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 To  Dorothee

Preface 

 Measurement  and  Sensor  Systems   denotes  an  area  which  covers  a  whole  range  of physics  effects  usable  for  gaining  knowledge  about  environment.  Thereby,  the  present book  addresses  both  the  physical  properties  of  sensors  for  converting  physical  quantities  into  digital  data  and  the  design  of  complex  measurement  and  data  analysing systems.  In  respect  thereof,  a  unique  treatment  of  measurement  and  sensor  systems is  given  from  a  physical  point  of  view,  wherein  a  focus  is  on  innovative  links  between physics  and  engineering  sciences.  The  acquisition  of  data  by  measurement  systems equipped  with  appropriate  sensors  is  a  fundamental  activity  in  science  and  industry. 

In  a  connected  world,  the  field  of  measurement  and  sensor  systems  can  be  regarded as  an  enabling  technology  for  other  fields  of  research  and  development,  e.g.,  for  electronics,  chemistry,  biology,  and  environmental  monitoring.  In  any  case,  the  acquisition  of  big  data  requires  appropriate  measurement  and  sensor  systems.  The  book  is divided  into  eleven  chapters,  each  chapter  starting  with  a  discussion  of  measurement systems  based  on  the  relevant  sensor  concept  followed  by  an  in-depth  description  of the  data  processing  and  analysis  procedures. 

The  book  aims  at  providing  undergraduate  students,  graduate  students,  application engineers,  scientists,  and  those  interested  in  fundamental  measurement  technology with  basic  knowledge  of  measurement  and  sensor  systems.  The  content  covers  a broad  range  of  sensor  principles  and  corresponding  measurement  systems  employing these  sensors.  It  is  unavoidable,  due  to  the  broad  scope  of  the  presented  material,  that not  every  important  measurement  system  and  sensor  technology  can  be  described  in detail.  Due  to  limited  space  available,  even  less  frequently  used  measurement  circuits and  sensor  arrangements  had  to  be  omitted.  Thus,  the  individual  chapters  of  the present  book  can  only  provide  a  prominent  selection  of  sensor  effects  and  associated applications:  The  individual  chapters  related  to  measurement  systems  using  specific sensor  effects  thus  do  not  aim  at  claiming  completeness  in  view  of  a  specific  sensor design.  Rather,  easy-to-understand  examples  and  application  areas  are  addressed. 

The  book  may  be  used  as  a  comprehensive  guide  to  principles,  practical  issues,  and ix

x

Preface

applications  of  today’s  measurement  and  sensor  systems.  The  author  hopes  that,  after studying  the  book,  readers  are  convinced  that  “sensors  make  sense”. 

Munich,  Germany

Alexander  W.  Koch
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Chapter  1 

Introduction 

Abstract  The  present  chapter  provides  an  introduction  to  measurement  and  sensor systems.  First  studies  aim  at  gaining  some  knowledge  on  the  history  of  metrology, metrological  units,  the  system  of  units,  length  and  time  measurement  ranges,  coherent and  non-coherent  units,  comparison  with  reference  values  ( m,  kg,  s,  A),  determination of  the  magnetic  field  constant   μ 0,  three  more  basic  units  in  order  to  extend  the   MKSA system  to  the   SI  system,  multiples  and  fractions  of  units,  and  the  usage  of  units.  The acquisition  of  big  data,  e.g.,  is  based  on  the  development  of  adapted  sensors.  The present  chapter  is  devoted  to  this  important  field  in  engineering  sciences. 

1.1 

History  of  Metrology1 

One  of  the  most  advanced  and  important  fields  of  science  is  measurement  systems and  sensor  design.  Measuring  is  a  basic  human  activity  that  has  been  carried  out for  thousands  of  years  and  still  is  being  carried  out  in  our  everyday  life.  Measuring systems  have  been  developed  to  determine  a  wide  variety  of  variables  such  as  length, time,  and  weight.  A  major  task  of  measurement  technology  is  the  conversion  of  a physical  quantity  to  be  measured  in  an  electrical  signal.  To  his  end,  transducers  such as  sensors,  detectors,  and  probes  are  being  developed. 

In  the  areas  of  research,  results  are  based  on  measurements;  metrology  provides knowledge  on  nature;  and  metrological  experiment  serves  as  a  touchstone  of  knowledge.  On  the  other  hand,  in  industrial  applications,  e.g.,  we  require  process  monitoring;  provision  of  process  data  for  control;  and  precise  production  metrology.  Many activities  of  science  and  technology  are  based  on  the  arrangement  of  appropriate measurement  and  sensor  systems. 

Even  Plato2  already  commented  on  measurement  techniques;  Plato:  “The  best remedy against hallucinations is measuring, counting, and weighing. This eliminates the rule of the senses over us. We are no longer guided by the sensual impression of 1  Metrology  is  the  science  of  measurement  and  denotes  the  use  and  setup  of  measurement  systems having  appropriate  sensors,  using  scientific  methods. 

2  Greek  philosopher,  427–347  B.C. 
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Fig.  1.1  Height  measurement  using  triangulation  (about  1600  B.C.)3 

 the size, the number, the weight of the objects, but measure, count and weigh them. 

 And this is a matter of the power of thought, a matter of the spirit in us”. 

The  sextant  already  made  it  possible  to  measure  lengths  by  triangulation,  as  shown in  Fig. 1.1. 

One  of  the  oldest  known  measures  of  length  is  the  foot  of  the  statue  of  Prince Gudea  of  Lagaš, 4  around  2120  B.C,  which  is  illustrated  in  Fig. 1.2. 

Formerly  used  length  units  have  been  based  on  the  measure  of  such  one  foot, or  similar  unit  such  as  1  ft  =  30.48  cm  =  0.33  yard  =  12  inch,  and:  1  inch  = 

2.54  cm.  Nowadays,  acquiring  and  processing  of  quantities  to  be  measured  have been  moved,  at  least  to  some  extent,  from  the  analog  to  the  digital  region.  Modern length  measuring  systems  use,  e.g.,  optical  measurement  devices  [1–15]  such  as  the laser-based  Michelson  interferometer  as  shown  in  Fig. 1.3. 

A  selection  of  further  application  areas  of  measurement  systems  and  sensor technology  is  depicted  in  Fig. 1.4. 

1.2 

Scope  of  the  Present  Book 

This  book  aims  at  providing  undergraduate  students,  graduate  students,  application engineers,  scientists,  and  those  interested  in  fundamental  measurement  technology with  basic  knowledge  of  measurement  and  sensor  systems.  The  content  covers  a  broad range  of  sensor  principles  and  corresponding  measurement  systems  employing  these sensors.  It  is  unavoidable,  due  to  the  very  broad  scope  of  the  presented  material,  that 3  Staatlicher  mathematisch-physikalischer  Salon,  Dresden  Zwinger,  Germany. 

4  https://en.wikipedia.org/wiki/Gudea 
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Fig.  1.2  Statue  of  Gudea  of  Lagaš  (about  2120  B.C.),  Louvre  Museum Fig.  1.3  Laser-based  Michelson  interferometer
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Fig.  1.4  Application  areas  of  measurement  systems:  some  examples not  every  important  measurement  system  and  sensor  technology  can  be  described in  detail.  Due  to  limited  space  available,  even  less  frequently  used  measurement circuits  and  sensor  arrangements  had  to  be  omitted.  Thus,  the  individual  chapters of  the  present  book  can  only  provide  a  prominent  selection  of  sensor  effects  and associated  applications:  The  individual  chapters  related  to  measurement  systems using  specific  sensor  effects  thus  do  not  aim  at  claiming  completeness  in  view  of  a specific  sensor  design.  Rather,  easy-to-understand  examples  and  application  areas are  addressed.  The  present  textbook,  however,  should  be  adequate  for  providing  a comprehensive  overview  of  today’s  measurement  and  sensor  systems. 

A  large  variety  of  physics  principles  are  treated  in  the  succeeding  chapters  [16]. 

These  principles  are  detailed  if  appropriate,  e.g.,  if  the  associated  effect  is  to  be used  in  a  sensor  system.  Some  of  the  well-known  scientists  and  technicians—here in  an  alphabetical  order—who  gave  their  name  to  a  respective  measurement  system or  sensor  effect  are  listed  below,  wherein  the  respective  sections  of  mentioning  are indicated  in  brackets  (inter  alia): 

•  Archimedes  (Sect. 11.1); 

•  Barkhausen  (Sect. 5.5); 

•  Bernoulli  (Sect. 11.2); 

•  Bragg  (Sect. 10.2); 

•  Coriolis  (Sect. 11.3); 

•  Doppler  (Sect. 8.4); 

•  Einstein  (Sects. 6.1, 7.4.2); 

•  Fermat  (Sect. 7.2.3); 

•  Fourier  (Sect. 9.2); 
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•  Fresnel  (Sect. 9.1.2); 

•  Hall  (Sect. 5.4); 

•  Heisenberg  (Sect. 7.4.1); 

•  Maxwell  (Sect. 2.3.1); 

•  Planck  (Sect. 7.4.2); 

•  Rayleigh  (Sect. 7.3.4); 

•  Seebeck  (Sect. 6.4); 

•  Venturi  (Sect. 11.2); 

•  Wiegand  (Sect. 5.5). 

At  first,  we  have  a  look  at  physical  quantities  which  are  to  be  measured.  A  physical quantity   x  to  be  measured  is  the  product  of  a  numerical  value   N  and  a  unit  symbol   U. 

To  display  a  measurement  result,  the  measurement  result  must  be  displayed  together with  a  measurement  unit  as  indicated  in  Fig. 1.5.  Herein,  the  respective  unit  is  based on  universally  valid  reference  quantities,  the  definition  of  which  is  explained  below. 

In  addition  to  the  measurement  result  and  the  unit,  the  measurement  uncertainty must  also  be  specified  in  measurement  technology.  Measurement  uncertainty  and  its consequences  will  be  discussed  in  Sect. 2.1  of  Chap. 2. 

Due  to  their  fundamental  importance  for  measurement  technology,  the  unit  system is  first  presented  in  more  detail.  In  the  basic  meter,  kilogram,  second,  and  ampere (MKSA)  system,  the  quantities  length  in   m, mass in   kg,  time  in   s,  and  electric  current in   A  are  defined  [17]. Table  1.1  shows  examples  of  some  secondary  quantities  derived from  these  basic  quantities  for  measurement  technology. 

Fig.  1.5  Measurement  of  a 

physical quantity 

unit symbol of the 

physical  quantity 

to be measured 

international system 

of units 

x = (N + Δ N) · U 

numerical 

uncertainty of 

value 

numerical value 

Table  1.1  Examples  of  derived  quantities 

Length

Time 

Length

 s

m

Time

t

s 

Area

 A =  s 1  ·  s 2

m2 

Volume

 V  =  s 1  ·  s 2  ·  s 3

m3

Velocity

 v =  d s 

m/s 

d t

Angle

 α =   s arc 

rad 

 r

 A

Solid  angle

 . =  sphere 

sterad  = sr

Acceleration

 a =  d2 s  =  d v 

m/s2

 r  2

d t 2 

d t
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sensor / transducer 

analog processing

digital processing 

interfaces

sensor 

1 2  3 

S SPP  

ADC

display 

- amplifiers

sensor signal 

- bridge circuits

pre-processing 

- converters 

Fig.  1.6  Measurement  chain;  SPP:  signal  preprocessing,  ADC:  analog-to-digital  converter In  principle,  a  measurement  system  including  sensors   S  may  be  represented  as  a simple  measurement  chain  illustrated  in  Fig. 1.6. 

1.3 

Classification  and  Presentation  of  Sensors 

and  Associated  Measurement  Systems 

Measurement  and  sensor  systems  comprise  a  wide  variety  and/or  combination  of electronic  circuits,  mechanical  arrangements,  measurement  signal  processing  information  technology,  and  physical  or  bio/chemical  sensor  effects.  In  order  to  provide  the presentation  in  this  book  with  a  useful  structure,  the  measurement  systems  described herein  are  arranged  in  the  order  of  the  physical  effect. 

After  having  discussed  measurement  signal  processing  methods  in  Chap. 2, resistive  sensors  (Chap. 3), capacitive  and  piezoelectric  sensors  (Chap. 4),  and  inductive and  magnetic  sensors  (Chap. 5)  are  described  as  basic  components  or  transducers  in the  associated  measurement  systems.  Then,  in  Chap. 6,  measurement  systems  based on  ion-conducting  sensors  are  detailed.  Due  to  increasing  importance  of  optical measurement  technology  [18–23], an  extended  Chap. 7  is  devoted  to  the  principles of  light  as  a  measurement  tool.  Optical  sensing  of  technically  rough  surfaces  [24] 

can  be  performed  by  speckle  measurement  systems  presented  in  Chap. 8. A  further optical  method,  i.e.,  interferometry  for  transparent  materials  based  on  thin-film  interferometry,  is  the  contents  of  Chap. 9. The  design  and  application  of  different  waveguide  sensors  [25]  are  addressed  in  Chap. 10.  Finally,  some  important  measurement systems  for  fluid  properties  are  presented  in  Chap. 11. 
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1027 

1021 

distance to the next galaxy 

the meter 

1015 

distance to the next star 

109 

distance to the sun 

distance to the moon 

103  height of Burj Khalifa building, Dubai 

1 

height of a child 

10-3 

diameter of human hair 

10-9 

size of a virus 

radius of an atom 

10-15  radius of an atomic nucleus 

Fig.  1.7  Length  measurement  range 

1.4 

The  International  System  of  Units 

Well-defined   SI  ( système internationale5 )-based  units  are  provided  for  comparable analysis  of  sensor  data.  In  other  words,  measurement  activities  are  based  on  a  comparison  of  a  measured  value  with  an  appropriate  reference  quantity.  In  the  present  section, these  reference  quantities  will  be  discussed  in  more  detail.  At  first,  we  have  a  look at  physical  quantities  which  are  to  be  measured.  A  physical  quantity   x  is  the  product of  a  numerical  value   N   and  a  unit  symbol   U,  as  illustrated  in  Fig. 1.5.  A  physical quantity   x  to  be  measured  is  thus  given  by  (1.1). 

 x  =  (N ±  .N ) ·  U

(1.1) 

Length  and  time  measurement  ranges 

In  the  following,  as  some  specific  examples,  length  and  time  measurement  ranges are  exemplified.  Herein,  Fig. 1.7  exhibits  approximately  42  orders  of  magnitude  for different  lengths,  wherein  Fig. 1.8  shows  approximately  42  orders  of  magnitude  of the  time  ranges  [16]. 

For  example,  it  is  the  30-cm  path  in  which  light  can  propagate  in  10–9  s,  i.e.,  in 1  ns  (nanosecond). 

5  SI  = Système  International  dÚnités,  defined  in  [17]. 

8

1

Introduction

1018  age of the universe 

age of the earth 

1012 

first human beings 

the second 

life span of human 

106 

duration of one day 

1 

puls beat of human 

periodic time of sound wave 

10-6 

periodic time of radio wave 

10-12 

Cs atom transition period (definition of one second, see section 1.4.2) 

oscillation period of molecular rotation 

10-18  light passes through atom 

10-24  light passes through nucleus 

Fig.  1.8  Time  measurement  range

 1.4.1 

 Comparison  with  Reference  Quantities 

Measurement  activities  are  based  on  a  comparison  of  a  measured  value  with  an appropriate,  well-defined  reference  quantity.  The  important  basis  of  any  metrological action  is  a  comparison  with  suitable  reference  quantities.  Already  Maxwell6  told  us that:  “… if we want to create absolutely unchangeable units of length, time and mass, we do not have to look for them in the dimensions, motion and mass of our planet, but in the wavelength, frequency and mass of imperishable and perfectly homogeneous atoms”.  These  reference  values  historically  are  defined  as  follows  in  this  section.  At first,  four  basic  reference  quantities  referring  to  the  units  of  length,  mass,  time,  and electric  current  are  addressed.  Then  the  MKSA  and  SI  systems  will  be  discussed. 

Meter  (m) 

For  the  definition  of  the  length  of  1  m,  the  fundamental  physical  constant  “light velocity”  c   must  be  considered.  The  meter  is  defined  based  on  the  vacuum  light velocity  such  as  the  length  of  one  meter  corresponds  to  the  length  of  a  path  traveled in  a  vacuum  by  light  in  a  time  duration  of  1/299792458  s. 

 Remark:  With  respect  to  length  unit,  a  human  being  may  determine  a  length  quanti-tatively  from  approximately  380–780  nm,  i.e.,  the  visible  electromagnetic  spectrum. 

Thereby,  for  the  definition  of  the  length  of  1  m,  the  fundamental  physical  constant 

“light  velocity”  c (1.2)  must  be  taken  into  account. 

m 

 c = 2 .  99792458  ± 0 .  00000001  × 108 

 . 

(1.2)

s 

6  James  Clark  Maxwell,  1831–1879. 

[image: Image 17]

1.4 The International System of Units

9

Fig.  1.9  International 

prototype  kilogram,8  IPK 

(old  definition) 

Kilogram  (kg) 

Up  to  the  date  of  May  20,  2019  (see  next  Sect. 1.4.2), the  unit  “kg7 ”  has  not  been  based on  fundamental  constants.  The  kilogram  has  been  defined  as  the  basic  unit  of  mass being  equal  to  the  mass  of  the  international  prototype  kilogram.  This  international prototype  kilogram  (see  photo  of  Fig. 1.9)  is  a  cylinder  made  of  platinum-iridium alloy  which  is  stored  nearby  Paris  since  year  1889. 

Second  (s) 

The  international  Brockhaus  dictionary  teaches  that  “the clock occupies a special position  compared  to  the  other  measuring  instruments  in  so  far  as  the  object  to be  measured  (namely  the  time)  is  not  present  at  all.  Time  is  infinite  and  neither visible  nor  audible”.  After  having  defined  the  unit  “meter”,  the  unit  of  time,  one second,  may  as  well  be  based  on  fundamental  constants.  The  official  definition  of time  reads  as  follows:  “The second is the duration of 9,192,631,770 periods of the radiation  corresponding  to  the  transition  between  the  two  hyperfine  levels  of  the ground state of the caesium 133 atom”  .  The  respective  frequency  thus  calculates  to 9,192,631,770  Hz  which  amounts  to  approximately  9.19  GHz.  Further  definitions  of the  quantity  of  “second”  coming  along  with  frequency  calibration,  respectively,  are considered  in  the  literature,  e.g.,  definitions  based  on  the  use  of  frequency  combs 

[23]. 

7  The  kilogram  represents  an  exception  in  that  it  is  the  only  coherent  SI  unit  which  includes  the prefix  “k”  (103). 

8  Stored  at  BIPM  (Bureau  International  des  Poids  et  Mesures)  in  Sèvres  near  Paris. 

[image: Image 18]
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Fig.  1.10  Setup  for  defining  the  ampere  unit:  two  parallel  wires  having  a  mutual  distance   a = 1 m Ampere  (A) 

The  determination  of  the  current  results  in  a  relationship  between  mechanical  and electrical  quantities.  The  valid  definition  used  before  May  20,  2019,  reads  as  follows: 

“one ampere is defined as an electric current which is flowing through two parallel conductors  having  a  mutual  distance  of  a  =  1  m  and  exerting  a  force  F  of  2  × 

 10–7  N/m with respect to each other”.  In  order  to  be  able  to  measure  one  ampere mechanically  in  this  way,  the  setup  shown  in  Fig. 1.10  can  be  imagined. 

Determination  of  the  magnetic  field  constant 

In  the  following,  the  relationship  between  a  mechanical  force  and  the  magnetic  field generating  the  same  is  used  to  calculate  the  magnetic  field  constant   μ 0.  According to  Ampère’s  law,  the  enclosed  current  is  determined  by  (1.3). 

 I 1 

2 πa H 1  =  I 1  →  H 1  = 

(1.3) 

2 πa 

Using  the  relation   B =  μ 0  ·  H , we have  

 I 1 

 B 1  =  μ 0  H 1  =  μ 0 

(1.4) 

2 πa 

and  thus,  the  resulting  force  is  in  view  of  the  above  definition  of  the  reference  quantity of  one  ampere

.. . 

. .. 

 F . =

 F 

 l 

 I 2  ·  B 1  = 

→  F =  μ 0  · 

·  I 1 I 2 , 

(1.5)

 l 

 l 

2 πa 
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or 

 μ

2 π · 1 m  

0  = 2  × 10−7 N  · 

·

1 

(1.6) 

1 m

1 A  · 1 A  

We  find  the  magnetic  field  constant  to  be9 

 μ

N 

Vs 

0  = 4 π × 10−7 

=

4 π × 10−7 

(1.7) 

A2

.... 

Am 

1 Nm   ˆ

=1 VAs  

Furthermore,  using  the  definition  of  the  light  velocity,  we  also  obtain  the  electric field  constant  ε0, using  

 c vacuum  =  c 0  =

1 

√

(1.8) 

 ε 0 μ 0 

we  find  dielectric  constant  of  vacuum 

 ε

As 

0  =

1 

= 8 .  85416  × 10−12 

(1.9) 

 c 2  μ

Vm 

0

0 

Three  more  basic  units:  from  MKSA  to  SI 

In  the   Système International (SI),  there  are  three  further  units  to  reference  such  as the  temperature,  the  amount  of  substance,  and  the  luminous  intensity.  This  extends the   MKSA  system  to  the   SI. 

Thermodynamic  temperature  (K) 

The  kelvin  (K),  unit  of  thermodynamic  temperature,  is  the  fraction  1/273.16  of  the thermodynamic  temperature  of  the  triple  point  of  water. 10  This  definition  relates  to water  having  the  isotopic  composition  defined  by  the  following  amount  of  substance ratios:  0.00015576  mol  of  2H  per  mole  of  1H,  0.0003799  mol  of  17O  per  mole  of  16O 

and  0.0020052  mol  of  18O  per  mole  of  16O. 

Celsius  temperature   ϑ  is  defined  as  the  difference   ϑ  =  T − T  0  between  the  two thermodynamic  temperatures   T   and   T  0  where   T  0  = 273.15  K.  An  interval  of  or difference  in  temperature  may  be  expressed  either  in  kelvins  or  in  degrees  Celsius. 

The  unit  of  “degree  Celsius”  is  equal  to  the  unit  “kelvin”.  In  this  respect,  temperature ϑ measured  in  °C  is  used  in  parallel  to  temperature   T   measured  in  K,  whereas  the following  relations  hold11 :

9  In  this  conversion  of  units,  we  find  the  unit  “Nm”  to  be  “kg  m2  s−2  ≙ Ws  ≙ J”. 

10  Temperature  at  triple  point  of  water  at  611.7  Pa  is  used  as  the  basis  of  the  kelvin  scale  and  amounts to  273.16  K,  or  0.01  °C,  respectively. 

11  The  temperature  difference  is  the  same  in  kelvin  and  in  degree  Celsius,  i.e.,  10–2  of  the  difference between  boiling  temperature  and  freezing  temperature  of  water  at  sea  level. 

12

1

Introduction

 .ϑ in  ◦C  =  .T   in   K ;  and   ϑ in  ◦C  = T in   K − 273 .  15

(1.10) 

Amount  of  substance  (mol) 

The  mole  is  the  amount  of  substance  of  a  system  which  contains  as  many  elementary entities  as  there  are  atoms  in  0.012  kg  of  carbon  12.  When  the  mole  is  used,  the elementary  entities  must  be  specified  and  may  be  atoms,  molecules,  ions,  electrons, other  particles,  or  specified  groups  of  such  particles.  In  other  words,  the  following calculations  may  be  made:  (12/1000)  kg  = 12  g  of  the  nuclide  12C  contain  6.022  × 

1023  atoms.  Using  Avogadro  constant   NA, we have  

 NA  = 6 .  022  × 1023  mol−1 

(1.11) 

Luminous  intensity  (candela,  cd) 

The  candela12  (cd)  is  the  luminous  intensity,  in  a  given  direction,  of  a  source  that emits  monochromatic  rays  with  a  frequency  of  540  × 1012  Hz  and  that  has  a  radiant intensity  in  that  direction  of  1/683  W  per  steradian,  wherein  the  following  relations are  valid: 

 ν

 c 0 

0  = 540  × 1012  Hz  ⇒  λ 0  = 

= 555  nm

(1.12) 

 ν 0 

. 

.. 

. 

green  light 

The  wavelength   λ 0  indicated  in  (1.12)  represents  the  maximum  spectral  luminous efficiency  of  the  human  eye. 

 1.4.2 

 Redefinition  of  the  International  Standards  of  Units 

 as  of  May  20,  201913 

The  international  system  of  units  has  been  redefined  such  that  it  can  be  based  entirely on  fundamental  constants,  the  new  definition  entering  into  force  as  from  May  20, 2019  [17]. Finally,  the  seven  base  units  already  mentioned  herein  above  in  Sect. 1.4.1 

are  defined  as  follows. 

12  As  an  example,  the  original  definition  of  one  candela  corresponds  to  approximately  the  luminous intensity  of  a  medium-sized  candle. 

13  Mainly  based  on  Chapter  I  of  the  Annex  to  EEC  Directive  80/181/EEC  of  20.12.1979, as  amended  by  EEC  Directives  85/1/EEC  of  18.12.1984,  89/617/EEC  of  27.11.1989,  1999/103/EC 

of  24.01.2000,  2009/3/EC  of  11.03.2009  and  Commission  Directive  (EU)  2019/1258  of  23.07.2019. 
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Unit  of  time 

The  second,  symbol  s,  is  the  SI  unit  of  time.  It  is  defined  by  taking  the  fixed  numerical  value  of  the  caesium14  frequency   ΔνCs,  the  unperturbed  ground  state  hyperfine transition  frequency  of  the  caesium  133  atom  (133Cs),  to  be  9,192,631,770  when expressed  in  the  unit  Hz,  which  is  equal  to  s–1.  Thus,  one  second  corresponds  to 9,192,631,770  periods  of  the  radiation  corresponding  to  the  transition  between  the two  hyperfine  levels  of  the  ground  state  of  the  caesium  133  atom. 

Unit  of  length 

The  meter,  symbol  m,  is  the  SI  unit  of  length.  It  is  defined  by  taking  the  fixed numerical  value  of  the  speed  of  light  in  vacuum   c  to  be  299,792,458  when  expressed in  the  unit  m/s,  where  the  second  is  defined  in  terms  of   ΔνCs.  Thereby,  using  the above  definition  of  one  second,  one  meter  corresponds  to  the  distance  traveled  by light  in  vacuum  in  (299,792,458)−1  s. 

Unit  of  mass 

The  kilogram,  symbol  kg,  is  the  SI  unit  of  mass.  It  is  defined  by  taking  the  fixed numerical  value  of  the  Planck  constant   h  to  be  6.62607015  × 10–34  when  expressed in  the  unit  Js,  which  is  equal  to  kg  m2  s–1,  where  the  meter  and  the  second  are defined  in  terms  of   c  and   ΔνCs.  In  other  words,  according  to  the  new  definition  of the  kilogram  as  of  May  20,  2019,  one  kilogram  corresponds  to  Planck’s  constant divided  by  6.62607015  × 10–34  m2  s−1,  given  the  above  definitions  of  the  meter  and the  second. 

Unit  of  electric  current 

The  ampere,  symbol  A,  is  the  SI  unit15  of  electric  current.  It  is  defined  by  taking  the fixed  numerical  value  of  the  elementary  charge  e  to  be  1.602176634  × 10–19  when expressed  in  the  unit  C,  which  is  equal  to  As,  where  the  second  is  defined  in  terms of   ΔνCs.  Thereby,  one  ampere  corresponds  to  the  flow  of  (1.602176634  × 10–19)−1 

times  the  elementary  charge   e  per  second. 

Unit  of  thermodynamic  temperature 

The  kelvin,  symbol  K,  is  the  SI  unit  of  thermodynamic  temperature.  It  is  defined  by taking  the  fixed  numerical  value  of  the  Boltzmann  constant   k  to  be  1.380649  × 10–23 

when  expressed  in  the  unit  J/K,  which  is  equal  to  kg  m2  s–2  K–1,  where  the  kilogram, meter,  and  second  are  defined  in  terms  of   h,  c,  and   ΔνCs. 

Unit  of  amount  of  substance 

The  mole,  symbol  mol,  is  the  SI  unit  of  amount  of  substance.  One  mole  contains exactly  6.02214076  × 1023  elementary  entities.  This  number  is  the  fixed  numerical 14  The  unit  of  time  is  based  on  a  material  property,  i.e.,  a  transition  frequency  of  a  chemical  element. 

15  The  ampere  is  not  separately  defined,  e.g.,  in  the  CGS  system  which  has  been  introduced  in  1832 

by  the  German  mathematician  C.  Gauss  to  base  a  system  of  absolute  units  on  the  three  fundamental units  of  length,  mass,  and  time. 
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Fig.  1.11  Official  SI  units 
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value  of  the  Avogadro  constant,  NA,  when  expressed  in  the  unit  mol–1  and  is  called the  Avogadro  number.  The  amount  of  substance,  symbol   n,  of  a  system  is  a  measure of  the  number  of  specified  elementary  entities.  An  elementary  entity  may  be  an  atom, a  molecule,  an  ion,  an  electron,  any  other  particle,  or  specified  group  of  particles. 

Unit  of  luminous  intensity 

The  candela,  symbol  cd,  is  the  SI  unit  of  luminous  intensity  in  a  given  direction.  It  is defined  by  taking  the  fixed  numerical  value  of  the  luminous  efficacy  of  monochromatic  radiation  of  frequency  540  × 1012  Hz,16   KM,  to  be  683  when  expressed  in  the unit  lm/W,  which  is  equal  to  cd  sr  W–1, or cd sr kg–1  m–2  s3,  where  the  kilogram, meter,  and  second  are  defined  in  terms  of   h,  c,  and   ΔνCs. 

In  summary,  Fig. 1.11  depicts  the  relation  between  the  definition  of  SI  units and  fundamental  constants.  Again,  these  fundamental  constants  have  the  following numerical  values,  indicated  with  their  respective  units. 

Finalizing,  the  seven  fundamental  constants  [26]  used  in  the  following  chapters are  as  follows17 : 

(1)  the  frequency  of  the  unperturbed  ground  state  hyperfine  transition  of  the  caesium 133  atom:  .νCs  = 9,192,631,770  Hz; 

(2)  the  light  velocity  in  vacuum:   c = 299,792,458  m/s; 

(3)  the  Planck  constant:   h = 6.62607015  × 10–34  Js; 

16  This  frequency  (5.4  × 1014  Hz  = 540  THz)  corresponds  to  a  wavelength  of  approximately 555  nm,  i.e.,  green  light. 

17  It  is  assumed  that  the  seven  defining  constants  have  exact  numerical  values  which  do  not  change throughout  time  and  universe. 
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(4)  the  elementary  charge:   e = 1.602176634  × 10–19  As; 

(5)  the  Boltzmann  constant:   k = 1.380649  × 10–23  J/K; 

(6)  the  Avogadro  constant:   NA  = 6.02214076  × 1023  mol–1;  and (7)  the  fixed  numerical  value  of  the  luminous  efficacy  of  monochromatic  radiation of  frequency  540  × 1012  Hz:   KM  = 683  lm/W. 
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Chapter  2 

Measurement  Signal  Processing 

Abstract  In  the  present  chapter,  different  signal  processing  methods  and  devices are  addressed,  in  particular  when  appropriate  for  processing  of  measurement  signals. 

The  present  chapter  is  meant  as  a  preparation  for  designing  a  large  variety  of  measurement  systems  and  sensor  technologies  presented  in  the  succeeding  chapters  starting with  Chap. 3. At  first,  uncertainties  and  their  evaluation  associated  with  measurement signals  are  addressed.  Then,  operational  amplifiers  and  measurement  bridges  as  basic elements  in  any  kind  of  measurement  systems  are  presented.  Operational  amplifiers provide  measurement  signal  amplification,  mathematical  signal  operations,  analog-to-digital  signal  conversion,  constant  voltage  and  current  sources,  threshold  detection,  electrical  filters,  and  many  other  units  applicable  in  sensor  systems.  On  the other  hand,  measurement  bridges  provide  efficient  signal  processing,  reference-based signal  detection,  and  outstanding  signal  amplification  and  control.  It  is  noted  here that  the  measurement  signal  processing  devices  presented  in  this  chapter  are  only exemplary,  and  many  more  units  for  measurement  systems  and  associated  signal processing  can  be  devised,  see,  e.g.,  references  listed  at  the  end  of  this  chapter. 

2.1 

Measurement  Uncertainty 

Uncertainty  evaluation  in  the  context  of  measurement  signal  processing  methods specifically  adapted  for  measurement  and  sensor  systems  is  summarized  in  the following.  In  this  context,  it  is  important  to  mention  that  each  measurement  goes along  with  uncertainty.  As  has  already  been  discussed  in  view  of  Sect. 1.2, Fig.  1.5, the  measurement  of  a  physical  quantity  is  represented  by  the  acquisition  of  a  numerical  value,  the  unit  symbol  of  the  international  system  of  units,  and  the  uncertainty  of the  numerical  value.  In  order  to  provide  a  valid  measurement  result,  it  is  important to  provide  an  estimation  of  the  measurement  uncertainty  in  addition  to  the  numerical  value  of  the  result.  Herein,  different  uncertainties  related  to  sensor  signals  are considered.  The  basic  effects  leading  to  measurement  uncertainty  are  considered: 

•  systematic  measurement  deviations; 

•  random  measurement  deviations;  and 

•  quantization  deviation. 
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Fig.  2.1  Overview  of  measurement  deviations 

Figure  2.1  is  a  general  overview  of  measurement  deviations  which  may  lead  to measurement  uncertainty  associated  with  a  measurement  result  obtained  by  measurement  and  sensor  systems.  Herein,  the  term  measurement  deviation   .x   denotes  the deviation  between  a  measured  value  x  and  the  true  or  correct  value   xt.  In  the  literature, it  is  discriminated  between  systematic  measurement  deviations  and  random  measurement  deviations  [1].  Summarizing,  measurement  deviation1  denotes  the  deviation  of a  measured  value  from  a  true  or  correct  value,  wherein  measurement  uncertainty2 

denotes  the  spreading  of  values  associated  with  the  measured  quantity. 

Systematic  measurement  deviation 

According  to  the  flowchart  depicted  in  Fig. 2.1, systematic  deviations  (sometimes denoted  as  bias  deviations  [2])  can  be  divided  into  known  and  unknown  deviations. 

Unknown  systematic  deviations  are  difficult  in  a  concise  treatment,  see,  e.g.,  [1]. 

Known  systematic  deviations  from  the  true  value   xt,  however,  should  always  be eliminated  from  the  measurement  result,  according  to  (2.1). Thereby,  in  the  following sections,  the—normal—systematic  measurement  deviation  is  not  considered. 

 .x 

 xt 

 S abs  =  .x  =  x  −  xt ;  and   S rel  = 

= 1  − 

 x 

 x

1  In  short:  measured  value  minus  reference  value,  the  reference  value  being  as  close  as  possible  to the true value. 

2  Measurement  uncertainty  thus  defines  a  range  of  values  in  which  the  actual  true  value  can  be found  with  a  specified  probability. 
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→  x t  =  x  − Sabs  =  x( 1  − Srel )

(2.1) 

Herein,  S abs  is  the  absolute  systematic  measurement  deviation,  and   S rel  is  the  relative systematic  measurement  deviation. 

Propagation  of  systematic  deviations 

In  many  cases,  the  quantities  to  be  measured  are  connected  in  a  mutual  relation  (2.2) 

 y  =   f  (x 1 ,   x 2 ,   ...,   xi  ,   ...,   xn), (2.2) 

wherein  a  number   n   of  individual  deviations   .x   may  contribute  to  a  total  deviation 

 .y.  In  order  to  evaluate  the  total  evaluation  of  the  result,  the  propagation  of  such systematic  deviations  has  to  be  evaluated  as  elucidated  in  (2.3). 

 .y  =  y  −  yt  =   f  (x 1  +  .x 1 ,   x 2  +  .x 2 , . . . ,   xi  +  .xi , . . . ,   xn  +  .xn) 

−   f  (x 1 ,   x 2 , . . . ,   xi , . . . ,   xn) (2.3) 

The  propagation  of  the  systematic  measurement  deviation  is  according  to  relations 

(2.3).  Using  a  Taylor  series,  we  can  approximate  (2.3)  to  yield 

 ∂

 n



 ∂ 

 ∂ 

.  ∂ 

 . 

 f 

 f 

 f 

 f 

 y  = 

 .x

 .x

 .x

 .x

 ∂

1  + 

2  +  · · ·  

 n  = 

 i  . 

(2.4) 

 x 1 

 ∂x 2 

 ∂xn 

 ∂xi 

 i =1 

The  maximum  possible  (positive  or  negative)  deviation  for  systematic  deviation propagation  thus  results  in  (2.5). 

 n

.|

|

|  ∂  |

 . 

 f 

 y

|

|

max  = 

|  ∂x | .xi

(2.5) 

 i 

 i =1 

In  the  following,  two  different  combinations  of  measured  quantities  to  yield  a  result are  considered,  i.e.,  (i)  a  linear  combination  of  the  measured  quantities  and  (ii)  a combination  in  product  form. 

(i)  Linear  combination 

At  first,  we  assume  that  the  measurement  result  is  available  in  a  linear  combination of  measured  quantities,  as  indicated  in  (2.6). 

 n

. 

 y  =  a 1 x 1  +  a 2 x 2  +  · · ·  +   an xn  = 

 ai  xi  . 

(2.6) 

 i =1 

Using  the  approximation  according  to  (2.4),  we  get 

 .y  =  a 1 .x 1  +  a 2 .x 2  +  · · ·  +   an.xn (2.7)
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such  that  the  resulting   absolute   deviation   .y   is  obtained  as  a  function  of  the  sum  of the  individual   absolute   deviations   .xi,  multiplied  by  their  associated  coefficients   ai n

. 

 .y  = 

 ai  .xi  . 

(2.8) 

 i =1 

(ii)  Combination  in  product  form 

If  the  measurement  result,  on  the  other  hand,  is  available  in  a  product  form  of measured  quantities  as  in  (2.9) 

 y  =  a 1 xb 1  ·  a

·  · · ·  ·   a

 , 

(2.9) 

1 

2  x b 2 

2 

 n x bn 

 n 

the  situation  is  different  as  compared  to  (i)  indicated  above,  wherein  again  we  have coefficients   a 1,  and   b 1,  respectively.  The  deviation  in,  e.g.,  x 1  would  result  in  the following  contribution  to  the  overall  deviation. 

 ∂y  =

 b



1 

 b

·  a

·  · · ·  ·   a

=  y 

(2.10) 

 ∂

1 a 1  x b 1−1 

2  x b 2 

 n x bn 

 x

1 

2 

 n 

1 

 x 1 

and  in  general,  we  would  have 

 ∂y  =  b



 i 

 y 

 . 

(2.11) 

 ∂  xi 

 xi 

Summing  up  all  individual  deviations  yields  the  total  relative  deviation n

.  . 

 . 

 n

.  . 

 . 

 xi 

 y 

 xi 

 y  =  y  · 

 bi 

⇒ 

= 

 bi 

(2.12) 

 xi 

 y 

 xi 

 i =1 

 i =1 

It  is  noted  here  that,  in  contrast  to  the  case  of  linear  combination,  in  a  combination in  product  form  we  have  to  sum  up  the  individual   relative   deviations  multiplied  by their  associated  exponents   bi   in  order  to  obtain  the  total  deviation  in   relative   form. 

Random  measurement  deviation 

A  measured  quantity  in  general  exhibits  random  deviation  (sometimes  denoted  as precision  deviation  [2])  with  respect  to  the  measurement  result.  If  the  quantity of  interest  is  measured  many  times,  a  Gaussian  distribution   P(x)   about  the  mean value x¯ as in (2.13)  is  obtained;  see  Fig. 2.2. 

 n

1  . 

 x 1 ,...,xi  ,...,xn  ⇒   x  = 

 xi

(2.13)

 n  i=1 
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Fig.  2.2  Gaussian 
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The  statistical  distribution  of  measurement  deviation  results  in  the  distribution plot  according  to  the  Gaussian  function  with  σ being  the  standard  deviation.  The distribution  shown  in  Fig. 2.2  is  given  by  following  (2.14). 

( 

) 

 (x  −  x) 2 

 P(x) =  C  · exp  − 

(2.14) 

2 σ 2 

Constant   C   may  be  evaluated  using  the  assumption  that  100%  of  the  measurement values  must  lie  under  the  above-mentioned  Gaussian  curve  shown  in  Fig. 2.2. 

∞

. 

(

) 

1  =  C  · 

exp  − a 2  t 2 d t

(2.15) 

−∞ 

In  (2.15)  above,  the  following  substitutions  have  been  carried  out: 

/

1 

1 

 t  2  =  (x  −  x) 2  → d t  = d x,   and   a 2  = 

→  a  =

(2.16) 

2 σ 2 

2 σ 2 

such  that  the  constant   C   is  evaluated  to  be 

√ π 

√

1  =  C 

=  C   2 πσ ⇒  C  =

1 

√

(2.17) 

 a 

 σ  2 π 

Then,  using  (2.17)  above  we  have  the  final  expression  for  the  cumulative distribution  plot   P( x) 

 P(x) =

1 

√

· e− (x− x) 2 

2 σ 2

(2.18) 

 σ  2 π 

which  is  actually  the  curve  corresponding  to  the  diagram  shown  in  Fig. 2.2. 

From  (2.18), the  standard  deviation   σ is  derived  according  to  (2.19). Thereby,  the quality  of  a  result  based  on  multiple  measurements   n   can  be  evaluated.  For  an  infinite
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number  of  samples  ( n  → ∞),  the  above-mentioned  mean  value  would  approach  the true  value,  thus   xt  =  x.  Herein,  the  variance  is  defined  as n

. 

 σ

1 

2  = 

 (xi  −  x) 2 

(2.19) 

 n  i=1 

wherein  the  standard  deviation  is  the  square  root  of  the  above  variance 

[

|

|

 n

. 

 σ  = ] 1 

 (xi  −  x) 2 

(2.20) 

 n  i=1 

For  the  realistic  case,  i.e.,  for  practical  measurements,  we  have   n  <  ∞,  and  thus,  the following  variance  and  standard  deviation  are  defined.  For  the  standard  deviation, we  have  ( n−1)  samples  to  which  a  measured  sample  can  be  compared,  and  (2.19) 

above  reads  as 

 n

1 

. 

 s 2  = 

 (xi  −  x) 2  , 

(2.21) 

 n  − 1   i=1 

and  the  standard  deviation  for  the  real  case  accordingly  reads  as 

[

|

|

 n

. 

 s  = ] 1 

 (xi  −  x) 2 

(2.22) 

 n  − 1   i=1 

For  practical  use, (2.22)  may  be  rewritten  to 

[

[

|

|

⎡ ( 

)  ( 

) ⎤ 

|

 n

. 

|

2 

|

 n

 n

1  . 

1  . 

 s  = ] 1 

 (x

]  n  ⎣ 

⎦ 

 i  −  x ) 2  =

 x 2 

− 

 xi 

 n  − 1 

 n  − 1 

 n 

 i 

 n 

 i =1 

 i =1 

 i =1 

/

( 

) 

=

 n 

 x 2  −  x 2 

(2.23) 

 n  − 1 

Propagation  of  random  deviations 

The  evaluation  of  the  propagation  of  random  deviations  is  usually  based  on  a  kind of  multi-dimensional  Pythagoras  wherein  the  resulting  total  relative  deviation   .f   tot is  based  on  the  square  root  of  the  sum  of  the  squares  of  individual  relative  deviations 

 .f  i,  as  indicated  in  (2.23). 

 (.   f tot ) 2  =  (.   f 1 ) 2  +  (.   f 2 ) 2  +  · · ·  +   (.   fi ) 2  +  · · ·  +   (.   fn) 2 

(2.24)

[image: Image 20]
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In  summary,  we  have  the  total  relative  deviation   .f  tot   in  the  form  of  the geometrical  addition. 

[
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|  n
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 ∂ 

2 

 . 

 f  (x



1 ,...,xi  ,...,xn ) 

 f

= ]

 .x

(2.25) 

tot 

 ∂

 i 
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 i =1 

Then,  the  probability  distribution  of  the  mean  values  reads  as 
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tot 

 ∂
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 i 

 n 

 x 1 

 ∂xi 

 ∂  xn 

and  thus,  we  have 

 ∂  x  = 1   , 

(2.27) 

 ∂xi 

 n 

and 

 n

. 

 . 

1 

 x 2  = 

 s 2  =  s 2  /n

(2.28) 

 n 2 

 i =1 

A  measurement  result  thus  must  be  obtained  in  the  form 

 s 

 x meas  =  x  ± √  . 

(2.29) 

 n 

Quantization  deviation 

If  an  analog  quantity  is  digitized,  a  so-called  quantization  deviation  shown  in  Fig. 2.3 

must  be  considered.  The  quantization  deviation  is  defined  as  a  maximum  deviation 

 .u   resulting  in  a  noise  voltage  [1]. 

 .u  = | u 

−

dig 

 u an|

(2.30) 

Fig.  2.3  Digitization  of  an 

analog  sensor  signal   u an  [1]
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In  the  following  example,  a  voltage  is  digitized.  The  signal-to-noise  ratio  (SNR) can  be  estimated  according  to  (2.31)–(2.35)  and  Fig. 2.3. 

Thereby,  the  effective  noise  voltage  is 

 .u/ 2

. 

1 

 U  2  = 

 u 2 d u

(2.31) 

 N 

 .u − .u/ 2 

with   u   being  the  instantaneous  analog  value  of  a  voltage  to  be  digitized. 

( 

)

1   u 3 

1 

1 

 .u   3 

 (.u) 2 

 U  2  = 

| .u/ 2  = 

2 

= 

 ,   or

(2.32) 

 N 

 .u   3  − .u/ 2 

 .u   3 

2 

12 

 .u 

 UN  =  √

 . 

(2.33) 

12 

The  effective  signal  voltage  to  be  measured  is  given  as 

 US  = 2 n  ·  .u

(2.34) 

The  signal-to-noise  ratio   SNR   thus  is  given  by 

(  ) 

 PS 

SNR  = 10  · log 

in  dB

(2.35) 

 PN 

and  thus,  using 

 PS  ∼  U  2  ,P

(2.36) 

 S 

 N  ∼  U  2 

 N

( 

) 

[ 

] 

 US 

2 n  ·  .u 

SNR  = 20  · log 

= 20  · log 

 U

 .u 

 N 

√12 

( √ ) 

= 20  ·  n  · log ( 2 ) + 20  · log 

12  in  dB

(2.37) 

The  signal-to-noise  ratio  for  the  above-mentioned  situation  thus  results  in SNR  = 6 .  02  ·  n  + 10 .  79  [dB] .  

For  the  case,  that  the  signal  voltage  to  be  digitized  is  the  sinusoidal  voltage 1  √

 .u 

 US∼  = 

2  · 2 n  · 

= 1 

√ · 2 n  ·  .u, 

(2.38) 

2 

2 

2  2 

the  signal-to-noise  ratio  reads  as
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[ 

√ ] 

( √ ) 

2 n  ·  .u/ 2  2 

6 

SNR∼  = 20  · log 

√

= 20  ·  n  · log ( 2 ) + 20  · log 

in  dB ,  

 .u/  12 

2 

(2.39) 

which  is 

SNR∼  = 6 .  02  ·  n  + 1 .  76  [dB]

(2.40) 

The  above-mentioned  signal-to-noise  ratio,  SNR,  has  been  evaluated  for  the  ideal case,  i.e.,  for  the  case  that  no  additional  noise  or  nonlinearities  are  present.  In  practical applications,  however,  we  have  a  measured  signal-to-noise  ratio  SNR  → SNRmeas   < SNR∼.  Thereby,  we  must  replace  the  number  of  bits   n   by  the  effective  number  of bits   n eff  such  that  (2.40)  now  reads  as 

SNRmeas  = 6 .  02  ·  n eff  + 1 .  76  [dB]

(2.41) 

and  thus, (2.42)  represents  the  useful  practical  expression  for  the  effective  number of  bits,  ENOB: 

SNRmeas  − 1 .  76 

 n eff  = 

 . 

(2.42) 

6 .  02 

Basically,  the  quantization  deviation  occurs  as  soon  as  an  analog  quantity  is  to  be processed  in  a  computer. 

2.2 

Operational  Amplifiers  and  Converters 

For  processing  and/or  amplifying  analog  input  signals,  a  measurement  amplifier  such as  an  operational  amplifier  (OA)  is  indispensable.  In  other  words,  an  OA  is  ideally suited  as  a  link  between  sensor  (electronics)  and  (digital)  data  analysis. 

 2.2.1 

 Feedback  Control 

In  principle,  an  OA  is  two-input-one-output  unit  and  can  be  regarded  as  consisting of  two  individual  amplifiers  acting  onto  the  same  output  terminal.  Herein,  one  input signal  is  inverted  with  respect  to  the  second  input  signal,  as  illustrated  in  Fig. 2.4. 

The  setup  shown  in  Fig. 2.4  is  appropriate  for  use  as  a  comparator,  according to  (2.43). Using  the  setup  shown  in  Fig. 2.4,  the  characteristic  curve  illustrated  in Fig. 2.5  is  obtained.  As  can  be  seen  from  Fig. 2.5, the  output  voltage  switches  between two  saturation  voltages - US,  and  + US,  respectively,  which  also  can  be  seen  as  the operational  amplifier  supply  voltage,  e.g.,  ±  5   V. 

[image: Image 21]
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Fig.  2.4  Basic  setup  of  an 

operational  amplifier  in  an 

-+ 

open  circuit

ud 

ux

uout 

ur 

Fig.  2.5  Output  voltage 

characteristics  of  an 

operational  amplifier  in  an 

open  circuit 

 ud  =  ur  −  ux   with   u out  = − US   for   ux <  ur  ,   u out  = + US   for   ux >  ur (2.43) 

It  is  noted  here  that  the  setup  described  in  view  of  Figs. 2.4  and  2.5  will  not  be used  for  sensor  signal  amplification  but  is  advantageously  employed  as  a  comparator in  analog-to-digital  converters.  The  respective  voltage  characteristics  of  the  open circuit  operational  amplifier  for  the  use  as  an  analog-to-digital  converter  are  depicted in  Fig. 2.6. Comparator  properties  of  OAs  will  be  briefly  addressed  in  Sect. 2.2.4  of this  chapter. 

Negative  feedback 

The  main  use  of  OAs  in  measurement  systems  is  based  on  negative  feedback  as depicted  in  the  block  diagram  of  Fig. 2.7. 

Fig.  2.6  Output  voltage 
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Fig.  2.7  Block  diagram  of 

x0

an  operational  amplifier  with 

x 

G0 

y

-

negative  feedback 

y G

.  fb 

Gfb

The  total  gain  of  an  OA  with  negative  feedback  is  thus  as  indicated  in  (2.44). 

 y 

 y  =  x G

=

 G 0 

(2.44) 

0

0  =  (x  −  yG fb )G 0  →  G tot  =   x 

1  +  G 0 G fb 

and  thus,  for  large  amplification   G 0  of  the  open  amplifier  (which  always  can  be assumed),  we  obtain 

 y 

 G tot  = 

= 1   . 

(2.45) 

 x 

 G  f b  

The  involved  input  ( x)  and  output  ( y)  quantities  can  be  represented  by  either input  voltage  or  input  current  and  by  either  output  voltage  or  output  current,  respectively.  Thereby,  four  types  of  feedback-controlled  OAs  are  feasible,  i.e.,  amplifiers for  signals  (i)  from  voltage  to  voltage,  u-to- u,  (ii)  from  voltage  to  current,  u-to- i,  (iii) from  current  to  voltage,  i-to- u,  and  (iv)  from  current  to  current,  i-to- i.  Herein,  types (i)  and  (ii)  are  denoted  as  voltage  amplifiers,  wherein  types  (iii)  and  (iv)  are  so-called current  amplifiers. 

Positive  feedback—the  Schmitt  trigger 

There  is  one  example  where  positive  feedback  of  an  OA  is  used  advantageously:  the so-called  Schmitt  trigger  [3]. The  Schmitt  trigger  is  used  for  discriminating  noise signals  with  respect  to  a  reference  voltage.  The  circuit  configuration  of  such  kind  of threshold  detection  device  is  illustrated  in  Fig. 2.8.  A  comparator  hysteresis  margin can  be  evaluated  using  (2.46). 

