
T E C H N O L O G Y I N A C T I O N ™

Intermediate
C Programming
for the PIC
Microcontroller

Simplifying Embedded
Programming
—
Hubert Henry Ward

Intermediate
C Programming

for the PIC
Microcontroller
Simplifying Embedded

Programming

Hubert Henry Ward

Intermediate C Programming for the PIC Microcontroller: Simplifying

Embedded Programming

ISBN-13 (pbk): 978-1-4842-6067-8 ISBN-13 (electronic): 978-1-4842-6068-5
https://doi.org/10.1007/978-1-4842-6068-5

Copyright © 2020 by Hubert Henry Ward

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6067-8. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Hubert Henry Ward
Leigh, UK

https://doi.org/10.1007/978-1-4842-6068-5

iii

Table of Contents

Chapter 1: Creating a Header File ���1

Creating a Header File ��2

Creating a Project in MPLABX ��3

Including the Header File ���18

Creating the Project Source File ��19

Creating a Global Header File ��23

The PICSetUp�h Header File ���26

Analysis of Listing 1-1 ���28

Synopsis ��46

Answer to Exercise ��46

Chapter 2: Controlling a Seven- Segment Display �������������������������������47

Controlling a Seven-Segment Display ���47

Common Anode Seven-Segment Display ��49

Common Cathode Seven-Segment Display ���50

Controlling the Display with the PIC ��52

The Seven-Segment Display Program ���53

The Listing for the Seven-Segment Display Program ������������������������������������57

The Analysis of Listing 2-1 ��59

About the Author ���ix

About the Technical Reviewer ���xi

Introduction ���xiii

iv

Improving the Seven-Segment Display Program ���71

The Problem with the Program ��71

Arrays ��72

Using Pointers ���72

Analysis of The Pointer Example ���73

The Improved Program ��74

Synopsis ��79

Answers to the Exercises ��79

Chapter 3: The 24-Hour Clock ���81

The Seven-Segment Display ���82

The Algorithm for the 24-Hour Clock Using Seven-Segment Displays����������������82

The Initialization of the PIC ���86

Analysis of Listing 3-1 ��93

A 24-Hour Clock with the LCD Display ��104

Analysis of the Header File for the LCD ���121

The Analysis of Listing 3-2 ��133

Improvements for the 24-Hour Clock LCD Program ������������������������������������145

Using Switch and Case Keywords ���147

Analysis of the New Subroutine ��149

Synopsis ��151

Chapter 4: Creating a Square Wave ��153

Why Create a Square Wave? ���153

Musical Notes ���154

The Speed of the Simple DC Motor ���156

Pulse Width Modulation ��156

Creating a Square Wave with the PWM Mode ���158

Table of ConTenTs

v

Creating a 500Hz Square Wave ���162

The Mark Time or Duty Cycle ��164

Analysis of Listing 4-1 ��166

Creating Two Square Wave Outputs ��169

Setting the Speed of a DC Motor ���172

Driving the Motor ��175

Creating a Three-Speed DC Motor Program ��176

Using a Variable Input Voltage to Change the Speed of a DC Motor������������������179

Analysis of Listing 4-5 ��180

Creating a Musical Note ��186

Creating the Middle C Note ���187

Creating a Musical Keyboard ��191

The Analysis Of Listing 4-7 ���194

Summary���196

Answers to the Exercises ��196

Chapter 5: DC Motors ��199

The Stepper Motor ��199

The Servo Motor ��209

Using the CCPM to Produce the Pulse Train Signal �������������������������������������210

Controlling the Positions of the Servo Motor with a Variable Resistor ��������212

Improving The Servo Motor Program ���215

The Algorithm for the Improved Program ��216

Summary ���223

Solution to the Exercise ���224

Table of ConTenTs

vi

Chapter 6: Interrupts ��225

What Are Interrupts? ���225

The Fetch and Execute Cycle ��226

The Program Counter ��226

The Sources of Interrupts ���230

The Process for a Simple Interrupt with No Priorities ���������������������������������231

Setting Up the PIC to Respond to the Interrupts ��232

The PIE1 Register ��237

The Algorithm for the Interrupt Test Program ��239

Compiler Software Version Issue ���240

The Analysis of Listing 6-1 ��243

Using the Compare Function of the CCP Module ��251

The Algorithm for the Compare Function ���253

The Analysis Of Listing 6-2 ��256

Using Priority Enabled Interrupts ��260

The Algorithm for the High/Low Priority Program ��260

Analysis of Listing 6-3 ���265

Explanation of How the High/Low Priority Program Works ��������������������������270

Summary���272

Chapter 7: Frequency Measurement and the EEPROM ���������������������273

Using the Capture Function of the CCP ���273

Setting the CCP to the Capture Mode ��274

What the CCP Captures in the Capture Mode ��274

The Algorithm for the Frequency Measurement Program ���������������������������������276

Example Frequency Measurement ��278

The Program to Measure the 500Hz Square Wave ��280

Table of ConTenTs

vii

Analysis of Listing 7-1 ��283

Using the EEPROM Inside the 18f4525 ���296

Analysis of Listing 7-3 ��304

Simulation of the EEPROM Program Using MPLABX ���312

Summary���314

 Appendix 1: Some Useful Definitions ��317

 Appendix 2: Mathematical and Logic Operators �������������������������������319

 Appendix 3: Keywords ��321

 Appendix 4: Data Types ��323

 Appendix 5: The ASCII Character Set ��325

 Appendix 6: Numbering Systems Within
Microprocessor-Based Systems ���327

 Binary Numbers ��328

 Converting Decimal to Binary ���328

 Converting from Binary to Decimal ���329

 Adding and Subtracting Binary Numbers ��331

 Subtracting Binary Numbers ���332

 The Hexadecimal Number System ��334

 Appendix 7: ���337

 Appendix 8: The Frequency and Wavelength of the
Main Musical Notes ��339

 Index ���345

Table of ConTenTs

ix

About the Author

Hubert Henry Ward has nearly 25 years of experience as a college lecturer

delivering the BTEC, and now Pearson's, Higher National Certificate and

Higher Diploma in Electrical and Electronic Engineering. Hubert has a

2.1 Honours Bachelor's Degree in Electrical and Electronic Engineering.

Hubert has also worked as a consultant in embedded programming. His

work has established his expertise in the assembler and C programming

languages, within the MPLABX IDE from Microchip, as well as designing

electronic circuits and PCBs using ECAD software. Hubert was also the UK

technical expert in Mechatronics for three years, training the UK team and

taking them to the Skills Olympics in Seoul 2001, resulting in one of the

best outcomes to date for the UK in Mechatronics.

xi

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to build things that improve quality of life. You can find

his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com

xiii

Introduction

This book looks at some useful aspects of the PIC microcontroller. It

explains how to write programs in C so that you can use the PIC micro to

control a variety of electronics and DC motors. After reading this book, you

will be well on your way to becoming an embedded programmer using the

C programming language.

 The Aims and Objectives of This Book
The main aim of this book is to introduce you to some useful applications

of programming PIC micros such as

• Creating header files

• Controlling seven-segment displays

• Using an LCD display with two lines of 16 characters

• Pulse width modulation

• Using driver ICs such as the ULN2004A

• Controlling DC motors, including stepper motors and

servo motors

• Using every aspect of the Capture, Compare and PWM,

CCP module in the PIC

• Using interrupts

• Writing to the EEPROM

xiv

 The Objectives of This Book
After reading through this book, you should be able to program the PIC

to use all of the above. You should have a good understanding of some of

the advance programming techniques for PIC micros. You should be able

to download your programs to your PIC in a practical situation where you

have the ability to design and build some useful projects.

 The Prerequisites
There are none really, but understanding the C programming language

will be useful. However, I will explain how each program works as we go

through them.

Also, if you understand the binary and hexadecimal number systems,

it will be an advantage but there is a section in the Appendix that will help

you with that.

However, to get the full use out of this book, you will need to install the

following software:

• MPLABX, which is the IDE from Microchip. The version

in the book is MPLABX Version 5.25. However, any

version later than 2.20 is OK.

• A C compiler for the 8-bit micro. I use XC8 (V2.10)

but with some programs I use XC8 (V1.35) compiler

software. However, you should be aware that some of

the later compilers are missing some useful libraries.

This is why I sometimes use version 1.35.

All of these programs are freely available from the Microchip web site.

InTroduCTIon

xv

Another useful piece of software is a suitable ECAD (electronic

computer-aided design) software program that supports 8-bit micros.

The ECAD software I use is PROTEUS. However, it is not free, so as well as

showing you how to simulate the programs in PROTEUS, I will show you

how to use a suitable prototype board to run the programs in a practical

situation.

If you want to go down the practical route, you will need to purchase a

programming tool and a prototype board.

The tools I use are either the ICD3 can (Microchip has now moved

onto the ICD4 can) or the PICkit3 programmer to download the programs

from MPLABX to the PIC.

The prototype board I use is the picdem2 plus DEMO BOARD and

a prototype board from Matrix Multimedia (although Matrix no longer

produces the more versatile board that I use).

This book was written based around using MPLABX V5.25.

However, the principles of how to create projects and write programs

are transferable to earlier and later versions of MPLABX. There may be

some slight differences in the details, but they shouldn't cause too many

problems.

The PIC that this book is based around is the PIC18F4525. This is a

very versatile 8-bit micro that comes in a 40-pin dual-inline package. As

long as the PIC you want to use has the same firmware modules, then the

programs in the book can easily be used on other PIC micros with some

minor modifications. However, you should always refer to the data sheet

for the particular PIC you use because some of the SFRs (special function

registers) may differ. For example, the PIC18F4525 uses the ADCON0,

ADCON1, and ADCON2 SRFs to control the ADC module but the 16F88

uses the ANSEL, ADCON0, and ADCON1 registers.

Throughout the book, I include program listings and I go through an

analysis of any new instructions that the listings introduce. With respect to

the first listing, I will assume that all of the instructions are new to you, the

reader.

InTroduCTIon

xvi

Before we move into the book for real, I think it will be useful to you if

I explained a bit about what MPLABX is. It is an industrial IDE created by

Microchip. The term IDE stands for integrated development environment.

It is actually a lot of programs collected together to create a programming

environment:

• There is an editor, which is slightly more than a simple

text editor. However, in my early days, I used to write

my programs in Notepad.

• There is also a compiler program that converts your

program instructions from C to the machine code that

all microprocessor-based systems use. In the very early

days of programming, the programmers used to write

in this machine code. This was a bit before my time,

although in my early days, I wrote all my programs

in assembler. Assembler is the closet language to the

actual machine code that all micros use.

• There is also a linker program that will bring together

any include files that we wish to use in our projects.

• As well as these programs, there are a range of

programs that we can use to help debug our programs

or simply simulate them.

So this IDE is a very large collection of programs that make our job of

writing code much more efficient. Yet it’s free; well, I use the free version,

which is not as efficient as the paid version but it is more than good

enough for us.

I therefore hope that you not only learn how to program the PIC micro

but you also enjoy going through my book and that you produce some

useful projects along the way.

InTroduCTIon

1© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_1

CHAPTER 1

Creating a Header File
In an effort to reduce the amount of text in the program listings and reduce

the amount whereby I simply repeat myself, let’s create and use a series of

header files. Header files are used when your programs use the same series

of instructions in exactly the same way in all your projects and programs.

In this book, you will create three header files. The first will be

concerned with the configuration words you write for your projects.

The configuration words are used to configure how the PIC applies the

essential parameters of the PIC. They have to be written for every project

and program you create. Therefore, if you are going to write the same

configuration words for all of your projects, you should use a header file.

The second header file will be associated with setting up the PIC to

use the ports, the oscillator, the timers, etc. You will set them in exactly the

same way in all of your projects, so it’s useful to create a header file for this.

However, in some projects you may need to modify some of the settings, so

be careful when using this header file.

The third header file you will create will be used if your programs use

the LCD (liquid crystal display) in exactly the same way such that

• The LCD is always connected to PORTB.

• The LCD uses just four data lines instead of eight to

save I/O.

• The RS pin is always on Bit4 of PORTB and the E pin on

Bit5 of PORTB.

https://doi.org/10.1007/978-1-4842-6068-5_1#DOI

2

• The LCD always increments the cursor position after

each character has been displayed.

• The LCD always uses 2 lines of 16 characters.

• The actual characters are always on a 5 by 8 grid.

If this is all true, you should create a header file for the LCD.

These are the three header files you will create in this book. There are

many more examples of when you should create a header file. The process

of creating and using header files makes your program writing more

efficient.

Header files can be made available for all of your projects, like global

header files as opposed to local header files. Local header files are

available only to the project they were created in.

Also, you can split projects up so that different programmers can write

different sections of the programs and save them as header files to be used

in all projects by all of the company’s programmers.

 Creating a Header File
Now that I have explained what header files are and why you would use

them, let’s create one. The first header file you will create will be for the

configuration words that you will use for most of the projects in this

book. It will also give me the chance to go through creating a project in

MPLABX for those readers who have never used MPLABX before. The

version I am using is MPLABX V5.25. It is one of the latest versions of the

IDE from Microchip. Microchip is always updating the software, but the

main concepts of creating a project and writing programs do not change.

You will be able to follow the process even if you have an earlier version of

MPLABX or a later version.

Chapter 1 Creating a header File

3

 Creating a Project in MPLABX
Assuming you have downloaded both the MPLABX software and the XC8

(V2.10) compiler software or XC8 (V1.35), when you open the software, the

opening screen will look like Figure 1-1.

The project window on the left-hand side may not be shown. If you

want it shown, you should select the word Window from the top menu

bar. Click the word Projects, with the orange boxes in front of it, and the

window should appear. You may have to move the window about to get it

in the position shown.

Now, assuming you are ready to create a project, you should either

click the word File, in the main menu bar, and select New project, or click

the orange box with the small green cross on the second menu bar. This is

the second symbol from the left-hand side of the second menu bar.

When you have selected the Create project option, you should see the

window shown in Figure 1-2.

Figure 1-1. The opening screen in MPLABX

Chapter 1 Creating a header File

4

Most of the projects you will create are Microchip Embedded and

Standalone. Therefore, make sure these two options are highlighted and

then click the Next button. The Select Device window should now be

visible, as shown in Figure 1-3.

Figure 1-2. The New Project window

Chapter 1 Creating a header File

5

In this window, you can choose which PIC you want to use. Select the

Advanced 8-bit MCUs (PIC18) in the small box alongside Family, as shown

in Figure 1-3. Then, in the Device window, select the PIC18F4525. The result

is shown in Figure 1-3. To make these options visible, you need to click the

small downward pointing arrow in the respective box. The different options

should then become visible. If the device window is highlighted in blue, you

could simply type in the PIC number you want, such as PIC18F4525. Your

selected device should appear in the window below.

If you are using a different PIC, select it here.

Once you are happy with your selection, click the Next button.

The next window to appear is the Select Tool window. This is shown

in Figure 1-4. With this window you can select the programming tool you

want to use to download the program to your prototype board. There are a

range of tools you can use. I mainly use the ICD3 CAN or the PICkit3 tool.

Figure 1-3. The Select Device window

Chapter 1 Creating a header File

6

However, if I am only simulating the program, I use the simulator option.

Note that the MPLABX IDE comes with its own simulations for the PICs

you may use. It also has a wide range of tools that allow us to simulate

and test programs within MPLABX all without having a real PIC. You will

use the simulator in this project, so select the simulator option shown in

Figure 1-4.

Having selected the tool you want, click Next to move on to the next

window where you can select the compiler software you want to use,

assuming you have downloaded the appropriate compiler software (see

Figure 1-5).

Figure 1-4. The Select Tool window

Chapter 1 Creating a header File

7

You should select the XC8(V2.10) compiler software, although with

some later projects you will use V1.35, as shown in Figure 1-5. Then click

Next to move to the Select Project Name and Folder window shown in

Figure 1-6.

Figure 1-5. The Select Compiler window

Chapter 1 Creating a header File

8

In this window, you will specify the name of the project and where you

want to save it. The software will create a new directory on your computer

with the project name you create here. It is recommended that you don’t

use long-winded, complicated path names for the new folder so I normally

save all my projects on the root directory of my laptop.

I have suggested a project name for this new project as

advanceProject1. Note that I am using camelcase, where two words,

or more, are combined together. The first letter of the first word is in

lowercase and the first letters of any subsequent words are in uppercase. In

this way multiple words can be combined together to make one long word.

As you type the name for your project, you should see that the folder is

created on the root drive, or wherever you have specified it should be. The

folder name will have a .X added to it.

It will be in this new folder that all the files associated with the project

will be saved as well as some important subdirectories that are created.

Figure 1-6. The Select Project Name and Folder window

Chapter 1 Creating a header File

9

Once you are happy with the naming of the project, simply click the

Finish button and the project will be created. The window will now go back

to the main window, as shown in Figure 1-7.

You should see the project window at the left-hand side of your screen,

as shown in Figure 1-7. Note that you may need to move the window about

to get it the same as that shown in Figure 1-7.

Now that you have the new project created, you need to create a

header file that you will use in all of your projects in this book.

To create the header file, right-click the subdirectory in the project tree

named Header Files. When you do this, the flyout menu will appear, as

shown in Figure 1-8.

Figure 1-7. The main window with the project created

Chapter 1 Creating a header File

10

From that flyout menu, select New. From the second flyout menu,

select xc8_header.h, as shown in Figure 1-8.

The window shown in Figure 1-9 will appear.

Figure 1-8. The flyout menu for the new header file

Chapter 1 Creating a header File

11

All you need to do here is give the file a name. I have chosen the name

conFigInternalOscNoWDTNoLVP as it gives a good description of what I

want to do in this header file, which is set these three main parameters of

the configuration words. Note the configuration words specify how you

want to configure and so use the PIC.

The main concern is that PICs have a wide variety of primary oscillator

sources and you need to tell the PIC which one you will be using. The

oscillator is the device or circuit that provides a signal from which the

clock signal, the signal that synchronizes the operations of the PIC,

is derived. I prefer to use the internal oscillator block as the primary

oscillator source. This saves buying an oscillator crystal. It also saves two

inputs that would be used if I used an external oscillator. This is because I

would connect the external oscillator to the PIC via those two input pins,

normally RA6 and RA7.

Figure 1-9. The name and location for the new header file

Chapter 1 Creating a header File

12

The second major item I change is to turn off the WDT, which is the

watch dog timer. This is a timer that will stop the micro if nothing has

happened for a set period of time. This is a facility that you don’t want in

these programs, so you must turn it off. Note that the WDT is mainly used

in continuous production lines. In that situation, the fact that nothing has

happened for a set time usually means something has gone wrong so it’s

best to turn everything off.

The third item to turn off is the low voltage programming (LVP)

function. The low voltage programming affects some of the bits on

PORTB. Therefore, to keep the bits on PORTB available for general I/O, I

normally turn off the LVP.

So this explains the header file’s cryptic name. You should always give

your header files a name that relates to how you want to use the file.

Once you have named the header file, click Finish and the newly

created header file will be inserted into the main editing window in

the software. However, Microchip automatically inserts an awful lot of

comments and instructions that, at your level of programming, you don’t

really need. Therefore, simply select all that stuff and delete it so that you

have an empty file ready for you to insert the code that you really want.

Now that you have a clean file, you can control what goes into it. The

first thing you should do is put some comments in along the following

lines:

• You should tell everyone that you wrote this code.

• You should say what PIC you wrote it for and when you

wrote it.

• You should explain what you are trying to do with it.

Chapter 1 Creating a header File

13

There are two types of comments in C programs, which are

• Single-line comments: They start with two forward

slashes (//). Anything on the same line after the two

forward slashes is ignored by the compiler as they are

simply comments. For example,

//these words are just comments

• Multiple lines of comments or a paragraph of
comments: This is text inserted between the following

symbols: /* */. For example,

/* Your comments are written in here */

So insert a paragraph of comments as shown in Figure 1-10.

You should insert your own comments into the editor similar to those

shown in Figure 1-10.

You will notice that I changed the colour of my comments to black and

bold size 14. This is to try and make them more visible than the default

grey.

If you want to change the colour, you can do so by selecting the word

Options from the drop-down menu that appears when you select the

Tools choice on the main menu bar. You will get the window shown in

Figure 1- 11.

Figure 1-10. The comments for the header file

Chapter 1 Creating a header File

14

Click the tag for Fonts and Colours and then select what you want to

change. Once you are happy with your choice, click OK. I changed the

colour of the comments to black, as shown in Figure 1-11.

Now you need to create the configuration words for your header file.

As this is something you must do for all your projects, Microchip has

developed a simple process for writing to the configuration words. This

can be achieved using a special window in the MPLABX IDE. To open this

window, click the word Window on the main menu bar and then select

Target Memory Views from the drop-down menu that appears. Then select

Configuration Bits from the slide-out menu that appears. This process is

shown in Figure 1-12.

Figure 1-11. Changing the font and colours

Chapter 1 Creating a header File

15

Once you have selected the configuration bits, your main window will

change to that shown in Figure 1-13.

Figure 1-12. Selecting the configuration bits

Figure 1-13. The configuration bits

Chapter 1 Creating a header File

16

You may have to drag the window up to make it as larger as shown in

Figure 1-13.

This configuration window allows you, as the programmer, to select

some very important options for the PIC, the most important being the

primary oscillator type and source used and if you want the watch dog

timer or not.

There are three main options you need to change at this point. You

should change

• The OSC to INTIO67. This is done by selecting the

small arrow alongside the box next to the OSC option.

The default setting is usually RCI06, the resistor

capacitor oscillator with bit6 on PORTA left as a normal

I/O bit. You need to change this. When you click the

small arrow next to the OSC option RCIO6, a small

window will open. If you move the selection up to the

next one, it will be the one you want, INTIO67, which

means you will use the internal oscillator block as

the primary source and leave Bits 6 and 7 on PORTA

as normal I/O bits. Note that when you select this, a

description of the change will appear in the description

window alongside this tag and it will have a blue colour

to the text.

• The next change is simpler. Set the WDT to OFF. It

important to turn the WDT off because if nothing

happens for a predefined period of time in a program,

the WDT will stop the program. You don’t want this to

happen so you must turn the WDT off.

• The third change is to turn the LVP off.

Once you have changed these settings, you can generate the source

code and then paste this code into your program. To do so, click the

Chapter 1 Creating a header File

17

Generate Source Code to Output tab shown at the bottom of the IDE. The

source code should appear in the output window on the screen, as shown

in Figure 1-14.

Use the mouse to select this code and the comments but do not select

the phrase #include <xc.h> because I want to discuss the importance

of this include file later in the book. So, once you have copied just the

configuration words and not the #include <xc.h>, paste the selection into

the header file you have in the open window.

I pasted these source instructions and comments into my open file

window starting at line 5 and ending at line 62. Yours may differ due to

what comments you have put in.

Your screen should look like that shown in Figure 1-15. Note that the

#include <xc.h> is not in the file.

Figure 1-14. The source code for the configuration words

Chapter 1 Creating a header File

18

You can now save this file in the usual way of saving a file because

you have all you need for this header file. This is done by clicking the File

option from the main menu bar and selecting Save from the flyout menu.

 Including the Header File
Now that you have created this header file, let’s go through how to include

it in a program. However, before you can do that, you need to create the

program file in which you will include it. This means you must have some

idea of what your first program will be. It will be a program to drive a

seven-segment display. The main concept for the program is that you will

use a seven-segment display to count from 0 to 9 in intervals of 2 seconds.

This will involve creating a source file for this program. I will not go

through the details of the program until the next chapter; in this chapter,

you are only concerned with creating and using header files.

Figure 1-15. The configuration words inserted into the header file

Chapter 1 Creating a header File

19

 Creating the Project Source File
To create the source file, you must first right-click the source files

subdirectory in the project tree area. When you do this, the screen shown

in Figure 1-16 will appear and you should select New and then main.c.

Once you have selected the new main.c option, a new window will

open, which is where you will create the name for the source file. You

should name it sevenSegmentDisplay. The extension for the file name is c

for the C language. The window should look like the one in Figure 1-17.

Figure 1-16. Creating a new main.c program file

Chapter 1 Creating a header File

20

Once you are happy with the file name, click Finish and the screen

will now have a new window open in the editing screen. This will include

a lot of text that Microchip automatically inserts. Again, you don’t need it

so delete all this text so that you have a clean editing window, as shown in

Figure 1-18.

Figure 1-17. Naming the source file

Chapter 1 Creating a header File

21

The next thing you should do is add some comments to show that

you own this source file. Therefore, using the multiple line option for your

comments, you should insert some comments along the following lines:

/*A program to control a seven segment display.

Written by Mr H. H. dated 02/01/2019

For the PIC 18F4525*/

You can amend the comments as you feel fit. The screen should now

look similar to that shown in Figure 1-19.

Figure 1-18. The empty source file

Figure 1-19. The comments added to the source file

Chapter 1 Creating a header File

22

Now you need to tell the compiler to include the header file you just

created. There are two ways you can add the header file. One is as a local

header file, which is not much good really. If you have created a local

header file, it will only be available to this local project. However, I will

show you how to include the header file in this way first.

Make sure the cursor is waiting at the start of the next empty line in the

source file you just created. Now start to write the phrase #include. You do

need the # sign. Indeed, as you write the # sign, a pop-up menu will appear

with some options for you to choose from. This is the IntelliSense part of the

compiler software. It is like predictive text on your phone. The software tries to

guess what you are doing, and the # sign has a specific meaning. You should

see the word “include” at the bottom of the pop-up menu. You can either

continue to write include or select the word from the pop-up menu. However,

if the pop-up menu does not appear, simply write the word “include.”

No matter which way you insert the word include, when you next press

the space bar, after inserting the word include, to move the cursor away

from the word include, you should see another pop-up menu appear, as

shown in Figure 1-20.

You should see the name of the header file you just created in the pop-up

menu. Select this file by clicking it to paste the file name into your source file.

Again, if the pop-up menu does not appear, you can write "conFigInternal

OscNoWDTNoLVP.h". Note that you must use the quotation marks. This is the

name of the header file you want to include in your program.

Figure 1-20. The include option

Chapter 1 Creating a header File

23

It should then be present, as shown in Figure 1-21.

 Creating a Global Header File
However, this is not the best way to use the header file because it is only

available to this project since it is a local header file. You need to make it into

a global header file, which means the header file will be available to be used

in all of your projects. The way to do this is to save or copy the header file

into the compiler software directory. This is slightly more involved because

you need to find the include directory for Microchip on your computer. I

found it on my laptop and the path for this directory is shown here:

C:\ProgramFiles(x86)\Microchip\xc8\v2.10\pic\include

You will have to find your directory. However, assuming you used

the default installation, then the path should be the same as mine stated

here. In earlier versions, it may be slightly different. You are looking for the

include directory in your compiler software. You may need to use the file

explorer to find the header file in the current project directory and copy

the file to the include directory as stated above.

Assuming you have been able to copy this header file into the correct

directory, this header file is now a global file and you can include it in any

of your projects. It’s a much better way to use the header file.

To include this global header file, delete the previous include line

of your program. Now insert the # and include statements as before but

Figure 1-21. The header file included in your program

Chapter 1 Creating a header File

24

now when you hit the space bar to move the cursor away from the include

word, ignore the pop-up menu and type in the following symbol: <. The

IntelliSense will take over and insert the > symbol with the cursor flashing

inside the two symbols. Also, a pop-up menu will appear listing all of the

include files that are stored in the include directory of the xc8 compiler

software. If you now type the letter c in the space between the two < >

symbols, the fly-out menu will filter out all the files that don’t start with

the letter c. You should see the header file you have just copied into the

include directory, as shown in Figure 1-22.

If you click the header file you just copied, that file name should

appear between the < > symbols, as shown in Figure 1-23.

If you have difficulty getting the pop-up menus to appear or work, you

can simply write the complete instruction as stated here:

Figure 1-22. The include pop-up menu

Figure 1-23. The included conFigInternalNoWDTNoLVP header file

Chapter 1 Creating a header File

25

#include <conFigInternaOscNoWDTNoLVP.h>

You do need the < > symbols. This approach can be used to include

any global header file: simply write the name of the header file you want to

include between the < > symbols.

Now you need to think about the very important header file that must

be included in all of your projects. The header file you need is the xc.h

file. To include it into your source file, you need to put the cursor onto the

next line in the file (i.e. line 5) by pressing the Enter key on your keyboard.

Now write the #include and press the space bar as before. Then, ignoring

the pop-up window, type the first < and then the type x between the two

symbols < > as before. The available header files will reduce to those

shown in Figure 1-24.

Again you should see the name of the header file you are looking for in

the pop-up window. Click the xc.h file to add it to the source file. The file

should now look like that shown in Figure 1-25.

Figure 1-24. The pop-up window showing the filtered options

Figure 1-25. The two include files

Chapter 1 Creating a header File

26

You will look at the importance of this xc.h file later.

 The PICSetUp.h Header File
Now that you have created and inserted your first global header file, you

will create your second one.

This header file will set up the PIC to use the ports, the internal

oscillator block, and the TMR0 timer as you intend to use them in all of your

projects. Therefore, it’s useful to list how you want to use these items now.

• PORTA: Set all 8 bits to be digital inputs.

• PORTB: Set all 8 bits to be digital outputs.

• PORTC: Set all 8 bits to be digital outputs.

• PORTD: Set all 8 bits to be digital inputs.

• PORTE: Set all 3 bits to be digital outputs.

• Turn the ADC off.

• The internal oscillator block will be set to produce an

8Mhz frequency that will be stable.

• Timer0, or TMR0, will be set to an 8-bit register that will

apply the maximum divide rate so that it counts at a

frequency of 7812.5Hz. This means that one tick takes

128μs.

Assuming you want all these exact same settings for all of your projects,

you can create a header file for this setup. If you want something slightly

different, you must write to the SFR (special function register) after this file

has been used.

To create the header file, right-click the header files subdirectory in

the project tree. Then select New from the flyout menu and XC8_header.h

from the second flyout menu. Name the header file as PICSetUp and click

Finish to create the header file.

