we need to create the

HTML. This will need to contain a form that allows the user to enter their

details, such as their username and chosen password.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Sign Up</title>

<style>

h1 {

color: green;

}

</style>

</head>

<body>

<nav>

Login

Create account

</nav>

<h1>Create an account</h1>

<form action="#" method="post">

<label for="username">Username:</label>

<input type="text" name="username" />

<label for="password">Password:</label>

<input type="password" name="password" />

<button type="submit">Submit</button>

</form>

</body>

</html>

Create a route that renders the template, and creates the user

account if they make a POST request.

We create a new route with Flask by using the @app.route decorator.

The @app.route decorator allows us to specify the route it accepts, and

the methods it should accept. By default, it only accepts requests using

the GET method, but when the form is submitted it is done using a POST

request, so we’ll need to make POST an accepted method for the route as

well. Within the register function that is called whenever the user visits

that route, we can check if the method used was a POST request using

the request variable that Flask provides and that needs to be imported. If

a post request was made, this indicates the user is trying to register a

new account, so we create a new user using the Users model, with the

username and password set to whatever the user entered, which we can

get by using request.form.get Lastly, we add the user object that was

created to the session and commit the changes made. Once the user

account has been created, we redirect them to a route with a callback

function called “login”, which we will create in a moment. Ensure that you

also import the redirect and url_for functions from Flask.

Python3

@app.route('/register', methods=["GET", "POST"])

def register():

If the user made a POST request, create a new user

if request.method == "POST":

user = Users(username=request.form.get("username"),

password=request.form.get("password"))

Add the user to the database

db.session.add(user)

Commit the changes made

db.session.commit()

Once user account created, redirect them

to login route (created later on)

return redirect(url_for("login"))

Renders sign_up template if user made a GET request

return render_template("sign_up.html")

Step 5: Allowing users to log in with Flask-Login

Like with creating the registered route, we first need a way for the user to

log in through an HTML form. Add the following code to a file named

login.html in the same templates folder.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Login</title>

<style>

h1{

color: green;

}

</style>

</head>

<body>

<nav>

Login

Create account

</nav>

<h1>Login to your account</h1>

<form action="#" method="post">

<label for="username">Username:</label>

<input type="text" name="username" />

<label for="password">Password:</label>

<input type="password" name="password" />

<button type="submit">Submit</button>

</form>

</body>

</html>

Add the functionality to log in to the user within a login function

for the /login route.

With the login route, we do the same thing of checking if the user made a

POST request. If they did, we filter the users within the database for a

user with the same username as the one being submitted. Next, we check

if that user has the same password as the password the user entered in

the form. If they are the same, we log-in to the user by using

the login_user function provided by Flask-Login. We can then redirect the

user back to a route with a function called “home”, which we will create in

a moment. If the user didn’t make a POST request, and instead

a GET request, then we’ll render the login template.

Python3

@app.route("/login", methods=["GET", "POST"])

def login():

If a post request was made, find the user by

filtering for the username

if request.method == "POST":

user = Users.query.filter_by(

username=request.form.get("username")).first()

Check if the password entered is the

same as the user's password

if user.password == request.form.get("password"):

Use the login_user method to log in the user

login_user(user)

return redirect(url_for("home"))

Redirect the user back to the home

(we'll create the home route in a moment)

return render_template("login.html")

Step 6: Conditionally rendering HTML based on the user’s

authentication status with Flask-Login

When using Flask, it uses Jinja to parse the templates. Jinja is a

templating engine that allows us to add code, such as if-else statements

within our HTML, we can then use it to conditionally render certain

elements depending on the user’s authentication status for example the

current_user variable is exported by Flask-Login, and we can use it within

the Jinja template to conditionally render HTML based on the user’s

authentication status.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Home</title>

</head>

<body>

<nav>

Login

Create account

</nav>

{% if current_user.is_authenticated %}

<h1>You are logged in</h1>

{% else %}

<h1>You are not logged in</h1>

{% endif %}

</body>

</html>

Add the functionality to render the homepage when the user

visits the “/” route.

This will then render the template of home.html whenever the user visits

the “/” route. After running the code in main.py, navigate to

http://127.0.0.1:5000/

Python3

@app.route("/")

def home():

Render home.html on "/" route

return render_template("home.html")

Step 7: Adding Logout Functionality

Here, we will update the home.html template to the following to add a

logout link, and this will give the homepage a link to log out the user if

they are currently logged in.

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Home</title>

<style>

h1 {

color: green;

}

</style>

</head>

<body>

<nav>

Login

Create account

</nav>

{% if current_user.is_authenticated %}

<h1>You are logged in</h1>

Logout

{% else %}

<h1>You are not logged in</h1>

{% endif %}

</body>

</html>

Complete Code

Add the logout functionality and code initializer.

Python3

from flask import Flask, render_template, request, url_for, redirect

from flask_sqlalchemy import SQLAlchemy

from flask_login import LoginManager, UserMixin, login_user, logout_user

app = Flask(__name__)

app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db.sqlite"

app.config["SECRET_KEY"] = "abc"

db = SQLAlchemy()

login_manager = LoginManager()

login_manager.init_app(app)

class Users(UserMixin, db.Model):

id = db.Column(db.Integer, primary_key=True)

username = db.Column(db.String(250), unique=True, nullable=False)

password = db.Column(db.String(250), nullable=False)

db.init_app(app)

with app.app_context():

db.create_all()

@login_manager.user_loader

def loader_user(user_id):

return Users.query.get(user_id)

@app.route('/register', methods=["GET", "POST"])

def register():

if request.method == "POST":

user = Users(username=request.form.get("username"),

password=request.form.get("password"))

db.session.add(user)

db.session.commit()

return redirect(url_for("login"))

return render_template("sign_up.html")

@app.route("/login", methods=["GET", "POST"])

def login():

if request.method == "POST":

user = Users.query.filter_by(

username=request.form.get("username")).first()

if user.password == request.form.get("password"):

login_user(user)

return redirect(url_for("home"))

return render_template("login.html")

@app.route("/logout")

def logout():

logout_user()

return redirect(url_for("home"))

@app.route("/")

def home():

return render_template("home.html")

if __name__ == "__main__":

app.run()

Output:

To test the application, we would navigate to the /register route, create an

account and we’ll be redirected to the /login route. From there, we can log

in, and we can verify that we have been logged in by the conditional

HTML rendering.

Now, whenever the user is logged in, they can log out by clicking the link

within the homepage, which will logout the user, by using

the logout_user function provided by Flask-Login.

CHAPTER 2: Add User and Display

Current Username in Flask

In this article, we’ll talk about how to add a User and Display the Current

Username on a Flask website. When we log in using our username and

password, we will be taken to the profile page where we can see the

welcome message and the username we created during registration.

When additional users register using the login credentials we will use

here, their names will also appear on the profile page screen. Python code

will be connected to a MySQL database to preserve the user login and

registration credentials. From there, we can observe how many users

have registered and edited their information using phpmyadmin. For

making our project we install flask first and create a virtual environment.

Display Username on Multiple Pages using Flask

Templates Files

In the templates folder we basically made three files one for register,

another one for login, and at last one for the user so first we write code

for register.html

register.html

This HTML file contains a straightforward registration form that asks for

three inputs: username, email address, and password. Once these fields

have been completed, click the register button to see a flashing message

stating that the form has been successfully submitted and that the

registration information has been safely saved in the MySQL database.

For flashing massage, we are using Jinja2 in an HTML file, so we can now

log in using our credentials. If we registered using the same email

address, the flash email id will also exist.

HTML

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Registration Form</title>

</head>

<style>

.hi{

color: green;

}

.ok{

display: block;

margin-left: 80px;

margin-top: -15px;

border: 1px solid black;

}

.gfg{

margin-left: 30px;

font-weight: bold;

}

.gf{

margin-left: 10px;

font-weight: bold;

}

.btn{

margin-top: 20px;

width: 80px;

height: 25px;

background-color: orangered;

color: white;

}

.y{

color: gray;

}

</style>

<body>

<div class="container">

<h2 class="hi" > GFG User Registration </h2>

<h4 class="y" >Note : fill following details !</h4>

<form action="{{ url_for('register') }}" method="post">

{% if message is defined and message %}

<div class="alert alert-warning"> {{ message }} ????

</div>

{% endif %}

<div class="form-group">

<label class="gfg">Name:</label>

<input class="ok" type="text" class="form-control" id="name" name="name"

placeholder="Enter name" name="name">

</div>

<div class="form-group">

<label class="gfg">Email:</label>

<input class="ok" type="email" class="form-control" id="email" name="email"

placeholder="Enter email" name="email">

</div>

<div class="form-group">

<label class="gf">Password:</label>

<input class="ok" type="password" class="form-control" id="password"

name="password" placeholder="Enter password" name="pswd">

</div>

<button class="btn" type="submit" class="btn btn-primary">Register</button>

<p class="bottom">Already have an account? <a class="bottom" href="

{{url_for('login')}}"> Login here</p>

</form>

</div>

</body>

</html>

Output:

User Registration page

login.html

In login.html, we have created two straightforward inputs: a username

and a password that we successfully registered. If we enter the correct

email address and password, it will direct us to the user/login profile

page, where we have used the URL for the function to write the file

function that we want to display following successful registration.

HTML

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Login Form</title>

</head>

<style>

.gfg{

display: block;

margin-left: 70px;

margin-top: -15px;

}

.ok{

margin-left: 20px;

font-weight: bold;

}

.btn{

margin-top: 20px;

width: 80px;

height: 25px;

background-color: gray;

color: white;

}

.user{

color: green;

}

</style>

<body>

<div class="container">

<h2 class="user"> GFG User Login</h2>

<form action="{{ url_for('login') }}" method="post">

{% if message is defined and message %}

<div class="alert alert-warning"> {{ message }} ????</div>

{% endif %}

<div class="form-group">

<label class="ok">Email:</label>

<input class="gfg" type="email" class="form-control" id="email" name="email"

placeholder="Enter email" name="email">

</div>

<div class="form-group">

<label class="pop"> Password:</label>

<input class="gfg" type="password" class="form-control" id="password"

name="password" placeholder="Enter password" name="pswd">

</div>

<button class="btn" type="submit" class="btn btn-primary">Login</button>

<p class="bottom">Don't have an account? <a class="bottom" href="

{{url_for('register')}}"> Register here</p>

</form>

</div>

</body>

</html>

Output:

User Login.html

user.html

After a successful login, we put a few lines of code to greet the user in

these files. We also add a second session. The name code we use during

registration means that when we log in, our name will also appear on the

screen. Additionally, a button for logging out will appear on the screen; by

clicking this button, we can log out and must log in again.

HTML

<html>

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>User Account</title>

</head>

<style>

.gfg{

font-size: 25px;

color: red;

font-style: italic;

}

</style>

<body>

<div class="container">

<div class="row">

<h2>User Profile</h2>

</div>

<div class="row">

Logged in : <strong class="gfg"> {{session.name}} ???? | <a href="{{

url_for('logout') }}"> Logout

</div>

<div class="row">

<h2>Welcome to the User profile page... ????</h2>

</div>

</div>

</body>

</html>

Output:

Username display on screen

app.py

Step 1: Import all library

First, the python code is written in a file called app.py. We import all the

libraries required for running our application, connecting to MySQL, and

performing admin login from the database into this file. Following the

import of re(regular expression), which will read the data from our MySQL

database, the Python code database, MySQL DB, is used to construct the

data for our database. We initialize the flask function and generate a

secret key for our flask after importing all modules. The database name,

email address, and password are then added to the database.

Python3

Import all important libraries

from flask import *

from flask_mysqldb import MySQL

import MySQLdb.cursors

import re

initialize first flask

app = Flask(__name__)

app.secret_key = 'GeeksForGeeks'

Set MySQL data

app.config['MYSQL_HOST'] = 'localhost'

app.config['MYSQL_USER'] = 'root'

app.config['MYSQL_PASSWORD'] = ''

app.config['MYSQL_DB'] = 'user-table'

mysql = MySQL(app)

Step 2: login and logout functions

Then, we develop a functional login() and develop a session for login and

registration for a system that also obtains our data from MySQL. A

successfully registered message will also appear on the login page when

we successfully register on the register page. In this function, we pass the

request to the login form by entering our name, password, and email

when we click on enter. It will automatically save on our PHPMyAdmin by

MySQL data.

Python3

Make login function for login and also make

session for login and registration system

and also fetch the data from MySQL

@app.route('/')

@app.route('/login', methods=['GET', 'POST'])

def login():

message = ''

if request.method == 'POST' and 'email' in

request.form and 'password' in request.form:

email = request.form['email']

password = request.form['password']

cursor = mysql.connection.cursor

(MySQLdb.cursors.DictCursor)

cursor.execute(

'SELECT * FROM user WHERE email = % s AND password = % s',

(email, password,))

user = cursor.fetchone()

if user:

session['loggedin'] = True

session['userid'] = user['userid']

session['name'] = user['name']

session['email'] = user['email']

message = 'Logged in successfully !'

return render_template('user.html',

message=message)

else:

message = 'Please enter correct email / password !'

return render_template('login.html', message=message)

Make function for logout session

@app.route('/logout')

def logout():

session.pop('loggedin', None)

session.pop('userid', None)

session.pop('email', None)

return redirect(url_for('login'))

Step 3: User Registration

On the login screen, we can log in by providing our email address and

password. There are also more flashing notifications, such as “User

already exists” if we attempt to register again using the same email

address. With the same email address, we are able to create two

registered accounts. The username we specified on the registration page

will also show up on the profile once we successfully log in. For this

instance, we typed “GFG.” “Welcome GFG” will appear once we have

successfully logged in. That clarifies the entire code as well as its

intended use.

Python3

Make a register session for registration

session and also connect to Mysql to code for access

login and for completing our login

session and making some flashing massage for error

@app.route('/register', methods=['GET', 'POST'])

def register():

message = ''

if request.method == 'POST' and 'name' in

request.form and 'password' in request.form

and 'email' in request.form:

userName = request.form['name']

password = request.form['password']

email = request.form['email']

cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

cursor.execute('SELECT * FROM user WHERE email = % s',

(email,))

account = cursor.fetchone()

if account:

message = 'Account already exists !'

elif not re.match(r'[^@]+@[^@]+\.[^@]+', email):

message = 'Invalid email address !'

elif not userName or not password or not email:

message = 'Please fill out the form !'

else:

cursor.execute(

'INSERT INTO user VALUES (NULL, % s, % s, % s)',

(userName, email, password,))

mysql.connection.commit()

message = 'You have successfully registered !'

elif request.method == 'POST':

message = 'Please fill out the form !'

return render_template('register.html', message=message)

Complete Code

Python3

Import all important libraries

from flask import *

from flask_mysqldb import MySQL

import MySQLdb.cursors

import re

initialize first flask

app = Flask(__name__)

app.secret_key = 'GeeksForGeeks'

Set MySQL data

app.config['MYSQL_HOST'] = 'localhost'

app.config['MYSQL_USER'] = 'root'

app.config['MYSQL_PASSWORD'] = ''

app.config['MYSQL_DB'] = 'user-table'

mysql = MySQL(app)

@app.route('/')

@app.route('/login', methods=['GET', 'POST'])

def login():

message = ''

if request.method == 'POST' and 'email' in

request.form and 'password' in request.form:

email = request.form['email']

password = request.form['password']

cursor = mysql.connection.cursor

(MySQLdb.cursors.DictCursor)

cursor.execute(

'SELECT * FROM user WHERE email = % s AND password = % s',

(email, password,))

user = cursor.fetchone()

if user:

session['loggedin'] = True

session['userid'] = user['userid']

session['name'] = user['name']

session['email'] = user['email']

message = 'Logged in successfully !'

return render_template('user.html',

message=message)

else:

message = 'Please enter correct email / password !'

return render_template('login.html',

message=message)

Make function for logout session

@app.route('/logout')

def logout():

session.pop('loggedin', None)

session.pop('userid', None)

session.pop('email', None)

return redirect(url_for('login'))

@app.route('/register', methods=['GET', 'POST'])

def register():

message = ''

if request.method == 'POST' and 'name' in request.form

and 'password' in request.form and 'email' in request.form:

userName = request.form['name']

password = request.form['password']

email = request.form['email']

cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

cursor.execute('SELECT * FROM user WHERE email = % s', (email,))

account = cursor.fetchone()

if account:

message = 'Account already exists !'

elif not re.match(r'[^@]+@[^@]+\.[^@]+', email):

message = 'Invalid email address !'

elif not userName or not password or not email:

message = 'Please fill out the form !'

else:

cursor.execute(

'INSERT INTO user VALUES (NULL, % s, % s, % s)',

(userName, email, password,))

mysql.connection.commit()

message = 'You have successfully registered !'

elif request.method == 'POST':

message = 'Please fill out the form !'

return render_template('register.html', message=message)

run code in debug mode

if __name__ == "__main__":

app.run(debug=True)

After writing whole open your terminal and run the following command

python app.py

Database Output:

After registering multiple users these outputs will show in your database

by watching the video you can understand how the username will display

on the screen and how multiple users can register and login.