A  voltage  margin  is  shown  in  Fig. 2.8,  i.e.,  the  difference  between  the  voltages U 1  and   U 2  can  be  evaluated  using  the  relations  (2.46). 

Fig.  2.8  Schmitt  trigger 

circuit  configuration 
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 ud  +  ux  −  ur  −  U aux  1 ,  2  = 0 

 R

( 

)

2 

 U ax1 ,  2  = 

 u out1 ,  2  −  ur  ; 

 R 1  +  R 2 

 u out1  = + US

. 

.. 

.  ,    u

(2.46) 



out2  = − US

. 

.. 

. 

 ( 1 ) 

 ( 2 ) 

In  (2.46), the  situation  (1)  indicates  increasing  input  voltage   ux,  whereas  the situation  (2)  indicates  decreasing  input  voltage   ux.  Finally,  the  obtained  hysteresis  is defined  as  the  voltage  margin  according  to  (2.47)  using  auxiliary  voltage  Uaux  1,  2. 

 R 2 

 U 1  −  U 2  = 2 US 

(2.47) 

 R 1  +  R 2 

 2.2.2 

 Voltage  Amplifier  and  Applications 

Two  setups  of  a  voltage  amplifier  employing  an  OA  [1, 3]  are  indicated  in  Figs. 2.9 

and  2.10. 

Fig.  2.9  Voltage-to-voltage 
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Fig.  2.10  Voltage-to-current 
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For  the  voltage-to-voltage  amplifier,  the  output  voltage  is  a  function  of  input voltage  according  to  (2.48) 

( 

) 

 R 1 

 R 1 

 u out  =  1  + 

 uin  →  guu  = 1  + 

(2.48) 

 R 2 

 R 2 

whereas  the  input  and  output  resistance  (which  is  the  internal  resistance  of  the  voltage source  made  up  by  the  operational  amplifier)  is  according  to  (2.49). 

lim   R in  ⇒ ∞ ,   and  lim   Ri  ⇒ 0

(2.49) 

 G 0→∞ 

 G 0→∞ 

For  the  voltage-to-current  amplifier  shown  in  Fig. 2.10, we  obtain  for  the  input  and output  resistance  (which  is  the  internal  resistance  of  the  current  source  made  up  by the  operational  amplifier). 

lim   R in  ⇒ ∞ ,   and  lim   Ri  ⇒ ∞

(2.50) 

 G 0→∞ 

 G 0→∞ 

Here,  the  output  current  is  function  of  input  voltage  according  to  (2.51). 

1 

1 

 i out  = 

 u in  →  gui  = 

 . 

(2.51) 

 R fb 

 R fb 

Summarizing,  based  on  the  feedback  circuit  components  in  the  setups  shown  in Figs. 2.9  and  2.10, i.e.,  the  resistors   R 1,  R 2,  and   R fb,  respectively,  the  three  basic characteristic  data  of  such  kind  of  voltage  amplifiers  may  be  evaluated. 

Some  applications  of  the  voltage  amplifier—non-inverting  amplifier As  examples  of  important  applications  [1,  3], an  impedance  converter  as  in  Fig. 2.11, an  ideal  voltage  source  as  in  Fig. 2.12, and  an  ideal  current  source  as  in  Fig. 2.13 

should  be  mentioned. 

Voltage  follower  or  impedance  converter 

It  is  noted  here  that  the  impedance  inverter  usually  comprises  unity  gain  such  that u out 

 R 1  = 0   .,    R 2  → ∞ →   guu  = 

= 1 , 

(2.52)

 u in 

Fig.  2.11  Application  of  a 

voltage  amplifier  as  an 

impedance  converter

[image: Image 23]

[image: Image 24]
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Fig.  2.12  Application  of  a 

voltage  amplifier  as  an  ideal 

voltage  source 

Fig.  2.13  Application  of  a 

voltage  amplifier  as  an  ideal 

current  source

and  the  impedance  conversion  which  is  being  performed  is  according  to  (2.49). 

Ideal  voltage  source 

Same  impedance  conversion  applies  if  the  operational  amplifier-based  voltage amplifier  is  used  as  an  ideal  voltage  source,  as  indicated  in  Fig. 2.12. 

The  output  of  the  ideal  voltage  source   U out,0  is  given  by ( 

) 

 R 1 

 U out0  =  1  + 

·  U in0

(2.53) 

 R 2 

Ideal  current  source 

In  a  similar  manner,  we  can  design  an  ideal  current  source  using  the  voltage  amplifier. 

In  view  of  Fig. 2.13, we  assume  that  a  load  resistance  for  transporting  the  output current  (dashed  line)  is  present.  The  ideal  current  source  is  characterized  by  the  fact that  the  input  resistance  is  infinity,  compare  (2.51). 

 U in ,  0 

 I out0  = 

(2.54)

 R fb 
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 2.2.3 

 Current  Amplifier  and  Applications 

Two  setups  of  a  current  amplifier  employing  an  OA  are  indicated  in  Figs. 2.14  and 

2.15. 

For  the  current-to-voltage  amplifier,  the  output  voltage  is  a  function  of  input current  according  to  (2.55) 

 u out  = − R fb i in  →  giu  = − R fb , (2.55) 

whereas  the  output  resistance  (which  is  the  internal  resistance  of  the  voltage  source made  up  by  the  operational  amplifier)  is  according  to  (2.56). 

lim   Ri  ⇒ 0

(2.56) 

 G 0→∞ 

For  the  current-to-current  amplifier  shown  in  Fig. 2.15,  we  obtain  for  the  input resistance 

lim   Rin  ⇒ ∞

(2.57) 

 G 0→∞ 

Here,  the  output  current  is  function  of  input  current  according  to  (2.58). 

Fig.  2.14 

ifb 

Current-to-voltage  amplifier 

using  OA 

i

R

in 

fb

1 

i

-

out

3 

N  ud 

u

+ 

in

uout 

Rload 

2 

4 

Fig.  2.15  Current-to-current 
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Fig.  2.16  OA-based  inverter 
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( 

) 

( 

) 

 R 1 

 R 1 

 i out  = −   1  + 

 i in  →  gii  = −   1  + 

(2.58) 

 R 2 

 R 2 

Summarizing,  based  on  the  feedback  circuit  components  in  the  setups  shown  in Figs. 2.14  and  2.15, i.e.,  the  resistors   R 1,  R 2,  and   R fb,  respectively,  the  three  basic characteristic  data  of  such  kind  of  current  amplifiers  may  be  evaluated. 

Some  applications  of  the  current  amplifier—inverting  amplifier 

Application  examples  of  the  OA-based  current  amplifiers  compared  to  the  OA-based voltage  amplifier  presented  in  Sect. 2.2.2  above  are  presented  in  the  following.  The current  amplifier  employing  an  OA  exhibits  many  more  applications,  e.g.,  concerning mathematical  operations  in  the  analog  region.  Some  important  application  examples are  given  below. 

Inverter 

At  first,  Fig. 2.16  illustrates  a  simple  inverter  circuit  wherein  the  overall  gain  is  unity for   R 1  =  R 2; see  (2.59). 

The  node   N   at  the  non-inverting  input  of  the  OA  is  at  virtual  ground  such  that  we have 

 u in 

 u out 

 u in 

 u out 

 R 2 

 i in  = 

;  i fb  = 

;  i in  = − i fb  → 

= −  

→  u out  = − u in 

(2.59) 

 R 1 

 R 2 

 R 1 

 R 2 

 R 1 

The  inverter  relation  for   R1  =  R2   now  reads  as 

 u out  = − u in

(2.60) 

Adder 

As  the  input  node   N   of  an  OA-based  current  amplifier  is  at  virtual  ground  potential, an  adder  unit  can  easily  be  accomplished;  see  Fig. 2.17. 

Herein,  two  or  more  input  voltages   u 1,  u 2,  …  which  are  converted  to  input  currents using  resistors   R 1,  R 2,  …,  are  summed  up  to  yield  a  resulting  output  voltage   u out. At a  node   N   shown  in  Fig. 2.17, we have  

 u 1 

 u 2 

 u out 

 i 1  +  i 2  +  i fb  = 0  → 

+ 

+ 

= 0 . 

(2.61)

 R 1 

 R 2 

 R fb 
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Fig.  2.17  OA-based  adder
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We  can  easily  set   R1  =  R2  =  R fb  such  that  we  obtain  the  sum  of  the  two  input voltages   u 1,  u 2  multiplied  by  (−1)  as  this  application  of  an  adder  is  based  on  the inverting   current  amplifier. 

 u out  = − (u 1  +  u 2 ). 

(2.62) 

Subtractor 

In  this  context,  it  is  further  possible  to  provide  an  OA-based  subtractor  or  a  differential circuit.  Here,  the  output  voltage   u out  is  the  difference  of  two  input  voltages   u 1  and u 2,  respectively,  as  illustrated  in  Fig. 2.18. 

The  auxiliary  voltage  at  the  non-inverting  input  of  the  operational  amplifier  can be  evaluated  using  the  voltage  divider  (2.63). 

 R 3 

 u aux  =  u 2 

(2.63) 

 R 2  +  R 3 

At  node   N,  we  have  the  sum  of  the  two  currents   i 1  and   i fb  given  by  (2.64) u 1  −  u aux 

 u out  −  u aux 

 i 1  = 

 i fb  = 

→  at  node  N  →  i 1  = − i fb , 

(2.64)

 R 1 

 R fb 

Fig.  2.18  OA-based 
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Fig.  2.19  OA-based 
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such  the  output  voltage  as  a  function  of  the  two  input  voltages  can  be  evaluated  using 

(2.65)  and  (2.66). 

( 

) 

 u 1  −  u aux  =  u

 R

 R

aux  −  u out  → 

fb 

fb 

 u out  = −  

·  u 1  +  u aux  1  + 

(2.65) 

 R 1 

 R fb 

 R 1 

 R 1 

and  by  eliminating   u aux, we have  

 R fb 

 R 1  +  R fb 

 R 3 

 u out  = −    u 1  +  u 2 

· 

(2.66) 

 R 1 

 R 1 

 R 2  +  R 3 

Furthermore,  we  may  set   R 1  =  R 2  and   R 3  =  R fb  and  obtain R 3 

 u out  = −    (u 1  −  u 2 ), 

(2.67) 

 R 2 

which  represents  the  difference  voltage  between   u 1  and   u 2. 

Differentiator 

There  are  more  mathematical  operations  available  when  using  analog  circuits  based on  operational  amplifiers.  As  a  first  of  further  mathematical  operations,  we  have  a look  at  a  differentiator  illustrated  in  Fig. 2.19. 

As  can  be  seen  from  Fig. 2.19, a  capacitor   C   is  included  in  the  input  path,  wherein node   N   again  is  at  virtual  ground.  Two  currents  according  to  (2.68)  now  compensate each  other 

d u in 

 u out 

 i in  =  C 

 ,    i  f b   = 

 , 

(2.68) 

d t 

 R fb 

such  that  the  output  voltage  reads  as 

d u in 

 u out  = −   R fb C

. .. . · 

 . 

(2.69) 

d t 

 τ fb 

As  can  be  seen  from  (2.69)  above,  the  obtained  output  voltage  represents  the  negative  first  derivative  by  time  of  the  input  voltage,  multiplied  by  a  time  constant τ  fb. 
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Fig.  2.20  OA-based 
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Integrator 

Another  important  mathematical  operation  in  the  analog  domain  is  integration  using the  operational  amplifier.  An  integration  of  an  input  voltage   u in  applied  at  the  non-inverting  input  of  the  operational  amplifier  can  be  seen  as  an  amplification  of  charges collected  at  capacitor   C.  In  this  context,  the  OA-based  integrator  sometimes  is  denoted as  a  charge-sensitive  amplifier,  or  briefly  charge  amplifier.  The  basic  setup  of  the charge  amplifier  or  integrator  is  shown  in  Fig. 2.20.  As  compared  to  the  differentiator, the  OA-based  integrator  has  the  circuit  elements  resistor   R   and  capacitor   C   exchanged in  their  positions. 

Again,  two  currents  according  to  (2.70)  compensate  each  other. 

 u in 

d u out 

 i in  = 

;  i fb  =  C  · 

 , 

(2.70) 

 R 

d t 

( 

) 

d u out 

1 

 i

= 0  →  i

 C  · 

= −    u

in0 

in  = − i fb; 

in

(2.71) 

 ( at  node  N ) 

d t 

 R 

Thereby,  the  resulting  output  voltage   u out  is  the  negative  integral  of  the  input voltage   u in  multiplied  by  a  constant  factor. 

. 

1 

 u out  = −  

 u in  · d t  +  C int

(2.72) 

 RC 

The  integration  constant   C int  in  (2.72)  which  is  normally  present  due  to  the  evaluation  of  the  indefinite  integral,  in  this  case,  may  be  set  to  zero  as  it  is  assumed  that the  capacitor  is  being  discharged  at  the  beginning  of  the  measurement. 

Logarithmic  amplifier 

The  logarithmic  amplifier  is,  in  our  series  of  examples  for  analog  signal  processing using  operational  amplifiers,  the  last  circuit  setup  being  discussed  in  the  present section.  The  basic  setup  of  a  logarithmic  amplifier  based  on  the  use  of  an  operational amplifier  is  depicted  in  Fig. 2.21. 

As  can  be  seen  from  Fig. 2.21,  a  diode   D   is  arranged  in  the  feedback  path  of  the operational  amplifier.  The  diode  itself,  on  the  other  hand,  exhibits  a  voltage–current characteristic  as  approximated  in  (2.73). In  particular,  the  forward  anode–cathode current  reads  as
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Fig.  2.21  Logarithmic 
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[  ( 

) 

] 
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) 

 eUac 

 eUac 

 Iac  =  Is   exp 

− 1  →  Iac  ≈  Is   exp 

 , 

(2.73) 

 kT 

 kT 

wherein   IS   is  the  saturation  current  of  the  diode   D   and   Uac   is  the  anode–cathode voltage  between  anode   a   and  cathode   c   as  shown in Fig.  2.21.  The  expression  in the  exponential  function  of  (2.73)  is  the  so-called  thermal  voltage  which  can  be evaluated  using  the  Boltzmann  constant   k   and  the  elementary  charge   e,  and  for  room temperature  ( T  = 300  K),  we  have 

 kT  = 0 .  0258  V . 

(2.74) 

 e 

Again,  due  to  current  compensation  at  node   N   we  obtain 

( 

)

 e  ·  u



out 

 Iac  = − i fb  =  Is   exp  − 

 , 

(2.75) 

 kT 

and  after  logarithmizing  we  have 

(

) 

 Iac 

 e  ·  u out 

 kT 

− i fb 

ln 

= −  

→  u out  = −   ln 

 , 

(2.76) 

 Is 

 kT 

 e 

 Is 

which  finally  results  in 

 kT 

 i in 

 u in 

 i in  = − i fb  →  u out  = −  

· ln 

→  u out /V  = −0 .  0258  · ln 

 . 

(2.77) 

 e 

 Is 

 R Is 

 2.2.4 

 Comparator  and  Application 

This  section  is  devoted  to  the  use  of  operational  amplifiers  without  feedback  control. 

The  OA  in  this  case  acts  as  a  simple  comparator  as  shown  in  Fig. 2.22. 

An  OA-based  comparator  is  the  basic  element  of  many  analog-to-digital converters,  ADC,  an  application  example  of  which  will  be  presented  in  the  following. 

The  so-called  flash  converter  is  an  important  device  for  fast  analog-to-digital conversion  and  is  briefly  discussed  in  the  present  section. 

[image: Image 25]
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Flash  converter 

A  flash  converter  is  exemplified  with  four  comparators   C 1– C 4  in  Fig. 2.23. An  analog input  voltage  can  be  converted  in  some  kind  of  digital  output  signal.  The  individual voltage  reference  levels  may  be  adjusted  by  means  of  the  voltage  divider  coupled  to the  OA  inputs.  The  logic  word  C4-C3-C2-C1  is  converted  to  a  decimal  output  value by  means  of  the  decoder. 

Fig.  2.23  Setup  of  a  flash  converter  (simplified)
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2.3 

Measurement  Bridges 

Besides  operational  amplifiers,  measurement  bridges  are  powerful  tools  for  sensor data  processing.  Measurement  bridges  can  be  designed  for  analyzing  signals  from  a variety  of  sensors  such  as  resistive  sensors,  resistance  strain  gauges  (RSGs),  capacitive  sensors,  and  inductive  sensors.  In  order  to  provide  a  comprehensive  overview of  measurement  bridge  devices,  we  discriminate  between  DC  bridges  and  AC 

bridges,  respectively,  on  the  one  hand,  and  between  balanced  bridges  and  unbalanced bridges,  respectively,  on  the  other  hand.  Typical  application  examples  for  different embodiments  of  measurement  bridges  are  addressed  as  well. 

 2.3.1 

 Balanced  Measurement  Bridges 

Measurement  bridges  with  ohmic  resistors 

A  typical  resistor-based  measurement  bridge  is  illustrated  in  Fig. 2.24. If  we  consider bridge  balance,  the  diagonal  or  bridge  voltage  is  adjusted  to   Uab  =  0   with  U0  being the  bridge  supply  voltage. 

Thereby,  taking  into  account  the  arrangement  of  the  two  parallel  voltage  dividers, we  obtain  for  the  bridge  balancing  condition,  i.e.,  Uab  =  0,  the  relation  according  to 

(2.78) [1]. 

 U 1  =  R

 U



1 

 ,  

3 

and 

=

 R 3 

→  Uab  =  U 3  −  U 1 

 U 0 

 R 1  +  R 2 

 U 0 

 R 3  +  R 4 

( 

) 

=

 R

 R



3 

3 ( R 1  +  R 2 ) −  R 1 ( R 3  +  R 4 ) U 0 

−

 R 1 

=  U 0 

 R 3  +  R 4 

 R 1  +  R 2 

 (R 1  +  R 2 )(R 3  +  R 4 ) 

 R 2   R 3  −  R 1   R 4 

 Uab  =  U 0 

(2.78)

 (R 1  +  R 2 )(R 3  +  R 4 ) 

Fig.  2.24  Basic  setup  of  a 

I0 

resistor-based  measurement 

bridge 
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Fig.  2.25  Capacitance 

measurement  bridge 

according  to  Wien  [1] 

R1 

C1 
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Uab 
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C

R
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Thus,  e.g.,  R 2  =  Rx   may  be  evaluated  as  follows  in  (2.79). A  resistance  value  to be  measured,  e.g.,  the  resistance  value  of  resister   R 2,  can  thus  be  determined  via  the bridge  balancing  condition  according  to  (2.79). 

 R 2   R 3  −  R 1   R 4  = 0  → unknown  resistance:   Rx  =  R 2

(2.79) 

 R 1 

 Rx  =  R 4  · 

(2.80) 

 R 3 

Capacitance  measurement  bridges 

Measurement  bridges  employing  the  balancing  condition  may  be  operated  using alternating  current,  AC  power  supplies.  Thereby,  capacitors  may  be  used  as  bridge elements  as  shown  in  Fig. 2.25. 

In  this  case,  the  bridge  balancing  condition,  i.e.,  Z Z

=   Z Z  or   U

2 

3 

1 

4 

 ab  =  0, 

can  only  be  achieved  if  two  equations  are  fulfilled.  These  two  equations  are  either absolute  value  and  phase,  respectively,  or  real  part  and  imaginary  part,  respectively, as  elucidated  in  (2.81)–(2.84). 

 (R 2  +  j X 2 )(R 3  +  j X 3 ) =  (R 1  +  j X 1 )(R 4  +  j X 4 ) (2.81) 

Re  :  R 2   R 3  −  X 2   X 3  =  R 1   R 4  −  X 1   X 4 

Im  :  X 2   R 3  +  R 2   X 3  =  X 1   R 4  +  R 1   X 4 ,  or (2.82) 

 Z 2   Z 3  · e  j (ϕ 2+ ϕ 3 )  =  Z 1   Z 4  · e  j (ϕ 1+ ϕ 4 )  ,   thus (2.83) 

 Z 2   Z 3  =  Z 1   Z 4 ,   and   ϕ 2  +  ϕ 3  =  ϕ 1  +  ϕ 4 . 

(2.84) 

Thus,  in  view  of  Fig. 2.25  we  have
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 R 2 

·  R 3  =

 R 1 

·  R 4

(2.85) 

1  +   j ωC 2   R 2 

1  +   j ωC 1   R 1 

and  for  the  balancing  condition  (2.86)  must  be  fulfilled. 

 R 2   R 3  +   j ωR 1 C 1   R 2   R 3  =  R 1   R 4  +   j ωR 2 C 2   R 1   R 4 , (2.86) 

 R 1   R 4 

 R 3 

Re  :  R 2  = 

 ,   and  Im  :  C 2  =  C 1  ·   . 

(2.87) 

 R 3 

 R 4 

In  this  way,  unknown  capacitance   C 2  with  its  parallel  conductance   R 2  can  be determined.  In  the  case  shown  in  Fig. 2.25,  the  balancing  adjustment  is  performed by  means  of  variable  components   R 1  and   C 1. 

Inductance  measurement  bridges 

Besides  capacitance,  inductance  may  be  measured  by  balancing  an  alternating current,  AC,  measurement  bridge.  One  example  is  the  AC  measurement  bridge according  to  Maxwell  [1]  which  is  shown  in  Fig. 2.26. 

Here,  the  balancing  condition  reads  as  evaluated  in  (2.88), and  the  unknown inductivity   L 2  together  with  its  series  resistance   R 2  can  be  determined. 

 Z 2 

 Z

. 

.. 

.  Z 3 

1 

 Z 4 

....  . 

.. 

. .... 

 (R 2  +  j ωL 2 )   R 3  =  (R 1  +  j ωL 1 )   R 4

(2.88) 

such  that  the  unknown—real  inductance  reads  as 

 R 4 

 R 4 

Re  :  R 2  =  R 1  · 

 ,   and  Im  :  L 2  =  L 1  ·   . 

(2.89)

 R 3 

 R 3 

Fig.  2.26  Inductance 

measurement  bridge 

according  to  Maxwell 
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Fig.  2.27  Inductance 

measurement  bridge 

according  to  Maxwell-Wien 
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By  integrating  such  kind  of  measurement  bridge  as  the  one  shown  in  Fig. 2.26 

into  an  electronic  circuit,  it  might  be  a  disadvantage  to  use  an  inductivity  such  as the  inductivity   L 1  as  a  reference  element.  One  problem  is  the  size  of  the  inductivity L 1  as  compared  to  a  capacitor  used  as  a  reference  element.  Thereby,  a  method  of choice  is  employing  another  bridge  design  for  inductance  measurement,  that  is  the Maxwell-Wien  bridge  [1]  as  shown  in  Fig. 2.27. 

The  balancing  condition  for  the  setup  shown  in  Fig. 2.27  now  reads  as  summarized in  (2.90)–(2.92). 

 Z 3 

 Z 2 

. 

.. 

. 

. 

.. 

. 



 Z 1 

 Z 4 

 Z 2   Z 3= Z 1   Z 4 



 R

....  ....  . 

.. 

. 

 (

3 

 R 2  +   j ωL 2 ) · 

=   R 1  ·   R 4  ;  Z 3  ⇒  R 3|| C 3

(2.90) 

1  +   j ω  R 3 C 3 

 R 1   R 4 

 R 2  +   j ωL 2  = 

·  ( 1  +  j ωR 3 C 3 ) using   Z 3  =

1 

(2.91) 

 R

1 

3 

+  j ωC

 R

3 

3 

 R 1   R 4 

Re  :  R 2  = 

 ,   and  Im  :   L 2  =  R 1   R 4 C 3

(2.92) 

 R 3 

Thereby,  the  advantage  of  avoiding  coils  or  inductances  as  reference  elements  has been  achieved. 

 2.3.2 

 Unbalanced  Measurement  Bridges 

Instead  of  balancing  a  measurement  bridge,  i.e.,  setting   Uab   to  zero,  the  bridge voltage   Uab   itself  may  be  used  as  an  output  signal,  which  is  in  the  present  case  the sensor  signal.  Then,  the  bridge  is  denoted  as  an  unbalanced  measurement  bridge. 

Moreover,  an  unbalanced  bridge  can  be  operated  by  a  voltage  source,  i.e.,  the  bridge
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is  voltage  fed,  or  the  unbalanced  bridge  can  be  operated  by  a  current  source,  i.e.,  it can  be  current  fed.  In  both  cases,  the  bridge  voltage  is  measurable  as  a  function  of  the bridge  elements   R 1,  R 2,  R 3,  and   R 4  in  different  operation  modes.  For  the  voltage-fed bridges,  see  (2.93), and  for  the  current-fed  bridges,  see  (2.94). 

 Uab  =  U 0  ·

 R 2   R 3  −  R 1   R 4 

;  and  using

(2.93) 

 (R 1  +  R 2 )(R 3  +  R 4 )

 (R 1  +  R 2 )(R 3  +  R 4 ) 

 U 0  =  I 0[ (R 1  +  R 2 )|| (R 3  +  R 4 )]  =  I 0  ·   R 1  +  R 2  +  R 3  +  R 4 

we  have  the  current-fed  bridge  according  to  (2.94). 

 Uab  =  U 0  ·

 R 2   R 3  −  R 1   R 4 

=  I

(2.94) 

 (

0  ·

 R 2   R 3  −  R 1   R 4 

 R 1  +  R 2 )(R 3  +  R 4 ) 

 R 1  +  R 2  +  R 3  +  R 4 

In  order  to  simplify  (2.93)  and  (2.94),  respectively,  only  small  deviations  of  a resistance  value   .R   about  a  mean  value   R 0  for  one  or  more  bridge  elements  are  taken into  account.  This  approximation  makes  much  sense  because  it  is  the  unbalanced measurement  bridge  which  is  used  for  high  resolution  detection  of  small  sensor signal  variations,  thus  small   .R.  Thereby,  if  one  of  the  four  resistors  of  Fig. 2.28 

varies,  i.e.,  “one-fourth”  of  the  entire  bridge  varies,  then  the  output  signal  reads  as in  (2.96)  for  the  voltage-fed  case  and  as  in  (2.97)  for  the  current-fed  case. 

Thereby,  using 

 .R  <<  R 0;  R 1  =  R 3  =  R 4  =  R 0;  R 2  =  R 0  ±  .R

(2.95) 

we  have

Fig.  2.28  Unbalanced 
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Fig.  2.29  Unbalanced 

I0 

measurement  bridge  in  a 

half-bridge  configuration 
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2 R

.... 

0  +  . R) 2  R 0 

4 R

4 R

 . 

0  + 2 . R 

0 

 R<<R 0 

and  for  the  current-fed  case,  we  obtain 

 (R 0  +  .R)R 0  −  R 2 

 .R  ·  R 0 

 U

0 

 ab  =   I 0  · 

=

 I 0  ≈

 I 0   .R  . 

(2.97) 

4 R 0  +  .R

4 R 0  +  .R 

4 

. .. . 

quarter  bridge 

Figure  2.29  exhibits  a  further  configuration  of  an  unbalanced  measurement  bridge having  two  fixed  resistors  and  two  variable  resistors  arranged  diagonally  with  respect to  each  other. 

As  the bridge shown in Fig. 2.29  includes  two  variables,  i.e.,  two  diagonal  resistors varying  in  correspondence  with  one  measurement  signal,  this  bridge  is  denoted  as  a half-bridge.  Herein,  the  diagonal  setup  is  one  of  a  few  configurations  being  appropriate  for,  e.g.,  resistance  strain  gauge  sensors  with  integrated  temperature  compensation.  The  associated  measurement  system  is  discussed  with  respect  to  resistive sensor  systems  described  in  Sect. 3.1  of  Chap. 3. The  sensitivity  of  the  half-bridge arrangement  of  Fig. 2.29,  i.e.,  the  amount  of  bridge  voltage  variation  with  respect to  resistance  variation   .R, is given  in  (2.98)  for  the  voltage-fed  bridge  and  in  (2.99) 

for  the  current-fed  bridge. 

 U 0   .R 

 Uab  ≈ 

(2.98) 

2   R 0 

 I 0 

 Uab  ≈ 

 .R. 

(2.99) 

2 

Furthermore,  a  bridge  configuration  is  feasible  where  all  four  resistance  values are  varying  by   .R,  that  is,  if  all  four  resistors  act  as  sensor  elements:  the  so-called full-bridge  configuration;  see  Fig. 2.30. 
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Fig.  2.30  Unbalanced 

I0 

measurement  bridge  in  a 

full-bridge  configuration 
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The  full-bridge  configuration  shown  in  Fig. 2.30  is  one  of  the  most  commonly used  measurement  bridges  having  the  highest  sensitivity  combined  with  temperature compensation.  Application  examples  for  such  setup  can  be  found  in  Sect. 3.1  of Chap. 3.  The  respective  sensitivities  are  given  in  (2.100)  for  the  voltage-fed  case  and in  (2.101)  for  the  current-fed  case,  respectively. 

 .R 

 Uab  =  U 0 

and

(2.100) 

 R 0 

 Uab  =  I 0 .R. 

(2.101) 
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Chapter  3 

Measurement  Systems  with  Resistive 

Sensors 

Abstract  In  the  present  chapter,  we  focus  on  measurement  and  sensor  systems which  are  adapted  for  detecting  physical  quantities.  In  particular,  this  chapter  is devoted  to  resistive  sensors  and  measurement  systems  incorporating  these  kinds of  sensors.  Herein,  several  methods  of  measurements  are  feasible  as  a  variety  of detectable  quantities  may  act  on  the  resistance  of  a  resistor-based  sensor.  In  this respect,  mechanical  quantities  may  be  detected  via  a  geometrical  change  of  a  resistor, which  in  this  case  is  denoted  as  a  resistance  strain  gauge  (RSG);  see  Sect. 3.1. 

Further,  the  measurable  value  of  a  resistive  sensor  element  is  temperature  dependent in  different  ways.  This  fact  offers  a  variety  of  designs  for  contact-based  temperature sensors  in  Sect. 3.2. Indirect  measurements  of  physical  quantities  such  as  airflow, via  a  temperature  sensor,  are  exemplified  in  Sect. 3.3. It  is  noted,  albeit  not  explicitly presented  in  many  instances,  that  resistive  sensor  systems  are  often  based  on  the  use of  appropriately  designed  measurement  bridges. 

3.1 

Resistance  Strain  Gauge,  RSG 

A  geometrical  variation  of  a  cylindrical  resistive  element  having  length   l,  diameter D,  cross-sectional  area   A,  and  specific  resistivity   ρ results  in  a  variation  of  the  ohmic resistance   R,  which  is  given  by  (3.1). 

 l 

 l 

 l 

 R  =  ρ  =  ρ 

= 4 ρ 

(3.1) 

 A 

 π  (D/ 2 ) 2 

 π  D 2 

As  shown in Fig. 3.1,  a  force-induced  length  variation  results  in  a  reduced  diameter and  thus  in  an  increased  total  resistance. 

A  sensing  element  based  on  the  resistance  variation  effect  illustrated  in  Fig. 3.1  is usually  denoted  as  a  “resistance  strain  gauge  sensor”,  RSG  sensor.  The  sensitivity of  this  sensor  as  a  function  of  a  measured  force-induced  relative  length  variation 

 .l/ l   is  evaluated  in  (3.2).  In  Sect. 2.1, (2.12),  it  has  been  shown  that  a  variation  of  an output  quantity  resulting  from  variations  of  parameters  combined  in  product  form  is according  to
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Fig.  3.1  Force-induced 

D 

l 

resistance  variation  of  an 

ohmic  resistor  of  diameter   D: 

(a) 

A 

a  without  external  force  and 

b  with  force   F   being  applied
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 . 
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1 

2  x b 2 
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 i 

 y 

 xi 

 i =1 

Using  (3.2)  for  the  product  term  in  (3.1), we  obtain 

 .R 

 .ρ 

 . 

 . 

=

 l 

 D 



+ 

− 2 

(3.3) 

 R 

 ρ 

 l 

 D 

Metallic  RSGs 

For  metal  resistors,  the  variation  of  the  specific  resistivity  due  to  stress  and/or  temperature  exposure  can  be  neglected,  thus   .ρ 

 ρ ≈ 0 .  Using  the  elasticity  module   E   and  the mechanical  stress   σ,  the  relative  strain   ε thus  reads  as 

 . 

 σ 

 ε

 l 

= 

= 

(3.4) 


 l 

 E 

Then,  the   k-factor  of  an  RSG  which  reflects  its  sensitivity  is  given  by 

 .R/R 

 .R/R 

 .ρ/ρ 

 .D/D 

 k  = 

= 

= 

+ 1  − 2 

 , 

(3.5) 

 ε

 .l/l 

 .l/l 

 .l/l 

and  for  metal  RSGs,  we  have 

 .R/R 

 k  = 

= 1  + 2 ν = 1 .  4 ,   ...,  2

(3.6) 

 .l/l 

Herein,  ν  is  the  so-called  Poisson  number  (representing  the  material  transverse contraction)  of  the  RSG  material  which  is  estimated  to  be 

 . 

 ν

 D/D 

= −  

≈ 0 .  2   ...  0 .  5

(3.7) 

 .l/l 

For  different  sample  materials,  this  Poisson’s  number   ν is  given  in  Table  3.1. 

An  example  of  a  commercially  available  RSG  sensor  is  illustrated  in  Fig. 3.2. 

3.1 Resistance Strain Gauge, RSG
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Table  3.1  Poisson’s  numbers 

Material

Poisson’s  number   ν 

of  different  materials  [1] 

Aluminum

0.34 

Brass

0.35 

Copper

0.35 

Gold

0.42 

Nickel

0.30 

Tungsten

0.17 

Zinc

0.25

Fig.  3.2  Setup  of  an  RSG 

for  different  measurement 

purposes 

An  example  of  a  RSG  measurement  system  for  force  measurement  ( F)  is  depicted in  Fig. 3.3. 

The  force  measurement  system  shown  in  Fig. 3.3  includes  temperature  compensation.  Resistance  variation  due  to  temperature  is  a  major  issue  in  stress  measurement.  It  will  be  shown  in  Sect. 3.2  of  this  chapter  that  temperature  sensors  can  be based  on  resistance  measurement.  In  this  respect,  either  metal-based  (Sect. 3.2.1) 

or  semiconductor-based  (Sect. 3.2.2)  resistive  temperature  sensors  are  available. 

Fig.  3.3  Force  measurement 

device  based  on 

measurement  bridge 

48

3

Measurement Systems with Resistive Sensors

Returning  to  Fig. 3.3, the  following  relations  (3.8)  yield  a  result  if  the  resistors R 1  and   R 4  are  compressed  due  to  the  force   F,  and  the  resistors   R 2  and   R 3  are  decou-pled  from  mechanical  stress.  Using  the  expression  for  the  bridge  voltage  in  the  case of  an  unbalanced  measurement  bridge,  see  Sect. 2.3.2  and  Fig. 3.4, we have R 2   R 3  −  R 1   R 4 

 Uab  =  U 0 

 . 

(3.8) 

 (R 1  +  R 2 )(R 3  +  R 4 ) 

We  apply  the  following  values  for  the  four  bridge  resistors:   R 1  =  R 0− .Rs,  R 2  = 

 R 3  =  R 0,  and   R 4  =  R 0− .Rs,  and  for  resistance  variation  due  to  strain   .Rs<<  R0, we obtain 

 R 2  −  (R 0  −  .Rs) 2 

 R 0  −  (R 0  − 2 .Rs) 

 U 0   .Rs 

 U

0 

 ab  =  U 0 

≈  U 0 

= 

 . 

(3.9) 

4 R 2 

4 R

2 

 R

0 

0 

0 

Herein,  the  factor  "2"  in  the  denominator  of  (3.9)  indicates  the  setup  of  a  force measurement   half -bridge. 

Semiconductor-based  RSGs 

For  RSGs  made  of  semiconductor  material,  the  relation   .ρ/ρ 

 . 

in  (3.5)  prevails,  such 

 l/l 

that  the   k-factor  of  this  sensor  can  reach  large  values  in  the  order  of  10–100. 

For  temperature  compensation,  a  full-bridge  such  as  the  one  shown  in  Fig. 3.4  is advantageously  employed.  The  corresponding  measurement  arrangement  for  torsion moment  detection  (MT)  is  also  shown  in  Fig. 3.4. 

Fig.  3.4  RSG-based  strain 

measurement  bridge;  in  the 
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1

depicted  application,  a 

MT 

torsion  moment   MT   can  be 

detected;  all  four  resistors  act 

4 

3

as  sensors  for  torsion 

measurement 
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3.2 

Resistive  Temperature  Sensors 

The  effect  of  temperature  on  the  resistance  value  of  a  metal  or  a  semiconductor material  is  in  many  ways  used  as  an  advantageous  sensor  effect.  The  present  section is  divided  into  a  discussion  of  metal  sensors  such  as   Pt100   and  a  discussion  of semiconductor-based  sensors. 

 3.2.1 

 Metal-Based  Temperature  Sensors 

The  temperature  coefficient   α  of  the  sensor  material  is  used  as  the  measurement effect.  Table  3.2  is  a  selection  of  metals  and  their  corresponding   α-values. 

Commonly  used,  so-called  thermistors  are  mainly  provided  as  platinum  thermistors,  Pt100,  wherein  the  number  “100”  indicates  that  an  ohmic  resistance   R 0  value  of 100   .  is  provided  at  a  reference  temperature   T  0,  which  is  defined  at  a  value  of  0  °C. 

A  linear  approximation  of  the  temperature  dependence  as  a  function  of  the  measured temperature   T   is  given  in  (3.10).  Furthermore,  σe  =  eneμe,  wherein μe  ∼  T  −1,  and 

= 1/ μe,  such  that,  using  (3.1),  R( T) ~   T. 

 R(T  ) ≈  R 0[1  +  α(T  −  T 0 )]

(3.10) 

Herein,  a  linear  Taylor  approximation  has  been  used.  Thereby,  the  sensitivity  S  of the  thermistor  is  according  to  (3.11). 

d R 

 S  = 

=  α  R 0

(3.11) 

d T 

A  typical  value  of   α ≈ 0.004   .  K−1  for  typical  metals,  see  Table  3.2,  seems  to  be  very low;  however,  measurement  bridges  in  line  with  Sect. 2.3  are  employed  for  resolving minute  resistance  variations.  The  characteristics  of  a  commercially  available   Pt100-

based  thermistor  are  illustrated  in  Fig. 3.5. The   Pt100-based  temperature  effect  results Table  3.2  Examples  of 

Material

Temperature  coefficient   α in  K−1  @ 20 °C  

temperature  dependence  of 

metals;  α = temperature 

Aluminum

0.0043 

coefficient  [1] 

Brass

0.0039 

Copper

0.0039 

Gold

0.0039 

Nickel

0.0062 

Platinum

0.0038 

Tungsten

0.0041 

Zinc

0.0037 
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Fig.  3.5  Characteristics  of  a 
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in  a  positive  temperature  coefficient,  PTC;  i.e.,  a  temperature  increase  results  in  a corresponding  increase  in  resistance  value  of  the   Pt100   thermistor. 

 3.2.2 

 Semiconductor-Based  Temperature  Sensors 

The  resistivity  of  a  semiconductor  material—in  a  variety  of  operation  modes—is dependent  on  ambient  temperature.  In  the  present  section,  we  will  discuss  negative temperature  coefficient,  NTC,  sensors  based  on  semiconductors,  positive  temperature coefficient,  PTC,  sensors  based  on  semiconductors,  and  semiconductor  sensors  based on  the  temperature  sensitivity  of  a   p– n   junction  in  a  semiconductor  diode. 

NTC  semiconductor  temperature  sensor 

NTC  thermistors  or  temperature  sensors  are  based  on  semiconductor  materials  which exhibit  a  negative  temperature  coefficient,  NTC.  The  resistance  variation  is  based  on the  effect  that  an  increasing  number  of  electrons  may  leave  the  valence  band  as the  temperature  rises.  Such  an  increased  number  of  electrons  lead  to  a  decreased resistivity  of  the  sensor  material. 

The  temperature  dependence  of  such  semiconductor  materials  may  be  described by  relation  (3.12). 

(  ( 

)) 

1 

1 

 R(T  ) =  R 0  · exp   B 

− 

 , 

(3.12) 

 T 

 T 0 

wherein  the  constant   B   in  kelvin  is  given  by  the  ratio  of  the  activation  energy   E A  of the  semiconductor  material  to  the  Boltzmann  constant   k B. 

 E A 

 B  = 

(3.13)

 k B 
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Thereby,  the  temperature  sensitivity   α SEM  of  such  kind  of  semiconductor-based temperature  sensing  element  reads  as 

 α

d R(T  ) 

 B 

SEM−NTC  =

1 

= 

(3.14) 

 R(T  )  d T 

 T   2 

Again,  T  0  is  the  reference  temperature.  The  sensitivity   S SEM  of  this  sensor  type  is  in accordance  with  (3.15). 

(  ) ( 

) 

d R 

 B 

 B 

 B 

 .  

 S SEM  = 

= const  · exp 

·  − 

= −   ·  R(T  ) in 

(3.15) 

d T 

 T 

`

.. 

. 

 T   2 

 T   2 

 K 



 R 

PTC  semiconductor  temperature  sensor 

PTC  thermistors  or  temperature  sensors  are  based  on  semiconductor  materials  which exhibit  a  positive  temperature  coefficient,  PTC.  A  specific  effect  for  temperature measurement  is  based  on  barium  titanite  (BaTi)-containing  semiconductors  which exhibit  a  temperature  behavior  according  to  (3.16). 

 R(T  ) =  R 0  · e C(T  − T 0 )  , 

(3.16) 

wherein   C   is  a  material  constant  in  K−1  of  a  semiconducting  and  ferroelectric  material  such  as  barium  titanite.  With  PTC  thermistors,  resistance  increases  as  temperature  rises,  usually  due  to  increased  thermal  lattice  agitations  particularly  those  of impurities  and  imperfections.  Herein,  in  contrast  to  the  findings  above,  the  material constant   C   is  positive,  and  thus,  resistance  is  increasing  with  temperature,  i.e.,  a positive  temperature  coefficient,  PTC,  is  provided.  There  is  a  specific  temperature region,  where  the  crystalline  order  is  disturbed  and  electric  conductivity  deceases with  increasing  temperature. 

Semiconductor  diode-based  temperature  sensor 

Commonly  known   p–n   junctions  in  semiconductor  circuits  may  well  be  employed  as distributed  temperature  sensors.  A  simple  semiconductor  diode  described  in  (2.74) 

and  shown  in  Fig. 3.6  exhibits  current–voltage  characteristics  given  in  (3.17). 

[  ( 

) 

] 

 eUac 

 Iac  =  I S (T  ) ·  exp 

− 1 

(3.17)

 kT 

As  it  is  evident  from  (3.17),  the  diode  characteristic  is  strongly  dependent  on temperature.  In  order  to  eliminate  the  unknown  temperature  dependence  of  the  saturation  current   I s( T ),  a  reference  measurement  is  carried  out.  In  other  words,  two  diode currents,  Iac1,  2  are  provided  and  a  difference  voltage   U diff  is  used  as  an  output  sensor signal.  Thereby,  the  resulting  measurement  signal  of  the  element  shown  in  Fig. 3.6 

is  no  longer  a  function  of  the  saturation  current   I s( T ).  Using  the  approximation
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Fig.  3.6  Semiconductor 

Iac

diode  used  as  a  temperature 

sensor

Uac 

( 

) 

 Iac  ≈  I S  · exp   e  Uac  , we have  

 kT 

 kT 

 Iac 1 

 kT 

 Iac 2 

 Uac 1  = 

ln 

 ,   and   Uac 2  = 

ln 

(3.18) 

 e 

 Is(T  ) 

 e 

 Is(T  ) 

Thereby,  the  difference  voltage   U diff  is  directly  proportional  to  the  temperature  to  be measured  and  independent  of  the  unknown  saturation  current   I S( T ),  as  elucidated  in 

(3.19). 

 kT 

 Iac 2 

 Uac 2  −  Uac 1  = 

ln 

/=   f  (Is(T  )),   thus   U diff  =  Uac 2  −  Uac 1 

∼  T 

 e 

 I

`... 

 ac 1 

linear  in   T 

(3.19) 

3.3 

Thermal  Gas  Measurement 

Some  of  the  resistance-based  temperature  sensors  presented  in  Sects. 3.1  and  3.2 

above  may  advantageously  be  used  for  temperature-based  gas  analysis.  As  examples,  two  applications  are  described  below:  gas  flow  anemometry  and  oxygen concentration  sensors. 

 3.3.1 

 Gas  Flow  Anemometry 

Figure  3.7  shows  a  measurement  bridge  having  a  temperature-sensitive  heated  wire resistor   R 2.  Cooling  of  resister   R 2  results  in  a  variation  of  the  bridge  voltage.  Thus, if  cooling  is  provided  by  an  air  flow,  or  gas  flow  of  any  kind,  the  gas  flow  velocity can  be  estimated  from  the  variation  of  the  bridge  voltage   Uab.  It  has  to  be  noted that  cooling  of  the  heated  wire  sensing  element  is  not  only  dependent  on  the  gas flow  velocity  but  also  on  gas  properties  such  as  heat  conductivity  or  heat  transfer coefficient  of  the  gas  to  be  measured.  These  values  may  vary  within  large  ranges; see,  e.g.,  Table  3.3. 

3.3 Thermal Gas Measurement
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Fig.  3.7  Gas  flow 

I0 

anemometry  using  a 

measurement  bridge 

R0 

R0 

Uab 
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R

0 ± Δ  
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Table  3.3  Gas  properties 

Gas

Heat  conductivity  in  10–3  W/(Km)  @  0  °C 

relevant  for  resistive  gas  flow 

measurement 

H

171 

He

143 

O2

24 

CO2

15 

CH4

30 

Air

24 

Water  vapor

17 

 3.3.2 

 Thermal  Oxygen  Sensor 

The  magnetic  properties  of  oxygen  (O2)  molecules  may  well  be  used  for  a  gas-sensitive  thermal  flow  sensor  [2]. The  basic  measurement  principle  is  depicted  in Fig. 3.7. 

The  method  of  measurement  is  based  on  the  paramagnetic  behavior  of  oxygen molecules;  i.e.,  we  may  use  a  thermomagnetic  oxygen  analysis.  The  oxygen  sensor includes  a  magnet  which  provides  a  magnetic  field  for  attracting  the  oxygen molecules.  In  the  region  of  the  magnetic  field,  a  heated  wire  (heated  resistor)  is provided.  A  temperature  rise  of  the  oxygen  molecules  which  have  traveled  in  the vicinity  of  the  heated  wire  results  in  the  fact  that  the  paramagnetic  property  of  the oxygen  molecules  vanishes.  The  oxygen  molecules  then  can  leave  the  region  of  the magnetic  field  again,  and  thus  a  so-called  magnetic  wind  (O2-flow  in  Fig. 3.8) is generated.  This  magnetic  wind  may  cool  down  the  heated  wire  such  that  a  measurement  bridge  can  be  provided  for  sensitive  detection  of  the  temperature  change  of  the heated  wire. 

By  applying  the  measurement  principle  illustrated  in  Fig. 3.8, a  measurement bridge  may  be  designed  which  is  solely  sensitive  to  the  oxygen  content  in  a  flowing carrier  gas.  A  principal  arrangement  of  such  kind  of  thermal  oxygen  measurement system  is  shown  in  Fig. 3.9. 
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Fig.  3.8  Illustration  of  the 

use  of  the  magnetic 

properties  of  oxygen  [3]

Fig.  3.9  Half-bridge 

arrangement  for  oxygen 

content  detection  in  a 

flowing  gas  [3] 

The  oxygen  measurement  bridge  shown  in  Fig. 3.9  can  be  designed  as  a  very accurate  gas  sensor  system.  Herein,  all  four  resistors  presented  as  heated  wires  are cooled  by  the  entire  gas  flow.  Only  resistors   R 2  and   R 4  are  additionally  cooled  by  the paramagnetic  oxygen  effect  due  to  the  applied  magnetic  field  described  above  with respect  to  Fig. 3.8. Thereby,  the  bridge  voltage   Uab   is  only  dependent  on  the  oxygen content  in  the  flowing  gas,  the  oxygen  content  being  detected  with  high  accuracy,  at least  after  a  required  calibration. 
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Chapter  4 

Measurement  Systems  with  Capacitive 

and  Piezoelectric  Sensors 

Abstract  In  this  chapter,  capacitive  and  piezoelectric  effects  are  considered  for abundant  sensor  applications  in  measurement  systems.  Both  mechanical  quantities—Sects. 4.1  and  4.2—and  material  or  fluid  properties—Sects. 4.3  and  4.4— 

can  be  detected  by  capacitive  sensor  systems  in  an  easy  and  efficient  way.  In  a final  Sect. 4.5,  piezoelectric  sensors  are  briefly  discussed.  Due  to  their  equivalence circuits,  these  piezoelectric  sensors  may  be  regarded  as  a  capacitor,  the  surface  charge of  which  is  a  measure  of  mechanical  force  and  pressure. 

4.1 

Differential  Plate  Capacitor 

An  example  of  a  capacitive  displacement  sensor  is  given  by  the  differential  plate capacitor.  This  capacitor  arrangement  consists  of  two  individual  capacitors   C 1  and C 2,  respectively.  When  installed  in  a  measurement  bridge  (half-bridge)  as  shown  in Fig. 4.1,  the  detectable  normalized  displacement   .d/ d   is  given  according  to  (4.1). 

We  may  set   C

 A 

 A 

1  =  ε 0 εr 

and   C

wherein   A   is  the  capacitor  plate 

 d

2  =  ε 0 εr 

0 + .d 

 d 0− .d 

area.  Then,  we  use   Z 1  =  jX 1,  Z 2  =  jX 2,  and   Z 3  =  Z 4  =  R 0. 

The  capacitive  reactance  is   X 1  = −( ωC 1)−1  and   X 2  = −( ωC 2)−1,  respectively, such  that  we  have 

[

] 

 Z

 U 0 

− (d 0  −  .d) +  (d 0  +  .d) 

 U 0 

 .d 

 U

2   Z  3  −  Z  1   Z  4

(

)(

)

 ab  =  U  0   



= 

· 

= −   · 

(4.1) 

 Z

− (

1  +  Z  2 

 Z  3  +  Z 4 

2 

 d 0  −  .d) −  (d 0  +  .d) 

2 

 d 0 

An  important  application  of  the  differential  capacitor  arrangement  is  pressure difference,  Δp,  detection  which  is  illustrated  in  Fig. 4.2. Herein,  the  central  electrode is  provided  as  a  pressure-sensitive  membrane.  The  displacement   .d   may  then  be rewritten  as  a  function  of  a  pressure  difference   p 1  −   p 2  =   .p,  the  application example  of  which  is  illustrated  in  Fig. 4.2. 

The  differential  pressure  detection  chamber  shown  in  Fig. 4.2  may be used for fluid  flow  measurement  based  on  Bernoulli’s  principle,  i.e.,  based  on  a  differential pressure  flow  meter  as  the  one  described  in  Sect. 11.2.1  of  Chap. 11. 
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Fig.  4.1  Measurement 
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Fig.  4.2  Capacitive 

differential  pressure  sensor

4.2 

Capacitive  Level  Sensors 

A  measurement  system  based  on  capacitive  sensors  is  well  suited  for  the  detection  of fluid  levels,  the  fluid  to  be  measured  being  non-conductive.  Eventually,  level  measurement  of—loose—bulk  material  can  be  performed  as  well.  As  shown  in  Fig. 4.3, an upper  level  of  the  fluid  or  bulk  material  to  be  measured  defines  the  border  between two  capacitors   C 1,  C 2  connected  in  parallel. 