Chapter 1 Creating a header File

27

This new file should be open in the editing window. Again, you should

delete all the stuff that MPLABX automatically inserts in the file since you

don’t need it and I really want your screens to look the same as mine.

Assuming that you now have an empty screen, you can write the

instructions for this header file. They are shown here as Listing 1-1. You

do not have to write the line numbers as shown here. These numbers are

there to enable me to refer to each instruction in my analysis of how the

instructions work.

Listing 1-1. Instructions for the PICSetup.h Header File

 1. void initialise ()

 2. {

 3. PORTA = 0;

 4. PORTB = 0;

 5. PORTC = 0;

 6. PORTD = 0;

 7. PORTE = 0;

 8. TRISA = 0XFF;

 9. TRISB = 0;

10. TRISC = 0;

11. TRISD = 0b11111111;

12. TRISE = 0;

13. ADCON0 = 0;

14. ADCON1 = 0b00001111;

15. OSCTUNE = 0;

16. OSCCON = 0b01110100;

17. T0CON = 0b11000111;

18. }

Chapter 1 Creating a header File

28

 Analysis of Listing 1-1
line 1 void initialise ()

To understand this instruction, you should appreciate that all C

programs run in a series of loops. There must be a main loop because this

is where the micro must go to get the first instruction of the program.

There are then a series of what are sometimes referred to as functions

or methods, but I prefer to call them subroutines, as they are small sections

of programs that the main loop can call as many times as the main program

needs to execute the instructions in the subroutine.

With this header file you are creating a subroutine. The subroutine

will only be called once from the main program and it will set up the SFRs

(special function registers) in the way you want to use them in the PIC.

All subroutines may or may not require the main program to pass

parameters up to the subroutine. Also, the subroutine may or may not pass

parameters back to the main program loop. All subroutines need a name

that describes the purpose of the subroutine.

In this case, this subroutine will not be passing any parameters back

to the main loop. This is signified by the use of the keyword void. Note as

you type this keyword void into the text window inside the IDE, you will

see it is case-sensitive and it must be in lowercase. As you finish writing

the word, the font colour changes to blue. IntelliSense uses colours to

recognize the significance of special words.

You must give the subroutine a name and in this case it is called

initialise, as it does initialize the PIC. Then, as you enter the first normal

opening bracket, IntelliSense automatically adds the normal closing bracket

and inserts the cursor between the two brackets. Here you can define what

type of variable the subroutine is expecting to be passed up to it when it is

called from the main program. If the subroutine does not want a variable

to be passed up to it, leave this space empty, as I have done here. Some

programmers insert the word “void” here but its just personal preference.

Line 2 {

Chapter 1 Creating a header File

29

This is the opening curly bracket of the subroutine. As you type

this opening curly bracket, and then press the Enter key, the software

automatically adds a closing curly bracket. It then inserts the cursor

between the two curly brackets but indented by one tab. The two curly

brackets define the confines of the subroutine; indeed they will be

connected by a line alongside the two brackets in the editing window.

The cursor is now waiting inside the confines of the subroutine for you

to type in the instructions of the subroutine.

Line 3 PORTA = 0;

To fully appreciate this instruction, you should know that every PIC has

ports, which get their name from naval ports that take goods into and out

of the country. In the same way, the ports of the PIC take data into and out

of the PIC. Inputs can be simple switches, sensors, or transducers, whereas

outputs can be lamps, motors, or pumps.

What you are doing in the next five lines is making sure that anything

that might be connected to the ports of the PIC is not switched on. Note a

logic 0 means that the bits have 0v on them. The instruction PORTA = 0;

means all 8 bits on PORTA are at logic 0 or 0V.

One more thing before I describe the next instruction is the semicolon

symbol. It actually denotes the end of the current instruction. However,

with lines 1 and 2 there is no need for the semicolon because they are

statements for the compiler software, not instructions for the PIC.

Lines 4 to 7 simply turn off anything that might be connected to the

other ports of the PIC.

Line 8 TRISA = 0XFF;

To understand this instruction, you must realize that with any port

data can go into the PIC or out of the PIC. Indeed, with any bit of the port

this can happen. With the PC18F4525 all ports have 8 bits, as this is an 8-bit

PIC, except for PORTE, which has 3 bits. Note that the bits are numbered

Chapter 1 Creating a header File

30

b7, b6, b5, b4, b3, b2, b1, and b0, going from left to right. Bit0 is the LSB

(least significant bit) and bit7 is the MSB (most significant bit).

Well, you have to tell the PIC which way the data is to flow through the

bits of each port, in or out. To facilitate this, each port has another SFR to

set the direction of data through the bits of the port. This SFR is called a

TRIS, so TRISA, TRISB, etc.

Each bit of the TRIS maps directly onto the same numbered bit of the

port. If the bit in the TRIS is a logic 1, then the corresponding bit in the port

will be an input. If the bit in the TRIS is a logic 0, then the corresponding

bit in the port will be an output.

For example, if the data in TRISA is 00110101 then the bits in PORTA is

• B7 is an output.

• B6 is an output.

• B5 is an input.

• B4 is an input.

• B3 is an output.

• B2 is an input.

• B1 is an output.

• B0 is an input.

In line 8, the instruction is TRISA = 0XFF;. The 0X tells the compiler

that the radix, or number system, for the number is hexadecimal. This

converts to 11111111 in binary or 255 in decimal. Appendix tk explains

how to convert numbers.

This instruction means that all the bits in TRISA are forced to go to a

logic 1, which in turn makes all the bits in PORTA input. This is what you

want.

Chapter 1 Creating a header File

31

Exercise 1.1 the answers to all exercises will be given at the end
of each chapter.

in this exercise, write the data required to set the bits in pOrtd as
follows:

B7 is an output.

B6 is an output.

B5 is an input.

B4 is an input.

B3 is an input.

B2 is an input

B1 is an output.

B0 is an input.

State which SFr it must be written to.

Line 9 TRISB = 0;

Here, as you have not stated what radix, or number system, you are

using, the compiler assumes it is the default radix, which is decimal. This

means that this instruction is loading the TRISB with the value 0, which is

00000000 in binary. Therefore, all the bits in TRISB are forced to a logic 0,

which in turn means that all the bits in PORTB are set as outputs.

Line 10 TRISC = 0;

This makes all bits in PORTC output.

Line 11 TRISD = 0b11111111;

Chapter 1 Creating a header File

32

The 0b in front of the number means the radix is binary and what

follows is a binary number. This makes all the bits in TRISD logic 1 and so

sets all bits in PORTD to inputs.

Line 12 TRISE = 0;

This simply sets all bits in PORTE to outputs.

Line 13 ADCON0 = 0;

To appreciate what you are doing here, you must realize that there can

be two different types of inputs to the PIC. They are

• Digital: Simply off or on, open or closed, logic 0 or logic

1. They could be from simple switches or sensors.

• Analog: They are usually voltages that can range from

0v to 5v and are obtained from transducers that are

used to measure physical parameters such as velocity,

temperature, voltage, etc. These are presented to the

PIC as analog signals and then the PIC converts them,

using an ADC (analog-to-digital converter) to digital

values to be used by the program.

The default setting is that all the inputs can be either digital or analog,

and there are 13 such inputs in the PIC 18F4525, which are set as analog.

This means you must do two things:

• Set all the inputs to digital inputs.

• Turn the ADC off since you are not using it.

To help understand how you get the correct number to write to

the correct SFRs, here are two tables taken from the data sheet for the

PIC18F4525. If you are using any device, be it a PIC, OPAMP, or any

electronic device, you must be able to use the data sheets for that device.

Tables 1-1 and 1-2 explain how to control the ADC.

Chapter 1 Creating a header File

33

Table 1-1. The ADCON0 Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Not used Not used CHS3 CHS2 CHS1 CHS0 GO/DONE ADON

Bit7 not used, read as 0

Bit6 not used, read as 0

Bit5 Bit4 Bit3 Bit2 adC channel selected

0 0 0 0 an0

0 0 0 1 an1

0 0 1 0 an2

0 0 1 1 an3

0 1 0 0 an4

0 1 0 1 an5

0 1 1 0 an6

0 1 1 1 an7

1 0 0 0 an8

1 0 0 1 an9

1 0 1 0 an10

1 0 1 1 an11

1 1 0 0 an12

1 1 0 1 not used

1 1 1 0 not used

1 1 1 1 not used

(continued)

Chapter 1 Creating a header File

34

The main purpose of this control register is to allow the programmer

to choose which analog input, or channel, is connected to the ADC. I have

stated that there are 13 possible analog inputs but that doesn’t mean there

are 13 ADC circuits. There is only one ADC circuit but it can be connected

to any one of the 13 inputs that can take an analog signal in. This is a form

of multiplexing where many inputs feed into one device one at a time. The

choice of which input is connected to the ADC is controlled by the data in

Bits 5, 4, 3, and 2 of the ADCON0 register. For example, if these four bits are

set to 0011, going from b5 to b2 left to right, then it is the fourth input, AN3,

that is connected to the ADC; see Table 1-1. Note that Bits 7 and 6 are not

used so they are set to logic 0.

Bit0 is the bit that actually turns the ADC on or not. A logic 1 means the

ADC is enabled whereas a logic 0 means it is disabled.

The last remaining bit, Bit1, is used to start the ADC conversion

and tell the programmer when the conversion is finished or done. The

programmer must set this bit to a logic 1 to start the ADC conversion.

Then, when the conversion is finished, the microprocessor sets this bit

back to a logic 0 automatically. This is a signal to tell the programmer that

the ADC conversion has finished.

Table 1-1. (continued)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit1 1 means start a conversion and a conversion is taking place

0 means the conversion has finished

Bit0 1 means enable the adC

0 means disable the adC

Chapter 1 Creating a header File

35

Table 1-2. The ADCON1 Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Not used Not used VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

Bit7 Not used, read as 0

Bit6 Not used, read as 0

Bit5 1 negative reference from AN2
0 negative reference from VSS

Bit4 1 positive reference from AN3
0 positive reference from VDD

Bit Channel AN

3 2 1 0 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 a a a a a a a a a a a a a

0 0 0 1 a a a a a a a a a a a a a

0 0 1 0 a a a a a a a a a a a a a

0 0 1 1 d a a a a a a a a a a a a

0 1 0 0 d d a a a a a a a a a a a

0 1 0 1 d d d a a a a a a a a a a

0 1 1 0 d d d d a a a a a a a a a

0 1 1 1 d d d d d a a a a a a a a

1 0 0 0 d d d d d d a a a a a a a

1 0 0 1 d d d d d d d a a a a a a

1 0 1 0 d d d d d d d d a a a a a

1 0 1 1 d d d d d d d d d a a a a

1 1 0 0 d d d d d d d d d d a a a

(continued)

Chapter 1 Creating a header File

36

This register mostly controls whether the 13 inputs are to be used as

analog or digital. It is the first four bits (b0, b1, b2, and b3) that do this.

Table 1-2 shows how this is achieved. If all four bits are a logic 0, then all

13 channels are set to analog inputs. However, if the four bits are 0011,

going from B3 to B0 left to right, then the 13th channel, AN12, is set to

digital and the rest are set to analog.

The ADC needs a reference voltage to help determine the level of the

analog input. Bit4 controls where the PIC gets the positive reference. The

default, and so normal setting, is to use the supply to the PIC (VCC or VDD).

Bit5 controls where the PIC gets the negative reference. The default,

and so normal setting, is to use the supply to the PIC (VSS or ground).

Bits 6 and 7 are not used.

Armed with this knowledge, you can see that the instruction at line 13,

ADCONO = 0;, simply turns off the ADC. It also connects the first channel,

or input, AN0, to the ADC but as the ADC is turned off this does not matter.

Line 14 ADCON1 = 0b00001111;

This sets the bits on the SFR ADCON1 to 00001111. This instruction uses

Table 1-2. From it you can see that as the first four bits of the ADCON1 SRF are

set to 1111, this makes all the inputs digital. This is what you want. When you

eventually need some analog inputs, you will have to make some changes.

Line 15 OSCTUNE = 0;

Table 1-2. (continued)

Bit Channel AN

3 2 1 0 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 d d d d d d d d d d d a a

1 1 1 0 d d d d d d d d d d d d a

1 1 1 1 d d d d d d d d d d d d d

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Chapter 1 Creating a header File

37

These next two instructions control the oscillator. The operations of the

PIC are all synchronized to a clock signal. All PICs give the programmer

a wide range of where the clock can get its signal, from the external high-

speed crystal or low-speed RC oscillator to a range of oscillators that are

internal (i.e. inside the PIC itself).

When you wrote the configuration words you told the PIC you would

use the internal oscillator block as the primary source for this clock signal.

However, you didn’t set the frequency of the oscillator you want to use.

These next two instructions do that.

This first one is on line 15, OSCTUNE = 0;. This simply tells the PIC

you are not worried about any drift in temperature that might alter the

frequency of the oscillator. It is the next instruction that is the main one

as far as the clock is concerned. To help understand the next instruction,

Tables 1-3, 1-4, and 1-5 will be useful.

Table 1-3. Use of the OSCCON Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IDLEN IRCF2 IRCF1 IRCF0 IOSTS IOFS SCS1 SCS0

Bit7 1 device enters sleep

0 device does not enter sleep

Bit6 See table 1-4

Bit5

Bit4

Bit3 1 time-out expired for oscillator start up

0 time-out running for oscillator start up

(continued)

Chapter 1 Creating a header File

38

Table 1-4. Bit6, Bit5, and Bit4 of the OSCCON Register Setting the

Oscillator Frequency

Bit6

ICRF2

Bit5

ICRF1

Bit4

ICRF0

Oscillator Frequency

0 0 0 31khz1

0 0 1 125khz

0 1 0 250khz

0 1 1 500khz

1 0 0 1Mhz

1 0 1 2Mhz

1 1 0 4Mhz

1 1 1 8Mhz

1The 31kHz can be sourced from the main oscillator divided by 256 or directly from
the internal RC oscillator

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit2 1 internal oscillator stable

0 internal oscillator not stable

Bit1 See table 1-5

Bit0

Table 1-3. (continued)

Chapter 1 Creating a header File

39

Line 16 OSCCON = 0b01110100;

The instruction is OSCCON = 0b01110100;. This sets Bit7 of the

OSCCON to logic 0. It is Bits 6, 5, and 4 that are used to set the frequency of

the oscillator to 8Mhz. Note you have a choice of 8 different frequencies as

stated in Table 1-4.

Bit3 is set to 0, which is the default setting for this bit.

Bit2 is set to a logic 1, which means the frequency is stable.

Finally Bits 1 and 0 are both set to logic 0, which means the clock gets

its source from the primary oscillator, which you set with the configuration

words to be the internal oscillator block. Therefore, the clock uses this

8Mhz internal crystal as the source for the clock.

It is rather awkward that Microchip gives the programmer so many

options for a wide range of parameters but as you gain more experience

with embedded programming you will see why Microchip does this.

Line 17 T0CON = 0b11000111;

This final instruction is used to control a timer. The PIC18F4525 has

four timer modules; TMR0 timer0, TMR1 timer1, TMR2 timer2, and TMR3

timer3. These timers are used to control some important operations that

are timed controlled. Timer0 is a timer that simply counts clock pulses. It

can be used to create a simply delay using the principle that if you count to

Table 1-5. Bit1 and Bit0 of the OSCCON Register Selecting the Source

of the Oscillator Signal

Bit1 SCS1 Bit0 SCS0 Oscillator Source

0 0 primary oscillator as defined in configuration words

0 1 Secondary timer block

1 0 internal oscillator block

1 1 internal oscillator block

Chapter 1 Creating a header File

40

a certain value, it will take a certain length of time to complete that count.

The length of time taken depends upon two things: the value you want to

count up to and the speed at which you will count.

The timer0 in the 18F4525 PIC can be set to be either an 8-bit register

or a 16-bit register. As all the timers count in binary, the maximum value

that timer0 can count up to is either 255 as an 8-bit register or 65535 as

a 16-bit register. However, as the ECAD software we are using can only

simulate 8-bit registers, let’s set timer0 to be an 8-bit register.

As to how fast the timer will count, you have to realize that the clock

always runs at a quarter of the oscillator. This means that since the

oscillator you are using runs at 8MHz, the clock will run at 2MHz. This

means that the time for one complete tick or count of the timer0 will take

500ns. Since the timer0 will take 256 ticks to count from 0 to 255, it will

take 256 x 500ns = 128μs. This is far too quick for us humans. If you want

to create a one-second delay with this counter counting at 2Mhz, there is a

lot of work to do. It can be done with the timer counting at this frequency,

but it would be easier if you could slow down the rate at which this timer

counts. Well, Microchip gives us this option, and that is what you’re doing

here. Let’s look at how each bit in the SFR T0CON, the control register for

timer0, actually controls this timer. Table 1-6 shows what each bit controls.

Table 1-6. T0CON Register (See Data Sheet)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

TMR0On T08bit TOCS TOSE PSA T0PS2 T0PS1 T0PS0

Bit7 1 enables timer0

0 disables timer0

Bit6 1 timer0 is an 8-bit register

0 timer0 is a 16-bit register

(continued)

Chapter 1 Creating a header File

41

Bit7, which is set to a logic 1, enables the timer (i.e. turns it on).

Bit6, which is also set to a logic 1, means the timer is set as an 8-bit

register (i.e. the maximum it can count up to is 255). If this bit was a logic

0, then timer0 would be set as a 16-bit register, which would be two 8-bit

registers cascaded together, and the maximum number it could count

to would be 65535. You set timer0 to an 8-bit register because the ECAD

software you’re using only works on 8-bit registers.

Bit5 is a logic 0. This makes the source for the timer as the internal

clock.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit5 1 timer0 clock source is tOCK1 pin

0 timer0 clock source is internal instruction cycle clock

(ClKO)

Bit4 1 timer0 source edge bit on high-to-low tOCK1 pin

0 timer0 source edge bit on low-to-high tOCK1 pin

Bit3 1 timer0 prescaler not assigned

0 timer0 prescaler is assigned

Bit2 Bit1 Bit0 timer0 prescaler divide rate

0 0 0 divide by 2

0 0 1 divide by 4

0 1 0 divide by 8

0 1 1 divide by 16

1 0 0 divide by 32

1 0 1 divide by 64

1 1 0 divide by 128

1 1 1 divide by 256

Table 1-6. (continued)

Chapter 1 Creating a header File

42

Bit4 is a logic 0. This means the counter will increment on the low-to-

high transition. This is known as positive edge triggering.

Bit3 is a logic 0. This means the prescalar is used and so you can divide

the clock signal down to slow the rate at which timer0 counts.

The next three bits (Bit2, Bit1, and Bit0) set the divide rate to be the

maximum. This divides the 2Mhz clock by 256, which means the timer

now counts at a frequency of 7812.5Hz. This means every count takes

128μs; 256 times longer than before. This now means that the maximum

length of delay is around 33ms (i.e. 128E-6 x 256 = 0.032768).

There is still some work to do to get this to a one-second delay but it is

easier and you will do that in your program.

Line 18 }

This is simply the closing bracket of the initialise subroutine.

I hope the above analysis explains how these instructions work. I

will use this approach with any new instructions that you go through in

the programs in this book. I do feel you as a programmer should fully

understand the code that you use in your programs. It is no good to simply

use blocks of code that do what you want to do, but not understand how

it works. If that is the approach to programming you use, then who is the

real programmer? You or the guys who wrote the blocks of code? It should

always be you.

Having inserted the instructions shown in Listing 1-1 into the

PICSetup.h header file, you should save this header file using the

File > Save option as normal. However, in this saved state, it is only

a local header file, so you should now copy this header file into the

include directory for your compiler as explained earlier with the

conFigInternaOscNoWDTNoLVP.h header file.

You have now created two useful global header files that you will use

in all of your programs from now on. I will leave the creation of the LCD

header file until later in the book.

Chapter 1 Creating a header File

43

The last thing to do before you compile the project is to insert the

include command to tell the compiler you want to include the new header

file you just created. You should also create the main loop in the source file

for the project. This is done by writing the following into the source file you

created earlier :

include <PICSetup.>

void main ()

{

initialise ();

}

Note that the only instruction in the main loop so far is the call to the

subroutine you just created in the PICSetup.h header file. This is so that

the first thing the main program does is run this subroutine to set up the

PIC as you want.

Your IDE screen should look like that shown in Figure 1-26.

One important aspect of these include files is that if an include

file requires any information from another include file, then the other

include file must be added to the program first. An example of this aspect

is the PICSetUp.h header file. It uses labels for the SFRs such as PORTA,

TRISA, ADCON0, etc. These are labels that have been created to allow

Figure 1-26. The main loop in the source file

Chapter 1 Creating a header File

44

the program to reference these SFRs. The compiler software really only

wants to know the address, or number of the SFR in the PIC’s memory.

For example, the PORTA register is an 8-bit register that is located at

address 0XF80. You could use this address in your programs when

referring to PORTA. Indeed, this is what the compiler software needs to

know. However, if you use this type of referencing, your program will be

full of hexadecimal numbers, which is very hard to read. It’s better if you

use a meaningful label to reference any SFRs. This can be done by writing

one of the following type statements:

#define PORTA 0XF80

PORTA EQU 0XF80

The first is done in the C programming language and the second is

done in assembler.

Thankfully, someone has done this type of labelling for all of the SFRs

and more you could use in all of your programs. These labels have been

saved in the header file called xc.h. This is freely available to us and that

is why it is in all of our projects. However, one thing you must remember

is to use capital letters in your labelling because that is how they have

been written in the xc.h header file. To check, write TRISA or any label in

lowercase and you will find the compiler software throws an error.

If you understand the use of the xc.h header file, you should now

appreciate why this header file is included in your program listing before

you include the PICSetUp.h header file. The PICSetUp.h file uses the labels

that are defined in the xc.h header file. If you include the PICSetUp.h file

before the xc.h file, the compiler will throw an error. Try it and see what

happens.

Chapter 1 Creating a header File

45

To compile the project, click the build icon in the main menu bar. This

is the hammer symbol that has no brush with it, shown on the second

menu bar. The project should now compile correctly, and this will be

visible in the output window at the bottom of the IDE. If there are any

errors, check the syntax of the project. Any errors will be indicated in blue

in the output window. If you click the first error word in blue, the insertion

icon should go to the relevant line in the program listing in the editing

window. Note that the error maybe on that line or the line above that one.

If you now open the PICSetup.h header file by clicking the appropriate

label in the menu bar, your screen should be similar to that shown in

Figure 1-27.

Figure 1-27. The completed PICSetup.h header file

Chapter 1 Creating a header File

46

 Synopsis
This chapter explained the importance of header files and the difference

between local and global header files. You should now be able to create

your own header files for functions that you might use in exactly the same

way in most of your programs. One such function, or subroutine, as I prefer

to call them, is the variable delay. You will create a header file for that later

in the book.

In the next chapter, you will look at how to use the PIC to control a

seven-segment display, which is a useful device for displaying numbers.

 Answer to Exercise
Exercise 1.1: You must write the following data to TRISD: 00111101 in

binary or 3D in hexadecimal. The instruction for this is TRISD = 0X3D;.

Chapter 1 Creating a header File

47© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_2

CHAPTER 2

Controlling a
Seven- Segment
Display
In this chapter, you will look at using the PIC to control the display on a

seven-segment display. You will look at what the seven-segment display is

and the principle upon which it works.

You will then write a program to display a count going from 0 to 9. In

Chapter 3, you will extend this program to control a series of seven- segment

displays to run a 24-hour clock counting in minutes.

After reading this chapter, you will understand what a seven-segment

display is. You will know the difference between the common anode and

common cathode and how to use the PIC to control both types.

 Controlling a Seven-Segment Display
A seven-segment display is a device that can be used to display numbers,

so it can be used to create a display for a digital clock. A typical seven

segment display is shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-6068-5_2#DOI

48

The basic concept is that there are actually seven LEDs (light-emitting

diodes), hence the name for the device. However, some displays have

eight LEDs, with one extra for the decimal place, or dot. These LEDs are

arranged as shown in Figure 2-4. They can be switched on in different

arrangements to display the numbers 0 to 9 and, if required, the letters A,

B, C, D, E, and F as in the hexadecimal number system.

They come in a range of colours: red, green, blue, yellow, and white.

They can also come with extra bright LEDs.

The LED is an actual diode in that it has an anode terminal and a

cathode terminal. These terminals are sometimes labelled A and K, since

C can stand for capacitance or Coulomb. Current can only flow one way

through the diode, and conventional current flows from the anode to

cathode, hence the shape of the arrow in the symbol of the diode. To make

the current flow through the LED, the anode voltage must be around

2.2V higher than the cathode. Note that for a normal diode, this voltage

difference is around 0.7V but the LED needs a greater volt drop since it

needs to emit light.

It is the method by which you apply this voltage difference that gives

rise to the two types of seven-segment displays, which are common anode

and common cathode.

Figure 2-1. A typical seven-segment display

Chapter 2 Controlling a Seven- Segment DiSplay

49

 Common Anode Seven-Segment Display
In a common anode seven-segment display, the anodes of all seven

LEDs are connected together, hence they are common. They are usually

connected to a +5V supply. Then, to turn each LED on, the cathode of

each LED must be connected independently to ground or 0V. However,

to limit the current that flows through the LEDs, and so prevent it from

burning out, a resistor is inserted between the cathode and ground. This

arrangement is shown in Figure 2-2.

In Figure 2-2, the LED is shown illuminated. The full 5V supply is

divided between the LED and the resistor. Another reason why you need

a resistor is to drop the extra 2.8V. The voltmeter is shown measuring

2.75V across the resistor R1. The remaining 2.25V must be dropped across

the LED. The value of the resistor is chosen to limit the current flowing

through the LED to its maximum. From the data sheet, this is around

25mA. However, a typical value is 20mA, which is good enough. Using this

typical value and an expression for resistance (R), derived from Ohm’s law,

you have

R1
150mA

+18.3

D1

LED-RED

Vo
lts

+2
.7
5

+5V 0V

Figure 2-2. The basic circuit to turn on an LED in a common anode

Chapter 2 Controlling a Seven- Segment DiSplay

50

I
V

R

R
V

I

R
E

=

\ =

\ = =-

2 8

20
140

3

.
W

If you use the standard E12 series of resistors, there is no 140Ω resistor,

so you must use a 150Ω, which is the next higher value. Note that you

should always go higher so as to limit the current more, not less. Also note

that I use the value 2.8V as the volt drop across the resistor assuming that

the LED drops 2.2V. The meters in the simulation shown in Figure 2-2 do

agree closely to the above calculations.

 Common Cathode Seven-Segment Display
With a common cathode seven-segment display, the cathodes of all seven

LEDs are connected together, hence they are common, and they are

usually connected to a 0V supply. To turn each LED on, the anode of each

LED can be connected independently to a +5V supply. However, to limit

the current that flows through the LEDs, a resistor is inserted between the

anode and the 5V supply. This arrangement is shown in Figure 2-3.

R1
150mA

+18.3

D1

LED-RED

Vo
lts

+2
.7
5

+5V 0V

Figure 2-3. The common cathode arrangement

Chapter 2 Controlling a Seven- Segment DiSplay

51

Some seven-segment displays come with their own driver circuit. This

is a circuit that takes a 4-bit binary count and sets the required switching

according to what number is to be displayed. However, you will use just

the basic display because the PIC will do the work of this driver circuit.

The seven-segment display you will use is a common anode type. You will

connect the display to PORTB and use the output from PORTB to turn on

and off the LEDs appropriately to display the current value between 0 and

9. Figure 2-4 shows how the seven LEDs are arranged on the display and

Table 2-1 shows which cathode of the LEDs needs to be connected to the

ground via the resistor to display the appropriate number.

Figure 2-4 is an attempt to show you the circuitry of the common

anode display. The seven LEDs are laid out to form a ring going from LED

A to LED F in six LEDs. The seventh LED, LED G, lies central to the display.

Figure 2-4 shows the six outer LEDs turned on by closing their respective

switches to connect their respective cathodes to ground or 0V via the series

resistor. This means those six LEDs are switched on and current flows

through them. This forms the number zero.

R1
150

A

LED-RED

+5V

0VB
LED-RED

C
LED-RED

D

LED-RED

E
LED-RED

F
LED-RED

G

LED-RED

R2
150

R3
150

R4
150

R5
150 R6

150
R7
150

Figure 2-4. The circuit of a common anode seven-segment display

Chapter 2 Controlling a Seven- Segment DiSplay

52

exercise 2.1

if the last switch is closed as well as all of the others, what number is
displayed?

 Controlling the Display with the PIC
When you use the PIC to control the display, there are no switches and you

connect R1 to Bit0 of PORTB, R2 to Bit2, and so on, with R7 connected to Bit6.

Then, to turn on the respective LED, you load a logic 0 or 0V onto the bit. To

switch the respective LED off, you load a logic 1 or +5V onto the bit. In this

way, the numbers 0 to 9 can be controlled from PORTB, as shown in Table 2-1.

Note it does not matter what logic is set to Bit7 as it is not connected to

the display. I just left it at a logic 0. If the display has a decimal point, then

Bit7 turns it on or off. The table shows how the PIC can control the display.

Table 2-1. The Logic at PORTB to Drive the Seven-Segment Display

LED ID Letter Bit of PORTB Number to Be Displayed

0 1 2 3 4 5 6 7 8 9

a Bit0 0 1 0 0 1 0 1 0 0 0

B Bit1 0 0 0 0 0 1 1 0 0 0

C Bit2 0 0 1 0 0 0 0 0 0 0

D Bit3 0 1 0 0 1 0 0 1 0 1

e Bit4 0 1 0 1 1 1 0 1 0 1

F Bit5 0 1 1 1 0 0 0 1 0 0

g Bit6 1 1 0 0 0 0 0 1 0 0

Dot Bit7 0 0 0 0 0 0 0 0 0 0

Chapter 2 Controlling a Seven- Segment DiSplay

53

 The Seven-Segment Display Program
All good programs start with an algorithm. An algorithm is basically a

description in your own words of how you are going to get the PIC to carry

out the requirements of the program. The goal of this program is to get a

seven-segment display to count up from 0 to 9. The count will increment

every two seconds.