When we register multiple users then these types of interfaces will show

on our PHP admin panel.

CHAPTER 3: Password Hashing

with Bcrypt in Flask

In this article, we will use Password Hashing with Bcrypt

in Flask using Python. Password hashing is the process of converting a

plaintext password into a hashed or encrypted format that cannot be

easily reverse-engineered to reveal the original password. Bcrypt is a

popular hashing algorithm used to hash passwords. It is a password-

hashing function that is based on the Blowfish cipher and is designed to

be slow and computationally expensive, making it more difficult for

attackers to guess or crack passwords.

Key Terminologies:

Password Hashing: The process of converting a plaintext

password into a hashed or encrypted format.

Bcrypt: A password-hashing function based on the Blowfish

cipher.

Salt: Random data that is used as additional input to a one-way

function that hashes a password or passphrase.

Hashing Algorithm: A mathematical function that converts a

plaintext password into a fixed-length hash value.

Iterations: The number of times a password is hashed using the

bcrypt algorithm.

Stepwise Implement with Bcrypt in Flask

Step 1: Install Flask-Bcrypt

To use Bcrypt in Flask, we need to install the Flask-Bcrypt extension. We

can install it using pip.

pip install flask-bcrypt

Step 2: Import Flask-Bcrypt

We need to import the Bcrypt module from Flask-Bcrypt in our Flask app.

Python3

from flask_bcrypt import Bcrypt

Step 3: Create a Bcrypt Object

We need to create a Bcrypt object and pass our Flask app as an

argument.

Python3

bcrypt = Bcrypt(app)

Step 4: Hash a Password

We need to decode the hashed password using Python decode(‘utf-8’) as

the generate_password_hash() function returns a bytes object. We can

hash a password using the generate_password_hash() function of the

Bcrypt object.

Python3

hashed_password = bcrypt.generate_password_hash

('password').decode('utf-8')

Step 5: Verify a Password

The check_password_hash() function returns True if the password

matches the hashed password, otherwise, it returns False. We can verify a

password using the check_password_hash() function of the Bcrypt

object.

Python3

is_valid = bcrypt.check_password_hash(hashed_password, 'password')

Complete Code

Here is an example of how to implement Bcrypt in a Flask app.

Python3

from flask import Flask

from flask_bcrypt import Bcrypt

app = Flask(__name__)

bcrypt = Bcrypt(app)

@app.route('/')

def index():

password = 'password'

hashed_password = bcrypt.generate_password_hash

(password).decode('utf-8')

is_valid = bcrypt.check_password_hash

(hashed_password, password)

return f"Password: {password}
Hashed Password:

{hashed_password}
Is Valid: {is_valid}"

if __name__ == '__main__':

app.run()

Output:

When we run the Flask app, we will see the following output.

Output

CHAPTER 4: Role Based Access

Control

Flask is a micro-framework written in Python. It is used to create web

applications using Python. Role-based access control means certain users

can access only certain pages. For instance, a normal visitor should not

be able to access the privileges of an administrator. In this article, we will

see how to implement this type of access with the help of the flask-

security library where a Student can access one page, a Staff can access

two, a Teacher can access three, and an Admin accesses four pages.

Note: For storing users’ details we are going to use flask-sqlalchemy and

db-browser for performing database actions. You can find detailed

tutorial here.

Creating the Flask Application

Step 1: Create a Python virtual environment.

To avoid any changes in the system environment, it is better to work in a

virtual environment.

Step 2: Install the required libraries

pip install flask flask-security flask-wtf==1.0.1 flask_sqlalchemy email-validator

Step 3: Initialize the flask app.

Import Flask from the flask library and pass __name__ to Flask. Store this

in a variable.

Python3

import Flask from flask

from flask import Flask

pass current module (__name__) as argument

this will initialize the instance

app = Flask(__name__)

Step 4: Configure some settings that are required for running the app.

To do this we use app.config[‘_____‘]. Using it we can set some

important things without which the app might not work.

SQLALCHEMY_DATABASE_URI is the path to the database.

SECRET_KEY is used for securely signing the session cookie.

SECURITY_PASSWORD_SALT is only used if the password hash

type is set to something other than plain text.

SECURITY_REGISTERABLE allows the application to accept new

user registrations. SECURITY_SEND_REGISTER_EMAIL specifies

whether the registration email is sent.

Some of these are not used in our demo, but they are required to mention

explicitly.

Python3

path to sqlite database

this will create the db file in instance

if database not present already

app.config['SQLALCHEMY_DATABASE_URI'] = "sqlite:///g4g.sqlite3"

needed for session cookies

app.config['SECRET_KEY'] = 'MY_SECRET'

hashes the password and then stores in the database

app.config['SECURITY_PASSWORD_SALT'] = "MY_SECRET"

allows new registrations to application

app.config['SECURITY_REGISTERABLE'] = True

to send automatic registration email to user

app.config['SECURITY_SEND_REGISTER_EMAIL'] = False

Step 5: Import SQLAlchemy for database

Because we are using SQLAlchemy for database operations, we need to

import and initialize it into the app using db.init_app(app). The

app_context() keeps track of the application-level data during a request

Python3

import SQLAlchemy for database operations

and store the instance in 'db'

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

db.init_app(app)

runs the app instance

app.app_context().push()

Step 6: Create DB Models

For storing the user session information, the flask-security library is

used. Here to store information of users UserMixin is used by importing

from the library. Similarly, to store information about the roles of

users, RoleMixin is used. Both are passed to the database tables’

classes.

Here we have created a user table for users containing id, email,

password, and active status. The role is a table that contains the roles

created with id and role name. The roles_users table contains the

information about which user has what roles. It is dependent on the user

and role table for user_id and role_id, therefore they are referenced from

ForeignKeys.

Then we are creating all those tables using db.create_all() this will make

sure that the tables are created in the database for the first time. Keeping

or removing it afterward will not affect the app unless a change is made

to the structure of the database code.

Python3

import UserMixin, RoleMixin

from flask_security import UserMixin, RoleMixin

create table in database for assigning roles

roles_users = db.Table('roles_users',

db.Column('user_id', db.Integer(), db.ForeignKey('user.id')),

db.Column('role_id', db.Integer(), db.ForeignKey('role.id')))

create table in database for storing users

class User(db.Model, UserMixin):

__tablename__ = 'user'

id = db.Column(db.Integer, autoincrement=True, primary_key=True)

email = db.Column(db.String, unique=True)

password = db.Column(db.String(255), nullable=False, server_default='')

active = db.Column(db.Boolean())

backreferences the user_id from roles_users table

roles = db.relationship('Role', secondary=roles_users, backref='roled')

create table in database for storing roles

class Role(db.Model, RoleMixin):

__tablename__ = 'role'

id = db.Column(db.Integer(), primary_key=True)

name = db.Column(db.String(80), unique=True)

creates all database tables

@app.before_first_request

def create_tables():

db.create_all()

Step 7: Define User and Role in Database

We need to pass this database information to flask_security so as to make

the connection between those. For that, we

import SQLAlchemySessionUserDatastore and pass the table containing

users and then the roles. This datastore is then passed to Security which

binds the current instance of the app with the data. We also import

LoginManager and login_manager which will maintain the information for

the active session. login_user assigns the user as a current user for the

session.

Python3

import required libraries from flask_login and flask_security

from flask_login import LoginManager, login_manager, login_user

from flask_security import Security, SQLAlchemySessionUserDatastore

load users, roles for a session

user_datastore = SQLAlchemySessionUserDatastore(db.session, User, Role)

security = Security(app, user_datastore)

Step 8: Create a Home Route

The home page of our web app is at the ‘/’ route. So, every time the ‘/’ is

routed, the code in index.html file will be rendered using a module

render_template. Below the @app.route() decorator, the function needs

to be defined so, that code is executed from that function.

Python3

import the required libraries

from flask import render_template, redirect, url_for

‘/’ URL is bound with index() function.

@app.route('/')

defining function index which returns the rendered html code

for our home page

def index():

return render_template("index.html")

index.html

Below is the HTML code for index.html Some logic is applied using

the Jinja2 templating engine which behaves similarly to python. The

current_user variable stores the information of the currently logged-in

user. So, here {% if current_user.is_authenticated %} means if a user is

logged in show that code:{{ current_user.email }} is a variable

containing the email of the current user. Because the user can have many

roles so roles are a list, that’s why a for loop is used. Otherwise, the code

in {% else %} part is rendered, finally getting out of the if block with {%

endif %}.

HTML

<!-- index.html -->

<!-- links to the pages -->

View all Teachers (Access: Admin)

View all Staff (Access: Admin, Teacher)

View all Students (Access: Admin, Teacher, Staff)

View My Details (Access: Admin, Teacher, Staff, Student)

<!-- Show only if user is logged in -->

{% if current_user.is_authenticated %}

<!-- Show current users email -->

Current user: {{current_user.email}}

<!-- Current users roles -->

| Role: {% for role in current_user.roles%}

{{role.name}}

{% endfor %}

<!-- link for logging out -->

Logout

<!-- Show if user is not logged in -->

{% else %}

Sign up | Sign in

{% endif %}

Output:

Step 9: Create Signup Route

If the user visits the ‘/signup’ route the request is GET, so the else part

will render this HTML page, and if the form is submitted the code in if the

condition that is POST method is executed.

The data in the HTML form is requested using the request module. First,

we check if the user already exists in the database by querying for the

user using the email provided and passing the msg according to that.

If not then we add the user and append the chosen role to the roles_users

DB table, for this we query for the role using the id that we will get from

options in the radio button, this will return an object containing all the

column attributes of that role, in this case, the id and name of the role.

And then log the user in for the user’s current session

with login_user(user).

Python3

import 'request' to request data from html

from flask import request

signup page

@app.route('/signup', methods=['GET', 'POST'])

def signup():

msg=""

if the form is submitted

if request.method == 'POST':

check if user already exists

user = User.query.filter_by(email=request.form['email']).first()

msg=""

if user already exists render the msg

if user:

msg="User already exist"

render signup.html if user exists

return render_template('signup.html', msg=msg)

if user doesn't exist

store the user to database

user = User(email=request.form['email'], active=1,

password=request.form['password'])

store the role

role = Role.query.filter_by(id=request.form['options']).first()

user.roles.append(role)

commit the changes to database

db.session.add(user)

db.session.commit()

login the user to the app

this user is current user

login_user(user)

redirect to index page

return redirect(url_for('index'))

case other than submitting form, like loading the page itself

else:

return render_template("signup.html", msg=msg)

signup.html page:

Here in the form, the action is ‘#’ which means after submitting the form

the current page itself is loaded. The method in the form is POST because

we are creating a new entry in the database. There are fields for email,

password, and choosing a role with a radio button. In the radio button,

the value should be different because that’s the main differentiator of the

chosen role.

Also, an if condition is applied using Jinja2, {% if %} which checks that if

a user is logged in, and if not {%else %} then only shows the form

otherwise just shows the already logged-in message.

HTML

<!-- signup.html -->

<h2>Sign up</h2>

<!-- Show only if user is logged in -->

{% if current_user.is_authenticated %}

You are already logged in.

<!-- Show if user is NOT logged in -->

{% else %}

{{ msg }}

<!-- Form for signup -->

<form action="#" method="POST" id="signup-form">

<label>Email Address </label>

<input type="text" name="email" required />

<label>Password </label>

<input type="password" name="password" required/>

<!-- Options to choose role -->

<!-- Give the role ids in the value -->

<input type="radio" name="options" id="option1" value=1 required> Admin

</input>

<input type="radio" name="options" id="option2" value=2> Teacher </input>

<input type="radio" name="options" id="option3" value=3> Staff </input>

<input type="radio" name="options" id="option3" value=4> Student </input>

<button type="submit">Submit</button>

<!-- Link for signin -->

Already have an account?

Sign in

</form>

<!-- End the if block -->

{% endif %}

Output:

Step 10: Create Signin Route

As you might have noticed we are using two methods GET, and POST.

That is because we want to know if the user has just loaded the page

(GET) or submitted the form (POST). Then we check if the user exists by

querying the database. If the user exists then we see if the password

matches. If both are validated the user is logged in

using login_user(user). Otherwise, the msg is passed to HTML

accordingly i.e., if the password is wrong msg is set to “Wrong password”

and if the user doesn’t exist then the msg is set to “User doesn’t exist”.

Python3

signin page

@app.route('/signin', methods=['GET', 'POST'])

def signin():

msg=""

if request.method == 'POST':

search user in database

user = User.query.filter_by(email=request.form['email']).first()

if exist check password

if user:

if user.password == request.form['password']:

if password matches, login the user

login_user(user)

return redirect(url_for('index'))

if password doesn't match

else:

msg="Wrong password"

if user does not exist

else:

msg="User doesn't exist"

return render_template('signin.html', msg=msg)

else:

return render_template("signin.html", msg=msg)

signin.html

Similar to the signup page, check if a user is already logged in, if not then

show the form asking for email and password. The form method should be

POST. Ask in the form for, email and password. We can also show links for

sign-up optionally.

HTML

<!-- signin.html -->

<h2>Sign in</h2>

<!-- Show only if user is logged in -->

{% if current_user.is_authenticated %}

You are already logged in.

<!-- Show if user is NOT logged in -->

{% else %}

<!-- msg that was passed while rendering template -->

{{ msg }}

<form action="#" method="POST" id="signin-form">

<label>Email Address </label>

<input type="text" name="email" required />

<label>Password </label>

<input type="password" name="password" required/>

<input class="btn btn-primary" type="submit" value="Submit">

Don't have an account?

Sign up

</form>

{% endif %}

Output:

Step 11: Create a Teacher Route

We are passing the users with the role of Teacher to the HTML template.

On the home page if we click any link then it will load the same page if

the user is not signed in. If the user is signed in we want to give Role

Based Access so that the user with the role:

Students can access View My Details page.

Staff can access View My Details and View all Students pages.

The teacher can access View My Details, View all Students, and

View all Staff pages.

Admin can access View My Details, View all Students, View all

Staff, and View all Teachers pages.

We need to import, roles_accepted: this will check the database for the

role of the user and if it matches the specified roles then only the user is

given access to that page. The teacher’s page can be accessed by Admin

only using @roles_accepted(‘Admin’).