The  level-dependent  capacitance  is  evaluated  according  to  (4.2).  Using  a  measurement  bridge  having  a  reference  capacitor   Co   as  shown  in  Fig. 4.4, we  find  the  bridge voltage   U ab  as  a  function  of  the  fluid  level  depicted  in  Fig. 4.4, wherein   a0   is  the extension  of  the  capacitor  plates  normal  to  the  plane  of  drawing.  The  measurable capacitance   Cm   is 

 ε 0 εr 1  ·  a 0  ·  (h 0  −  h)   ε 0 εr 2  ·  a 0 h Cm  =  C 1  +  C 2  = 

+ 

(4.2)

 d 0 

 d 0 

Using  the  reference  capacity   C 0,  we  get 

 ε 0 a 0 

 ε 0  ·  a 0  ·  h 0 

 Cm  = 

 (h 0  −  h  +  εr 2 h);  C 0  = 

(4.3)

 d 0 

 d 0 

[image: Image 28]

4.2 Capacitive Level Sensors

57

Fig.  4.3  Measurement 

principle  for  capacitive  fluid 

level  sensing

Fig.  4.4  Capacitive  fluid 

Cm

C0 

level  measurement  system 

based  on  measurement 

bridge

ε 2

r 

Uab 

R

R

0

0 

Uo 

such  that  the  relative  detectable  capacitance  variation  becomes  proportional  to  the fill  level   h   to  be  measured,  as  evaluated  in  (4.4). 

 .C 

 ε

 ε

 . 

=  C

 h

 C 

 m  −  C 0  =  0  −  h  +   r 2  ·  h  − 

 r  2  − 1 

1  = 

·  h  ∼  h  ⇒ 

∼  h 

 C 0 

 C 0 

 d 0 

 d 0 

 d 0 

 C 0 

(4.4) 

Using   Cm  =  C 0  +  .C  >   C 0  and   .  C  <<  C 0 ,   we  can  design  a  measurement  bridge having  reactances   X 0  and   Xm,  respectively,  as  illustrated  in  Sect. 2.3.2  of  Chap. 2 

and  as  shown  in  Fig. 4.4. 

The  measurable  bridge  voltage  then  reads  as 

 U X 0  −  Xm 

 U Cm  −  C 0 

 U .C 

 U

=  0 

=  0 

≈  0 

(4.5)

 ab 

2   X 0  +  Xm 

2   C 0  +  Cm 

4   C 0 

[image: Image 29]
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Fig.  4.5  Easy-to-install 

fluid  level  detector  with 

central  rod  electrode 

Cm 

fluid 

h0 

h 

and  thus,  is  proportional  to  the  fluid  level   h   as  well.  In  this  way,  electrically non-conducting  media  may  be  measured  in  an  easy  and  cost-effective  manner.  A commercially  available  capacitive  fluid  level  sensor  is  illustrated—schematically— 

in  Fig. 4.5. 

4.3 

Film  Thickness  Measurement 

Both  the  present  section  and  Sect. 4.2  deal  with  a  geometrical  variation  of  the  dielectric  medium  within  a  capacitive  sensor.  In  contrast  to  Sect. 4.2, here  one  of  the two  capacitor  electrodes  is  coated  by  a  thin  dielectric  film.  The  total  capacitance of—in  this  case  in  series-connected—capacitors   C 1  and   C 2  may  be  evaluated  in correspondence  to  Fig. 4.6  and  (4.6). 

Fig.  4.6  Evaluation  of  total 

d1  d2 

capacitance   C tot  of  a 

capacitive  sensor  having  a 

coated  electrode,  thickness 

 d 2;  the  arrow  indicates  the 

direction  of  increasing  film 

εr1  εr2 

thickness;  D  = depostion 

direction

A 

d0 

C1

C2 

D 

4.4 Dielectric Variation Detection
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Fig.  4.7  Thin-film  thickness 

upper electrode 

measurement  of  a  layer 

(thickness   d 2)  during  a 

deposition  process;  green: 

deposition 

layer  to  be  measured 

material 

Ctot 

layer 

substrate 

( 

) 

1  = 1 

1 
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 d

 d

 ε



+ 

= 

· 

1  +  2  with   r 2   >  1 

(4.6) 

 C tot 

 C 1 

 C 2 

 ε 0   A 

 εr 1 

 εr 2 

 εr 1  = 1 

Thereby,  deposition  of  thin  films  in  direction   D   can  be  monitored,  e.g.,  the  deposition rate  and  the  film  thickness   d 2.  A  typical  application  example  of  this  kind  of  capacitive measurement  system  is  shown  in  Fig. 4.7. 

Herein,  detection  of  film  thickness,  and  eventually  of  film  properties,  may  be provided  in  accordance  (4.7). 

 ε 0   A 

 ε 0   A 

 C

(

)

tot  =

=





(4.7) 

 d 0  −  d 2  +   d 2 

 ε

 d

1  −  1 

·  d

 r  2 

0  − 

 ε

2

 r  2 

```` 

measured 

Due  to  brevity  required  for  the  present  discussion  of  applications,  it  is  noted  that various  other  dielectric  media  between  capacitor  plates  may  be  analyzed  as  well, using  a  setup  such  as  the  one  shown  in  Fig. 4.7. 

4.4 

Dielectric  Variation  Detection 

In  contrast  to,  or  in  addition  to,  a  measurement  setup  for  geometrical  variation  of  the dielectric  medium  within  a  capacitive  sensor  as  has  been  illustrated  in  the  previous Sects. 4.2  and  4.3,  respectively,  a  physical  variation  of  the  dielectric  medium  may  be used  as  a  measurement  effect.  An  electrode  configuration  for  such  a  sensor  system is  depicted  in  Fig. 4.8. 

The  physical  variation  of  the  dielectric  medium,  and  thus  the  measurable  capacitance  of  the  capacitive  sensor,  may  be  monitored.  A  number  of  environmental  parameters  may  cause  a  physical  variation  of  the  dielectric  medium.  Examples  for  these parameters  are—among  others—heat,  humidity,  chemical  or  biochemical  reactions, etc.  Further  applications  of  capacitive  sensors  in  dedicated  measurement  systems  can be  found,  e.g.,  in  various  reference  literatures  [1]. 
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Fig.  4.8  Capacitive  environmental  detection  system

4.5 

Piezoelectric  Force  Sensors 

Electrodes  attached  at  a  piezoelectric  material  offer  novel  applications,  as  compared to  the  applications  described  with  respect  to  Sects. 4.1, 4.2, 4.3  and  4.4, for capacitance-based  sensor  systems.  Sensors  containing  a  piezoelectric  material,  i.e., piezoelectric  sensors,  however,  do  not  directly  provide  capacitance  variation  as  a measurable  output,  but  they  provide  a  surface  charge  generation.  The  interaction  of electric  dipoles  contained  in  a  bulk  material  with  external  electric  field  generated  by a  polarization  voltage   Up   is  depicted  in  Fig. 4.9. 

If  a  force   F   is  applied  at  specific  locations  at  the  outside  of  the  bulk  material,  on the  other  hand,  surface  charges  are  generated.  Generation  of  surface  charges   Q   based on  three  different  effects  is  illustrated  in  Fig. 4.10. 

Herein,  the  amount  of  surface  charges  which  can  be  generated  based  on  a specific  effect  is  given  by  the  respective  piezoelectric  constants.  Some  examples of  piezoelectric  constants  for  the  longitudinal  piezoelectric  effect  are  summarized in  Table  4.1. 

Taking  into  account  the  equivalence  circuit  shown  in  Fig. 4.11, the  generated charge   Q   for  quartz  is  calculated  using  the  piezoelectric  constant  according  to  (4.8). 

[  ] 

As 

 d piezo  = 2 .  3  × 10−12 

 ,   and   Q  =  d piezo  ·  F

(4.8)

 N 

Fig.  4.9  Principle  of  the 
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Fig.  4.10  Piezoelectric  material  and  surface  charge  generation Table  4.1  Some 

Material

Piezoelectric  constant   d 33[pC/N] 

piezoelectric  materials  and 

their  piezoelectric  constants 

BaTiO3

85.6 

with  respect  to  longitudinal 

LiNbO3

16 

effect  ( d piezo  =  d 33) 

Quartz,  SiO2

2.3 

ZnO

12.3 

BaTiO3  single  crystals

235 

Nb2O6Pb

80 

BaCaOTi

150

F 

+++++++ 

equivalence 

circuit 

i 

- - - - - - -

Uq 

F

Fig.  4.11  Equivalence  circuit  of  a  piezoelectric  force  sensor wherein   F   is  the  applied  mechanical  force.  Thereby,  the  detected  surface  charge   Q   is related  to  the  output  voltage   Uq,  at  the  moment  in  time  when  the  force   F   is  applied, as  elucidated  in  (4.9). 

 Q 

 Uq  = 

(4.9)

 Cq 
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In  order  to  be  able  to  detect  an  output  signal,  e.g.,  an  output  voltage   u out  as indicated  in  Fig. 4.12,  a  charge  amplifier  as  the  one  discussed  in  Sect. 2.2.3  of  Chap. 2 

is  employed.  Thereby,  the  output  voltage   u out  as  a  function  of  the  force-generated charge   Q   is  evaluated  according  to  (4.10)–(4.12).  Here,  the  output  voltage   u out  is  a function  of  the  time  integral  of  the  input  current   i in,  and  thus,  of  the  surface  charge Q.  Given  the  relations 

 u in 

d Q 

d u out 

 i in  = 

= 

;  i fb  =  C  · 

(4.10) 

 R 

d t 

d t 

and  taking  into  account  virtual  ground  at  node   N 

we  have  for  the  output  voltage   u out 

( 

) 

d u out 

1 

 i

= 0  →  i

 C  · 

= −    u

in0 

in  = − i fb; 

in

(4.11) 

 ( at  node   N) 

d t 

 R 

and  thus,  in  view  of  Fig. 4.13  with   C  =  C fb 1 

1 

 u out  = −  

∫  u in  · d t  +  C int  = −   ∫  i in  · d t  +  C int (4.12) 
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Fig.  4.13  Piezo  sensor  combined  with  a  charge  amplifier  (integrator)
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The  (unknown)  integration  constant   C int  in  (4.12)  can  be  set  to  zero  if  it  is  assumed that  the  feedback  capacitor   C fb  shown  in  Fig. 4.13  is  discharged  at  the  beginning  of the  measurement  (see  also  Chap. 2, text after  (2.73).  Thus,  according  to  Fig. 4.13, the  preferred  setup  for  a  force  sensor  system  based  on  the  piezoelectric  effect  would be  the  combination  of  this  sensor  with  the  charge  amplifier  shown  in  Fig. 4.12. Node N   again  is  at  virtual  ground  such  that  the  entire  charge   Q   is  detected  at  the  moment of  force  application,  see  also  (4.8). 
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Chapter  5 

Measurement  Systems  with  Inductive 

and  Magnetic  Sensors 

Abstract  The  present  chapter  relates  to  measurement  systems  employing  magnetic sensors  and  systems  based  on  the  detection  of  inductance  variations  of  appropriate magnetic  detector  elements.  A  first  simple  magnetic  field  detector  is  the  inductive proximity  sensor  presented  in  Sect. 5.1. Then,  the  differential  inductive  plunger for  length  measurement  is  discussed  in  Sect. 5.2.  Furthermore,  fluid  flow  may  be measured  by  an  inductive  measurement  system  such  as  the  one  illustrated  in  Sect. 5.3. 

Finally,  Sect. 5.4  treats  the  Hall  effect  and  its  applications  in  sensing,  and  Sect. 5.5 

relates  to  the  Barkhausen  effect  as  a  basis  for  so-called  Wiegand  sensors. 

5.1 

Inductive  Proximity  Sensors 

In  the  following  example,  the  variation  of  a  magnetic  path  is  used  for  sensing.  The magnetic  resistance  Rm  of  an  inductive  sensor  element  reads  as  indicated  in  (5.1) 

and  (5.2),  wherein  the  inductivity  of  a  coil  shown  in  Fig. 5.1  is  given  by  (5.3). 

[

]

[

]

A 

H 

Vs 

 R m  =  m tot 

in

with   μ

= 

 . 

(5.1)

 μ

0  = 4 π · 10−7

0 μ r   A 

Vs

m 

Am

Herein,  m tot  is  the  averaged  total  length  of  the  magnetic  field  lines  penetrating through  an  area   A   being  perpendicular  to  the  plane  of  drawing  in  Fig. 5.1. As the inside  area  in  the  center  of  the  coil  is  much  smaller  than  the  outside  area  penetrated by  the  magnetic  field  lines,  mainly  the  inside  length   m   contributes  to  the  magnetic resistance,  which  then  can  be  approximated  to 

[

]

 m 

A 

 R m  ≈ 

in

 . 

(5.2) 

 μ 0   A 

Vs

The  inductivity   L   of  the  inductive  sensor  element  thus  reads  as N   2 

 N   2 

 L  = 

=  μ 0   A 

 , 

(5.3)

 R m 

 m 
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Fig.  5.1  Inductive  sensor 

element

wherein   N   denotes  the  number  of  windings  of  the  sensor  coil.  A  measurement  object in  the  proximity  of  the  inductive  sensor  element  will  influence  the  magnetic  resistance and  thus  the  overall  inductivity  of  the  inductive  sensor  element.  An  inductivity   L 

given by (5.3)  may  be  monitored  by  means  of  a  measurement  bridge,  e.g.,  a  so-called quarter-bridge  indicated  in  Fig. 5.2. 

In  a  signal  processing  circuit  such  as  the  quarter-bridge  shown  in  Fig. 5.2, the bridge  elements  are  designed  according  to  (5.4) 

 ω ·  μ 0   AN  2 

 X 1  =  ωL 1  = const;  X 2  =  ωL 2  = 

; and   Z =  Z =  R 0 . 

(5.4) 

 m

3 

4 

The  inductivity   L 2  represented  by  the  inductive  proximity  sensor  changes  as  a magnetic  object  approaches  the  proximity  sensor,  e.g.,  by  influencing  the  path  of the  magnetic  field  lines   m.  The  bridge  voltage   Uab   measured  in  the  unbalanced  case reads  as 

·  Z −  Z ·  Z

 j X 2  −   j X 1 

 R 0 

 U

 X 2  −  X 1 

 U

=  U ·  Z 2 
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4

(

)(

) =  U · 
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=  0  · 

 ab 

0 

 Z +  Z

 Z +  Z
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 j  (X

2 R

2 

 X
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2
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4

1  +  X  2 ) 
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2  +  X  1 

(5.5)

Fig.  5.2  Quarter-bridge  for 

inductivity  measurement 

5.2 Differential Inductive Plunger
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5.2 

Differential  Inductive  Plunger 

Nonlinear  behavior  of   Uab   as  a  function  of  inductivity   L   which  has  been  encountered in  Sect. 5.1  above  can  be  avoided  using  a  differential  arrangement  shown  in  Fig. 5.3. 

In  other  words,  the  single  coil  arrangement  is  converted  into  a  differential  setup which  is  included  in  a  half-bridge  setup  as  illustrated  in  Fig. 5.4. 

For  processing  of  measurement  signals  resulting  from  the  differential  plunger setup  shown  in  Fig. 5.3, a  half-bridge  arrangement  shown  in  Fig. 5.4  is  the  method of  choice. 

The  four  bridge  elements  in  the  case  of  the  differential  inductive  plunger  for  a movement  of  the  plunger  in  the  + .x   direction  read  as 

 ω ·  μ 0   AN  2 

 ω ·  μ 0   AN  2 

 X 1  =  ωL 1  = 

;  X 2  =  ωL 2  = 

; and   Z =  Z =  R 0 ,   (5.6) 

 m

3 

4 

0  +  .x 

 m 0  −  .x 

wherein   m 0  is  the  magnetic  path  length,  in  the  center  position   x 0  of  the  plunger,  of the  magnetic  field  lines  in  the  inner  portion  of  the  respective  partial  coils  where  the plunger  is  not  present.  The  resulting  bridge  voltage   Uab   for  this  case  is  calculated according  to  (5.7)

 U

 X 2  −  X 1 

 U

 (m 0  −  .x)−1  −  (m 0  +  .x)−1 

 U

=  0  · 

=  0  · 

 ab 
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2 

 (m 0  −  .x)−1  +  (m 0  +  .x)−1

Fig.  5.3  Setup  of  a 
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 (

 . 

=  U

 m

 U

 x 



0  ·  0  +  .x) −  (m 0  −  .x) =  0 

(5.7)

2 

 (m 0  −  .x) +  (m 0  +  .x) 

2  m 0 

The  bridge  voltage   Uab   thus  is  a  linear  dependence  of  the  displacement  .x   in  the x-direction  over  a  wide  range  of  .x.  A  commercial  displacement  sensor  based  on  the differential  inductive  plunger  can  exhibit  a  high  linearity.  In  particular,  as  indicated in  (5.7),  the  half-bridge  voltage   Uab   is  a  linear  function  of  the  relative  displacement

 .x/ m 0. 

5.3 

Inductive  Flow  Sensors 

Charged  particles  in  a  fluid  flowing  through  a  transverse  magnetic  field  are  deviated by  the  Lorentz  force.  The  measurement  principle  for  detecting  fluid  volume  flow  in a  pipe  having  inner  diameter   D   is  depicted  in  Fig. 5.5. 

The  forces  acting  on  the  changed  particles  having  charge   q,  i.e.,  on  ions  and electrons  present  in  the  fluid  flow  are  summarized  in  (5.8). 

−

→

(

)

−

→

 F m  =  q  · .  v × . 

 B ,  and   F e  =  q . 

 E ;  thus,  in  stationary  case:   F m  =  F e  or 

 U m 

 U m 

 qv  B  =  q 

;  v  B  = 

 . 

(5.8) 

 D 

 D 

Herein,  v   is  the  flow  velocity  of  the  fluid  in  the  tube,  and   B   is  the  magnitude  of the  transverse  magnetic  inductance  in  Vs/m2.  By  equating  the  Lorentz  force   F m  with the  electric  force   F e  acting  on  charged  particles  in  the  flow,  we  are  able  to  evaluate the  volume  flow  ˙

 V   of  the  fluid. 

˙

 π  D 2 

4   B 

 V  =  Av = 

 v;  and  thus   U

˙

m  = 

 V  ∼  ˙

 V

(5.9)
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Fig.  5.5  Measurement  principle  of  an  inductive  flow  meter 
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From  (5.9), we  see  that  the  measured  output  voltage   U m  is  a  linear  function  of the  measurand,  i.e.,  of  the  volume  flow  ˙

 V  .  It  is  noted  here  that  the  voltage  source 

 U m  incorporates  a  high  internal  resistance  such  that  an  electrometer  amplifier  or operational  voltage-to-voltage  amplifier  must  be  used  for  amplifying  and  outputting the  measurement  result.  For  selection  of  an  appropriate  operational  amplifier,  see Sect. 2.2  of  Chap.  2  and  associated  signal  processing  techniques.  A  major  advantage of  the  principle  of  inductive  flow  measurement  can  be  seen  in  the  fact  that  a  knowledge  of  nature  and  number  density  of  the  charge  carriers  being  responsible  for  the measurement  effect  is  not  required  for  the  evaluation  of  the  volume  flow. 

5.4 

Hall  Effect  Sensors 

Measurement  systems  based  on  Hall  effect  sensors  have  a  large  variety  of  applications.  In  contrast  to  the  findings  of  Sect. 5.3,  a  Hall  plate  is,  in  its  characteristics  as a  semiconductor  material,  an  electron  conductor.  Thus,  in  contrast  to  the  inductive flow  meter,  in  a  semiconductor-based  Hall  plate,  only  electrons  may  contribute  to the  measurable  output  voltage,  i.e.,  the  Hall  voltage   U H.  This  output  voltage  and  its generation  are  depicted  in  Fig. 5.6. 

The  Hall  voltage   U H  is  calculated  according  to  (5.10)–(5.12). 

 U H  =  bE, 

(5.10) 

wherein   E   is  the  electric  field  between  the  transverse  electrodes  and   b   is  the  Hall plate  width.  Further,  v e  is  the  electron  velocity  indicated  by  the  electron  current  in Fig. 5.6,  e   is  the  elementary  charge,  and   n e  is  the  electron  density  in  the  semiconductor material,  such  that  we  have  an  electron  current  density

Fig.  5.6  Hall  effect  sensor 

and  measurement  principle 
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. 

−

→

 j e  =  en e  v e

(5.11) 

The  magnetic  force  reads  as 

−

→

(

)

−

→

 F m  =  e v e  × . 

 B ,   and   F m  =  ev e   B. 

(5.12) 

The  resulting  electric  force  acting  on  the  electrons  is 

 U H 

 F e  =  eE  =  e 

 . 

(5.13) 

 b 

For  the  stationary  case,  we  obtain 

 U H 

 F m  =  F e ,   thus   ev e   B  =  e 

→  U H  =  bBv e , 

(5.14) 

 b 

and  using  the  current  density  evaluated  in  (5.11) we have

|| |

 I 

 I 

1 

| .|

 j | =   j  =  en e v e  = 

→  v e  =

 I 

→  U H  =  B 

=  R H   I B

(5.15) 

 s  ·  b 

 en e sb 

 en e s 

 s 

with   s   being  the  thickness  of  the  Hall  plate  and   R H  being  the  Hall  constant  according to  (5.16). Application  examples  which  may  be  derived  from  (5.15)  include,  inter  alia, current  measurement,  magnetic  field  sensing,  proximity  monitoring,  IxB - detection, etc. 

[

]

1 

m3 

 R H  = 

 . 

(5.16) 

 n e e

As

5.5 

Wiegand  Effect  Sensors 

A  simple  magnetic  induction  experiment  designed  by  Barkhausen  [1]  is  illustrated in  Fig. 5.7. 

An  induced  voltage  peak  is  generated  each  time  magnetic  domains  in  the  ferromagnetic  material  are  flipping  from  one  state  to  another  state.  This  material  effect is  utilized  in  the  so-called  Wiegand  sensor  designed  by  Wiegand  [1].  This  sensor essentially  includes  a  soft-magnetic  core  surrounded  by  the  hard-magnetic  cladding, see  Fig. 5.8. 

The  basic  operation  principle  is  shown  in  Fig. 5.9. The  direction  of  an  external magnetic  field  is  indicated  by  an  arrow  outside  the  Wiegand  sensor.  Due  to  the measurement  effect,  this  external  magnetic  field  is  reversed  in  its  direction  from  case (a)  to  case  (b)  shown  in  Fig. 5.9  and  then  is  changed  back  to  the  original  direction from  case  (b)  to  case  (c). 

5.5 Wiegand Effect Sensors
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Fig.  5.7  Experiment  performed  by  Barkhausen

Fig.  5.8  Wiegand  wire  used 

as  a  magnetic  field  sensor

uout 

approx. 0.25mm 

This  reversal  of  the  external  magnetic  field  may  occur  due  to  the  measurement effect,  e.g.,  in  a  rotation  sensor.  Herein,  the  magnetic  field  in  the  soft-magnetic  core will  follow  the  direction  of  the  externally  applied  magnetic  field,  wherein  the  hard-magnetic  cladding  remains  unchanged  in  its  magnetic  field  direction.  This  effect results—after  having  reset  the  sensor  in  case  (b),  i.e.,  leading  to  a  reset  pulse  between time   t 1  and  time   t 2—in  a  fast  change  of  the  magnetic  field  direction  in  the  soft-magnetic  core  in  case  (c). 

One  reason  for  the  fast  change  of  the  magnetic  field  direction  in  the  soft-magnetic core  is  the  fact  that  both  the  external  magnetic  field  and  the  magnetic  field  of  the  hard-magnetic  cladding  act  in  the  same  direction.  In  the  coil  which  surrounds  the  Wiegand wire,  the  change  of  the  magnetic  flux  is  detected  through  an  induced  voltage   u out which  is  proportional  to  the  change  rate  of  the  magnetic  flux.  Thus,  the  ignition  pulse in  case  (c)  of  Fig. 5.9  between  time   t 2  and  time   t 3  can  represent  a  high  induced  voltage. 

The  induced  voltage,  u out,  can  amount  from  some  volts  to  up  to  1000  V  without the  requirement  of  any  additional  power  supply.  Thereby,  preferred  applications include - among  others - rotation  measurement,  displacement  sensing,  magnetic filed  detection,  etc. 

72

5

Measurement Systems with Inductive and Magnetic Sensors

Fig.  5.9  Asymmetrical 
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Chapter  6 

Measurement  Systems 

with  Ion-Conducting  Sensors 

Abstract  This  chapter  illustrates  how  ions  can  contribute  to  an  electric  current and/or  an  electric  potential  which  can  be  used  for  determining  properties  of  a measurement  object.  Ion  currents  and  ion  potential  are  accessible  to  electrical measurement  methods  presented  in  various  sections  of  the  present  chapter.  At  first, the  important  electrochemical  potential  is  derived—Sect. 6.1,  which  is  then  used for  measuring  pH  values  of  a  fluid—Sect. 6.2.  One  example  of  a  solid-state  ion conductor  is  the  so-called  lambda  probe  for  oxygen  concentration  measurement which  is  discussed  in  Sect. 6.3.  A  special  kind  of  temperature  sensor—the  thermocouple  sensor  based  on  the  Seebeck  effect,  is  also  based  on  measurement  of  an electrochemical  potential  and  is  further  elucidated  in  Sect. 6.4. 

6.1 

The  Electrochemical  Potential 

The  basic  concept  of  pH  sensing  and  the  thermocouple-based  temperature  sensing, e.g.,  is  the  use  of  the  so-called  electrochemical  potential.  A  fluid–solid  interface is  depicted  in  Fig. 6.1  wherein  two  electric  currents  compensating  each  other  are indicated. 

The  field  current  driven  by  an  electric  field   E   is  indicated  by  an  arrow  directed toward  the  left  in  Fig. 6.1  and  is  given  by  (6.1). 

−

→

−

→

 j E  = − eμ e n e   E ex  . 

(6.1) 

−

→

Herein,  ex   is  the  unity  vector  in   x-direction,  μ e  is  the  electron  mobility,  and   n e  is the  electron  density.  At  the  interface  of  the  solid  conductor  and  fluid  environment, due  to  the  higher  velocity  of  the  electrons,  a  charge  separation  occurs  such  that  the solid  conductor  is  charged  negatively.  In  principle,  the  electron  density  distribution is  as  shown  in  Fig. 6.2, wherein  the  maximum  of  the  electron  density  is  near  the interface  layer. 

From  the  electron  density  distribution  shown  in  Fig. 6.2, a  so-called  diffusion current  results  which  is  proportional  to  a  diffusion  constant   D   and  is  according  to the  relation  (6.2). 
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Fig.  6.1  Fluid–solid  interface  and  electron  density  distribution  according  to  [1]; the  solid  conductor is  negatively  charged  with  respect  to  the  fluid  environment

Fig.  6.2  Electron  density 
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d x 

The  diffusion  constant,  D, in (6.2)  is  related  to  the  electron  mobility   μ e  by  the Einstein  relation  (6.3). 

 μ

 e D  

e  = 

(6.3) 

 kT 

Herein,  e  is  the  elementary  charge,  k  is  the  Boltzmann  constant,  and  T  is  the temperature.  For  the  stationary  case,  we  obtain  (6.4)  after  inserting  (6.3) 
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 E  =  eD 

 , 

(6.4) 

 kT 

d x 

such  that  we  may  convert  (6.4)  to  a  logarithmic  expression1  as  (6.5). 

1  This  conversion  requires  the  specification  of  a  molar  concentration  of  the  charge  carriers  instead of  using  the  unit  “m−3”. 
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From  (6.5),  we  easily  derive  the  electrochemical  potential  by  integrating  over   x, and  setting   E  = − d U  ,  thus  we  have 

d x 

d U  = − kT   d ( ln   n

 kT 



e )  and   U  + 

ln   n e  = const

(6.6) 

d x 

 e 

d x 

 e 

It  is  the  relation  (6.6)  which  is  denoted  as  the  electrochemical  potential  1  (of  the electrons)  and  which  we  will  have  to  use  in  the  following  in  order  to  provide  electrochemical  sensing.  Further,  we  have  to  keep  in  mind  that  the  integration  constant (const)  is  not  known  in  the  beginning,  and  that   n e  must  be  defined  in  mol.  Thereby,  the potential  difference  between  positively  charged  fluid  and  negatively  charged  metal conductor  immersed  into  that  fluid  is  according  to  the  so-called  Nernst  (6.9) in view of  Fig. 6.3. 

Herein,  two  ion  concentrations  are  related  to  each  other,  i.e.,  the  ion  concentration n m  in  the  metal  conductor  and  the  ion  concentration  in  the  fluid   n f.  By  rearranging 

(6.6),  we  find 
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 eU 
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and  by  inserting  both  the  ion  concentration   n M  in  the  metal  conductor  and  the  ion concentration  in  the  fluid   n f,  we  obtain 
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Thereby,  we  get  the  so-called  Nernst  equation  according  to  (6.9). 

(

)

(  ) 

 n





M  =

 e 

 kT 

 n



M 

exp  − 

 (.U )  →  .U  = −   ln 

(6.9)

 n f 

 kT 

 e 

 n f 

76

6

Measurement Systems with Ion-Conducting Sensors

Fig.  6.4  Setup  of  a  galvanic 

U12 

cell  with   U 12  =  .U  =  .U M 

metal 1, nM1

metal 2, nM2 

fluid 

Using  (6.9),  we  can  easily  derive  the  battery  voltage  of  a  galvanic  cell  depicted in  Fig. 6.4  [2]. 

In  the setup shown in Fig. 6.4, two  different  metals  of  concentration   n M1  and n M2,  respectively,  are  immersed  into  a  fluid  (e.g.,  in  a  battery  acid).  In  this  case,  the properties  of  the  fluid  are  not  measured,  and  this  case  is  covered  in  Sect. 6.2  of  the present  chapter.  Using  the  relation  (6.9)  for  the  case  of  the  two  metals,  we  obtain (
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such  that  the  fluid  properties  cancel  out  in  the  Nernst  equation  for  the  battery  voltage according  to  (6.12). 
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battery  voltage 

It  is  this  battery  voltage  according  to  (6.12)  which  is  used  as  a  measurement  signal for  the  analysis  of  fluid  parameters  such  as  the  pH  value  as  will  be  shown  in  the  next Sect. 6.2. 

6.2 pH Sensors
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6.2 

pH  Sensors 

Two  different  metals  immersed  into  a  fluid  provide  a  difference  voltage  according to  Nernst  (6.12).  The  voltage  difference   .U   derived  in  (6.12)  may  be  used  for  an electric  pH  detection  system.  In  the  context  of  (6.12),  the  pH  value  of  a  fluid  is defined  in  the  way  depicted  in  (6.13). 

pH  = −  log   n H3O+   (= −  log   n H+ )

(6.13) 

Now,  we  can  design  a  pH  value  measurement  system  [2]  such  as  the  one  shown in  Fig. 6.5  where  the  following  relations  hold. 

 n M =  n

=  n

= −  log   n

= −  log   n

 a 

M b 

M ,   pH x 

 x  ,   and  pH0 

0

(6.14) 

It  is  noted  here  that  the  concentrations  of  the  charge  carriers  are  given  in  molar concentrations,  see  also  (6.5).  Using  (6.12),  we  have (
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for  the  left  electrode  (a)  and 
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for  the  right  electrode  (b)  in  Fig. 6.5.  The  electrodes  are  made  from  the  same  material such  that 

 n M =  n

=  n

=  U =  U

 a 

M b 

M  →  U M a 

M b 

M . 

(6.17) 

By  comparing  (6.15)  and  (6.16),  we  get  the  relation  (6.18) as first sensing electrode 

Uab 

second sensing electrode 

permeable glass 

membrane 

a

b



pHx 

pH0 

Fig.  6.5  pH  value  sensing  system  2 
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The  ratio  of  the  concentrations  is  thus 
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Thereby,  the  potential  difference  between  the  first  sensing  electrode  and  the  second sensing  electrode  shown  in  Fig. 6.5  can  be  related  to  the  pH  value  pH x   of  the  fluid to  be  measured  as 
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and  by  using  the  above  definitions  for  the  pH  values  according  to  (6.13),  we  get kT 
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 ( ln   nx  − ln   n 0 ) = 
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Thereby,  the  pH  value  of  the  fluid  to  be  measured  can  easily  be  compared  to  the respective  pH  value  of  the  reference  fluid.  In  other  words,  as  can  be  seen  from  (6.13), the  pH  value  may  be  measured  in  comparison  to  a  reference  pH  value  pH0.  Thereby, a  pH  value  sensing  system  may  be  designed  in  accordance  with  the  setup  shown  in Fig. 6.5. 

6.3 

Lambda  Probes 

Gas  sensing  using  lambda  probes  is  based  on  the  use  of  a  solid-state  ion  conductor. 

A  preferred  material  for  such  kind  of  ion  conductors  is  ZrO2, Y2O3,  as  an  example. 

The  chemical  reaction  is  roughly  illustrated  in  Fig. 6.6  where  ions  travel  from  a  high-pressure  region  (1)  to  a  low-pressure  region  (2)  through  the  ion-conducting  material. 

As  such,  ion  conduction  is  driven  by  an  oxygen  partial  pressure  difference   .p  = 

 p 1  −  p 2,  which  results  in  a  measurable  voltage  difference   U out  shown  in  Fig. 6.6. 

Thereby,  the  partial  pressure  of  oxygen  can  then  be  selectively  detected  and  can  be related  to  the  so-called  lambda  parameter   λ.  This  parameter  defines,  e.g.,  the  quality of  a  combustion  process  of  a  vehicle.  The  partial  pressures  of  oxygen  are pi  =  ni  kTi  ,   with   n 1  ∼   p 1 ,   and   n 2  ∼   p 2 . 

(6.22)
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79

(1)

(2) 

O ,  p

O ,  p

2

1



2

2



porous electrodes 

cathode 

anode 

O  + 4e-

-

2

2O2-

ZrO2 

2O2-

O +  4e

2

+ 

-

Y O

2 3

Uout 

different partial pressures of oxygen 

p >  p

1 2 

Fig.  6.6  Ion  conductor-based  gas  sensor 

A  sensor  based  on  that  kind  of  solid-state  ion  conduction,  e.g.,  is  the  so-called lambda  probe  used  for  exhaust  gas  detection  for  combustion-driven  vehicles.  The output  voltage  can  be  determined  using  the  Nernst  (6.12)  which  then  reads  as 

 . 

 n 1 

 kT 

 p 1 

 p 2 

 U  = +  kT   ln 

=  U out  = +   ln 

= − kT   ln 

 . 

(6.23) 

4 e 

 n 2 

4 e 

 p 2 

4 e 

 p 1 

In  the  case  of  the  lambda  probe,  four  electrons  are  involved  in  an  oxygen  ion transfer  process  from  cathode  to  anode,  see  Fig. 6.6, which  results  in  the  factor  “4” 

in  the  denominator  of  (6.23). 

In  an  exhaust  pipe  of  a  combustion  engine-driven  vehicle,  the  sensor  is  installed as  indicated  in  Fig. 6.7  [2]. 

6.4 

Thermocouple  Temperature  Sensors 

The  electrochemical  voltage  series  resulting  from  the  electrochemical  potential  of 

(6.6)  is  used  for  a  so-called  thermocouple  for  temperature  measurement,  in  particular, for  sensing  temperature  differences  between  a  sensing  location,  T  1  =  T  meas,  and  a reference  location,  T  2  =   T  ref.  If  two  metals  are  interconnected  as  suggested  by Seebeck  [1], a  temperature  difference   .T  =  T  meas  −  T  ref  provides  an  output  voltage U   which  is  a  linear  function  of  said  temperature  difference.  A  thermocouple-based temperature  measurement  system  is  illustrated  in  Fig. 6.8. 
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Fig.  6.7  Setup  of  a  lambda 

probe  in  an  exhaust  pipe  for 

measuring  partial  pressure  of 
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Fig.  6.8  Principle  of 
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If  we  assume  that  two  different  metals   A   and   B,  respectively,  are  involved,  then we  can  use  above  relations  (6.10)  and  (6.11)  and  rewrite  them  for  electron  transfer instead  of  ion  transfer.  A  charge  transition  now  takes  place  from  one  metal  to  another metal  instead  of  a  metal  to  a  fluid  as  has  been  discussed  with  respect  to  the  galvanic element.  Thereby,  we  now  have  the  two  relations  (6.24)  and  (6.25)  2. 
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The  total  measurable  voltage   U   according  to  Fig. 6.8  now  is  given  by kT 1 
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Table  6.1  Thermocouple 

Material

 kAB   in  [µV/K]  @  273  K  with  respect  to  Pt 

materials  and  typical 

electrochemical  voltage 

Bismuth

−72 

differences;  reference 

Constantan

−35 

material  is  platinum,  Pt 

Nickel

−15 

Platinum

0  (reference  element) 

Tungsten

7 

Copper

6.5 

Iron

19 

Germanium

300 

Silicium

440 

Fig.  6.9  Temperature 

measurement  system  using 

U 

thermocouple  sensor  2

heater 

T2  =Tref 

Pt100 

T1  =Tmeas 

wherein  the  constant   kAB   denotes,  for  a  specific  material  combination,  the  generated voltage  based  on  a  temperature  difference.  This  constant   kAB   is  also  known  as  the thermoelectric  constant  measured  in  the  unit  [V/K]  and  is  indicated—for  a  selection of  material  combinations—in  Table  6.1. Thus,  in  Table  6.1, some  important  materials and  material  pairs,  respectively,  are  listed  which  are  relevant  for  thermocouple-based temperature  sensors. 

In  order  to  measure  a  temperature   T  1  at  a  specific  measurement  location,  the  reference  temperature   T  2  must  be  known  or  should  be  measured  otherwise,  as  indicated in  Fig. 6.9.  In  the  setup  shown  in  Fig. 6.9,  this  reference  temperature   T  2  is  monitored by  a  resistive  temperature  sensor,  i.e.,  by  a  Pt100  element  (see  Sect. 3.2.1  of  Chap.  3). 
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Chapter  7 

Optical  Measurement  Systems 

Abstract  The  twenty-first  century  sometimes  is  denoted  as  the  century  of  light. 

Processing  of  light  will  be  a  core  competence,  e.g.,  in  information  science,  in  the design  of  molecules  in  medical  applications,  in  minimal  invasive  diagnostics,  and in  measurement  methods  with  extremely  high  resolution.  Progress  in  light  sources and  optical  detectors  combined  with  efficient  data  analysis  hardware  and  software has  resulted  in  fast,  compact,  and  reliable  optomechatronic  measurement  systems. 

Further  research  in  the  interaction  of  optics,  mechanics,  and  electronics  will  undoubt-edly  result  in  advanced  technical  measurement  systems.  A  field  of  measurement science  that  has  gained  increasing  importance  is  optical  radiation  as  a  diagnostic tool.  In  this  respect,  the  use  of  photons—instead  of  electrons—has  proven  to  provide a  large  variety  of  advantages. 

7.1 

Introduction 

It  is  over  200  years  ago,  on  September  11,  1816,  when  Carl  Zeiss  was  born,  a pioneer  of  optomechatronics.  Zeiss  was  one  of  the  first  experimenters  who  succeeded in  combining  optical  and  mechanical  components  for  setting  up  high-resolution optical  instruments  for  measurement  purposes.  Nowadays,  optical  technologies  are key  tools  for  measurement  science.  Optical  measurement  methods  offer  enormous potential  for  both  fundamental  research  and  engineering  applications.  Optomechatronic  measurement  systems  are  being  developed  based  on  high  precision  interactions  between  optics,  mechanics,  and  electronics.  Examples  are  new  light  sources, MEMS,  and  highly  integrated  optomechatronic  components.  The  current  challenges of  researchers  and  practitioners  working  in  the  field  of  optical  metrology  are  mani-fold.  Herein,  optical  measurements  are  one  of  the  essential  activities  for  obtaining information  about  nature  and  the  environment. 

Thereby,  optical  or  optomechatronic  measurement  systems  can  provide,  among other  things: 

•  fast  data  acquisition—with  the  velocity  of  light, 

•  high  spatial  resolution—light  focus  in  the  order  or  below  one  wavelength,  500  nm, 
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•  high  temporal  resolution—pulse  times  in  the  order  of  sub-picoseconds  are feasible, 

•  extreme  resolution—interferometric  devices  are  being  used  in  atomic  scale measurements, 

•  high  selectivity—spectroscopic  techniques  are  adapted  for  analyzing  a  broad wavelength  spectrum,  and 

•  use  in  multiple  arrangements—photons  or  light  beams  are  not  interfering  with each  other  while  propagating  in  free  space  or  in  an  optical  waveguide, only  to  name  a  few  advantages.  In  the  present  chapter,  at  first,  fundamentals  of optics  and  radiation  properties  are  discussed.  Then,  using  Planck’s  radiation  law, optical  temperature  measurement—pyrometry—is  discussed.  Moreover,  photoelectric  effects  are  also  explained  based  on  photon  optics.  Wave  optics,  on  the  other  hand, is  illustrated  concerning  interferometric  setups. 

As  far  as  the  present  chapter  is  concerned,  the  term  “optomechatronics”  should  be understood  as  describing  devices  and  methods  which  include  optical,  mechanical,  and electronic  components.  An  efficient  combination  of  optics,  electronics,  and  (micro) mechanics  is  a  basis  for  developing  novel  measurement  instrumentation,  herein denoted  as  optomechatronic  measurement  systems;  see  Fig. 7.1.  Optical  sensors for  the  measurement  of  mechanical  quantities—here  referred  to  as  optomechatronic  sensors—possess  an  abundance  of  advantages  compared  to  conventional, e.g.,  electrical  or  mechanical  sensors.  Optical  measurement  methods  take  advantage  of  the  fact  that  optical  radiation  propagates  undisturbed  until,  e.g.,  an  interface ambient—material  exhibiting  a  refractive  index  variation  is  involved. 

Fig.  7.1  Interfaces  of  optics, 

mechanics,  and  electronics

7.1 Introduction
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Optical  sensing  of  mechanical  quantities  has  become  a  major  field  of  measurement technology.  The  progress  in  charge-coupled  device  (CCD)  cameras  and  the  development  of  efficient  PC  hardware  and  software  have  resulted  in  fast,  compact,  and  reliable measurement  systems  and  thus  in  a  growing  interest  for  technical  applications.  The advantages  of  optical  techniques  are  numerous;  e.g.,  they 

•  are  non-contacting  and  thus  generally  non-perturbing; 

•  possess  a  very  high  spatial  and  temporal  resolution; 

•  can  be  adapted  to  a  variety  of  technical  surfaces; 

•  can  be  designed  rigid  for  industrial  use;  and 

•  are  appropriate  for  long  range  diagnostics;  i.e.,  the  measurement  distances  can  be quite  large. 

Thereby,  light  is  a  powerful  tool  for  measurement  science  and  technology.  New developments  in  optics  and  (micro)  mechanics  lead  to  innovative  microsystems combining  applied  optics  and  technical  mechanics/mechatronics.  Progress  in  microelectronics,  optics,  and  mechanics  moves  along  with  new  material  technologies. 

Mechatronic  systems  involve  mechanical  processes  supplemented  by  an  electronic system.  Other  embodiments  of  mechatronic  systems  include  (micro)  optic  components  as  a  basis  for  optomechatronic  systems.  In  the  present  chapter,  fundamental aspects  of  technical  optics  are  reviewed.  The  emphasis  is  placed  on  technical, application-oriented  systems,  e.g.,  the  modern  sensor  technology  for  the  probing of  technical  processes.  Synergetic  effects  may  also  result  from  the  combination  of sensors  with  actuators,  microprocessors,  and  data  processing  units.  Examples  of optomechatronic  applications  are  given. 

Microsystem  technology  is  one  of  today’s  rapidly  expanding  core  technologies.  It  combines  the  interaction  of  microelectronics,  (micro)  optics,  and  (micro) mechanics.  In  order  to  focus  on  the  key  aspects  of  photon–material  interaction, or  “optomechanical”  interaction,  the  following  criteria  are  selected  to  define  the contents  of  the  present  chapter: 

•  structure  sizes  in  the  order  of  the  illuminating  wavelength  and  below  are  regarded; 

•  the  mechanical  design  of  optical  components  is  regarded  as  far  as  reflecting surfaces  are  included  to  set  up  and  adjust  optical  components  in  optomechanical systems;  and 

•  optical  components  useable  as  sensors  for  mechanical  quantities,  e.g.,  stress, tension,  thermal  expansion,  and  optomechanical  switches,  are  discussed. 

For  example,  an  optical  measurement  system  for  the  detection  of  mechanical quantities  (surface  structure,  roughness,  vibration,  rotation,  etc.)  can  be  considered as  an  interaction  of  optics  (the  detectors),  electronics  (data  acquisition  and  analysis), and  mechanics,  resulting  in  a  measurement  chain  as  depicted  in  Fig. 7.2. 

Actuator  elements  introduce  a  specific  adjustment  to  the  mechanical  system,  e.g., for  adjustment  purposes.  Opto–electro-mechanical  (OEM)  interactions  in  an  optical sensor–actuator  system  are  regarded  as  well.  Optomechanical  system  engineering
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Fig.  7.2  Measurement  chain  having  an  optical  input  interface covers  small-sized  systems,  in  the  centi- and  millimeter  range  to  micro- and  nanosys-tems.  The  optomechanical  interaction  is  the  basis  of  research  and  development  in modern  sensor  technology,  e.g.,  for  probing  of  mechanical  quantities. 

An  optical  measurement  system  for  the  detection  of  mechanical  quantities  (surface structure,  roughness,  vibration,  rotation,  etc.)  can  be  considered  as  an  interaction  of optics  (the  detectors),  electronics  (data  acquisition  and  analysis),  and  mechanics. 

Measurement  technology  introduced  in  this  chapter  extends  to  optical  interfaces in  different  aspects.  The  investigation  of  surfaces,  interfaces,  and  gaseous  media  is  of increasing  importance  in  many  sensing  applications.  Thus,  appropriate  measurement technology  is  of  major  concern;  see  e.g.,  Fig. 7.3. 

Optomechatronic  sensors  and  applications  of  optomechatronics  in  measurement  system  technology  comprise  the  interaction  of  optical  radiation  and  technical  surfaces.  Optomechanical  systems  are  set  up  to  measure  surface  structures, thin  surface  films,  surface  movements,  bulk  properties,  and  gravimetrical  quantities. 

Figure  7.4  depicts  some  techniques  used  for  optical  measurements,  which  will  be discussed  in  the  present  and  following  chapters. 

In  Sect. 7.2,  a  deeper  understanding  of  the  properties  of  light,  such  as  basic radiation  quantities  and  Fermat’s  principle,  is  addressed.  Then,  from  Sects. 7.3  to 

7.5,  the  optical  domains  such  as  geometrical  optics,  photon  optics,  and  wave  optics  are presented.  Chapters  8-10  of  the  presebt  book  are  devoted  to  specific  measurement systems  adapted  for  practical  applications.  In  Chap.  8,  measurement  systems  for the  detection  of  surface  parameters  of  technical  surfaces  will  be  presented.  Then, in  Chap.  9,  light  is  allowed  to  pass  through  one  or  more  optical  interfaces  and  to propagate  within  a  transparent  material.  A  large  number  of  measurement  applications

[image: Image 35]
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Fig.  7.3  Measurement  systems  based  on  detection  of  optical  radiation Fig.  7.4  Using  properties  of  optical  radiation  for  measurement  purposes
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based  on  thin-film  interferometry  will  be  illustrated.  Finally,  in  Chap.  10,  optical  fiber sensing  will  be  addressed. 

7.2 

Radiation  Properties 

This  section  relates  to  the  basic  properties  of  light  used  for  measurement  purposes. 