 The Algorithm

There is no defined format of how to construct the algorithmI like to create

a bullet list as follows:

• You need to write a subroutine to create a delay.

You make it a variable delay. The program increments

the number on the display every two seconds from

0 to 9.

• The delay subroutine requires a global variable called n

and a local variable called t.

• When the display gets to 9, the display will go back to 0

at the next increment.

• To initiate the start of the count, the program waits for

a start button to be momentarily pressed to logic 1. The

program will start the count with the display set at 0.

• There is a stop button that, if pressed, will halt the

count at the current value on the display.

• The program includes the two header files that you

have already created.

Chapter 2 Controlling a Seven- Segment DiSplay

54

• You need two digital inputs for the two switches and,

since you will be using header file PICSetUp, which you

created earlier, you will use Bit0 of PORTA for the start

button and Bit1 of PORTA for the stop button.

• There is no need for any analog inputs, therefore you

don’t need to turn the ADC on. Note that header file

PICSetUp turns the ADC off.

• Since the seven-segment display requires seven

outputs, you connect the display to PORTB, which is set

to all outputs in your header file.

• You use the internal oscillator block for the source of

the clock since this saves I/O and the cost of a crystal.

Note that this is a requirement if you want to use the

header file PICSetUp. This also means that you will be

using the 8MHz internal crystal and TMR0 set to count

at 7182.5Hz.

• There is no need for anything else, so really a basic

8-pin PIC will do the job. However, this book is based

on the PIC18F4525 and the header file PICSetUp is

written for the PIC18F4525, therefore you will use that

PIC.

Note that I added the last item in the list to show that you can use

the algorithm to decide which PIC you should use for your project. This

could save money. You must remember that your project could go into

production, and if you can save 10 pence by choosing a more basic PIC,

then you should.

Chapter 2 Controlling a Seven- Segment DiSplay

55

 The Flowchart

It is always a good idea to construct a flowchart for your programs.

However, since this book is really aimed at explaining how the C code

works, I will only construct a flowchart for this first program. Note that I

may add a small flowchart to show you how I solved a particular problem if

the need arises.

The principle behind a flowchart is that it clearly identifies how the

program should flow from one section to the next. Also, if written correctly,

each block of the flowchart should link clearly to its corresponding set of

instructions in the program listing.

The flowchart for this program is shown in flowchart 2-1.

Chapter 2 Controlling a Seven- Segment DiSplay

56

Flowchart 2-1. The flowchart for Listing 2-1

Chapter 2 Controlling a Seven- Segment DiSplay

57

 The Listing for the Seven-Segment Display
Program
I will show the program listing here and then analyze the new instructions

in the same way as I analyzed the instructions in Chapter 1. Note that I will

only analyze any new instructions.

I will use two approaches to complete this project. The first will use

only some basic methods while the second approach will involve the use

of arrays and a pointer. The program for this basic approach is shown in

Listing 2-1.

Listing 2-1. The sevenSegDisplay Program

 1. //List any include files you want to use

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <xc.h>

 4. #include <PICSetUp.h>

 5. //declare any global variables

 6. unsigned char n;

 7. // declare any definitions

 8. #define zero 0b01000000

 9. #define one 0b01111001

10. #define two 0b00100100

11. #define three 0b00110000

12. #define four 0b00011001

13. #define five 0b00010010

14. #define six 0b00000011

15. #define seven 0b01111000

16. #define eight 0b00000000

17. #define nine 0b00011000

18. #define startButton PORTAbits.RA0

19. #define stopButton PORTAbits.RA1

Chapter 2 Controlling a Seven- Segment DiSplay

58

20. //declare any subroutines

21. void delay (unsigned char t)

22. {

23. for (n = 0; n < t; n++)

24. {

25. TMR0 = 0;

26. while (TMR0 < 255);

27. }

28. }

29. void main ()

30. {

31. initialise ();

32. start: while (! startButton);

33. while (1)

34. {

35. if (stopButton) goto start;

36. PORTB = zero;

37. delay (61);

38. PORTB = one;

39. delay (61);

40. PORTB = two;

41. delay (61);

42. PORTB = three;

43. delay (61);

44. PORTB = four;

45. delay (61);

46. PORTB = five;

47. delay (61);

48. PORTB = six;

49. delay (61);

50. PORTB = seven;

Chapter 2 Controlling a Seven- Segment DiSplay

59

51. delay (61);

52. PORTB = eight;

53. delay (61);

54. PORTB = nine;

55. }

56. }

exercise 2.2

Before those of you with a good eagle eye say anything, there is an
error in this program listing and the flowchart. there is nothing wrong
with any of the instructions but there is something missing from the
flowchart and the program listing. Can you see what it is and what
its effect on the display will be? if you are struggling to see what the
error is, run the program as stated above and you will see the effect.
Can you see how to fix it?

the answer to this exercise is given at the end of the chapter.
good luck.

 The Analysis of Listing 2-1
Line 1 //List any include files you want to use

Here I am just using comments to break up the program listing up into

logical sections. The first section is where you tell the compiler program

that you want to include some header files. Therefore, when the compiler

program starts to compile your program instructions, it also finds the

instructions in these header files and compiles them as well. Note that it is

the linker program that finds these other files you want to include in your

Chapter 2 Controlling a Seven- Segment DiSplay

60

project. In making this statement I am trying to make you aware that the

IDE, MPLABX, is a collection of a lot of programs that you use to write your

projects.

Line 2 #include <conFigInternalOscNoWDTNoLVP.h>

This is where you tell the compiler to include the first header file you

created to set the primary source of the clock to the internal oscillator

block and turn the WDT and LVP off.

Line 3 #include <xc.h>

This is a very important header file that was created by Microchip. It is

termed open source because it is freely available to us. It helps identify the

SFRs (special function registers) that you want to use in your programs. It

must be included in all of your projects if you want to use all of the labels

for the SFRs.

Line 4 #include <PICSetup.h>

This is the second header file you created to set up the PIC how

you want; see Chapter 1. Note that this file uses some of the labels that

are defined in the xc.h header file. Therefore it must be inserted in the

program after the xc.h header file has been included. Move it up to before

the #include xc.h line and see if the program will compile. It will not.

Line 5 // declare any global variables

This line splits the listing up for a section for global variables. Global

variables are simply memory locations created, with a suitable name to

refer to them, which can be used to store values. Since they are global, they

can be used by any section of the program.

The other type of variable is a local variable. The difference is that local

variables can only be used in the subroutine where they were created.

Line 6 unsigned char n;

Chapter 2 Controlling a Seven- Segment DiSplay

61

This creates an 8-bit memory location with the name n. It is of type

unsigned char. The char word means it is only 8 bits long. The word

unsigned means that Bit7 is not used to tell us the “sign” of the variable,

such as whether it is positive, Bit7 is a logic 0 or a negative, or Bit7 is a

logic 1 number. With an unsigned char Bit7 is used to represent part of the

number. This means you can store a value from 0 to 255 in this variable n.

If you want to use Bit7 to represent the sign of the number, which is termed

“signed number representation,” then you would simply write “char”

instead of “unsigned char.” The variable n will then store a value from -127

to 127. This is an important difference, the difference between char and

unsigned char.

Note the same applies to int and unsigned int. However, an int uses 16

bits. Int stands for integer.

Line 7 // declare any definitions;

In this section, you are telling the compiler that wherever it sees the

symbolic name written after the keyword #define, you actually mean what

is written after that symbolic name. You should make the symbolic name

as sensible as possible in terms of what it is going to represent. The actual

meaning of the symbolic name can be almost anything, such as

• an instruction, like PORTB = 0

• a reference to a bit, such as PORTAbits.RA0

• a numeric value, such as 0b00001111

Line 8 #define zero 0b01000000

With respect to line 8 you tell the compiler that whenever it sees

the symbolic name “zero,” it should read this as the binary number

0b01000000. When this value is loaded into PORTB, which is connected to

the seven-segment display, all seven LEDs, except the last one named G in

Figure 2-4, are lit. Note that the display is a common anode and so sending

Chapter 2 Controlling a Seven- Segment DiSplay

62

out a logic 0 to all the cathodes except the G cathode forces the cathodes

to ground, or 0V, and so turns those LEDs on. The fact that the G cathode is

connected to a logic 1 or 5V outputted from the PIC means that the G LED

is turned off.

This means that the seven-segment display will actually display the

number 0. This is why the symbolic name is “zero.”

The next lines, 7 to 17, do exactly the same except that they define the

binary number to make the display show the numbers 1, 2, 3, 4, 5, 6, 7, 8,

and 9. Figure 2-4 should help you understand this.

Line 18 #define startButton PORTAbits.RA0

This is the same type of instruction except that it tells the compiler

software that where it sees the symbolic name startButton, it knows that

you mean the reference PORTAbits.RA0, or bit0 of PORTA.

Line 19 #define stopButton PORTAbits.RA1

This tells the compiler that where it sees the label stopButton, you

mean the reference PORTAbits.RA1, or bit1 of PORTA.

Note with all these definitions there is no semicolon (;) at the end. That

is because these are not instructions for the PIC. They are commands to

the compiler software.

Line 20 //declare any subroutines

Here you are splitting the program up and creating a section of

subroutines. Subroutines are small sections of a program that are written

outside the main program loop.

You should use a subroutine if your program uses a section of

instructions in EXACTLY the same way more than once in your program.

With the subroutine you only write the instructions once instead of writing

them many times. Note that even twice is deemed to be many times. This

concept saves your program memory, and believe you me, memory is the

villain for all programmers.

Chapter 2 Controlling a Seven- Segment DiSplay

63

To run a subroutine, the main section of program has to call the

subroutine. The micro then jumps out of its normal sequential operation

and goes through the instructions of the subroutine. When it completes

the subroutine, the micro jumps back to the main program at the point

where it called the subroutine.

Line 21 void delay (unsigned char t)

This actually creates the subroutine. It starts off with the keyword void,

which is blue in the C editor. This word means that the subroutine will not

be passing any values back to the main loop.

The next word, delay, is the name for the subroutine; note that it is

in black and bold in the editor. You should give the subroutine a suitable

name to reflect its purpose.

Next, you set up a set of normal brackets. Here you can instruct the

main program that you want it to pass a value up to the subroutine when

the main program calls it. You use the statement inside the bracket to

define what type of data you want the main program to send up to it.

The statement unsigned char t means this subroutine wants an 8-bit

unsigned number to be sent up to it when it is called from the main

program, or from other subroutines as with nested subroutines. The

subroutine will then copy this value into the variable t. Note in this

instance the variable t is a local variable that can only be used in this

subroutine.

I feel I should point out that a subroutine can use any global variable

you have previously defined. Indeed, this subroutine is using the variable n

which, because it is a global variable, the subroutine can use.

If the subroutine did not want the main program to pass a variable up

to it when called, then you would leave the space between the two normal

brackets empty.

Line 22 {

Chapter 2 Controlling a Seven- Segment DiSplay

64

This is the opening curly bracket that defines the start of the loop

within which all the instructions of the subroutine are written. Note that

there must be a closing curly bracket for this loop. Indeed, as you type the

first opening curly bracket, IntelliSense takes over and puts in the closing

curly bracket and inserts the cursor between the two curly brackets.

Line 23 for (n = 0; n < t; n++)

This is a very powerful “for do loop” type instruction. It is really four

instructions in one.

First, it loads the variable n with the value 0 using n = 0; and then

compares the value of n, which is now 0, with the value that the main

program passed up and the subroutine assigned to the local variable t,

using n < t;. For this analysis, assume the value of t is 2.

The comparison asks the question, is n less than t? In this case, it is

because n has just been loaded with 0. Therefore, the result of the test

is said to be true, so the micro will carry out the instructions inside the

following loop. When the micro has carried out all the instructions inside

the loop, it will automatically increase the value of n by one, using the n++

shown in the normal bracket.

Now the micro carries out the comparison again, n < t;. Well, n is

still less than t since n is now 1 and t is 2, so the micro must carry out the

instructions in the loop a second time. Again, at the end, the micro will

increment the value of n.

Now the micro again carries out the comparison but this time n is

equal to t as both have the value of 2. Therefore the comparison is not

true, as n is not less than t. So the micro does not carry out the instructions

in the loop. It simply breaks away from the “for do loop” and carries on

with the rest of the program.

The semicolons after n = 0; and n < t; need to be there because

these are single-line instructions. The n++ is not a single-line instruction. It

is the last instruction in a series of multiple-line instructions stated inside

the curly brackets.

Chapter 2 Controlling a Seven- Segment DiSplay

65

I hope this explains how the “for do loop” works. It is a very powerful

way of making the micro carry out a set of instructions a controlled

number of times.

Line 24 {

This is the opening curly bracket of the “for do loop.” You need the

curly brackets because there is more than just one instruction inside the

“for do loop.”

Line 25 TMR0 = 0;

This is the first instruction in the “for do loop.” It loads the SFR TMR0

with the value 0. This is the register that is associated with timer0. Timer0

is a counting piece of firmware that increments its own register, TMR0, at a

frequency you set using the control register for timer0, which is the T0CON

register. Note that you set this register using the PICSetup.h header file

to increment at a frequency of 7812.5Hz. This means it will increment

every 128μs. Note that you also set the timer0 to be an 8-bit register, which

means the maximum value it can count up to is 255.

Line 26 while (TMR0 < 255);

This is another very powerful C instruction. The principle on which it

works is while (the test I specify inside these bracket is true) do what I tell

you to do here.

I have written the instruction in the above manner to explain how

it works. The while sets up a test. The test is written inside the normal

brackets; in line 26, the test is, is the value in the TMR0 less than 255, TMR0

< 255? If the value is less than 255, the test is true and so the micro must

carry out the instructions specified here outside the normal bracket.

To fully understand this particular instruction, you must appreciate

that the semicolon signifies the end of the current instruction. You can

see that there are no instructions between the closing normal bracket and

the semicolon. This is because you want the micro to do nothing while

Chapter 2 Controlling a Seven- Segment DiSplay

66

the test is true. This is because you are creating a delay that lasts until the

micro increments the value of the TMR0 register to 255. Note that the PIC

automatically increments the TMR0 register. When the TMR0 reaches

255, the test will become untrue since TMR0 is no longer less than 255.

Therefore, since the test is untrue, the micro can break away from doing

nothing and carry on with the rest of the program.

The while (TMR0 < 255); creates a 255 x 128μs delay, which is

approximately a 32.77ms delay. I say approximately because to be accurate

you need to add the time it takes to carry out the instructions. How timer0

is set up to count at one every 128μs was explained in Chapter 1.

I hope this has helped you to understand how this while (test is true)

do what I say here type of instruction works. The doing section may be just

a single-line instruction, as with line 26. However, it could be a number of

instructions. If this is the case, the set of instruction will be written inside a

set of opening and closing curly brackets.

Line27 }

This is simply the closing curly bracket for the “for do loop” started on

line 23.

Line 28 }

This is the closing bracket for the delay subroutine.

Line 29 void main ()

This is the most important loop. To appreciate how this works, it is

important to appreciate that all C programs work within a collection of loops.

In this way, once the program has started, it should run in a series of loops

continuously. This main loop is the only loop all C programs must have. All

other loops are functions, or methods or subroutines, as I like to call them,

which are called from this main loop. The micro goes to the main loop to get

the very first instruction of the program. From the main loop the instructions

control how the micro carries out all of the instructions of the program.

Chapter 2 Controlling a Seven- Segment DiSplay

67

The main loop must be of type void since it cannot pass any value back

to itself. The name must be main and the brackets will normally be empty

as no values are normally passed to it.

Line 30 {

This is simply the opening curly bracket for the main loop. IntelliSense

will add the closing curly bracket and put the cursor between the two

brackets for you.

Note that the confines of the two curly brackets are linked by a straight

line, at the top of which is a small square. Inside the square is a minus (-)

sign. This is so that you can close down any block of curly brackets if you

are happy you have finished writing the instructions in them. If you do

close the block down, the minus becomes a plus (+). You can use this plus

sign to reopen the section of code. This option is to save screen space if you

so wish.

Line 31 initialise ();

This is the first instruction inside the main loop and so it is the first

instruction the micro carries out.

The instruction is actually a call to a subroutine. However, this

subroutine has not been written in this current source code. It is a routine

you wrote in the header file PICSetUp.h. However, as you have told the

compiler to include this header file in line 4, there is no problem. The

micro will break away and find the instructions in that subroutine and

carry them out. In this way, the PIC is set up in the manner you want. This

was described in Chapter 1.

Line 32 start: while (! startButton);

This introduces to you the goto label type instruction. The word start:

is set up as label. It is the colon (:) that tells the compiler program that

the word start is a label. The compiler assigns an address in the PIC’s

Chapter 2 Controlling a Seven- Segment DiSplay

68

memory for this label. Later in the program, at line 35, there will be an

instruction that tells the micro to go to this address assigned to the label

start.

The next part of the instruction sets up another while (test is true) do

what I say here type instruction. The test is (! startButton). The ! signifies

the logic NOT. It is really saying that while the startButton is a logic 0 (i.e. not

at a logic 1), the test is true. This is the same as using the instruction of while

(startButton == 0); but it is somewhat more succinct.

You should remember that in line 18 you defined the phrase

startButton to mean PORTAbits.RA0. This then means that the test is,

is the logic on bit0 of PORTA a logic 0? If it is a logic 0, the test is true. If

it goes to a logic 1, the test will become untrue. While the test is true, the

micro must carry out the instruction you write between the closing bracket

of the test and the semicolon. Again, there are no instructions here, so you

are getting the micro to do nothing while the test is true (i.e. while there is

a logic 0 at the input of Bit0 of PORTA).

Connect the start switch to the input of Bit0 on PORTA. If you don’t

press the start switch, the logic on Bit0 will be logic 0. Only when you

press the start button will the logic change to a logic 1, while you press

the button and change back to a logic 0 when you let go. However, this

momentary change to a logic 1 will cause the test on line 32 to become

untrue and so release the micro from the test. The micro will then be free

to carry on with the rest of the program.

I know this is a wordy description of how you simply get the micro to

wait until you press the start button, but I hope when you read through it

you can understand how the instruction works.

Line 33 while (1)

Yet another while (test is true) do what I say here type instruction. Well,

they are very useful. This test is rather special in that is just the number

(1). What you have to appreciate is that the micro can only see logic 1 or

logic 0 (really, 5V or 0V). Also, when a test results in a true, the logic the

Chapter 2 Controlling a Seven- Segment DiSplay

69

micro sees is a logic 1. When the test is untrue, it sees a logic 0. Well, with

this while instruction the micro will only ever see a logic 1. This means the

test will always be true. In this way, you force the micro to carry out the

instructions listed between the curly brackets forever. That is why this is

called the forever loop.

The instructions associated with the while (test) take up more than one

line, so the instructions are placed between a set of opening and closing

curly brackets.

Line 34 {

This is the opening curly bracket for the forever loop.

Line 35 if (stopButton) goto start;

This introduces the if (this test is true) then do what I tell you to do type

of instruction. The instruction is in the form of a test, and if the test is true,

then you must do what you are told to do “else” you do something else.

In line 35, the test is, is the logic on the stop button a logic 1? Note that

you are not using the ! NOT label. If the test is true, the micro must carry

out the instruction or instructions that are written here. This is a simple

one-line instruction that tells the micro to go to the label start. Note that

you defined the label start on line 32.

This instruction is asking the question, has someone pressed the stop

button? If they have, then the micro must go back to the start label where

you get it to wait until someone presses the start button. If no one has

pressed the stop button, then the micro simply carries on with the rest of

the program.

This shows the difference between the while and the if type

instructions. The while traps the micro in that instruction while the test is

true, whereas the if only asks, is my test true? If it is true, do what I tell you

to do. If it’s not true, carry on with the rest of the program; the micro is not

trapped.

Line 36 PORTB = zero;

Chapter 2 Controlling a Seven- Segment DiSplay

70

This line forces the data stored in the PORTB register to take on the

value indicated by the phrase zero. Note you defined the phrase zero to

mean the binary number 0b01000000 in line 8. This then means that the

seven-segment display shows the figure zero.

Line 37 delay (61);

This calls the subroutine delay and passes up the value 61 to the

subroutine. The subroutine then loads the local variable t with the number

61. This makes the “for do loop” in that subroutine to be carried out 61

times. Each time there is a delay of around 33ms, therefore the total delay

is 61x33ms = 2.013s, an approximately 2-second delay.

Line 38 PORTB = one;

This overwrites the data in PORTB with the data to display the figure

one on the seven-segment display.

Line 39 delay (61);

This calls another 2-second delay.

Lines 40 to 54 repeats this procedure so that the seven-segment display

shows the numbers two through to nine with a 2-second delay between

them.

Line 55 }

This is the closing curly bracket for the forever loop started on line 33.

Line 56 }

This is the closing curly bracket of the main loop started on line 29.

I hope the above analysis explains how the instructions work.

Chapter 2 Controlling a Seven- Segment DiSplay

71

 Improving the Seven-Segment Display Program
There is an issue with this program in how it works. This is not the error

asked about in exercise 2.2; that error is still there in Listing 2-1. I am

assuming you have repaired that error. If you haven’t, then see the answer

for exercise 2.2 at the end of this chapter, implement the repair, and come

back here.

If you run the program, you may determine what the new issue is. Try

running the new program and see if you recognize the problem.

Not to worry; I will explain what the problem is and go through a program

that avoids it or at least is an improvement for it in this section of the chapter.

 The Problem with the Program
I hope that after running the program a few times you have realized that

you have to hold the stop button for at least 2 seconds, if not 20 seconds,

before the program stops the display incrementing and the display always

stops with the display showing the number 9.

The reason why this happens is because the instruction that looks

as the stop button is on line 35. If you are not pressing the stop button

when the micro carries out that instruction on this line, then the micro

will not notice you have pressed the stop button. Also, it won’t look at this

instruction again until it has gone through all the other lines. Then, after

reaching line 55, it loops back to line 35 via lines 33 and 34. The micro

will then see that you have pressed the stop button, assuming you are still

pressing it, and go to the label start:. Not very good programming.

One way around this issue is to insert this instruction, if

(stopButton) goto start;, after each of the calls to the delay subroutine.

This method is called software polling, where you continually keep asking

the question. This approach is not the most efficient since it wastes a lot of

time checking the stop switch, in this case, even if it hasn’t been pressed. It

also wastes a lot of memory in writing the same instruction many times.

Chapter 2 Controlling a Seven- Segment DiSplay

72

One solution involves new instructions using arrays and pointers. This

will save memory and speed up the response of the program.

 Arrays
An array is a method by which you can create a list of variables and store

them in locations one after the other and then use them sequentially

one at a time or randomly. It is very much like a look-up table. It is very

important to appreciate that the memory locations are set up one after the

other in order. The array can store a variable using all the common data

types such as unsigned char, integer, float, etc.

To create an array, you simply declare it using the data type you want

to use and then give it a sensible name followed by the square bracket.

Inside the square bracket you state how many memory locations you want

to place in your array, such as [6]. When the compiler program compiles

the program, it will place the start of the array in a memory location and

then create the total number of memory locations immediately after the

start location, one after the other. Each location will have its own reference

number, with the first location having the reference 0. If, as in this example,

the array has 6 memory locations, they are referenced as 0, 1, 2, 3, 4, and 5.

 Using Pointers
Pointers can be used to point to locations inside an array. To create a

pointer, it is best to create an array and then create the pointer with the

same name and type as the array. This is best explained by going through

the example instructions shown below.

1. unsigned char dataStore [10];

2. unsigned char *dataPointer;

3. dataPointer = dataStore;

Chapter 2 Controlling a Seven- Segment DiSplay

73

4. data0 = *dataPointer;

5. dataPointer++;

6. data1 = *dataPointer;

7. dataPointer++;

 Analysis of The Pointer Example
Line 1 unsigned char dataStore [10];

This creates an array of 10 locations one after the other, each being an

8-bit memory location since you are using the data type unsigned char.

Line 2 unsigned char *dataPointer;

This creates a memory location that can be loaded with the particular

address of a location in the dataStore array. Note that the * is to tell the

compiler that this is not a simple variable; it is a pointer that will point to

an address in an array.

Line 3 dataPointer = dataStore;

This tells the compiler to load the pointer dataPointer with the

address of the first location in the array dataStore.

Line 4 data0 = *dataPointer;

Earlier in the listing you declared the variable data0 as an unsigned

char. With this instruction, the micro will load a copy of what is stored in

the first location of the dataStore array into data0. This is because in the

previous instruction you made the pointer point to that memory location

in the array.

Line 5 dataPointer ++;

Chapter 2 Controlling a Seven- Segment DiSplay

74

This increments the value in this dataPointer by one. This means that

as the information in the dataPointer is the address of the first location in

the dataStore array, then by incrementing it, the pointer dataPointer is

now pointing to the next memory location in the dataStore array.

Line 6 data1 = *dataPointer;

Earlier in the listing you declared the variable data1 as an unsigned

char. With this instruction, the micro will load a copy of what is stored in

the second location of the dataStore array into data1.

I hope this goes some way to explaining what an array is. The following

program is an example of how to set up and use an array.

 The Improved Program
In this section of text, you will see how, by using arrays, you can

program the counting sequence from before in a more efficient

manner. See Listing 2-2.

Listing 2-2. The sevenSegImproved.c File

 1. /* An improved program to display a count

 2. from 0 to 9 on a seven segment display

 3. Written by H. H. Ward Dated 29/10/19

 4. For the PIC18F4525*/

 5. //List any include files you want to use

 6. #include <conFigInternalOscNoWDTNoLVP.h >

 7. #include <xc.h>

 8. #include <PICSetUp.h>

 9. //declare any global variables

10. unsigned char n, m;

11. // declare any definitions

12. #define zero 0b01000000

Chapter 2 Controlling a Seven- Segment DiSplay

75

13. #define one 0b01111001

14. #define two 0b00100100

15. #define three 0b00110000

16. #define four 0b00011001

17. #define five 0b00010010

18. #define six 0b00000011

19. #define seven 0b01111000

20. #define eight 0b00000000

21. #define nine 0b00011000

22. #define startButton PORTAbits.RA0

23. #define stopButton PORTAbits.RA1

24. unsigned char sevenDisplay [10] =

25. {

26. zero,

27. one,

28. two,

29. three,

30. four,

31. five,

32. six,

33. seven,

34. eight,

35. nine,

36. };

37. unsigned char *displayPointer;

38. //declare any subroutines

39. void delay (unsigned char t)

40. {

41. for (n = 0; n < t; n++)

42. {

43. TMR0 = 0;

Chapter 2 Controlling a Seven- Segment DiSplay

76

44. while (TMR0 < 255);

45. }

46. }

47. void main ()

48. {

49. initialise ();

50. start: while (! startButton);

51. while (1)

52. {

53. displayPointer = sevenDisplay;

54. for (m = 0; m <10; m ++)

55. {

56. if (stopButton) goto start;

57. PORTB = *displayPointer;

58. displayPointer ++;

59. delay (61);

60. }

61. }

62. }

I hope you can appreciate that the only new instruction starts at line 24

which is

Line 24 unsigned char sevenDisplay [10] =

This sets up an array called sevenDisplay that has 10 memory

locations. However, the equal sign (=) means that the following lines

dictate what is initially loaded into those 10 memory locations.

The values to be used are listed between the following two curly

brackets. However, to make them more readable, you use the phrases

defined in lines 12 to 21 before.

In line 26, you place a copy in the first location in the array of the 8-bit

binary number to display zero on the seven-segment display.

Chapter 2 Controlling a Seven- Segment DiSplay

77

The remaining values are stored in the following lines.

One more thing you should note is that line 36 is

};

where the semicolon is added to indicate that this is the end of the

instruction since this is a list of values to be stored in the array. That is also

why there is a comma after each of the phrases.

Line 37 unsigned char *displayPointer;

This is where you create the pointer that you will use to point to

individual memory locations in the array. Note that you don’t have to use

the phrase Pointer as part of the name; it is just my preference.

Lines 30 to 46 create your variable delay, which you created previously.

Lines 47 to 52 were discussed in Listing 2-1.

Line 53 displayPointer = sevenDisplay;

This loads the displayPointer with the address of the first memory

location in the sevenDisplay array. This gets the displayPointer ready for

the instruction on line 57.

Line 54 for (m = 0; m <10; m ++)

This sets up the “for do loop” that controls what data is sent to the

display connected to PORTB. Note you must use a different variable than n

because n is used in the delay subroutine that this “for do loop” calls within

it. In line 10 you declared the variable m as an unsigned char.

Line 55 {

The opening curly bracket of the “for do loop”.

Line 56 if (stopButton) goto start;

Chapter 2 Controlling a Seven- Segment DiSplay

78

Here you are checking to see if the stop button has been pressed. If it

has been pressed, the program will jump back to the start label on line 50

where the program then waits for the start button to be pressed. If the stop

button has not been pressed, the program moves onto the next line.

Line 57 PORTB = *displayPointer;

This loads a copy in PORTB of the data in the memory location in

the array sevenDisplay that the pointer, displayPointer, is pointing to.

As this is the first run through the “for do loop,” the data will be the 8-bit

binary value for zero (see lines 26 to 35) and so the display will show the

number 0. As it runs through the “for do loop” until n = 10, it will display

the numbers 0 to 9 on the seven-segment display.

Line 58 displayPointer ++;

This increments the value in the displayPointer by 1. This means that

the pointer will now be pointing to the next memory location in the array

sevenDisplay. This then gets the data for “one” to be displayed next.

Line 59 delay (61);

This calls the delay subroutine with the value 61 to be copied into the

local variable t in the subroutine. This creates a 2-second delay.