Python3

to implement role based access

import roles_accepted from flask_security

from flask_security import roles_accepted

for teachers page

@app.route('/teachers')

only Admin can access the page

@roles_accepted('Admin')

def teachers():

teachers = []

query for role Teacher that is role_id=2

role_teachers = db.session.query(roles_users).filter_by(role_id=2)

query for the users' details using user_id

for teacher in role_teachers:

user = User.query.filter_by(id=teacher.user_id).first()

teachers.append(user)

return the teachers list

return render_template("teachers.html", teachers=teachers)

teachers.html

The teachers passed in the render_template is a list of objects, containing

all the columns of the user table, so we’re using Python for loop in jinja2

to show the elements in the list in HTML ordered list tag.

HTML

<!-- teachers.html -->

<h3>Teachers</h3>

<!-- list that shows all teachers' email -->

{% for teacher in teachers %}

{{teacher.email}}

{% endfor %}

Output:

Step 12: Create staff, student, and mydetail Routes

Similarly, routes for other pages are created by adding the roles to the

decorator @roles_accepted().

Python3

for staff page

@app.route('/staff')

only Admin and Teacher can access the page

@roles_accepted('Admin', 'Teacher')

def staff():

staff = []

role_staff = db.session.query(roles_users).filter_by(role_id=3)

for staf in role_staff:

user = User.query.filter_by(id=staf.user_id).first()

staff.append(user)

return render_template("staff.html", staff=staff)

for student page

@app.route('/students')

only Admin, Teacher and Staff can access the page

@roles_accepted('Admin', 'Teacher', 'Staff')

def students():

students = []

role_students = db.session.query(roles_users).filter_by(role_id=4)

for student in role_students:

user = User.query.filter_by(id=student.user_id).first()

students.append(user)

return render_template("students.html", students=students)

for details page

@app.route('/mydetails')

Admin, Teacher, Staff and Student can access the page

@roles_accepted('Admin', 'Teacher', 'Staff', 'Student')

def mydetails():

return render_template("mydetails.html")

staff.html

Here, we are iterating all the staff and extracting their email IDs.

HTML

<! staff.html -->

<h3>Staff</h3>

{% for staf in staff %}

{{staf.email}}

{% endfor %}

Output:

student.html

Here, we are iterating all the students and extracting their email IDs.

HTML

<!-- students.html -->

<h3>Students</h3>

{% for student in students %}

{{student.email}}

{% endfor %}

Output:

mydetails.html

Similar to the index page, to show the role use a for loop from Jinja2,

because a user can more than one role i.e., current_user.roles is a list of

roles that were queried from the database.

HTML

<!-- mydetails.html -->

<h3>My Details</h3>

My email: {{current_user.email}}

| Role: {% for role in current_user.roles%}

{{role.name}}

{% endfor %}

Output:

Step 13: Finally, Add code Initializer.

Here, debug is set to True. When in a development environment. It can be

set to False when the app is ready for production.

Python3

#for running the app

if __name__ == "__main__":

app.run(debug = True)

Now test your app by running the below command in the terminal.

python app.py

Go to:

http://127.0.0.1:5000

Output:

CHAPTER 5: Use Flask-Session in

Python Flask

Flask Session –

Flask-Session is an extension for Flask that supports Server-side

Session to your application.

The Session is the time between the client logs in to the server

and logs out of the server.

The data that is required to be saved in the Session is stored in

a temporary directory on the server.

The data in the Session is stored on the top of cookies and

signed by the server cryptographically.

Each client will have their own session where their own data will

be stored in their session.

Uses of Session

Remember each user when they log in

Store User-specific website settings (theme)

Store E-Commerce site user items in the cart

This article assumes you are familiar with flask basics. Checkout – Flask –

(Creating first simple application) to learn how to make a simple web

application in flask.

Installation

Install the extension with the following command

$ easy_install Flask-Session

Alternatively, if you have pip installed

$ pip install Flask-Session

Configuring Session in Flask

The Session instance is not used for direct access. You should

always use flask_session.

The First line (session) from the flask is in such a way that each of

us as a user gets our own version of the session.

Python3

from flask import Flask, render_template, redirect, request, session

from flask_session import Session

This is specific to the flask_session library only

SESSION_PERMANENT = False – So this session has a default

time limit of some number of minutes or hours or days after which

it will expire.

SESSION_TYPE = “filesystem” – It will store in the hard drive

(these files are stored under a /flask_session folder in your config

directory.) or any online ide account, and it is an alternative to

using a Database or something else like that.

Python3

app = Flask(__name__)

app.config["SESSION_PERMANENT"] = False

app.config["SESSION_TYPE"] = "filesystem"

Session(app)

Remember User After Login

So we will start making two basic pages and their route

called index.html and login.html

login.html contains a form in which the user can fill their name

and submit

index.html is the main page

Python3

@app.route("/")

def index():

return render_template('index.html')

@app.route("/login", methods=["POST", "GET"])

def login():

return render_template("login.html")

We need to record the username in the session when they submit

the form

And we are using a dictionary in python where “name” is the key =

request.form.get(“name”) is a value

Python3

@app.route("/login", methods=["POST", "GET"])

def login():

if form is submited

if request.method == "POST":

record the user name

session["name"] = request.form.get("name")

redirect to the main page

return redirect("/")

return render_template("login.html")

After storing the user name we need to check whenever user lands

on the index page that any session with that user name exists or

not.

If the user name doesn’t exist then redirect to the login page.

Python3

@app.route("/")

def index():

check if the users exist or not

if not session.get("name"):

if not there in the session then redirect to the login page

return redirect("/login")

return render_template('index.html')

After successfully remember the user we also need a way to

logout the users.

So whenever the user clicks logout change the user value to

none and redirect them to the index page.

Python3

@app.route("/logout")

def logout():

session["name"] = None

return redirect("/")

Complete Project –

Python3

from flask import Flask, render_template, redirect, request, session

The Session instance is not used for direct access, you should always use flask.session

from flask_session import Session

app = Flask(__name__)

app.config["SESSION_PERMANENT"] = False

app.config["SESSION_TYPE"] = "filesystem"

Session(app)

@app.route("/")

def index():

if not session.get("name"):

return redirect("/login")

return render_template('index.html')

@app.route("/login", methods=["POST", "GET"])

def login():

if request.method == "POST":

session["name"] = request.form.get("name")

return redirect("/")

return render_template("login.html")

@app.route("/logout")

def logout():

session["name"] = None

return redirect("/")

if __name__ == "__main__":

app.run(debug=True)

index.html

We can also use session.name to excess the value from

the session.

HTML

{% extends "layout.html" %}

{% block y %}

{% if session.name %}

You are Register {{ session.name }} logout.

{% else %}

You are not Register. login.

{% endif %}

{% endblock %}

login.html

HTML

{% extends "layout.html" %}

{% block y %}

<h1> REGISTER </h1>

<form action="/login" method="POST">

<input placeholder="Name" autocomplete="off" type="text" name="name">

<input type="submit" name="Register">

</form>

{% endblock %}

layout.html

HTML

<!DOCTYPE html>

<html lang="en">

<head>

<meta name="viewport" content="initial-scale=1, width=device-width">

<title> flask </title>

</head>

<body>

{% block y %}{% endblock %}

</body>

</html>

Output –

login.html

index.html

You can also see your generated session.

CHAPTER 6: Using JWT for user

authentication in Flask

Pre-requisite: Basic knowledge about JSON Web Token (JWT)

I will be assuming you have the basic knowledge of JWT and how JWT

works. If not, then I suggest reading the linked Geeksforgeeks article.

Let’s jump right into the setup. Ofcourse, you need python3 installed on

your system. Now, follow along with me. I will be using a virtual

environment where I will install the libraries which is undoubtedly the

best way of doing any kind of development.

First create a folder named flask project and change directory to

it. If you are on linux then type the following in your terminal.

mkdir "flask project" && cd "flask project"

Now, create a virtual environment. If you are on linux then type

the following in your terminal.

python3 -m venv env

Note: If you get any error then that means venv isn’t installed in your

system. To install it, type sudo apt install python3-venv in your terminal

and then you are good to go. If you are on windows then use something

like virtualenv to make a virtual environment.

This will create a folder named venv in the flask project which will

contain the project specific libraries.

Now create a file named requirements.txt and add the following

lines in it.

Flask-RESTful==0.3.8

PyJWT==1.7.1

Flask-SQLAlchemy==2.4.1

Now, lets install these libraries for this project. To do so, first we

need to activate the virtual environment. To do so, type the

following in your terminal.

source env/bin/activate

Note: If you are on windows then it would be Scripts instead of bin

Now, its time to install the libraries. To do so, again type the following in

your terminal.

pip install -r requirements.txt

Now, we are done with the setup part. Lets now start writing the actual

code. Before beginning with the code, I would like to make something

clear. I would be writing the entire code in a single file, i.e. the database

models and the routes all together, which is not a good practice and

definitely not manageable for larger projects. Try keeping creating

separate python files or modules for routes and database models.

With that cleared out, lets directly jump into the writing the actual code. I

will be adding inline comments explaining every part of the code.

Create a python file called app.py and type the following code in it.

Python3

flask imports

from flask import Flask, request, jsonify, make_response

from flask_sqlalchemy import SQLAlchemy

import uuid # for public id

from werkzeug.security import generate_password_hash, check_password_hash

imports for PyJWT authentication

import jwt

from datetime import datetime, timedelta

from functools import wraps

creates Flask object

app = Flask(__name__)

configuration

NEVER HARDCODE YOUR CONFIGURATION IN YOUR CODE

INSTEAD CREATE A .env FILE AND STORE IN IT

app.config['SECRET_KEY'] = 'your secret key'

database name

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///Database.db'

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True

creates SQLALCHEMY object

db = SQLAlchemy(app)

Database ORMs

class User(db.Model):

id = db.Column(db.Integer, primary_key = True)

public_id = db.Column(db.String(50), unique = True)

name = db.Column(db.String(100))

email = db.Column(db.String(70), unique = True)

password = db.Column(db.String(80))

decorator for verifying the JWT

def token_required(f):

@wraps(f)

def decorated(*args, **kwargs):

token = None

jwt is passed in the request header

if 'x-access-token' in request.headers:

token = request.headers['x-access-token']

return 401 if token is not passed

if not token:

return jsonify({'message' : 'Token is missing !!'}), 401

try:

decoding the payload to fetch the stored details

data = jwt.decode(token, app.config['SECRET_KEY'])

current_user = User.query\

.filter_by(public_id = data['public_id'])\

.first()

except:

return jsonify({

'message' : 'Token is invalid !!'

}), 401

returns the current logged in users context to the routes

return f(current_user, *args, **kwargs)

return decorated

User Database Route

this route sends back list of users

@app.route('/user', methods =['GET'])

@token_required

def get_all_users(current_user):

querying the database

for all the entries in it

users = User.query.all()

converting the query objects

to list of jsons

output = []

for user in users:

appending the user data json

to the response list

output.append({

'public_id': user.public_id,

'name' : user.name,

'email' : user.email

})

return jsonify({'users': output})

route for logging user in

@app.route('/login', methods =['POST'])

def login():

creates dictionary of form data

auth = request.form

if not auth or not auth.get('email') or not auth.get('password'):

returns 401 if any email or / and password is missing

return make_response(

'Could not verify',

401,

{'WWW-Authenticate' : 'Basic realm ="Login required !!"'}

)

user = User.query\

.filter_by(email = auth.get('email'))\

.first()

if not user:

returns 401 if user does not exist

return make_response(

'Could not verify',

401,

{'WWW-Authenticate' : 'Basic realm ="User does not exist !!"'}

)

if check_password_hash(user.password, auth.get('password')):

generates the JWT Token

token = jwt.encode({

'public_id': user.public_id,

'exp' : datetime.utcnow() + timedelta(minutes = 30)

}, app.config['SECRET_KEY'])

return make_response(jsonify({'token' : token.decode('UTF-8')}), 201)

returns 403 if password is wrong

return make_response(

'Could not verify',

403,

{'WWW-Authenticate' : 'Basic realm ="Wrong Password !!"'}

)

signup route

@app.route('/signup', methods =['POST'])

def signup():

creates a dictionary of the form data

data = request.form

gets name, email and password

name, email = data.get('name'), data.get('email')

password = data.get('password')

checking for existing user

user = User.query\

.filter_by(email = email)\

.first()

if not user:

database ORM object

user = User(

public_id = str(uuid.uuid4()),

name = name,

email = email,

password = generate_password_hash(password)

)

insert user

db.session.add(user)

db.session.commit()

return make_response('Successfully registered.', 201)

else:

returns 202 if user already exists

return make_response('User already exists. Please Log in.', 202)

if __name__ == "__main__":

setting debug to True enables hot reload

and also provides a debugger shell

if you hit an error while running the server

app.run(debug = True)

Now, our code is ready. We now need to create the database first and

then the table User from the ORM (Object Relational Mapping). To do so,

first start the python3 interpreter in your terminal. You can do that by

typing python3 in your terminal and that should do the trick for you.

Next you need to type the following in your python3 interpreter:

from app import db

db.create_all()

So, what this does is first it imports the database object and then calls

the create_all() function to create all the tables from the ORM. It should

look something like this.

Now that our actual code is ready, let’s test it out. I recommend

using postman for testing out the APIs. You can use something like CURL

but I will be using postman for this tutorial.

To start testing our api, first we need to run our API. To do so, open up a

terminal window and type the following in it.

python app.py

You should see an output like this

If you get any error then make sure all your syntax and indentation are

correct. You can see that our api is running on http://localhost:5000/. Copy

this url. We will use this urlalong with the routes to test the api.

Now, open up Postman. You should be greated with the following screen.

Now, click on the + sign and enter the url localhost:5000/signup change

request type to POST, then select Body and then form-data and enter the

data as key-value pair and then click on Send and you should get a

response. It should look something like this.

So, we are registered. Now lets login. To do that just change the endpoint

to /login and untick the Name field and click on Send. You should get a

JWT as a response. Note down that JWT. That will be our token and we will

need to send that token along with every subsequent requests. This token

will identify us as logged in.

The JSON contains the token. Note it down. Next try to fetch the list of

users. To do that, change the endpoint to /user and then in the headers

section, add a field as x-access-token and add the JWT token in the value

and click on Send. You will get the list of users as JSON.

So, this is how you can perform authentication with JWT in Flask. I

recommend you to practice more with JWTs and user authentication to get

your concepts more clear.

CHAPTER 7: Flask Cookies

Flask is a lightweight, web development framework built using python

language. Generally, for building websites we use HTML, CSS and

JavaScript but in flask the python scripting language is used for

developing the web-applications.

To know more about Flask and how to run an application in Flask: Flask –

First Application Creation

What are Cookies?

Technically, cookies track user activity to save user information in the

browser as key-value pairs, which can then be accessed whenever

necessary by the developers to make a website easier to use. These

enhances the personal user experience on a particular website by

remembering your logins, your preferences and much more.

For running a flask application, we need to have some prerequisites like

installing the flask.

Prerequisites:

Use the upgraded version of pip by below command in your terminal. In

this article, I am using Visual Studio Code to run my flask applications.

Python -m pip install –upgrade pip

Python -m pip install flask

Setting Cookies in Flask:

set_cookie() method: Using this method we can generate cookies in

any application code. The syntax for this cookies setting method:

Response.set_cookie(key, value = '', max_age = None, expires = None, path = '/', domain = None,

 secure = None, httponly = False)

Parameters:

key – Name of the cookie to be set.

value – Value of the cookie to be set.

max_age – should be a few seconds, None (default) if the cookie

should last as long as the client’s browser session.

expires – should be a datetime object or UNIX timestamp.

domain – To set a cross-domain cookie.

path – limits the cookie to given path, (default) it will span the

whole domain.

Example:

Python3

from flask import Flask, request, make_response

app = Flask(__name__)

Using set_cookie() method to set the key-value pairs below.