At  first,  fundamentals  will  be  reviewed,  and  radiation  characteristics  will  be defined  in  terms  of  radiometric  and  photometric  quantities.  Electromagnetic  radiation  comprises  a  large  spectrum  of  waves  from  gamma  radiation  to  low-frequency radio  waves.  The  respective  wavelengths  and  frequencies  are  given  in  Table  7.1. 

As  further  indicated  in  Table  7.1,  optical  radiation  is  subdivided  into  the  ultraviolet (UV),  visible  (VIS),  and  infrared  (IR)  radiation. 

Properties  of  light  will  be  discussed  with  respect  to  optical  measurement  systems. 

At  first  fundamentals  of  technical  optics  such  as  transmission,  reflection,  and  absorption  of  optical  radiation,  radiometric  units,  and  photometric  units  are  presented. 

Then,  Fermat’s  principle  is  applied  to  optical  imaging  systems.  Furthermore,  coherence  and  interference  of  light  waves  are  studied.  Photoelectric  sensors  such  as  the light-sensitive  resistor  (the  photoresistor),  the  photodiode,  the  photocell,  the  photomultiplier,  position-sensitive  optical  detectors  such  as  lateral  effect  photodiodes, solid-state  image  sensors,  and  further  applications  of  optical  measurement  systems will  be  presented. 

Optical  devices  can  be  used  in  order  to  separate  optical  radiation  into  its  individual wavelengths;  see,  for  example,  Fig. 7.5. 

Optical  radiation  has  fundamental  properties,  which  are  briefly  summarized  in the  following  ((i)–(v)). 

(i)  Wavelength  and  amplitude

Table  7.1  Wavelengths  and  frequencies  of  electromagnetic  radiation Wavelength

Frequency

Remarks 

30–2  km

10–150  kHz

Longest  waves,  very 

Radio  frequency  waves 

low  frequency  (VLF), 

underwater 

communication 

2  km–600  m

150–500  kHz

Long  waves,  LW  radio 

transmission 

600–200  m

500  kHz–1.5  MHz

Middle  waves,  MW 

radio  transmission

(continued)

[image: Image 36]
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Table 7.1 (continued)

Wavelength

Frequency

Remarks

100–10  m

3–30  MHz

Short  waves,  SW  radio 

transmission,  amateur 

radio 

10–1  m

30–300  MHz

Ultra-short  waves,  very 

high  frequency  (VHF) 

radio  transmission,  TV, 

flight  navigation 

1  m–10  cm

300  MHz–3  GHz

Decimeter  waves, 

ultra-high  frequency 

(UHF),  TV, 

point-to-point  radio 

system 

10–1  cm

3–30  GHz

Centimeter  waves,  radar 

10–1  mm

30–300  GHz

Millimeter  waves 

1  mm–1  μm

300  GHz–300  THz

Infrared,  heat  radiation

Light  waves 

380–780  nm

3.8  × 1014–7.9  × 1014  Hz  Visible  light,  VIS 

100–10  nm

3  × 1015–3  × 1016  Hz

Ultraviolet 

1  nm–100  pm

3  × 1017–3  × 1018  Hz

X-rays 

100–0.1  pm

3  × 1018–3  × 1021  Hz

Gamma  rays

Fig.  7.5  Solar  spectrum,  refraction  of  sunlight  at  a  glass  piece  of  irregular  shape
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Radiation  sources  used  in  context  with  the  presented  measurement  technologies  range from  ultraviolet  to  infrared  region.  Laser  systems  offer  a  large  variety  of  wavelengths, e.g.,  argon-ion  lasers  in  the  visible  range,  helium–neon  lasers  (e.g.,  633  nm),  and  an abundance  of  diode  lasers.  The  advantage  of  an  operation  in  the  spectral  range  from 380  to  780  nm  for  technical  use  is  the  fact  that  the  beam  under  consideration  is  visible for  a  human  operator.  On  the  other  hand,  application  fields  exist  where  optical  radiation  has  to  be  invisible,  i.e.,  an  operation  in  the  infrared  region  is  advantageous.  Here, laser  diodes  and  infrared  lasers  are  available.  For  photolithography,  the  wavelengths have  to  be  as  short  as  possible.  This  is  a  reason  why,  e.g.,  lithographic  systems operate  in  the  ultraviolet  (UV)  and  far-UV  region.  Despite  the  high  frequency  of optical  radiation,  methods  exist  (e.g.,  interferometry)  for  determining  the  amplitude and/or  wavelength  (frequency)  of  these  kinds  of  electromagnetic  waves.  Figure  7.6 

briefly  summarizes  wavelengths  and  amplitudes  of  optical  radiation. 

(ii)  Intensity:  radiation  energy  and  photon  pulse 

Radiation  sources  available  today  range  from  picowatt  to  terawatt  light  output  powers. 

Radiation  energy  must  be  limited  for  measurement  purposes  in  order  to  avoid  a  perturbation  of  the  measurement  object.  Figure  7.7  is  a  simple  example  of  an  intensity-based rotation  measurement. 

(iii)  Optical  wavefront 

Optical  beams  can  build  up  an  optical  wavefront  defined  by  a  constant  phase  relation between  individual  beams.  As  far  as  coherent  monochromatic  light  is  concerned, the  optical  wavefront  can  play  a  major  role  when  measurement  systems  based  on interferometric  detection  of  surface  properties  are  considered.  In  Fig. 7.8, WF( z) denotes  lines  of  a  wavefront  of  constant  phase,  and   z   is  the  optical  axis. 

(iv)  Polarization 

In  optical  metrology,  the  polarization  of  light  is  defined  by  the  vector  of  the  electric field.  This  vector  is  perpendicular  to  both  the  Poynting  vector  and  the  vector  of  the magnetic  field.  Several  measurement  methods  exist  which  are  based  on  the  detection of  polarized  light.  In  Fig. 7.9,  examples  of  linear  polarization,  circular  polarization, and  elliptical  polarization  of  light  are  presented. 

(v)  Repetition  rate  of  light  sources 

Depending  on  the  application  area,  sources  with  continuously  wave  (CW)  emitting light  and  pulsed  (laser)  light  are  available. 

Further,  in  the  optical  measurement  technology,  we  may  differentiate  between geometrical  optics,  photon  optics,  and   wave  optics.  In  principle,  three  approximations (or  domains)  for  the  regions  of  interest  can  be  defined:

(i)

 Geometrical  optics  (or  ray  optics),  where  light  is  regarded  as  a  single  beam  or a  bundle  of  beams,  and  wherein,  e.g.,  trigonometric  relations  may  be  applied; geometrical  optics  will  be  discussed  in  Sect. 7.3; 
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Fig.  7.6  Amplitudes  and  frequencies  of  optical  radiation

(ii)

 Photon  optics   is  related  to  light  as  a  number  of  photons  of  specific  energy  per time  unit;  photon  optics  will  be  discussed  in  Sect. 7.4; and (iii)   Wave  optics   represents  light  in  the  form  of  electromagnetic  waves;  wave  optics will  be  discussed  in  Sect. 7.5. 

The  three  regions  of  interest  are  summarized  in  Fig. 7.10,  wherein   E  =  hν =  hc/ λ 

represents  the  photon  energy  and   λ is  the  radiation  wavelength. 

[image: Image 37]
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Fig.  7.7  Intensity-based  rotation  measurement  systems:  a  transmission, b  reflection;  L 1,  L 2:  optics Fig.  7.8  Wavefront  of 

optical  radiation

Fig.  7.9  Polarization  of  optical  radiation;  the  light  propagation  direction  is  the   z-direction, perpendicular  to  the  plane  of  drawing  [1]

As  an  example,  optical  measurement  systems  are  available  to  detect  quantities such  as  light  intensity,  light  phase,  and  scattered  light,  as  depicted  in  the  flowchart of  Fig. 7.11. 

In  principle,  optical  radiation  is  acquired  utilizing  intensity-sensitive  detection systems.  Very  sensitive  arrangements  include  detection  systems,  e.g.,  photomultipliers  which  permit  single-photon  detection,  as  pointed  out  in  Sect. 7.4.4.2.  Such kind  of  detection  is  based  on  an  intensity  measurement.  Amplitude  and  phase  of detected  light,  respectively,  are  accessible  employing  additional  detecting  means
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Fig.  7.10  Approximation  regions  for  optical  measurement  systems Fig.  7.11  Detection  of 

Detection of optical radiation

optical  radiation  quantities 

and  measurement  principles 

(examples)

intensity 

phase

scattering

such  as  interferometers.  Figure  7.12  depicts  the  involved  layers,  i.e.,  the  optical layer,  the  detection  layer,  the  electrical  layer,  and  the  information  layer. 

For  the  measurement  of  optical  quantities,  and  in  particular  of  the  energy  of  optical radiation,  radiation  quantities  must  be  defined.  In  this  section,  radiometric  quantities

[image: Image 38]
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Fig.  7.12  Detection  of 

measurement object 

optical  radiation

optical 

layer 

detection 

detection optics 

layer 

electrical

layer 

CCD array 

CCD line 

Photodiode 

sensor (2-D) 

sensor (1-D) 

(0-D) 

A/D-converter/"frame grabber" 

information 

layer 

PC 

and  photometric  quantities  will  be  presented.  The  definition  is  based  on  SI  units1 

wherein  a  base  unit  is  the  luminous  intensity  measured  in  candela  [cd].  The  candela is  the  luminous  intensity,  in  a  given  direction,  of  a  source  that  emits  monochromatic rays  with  a  frequency  of  540 × 1012  Hz  and  that  has  a  radiant  intensity  in  that  direction of  1/683  W/sr.  The  relation  between  radiometric  quantities  and  photometric  quantities will  be  described  in  the  following  two  subsections.  Finally,  in  Sect. 7.2.3, Fermat’s principle  is  described. 

 7.2.1 

 Radiometric  Quantities 

Assuming  a  point-shaped  light  source  emitting  light  uniformly  distributed  in  a  solid angle  4 π, the   radiant  flux   observed  in  a  specified  direction  and  into  a  solid  angle   Ω 

according  to  Fig. 7.13  is  defined  as 

 . 

d Q 

e  = 

[W];  d Q  =  N ph  ·  hν, 

(7.1)

d t 

1  See  also  Sect. 1.4  of  Chap.  1. 
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Fig.  7.13  Definition  of  the 

detection  solid  angle   .  of  an 

light source 

optical  detection  system 

A 

Ω

r 

wherein   N ph  is  the  number  of  photons,  dQ   is  the  incident  light  energy,  and   hν is  the photon  energy. 2  In  other  words,  the  radiant  flux  in  [ W ]  can  be  determined  by  the number  of  photons  per  time  unit  ˙

 N ph  and  the  photon  energy  according  to  (7.2). 

d Q  =  ˙ N ph  ·  hν →  .  e  =  ˙ N ph  ·  hν [W]

(7.2) 

d t 

The  corresponding  detection   solid  angle   according  to  Fig. 7.13  is  measured  in steradians  or  sr 

 . 

 A 

= 

[sr]

(7.3) 

 r  2 

Herein,  A   represents  a  spherical  area,  wherein  the  maximum  (total)  solid  angle  is 

 . 

 A max 

4 πr 2 

max  = 

= 

= 4 π

(7.4) 

 r  2 

 r  2 

The   radiant  intensity   is  defined  as  the  radiant  flux  per  solid  angle  (7.5). 

[  ] 

 .  e  W 

 I e  = 

(7.5) 

 .   sr 

It  is  noted  here  that  the  suffix  “e”  stands  for  “energy  units”,  which  means  that optical  radiation  is  measured  in  watts  and  derived  units. 

Assuming  a  linearly  extended  light  source  having  an  emitter  area   A 1  the   radiance observed  under  an  angle   ε 1  with  respect  to  the  surface  normal  is  defined  in  connection with  Fig. 7.14  and  (7.6). 

[ 

] 

W 

 L e  =

 I e 

(7.6)

 A 1  cos   ε 1  sr  m2 

Furthermore,  Fig. 7.14  indicates  the  determination  of  the   irradiance   incident  onto a  detector  having  detector  area   A 2,  wherein  the  irradiance  is  given  by 2   h  = 6.626  × 10−34  Ws2. 
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Fig.  7.14  Definition  of  radiance  emitted  from  an  extended  light  source  having  an  emission  area  of A 1  and  definition  of  irradiance  detected  at  a  detector  area   A 2

[  ] 

 .  e  W 

 E e  = 

(7.7) 

 A 2 

m2 

It  is  noted  here  that  the  irradiance   E e  is  sometimes  equated  with  the  light   intensity I;  see,  e.g.,  Sect. 7.5.1. 

 7.2.2 

 Photometric  Quantities 

In  the  following  section,  photometric  quantities  are  summarized.  A  suffix  “v” 

stands  for  “visual”  to  discriminate  photometric  quantities  from  radiometric  quantities  presented  in  the  previous  section.  Thereby,  photometric  quantities  are  used  for describing  optical  radiation  as  it  is  perceived  by  the  human  eye.  Each  photometric quantity  has  its  analog  on  with  respect  to  a  radiometric  quantity.  The  quantity  corresponding  to  the  radiant  flux   .  e  is  denoted  as   luminous  flux  .v   measured  in  lumen 

[ lm],  and  thus,  the  quantities  are  related  to  each  other  as Iv  in  [lm / sr]  =   f  (I e  in  [W / sr] ), (7.8) 

wherein   Iν  is  the   luminous  intensity   measured  in  [candela,  [cd],  corresponding  to 

[lm/sr].  Furthermore,  using  emitter  area   A 1  observed  under  an  angle   ε 1  and  receiver area   A 2,  we  obtain  the   luminance   as 

[  ] 

[ 

] 

cd 

lm 

 Lv  =

 Iv 

 corr esponds 

(7.9) 

 A 1  cos   ε 1  m2 

sr  m2 

and  the   illuminance   in  lux  [ lx] as  

[  ] 

 .v  lm 

 Ev  = 

 corr esponds[lx]

(7.10)

 A 2 

m2 
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Using  radiant  flux  per  wavelength  interval,  i.e.,  the   spectral  flux 

[  ] 

 . 

d .  e 

W 

e λ  = 

(7.11) 

d λ  nm 

with  the  total  radiant  flux  according  to  (7.1) 

 λ 2

. 

 .  e  =   .  e λ d λ [W] , 

(7.12) 

 λ 1 

we  may  relate  the  photometric  quantities  to  the  radiometric  quantities  according  to 

(7.13). 

 λ 2=780  nm

. 

 .v  =  K M  · 

 .  e λ ·  G(λ) d λ [lm]

(7.13) 

 λ 1=380  nm 

Herein,  the  constant   K M  = 683  lm/W  follows  from  the  definition  of  candela,  see Sect. 1.4  of  Chap.  1,  and   G( λ)  represents  the  eye  sensitivity  in  the  visible  spectral region.  As  a  consequence,  relation  (7.14)  holds: 

 Iv  in  [lm / sr]  = 683  ·  I e  in  [W / sr] . 

(7.14) 

 7.2.3 

 Fermat’s  Principle 

In  order  to  further  deepen  the  discussion  of  optical  beam  propagation,  Fermat’s principle  is  considered.  Fermat’s  principle  ( Pierre  de  Fermat,  1601–1655)  is  known as  the  principle  of  least  time,  which  means  that  the  optical  path  traversed  by  a  light beam  is  the  path  that  requires  the  least  time.  Fermat’s  principle  is  fundamental  to beam  propagation  in  optical  measurement  techniques  and  was  formulated  in  1650  as follows:  “the  actual  path  taken  by  light  of  all  possible  paths  is  the  one  which  requires the  least  amount  of  time”. 

We  can  verify  this  principle,  e.g.,  using  the  concepts  of  reflection  and  refraction discussed  below.  In  the  following,  Fermat’s  principle  will  be  used  to  describe  light reflection  at  mirrors,  light  refraction  through  different  optical  media,  and  total  internal reflection. 

Reflection  of  a  light  beam 

Figure  7.15  depicts  the  reflection  of  a  light  beam  at  a  mirror  surface,  whereas  Fig. 7.15 

shows  the  situation  using  the  principle  of  least  time. 

[image: Image 39]
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Fig.  7.15  Reflection  at  a 

mirror  surface 

As  shown  in  Fig. 7.16,  in  a  homogeneous  medium,  the  path  of  least time  corresponds  to  the  shortest  path  and  is  given  by  the  line   A– C– B' 

(

) 

⇒ shortest  path  for   AC  B  =  AC  B' which  means  that  the  relation   θr  =   θi   has to  be  fulfilled.  All  other  paths,  e.g.,  A– D– B' or   A– E– B',  are  geometrically  longer  and thus  require  additional  time.  In  other  words,  the  following  relations  hold  [2]: 

 . 

 E B   =  E B'  →  AE  +  E B   =  AE  +  E B'  = MIN  →  θr  =  θi (7.15) 

Refraction  of  a  light  beam 

If  an  optically  transparent  medium  having  a  refractive  index   n   is  provided,  light  can be  transmitted  through  an  interface  between  ambient  and  medium,  wherein  refraction occurs  as  depicted  in  Fig. 7.17.  While  we  can  use  the  principle  of  the  shortest  path to  explain  the  concept  of  reflection,  this  concept  is  not  suitable  for  explaining  the principle  of  refraction.  For  elucidating  refraction,  we  shall  use  the  principle  of   least time.  For  the  following  observations,  we  will  look  at  the  light  velocity   c   in  air  and at  the  light  velocity   c/n   in  a  transparent  medium.  Note  that  the  light  velocity  in  the Fig.  7.16  Reflection  at  a 

mirror  surface, 

implementation  of  Fermat’s 

principle  [2] 

[image: Image 40]
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Fig.  7.17  Refraction  at  an 

ambient-medium  interface 

transparent  medium  is  reduced  by  a  factor  of   n   such  that  we  have  the  light  velocity of   c/ n,  wherein   n   is  the  refractive  index  of  the  transparent  medium. 

As  shown  in  Fig. 7.17, refraction  is  described  by  Snell’s  law.  This  relation  can be  used  to  understand  total  internal  reflection  if  the  light  beam  is  directed  toward the  interface  from  the  side  of  the  optically  dense  medium  ( n),  as  shown  in  Fig. 7.18. 

Here,  the  situation  for  the  transmitted  beam  results  in  the  conditional  equation  for total  reflection 

sin   θi,  min  =  n−1 

(7.16) 

i.e.,  for   θ  i  >  θ  i,min,  the  internal  beam  cannot  pass  the  ambient-medium  interface (except  for  an  evanescent  field  which  will  be  discussed  in  Sect.  10.3  of  Chap.  10.). 

As  an  example,  for  the  application  of  Fermat’s  principle,  the  propagation  of  a light  beam  from  an  optically  thin  medium  into  an  optically  thick  medium  (refractive index   n)  according  to  Fig. 7.17  will  be  discussed.  To  this  end,  the  plane  wavefront  is assumed  to  be  incident  onto  the  ambient-medium  interface,  as  depicted  in  Fig. 7.19. 

Here,  relations  (7.17)  hold:

Fig.  7.18  Total  internal  reflection 
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Fig.  7.19  Explanation  of 

light  refraction  using 

Fermat’s  principle,  according 

to  [2] 

 ni  ·  EC  =  nt  ·  X F    with   EC  =  XC  · sin   θi   and   X F   =  XC  · sin   θt 

⇒

(7.17) 

 ni  ·  XC  · sin   θi  =  nt  ·  XC  · sin   θt The  above  calculations  (7.17)  result  in  the  presentation  of  Snell’s  law  (7.18). 

sin   .i  =  EC  n



=   t 

(7.18) 

sin   .t 

 X F  

 ni 

On  the  other  hand,  the  time  required  for  a  lightwave  to  propagate  from   A   to   B 

can  be  determined  from  the  propagation  times  based  on  the  two  light  velocities  in ambient  ( i)  and  medium  ( t),  respectively.  As  shown  in  Fig. 7.20, the  two  distances to  be  traveled  are  according  to  (7.19). 

⎧

/

⎨  AC  =  y 2  +  z 2 

1 

1 

 A  →  B   via   C: 

/

⎩

(7.19)

 C B   =  y 2  +  (z

2 

2  −  z 1 ) 2 

According  to  (7.20), the  time  for  a  lightwave  propagation  from   A   to   B   can  be estimated  by  providing  the  light  velocity  in  medium  ( i),  c/ ni,  and  the  light  velocity in  medium  ( t),  c/ nt,  and  by  calculating  the  minimum  time,  wherein   c   is  the  light velocity  in  vacuum. 
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Fig.  7.20  Estimation  of  least  time  based  on  geometrical  considerations

/
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(7.20) 

1 

1

2  −  z 1 ) 2 

`

2 

``  `

`

``

`

sin   .i 

sin   .t 

⇒  n

 n

sin   . 

 n

 i 

 t 

 i 

 t 

sin   .i  = 

sin   .t  ⇒ 

= 

 c 

 c 

sin   .t 

 ni 

The  result  again  is  Snell’s  law. 

With  respect  to  Fig. 7.20, the  optical  path  from   A   to   B,  which  requires  minimum time,  thus  must  follow  a  path  via   C.  In  this  context,  optical  components  having a  refractive  index   n 1  can  be  adapted  for  performing  beam  displacement,  e.g.,  for alignment  purposes.  For  an  ambient  refractive  index   n 0,  the  displacement   d   shown in  Fig. 7.21  can  be  calculated  in  accordance  with  (7.21). The  beam  propagates  from A  to  B,  via  the  transparent  plate  at  C  and  D. 

sin   α  =  n

 d 

 h 

1  → 

= sin (α −  β),   and 

= cos   β 

sin   β 

 n 0 

 C D  

 C D  

(7.21)

→

 h  · sin (α −  β) 

 d  = 

→  d  =   f  (n 0 ,   n 1 ) 

cos   β

[image: Image 41]

102

7

Optical Measurement Systems

Fig.  7.21  Displacement   d   of  a  light  beam  propagating  through  a  plano-parallel  glass  plate  of thickness   h 

Thereby,  the  refractive  index  ratio   n 1/ n 0  can  be  measured  via  the  detection  of the  beam  displacement   d.  The  relative  beam  displacement   d/ h   as  a  function  of  the refractive  index  ratio   n 1/ n 0  is  illustrated  in  the  graph  of  Fig. 7.22. 

Polarization  effects  mentioned  with  respect  to  Fig. 7.9  will  be  treated  in  detail  in Chap. 9, as  these  effects  are  crucial  for  thin-film  interferometry,  ellipsometry,  and the  associated  measurement  techniques. 

Fig.  7.22  Relative  beam  displacement   d/ h   as  a  function  of  the  angle  of  incidence  "alpha"  in 

[degrees],  ( α); d  = beam  displacement,  h  = plate  thickness;  the  parameter  of  the  curves  is  the refractive  index  ratio   n 1/ n 0  (red:  1.1,  blue:  1.3,  and  green:  1.8) 
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In  the  following  sections,  a  discussion  of  the  principles  of  the  geometrical  optics, photon  optics,  and  wave  optics  will  be  presented.  In  particular,  the  principles  of geometrical  optics  will  be  used  in  designing  an  optical  layout  of  optomechatronic measurement  devices.  Photon  optics,  on  the  other  hand,  is  mainly  used  for  an  understanding  of  Planck’s  radiation  law,  the  principle  of  pyrometry,  and  the  operation  principles  of  radiation  detectors.  Wave  optics,  finally,  is  the  basis  for  the  understanding of  interference  phenomena  discussed  in  many  of  the  subsequent  sections. 

7.3 

Geometrical  Optics 

The  concept  of  geometrical  optics  is  preferred  for  describing  the  propagation  of  light by  means  of  the  path  of  individual  beams.  These  beams  propagate  in  a  straight-line, except  they  encounter  an  obstacle  or  an  optical  medium. 

 7.3.1 

 Optical  Imaging  Using  Mirrors 

Geometrical  optics  describes  an  approximation  according  to  the  definitions  depicted in  Sect. 7.1  and  Fig. 7.10.  Without  discourse  into  the  wave  optics,  we  can  then  describe light  beams  as  paths  that  cross  each  other  without  any  interaction.  A  deviation  from a  straight  beam  propagation  path  can  only  be  provided  by  reflection  (mirror)  or refraction  (light  velocity  variation)  due  to  a  refractive  index  variation  along  the  beam propagation  path. 

A  large  variety  of  software  algorithms  exist  which  are  appropriate  for  plotting  the paths  of  light  and  for  analyzing  optical  systems  [3]. In  order  to  investigate  imaging characteristics  of  optical  systems,  we  may  use  Fermat’s  principle,  as  discussed  above. 

This  section  is  a  summary  of  some  elementary  optical  relations  concerning  plane  and curved  mirrors,  thin  lenses  and  lens  systems.  In  addition,  we  will  also  cover  the  effects of  apertures.  The  relevant  parameters  are  given  here: 

 o

 object  distance 

 i

 image  distance 

 O  size  of  the  object 

 I

 size  of  the  image 

 m  magnification 

Concave  mirrors  can  be  used  for  optical  imaging,  as  shown  in  Fig. 7.23. 

Herein,  o   and   O   are  the  object  distance  and  the  object  size,  respectively,  in  absolute values,  and   i   and   I   are  the  image  distance  and  image  size,  respectively,  in  absolute values. 

The  relations  (7.22)  hold  for  the  concave  mirror  shown  in  Fig. 7.23  [4]. 

104

7

Optical Measurement Systems

Fig.  7.23  Concave  mirror  of 

radius  is   r   and  focal  length   f 

for  optical  imaging  [3]

For   o  >  2   f  → 2   f  >   i  >    f   and   m  <  1; for   o  = 2   f  →  i  = 2   f   and   m  = 1;  and (7.22) 

for   f  <   o  <  2   f  → 2   f  <   i   and   m  >  1 , wherein   m   is  defined  as  the  image  magnification  of  the  concave  mirror  and  wherein the  imaging  (7.23)  reads  as 

1  + 1  2 

 i 

 I 



=   ,   and   m  =  = 

(7.23) 

 o 

 i 

 r 

 o 

 O 

For  completeness,  however,  not  usable  as  a  single  imaging  device  in  optics,  the  optical parameters  of  a  convex  mirror  having  radius   r   and  focal  length   f   are  summarized  in Fig. 7.24. As  can  be  seen  from  Fig. 7.24, imaging  using  a  convex  mirror  results  in  a virtual  image   I. 

Fig.  7.24  Convex  mirror  of 

radius  is   r   and  focal  length   f  ; 

 F  = focal  point
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A  major  advantage  of  using  mirrors  as  optical  imaging  elements  instead  of  lenses (see  Sect. 7.3.2  below),  however,  is  the  absence  of  dispersion.  In  this  way,  mirror optics  is  the  basis  for  high-resolution  optical  instruments  such  as  telescopes  [45]. 

 7.3.2 

 Optical  Imaging  Using  Lenses 

An  advantage  of  using  lenses  for  optical  imaging  is  that  the  object  and  the  image are  situated  at  opposite  sides  of  the  lens  main  plane,  as  shown  in  the  basic  setup  of Fig. 7.25. 

For  a  thin  lens,  the  focal  length   f   may  be  calculated  according  to  (7.24)[6]: 

( 

) 

1  =

1 

1 

 (n l  − 1 ) · 

− 

 , 

(7.24) 

 f 

 r 1 

 r 2 

wherein   n l  is  the  refractive  index  of  the  lens  material.  Furthermore,  the  imaging 

(7.25)  holds  such  that  the  image  magnification   m   may  be  determined. 

1  + 1  1 

 i 

 I 



=   ,   and   m  =  = 

(7.25) 

 o 

 i 

 f 

 o 

 O 

For  a  two-lens  system  shown  in  Fig. 7.26, the  total  focal  length   f   tot  may  be calculated  according  to  (7.26) 

1  = 1 

1 

 d 



+ 

− 

(7.26)

 f tot 

 f 1 

 f 2 

 f 1   f 2 

Fig.  7.25  Optical  imaging  using  a  simple  biconvex  lens  having  radii   r 1,  r 2;  F  = focal  point 

[image: Image 42]
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Fig.  7.26  Optical  imaging 

using  a  two-lens  system;  an 

intermediate  image  is 

generated  between  the  main 

planes  of  the  two  lenses, 

along  the  distance   d 

Fig.  7.27  Different  forms  of 

lenses  (from  left  to  right: 

three  converging  lenses, 

three  diverging  lenses) 

bi-

plan-

concave-

bi-

plan-

convex-

convex  convex  convex 

concave 

concave 

concave 

where   f   1  and   f   2  are  the  focal  lengths  of  the  individual  lenses  and   d   is  the  distance between  the  two  main  planes  of  the  two  lenses.  Thereby,  the  focal  length   f   tot  of  an optical  system  may  easily  be  adjusted  by  changing  the  geometry   d. 

Different  types  of  lenses  are  shown  in  Fig. 7.27. Herein,  the  left  three  lenses are  denoted  as  converging  lenses  being  used  to  focus  a  bundle  of  light,  while  the remaining  three  lenses  are  denoted  as  diverging  lenses  for  diverging  a  beam  of  light rays. 

 7.3.3 

 Apertures  in  Optical  Imaging  Systems 

The  design  of  imaging  systems  is  based  on  imaging  components  such  as  optical  lenses and  mirrors.  Besides  these  imaging  components,  apertures  or  openings  through  which the  optical  beams  propagate  have  a  major  influence  on  the  resulting  image.  Apertures in  optical  imaging  systems  can  be  of  any  shape  besides  circular  shape.  The  size  or
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diameter  can  be  fixed  or  can  be  designed  variable.  Thereby,  the  present  section  covers the  basic  setups  of  apertures  within  imaging  systems. 

In  the  main  plane  of  a  lens,  light  bundles  are  limited  by  the  lens  mount  itself, which  functions  as  an  aperture,  or  by  a  separate  element  denoted  as  aperture  stop  [4]. 

Apertures  being  located  in  close  proximity  of  the  main  plane  of  a  lens  can  influence the  overall  brightness  of  an  image  and  the  depth  of  focus  of  the  imaging  system.  After discussing  the  basic  elements,  the  influence  on  the  depth  of  focus  will  be  explained. 

Apertures  located  in  the  image  plane  can  be  adapted  for  defining  boundaries  of  the image  or  the  image  size,  i.e.,  such  apertures  are  denoted  as  field  stops. 

Figure  7.28  illustrates  an  optical  camera  having  an  entrance  diameter   D.  In  order to  simplify  the  following  considerations,  it  is  assumed  that  a  single  lens  is  included in  the  optical  imaging  system,  whereas  lens  systems  consisting  of  multiple  lenses are  represented  by  this  single  lens  shown  in  Fig. 7.28. 

An  important  technical  characteristic  of  optical  imaging  systems  is  the  so-called aperture  ratio,  D/f.  The  aperture  ratio  may  be  derived  using  the  ratio  of  the  aperture diameter   D   and  the  focal  length   f  .  Thereby,  we  arrive  at  the  definitions  for   F-number and  aperture  ratio  according  to  (7.27). 

 f 

 k: =  

 F -number  or   F/# or   F-stop 

 D 

1  : =  D   aperture  ratio 

(7.27) 

 k 

 f 

e .  g .,    k  = 2 .  8  → results  in  an  aperture  ratio  of  1:2 .  8 

Numerical  aperture 

Another  important  design  parameter  for  optical  systems  is  the  numerical  aperture NA  which  is  related  to  the  above  definitions.  In  view  of  Fig. 7.29, the  numerical aperture  is  defined  as 

NA  =  n 0  · sin   β

(7.28)

Fig.  7.28  Effects  of 

apertures  on  imaging 

characteristics  [4] 

Diameter of the aperture 

camera 

[image: Image 43]
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β 

D 

f 

Fig.  7.29  Definition  of  the  numerical  aperture  NA 

where  the  angle   β  is  equivalent  to  half  of  the  opening  angle  of  the  optical  system shown  in  Fig. 7.29  and   n 0  is  the  refractive  index  of  the  environment  of  the  optical component. 

Then,  using  (7.27), we  obtain  relations  between  the  numerical  aperture  NA  and the   F-number  mentioned  above. 

Numerical  aperture:  NA  =  n 0  · sin   β 

For  small  angle   β,   we  have:  NA  ≈  n 0  ·   D/ 2 

 f 

 F  =   F  =  1  = 

1 

# 

2NA 

2 n 0  sin   β 

(7.29) 

 β

∧

small  results  in:   f  =  k  (F-number ) 

 D 

↑ 


 n 0  = 1 

Figure  7.30  illustrates  a  simple  optical  imaging  system  having  two  apertures,  i.e., an  aperture  stop  in  the  lens  plane  and  a  field  stop  in  the  image  plane.  An  aperture stop  in  the  lens  plane  has  a  different  effect  on  the  imaging  procedure  as  compared  to an  arrangement  of  a  field  stop  in  the  image  plane.  The  effects  of  these  two  aperture types  can  be  seen  in  Figs. 7.31  and  7.32,  respectively. 

Figure  7.31  depicts  a  large  aperture  resulting  in  a  high-intensity  image  (however, low  depth  of  focus  will  be  discussed  below)  on  the  left  side  and  a  small  aperture resulting  in  an  image  having  lower  brightness  on  the  right  side  (larger  depth  of focus). 

[image: Image 44]
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Fig.  7.30  Effects  of  an  aperture  stop  and  a  field  stop 

large aperture 

object 

small aperture 

object 

image 

image 

Fig.  7.31  Beam  distribution  as  a  function  of  aperture  stop  size  [4]

[image: Image 45]
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Fig.  7.32  Effect  of  a  field  stop  acting  as  an  image  stop  [4];  the  central  vertical  line  corresponds  to the  main  plane  of  the  lens

On  the  other  hand,  an  aperture  in  the  image  plane  (field  stop)  restricts  the  portion of  an  object  to  be  imaged,  as  shown  in  Fig. 7.32. Again,  two  different  aperture  sizes are  illustrated. 

Telecentric  imaging 

If  an  aperture  is  located  in  or  near  the  focal  plane  of  an  imaging  lens,  as  shown  in Fig. 7.33,  the  magnification  approximately  remains  constant.  This  is  due  to  the  fact that  the  angle   β is  constant,  and  thus,  a  displacement   .d,  i.e.,  a  variation  of  the  object distance   o,  does  not  change  the  image  size   I.  This  means  that  all  beams  of  a  light bundle  intersect  the  optical  axis  at  an  approximately  constant  angle,  the  so-called field  angle   β.  When  the  object  is  shifted  by   .d   in  the  direction  of  the  optical  axis, we  see  that  while  the  points   A   and   B   become  slightly  blurred,  the  field  angle  of  the optical  image   β,  and  thus,  the  imaging  scale  remains  constant.  As  a  result,  telecentric imaging  is  useful  for  optical  measurement  techniques  where  the  size   O   of  an  object must  be  directly  derived  from  image   I. 

Besides  the  optical  setup  shown  in  Fig. 7.33, which  represents  an  object-space telecentric  lens,  an  image-space  telecentric  lens  can  be  provided.  For  an  image-space  telecentric  lens,  the  image  distance  can  be  displaced  without  changing  the magnification.  In  addition  to  that  both  object  path  and  image  path  can  be  designed in  telecentric  arrangement  resulting  in  a  telescopic  imaging  system.  In  this  special case,  both  the  optical  paths  at  the  object  and  image  side  are  telecentric  in  nature,  and the  scale  of  magnification  is  1 : 1. 

[image: Image 46]
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Fig.  7.33  Optical  arrangement  for  telecentric  imaging  [4]; f  = focal  length  of  the  lens Depth  of  focus 

The  depth  of  focus  is  another  characteristic  parameter  for  an  optical  imaging  system, the  depth  of  focus  defining  a  length  along  the  optical  axis  where  a  focused  or  nearly focused  image  can  be  obtained.  Fig.  7.31  and  Fig. 7.34  schematically  depict  the influence  of  aperture  size  of  an  aperture  stop  on  the  depth  of  focus,  i.e.,  a  small aperture  results  in  a  large  depth  of  focus,  and  vice  versa.  In  other  words,  for  the object  displacement   od   shown in Fig. 7.34a, the  defocussing   df   of  the  image  is  small for  a  small  aperture,  whereas  the  same  object  displacement   od   shown  in  Fig. 7.34b results  in  a  larger  defocussing   df   of  the  image  for  the  larger  aperture. 

An  approximation  for  the  depth  of  focus  of  optomechatronic  measurement systems  can  be  derived  from  the  fact  that  a  maximum  allowable  defocus  corresponds to  a  ± λ/4  wavefront  distortion  of  a  focused  beam.  In  Fig. 7.35,  the  focal  plane  can be  shifted  by  a  distance   μ without  blurring  the  image  too  much.  Thus,  a  maximum path  difference  or  wavefront  distortion  of  the  outermost  beam  defined  by  angle   β, which  in  turn  is  given  by  the  aperture  size   D   with  respect  to  the  central  beam,  must not  exceed   λ/4  (derived  from  Rayleigh  criterion,  see  also  Sec  7.3.4  below). 

Under  the  assumption  of  small   β,  or  large   f  ,  relation  (7.30)  yields  the  distance μ,  or  the  depth  of  field  DOF  using  the  numerical  aperture  NA  defined  above  with respect  to  (7.28), and   n 0  = 1. 

[image: Image 47]
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Fig.  7.34  Explanation  of  the  effect  of  aperture  size  on  the  depth  of  focus  of  an  optical  system:  a large  depth  of  field  and  b  small  depth  of  field;  od  = object  displacement Fig.  7.35  Determination  of  the  depth  of  focus   μ of  an  optical  system:  aperture  diameter  =  D

 λ =  μ −  μ cos  β =  μ( 1  − cos  β) (7.30) 

4 

 β 

 β 

Assuming   β is  small,  we  have  1 − cos   β = 2 sin2   β  = 2 sin   · sin 

≈ 2  β 2  ,  and 

2 

2

` `` `

2

` `` `

4 

≈  β 

≈  β 

2 

2 

thus,  λ  ≈  μ  β 2  with   β ∼

= sin   β =  D/( 2   f  ) = NA  such  that  we  obtain  (7.30a) for  the 4 

2 

depth  of  focus. 

 λ 

DOF  =  μ =

(7.30a)

2 ( NA ) 2
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 7.3.4 

 Rayleigh  Criterion 

The  optical  (theoretically  maximum)  resolution  of  an  optical  imaging  system  is often  defined  by  means  of  the  Rayleigh  criterion,  which  is  explained  with  reference to  Fig. 7.36. In Fig.  7.36,  the  two-dimensional  intensity  distribution   I( x,  y)  behind  a small  circular,  illuminated  aperture  is  illustrated  in  the   x– y-plane.  It  is  noted  here  that the  mentioned  intensity  distribution  is  obtained  using  wave  optics  being  extensively covered  in  Sect. 7.5. As  can  be  seen  from  the  intensity  distribution,  besides  the  main maximum,  side  maxima  of  lower  peak  intensities  are  obtained.  From  the  position  of these  side  maxima  (or  side  minima),  a  definition  of  the  Rayleigh  criterion  is  derived. 

If  an  optical  imaging  system,  e.g.,  a  lens  having  a  lens  aperture  diameter   D   is  used, a  minimum  resolution  of  angle   ε may  be  defined  as  shown  in  Fig. 7.37,  wherein  the image  distance  is  indicated  by   i,  and   .  is  the  separation  between  the  position  of  the main  maximum  and  the  position  of  the  first  adjacent  side  minimum. 

The  Rayleigh  criterion  may  then  be  defined  in  such  a  way  that  two  diffraction  patterns  obtained  from  object  points  A  and  B  according  to  Fig. 7.37  can  be discriminated  if  they  are  not  closer  to  each  other  than  in  the  situation  shown  in Fig. 7.38,  i.e.,  the  main  maximum  of  one  diffraction  pattern  coincides  with  the  first side  minimum  of  the  other  diffraction  pattern  (Airy  disks).  The  separation   .   is I(x,y) 

x 

y

Fig.  7.36  Diffraction  pattern  (so-called  Mexican  hat)  generated  by  a  circular  aperture;  Airy  disk 

[4] 
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d 

Fig.  7.37  Explanation  of  the  Rayleigh  criterion

obtained  from  the  intensity  distribution  based  on  the  Bessel  function   J 1  of  first (

)2 

order,  first  kind  [4],  by  employing  the  intensity  distribution   I  (γ  )  =   I 2  J 1 (γ  ) 

0 

 γ 

according  to  [4]  with  its  first  minimum  at   γ  =  3 .  83.  Herein,  the  variable  is γ  =  1  k D   sin   ε  =   π  D   sin   ε,   with   k  =  2 π .  Further,  using  the  numerical  aperture 2 

 λ 

 λ 

NA  as  defined  in  (7.28) in view of Fig. 7.29, we  get  the  minimum  resolvable  object size   d   according  to  (7.31)  with  n0  = 1. 

 D/ 2 

NA  =  n 0  sin   β ≈  n 0   o 

 d 

 .  

 λγ 

3 .  83   λ 

 λ 

 d  =  AB( object  size ) → sin   ε ≈ 

≈ 

≈  ε ≈ 

= 

≈ 1 .  22 

 o 

 i 

 π  D 

 π   D 

 D 

 o 

 λ 

 λ 

 d  ≈  ε ·  o  ≈ 1 .  22 

·  λ = 1 .  22 

= 0 .  61 

 D 

2NA 

NA 

(7.31)

Herein,  d   represents  the  minimum  resolvable  distance  of  two  adjacent  object points.  Thereby,  increasing  lens  aperture  diameter   D,  and,  thus  the  numerical  aperture NA  increases  the  spatial  resolution  of  the  optical  imaging  system. 

 7.3.5 

 Aberration  and  Distortion 

The  Rayleigh  criterion  defined  in  Sect. 7.3.4  represents  the  limit  of  the  optical  resolution  of  an  optical  imaging  system.  In  practical  use,  the  maximum  resolution  may be  deteriorated  by  other  shortcomings  in  the  optical  paths  from  the  object  to  the
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Fig.  7.38  Rayleigh  criterion:  main  maximum  of  one  diffraction  pattern  (solid  line)  coincides  with first  side  minimum  of  the  other  diffraction  pattern  (dashed  line);  .  is  the  separation  of  the  two  main maxima  in  the  image  plane

image  plane  (e.g.,  camera).  In  the  following,  only  two  major  insufficiencies  which may  occur  in  optical  imaging  systems  are  mentioned.  These  are  aberrations  and distortions,  wherein  aberrations  are  divided  into  spherical  aberrations  and  chromatic aberrations. 

Spherical  aberration 

Spherical  aberrations  can  be  seen  when  light  beams  parallel  to  the  optical  axis  do  not converge  at  the  focal  point  of  a  converging  lens  due  to  a  less  than  ideal  lens  curvature (spherical  form),  Fig. 7.39a. 

Fig.  7.39  Schematic  representation  of  spherical  aberration  (a)  and  chromatic  aberration  (b)
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a) object

b) barrel-shaped 

c) pillow-shaped 

distortion 

distortion 

Fig.  7.40  Distorted  image  of  an  object  (a):  barrel-shaped  distortion  (b)  and  pillow-shaped  distortion (c) 

Chromatic  aberration 

As  the  refractive  index  of  the  lens  material  is  wavelength-dependent,  in  addition  to spherical  aberration,  chromatic  aberration  can  occur,  Fig. 7.39b.  Herein,  as  shown in  Fig. 7.39  b,  the  refractive  index  n(λ)  of  the  lens  material  increases  with  decreasing incident  wavelength. 

Distortion 

Another  important  source  of  failure  in  optical  systems  is  distortion.  Using  the  original image  (a)  as  the  starting  point,  we  differentiate  between  a  barrel-shaped  distortion (b)  and  a  pillow-shaped  distortion  (c),  as  shown  in  the  graphs  of  Fig. 7.40, depending on  the  spherical  insufficencies  of  the  lens  shape. 

7.4 

Photon  Optics 

According  to  the  principle  of  wave-particle  dualism,  light  can  be  considered  as consisting  of  a  count  of  photons  per  time  unit  or  as  being  represented  by  an  electromagnetic  wave.  In  this  chapter,  in  photon  optics,  the  behavior  of  a  photon  and  its interaction  with,  e.g.,  photodetectors,  will  be  described  based  on  the  photon  concept. 

At  first,  the  nature  of  photons  will  be  regarded  (Sect. 7.4.1).  Then,  in  Sect. 7.4.2, Planck’s  radiation  law  will  be  derived  based  on  a  simple  atomic  model.  Furthermore, the  measurement  concept  of  optical  pyrometry  (Sect. 7.4.3)  and  the  basic  operation principles  of  photon  detectors  (Sect. 7.4.4)  will  be  discussed. 

 7.4.1 

 Nature  of  Photons 

Photons  or  light  quanta  can  be  represented  by  their  energy   E ph  and/or  their  momentum p,  as  indicated  in  (7.32). The  energy  of  a  photon  is  given  by
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 E ph  = h ·  ω =  h  ·  ν = h ·  c  ·  k with   k  =  2 π 

 λ hbar  =   h  omega  =  2 πν,   and  the  Planck  constant   h  =  6 .  626  × 



2 π 

10−34  Ws2 . 

Then,  using   k  =   ω  =   E ph  ,  the  photon  momentum  reads  as c 

h· c 

 .  

 .  

 h 

2 π 

 h 

 E 

 hν 

 h 

 p  = h · 

 ph 

 k  →   p  = 

· 

=   ,   or:   p  = 

= 

=   , 

(7.32) 

2 π 

 λ 

 λ 

 c 

 c 

 λ 

wherein   λ =   h   is  the  de-Broglie  wavelength .  The relation (7.32), i.e.,  p  =   h   is  also p 

 λ 

known  as  the   de-Broglie  relation. 

Thereby,  photons  can  transport  both  energy  and  momentum,  wherein  light energy  can  be  detected  by  appropriate  photodetectors.  Photodetectors  which  can be  understood  using  the  principle  of  photon  optics,  will  be  discussed  in  Sect. 7.4.4. 

 7.4.2 

 Planck’s  Radiation  Law 

A  simple  two-level  model  shown  in  Fig. 7.41  may  be  used  for  a  straightforward derivation  of  Planck’s  radiation  law  using  photon  optics  [6]. It  is  only  necessary to  consider  three  basic  processes,  i.e.,  light  absorption,  spontaneous  light  emission, and  stimulated  light  emission.  These  three  processes  may  be  discussed  based  on  the photon  optics  model.  Once  Planck’s  radiation  law  has  been  derived,  it  is  useful  for  the understanding  of  basic  laser  principles  (Sect. 7.5.2)  and  the  setup  of  the  measurement technique  of  pyrometry  (Sect. 7.4.3).  In  view  of  Fig. 7.41,  the  processes  of  absorption, spontaneous  emission,  and  stimulated  emission  will  be  briefly  described. 

Absorption 

Incident  photons  having  an  energy  according  to  (7.33) hc 

 E n  −  E m  = 

(7.33) 

 λ 

can  be  absorbed.  Herein,  E m  is  the  lower  energy  level  and   E n  is  the  upper  energy  level of  the  quantum  mechanical  model  system  shown  in  Fig. 7.41.  In  order  to  quantize the  absorption  process, (7.34)  yields 

number  of  absorptions  =  γ  n m   u(v,   T ) d ν

(7.34) 

m3s

wherein   γ  is  the  Einstein  coefficient  for  absorption,  n m  is  the  population  density  (in m−3)  of  the  lower  state,  and   u( ν,  T )  is  the  spectral  energy  density  in  a  frequency interval  d ν. 
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Fig.  7.41  Two-level  system 
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Spontaneous  emission 

In  a  similar  way,  the  rate  of  spontaneous  emissions  from  the  simple  quantum mechanical  model  system  is  given  by  (7.35). 

number  of  spontaneous  emissions  =  βn n

(7.35) 

m3s

wherein   β is  the  Einstein  coefficient  for  spontaneous  emission,  n n  is  the  population density  (in  m−3)  of  the  upper  state. 

Stimulated  emission 

Furthermore,  the  rate  of  stimulated  emissions  can  be  derived  using  the  above  Einstein coefficient  for  absorption  in  (7.34). 

number  of  stimulated  emissions  =  γ  n n u(ν,   T ) d ν

(7.36) 

m3s

In  thermodynamic  equilibrium,  the  amount  of  absorption  equates  the  amount  of emissions  (spontaneous  emission  plus  stimulated  emission)  such  that  the  term  on the  right  side  of  (7.34)  is  the  sum  of  the  terms  on  the  right  side  of  (7.35)  and  (7.36), 
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respectively.  We  thus  obtain  (7.37) as  

 γ  u(v,   T  )n md ν =  βn n  +  γ  u(v,   T  )n nd ν. 

(7.37) 

The  ratio  of  the  (unknown)  population  (state)  densities  of  upper  state  to  lower state  can  be  derived  using  the  Boltzmann  relation  (7.38). 

⎛ 

⎞ 

light  energy

⎜