Line 60 }

This is the closing bracket of the “for do loop.”

You should create a new project named sevenSegImproved with a

source file also named sevenSegImproved.c. Then write the instructions

listed in Listing 2-2. You should see an improvement the first time you run

it. Note that you can stop the display on any number.

I hope you can see that you are actually checking the stop button after

each time you display a number on the seven-segment display. This is the

software polling mentioned earlier. This is not the most efficient method

Chapter 2 Controlling a Seven- Segment DiSplay

79

of doing this. It would be more efficient if you used interrupts. You will use

interrupts in Chapter 7.

exercise 2.3

i want you to speed up the change of display so that it takes around
33ms for the numbers to change. also, restrict the count to go from
1 to 6. then run the new program. having done this, can you suggest
what this new program may be used for? a possible use for the new
program is given at the end of the chapter.

 Synopsis
In this chapter, you learned about the seven-segment display and how you

can use a PIC to control one. You have also become more familiar with the

while and if instructions. You also learned how to use definitions to make

the program more readable.

You also looked at using arrays and the “for do loop” to reduce the

number of instructions in a program.

In the next chapter, you will extend this program to control a 24-

hour digital clock that counts up in minutes and hours using four seven-

segment displays.

 Answers to the Exercises
Exercise 2.1: If last switch was closed, the center LED, LED G, would be

turned on as well, so this would represent the number 8.

Exercise 2.2: There is a call to the 2-second delay subroutine missing

between sending the number 9 to the seven-segment display and then

sending the number 0 to the display. This means that the display will

Chapter 2 Controlling a Seven- Segment DiSplay

80

not show the number 9 because as soon as it displays 9, the program will

swap it with the number 0. You need to add the following instruction

after line 54:

delay (61);

The program will then display the number 9 and wait 2 seconds before

displaying the number 0.

Exercise 2.3: The possible use of the faster program could be an

electronic dice.

Chapter 2 Controlling a Seven- Segment DiSplay

81© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_3

CHAPTER 3

The 24-Hour Clock
In this chapter, you will create a project that runs a 24-hour clock. Initially

the clock will be displayed on an arrangement of seven-segment displays.

Then the clock will be displayed on a liquid crystal display (LCD).

The seven-segment display will show minutes and hours but the LCD

will show seconds, minutes, hours, and days of the week.

To begin, you will look at how to solve the logistics of incrementing the

displays at different instances. This is because there are 60 second in one

minute and 60 minutes in one hour but 24 hours in one day.

To solve this problem, and indeed any problem you want to solve, you

must break it down into identifiable steps. Then you create a sequence of

instructions that will allow you to bring these events together and produce

a solution to the task.

After reading this chapter, you will have an understanding of the

following:

• How to break down a task into small steps

• What an LCD is

• How to control an LCD using C programming

• The problem of switch bounce and how it can be

overcome

• How to use the #define function to create a macro for a

series of instructions

• How to use the switch and case statements

https://doi.org/10.1007/978-1-4842-6068-5_3#DOI

82

 The Seven-Segment Display
Since this example will only show minutes and hours, you will only need

four seven-segment display. Note that there will be units and tens for both

minutes and hours. To help refer to these different displays, you will create

four variables with the names

• minUnits

• minTens

• hourUnits

• hourTens

 The Algorithm for the 24-Hour Clock Using
Seven-Segment Displays
The following steps are my interpretation of how to go about solving the

tasks. There may be other methods but I think this is a logical approach

that can be used to solve the task. You should identify what the system has

to do and then go about designing a solution to enable the system to fulfill

those steps.

You have already identified that you will need four seven-segment

displays, one for each digit to be displayed.

Both minUnits and hourUnits will display a value from 0 to 9. minTens

will display a value from 0 to 6 and hourTens will display a value from 0 to 2.

However, you need to appreciate that when hourTens goes from 0 to 1,

hourUnits will also go from 0 to 9. However, when hourTens displays the

number 2, hourUnits will only go from 0 to 3. This is because when the

clock displays 23 59, at the next increment of the minute units the whole

display will go back to 00 00.

Chapter 3 the 24-hour CloCk

83

 1. Identifying how the displays will change

 a. Since the system is a clock, the displays will

change in steps of minutes (i.e. every minute the

display will change). This means you will require

a one-minute delay.

 2. Setting the clock

 a. You will need a method by which you can set the

clock to the correct time and then get the clock

to increment from this time onwards. This can be

done using three buttons. To identify the buttons,

give them the following names:

 i. incButton

 ii. decButton

 iii. setButton

 3. Their names should suggest their functions but, just

to be clear, the functions are

 a. The incButton will increment the current digit

by one each time the button is momentarily

pressed.

 b. The decButton will decrement the current digit

by one each time the button is momentarily

pressed.

 c. The setButton will set the current digit to the

value it has been changed to and move onto the

next digit to be set or end the setting of the time.

Chapter 3 the 24-hour CloCk

84

 4. Once the display has been set, it will increment once

a minute and it will change in this fashion:

 a. minUnits will increment from 0 to 9 and on

the next change the units will return to 0 and

minTens will increment.

 b. minUnits will continue to change in the same way.

 c. minTens will increment accordingly until the point

when minTens has a value of 5 and minUnits has a

value of 9 (i.e. 59).

 i. Upon the next increment, minUnits and minTens

will return to 0 and hourUnits will increment.

 ii. Now, since minUnits and minTens continue to

increment, then on the change from minTens

= 5 and minUnits = 9 they will both go back

to 0 and hourUnits will increment again. This

will continue until hourUnits displays 9. On

the next increment of hourUnits, it will return

to 0 and hourTens will increment from 0 to 1.

 5. This sequence will continue until hourTens displays

2. Then, on the next increment of hourUnits from 3 to

what would be 4, the whole display will go back to 0.

 6. To control the sequence the program, you will need

a timer that will increment in minutes.

 7. The system will need the following inputs, outputs,

and timers:

 a. Three momentarily switches as inputs

 b. Four 8-bit ports to control the display of the four

seven-segment displays

Chapter 3 the 24-hour CloCk

85

 c. One timer to count in minutes

 d. The four output ports will be

 i. PORTA

 ii. PORTB

 iii. PORTC

 iv. PORTD

 e. The one input PORT will be PORTE.

 f. There will be no analog inputs, therefore the ADC

can be switched off.

 8. You will use the internal oscillator block to generate

the primary oscillator. This is because you can’t use

PORTA for the crystal.

 9. The first section of the program, after you have

initialized the PIC as you need it, will be to set the

hours and minutes and so set the time for the clock.

Note that the clock should initially display zero on

all four seven-segment displays.

 10. The final section will be to increment the display

accordingly every minute.

 11. Now you have the algorithm so you can start

designing the program. This step would normally

involve constructing a flowchart. However, flowcharts

take up a lot of room and I am more interested in

showing you how to program the PIC in C.

Chapter 3 the 24-hour CloCk

86

 The Initialization of the PIC
As you are using the internal oscillator block and switching

off both the WDT and the LVP, you can use the header file

conFigInternalOscNoWDTNoLVP.h you created earlier. You can also use the

other header file, PICSetUp.h, but you may need to change some of the

settings, as stated here:

• TRISA = 0X00; to change PORTA from input to output

• TRISD = 0x00; to change PORTD from input to output

• TRISE = 0xFF; to change PORTE from output to input

As always, it is useful to create some definitions that will make the

reading of the program easier. In Chapter 2, you created some definitions

for the binary numbers to display the numbers 0 to 9 on the seven-segment

display. They are

#define zero 0b01000000

#define one 0b01111001

#define two 0b00100100

#define three 0b00110000

#define four 0b00011001

#define five 0b00010010

#define six 0b00000011

#define seven 0b01111000

#define eight 0b00000000

#define nine 0b00011000

You will also use the following definitions for the three buttons:

#define incButton PORTEbits.RE0

#define decButton PORTEbits.RE1

#define setButton PORTEbits.RE2

Chapter 3 the 24-hour CloCk

87

Since the program will respond to the activation of these buttons, it

will make use of the if statement (as in if (incButton), then increment

the display). Also, every minute it will change the display in a way that

depends upon the current value on the display. This will also involve the

use of the if statement.

The complete listing for the program is shown in Listing 3-1.

Listing 3-1. The 24-Hour Clock on Seven-Segment Displays

 1. /*A program to control a 24Hr clock

 2. Displayed on 4 seven-segment display

 3. Written for the PIC18f4525 by Mr H. H. Ward

 4. dated 15/01/2019 */

 5. #include <conFigInternalOscNoWDTNoLVP.h>

 6. #include <xc.h>

 7. #include <PICSetUp.h>

 8. //Some definitions

 9. #define zero 0b01000000

 10. #define one 0b01111001

 11. #define two 0b00100100

 12. #define three 0b00110000

 13. #define four 0b00011001

 14. #define five 0b00010010

 15. #define six 0b00000011

 16. #define seven 0b01111000

 17. #define eight 0b00000000

 18. #define nine 0b00011000

 19. #define incButton PORTEbits.RE0

 20. #define decButton PORTEbits.RE1

 21. #define setButton PORTEbits.RE2

 22. //some variables

 23. unsigned char n, m;

Chapter 3 the 24-hour CloCk

88

 24. unsigned char minUnits = 0, minTens = 0, hourUnits = 0,

hourTens = 0;

 25. //some subroutines

 26. void debounce ()

 27. {

 28. TMR0 = 0;

 29. while (TMR0 < 101);

 30. }

 31. //some arrays

 32. unsigned char displaynumber [10] =

 33. {

 34. zero,

 35. one,

 36. two,

 37. three,

 38. four,

 39. five,

 40. six,

 41. seven,

 42. eight,

 43. nine,

 44. };

 45. void main ()

 46. {

 47. initialise ();

 48. TRISA = 0;

 49. TRISD = 0;

 50. TRISE = 0xFF;

 51. //set minutes

 52. minunitsset:

 53. PORTA = displaynumber [minUnits];

Chapter 3 the 24-hour CloCk

89

 54. if (incButton)debounce ();

 55. if (incButton)

 56. {

 57. minUnits ++;

 58. while (incButton);

 59. PORTA = displaynumber [minUnits];

 60. }

 61. if (decButton)debounce ();

 62. if (decButton)

 63. {

 64. if (minUnits > 0) minUnits --;

 65. else minUnits = 0;

 66. while (decButton);

 67. PORTA = displaynumber [minUnits];

 68. }

 69. if (setButton) debounce ();

 70. if (setButton) goto mintensset;

 71. goto minunitsset;

 72. //**

 73. mintensset:while (setButton);

 74. PORTB = displaynumber [minTens];

 75. if (incButton)debounce ();

 76. if (incButton)

 77. {

 78. if (minTens < 6)

 79. minTens ++;

 80. else minTens = 6;

 81. while (incButton);

 82. PORTB = displaynumber [minTens];

 83. }

Chapter 3 the 24-hour CloCk

90

 84. if (decButton)debounce ();

 85. if (decButton)

 86. {

 87. if (minTens > 0)

 88. minTens --;

 89. else minTens = 0;

 90. while (decButton);

 91. PORTB = displaynumber [minTens];

 92. }

 93. if (setButton) debounce ();

 94. if (setButton) goto hoursunitsset;

 95. goto mintensset;

 96. //sethours

 97. hoursunitsset: while (setButton);

 98. PORTC = displaynumber [hourUnits];

 99. if (incButton)debounce ();

100. if (incButton)

101. {

102. hourUnits ++;

103. while (incButton);

104. PORTC = displaynumber [hourUnits];

105. }

106. if (decButton)debounce ();

107. if (decButton)

108. {

109. if (hourUnits > 0)

110. hourUnits --;

111. else hourUnits = 0;

112. while (decButton);

113. PORTC = displaynumber [hourUnits];

114. }

115. if (setButton) debounce ();

Chapter 3 the 24-hour CloCk

91

116. if (setButton) goto hourstensset;

117. goto hoursunitsset;

118. //**

119. hourstensset: while (setButton);

120. PORTD = displaynumber [hourTens];

121. if (incButton)debounce ();

122. if (incButton)

123. {

124. if (hourTens < 2)

125. hourTens ++;

126. else hourTens = 2;

127. while (incButton);

128. PORTD = displaynumber [hourTens];

129. }

130. if (decButton)debounce ();

131. if (decButton)

132. {

133. if (hourTens > 0)

134. hourTens --;

135. else hourTens = 0;

136. while (decButton);

137. PORTD = displaynumber [hourTens];

138. }

139. if (setButton) debounce ();

140. if (setButton) goto clock;

141. goto hourstensset;

142. //***

143. clock: while (1)

144. {

145. for (m = 0; m <60; m++)

146. {

Chapter 3 the 24-hour CloCk

92

147. for (n = 0; n <29; n++)

148. {

149. TMR0 = 0;

150. while (TMR0 < 255);

151. }

152. }

153. minUnits ++;

154. if (minUnits == 10)

155. {

156. minUnits = 0;

157. minTens ++;

158. if (minTens == 6)

159. {

160. minTens = 0;

161. hourUnits ++;

162. if (hourTens < 2)

163. {

164. if (hourUnits == 10)

165. {

166. hourUnits = 0;

167. hourTens ++;

168. }

169. }

170. else if (hourTens == 2)

171. {

172. if (hourUnits == 4)

173. {

174. hourUnits = 0;

175. hourTens =0;

176. }

177. }

178. }

Chapter 3 the 24-hour CloCk

93

179. }

180. PORTA = displaynumber [minUnits];

181. PORTB = displaynumber [minTens];

182. PORTC = displaynumber [hourUnits];

183. PORTD = displaynumber [hourTens];

184. }

185. }

 Analysis of Listing 3-1
I hope that the instructions in lines 1 to 25 don’t seem new, since you have

used them before. I will start at line 26.

Line 26: void debounce ()

This is a subroutine, and I covered how to set up and use a subroutine

in Chapter 2. However, the function that this subroutine fulfils needs some

explanation.

This subroutine creates a software solution to the problem caused by

switch bounce. This is when a switch physically bounces between open

and closed when you attempt to close the switch and when you attempt

to open the switch. This bouncing action, which is caused by the switch

obeying Newton’s Law of Motion (every action has an equal and opposite

reaction) causes the voltage at the input connected to the switch to

physically bounce, as shown in Figure 3-1.

Chapter 3 the 24-hour CloCk

94

The black line is the ideal voltage response when the switch closes. The

red line is the practical voltage response. The diagram is only to give the

impression of what the voltage, across the switch, does when you close the

switch.

The logic levels upon which a micro responds have the following

ranges of voltage:

• Logic 0 is 0V to 0.8V at the input.

• Logic 1 is 2V to 5V at the input.

• Logic 0 is 0v to 0.4V at the output.

• Logic 1 is 2.7V to 5V at the output.

So the micro would actually think that the logic at the input had gone

to a logic 1 many times during this bounce time. However, the programmer

expects the logic to go to logic 1 once only because they only presses the

button once.

There are a few ways engineers can try to overcome this problem.

Some switches have springs inside them to try to prevent this bouncing

action. Other systems use debounce circuits, which can be made from

Figure 3-1. The bouncing voltage from a switch at any input

Chapter 3 the 24-hour CloCk

95

two NAND or NOR gates interconnected or cross coupled to solve this

problem. However, you are a programmer and you will actually use

a software approach whereby you add some program instructions to

overcome this issue.

The principle behind this approach is to recognize that someone has

pressed the switch, as the input will go to a logic 1. The PIC will then wait a

small amount of time and check the input again to see if it has really gone

to a logic 1 before responding to the action. The small amount of time is

to allow this bouncing action to die down, as shown in Figure 3-1, and so

ensure that the PIC doesn’t see the many times the logic bounces between

logic 0 and logic 1. A reasonable time to allow this bouncing action to die

down is approximately 13ms. This is what your program will do. Every time

the input from the switch goes high, it will wait around 13ms and then

check to see if the input is really at a logic 1 before it does anything about

it. In this way, the program sees that the input goes high only once, instead

of thinking it has gone high three or four times, as shown in Figure 3-1.

Note that this debounce subroutine can be used to overcome noise on

a switch. Noise on a switch is where an input picks up a voltage spike that

makes the micro think the input has gone to a logic 1. However, in reality

the input has not gone high.

Lines 27, 28, 29, and 30 create a 13ms delay. This is because you make the

PIC do nothing until the value in the TMR0 SFR has reached 101; see line 29.

Since the TMR0 takes 128μs to count 1, it will take 101 X 128μs = 12.928ms.

Line 31 is just a way of splitting up the program listing.

Line 32: unsigned char displaynumber [10] =

This sets up an array of 10 memory locations and loads each location

with the data listed between lines 33 and 44. Therefore the array stores

the binary numbers for displaying the value 0 to 9 on the seven-segment

displays.

Line 45: void main ()

Chapter 3 the 24-hour CloCk

96

This is the main loop of the C program, which must be in all C

programs. Line 46 is the opening curly bracket for this loop.

Line 47: initialise ();

This calls the subroutine initialise, which is written in header file

PICSetup.h. This is a subroutine to set up the PIC as you want. You change

the use of PORTA, PORTD, and PORTE in lines 48, 49, and 50.

The first section of the program is to allow the user to set the current

time on the seven-segment display. This is why line 51 is

Line 51: // set minutes

I am using comments to split up the program listing in the IDE. You

don’t have to do this but I think it is useful.

Line 52: minunitsset:

This is a label I created because I will be using the goto instruction,

which requires a label to go to. Note that you don’t have to put a label on

its own separate line. The following instruction could have been written on

line 52, but after the label:

Line 53: PORTA = displaynumber [minUnits];

This loads the 8 bits on PORTA with a copy of the data that is stored in

the array displaynumber []. The actual memory location within the array,

whose 8 bits are copied into PORTA, is controlled by the variable minUnits.

In line 24, this variable, along with three others, was created and loaded

with the value of 0. Therefore, this loads the 8 bits in PORTA with the data

that is stored in the first (i.e. location 0) of the array displaynumber.

You could replace this instruction with PORTA = displaynumber [0];

as the value of 0 is currently stored in the variable minUnits. However,

using a variable as with minUnits makes it easier to increment the value, so

it is more efficient.

Chapter 3 the 24-hour CloCk

97

If you look at the array that is created within lines 32 to 44, you will

see that the data that is stored in the first location of this array is the 8 bits

named “zero.”

Line 9 defines these 8 bits as 0b01000000. This is the 8 bits to display

the number 0 on the first seven-segment display. This is the units for the

minutes display. So in this instance you are making the display connected

to PORTA display the number 0.

Line 54: if (incButton) debounce ();

This asks the question, has the incButton been pressed? If it has, it

calls the debounce subroutine where you wait for the bouncing action to

die down.

If the incbutton has not been pressed, the micro will go to the next

instruction on line 55. The incbutton will not have been pressed so the

micro will go to the instruction on line 61 where you ask if the decbutton

has been pressed. If the decbutton has not been pressed, the micro will

go to line 69 where you ask if the setbutton has been pressed. If the

setbutton has not been pressed, the micro will go to line 71 where it will

be forced to go to the label minunitsset label on line 52.

This is a wordy description but it, hopefully, shows you how you can

use the if statement to control what the micro does.

Line 55: if (incButton)

Here you again ask the question, has the incButton been pressed?

The difference now is that the bouncing of the switch has died down. If it

has and the incbutton has been pressed, then the PIC must carry out the

instructions that are listed between the next opening and closing curly

brackets. So these two lines deal with the bouncing action of the input

switch.

Line 56 is the opening bracket of the if statement.

Line 57: minUnits ++;

Chapter 3 the 24-hour CloCk

98

This increments the value in the variable minUnits. This is getting the

value in minUnits ready for the instruction on line 59; however, now the

value in minUnits is now 1, not 0.

Line 58: while (incButton);

This gets the PIC to do nothing while the logic at the input, which is

connected to the incButton, is at a logic 1. This is to make sure the PIC

waits until the user has let go of the incButton. Really, it would be useful

to call the debounce subroutine here again as the switch would bounce just

the same when going from high to low as it does when it goes from low to

high. However, the transition to logic 0 is not as important as the transition

to logic 1. There may be some programs where it is just as important, so

you should consider switch bounce in those cases also.

Line 59: PORTA = displaynumber [minUnits];

This is a repeat of the instruction on line 53 but this time the value

in minUnits has been incremented, to 1 in this instance, and so it is the

data stored in the second memory location in the array that is copied into

PORTA. This means that the number 1 is displayed on the first seven-

segment display. This is why you didn’t write the instruction PORTA =

displaynumber[0] on line 53.

Line 60: }

This is the closing brackets of the if statement.

Line 64: if (minUnits > 0) minUnits --;

This is here to make sure the PIC only decrements the value in the

variable minUnits if the current value is greater than 0. This is a one-line if

test so you don’t need the opening and closing curly brackets.

Line 65: else minUnits = 0;

Chapter 3 the 24-hour CloCk

99

This states what the micro must do if the test stated in line 64 is not

true and minUnits is not greater than 0. This prevents the program from

making minUnits go negative. Note if the micro carries out the instruction

on line 64, the micro will skip this instruction on line 65. The if and the

else are linked together in C. The micro will only carry out the instruction

with the else statements if the previous if test was untrue.

Line 66: while (decButton);

This makes sure the micro waits until the decrement button has been

released and the logic at that input has gone back to logic 0.

Line 67: PORTA = displaynumber [minUnits];

Now the micro loads the seven-segment display connected to PORTA,

which is the units for the minutes, with the current value from the array

displaynumber.

Line 68 is the closing curly bracket of the if loop.

Line 69: if (setButton) debounce ();

This checks if the setButton has been pressed. If it has, the program

calls the debounce subroutine.

Line 70: if (setButton) goto mintensset;

This asks if the setButton has really been pressed. If it has, it tells the

PIC to go to the label mintensset, which is on line 73.

Line 71: goto minunitsset;

This is where the PIC should go if the setButton has not been pressed.

This is back to line 52 where the listing asks if the incButton has been pressed.

In this way, the PIC will continually change the minUnits of the seven-

segment display until the setButton has been pressed.

Line 72: //***********

Chapter 3 the 24-hour CloCk

100

This is just to split up the listing in the IDE.

Line 73: mintensset: while(setButton);

This is the label where the PIC must go to if the setButton is pressed

and the user has finished setting the minUnits. Note the use of the colon.

This tells the compiler that this is a label and it must assign it a location

in the PIC’s program memory when the program is downloaded to the

PIC. The while(setButton); is there to make sure the micro waits for the

logic at the setButton input to go back to logic 0 before it does anything

else. If you don’t, then there is the chance that the micro will see a logic 1

at the set input and it will skip some or all the next steps.

Line 74: PORTB = displaynumber [minTens];

This loads the second seven-segment display with the current number

in the displaynumber array identified by the value in the variable minTens.

This will initially be the number 0.

Lines 75 to 95 allow the user to increment and decrement the value in

the minTens variable and so set the tens value for the minutes in the seven-

segment display connected to PORTB.

Lines 96 to 141 do the same but for the hours units and minutes

seven- segment displays.

Line 142: //*************

This defines the end of the setting the correct time on the seven-

segment display.

Line 143: clock: while (1)

This is the label for the goto in line 140. The PIC goes to this label

when the user has finished setting the correct time on the clock. The while

(1) sets up a forever loop so that the program doesn’t go through the

instructions to set the clock again.

Line 144: {

Chapter 3 the 24-hour CloCk

101

This is simply the opening curly bracket of the forever loop.

Line 145 for (m = 0; m <60; m++)

Line 146 {

Line 147 for (n = 0; n <29; n++)

Line 148 {

Line 149 TMR0 = 0;

Line 150 while (TMR0 < 255);

Line 151 }

Line 152 }

Lines 145 to 152 create a one-minute delay. This uses two nested

for do loops. Lines 149 and 150 create a 33ms delay (i.e. 256 x 128μs =

32.77ms). Then line 147 sets up the inner for do loop, which makes the

PIC carry out this 32ms delay 29 times, which creates the one-second

delay. Line 145 sets up the outer for do loop, which makes the PIC carry

out the one-second delay a further 60 times. This approximately creates

a one-minute delay. The delay can’t be extremely accurate since you

can’t work out how long it will take the PIC to carry out the rest of the

instructions in the loops. The only way you can be very accurate is to

physically time how long it takes to count the minutes and then adjust the

values in the for do loops until you get an accurate one-minute change in

the display. However, I used the listing here to switch a lamp on and off at

one-second intervals. Then I physically scoped the output and it does look

very accurate.

Line 153: minUnits ++;

After the PIC has waited the one-minute delay, the PIC increments the

value stored in the variable minUnits.

Line 154: if (minUnits == 10)

Chapter 3 the 24-hour CloCk

102

This checks to see if the value stored in minUnits has reached 10. If it

has, the PIC must carry out the instructions on lines 156 and 157. Here the

PIC will reset minUnits back to zero and add one to the value stored in the

variable minTens.

Line 158: if (minTens == 6)

Since minTens has been incremented in line 157, the program must

now check if the value in minTens has reached 6 or not. If it has, then

the program must reset minTens back to 0; this is done on line 160. The

program must also add one to hoursUnits; this is done on line 161.

However, incrementing the hoursUnits variable will eventually

affect the hoursTens variable. The value at which the incrementing of the

hoursUnits variable affects the hoursTens variable depends upon the

current value of the hoursTens variable. This is because the hours display

follows the sequence described below:

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23.

Then, when the full display in hours and minutes reaches 23:59. the

next increment in the minutes causes the display to return to 00:00.

This shows that there are two times when the hoursUnits variable can

count up to 9 and they are

• First, when the hoursTens variable is at 0

• Second, when the hoursTens variable is at 1

Note that when the hoursTens variable is at 2, the hourUnits variable

can only count up as follows:

0, 1, 2, 3.

At the next increment, which is when the hourUnits variable tries to

change from 3 to 4, both the hourUnits and hourTens variable return to 0.

So do the minute variables.

This action is accommodated in lines 162 to 178.

Chapter 3 the 24-hour CloCk

103

Line 162 if (hourTens < 2)

Line 163 {

Line 164 if (hourUnits == 10)

Line 165 {

Line 166 hourUnits = 0;

Line 167 hourTens ++;

Line 178 }

Line 169 }

Line 170 else if (hourTens == 2)

Line 171 {

Line 172 if (hourUnits == 4)

Line 173 {

Line 174 hourUnits = 0;

Line 175 hourTens =0;

Line 176 }

Line 177 }

Line 178 }

I hope you have learned enough from the previous analysis to

understand how the nested if statements perform the required actions.

Line 179: }

This is the closing curly bracket for the if statement at line 158.

Lines 180, 181, 182, and 183 force the seven-segment displays on each

of the four output PORTS to display the current values in their respective

variables.

Line 184 and 185 are the closing curly brackets of the program.

I hope this analysis does go some way towards explaining how this

program works. The complete circuit for the project and simulation is

shown in Figure 3-2.

Chapter 3 the 24-hour CloCk

104

Note the use of input and output nodes to save cluttering the

simulation with too many wires. Also note there are 220Ω resistors inline

with all of the outputs. This is to limit the current being sent to each of the

LEDs in the seven-segment displays.

 A 24-Hour Clock with the LCD Display
The previous project used the seven-segment displays to show the current

time. While the seven-segments are not too expensive, they are limited to

what they can display. A more interesting display can be achieved using a

simple 16-character two-line LCD. There are a variety of LCDs but this one

is very popular and it can be used to display text as well as numbers.

The following section will detail how you can program this LCD to

display a 24-hour clock. I always like to give a full analysis of the programs

in my books but there is a full description of how the LCD works (i.e.

how you send instructions and data to the LCD and how it can be set up

A B C D E F G H J K

0

1

2

3

4

5

6

7

8

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

R1
1k

R2
1k

R3
1k

INC DEC SET

RC0 RC1

RC2
RC3

RC4

RC5

RC6
RD0

RD1

RD2
RD3

RD4
RD5

RD6

RD0
RD1

RD2
RD3

RD4
RD5

RD6

RC0
RC1

RC2
RC3

RC4
RC5

RC6

R4
220

RA0

RA0
RA1

RA2
RA3

RA4
RA5

RA6

R5
220 R6

220R7
220 R8

220R9
220 R10

220

RA1

RA3

RA2

RA4

RA5

RA6

R11
220R12

220 R13
220R14

220 R15
220R16

220 R17
220

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB0
RB1

RB2
RB3

RB4
RB5

RB6

R18
220

R19
220

R20 220
R21 220

R22 220
R23 220

R24 220

R25 220 R26 220

R27 220
R28 220

R29 220
R30 220

R31 220

Figure 3-2. Simulation of the seven-segment 24-hour clock

Chapter 3 the 24-hour CloCk

105

to run in 4-bit or 8-bit operation) in my first book on the PIC18F4525,

C Programming for the PIC Microcontroller. Therefore I will restrict my

analysis to how the instructions control the setting up of the clock and the

running of the clock.

The program listing for the 24-hour clock is shown in Listing 3-2.