@app.route('/setcookie')

def setcookie():

Initializing response object

resp = make_response('Setting the cookie')

resp.set_cookie('GFG','ComputerScience Portal')

return resp

app.run()

Running the code in Visual Studio Code application.

My Visual Studio Code terminal

Output: Go to the above-mentioned url in the terminal -For Example –

 http://127.0.0.1:5000/route-name. Here the route-name is setcookie.

Output

Getting Cookies in Flask:

cookies.get()

This get() method retrieves the cookie value stored from the user’s web

browser through the request object.

Python3

from flask import Flask, request, make_response

app = Flask(__name__)

getting cookie from the previous set_cookie code

@app.route('/getcookie')

def getcookie():

GFG = request.cookies.get('GFG')

return 'GFG is a '+ GFG

app.run()

Output:

Login Application in Flask using cookies

Let’s develop a simple login page with Flask using cookies. First, we are

creating the main python file – app.py in our code editor. Next, we will

create the UI of our web page which is Login.html where the user can

enter his username and password. In this app.py, we are storing the

username as cookie to know which user logged in to the website. In the

below code, we are requesting the stored cookie from the browser and

displaying it on the next page which routes to user details page.

app.py

Python3

from flask import Flask, request, make_response, render_template

app = Flask(__name__)

@app.route('/', methods = ['GET'])

def Login():

return render_template('Login.html')

@app.route('/details', methods = ['GET','POST'])

def login():

if request.method == 'POST':

name = request.form['username']

output = 'Hi, Welcome '+name+ ''

resp = make_response(output)

resp.set_cookie('username', name)

return resp

app.run(debug=True)

Login.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>Login</title>

</head>

<body>

<form method="post" action="/details">

<label for="username">Username</label>

<input type="text" name="username" id="username"/>

<label for="password">Password</label>

<input type="password" name="password" id="password"/>

<input type="submit" name="submit" id="submit" value="Login"/>

</form>

</body>

</html>

Output:

Login Page

User Logging

User Logged In and Cookie Tracker

From the above image, the user can also see the cookies of a website.

Here, ‘username’ is the key and its value is ‘Greeshma’ which reminds us

that cookies are generally key-value pairs. To see the cookies in your

browser, click the last 3 dots on the browser’s right corner>> More

Tools>>Developer Tools>>Application window.

Getting website Visitors counted through cookies

In the below code, we want to know the number of visitors visiting our

website. We are first retrieving the visitor’s count by the usage of cookies.

But there is no variable named visitors count that we created previously.

As this key(visitors count) is not present in the dictionary, it will take the

value of 0 that is specified in the second parameter as per the dictionary

collection in python. Hence, for the first-time visitors count=0, then

incrementing the count according to the user’s visit to the website. The

make_response() gets the response object and is used for setting the

cookie.

Python3

from flask import Flask, request, make_response

app = Flask(__name__)

app.config['DEBUG'] = True

@app.route('/')

def vistors_count():

Converting str to int

count = int(request.cookies.get('visitors count', 0))

Getting the key-visitors count value as 0

count = count+1

output = 'You visited this page for '+str(count) + ' times'

resp = make_response(output)

resp.set_cookie('visitors count', str(count))

return resp

@app.route('/get')

def get_vistors_count():

count = request.cookies.get('visitors count')

return count

app.run()

Output: Url – http://127.0.0.1:5000

Output

Url for below output- http://127.0.0.1:5000/get

Visitors count output using cookies

In the above output screenshot, the value of the website visitors count is

retrieved using request.cookies.get() method.

Cookies Tracking in Browser –

Cookie Tracker for visitors count application

The flask cookies can be secured by putting the secure parameter in

response.set_cookie(‘key’, ‘value’, secure = True) and it is the best-

recommended practice to secure cookies on the internet.

CHAPTER 8: Return a JSON

response from a Flask API

Flask is one of the most widely used python micro-frameworks to design a

REST API. In this article, we are going to learn how to create a simple

REST API that returns a simple JSON object, with the help of a flask.

Prerequisites: Introduction to REST API

What is a REST API?

REST stands for Representational State Transfer and is an architectural

style used in modern web development. It defines a set or

rules/constraints for a web application to send and receive data. In this

article, we will build a REST API in Python using the Flask framework.

Flask is a popular micro framework for building web applications.

Approaches: We are going to write a simple flask API that returns a JSON

response using two approaches:

1. Using Flask jsonify object.

2. Using the flask_restful library with Flask.

Libraries Required:

Install the python Flask library using the following command:

pip install Flask

Install the flask-restful library using the following command:

pip install Flask-RESTful

Approach 1: Using Flask jsonify object – In this approach, we are

going to return a JSON response using the flask jsonify method. We are

not going to use the flask-restful library in this method.

Create a new python file named ‘main.py’.

import Flask, jsonify, and request from the flask framework.

Register the web app into an app variable using the following

syntax.

app = Flask(__name__)

Create a new function named ‘ReturnJSON’. This function is going

to return the sample JSON response.

Route the ‘ReturnJSON’ function to your desired URL using the

following syntax.

@app.route('/path_of_the_response', methods = ['GET'])

def ReturnJSON():

 pass

Inside the ‘ReturnJSON’ function if the request method is ‘GET’

then create a python dictionary with the two elements message.

Jsonify the python dictionary and return it.

Build the flask application using the following command.

if __name__=='__main__':

 app.run(debug=True)

Run the ‘main.py’ file in the terminal or the IDE.

Code:

Python3

from flask import Flask,jsonify,request

app = Flask(__name__)

@app.route('/returnjson', methods = ['GET'])

def ReturnJSON():

if(request.method == 'GET'):

data = {

"Modules" : 15,

"Subject" : "Data Structures and Algorithms",

}

return jsonify(data)

if __name__=='__main__':

app.run(debug=True)

Output:

Approach 2: Using the flask_restful library with Flask – In this

approach, we are going to create a simple JSON response with the help of

the flask-restful library. The steps are discussed below:

Create a new python file named ‘main.py’.

Import Flask from the flask framework.

Import API and Resource from the ‘flask_restful’ library.

Register the web app into an app variable using the following

syntax.

app = Flask(__name__)

Register the app variable as an API object using the API method of

the ‘flask_restful’ library.

api = Api(app)

Create a resource class named ‘ReturnJSON’.

Inside the resource, the class creates a ‘get’ method.

Return a dictionary with the simple JSON response from the ‘get’

method.

Add the resource class to the API using the add_resource method.

Build the flask application using the following command.

if __name__=='__main__':

 app.run(debug=True)

Run the ‘main.py’ file in the terminal or the IDE.

Code:

Python3

from flask import Flask

from flask_restful import Api, Resource

app = Flask(__name__)

api = Api(app)

class returnjson(Resource):

def get(self):

data={

"Modules": 15,

"Subject": "Data Structures and Algorithms"

}

return data

api.add_resource(returnjson,'/returnjson')

if __name__=='__main__':

app.run(debug=True)

Output:

PART 5: Define and Access

the Database in Flask

CHAPTER 1: Connect Flask to a

Database with Flask-SQLAlchemy

Flask is a micro web framework written in python. Micro-framework is

normally a framework with little to no dependencies on external libraries.

Though being a micro framework almost everything can be implemented

using python libraries and other dependencies when and as required.

In this article, we will be building a Flask application that takes data in a

form from the user and then displays it on another page on the website.

We can also delete the data. We won’t focus on the front-end part rather

we will be just coding the backend for the web application.

Installing Flask

In any directory where you feel comfortable create a folder and open the

command line in the directory. Create a python virtual environment using

the command below.

python -m venv <name>

Once the command is done running activate the virtual environment

using the command below.

<name>\scripts\activate

Now, install Flask using pip(package installer for python). Simply run the

command below.

pip install Flask

Creating app.py

Once the installation is done create a file name app.py and open it in your

favorite editor. To check whether Flask has been properly installed you

can run the following code.

Python

from flask import Flask

app = Flask(__name__)

'''If everything works fine you will get a

message that Flask is working on the first

page of the application

'''

@app.route('/')

def check():

return 'Flask is working'

if __name__ == '__main__':

app.run()

Output:

Setting Up SQLAlchemy

Now, let’s move on to creating a database for our application. For the

purpose of this article, we will be using SQLAlchemy a database toolkit,

and an ORM(Object Relational Mapper). We will be using pip again to

install SQLAlchemy. The command is as follows,

pip install flask-sqlalchemy

In your app.py file import SQLAlchemy as shown in the below code. We

also need to add a configuration setting to our application so that we can

use SQLite database in our application. We also need to create an

SQLAlchemy database instance which is as simple as creating an object.

Python

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.debug = True

adding configuration for using a sqlite database

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'

Creating an SQLAlchemy instance

db = SQLAlchemy(app)

if __name__ == '__main__':

app.run()

Creating Models

In sqlalchemy we use classes to create our database structure. In our

application, we will create a Profile table that will be responsible for

holding the user’s id, first name, last name, and age.

Python

from flask import Flask, request, redirect

from flask.templating import render_template

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.debug = True

adding configuration for using a sqlite database

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'

Creating an SQLAlchemy instance

db = SQLAlchemy(app)

Models

class Profile(db.Model):

Id : Field which stores unique id for every row in

database table.

first_name: Used to store the first name if the user

last_name: Used to store last name of the user

Age: Used to store the age of the user

id = db.Column(db.Integer, primary_key=True)

first_name = db.Column(db.String(20), unique=False, nullable=False)

last_name = db.Column(db.String(20), unique=False, nullable=False)

age = db.Column(db.Integer, nullable=False)

repr method represents how one object of this datatable

will look like

def __repr__(self):

return f"Name : {self.first_name}, Age: {self.age}"

if __name__ == '__main__':

app.run()

The table below explains some of the keywords used in the model class.

Column used to create a new column in the database table

Integer An integer data field

primary_

key

If set to True for a field ensures that the field can be used

to uniquely identify objects of the data table.

String An string data field. String(<maximum length>)

unique
If set to True it ensures that every data in that field in

unique.

nullable
If set to False it ensures that the data in the field cannot

be null.

__repr__ Function used to represent objects of the data table.

Creating the database

In the command line which is navigated to the project directory and

virtual environment running, we need to run the following commands.

python

The above command will initiate a python bash in your command line

where you can use further lines of code to create your data table

according to your model class in your database.

from app import db

db.create_all()

After the commands, the response would look like something in the

picture and in your project directory you will notice a new file

named ‘site.db’.

Making Migrations in database

Install Flask-Migrate using pip

pip install Flask-Migrate

Now, in your app.py add two lines, the code being as follows,

Python

Import for Migrations

from flask_migrate import Migrate, migrate

Settings for migrations

migrate = Migrate(app, db)

Now to create migrations we run the following commands one after the

other.

flask db init

flask db init

flask db migrate -m "Initial migration"

flask db migrate -m “Initial migration”

flask db upgrade

flask db upgrade

Now we have successfully created the data table in our database.

Creating the Index Page Of the Application

Before moving forward and building our form let’s create an index page

for our website. The HTML file is always stored inside a folder in the

parent directory of the application named ‘templates’. Inside the

templates folder create a file named index.html and paste the below code

for now. We will go back to adding more code into our index file as we

move on.

HTML

<html>

<head>

<title>Index Page</title>

</head>

<body>

<h3>Profiles</h3>

</body>

</html>

 In the app.py add a small function that will render an HTML page at a

specific route specified in app.route.

Python

from flask import Flask, request, redirect

from flask.templating import render_template

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

app.debug = True

adding configuration for using a sqlite database

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'

Creating an SQLAlchemy instance

db = SQLAlchemy(app)

Models

class Profile(db.Model):

id = db.Column(db.Integer, primary_key=True)

first_name = db.Column(db.String(20), unique=False, nullable=False)

last_name = db.Column(db.String(20), unique=False, nullable=False)

age = db.Column(db.Integer, nullable=False)

def __repr__(self):

return f"Name : {self.first_name}, Age: {self.age}"

function to render index page

@app.route('/')

def index():

return render_template('index.html')

if __name__ == '__main__':

app.run()

To test whether everything is working fine you can run your application

using the command

python app.py

The command will set up a local server at http://localhost:5000.

Output:

Creating HTML page for form

We will be creating an HTML page in which our form will be rendered.

Create an HTML file named add_profile in your templates folder. The

HTML code is as follows. The important points in the code will

be highlighted as you read on.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Add Profile</title>

</head>

<body>

<h3>Profile form</h3>

<form action="/add" method="POST">

<label>First Name</label>

<input type="text" name="first_name" placeholder="first name...">

<label>Last Name</label>

<input type="text" name= "last_name" placeholder="last name...">

<label>Age</label>

<input type="number" name="age" placeholder="age..">

<button type="submit">Add</button>

</form>

</body>

</html>

Adding a function in our application to render the form page

In our app.py file, we will add the following function. At route or site path

‘http://localhost:5000/add_data’ the page will be rendered.

Python

@app.route('/add_data')

def add_data():

return render_template('add_profile.html')

To check whether the code is working fine or not, you can run the

following command to start the local server.

python app.py

Now, visit http://localhost:5000/add_data and you will be able to see the

form.

Output:

Function to add data using the form to the database

To add data to the database we will be using the “POST” method. POST

is used to send data to a server to create/update a resource. In flask

where we specify our route that is app.route we can also specify the HTTP

methods there. Then inside the function, we create variables to store data

and use request objects to procure data from the form.

Note: The name used in the input tags in the HTML file has to be the

same one that is being been used in this function,

For example,

<input type="number" name="age" placeholder="age..">

“age” should also be used in the python function as,

age = request.form.get("age")

Then we move on to create an object of the Profile class and store it in

our database using database sessions.

Python

function to add profiles

@app.route('/add', methods=["POST"])

def profile():

In this function we will input data from the

form page and store it in our database.

Remember that inside the get the name should

exactly be the same as that in the html

input fields

first_name = request.form.get("first_name")

last_name = request.form.get("last_name")

age = request.form.get("age")

create an object of the Profile class of models

and store data as a row in our datatable

if first_name != '' and last_name != '' and age is not None:

p = Profile(first_name=first_name, last_name=last_name, age=age)

db.session.add(p)

db.session.commit()

return redirect('/')

else:

return redirect('/')

Once the function is executed it redirects us back to the index page of the

application.

Display data on Index Page

On our index page now, we will be displaying all the data that has been

stored in our data table. We will be using ‘Profile.query.all()‘ to query

all the objects of the Profile class and then use Jinja templating

language to display it dynamically on our index HTML file.

Update your index file as follows. The delete function will be written later

on in this article. For now, we will query all the data from the data table

and display it on our home page.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Index Page</title>

</head>

<body>

<h3>Profiles</h3>

ADD

<table>

<thead>

<th>Id</th>

<th>First Name</th>

<th>Last Name</th>

<th>Age</th>

<th>#</th>

</thead>

{% for data in profiles %}

<tbody>

<td>{{data.id}}</td>

<td>{{data.first_name}}</td>

<td>{{data.last_name}}</td>

<td>{{data.age}}</td>

<td>Delete</td>

</tbody>

{% endfor%}

</table>

</body>

</html>

We loop through every object in profiles that we pass down to our

template in our index function and print all its data in a tabular form. The

index function in our app.py is updated as follows.

Python

@app.route('/')

def index():

Query all data and then pass it to the template

profiles = Profile.query.all()

return render_template('index.html', profiles=profiles)

Deleting data from our database

To delete data we have already used an anchor tag in our table and now

we will just be associating a function with it.

Python

@app.route('/delete/<int:id>')

def erase(id):

Deletes the data on the basis of unique id and

redirects to home page

data = Profile.query.get(id)

db.session.delete(data)

db.session.commit()

return redirect('/')

The function queries data on the basis of id and then deletes it from our

database.