```` ⎟

 n n 

−

=

⎜

 hv 

⎟

exp ⎜

⎟ , 

(7.38) 

 n m 

⎝ 

 kT

````

⎠

thermal  energy 

wherein   k   is  the  Boltzmann  constant.  Inserting  (7.38) into (7.37)  eliminates  the necessity  of  knowing  state  densities,  such  that  we  obtain  (7.39). 

( 

) 

( 

) 

 γ

 hv 

 hv 

 u(v,   T  )n md ν =  βn m  exp  − 

+  γ  u(v,   T  )n m  exp  − 

d ν 

 kT 

 kT 

( 

) 

( 

) 

(7.39) 

 γ

 hv 

 hv 

 u(v,   T  ) d ν =  β exp  − 

+  γ  u(v,   T  ) exp  − 

d ν 

 kT 

 kT 

After  simple  conversions,  Planck’s  radiation  law  is  obtained  according  to  (7.40). 

 β 

1 

 u(v,   T  ) d ν = 

( ) 

(7.40) 

 γ exp  hv  − 1 

 kT 

Herein,  the  ratio  of  the  two  Einstein  coefficients   γ  and   β (for  absorption  and  for spontaneous  emission)  provided  in  (7.40)  can  be  obtained  from  quantum  mechanical considerations  [7]  summarized  in  (7.41). 

 β  = 8 πhv 3 



d ν

(7.41) 

 γ 

 c 3 

Thus,  the  spectral  energy  density,  i.e.,  the  radiation  energy  per  unit  volume  and frequency  interval,  reads  as: 

8 π hv 3 

 u(v,   T  ) d ν = 

·

d ν 

( ) 

 . 

(7.42) 

 c 3 

exp  hv  − 1 

 kT 

Thereby, (7.42)  details  a  specific  frequency  interval  d ν  defined  by  the  optical detection  system  for  providing  the  radiation  energy  per  unit  volume  in  Joule  per  m3 

or  J/m3. 
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 7.4.3 

 Pyrometry 

Based  on  the  findings  in  Sect. 7.4.2,  i.e.,  the  derivation  of  Planck’s  radiation  law,  we may  now  have  a  look  at  an  optical  technique  for  contactless  temperature  measurement:   pyrometry.  Pyrometry  techniques,  in  general,  make  use  of  the  light  emitted  by a  measurement  object  having  a  specific  temperature.  Blackbody  radiation  from  this measurement  object  has  been  evaluated  using  (7.42)  and  is  shown  in  Fig. 7.42  (here in  dependence  of  the  light  wavelength   λ). 

In  order  to  apply  optical  measurement  techniques  using  photodetectors  for  temperature  measurement,  we  must  convert  the  spectral  energy  density  into  a  photon  flux that  is  incident  onto  the  surface  of  the  photodetector.  Usually,  the  photon  flux  is measured  in  units  of  radiation  power  per  surface  area  and  steradians:  W/(m2  ster).  At first,  we  will  convert  the  frequency  dependence   u( ν,  T )d ν of  (7.42)  into  a  wavelength dependence   u( λ,  T )d λ using  the  relation  (7.43). 

 ν

 c 

 c 

=  ;  |d ν| = 

d λ

(7.43) 

 λ

 λ 2 

Inserting  (7.43) into (7.42)  yields  the  radiation  energy  per  unit  volume  in wavelength  units: 

[  ] 

8 π hc 

J 

 u(λ,   T  ) d λ = 

·

1 

(  ) 

d λ 

 . 

(7.44)

 λ 5 
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Fig.  7.42  Spectral  intensity  in  relative  units  in  dependence  of  the  light  wavelength   λ [8] 
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By  employing  radiometric  quantities,  the  radiant  flux   .  e  is  determined  using 

(7.1),  wherein  the  radiant  intensity   I e  for  normal  observation,  i.e.,  ε 1  = 0  is  taken from  (7.5). Summarizing,  from  the  radiant  flux   .  e,  we  obtain 

[  ] 

 .  e  W 

 I e  = 

(7.45) 

d .   sr 

and  the  radiance  according  to  (7.6) as  

[ 

] 

 I e 

W 

 L e  = 

 . 

(7.46) 

 A 1 

m2  sr 

Thus,  the  conversion  of  the  radiation  energy  per  unit  volume  into  the  radiance   L e in  watts  per  m2  and  steradians  sr  [W/(m2  sr)]  can  be  evaluated  by  using  the  volume d V  =  A 1   c   d t   filled  with  radiation  in  a  time  interval  d t   into  a  solid  angle  d . , as indicated  by  the  relation  (7.47),  using  (7.42), (7.45),  and  (7.46). 

 .  e  d t 

 I e  d .  d t 

 L e   A 1  d .  d t 

 L e  d .  d t 

d u(ν,   T  ) d ν = 

= 

= 

= 

d V 

d V 

d V

 c   d t 

= 1 



 L e  d . 

(7.47) 

 c 

with   c   being  the  light  velocity.  The  result  (7.47)  is  given  in  [J/m3].  After  integration over  the  total  solid  angle  4 π,  we  obtain  the  total  spectral  energy  per  unit  volume  in J/m3  as 

4 π 

 u(ν,   T  ) d ν = 

 L e ,  tot (ν,   T  ). 

(7.48) 

 c 

By  rearranging  (7.48),  the  total  radiance   L e,tot  as  a  function  of  frequency  and temperature  yields,  based  on  Planck’s  radiation  law: 

[  ] 

 c 

W 

 L e ,  tot (ν,   T  ) =  u(ν,   T  ) d ν 

 . 

(7.49) 

4 π 

m2 

Combining  (7.42)  and  (7.49)  yields 

[  ] 

2 hν 3 

W 

 L e ,  tot (ν,   T  ) = 

·

1 

( ) 

d ν 

(7.50) 

 c 2 

exp  hν  − 1 

m2 

 kT 

In  (7.49), the  total  radiance   L e,tot  is  given  in  dependence  of  frequency   ν  and temperature   T;  however,  in  practical  pyrometry  applications,  we  prefer  measuring in  terms  of  wavelengths   λ related  to  temperature   T.  Thereby,  we  again  apply  the conversions  (7.51). 

122

7

Optical Measurement Systems

 ν

 c 

d ν 

 c 

 c 

=   ,   and 

= −   → |d ν| =  d λ, 

(7.51) 

 λ 

d λ 

 λ 2 

 λ 2 

and  obtain  the  wavelength-dependent  total  radiance: 

[

] 

2 hc 2 

d λ 

W 

 Lλ(λ,   T  ) = 

(  ) 

(7.52) 

 λ 5  exp  hc 

m2 

 λ

− 1 

 kT 

The  above  expression  (7.52)  simplifies  by  introducing  Planck’s  radiation constants,  i.e.,  the  first  radiation  constant   c 1,  and  the  second  radiation  constant   c 2 

according  to  (7.53). 

. 

 c 1  = 2 π  hc 2  = 3 .  74  × 10−16  Wm2 

(7.53) 

 c 2  =   hc  = 1 .  44  × 10−2  km 

 k 

Thereby,  the  wavelength-dependent  radiation  law  now  reads  as: 

 c 1 

 Lλ(λ,   T  ) = 

·

d λ 

(  ) 

(7.54) 

 πλ 5  exp  c 2 

 λ

− 1 

 T 

Color  pyrometry 

The  expression  (7.54)  will  be  used  further  for  discussing  optical  temperature measurement  devices  (pyrometers).  The  highest  accuracy  and  a  wide  temperature measurement  range  may  be  obtained  with  color  pyrometry.  In  this  context,  “color” 

means  the  measurement  of  optical  radiation  in  specific  spectral  regions  and  the comparison  of  the  measurement  signals  detected  in  different  spectral  regions.  When a  real  object  is  measured,  the  radiation  emission  deviates  from  blackbody  radiation by  a  factor  of   ε( λ),  i.e.,  by  the  emissivity  εo( λ)  of  the  object’s  surface. 

 (Lλ(λ,   T  ))

=

measured 

 ε(λ)(Lλ(λ,   T  )) blackbody

(7.55) 

In  a  practical  application,  the  two-color  measurement  concept  is  usually  established  as  shown  in  principle  in  Fig. 7.43. 

Two  optical  filters  at  different  central  wavelengths   λ 1  and   λ 2  are  used,  wherein the  two  optical  filters  are  assumed  to  have  identical  filter  widths   .λ 1  and   .λ 2. For each  wavelength,  a  lens  detector  system  is  used  for  obtaining  two  output  signals Uλ 1  and   Uλ 2,  respectively.  The  advantage  of  this  measurement  concept  is  that  the unknown  emissivity   ε( λ)  of  a  measurement  object  (which  normally  deviates  from  a blackbody)  can  be  eliminated.  The  output  signals  of  the  photodetectors  for  the  two wavelengths  are  given  in  (7.56) 

 Uλ 1  =  U 1  ∝  Lλ 1 (λ 1 ,   T  ) ·  .λ 1 ,   and   Uλ 2  =  U 2  ∝  Lλ 2 (λ 2 ,   T  ) ·  .λ 2

(7.56)
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Fig.  7.43  Principle  of  color  pyrometry

Thereby,  assuming  identical  filter  widths   .λ 1  and   .λ 2  as  mentioned  above,  the ratio   R   of  the  two  output  signals  is  independent  of  the  unknown  emissivity   ε( λ), further  assuming  that  the  wavelength  dependence  of  the  emissivity  can  be  neglected in  the  wavelength  range  under  investigation,  see  (7.57). 

 c 2 

 U

 λ

2 

 λ 5  e  1  T  − 1 

 R  = 

=  1  · 

(7.57) 

 U

 c 2 

1 

 λ 5 2  e  λ 2  T  − 1 

For  typical  measurement  ranges  of  temperatures  and  wavelengths  (see,  e.g., Fig. 7.43),  we  may  neglect  the  “−1”  with  respect  to  the  exponential  function  in  the
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enumerator  and  in  the  denominator  and  may  approximate  the  ratio  R  using  (7.57) 

to  be  (7.58). 

(  )

[ ( 

)] 
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 c 2 
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exp 
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(7.58) 
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By  introducing  the  so-called   synthetic  wavelength  . ,  we  obtain (  )

 λ

 λ  5 

 . 

 c 2 

=  1  ·  λ 2  → 

1 

 R  = 

e   .T  /=   f  (ε), 

(7.59) 

 λ 2  −  λ 1 

 λ 2 

such  that  the  voltage  ratio   R   becomes  independent  of  the—usually  unknown—emissivity   ε( λ)  of  the  measurement  object.  The  optically  detected  temperature  of  the measurement  object  in   K, thus, is  

.  [  (  ) ].−1 

 c

5

2 

 λ 2 

 T  = 

·  ln   R  · 

 . 

(7.60) 

 .  

 λ 1 

Thereby,  by  setting  the  synthetic  wavelength   .  based  on  an  appropriate  selection  of  the  two  optical  filters,  an  optical  measurement  device  for  determining  the temperature   T   based  on  the  detection  of  the  signal  ratio   R   is  established. 

Wien’s  displacement  law 

Based  on  the  displacement  law  formulated  by  Wien  [4,  8], the  temperature  of  a measurement  object  can  be  determined  by  maximum  detection  of  the  Planck  curve, in  particular  at  higher  temperatures.  As  shown  in  Fig. 7.44, the  higher  the  temperature,  the  more  the  maximum  shifts  to  lower  wavelengths,  and  the  more  distinct  the maximum  is. 

Using  again  the  approximation  which  has  already  been  applied  in  the  transition from  (7.57) to (7.58),  we  can  calculate  the  emission  maximum  by  means  of  the  first derivative  of  the  wavelength-dependent  total  radiance  taken  from  (7.54). Thereby, c 2 

using  the  approximation  e   λT  >> 1,  we  obtain 

{

}

 Lλ(λ,   T  )  ≈  c

 c



1 

2 

exp − 

 , 

(7.61) 

d λ

 πλ 5 

 λT 

such  that  it  is  possible  to  evaluate  the  first  derivative  with  respect  to  the  wavelength of  the  expression  on  the  right  side  of  (7.61) to  

[

{

}]

[(

(
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]

d     c
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 c 2 
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 c 2 

exp − 

= 

−5 λ−6  +  λ−5  ·

e−  c 2 

 λT 

 . 

(7.62) 

d λ   πλ 5 

 λT 

 π 

 λ 2 T 

Thereby,  the  maximum  of  the  total  radiance  for  a  specific  temperature   T  max  is found  in  accordance  with  (7.63)  at  a  wavelength  of   λ max. 
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Fig.  7.44  Optical  temperature  measurement  using  Wien’s  displacement  law  [9,  3]
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= 0  →  T max  = 

· 

(7.63) 
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5 
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Herein,  c2  is  the  second  Planck  radiation  constant  as  defined  in  (7.53), and  the constant   K  =   c 2  contained  in  (7.63)  is  known  as  Wien’s  constant  and  amounts  to 5 

 c 2 

 K  = 

= 2 .  9  × 10−3  [K m] . 

(7.64) 

5 

Further,  the  relation  (7.65)  is  known  as  the  aforementioned  Wien’s  displacement law. 

 T max  ·  λ max  =  K

(7.65) 

Due  to  the  comparatively  large  uncertainty  in  the  determination  of  the  maximum of  the  Planck  curve,  however,  for  commercial  temperature  sensing,  the  abovementioned  color  pyrometer  is  preferred  for  optical  temperature  measurements. 

 7.4.4 

 Photodetectors 

In  this  section,  we  take  a  brief  look  at  the  photodetectors  in  view  of  their  conversion principle  from  light  into  an  electric  output  signal.  Photodetectors  may  be  conveniently explained  in  the  domain  of  photon  optics.  When  light  is  incident  onto  a  photosensitive material,  charge  carriers  may  be  generated.  As  the  energy  source  is  the  incident  light, 

[image: Image 48]
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these  charge  carriers  usually  are  called   photoelectrons.  For  providing  a  straightforward  explanation,  we  discriminate  between  the  intrinsic  photoelectric  effect  and  the extrinsic  photoelectric  effect. 

7.4.4.1

Intrinsic  Photoelectric  Effect 

The  intrinsic  photoelectric  effect  can  occur  in  semiconductors  that  are  illuminated by  incident  light,  wherein  the  generation  of  electron–hole  pairs  is  provided.  Furthermore,  by  using  the  photovoltaic  effect,  light  energy  can  be  converted  into  electrical energy. 

Photoresistor 

As  an  example  of  a  light  detection  element,  Fig. 7.45  depicts  a  basic  setup  of  a photoresistor  as  a  light-controlled  variable  resistor. 

The  following  equations  briefly  illustrate  how  the  optical  input  signal  is  converted into  an  electrical  output  signal.  At  first,  typical  conversion  constants  according  to Table  7.2  are  given. 

The  incident  photon  flux   .  e  reflects  the  number  of  photons  per  second  incident hν 

onto  the  detector  surface,  wherein   .  e  is  the  incident  radiant  flux  defined  in  (7.1). 

Then,  the  resistance  variation   .R   resulting  from  illumination  with  incident  light  can be  evaluated.  The  number  of  generated  electron–hole  pairs  is  [10] 

 . 

 . 

e 

 N G  =  ηα 

 .t. 

(7.66) 

 hν 

The  competing  process  in  the  photodetector  material  is  recombination  which  can be  described  by  (7.67). 

Fig.  7.45  Basic  photoresistor  setup  [9] 
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Table  7.2  Typical 

Photon  energy

 hν =  h  c 

parameters  for  evaluating  a 

 λ 

photodetector 

Absorption  coefficient

 α ≈ 0 .  8 

Quantum  efficiency

 η ≈ 0 .  1 

Incident  photon  flux

 .  e 

 hν 

Illumination  time

 .t 

Recombination  time

 τ R 

Number  of  charge  carriers  with  illumination

 N 

Number  of  charge  carriers  without  illumination

 N  0

 . 

 N  .t 

 N R  = 

with   τ

 τ

R  = recombination  time

(7.67) 

R 

For  the  stationary  case,  we  have 

 . 

 . 

 . 

e 

 N  .t 

e 

 N G  =  .N R  →  ηα 

 .t  = 

→  N  =  ηατ R 

 . 

(7.68) 

 hν 

 τ R 

 hν 

Illumination  of  the  sensitive  photodetector  material  thus  results  in  a  reduction of  the  overall  resistance  of  the  resistive  photodetector  in  accordance  with  relation 

(7.69).  The  minus  sign  on  the  right  side  of  (7.69)  takes  into  account  that  the  resistance decreases  with  increasing  illumination  intensity. 

 .R 

−

 ηατ

=  N 



= −

R  ·  .  e

(7.69) 

 R 0 

 N 0 

 N 0 hν 

As  has  already  been  mentioned  in  view  of  Table  7.2, a  number   N 0  of  charge carriers  resulting  in  a  resistance   R 0  are  present  in  the  absence  of  light,  while  during illumination,  the  resistance  variation   .R  (decreasing  resistance)  due  to  the  charge carriers   N   when  light  is  present  occurs.  Figure  7.46  illustrates  a  simple  readout  circuit for  a  photoresistor  signal  such  that  a  measurement  voltage   U m  can  be  obtained. 

Herein,  R m  is  the  measurement  resistor,  and   I m  is  the  current  driven  by  a  voltage source   U 0. 
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Fig.  7.46  Readout  circuit  for  a  photoresistor  ( R)  signal  according  to  [10]
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Thereby,  the  change  in  output  voltage   .U m  is  evaluated  according  to  (7.70). 

 U m  =  I m  ·  R m  =

 U 0 

·  R m

(7.70) 

 R  +  R m 

Differentiating  (7.70)  with  respect  to  the  photoresistor  value,  R   yields (
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 U
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 U

|

|

0   R m 

= − U 0   R m 

→ 

(7.71) 

d R 

d R 

 R  +  R

| 

| ≈ 

m 

 (R  +  R

 . 

m ) 2 

 R 

d R 

Rearranging  (7.69)  and  approximating   R  ≈  R 0 , .R  <<  R,  we  find  relation  (7.72) 

 ηατ

| . 

R 

 R| = 

·  .  e  ·  R 0 , 

(7.72) 

 N 0 hν 

and  insert  the  same  into  (7.71)  such  that  the  voltage  variation  as  a  function  of  incident radiant  flux   .  e  is  obtained  according  to  (7.73). 

 αητ

 . 

| . 

 R m 

R 

e 

 U m| ≈  U 0 

· 

·  R

 (

0

(7.73) 

 R 0  +  R m ) 2   N 0 

 hν 

Thereby,  we  see  in  (7.74)  that  the  measured  absolute  voltage  variation  | .U m| 

solely  depends  on  the  electrical  readout  circuit  the  material  constants  of  the semiconductor  material  and  the  number  of  incident  photons  per  second. 

 αητ

 . 

| . 

 R 0  ·  R m 

R 
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 U m| ≈  U 0 

·

·

(7.74) 

 (R 0  +  R m ) 2 

 N 0

````

 hν

````

 ( material  properties )   ( number  of  photons / s ) Photodiode 

The  photodiode  is  a  type  of  semiconductor  photodetector  in  which  a  space  charge region  exists.  The   I/ U   characteristics  of  such  a  photodiode  in  dependence  of  the incident  radiant  flux   .  e  is  shown  in  Fig. 7.47. In  principle,  two  circuit  configurations  for  using  the  photodiode  as  a  light  detector  are  feasible.  In  Fig. 7.47, on the left  side,  there  is  shown  the  use  of  the  photodiode  in  diode  operation  (quadrant  III), wherein  on  the  right  side,  a  photoelement  operation  is  established,  and  the  short-circuit  current  is  measured  (quadrant  IV)  [9].  In  photodiode  operation  mode,  we have  reverse  biasing  resulting  in  a  larger  space  charge  region,  and  thus  in  a  lower capacity  and  higher  operating  frequencies,  typically  up  to  1  MHz.  On  the  other  hand, forward  bias  is  used  in  photoelement  operation,  which  results  in  lower  operating frequencies,  approximately  1  kHz.  In  (7.75), which  represents  the  diode  characteristics  with  reverse  current   I s,  the  photocurrent   I ph  is  approximately  linearly  dependent on  the  incident  photon  flux   .  e.  Actually,  the  anode–cathode  current   I ac  is  measured, with   U ac  being  the  anode–cathode  voltage  of  the  photodiode. 
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 eU ac 

 I ac  =  I s  · e   kT  − 1 −  I Ph (.  e ) (7.75) 
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Fig.  7.47  Photodiode  detector  setups  and  characteristic   I/ U   curves  according  to  [9];  herein, (a)  represents  the  diode  operation  and  (b)  represents  the  element  operation
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Fig.  7.48  1D  pin  photodiode  having  a  1-D  lateral  effect  [9] 

1D  pin  photodiode 

Photodiodes  may  also  be  used  for  spatially  resolving  an  intensity  distribution,  e.g., on  a  linear  scale.  To  this  end,  a  pin  photodiode  is  provided  with  two  separate  anodes A 1  and   A 2,  respectively,  as  shown  in  Fig. 7.48. 

The  one-dimensional  lateral  measurement  resolution  is  obtained  by  the  detection of  the  two  individual  anode  currents   I 1  and   I 2,  respectively.  The  position  in  the x-direction  is  measured  via  the  respective  current  difference x-direction:   (I 1 ) −  (I 2 )

(7.76) 

i.e.,  a  current  difference  of  zero  is  regarded  as  a  calibrated  center  position. 

2D  pin  photodiode 

The  same  principle  which  has  been  applied  for  the  1D  pin  photodiode  for  the   x-

direction  above  can  be  extended  to  two  directions  such  that  a  two-dimensional  calibration  is  possible.  The  2D  photodiode  arrangement  is  shown  in  Fig. 7.49. The two-dimensional  position  measurement  based  on  the  detection  of  the  anode  currents I 1,  I 2,  I 3,  and   I 4  is  according  to  (7.77). 

 x-direction:   (I 1  +  I 3 ) −  (I 2  +  I 4 );  and (7.77)

 y-direction:   (I 3  +  I 4 ) −  (I 1  +  I 2 ) 

[image: Image 50]
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Fig.  7.49  2D  pin  photodiode  having  a  2-D  lateral  effect  [9  ] 

A  major  advantage  of  the  two  position-sensitive  pin  devices  described  above  (1D 

and  2D)  is  that  the  detection  of  the  two  or  four  currents  can  be  performed  fast,  such that  these  devices  are  preferred  for  real-time  position  sensing. 

Charge-coupled  device 

Charge  coupling  is  another  efficient  method  for  detecting  light  intensity  distributions, either  in  a  line  array  or  in  a  two-dimensional  array.  Charge-coupled  devices  (CCDs) are  based  on  a  side-by-side  arrangement  of  MOS  capacitors,  the  arrangement  being schematically  shown  in  Fig. 7.50. 

A  readout  scheme  for  charges  resulting  from  incident  light  illumination  is illustrated  in  Fig. 7.51. 

A  typical  CCD  chip  layout  is  shown  in  Fig. 7.52,  where  it  is  depicted  that  at  first, charges  from  lines  are  transferred  from  top  to  bottom  (vertical  direction),  and  then, the  readout  is  performed  in  a  horizontal  direction  toward  the  signal  output  terminal. 

A  typical  commercially  manufactured  CCD  chip  is  illustrated  in  Fig. 7.53. 

7.4.4.2

Extrinsic  Photoelectric  Effect 

The  extrinsic  photoelectric  effect  provides  the  conversion  of  incident  photons  in  free electrons  at  a  photocathode  material  having  specific  properties.  The  photocathode may  consist  of  a  thin  semiconductor  or  metal  layer,  the  work  function   W   of  which is  lower  than  the  energy  of  individual  incident  photons. 

[image: Image 51]
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Fig.  7.50  Charge-coupled  MOS  capacitors  (CCD  line  array)

Photocell 

Figure  7.54  illustrates  the  basic  setup  of  a  photocell  containing,  in  a  vacuum environment,  a  photocathode   C,  and  an  anode   A. 

As  shown  in  Fig. 7.54,  a  high-voltage  source   U 0  is  connected  to  an  anode   A   and a  cathode   C   via  a  measurement  resistor   R.  For  photons  having  energy  larger  than  the work  function   W   of  the  cathode  material,  i.e.,  hν >  W,  photoelectrons  are  emitted from  the  cathode  and  a  photocurrent   I ph  which  is  the  saturation  current  of  this  circuit arrangement,  is  generated.  The  saturation  current  as  a  function  of  radiant  flux  may  be determined  from  (7.2).  Table  7.3  depicts  further  technical  data  needed  for  discussing the  extrinsic  photoelectric  effect. 

The  saturation  current  or  photocurrent   I ph,  which  can  be  detected  is  proportional  to  the  generated  charge   .Q,  the  charge  being  represented  by  the  number of  electrons  being  released  from  the  cathode   C   of  the  photocell,  according  to  (7.78). 

 .Q 

 I ph  = 

(7.78)

 .t 
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Fig.  7.51  Readout  scheme  of  a  two-dimensional  CCD  array:  example  of  four  adjacent  pixels  1–4; a  light  exposure, b  charge  distribution  among  two  adjacent  pixels,  and  c  shift  to  the  right  by  one pixel  [11]
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Fig.  7.52  Two-dimensional  CCD  array  and  charge  transfer  mechanism  (simplified)  [6]
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Fig.  7.53  CCD  chip  [11]3

Fig.  7.54  Basic  setup  of  a  photocell

Table  7.3  Typical 

Photon  energy

 hν =  h  c 

parameters  related  to  the 

 λ 

extrinsic  photoelectric  effect 

Absorption  coefficient

 α ≈ 0 .  8 

Quantum  efficiency

 η ≈ 0 .  1 

Incident  photon  flux  (i.e.,  number  of  photons  per 

 .  e 

 hν 

time  unit) 

Generated  amount  of  electrical  charge

 .Q 

Illumination  time

 .t 

Electron  charge

 e 

Photocurrent  (saturation)

 I ph 

Avalanche  amplification  factor

 A 

Secondary  electron  emission  coefficient

SEC 

Number  of  incident  photons

 N  ph 

Number  of  dynodes

 n
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The  number  of  generated  photoelectrons  is  determined  by  the  product  of  the number  of  incident  photons,  the  absorption  coefficient,  and  the  quantum  efficiency resulting  in  the  total  charge  given  in  (7.79). 

 .Q  =  N ph  ·  e  ·  η ·  α

(7.79) 

Thereby,  using  (7.78),  the  resulting  photocurrent,  or  the  saturation  current,  respectively,  is  given  by  a  pre-factor  dependent  on  the  incident  wavelength  and  the  radiant flux  according  to  (7.80). 

 .Q 

 η ·  α ·  λ ·  e 

 I ph  = 

= 

·  . 

 . 

e  in  [A]

(7.80) 

 t 

 hc

`  ``  ` 

constant  for 

 λ = const 

The  above-mentioned  photocell  is  the  basic  element  for  measuring  low  light intensities.  The  photocurrent  defined  in  (7.80)  may  be  further  amplified—or  multiplied—by  a  detector  arrangement  denoted  as  a  photomultiplier;  see  presentation below. 

Photomultiplier 

As  in  the  case  of  the  photocell,  the  photomultiplier  includes  a  light-sensitive  cathode which  fulfills  the  above-mentioned  condition   hν >  W,  wherein   W   is  the  work  function of  the  cathode  material.  Besides  the  cathode   C,  several  intermediate  electrodes— 

denoted  as  dynodes   D 1,  D 2  …—are  arranged  within  the  evacuated  glass  tube,  as illustrated  in  Fig. 7.55. The  dynodes  provide  an  electron-multiplying  effect.  The multiplying  behavior  is  based  on  the  physical  effect  that  the  dynodes  are  coated  with a  material  that  has  a  secondary  electron  emission  coefficient  SEC  larger  than  1.  The multiplied  photocurrent  is  collected  at  the  anode   A   and  measured  using  the  voltage drop   U m  across  measurement  resistor   R m. 

The  path  of  the  electrons  from  electrode  to  electrode,  as  indicated  in  Fig. 7.55, is forced  by  means  of  the  voltage  divider  consisting  of  the  resistors   R   in  combination with  the  negative  supply  voltage  − U s  .  Thereby,  a  difference  voltage   U diff  between succeeding  electrodes  is  provided.  This  difference  voltage   U diff  is  adjusted  such that  the  voltage  potential  of  any  electrode  is  positive  with  respect  to  the  preceding electrode.  Capacitors   C   may  be  connected  in  parallel  to  the  voltage  divider  resistors R   in  order  to  provide  the  higher  electron  currents  for  the  rightmost  electrodes  in Fig. 7.55  in  a  short  time.  As  compared  to  (7.80),  the  photocurrent  provided  by  the photomultiplier  is  tremendously  increased  according  to  (7.81). 

 .  e 

 I ph  =  A  ·  η ·  α ·  e

`

· ˙ N

(7.81) 



``  ` ph  =  B  ·  hν 

 B 

The  parameter   B   is  used  for  converting  the  number  of  incident  photons  per  second into  a  photocurrent  at  the  output  of  the  photomultiplier.  Herein,  a  secondary  electron

[image: Image 53]
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Fig.  7.55  Photomultiplier:  basic  setup  [9,  10]

Fig.  7.56  Simplified 

channel  of  a  microchannel 

plate,  MCP  [10] 

emission  coefficient  SEC  of  the  dynodes  is  defined  as 

average  number  of  secondary  electrons 

SEC  = 

 >  1 . 

(7.82) 

average  number  of  incident  electrons 

That  means  that  the  photomultiplier  arrangement  causes  an  electron  multiplication effect  (avalanche  effect)  which  leads  to  a  magnification  factor   A   of A  = SEC1  · SEC2  ·  . . .  · SEC n  = SEC n , 

(7.83) 

wherein   n   is  the  number  of  dynodes.  As  can  be  seen  from  (7.83),  this  magnification A   can  be  very  high. 

Furthermore,  the  principle  of  the  photomultiplier  can  be  applied  to  image  detection.  This  device  is  commonly  denoted  as  a  microchannel  plate  MCP,  illustrated  in Fig. 7.56. 

On  the  other  hand,  an  MCP  consists  of  a  large  number  of  microchannels  arranged adjacent  to  each  other,  such  as  the  microchannels  shown  in  Fig. 7.57. 

3  https://de.wikipedia.org/wiki/CCD-Sensor. 

[image: Image 54]
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Fig.  7.57  Singe  microchannel  (operation  principle  (a),  and  microchannel  plate  (MCP)  as  a  2-D 

array  of  adjacent  microchannels,  top  view  (b) 

Herein,  the  inner  walls  of  such  channel  are  coated  with  a  material  having  a secondary  electron  emission  coefficient  larger  than  one  (SEC>1),  see  (7.82).  Thereby, the  detector  arrangement  can  be  used  for  intensified  image  detection. 

7.5 

Wave  Optics 

As  has  been  mentioned  before,  according  to  the  principle  of  wave-particle  dualism, light  can  be  considered  as  an  electromagnetic  wave  having  a  frequency   ν. After  some fundamental  considerations  (Sect. 7.5.1)  with  respect  to  wave  equations,  Poynting vector,  and  coherent  properties  of  light  waves,  the  laser  principle  for  providing coherent  light  will  be  briefly  discussed  in  Sect. 7.5.2.  Two-beam  interference  and respective  interferometers  will  be  covered  in  Sects. 7.5.3  and  7.5.4,  respectively. 

In  general,  the  interference  between  two  optical  beams  and  different  measurement setups  which  are  based  on  the  optical  interference  effects  of  two  beams  are  discussed. 

Finally,  diffraction  and  its  applications  in  optomechatronical  measurement  systems will  be  discussed  based  on  the  concept  of  multiple-beam  interference  (Sect.  7.5.5). 

It  is  assumed  that  typically  a  laser  light  source  is  used  as  a  means  for  providing interference  effects. 
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 7.5.1 

 Propagation  Properties 

Propagation  properties  are  considered  with  respect  to  the  effect  that—in  this section—light  is  regarded  as  an  electromagnetic  wave.  For  example,  two  sinusoidal waves  of  equal  frequency  may  be  superposed  onto  a  photodetector  of  the  form described  in  Sect. 7.4.4  wherein  the  phase  relation  of  the  two  sine  waves  determines the  output  signal,  as  illustrated  in  Fig. 7.58. 

As  can  be  seen  from  the  simple  illustration  in  Fig. 7.58,  the  superposition  of  two light  waves  of  equal  frequency  and  amplitude  can  result  in  (a)  an  intensity  increase (more  light)  or  in  (b)  a  cancelation  of  light  (darkness).  Thereby,  the  concept  of interferometry  is  explained  in  the  domain  of  wave  optics  and  not  in  the  domain  of photon  optics. 

Wave  equation 

Maxwell’s  equations  can  be  used  for  describing  lightwave  propagation  as  indicated in  (7.84) to (7.87),  valid  for  vacuum. 
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 ∂  H 

rot   E  = − μ 0 

(7.84) 
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 ∂  E 

rot   H  =  ε 0 

(7.85) 
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 ∂ 2   E 

rot 

=  ε

 , 
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wherein  rot ( rot   E) = grad (  E) − ∇   E  .  From  the  above,  we  obtain ( )

a

(b) 

Fig.  7.58  Superposition  of  two  sinusoidal  waves; a  constructive  interference  and  b  destructive interference 
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 .  

 ∂ 2 

∇

1 

 E 

 E  = 

(7.88) 

 c 2   ∂t 2 

with   c  =

1 

√ μ ,  and  ∇ =  Nabla  operator.  In  the  following,  we  assume  a 0  ε 0 

monochromatic  plane  wave  such  that  we  can  use  the  ansatz  (7.89) 

.  ( 

). 

 .  

 .  

 .    .  

 E  =  E 0  exp   j  ωt  −  k  ·  r 

 . 

(7.89) 

Inserting  (7.89) into (7.88)  results  in 

 .  

 .  

 ω 2 

−

1 

 k 2   E  = −    ω 2   E  →  k 2  − 

= 0 , 

(7.90) 

 c 2 

 c 2 

wherein 

 ω 

 ω 

=

1 

2 π 

 c  =  √

;  ω = 2 πν;  and   c  =  νλ →  k  =  = 

(7.91) 

 k 

 μ 0 ε 0 

 c 

 λ 

Poynting  vector 

The  Poynting  vector  is  used  for  describing  the  direction  and  the  amount  of  energy flow  of  an  electromagnetic  wave.  As  light  is  a  transversal  electromagnetic  wave, both  the  electric  field  and  the  magnetic  field  are  perpendicular  to  each  other  and perpendicular  to  the  propagation  direction,  as  shown  in  Fig. 7.59. 

For  vacuum,  we  can  use  (7.84)  and  obtain  (7.92). 

 .  

 .  

 ∂  H 

 .  

 .  

rot   E  = − μ 0 

→ −   jk 

 ∂

 E  = −   j ωμ 0   H  . 

(7.92) 

 t 

For  further  considerations,  we  may  use  the  characteristic  wave  impedance  of vacuum  given  by  (7.93) 

/
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(7.93)
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Fig.  7.59  Poynting  vector 
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wherein   μ 0  = 4 π  × 10−7  As  V−1  m−1,  ε 0  = 8.854  × 10−12  Vs  A−1  m−1,  and   Z 0 

= 376.7   . .  The  total  intensity   I tot  of  light  which  can  be  received  by  a  photodetector corresponds  to  the  time-averaged  value  of  the  Poynting  vector 

.  S  =  .  E  ×  .  H , 

(7.94) 

i.e.,  I tot  =  S. Using  (7.94), we  can  derive  a  relation  between  the  intensity   I   incident onto  a  photodetector  and  the  electric  field   E   of  the  optical  wave.  With  (7.93) for  the wave  impedance,  we  can  eliminate  the  magnetic  field  from  (7.94) using  (7.95) 

/  ε 0 

1 

 H  =  E 

 ,   and  with   c  =

1 

or   μ

 , 

(7.95) 

 μ

√

0  = 

0 

 ε 0 μ 0 

 c 2 ε 0 

and  obtain 

 H  =  ε 0 cE. 

(7.96) 

The  time-averaged  value  of   S   from  (7.96)  is  according  to  expression  (7.97). 

 S  =  ε 0 cE 2  →  I tot  =  S  =  ε 0 cE 2

(7.97) 

Thereby,  the  task  remains  to  evaluate  the  time-averaged  value  of  the  square  of  the electric  field,  i.e.,  E 2.  To  this  end,  we  use  the  expression  (7.98) 

 E 2  = | E|2  · sin2   ωt, 

(7.98) 

such  that  time-averaging  results  in 
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 E 2  = | E|2  · 

sin2   ωt   d t  . 

(7.99) 
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In  (7.99), the  following  equality  (7.100)  has  been  used: 

[ 

] 

1 

1 

2 π 

sin2   ωt  =  −  cos ( 2 ωt)  and   T  = 

 . 

(7.100) 

2 
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 ω 

Combining  (7.99)  and  (7.97), the  intensity  which  is  measurable  at  the  photodetector  amounts  to 

1 

 I tot  =  S  =   ε 0 c| E|2 

(7.101)

2 
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Thus,  (7.101)  provides  an  expression  for  the  total  light  intensity   I tot  measured  in 

[W/m2]  based  on  the  time-averaged  absolute  value  of  the  Poynting  vector. 

Coherence 

Coherence  of  two  (or  more)  waves  is  crucial  for  performing  interference  experiments or  for  designing  measurement  systems  based  on  interference.  Two  waves  of  equal frequency  are  coherent  in  time  if  they  have  a  constant  phase  difference  which  does not  depend  on  time.  For  interference  setups,  it  is  of  major  importance  that  a  specific quantity  denoted  as  coherence  length  is  known.  In  the  following,  we  evaluate  the coherence  length  based  on  Heisenberg’s  uncertainty  principle.  Coherent  radiation will  be  used  to  demonstrate  the  interference  effects  that  are  exploited  by  interference measurement  techniques  (refer  to  Sects. 7.5.3  and  7.5.4).  Laser  light  of  different wavelengths  is  available  through  a  variety  of  lasers.  The  quality  of  the  laser  beam  is determined  by  the  coherence  time  and  the  coherence  length  as  well  as  the  spectral bandwidth  which  will  be  covered  later. 

Heisenberg’s  uncertainty  principle  is  based  on  the  fact  that  the  resolution  in  determining  a  particle’s  location   x   and  momentum   p   at  the  same  time  is  limited.  As  an exception  to  the  dominant  topic  of  the  present  Sect. 7.5,  which  is  wave  optics,  we apply  the  photon  concept  (the  particle  concept)  here  at  first,  where  light  is  regarded as  a  bundle  of  photons.  This  concept  provides  straightforward  access  to  the  determination  of  the  coherence  length.  Thereby,  starting  with  Heisenberg’s  uncertainty principle  from  quantum  mechanics  according  to  (7.102), and  by  using  the  Planck constant   h,  the  photon  is  treated  as  a  particle  having  uncertainty  in  position   .x   and in  momentum   .p. 

 .x  ·  .p  ≥  h

(7.102) 

We  may  insert   .x  =  c  ·  .t   for  the  position  uncertainty,  and E 

 hν 

 h 

 p  =  mc;  E  =  mc 2  →   p  = 

= 

 ,   thus   .p  =   .ν

(7.103) 

 c 

 c 

 c 

for  the  momentum  uncertainty  of  the  photon.  After  inserting  the  two  uncertainties  into 

(7.102), we  may  rewrite  Heisenberg’s  uncertainty  principle  and  obtain  the  relation 

(7.104). 

 . 

1 

 t  = 

=:  τ

 .ν 

c

(7.104) 

In  other  words,  time  interval   .t   and  frequency  width  (or  spectral  width)   .ν are related  to  each  other,  wherein   τ c  is  defined  as  the  coherence  time.  The  coherence length   λ c  of  the  emitted  light  is  then  provided  by  (7.104)  using  the  light  velocity   c according  to  (7.105). 

 λ c  =  c

(7.105)

 τ c 
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Using  the  conversion  (7.106) 

 ν

 c 

d ν 

 c 

 c 

=  → 

= −  

→   .ν =   .λ

(7.106) 

 λ 

d λ 

 λ 2 

 λ 2 

the  coherence  length   λ c  is  given  as  the  ratio  of  the  square  of  the  emitted  wavelength λ 2  and  the  spectral  width   .λ in  terms  of  a  wavelength  interval  according  to  (7.107). 

 λ 2 

 λ

 c 

c  =  c  ·  τ c  = 

=

 c 

→  λ

(7.107) 

 .ν

c  = 



 c 

 λ .λ 

 .λ 

2 

 7.5.2 

 Laser  Principle 

The  discussion  of  the  laser  principle  [7]  is  directly  connected  to  Sect. 7.4.2  and Fig. 7.41, where  Planck’s  radiation  law  has  been  derived.  Again,  we  start  with  a simple  model  for  a  quantum  mechanical  scheme.  This  scheme  is  based  on  an  atomic level  system  shown  in  Fig. 7.60, where  it  is  assumed  that  the  laser  transition  is between  energy  levels   n   and   m. 

For  laser  operation,  stimulated  emission  elucidated  in  Fig. 7.41c  must  prevail. 

This  can  be  achieved  by  providing  a  so-called  inversion  of  population  density  using a  metastable  upper  energy  level   n   for  the  laser  transition.  This  metastable  energy  level can  be  found  in  a  large  variety  of  laser  materials  such  as  solids,  fluids,  and  gases. 

Well-known  gas  lasers,  e.g.,  are  the  argon-ion  laser  (Ar+)  and  the  helium–neon  laser (HeNe).  The  schematic  setup  of  a  gas  laser  is  shown  in  Fig. 7.61. 

As  indicated  in  Fig. 7.61, pump  energy  has  to  be  applied  in  order  to  provide a  transition  from  lower  energy  level   l   to  upper  energy  level   u.  Between  both  the u 

radiationless 

transition 

pump 

n 

transition 

hν 

laser transition 

hν 

m 

radiationless 

 l 

transition 

Fig.  7.60  Simplified  four-level  laser  energy  scheme;  l  = lower  level,  u  = upper  level,  m  = lower laser  level,  and  n  = upper  laser  level 
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Fig.  7.61  Schematic  setup  of  a  laser  device;  the  laser  resonator  extends  between  the  totally reflecting  mirror   R total  on  the  left  side  and  the  partially  reflecting  mirror   R part  on  the  right  side upper  energy  level   u   and  the  upper  laser  level   n,  and  the  lower  laser  level   m   and the  lower  energy  level   l   the  transitions  are  radiationless  and  occur,  e.g.,  by  means of  collisions.  In  Fig. 7.61,  the  laser  medium  is  contained  in  a  tube  having  Brewster angle  windows  and  is  electrically  pumped  by  an  electric  energy  source.  The  laser resonator  is  represented  by  two  opposing  mirrors  separated  by  a  distance   L,  one  of which  is  partially  reflecting  to  allow  for  the  output  of  a  laser  beam. 

The  laser  transition  determines  the  output  wavelength  according  to  (7.108). 

 c 

 hν =  E n  −  E m  =  h  , 

(7.108) 

 λ 

wherein   E m  is  denoted  as  the  energy  of  the  lower  laser  level   m   and   E n  is  denoted  as the  energy  of  the  upper  laser  level   n,  see  Fig. 7.60.  For  a  laser  system  to  be  operative, a  population  inversion  is  required.  Population  inversion  can  be  achieved  by  a  multi-level  energy  scheme,  e.g.,  by  using  the  simplified  four-level  laser  energy  scheme shown  in  Fig. 7.60. The  population  densities  of  the  four  levels  are   n l,  n m,  n n,  and   n u, respectively. 

Pumping  of  the  laser  can  be  done,  e.g.,  optically,  electrically  through  electron collisions  or  chemically,  etc.  Gas  (e.g.,  HeNe-Laser,  Ar+-Laser,  etc.),  liquid  (dye laser),  and  solid-state  lasers  (ruby  laser,  semiconductor  laser,  etc.)  can  be  established. 

The  gain  in  the  laser  material  is  based  on  the  optically  stimulated  emission.  Generally, the  gain  increases  with  the  path  length  traversed  by  the  exciting  photons.  The  pump energy  is  used  for  pumping  from  the  lower  level   n l  to  the  upper  level   n u. Using  the Einstein  coefficients   γ  for  absorption  and   β for  spontaneous  emission,  respectively, as  defined  above  in  Sect. 7.4.2  (specifically  (7.34)  and  (7.35)),  we  may  derive  rate 

(7.109)  in  view  of  intensity   I   within  the  laser  resonator  [7]. 
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d n m  ≈

d n



n 

0 ,   and 

≈  γ  I n l  −  βn n

(7.109) 

d t 

d t 

Then,  defining  the  population  density  inversion  as   .n  =  n n  −  n m  we  obtain 

 . 

 I  /I S 

 n  =  n tot 

with   n tot  ≈  n l  +  n n . 

(7.110) 

1  +  I  /I S 

The  expression   I S  =  β/ γ  is  denoted  as  the  saturation  intensity,  which  is  the  ratio of  the  two  Einstein  coefficients  defined  in  (7.41),  and   n tot  is  the  total  population density.  As  can  be  seen  from  (7.110),  the  four-level  system  (or  a  multi-level  system) is  essential  because  the  population  inversion  has  a  positive  value  which  is  required for  laser  operation. 

Longitudinal  laser  modes 

As  indicated  in  Fig. 7.62,  longitudinal  oscillating  modes  within  the  laser  resonator are  occurring  and  are  oriented  along  the   z-axis,  i.e.,  the  optical  axis  of  the  laser beam.  Oscillation  nodes  are  at  the  boundaries  of  the  laser  resonator,  i.e.,  at  the  totally reflecting  mirror  on  the  left  side  and  at  the  partially  reflecting  mirror  at  the  right  side, see also Fig.  7.61. 

For  different  types  of  resonator  configurations  which  are  shown  in  Fig. 7.63, standing  waves  with  different  wavelengths  can  arise.  These  standing  waves  are  characterized  in  terms  of  longitudinal  modes,  sometimes  denoted  as  axial  modes.  Using the  ordinal  number   m   and  the  refractive  index   n L  of  the  laser  medium  between  the two  mirrors  of  the  resonator,  we  can  derive  the  relationship  between  the  resonator length   L   and  the  emission  wavelength   λ. 

 λ 

 L  =  m  ·

 ,   with   m  = 1 ,  2 , . . . 

(7.111)

2  ·  n L 

with   m   being  an  integer.  Using  the  conversion 

 ν

 c 

=  =

 m  ·  c 

(7.112) 

 λ  2  ·  n L  ·  L 

we  obtain  the  mode  separation  in  frequency  units  as

Fig.  7.62  Standing  wave  in 

node

node 

a  laser  resonator 

L 
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Fig.  7.63  Superposition  of  longitudinal  modes  in  a  laser  resonator,  refer,  e.g.,  to  [6]

 .m  = ±1  →  .ν m  =

 c 

 , 

(7.113) 

2  ·  n L  ·  L 

and  in  wavelength  units  as 

 λ 2 

 λ 2 

 .λ m  = 

·  .ν m  ⇒  .λ m  =

 . 

(7.114)

 c 

2  ·  n L  ·  L 
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Modes  that  may  resonate  within  the  laser  resonator  are  superposed  (or  resonate with  each  other)  to  provide  a  final  optical  output,  as  illustrated  in  Fig. 7.63. 

Figure  7.64  is  the  frequency  profile  for  laser  gain  as  a  function  of  frequency   ν. As indicated  in  Fig. 7.64,  due  to  the  Doppler  profile  generated  by  the  thermal  movement of  the  light-emitting  particles,  only  a  selection  of  longitudinal  modes  can  be  excited in  the  laser  resonator.  The  Gaussian-shaped  curve  resulting  from  the  Doppler  effect is  represented  by  a  line  width   .ν 0.  Again,  the  mode  separation   .ν m  is  indicated  as a  mode-to-mode  distance  in  the  frequency  region.  Furthermore,  a  dashed  horizontal line  represents  the  losses  which  essentially  consist  of  losses  in  the  laser  resonator and  losses  due  to  the  energy  of  the  laser  output  beam.  A  frequency  width   .ν L  is determined  by  the  laser  gain  with  respect  to  the  losses,  such  that  only  within  this specific  frequency  width   .ν L  modes  can  be  excited,  and  thus,  laser  operation  can be  provided. 

Transversal  laser  modes 

To  discuss  transversal  laser  modes,  let  us  at  first  have  a  brief  look  at  another  crosssectional  drawing  of  the  laser  resonator.  Again,  a  totally  reflecting  mirror  is  shown on  the  left  side  of  Fig. 7.65,  wherein  the  partially  reflecting  mirror  is  shown  on  the right  side  such  that  the  laser  beam  exits  the  laser  resonator  toward  the  right  side. 

Depending  on  the  configuration  of  the  resonator,  see  also  Fig. 7.68, the  transversal intensity  profile  of  the  laser  beam  may  vary  (Fig. 7.67).  As  an  example,  Fig. 7.66 

shows  a  Gaussian  intensity  profile  wherein  the  diameter  of  the  laser  beam;  i.e.,  the beam  waist  2 w 0  is  defined  by  the   I 0/ e 2  intensity  limit. 

In  addition  to  that,  different  wavefronts  may  be  generated  within  the  laser resonator.  This,  in  turn,  has  an  influence  on  the  output  angle  of  the  beam  and  thus the  divergence  2 θ 0  of  the  laser  beam.  By  dividing  the  cross  section  of  the  laser  beam lasing operation

range of 

excited modes 
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gain 
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∆νL 

∆ ν 0

∆νm 

Fig.  7.64  Longitudinal  modes  and  Doppler  profile,  refer,  e.g.,  to  [6] 
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Fig.  7.65  Formation  of  wavefronts  within  the  laser  resonator  [6, 7]

into  different  regions,  some  of  which  are  oscillating  out  of  phase  with  each  other,  we obtain  different  intensity  minima  and  maxima  across  the  cross-sectional  area  of  the laser  beam  due  to  an  interference  effect.  This  effect  results  in  the  transversal  laser modes,  which  are  denoted  by  TEM xy. The   x,  y   indices  refer  to  the  number  of  intensity minima  or  nodes  in  the   x- direction  and   y- direction,  respectively.  The   z-axis  then  is the  optical  axis  of  the  laser  beam.  Some  examples  of  intensity  profiles  are  shown  in Fig. 7.67. 

Herein,  the  mode  TEM00  is  known  as  the  fundamental  mode  or  Gaussian  mode depicted  in  Fig. 7.66, and  the  resulting  beam  is  known  as  the  Gaussian  beam.  The fundamental  mode  is  the  most  important  mode  for  use  in  optical  measurement  (i.e.,  in an  optomechatronic  measurement  system)  due  to  its  Gaussian  intensity  profile  with an  intensity  maximum  in  the  beam  center.  The  radial  distribution  (over  the  radius   r) Fig.  7.66  Examples  of  TEM00  intensity  profiles  along  the   x   coordinate  in  [a.u.]  transversal  to  the beam  propagation  direction  (z-direction  = optical  axis);  red:  small  beam  waist,  blue:  medium  beam waist,  and  green:  large  beam  waist 
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of  the  electric  field   E( r)  can  be  expressed  as  an  exponential  function  (7.115) 

(  )

(

)

2 



2 

−  r 

−2·  r 

 E(r ) =  E( 0 ) · e  w 0 

→  I (r ) =  I ( 0 ) · e

 w 0 

(7.115) 

where  the  parameter   d  =  2 w 0  is  defined  as  the  diameter  of  the  beam.  When propagating  in  the   z- direction,  the  diameter  of  the  beam  changes  according  to  (7.116). 

( 

( 

) )

 λ

1 / 2 

·  z 

2

 d(z) =  d 0  ·  1  + 

(7.116) 

 π ·  w 2 0 

where   d 0  is  the  minimum  diameter  of  the  laser  beam  for   w  =  w 0  at  the  position   z  = 

0.  The  parameter   w 0  is  also  known  as  the  beam  waist.  The  beam  divergence  angle  is given  as 

lim   d(z) 

 θ

 z→0 

4  ·  λ 

= 

= 

 . 

(7.117) 

 z

 π ·  d 0 

From  (7.117),  we  see  that  the  product  of  the  divergence  angle   θ and  the  minimum diameter   d 0  of  the  laser  beam  is  a  constant  value  which  only  depends  on  the  wavelength,  known  as  the  “beam  parameter  product”.  For  large  values  of   z  (far-field),  we can  approximate  the  laser  wavefront  being  perpendicular  to  the   z-direction  by  means of  a  spherical  wave  with  the  radius   R( z)  according  to  (7.118). 

[ 

( 

)

 π

 z ] 

·  w 2 

 R(z) =  z  ·  1  + 

0 

(7.118) 

 λ ·  z 

In  Fig. 7.67, some  examples  of  transversal  laser  beam  intensity  profiles  are summarized,  denoted  as  TEM  modes. 

y 

00

01

10

11

02

21 

x 

Fig.  7.67  Transversal  intensity  profiles  in  a  laser  resonator:  TEM xy   modes
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Fig.  7.68  Resonator  types:  a  plane-parallel, b  concentrical, c  confocal, d  hemispherical,  and  e concave-convex 

Laser  resonators 

Besides  the  plane  resonator,  we  also  have  other  forms  of  laser  resonators  such as  confocal,  concentrical,  and  hemispherical  resonators  as  shown  in  the  schematic diagrams  of  Fig. 7.68.  The  stability  of  laser  resonators  or  optical  cavities  is  determined  by  so-called   g-factors  which  represent  the  curvatures  (or  radii)   r 1,  r 2  of  each of  the  two  mirrors  with  respect  to  the  resonator  length   L. The   g-factors  are  defined in  (7.119). 

 L 

 L 

 g 1  = 1  − 

and   g 2  = 1  − 

(7.119) 

 r 1 

 r 2 

For  stable  operation  of  the  resonator,  i.e.,  for  meeting  a  stability  criterion,  the condition  (7.120)  must  be  valid. 

0  ≤  g 1  ·  g 2  ≤ 1

(7.120) 

For  optical  measurement  systems,  the  configuration  of  the  confocal  resonator  is preferred,  i.e.,  r 1  =  r 2  =  L,  because  this  configuration  offers  a  small  beam  diameter and  a  high  mode  purity  with  respect  to  transversal  modes. 
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 7.5.3 

 Two-Beam  Interference 

In  this  section,  the  principle  of  two-beam  interference  is  introduced.  Optical  devices for  beam  interference  are  presented  in  Sect. 7.5.4. Herein,  we  focus  on  the  superposition  of  two  coherent  beams  in  an  interferometer,  while  multiple-beam  interference will  be  mainly  addressed  in  Sect. 8.1  of  Chap. 8. 

At  first,  we  will  have  a  look  at  the  electric  field   E   of  the  light  wave,  which  already has  been  addressed  in  (7.98). The  electric  field  oscillates  at  high  frequency,  which amounts  to—in  the  center  of  the  visible  spectral  region—a  few  hundred  terahertz 

[THz]: 

 λ

 c 

= 550  nm  →  ν =  = 5 .  45  × 1014  Hz

(7.121) 

 λ 

As  such,  it  is  extremely  difficult  to  measure  the  electric  field   E   of  optical  radiation directly,  i.e.,  by  following  the  instantaneous  amplitude  (of  the  electric  field)  of  the light  wave.  On  the  other  hand,  we  can  precisely  measure  light  intensities   I,  particularly the  irradiace  in  [W/m2]  according  to  (7.7), by  means  of  optical  sensors  such  as photodiodes,  photoelements,  photomultipliers,  etc.  The  optical  beams  (here,  only two  interfering  beams  are  regarded)  that  are  incident  onto  the  light-sensitive  area of  the  used  light  detector  are  superposed.  This  superposition  results  in  interference effects.  The  interference  term  exhibits  minima  and  maxima  in  intensity  which  are related  to  a  phase  difference  between  the  two  interfering  beams.  If  we  are  looking at  two  interfering  electric  waves   E 1  and   E 2,  respectively,  see  for  example  (7.89), then  the  interference  term  as  a  function  of  the  phase  difference  is  obtained.  Using 

(7.101), we  get  the  total  intensity   I tot  at  the  detector  as  the  time-averaged  value  of the  Poynting  vector. 

1 

 I tot  =  S  =   ε 0 c| E|2 

(7.122) 

2 

which  corresponds—apart  from  two  fundamental  constants—to  the  square  of  the electric  field.  Thus,  we  evaluate  the  total  electric  field  resulting  from  the  electric fields  of  two  interfering  waves,  E 1  =  ˆ

 E 1e  jϕ 1 ,  and  ˆ

 E 2e  jϕ 2 ,  by  means  of  (7.123). 

 E  =  E 1  +  E 2  → | E|2  = | E 1  +  E 2|2  ,   such  that (7.123) 

| E|2  =  E 1  ·  E∗ +  E

+  E

+  E∗ ·  E

1 

2  ·  E ∗ 

2 

1  ·  E ∗ 

2 

1 

2 

[

] 

= | E 1|2  + | E 2|2  + | E 1|| E 2| e j (ϕ 1− ϕ 2 ) + e−  j (ϕ 1− ϕ 2 ) . 

(7.124) 

`

``

`

2 cos (.) 

(7.124)  already  provides  the  interference  term,  which  is  only  dependent  on  the relative  phase  difference   .  =  ϕ 1  −  ϕ 2  between  one  of  the  interfering  beams  (often denoted  as  the  measurement  beam)  and  the  other  of  the  interfering  beams  (denoted
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as  the  reference  beam).  Combining  (7.122)  and  (7.123), we  obtain  the  interference pattern  as  a  function  of  the  relative  phase  shift  or  phase  difference   .  as  shown  in Fig. 7.69, in  this  case  for  two  beams  of  equal  amplitudes:   E 1  =  E 2  =  E 0. For  the situation  shown  in  Fig. 7.69, the  interference  intensity  varies  between   I  = 0  and   I  = 

 I max,  wherein  the  maximum  intensity  reads  as   I max  = 2 ε 0 c| E 0|2. 

Now,  we  rewrite  (7.122)  and  (7.123)  using  the  intensities   I 1  =  const| E 1|2  and I 2  = const| E 2|2  with  const  =  1   ε

2  0 c   and  obtain  (7.125). 

. 

 I tot  =  I 1  +  I 2  + 2   I 1   I 2  cos   . 

(7.125) 

After  intensity  adaptation  (e.g.,  by  using  a  50:50%  beam  splitter  in  the  setup shown  in  Fig. 7.70), i.e.,  I 1  =  I 2  =  I 0, (7.125)  simplifies  to  (7.126). 

 I tot  = 2 I 0 ( 1  + cos   .)

(7.126)

 7.5.4 

 Interferometer  Setups 

For  two-beam  interference,  a  large  variety  of  interferometers  can  be  designed.  In  this section,  some  state-of-the  art  configurations  used  in  optomechatronic  measurement technology  are  presented. 

Michelson  interferometer 

Only  one  beam  splitter  is  required  for  this  type  of  interferometer.  Two  optical paths  are  perpendicular  to  each  other  (reference  optical  path  and  object  optical path/measurement  optical  path).  To  measure  lengths,  one  of  the  mirrors  is  movable while  the  other  one  is  fixed.  Hence,  we  may  measure  lengths  in  units  of  the  wavelength λ due  to  optical  interference.  Figure  7.70  depicts  the  setup  of  the  Michelson  interferometer  together  with  a  typical  interference  pattern  which  results  from  a  mutual
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Fig.  7.70  Setup  of  a  Michelson  interferometer

phase  shift  between  the  two  interfering  beams.  In  the  setup  shown  in  Fig. 7.70, the phase  difference  results  from  a  path  difference   s   due  to  the  displacement   d  =  s/2  of one  (movable)  mirror  with  respect  to  the  other  (fixed)  mirror.  The  laser  provides  the coherent  light  beam  of  wavelength   λ. 

The  measurement  signal   I tot  is  used  to  evaluate  the  displacement   d   according  to 

(7.127). 

 . 

2 π 

 s 

=  ϕ 1  −  ϕ 2  =  k  ·  s  = 

 s,   wherein   d  =  is  the  mirror  displacement .  

 λ 

2 

(7.127) 

Jamin  interference  refractometer 

In  the  Jamin  interference  refractometer  [4], an  optical  beam  originating  from  a  light source  providing  light  of  adequate  coherence  (e.g.,  a  laser)  is  divided  into  two  sub-beams  by  means  of  a  first  plane-parallel  plate  serving  as  a  first  beam  splitter.  Herein, the  intensity  is  split  into  equal  portions,  i.e.,  a  50 : 50 %   beam  splitter  is  used,  as illustrated  in  Fig. 7.71. The  two  beams  are  then  recombined  together  using  a  second plane-parallel  plate  and  a  focusing  lens.  Then,  interference  fringes  may  be  observed  in the  observation  plane,  e.g.,  on  a  photodetector.  The  two  sub-beams  are  guided  through two  different  cuvettes,  both  of  which  are  filled  with  gas.  Thereby,  the  refractive  index of  an  unknown  gas  in  the  measurement  cuvette  can  be  compared  to  a  known  gas  filled
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Fig.  7.71  Setup  of  a  Jamin  interferometer 

into  the  reference  cuvette.  It  is  assumed  here  that  the  gas  is  identified  by  its  refractive index,  and  thus,  if  different  optical  paths  arise  resulting  from  the  different  refractive indices  of  the  gases  in  the  reference  chamber  and  the  measurement  chamber,  a  phase difference  between  the  two  interfering  beams  is  obtained.  This  fact  results  in  an interference  pattern  as  described  above. 

Mach–Zehnder  interferometer 

In  a  Mach–Zehnder  interferometer,  two  separate  beam  splitters  and  two  separate mirrors  are  provided,  as  shown  in  Fig. 7.72. As  compared  to  the  Jamin  interference  refractometer,  the  advantage  is  that  the  distance  between  the  reference  cell and  the  measurement  cell  can  be  adjusted  as  long  the  conditions  of  coherence  are met.  This  means  that  the  optical  path  length  difference  between  the  reference  path, which  contains  the  reference  cell,  and  the  measurement  path,  which  contains  the measurement  cell,  must  be  shorter  than  the  coherence  length  of  the  light  source (laser). 

Sagnac  interferometer 

Another  type  of  interferometer  shown  in  Fig. 7.73  is  the  Sagnac  interferometer  [12] 

used  for  rotation  measurement.  The  Sagnac  interferometer  is  named  after  the  French physicist   Georges  Sagnac  (1868– 1926)   who  discovered  the  Sagnac  effect.  Herein, two  coherent  light  beams  propagate  in  opposite  directions  around  a  common  rotation center   RC   interfere  with  each  other.  One  of  the  two  beams  ( B 1)  propagates  in  a
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Fig.  7.72  Setups  of  a  Mach–Zehnder  interferometer, a  basic  beam  arrangement, b  with  reference and  measurement  cuvettes  [4]

clockwise  direction  while  the  other  ( B 2)  two  beams  propagate  in  a  counterclockwise direction. 

If  the  reference  frame  rotates  at  an  angular  frequency   .  resulting  in  a  circumferential  velocity   c cf  =  .r,  a  phase  shift   .  between  the  two  beams  is  observed,  which  is evaluated  using  the  optical  path  length  variation  using   .s.  For  beam   B 1  propagating in  the  clockwise  direction,  we  have  an  extended  path  length  given  in  (7.128). 

m

m



m

bs 

Fig.  7.73  Setup  of  a  Sagnac  interferometer; a  setup  with  beam  paths  in  two  opposite  directions indicated  by  double  arrow  and  b  measurement  principle;  m=mirror,  bs=beam  splitter,  RC=rotation center,  and  r  = radius  of  fiber  loop 
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OPL1 

OPL1  = 2 πr  +  .s,   wherein   .s  =  c cf  ·  t 1 ,  and   c  = 

 . 

(7.128) 

 t 1 

The  propagation  time  for  one  clockwise  cycle  thus  is 

2 πr 

 t 1  = 

 . 

(7.129) 

 c  −  c cf 

On  the  other  hand,  for  propagation  in  the  counterclockwise  direction,  we  have  a shortened  path  length  OPL2,  which  is 

OPL2 

OPL2  = 2 πr  −  .s,   wherein   .s  =  c cf  ·  t 2 ,   and   c  = 

(7.130) 

 t 2 

The  propagation  time  for  one  counterclockwise  cycle  thus  is 

2 πr 

 t 2  = 

(7.131) 

 c  +  c cf 

Thereby,  comparing  the  cycle  times   t 1  and   t 2  given  by  (7.129)  and  (7.131),  respectively,  the  time  difference   .t   causing  the  optical  interference  effecr  is  obtained according  to  (7.132). 

[

] 

 . 

1 

 c  +  c cf  −  (c  −  c cf ) 

 t  =  t 1  −  t 2  = 2 πr 

−

1 

= 2 πr 

 c  −  c cf 

 c  +  c cf 

 (c  −  c cf )(c  +  c cf ) 

 . 

2 c cf 

 t  = 2 πr 

(7.132) 

 c 2  −  c 2 cf 

From  (7.133),  an  approximation  for   .t   is  evaluated  for  the  practical  case  where the  circumferential  velocity   c cf  is  much  smaller  than  the  light  velocity   c. 

 . 

2 c cf 

4 πrc cf 

4 πr 2 .  

 t  = 2 πr 

= 

= 

with   c cf  =  .r   and  loop  area   A  =  πr 2 

 c 2 

 c 2 

 c 2 

 . 

4  A 

 t  = 

 . 

(7.133) 

 c 2 

The  resulting  phase  shift   .  is  determined  using  (7.134), 

 . 

 c 

 A 

=  ω ·  .t  = 2 πν ·  .t  = 2 π   .t  = 8 π 

·  ., 

(7.134) 

 λ 

 c  ·  λ 

which  is  known  as  the  Sagnac  equation. 
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Chapter 8 

Speckle Measurement Systems 

Abstract  Further  to  the  discussion  of  optical  measurement  systems  with  optical sensors  in  Chap. 7, the  present  in  this  chapter  focuses  on  a  special  interference effect,  the  so-called  speckle  interferences  (Bloise  in  Speckle  photography  and  speckle interferometry  and  their  applications  to  mechanic  solid  problems.  Research  Signpost,  2008  [1];  Goodman  in  Speckle  phenomena  in  optics.  Roberts  and  Company Publishers,  2007  [2]; Jones  and  Wykes  in  Holographic  and  speckle  interferometry.  Cambridge  University  Press,  1989  [3]; Donges  and  Noll  in  Lasermesstechnik. 

Hüthig,  1993  [4]).  The  speckle  effect  occurs  when  coherent  light  is  incident  onto  a rough  surface,  the  surface  roughness  being  in  the  order  of,  or  larger  than,  the  wavelength  of  the  incident  light.  In  speckle  interferometry,  usually  multiple  beams  are interfering  with  each  other.  Thus,  in  Sect. 8.1  of  the  present  chapter,  we  discuss multiple-beam  interference  in  detail.  Then,  in  Sect. 8.2,  the  properties  of  speckle image  detection  will  be  presented,  and  in  general,  speckle  interferometry  principle will  be  explained.  Finally,  in  Sect. 8.3,  different  speckle  interferometer  setups  will be  illustrated. 

8.1  Multiple-Beam Interference 

In  this  section,  devices  will  be  discussed,  where  not  just  two  beams  interfere  (see Sect. 7.5.3  of  Chap. 7)  but  a  large  number  of  beams  contribute  to  an  interference pattern,  i.e.,  multiple-beam  interference  occurs.  The  basic  principles  of  evaluating an  interference  term  based  on  mutual  phase  shift  of  interfering  beams  do  not  change; however,  in  this  section,  the  superposition  of  multiple  beams  is  emphasized.  At  first, two  examples  of  multiple-beam  interferometers,  the  Fabry–Perot  interferometer  and the  thin-film  interferometer  will  be  briefly  addressed,  because  these  two  interferometers  are  highly  relevant  for  optomechatronic  applications.  Then,  diffraction  setups and  associated  devices  based  on  diffraction  gratings  are  presented. 

Fabry–Perot interferometer 

The  Fabry–Perot  interferometer  shown  in  Fig. 8.1  is  based  on  the  concept  of  multiple-beam  interference,  whereas  the  interferometer  setups  previously  discussed  are  based
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on  the  interference  of  two  beams.  Two  plane-parallel  plates  are  opposed  to  each  other, wherein  the  surfaces  are  approximately  parallel  to  each  other.  In  this  way,  an  incoming light  beam  experiences  multiple  reflections  in  the  so-called  cavity,  i.e.,  the  space between  the  two  reflecting  surfaces.  The  multiple  beams,  which  exit  from  the  Fabry– 

Perot  interferometer,  interfere  on  an  optical  detector  resulting  in  an  interference pattern.  Due  to  the  fact  that  the  evaluation  of  the  interference  pattern  generated  by a  Fabry–Perot  interferometer  is  similar  to  the  evaluation  of  an  interference  pattern provided  by  a  thin-film  interferometer  (see  below),  a  detailed  discussion  of  these interferometers  is  referred  to  in  Sect. 9.2  of  Chap. 9,  which  focuses  on  measurement systems  for  thin  films. 

Thin-film interferometer 

A  thin-film  interferometer  is  illustrated  in  Fig. 8.2.  The  setup  of  this  interferometer  is  provided  by  the  measurement  object  itself,  i.e.,  the  reflecting  surfaces  which are  approximately  parallel  to  each  other  are  represented  by  the  interfaces  between different  optical  media.  In  a  practical  application  which  is  further  discussed  in Sect. 9.2, different  optical  media  are  the  environment  (ambient  (0)),  the  object  under investigation  (thin  film  (1)),  and  a  support  structure  (substrate  (2))  onto  which  the object  under  investigation  is  deposited. 

Diffraction 

As  has  already  been  mentioned  before,  Sect. 8.1  is  a  direct  continuation  of  Sect. 7.5.3, 

because  diffraction  is  based  on  interference  as  well;  however,  the  effect  is  a  multiple-beam  interference  instead  of  two-beam  interference.  Thus,  diffraction  of  light  is caused  by  the  interference  of  many  elementary  waves,  e.g.,  caused  by  a  diffraction grating  illustrated  in  Fig. 8.3.  If  light  is  incident  onto  a  structure  which  varies  in  the order  of  the  incident  wavelength,  multiple  interference  effects  occur.  Such  kind  of varying  structures  can  be  diffraction  gratings.  Diffraction  gratings  can  be  designed gratings  of  reflection  or  transmission  type.  The  diffraction  grating  shown  in  Fig. 8.3 

has  a  regular,  periodic  structure,  which  diffracts  incident  light  into  interfering  beams. 

The  periodicity   d   represents  the  distance  between  one  edge  of  a  slit  and  the  edge  of the  adjacent  slit  and  is  also  denoted  as  the  grating  constant. 

Fig. 8.1  Setup  of  a 

Fabry–Perot  interferometer 

[image: Image 58]

[image: Image 59]
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Fig. 8.2  Setup  of  a  thin-film  interferometer

Fig. 8.3  Diffraction  grating;  setup  for  illustrating  the  basic  principle;  d=grating  constant If   λ is  the  wavelength  of  the  incident  light  beams,  the  so-called  grating  equation reads  as 

 m  ·  λ 

sin   .  = 

(8.1)

 d 
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wherein  the  parameter   m   amounts  to 

 m  = 0 ,  ±1 ,  ±2 ,  ±3   . . . 

(8.2) 

and  defines  the  diffraction  order.  Thereby,  we  have 

 .s  =  m  ·  λ. 

(8.3) 

A  more  realistic  case  is  a  grating  having  a  large  number   n   of  slits,  as  shown  in Fig. 8.4. 

Similar  to  Sect. 7.5.3  of  Chap. 7,  we  use  the  electric  fields  of  the  diffracted beams  in  order  to  obtain  an  expression  for  light  interference.  In  the  present  section, however,  a  number   n   of  individual  beams   E i  have  to  be  superposed.  It  is  assumed that  the  amplitudes  ˆ

 E i  of  the  individual  beams  are  equal  to  each  other,  wherein  the phases   ϕi   of  the  individual  beams  are  evaluated  according  to  the  geometrical  relations elucidated  in  Fig. 8.4. Again,  m   is  the  diffraction  order,  and   d   is  the  regular,  periodic distance  between  individual  slits  of  grating.  Then,  (8.4)  defines  the  individual  beams 

[5]. 

 E 1 ,   E 2 ,   E 3 , . . .   Ei,   . . .   En   are  the  electric  fields  of   n   beams  to  be  superposed ,  and ˆ E 1  =  ˆ E 2  =  ˆ E 3  =  . . .  =  ˆ Ei  =  . . .  ˆ En  =  ˆ E   are  the  respective  amplitudes , wherein   Ei  =  ˆ

 Ei  e−  jϕi   and   i  = 1 , . . . ,   n. 

(8.4) 

The  phases   ϕi  =  kri  − ωt   differ  according  to  the  geometrical  distances   ri   of  beams number  1  to   n   to  the  detector  (location  of  interference).  The  summation  yields n

. 

 n

. 

 n

. 

 E sum  = 

 Ei  =  ˆ

 E 

 e−  jϕi  =  ˆ

 E 

 e−  j (ωt− kri  ) 

 i =1 

 i =1 

 i =1 

 n

. 

=  ˆ Ee−  jωt 

 e  jkri 

 i =1 

[ 

] 

=  ˆ Ee−  jωt  ·  e  jkr 1  1  +  e  jk(r 2− r 1 ) +  e  jk(r 3− r 1 ) +  · · ·   e  jk(ri− r 1 ) · · ·  +   e  jk(rn− r 1 ) (8.5) 

Now,  we  can  introduce  the  phase  difference   δ between  each  two  adjacent  beams, and  with   k  = 2 π/λ,  we  obtain 

 δ =  k  ·  .s, 

(8.6) 

and  from  the  geometry  in  Fig. 8.4,  we  get 

 δ =  k  ·  .s  =  k(r 2  −  r 1 ). 

(8.7)

[image: Image 60]
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Fig. 8.4  Diffraction  grating  having  a  number   n   of  slits,  according  to  [5];  d  = grating  constant  and g  = slit  width

Thereby,  the  expression  in  the  square  brackets  on  the  right  side  of  (8.5) is the geometric  series 

⎡ 

⎤ 

⎢

(  )  (  )2 

⎥

 G Sn−1  = ⎣1  +   e  jδ +   e  j δ +  · · ·  +   e  j(n−1 )δ 

`  ``  ` ⎦ , 

(8.8) 

 (e j δ  )n−1 

wherein  GS  represents  a  geometric  series. 
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The  substitution   a  =   e  j δ  and  the  sum  of  the  infinite  geometric  series  GS∞ 

according  to  (8.9)  yield 

∞

. 

GS∞  = 1  +  a 1  +  a 2  +  a 3  · · ·  =  

 ai  =

1 

 , 

(8.9) 

1  −  a 

 i =0 

and  thus 

[ 

]

GS n−1  = GS∞ −   an  +  an+1  +  · · ·   a∞ ; 

∞

. 

→  an  +  an+1  +  · · ·  +   a∞ 

`

``

` = 

 ai 



(8.10) 

to  be  substracted  from  GS

 i = n 

∞ 

Thus,  by  substituting   l  =  i  −  n,  we  have 

∞

. 

∞

. 

 al+ n  =  an 

 al  =  an 

(8.11) 

1  −  a 

 l=0 

 l=0 

Combining  (8.9)–(8.11), we  obtain 

1 

 an 

 an  − 1 

GS n−1  = 

− 

= 

(8.12) 

1  −  a 

1  −  a 

 a  − 1 

and  with  re-substitution   a  =  e  j δ  ,  we  have ( 

) 

 δn 

 δn 

 δn 

(

) 

 e  jδn  − 1 

 e  j   1 2 

 e  j   1 2 

−  e− j   1 2 

sin  1   δn 

GS

(

)

 δ(n−1 ) 

2 

 n−1  = 

= 



=  e  j   1 2 

· 

( )

(8.13) 

 e  j δ  − 1 

1 

 e  j   1   δ 

 δ 

 δ 

sin 

 δ 

2 

 e  j   1 2  −  e−  j   1 2 

2 

Inserting  (8.13) into (8.5)  results  in (

) 

sin  1   δn 

 E

 δ(n−1 )] 

2 

sum  =  ˆ

 E e−  jωt  e  j[ kr 1+ 1 2 

· 

( )  , 

(8.14) 

sin  1   δ 

2 

and  using  the  grating  (8.1), we  obtain 

 .s 

 . 

=

 S 

sin   θ =

 . 

(8.15) 

 d 

 (n  − 1 )d 

We  can  define  a  distance   R   in  Fig.  8.4  between  the  grating  center  and  a  detector according  to  (8.16). 
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 .S 

 R  =  r 1  +

(8.16) 

2