Listing 3-2. The Complete Program for the 24-Hour Clock on the LCD

 1. /*This is a basic program to control the LCD using the

PIC 18F4525

 2. Written by H H Ward dated 31/01/15

 3. Extended 03/01/19 to include the day of the week display*/

 4. #include <xc.h>

 5. #include <conFigInternalOscNoWDTNoLVP.h>

 6. #include <PICSetUp.h>

 7. //some definitions

 8. #define firstbyte 0b00110011

 9. #define secondbyte 0b00110011

 10. #define fourBitOp 0b00110010

 11. #define twoLines 0b00101100

 12. #define incPosition 0b00000110

 13. #define cursorNoBlink 0b00001100

 14. #define clearScreen 0b00000001

 15. #define returnHome 0b00000010

 16. #define lineTwo 0b11000000

 17. #define doBlink 0b00001111

 18. #define shiftLeft 0b00010000

 19. #define shiftRight 0b00010100

 20. #define shdisright 0b00011100

 21. #define lcdPort PORTB

 22. #define eBit PORTBbits.RB5

 23. #define incbutton PORTAbits.RA0

Chapter 3 the 24-hour CloCk

106

 24. #define decbutton PORTAbits.RA1

 25. #define setbutton PORTAbits.RA2

 26. #define Mon lcdData = 0x4D; lcdOut ();

 lcdData = 0x6F; lcdOut (); lcdData = 0x6E; lcdOut ();

 27. #define Tue lcdData = 0x54; lcdOut

(); lcdData = 0x75; lcdOut (); lcdData = 0x65; lcdOut ();

 28. #define Wed lcdData = 0x57; lcdOut ();

 lcdData = 0x65; lcdOut (); lcdData = 0x64; lcdOut ();

 29. #define Thur lcdData = 0x54; lcdOut ();

 lcdData = 0x68; lcdOut (); lcdData = 0x72; lcdOut ();

 30. #define Fri lcdData = 0x46; lcdOut ();

 lcdData = 0x72; lcdOut (); lcdData = 0x69; lcdOut ();

 31. #define Sat lcdData = 0x53; lcdOut ();

 lcdData = 0x61; lcdOut (); lcdData = 0x74; lcdOut ();

 32. #define Sun lcdData = 0x53; lcdOut ();

 lcdData = 0x75; lcdOut (); lcdData = 0x6E; lcdOut ();

 33. //some variables

 34. unsigned char n, lcdData, lcdTempData, rsLine, daynumber

= 1, setbutcounts = 0;

 35. char str[80];

 36. char lcdInitialise [8] =

 37. {

 38. firstbyte,

 39. secondbyte,

 40. fourBitOp,

 41. twoLines,

 42. incPosition,

 43. cursorNoBlink,

 44. clearScreen,

 45. returnHome,

 46. };

Chapter 3 the 24-hour CloCk

107

 47. //the subroutines

 48. void sendData ()

 49. {

 50. lcdTempData = (lcdTempData << 4 | lcdTempData >>4);

 51. lcdData = lcdTempData & 0x0F;

 52. lcdData = lcdData | rsLine;

 53. lcdPort = lcdData;

 54. eBit = 1;

 55. eBit = 0;

 56. TMR0 = 0; while (TMR0 < 20);

 57. }

 58. void lcdOut ()

 59. {

 60. lcdTempData = lcdData;

 61. sendData ();

 62. sendData ();

 63. }

 64. void setUpTheLCD ()

 65. {

 66. TMR0 = 0; while (TMR0 <255);

 67. n = 0;

 68. rsLine = 0X00;

 69. while (n < 8)

 70. {

 71. lcdData = lcdInitialise [n];

 72. lcdOut ();

 73. n ++;

 74. }

 75. rsLine = 0x10;

 76. }

Chapter 3 the 24-hour CloCk

108

 77. void line2 ()

 78. {

 79. rsLine = 0X00;

 80. lcdData = lineTwo;

 81. lcdOut ();

 82. rsLine = 0x10;

 83. }

 84. void clearTheScreen ()

 85. {

 86. rsLine = 0X00;

 87. lcdData = clearScreen;

 88. lcdOut ();

 89. //lcdData = returnHome;

 90. //lcdOut ();

 91. rsLine = 0x10;

 92. }

 93. void sendcursorhome ()

 94. {

 95. rsLine = 0X00;

 96. //lcdData = clearScreen;

 97. //lcdOut ();

 98. lcdData = returnHome;

 99. lcdOut ();

100. rsLine = 0x10;

101. }

102. void shiftcurleft (unsigned char l)

103. {

104. for (n = 0; n < l; n ++)

105. {

106. rsLine = 0X00;

107. lcdData = shiftLeft;

Chapter 3 the 24-hour CloCk

109

108. lcdOut ();

109. rsLine = 0x10;

110. }

111. }

112. void shiftcurright (unsigned char r)

113. {

114. for (n = 0; n < r; n ++)

115. {

116. rsLine = 0X00;

117. lcdData = shdisright;

118. lcdOut ();

119. rsLine = 0x10;

120. }

121. }

122. unsigned char n, secunits = 0X30, sectens = 0X30, minunits

= 0X30, mintens = 0X30, hourunits = 0X30, hourtens = 0X30;

123. void writeString (const char *words)

124. {

125. while (*words)

126. {

127. lcdData = *words;

128. lcdOut ();

129. *words ++;

130. }

131. }

132. void debounce ()

133. {

134. TMR0 = 0;

135. while (TMR0 < 101);

136. }

Chapter 3 the 24-hour CloCk

110

137. //The main program

138. void main ()

139. {

140. initialise ();

141. setUpTheLCD ();

142. clearTheScreen ();

143. while (1)

144. {

145. writeString ("Set The Day");

146. line2 ();

147. while (!setbutton)

148. {

149. if (incbutton) debounce ();

150. if (incbutton) daynumber ++;

151. while (incbutton);

152. if (decbutton) debounce ();

153. if (decbutton) daynumber --;

154. while (decbutton);

155. if (daynumber == 1)

156. {

157. Mon;

158. line2 ();

159. }

160. if (daynumber == 2)

161. {

162. Tue;

163. line2 ();

164. }

165. if (daynumber == 3)

166. {

167. Wed;

Chapter 3 the 24-hour CloCk

111

168. line2 ();

169. }

170. if (daynumber == 4)

171. {

172. Thur;

173. line2 ();

174. }

175. if (daynumber == 5)

176. {

177. Fri;

178. line2 ();

179. }

180. if (daynumber == 6)

181. {

182. Sat;

183. line2 ();

184. }

185. if (daynumber == 7)

186. {

187. Sun;

188. line2 ();

189. }

190. if (daynumber == 8) daynumber = 1;

191. if (daynumber == 0) daynumber = 1;

192. }

193. debounce ();

194. while (setbutton);

195. clearTheScreen ();

196. writeString ("Set The Clock");

197. while (!setbutton)

198. {

Chapter 3 the 24-hour CloCk

112

199. line2 ();

200. writeString ("Hours");

201. lcdData = 0x3A;

202. lcdOut ();

203. lcdData = hourtens;

204. lcdOut ();

205. lcdData = hourunits;

206. lcdOut ();

207. shiftcurleft (1);

208. if (incbutton) debounce ();

209. if (incbutton) hourunits ++;

210. while (incbutton);

211. if(hourunits == 0X3A)

212. {

213. hourunits = 0X30;

214. hourtens ++;

215. }

216. if (hourtens == 0X32 & hourunits == 0X34)

217. {

218. hourtens = 0x30;

219. hourunits = 0x30;

220. }

221. if (decbutton) debounce ();

222. if (decbutton)

223. {

224. if (hourunits == 0x30)

225. {

226. hourunits = 0x39;

227. hourtens --;

228. }

229. else hourunits --;

230. }

Chapter 3 the 24-hour CloCk

113

231. while (decbutton);

232. if (setbutton) debounce ();

233. if (setbutton) goto minset;

234. }

235. minset: line2 ();

236. writeString ("Minutes");

237. lcdData = 0x3A;

238. lcdOut ();

239. for (n = 0; n < 15; n ++)

240. {

241. TMR0 = 0;

242. while (TMR0 < 255);

243. }

244. setmins: lcdData = mintens;

245. lcdOut ();

246. lcdData = minunits;

247. lcdOut ();

248. shiftcurleft (2);

249. if (incbutton) debounce ();

250. if (incbutton) minunits ++;

251. while (incbutton)

252. ;

253. if(minunits == 0X3A)

254. {

255. minunits = 0X30;

256. mintens ++;

257. }

258. if (decbutton) debounce ();

259. if (decbutton)

260. {

261. if (minunits == 0x30)

262. {

Chapter 3 the 24-hour CloCk

114

263. minunits = 0x39;

264. mintens --;

265. }

266. else minunits --;

267. }

268. while (decbutton);

269. if (!setbutton) goto setmins;

270. clearTheScreen ();

271. writeString ("The Time/Day is");

272. lcdData = 0xA0;

273. lcdOut ();

274. while (1)

275. {

276. if (daynumber == 1)

277. {

278. Mon;

279. line2 ();

280. }

281. if (daynumber == 2)

282. {

283. Tue;

284. line2 ();

285. }

286. if (daynumber == 3)

287. {

288. Wed;

289. line2 ();

290. }

291. if (daynumber == 4)

292. {

293. Thur;

Chapter 3 the 24-hour CloCk

115

294. line2 ();

295. }

296. if (daynumber == 5)

297. {

298. Fri;

299. line2 ();

300. }

301. if (daynumber == 6)

302. {

303. Sat;

304. line2 ();

305. }

306. if (daynumber == 7)

307. {

308. Sun;

309. line2 ();

310. }

311. for (n = 0; n < 29; n ++)

312. {

313. TMR0 = 0;

314. while (TMR0 < 255);

315. }

316. secunits ++;

317. if (secunits == 0X3A)

318. {

319. secunits = 0X30;

320. sectens ++;

321. if (sectens == 0X36)

322. {

323. sectens = 0X30;

324. minunits ++;

Chapter 3 the 24-hour CloCk

116

325. if (minunits == 0X3A)

326. {

327. minunits = 0X30;

328. mintens ++;

329. if (mintens == 0X36)

330. {

331. mintens = 0X30;

332. hourunits ++;

333. if(hourunits == 0X3A)

334. {

335. hourunits = 0X30;

336. hourtens ++;

337. }

338. }

339. }

340. }

341. if (hourtens == 0X32 & hourunits == 0X34)

342. {

343. hourtens = 0x30;

344. hourunits= 0x30;

345. daynumber ++;

346. if (daynumber == 8) daynumber = 1;

347. }

348. }

349. line2 ();

350. lcdData = hourtens;

351. lcdOut ();

352. lcdData = hourunits;

353. lcdOut ();

354. lcdData = 0x3A;

355. lcdOut ();

356. lcdData = mintens;

Chapter 3 the 24-hour CloCk

117

357. lcdOut ();

358. lcdData = minunits;

359. lcdOut ();

360. lcdData = 0x3A;

361. lcdOut ();

362. lcdData = sectens;

363. lcdOut ();

364. lcdData = secunits;

365. lcdOut ();

366. lcdData = 0xA0;

367. lcdOut ();

368. }

369. }

370. }

Lines 7 to 121 can be removed and used to create a header file for the

4-bit LCD on PORTB. However, lines 23 to 32 would have to be excluded

since they define which input the three buttons are connected to and the

macros for the days of the week. This means the following instructions can

be used to create a header file named 4bitLCDPortb.h that can be made

global so that it can be used on all projects that use the same type of LCD

connected to PORTB. Note that it must be used in a 4-bit operation and

with the RS pin connected to RB4 and the E pin connected to RB5.

The header file is shown in Listing 3-3.

Listing 3-3. The LCD Header File

 1. /*This is a header file to set up the LCD

 2. It will use just 4 bits and be connected to PORTB

 3. The RS pin is connected to RB4

 4. The E pin is connected to RB5

 5. Written by Mr H. H. Ward dated 02/01/2019*/

Chapter 3 the 24-hour CloCk

118

 6. //some definitions

 7. #define firstbyte 0b00110011

 8. #define secondbyte 0b00110011

 9. #define fourBitOp 0b00110010

 10. #define twoLines 0b00101100

 11. #define incPosition 0b00000110

 12. #define cursorNoBlink 0b00001100

 13. #define clearScreen 0b00000001

 14. #define returnHome 0b00000010

 15. #define lineTwo 0b11000000

 16. #define doBlink 0b00001111

 17. #define shiftLeft 0b00010000

 18. #define shiftRight 0b00010100

 19. #define shdisright 0b00011100

 20. #define lcdPort PORTB

 21. #define eBit PORTBbits.RB5

 22. #define RSpin PORTBbits.RB4

 23. //some variables

 24. unsigned char n, lcdData, lcdTempData, rsLine;

 25. char str[80];

 26. char lcdInitialise [8] =

 27. {

 28. firstbyte,

 29. secondbyte,

 30. fourBitOp,

 31. twoLines,

 32. incPosition,

 33. cursorNoBlink,

 34. clearScreen,

 35. returnHome,

 36. };

Chapter 3 the 24-hour CloCk

119

 37. //some subroutines

 38. void sendData ()

 39. {

 40. lcdTempData = (lcdTempData << 4 | lcdTempData >>4);

 41. lcdData = lcdTempData & 0x0F;

 42. lcdData = lcdData | rsLine;

 43. lcdPort = lcdData;

 44. eBit = 1;

 45. eBit = 0;

 46. TMR0 = 0; while (TMR0 < 20);

 47. }

 48. void lcdOut ()

 49. {

 50. lcdTempData = lcdData;

 51. sendData ();

 52. sendData ();

 53. }

 54. void setUpTheLCD ()

 55. {

 56. TMR0 = 0; while (TMR0 <255);

 57. n = 0;

 58. rsLine = 0X00;

 59. while (n < 8)

 60. {

 61. lcdData = lcdInitialise [n];

 62. lcdOut ();

 63. n ++;

 64. }

 65. rsLine = 0x10;

 66. }

Chapter 3 the 24-hour CloCk

120

 67. void line2 ()

 68. {

 69. rsLine = 0X00;

 70. lcdData = lineTwo;

 71. lcdOut ();

 72. rsLine = 0x10;

 73. }

 74. void clearTheScreen ()

 75. {

 76. rsLine = 0X00;

 77. lcdData = clearScreen;

 78. lcdOut ();

 79. rsLine = 0x10;

 80. }

 81. void sendcursorhome ()

 82. {

 83. rsLine = 0X00;

 84. lcdData = returnHome;

 85. lcdOut ();

 86. rsLine = 0x10;

 87. }

 88. void shiftcurleft (unsigned char l)

 89. {

 90. for (n = 0; n < l; n ++)

 91. {

 92. rsLine = 0X00;

 93. lcdData = shiftLeft;

 94. lcdOut ();

 95. rsLine = 0x10;

 96. }

 97. }

Chapter 3 the 24-hour CloCk

121

 98. void shiftcurright (unsigned char r)

 99. {

100. for (n = 0; n < r; n ++)

101. {

102. rsLine = 0X00;

103. lcdData = shdisright;

104. lcdOut ();

105. rsLine = 0x10;

106. }

107. }

 Analysis of the Header File for the LCD
There two types of information that can be sent to the LCD:

• The ASCII (American Standard Code for Information

Interchange) code for all of the characters that can be

displayed on the LCD; call this data.

• The instructions that set up the display on the LCD

Lines 6 to 19 create some meaningful phrases to represent the 8-bit

binary numbers that are the respective instructions for controlling the

LCD. For example, the 8-bit binary number for the instruction to send the

cursor to the start of the second line on the display is 0b11000000.

This is defined as lineTwo on line 15 of the program listing. Note the 0b

at the beginning is to show it is a binary number.

 Line 20: #define lcdPort PORTB

This shows that the LCD is connected to PORTB. The way it works is

that whenever the compiler sees lcdPort in the program, it knows to read

this as being PORTB.

Chapter 3 the 24-hour CloCk

122

One advantage of creating these definitions is it is easy to

accommodate physically connecting the LCD to another port such as

PORTD. You need only make the change in the program at this definition

(i.e. #define lcdPort PORTD).

Line 21: eBit PORTBbits.RB5

This does the same but with the phrase eBit. Where you write eBit in

the program the compiler knows you mean bit5 of PORTB.

The eBit is a pin on the LCD that must be sent high then low, with no

delay in between, every time some information, be it data to be displayed

or an instruction, is sent to the LCD. This is to make the firmware inside

the LCD aware that new information has been sent to the LCD and it

should deal with the new information.

Line 22: #define RSpin PORTBbits.RB4

This does the same for RSpin. It is the logic on this pin that the

firmware, inside the LCD, uses to distinguish if the new information

is an instruction or data. If this RSpin is set to a logic 0, then the new

information is an instruction. If RSpin is set to a logic 1, then the new

information is simply data to be displayed on the LCD.

Line 23: // some variables

This is just a useful way of splitting the listing up.

Line 24: unsigned char n, lcdData, lcdTempData, rsLine,.

Here you are setting up some memory locations and giving them a

useful names. They are 8-bit memory locations as defined by the type

char, and all 8 bits are used to represent their value as defined by the term

unsigned. This means that they can hold a value from 0 to 255.

You are using the term unsigned as with all microprocessor-based

systems you use signed number representation. This is a method by which

you use the MSB (most significant bit), Bit7 in this case, to show whether

Chapter 3 the 24-hour CloCk

123

the number is positive or negative. For positive numbers, the MSB will be

a logic 0; for negative numbers, the MSB will be a logic 1. If you are using

signed number representation, it means the MSB can’t be used to make

up the value stored in the variable. This means a signed char, which is

simply referred to as a char, can hold a value from -127 to +127 and not go

to 255. So if you want to be able to store a value up to 255, you must use an

unsigned char, as you are doing here.

Line 25: char str[80];

Here you are creating an array that has 80 memory locations. This will

be used with the writeString subroutine.

Line 26: char lcdInitialise [8] =

This creates a second array that has 8 memory locations. However,

you use the = sign since the following lines will state what is stored in each

of the memory locations. This array is used in setting up the LCD (i.e. it is

used by the setUpTheLCD subroutine).

Line 27: {

This is the opening curly bracket of the confines of this program

instruction to fill the array.

Line 28: firstbyte,

This is the phrase for the 8-bit number 0b00110011. It is the first

instruction that has to be sent to the LCD.

Line 29: secondbyte,

This is a repeat of the firstbyte and it has to be sent to the LCD next.

Line 30: fourBitOp,

Chapter 3 the 24-hour CloCk

124

This phrase represents the binary number 0b00110010. It is used to put

the LCD into 4-bit mode, not 8-bit mode. It means the information is sent to

the LCD in two 4-bit chunks. Four bits is normally referred to as a nibble.

Line 31: twoLines,

This represent the binary number 0b00101100. It sets the LCD up to

use two lines of characters.

Line 32: incPosition,

This represent the binary number 0b00000110. It sets the LCD up to

increment the position of the cursor (i.e. move it one place to the right)

after each character has been sent to the LCD.

Line 33: cursorNoBlink,

This represent the binary number 0b00001100. It sets the LCD up to

not display the cursor as a blinking black rectangle.

Line 34: clearScreen,

This represent the binary number 0b00000001. It ensure the screen is

cleared of all characters.

Line 35: returnHome,

This represent the binary number 0b00000010. It ensures the cursor is

sent to the start of the first line on the LCD.

Line 36: };

This is the closing bracket of this array. Note there is a semicolon after

the bracket. This is because this is an instruction. Note also the phrases

inside the curly brackets have a comma after them. This is because they

make up a list and they are not individual instructions.

 Line 37: // some subroutines

Chapter 3 the 24-hour CloCk

125

This is simply to split the listing up.

Line 38: void sendData ()

This is subroutine to send information, be it data or instructions, to

the LCD.

Line 39: {

The opening curly bracket of the subroutine.

Line 40: lcdTempData = (lcdTempData << 4 | lcdTempData >>4);

To understand this instruction, you need to appreciate that 8 bits is

termed a byte. Also, the 8 bits can be split into two 4-bit parts, which are

termed a nibble. The first 4 bits, or nibble, are Bits 0, 1, 2, and 3 and they

are termed the low nibble and the other four bits are termed the high

nibble. What this instruction will do is swap over the two nibbles stored in

the variable lcdTempData. This is because you are using the LCD in 4-bit

mode and you want to send the high nibble first. However, it is Bits 0, 1,

2, and 3, the low nibble of PORTB, that are connected to the LCD data in

lines.

This means the 8 bits of information you want to send to the LCD must

be sent in two nibbles. The high nibble must be sent first, followed by the

low nibble. In this instruction, you make the high nibble move into Bits 0,

1, 2, and 3 ready to send this first to the LCD. Note that the low nibble will

have moved to Bits 4, 5, 6, and 7.

Line 41: lcdData = lcdTempData & 0x0F;

This instruction is performing a bit logical AND with the data in

lcdTempData and the number 0X0F. 0X0F in binary is 00001111. The logical

AND will result in a logic 1 if the two bits being ANDed are both logic 1. For

example, if the 8 bits in lcdTempData are 11001010, then the instruction

will do the following:

Chapter 3 the 24-hour CloCk

126

This is because only Bits 1 and 3 are logic 1 in both binary numbers.

What this instruction does is make sure only the first four bits of

lcdTempData are copied into lcdData; the high nibble in lcdData will all be

at a logic 0. This gets the variable lcdData ready to be sent to the LCD.

This type of operation is termed bit masking since you can “mask out”

bits you are not interested in.

Line 42: lcdData = lcdData | rsLine;

This is a very complicated instruction. To explain how it achieves

its purpose. let’s consider the situation whereby the data in the variable

lcdData is the result detailed in the previous instruction. In other words,

the data in lcdData is

00001010

The first four bits, the 1010, are the information that will go to the data

pins of the LCD. However, Bit4 of the 8 bits in lcdData will also be sent, via

PORTB, to the RS pin on the LCD. This is done in line 43.

Remember that you defined the RSpin to be PORTBbits.RB4 on line 22.

The logic on this pin is used to tell the LCD what type of information this

is: instruction or data. If the logic on Bit4 is a logic 0, then the information

will be an instruction to control the LCD. If the logic on Bit4 is a logic 1,

then the information will be data to be displayed on the LCD screen.

This then means you will have to now modify Bit4 of the variable

lcdData, which at present is a logic 0, accordingly. The way you do this is

perform a logic OR on each bit of lcdData with the 8 bits in the variable

rsline. However, before you perform the bit OR, you would have changed

Chapter 3 the 24-hour CloCk

127

Bit4 of the rsline accordingly (i.e. making it a logic 0 if the information

is an instruction, or a logic 1 if the information is simply data). The

remaining bits in the variable rsline will be kept at logic 0.

In this way, Bit4 of the rsline variable will be used to tell the LCD if the

current information being sent to the LCD is an instruction or data. The

problem is that it is Bit4 of PORTB that is connected to the RS pin of the

LCD, not Bit4 of the variable rsline. The problem is therefore how do you

get Bit4 of PORTB to mimic what is on Bit4 of the variable rsline?

One solution is to perform a logical OR with the two bits. You should

appreciate that after the logical AND operation done on line 41, Bit4 of the

lcdData will always be a logic 0. If you now perform the logic OR operation

with Bit4 of lcdData with Bit4 of the rsline variable, as you do in line 42,

then Bit4 of lcdData will become a copy of Bit4 of rsline. The examples

shown in Table 3-1 should help explain this.

Table 3-1. The Logical OR Operation

on Bit4 of lcdData and rsline

example 1

Bit4

lcdDat

0

Bit4

rsline

0

OR Result 0

example 2

Bit4

lcdDat

0

Bit4

rsline

1

OR Result 1

Chapter 3 the 24-hour CloCk

128

Note the result of the logical OR operation is what Bit4 of the variable

lcdData will be. This should show that the logic in Bit4 of the lcdData

after the logical OR instruction of line 42 will be a copy of what Bit4 of the

variable rsline is.

In this way, you can set Bit4 of the lcdData by previously setting

Bit4 of the rsline variable. You will see that in line 58 you load the

variable rsline with 0X00. This will make bit4 a logic 0 ready to send out

instructions to the LCD.

Note that the symbol | in C represents the logical bit OR operation.

Line 43: lcdPort = lcdData;

This simply makes a copy of what is in lcdData in lcdPort. However,

lcdPort is simply PORTB. The LCD is connected to PORTB and so this

instruction sends the information to the LCD. This means the correct

nibble will be sent to the LCD and also the appropriate logic on the RS pin.

Line 44: eBit = 1;

This sends eBit, which is Bit5 of PORTB to a logic 1.

Line 45: eBit = 0;

This sets eBit to a logic 0. This means eBit on the LCD goes high, then

low. This is to tell the LCD that the information at its input has changed

and it should deal with it.

Line 46: TMR0 = 0; while (TMR0 < 20);

There are two instructions here. The first, TMR0 = 0;, simply loads the

TMR0 with the value 0. The TMR0 is a register that stores the current value

Timer0 has counted to. This is to make sure you start counting from 0. The

second instruction, while (TMR0 < 20);, makes the micro do nothing

until the value in the TMR0 register becomes greater than 20. This simply

creates a delay of 20 x 128μs = 2.56ms.

Chapter 3 the 24-hour CloCk

129

This is needed to allow the LCD time to deal with the information that

has just been sent to it.

Line 47: }

This is the closing curly bracket of the sendData subroutine.

Line 48: void lcdOut ()

This is a subroutine to get the information ready to send to the LCD

and then call the sendData subroutine.

Line 49: {

The opening curly bracket of the lcdOut subroutine.

Line 50: lcdTempData = lcdData;

This loads a copy of what is in the variable lcdData into the variable

lcdTempData. This is to get this ready to have its nibbles swapped in the

sendData subroutine.

Note if a subroutine is going to use another subroutine, in what’s

termed nested subroutines, the subroutine the current subroutine will use

must be listed before (i.e. above) this one in your program listing.

Line 51: sendData ();

This calls the subroutine sendData for the first time. It sends the high

nibble of what’s in lcdTempData. Note that the 8 bits will be swapped in

this subroutine in line 40.

Line 52: sendData ();

This calls the subroutine sendData for the second time. This sends the

low nibble of what’s in lcdTempData. Note that the 8 bits will be swapped in

this subroutine in line 40.

Line 53: }

Chapter 3 the 24-hour CloCk

130

This is the closing bracket of the lcdOut subroutine.

Line 54: void setUpTheLCD ()

This is the subroutine to set up the LCD. This will send the instructions

to configure the LCD as you want to use it.

Line 55: {

This is the opening curly bracket of the setUpTheLCD subroutine.

Line 56: TMR0 = 0; while (TMR0 <255);

This is two instructions and they create a 32ms delay. It is important

to wait this minimum time before sending any information to the LCD to

allow the internal circuitry of the LCD to settle down.

Line 57: n = 0;

This loads the value of 0 into the variable n ready for the while loop on

line 59.

Line 58: rsline = 0X00;

This loads 0 into the variable rsline. This makes sure that Bit4 of

rsline is at logic 0. This is getting the variable rsline ready for the

logical OR operation described on line 42. Note that a logic 0 means the

information going to the LCD is an instruction.

Line 59: while (n < 8)

This sets up a while test type loop. While the value in n is less than 8,

the result of the test is true. Remember you loaded the value 0 into n in

line 57.

While the result of the test is true, the micro will carry out the

instructions inside the following curly brackets.

Line 60: {

Chapter 3 the 24-hour CloCk

131

The opening curly bracket of the while loop.

Line 61: lcdData = lcdInitialise [n];

This loads the variable lcdData with the data stored in the location of

the lcdInitialise array identified by the variable [n] inside the square

bracket. The current value of the variable n is 0. This means that the

contents of the first location in the array will be copied into the variable

lcdData. This means that the data of the firstByte will be loaded into the

variable lcdData. This is now ready to be sent to the LCD.

Line 62: lcdOut ();

This calls the subroutine lcdOut to send the information to the LCD.

Line 63: n ++;

This increments the value stored in the variable n. This gets it ready for

the micro to carry out the while test on line 59.

Lines 59 to 64 are used to send the first eight instructions that are

stored in the array lcdInitialise to the LCD.

Line 64: }

This is the closing curly bracket of the while loop on line 59.

Line 65: rsline = 0X10;

This loads the following binary number into the variable rsline:

00010000. This ensures that Bit4, which will eventually be sent to the RS

pin on the LCD, is a logic 1. This is to tell the LCD that the next information

to be sent to the LCD is data to be displayed.

As you send data to be displayed to the LCD more often than you send

instructions, it is common sense to make Bit4 of the variable rsline a logic

1 as its default setting.

Line 66: }

Chapter 3 the 24-hour CloCk

132

This is the closing curly bracket of the lcdOut subroutine on line 48.

Line 67: void line2 ()

This is a subroutine that will send to the LCD the instruction to send

the cursor to the start of line two on the display.

Line 68: {

This is the opening bracket of the subroutine.

Line 69: rsLine = 0X00;

This makes Bit4 of the rsline a logic 0. This is because the program

will be sending an instruction to the LCD next.

Line 70: lcdData = lineTwo;

This loads the instruction, to get the LCD to move the cursor to the

start of line two on the LCD, into the variable lcdData ready to be sent out

to the LCD.

Line 71: lcdOut ();

This calls the subroutine to start the process of sending the instruction

to the LCD.

Line 72: rsline = 0X10;

This sets Bit4 of the rsline back to a logic 1 since the next information

to be sent to the LCD will most likely be data to be displayed.

Line 73: }

This is the closing curly bracket of the line2 subroutine from line 67.

Lines 74 to 80 do the same but for the instruction clearTheScreen,

which will clear the LCD screen of all data and send the cursor to the start

of the LCD screen.

Chapter 3 the 24-hour CloCk

133

Lines 81 to 87 do the same but with the instruction to returnhome. This

will simply send the cursor back to the start of the LCD screen but without

clearing any of the data from the screen.

Lines 88 to 97 send the instruction to shift the cursor a number of

places to the left. The number of places the cursor moves is controlled by

the local variable l sent up to the subroutine when the subroutine is called

from the main program.

Lines 98 to 107 do the same but shift the cursor a specified number

of places to the right. Note in both shifting subroutines any data that the

cursor passes over is left on the display.

The above analysis hopefully explains what the instructions do. This

header file can now be used in all projects that use the LCD connected to

PORTB and in 4-bit mode.

There is a more detailed description of how the LCD is controlled and

how it works in my first book, C Programming for the PIC Microcontroller.

 The Analysis of Listing 3-2
I will now return to the full listing for the 24-hour clock and day program

for the LCD. This is shown in Listing 3-2.

Lines 26 to 32 define how you display the days of the week.