Complete Code

The entire code for app.py, index.html, and add-profile.html has been

given.

app.py

Python

from flask import Flask, request, redirect

from flask.templating import render_template

from flask_sqlalchemy import SQLAlchemy

from flask_migrate import Migrate, migrate

app = Flask(__name__)

app.debug = True

adding configuration for using a sqlite database

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///site.db'

Creating an SQLAlchemy instance

db = SQLAlchemy(app)

Settings for migrations

migrate = Migrate(app, db)

Models

class Profile(db.Model):

Id : Field which stores unique id for every row in

database table.

first_name: Used to store the first name if the user

last_name: Used to store last name of the user

Age: Used to store the age of the user

id = db.Column(db.Integer, primary_key=True)

first_name = db.Column(db.String(20), unique=False, nullable=False)

last_name = db.Column(db.String(20), unique=False, nullable=False)

age = db.Column(db.Integer, nullable=False)

repr method represents how one object of this datatable

will look like

def __repr__(self):

return f"Name : {self.first_name}, Age: {self.age}"

function to render index page

@app.route('/')

def index():

profiles = Profile.query.all()

return render_template('index.html', profiles=profiles)

@app.route('/add_data')

def add_data():

return render_template('add_profile.html')

function to add profiles

@app.route('/add', methods=["POST"])

def profile():

In this function we will input data from the

form page and store it in our database. Remember

that inside the get the name should exactly be the same

as that in the html input fields

first_name = request.form.get("first_name")

last_name = request.form.get("last_name")

age = request.form.get("age")

create an object of the Profile class of models and

store data as a row in our datatable

if first_name != '' and last_name != '' and age is not None:

p = Profile(first_name=first_name, last_name=last_name, age=age)

db.session.add(p)

db.session.commit()

return redirect('/')

else:

return redirect('/')

@app.route('/delete/<int:id>')

def erase(id):

deletes the data on the basis of unique id and

directs to home page

data = Profile.query.get(id)

db.session.delete(data)

db.session.commit()

return redirect('/')

if __name__ == '__main__':

app.run()

index.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>Index Page</title>

</head>

<body>

<h3>Profiles</h3>

ADD

<table>

<thead>

<th>Id</th>

<th>First Name</th>

<th>Last Name</th>

<th>Age</th>

<th>#</th>

</thead>

{% for data in profiles %}

<tbody>

<td>{{data.id}}</td>

<td>{{data.first_name}}</td>

<td>{{data.last_name}}</td>

<td>{{data.age}}</td>

<td>Delete</td>

</tbody>

{% endfor%}

</table>

</body>

</html>

add_profile.html

HTML

<!DOCTYPE html>

<html>

<head>

<title>Add Profile</title>

</head>

<body>

<h3>Profile form</h3>

<form action="/add" method="POST">

<label>First Name</label>

<input type="text" name="first_name" placeholder="first name...">

<label>Last Name</label>

<input type="text" name= "last_name" placeholder="last name...">

<label>Age</label>

<input type="number" name="age" placeholder="age..">

<button type="submit">Add</button>

</form>

</body>

</html>

Output:

CHAPTER 2: Build a Web App

using Flask and SQLite in Python

Python-based Flask is a microweb framework. Typically, a micro-

framework has little to no dependencies on outside frameworks. Despite

being a micro framework, practically everything may be developed when

and as needed utilizing Python libraries and other dependencies. In this

post, we’ll develop a Flask application that collects user input in a form

and shows it on an additional web page using SQLite in Python.

Package Required

Install flask to proceed with the Front End of the Web App.

pip install flask

pip install db-sqlite3

Steps to Build an App Using Flask and SQLite

Step 1: Create Virtual Environment

Step 2: Install the required modules inside Virtual Environment.

Step 3: Build a Front End of the Web App.

index.html

The index.html file will contain two buttons, one button to check all the

participant’s lists (taken from the database). And the other button to

create a new entry.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<body>

<h1>Build Web App Using Flask and SQLite</h1>

<button class="btn" type="button" onclick="window.location.href='{{ url_for('join')

}}';">Fill form to get updates</button>

<button class="btn" type="button" onclick="window.location.href='{{

url_for('participants') }}';">Check participant list</button>

</body>

</html>

join.html

In the join.html, create a simple form that takes Name, Email, City,

Country and Phone as the input to store in the database. By the POST

method, receive the form request of all the columns and commit the

changes in the database after inserting the details in the table.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<body>

<form method="POST">

<label>Enter Name:</label>

<input type="name" name="name" placeholder="Enter your name" required>

<label>Enter Email:</label>

<input type="email" name="email" placeholder="Enter your email" required>

<label>Enter City:</label>

<input type="name" name="city" placeholder="Enter your City name" required>

<label>Enter Country:</label>

<input type="name" name="country" placeholder="Enter the Country name"

required>

<label>Enter phone num:</label>

<input type="name" name="phone" placeholder="Your Phone Number"

required>

<input type = "submit" value = "submit"/>

</form>

</body>

</html>

participants.html

Use table tag and assign the heading using <th> tag. To auto increment,

the table row on the new entry, use a For loop jinja template. Inside For

loop add <tr> and <td> tags.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<style>

table, th, td {

border:1px solid black;

}

</style>

<body>

<table style="width:100%">

<tr>

<th>Name</th>

<th>Email</th>

<th>City</th>

<th>Country</th>

<th>Phone Number</th>

</tr>

{%for participant in data%}

<tr>

<td>{{participant[0]}}</td>

<td>{{participant[1]}}</td>

<td>{{participant[2]}}</td>

<td>{{participant[3]}}</td>

<td>{{participant[4]}}</td>

</tr>

{%endfor%}

</table>

</body>

</html>

Step 4: Create app.py

Create a new file named app.py and build a Front End of the Web App by

rendering HTML templates. From here we shall go function by function

explanation as in points:

To insert the data into the database, we first need to create a new

database table. The column to be inserted in the database is

Name, Email, City, Country, and Phone Number.

The basic syntax to start with sqlite3 is to first connect to the

database. sqlite3.connect(“database.db”) will create a new

database. The next step is to create a new table, but it will first

check if the table already exists or not.

One button in the index.html prompts to the participant’s list, and

thus using the existing database select * from the table and

display it using a Python template i.e., Jinja template to run

through the loop within HTML. In the following code, we have

created a table tag, inside the table tag for every new insertion in

the database, we add a Loop Jinja Template to auto increment the

new table row.

In the participants function, we use select all columns from the

table name, we use fetchall() method you retrieve the data.

Python3

from flask import Flask, render_template, request

import sqlite3

app = Flask(__name__)

@app.route('/')

@app.route('/home')

def index():

return render_template('index.html')

connect = sqlite3.connect('database.db')

connect.execute(

'CREATE TABLE IF NOT EXISTS PARTICIPANTS (name TEXT, \

email TEXT, city TEXT, country TEXT, phone TEXT)')

@app.route('/join', methods=['GET', 'POST'])

def join():

if request.method == 'POST':

name = request.form['name']

email = request.form['email']

city = request.form['city']

country = request.form['country']

phone = request.form['phone']

with sqlite3.connect("database.db") as users:

cursor = users.cursor()

cursor.execute("INSERT INTO PARTICIPANTS \

(name,email,city,country,phone) VALUES (?,?,?,?,?)",

(name, email, city, country, phone))

users.commit()

return render_template("index.html")

else:

return render_template('join.html')

@app.route('/participants')

def participants():

connect = sqlite3.connect('database.db')

cursor = connect.cursor()

cursor.execute('SELECT * FROM PARTICIPANTS')

data = cursor.fetchall()

return render_template("participants.html", data=data)

if __name__ == '__main__':

app.run(debug=False)

Output:

For route: http://127.0.0.1:5000/

For route: http://127.0.0.1:5000/join

Here we are adding two new data to the database.

data 1

data 2

For route: http://127.0.0.1:5000/participants

CHAPTER 3: Sending Data from a

Flask app to MongoDB Database

This article covers how we can configure a MongoDB database with

a Flask app and store some data in the database after configuring it.

Before directly moving to the configuration phase here is a short overview

of all tools and software we will use.

MongoDB is an open-source database that stores data in JSON-like

documents. It is classified as a NoSQL database because it is based on

different fundamentals as compared to a SQL relational database.

Prerequisites

A decent understanding of Python and a machine with Python

installed.

Understanding of basic concepts of Flask.

MongoDB is installed on your local machine if not you can refer to

this article.

Configuring MongoDB

Till this step, you have a local machine with MongoDB installed on it now

run the MongoDB compass and the following screen will appear. You can

edit the settings or just click connect and MongoDB will be running on

your local machine.

Setup a Development Environment

Let’s configure the virtual environment for development, this step can be

skipped but it is always recommended to use a dedicated development

environment for each project to avoid dependency clash, this can be

achieved using a Python virtual environment.

Create gfg folder

$ mkdir gfg

Move to gfg folder

$ cd gfg

We created a folder named `gfg` for the project, you can name it

anything you want and cd (change directory) to go into your newly

created directory then run the following command that will create a

virtual environment for your project.

$ python -m venv venv

Now to use the virtual environment we need to first activate it, this can

be done by executing the activated binary file.

$.\venv\Scripts\activate # for Windows OS

$ source venv/bin/activate # for Linux OS

Installing Dependencies for the Project

We are done configuring a development environment now let us install

the tools that we will be using including Flask, `pymongo` which provide

the interface for Python-based apps to the MongoDB database.

$ pip install Flask pymongo

Next, we’ll connect a FLask app to MongoDB and send some data into it.

Creating a Flask App

We are done with the database setup and installing the required libraries

now we will create a Flask app and connect it to the MongoDB we created

and insert some user data into it. First, let’s create a Flask app as follows.

Create a `main.py` file in the project directory and add the following

code to the file.

Python3

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

return 'Hello, World!'

if __name__ == '__main__':

app.run()

Over here we have created a starter Flask App with a single route that

returns a string “Hello, World!”, Now test this thing out by running the

app as shown below:

Output:

The app is up and running now let us test the output at

`http://127.0.0.1:5000`,

Connecting Flask App to Database

We have got a running starter Flask App with some basic code let’s

connect it to the MongoDB database using the following script.

Python3

from flask import Flask, request

from pymongo import MongoClient

Flask app object

app = Flask(__name__)

Set up MongoDB connection

client = MongoClient('mongodb://localhost:27017/')

db = client['demo']

collection = db['data']

The above script will connect to the MongoDB database that we

configured earlier now we need a post route to add some data in the

database which can be done as follow:

Python3

@app.route('/add_data', methods=['POST'])

def add_data():

Get data from request

data = request.json

Insert data into MongoDB

collection.insert_one(data)

return 'Data added to MongoDB'

Here we created a route named `/add_data` which when invoked with a

post request reads the JSON data from the body and inserts it into the

database.

For reference here is the overall code that I used for the demo.

Python3

from flask import Flask, request

from pymongo import MongoClient

app = Flask(__name__)

root route

@app.route('/')

def hello_world():

return 'Hello, World!'

Set up MongoDB connection and collection

client = MongoClient('mongodb://localhost:27017/')

Create database named demo if they don't exist already

db = client['demo']

Create collection named data if it doesn't exist already

collection = db['data']

Add data to MongoDB route

@app.route('/add_data', methods=['POST'])

def add_data():

Get data from request

data = request.json

Insert data into MongoDB

collection.insert_one(data)

return 'Data added to MongoDB'

if __name__ == '__main__':

app.run()

Sending Data from Flask to MongoDB

Now let us test the entire script and if we can insert some data into the

database using it, First run the Flask App shown before then make a POST

request to `/add_data` a route using a tool like Postman.

The response above looks fine let us check the MongoDB database if

there is any data inserted or not.

As you can see a database named demo is created with a collection of

`data` with a single document that we just inserted using Flask.

CHAPTER 4: Build a Web App

using Flask and SQLite in Python

Python-based Flask is a microweb framework. Typically, a micro-

framework has little to no dependencies on outside frameworks. Despite

being a micro framework, practically everything may be developed when

and as needed utilizing Python libraries and other dependencies. In this

post, we’ll develop a Flask application that collects user input in a form

and shows it on an additional web page using SQLite in Python.

Package Required

Install flask to proceed with the Front End of the Web App.

pip install flask

pip install db-sqlite3

Steps to Build an App Using Flask and SQLite

Step 1: Create Virtual Environment

Step 2: Install the required modules inside Virtual Environment.

Step 3: Build a Front End of the Web App.

index.html

The index.html file will contain two buttons, one button to check all the

participant’s lists (taken from the database). And the other button to

create a new entry.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<body>

<h1>Build Web App Using Flask and SQLite</h1>

<button class="btn" type="button" onclick="window.location.href='{{ url_for('join')

}}';">Fill form to get updates</button>

<button class="btn" type="button" onclick="window.location.href='{{

url_for('participants') }}';">Check participant list</button>

</body>

</html>

join.html

In the join.html, create a simple form that takes Name, Email, City,

Country and Phone as the input to store in the database. By the POST

method, receive the form request of all the columns and commit the

changes in the database after inserting the details in the table.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<body>

<form method="POST">

<label>Enter Name:</label>

<input type="name" name="name" placeholder="Enter your name" required>

<label>Enter Email:</label>

<input type="email" name="email" placeholder="Enter your email" required>

<label>Enter City:</label>

<input type="name" name="city" placeholder="Enter your City name" required>

<label>Enter Country:</label>

<input type="name" name="country" placeholder="Enter the Country name"

required>

<label>Enter phone num:</label>

<input type="name" name="phone" placeholder="Your Phone Number"

required>

<input type = "submit" value = "submit"/>

</form>

</body>

</html>

participants.html

Use table tag and assign the heading using <th> tag. To auto increment,

the table row on the new entry, use a For loop jinja template. Inside For

loop add <tr> and <td> tags.

HTML

<!DOCTYPE html>

<html>

<head>

<title>Flask and SQLite </title>

</head>

<style>

table, th, td {

border:1px solid black;

}

</style>

<body>

<table style="width:100%">

<tr>

<th>Name</th>

<th>Email</th>

<th>City</th>

<th>Country</th>

<th>Phone Number</th>

</tr>

{%for participant in data%}

<tr>

<td>{{participant[0]}}</td>

<td>{{participant[1]}}</td>

<td>{{participant[2]}}</td>

<td>{{participant[3]}}</td>

<td>{{participant[4]}}</td>

</tr>

{%endfor%}

</table>

</body>

</html>

Step 4: Create app.py

Create a new file named app.py and build a Front End of the Web App by

rendering HTML templates. From here we shall go function by function

explanation as in points:

To insert the data into the database, we first need to create a new

database table. The column to be inserted in the database is

Name, Email, City, Country, and Phone Number.

The basic syntax to start with sqlite3 is to first connect to the

database. sqlite3.connect(“database.db”) will create a new

database. The next step is to create a new table, but it will first

check if the table already exists or not.

One button in the index.html prompts to the participant’s list, and

thus using the existing database select * from the table and

display it using a Python template i.e., Jinja template to run

through the loop within HTML. In the following code, we have

created a table tag, inside the table tag for every new insertion in

the database, we add a Loop Jinja Template to auto increment the

new table row.

In the participants function, we use select all columns from the

table name, we use fetchall() method you retrieve the data.