```` 

1   (n−1 )d   sin   θ 

2 

Thus,  using  sin   θ =   .s  =   δ   (m  = 1 ),  we  obtain  for  first-order  diffraction d 

 kd 

1 

 δ 

 R  =   (n  − 1 )  +  r

 (n−1 )δ]

1 ,  and  e  jk R  = e  j[ kr 1+ 1 2 

 . 

(8.17) 

2 

 k 

The  result  of  the  summation  of  the  individual  electric  field  contributions  then  is (

) 

sin  1   δn 

 E

2 

sum  =  ˆ

 E e  j(k R− ωt) · 

( )

(8.18) 

sin  1   δ 

2 

An  optical  detector  such  as  the  photodetectors  described  in  Sect.  7.4.4  of  Chap. 7 

only  measures  the  light  intensity   I   which  is  proportional  to  the  square  of  the expression  according  to  (8.18), i.e.,  I  ∝ | E sum|2 . 

(

) 

sin2 1   δn 

 I  =  I

2 

0 

( )

(8.19) 

sin2 1   δ 

2 

In  practical  use,  diffraction  gratings  are  contained,  e.g.,  in  spectrometers  for  wavelength  analysis.  Herein,  a  transmission  grating  adapted  for  operating  at  arbitrary angles  of  incidence  according  to  Fig. 8.5  may be used. 

The  mutual  phase  shift  between  each  to  adjacent  beams  in  the  situation  depicted in  Fig. 8.5  reads  as 

 δ

2 π 

=  k  ·  .s  = 

 d( sin   θ

 λ

1  + sin   θ 2 )

(8.20) 



A  spectrometer  operated  with  a  transmission  grating  shown  in  Fig. 8.5  has  a  large geometry  compared  to  a  spectrometer  operated  with  a  reflection  grating  shown  in Fig. 8.6.  Thus,  e.g.,  for  monochromators,  reflection  gratings  are  preferred,  the  phase shift  in  this  case  being 

 δ

2 π 

=  k  ·  .s  = 

 d( sin   θ

 λ

1  − sin   θ 2 )

(8.21)



Configurations  of  monochromators  thus  are  mainly  in  reflection  mode,  wherein two  typical  configurations  are  shown  in  the  following  figures,  i.e.,  the  Ebert configuration  shown  in  Fig. 8.7  and  the  Czerny-Turner  configuration  shown  Fig. 8.8. 

Resolution power 

Regarding  the  reflection  grating  defined  above,  for  constant  angle  of  incidence   θ 1, the  output  angle   θ 2  changes  with  wavelength   λ according  to  (8.22)  such  that

[image: Image 61]

[image: Image 62]
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Fig. 8.5  Transmission 

grating  operated  at  arbitrary 

angles  of  incidence

Fig. 8.6  Reflection  grating 

operated  at  arbitrary  angles 

of  incidence

[image: Image 63]

[image: Image 64]
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Fig. 8.7  Monochromator  in 

Ebert  configuration 

Fig. 8.8  Monochromator 

according  to  Czerny-Turner 

setup

 θ 1  = const .  

|

[ 

]|

 .λ 

|

|

≈  d 

 d 

 d 

|

 ( sin   θ

|

· cos   θ

 .θ

| 

1  − sin   θ 2 )  | = 

2 

2 

d θ 2   m 

 m 

→  .θ 2  =  .λ ·

 m 

; 

(8.22) 

 d  · cos   θ 2 

On  the  other  hand,  as  can  be  deduced  from  (8.19),  the  maxima  of  the  diffraction pattern  are  at   δ  =  2 πm,  where   m  =  0,  ±  1,  ±  2,  ±  3  is  the  diffraction  order. 

Moreover,  a  respective  side  minimum  adjacent  to  each  main  maximum  is  separated by   .δ = 2 π/ n.  Thus,  for  the  reflection  grating  and  for  the  monochromator  setups, respectively,  we  can  evaluate  the  resolving  power  of  such  kind  of  instrument  by applying  the  Rayleigh  criterion  introduced  in  Sect. 7.3.4  of  Chap. 7.  Herein,  the Rayleigh  criterion  prescribes  that  two  diffraction  patterns  obtained  from  different wavelengths  can  be  discriminated  if  they  are  not  too  close  to  each  other,  i.e.,  the main  maximum  of  one  diffraction  pattern  coincides  with  the  first  side  minimum  of
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the  other  diffraction  pattern,  see  also  Fig. 7.38.  A  separation  in  phase  difference   .δ 

thus  can  be  evaluated  according  to  (8.23). 

 .δ

2 π 

2 π 

= 

and   δ = 

 d( sin   θ 1  − sin   θ 2 )

(8.23) 

 n 

 λ 

Thus,  we  get 

 .δ

2 π 

= 

 d  · cos   θ

 λ

2  ·  .θ 2 . 

(8.24) 



Then,  by  combining  the  above  relations  (8.23)  and  (8.24),  we  obtain 

 .δ

2 π 

2 π 

= 

 d  · cos   θ

(8.25) 

 λ

2  ·  .θ 2  = 



 n

`

``

` 

 .θ 2=   λ 

 n· d·cos   θ 2 

By  combining  the  result  of  (8.22)  with  the  result  of  (8.25),  we  obtain,  after elimination  of   .θ 2 

 λ 

RP  = 

=  n  ·  m

(8.26) 

 .λ 

which  is  the  resolving  power  RP  of  the  diffraction-based  monochromator.  The  relation  (8.26)  indicates  that  the  resolving  power  RP  is  only  dependent  on  both  the number  of  slits   n   and  the  diffraction  order   m   in  which  the  diffracted  light  is  observed (Fig. 8.9). 
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2 

Fig. 8.9  Wavelength  resolution  of  a  diffraction-based  spectrometer  according  to  the  Rayleigh criterion
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8.2  Speckle Interferences 

The  present  section  of  this  chapter  is  devoted  to  the  study  of  technical  surfaces having  a  surface  roughness  in  a  scale  approximately  equivalent  to,  or  larger  than,  the wavelength  of  incident  light.  Thereby,  most  of  the  interaction  between  light  and  a measurement  object  occurs  via  a  rough  surface.  The  light  reflected/scattered/refracted from  the  rough  surface  under  investigation  is  used  for  acquiring  measurement  data relevant  for  surface  analysis.  In  this  context,  mainly  multiple-beam  interference occurs,  the  fundamentals  of  which  have  been  presented  in  Sect. 8.1. In  Sect. 8.2, the  fundamentals  of  speckle  interferences  are  presented.  Then,  Sect. 8.3  relates  to the  most  important  speckle-based  surface  measurement  devices.  Future  applications and  conclusions  may  readily  appear  after  reading  this  chapter  and  may  be  related  to sections  of  the  other  chapters.  In  particular,  basic  concepts  of  interferometry  elabo-rated  in  Sect. 7.5  of  Chap. 7  will  be  taken  into  account.  In  this  respect,  speckle-based measurement  technology  can  be  regarded  as  referring  to  multiple-beam  interference discussed  in  Sect. 8.1.  In  order  to  provide  a  broad  overview  on  measurement  tools based  on  speckle  techniques,  at  first  an  introduction  of  fundamentals  of  speckles for  an  application-oriented  design  of  speckle  measurement  systems  is  provided,  and then  the  most  important  measurement  arrangements  for  extensive  surface  analysis are  presented. 

 8.2.1 

 The  Speckle  Effect 

When  coherent  light  such  as  laser  light  is  incident  onto  a  rough  surface,  a  granular structure  is  observed  in  the  light  reflected  or  scattered  from  that  surface.  The  granular  structure  in  coherent  light  originating  from  the  rough  surface  is  observed  as  a 

“speckled”  intensity  distribution  in  the  image  plane  of  a  detector  array.  This  so-called speckle  effect  has  been  studied  since  a  long  time  [1–3,  6], and  in  the  meantime,  many applications  exist. 

Objective speckles 

Light  reflected/scattered  from  the  rough  surface  generates  a  standing  wave  field  in space  due  to  the  coherence  of  the  incident  light.  Thereby,  the  generation  of  speckles can  be  regarded  as  a  kind  of  statistical  multiple-beam  interference  as  shown  in (Fig. 8.10b)  (see  also  Sect. 8.1  of  this  chapter)  (Fig. 8.10). 

Optical  sampling  of  a  measurement  object  in  order  to  reconstruct  the  object  in  3D 

is  provided  by  different  speckle-based  measurement  techniques.  If  the  roughness  of  a surface  is  in  the  order  of,  or  larger  than,  the  wavelength  of  the  incident  light  wave,  as  is the  case  for   technical  surfaces,  we  observe  constructive  and  destructive  interference of  coherent  light  incident  onto  that  surface  of  the  measurement  object.  This  is  due  to the  difference  in  the  height  of  surface  structures  of  the  illuminated  technical  surface, which  results  in  a  phase  difference  between  the  individual  reflected  light  beams. 

[image: Image 65]

[image: Image 66]
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Fig. 8.10  Light  reflection:  from  mirror  (a)  to  optically  rough  surface  (b) As  such,  the  reflected/scattered  beams  at  the  technical  surface  may  interfere  with one  another.  In  most  cases,  the  speckle  pattern  has  a  contrast  of  100%  such  that  the bright  and  the  dark  speckles  exhibit  an  approximately  uniform  distribution.  A  surface which  has  a  surface  roughness  larger  than  the  wavelength  of  the  incident  light  and  its influence  on  the  scattering  process  of  an  incident  coherent  light  beam  are  elucidated in  Fig. 8.11. 

In  order  to  evaluate  an  average  size  of  speckles  contained  in  the  statistical  speckle pattern,  we  have  to  discriminate  between  so-called   objective   speckles  and  so-called Fig. 8.11  Optically  rough  surface  and  its  influence  on  the  reflection  of  coherent  light  having wavelength   λ 

[image: Image 67]
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 subjective   speckles.  The  speckle  sizes  then  can  be  estimated  based  on  simple  geometrical  and/or  wave  considerations.  An  idea  of  the  speckle  structure  observed  on  a  screen can  be  obtained  if  we  apply  the  concept  of  multiple-beam  interference  discussed herein  above  with  respect  to  a  diffraction  grating  (see  Sect. 8.1).  As  indicated  in Fig. 8.12, each  two  scattering  elements   A   and   B,  respectively,  may  generate  an  individual  diffraction  pattern.  The  superposition  of  many  of  these  diffraction  patterns can  then  be  regarded  as  a  speckle  pattern.  A  typical  size  of  the  generated  speckles   S 

may  then  be  derived  from  similar  conclusions  as  compared  to  (8.1)  in  combination with  Fig. 8.3  regarding  the  basic  setup  of  a  diffraction  grating,  see  (8.27). 

 m  ·  λ 

 S 

sin   .  = 

≈ 

(8.27) 

 d 

 Z 

In  light  reflected  from  a  rough  surface,  only  first-order  diffraction  ( m  = 1)  can normally  be  observed  with   Z»S   and   d   being  the  size  of  the  spot  illuminated  by  the laser  beam.  The  objective  speckle  size   S   may  then  be  determined  according  to  (8.28). 

 Z  ·  λ 

 S  = 

(8.28) 

 d 

If  a  large  number  of  pairs  of  scattering  elements   A,  B   are  used  for  combining  their diffraction  pattern  onto  the  screen  in  the  observation  plane,  a  speckle  pattern  such  as the  one  shown  in  the  photograph  of  Fig. 8.13  is  obtained.  It  has  to  be  noted  that  the screen  in  the  observation  plane  has  been  photographed,  not  the  scattering  surface. 

Thereby,  the  photograph  is  a  representation  of   objective   speckles. 

Fig. 8.12  Speckles  and  diffraction:  the  generation  of  objective  speckles  from  diffracted  light  [3, 4] 

[image: Image 68]

[image: Image 69]

170

8

Speckle Measurement Systems

Fig. 8.13  Photograph  of  a 

speckle  pattern 

Another  approach  for  determining  the  size  of  objective  speckles  is  the  evaluation  of optical  path  differences  between  optical  beams  originating  from  scattering  elements A,  B   using  geometrical  optics.  Figure  8.14  illustrates  a  simple  setup  wherein  the rough  measurement  surface  is  located  again  at  a  distance   Z   from  the  observation screen. 

Fig. 8.14  Generation  of 

objective  speckles
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Using  (8.29)  and  (8.30), respectively,  the  respective  optical  path  differences  are obtained.  Herein,  using  geometrical  optics,  the  geometric  distances  are  different  from each  other  such  that  constructive  and  destructive  interferences  can  occur.  According to  (8.29),  the  optical  path  difference  on  an  observation  screen  at  location   a   is  denoted as  OPD1.  In  the  following,  Z  is  assumed  to  be  large  as  compared  to  S  and/or  d. 
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(  )
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1 
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1   d 2 

 Aa  =  Z;  Ba  =   Z 2  +  d 2 2  ≈  Z   1  + 
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(8.29) 
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 Z 

2   Z 

On  the  other  hand,  the  optical  path  difference  OPD2  at  a  location   b   on  the  screen between  two  representative  optical  beams  is  given  as  in  (8.30). 
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OPD2  = 

 d 2  +  S 2  − 2 Sd  −  S 2 = 

 d 2  − 2 Sd 

(8.30) 

2 Z 

2 Z 

The  average  size  of  one  objective  speckle  may  now  be  defined  as  corresponding to  a  phase  difference  of  2 π between  the  expressions  OPD1  and  OPD2  in  (8.29)  and 

(8.30),  respectively.  Thus,  (8.31)  provides  the  same  speckle  size   S   as  has  been  derived with  respect  to  the  model  of  the  diffraction  grating  based  on  (8.28)  above. 

OPDtot  = OPD1  − OPD2  → 

 .φ

2 π 

! 

=  k  · OPD

=

 tot  = 

 ( OPD

2 π 

 λ

1  − OPD2 ) 



2 π  1  ( 

)  ! 

 λZ 

 d 2  −  d 2  + 2 Sd  = 2 π →  S  = 

(8.31) 

 λ  2 Z 

 d 

It  is  noted  here  that  the  average  diameter   S   of  an   objective   speckle  in  the  statistical speckle  pattern  observed  on  a  screen  is  linearly  dependent  on  the  distance   Z   between scattering  surface  and  imaging  plane  and  is  inversely  proportional  to  the  laser  spot  on the  scattering  surface.  Thus,  objective   speckles  cannot  be  used  for  surface  parameter measurement.  In  some  cases,  however,  a  laser  focus  position  of  a  focused  laser  beam can  be  determined  by  measuring  a  maximum  size  of  objective  speckles. 

Subjective speckles 

In  speckle  measurement  techniques  such  as  speckle  interferometry,  an  optical imaging  system  such  as  a  simple  lens  is  used  for  imaging  a  surface  area  under  investigation,  onto  an  image  detector.  In  many  cases,  this  image  detector  is  provided  as  a charge-coupled  device  (CCD)  representing  a  two-dimensional  light-sensitive  array of  detector  elements  (pixels).  Figure  8.15  represents  the  situation  where  coherent
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Fig. 8.15  Rayleigh  criterion  and  subjective  speckles 

light  scattered  from  a  rough  surface  is  imaged  onto  an  image  plane  by  means  of  an imaging  optics.  In  particular,  light  from  surface  elements   A   and   B   is  imaged  in  form of  the  diffraction  patterns   a   and   b,  respectively,  onto  the  screen  located  in  the  image plane.  The  diameter  of  the  aperture  of  the  imaging  system  amounts  to   D. 

 8.2.2 

 Resolution  Limit 

The  situation  illustrated  in  Fig. 8.15  is  comparable  to  the  situation  of  Fig. 7.37 

discussed  in  the  frame  of  Chap. 7,  Sect. 7.3.4, which  represents  the  resolution  criterion according  to  Rayleigh.  In  other  words,  we  again  obtain  two  diffraction  patterns,  a and   b,  according  to  Fig. 8.15  for  each  of  the  light  emitting  surface  points   A   and B,  respectively.  Figure  8.16  further  details  the  Rayleigh  criterion  applied  to  speckle images  resulting  from  coherent  light  of  a  laser  beam  scattered  from  a  rough  surface. 

Herein,  the  Rayleigh  criterion  may  then  be  defined  in  such  a  way  that  two  diffraction patterns  obtained  from  object  points  according  to  Fig. 7.37  can  be  discriminated  if they  are  not  closer  to  each  other  than  in  the  situation  shown  in  Fig. 7.38. In  other words,  the  main  maximum  of  one  diffraction  pattern  coincides  with  the  first  side minimum  with  the  other  diffraction  pattern  (airy  disks).  The  separation   .  is  obtained from  the  intensity  distribution  based  on  the  Bessel  function   J 1  of  first  order,  first  kind (

)2 

[5]. To  this  end,  the  intensity  distribution   I  (γ  ) =  I 2  J 1 (γ  ) 

0 

 γ

according  to  [5]  with 



its  first  minimum  at   γ  = 3 .  83  is  used.  The  minimum  observation  angle   ε provided by  the  detection  optics  (lens,  aperture)  results  in  a  separation   .  of  the  two  intensity maxima  at   a   and   b,  respectively,  see  Fig. 7.37. Applying  (7.31)  to  the  situation  of Fig. 8.16,  we  can  evaluate  the  size  of  subjective  speckles  according  to  (8.32)  and 

(8.33). 
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 λ 

 ε = 1 .  22 

Rayleigh  criterion  with   D  = aperture  diameter 

 D 

 D/ 2 

NA  = 

numerical  aperture  with   o  = object  distance 

 o 


 λ 

 i 

 d  ≈ 0 .  61 

→  .  ≈  i  ·  ε ≈ 1 .  22 λ 

(8.32) 

NA 

 D 

As  can  be  seen  from  the  drawing  of  Fig. 7.37  in  connection  with  Fig. 8.15, the quantity   .  derived  from  the  Rayleigh  criterion  can  be  approximated  by  half  of  the  size S sp  of   subjective   speckles.  Thereby,  the   subjective   speckle  size  according  to  (8.33) is only  dependent  on  the  imaging  optics,  i.e.,  on  the  image  distance   i   and  on  the  aperture diameter   D.  In  speckle  measurement  systems,  in  general,  the   subjective   speckle  size S sp  cab  be  adjusted  by  adjusting  the  aperture  diameter   D. 

 i 

 S Sp  = 2 .  = 2 .  44 λ 

(8.33) 

 D 

Figure  8.16  illustrates  again  the  generation  of  subjective  speckles  in  the  image plane. 

Further  details  of  an  imaging  system  for  observing  subjective  speckles  with  an indication  of  the  incident  light  onto  the  surface  to  be  measured  and  a  CCD  camera are  illustrated  in  Fig. 8.17. 

Fig. 8.16  Generation  of  subjective  speckles  in  the  image  plane,  the  speckle  image  being  generated by  light  reflection  from  a  rough  surface 

[image: Image 70]

174

8

Speckle Measurement Systems

Fig. 8.17  Rayleigh  criterion  and  the  resolution  limit  of  an  optical  speckle  imaging  system; reflectivity  of  the  surface:   ρ 

The  resolution  limit  obtained  above  may  further  be  used  for  evaluating  the  light intensity  at  the  detector,  CCD  array,  in  a  speckle  measurement  system  according to  Fig. 8.17. As  has  been  shown  in  the  previous  discussions,  the  abovementioned resolution  limit  is  based  on  the  optical  setup  in  combination  with  the  aperture  width. 

Further  consequences  with  respect  to  the  maximum  intensity  obtainable  at  a  detector are  related  to  aperture  width  function  as  well.  Using  the  reflectivity  of  a  rough  surface ρ and  the  light  power   P 0  incident  onto  the  surface  to  be  measured,  the  intensity  at the  aperture   I a  is 

 I a  =  ρo−2  ·  P 0

(8.34) 

Herein,  it  is  assumed  that  the  laser  power   P o  that  is  incident  onto  the  detection  lens is  detected  by  the  camera.  Thus,  with   P det  =  P a,  we  have  for  aperture  diameter   D, π 

 π   D 2 

 I det  ·  A det  =  Ia  · 

·  D 2  →  I det  =  Ia  ·  · 

 . 

(8.35) 

4 

4 

 A det 

The  CCD  array  (having  pixel  size   .  x  det)  exhibits  a  spatial  frequency   f det  =  1 

 . 

, 

 x det 

wherein  the  maximum  detectable  spatial  frequency  resulting  from  the  speckle  effect is  given  the  sampling  theorem  according  to  (8.36). 

1 

 f det 

 f max  ≈ 

 <  

(8.36) 

 S sp 

2 

Thereby,  we  have 

 D 

 < f

det   ,  and

(8.37)

2 .  4  ·  λ ·  i 

2 
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⇒  i 

0 .  8 



 >  

 . 

(8.38) 

 D 

 λ ·   f det 

The  inequality  (8.38)  shows  that  the  quotient  of  the  image  distance   i   and  aperture diameter   D   of  the  detection  optics  is  only  dependent  on  the  incident  wavelength   λ 

and  the  spatial  frequency  of  the  detector   f   det.  It  is  this  spatial  resolution  limit  which determines  the  minimum  requirement  for  the  incident  intensity   I 0.  This  minimum intensity  is  required  so  that  an  adequate  detection  intensity   I det  can  be  recorded. 

It  is  assumed  that  the  intensity  is  being  averaged  out  by  the  speckle  pattern.  The scattering/refraction/diffraction  in  the  half  space  is  proportional  to  1 /z 2  with   z   being the  distance  from  the  measurement  plane.  The  reflection  of  the  surface  is  dependent on  the  material  and  is  given  by   ρ s.  The  surface  area  of  the  illuminated  measurement object  has  the  size  of   A meas.  The  camera  surface  is  given  through   x det  as   A det. The laser  power  incident  on  the  measurement  object  is   P 0  for  the  following  evaluations. 

Hence,  the  intensity  at  the  position  of  the  aperture   I a  with  diameter   D  (at  the  detection objective)  is  given  according  to  (8.34) as  

 Pa 

 I a  = 

=  ρo−2  ·  P 0 . 

(8.39) 

 A a 

With  the  imaging  scale   m   of  the  detection  optics  and  the   F-number   of  the  detector as  in  (8.40), 

/

 A det 

 F 

1 

 i 

 m  =

→  F  =  = 

≈   , 

(8.40) 

 A meas 

# 

2  ·  N A  

 D 

we  can  calculate  the  intensity  that  is  incident  onto  the  detector. 

 π 

 D 2 

 π 

 I det  =   ρ  I 0 m−2 

=   ρ  I 0  F−2 

(8.41) 

4 

 o 2 

4 

In  (8.41), we  use   I 0  ≈   P 0 

and   m−2  =   o 2  .  Due  to  the  sampling  theorem 

 A meas 

 i  2 

according  to  (8.36), the  following,  approximated,  inequality  holds: i 

( 

) 

 F  ≈ 

≥   (λ ·   f det )−1  , 

(8.42) 

 D 

such  that  a  maximum  intensity  at  the  (CCD)  detector  is 

 I det  ≤ 0 .  37 πρ(λ   f det ) 2   I 0 . 

(8.43) 

Thereby,  according  to  (8.43), the  ratio  between  detected  intensity   I det  and  incident intensity   I 0  thus  is  only  dependent  on  the  surface  reflectivity   ρ of  the  measurement object  (having  a  rough  surface  resulting  in  speckled  reflection),  the  illumination wavelength   λ,  and  the  spatial  frequency   f   det  of  the  detector.  Herein, (8.43)  is  denoted

[image: Image 71]
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Fig. 8.18  Definition  of  the  sensitivity  vector  . 

 k   in  relation  to  a  surface  deformation  (displacement

−

→

 d  (x,   y) of  surface  coordinates   A  ( x,  y) to   B  ( x,  y)),  see  also  [3] 

as  the   awk1  criterion.  The  kernel  of  (8.43)  is  responsible  for  both  the  optical  resolution required  for  fully  acquiring  a  speckled  image  and  the  maximum  intensity  which  can be  obtained  at  an  optical  detector  designed  for  sensing  the  speckled  image. 

 8.2.3 

 The  Sensitivity  Vector 

−

→

−

→

If  the  wave  vectors  of  the  incident  wave  (  k 1  )  and  scattered/reflected  wave  (  k 2  )  are  not parallel  or  anti-parallel,  respectively,  as  shown,  e.g.,  in  the  Michelson  interferometer setup  of  Chap. 7, Sect. 7.5.4, Fig. 7.70,  then  we  have  to  determine  the  sensitivity vector  according  to  Fig. 8.18.  The  sensitivity  vector  . 

 k   is  obtained  by  calculating  the 

vector  difference  between  the  incident  wave  vector  and  the  scattered  wave  vector. 

 .  

 .  

 .  

The  sensitivity  vector   k  =   k   1  −  k   2  may  be  used  to  determine  the  phase  shift  caused by  surface  displacement  . 

 d   between  a  basic  surface  status  ( A)  and  a  shifted  surface status  ( B),  according  to  (8.44)  in  view  of  Fig. 8.18. 

(

) 

 .  

 .  

 .  

 .    .  

.  .  s (x,   y) =   k   1  −  k   2  ·  d  (x,   y) =  k  ·  d  (x,   y) (8.44) 

Herein,  x  and  y   are  the  surface  coordinates  of  the  surface  to  be  measured. 

1  awk:  aperture  width  kernel. 
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8.3  Speckle Interferometer Setups 

Using  speckle  measurement  techniques  for  surface  detection  offers  a  wide  range of  applications  for  the  analysis  of  technical  surfaces.  Roughness,  deformation,  and shape  of  surfaces  are  major  issues  in  quality  assurance,  material  processing,  and sensor  properties  of  various  kinds  of  surfaces.  New  developments  in  laser  and  camera technology  boost  applications  for  speckle-based  measurement  of  technical  surfaces. 

Speckle  measurement  techniques  have  emerged  in  various  applications.  Nowadays, real-time  measurement  is  feasible  due  to  fast  digital  cameras  and  compact  laser sources.  The  measurement  methods  are  generally  contact-free  and  have  a  high  spatial and  temporal  resolution.  Laser  measurement  systems  are  employed  in  areas  like  material  testing  to  measure  defects  in  technical  surfaces,  in  manufacturing  measurement techniques,  environment  measurement  techniques,  medical  measurement  techniques, and  in  biochemical  sensing,  to  name  a  few.  Through  the  advancement  in  the  digital camera  technology  and  the  use  of  modern  laser  systems,  we  are  seeing  an  increasing use  of  optical  two-dimensional  measurement  processes  in  the  measurement  of  technical  surfaces  even  under  industrial  and  rough  environment.  In  this  section,  we  will address  some  setups  for  speckle  interferometry  which  can  be  used  to  measure  out-of-plane  deformation,  in-plane  deformation,  and  the  shape  of  measurement  objects having  rough  surfaces.  At  first,  Fig. 8.19  depicts  the  difference  between  speckle photography  (a)  and  in  speckle  interferometry  (b).  Herein,  speckle  interferometry requires  a  reference  beam  which  is  superposed  onto  a  detected  speckle  pattern,  both being  incident  onto  the  image  plane  of  a  camera. 

Speckle  photography  and  the  associated  determination  of  the  speckle  size  have been  covered  in  Sect. 8.2.1  of  this  chapter.  In  the  following  sections,  we  will  focus on  specific  speckle  interferometry  setups  which  can  be  used  for  the  determination of  relevant  surface  parameters.  These  parameters  include  out-of-plane  deformation, Sect. 8.3.1,  in-plane  deformation,  Sect. 8.3.2,  and  surface  shape  analysis,  Sects. 8.3.3 

and  8.3.4. The  basic  principle  of  a  superposition  of  an  object  wave  with  a  reference wave  and  the  associated  data  processing  are  depicted  in  Fig. 8.20. 

Figure  8.21  indicates  the  difference  among  shape  measurement,  surface  roughness,  and  deformation  measurement.  Thereby,  deformation  measurement  can  be regarded  as  the  difference  measurement  between  two  different  shapes,  as  has  been mentioned  above. 

 8.3.1 

 Out-of-Plane  Speckle  Interferometry 

At  first,  deformation  measurement  using  an  out-of-plane  speckle  interferometer  wave 

−

→

 (k 2   ) rometer  shown  in  Fig. 8.22  is  discussed. 

The  Michelson  interferometer  shown  in  Fig. 8.22  contains  reference  and  measurement  objects  having  technical  surfaces.  Their  surface  roughness   ρ is  in  the  order  of the  incident  wavelength,  and  their  surface  structure  is  given  by  the  parameter   dz. In

[image: Image 72]

[image: Image 73]
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Fig. 8.19  Speckles  in  optical  interferometry:  a speckle  photography, b speckle  interferometry Fig. 8.20  Superposition  of  light  waves:  interference  effect,  BS  = beam  splitter order  to  split  the  incident  laser  beam  into  two  beams,  we  can  use  a  beam-splitting cube  as  shown  in  Fig. 8.22.  In  the  image  plane,  we  can  observe  the  speckle  pattern generated  by  the  superposition  of  the  reference  speckle  pattern  and  measurement object  speckle  pattern.  This  superposition  again  is  performed  by  the  beam  splitter. 

[image: Image 74]
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Fig. 8.21  Surface  structure  measurement:  roughness,  deformation  and  shape Fig. 8.22  Michelson-type 

electronic  speckle  pattern 

interferometer  (ESPI)

The  reference  wave  and  its  components  are  denoted  with  the  index  “r”,  while the  measurement  object  wave  and  its  components  are  denoted  with  the  index  “s” 

( s  =  surface  to  be  measured).  The  reflected/scattered/diffracted  waves  from  the measurement  object  ( s)  and  the  reference  object  ( r)  are  summarized  in  (8.45)  and 

(8.46). 

 E r (x,   y) =  ˆ

 E r (x,   y) ·  e  j.  r (x,y) 

(8.45) 

 E s (x,   y) =  ˆ

 E s (x,   y) ·  e  j .  s (x,y) 

(8.46) 

Similar  to  (7.123)  which  has  been  used  during  the  discussion  of  the  Michelson mirror  interferometer  in  Sect. 7.5.4  of  Chap. 7,  we  now  have  the  expression  (8.47). 
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( 

) 

 I  = const  ·  (E s  +  E r ) ·   E∗ +  E∗ 

(8.47) 

s 

r 

Using  the  relations  (8.48)  and  (8.49), I r  = const  · | E r|2  and   I s  = const  · | E s|2 

(8.48) 

( 

) 

 E s   E∗ +  E∗  E

 e  j(.  s− .  r ) +  e  j(.  r− .  s ) ,  with r 

s 

r  = |  E s| · |  E r| · 

. 

|

1 

 E s| · | E r| = 

 I s  ·  I r , 

(8.49) 

const 

we  obtain  expression  (8.50)  consisting  of  two  constant  components  (resulting  from the  object  and  reference  surfaces)  and  a  mixed  component.  This  mixed  component is  also  known  as  the  interference  term. 

. 

 I  (x,   y) =  I r (x,   y) +  I s (x,   y) + 2   I r (x,   y) ·  I s (x,   y) 

· cos[ .  s (x,   y) −  .  r (x,   y)]with .s(x,   y) =  .s(x,   y) +  .s(x,   y)  (8.50) It  is  now  assumed  that  the  measurement  object  experiences  a  displacement   dz  ( x, y) in the   z-direction.  Through  the  superposition  onto  the  (unchanged)  reference  object wave,  we  get  a  new  speckle  pattern.  This  speckle  pattern  contains  phase  (difference) information  about  the  speckle  pattern  in  its  original  state.  Now,  we  can  compare  the two  speckle  recordings.  In  this  simplified  case,  the  phase  shift  resulting  from  the displacement   dz   is  according  to  (8.51). 

 .. 

4 π 

s (x ,   y) = 2  ·  k  ·  dz  = 

·  d

 λ

 z (x ,   y)

(8.51) 



Herein,  x  and  y  represent  the  surface  coordinates.  The  factor  “2”  in  (8.51) is due to  the  fact  that  the  optical  path  difference  of  the  object  beam  with  respect  to  the reference  beam  is  twice  the  geometrical  displacement   dz.  In  non-displaced  status (basic  status),  we  detect  a  first  speckle  interferogram   I 1  according  to 

. 

 I 1 (x,   y) =  I r  +  I s  + 2   I r   I s  · cos[ .  s0 (x,   y) −  .  r (x,   y)] . 

(8.52) 

A  second  speckle  interferogram   I 2  is  given  by  (8.53)  and  is  captured  after  a displacement  of   dz  ( x,  y)  resulting  in  a  phase  shift   ..  s  according  to  (8.51). 

. 

 I 2 (x,   y) =  I r  +  I s  + 2   I r   I s  · cos[ .s 0 (x,   y)+ .  .  s (x,   y) −  .  r (x,   y)]

(8.53) 

An  electronic  camera  in  the  image  plane  of  the  setup  shown  in  Fig. 8.22  provides the  possibility  of  correlating  two  electronically  detected  images.  In  particular,  the difference  image  resulting  from  the  difference  in  intensities  presented  in  (8.52)  and 

(8.53)  can  be  provided.  In  (8.53), the  phase  shift   .  s  consists  of  two  components,  i.e., 
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a  constant  unknown  phase   .  s0  of  the  object  beam  and  the  phase  shift   ..  s  resulting from  the  surface  displacement   dz  ( x,  y).  The  unknown  phases  of  the  object  beam  and of  the  reference  beam,  .  s  and   .  r,  respectively,  are  summarized  by   .   = .  s  −  .  r . 

We  obtain  for  an  out-of-plane  displacement  with   d  =  dz  ( x,  y). 

 .  s (d) −  .  r  =  (.s 0  −  .  r ) +  ..  s (d) =  .  +  ..  s (d) (8.54) 

The  acquisition  of  two  image  intensity  distributions   I 1 (x,y)   and   I 2 (x,y),  which  are stored  in  a  computer  memory,  can  be  used  for  image  intensity  subtraction  such  that the  difference  of  the  relations  according  to  (8.52)  and  (8.53)  yields 

. 

|| [ 

] 

[ 

]||

 . 

1 

1 

 I  = | I

|

|

1  −  I 2| = 4 

 I r  ·  I s |· sin   .  +   ..  s (d)  · sin   ..  s (d) 2 

2 

|

(8.55) 

The  difference  image  according  to  (8.55)  exhibits  maxima  for   ..  s  =  ( 2 n  + 1 )π 

and  minima  for   ..  s  =  2 n  π  with   n  = 0,  ± 1,  ± 2,  ± 3,  ± 4  ….  In  this  way, resulting  interference  fringes  represent  surface  contour  line  plots  of  a  displacement of  the  measurement  surface. 

A  more  versatile  arrangement  of  an  electronic  speckle  pattern  interferometer  is the  setup  according  to  the  Mach–Zehnder-type  interferometer  illustrated  in  Fig. 8.23. 

In  this  setup,  an  angle   θ  exists  between  the  incident  wave  vector  and  the  detection wave  vector.  In  this  way,  the  overall  sensitivity  is  slightly  reduced,  but  an  advantage exists  with  respect  to  object  beam  arrangement. 

The  complete  setup  of  the  Mach–Zehnder-type  electronic  speckle  pattern  interferometer  is  illustrated  in  Fig. 8.24,  and  the  relation  among  the  incident  wave  vector, the  detection  wave  vector,  and  the  sensitivity  vector  can  be  seen  in  Fig. 8.25. 

Herein,  the  angle   θ is  decisive  for  the  absolute  value  of  the  sensitivity  vector  using 

(8.56) in view of Fig. 8.25. 

Fig. 8.23  Principle  of  the  superposition  of  measurement  beam  and  reference  beam  in  a  Mach– 

Zehnder-type  electronic  speckle  pattern  interferometer  [3] 
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Fig. 8.24  Mach–Zehnder-type  electronic  speckle  pattern  interferometer  [3] 

Fig. 8.25  Angle  of  incidence  in  a  Mach–Zehnder-type  electronic  speckle  pattern  interferometer  and corresponding  wave  vectors

| |

1  · | |

|.  k | 

2 |

 .  

|−

→| = cos   . 