Line 26: #define Mon lcdData = 0x4D; lcdOut (); lcdData =

0x6F; lcdOut (); lcdData = 0x6E; lcdOut ();

This is a very powerful use of the #define operation of the MPLABX

compiler. The phrase that is being defined here is Mon (for Monday). The

information that follows is really three sets of two instructions, one set for

each character in the phrase “Mon.” To help explain what you are doing

here, you should appreciate that the LCD will display the time in hours,

minutes, and seconds but it will also display the current day of the week in

terms of Mon, Tue, Wed, etc. Each day of the week will be displayed with

three characters.

Chapter 3 the 24-hour CloCk

134

Mon is made up of three characters as follows:

• M, which has the ASCII code of 4D

• O, which has the ASCII code of 6F

• N, which has the ASCII code of 6E

See the ASCII table in Appendix 5.

To send these characters to the LCD, you must load the variable

lcdData with the ASCII for the character. Then you must call the

subroutine lcdOut ();. Therefore to send the character M, you must do

lcdData = 0x4D; lcdOut ();

The other two characters must follow.

This means you are using the #define to tell the compiler that

whenever you have written the phrase Mon, it knows you are actually

writing the three sets of two instructions. This is sometimes referred

to as a macro and it is a very good way of giving meaning to a series of

instructions and inserting them into you program in a succinct and

appropriate manner.

Lines 27 to 32 repeat the same process for the remaining days of the

weeks.

The lines from 1 to 121 have been analyzed already since they make up

the header file we just went through. Therefore I will move on to line 122.

Line 122: unsigned char n, secunits = 0X30, sectens = 0X30,

minunits = 0X30, mintens = 0X30, hourunits = 0X30, hourtens =

0X30;

These are variables used to store important values. Note that all the

variables except n have been loaded with the initial value of 0X30. This is

the ASCII for the character 0. See the ASCII table in Appendix 5.

Line 123: void writeString (const char *words)

Chapter 3 the 24-hour CloCk

135

This is the start of the writeString subroutine. It allows you to send

a string of characters that must be included in the call to the subroutine

every time it is called, to the LCD. The mechanics of this subroutine were

written by someone else; I just added my variable labels such as lcdData

and the subroutine call lcdOut (). It’s what is termed open source and

thus freely available for programmers to use in their programs.

The basic concept is that an array of 80 memory locations has been

set aside to store the characters. A variable number of the array’s memory

locations are filled when the subroutine is called and each data in those

locations is sent to the LCD one at a time.

The array that is used is the one declared on line 35 of Listing 3-2. The

array is char str[80] (i.e. of type char and having 80 memory locations

created one after the other).

The instruction uses the local pointer *word created in the instruction

on line 123. The asterix (*) declares the variable word to be a special

pointer in that the contents of the variable will actually be the address of a

location in the array.

Line 124: {

This is simply the opening curly bracket of the subroutine.

Line 125: while (*words)

This is a very special test. Here is my interpretation of how this while

works. I am fairly confident it is correct as it makes sense to me. I say this

just in case someone can correct me.

This test will be true as long as the contents of the address the

pointer *words is pointing to is not the “null” character. Note this “null”

character is the last character to be sent up to the subroutine when the

main program calls it. While the test is true, the micro must carry out the

instructions detailed between the following curly brackets.

Line 126: {

Chapter 3 the 24-hour CloCk

136

The opening curly bracket.

Line 127: lcdData = *words;

This loads the variable lcdData with the information in the address

that the pointer *words is pointing to. This would be, at this time in the

loop, the first location in the array str [80] that was filled when the

subroutine was called.

Line 128: lcdOut ();

This calls the subroutine to start the process of sending the data in

lcdData to the LCD.

Line 129: *words ++;

This increments the contents of the word pointer. This means it will be

pointing to the next memory location in the array.

Line 130: }

This is the closing bracket of the while loop.

Line 131: }

This is the closing bracket of the subroutine. This subroutine will cycle

through the instructions until the data in the memory location pointed to

by the pointer *words (i.e. the location in that array is the null character).

At that point, the micro has completed sending the characters to the screen

identified when the subroutine was called. The micro can then return back

to the main loop of the program.

Line 132: void debounce ()

This is the start of a subroutine to deal with the bouncing of a switch.

This was analyzed in Chapter 2.

Line 137: // The main program

Chapter 3 the 24-hour CloCk

137

This is just to split the listing up.

Line 138: void main ()

This is the start of the main loop.

Line 139: {

This is the opening curly bracket of the main loop.

Line 140: initialise ();

This calls the subroutine that is in the header file PICSetUp.h. This

simply sets the PIC up as you want. This is detailed in the PICSetUp.h

header file in Chapter 1.

Line 141: setUpTheLCD ();

This calls the subroutine to set up the LCD.

Line 142: clearTheScreen ();

This calls the subroutine to clear the LCD and send the cursor to the

start of the first line.

Line 143: while (1)

This sets up the forever loop so that the micro does not carry out the

instructions in lines 140, 141, and 142 again.

Line 144: {

This is the opening curly bracket of the forever loop.

Line 145: writeSring ("Set The Day");

This calls the subroutine to send the string of characters written

between the “ ” (quotation marks) inside the bracket. Note this will actually

store the ASCII code for the characters in the array char str[80].

Line 146: line2 ();

Chapter 3 the 24-hour CloCk

138

This calls the subroutine to send the cursor to the start of line two on

the LCD.

Line 147: while (!setbutton)

This test to see if the logic on setbutton, which is on bit0 of PORTA,

is at logic 0. If it is, the test is true and the micro must carry out the

instructions listed between the following curly brackets.

If the logic on bit0 of PORTA is logic 1, then the test is untrue and the

micro must go to the next instruction on line 193.

Line 148: {

This the opening curly bracket of the while loop.

Line 149: if (incbutton) debounce ();

If the incbutton goes high, this call the debounce subroutine to wait

the 13ms to allow the voltage at the input to settle down.

Line 150: if (incbutton) daynumber ++;

If the logic on the input is still high, this increments the value of the

variable daynumber.

This should be true because in normal use it would take a person

longer then 13ms to release the button.

Line 151: while (incbutton);

This makes the micro wait until the logic at the input returns to logic

0 (i.e. the user lets go of the button). In more critical situations, you may

have to consider the bounce of the switch as you let go of the button.

Line 152 to 154 do the same as above except with the decrement

button and you decrement the value stored in daynumber.

Line 155: if (daynumber == 1)

Chapter 3 the 24-hour CloCk

139

This test is asking if the value in the variable daynumber is equal to 1.

If so, the test is true and the micro must carry out the instruction listed

between the following curly brackets.

Line 156: {

The opening curly bracket for this test.

Line 157: Mon;

This is using the definition of the phrase Mon, which is on line 26. This

makes the micro send the three characters for Mon to the LCD.

Line 158: Line2 ();

This calls the subroutine to move the cursor to the start of line two on

the LCD.

Line 159: }

This is the closing bracket of the if statement for displaying Mon.

Lines 160 to 189 perform the same functions but for the remaining

days of the week. In this way, the user can select which day of the week the

clock can start counting from.

Line 190: if (daynumber == 8) daynumber = 1;

This is to correct the situation that will happen if you increment

daynumber from 7 to 8. There are only 7 days in the week. If you try to

increment daynumber to 8, this test will become true and the instruction

will force daynumber to be loaded with 1.

Line 191: if (daynumber == 0) daynumber = 1;

This does the same if you try to decrement daynumber from 1 to 0.

Line 192: }

Chapter 3 the 24-hour CloCk

140

This is the closing bracket of the while (!setbutton) loop started on

line 147.

Line 193: debounce ();

This calls the debounce subroutine. You need this because if the micro

is at this instruction of the program, someone has pressed the setbutton

and the voltage at that pin will be bouncing.

Line 194: while (setbutton);

This makes the micro wait until the logic at the setbutton input

has gone low. This makes the micro wait until the user has released the

setbutton.

As an exercise, try commenting out lines 194 and 195 and see what

happens.

Then comment out just line 194.

By comment out, I mean you should simply insert two forward slashes

(//) in front of each line.

Lines 195 to 200 get the display ready to allow the user to set the hours

on the display.

Line 201: lcdData = 0X3A;

This loads the variable with the ASCII for the character the colon (:).

Line 202: lcdOut ();

This calls the subroutine lcdOut to start the process of displaying the

semicolon on the LCD.

Lines 203 to 206 display the two variables for hourTens and hourUnits,

which currently both have the value 0X30, which is the ASCII for 0.

Line 207: shiftcurleft (1);

This calls the subroutine to shift the cursor one place to the left. This

will place the cursor under the 0 for the hourUnits display.

Chapter 3 the 24-hour CloCk

141

Lines 208 to 210 deal with the increment button being pressed.

Line 211: if (hourtens == 0X3A)

This tests to see if the variable hourtens has gone to 0X3A. This will

happen if the variable has been incremented from 0X39 (i.e. the ASCII

for 9). See the ASCII table in Appendix 5. Note that 0X3A is the hex for the

colon and it means you have incremented too far. Really the hourtens

value should not go above 2 in a normal setting.

Line 212: {

This is the opening curly brackets of the instructions that must be

carried out if the above test is true.

Line 213: hourunits = 0X30;

This loads the variable hourunits with 0X30, which is the ASCII for 0.

Line 214: hourtens ++;

This simply increments the variable hourtens.

Line 215: }

This is the closing bracket of the if on line 211.

Line 216: if (hourtentens == 0X32 & hourunits == 0X34)

This tests to see if the current increment has resulted in the hours

getting ready to display 24. This should not happen since this is midnight

and the time should change to 00:00:00.

Line 217: {

This is the opening curly bracket of this if statement.

Line 218: hourtens = 0X30;

Chapter 3 the 24-hour CloCk

142

This loads the variable hourtens with 0X30, the ASCII for 0.

Line 219: hourunits = 0X30;

This loads the variable hourunits with 0X30, the ASCII for 0.

Line 220: }

This is the closing curly bracket for the if statement on line 216.

Line 221: if (decbutton) debounce ();

This tests to see if the decbutton has been pressed. If it has, the

program calls the debounce subroutine.

Line 222: if (decbutton)

This tests to see if it really was pressed.

Line 223: {

This is the opening curly bracket to enclose the instructions the

program must do if the decbutton was pressed.

Line 224: if (hourunits == 0X30)

This tests to see of the variable hourunits is already at 0.

Line 225: {

This is the opening curly bracket of what to do if the above test is true.

Line 226: hourunits = 0X39;

This loads hourunits with the value 0X39, which is the ASCII for 9.

Line 227: hourtens --;

This decrements the contents of the variable hourtens.

Line 228: }

Chapter 3 the 24-hour CloCk

143

This is the closing curly bracket of the if statement on line 224.

Line 229: else hourunits --;

This is what to do if hourunits did not have the data 0X30 in it at the

time of decrementing.

Line 230: }

This is the closing curly bracket of the if statement on line 222.

Line 231: while (decbutton);

This waits until the logic on the input of the decbutton has gone low.

Line 232: if (setbutton) debounce ();

This tests to see if the setbutton has been pressed and, if it has, calls

the debounce subroutine.

Line 233: if (setbutton) goto minset;

This tests to see if setbutton was really pressed, and if it was, makes

the micro jump to the label minset. This is at line 235.

Line 234: }

This is the closing bracket of Lines 235 to 269. They perform the same

increments and decrements but this deals with mintens and minunits.

Line 270: clearTheScreen ();

This clears all data from the LCD and sends the cursor to the start of

the first line ready to display the time and day.

Line 271 writeSring ("The Time/Day is ");

This calls the subroutine writeString to start the process of displaying

the characters between the two quotation marks (“ ”).

Line 272: lcdData 0XA0;

Chapter 3 the 24-hour CloCk

144

This loads the data 0XA0, which is the ASCII for a space, into the

variable lcdData ready to be sent to the LCD.

Line 273: lcdOut ();

This calls the subroutine lcdOut to start the process of sending the data

to the LCD.

Line 274: while (1)

This is the forever loop.

Line 275: {

This is the opening curly bracket of the forever loop.

Lines 276 to 310 test to determine what value is in the daynumber so

that the program can display the correct characters for the current day of

the week that has been set in the preceding section of the program.

Lines 311 to 315 create a one-second delay.

Lines 316 to 348 increment the secunits and all the other variables

depending upon their current values. This is much the same as the

operation described in the increments due to the incbutton being pressed.

Line 349 to the end of the listing sends the correct characters to the

LCD to display the current time.

Figure 3-3 show the 24-hour clock running on a practical LCD display.

Chapter 3 the 24-hour CloCk

145

 Improvements for the 24-Hour Clock LCD
Program
There are two sections of Listing 3-2 that are repeated in exactly the same

way. They are the sections of program that include lines 154 to 189 and

lines 276 to 310. These 36 lines of programming are carried out in exactly

the same way, so you should create a subroutine that has the 36 lines

written just once. The program should call the subroutines at the two

relevant points in the main program.

I have created the subroutine named displayday using the following

instructions:

void displayday ()

{

 if (daynumber == 1)

{

Figure 3-3. The 24-hour clock on the LCD display

Chapter 3 the 24-hour CloCk

146

Mon;

line2 ();

}

if (daynumber == 2)

{

Tue;

line2 ();

}

if (daynumber == 3)

{

Wed;

line2 ();

}

if (daynumber == 4)

{

Thur;

line2 ();

}

if (daynumber == 5)

{

Fri;

line2 ();

}

if (daynumber == 6)

{

Sat;

line2 ();

}

if (daynumber == 7)

{

Sun;

Chapter 3 the 24-hour CloCk

147

line2 ();

}

}

The main program will call this subroutine at the appropriate point

using the following instruction:

displayday ();

The first call will be at line 154 and the second call will be at what was

line 276, so after

while (1)

{

but before

for (n = 0, n <29; n ++)

I hope you can appreciate and make the change as I want to move onto

the second improvement. It is not essential that you do this, but I want to

show you how you can be more efficient with your programs if you use

subroutines. Remember that memory is the thief of all programmers and

every instruction takes up memory.

 Using Switch and Case Keywords
I am not fully convinced that this next change is an improvement but it

is an alternative method for performing this kind of action and I want to

show you how this switch and case function works.

When you are using multiple if statements, as you are in this new

subroutine, an alternative method of achieving the same results is to use

the switch and case keywords.

Chapter 3 the 24-hour CloCk

148

The simplest way to explain how this works is to list the instructions

and then analyze them. In this example, you will replace the multiple

if statements in the subroutine displayday with the switch and case

statements. Listing 3-4 shows the new subroutine using these new keywords.

Listing 3-4. Using the Switch and Case Statements

1. void displayday ()

2. {

3. switch (daynumber)

 1. {

 a. case 1 :

 b. {

 c. Mon;

 d. line2 ();

 e. }

 f. break;

 g. case 2:

 h. {

 i. Tue;

 j. line2 ();

 k. }

 l. break;

 m. case 3:

 n. {

 o. Wed;

 p. line2 ();

 q. }

 r. break;

 s. case 4:

 t. {

 u. Thur;

Chapter 3 the 24-hour CloCk

149

 v. line2 ();

 w. }

 x. break;

 y. case 5:

 z. {

 aa. Fri;

 bb. line2 ();

 cc. }

 dd. break;

 ee. case 6:

 ff. {

 gg. Sat;

 hh. line2 ();

 ii. }

 jj. break;

 kk. case 7:

 ll. {

 mm. Sun;

 nn. line2 ();

 oo. }

 pp. break;

 2. }

3. }

 Analysis of the New Subroutine
Lines 1 and 2 are the normal way of creating a subroutine.

Line 3: switch (daynumber)

This is the start of the switch instruction. It is basically forcing the

micro to switch or choose between some different options defined using

the case keyword.

Chapter 3 the 24-hour CloCk

150

It works similar to a subroutine in that the switch is expected the main

program to pass a value identifying which case the micro should switch to.

In this example, the number will be what is in the variable daynumber.

Note the value in this variable is set in the main program using the inc and

dec buttons.

The Indented Line 1: {

This is the opening curly bracket of the switch statement.

Line a: case 1:

This is the first choice the switch asks the micro to consider. If the value

in the variable daynumber is 1, then the micro will carry out the instructions

for this case.

Line b: {

This is the opening curly brackets of case 1.

Line c: Mon;

This tells the micro to carry out the three instructions defined by the

definition for Mon earlier in the program.

This sends the three characters M, o, and n to the LCD.

Line d: line2 ();

This calls the subroutine to send the cursor to the start of the second

line on the LCD.

Line e: }

This is the closing curly bracket of the case 1 routine.

Line f: break;

This is a keyword that forces the micro to break away from the

subroutine at this point in the instructions.

Chapter 3 the 24-hour CloCk

151

The micro will now return to the main program at the instruction one

after the point at which it called the subroutine.

The lines g to pp detail the instructions for the other case values.

In this way, the micro can be made to choose what instructions it must

carry out depending on a value that is submitted to the switch statement.

The switch statements do not have to be put into a subroutine as shown

here. They can be inserted in the section of program where the switch

needs to be carried out. They are only put into a subroutine here because

the instructions for the switch are exactly the same at the two sections they

would have gone into in the main program.

Note that the subroutine has to be written in the IDE before the main

loop since it is from within the main loop that the subroutine is called.

 Synopsis
In this chapter, you learned about the seven-segment display and the

LCD. You studied how to use the displays to create a 24-hour clock. You

learned about the following C programming techniques:

• Arrays and pointers

• Using the #define statement to create a macro

• Switch and case statements

In the next chapter, you will look at why you might want to create a

square wave and then look at using the CCP module to create a square

wave.

Chapter 3 the 24-hour CloCk

153© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_4

CHAPTER 4

Creating a
Square Wave
In this chapter, you are going to look at creating a square wave on one of

the CCP outputs.

After reading this chapter, you should understand what the CCP

module is. You should also appreciate why you would want to create a

square wave output and how to use the PWM aspect of the CCP module to

create a square wave.

In Chapter 6, you will look at an alternative approach to creating a

square wave. The approach will involve using the compare aspect of the

CCP module and using interrupts.

 Why Create a Square Wave?
To answer this question, you are going to look at the two uses of a square

wave. The first is in producing musical notes and the second is in setting

the speed of a DC motor.

https://doi.org/10.1007/978-1-4842-6068-5_4#DOI

154

 Musical Notes
To appreciate what this has to do with creating a square wave, you have to

understand how we humans distinguish musical notes from each other.

Indeed, it is really how we distinguish all of the different sounds around

us. Each note, or sound, has its own particular frequency or combination

of frequencies. Table 4-1 lists the frequency of some of the more important

musical notes. A more complete list of the frequency of the musical notes

is given in Appendix 8.

Table 4-1. The Frequency of the More

Common Musical Notes

Note Frequency (Hz) Wavelength (cm)

G3 196.00 176.02

G#
3/Ab

3 207.65 166.14

A3 220.00 156.82

A#
3/Bb

3 233.08 148.02

B3 246.94 139.71

C4 261.63 131.87

C#
4/Db

4 277.18 124.47

D4 293.66 117.48

D#
4/Eb

4 311.13 110.89

E4 329.63 104.66

F4 349.23 98.79

F#
4/Gb

4 369.99 93.24

G4 392.00 88.01

ChAptEr 4 CrEAtinG A SquArE WAvE

155

C4 is the note that is more commonly known as middle C.

Note that the velocity at which sound travels through the air is 343m/s

and the wavelength (λ) is related to frequency and velocity using the

standard expression shown in Equation 4-1:

l =

v
f

(Equation 4-1)

The term wavelength relates to the distance the sound travels to

complete one full cycle of the signal or sound.

Knowing that the note G3 has a frequency of 196Hz, (i.e. 196 cycles in

one second), then the wavelength of note G3 is shown in Equation 4-2:

l = =

343

196
1 75 175. m or cm (Equation 4-2)

Exercise 4.1

the answers to the exercises are at the end of the chapter. in this
exercise, you should calculate the wavelength of the following
frequencies, knowing that the velocity at which they travel is the
velocity of sound:

Frequency = 48.999hz

Frequency = 1046.502hz

Frequency = 2,200hz

if you could produce a signal at any of the frequencies in table 4-1,
then you could produce the respective musical note. the signal does
not have to be a perfect sinusoidal waveform, but it would be better if
it was.

ChAptEr 4 CrEAtinG A SquArE WAvE

156

in this way then, if you could get the piC to produce a square wave at
the correct frequencies, you could produce a series of musical notes.
this is what you will do in the next chapter: you will produce a simple
musical keyboard with eight notes.

 The Speed of the Simple DC Motor
With respect to the control of a DC motor we are talking about setting the

speed of the motor. This does not mean you will be controlling the speed

because the load varies. You will simply be setting the speed of the motor.

Controlling the speed (i.e. ensuring the speed stays the same irrespective

of the load applied to the motor) is a whole different ballgame. Speed

control is a book by itself.

The speed of the motor depends upon the voltage that is applied to

that motor. Therefore, if you can vary the voltage applied to the motor, you

can vary the speed of the motor.

 Pulse Width Modulation
Pulse width modulation (PWM) is a very useful method of varying a DC

voltage supply. To appreciate what PWM is, and what pulse width you are

modulating, it’s useful to look at a typical DC square wave. This is shown in

Figure 4-1.

ChAptEr 4 CrEAtinG A SquArE WAvE

157

The wave form, shown in Figure 4-1, is DC as the voltage never

changes polarity. In this case, it is always positive. The wave form has

what is termed a 50/50 duty cycle since the up time, or on time, named

“mark” time, is the same as the down time, or off time, named “space”

time. The mark time (M), or up time, is the pulse that is referred to in

PWM. The width is the length of time that the mark, or pulse, extends for.

The modulation in PWM refers to the fact that you vary the length of time

that the mark extends for (i.e. PWM). Note that since the total time (i.e. the

mark time plus the space time, known as the periodic time, T) does not

vary, then as you increase the mark time you must decrease the space time

and visa-versa.

If the waveform was that of a voltage being applied to a DC motor,

then the motor would respond to the average of the voltage. For any DC

square wave, the average voltage can be calculated using the expression in

Equation 4-3:

Vavge VmM

T
or VmM

M S
= =

+ (Equation 4-3)

Note that Vavge is the average voltage, Vm is the voltage maximum, M

is the mark time, T is the periodic time for the wave form (i.e. the time to

complete one full cycle), and S is the space time.

Figure 4-1. A typical square wave

ChAptEr 4 CrEAtinG A SquArE WAvE

158

Note that
M

M S+
 is termed the duty cycle. When the M time is equal

to the space time, then the duty cycle is termed 50/50 and the average

voltage is
Vm
2

.

I hope the above paragraphs explain the importance of creating a square.

 Creating a Square Wave with the
PWM Mode
One way you can create a square wave is to use the PWM mode of the

CCP module of the PIC. This is the Capture Compare and Pulse Width

Modulation module of the PIC. This module is a mixture of hardware, in

that the actual circuitry is inside the PIC, and firmware, preprogrammed

operations that are in the PIC. In this chapter, you will look at using the

CCP in PWM mode to create the square wave.

What the programmer has to do is create the timing for the period T

and the mark time, M. This is done using the timer2 inside the PIC, which

just counts clock pulses. The procedure for doing this is as follows.

First, you must set the CCP module to PWM mode. This is done by

writing to the control register CCPXCON. However, the 18F4525 has two

CCP modules, which then means it has two CCPX outputs, hence the

X, which should be replaced with 1 or 2 depending upon which CCP

module and output you are using. Table 4-2 shows the use of the bits in

the CCPXCON control register. Note that there will be two such control

registers and the X is replaced with 1 and 2.

ChAptEr 4 CrEAtinG A SquArE WAvE

159

Table 4-3 shows how Bits 3, 2, 1, and 0 set up the CCP into its respective

mode of operation.

Table 4-2. The Bits of the CCPXCON Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

- - DCxB1 DCxB0 CCPxM3 CCPxM2 CCPxM1 CCPxM0

Bits 7 and 6 these are not used and should be read as 0.

Bits 5 and 4 these are used to store the two LSBs of the 10-bit number for the

duty cycle.

Bits 3, 2, 1,

and 0

these are used to set the use of the CCp module according to the

setting shown in table 4-3.

Table 4-3. The Four Bits That Configure the CCP Modules

Bit3 Bit2 Bit1 Bit0 Setting

0 0 0 0 Capture/Compare/pWM disabled

0 0 0 1 reserved

0 0 1 0 Compare mode, toggle output on match

0 0 1 1 reserved

0 1 0 0 Capture mode every falling edge

0 1 0 1 Capture mode every rising edge

0 1 1 0 Capture mode every fourth rising edge

0 1 1 1 Capture mode every sixteenth rising edge

1 0 0 0 Compare mode, initialize CCpx pin low

1 0 0 1 Compare mode, initialize CCpx pin high

(continued)

ChAptEr 4 CrEAtinG A SquArE WAvE

160

It should be noted that the last four settings in Table 4-3 show the

mode for the PWM when the PIC is used in the extended mode. In this

mode, the programmer has the ability to produce a H drive output.

However, if all you want is a simple square wave output, then these four

bits can be set to 1100, b3 and b2 can be a logic 1, and b1 and b0 can be set

to a logic 0.

If you want to produce two square wave outputs, you must write to

both CCP1CON and CCP2CON registers as well as load both CCPR1L

and CCPR2L with the correct value. This will produce two square waves

of the same frequency set by the value in the PR2 register. A program that

produces two square waves is shown in Listing 4-2.

The following is an explanation of the bits in the CCPXCON register.

• Bits 7 and 6 of the CCP1CON register are not used, so

leave them at logic 0.

Bit3 Bit2 Bit1 Bit0 Setting

1 0 1 0 Compare mode, generate software interrupt

1 0 1 1 Compare mode, trigger special event

1 1 0 0 pWM mode p1A, p1C active high p1B p1D

active high

1 1 0 1 pWM mode p1A, p1C active high p1B p1D

active low

1 1 1 0 pWM mode p1A, p1C active low p1B p1D

active high

1 1 1 1 pWM mode p1A, p1C active low p1B p1D

active low

Table 4-3. (continued)

ChAptEr 4 CrEAtinG A SquArE WAvE

161

• Bits 5 and 4 are where you store the two least

significant bits of the binary number that is used to

control the width of the mark pulse. You will look at

this later in the chapter.

• It is the least significant four bits (b3, b2, b1, and b0

of both CCPXCON registers) that control what mode

the CCP module is in. Since you are trying to create a

square wave with PWM, you want to set this module

to PWM mode. This is done by setting these four bits

as follows:

• b3 = 1

• b2 = 1

• b1 = x

• b0 = x

• The x means it does not matter what logic level

they are.

The data sheet does indicate that b1 and b0 can be set to any logic

level; see section 15 in the datasheet. However, this is true only if you

are dealing with just one CCP and creating one square wave output. The

PIC18F4525 has two CCP modules, which means you can create two

square wave outputs. When you do this, the phase relationship between

the two square waves can be affected. This concept will be discussed later

in this chapter.

One last thing before you start creating your square wave. You need

to know on what pin the two square waves will be outputted by the

PIC. The two outputs are CCP1 and CCP2. CCP1 is fixed on PORTC Bit2

(i.e. PORTCbits.RC2). However, CCP2 has two possible output locations.

It can be sent out on PORTBbits.RB3 or PORTCbits.RC1. To decide which

ChAptEr 4 CrEAtinG A SquArE WAvE

162

of these two bits the CCP2 is on, you must use one of the CONFIG words

when you first set the CONFIG words up. The default setting is PORTCbits.

RC1. I normally leave it at this so that I can use my configuration header

file in all my projects.

The process of creating a square wave is based around letting timer2

count up until a time equal to the periodic time T of the desired square

wave has been reached. Timer2, like all timers, simply counts clock pulses

and so a count of one will equal a specific time according to the clock

frequency used by timer2. Therefore, you need to know the number of

pulses the timer has to count to reach the periodic time of the frequency

of the square wave. This number is loaded into a special function register

called PR2. When the value in timer2 matches the value in this PR2

register, then the square wave starts a new cycle.

To determine the specific value to load into PR2, Microchip provides

an equation shown as equation 15.1 in section 15.4 of the datasheet.

However, it is not the easiest equation to use, so I have rearranged it to

produce an equation for PR2, which is what you want to work out. You

simply want to know what value you need to load into the PR2 to set the

frequency of the square wave. See Equation 4-4:

PR

OscFreq

Frequency TMR Preset
2

4 2
1=

´ ´
-

(Equation 4-4)

 Creating a 500Hz Square Wave
The best way to explain the process is to go through a simple example. In

the following example, you will create a 500Hz square wave with an 8Mhz

internal oscillator and a TMR2Preset value of 16. I will explain what the

timer preset value does later.

ChAptEr 4 CrEAtinG A SquArE WAvE

163

Putting all the values into equation 4-4 you get Equation 4-5:

PR E

2
8

500 4 16
1 249

6

=
´ ´

- = (Equation 4-5)

This means that to get a square wave with a frequency of 500Hz using

an 8MHz oscillator, you simply have to load the PR2 with the value of 249,

which is 0b11111001 or 0XF9, and then set the mark-to-space ratio.

I feel I should point out that timer2 counts clock pulses and the clock

runs at a quarter of the frequency of the oscillator; note that is why there is

a number 4 in Equation 4-4. This means that, with an oscillator frequency

of 8Mhz, the clock runs at a 2Mhz. However, you have the ability to slow

timer2 even more by dividing this 2Mhz frequency further. To control how

much more you divide this frequency by, and so slow it down, use the

timer2 preset value. There are three possible values this preset can be set

to: 1, 4, and 16. You are using the value 16 for this timer preset, hence the

16 in Equation 4-5. This means that timer2 is counting at a rate of 2Mhz

divided by 16, so at a frequency of 125kHz. The periodic time for this

frequency is T
f E

E= = = -1 1

125
8

3

6 therefore = 8μs. This means it takes 8μs

for timer2 to count one tick. This means that it will take 250x8μs for timer2

to count from 0 to 249. Therefore, it will take 2ms for the timer to count

from 0 to 249, which is the periodic time for the 500Hz square wave you are

trying to produce.