Python3

from flask import Flask, render_template, request

import sqlite3

app = Flask(__name__)

@app.route('/')

@app.route('/home')

def index():

return render_template('index.html')

connect = sqlite3.connect('database.db')

connect.execute(

'CREATE TABLE IF NOT EXISTS PARTICIPANTS (name TEXT, \

email TEXT, city TEXT, country TEXT, phone TEXT)')

@app.route('/join', methods=['GET', 'POST'])

def join():

if request.method == 'POST':

name = request.form['name']

email = request.form['email']

city = request.form['city']

country = request.form['country']

phone = request.form['phone']

with sqlite3.connect("database.db") as users:

cursor = users.cursor()

cursor.execute("INSERT INTO PARTICIPANTS \

(name,email,city,country,phone) VALUES (?,?,?,?,?)",

(name, email, city, country, phone))

users.commit()

return render_template("index.html")

else:

return render_template('join.html')

@app.route('/participants')

def participants():

connect = sqlite3.connect('database.db')

cursor = connect.cursor()

cursor.execute('SELECT * FROM PARTICIPANTS')

data = cursor.fetchall()

return render_template("participants.html", data=data)

if __name__ == '__main__':

app.run(debug=False)

Output:

For route: http://127.0.0.1:5000/

For route: http://127.0.0.1:5000/join

Here we are adding two new data to the database.

data 1

data 2

For route: http://127.0.0.1:5000/participants

CHAPTER 5: Login and

Registration Project Using Flask

and MySQL

Project Title: Login and registration Project using Flask framework and

MySQL Workbench. Type of Application (Category): Web

application. Introduction: A framework is a code library that makes a

developer’s life easier when building web applications by providing

reusable code for common operations. There are a number of frameworks

for Python, including Flask, Tornado, Pyramid, and Django. Flask is a

lightweight web application framework. It is classified as a micro-

framework because it does not require particular tools or libraries. Pre-

requisite: Knowledge of Python, MySQL Workbench and basics of Flask

Framework. Python and MySQL Workbench should be installed in the

system. Visual studio code or Spyder or any code editor to work on the

application. Technologies used in the project: Flask framework,

MySQL Workbench. Implementation of the Project:

(1) Creating Environment

Step-1: Create an environment. Create a project folder and a venv folder

within.

py -3 -m venv venv

Step-2: Activate the environment.

venv\Scripts\activate

Step-3: Install Flask.

pip install Flask

(2) MySQL Workbench

Step-1: Install MySQL workbench. Link to install

: https://dev.mysql.com/downloads/workbench/ Know more about it

: https://www.mysql.com/products/workbench/

 Step-2: Install ‘mysqlbd’ module in your venv.

pip install flask-mysqldb

Step-3: Open MySQL workbench.

Step-4: Write the following code. The above SQL statement will create

our database geeklogin with the table accounts.

Step-5: Execute the query.

(3) Creating Project

Step-1: Create an empty folder ‘login’.

Step-2: Now open your code editor and open this ‘login’ folder.

Step-3: Create ‘app.py’ folder and write the code given below.

Python3

Store this code in 'app.py' file

from flask import Flask, render_template, request, redirect, url_for, session

from flask_mysqldb import MySQL

import MySQLdb.cursors

import re

app = Flask(__name__)

app.secret_key = 'your secret key'

app.config['MYSQL_HOST'] = 'localhost'

app.config['MYSQL_USER'] = 'root'

app.config['MYSQL_PASSWORD'] = 'your password'

app.config['MYSQL_DB'] = 'geeklogin'

mysql = MySQL(app)

@app.route('/')

@app.route('/login', methods =['GET', 'POST'])

def login():

msg = ''

if request.method == 'POST' and 'username' in request.form and 'password' in

request.form:

username = request.form['username']

password = request.form['password']

cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

cursor.execute('SELECT * FROM accounts WHERE username = % s AND password = % s',

(username, password,))

account = cursor.fetchone()

if account:

session['loggedin'] = True

session['id'] = account['id']

session['username'] = account['username']

msg = 'Logged in successfully !'

return render_template('index.html', msg = msg)

else:

msg = 'Incorrect username / password !'

return render_template('login.html', msg = msg)

@app.route('/logout')

def logout():

session.pop('loggedin', None)

session.pop('id', None)

session.pop('username', None)

return redirect(url_for('login'))

@app.route('/register', methods =['GET', 'POST'])

def register():

msg = ''

if request.method == 'POST' and 'username' in request.form and 'password' in

request.form and 'email' in request.form :

username = request.form['username']

password = request.form['password']

email = request.form['email']

cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor)

cursor.execute('SELECT * FROM accounts WHERE username = % s', (username,))

account = cursor.fetchone()

if account:

msg = 'Account already exists !'

elif not re.match(r'[^@]+@[^@]+\.[^@]+', email):

msg = 'Invalid email address !'

elif not re.match(r'[A-Za-z0-9]+', username):

msg = 'Username must contain only characters and numbers !'

elif not username or not password or not email:

msg = 'Please fill out the form !'

else:

cursor.execute('INSERT INTO accounts VALUES (NULL, % s, % s, % s)', (username,

password, email,))

mysql.connection.commit()

msg = 'You have successfully registered !'

elif request.method == 'POST':

msg = 'Please fill out the form !'

return render_template('register.html', msg = msg)

Step-4: Create the folder ‘templates’. create the file ‘login.html’,

‘register.html’, ‘index.html’ inside the ‘templates’ folder.

Step-5: Open ‘login.html’ file and write the code given below. In

‘login.html’, we have two fields i.e. username and password. When user

enters correct username and password, it will route you to index page

otherwise ‘Incorrect username/password’ is displayed.

html

<!-- Store this code in 'login.html' file inside the 'templates' folder -->

<html>

<head>

<meta charset="UTF-8">

<title> Login </title>

<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">

</head>

<body></br></br></br></br></br>

<div align="center">

<div align="center" class="border">

<div class="header">

<h1 class="word">Login</h1>

</div></br></br></br>

<h2 class="word">

<form action="{{ url_for('login') }}" method="post">

<div class="msg">{{ msg }}</div>

<input id="username" name="username" type="text"

placeholder="Enter Your Username" class="textbox"/></br></br>

<input id="password" name="password" type="password"

placeholder="Enter Your Password" class="textbox"/></br></br></br>

<input type="submit" class="btn" value="Sign In"></br></br>

</form>

</h2>

<p class="bottom">Don't have an account? <a class="bottom" href="

{{url_for('register')}}"> Sign Up here</p>

</div>

</div>

</body>

</html>

Step-6: Open ‘register.html’ file and write the code given below. In

‘register.html’, we have three fields i.e. username, password and email.

When user enters all the information, it stored the data in the database

and ‘Registration successful’ is displayed.

html

<!-- Store this code in 'register.html' file inside the 'templates' folder -->

<html>

<head>

<meta charset="UTF-8">

<title> Register </title>

<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">

</head>

<body></br></br></br></br></br>

<div align="center">

<div align="center" class="border">

<div class="header">

<h1 class="word">Register</h1>

</div></br></br></br>

<h2 class="word">

<form action="{{ url_for('register') }}" method="post">

<div class="msg">{{ msg }}</div>

<input id="username" name="username" type="text"

placeholder="Enter Your Username" class="textbox"/></br></br>

<input id="password" name="password" type="password"

placeholder="Enter Your Password" class="textbox"/></br></br>

<input id="email" name="email" type="text" placeholder="Enter Your

Email ID" class="textbox"/></br></br>

<input type="submit" class="btn" value="Sign Up"></br>

</form>

</h2>

<p class="bottom">Already have an account? <a class="bottom" href="

{{url_for('login')}}"> Sign In here</p>

</div>

</div>

</body>

</html>

Step-7: Open ‘index.html’ file and write the code given below. This

page is displayed when login is successful and username is also

displayed. The logout functionality is also included in this page. When

user logs out, it moves to fresh login page again.

html

<!-- Store this code in 'index.html' file inside the 'templates' folder-->

<html>

<head>

<meta charset="UTF-8">

<title> Index </title>

<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">

</head>

<body></br></br></br></br></br>

<div align="center">

<div align="center" class="border">

<div class="header">

<h1 class="word">Index</h1>

</div></br></br></br>

<h1 class="bottom">

Hi {{session.username}}!!</br></br> Welcome to the index

page...

</h1></br></br></br>

Logout

</div>

</div>

</body>

</html>

Step-8: Create the folder ‘static’. create the file ‘style.css’ inside the

‘static’ folder and paste the given CSS code.

css

/* Store this code in 'style.css' file inside the 'static' folder*/

.header{

padding: 5px 120px;

width: 150px;

height: 70px;

background-color: #236B8E;

}

.border{

padding: 80px 50px;

width: 400px;

height: 450px;

border: 1px solid #236B8E;

border-radius: 0px;

background-color: #9AC0CD;

}

.btn {

padding: 10px 40px;

background-color: #236B8E;

color: #FFFFFF;

font-style: oblique;

font-weight: bold;

border-radius: 10px;

}

.textbox{

padding: 10px 40px;

background-color: #236B8E;

text-color: #FFFFFF;

border-radius: 10px;

}

::placeholder {

color: #FFFFFF;

opacity: 1;

font-style: oblique;

font-weight: bold;

}

.word{

color: #FFFFFF;

font-style: oblique;

font-weight: bold;

}

.bottom{

color: #236B8E;

font-style: oblique;

font-weight: bold;

}

Step-9: The project structure will look like this.

(4) Run the Project

Step-1: Run the server.

Step-2: Browse the URL ‘localhost:5000’.

Step-3: The output web page will be displayed.

(5) Testing of the Application

Step-1: If you are new user, go to sign up page and fill the details.

Step-2: After registration, go to login page. Enter your username and

password and sign in.

Step-3: If your login is successful, you will be moved to index page and

your name will be displayed.

Output:

 Login page:

Registration page:

If registration successful:

Before registration, Database table:

After registration, Database table:

If login successful, Indexpage is displayed:

If Login fails:

CHAPTER 6: Execute raw SQL in

Flask-SQLAlchemy app

In this article, we are going to see how to execute raw SQL in Flask-

SQLAlchemy using Python.

Installing requirements

Install the Flask and Flask-SQLAlchemy libraries using pip

pip install Flask

pip install flask_sqlalchemy

Syntax

To run raw SQL queries, we first create a flask-SQLAlchemy engine object

using which we can connect to the database and execute the SQL

queries. The syntax is –

flask_sqlalchemy.SQLAlchemy.engine.execute(statement)

Executes a SQL expression construct or string statement within the

current transaction.

Parameters:

statement: SQL expression

Returns:

sqlalchemy.engine.result.ResultProxy

Example 1

Python

IMPORT REQUIRED LIBRARIES

from flask import Flask, request

from flask_sqlalchemy import SQLAlchemy

CREATE THE FLASK APP

app = Flask(__name__)

ADD THE DATABASE CONNECTION TO THE FLASK APP

db = SQLAlchemy(app)

db_cred = {

'user': 'root', # DATABASE USER

'pass': 'password', # DATABASE PASSWORD

'host': '127.0.0.1', # DATABASE HOSTNAME

'name': 'Geeks4Geeks' # DATABASE NAME

}

app.config['SQLALCHEMY_DATABASE_URI'] = f"mysql+pymysql://\

{db_cred['user']}:{db_cred['pass']}@{db_cred['host']}/\

{db_cred['name']}"

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

CREATE A users TABLE USING RAW SQL QUERY

db.engine.execute(

'''

CREATE TABLE users (

email VARCHAR(50),

first_name VARCHAR(50),

last_name VARCHAR(50),

passwd VARCHAR(50)

);

'''

)

INSERT TEMP VALUES IN THE users TABLE USING RAW SQL QUERY

db.engine.execute(

'''

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('john.doe@zmail.com', 'John', 'Doe', 'john@123');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('john.doe@zmail.com', 'John', 'Doe', 'johndoe@777');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('noah.emma@wmail.com', 'Emma', 'Noah', 'emaaa!00');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('emma@tmail.com', 'Emma', 'Noah', 'whrfc2bfh904');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('noah.emma@wmail.com', 'Emma', 'Noah', 'emaaa!00');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('liam.olivia@wmail.com', 'Liam', 'Olivia', 'lolivia#900');

INSERT INTO users(email, first_name, last_name, passwd) VALUES

('liam.olivia@wmail.com', 'Liam', 'Olivia', 'lolivia$345');

'''

)

VIEW THE RECORDS INSERTED

for record in db.engine.execute('SELECT * FROM users;'):

print(record)

RUN THE APP

if __name__ == '__main__':

app.run()

Output:

In this example, we created a simple flask app that does not have any

route but instead runs raw SQL queries. We have created the SQLAlchemy

connection and then executed 3 different raw SQL queries. The first query

creates the user’s table. The second query inserts some sample records

in the table. The third query fetches all the records and displays them in

the terminal.

In all three cases, we have used the db.engine.execute() method. The

db.engine provides an SQLAlchemy engine connection and the execute

method takes in a SQL query to execute the request.

Example 2

In this example, we have created 2 different routes to work with. These

routes will act as an API where we can send a POST request with a query

key in the body. The value for this query key will be the raw SQL query

that we need to execute. The get_results API will be used to fetch the

records that we get from the SELECT query. The execute_query API is

used to execute raw SQL queries and will return the response message if

the query is successfully executed or not.

Python

IMPORT REQUIRED LIBRARIES

from flask import Flask, request

from flask_sqlalchemy import SQLAlchemy

CREATE THE FLASK APP

app = Flask(__name__)

ADD THE DATABASE CONNECTION TO THE FLASK APP

db = SQLAlchemy(app)

db_cred = {

'user': 'root', # DATABASE USER

'pass': 'password', # DATABASE PASSWORD

'host': '127.0.0.1', # DATABASE HOSTNAME

'name': 'Geeks4Geeks' # DATABASE NAME

}

app.config['SQLALCHEMY_DATABASE_URI'] = f"mysql+pymysql://\

{db_cred['user']}:{db_cred['pass']}@{db_cred['host']}/\

{db_cred['name']}"

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

APP ROUTE TO GET RESULTS FOR SELECT QUERY

@app.route('/get_results', methods=['POST'])

def get_results():

GET THE SQLALCHEMY RESULTPROXY OBJECT

result = db.engine.execute(request.get_json()['query'])

response = {}

i = 1

ITERATE OVER EACH RECORD IN RESULT AND ADD IT

IN A PYTHON DICT OBJECT

for each in result:

response.update({f'Record {i}': list(each)})

i+= 1

return response

APP ROUTE TO RUN RAW SQL QUERIES

@app.route('/execute_query', methods=['POST'])

def execute_query():

try:

db.engine.execute(request.get_json()['query'])

except:

return {"message": "Request could not be completed."}

return {"message": "Query executed successfully."}

RUN THE APP

if __name__ == '__main__':

app.run()

Output:

We will test the routes through POSTMAN. Following are the 3 cases that

are tested using POSTMAN.

1. Running a SELECT query to fetch all the records through the get_results

API

2. Next, we will test the execute_query API for a valid INSERT query

3. Lastly, we will put any random query and see if we get any error

message

PART 6: Flask Deployment

and Error Handling

CHAPTER 1: Subdomain in Flask

Prerequisite: Introduction to Flask

In this article, we will learn how to setup subdomains in Flask. But first,

let’s go through the basic like what is DNS and subdomains.

Domain Name System (DNS):

The Domain Name System (DNS) is a hierarchical and decentralized

naming system for computers, services, or other resources connected to

the Internet or a private network. Most prominently, it translates more

readily memorized domain names to the numerical IP addresses needed for

locating and identifying computer services and devices with the underlying

network protocols.

DNS is basically using words (Domain Names) in place of numbers (IP

addresses) to locate something. For example, 127.0.0.1 is used to point the

local computer address, localhost.

Subdomain:

A subdomain is a domain that is part of a larger domain. Basically, it’s a

sort of child domain which means it is a part of some parent domain. For

example, practice.geeksforgeeks.org and write.geeksforgeeks.org are subdomains of

the geeksforgeeks.org domain, which in turn is a subdomain of the org top-level

domain (TLD).

These are different from the path defined after TLD as

in geeksforgeeks.org/basic/.

Further, we will discuss how to set endpoints in your web application using

Python’s micro-framework, Flask.