(8.56) 

| |

 k

2 

2  | 

Applying  the  approximation  for  nearly  normal  incidence  (small  angle   θ ) 

 .  

 .  

 .  

cos   .  = cos2 

− sin2 

≈  cos 2   , 

(8.57) 

2 

2 

2 

the  detectable  phase  shift  as  a  function  of  out-of-plane  displacement   d  ( x,  y)  becomes 

| | |

|

 .  

 .  

 .. 

| | |

|

4 π 

4 π 

s  = −  

|.  k | · | .  d(x,   y) | · cos 

= −    d(x,   y) · cos2 

≈ −    d(x,   y) · cos   ..  

2 

 λ 

2 

 λ 

(8.58) 

As  furthermore  elucidated  in  Fig. 8.26, the  advantage  of  a  Mach–Zehnder-type ESPI  setup  in  the  form  of  a  sensor  head  can  be  seen,  in  particular  for  long-distance measurements. 

A  typical  result  for  an  out-of-plane  surface  deformation  (tilt)  is  illustrated  in Fig. 8.27, as  an  example. 

[image: Image 75]

[image: Image 76]
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Fig. 8.26  Mach–Zehnder-type  measurement  head

Fig. 8.27  Typical  result  of 

an  ESPI-based  deformation 

measurement:  measurement 

surface  has  been  tilted 

A  further  speckle  image  processing  procedure  for  a  measured  deformation  bump is  briefly  illustrated  in  Fig. 8.28. 

In  this  context,  it  is  noted  that  major  noise  reduction  in  speckle  images  is  performed by  a  so-called  phase  shifting  image  processing  method.  Here,  a  control  unit  illustrated  in  Fig. 8.29  provides  a  known,  predetermined  displacement  of  the  reference object  with  respect  to  the  measurement  object.  This  procedure  results  mainly  in  two advantages:  (i)  due  to  the  superposition  of  speckle  images  taken  in  connection  with known  phase  shifts  image  quality  is  dramatically  enhanced,  and  (ii)  the  direction  of surface  deformation  (bump  or  dip)  can  be  unambiguously  determined. 

[image: Image 77]
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Fig. 8.28  Typical  result  of 

an  ESPI-based  deformation 

measurement:  deformation 

bump  with  a original 

difference  image, b after 

noise  elimination,  and  c after 

phase  unwrapping  (3D 

presentation)

Fig. 8.29  ESPI  phase  shifting 

 8.3.2 

 In-Plane  Speckle  Interferometry 

As  has  already  been  mentioned  in  Sect. 8.3.1,  one  specific  advantage  of  interferometry  at  technical  surfaces  is  the  fact  that  coherent  light  incident  onto  that  surface  is reflected,  at  least  in  principle,  into  the  entire  half-sphere,  π,  above  the  surface.  In this  way,  incident  light  reflected  at  the  surface  can  be  detected  at  any  arbitrary  reflection/refraction  angle.  Thereby,  the  difference  angle  between  incident  wave  vector
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Fig. 8.30  Basic  setup  of  an  in-plane  sensitive  speckle  interferometer  [3] 

and  detection  wave  vector  can  be  chosen  to  a  large  extend.  This  results  in  the  fact that  the  associated  sensitivity  vector  as  evaluated  in  Sect. 8.2.3  of  this  chapter,  in view  of  Fig. 8.18,  can  be  adjusted  in  its  direction.  In  this  context,  in-plane  sensitivity  can  be  achieved  if  the  sensitivity  vector  is  oriented  essentially  in  parallel  to  the surface.  A  setup  of  such  kind  of  in-plane  sensitive  speckle  interferometer  is  depicted in  Fig. 8.30. 

In  the  basic  setup  shown  in  Fig. 8.30,  two  incident  laser  beams  having  incident wave  vectors  ->k 11  and ->  k 12,  respectively,  are  arranged  symmetrically  with  respect to  the  optical  detection  axis,  i.e.,  wave  vector  ->k 2  for  image  detection.  In  the  basic drawing  of  Fig. 8.30, the  laser  and  the  beam  splitter,  which  provide  the  two  incident beams,  are  omitted  for  simplification.  Thereby,  two  incident  beams  both  forming angles   θ with  the  optical  axis  generate  two  separate  speckle  patterns.  A  superposition of  the  two  speckle  patterns  yields,  after  image  processing  further  elucidated  below, an  interference  pattern  from  which  an  in-plane  displacement  of  the  surface  under investigation  may  be  determined.  According  to  (8.59)  in  view  of  Fig. 8.31, a first intermediate  sensitivity  vector  ->ka   is  evaluated  representing  the  relation  between the  first  incident  wave  vector  ->k 11  and  the  detection  vector  ->k 2.  Further,  a  second intermediate  sensitivity  vector  ->kb   is  represented  by  the  relation  between  the  second incident  wave  vector ->  k 12  and  the  detection  vector ->  k 2. 

−

→

−

→ −

→

−

→

−

→ −

→

 ka  =  k 11  −  k 2  ;  and   kb  =  k 12  −  k 2

(8.59)

The  measurable  phase  shifts  for  a  displacement ->  d  ( x ,  y)  in  the  measurement plane  (in-plane  displacement)  are  [4] 

−

→

(−→ −→) 

 ..  s1  =  ka  · .  d(x,   y) =   k 11  −  k 2  · .  d(x,   y),  and (8.60)
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Fig. 8.31  Wave  vector  arrangement  for  an  in-plane  electronic  speckle  pattern  interferometer according  to  Fig. 8.30

−

→

(−→ −→) 

 ..  s2  =  kb  · .  d(x,   y) =   k 12  −  k 2  · .  d(x,   y). 

(8.61) 

From  (8.60)  and  (8.61), we  can  easily  obtain  the  resulting  difference  phase  shift, which  amounts  to 

(−→ −→) 

(−→ −→) 

 ..  s  =  ..s 1  −  ..s 2  =   ka  −  kb  · .  d(x,   y) =   k 11  −  k 12  · .  d(x,   y) (8.62) As  can  be  seen  from  Fig. 8.31, the  resulting  sensitivity  vector  is (

) 

. 

−

→ −

→

 k  =   k 11  −  k 12   , 

(8.63) 

and  thus  is  oriented  exactly  in  parallel  to  the  surface  plane,  i.e.,  “in-plane” . The obtainable  phase  shift  is  evaluated  using  the  relation  according  to  (8.64) in view of Fig. 8.31. 

| |

1  · | |

|.  k | 

2 ||−→| = sin   . 

(8.64) 

| |

 k 11 | 

Thus,  by  correlating  the  two  acquired  images  as  in  (8.62), the  resulting  phase shift  reads  as  (8.65), wherein  the  associated  sensitivity  vector  is  shown  in  Fig. 8.31. 

 .. 

4 π 

s  = 

·  d(x,   y) · sin   . 

(8.65) 

 λ 

Herein,  the  resulting  sensitivity  vector  for  in-plane  sensitive  ESPI,  k,  is  the  vector difference  between  the  first  and  second  incident  wave  vectors  ->k 11  and  ->k 12, respectively.  The  in-plane-sensitive  speckle  measurement  system  discussed  in  view of  Figs. 8.30  and  8.31  has  important  practical  applications.  Instead  of  relying  upon

8.3 Speckle Interferometer Setups

187

resistance  strain  gauges,  which  have  to  be  applied  at  the  surface  under  investigation, see  Sect. 3.1  of  Chap. 3,  we  can  just  illuminate  the  surface  with  two  laser  beams  and are  able  to  obtain  a  similar  result.  Thus,  the  non-contact,  in-plane  ESPI  technique  is particularly  useful  for  performing  displacement  sensing  of  sensitive  surfaces,  or  for measuring,  e.g.,  surfaces  at  very  high  temperatures. 

It  is  noted  here  that  in-plane  ESPI  is  related  to  the  so-called  Laser-Doppler Anemometry,  LDA  sensing.  This  LDA  technique  is  used,  e.g.,  for  particle  velocity measurement  of  micrometer-sized  spheres  having  rough  surfaces.  Herein,  the detected  direction  of  velocity  exactly  coincides  with  the  abovementioned  resulting sensitivity  vector  ->k   as  evaluated  in  (8.63) in view of Fig.  8.31. 

 8.3.3 

 Shearing-Image  Speckle  Interferometry 

As  the  name  suggests,  shearing  image  speckle  interferometry  is  based  on  the  detection  of  two  images,  which  include  a  shear  angle.  In  this  context,  it  is  noted  that shearing  ESPI  of  this  section  and  the  synthetic-wavelength  ESPI  of  the  succeeding Sect. 8.3.4  are  adapted  for  shape  measurement  of  surfaces,  whereas  out-of-plane ESPI  and  in-plane  ESPI  of  the  previous  Sects. 8.3.1  and  8.3.2, respectively,  are related  to  deformation  measurement.  The  experimental  setup  for  shearing  ESPI  is illustrated  in  Fig. 8.32. The  required  generation  of  sheared  images  is  provided  by  an arrangement  consisting  of  two  mirrors   m 1  and   m 2,  respectively,  and  a  central  beam splitter.  As  illustrated  in  Fig. 8.32, the  mirror   m 2  is  tilted  with  respect  to  mirror   m1 

by  a  tilt,  or  shear,  angle   ε.  The  two  images,  one  sheared  and  one  non-sheared,  are incident  onto  the  detection  or  images  plane  of  a  CCD  camera  and  are  being  correlated  as  has  been  pointed  out  in  the  previous  Sects. 8.3.1  and  8.3.2.  The  two  images, however,  result  from  different  surface  areas  of  the  measurement  surface   A 1  and   A 2, which  are  combined  at  an  identical  location  onto  the  image  plane   B.  This  superposition  is  elucidated  by  the  exemplified  beam  propagation  rays  shown  in  Fig. 8.32. It is noted  here  that  both  images,  i.e.,  the  sheared  image  and  the  non-sheared  image  are taken  from  the  same  surface:  the  measurement  surface.  Thereby,  both  the  measurement  beam  and  the  reference  beams  are  provided  by  the  measurement  object  which renders  the  setup  less  sensitive  to  vibration  noise  which  otherwise  may  occur  due  to optical  path  differences  between  measurement  beam  and  reference  beam,  see,  e.g., the  out-of-plane  speckle  interferometer  of  Sect. 8.3.1. 

The  two  surface  portions  which  are  imaged  onto  the  CCD  camera  are  displaced  by an  amount   s  =  x 1   – x 2  indicated  by  surface  location   A 1  resulting  from  the  non-sheared image  and  surface  location   A 2  resulting  from  the  sheared  image.  In  the  following, it  is  assumed  that  light  illumination  and  detection  are  both  oriented  approximately perpendicular  to  the  surface,  i.e.,  incident  vector ->k 1  is  approximately  anti-parallel to   detection  vector ->k 2,  thus 

−

→

−

→

||(−→ −→)|| 4 π 

 k 1  ↑↓   k 2  ⇒ |   k 1  −  k 2  | ≈ 

 . 

(8.66)

 λ 
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Fig. 8.32  Setup  of  a  shearing  speckle  interferometer  according  to  1, 4; dm  = measurement  distance As  before,  the  individual  phase  shifts  related  to  the  two  detected  images  are  [4] 

(−→ −→) 

 ..  1  =   k 1  −  k 2  · .  d(x 1 )

(8.67) 

for  surface  area   A 1  and 

(−→ −→) 

 ..  2  =   k 1  −  k 2  · .  d(x 2 ). 

(8.68) 

The  resulting  difference  phase  determined  from  (8.67)  and  (8.68)  then  reads  as (−→ −→)  [

] 

 .. 

. 

s  =  ..  1  −  ..  2  =   k 1  −  k 2 

·   d(x 1 ) − .  d(x 2 )   . 

(8.69) 

Further,  for  small  image  shear,  the  shear  angle   ε can  be  approximated  by  (8.70) 

to  be 

 s 

 s  =  (x 1  −  x 2 ) → tan   ε ≈ 

 , 

(8.70)

 d m 
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wherein   d m  is  the  measurement  distance  between  surface  under  investigation  and  the center  of  beam  splitter  shown  in  Fig. 8.32. Then,  the  first  derivative  of  the  surface shape  is  approximated  according  to  (8.71). 

 dd  ≈  d(x



1 ) −  d (x 2 ) 

(8.71) 

 d x  

 x 1  −  x 2 

Combining  (8.69)  and  (8.71), we  obtain δ

 .. 

4 π   d 

s  = 

·  s

(8.72) 

 λ   δx 

and  find  out  that  the  resulting  fringe  density  represents  the  gradient  (or  steepness)  of the  surface  shape.  It  is  noted  here  that  the  surface  shape  is  not  directly  monitored, but  can  be  evaluated  by  integrating  (8.72).  Relation  (8.72)  is  a  valuable  measurement result  for  many  industrial  applications. 

 8.3.4 

 Synthetic-Wavelength  Speckle  Interferometry 

There  is  one  very  useful  ESPI  technique  adapted  for  practical  applications,  which  is suited  for  direct  shape  measurement  with  adaptable  fringe  sensitivity:  the  so-called synthetic-wavelength  ESPI  [3]. As  the  name  suggests,  the  measurement  method is  based  on  the  generation  of  a  synthetic  wavelength  made  from  individual  laser wavelengths.  In  particular,  two  separate  illumination  wavelengths   λ 1  and   λ 2,  respectively,  are  used  for  illuminating  the  surface  area  of  interest.  The  wavelength  difference,  Δλ,  between  the  two  individual  wavelengths  determines—via  beat  frequency generation—the  value  of  the  resulting  synthetic  wavelength,  which  is  denoted  as   . . 

The  measurement  procedure  for  synthetic-wavelength  shape  measurement  of  rough surfaces  can  be  summarized  as  follows,  at  least  in  principle: 

(a)  provide  an  appropriate  setup  for  out-of-plane  ESPI,  e.g.,  a  Michelson  interferometer,  a  Mach–Zehnder  interferometer,  etc.; 

(b)  during  image  detection,  leave  the  measurement  object  unchanged  (at  rest); (c)  use  the  setup  of  step  (a),  store  a  first  ESPI  image  taken  at  illumination  wavelength λ 1,  in  the  computer  memory; 

(d)  use  the  setup  of  step  (a),  store  a  second  ESPI  image  taken  at  illumination wavelength   λ 2,  in  the  computer  memory; 

(e)  perform  image  intensity  subtraction  of  the  two  images  using  an  appropriate program  code  discussed  below; 

(f)  evaluate  the  obtained  interference  fringe  pattern  to  obtain  the  surface  shape  of the  detected  surface  region. 

A  typical  setup  of  an  electronic  speckle  pattern  interferometer  (ESPI)  operating at  different  wavelengths  is  illustrated  in  Fig. 8.33  [3]. 
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Fig. 8.33  Electronic  speckle  pattern  interferometry  at  two  different  wavelengths  of  the  incident laser  beam  [3] 

The  mathematical  procedure  for  obtaining  a  shape  of  the  measurement  object from  image  intensity  subtraction  (e)  will  be  explained  in  detail  herein  below.  In  the image  plane,  we  again  observe  two  speckle  patterns  generated  by  the  superposition  of the  reference  speckle  pattern  and  measurement  object  speckle  pattern.  The  reference wave  and  its  components  are  denoted  with  the  index  “r”,  while  the  measurement object  wave  and  its  components  are  denoted  with  the  index  “s” ( s  = surface  to  be measured).  The  reflected/scattered/diffracted  waves  from  the  measurement  object  ( s) and  the  reference  object  ( r)  are  summarized  in  (8.73)  and  (8.74). 

 E r (x,   y) =  ˆ

 E r (x,   y) ·  e  j .  r (x,y) 

(8.73) 

 E s (x,   y) =  ˆ

 E s (x,   y) ·  e  j .  s (x,y) 

(8.74) 

In  a  similar  way  as  compared  to  the  discussion  related  to  out-of-plane  ESPI,  we obtain  the  image  intensity  distribution  according  to  (8.75). 

( 

) 

 I  = const  ·  (E s  +  E r ) ·   E∗ +  E∗ 

(8.75) 

s 

r 

Using  the  relations  (8.76)  and  (8.77), I r  = const  · | E r|2  and   I s  = const  · | E s|2 

(8.76) 

( 

) 

 E s   E∗ +  E∗  E

 e  j(.  s− .  r ) +  e  j (.  r− .  s ) ,  with r 

s 

r  = |  E s| · |  E r| · 

. 

| E s| · | E r| = 1 

 I s  ·  I r , 

(8.77)

const 

8.3 Speckle Interferometer Setups

191

we  again  are  able  to  obtain  an  expression  (8.78)  equivalent  to  (8.50)  including two  constant  components  (resulting  from  the  object  and  reference  surfaces)  and an  interference  term. 

. 

 I  (x,   y) =  I r (x,   y) +  I s (x,   y) + 2   I r (x,   y) ·  I s (x,   y) 

· cos[ .  s (x,   y) −  .  r (x,   y)]

(8.78) 

Shape  measurement  of  the  object  under  investigation  now  can  be  performed  by using  (8.78)  for  two  different  wavelengths  being  incident  onto  the  measurement surface,  the  measurement  surface  being  at  rest  during  the  entire  measurement  process. 

We  detect  a  first  speckle  interferogram   I 1  at  wavelength   λ 1  according  to 

. 

( 

) 

 I 1  =  I r  +  I s  + 2   I r   I s  · cos   .  r −  . . 

(8.79) 

1 

s1 

Further,  a  second  speckle  interferogram   I 2  at  wavelength   λ 1  is  measured  and  is given  by  (8.80). 

. 

( 

) 

 I 2  =  I r  +  I s  + 2   I r   I s  · cos   .  r −  . 

(8.80) 

2 

s2 

An  electronic  camera  positioned  in  the  image  plane  of  the  setup  shown  in  Fig. 8.33, 

in  combination  with  an  appropriate  data  storage  and  analysis  device,  provides  the possibility  of  correlating  two  electronically  detected  images.  In  particular,  the  intensity  difference  image  resulting  from  the  difference  in  intensities  presented  in  (8.79) 

and  (8.80)  can  be  evaluated.  Again,  the  phase  shift   .  s  consists  of  two  components, i.e.,  a  constant  unknown  phase   .  s0  of  the  object  beam  and  the  phase  shift   ..  s resulting  from  the  surface  shape  measured  at  a  specified  wavelength.  In  particular, for  the  two  images  we  have   i  = 1 or 2 ,  respectively,  we  get 

 . 

4 π 

s =  . 

+ 

·  d(x,   y) · cos   ., 

(8.81) 

 i 

s0 i 

 λi 

and  may  introduce  the  abbreviation 

 .  r −  . =  . 

 i 

s i 0 

 i  = const . 

(8.82) 

We  can  define  a  synthetic  wavelength   .  syn  according  to  the  definition  in  (8.83) 

and  may  rewrite  (8.79)  and  (8.80)  to  obtain  (8.84)  and  (8.85), respectively. 

 λ

 . 

1  ·  λ 2 

syn  = |

(8.83) 

 λ 1  −  λ 2| · cos   .  

. 

( 

) 

4 π 

 I 1  =  I r  +  I s  + 2   I r   I s  · cos   .  1  − 

·  d(x,   y) · cos   .  

(8.84) 

 λ 1 

. 

( 

) 

4 π 

 I 2  =  I r  +  I s  + 2   I r   I s  · cos   .  2  − 

·  d(x,   y) · cos   .  

(8.85)

 λ 2 
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The  difference  image  thus  is  given  by  the  combination  of  (8.83)–(8.85)  and  reads as 

|| ( 

)|

 . 

|

 . 

1  −  .  2 

2  ·  π ·  d(x,   y) 

 I  = | I

|

|

1  −  I 2| ∝ |sin 

+ 

2

 . 

| . 

(8.86) 

syn 

The  difference  image  according  to  (8.86)  exhibits  minima  (dark  fringes,  still  being speckled)  for 

2  ·  π ·  d(x,   y)  =  n  π with   n  = 0 ,  ±1 ,  ±2 ,  ±3 ,  ±4 ,...   . 

(8.87) 

 .  syn 

In  this  way,  resulting  interference  fringes  represent  surface  contour  line  plots  of the  surface  shape  according  to  (8.88). 

 n 

 d(x,   y) =   .  syn

(8.88) 

2 

An  exemplary  procedure  for  such  kind  of  surface  shape  measurement  is summarized  in  Fig. 8.34. 

Fig. 8.34  Diagram  related  to  the  generation  of  a  synthetic  wavelength   . ;  typical  result  of  a  shape measurement  of  an  object  surface
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Chapter  9 

Interferometry  for  Transparent  Media 

Abstract  The  content  of  this  chapter  is  focused  on  the  detection  of  properties  of  optically  transparent  materials  using  optical  measurement  technology.  The  propagation of  optical  radiation  in  transparent  media  has  already  been  studied  in  the  fundamental Sect. 7.3  of  Chap. 7  dealing  with  optical  measurement  systems.  In  the  present  chapter, at  first  thickness  and  refractive  index  of  thin  films  will  be  investigated  by  means  of an  optical  sensing  method  denoted  as  thin-film  interferometry.  To  this  end,  optical interfaces  and  associated  Fresnel  equations  are  presented.  Further,  the  principles  of ellipsometry  are  briefly  addressed. 

9.1 

Characteristics  of  Optically  Transparent  Media 

This  section  relates  to  the  characterization  of  thin  films  in  view  of  thin-film  parameter  detection.  At  first,  optical  interfaces  and  Fresnel  equations  are  discussed. 

Then,  measurement  devices  such  as  thin-film  interferometers,  ellipsometers,  and biochemical  sensing  arrangements  are  presented  in  Sect. 9.2. 

 9.1.1 

 Optical  Interfaces 

In  this  section,  we  are  looking  at  the  fundamental  principles  of  light  propagation  in matter  [1, 2].  If  electromagnetic  radiation  enters  into  a  medium  transparent  for  this radiation,  the  propagation  velocity   c 0  of  light  in  vacuum  decreases  by  a  factor  of n,  wherein   n  is  the  refractive  index  of  the  medium.  This  situation  is  represented  by relations  (9.1). 

(  )

 c

2 

0 

 μ 0 μr ε 0 εr 

 c 0  =

1 

√

⇒ 

= 

=  μ

 μ

 r εr  =  n 2  ,   and   n  =  n(λ)

(9.1) 

0 ε 0 

 c M 

 μ 0 ε 0 

Thereby,  the  light  velocity   c M  in  medium   M  is  reduced.  In  general,  the  refractive index   n   is  wavelength  dependent.  For  most   transparent   materials,  the  relative
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√

magnetic  permeability   μ r  =  1  such  that  the  refractive  index  can  be  given  by   n =

 ε r. 

Under  certain  conditions,  the  relative  dielectric  constant   εr,  e.g.,  for  metals  or  gaseous plasmas  can  be  approximated  by  means  of  the  plasma  frequency   ω p  of  the  material: 

/

(  ω )2 

 ε

p 

r  =  n 2  with   n  =

1  − 

 ,  and

(9.2) 

 ω 

(

)1 2 

 ω

 n e e 2 

p  = 

 , 

(9.3) 

 ε 0 m e 

wherein   n e  is  the  electron  density,  m e  is  the  electron  mass,  e  is  the  electron  charge, and  ω = 2π ν  with  ν being  the  incident  light  frequency. 

In  the  present  section,  on  the  other  hand,  an  optical  interface  is  denoted  as  a  (plane) border  between  two  regions  of  different  refractive  indexes.  As  an  example,  Fig. 9.1 

illustrates  the  transition  of  an  electromagnetic  wave  through  an  optical  interface  from vacuum  ( c 0)  to  a  medium  of  refractive  index   n 1. 

As  before,  the  refractive  index  of  the  medium  is   n 1  such  that  light  velocity   c 1 

in  the  medium  (transparent  material)  is  reduced  by  factor   n 1,  wherein  Snell’s  law can  be  derived—in  a  different  way  as  in  Sect. 7.2.3  of  Chap. 7—as  the  ratio  of  the wavelengths  in  vacuum  and  transparent  material,  respectively,  as  shown  in  (9.5).  The light  frequency   v remains  constant,  such  that   c 1  =   c 0   .  Using  interface  portion   x n

 i   in 

1 

Fig. 9.1, we have

Fig.  9.1  Transition  of  an 

electromagnetic  wave 

through  an  optical  interface 

between  vacuum  (refractive 

index  = 1)  and  a  transparent 

material  (refractive  index  = 

 n 1);  geometrical  relations  are 

given  in  (9.4) 
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 λ 0 

 λ

 λ

 λ

= 

1 

0 

1 

sin   .  0; 

⇒  xi  =

= 

 ,   thus

(9.4) 

 xi 

 xi 

sin   .  0 

sin   .  1 

 λ

 c 0 

⇒ sin   . 



0  =  0  =   ν  =  n 1  ⇒  λ 1   < λ 0 . 

(9.5) 

sin   . 

 c 1 

1 

 λ 1 

 ν 

It  is  noted  again  that  the  frequency   ν of  the  optical  radiation  remains  constant  while passing  through  a  transparent  medium.  For  a  transparent  medium,  the  Clausius– 

Mossotti  relation,  e.g.,  given  in  [3],  can  be  used  for  a  particle  number  density   N in  

 [m-3]: 

. 

−

→

3 

 n 2  − 1 

 D =  α ·  E s  =  e · .  x,   and   α = 

· 

·  ε 0 . 

(9.6) 

 N  n 2  + 2 

−

→

−

→

In  (9.6),  D   is  the  dipole  moment,  α is  the  polarizability,  and   E s  is  the  electric 

−

→

field  of  the  light  wave  causing  the  oscillation   x   of  electric  charge   e.  Assuming  a very  simple  harmonic  oscillator  model,  the  oscillation  of  a  particle  (electron)  having a mass   m e  and  an  electric  charge   e  in  an  external  electric  field  of  amplitude   E 0  having angular  frequency   ω and  providing  the  electric  force   F  can  be  written  as d 2 x 

 m e  · 

+  m e  ·  ω 2  ·  x =  F

(9.7) 

d t 2 

0 

Using   F  =  e ·  E s  =  e ·  E 0 e jωt   and  the  ansatz   x  =  x 0  ·  e j ωt ,  we  obtain 

−

 e 

 x 0  ·  ω 2  +  x 0  ·  ω 2  = 

 E

0 

0 ,   or

(9.8) 

 m e 

 e  ·  E

⇒

0 

 e 

 x

 m e 

0  = 

⇒  x = 

·  E

·  e j ωt , 

(9.9) 

 ω 2  −

0  ·

1 

 ω 2 

 m

 ω 2  −  ω 2 

0 

e 

0 

wherein   ω 0  is  the  resonance  oscillation  frequency  of  said  particle.  By  inserting  (9.9) 

into  (9.6),  we  get 

 n 2  − 1 

 e 2 

3 

·  ε 0  = 

·  N ·

1 

 . 

(9.10) 

 n 2  + 2 

 m e 

 ω 2  −  ω 2 

0 

√

If  we  use  again   n  =

 ε r  and   E s  =  E 0   ejωt   for  a  gas  having  refractive  index  of n ≈ 1,  the  final  result  yields 

. 

 n 2  − 1  ≈ 2  ·  (n − 1 )   α

3 

2  ·  (n − 1 ) 

2 

≈ 

· 

 ε 0  = 

·  (n − 1 )ε 0 . 

(9.11) 

 n 2  + 2  ≈ 3 

 N 

3 

 N 

Finally,  by  combining  (9.6)  and  (9.11)  and  by  neglecting  absorption,  we  obtain the  refractive  index  for  an  optically  thin  medium  according  to  (9.12). 
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 e 2 

 n − 1  ≈ 

·  N ·

1 

(9.12) 

2 ε 0 m e 

 ω 2  −  ω 2 

0 

In  the  following  section,  the  approximation   n  ≈  1  is  no  longer  valid  because optically  thick  media  such  as  glass  components  having  a  refractive  index  of approximately  1.5  are  considered  as  well. 

 9.1.2 

 Fresnel  Equations 

In  order  to  provide  a  more  detailed  analysis  of  the  processes  involved  in  light  reflection  and  transmission  at  or  through  (stacked)  optical  interfaces,  respectively,  the Fresnel  equations  for  transmission  and  reflection  are  derived  in  dependence  of  the polarization  state  of  the  incident  light.  As  has  been  discussed  in  Sect. 7.3  of  Chap. 7, the  polarization  of  the  light  wave  corresponds  to  the  direction  of  the  vector  of  the electric  field  of  the  light  wave  in  a  plane  which  is  perpendicular  to  the  propagation direction  of  the  light  beam.  Herein,  we  denote  light  polarization  perpendicular  to the  plane  of  reflection  (plane  of  drawing  of  Fig. 9.2  below)  as   s-polarization  (s  = 

“senkrecht1 ”),  wherein  light  polarized  parallel  to  the  plane  of  reflection  is  denoted as  the   p-polarized  light  ( p =  parallel). 

In  Fig. 9.2,  both  polarization  directions  ( s-polarization  and   p-polarization)  are indicated  for  the  incident  light  amplitudes  ( A s,  A p),  the  transmitted  light  amplitudes ( T  s,  T  p),  and  the  reflected  light  amplitudes  ( R s,  R p).  With  respect  to  optomechatronic  measurement  systems,  it  is  appropriate  to  have  a  look  at  the  reflected  light amplitudes  ( R s,  R p)  because  these  represent  the  light  which  is  easily  accessible,  and thus  measurable,  by  an  optical  detector.  Thereby,  in  the  following,  a  calculation  is performed  which  eliminates  some  of  the  unknown  quantities  by  providing  relationships  between  appropriate  amplitude  values.  At  first,  the  amplitudes  of  the  reflected light  ( R s,  R p)  and  the  transmitted  light  ( T  s,  T  p)  are  related  to  each  other,  as  shown in  (9.13)  and  (9.14).  These  relations  follow  from  geometrical  considerations  and comparisons  regarding  the  situations  in  Fig. 9.2a, b. 

 R s 

 R p 

 R s  ∝  T s ,  and   R p  ∝  T p  · cos (θ 0  +  θ 1 ) → 

=

 ,  and

(9.13) 

 T s 

 T p  · cos (θ 0  +  θ 1 ) 

 T p  · cos (θ 0  −  θ 1 )  = 1

(9.14) 

 T s 

Herein,  θ 0  and   θ 1  are  the  angles  of  the  incident  and  of  the  refracted  beam,  respectively, with  respect  to  the  interface  normal.  By  eliminating  the  transmitted  amplitudes  ( T  s, T  p) from (9.13), we  obtain  the  ratio

1  From  German  language:  “s=senkrecht  = perpendicular”. 
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Fig.  9.2  Reflection  and 

refraction  of  s-polarized  a 

and  p-polarized  light  b  at  an 

optical  interface  between 

two  media  having  refractive 

indices   n 0  and   n 1, 

respectively,  according  to  [2]

 R p  = cos (θ



0  +  θ 1 )  . 

(9.15) 

 R s 

cos (θ 0  −  θ 1 ) 

Brewster  angle 

As  can  be  seen  from  (9.15), at  a  specific  angle  of  incidence,  the  so-called  Brewster angle   θ 0  =  θB,  the  parallel  component  of  incident  light  vanishes. 

 π 

 θ 0  +  θ 1  =  ⇒  R p  = 0

(9.16) 

2 

Using  Snell’s  law,  we  obtain  the  Brewster  angle  for  the  optical  interface  depicted in  Fig. 9.2  to  be 

sin   θ 0  =  n

1  = tan   θ B

(9.17) 

sin   θ 1 

 n 0 

In  Fig. 9.3, the  intensity  ratio  of  the   p-polarized  light  component  as  compared  to the   s-polarized  light  component  is  exemplified  as  a  function  of  the  refractive  index ratio   n 1 /n 0 . 
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Fig.  9.3  Intensity  ratio   R( N) of   s-polarized  to   p-polarized  light  amplitudes  at  an  optical  interface between  two  media  having  refractive  indices   n 0  and   n 1,  respectively,  wherein   N =  n 1 /n 0  and  angle of  incidence   θ 0  = 55◦ 

Using  the  law  of  energy  conservation  for  circular  polarized  incident  light  and  for absence  of  absorption  the  intensities  of  incident  light,  reflected  light  and  transmitted light  for  the  two  polarization  directions  are  related  to  each  other  according  to  (9.18). 

| |

| |

| |

| A

| |2 

| |2  | |2 

s|2  = |  R s|2+ ,  | T s|2 

and 

 A p 

=   R p  +  T p 

(9.18) 

| |

For  the  purpose  of  measurement,  we  set  | A

| |2 

s|2  =   A p 

=  | A|2  in  the  following. 

The  transmitted  light  amplitudes  for  both  polarization  directions  can  be  eliminated such  that  the  ratio  of  the  reflected  intensities  for  both  polarization  directions  can  be calculated.  We  use  above  findings  and  obtain 

|| |

 T |2 

| A|2  − | R

p 

=

1 

 , 

s|2  cos2 (.  0+ .  1 ) 



cos2 (. 

and 

0 − .  1  )  =

1 

 .   (9.19) 

| T s|2 

cos2 (.  0  −  .  1 ) 

| A|2  − | R s|2

cos2 (.  0  +  .  1 ) 

From  (9.19), we  obtain  the  intensity  ratio  for   s-polarized  reflected  light   RIs,  and the  intensity  ratio  for   p-polarized  reflected  light   RI p  according  to  (9.20). 

| |

| R

| |2 

s|2 

sin2  (.  0  −  .  1 ) 

 R p 

tan2 (.  0  −  .  1 ) 

 R I s  = 

= 

 ,   and   RI

= 

(9.20) 

|

p  = 

 A|2 

sin2  (. 

|

0  +  .  1 ) 

 A|2 

tan2 (.  0  +  .  1 ) 

The  amplitudes  are  proportional  to  ( RI s)0.5  and  ( RI p)0.5,  respectively.  Thus,  using some  conversions  shown  in  (9.21)  and  Snell’s  law  (9.22), sin (θ 0  ∓  θ 1 ) = sin   θ 0  cos   θ 1  ∓ cos   θ 0  sin   θ 1
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tan   θ 0  ∓ tan   θ 1 

tan (θ 0  ∓  θ 1 ) = 

(9.21) 

1  ± tan   θ 0  tan   θ 1 

sin   θ 0  =  n

1   , 

(9.22) 

sin   θ 1 

 n 0 

we  can  derive  the  expressions   r s  = −( RI s)0.5  and   r p  = −( RI p)0.5  according  (9.23)  and 

(9.24)  which  are  known  as  the  Fresnel  coefficients  for  reflection  for   s- and   p-polarized light,  respectively. 

 R s 

 n 0  cos   θ 0  −  n 1  cos   θ 1 

 r s  = 

= 

(9.23) 

 A s 

 n 0  cos   θ 0  +  n 1  cos   θ 1 

 R p 

 n 1  cos   θ 0  −  n 0  cos   θ 1 

 r p  = 

= 

(9.24) 

 A p 

 n 1  cos   θ 0  +  n 0  cos   θ 1 

Besides  the  Fresnel  reflection  coefficients  indicated  above  in  (9.23)  and  (9.24), Fresnel  coefficients  for  transmission  can  be  derived  from  the  above  relations  (9.21– 

9.24), such  that  we  get  (9.25)  and  (9.26). 

 t s  =

2 n 0  cos   .  0 

 . 

(9.25) 

 n 0  cos   .  0  +  n 1  cos   .  1 

 t p  =

2 n 0  cos   .  0 

(9.26) 

 n 1  cos   .  0  +  n 0  cos   .  1 

As  a  result,  for  the  general  case,  four  equations  have  to  be  considered  if  arbitrarily polarized  light  is  incident  onto  an  optical  interface  wherein  a  portion  of  the  light beam  is  reflected  and  another  portion  of  the  light  beam  is  transmitted  through  the transparent  medium. 

Thin-film  interfaces 

In  the  following,  thin  films,  for  example,  thin  transparent  films  deposited  on  a substrate  are  regarded  with  respect  to  measurement  techniques.  A  thin  film  is comprised  of  two  optical  interfaces,  a  first  interface  0–1  between  medium  0  (ambient, environment)  and  medium  1  (thin  film)  and  a  second  interface  1–2  between  medium 1  and  medium  2  (e.g.,  the  substrate).  Thus,  for  this  example  of  a  thin  film  on  a substrate  as  depicted  in  Fig. 9.4, three  different  refractive  indices  are  involved,  and thereby,  the  set  of  Fresnel  coefficients  according  to  (9.23–9.26)  has  to  be  provided for  both  interfaces  0–1  and  1–2,  respectively. 

The  Fresnel  reflection  and  transmission  equations  for  interface  0–1  are  given  in 

(9.27). 

 n 0  cos   .  0  −  n 1  cos   .  1 

 r 01 = 

;  t =

2 n 0  cos   .  0 

; and 

s 

01

 n

s 

0  cos   .  0  +  n 1  cos   .  1 

 n 0  cos   .  0  +  n 1  cos   .  1 

 n 1  cos   .  0  −  n 0  cos   .  1 

 r 01 = 

;  t

=

2 n 0  cos   .  0 

 , 

(9.27)

p 

01

 n

p 

1  cos   .  0  +  n 0  cos   .  1 

 n 1  cos   .  0  +  n 0  cos   .  1 
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Fig.  9.4  Three-phase 

system  with  regions  (1),  (2), 

and  (3)

wherein  the  respective  Fresnel  reflection  and  transmission  equations  for  interface 1–2  are  given  in  (9.28). 

 n 1  cos   .  1  −  n 2  cos   .  2 

 r 12 = 

;  t =

2 n 1  cos   .  1 

; and 

s 

12

 n

s 

1  cos   .  1  +  n 2  cos   .  2 

 n 1  cos   .  1  +  n 2  cos   .  2 

 n 2  cos   .  1  −  n 1  cos   .  2 

 r 12 = 

;  t

=

2 n 1  cos   .  1 

 . 

(9.28) 

p 

12

 n

p 

2  cos   .  1  +  n 1  cos   .  2 

 n 2  cos   .  1  +  n 1  cos   .  2 

Using  (9.27)  and  (9.28), e.g.,  the  light  reflection  at  a  thin  film  can  be  calculated. 

These  calculations  are  performed  for  a  thin-film  interferometer  in  Sect. 9.2.1  and  for an  ellipsometer  in  Sect. 9.2.2. 

9.2 

Thin-Film  Measurement  Devices 

In  the  following,  the  focus  is  on  two  different  measurement  devices  for  detecting the  properties  of  thin  films,  i.e.,  the  easy-to-install  thin-film  interferometer  described in  Sect. 9.2.1,  and  the  experimentally  more  complex  ellipsometer  is  described  in Sect. 9.2.2. 

 9.2.1 

 Thin-Film  Interferometer  Setups 

One  of  the  most  simple,  but  still  very  powerful  tools  for  thin-film  analysis  is  the so-called  thin-film  interferometer.  The  original  interferometric  arrangement  of  this measurement  device  results  from  the  measurement  object  itself,  i.e.,  from  the  thin film.  Such  optically  transparent  thin  film  provides  two  opposing  optical  interfaces arranged  in  parallel  to  each  other,  such  that  multiple-beam  interferences  may  be generated.  These  interferences  are  thus  denoted  as  thin-film  interferences,  the  associated  sensor  is  provided  as  a  thin-film  interferometer.  Such  thin-film  interferometer  can  be  designed  for  monitoring  coating  processes  performed  on  substrates,  for sensing  refractive  index  variations  of  a  thin  layer  deposited  onto  a  substrate,  for sensing  refractive  index  differences  tween  two  adjacent  optical  media  forming  an
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optical  interface  inbetween,  etc.  It  will  be  shown  that  a  simple  one-beam  interferometer  can  be  extended  to  a  dual-beam  setup  for  monitoring  more  than  one  optical parameter  at  a  time,  e.g.,  film  thickness   d  and  refractive  index  n1.  As  it  will  turn  out, the  optical  arrangement  for  such  kind  of  interferometer  is  very  simple,  requiring  only a  single-wavelength,  coherent  light  source,  e.g.,  a  simple  laser  light  source,  and  an appropriate  detector  for  sensing  the  reflected  light. 

The  interference  effect  results  from  the  optical  path  difference  between  each  two adjacent  beams  depicted  in  Fig. 9.5. 

The  phase  shift  between  each  two  adjacent  beams  can  be  estimated  from  the drawing  of  Fig. 9.6. 

Fig.  9.5  Basic  setup  for 

thin-film  interferometer  (a); 

optical  beam  propagation  in 

the  thin  film  (b) 

Fig.  9.6  Illustration  of  the 

phase  shift  between  each  two 

adjacent  beams  originating 

from  a  thin-film  system  41
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At  first,  we  evaluate  the  optical  path  difference   .  S  between  each  two  adjacent beams  according  to  (9.29) in view of Fig. 9.6. 

( 

) 

 .  S  =

 d 

2   n 1 

−  n 0 s 

(9.29) 

cos   θ 1 

The  distance   s   indicated  by  a  bold  line  in  Fig. 9.6  is  given  by  the  geometrical relation  (9.30). 

 s = 2d  tan   θ 1  sin   θ 0 ,  and

(9.30) 

Using  Snellś  law: 

sin   θ 1  ·  n 1  = sin   θ 0  ·  n 0 , 

(9.31) 

we  get 

 .  S  =

 d 

2 n 1 

− 2 n 0d tan   θ 1  sin   θ 0 . 

(9.32) 

cos   θ 1 

For  further  evaluations,  we  obtain  the  optical  path  difference  according  to  (9.33). 

(

) 

 .  S  = 2 n



1 d   1  − sin2   θ 1  = 2 n 1d  cos   θ 1

(9.33) 

cos   θ 1 

The  associated  phase  difference  which  is  the  phase  difference  between  each  two adjacent  reflected  beams  [1]  and  which  is  used  for  further  calculations  reads  as 

 . 

4 π 

=  k.  S  = 

 n

 λ  1d  cos   θ 1 . 

(9.34) 



By  summing  up  the  individual  beam  amplitudes  for  any  polarization  direction  ( s-

or   p-polarization),  we  obtain  the  total  Fresnel  reflection  coefficient   r tot  according  to 

(9.35). 

 R tot 

 r tot  = 

=  r 01  +  t 01  ·  r 12  ·  t 10  ·  e− j.  +  t 01  ·  t 10  ·  r 10  ·  r 2  ·  e− j 2 .  

 A 

12 

+  t 01  ·  t 10  ·  r 10  ·  r 2  ·  e− j 2 Φ +  t

·  r 3  ·  e− j 3 .  + · . 

(9.35) 

12 

01  ·  t 10  ·  r  2 

10 

12 

Here, (9.35)  represents  an  infinite  geometrical  series  according  to  the  summation formula  (9.36). This  summation  corresponds  to  the  one  used  for  multiple-beam interference  described  in  Sec. 8.1  of  Chap. 8, see,  e.g., (8.9). 

∞

. 

1 

1  +  a 1  +  a 2  +  a 3  +  · · ·  =  

 an  = 

(9.36)

1  −  a 

 n=0 
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Herein,  the  substitution  (9.37)  holds. 

 a =  r 10  ·  r 12  ·  e−  j.  

(9.37) 

Thus,  the  total  Fresnel  reflection  coefficient   r tot  can  be  rewritten  according  to 

(9.38). 

 t

(

) 

01 t 10 

 r tot  =  r 01  + 

 a +  a 2  +  a 3  +  · · ·

(9.38) 

 r 10  `

``

`

1  −1=   a 

1− a 

1− a 

Further  simplification  is  possible  by  using  the  identities  derived  from  Fresnel Eqs. (9.27)  and  by  re-substitution  of  (9.37). 

 t 01  ·  t 10  = 1  −  r 2   ,   and   r

01

01  = − r 10

(9.39) 

Inserting  (9.39) into (9.38)  yields  the  total  reflection  coefficient r 01  +  r 12  ·  e−  j.  

 r tot  = 

 . 

(9.40) 

1  +  r 01  ·  r 12  ·  e−  j .  

Fig.  9.7  Basic  arrangement  of  a  thin-film  measurement  system  (a)  and  typical  interference  result (b)

[image: Image 81]
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As  mentioned  before,  the  result  (9.40)  is  valid  for  both   s- and   p-polarization of  the  incident  light.  As  far  as  the  experimentally  simple  setup  for  the  thin-film interferometer  is  concerned,  see  e.g.,  Fig. 9.7,  it  is  sufficient  to  operate  the  system using  one  of  the  two  polarization  directions,  i.e.,  s-polarization  or   p-polarization. 

In  order  to  avoid  problems  associated  with  the  Brewster  angle  discussed  above, usually  s-polarized  incident  light  is  used  for  operating  the  thin-film  interferometer. 

Thereby,  the  periodicity  of  the  interference  pattern  is  a  monitor  for  the  optical  path difference  in  the  thin  film  as  indicated  in  Fig. 9.7b.  One  prerequisite  is  the  dynamic behavior  of  the  thin-film  system,  i.e.,  one  or  both  parameters   n 1  and   d  should  vary during  the  measurement  process.  Shape  and/or  periodicity  of  the  interference  signal shown on Fig.  9.7b  may  vary  according  to  the  angle  of  incidence  θ0,  the  ambient refractive  index   n 0,  the  refractive  index   n 1  and  the  thickness   d  of  the  thin  film  to  be monitored,  and  the  refractive  index   n 2  of  the  substrate  on  which  the  thin  film  is  being deposited. 

Interference  pattern  periodicity 

The  interference  pattern  resulting  from  thin-film  interferometer  measurements  (i.e., n1d   variation)  usually  exhibits  a  cosine-shaped  intensity  distribution,  see,  e.g., Fig. 9.8a.  As  has  been  evaluated  in  view  of  (9.34), the  optical  path  difference according  to  (9.33)  is  responsible  for  the  detected  intensity  variation  at  the  detector, i.e.,  the  alternating  maxima  (constructive  interference)  and  minima  (destructive  interference)  of  the  detected  intensity.  In  Fig. 9.8c,  this  cosine-shaped  intensity  variation is  represented  as  a  count  value  of  extrema  (maxima  or  minima)  in  the  intensity signal,  N ext.  Further,  in  Fig. 9.8b, the  periodicity   p  is  indicated.  and  correlated  with the  interference  pattern.  Herein,  the  periodicity   p   reflects  variation  frequency  of the  interference  pattern.  Thus,  p  may  be  used  to  determine  the  in  situ-measured  film thickness   d  for  constant  film  refractive  index   n 1  or  for  providing  a  measure  of  varying refractive   n 1  for  constant  thickness   d.  Such  refractive  index  variation  may  be  used for,  e.g.,  detecting  biochemical  variations  of  substances  applied  at  the  probed  interface,  i.e.,  at  the  optical  interface  between  the  layer  having  refractive  index   n 1  and  the Fig.  9.8  Interference 

obtained  through  thin-film 

interferometric 

measurement  for  normal 

incidence; a  the  interference 

pattern  as  a  function  of  the 

optical  path  length   n1d, b  the 

associated  periodicity   p, and  

c  the  count  value  of  the 

number  of  extrema

[image: Image 82]
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environment  ( n 0).  Further,  in  view  of  the  two-beam  thin-film  interferometer  setup discussed  below,  it  is  the  periodicity   p  which  provides  the  continuous  measurement of  two  separate,  important  film  properties,  i.e.,  the  film  thickness   d   and  the  film refractive  index   n 1  at  the  same  time

A  periodicity   p  of  the  detected  interference  pattern  can  be  used  for  monitoring a  variety  of  thin-film  properties.  In  Fig. 9.8, periodicities  as  a  function  of  different parameters  are  presented.  In  Fig. 9.8a,  the  interference  pattern  periodicity  as  a  function  of  the  optical  path  length  in  the  thin  film  is  shown,  Fig. 9.8b  illustrates  the periodicity  as  used  in  (9.42)  for  normal  incidence   (θ 0  = 0 ),  and  Fig. 9.8c  is  a  count value  of  the  number   N ext  of  interference  pattern  maxima  or  minima,  respectively. 

Rearranging  (9.34)  and  using  Snell’s  law  according  to  (9.31), we  have 

/

 . 

 d 

= 4 π 

 n 2  −  n 2  sin2   . 

 λ

0 . 

(9.41) 



1 

0 

Now,  we  can  define  the  periodicity   p  using  (9.41)  and  get 

 . 

/



2 d 

 p = 

= 

 n 2  −  n 2  sin2   .  0 . 

(9.42)

2 π 

 λ 

1 

0 

Fig.  9.9  Basic  arrangement  of  a  two-beam  thin-film  measurement  system  (a)  and  typical measurement  result  (b)
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For  normal  incidence  we  find  the  interference  pattern  according  to  Fig. 9.8b.  It  is  this periodicity   p  which  allows  us  to  measure  both  the  refractive  index   n 1  and  the  film thickness   d,  using  a  two-beam  interferometer  as  illustrated  in  Fig. 9.9. 

Two-beam  thin-film  interferometer 

Figure  9.9  depicts  a  dual-beam  arrangement  for  thin-film  interferometry.  The  original laser  beam  is  split  into  two  sub-beams  by  means  of  beam  splitter   BS.  As  indicated in  Fig. 9.9, the  two  sub-beams  are  incident  onto  the  sample  surface  at  the  same spatial  location,  but  under  different  angles  of  incidence   θ  01  and   θ  02,  respectively. 

Thereby,  two  detectors   D 1,  D 2  arranged  in  appropriate  detection  directions  are  able to  detect  respective  dynamic  interference  patterns.  Both  interference  patterns  exhibit a  similar  cosine-shaped  behavior;  however,  the  associated  periodicities   p 1  and   p 2, respectively,  are  different  from  each  other.  Herein,  a  periodicity  of  an  interference pattern  is  defined  as  illustrated  in  view  of  Fig. 9.8b  herein  above.  As  can  be  seen from  the  results  shown  in  Fig. 9.9b, the  periodicity   p 1  for  the  small  angle  of  incidence   θ  01  is  lower  than  the  periodicity   p 2  resulting  from  large  angle   θ  02. In this way,  from  (9.42), two  linear  independent  Eqs.  (9.43)  and  (9.44)  are  obtained  which may  be  used  to  evaluate  both  the  thickness   d  of  the  layer  at  the  location  of  measurement  and  the  layer  refractive  index   n 1.  Finally,  a  remarkable  finding  is  that—as indicated  in  Fig. 9.9b, the  interference  curves  for  large  angles  of  incidence  (near grazing  incidence)  deviate  considerably  from  the  pure  cosine  shape. 

Summarizing,  the  two  interference  patterns  illustrated  in  Fig. 9.9b  have  different periodicities  due  to  the  different  angles  of  incidence.  In  particular,  the  following relations  hold: 

 . 

/

1 

2d 

 p 1  = 

= 

 n 2  −  n 2  sin2   .  01 , 

(9.43) 

2 π 

 λ 

1 

0 

 . 

/

2 

2d 

 p 2  = 
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 n 2  −  n 2  sin2   .  02 . 

(9.44) 

2 π 

 λ 
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Combining  (9.43)  and  (9.44), the  refractive  index  of  the  thin  film  reads  as 
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(9.45) 
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− 1 

 p 2 

and  the  thickness  is  then  derived  by  either  (9.43) or (9.44)  such  that  we  have 1 

 p 1 ,  2  ·  λ 

 d  =  /

 . 

(9.46) 
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Focused-beam  interferometer
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Fig.  9.10  Thin-film 

interferometer  with  focused 

incident  beam1, 4, 5 

As  shown  in  Fig. 9.10, one  possibility  exists  where  a  thin-film  interferometer  may be  used  to  produce  a  static  interference  pattern,  i.e.,  where  TFI  measurement  can  be provided  even  if  the  optical  path  of  the  thin  film,  n 1   d,  remains  unchanged.  The  corresponding  measurement  method  is  denoted  as  focused-beam  TFI  and  is  illustrated  with an  appropriate  setup  in  Fig. 9.10. 