I hope this explains how Equation 4-4 works and how the PIC uses

timer2 to create a square wave. As I stated earlier, you want to know the

number the timer2 must count up to create a time equal to the periodic

time of the frequency of the square wave you are creating.

ChAptEr 4 CrEAtinG A SquArE WAvE

164

 The Mark Time or Duty Cycle
So far, you have loaded the PR2 register with the correct number to create

a 500Hz square wave but there must be a mark time and a space time or

a duty cycle. You can’t leave this calculation out because the registers

involved will have data in them already but it will most likely be an

unusable value. You need to make sure the value in the register used to

control the mark-to-space ratio is the one you want.

You will start by creating a 50/50 duty cycle, which means the mark

and space time are both equal to
T ms ms E
2

2

2
1 1

3= = = - .

Again Microchip give us an equation to help with this. However, you

really want to know the number that you can store in the appropriate

register, which the PIC will use to control the duty cycle of the square wave.

I have rearranged the expression from Microchip to give an expression for

that number; it is shown in Equation 4-6.

Number MarkTime OscFreq

TMR
=

´
2Preset (Equation 4-6)

This is taken from equation 15.2 in section 15.4 of the datasheet for the

PIC18F4525.

Knowing that for a 50/50 duty cycle, the mark time must be 1E-3 for

your 500Hz square wave so you can calculate the number as shown in

Equation 4-7:

Number MarkTime OscFreq
TMR

Number E E

Number

=
´

\ =
´

\

-

2

1 8

16

3 6

Preset

== 500

(Equation 4-7)

ChAptEr 4 CrEAtinG A SquArE WAvE

165

So you have calculated two numbers that, when used properly, will

give you a 500Hz square wave with a 50/50 duty cycle. There are two issues

to consider when it comes to storing these numbers.

First, you set the TMR2 Preset value using the T2CON register. There

are three possible values for the TMR2 preset: 1, 4, and 16. Why did I

choose 16? Well, if I had chosen 4, the PR2 number would have worked

out at 996, and if I had chosen 1, the PR2 number would be 3984. So what

is wrong with that? The answer is that this PIC is an 8-bit PIC and unless

you can change them, as you can with some SFRs, all registers are 8 bits

and an 8-bit register can only hold a value up to 255. So that is why a

preset value of 16 was chosen: to reduce the value to below 255. You have

the other possible values for the TIMER 2 Preset because you may want

different frequencies for the square wave, and you could use different

oscillator settings.

Now, as the registers are only 8 bits long, how can you store the

number for the duty cycle since the value of 500 uses nine binary

numbers? Microchip have given us a solution for this problem similar to

the way you store the 10-bit results of the ADC conversion**. You can store

the most significant 8 bits in a special register called CCPRXL. Note that

there are two, one for each CCP module, so the X will be either 1 or 2.

The two least significant bits go into b5 and b4 of the CCPXCON

registers; again, X is 1 or 2. The number you calculated using Equation 4-7

was 500 or 0b111110100. This means b5 and b4 of the CCPXCON registers

are set to logic 0 and the 0b01111101 (note that the extra 0 at Bit7 is there

to complete the 8-bit number) is loaded into the appropriate CCPRXL

registers. You will use CCPR1L since you will be using the CCP1 output and

thus the CCP1CON register to create the square wave.

** Please refer to my first book, C Programming for PIC

Microcontrollers, for a complete explanation of the ADC.

This will then make a 500Hz square wave appear on the CCP1 of the

PIC with a 50/50 duty cycle, assuming you have set the CCP1 pin to output.

ChAptEr 4 CrEAtinG A SquArE WAvE

166

The program is shown in Listing 4-1.

Listing 4-1. The Program for the 500Hz Square Wave

 1. #include <xc.h>

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <PICSetup.h>

 4. void main ()

 5. {

 6. initialise ();

 7. T2CON = 0x06;

 8. PR2 = 249;

 9. CCP1CON = 0b00001100;

10. CCPR1L = 0X7D;

11. while (1);

12. }

 Analysis of Listing 4-1
The new instructions for the program are analyzed here.

Line 7 T2CON = 0X06;

This instruction simply loads the control register T2CON with the

following 8-bit number: 0b00000110.

To understand what this instruction is doing, it’s useful to look at the

usage of the T2CON register. This is shown in Table 4-4.

ChAptEr 4 CrEAtinG A SquArE WAvE

167

The following is an explanation of what loading the T2CON register

with 0b00000110 does.

This sets Bit2 to a logic 1, which simply turns the timer2 on.

This instruction also sets Bit1 to a logic 1 and Bit0 to a logic 0. This sets

the timer2 preset to a value of 16.

Note also that Bits 6, 5, 4, and 3 are set to logic 0, which sets the Post

Scalar to 0000. The use of the Post Scalar will be explained in Chapter 6.

Note that Bit7 is not used, so it is set to a logic 0.

In essence, then, this instruction turns Timer2 on and sets the preset

value to 16.

Line 8 PR2 = 249;

Table 4-4. The T2CON Register for Controlling Timer2

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

- T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUPS0 tMr2ON T2CKPS1 T2CKPS0

Bit7 not used

Bit6 these are used to enable post scales for timer2

0000 = 1:1

0001 = 1:2

"

"

"

1111 = 1:16

Bit5

Bit4

Bit3

Bit2 tiMr2On Logic 0 means off, Logic 1 means on

Bits 1 - 0 tMr2

preset

00 = 1 01 = 4 1x = 16

ChAptEr 4 CrEAtinG A SquArE WAvE

168

This loads the PR2 register with the number 249, which is the value you

calculated using Equation 4-5 to achieve a frequency of 500Hz. Note that

you are using the default radix, which is the decimal number system.

Line 9 CCP1CON = 0b00001100;

This simply loads the CCP1CON, the control register for the CCP1

module with the value 0b00001100. A description of the usage of this

control register is given in Tables 4-2 and 4-3. The particular use of the bits

is given here.

Bit 7 and 6 of the CCP1CON register are not used, so leave them at

logic 0.

Bits 5 and 4 are set to a logic 0 as this is what the two least significant

bits of the binary conversion of 500 are as calculated using Equation 4-7.

The remaining fours bits (3, 2, 1, and 0) are set to 1100, respectively, to

put the CCP module into the PWM mode of operation.

In essence, loading the CCP1CON register with 0b00001100 sets the

CCP module to PWM mode.

Line 10 CCPR1L = 0X7D;

This loads the CCPR1L 8-bit register with the MSB bits of the 500 value

created with Equation 4-7 (i.e. it loads 0b01111101 or 0X7D as shown).

In essence, it is the value in the CCPR1L register that sets the width of

the up or mark time of the square wave.

Line 11 while (1);

This is using the while (test) type instruction. If the result of the

test is true, the program must do what the instruction tells it to do. With

the test being the simple (1), then the test result is always true since a

logic 1 means true. This means that the micro must always do what the

instruction tells it to do.

ChAptEr 4 CrEAtinG A SquArE WAvE

169

As there is nothing between the (1) and the semicolon, which signifies

the end of the instruction, this while (1) test means the micro will do

nothing forever. In this way, you are halting the micro at this point in the

program.

This is all you need to do, so there will now be a 500Hz square wave

outputted by the PIC on the CCP1 output. This is on bit2 of PORTC.

To test the program, it was simulated using the ECAD software

PROTEUS. The circuit and the simulation are shown in Figure 4-2.

The oscilloscope shows a square wave with mark and space time equal

to each other. Also, as the time for each square division of the screen is

0.2ms and there are 10 squares in one complete cycle, the periodic time T

for the waveform is 10 x 0.2m = 2ms. This is the correct periodic time for

the 500Hz square wave.

 Creating Two Square Wave Outputs
This section of the text will just look at creating two square waves. It will

also look at controlling the phase relationship between the two square

waves.

Figure 4-2. The simulation of the 500Hz square wave

ChAptEr 4 CrEAtinG A SquArE WAvE

170

The first difference is that you must load the CCP1CON and the

CCPR1L registers but also the CCP2CON and the CCPR2L registers. To

keep the two square waves at the same frequency and the same duty cycle,

you must load the registers with the same values. The only variance is that

the CCP1CON register is used to control the phase relationship of the two

square waves. This is achieved by changing the logic in Bit1 and Bit0 of

the CCP1CON register; the CCP2CON register does not affect the phase

relationship between the outputs. The program is shown in Listing 4-2.

Listing 4-2. The Program for Two Square Wave Outputs

 1. #include <xc.h>

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <PICSetup.h>

 4. void main ()

 5. {

 6. initialise ();

 7. T2CON = 0x06;

 8. PR2 = 249;

 9. CCP1CON = 0b00001100;

10. CCPR1L = 0X7D;

11. CCP2CON = 0b00001100;

12. CCPR2L = 0X7D;

13. while (1);

14. }

The circuit for the simulation is shown in Figure 4-3 and the

oscilloscope screen showing the two square waves is shown in Figure 4-3.

ChAptEr 4 CrEAtinG A SquArE WAvE

171

Channel A, the yellow waveform, displays the CCP1 output and

channel B, the blue waveform, displays the CCP2 output. It’s quite clear

they are both 50/50 duty cycle and they are at 500Hz.

One thing that I should point out is that they are in phase with each

other. This is because I have set Bit1 and Bit0 of the CCP1CON register to

logic 0.

If you now set Bit1 and Bit0 of the CCP1CON register to logic 1, which

is still allowed, the two square waves will be out of phase by 180O. Try it

and see what happens.

Note that if you set Bit0 of the CCP1CON register to a logic 0 while

keeping bit 1 at a logic 1, the two waveforms will still be 180O out of phase.

The oscilloscope display for b1 is a logic 1 and b0 is a logic 0, as shown in

Figure 4-4.

Figure 4-3. The circuit simulation

ChAptEr 4 CrEAtinG A SquArE WAvE

172

The two wave forms are out of phase by 180O because when the

channel A trace is positive, the channel B trace is at 0V. When the channel

B trace is positive, the channel A trace is at 0V. This means the two wave

forms are said to be in “anti-phase” with each other.

 Setting the Speed of a DC Motor
Now that you have learned how to create one or two square wave outputs,

let’s make use of them. Setting the speed of a DC motor is just one of

the many useful applications of PIC programming and yet it is probably

one of the easiest. Indeed, all you have to do is vary the duty cycle of the

square wave since the DC motor will respond to the average voltage. For

example, when the duty cycle is 50/50, then you should have half-speed.

If it is 75/25, you have 3/4 speed, and when it is 25/75 you have 1/4 speed.

However, you should bear in mind that this is with an ideal motor. All real

motors have friction and inertia to deal with but the speed can, in essence,

be set in this way.

Figure 4-4. Here b1 is set to logic 1 and b0 is set to logic 0.

ChAptEr 4 CrEAtinG A SquArE WAvE

173

Therefore, to vary the speed you need only change the number stored

in the CCPRXL and the other two bits. Note that I am saying setting, not

controlling, because if you want to control the speed of the motor you need

to measure the actual speed and use it in some sort of closed loop control.

This can be done using a PIC micro but this is more than I intend to do in

this book.

To help explain setting the speed of the motor, let’s change the duty

cycle of the CCP1 output in Listing 4-1 to 75/25 and see what happens to

the voltage output on the oscilloscope.

First, calculate the mark time, which is done in Equation 4-8:

MarkTime T M
M S

E E mS= ´
+

= ´
+

= =- -
2

75

75 25
1 5 1 5

3 3
. . (Equation 4-8)

Now use this mark time to calculate the number for CCPR1L as shown

in Equation 4-9:

Number MarkTime OscFreq
TMR

Number E E

Numb

=
´

\ =
´

\

-

2

1 5 8

16

3 6

Preset

.

eer = 750

(Equation 4-9)

This number converts to 0b1011101110, which means b5 in CCP1CON

is set to logic 1 and b4 is set to logic 0. Then 0b10111011 or 0XBB is loaded

into the CCPR1L.

The changes to create the 75/25 square wave output are shown in

Listing 4-3.

ChAptEr 4 CrEAtinG A SquArE WAvE

174

Listing 4-3. The Changes to Produce a 75/25 Square Wave Output

 1. #include <xc.h>

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <PICSetup.h>

 4. void main ()

 5. {

 6. initialise ();

 7. T2CON = 0x06;

 8. PR2 = 249;

 9. CCP1CON = 0b00101100;

10. CCPR1L = 0XBB;

11. while (1);

12. }

The simulation to show that the mark is 75% and the space is 25% is

shown in Figure 4-5.

Figure 4-5. The square wave output with 75% mark and 25% space

ChAptEr 4 CrEAtinG A SquArE WAvE

175

Exercise 4-2

Determine the minimum value of the numbers to be stored in the
pr2, CCp1COn, and CCpr1L registers if you want a 20/80 duty cycle
with a 2khz square wave, using the 8Mhz internal oscillator.

 Driving the Motor
You now have to think about how you can drive the DC motor. Unless you

are using very small 5V DC motors, you cannot drive them directly from

the PIC. Even with 5V motors, the current the motor could take would have

to be fairly small, in the order of 100mA maximum. This is because most

outputs of the PIC can only source, or sink, a small amount of current.

This being the case, you will most likely need to use a driver chip.

There are many that are suitable, such as the ULN2004A and the

ULN2803A. They are Darlington transistors arrays. The ULN2004A is a 16-

pin device with seven Darlington transistors; the ULN2803A is an 18-pin

device with eight Darlington transistors. Each of the Darlington transistors

can sink up to 500mA. They can be connected in parallel if required to

accommodate a device that sinks more current. They can be supplied by a

VCC up to 30V.

If that current capability is not enough, you can use a single Darlington

transistor, and the TIP122 is one such transistor. It can sink up to 5Amps of

current.

The ULN Drivers and the TIP122 actually switch the ground onto the

load, so they sink the current of the load through them. Since most loads

are inductive, and the switching off of inductive loads can lead to high

voltage spikes across the Darlington transistor, or other switching device,

these drivers all have flywheel diodes to protect them. One final point

to appreciate about these driver ICs is that they can be driven from TTL

voltages.

ChAptEr 4 CrEAtinG A SquArE WAvE

176

All these parameters make them ideal for interfacing the PIC to real-

word circuits.

 Creating a Three-Speed DC Motor Program
This will extend the basic square wave program to firstly drive the motor

at half speed and then, when one of three buttons is momentarily pressed,

the speed of the motorc will be changed as follows:

• If no button is pressed, the motor runs at half speed.

• If the button connected to RA0 is pressed, the motor

speed increases to 3/4 speed.

• If the button connected to RA1 is pressed, the motor

speed increases even further.

• If the button connected to RA2 is pressed, the motor

speed reduces to 1/4 speed.

• If the button connected to RA3 is pressed, the motor

speed returns to 1/2 speed.

The code is shown in Listing 4-4.

Listing 4-4. The Three-Speed Control of a DC Motor

 1. #include <xc.h>

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <PICSetup.h>

 4. void main ()

 5. {

 6. initialise ();

 7. T2CON = 0x06;

 8. PR2 = 249;

ChAptEr 4 CrEAtinG A SquArE WAvE

177

 9. CCP1CON = 0b00001100;

10. CCPR1L = 0X7D;

11. while (1)

12. {

13. if(PORTAbits.RA0) CCPR1L = 0xBB;

14. if(PORTAbits.RA1) CCPR1L = 0xDB;

15. if(PORTAbits.RA2) CCPR1L = 0x3E;

16. if(PORTAbits.RA3) CCPR1L = 0x7D;

17. }

18. }

The only new instructions are those on lines 13, 14, and 15. They are all

of the type if (the test is true) then do what I say here.

Line 13 if(PORTAbits.RA0) CCPR1l = 0XBB;

The test asks if the logic on Bit0 of PORTA is a logic 1. This will only

come about if someone has pressed the switch connected to Bit0 of

PORTA. If someone has pressed the switch, then the test will be true and

the PIC will carry out the instruction CCPR1L = 0XBB;, which simply loads

the CCPR1L with the value 0XBB. This is the value needed to increase the

speed to 75%, as calculated in Equation 4-6.

Lines 14 and 15 change the speed of the motor in a similar way.

This program is not using the debounce subroutine that was used in

Chapter 3. This because you are not concerned with how many times the

switch is pressed. However, in a practical situation, it would be useful

to use the debounce subroutine if only to prevent any stray noise on the

switches changing the speed of the motor unintentionally.

ChAptEr 4 CrEAtinG A SquArE WAvE

178

The Proteus schematic for the simulation is shown in Figure 4-6.

Note that I am using the TIP122 Darlington transistor to switch the

motor to ground and so sink the current from the motor. R4 is needed to

prevent the transistor pulling the output of the PIC down to around 1.4V. It

also sets the current being fed into the base of the TIP122.

The resistors R1, R2, R3, and R5 are there to limit the current flowing

through the switches to around 5mA, thus protecting the switches. I

refer to this arrangement for the switching as a pull up, as pressing the

switch pulls the voltage at the input up to VCC. Others may refer to the

arrangement as pull down resistors since the resistors are in the path

down to 0V.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

FAST

VERY FAST

VERY SLOW

R1
1k

R2
1k

R3
1k

Q1
TIP122

R4
470

+12

A

B

C

D

HALF SPEED

R5
1k

R6
1k

C1

100nF
D1

DIODE

Figure 4-6. The schematic for the three-speed motor

ChAptEr 4 CrEAtinG A SquArE WAvE

179

 Using a Variable Input Voltage to Change
the Speed of a DC Motor
This will involve using an analog input; you will use PORTA Bit0 and the

ADC to convert the analog voltage to a binary value. Then you’ll use this

value to vary the mark time of the square wave feeding the transistor that

turns the motors on. This concept is shown in the circuit in Figure 4-7.

The algorithm: The PIC will constantly read the input voltage at the

analog input on Bit0 of PORTA. You use that result of the ADC to vary the

mark time of the square wave feeding the Darlington transistor.

The program is shown in Listing 4-5.

Listing 4-5. The Variable Speed DC Motors

 1. #include <xc.h>

 2. #include <conFigInternalOscNoWDTNoLVP.h>

 3. #include <PICSetup.h>

 4. #include <math.h>

 5. void changeSpeed ()

 6. {

 7. ADCON0bits.GODONE = 1;

 8. while (ADCON0bits.GODONE);

 9. CCPR1L = round(ADRESH * 0.95);

10. }

11. void main ()

12. {

13. initialise ();

14. TRISA = 0X0F;

15. ADCON0 = 0X01;

16. ADCON1 = 0X0E;

17. ADCON2 = 0b00010001;

18. T2CON = 0x05;

ChAptEr 4 CrEAtinG A SquArE WAvE

180

19. PR2 = 249;

20. CCP1CON = 0b00001100;

21. CCPR1L = 0X7D;

22. while (1)

23. {

24. changeSpeed ();

25. }

26. }

 Analysis of Listing 4-5
The new instructions are as follows:

Line 4 #include <math.h>

Figure 4-7. Setting the speed of a DC motor with a variable resistor

ChAptEr 4 CrEAtinG A SquArE WAvE

181

This tells the compiler to include the header file math.h. This is an

open source header file and it includes a whole range of math functions.

You need it since you are using the “round” function, which is used to

round up a decimal number to an integer.

Line 5 void changeSpeed ()

This is where you create a subroutine to change the speed of the motor.

It reads the voltage at the analog input and then coverts it to a binary value

that can be loaded into the CCPR1L register to control the PWM of the

square wave feeding the DC motor.

Line 6 {

This is the standard opening curly bracket for the subroutine.

Line 7 ADCON0bits.GODONE = 1;

This tells the PIC to start the ADC (analog-to-digital conversion)

process.**

Line 8 while (ADCON0bits.GODONE);

This tells the PIC to wait until the ADC has finished. Note the use of

while (the test is true) do nothing in this case.

Line 9 CCPR1L = round(ADRESH * 0.95);

This loads the CCPR1L with the 8-bit number stored in the

ADRESH. Note that the ADRESH is where the PIC stores the high byte of

the result of the ADC conversion. However, the 8-bit number is multiplied

by 0.95 first before it is loaded into the CCPR1L register. However,

multiplying an integer by 0.95 could result in a decimal value as the result.

A decimal number cannot be loaded into the CCPR1L, so the value must

be rounded up first before it is stored in the CCPR1L. This is why you need

to use the round function that is listed in the maths.h header file included

in line 4.

ChAptEr 4 CrEAtinG A SquArE WAvE

182

Another problem is that the value stored in the CCPR1L register

cannot be allowed to produce a mark time that is equal to or greater than

the period of the square wave. If this was allowed to happen, the square

wave would collapse. Since the period time is set by the value in the PR2

register, which in this case is 249, the value for the mark time cannot be

allowed to be the same or greater than the value in the PR2 register (i.e. it

cannot be the same or greater than 249 in this case). Therefore, if you set

the maximum value that can be loaded into the CCPR1L register at 242, a

value that is less than 249, then you can determine the multiplying factor

that you need to use here.

To do so, you must be aware that the 8-bit value in the ADRESH can go

up to a maximum of 255, as it is an 8-bit register. Then using Equation 4-10,

you have

Factor Value

= = =
max

.
255

242

255
0 95 (Equation 4-10)

This is how the value of 0.95 is calculated.

Line 10 }

This is simply the closing curly bracket for the subroutine.

Line 11 void main ()

This is setting up the main loop as before.

Line 12 {

This is the opening bracket of the main loop.

Line 13 initialise ();

ChAptEr 4 CrEAtinG A SquArE WAvE

183

This is the call to go through all the instructions of the initialise

subroutine. Note that this subroutine is written in the PICSetUp.h header

file.

Line 14 TRISA = 0X0F;

This is required because in the PICSetup.h header file you made all the

bits on PORTA inputs by writing 0XFF to TRISA. However, as an example

of what you have to do if you want something different from what is set in

that header file, you are changing the use of the bits on PORTA. Bits 7, 6, 5,

and 4 are all set to outputs and Bits 3, 2, 1, and 0 are set to inputs. So you

insert an instruction here that overwrites the data in TRISA that you wrote

in within the header file, and replaces it with data that you specify here.

Line 15 ADCON1 = 0X01;

This line and the next two lines all write to registers that control the

ADC module inside the PIC. For a thorough analysis of how this module

works and how these registers allow you as a programmer, to control it,

you should read my first book, C Programming for PIC Microcontrollers.

However, I will briefly explain what these three instructions do.

This one, on line 15, simply turns the ADC module on and connects it

to channel 0, which is on Bit 0 of PORTA.

Line 16 ADCON1 = 0X0E;

This sets all 13 channels, except channel 0, to digital. Channel 0 has to

be set to analog as this is the input, Bit0 of PORTA, to which the variable

voltage, which will be used to control the speed of the DC motor, will

be connected to. That is why it must be set as an analog input and this

instruction does that.

Line 17 ADCON2 = 0b00010001;

ChAptEr 4 CrEAtinG A SquArE WAvE

184

This controls how long the PIC waits for the whole acquisition and

conversion of the analog input to complete. If it does not wait long enough,

the result may be inaccurate. If the PIC waits too long, it could be wasting

time. Therefore, you must get this setting correct.

In this way, these three instructions control how the ADC conversion

operates.

Line 18 T2CON = 0X05;

Table 4-2 describes what each of the 8 bits in this control register does.

Loading 0X05 into the register actually loads 0b00000101 in binary into the

register. From that, you can see that Bit2 is a logic 1, which simply turns

timer2 on.

Also, Bit1 is a logic 0 and Bit0 is a logic 1. This sets the timer2 preset

value to 4.

To appreciate what this does, you need to consider the next instruction

in the listing.

Line 19 PR2 = 249;

This loads the PR2 register with the value of 249 in decimal. If you now

look at Equation 4-11, which can be used to calculate the periodic time of

the square wave you can generate, you get the following result:

PERIOD

PR
OSCFequency

=
+() ´[]2 1 4 2Timer PreSet

(Equation 4-11)

Putting your values in gets you Equation 4-12:

PERIOD
E

PERIOD
E

E s

=
+() ´[]

\ = = =-

249 1 4 4

8

400

8
500 500

6

6

6 m

(Equation 4-12)

ChAptEr 4 CrEAtinG A SquArE WAvE

185

Knowing that the PERIOD is given the symbol T and that the frequency

can be calculated using Equation 4-13:

f
T

f
E

kHz

=

\ = =-

1

1

500
2

6

(Equation 4-13)

This shows that it is the combination of the value loaded into the PR2

register and the Timer2 Preset value that sets the frequency of the square

wave created, in this program, to 2kHz.

Line 20 CCP1CON = 0b00001100;

This simply sets the CCP1 module into PWM mode so that you can

create a square wave on the CCP1 output, which is on Bit2 of PORTC.

Line 21 CCPR1L = 0X7D;

This sets the square wave up with a 50/50 duty cycle. This number,

0X7D, was calculated using Equation 4-2.

Line 22 while (1)

This sets up a forever loop that makes the micro carry out the

instructions listed between the following set of curly brackets forever.

Line 23 {

The opening curly bracket for the forever loop.

Line 24 changeSpeed ();

This is the only instruction inside the curly brackets. All it does is call

the subroutine changeSpeed. In this subroutine, the micro reads the input

on bit0 of PORTA. It then converts the value from analog to digital in the

ADC module. It then loads the CCPR1L register with the modified result.

ChAptEr 4 CrEAtinG A SquArE WAvE

186

Note that it is the CCPR1L register that alters the mark time of the square

wave. Therefore, all the program does forever is alter the pulse width of the

voltage applied to the motor and thus it alters the speed of the motor.

Note that since there is only one instruction inside the curly brackets,

this instruction could have been written as

while (1) changeSpeed ();

This would have saved two lines in the program (i.e. lines 23 and 25).

Line 25 }

This is the closing bracket of the forever loop.

Line 26 }

This is the closing bracket for the main loop.

I hope this explains how the program uses the PWM to set the speed of

a simple DC motor by using a variable input.

 Creating a Musical Note
As stated earlier, all sounds have their own individual frequency, or

combination of frequencies, that allows us humans to separate them

from other sounds. Some sounds have a combination of frequencies

but a pure note will have just one frequency. The note middle C has a

frequency of 261.63Hz with a wavelength of 1.3187 m. See the table in

Appendix 7. Ideally the signal should be a perfect sinusoidal waveform.

However, a square at 261.63Hz will be good enough for most uses. If

you want a more perfect wave, you can pass the square wave through

a low-pass filter. However, a simple passive filter will attenuate the

signal, therefore an active filter may be better. This is not covered in

this book.

ChAptEr 4 CrEAtinG A SquArE WAvE

187

 Creating the Middle C Note
Creating the middle C note will require creating a square wave at the

frequency of 261.63Hz. Applying what you have learned thus far means

you will need to determine what value needs to be inputted to the PR2

register and what number to store in the CCPR1L register. As this note

is middle C, which would normally be the middle of the range of notes,

the value in the PR2 register should be ideally 124 (i.e. the middle value

that can be stored in the 8-bit register, the PR2). This is to allow you to

increase or decrease the frequency produced equally either side of middle

C. Therefore, you know that the PR2 value should be 124 and the period of

the 261.63Hz square wave is 3.822ms, so see Equation 4-14.

T

f
ms= = =

1 1

261 63
3 822

.
.

(Equation 4-14)

Using the expression for the period shown in Equation 4-11, you can

calculate a suitable oscillator frequency as follows in Equation 4-15:

PERIOD PR

TMR Preset

OSCFreq
= +[] ´æ

è
ç

ö

ø
÷2 1

4 2

(Equation 4-15)

\ = +[] ´æ

è
ç

ö
ø
÷OSCFreq PR

TMR Preset

PERIOD
2 1

4 2

OSCFreq

E
= +[] ´æ

è
ç

ö
ø
÷ =-124 1

4 16

3 822
2 093145

3
.

. MHz

ChAptEr 4 CrEAtinG A SquArE WAvE

188

This is using a TMR2Prset value of 16. You could have used a value

of 4 or a value of 1. This means there could be three possible oscillator

frequencies you could have used to produce a PR2 value of 124 that would

produce a square wave of 261.63 Hz. They are listed in Table 4-5.

Since you are using the internal oscillator block, then using the data

sheet you can see that any of the available oscillator frequencies would

give the same percentage error of around 4.4%. Therefore, it is up to you

which oscillator frequency you should use. I chose the 2Mhz oscillator

frequency that uses a TMR2Preset value of 16.

So, using these values, you can now calculate the actual PR2 value you

must use to produce a square wave with a frequency of 261.63Hz. This is

done as follows shown in Equation 4-16:

PR

OCSFreq

Frequency TMR Preset
2

4 2
1=

´ ´
-

(Equation 4-16)

PR E

2
2

261 63 4 16
1 118 4375

6

=
´ ´

- =
.

.

As the PR2 register can only store whole integers, let the PR2 value = 118.

Table 4-5. The Three Possible Oscillator

Frequencies to Produce the Note Middle C

TMR2Preset Value Oscillator Frequency

1 130.822khz

4 523.286khz

16 2.093145Mhz

ChAptEr 4 CrEAtinG A SquArE WAvE

189

The square wave should have a 50/50 duty cycle so the pulse width

should equal half the period. Therefore, the pulse time should be 1.911ms.

Using this value, the number that must be stored in the CCPR1L register

can be calculated as follows in Equation 4-17:

NUMBER

MarkTine OscFreq

TMR Preset
=

´
2 (Equation 4-17)

NUMBER E E

=
´

=
-

1 911 2

16
238 875

3 6
.

.

Again, this must be an integer, so let the number be 239. This converts

to a 10-bit binary as 0011101111. The two LSB are 1, 1 and they must be

stored in Bit5 and Bit4 of the CCP1CON register. The remaining 8 MSB are

00111011. This is the 8-bit number that must be loaded into the CCPR1L

register. To confirm that the work so far is OK, you will write a program to

create this middle C note. This is shown in Listing 4-6.