Adding alternate domain name for local IP –

Prior to the coding part, we got to setup hosts file in order to provide

alternate names to local IP so that we are able to test our app locally. Edit

this file with root privileges.

Linux: /etc/hosts

Windows: C:\Windows\System32\Drivers\etc\hosts

Add these lines to set up alternate domain names.

127.0.0.1 vibhu.gfg

127.0.0.1 practice.vibhu.gfg

In this example, we’re considering vibhu.gfg as our domain name,

with gfg being the TLD. practice would be a subdomain we’re targeting to set

in our web app.

Setting up the Server –

In the app’s configuration SERVER_NAME is set to the domain name, along with

the port number we intend to run our app on. The default port, flask uses

is 5000, so we take it as it is.

from flask import Flask

app = Flask(__name__)

@app.route('/')

def home():

return "Welcome to GeeksForGeeks !"

if __name__ == "__main__":

website_url = 'vibhu.gfg:5000'

app.config['SERVER_NAME'] = website_url

app.run()

Output:

Run the app and notice the link on which the app is running.

Test the link on your browser.

Adding Several Endpoints –

1. basic: An endpoint with extension to the path on the main domain.

2. practice: An endpoint serving on the practice subdomain.

3. courses: An endpoint with extension on to the path on the practice

subdomain.

Subdomains in Flask are set using the subdomain parameter in the app.route

decorator.

from flask import Flask

app = Flask(__name__)

@app.route('/')

def home():

return "Welcome to GeeksForGeeks !"

@app.route('/basic/')

def basic():

return "Basic Category Articles " \

"listed on this page."

@app.route('/', subdomain ='practice')

def practice():

return "Coding Practice Page"

@app.route('/courses/', subdomain ='practice')

def courses():

return "Courses listed " \

"under practice subdomain."

if __name__ == "__main__":

website_url = 'vibhu.gfg:5000'

app.config['SERVER_NAME'] = website_url

app.run()

Output:

CHAPTER 2: Handling 404 Error in

Flask

Prerequisite: Creating simple application in Flask

A 404 Error is showed whenever a page is not found. Maybe the owner

changed its URL and forgot to change the link or maybe they deleted the

page itself. Every site needs a Custom Error page to avoid the user to see

the default Ugly Error page.

GeeksforGeeks also has a customized error page. If we type a URL like

www.geeksforgeeks.org/ajneawnewiaiowjf

Default 404 Error

GeeksForGeeks Customized Error Page

It will show an Error 404 page since this URL doesn’t exist. But an error

page provides a beautiful layout, helps the user to go back, or even takes

them to the homepage after a specific time interval. That is why Custom

Error pages are necessary for every website.

Flask provides us with a way to handle the error and return our Custom

Error page.

For this, we need to download and import flask. Download the flask through

the following commands on CMD.

pip install flask

Using app.py as our Python file to manage templates, 404.html be the file

we will return in the case of a 404 error and header.html be the file with

header and navbar of a website.

app.py

Flask allows us to make a python file to define all routes and functions. In

app.py we have defined the route to the main page (‘/’) and error handler

function which is a flask function and we passed 404 error as a parameter.

from flask import Flask, render_template

app = Flask(__name__)

app name

@app.errorhandler(404)

inbuilt function which takes error as parameter

def not_found(e):

defining function

return render_template("404.html")

The above python program will return 404.html file whenever the user

opens a broken link.

404.html

The following code exports header and navbar from header.html.

Both files should be stored in templates folder according to the flask.

{% extends "header.html" %}

<!-- Exports header and navbar from header.html

or any file you want-->

{% block title %}Page Not Found{% endblock %}

{% block body %}

<h1>Oops! Looks like the page doesn't exist anymore</h1>

<p>Click HereTo go to the Home Page</p>

<!-- {{ url_for('index') }} is a var which returns url of index.html-->

{% endblock %}

Automatically Redirecting to the Home page after 5

seconds

The app.py code for this example stays the same as above.

The following code Shows the Custom 404 Error page and starts a

countdown of 5 seconds.

After 5 seconds are completed, it redirects the user back to the homepage.

404.html

The following code exports header and navbar from header.html.

Both files should be stored in the templates folder according to the flask.

After 5 seconds, the user will get redirected to the Home Page

Automatically.

<html>

<head>

<title>Page Not Found</title>

<script language="JavaScript" type="text/javascript">

var seconds =6;

// countdown timer. took 6 because page takes approx 1 sec to load

var url="{{url_for(index)}}";

// variable for index.html url

function redirect(){

if (seconds <=0){

// redirect to new url after counter down.

window.location = url;

} else {

seconds--;

document.getElementById("pageInfo").innerHTML="Redirecting to Home Page after "

+seconds+" seconds."

setTimeout("redirect()", 1000)

}

}

</script>

</head>

{% extends "header.html" %}

//exporting navbar and header from header.html

{% block body %}

<body onload="redirect()">

<p id="pageInfo"></p>

{% endblock %}

</html>

Sample header.html

This is a sample header.html which includes a navbar just like shown in the

image.

It’s made up of bootstrap. You can also make one of your own.

For this one, refer the bootstrap documentation.

<!DOCTYPE html>

<html>

<head>

<!-- LINKING ALL SCRIPTS/CSS REQUIRED FOR NAVBAR -->

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/

css/bootstrap.min.css"

integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E26

3XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">

<title>Flask</title>

</head>

<body>

<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity=

"sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"

crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd

/popper.min.js" integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K

/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q" crossorigin="anonymous"></script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"

integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl"

crossorigin="anonymous"></script>

<header>

<!-- Starting header -->

<nav class="navbar navbar-expand-lg navbar-light bg-light">

Navbar

<!-- bootstrap classes for navbar -->

<button class="navbar-toggler" type="button" data-toggle="collapse" data-target=

"#navbarSupportedContent" aria-controls="navbarSupportedContent"

aria-expanded="false" aria-label="Toggle navigation">

</button>

<div class="collapse navbar-collapse" id="navbarSupportedContent">

<ul class="navbar-nav mr-auto">

<li class="nav-item active">

Home (current)

<li class="nav-item">

Link

<li class="nav-item dropdown">

<a class="nav-link dropdown-toggle" href="#" id="navbarDropdown"

role="button data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">

Dropdown

<div class="dropdown-menu" aria-labelledby="navbarDropdown">

Action

Another action

<div class="dropdown-divider"></div>

Something else here

</div>

<li class="nav-item">

Disabled

<form class="form-inline my-2 my-lg-0">

<input class="form-control mr-sm-2" type="search"

placeholder="Search" aria-label="Search">

<button class="btn btn-outline-success my-2 my-sm-0"

type="submit">Search</button>

</form>

</div>

</nav>

</head>

<body >

{%block body%}

{%endblock%}

</body>

</html>

Output:

The output will be a custom error page with header.html that the user

exported.

The following is an example output with my custom header, footer, and

404.html file.

CHAPTER 3: Deploy Python Flask

App on Heroku

Flask is a web application framework written in Python. Flask is based on

the Werkzeug WSGI toolkit and Jinja2 template engine. Both are Pocco

projects. This article revolves around how to deploy a flask app on

Heroku. To demonstrate this, we are first going to create a sample

application for a better understanding of the process.

Prerequisites

Python

pip

Heroku CLI

Git

Deploying Flask App on Heroku

Let’s create a simple flask application first and then it can be deployed to

heroku. Create a folder named “eflask” and open the command line and

cd inside the “eflask” directory. Follow the following steps to create the

sample application for this tutorial.

STEP 1 : Create a virtual environment with pipenv and install Flask and

Gunicorn .

$ pipenv install flask gunicorn

STEP 2 : Create a “Procfile” and write the following code.

$ touch Procfile

STEP 3 : Create “runtime.txt” and write the following code.

$ touch runtime.txt

STEP 4 : Create a folder named “app” and enter the folder.

$ mkdir app

$ cd app

STEP 5 : Create a python file, “main.py” and enter the sample code.

touch main.py

Python3

from flask import Flask

app = Flask(__name__)

@app.route("/")

def home_view():

return "<h1>Welcome to Geeks for Geeks</h1>"

STEP 6 :Get back to the previous directory “eflask”.Create a

file“wsgi.py” and insert the following code.

$ cd ../

$ touch wsgi.py

Python3

from app.main import app

if __name__ == "__main__":

app.run()

STEP 7 : Run the virtual environment.

$ pipenv shell

STEP 8 : Initialize an empty repo, add the files in the repo and commit all

the changes.

$ git init

$ git add .

$ git commit -m "Initial Commit"

STEP 9 : Login to heroku CLI using

heroku login

Now, Create a unique name for your Web app.

$ heroku create eflask-app

STEP 10 : Push your code from local to the heroku remote.

$ git push heroku master

Finally, web app will be deployed on http://eflask-app.herokuapp.com.

CHAPTER 4: Deploy Machine

Learning Model using Flask

Machine learning is a process that is widely used for prediction. N

number of algorithms are available in various libraries which can be used

for prediction. In this article, we are going to build a prediction model on

historical data using different machine learning algorithms and classifiers,

plot the results, and calculate the accuracy of the model on the testing

data.

Building/Training a model using various algorithms on a large dataset is

one part of the data. But using these models within the different

applications is the second part of deploying machine learning in the real

world.

To put it to use in order to predict the new data, we have to deploy it over

the internet so that the outside world can use it. In this article, we will talk

about how we have trained a machine learning model and created a web

application on it using Flask.

We have to install many required libraries which will be used in this

model. Use pip command to install all the libraries.

pip install pandas

pip install numpy

pip install sklearn

Decision Tree is a well-known supervised machine learning algorithm

because it is easy to use, resilient and flexible. I have implemented the

algorithm on Adult dataset from the UCI machine learning repository.

Note: One can get the custom dataset from here.

Getting the dataset is not the end. We have to preprocess the data, which

means we need to clean the dataset. Cleaning of the dataset includes

different types of processes like removing missing values, filling NA

values, etc.

Example

Python3

importing the dataset

import pandas

import numpy

from sklearn import preprocessing

df = pandas.read_csv('adult.csv')

df.head()

Output:

Preprocessing the dataset: It consists of 14 attributes and a class

label telling whether the income of the individual is less than or more

than 50K a year. These attributes range from the age of the person and

the working-class label to relationship status and the race the person

belongs to. The information about all the attributes can be found here.

At first, we find and remove any missing values from the data. We have

replaced the missing values with the mode value in that column. There

are many other ways to replace missing values but for this type of

dataset, it seemed most optimal.

Python3

df = df.drop(['fnlwgt', 'educational-num'], axis=1)

col_names = df.columns

for c in col_names:

df = df.replace("?", numpy.NaN)

df = df.apply(lambda x: x.fillna(x.value_counts().index[0]))

The machine learning algorithm cannot process categorical data values. It

can only process numerical values.

To fit the data into the prediction model, we need to convert categorical

values to numerical ones. Before that, we will evaluate if any

transformation on categorical columns is necessary.

Discretization is a common way to make categorical data more tidy and

meaningful. We have applied discretization on column marital_status

where they are narrowed down to only to values married or not married.

Later, we will apply a label encoder in the remaining data columns. Also,

there are two redundant columns {‘education’, ‘educational-num’}.

Therefore, we have removed one of them.

Python3

df.replace(['Divorced', 'Married-AF-spouse',

'Married-civ-spouse', 'Married-spouse-absent',

'Never-married', 'Separated', 'Widowed'],

['divorced', 'married', 'married', 'married',

'not married', 'not married', 'not married'], inplace=True)

category_col = ['workclass', 'race', 'education', 'marital-status', 'occupation',

'relationship', 'gender', 'native-country', 'income']

labelEncoder = preprocessing.LabelEncoder()

mapping_dict = {}

for col in category_col:

df[col] = labelEncoder.fit_transform(df[col])

le_name_mapping = dict(zip(labelEncoder.classes_,

labelEncoder.transform(labelEncoder.classes_)))

mapping_dict[col] = le_name_mapping

print(mapping_dict)

Output :

{‘workclass’: {‘ ?’: 0, ‘ Federal-gov’: 1, ‘ Local-gov’: 2, ‘ Never-worked’: 3,

‘ Private’: 4, ‘ Self-emp-inc’: 5, ‘ Self-emp-not-inc’: 6, ‘ State-gov’: 7, ‘

Without-pay’: 8}, ‘race’: {‘ Amer-Indian-Eskimo’: 0, ‘ Asian-Pac-Islander’:

1, ‘ Black’: 2, ‘ Other’: 3, ‘ White’: 4}, ‘education’: {‘ 10th’: 0, ‘ 11th’: 1, ‘

12th’: 2, ‘ 1st-4th’: 3, ‘ 5th-6th’: 4, ‘ 7th-8th’: 5, ‘ 9th’: 6, ‘ Assoc-acdm’: 7,

‘ Assoc-voc’: 8, ‘ Bachelors’: 9, ‘ Doctorate’: 10, ‘ HS-grad’: 11, ‘ Masters’:

12, ‘ Preschool’: 13, ‘ Prof-school’: 14, ‘ Some-college’: 15}, ‘marital-

status’: {‘ Divorced’: 0, ‘ Married-AF-spouse’: 1, ‘ Married-civ-spouse’: 2, ‘

Married-spouse-absent’: 3, ‘ Never-married’: 4, ‘ Separated’: 5, ‘

Widowed’: 6}, ‘occupation’: {‘ ?’: 0, ‘ Adm-clerical’: 1, ‘ Armed-Forces’: 2,

‘ Craft-repair’: 3, ‘ Exec-managerial’: 4, ‘ Farming-fishing’: 5, ‘ Handlers-

cleaners’: 6, ‘ Machine-op-inspect’: 7, ‘ Other-service’: 8, ‘ Priv-house-

serv’: 9, ‘ Prof-specialty’: 10, ‘ Protective-serv’: 11, ‘ Sales’: 12, ‘ Tech-

support’: 13, ‘ Transport-moving’: 14}, ‘relationship’: {‘ Husband’: 0, ‘

Not-in-family’: 1, ‘ Other-relative’: 2, ‘ Own-child’: 3, ‘ Unmarried’: 4, ‘

Wife’: 5}, ‘gender’: {‘ Female’: 0, ‘ Male’: 1}, ‘native-country’: {‘ ?’: 0, ‘

Cambodia’: 1, ‘ Canada’: 2, ‘ China’: 3, ‘ Columbia’: 4, ‘ Cuba’: 5, ‘

Dominican-Republic’: 6, ‘ Ecuador’: 7, ‘ El-Salvador’: 8, ‘ England’: 9, ‘

France’: 10, ‘ Germany’: 11, ‘ Greece’: 12, ‘ Guatemala’: 13, ‘ Haiti’: 14, ‘

Holand-Netherlands’: 15, ‘ Honduras’: 16, ‘ Hong’: 17, ‘ Hungary’: 18, ‘

India’: 19, ‘ Iran’: 20, ‘ Ireland’: 21, ‘ Italy’: 22, ‘ Jamaica’: 23, ‘ Japan’: 24,

‘ Laos’: 25, ‘ Mexico’: 26, ‘ Nicaragua’: 27, ‘ Outlying-US(Guam-USVI-etc)’:

28, ‘ Peru’: 29, ‘ Philippines’: 30, ‘ Poland’: 31, ‘ Portugal’: 32, ‘ Puerto-

Rico’: 33, ‘ Scotland’: 34, ‘ South’: 35, ‘ Taiwan’: 36, ‘ Thailand’: 37, ‘

Trinadad&Tobago’: 38, ‘ United-States’: 39, ‘ Vietnam’: 40, ‘ Yugos lavia’:

41}, ‘income’: {‘ 50K’: 1}}

Fitting the model: After pre-processing the data, the data is ready to be

fed to the machine learning algorithm. We then slice the data separating

the labels with the attributes. Now, we split the dataset into two halves,

one for training and one for testing. This is achieved using

train_test_split() function of sklearn.