If  an  expanded  laser  beam  incident  onto  the  three-phase  system  described  earlier in  this  chapter  is  focused  onto  the  sample  surface,  individual  sub-beams  experience different  angles  of  incidence.  In  this  respect,  the  focused-beam  TFI  is  similar  to the  two-angle-of-incidence  TFI,  where  two  laser  beams  are  incident  onto  the  sample under  two  different  angles  of  incidence.  In  the  present  case,  we  can  regard  the  focused beams  as  a  large  number  of  incident  beams,  all  directed  toward  the  sample  surface under  different  angles  of  incidence.  The  resulting   n 1   d  product  then  generates  a  static interference  pattern  shon  in  Fig. 9.10, wherein  the  geometry  is  according  to  (9.47). 

Again,  no   n 1  and/or   d  variations  are  required  for  obtaining  a  resulting  interference pattern;  however,  only  the  product   n 1   d  may  be  determined,  and  not   n 1  or   d  separately (as  it  is  the  case  for  the  two-angle-of-incidence  TFI  discussed  herein  above). 

 .s  ≈ tan (.θ 0 )

(9.47) 

 i 

 9.2.2 

 Ellipsometer 

In  the  following,  a  technique  denoted  as  ellipsometry  [1,  5]  will  be  briefly  presented. 

As  TFI  discussed  above,  ellipsometry  is  based  on  the  effect  of  thin-film  interferences  and  thus  is  related  to  and  based  on  the  same  Fresnel  equations  as  thin-film interferometry.  In  addition  to  the  simple  intensity  measurement  for  a  constant  polarization  direction  of  incident  light,  however,  in  ellipsometry  thin-film  interferences  are

[image: Image 83]
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being  monitored  in  dependence  on  the  two  polarization  directions,  i.e.,  s-polarized and   p-polarized  light,  respectively.  Herein,  a  continuous  monitoring  of  the  polarization  ellipse  is  performed  by  means  of  a  rotating  analyzer  located  in  front  of  the intensity  detector,  see  Fig. 9.11.  For  industrial  applications,  a  so-called  ellipsometric diagram—or  ellipsogram—is  provided,  which  is  based  on  two  ellipsometric  angles 

 .  and   . ,  see  Fig. 9.12. The  ellipsogram  illustrated  in  Fig. 9.12  shows  the  reflection  ratio   ρ  r  between   s-polarized  reflection  amplitude  and   p-polarized  reflection amplitude,  see  (9.48). The  ellipsometric  angles   .  and   .  are  defined  as  in  (9.49). 

Fig.  9.11  Basic  setup  of  an 

ellipsometer  for  thin-film 

measurement;  static 

polarizer—rotating  analyzer 

configuration 

Fig.  9.12  Ellipsometric  diagram  (example)  obtained  with  a  setup  illustrated  in  Fig. 9.11
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Inserting  (9.49) into (9.48)  yields ρr  = tan   .e j.    . 

(9.50) 

By  analyzing  the  curves  in  Fig. 9.12,  it  is  possible  to  obtain  a  measure  for  both film  thickness   d  and  the  complex  refractive  index   N 1  =  n 1   – i k 1  in  real  time  during a  film  deposition  process.  Herein,  k 1  is  the  absorption  index  of  the  thin  film  to  be investigated.  The  arrows  in  the  curves—the   .-. -curves—indicate  the  direction  of increasing  film  thickness   d.  For  both  thickness  and  refractive  index  monitoring,  the detected  results  are  furthermore  dependent  on  the—complex—refractive  index  of the  substrate   N 2. 

A  further  advantage  of  the  ellipsometric  method  is  the  possibility  of  performing spectroscopic  measurements.  In  this  case,  the  incident  light  has  a  wavelength  which may  be  varied  within  a  specified  spectral  range.  In  this  way,  additional  information on  the  film  behavior,  in  particular  on  its  refractive  index,  may  be  obtained.  For  further reading  on  ellipsometric  measurement  systems,  see,  e.g.,  the  discussions  in  [1]. 
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Chapter  10 

Measurement  Systems  with  Optical 

Waveguide  Sensors 

Abstract  In  this  chapter  is  devoted  to  a  special  kind  of  optical  sensors  based on  guided  light.  Optical  waveguides  (Lopez-Higuera  in  Handbook  of  optical  fibre sensing  technology.  Wiley,  2002  [1])  have  proven  to  be  a  powerful  tool  for  sensing using  optical  radiation,  see  Sect. 10.1. Moreover,  the  optical  fiber  itself  can  be designed  to  act  as  an  intrinsic  sensor,  see,  for  example,  Sect. 10.2  where  an  optical grating  is  shown  to  be  integrated  within  the  fiber  core.  A  large  number  of  further optical  measurement  techniques  may  be  based  on  optical  fibers,  such  as,  for  example, the  technique  of  evanescent  field  sensing  (Sect. 10.3). At  first,  we  will  have  a  brief look  at  light  propagation  in  an  optical  waveguide  (Sect. 10.1). In  particular,  optical waveguides  are  used  as  sensor  elements  or  as  a  transport  medium  to  direct  light  to the  location  of  measurement.  Then,  an  optical  interference  effect  presents  in  the  core of  an  optical  waveguide  or  optical  fiber  will  be  evaluated.  This  interference  effect  is based  on  the  integration  of  a  so-called  fiber-Bragg  grating,  FBG,  as  will  be  explained in  Sect. 10.2.  Many  important  applications  result  from  such  kind  of  FBG-based  fiber-optic  sensors  (FOSs).  In  the  last  Sect. 10.3  of  this  chapter,  an  attenuation  effect  which can  occur  in  specially  designed  optical  waveguides  will  be  elucidated,  i.e.,  the  evanescent  wave  propagating  in  the  waveguide  cladding.  It  will  be  shown,  how  evanescent field  sensing  (EFS)  and  attenuated  total  reflection  (ATR)  can  efficiently  contribute to  interesting  applications  of  optical,  fiber-based  measurement  systems. 

10.1 

Optical  Waveguides 

The  main  advantage  of  optical  waveguides,  or  optical  fibers,  respectively,  is  the  fact that  light  used  for  sensing  can  be  transported  in  an  easy  and  versatile  way  to  the  object and/or  location  of  measurement.  Figure  10.1  shows  a  cross  section  of  the  principal setup  of  an  optical  waveguide  wherein  the  refractive  indices  fulfill  the  relation   n 1  > n 2, n1  being  the  refractive  index  of  the  waveguide  core  and   n 2  being  the  refractive index  of  the  waveguide  cladding  [2]. 

The  refractive  index  distributions  for  step-index  (SI)  and  gradient-index  (GI) waveguides  are  shown  in  Fig. 10.2. 
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Fig.  10.1  Cross  section  of  a 

circular  waveguide

Fig.  10.2  Refractive  indices  n1  and  n2  in  step-index  a  and  gradient-index  b  optical  fibers  according to  [2] 

Different  propagation  modes  of  light  beams  coupled  into  the  fiber  core  are illustrated  in  Fig. 10.3. 

In  order  to  evaluate  the  numerical  aperture  NA  of  an  optical  fiber,  the  beam propagation  is  at  first  illustrated  in  Fig. 10.4. 

10.1 Optical Waveguides
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Fig.  10.3  Light  propagation  modes  in  an  optical  waveguide:  a  multiple  modes  (multimode)  and  b only  single  mode  (monomode)  can  propagate  [1]

Fig.  10.4  Detail  of  light  beam  propagation  in  an  optical  step-index,  SI,  fiber  core  in  correspondence with  the  beam  propagation  geometry  depicted  in  Fig. 10.2(a) Using  Fig. 10.4, we  have,  for  total  reflection  such  that  all  light  is  guided  in  the core  of  the  optical  fiber,  the  relations  shown  in  (10.1). 

sin   θ 2  =  n

1  ;  θ 2   > θ 1

(10.1) 

sin   θ 1 

 n 2 

◦ 

Thereby,  θ 2  =  90 ,  and  thus,  sin   θ 2  =  1  →   n 2  =  sin   θ

 n

1  is  obtained  for  total 

1 

reflection. 

Step-index  waveguide 

The  step-index  waveguide  is  characterized  by  the  fact  that  the  core  refractive  index n 1  remains  constant  throughout  the  core  radius,  see  Fig. 10.2a. 

 n 1  = const  for  −  r c   <   r  <  + r c (10.2)

216

10

Measurement Systems with Optical Waveguide Sensors

Fig.  10.5  Sketch  of  beam  propagation  in  the  core  of  an  SI  fiber Using  the  beam  propagation  sketch  illustrated  in  Fig. 10.5, we  can  evaluate  the maximum  input  angle   θ 0 ,  max  at  the  entrance  face  of  the  optical  waveguide  using  the relation  (10.3)  and  (10.4). 

sin   θ 0 ,  max  =  n

1 

(10.3) 

cos   θ 1 

 n 0 
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]1 

 n

2 

[

]

1 

 n 1 

 n 2 
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sin   θ
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2 

0 ,  max  = 

cos   θ 1  = 

1  − 
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 n 2  −  n 2 

(10.4) 
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1 

2 
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 n 0 

 n 2 

 n

1 

0 

Further,  the  normalized,  relative  refractive  index  difference   n rel  between  the  refractive  index  of  the  core  and  the  refractive  index  of  the  cladding  of  the  optical  waveguide can  be  approximated  according  to  (10.5), for   .  n<<n1,2. 

 n 2  −  n 2 

 (n 1  +  n 2 )(n 1  −  n 2 )  2 n 1 Δn Δn 

 n

1 

2 

rel  = 

= 

≈ 

= 

(10.5) 

2 n 2 

2 n 2 

2 n 2 

 n

1 

1 

1 

1 

Using  the  normalized  refractive  index  difference  and  assuming  total  reflection  in the  core  of  the  optical  waveguide,  the  maximum  input  angle  reads  as 

.  . 

. 

 θ

 n 1 

0 ,  max  = arcsin 

2 n rel   . 

(10.6) 

 n 0 

The  numerical  aperture  NA  of  the  of  waveguide  at  its  entrance  face  is  thus 

. 

NA  =  n 0  ·  sin   θ 0 ,  max  =  n 1  2 n rel (10.7)
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Gradient-index  waveguide 

The  difference  between  the  gradient-index  waveguide  and  the  step-index  waveguide mentioned  before  is  that  the  gradient-index  waveguide  exhibits  an  index  profile  of the  core  refractive  index  instead  of  a  constant  refractive  index  value  throughout  the core  cross  section.  The  radius-dependent  refractive  index  distribution  along  the  cross section  of  the  waveguide  core  can  be  written  using  a  radius-dependent  profile  function P( r) as in (10.8). 

[

(

) 

]1 

 n(r ) =   n 2  −  n 2  −  n 2  ·  P(r )  2 

(10.8) 

1 

1 

2 

As  can  be  seen  from  (10.8),  P( r)  = 0 for   r  = 0,  i.e.,  at  the  axis  of  the  optical  waveguide,  and   P( r)  = 1 for   r  =  r c,  i.e.,  at  the  interface  to  the  waveguide  cladding.  Using the  expression  (10.8)  for  an  arbitrary  reflective  index  profile  across  the  waveguide core,  we  have  in  analogy  to  (10.4) 

/

 n(r ) 

1 

sin   θ 0 ,  max  = 

cos   θ 1  = 

 n 2 (r) −  n 2  . 

(10.9) 

 n

2

0 

 n 0 

and  after  inserting  (10.8) into (10.9), we  obtain 1  [

(

) 

] 

1 

1 

sin   θ 0 ,  max  = 

 n 2  −   n 2  −  n 2  ·  P(r ) −  n 2  = 

 n 1[2 n rel ( 1  −  P(r ))]  2   .   (10.10) n

1 

1 

2 

2 

0 

 n 0 

Assuming  a  parabolic  profile   P( r)  = ( r/r c)2,  we  can  rearrange  (10.10)  such  that we  obtain  the  maximum  radius-dependent  entrance  angle  into  the  gradient-index waveguide  to  be 

⎧

/

⎫

⎨  . 

(  )2 ⎬ 

 θ

 n 1 

 r 

0 ,  max  = arcsin ⎩

2 n

1  − 



rel  ·

 n

⎭

(10.11) 

0 

 r c 

and  the  numerical  aperture  NA  for  the  gradient-index  waveguide  to  be 

/

. 

(  )

 r 

2 

NA  =  n 1  2 n rel  1  − 

 . 

(10.12) 

 r c 

10.2 

Fiber-Bragg  Gratings 

Besides  light  transport  by  means  of  optical  waveguides  we  may  provide  intrinsic sensor  elements  [1,  3]  within  the  optical  fiber.  Such  kind  of  intrinsic  sensor  example

[image: Image 85]
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Fig.  10.6  Basic  setup  of  a  FBG  fiber-optic  sensor; a  incident  intensity, b  reflected  intensity,  and  c transmitted  intensity  [1, 2] 

is  the  so-called  fiber-Bragg-grating  (FBG)  sensor  comprised  within  the  optical  fiber core  and  illustrated  in  Fig. 10.6. 

The  Bragg  wavelength  at  which  light  is  reflected  in  reflection  mode  or  at  which light  is  absorbed  in  transmission  mode  is  denoted  as   λ B  and  is  based  on  the  so-called Bragg  condition.  The  Bragg  condition  for  the  FBG  sensor  shown  in  Fig. 10.6  is according  to  (10.13). 

 λ B  = 2 n eff . 

(10.13) 

Herein,  n eff  is  the  effective  refractive  index,  and   .  is  the  grating  period  shown  in Fig. 10.6. Transmission  and  reflection  measurement  methods  using  such  kind  of  FBG 

sensor  are  schematically  shown  in  Fig. 10.7. 

Most  common  use  of  FBG  sensors  is  the  strain  measurement  where  the  geometry of  the  optical  fiber  is  slightly  varied.  Figure  10.8  shows  such  situation  where  strain is  applied  in  the  longitudinal  direction  of  the  optical  waveguide,  the  strain  resulting from  an  applied  force   F.  Based  on  the  detection  of  a  shift  of  the  Bragg  wavelength to  higher  values,  strain  applied  at  the  waveguide  can  thus  easily  be  measured,  e.g., by  means  of  a  spectrometer. 

As  different  Bragg  wavelengths   λ B1,  λ B2  …  meeting  the  requirements  of  (10.13) 

for  different,  associated  grating  periods   .  1,  .  2,  …  can  be  provided,  a  multi-sensor system  within  a  single  optical  fiber  can  be  designed,  see  Fig. 10.9. Further,  as  illustrated  in  (10.14),  the  Bragg  wavelength  or  the  Bragg  wavelength  variation  is  not

[image: Image 86]
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Fig.  10.7  Strain  and  temperature  sensing  using  an  FBG  sensor  in  an  optical  waveguide  in transmission  and  reflection  mode  [1]

Fig.  10.8  Operation  example  of  strain  measurement  using  an  FBG-based  sensor  operated  in reflection  mode; a  reflection  peak  before,  and  b  after  force  application
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Fig.  10.9  Fiber-based  multi-sensor  system  using  FBGs  having  different  grating  periods just  dependent  on  strain  or  elongation  of  the  optical  fiber,  but  the  exact  Bragg  wavelength  variation   .λ B  is  given  in  (10.14), as  a  function  of  relative  length  variation   ε 

and  temperature  variation   .T. 

 .λB  =  ( 1  −  p

 λ

 ε)ε +  (α.  +  αn).T  , 

(10.14) 

 B 

In  relation  (10.14),  ε =  .l/ l   is  the  relative  strain  or  length  variation  of  the  optical waveguide,  .T   is  the  absolute  temperature  change,  pε is  the  photo-elastic  coefficient, α.   is  the  thermo-elastic  coefficient,  and   αn   is  the  thermo-optical  coefficient  of  the optical  waveguide. 

10.3 

Evanescent  Field  Sensing  and  Attenuated  Total 

Reflection 

Intrinsic  fiber-optic  sensors  may  well  be  applied  for  monitoring,  e.g.,  bending,  stress, etc.,  of  the  optical  waveguide  and  for  detection  of  refractive  index  variations  between light  propagation  regions  and  outer  regions  of  the  waveguide.  Thus,  as  shown  in Fig. 10.10, multiple  reflection  within  a  waveguide1  contributes  to  an  increased  intensity  attenuation  of  light  traveling  through  the  optical  waveguide.  When  a  specific amount  of  light  is  input  into  the  entrance  face  of  the  core  of  the  optical  waveguide, 1  It  is  not  a  requirement  that  the  crosssection  of  the  waveguide  is  circular,  rather  other  crosssections may  be  devised,  in  particular  a  rectangular  cross  section. 
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Fig.  10.10  Schematic  operation  principle  of  an  intrinsic  fiber-optic  sensor  based  on  multiple reflections  in  the  waveguide  core  [1, 2] 

light  propagation  in  the  optical  waveguide  may  be  influenced  by  both  violation  of total  internal  reflection  (i.e.,  light  is  also  propagating  in  the  cladding  of  the  optical waveguide)  and  by  the  presence  of  an  evanescent  wave.  In  the  experimental  setup depicted  in  Fig. 10.10, a  variation  of  the  refractive  index  of  the  measurement  medium may  contribute  to  the  situation,  where  the  law  of  total  reflection  in  the  core  of  the optical  waveguide  is  no  more  fulfilled.  This  effect  results  in  a  decreased  intensity output  at  the  output  face  of  the  optical  waveguide.  As  the  law  of  total  reflection  is directly  related  to  the  ratio  of  the  involved  refractive  indexes,  i.e.,  the  constant  refractive  index  of  the  core  of  the  optical  waveguide  and  the  variable  refractive  index  of the  measurement  medium,  see,  e.g., (7.16) in view of Fig.  7.18  of  Chap. 7, a simple measurement  method  may  be  devised  based  on  a  calibration  of  the  output  intensity as  a  function  of  the  refractive  index  variation  of  the  measurement  medium,  i.e.,  we can  perform  simple  intensity  probing. 

Furthermore,  even  if  the  refractive  index  of  the  measurement  medium  remains constant,  a  so-called  evanescent  wave  may  couple  from  the  optical  waveguide  core into  the  environment,  in  this  case  into  the  measurement  medium,  even  if  the  conditions  for  total  reflection  are  fulfilled.  In  this  case,  a  measurement  method  can  be devised  which  is  denoted  as  evanescent  field  sensing. 

In  other  words,  evanescent  waves  appear  in  connection  with  total  internal  reflection  at  an  optical  interface.  In  the  previous  Sects. 10.1  and  10.2, it  has  been  assumed that  an  optical  interface  between  two  media  of  different  refractive  indices  may  act  as a  distinct  borderline,  where—under  conditions  of  total  reflection,  see,  for  example, Sect. 7.2.3  of  Chap. 7, (7.16)—a  light  beam  incident  onto  this  optical  interface  is totally  reflected.  Due  to  physics  of  light,  this  assumption  is  not  completely  valid because  even  in  the  case  of  total  reflection  condition,  an  evanescent  field  may  penetrate  into  the  ambient  medium.  This  evanescent  field  is  utilized  in  intensity-based measurements  using  optical  waveguides.  It  is  noted  here  that  the  optical  sensor waveguides  do  not  need  to  exhibit  a  circular  cross  section,  but  any  cross  section may  be  established,  in  particular  a  rectangular  cross  section.  Multiple  reflections provided  by  ATR  crystal  (ATR:  attenuated  total  reflection)  such  as  is  one  shown  in Fig. 10.11  can  improve  the  measurement  sensitivity  dramatically. 
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Fig.  10.11  Specially 

designed  ATR  crystal, 

example  according  to  [3] 

In  particular,  variations  of  the  refractive  index   n 0  outside  of  the  ATR  crystal may  be  monitored  in  an  easy  manner.  Herein,  chemical  and/or  biochemical  sensitive  materials  may  be  deposited  onto  the  ATR  crystal,  wherein  a  chemical  and/or biochemical  reaction  within  the  material  to  the  probed  contributes  to  the  measurable variation  of  environmental  refractive  index   n 0.  Thus,  any  violation  of  Snell’s  law  of total  reflection  as  discussed  in  Sect. 7.2.3  of  Chap. 7  may  result  in  a  measurement effect.  Further,  spectroscopic  monitoring  devices  based  on  ATR  measurements  may be  devised  by  providing  a  light  source  which  emits  a  specific  wavelength  spectrum. 

Further,  intensity-related  waveguide  monitoring  techniques  are  related  to  evanescent field  sensing,  EFS.  Thus,  attenuated  total  reflection,  ATR,  spectroscopy  is  a  powerful tool  for  fingerprint  measurements  of  probes,  in  particular  in  the  mid-infrared  spectral region.  It  can  easily  be  used  for  measurement  of  a  wide  variety  of  solids,  liquids,  and gases. 

Figure  10.12  illustrates  the  generation  of  an  evanescent  wave  even  if  the requirement  for  the  total  internal  reflection  in  the  waveguide  core  is  met  [4]. 

Fig.  10.12  Generation  of  an  evanescent  field:  field  vector  relations  and  schematic  drawing of  light  propagation  vectors  at  the  optical  interface  between  waveguide  core  and  waveguide cladding  according  to  [2]
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From  the  drawing  of  Fig. 10.12,  the  following  relations  (10.15)  at  the  interface between  the  core  of  the  optical  waveguide  having  a  refractive  index   n 1  and  the environment  to  be  measured  having  a  variable  refractive  index   n 0  may  be  derived. 

sin   θ 1  =  n

2 π 

2 π 

0  ;  k||  = 

sin   θ 0  and   k⊥  = 

cos   θ 0

(10.15) 

sin   θ 0 

 n 1 

 λ 0 

 λ 0 

Now,  we  assume  that  an  evanescent  wave  is  allowed  to  penetrate  into  the  ambient medium  of  refractive  index   n 0  even  in  the  case  of  total  internal  reflection  such  that we  obtain  (10.16).  The  transmitted  evanescent  wave  is  represented  by   E t. 

.  ( 

). 

 .  

 .  

 E t  =  ˆ

 E t  exp   j  ωt  −  k 0  ·  r 

(10.16) 

In  (10.16),  we  may  use  (10.15)  and  obtain 
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Rewriting  (10.16) using  (10.17)  yields 
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The  above-mentioned  wavelength   λ 0  is  related  to  the  vacuum  wavelength   λ =  c/ ν, and  the  ambient  refractive  index   n 0  such  that  we  get  for  the  expression  in  (10.20) 
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Using  the  findings  of  (10.20) in (10.19),  the  transmitted  electric  field  reads  as 
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(10.21) 
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 c 

It  can  be  shown  that  the  first  exponential  term  in  (10.21)  represents  a  damping constant  wherein  the  imaginary  number  “j”  cancels  out.  Using ω ·  n
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Herein,  the  expression  in  the  square  brackets  in  (10.24)  must  be  negative  in  order  to meet  the  requirement  of  total  reflection  discussed  above.  Thus,  we  insert,  into  the expression  for  the  transmitted  wave  according  to  (10.21), 
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In  (10.26),  the  well-known  damping  constant  reads  as 
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The  optical  penetration  depth   d opt  for  the  electric  field   E t  into  ambient  medium having  refractive  index   n 0  is  thus 
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(10.28) 
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In  this  way,  it  has  been  demonstrated  that  an  evanescent  wave  propagating  in  the   n 0 

refractive  index  region  (i.e.,  in  the  close  environment  of  the  optical  waveguide)  exists and  that  this  wave  results  in  a  measurable  intensity  attenuation.  The  associated  intensity  decrease  may  then  be  detected  at  the  output  of  the  optical  waveguide  illustrated in  Fig. 10.10. 
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Chapter  11 

Measurement  Systems  for  Fluid 

Properties 

Abstract  The  present  chapter  is  devoted  to  the  presentation  of  measurement  and sensor  systems  adapted  for  detecting  specific  fluid  properties.  These  measurable properties  comprise—among  others—the  fluid  density  (Sect. 11.1), the  volume  flow of  a  fluid  (Sect. 11.2),  the  mass  flow  of  a  fluid  (Sect. 11.3), and  the  fluid  viscosity (Sect. 11.4).  It  is  noted  here  that  volume  flow  may  also  be  measured  via  an  induction effect  as  has  been  presented  previously  in  Sect. 5.3  of  Chap. 5. 

An  overview  of  fluid  parameters  and  the  associated  measurement  methods  treated  in this  chapter  is  shown  in  Fig. 11.1. 

Fluid  density   ρ F,  as  measured  in  kg/m3,  is  an  important  quantity  for  characterizing fluid  media.  Further,  the  quantity  fluid  density   ρ F  may be used to convert  volume flow,  qV  ,  measured  in  the  unit  m3s−1,  into  mass  flow,  q m,  measured  in  the  unit kg  s−1, see  (11.1)  in  view  of  Fig. 11.1.  A  specific  measurement  method  for  separate determination  of  mass  flow  will  be  discussed  below  in  the  present  chapter,  Sect. 11.3. 

Furthermore,  in  the  present  chapter,  Sect. 11.2, independent  measurement  methods for  volume  flow  will  be  presented. 
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(11.1) 
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11.1 

Fluid  Density  Sensors 

Fluid  density,  as  measured  in  kg/m3,  is  an  important  property  for  material  characterization.  The  density  of  a  fluid  to  be  investigated  may  be  monitored  using  a weighting  technique  shown  herein  below  with  reference  to  Fig. 11.3.  The  presented
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Fig.  11.1  Overview  this 

chapter:  the  relation  between 

volume  flow,  mass  flow,  and 

fluid  density

fluid  density  monitoring  system  is  based  on  Archimedes  principle  [1]  which  will  be briefly  discussed  at  first  in  view  of  Fig. 11.2. 

In  the  exemplary  arrangement  illustrated  in  Fig. 11.2, a  cylindrical  test  body   B   is immersed  into  the  fluid  to  be  investigated.  Two  forces   F 1  and   F 2  are  acting  onto  the upper  and  the  lower  surface   A B  of  the  test  body   B,  respectively,  such  that  we  obtain the  so-called  buoyancy  force   F B  according  to  (11.2). 

Fig.  11.2  Archimedes’ 

principle  as  a  basis  for  fluid 

density  measurement
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Fig.  11.3  Fluid  density 

measurement  system;  scale 

readings  are  S1  and  S2, 

respectively,  see  text

⎛ 

⎞ 

. 

 F 1  =  ρF  ·  g  ·  y 1  ·  A B 

⎜

⎟

 F B  =  F 2  −  F 1  =  ρ F  ·  g  ·  A B  ⎝ y 2  −  y 1⎠

(11.2) 

 F

. .. . 

2  =  ρ F  ·  g  ·  y 2  ·  A B

 .y 

. 

.. 

. 

 V B 

Herein,  g  = 9.80665  m/s2  is  the  gravitational  acceleration,  and   V  B  is  the  volume  of the  test  body   B.  It  is  noted  here,  as  can  be  seen  from  (11.2), that  the  shape  of  the test  body  is  not  crucial,  only  the  volume   V  B  must  be  accurately  determined.  That is  the  reason  why  in  the  setup  of  Fig. 11.3, usually,  a  sphere  is  employed  as  a  test body   B.  The  resulting  buoyance  force   F B  =  ρ F   g V  B  thus  is  directed  upwards  in Fig. 11.3,  opposite  to  the  gravitational  force   F G  =  m B   g   acting  on  the  (spherical) test  body   B   of  mass   m B.  A  fluid  densimeter  as  the  one  depicted  in  Fig. 11.3  is  based on  a  weighting  technique  using  a  scale.  Generally,  two  weight  measurements  are compared,  see  Fig. 11.3  [1]: 

(i) 

the  weight  of  the  fluid  (including  the  vessel  which  contains  the  fluid)  without the  test  body  being  immersed  into  the  fluid  is  measured  resulting  in  a  first  scale reading   S 1;  and 

(ii)  the  weight  of  the  fluid  (including  the  vessel  which  contains  the  fluid)  with  the test  body  being  immersed  into  the  fluid  is  measured  resulting  in  a  second  first scale  reading   S 2. 

By  neglecting  the  density  of  the  ambient  medium  (air:   ρ air  ≈ 1.2  kg/m3  at  sea level  and  at  a  temperature  of  20°C)  and  by  using  (11.2), we  can  get  the  fluid  density ρ F  from  the  difference  in  the  two  scale  readings  according  to  (11.3). 

 ρ

 S 2  −  S 1 

F  = 

(11.3) 

 V B 

The  above-mentioned  test  body   B   of  volume   V  B  usually  is  designed  as  a  perfect sphere.  The  obtained  weight  difference  thus  is  a  direct  measure  for  the  fluid  density to  be  monitored.  The  parameter  fluid  density,  ρ F,  may  be  used  to  convert  volume flow  ˙

 V  (measured  in  m3/s)  into  mass  flow  ˙

 m  =  q m  (measured  in  kg/s),  as  elucidated 

in  (11.1). Finally,  Table  11.1  depicts  density  values  of  selected  fluids. 
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Table  11.1  Selected  fluids 

Fluid

Density  in  103  kg/m3 

and  their  fluid  densities 

Ethanol

0.789 

Petroleum

0.800 

Water  @  4  °C

0.999 

Glycerol

1.260 

Sulfuric  acid

1.834 

Mercury

13.595 

Summarizing,  the  fluid  to  be  measured  is  contained  in  a  vessel  arranged  onto  a scale.  As  soon  as  the  test  body   B   is  immersed  into  the  fluid,  the  test  body   B   being fixed  in  a  predetermined  height,  an  additional  force,  i.e.,  the  buoyancy  force   F B  acts onto  the  scale  and  increases  the  weight  reading  accordingly.  The  fluid  density  itself  is measurable  using  the  weighing  technique  described  in  the  present  Sect. 11.1, whereas independent  measurement  methods  for  volume  flow  ˙

 V  (Sect. 11.2)  and  mass  flow  ˙

 m 

(Sect. 11.3)  are  available  and  will  be  described  herein  below. 

11.2 

Volume  Flow  Sensors 

 11.2.1 

 Bernoulli  Flow  Sensor 

A  robust  and  easy-to-install  volume  flow  sensor  is  operating  corresponding  to  the simplified  Bernoulli  equation  for  a  horizontally  oriented  pipe  section  (gravitation pressure  is  neglected),  see  (11.4). 

 ρ 

 ρ 

 p 1  +   (v 1 ) 2  =   p 2  +   (v 2 ) 2 

(11.4) 

2 

2 

Herein,  as  further  illustrated  in  Fig.  11.4a,  p1  and  p2  are  the  static  pressures,  ρ F  is  the fluid  density,  and   ρ

2

2

F   v 1  /2  and   ρ F   v 2  /2  are  the  density-dependent  dynamic  pressures, respectively. 

The  flow  measurement  setup  consisting  essentially  of  a  pipe  portion  having reduced  cross  section   A 2  (i.e.,  a  Venturi  nozzle)  is  shown  in  Fig. 11.4a.  The  relation of  the  resulting  different  flow  velocities   v 1 , v 2  is  given  by  the  continuity  (11.5) in combination  with  (11.1). 

 A 1  ·  v 1  ·  ρF  =  A 2  ·  v 2  ·  ρF  =  q m  = ˙

 m

(11.5)

Thus,  we  get  the  ratio
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Fig.  11.4  Bernoulli 

principle  applied  at  volume 

flow  sensing; a  principle  of 

measurement  and  b 

monitored  volume  flow   qV 

as  a  function  of  pressure 

difference  . p  [2]

 v 1  =  A

2   , 

(11.6) 

 v 2 

 A 1 

and  after  inserting  (11.6) in (11.4), the  measurable  difference  of  the  static  pressures  is (

)

 ρ (

)

 ρ

 v 2 

 ρ (

)

 . 

 F 

 F 

 F 

 p  =   p

1 

1  −  p 2  = 

 v 2  −  v 2  = 

 v 2  1  − 

=  v 2 

1  −  k 2   . 

(11.7) 

2

2 

1

2 

2

 v 2 

2  2

 A

2

In  (11.7),  k A  =  A 2 /A 1  is  the  pipe  cross-section  reduction  factor  which  must  be smaller  than  1.  The  volume  flow  of  interest  for  constant  fluid  density   ρ F  thus  is determined  by 

 qv  =  ˙

 V  =  v 1   A 1  =  v 2   A 2 . 

(11.8) 

Inserting   v 2  from  (11.7) in (11.8)  yields  the  volume  flow  q 2 

V  monitored  as  a 

function  of  the  detected  pressure  difference  (see  Fig. 11.4b) 

/

2 

/

 q

(

)

V  =

·  A

 .p. 

(11.9)

 ρ

2  ·

 F  1  −  k 2  A
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Fig.  11.5  Volume  flow 

measurement  system  with 

differential  capacitor 

pressure  monitoring  system1 

Thereby,  we  obtain  the  volume  flow  ˙

 V   as  function  of  the  measured  pressure  differ-

ence  .p.  A  capacitive  pressure  difference  detection  system  such  as  the  one  described with  reference  to  Sect.  4.1  of  Chap. 4  (see,  in  particular,  Figs. 4.1  and  4.2)  can  be used  for  a  combination  with  the  setup  shown  in  Fig. 11.4. The  basic  arrangement  of the  complete  volume  flow  measurement  system  is  illustrated  in  Fig. 11.5. 

 11.2.2 

 Ultrasound  Flow  Sensors 

The  use  of  ultrasound  is  of  particular  advantage  if  flow  measurement  of  fluids  has  to be  considered.  An  overview  of  measurement  methods  is  given  in  the  block  diagram  of Fig. 11.6. Consistent  with  this  block  diagram,  in  the  following,  we  will  at  first  discuss volume  flow  detection  based  on  time  difference  measurement,  then  the  measurement  of  absolute  times  will  be  included.  Further,  the  frequency  measurement  can be  provided,  and  finally,  the  most  sensitive  flow  detection  method  will  be  provided which  is  based  on  phase  control  [2]. 

The  flow  detection  methods  summarized  in  the  block  diagram  of  Fig. 11.6  each require  the  same  basic  measurement  arrangement  which  is  schematically  shown  in Fig. 11.7.  In  this  setup  two  acoustic  transducers  are  arranged  such  that  an  acoustic path  of  length   L   traverses  the  flow  pipe  under  an  inclination  angle   α with  respect  to the  flow  direction. 

An  essential  feature  of  the  setup  shown  in  Fig. 11.7  is  the  inclination  angle  of  the ultrasound  propagation  path   L   with  respect  to  the  flow  direction   v,  i.e.,  the  angle   α. 

1  The  differential  capacitor  arrangement  employed  here  is  especially  suited  for  signal  analysis  using AC  measurement  bridge,  see  Sect.  2.3.1  of  chapter  2. 

11.2 Volume Flow Sensors

231

Fig.  11.6  Ultrasound  flow 

measurement  principles

Fig.  11.7  Basic 

arrangement  of  an  ultrasonic 

flow  meter;  A  is  the 

cross-sectional  area  of  the 

flow  pipe  [2]

If  the  fluid  velocity  is  larger  than  zero,  two  different  propagation  times   t 1  defined  in 

(11.10), and   t 2  defined  in  (11.11)  can  be  evaluated,  wherein   c s  is  the  sound  velocity  of the  flowing  medium.  For  ultrasound  transmission  from  transducer   T1   to  transducer T2 22 ,  we  get 

 t 1  =

 L 

 . 

(11.10) 

 c s  +  v cos   α 

On  the  other  hand,  for  ultrasound  transmission  from  transducer   T  2  to  transducer T  1,  we  get  a  different,  larger  propagation  time  value  of t 2  =

 L 

 . 

(11.11) 

 c s  −  v cos   α 

Time  difference  measurement 

The  flow  velocity   v   and  thus  the  volume  flow  q V  =  ˙

 V  =  v  A,  see  also  (11.8),  can  be determined,  in  this  case,  from  the  time  difference  .t   according  to  (11.12). 
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 v 

 v 

 . 

cos   α 

cos   α 

 t  =  t 2  −  t 1  = 2 L 

≈ 

(11.12) 

 c 2  −  v 2  cos2   α 

 c 2 

s 

s 

A  disadvantage  of  the  time  difference  method  according  to  (11.12)  is  the  fact  that the  temperature-dependent  sound  velocity   c s  of  the  medium  to  be  monitored  must be  known,  as  can  be  seen  from  the  re-arrangement  of  (11.12). 

 v

 sc 2 

≈ 

s 

 .t

(11.13) 

2 L   cos   α

Absolute  time  measurement 

As  the  sound  velocity   c s  in  (11.13)  is  temperature-dependent,  it  may  be  advisable to  measure—in  addition  to  the  time  difference   Δt  =  t 1   – t 2—absolute  transition times   t 1  and   t 2  such  that  the—in  many  cases  unknown—sound  velocity   c s  can  be eliminated,  see  (11.14). 

 t 1 t 2  =

 L 2 

(11.14) 

 c 2  −  v 2 cos 2 α 

 s 

Thereby,  using  (11.14) in (11.13), we  obtain  the  flow  velocity   v   independent  of the  sound  velocity   c s  of  the  flowing  medium  as 

 . 

 v

 t 

=

 L 

 . 

(11.15) 

2   cosα t 1 t 2 

Repetition  frequency  measurement 

Further,  another  sound  velocity-independent  method  for  fluid  flow  detection  would be  frequency  measurement   f   1 , f   2  according  to  (11.16)  and  (11.17).  The  flow  velocity detection  method  based  on  repetition  frequency  measurement  uses  a  trigger  pulse generated  at  transducer   T  2  when  it  receives  the  pulse  sent  from  transducer   T  1  and transmitted  through  the  medium  to  be  measured  along  the  transmission  length   L. The trigger  pulse,  in  turn,  is  sent  back  to  transducer   T  1  which  immediately  generates  a new  pulse  being  transmitted  through  the  flow  medium.  The  repetition  frequency   f   1 

of  such  pulse  generation  is  dependent  on  the  propagation  time   t 1  mentioned  before in  (11.10)  and  reads  as 

 c s  +  v cos   α 

 f 1  = 

 . 

(11.16) 

 L 

On  the  other  hand,  a  trigger  pulse  is  generated  at  transducer   T  1  when  it  receives  a pulse  sent  from  transducer   T  2  and  transmitted  through  the  medium  to  be  measured along  the  transmission  length   L.  In  this  case,  the  trigger  pulse  is  sent  back  to  transducer T  2  which  immediately  generates  a  new  pulse  being  transmitted  through  the  flow medium.  The  repetition  frequency   f   2  of  such  pulse  generation  is  dependent  on  the
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propagation  time   t 2  mentioned  before  in  (11.11)  and  reads  as c s  −  v cos   α 

 f 2  = 

 . 

(11.17) 

 L 

The  frequency  difference  . f   may  then  be  monitored  as  a  function  of  the  medium flow  velocity   v   according  to  (11.18). 

 . 

2   v 

 f  =   f 1  −   f 2  = 

cos   α. 

(11.18) 

 L 

A  major  advantage  of  the  repetition  frequency  method  is  its  independence  of  the sound  velocity   c s  of  the  flowing  medium  as  we  get  the  flow  velocity   v   from  (11.18) 

according  to  (11.19). 

 v =

 L 

 .f

(11.19) 

2  cos   α

Phase  control  method 

Further,  another  sound  velocity-independent  method  for  fluid  flow  detection  would  be phase  control  measurement  having  the  highest  measurement  accuracy  of  all  presented ultrasound  flow  velocity  measurement  devices.  The  phase  control  method  is  based on  the  property  of  the  ultrasound  transducers   T  1,  T  2  to  provide  adjustable  ultrasound output  frequencies   f   1  and   f   2,  respectively.  The  ultrasound  waves  having  frequencies f   1  and   f   2  propagate  from   T  1  to   T  2  ( f   1)  and  from   T  2  to   T  1  ( f   2),  respectively.  Further, the  ultrasound  wavelength   λ s  is  set  such  that  a  constant,  integer  number   k   of  waves fits  between  transducer   T  1  and  transducer   T  2,  i.e.,  along  propagation  length   L, as indicated  in  (11.20). 

 L  =  k  λ s

(11.20) 

As  the  propagation  velocity  of  ultrasound  is  the  product  of  ultrasound  wavelength λ s  and  frequency   f   1  (for  propagation  from   T 1  to   T 2),  or  the  product  of  ultrasound wavelength   λ s  and  frequency   f   2  (for  propagation  from   T  2  to   T  1),  respectively,  we get,  based  on  constant   λ s  according  to  (11.20),  the  relations  (11.21)  and  (11.22). 

 c s  +  v cos   α 

 f 1  = 

(11.21) 

 λ s 

 c s  −  v cos   α 

 f 2  = 

(11.22) 

 λ s 

Thereby,  velocity   v   of  the  flowing  medium  may  be  determined  independently from  the  knowledge  of  the  ultrasound  velocity   c s  just  by  evaluating  the  frequency difference  . f  =  f   1   – f   2  from  (11.21)  and  (11.22). 
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Fig.  11.8  Commercial 

ultrasound  flow  meter  [2] 

 . 

 v

 f  λ

=

s 

(11.23) 

2  cos   α 

A  commercially  available,  easy-to-install,  and  cost-effective  ultrasonic  flow measurement  system  is  illustrated  in  Fig. 11.8. The  measurement  system  depicted in  Fig. 11.8  can  be  used  with  any  of  the  flow  measurement  methods  described hereinabove. 

11.3 

Mass  Flow  Sensors 

Mass  flow  measurement,  i.e.,  the  detection  of  a  mass  of  a  moving  fluid  in  the  unit  kg/s, is  of  special  importance  in  some  fields  of  production  technology,  e.g.,  in  chemical industry.  As  has  been  mentioned  before  in  Sect. 11.1, mass flow   q m  in  kg/s  can be  derived  by  volume  flow   q V  detection,  Sect. 11.2,  multiplied  by  a  detected  fluid density   ρ F, , see  (11.1). There  is,  however,  a  unique  measurement  method  for  direct monitoring  of  mass  flow  of  a  moving  fluid  through  a  pipe. 

In  this  context,  mass  flow  measurement,  i.e.,  the  detection  of  a  quantity  in  the  unit kg/s,  is  a  special  issue.  Sensor  systems  capable  of  detecting  mass  flow  can  only  be based  on  somehow  utilizing  the  Coriolis  force.  An  explanation  of  the  Coriolis  force is  given  in  view  of  Fig. 11.9. For  simplifying  explanation,  at  first,  a  mass  element   m of  the  fluid  under  investigation  is  regarded.  This  mass  element  moves  at  flow  velocity v   to  the  right  side  along  the  pipe  shown  in  Fig. 11.9. Now,  let  us  assume  that  the  pipe is  deviated  at  an  angular  velocity   D  (in  s−1),  about  a  center  point  CP.  As  can  be  seen from  Fig. 11.9, the  mass  element   m   gets  deviated,  during  movement  in  direction   v, by  an  amount   d   downwards  in  Fig. 11.9. 

This  downward  movement   d   can  be  explained  as  being  caused  by  the  Coriolis force  in  a  rotating  reference  system.  Under  the  assumption  that  the  mass  element   m travels  the  distance   r   in  a  time  duration   t,  we  have r  =  v  t

(11.24) 

and  for  small  downward  movement   d,  we  can  approximate 

 d  ≈  r D  t. 

(11.25)
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Fig.  11.9  Explanation  of  the 

Coriolis  effect;  a  mass 

element  m  is  moving  through 

a pipe from left to right

By  combining  (11.24)  and  (11.25),  we  find 1 

 d  =  v  Dt 2  =   a c   t 2  , 

(11.26) 

2 

wherein   a c  =  2 v D   is  the  Coriolis  acceleration,  and  thus F c  =  ma c  = 2 mv  D

(11.27) 

is  the  Coriolis  force  acting  on  the  mass  element   m.  A  compensation  force   F s  acting on  the  pipe  can  be  detected,  e.g.,  via  a  minor  deformation  of  a—deformable—pipe section  as  the  one  shown  in  Fig. 11.10.  It  is  noted  here  that  the  Coriolis  force   F c  in  the present  case  is  generated  by  the  oscillation  of  the  bent  pipe  as  illustrated  in  Fig. 11.10 

being  the  basis  for  a  Coriolis  mass  flow  sensor  [2]. The  respective  Coriolis  forces   F c act  in  opposite  directions  on  the  pipe  within  the  bent  region  BR  having  deflection b   shown  in  Fig. 11.10. Thereby,  the  forces  Fc  result  in  a  minor  deformation  of  the deformable  pipe  section.  Further,  each  of  the  mass  elements   m   making  up  the  total flowing  mass  to  be  measured  moves  at  velocity   v   such  that  the  mass  flow   q m  can  be approximated  by  (11.28). 

 m 

 m  v 

 r 

 q m  = ˙

 m  ≈ 

= 

with   v = 

(11.28)

 t 

 r 

 t 

The  compensation  torsion  momentum   M s  =  S  ε =  F C   b   depends  on  the  stiffness S   of  the  pipe  and  the  resulting  deviation  angle   ε of  the  pipe  about  an  axis  indicated  by the  broken  line  in  Fig. 11.10.  Herein,  the  angular  displacement   D  (denoted  as  angular velocity  hereinabove)  is  provided  by  an  external  driving  force,  i.e.,  by  an  actuator acting  on  the  pipe.  In  practical  applications,  the  actuator  generates  an  oscillating movement  of  the  pipe  in  the  indicated  direction   D. 

Then,  from  momentum  equilibrium   M s  =  S  ε =  F C   b   for  constant  mass  flow  ˙

 m 

=  q m  (measured  in  kg/s),  we  get  from  (11.27)
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Fig.  11.10  Mass  flow  sensor  based  on  Coriolis  force  detection ε

 M

 F

2  ·  m  ·  v ·  D  ·  b 

=  s  =  c  ·  b  = 

 . 

(11.29) 

 S 

 S

 S 

By  inserting  the  approximation  (11.28) into (11.29), we  obtain  the  final  result  for mass  flow  measurement  as 

 ε

2 Dbr 

= 

˙ m  = const  ·  q m   . 

(11.30) 

 S 

Thereby,  the  mass  flow  ˙

 m  =  q m  (measured  in  kg/s)  can  be  monitored  by  detecting the  deviation  angle   ε of  the  pipe,  e.g.,  by  appropriate  displacement  sensors. 

11.4 

Viscosity  Sensors 

A  further  property  characterizing  fluids  are  their  viscosity.  Viscosity  may  be  denoted as  a  “flow  resistance”  of  the  fluid.  Generally,  this  parameter  is  defined  as  a  measure of  a  force   F   required  for  moving  a  plate  of  area   A   at  a  distance   d   from  the  pipe wall  through  a  fluid,  see  sketch  of  Fig. 11.11.  Herein,  a  velocity  gradient   dv/dx   from pipe  wall  ( v  =  0)  to  moving  plate  ( v  >  0)  has  to  be  considered.  The  proportionality constant  relating  the  force   F   to  the  velocity   v   of  plate  movement  and  the  geometry parameters   A   and   d   is  denoted  as  the  dynamic  viscosity   η measured  in  Ns/m2, or Pa  s.  The  general  considerations  are  summarized  in  (11.31) [1,  3]. 

. 

 F  ∼  A 

 v 

→

d v 

 F  =  η  A 

≈  η  A   in   N

(11.31)

 F  ∼  d v 

d x 

 d 

d x

Thereby,  once  we  have  a  possibility  to  measure  the  force   F   and  by  knowing  the velocity  profile,  the  dynamic  viscosity   η can  be  determined. 
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Fig.  11.11  Explanation  of 

the  force   F   related  to  fluid 

viscosity  [3]

Commercially  available  viscosity  measurement  systems  operating  in  a  continuous mode  are  preferably  designed  as  rotation  viscometers  [3],  such  as  the  one  shown  in Fig. 11.12.  A  continuous  rotational  drive  of  an  outer  cylindrical  vessel  is  provided by  motor   M,  the  vessel  being  filled  with  the  viscous  fluid  to  be  investigated.  As indicated,  the  outer  cylindrical  body  has  an  inner  radius   r o.  Into  the  fluid  immersed is  an  inner  cylindrical  body  which  is  also  rotatable  about  the  central  axis,  by  an  angle α against  a  spring  constant   S.  When  the  outer  cylinder  is  rotated  at  angular  frequency ω o,  frictional  forces  are  acting  on  the  inner  cylinder2  which  then  is  rotated  against the  spring  compensation  momentum   M S  =  Sα.  The  inner  cylindrical  body  has  an outer  radius   r i  and  a  height   h.  The  velocity  gradient  d v/   d x   mentioned  above  now has  to  be  presented  in  rotational  coordinates,  between   r i  and   r o,  and  reads  as  d v/   d r, wherein   r   is  the  radius  coordinate. 

In  order  to  provide  a  measure  for  dynamic  viscosity  according  to  (11.32) in view of  Fig. 11.12 
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2 πr 2  h 

d v |

d r r = r

 i 

 i 

d r r = ri 

the  quantity  d v/   d r   at  the  location  of  the  inner  radius   r  =  r i  must  be  known.  Herein, M t  is  the  torsion  moment  transmitted  due  to  the  fluid  viscosity.  Further,  any  radius-dependent  rotational  moment  resulting  from  frictional  forces  due  to  fluid  viscosity in  the  range   r i  <  r  <  r a  must  have  a  constant  value,  because  motor  drive   M   provides  a constant  rotation  of  the  fluid  between  the  inner  surface  of  the  outer  cylinder  and  the outer  surface  of  the  inner  cylinder.  In  other  words,  no  angular  acceleration  is  present and  thus,  d ω/   d t  =  0.  The  radius-dependent  momentum  in  the  fluid  volume  is  [3] 

d v 

d ω 

d ω 

 M  =  F  ·  r  =  η ·  A  · 

·  r  =  η · 2 πrh  ·  r 

·  r  =  η · 2 πhr 3 

= const .  

d r 

d r 

d r 

(11.33) 

From  (11.33),  we  see  that

2  It  is  noted  here  that  frictional  forces  acting  on  the  upper  and  lower  surfaces  of  the  cylinder  have been  neglected. 
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Fig.  11.12  Rotational  viscometer,  set-up  principle  [3]

d ω 

 r  3 

=  C 1 , 

(11.34) 

d r 

with   C 1  being  a  first  constant,  and  that 

⇒ d ω 

 A 

 C



=  ;  ω = −   1  +  C 2 , 

(11.35) 

d r 

 r  3 

2 r  2 

with   C 2  being  a  second  (integration)  constant.  The  two  constants   C 1  and   C 2  can easily  be  evaluated  by  using  the  two  boundary  conditions 

 C 1 

 r  =  r i  :

 ω =  ω i  = 0  ⇒ 0  = −   +  C 2 ,  and

(11.36) 

2 r  2 i 

 C 1 

 r  =  r o  :   ω =  ω o  ⇒  ω o  = −  

+  C 2 . 

(11.37) 

2 r  2 o 

By  subtracting  (11.36) from (11.37),  we  find  the  constant  C1
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and  after  inserting  (11.38) into (11.36), we  obtain  the  constant   C 2 
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By  inserting  the  obtained  constants   C 1 , C 2  into  (11.35),  we  find ω
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Using  the  relation   v  =  ω  r,  we  get  the  velocity  gradient  in  rotational  coordinates (

)

d v 

 ω
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( ) 1  +  i   , 

(11.41) 
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and  at  the  location  of  the  outer  surface  of  the  inner  cylinder,  i.e.,  at   r  =  r i,  we  get 
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d v ||
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(11.42) 
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Relation  (11.42)  now  can  be  inserted  into  (11.32)  such  that  we  have (

)
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(11.43) 
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The  torsion  moment   M t  according  to  (11.43)  is  equated  with  the  spring  compensation  momentum   M S  =  Sα  such  that  we  have   M t  =  M S  =  Sα.  In  this  way,  the dynamic  viscosity   η can  be  monitored  as  a  function  of  the  measured  rotation  angle α of  the  inner  cylinder  in  accordance  with  (11.44). 

 r  2  −  r 2 

→

1 

 S 

 η = 

· 

·  o 

 i 

·  α

(11.44) 

4 π   ω o   h  ·  r 2  ·  r 2 

o 

i 

The  determination  of  fluid  viscosity  represents  an  important  field  of  fluid  characterization,  because  fluid  viscosity  can  vary  over  a  wide  range,  as  it  is  exemplified  in Table  11.2. 
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Table  11.2  Viscosity  values 

Fluid  medium

Dynamic  viscosity  in  mPa  s 

of  fluid  media  at  specific 

temperatures 

Benzene  @  25  °C

0.601 

Water  @  20  °C

1.002 

Water  @  0  °C

1.792 

Glycerol

1480 

Honey

≈ 104 

Syrup

≈ 105 
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