Python3

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

X = df.values[:, 0:12]

Y = df.values[:, 12]

We have used decision tree classifier here as a predicting model. We fed

the training partofthedatatotrainthemodel.

Once training is done, we test what is the accuracy of the model by

providing testing part of the data to the model.

With this, we achieve an accuracy of 84% approximately. Now in order to

use this model with new unknown data, we need to save the model so

that we can predict the values later. For this, we make use of pickle in

Python, which is a powerful algorithm for serializing and de-serializing a

Python object structure.

Python3

X_train, X_test, y_train, y_test = train_test_split(

X, Y, test_size = 0.3, random_state = 100)

dt_clf_gini = DecisionTreeClassifier(criterion = "gini",

random_state = 100,

max_depth = 5,

min_samples_leaf = 5)

dt_clf_gini.fit(X_train, y_train)

y_pred_gini = dt_clf_gini.predict(X_test)

print ("Decision Tree using Gini Index\nAccuracy is ",

accuracy_score(y_test, y_pred_gini)*100)

Output :

Decision Tree using Gini Index

Accuracy is 83.13031016480704

Now, Flask is a Python-based micro framework used for developing small-

scale websites. Flask is very easy to make Restful APIs using python. As of

now, we have developed a model i.e model.pkl , which can predict a class

of the data based on various attributes of the data. The class label

is Salary >=50K or <50K.

Now we will design a web application where the user will input all the

attribute values and the data will be given to the model, based on the

training given to the model, the model will predict what should be the

salary of the person whose details have been fed.

HTML Form: We first need to collect the data(new attribute values) to

predict the income from various attributes and then use the decision tree

model we build above to predict whether the income is more than 50K or

less. Therefore, in order to collect the data, we create an HTML form

which would contain all the different options to select from each attribute.

Here, we have created a simple form using HTML only. If you want to

make the form more interactive you can do so as well.

HTML

<html>

<body>

<h3>Income Prediction Form</h3>

<div>

<form action="/result" method="POST">

<label for="age">Age</label>

<input type="text" id="age" name="age">

<label for="w_class">Working Class</label>

<select id="w_class" name="w_class">

<option value="0">Federal-gov</option>

<option value="1">Local-gov</option>

<option value="2">Never-worked</option>

<option value="3">Private</option>

<option value="4">Self-emp-inc</option>

<option value="5">Self-emp-not-inc</option>

<option value="6">State-gov</option>

<option value="7">Without-pay</option>

</select>

<label for="edu">Education</label>

<select id="edu" name="edu">

<option value="0">10th</option>

<option value="1">11th</option>

<option value="2">12th</option>

<option value="3">1st-4th</option>

<option value="4">5th-6th</option>

<option value="5">7th-8th</option>

<option value="6">9th</option>

<option value="7">Assoc-acdm</option>

<option value="8">Assoc-voc</option>

<option value="9">Bachelors</option>

<option value="10">Doctorate</option>

<option value="11">HS-grad</option>

<option value="12">Masters</option>

<option value="13">Preschool</option>

<option value="14">Prof-school</option>

<option value="15">16 - Some-college</option>

</select>

<label for="martial_stat">Marital Status</label>

<select id="martial_stat" name="martial_stat">

<option value="0">divorced</option>

<option value="1">married</option>

<option value="2">not married</option>

</select>

<label for="occup">Occupation</label>

<select id="occup" name="occup">

<option value="0">Adm-clerical</option>

<option value="1">Armed-Forces</option>

<option value="2">Craft-repair</option>

<option value="3">Exec-managerial</option>

<option value="4">Farming-fishing</option>

<option value="5">Handlers-cleaners</option>

<option value="6">Machine-op-inspect</option>

<option value="7">Other-service</option>

<option value="8">Priv-house-serv</option>

<option value="9">Prof-specialty</option>

<option value="10">Protective-serv</option>

<option value="11">Sales</option>

<option value="12">Tech-support</option>

<option value="13">Transport-moving</option>

</select>

<label for="relation">Relationship</label>

<select id="relation" name="relation">

<option value="0">Husband</option>

<option value="1">Not-in-family</option>

<option value="2">Other-relative</option>

<option value="3">Own-child</option>

<option value="4">Unmarried</option>

<option value="5">Wife</option>

</select>

<label for="race">Race</label>

<select id="race" name="race">

<option value="0">Amer Indian Eskimo</option>

<option value="1">Asian Pac Islander</option>

<option value="2">Black</option>

<option value="3">Other</option>

<option value="4">White</option>

</select>

<label for="gender">Gender</label>

<select id="gender" name="gender">

<option value="0">Female</option>

<option value="1">Male</option>

</select>

<label for="c_gain">Capital Gain </label>

<input type="text" id="c_gain" name="c_gain">btw:[0-99999]

<label for="c_loss">Capital Loss </label>

<input type="text" id="c_loss" name="c_loss">btw:[0-4356]

<label for="hours_per_week">Hours per Week </label>

<input type="text" id="hours_per_week" name="hours_per_week">btw:[1-99]

<label for="native-country">Native Country</label>

<select id="native-country" name="native-country">

<option value="0">Cambodia</option>

<option value="1">Canada</option>

<option value="2">China</option>

<option value="3">Columbia</option>

<option value="4">Cuba</option>

<option value="5">Dominican Republic</option>

<option value="6">Ecuador</option>

<option value="7">El Salvadorr</option>

<option value="8">England</option>

<option value="9">France</option>

<option value="10">Germany</option>

<option value="11">Greece</option>

<option value="12">Guatemala</option>

<option value="13">Haiti</option>

<option value="14">Netherlands</option>

<option value="15">Honduras</option>

<option value="16">HongKong</option>

<option value="17">Hungary</option>

<option value="18">India</option>

<option value="19">Iran</option>

<option value="20">Ireland</option>

<option value="21">Italy</option>

<option value="22">Jamaica</option>

<option value="23">Japan</option>

<option value="24">Laos</option>

<option value="25">Mexico</option>

<option value="26">Nicaragua</option>

<option value="27">Outlying-US(Guam-USVI-etc)</option>

<option value="28">Peru</option>

<option value="29">Philippines</option>

<option value="30">Poland</option>

<option value="11">Portugal</option>

<option value="32">Puerto-Rico</option>

<option value="33">Scotland</option>

<option value="34">South</option>

<option value="35">Taiwan</option>

<option value="36">Thailand</option>

<option value="37">Trinadad&Tobago</option>

<option value="38">United States</option>

<option value="39">Vietnam</option>

<option value="40">Yugoslavia</option>

</select>

<input type="submit" value="Submit">

</form>

</div>

</body>

</html>

Output :

Note: In order to predict the data correctly, the corresponding values of

each label should match the value of each input selected. For example —

In the attribute Relationship, there are 6 categorical values. These are

converted to numerical like this {‘Husband’: 0, ‘Not-in-family’: 1, ‘Other-

relative’: 2, ‘Own-child’: 3, ‘Unmarried’: 4, ‘Wife’: 5}. Therefore we need

to put the same values to the HTML form.

Python3

prediction function

def ValuePredictor(to_predict_list):

to_predict = np.array(to_predict_list).reshape(1, 12)

loaded_model = pickle.load(open("model.pkl", "rb"))

result = loaded_model.predict(to_predict)

return result[0]

@app.route('/result', methods = ['POST'])

def result():

if request.method == 'POST':

to_predict_list = request.form.to_dict()

to_predict_list = list(to_predict_list.values())

to_predict_list = list(map(int, to_predict_list))

result = ValuePredictor(to_predict_list)

if int(result)== 1:

prediction ='Income more than 50K'

else:

prediction ='Income less that 50K'

return render_template("result.html", prediction = prediction)

Once the Data is posted from the form, the data should be fed to the

model.

Flask script: Before starting with the coding part, we need to download

flask and some other libraries. Here, we make use of a virtual

environment, where all the libraries are managed which makes both the

development and deployment job easier.

Here is the code to run the code using a virtual environment.

mkdir income-prediction

cd income-prediction

python3 -m venv venv

source venv/bin/activate

Now let’s install Flask.

pip install flask

Let’s create folder templates. In your application, you will use templates

to render HTML which will display in the user’s browser. This folder

contains our HTML form file index.html.

mkdir templates

Create script.py file in the project folder and copy the following code.

Here we import the libraries, then using app=Flask(__name__) we create

an instance of flask. @app.route(‘/’) is used to tell flask what URL should

trigger the function index() and in the function index, we use

render_template(‘index.html’) to display the script index.html in the

browser.

Let’s run the application.

export FLASK_APP=script.py #this line will work in linux

set FLASK_APP=script.py # this it the code for windows.

run flask

This should run the application and launch a simple server. Open

http://127.0.0.1:5000/ to see the html form.

Predicting the income value: When someone submits the form, the

webpage should display the predicted value of income. For this, we

require the model file (model.pkl) we created before in the same project

folder.

Here, after the form is submitted, the form values are stored in the

variable to_predict_list in the form of a dictionary. We convert it into a list

of the dictionary’s values and pass it as an argument to ValuePredictor()

function. In this function, we load the model.pkl file and predict the new

values and return the result.

This result/prediction (Income more than or less than 50k) is then passed

as an argument to the template engine with the HTML page to be

displayed.

Create the following result.html file and add it to the templates folder.

HTML

<!doctype html>

<html>

<body>

<h1> {{ prediction }}</h1>

</body>

</html>

Output:

Run the application again and it should predict the income after

submitting the form and will display the output on result page.

	Table of Contents
	Python Web Applications with Flask
	PART 1: Flask Setup & Installation
	CHAPTER 1: Introduction to Web development using Flask
	CHAPTER 2: Install Flask in Windows
	Install Virtual Environment
	Install Flask on Windows or Linux

	PART 2: Flask Quick Start
	CHAPTER 1: Creating first simple application
	Building a webpage using python.

	CHAPTER 2: Run a Flask Application
	Run Flask application Syntax
	Run a Flask Application
	Run the app in the debugger

	CHAPTER 3: Flask App Routing
	CHAPTER 4: Flask – HTTP Method
	Flask HTTP Methods
	GET Method in Flask
	Example of HTTP GET in Flask

	POST Method in Flask
	Example of HTTP POST in Flask

	CHAPTER 5: Flask – Variable Rule
	Dynamic URLs Variable In Flask
	Simple flask program
	String Variable in Flask
	Integer Variable in Flask
	Float Variable in Flask

	CHAPTER 6: Redirecting to URL in Flask
	Redirect to a URL in Flask
	Syntax of Redirect in Flask
	How To Redirect To Url in Flask

	url_for() Function in Flask

	CHAPTER 7: Python Flask – Redirect and Errors
	Syntax of Redirect
	Import the redirect attribute
	Flasks Errors
	Syntax of abort() method
	Example to demonstrate abort

	CHAPTER 8: Change Port in Flask app
	CHAPTER 9: Changing Host IP Address in Flask
	Changing the IP address in a Flask application using the “host” parameter
	Changing IP from the command line while deploying the Flask app

	PART 3: Serve Templates and Static Files in Flask
	CHAPTER 1: Flask Rendering Templates
	Rendering a Template in a Flask Application
	Setting up the Virtual Environment
	Creating Templates in a Flask Application
	Adding Routes and Rendering Templates
	Templating With Jinja2 in Flask
	Flask – Jinja Template Inheritance Example
	If statement in HTML Template in Python Flask

	CHAPTER 2: CSRF Protection in Flask
	What is CSRF?
	Solution for Preventing CSRF Attacks
	Example of CSRF Protection in Flask

	CHAPTER 3: Templating With Jinja2 in Flask
	Templating with Jinja2 in Flask
	Main Python File
	Jinja Template Variables
	Syntax of Jinja Template Variables

	Jinja Template if Statements
	Syntax of Jinja Template if Statements

	Jinja Template for Loop
	Syntax of Jinja Template for Loops

	Jinja Template Inheritance
	Syntax of Jinja Template Inheritance

	Jinja Template url_for Function
	Syntax of Jinja Template url_for Function

	CHAPTER 4: Placeholders in jinja2 Template
	Template Variables in Jinja2
	Syntax of Template Variables in Jinja2
	Example

	Conditionals and Looping in Jinja2
	Syntax of Conditionals and Looping

	Template Inheritance in Jinja2
	Syntax of Jinja extend block

	CHAPTER 5: Serve static files in Flask
	Serving Static Files in Flask
	HTML File
	Serve CSS file in Flask
	Serve JavaScript file in Flask

	Serve Media files in Flask (Image, Video, Audio)
	Images
	Video Files
	Audio Files
	Complete Flask Code

	CHAPTER 6: Uploading and Downloading Files in Flask
	Uploading and Downloading Files in Flask
	Templates File
	app.py
	Complete Code

	CHAPTER 7: Upload File in Python-Flask
	Stepwise Implementation

	CHAPTER 8: Upload Multiple files with Flask
	Stepwise Implementation

	CHAPTER 9: Flask – Message Flashing
	What is Message Flashing
	app.py File
	Templates File

	CHAPTER 10: Create Contact Us using WTForms in Flask
	Advantages of WT-FORM:
	Installation
	Stepwise Implementation
	Adding Bootstrap

	CHAPTER 11: Sending Emails Using API in Flask-Mail
	PART 4: User Registration, Login, and Logout in Flask
	CHAPTER 1: Add Authentication to Your App with Flask-Login
	Stepwise Implementation
	Complete Code

	CHAPTER 2: Add User and Display Current Username in Flask
	Display Username on Multiple Pages using Flask
	Templates Files
	app.py
	Complete Code

	CHAPTER 3: Password Hashing with Bcrypt in Flask
	Stepwise Implement with Bcrypt in Flask
	Complete Code

	CHAPTER 4: Role Based Access Control
	Creating the Flask Application

	CHAPTER 5: Use Flask-Session in Python Flask
	Flask Session –
	Installation
	Configuring Session in Flask
	Remember User After Login
	Complete Project –
	Output –
	You can also see your generated session.

	CHAPTER 6: Using JWT for user authentication in Flask
	CHAPTER 7: Flask Cookies
	Setting Cookies in Flask:
	Getting Cookies in Flask:
	Login Application in Flask using cookies
	Getting website Visitors counted through cookies

	CHAPTER 8: Return a JSON response from a Flask API
	PART 5: Define and Access the Database in Flask
	CHAPTER 1: Connect Flask to a Database with Flask-SQLAlchemy
	Installing Flask
	Creating app.py
	Setting Up SQLAlchemy
	Creating Models
	Creating the database
	Making Migrations in database
	Creating the Index Page Of the Application
	Creating HTML page for form
	Function to add data using the form to the database
	Display data on Index Page
	Deleting data from our database

	CHAPTER 2: Build a Web App using Flask and SQLite in Python
	Steps to Build an App Using Flask and SQLite

	CHAPTER 3: Sending Data from a Flask app to MongoDB Database
	Configuring MongoDB
	Setup a Development Environment
	Installing Dependencies for the Project
	Creating a Flask App
	Connecting Flask App to Database
	Sending Data from Flask to MongoDB

	CHAPTER 4: Build a Web App using Flask and SQLite in Python
	Steps to Build an App Using Flask and SQLite

	CHAPTER 5: Login and Registration Project Using Flask and MySQL
	CHAPTER 6: Execute raw SQL in Flask-SQLAlchemy app
	Installing requirements
	Syntax

	PART 6: Flask Deployment and Error Handling
	CHAPTER 1: Subdomain in Flask
	CHAPTER 2: Handling 404 Error in Flask
	Automatically Redirecting to the Home page after 5 seconds

	CHAPTER 3: Deploy Python Flask App on Heroku
	CHAPTER 4: Deploy Machine Learning Model using Flask