Listing 4-6. The Code to Create the Note Middle C

1. #include <xc.h>

2. #include <conFigInternalOscNoWDTNoLVP.h>

3. #include <PICSetup.h>

4. void main ()

5. {

 i. initialise ();

 ii. OSCCON = 0b01010100;

 iii. T2CON = 0x06;

 iv. PR2 = 118;

6. CCP1CON = 0b00111100;

ChAptEr 4 CrEAtinG A SquArE WAvE

190

7. CCPR1L = 0X3B;

8. while (1);

9. }

Figure 4-8 shows the display on the oscilloscope of a simulation of the

program. You can see that the time to complete one cycle is 3.8ms, which is

the correct periodic time for the note middle C.

It is not showing a perfect 50/50 duty cycle due to the rounding

errors in the calculations. An alternative approach, which maybe a better

approach, to producing this middle C note is covered in Chapter 7.

Figure 4-8. The oscilloscope display of a simulation of the program

ChAptEr 4 CrEAtinG A SquArE WAvE

191

 Creating a Musical Keyboard
The algorithm for this program is as follows:

 1. You need to save the settings for the CCP1CON

register and the CCPR1L register for all of the

musical notes you are going to make available.

 2. You also need to allocate an input to each of the

eight notes you will be using.

The program is shown in Listing 4-7.

Listing 4-7. The Code for the Musical Keyboard

 1. /*

 2. * File: musicalNotesProg.c

 3. Author: hubert.ward

 4. *

 5. Created on 03 January 2019, 14:25

 6. */

 7. //Some include files

 8. #include <conFigInternalOscNoWDTNoLVP.h>

 9. #include <xc.h>

10. #include <PICSetUp.h>

11. #include <musicalNotes.h>

12. //some variables

13. unsigned char n;

14. //Some subroutines

15. void debounce ()

16. {

17. TMR0 = 0;

18. while (TMR0 < 100);

19. }

ChAptEr 4 CrEAtinG A SquArE WAvE

192

20. void main()

21. {

22. initialise ();

23. TRISB = 0XFF;

24. TRISC = 0;

25. T2CON = 0X06;

26. OSCCON = 0b01010100;

27. CCP1CON = 0b00001100;

28. while (1)

29. {

30. if (PORTAbits.RA0)

31. {

32. G3;

33. debounce ();

34. while (PORTAbits.RA0);

35. }

36. if (PORTAbits.RA1)

37. {

38. A3;

39. debounce ();

40. while (PORTAbits.RA1);

41. }

42. if (PORTAbits.RA2)

43. {

44. B3;

45. debounce ();

46. while (PORTAbits.RA2);

47. }

48. if (PORTAbits.RA3)

49. {

50. C4;

ChAptEr 4 CrEAtinG A SquArE WAvE

193

51. debounce ();

52. while (PORTAbits.RA3);

53. }

54. if (PORTAbits.RA4)

55. {

56. D4;

57. debounce ();

58. while (PORTAbits.RA4);

59. }

60. if (PORTAbits.RA5)

61. {

62. F4;

63. debounce ();

64. while (PORTAbits.RA5);

65. }

66. if (PORTAbits.RA6)

67. {

68. F4;

69. debounce ();

70. while (PORTAbits.RA6);

71. }

72. if (PORTAbits.RA7)

73. {

74. G5;

75. debounce ();

76. while (PORTAbits.RA7);

77. }

78. Nonote;

79. }

80. }

ChAptEr 4 CrEAtinG A SquArE WAvE

194

 The Analysis Of Listing 4-7
I will restrict this to the new or more important instructions.

Line 11 #include <musicalNotes.h>

This includes a header file that defines phrases for the settings of the

CCP1CON register and the CCPR1L register to create a range of different

frequency square waves, one for each musical note you want to use. An

example of one of the definitions is

#define C4 PR2 = 118, CCPR1L = 0X3B, CCP1CONbits.DC1B1 = 1,

CCP1CONbits.DC1B0 = 1;

These are the values that have been calculated for the note C4, which

is middle C. Note that I am also including setting the two bits in the

CCP1CON register. They are

CCP1CONbits.DC1B1 = 1, CCP1CONbits.DC1B0 = 1;

Note that CCP1CONbits.DC1B1 is actually Bit5 of the CCP1CON

register and CCP1CONbits.DC1B0 is Bit4.

There is a small difference between this type of definition and the

previous definitions you have used:

#define startbutton PORTAbits.RA0

The above definition for the startbutton does not end with a

semicolon. However, the #define for the note C4 above does end with a

semicolon.

This is because the #define C4 is listing a series of instructions

and each instruction is separated by a comma but the last one uses the

semicolon because it is the end of the list of instructions. There are four

instructions for each definition of the note.

The #define startbutton PORTAbits.RA0 is really explaining to the

compiler what the label startbutton stands for.

The full listing for this musicalNotes.h header file is given in

Appendix 7.

ChAptEr 4 CrEAtinG A SquArE WAvE

195

Lines 15 to 19 create the debounce subroutine. The purpose of this

subroutine was explained in Chapter 3.

Line 23 TRISB = 0XFF;

This is to load the TRISB register with all logic 1s. This sets all the bits

in PORTB as inputs. You need this as the PICSetUp.h header file sets all of

PORTB to outputs so you must override this.

Line 26 OSCCON = 0b01010100;

This overrides the setting the PICSetUp.h header file as you want to

reduce the oscillator frequency to 2Mhz. This is needed because at 8Mhz

the value calculated for the PR2 would be 472. This would be too big to go

into an 8-bit register. You cannot divide the frequency any more so you

need to reduce the frequency from 8Mhz to 2Mhz.

Lines 30 to 35 set out by asking if the switch connected to bit0 of

PORTA has been pressed. If it has, the micro carries out the instructions to

produce the note G3. It then calls the debounce subroutine and makes the

micro wait until the switch has been released.

In this way, the PIC will play the note G3 for as long as the user keeps

the button on Bit0 of PORTA pressed.

As soon as the user releases the button, the micro will move on to

line 150.

Line 150 Nonote;

This makes the micro carry out the following series of instructions:

PR2 = 70, CCPR1L = 0X4F, CCP1CONbits.DC1B1 = 0, CCP1CONbits.

DC1B0 = 1;

This is because the phrase Nonote is defined as that in the

musicalnote.h header file.

ChAptEr 4 CrEAtinG A SquArE WAvE

196

What this does is make the mark time bigger than the period as set by

the PR2 value. This will make the PIC send out a flat line on CCP1 instead

of a square wave. Therefore, the frequency will be zero and no sound will

be sent out.

The lines 36 to 149 simply ask if a button connected to one of the

inputs has been pressed. If a button has been pressed, it sends out the

appropriate note.

I hope this brief analysis helps you to understand how this program

works.

 Summary
In this chapter, you learned how to use the Capture Compare PWM

module of the PIC to create different square waves. You also learned how

to use those square waves to set the speed of a DC motor and how to create

different musical notes.

You also learned about using the #define statement to create labels

and a series of instructions.

In the next chapter, you will look at controlling and using two common

types of DC motors, stepper motors and servo motors.

 Answers to the Exercises
Exercise 4-1:

• Frequency = 48.999 Hz

• Frequency = 1046.502Hz

• Frequency = 2,200 Hz

ChAptEr 4 CrEAtinG A SquArE WAvE

197

Using

l =

v
f

when f = 48.999

l = =

343

48 999
7

.
m

when f = 1046.502

l = =

343

1046 502
32 7

.
. cm

when f = 2,200

l = =

343

2200
15 59. cm

Exercise 4-2: Square wave frequency = 2kHz. Therefore, the periodic

time = 500μs.

First, you calculate the PR2 value using

PR

OCSFreq

Frequency TMR Preset
2

4 2
1=

´ ´
-

To get the minimum values, try the highest TMR2Preset value first.

If this doesn’t produce a valid PR2 value, try the next TMR2Preset value.

Therefore, start off with a TMR2Preset of 16.

PR

E
2

8

2 4 16
1 63

6

3
=

´ ´
- =

E

ChAptEr 4 CrEAtinG A SquArE WAvE

198

This PR2 value is OK.

The 20/80 would give a mark time of 125μs. Therefore, using Equation 15,

you have:

number E E

=
´

=
-

125 8

16
63

6 6

Converting 63 to a 10-bit binary number gets you 0000111111. The two

least significant bits are 1,1 and they are stored in the CCP1CON register

Bits 5 and 4. The remaining 8-bit number of 00001111 is what is stored in

the CCPR1L register. You could use 0b00001111 or 0X0F or decimal 15.

ChAptEr 4 CrEAtinG A SquArE WAvE

199© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_5

CHAPTER 5

DC Motors
In this chapter, you will look at controlling two useful types of DC motors.

They are

• The stepper motor

• The servo motor

You will learn how they work and how you can use the PIC micro to

control them.

With reference to the servo motor, you will also look at using an analog

input, such as a variable voltage, to control the position of the motor.

 The Stepper Motor
The stepper motor is a DC motor that has a number of coils encased in the

stator part of the motor. To make the rotor rotate, each of the coils in the

stator are turned on sequentially so the rotor rotates in steps because it is

attracted by the magnetic fields set up in the stator coils. The PIC program

basically has to turn on these coils in a certain sequence to make the motor

turn. In this way, the motor can turn through one revolution or just a few

degrees of a revolution or through many revolutions.

The stepper motor I will use in this example is a very small motor, but

it can be used for many applications. The actual motor is a 5V four-phase

five-wire stepper motor and a picture of it is shown in Figure 5-1.

https://doi.org/10.1007/978-1-4842-6068-5_5#DOI

200

There are five wires that can be connected to a driver circuit and they are

• Red connected to the +5V supply. This needs to be

able to supply enough current to the motor, so it may

need to be a different supply than the supply to the

PIC. However, you should ensure all the 0V, or ground,

of the supplies are connected together.

• Orange connected to coil 1

• Yellow connected to coil 2

• Pink connected to coil 3

• Blue connected to coil 4

The red lead supplies the 5V to all the coils. To energize the coils, the

ground has to be connected to each coil to allow current to flow through

them. If this is done in the correct sequence, the motor will turn in

individual steps in either a clockwise or counterclockwise direction. The

simplest way to switch the ground on to each coil is to use the ULN2004

driver I.C.. It has an array of seven Darlington NPN transistors. Each

Darlington can sink up to 500mA, so they can easily cope with the current

demanded from the coils of the stepper motor.

Figure 5-1. The 5V four-phase stepper motor, 28BYJ-48

Chapter 5 DC Motors

201

The sequence to make the motor move in a clockwise direction is

stated in Table 5-1.

Note that clockwise is seen looking into the motor from the end of the

shaft.

The sequence shown in Table 5-2 is how to make the motor rotate in a

counterclockwise direction.

Table 5-1. The Sequence to Rotate the

Motor Clockwise

Coil Number Coil Colour

Coils 4 and 1 Blue and orange

then coil 4 Blue

then coils 3 and 4 pink and blue

then coil 3 pink

then coils 3 and 2 Yellow and pink

then coil 2 Yellow

then coils 1 and 2 orange and yellow

then coil 1 orange

Chapter 5 DC Motors

202

There should be a delay between changing from one step to the next

step in the sequence. This delay must be long enough for the current in

the coil to build up and so create the magnetic field that steps the motor

round. However, the time constant of the coils is very short, so this delay

can be short.

This stepper motor goes through 4096 of these individual steps to make

one complete revolution. Therefore, each single step turns the stepper

motor rotor through 0.08789 of a degree. As there are eight single steps in

each sequence of steps, as shown in Tables 5-1 and 5-2, each sequence

moves the motor through 0.70312 degrees. Therefore, it takes 360/0.70312

(i.e. 512 sequences of steps) to move the motor through 360 degrees or one

complete revolution.

Using this information, you can determine how many steps, or

sequences, are required to make the motor turn by any number of degrees.

The basic program for the stepper motor is shown in Listing 5-1.

Table 5-2. The Sequence for Rotating

the Motor Counterclockwise

Coil Number Coil Colour

Coil 1 orange

then coils 1 and 2 orange and yellow

then coil 2 Yellow

then coils 2 and 3 Yellow and pink

then coil 3 pink

then coils 3 and 4 pink and blue

then coil 4 Blue

then coils 4 and 1 Blue and orange

Chapter 5 DC Motors

203

Listing 5-1. The Basic Program for the Stepper Motor

 1. // Program for a Stepping Motor

 2. // Written By Mr Hubert Ward for the PIC18F4525

 3. // Dated 02/07/19

 4. // Configuration PIC18F4525

 5. // OSC set to INTI067

 6. // WDT set to OFF

 7. // LVP set to OFF

 8. #include <conFigInternalOscNoWDTNoLVP.h>

 9. #include <xc.h>

 10. #include <PICSetUp.h>

 11. // Some definitions

 12. # define orange PORTBbits.RB3

 13. # define yellow PORTBbits.RB2

 14. # define pink PORTBbits.RB1

 15. # define blue PORTBbits.RB0

 16. //Global variables

 17. unsigned char n, speed, clkcount;

 18. unsigned int ck;

 19. //some subroutines

 20. void delay (unsigned char t)

 21. {

 22. while (clkcount < t)

 23. {

 24. TMR0 = 0;

 25. while (TMR0 < 250);

 26. clkcount ++;

 27. }

 28. }

Chapter 5 DC Motors

204

 29. void main()

 30. {

 31. initialise ();

 32. T0CON = 0xC6;

 33. speed = 50;

 34. while (1)

 35. {

 36. if (PORTAbits.RA0) speed = 75;

 37. if (PORTAbits.RA1) speed = 40;

 38. if (PORTAbits.RA2) speed = 20;

 39. ck = 0;

 40. clockwise: while (ck < 400)

 41. {

 42. orange = 1;

 43. yellow = 0;

 44. pink = 0;

 45. blue = 1;

 46. TMR0 = 0;

 47. while (TMR0 < speed);

 48. orange = 0;

 49. yellow = 0;

 50. pink = 0;

 51. blue = 1;

 52. TMR0 = 0;

 53. while (TMR0 < speed);

 54. orange = 0;

 55. yellow = 0;

 56. pink = 1;

 57. blue = 1;

 58. TMR0 = 0;

 59. while (TMR0 < speed);

Chapter 5 DC Motors

205

 60. orange = 0;

 61. yellow = 0;

 62. pink = 1;

 63. blue = 0;

 64. TMR0 = 0;

 65. while (TMR0 < speed);

 66. orange = 0;

 67. yellow = 1;

 68. pink = 1;

 69. blue = 0;

 70. TMR0 = 0;

 71. while (TMR0 < speed);

 72. orange = 0;

 73. yellow = 1;

 74. pink = 0;

 75. blue = 0;

 76. TMR0 = 0;

 77. while (TMR0 < speed);

 78. orange = 1;

 79. yellow = 1;

 80. pink = 0;

 81. blue = 0;

 82. TMR0 = 0;

 83. while (TMR0 < speed);

 84. orange = 1;

 85. yellow = 0;

 86. pink = 0;

 87. blue = 0;

 88. TMR0 = 0;

 89. while (TMR0 < speed);

 90. ck ++;

Chapter 5 DC Motors

206

 91. goto clockwise;

 92. }

 93. ck = 0;

 94. anticlockwise: while (ck < 500)

 95. {

 96. TMR0 = 0;

 97. while (TMR0 < speed);

 98. orange = 1;

 99. yellow = 0;

100. pink = 0;

101. blue = 0;

102. TMR0 = 0;

103. while (TMR0 < speed);

104. orange = 1;

105. yellow = 1;

106. pink = 0;

107. blue = 0;

108. TMR0 = 0;

109. while (TMR0 < speed);

110. orange = 0;

111. yellow = 1;

112. pink = 0;

113. blue = 0;

114. TMR0 = 0;

115. while (TMR0 < speed);

116. orange = 0;

117. yellow = 1;

118. pink = 1;

119. blue = 0;

120. TMR0 = 0;

121. while (TMR0 < speed);

Chapter 5 DC Motors

207

122. orange = 0;

123. yellow = 0;

124. pink = 1;

125. blue = 0;

126. TMR0 = 0;

127. while (TMR0 < speed);

128. orange = 0;

129. yellow = 0;

130. pink = 1;

131. blue = 1;

132. TMR0 = 0;

133. while (TMR0 < speed);

134. orange = 0;

135. yellow = 0;

136. pink = 0;

137. blue = 1;

138. TMR0 = 0;

139. while (TMR0 < speed);

140. orange = 1;

141. yellow = 0;

142. blue = 1;

143. TMR0 = 0;

144. while (TMR0 < speed);

145. ck ++;

146. goto anticlockwise;

147. }

148. clkcount = 0;

149. delay (16);

150. }

151. }

Chapter 5 DC Motors

208

This program sets the stepper motor to turn clockwise with a slow

speed. The speed can be varied by pressing one of the three buttons

connected to Bits 0, 1, and 2 of PORTA.

The motor goes through 400 sequences in the clockwise direction.

Then it goes through 500 sequences in the counterclockwise direction.

There is then a short delay before the motor repeats the process. The figure

of 400 sequences means the motor will turn through 281O in the clockwise

direction. Then it will turn through 352O in the counterclockwise direction.

I hope there is no need to go through an analysis of every one of the

instructions because there are no new instructions. However, I do think it

would be useful to add an explanation for some of the instructions.

Line 18 unsigned int ck;

This sets up a 16-bit memory location named ck, made up of two 8-bit

registers cascaded together, that can store positive values from 0 to 65535.

The variable ck needs to be an integer because it is used in lines 40 and

94 to control how many sequences the motor carries out in each direction,

400 and 500, respectively.

Line 42 orange = 1;

The label orange is defined in line 12 as Bit3 of PORTB. In this

instruction, you are setting the bit to a logic 1. This sends 5V from the PIC

to the input of the ULN2004. This turns the Darlington transistor inside the

driver I.C. on this transistor and then switches the ground onto the orange

coil in the motor. This then allows the current to flow though that coil and

so sets up the magnetic field around it.

In this first step, the blue coil is also turned on in the same way as

stated in line 45. The yellow and pink coils are turned off in lines 43 and 44

by setting the bits to a logic 0.

Line 46 TMR0 = 0;

Line 47 while (TMR0 < speed);

Chapter 5 DC Motors

209

These two instructions create a small delay between each of the steps.

The shorter this delay is (i.e. the smaller the value in the variable speed),

the faster the motor will rotate. However, the delay must be long enough to

allow the current to build up in the coils and so create the magnetic field

that drags the rotor to them.

Stepper motors have many applications where precise movements

are required, and printers are the most common application of stepper

motors. The actual stepper motor used in this book can be used in many

hobbyist projects. I have used it to control a four-story model lift and a

turntable in a model railway.

exercise 5.1

as an exercise, you explain what the following instruction, written on
line 32, is doing:

t0CoN = 0XC6;

also, if the variable speed is loaded with 75, how long is the delay
between switching the coils?

 The Servo Motor
A servo motor is a motor that moves through a limited range of degrees.

Typically it can move 90O in one direction and 90O in the opposite

direction. It is normally controlled by sending a 50Hz frequency pulse

train. The width of the pulse, the mark time, will vary from 1msec to

2msec. This variance of the pulse width will move the servo motor

through its complete range of rotation. This movement can be described

as going from -90O to +90O, or going from 0O to 180O in one direction. The

relationship between the changes in degrees to the change in pulse width

is linear. Therefore, with a pulse width of 1msec, the servo motor would

Chapter 5 DC Motors

210

move to -90; with a pulse width of 1.5msec, it would move to 0; and finally,

with a pulse width of 2msec, it would move to +90. Of course, any value

of pulse width between 1ms and 2ms would produce the corresponding

degrees of rotation from the servo motor.

To control the movement of the servo motor, you need to be able to

produce an accurate pulse width at the required frequency of 50Hz.

 Using the CCPM to Produce the Pulse Train
Signal
In this first example of controlling the servo motor, you will continue the

theme of using the CCP module discussed in Chapter 4.

The first thing to do is produce the 50Hz square wave. Chapter 4

explains how you can go about creating a square wave.

To keep the resolution of the rotation good, you’ll use an oscillator

frequency of 125kHz from the internal oscillator block. Therefore, to get a

50Hz frequency from this oscillator use Equation 5-1:

PR
PERIOD OscFreq

TMR Preset
2

4 2
1

2
20 125

4 4
1

2

3 3

=
´

´
-

\ =
´
´

-

\ =

-

PR E E

PR 1155

(Equation 5-1)

This is the closest you can get to 155.25.

You should start off with the minimum pulse width of 1msec, which

should correspond to turning the motor to -90O.

Note that I have chosen a TMR2 preset value of 4 because this will keep

the number required to set the pulse width low. This number is calculated

using Equation 5-2 as follows:

Chapter 5 DC Motors

211

Number MarkTime OscFreq
TMR

Number E E

Numbe

=
´

\ =
´

\

-

2

1 125

4

3 3

Preset

rr = 31 25.

(Equation 5-2)

Since this has to be converted into a 10-bit binary number, the value is

rounded down to 31. In 10-bit binary, the number is 0b0000011111. This

means that both Bit5 and Bit4 of the CCP1CON register must be set to logic

1 and the CCPRl1 register must be loaded with 0b00000111.

Using this concept, if you make the pulse width 1.5msec, the servo

motor should be in the middle of its travel, which is 0O. To achieve a pulse

width of 1.5msec, the number is 47 in decimal, which is 101111 in binary.

This means Bit4 and Bit5 of the CCP1CON register must be set to logic 1

and 00001011 must be loaded into the CCPR1L register.

Figure 5-2 from PROTEUS shows the result of these settings.

Figure 5-2. The result of the 1.5msec pulse

Chapter 5 DC Motors

212

 Controlling the Positions of the Servo Motor
with a Variable Resistor
In this project, the position of the servo will be controlled via a

potentiometer. This means the program will make use of one analog input,

such as RA0, to take in the input from the potentiometer.

It will use the CCP1 output to output the 50Hz square wave and use

the PWM module to vary the on pulse width from 1msec to 2msec and so

control the position of the motor.

The program listing is shown in Listing 5-2.

Listing 5-2. Controlling the Servo Motor with a Variable Voltage

 1. #include <xc.h>

 2. #include <math.h>

 3. #include <conFigInternalOscNoWDTNoLVP.h>

 4. //some variables

 5. unsigned char n, button;

 6. //some subroutines

 7. void changeAngle ()

 8. {

 9. ADCON0bits.GODONE = 1;

10. while (ADCON0bits.GODONE);

11. CCPR1L = (7+round(ADRESH * 0.0314));

12. }

13. void main ()

14. {

15. PORTA = 0;

16. PORTB = 0;

17. PORTC = 0;

18. TRISA = 0xFF;

19. TRISB = 0;

Chapter 5 DC Motors

213

20. TRISC = 0;

21. ADCON0 = 0X01;

22. ADCON1 = 0X0E;

23. ADCON2 = 0B00100000;

24. OSCTUNE = 0;

25. OSCCON = 0x14;

26. T0CON = 0xC1;

27. T2CON = 0x05;

28. PR2 = 156;

29. CCP1CON = 0b00111100;

30. CCPR1L = 0x0E;

31. while (1)

32. {

33. changeAngle ();

34. }

35. }

The main working part of the program is the subroutine changeAngle.

The main program simply calls this subroutine.

The width of the mark time of the 50Hz square wave is controlled via

the value in the CCPR1L register. The value that the CCPR1L register needs

to produce the minimum pulse of width of 1ms is 0b00000111, which is

7 in decimal. This value can be extended to 0b00001111, which is 15 in

decimal, to produce the maximum pulse width of 2ms. This means that to

start off with the minimum pulse width of 1ms, the CCPR1L must have the

starting value of 7. Then, to get to the maximum pulse width of 2ms, the

value in the CCPR1L should be increased by 8 to get to 15. This increase of

8 must come from the ADRESH. As the ADRESH changes from 0 to 255, in

decimal, the potentiometer is moved from 0 to maximum. Dividing 8 by

255 gives the multiplying factor of 0.03137, hence the value used is 0.0314.

It is the instruction on line 11 that performs the function.

Chapter 5 DC Motors

214

As an example of how this works, when the potentiometer is at 0V, the

result of the ADC, stored in ADRESH, will be 0. Therefore, 7 + (0 x 0.0314) = 7.

This creates a pulse width of 1ms.

When the potentiometer is at 5V, the ADRESH will go to 255. Therefore,

you have 7 + (255 x 0.0314) = 7 + 8.007 = 15. The 0.007 is ignored as the

instruction is making use of the “round” function. However, to use this

“round” function you need to include the math.h header file, as is done in

line 2 in Listing 5-2. This then will create the maximum pulse width of 2ms.

This is how the instruction on line 11, CCPR1L = (7+round(ADRESH *

0.0314));, works.

Again, I hope there is no need to give any further analysis of the

instructions in the listing.

This then will enable the servo motor to move from -90 to +90 as the

variable resistor, or potentiometer, is varied from 0 to its maximum. This

variance of the pulse width is shown in Figures 5-3 and 5-4.

Figure 5-3. The pulse width with 0V at the input

Chapter 5 DC Motors

215

 Improving The Servo Motor Program
The issue with this simple program to control the servo motor is the

definition. The pulse width can only vary by 1ms. With the current

program, it is the value stored in the CCPR1L register that controls

the actual pulse width of the signal. A value of 7 will produce the 1ms

pulse width and this can be increased up to a value of 15 to produce the

maximum 2ms pulse width. This gives a resolution of 125μs. This variation

from 1ms to 2ms or from a value of 7 to a value of 15 could produce a 180O

movement in the motor. This then gives a resolution of 22.5O. Not good

enough really. Also, it would not produce a smooth movement of the

motor.

A good resolution would be 1O. This would mean dividing this

1ms variance into 180 jumps, giving a resolution of 5.5μs. This degree

of resolution, and better, can be achieved by taking a more simplistic

approach to creating the 50Hz square wave and the pulse width. This is

what the following program does.

Figure 5-4. The pulse width with 5V at the input

Chapter 5 DC Motors

216

 The Algorithm for the Improved Program
• The basic concept is to turn an output on (i.e. set it high

for at least 1ms and then keep it low for the remaining

19ms of the 50Hz period).

• The timing of these two periods is controlled by simply

using a counter to count the required clock pulses.

• The program will use the basic timer0 to keep count of

the clock pulses.

• The program will use Bit0 of PORTB to output the

control signal.

• The program will use an analog signal from a variable

voltage inputted to the PIC at bit0 of PORTA. This will

be used to vary the pulse width from 1ms to 2ms. Note

that when the pulse width is at 2ms, there will only be

an 18ms time period for the output to stay low before

starting the signal again.

• The signal starts with timer0 at a value of 0 and with the

output on bit0 of PORTB high. Then 1ms, or up to 2ms,

later the output will go low. The output will stay low for

the remaining 19ms or 18ms, after which the cycle will

repeat.

• The oscillator will be the 8Mhz signal from the internal

oscillator block. This means the clock frequency will

be 2MHz. Timer0 will be set to a divide rate of 2, which

means it will count at a rate of 1Mhz. This means that

each count will have a time span of 1μs. This means

that timer0 will count as follows:

Chapter 5 DC Motors

217

• 1000 to create a 1ms pulse

• 2000 to create a 2ms pulse

• 20000 to create a full 20ms time period

• This means that timer0 will have to be configured as a

16-bit counter, which can count up to 65535, which is

more than enough for this purpose.

• The ADC result will be stored into the ADRESH and

ADRESL registers. You will use the left justification,

which means the ADRESH will store the eight most

significant bits, and the two least significant bits will

be stored in Bit7 and Bit6 of the ADRESL register. You

could keep the programming simple by just using the

ADRESH register as the value for the analogue input.

However, this would mean that the maximum value

would be 255. This would result in a resolution of 0.7O,

which is pretty good but you can do better than that.

The essence of the program is as follows:

• Start timer0 counting from 0.

• At the same time, send Bit0 of PORTB high.

• Then create a variable for a waiting time from between

1ms to 2ms.

• Then send the output low.

• Then create a second variable for a waiting time of

between 19ms to 18ms.

• During that second wait time, read the analog input

value and store it to be used to vary the pulse width.

Chapter 5 DC Motors

218

• Then, after the total 20ms has passed, repeat the cycle

again.

• The various time periods will be created using timer0.

The complete program listing for this improved program is shown in

Listing 5-3.

Listing 5-3. The Improved Program to Control a Servo Motor

 1. /*A Program to control a servo motor

 2. The 50Hz pulse train created with TMR0 16bit

 3. Written by Mr H. H. Ward

 4. For PIC 18f4525 dated 17/04/20*/

 5. #include <xc.h>

 6. #include <math.h>

 7. #include <conFigInternalOscNoWDTNoLVP.h>

 8. #define servoOut PORTBbits.RB0

 9. //some variables

10. unsigned int rotate;

11. //some subroutines

12. void changeAngle ()

13. {

14. ADCON0bits.GODONE = 1;

15. while (ADCON0bits.GODONE);

16. rotate = 1000 +(round (((ADRESH << 2) + (ADRESL >>6)) * 0.95));

17. if (rotate > 1999) rotate = 1999;

18. }

19. void main ()

20. {

21. PORTA = 0;

22. PORTB = 0;

23. PORTC = 0;

Chapter 5 DC Motors

219

24. PORTD = 0;

25. TRISA = 0xFF;

26. TRISB = 0;

27. TRISC = 0;

28. TRISD = 0;

29. ADCON0 = 0X01;

30. ADCON1 = 0X0E;

31. ADCON2 = 0B00100001;

32. OSCTUNE = 0;

33. OSCCON = 0b01110100;

34. T0CON = 0b10000000;

35. rotate = 1000;

36. while (1)

37. {

38. begin: TMR0 = 0;

39. servoOut = 1;

40. while(TMR0 < 2000) if (TMR0 >= rotate)servoOut = 0;

41. while(TMR0 < 18500) changeAngle ();

42. while (TMR0 < 20000);

43. goto begin;

44. }

45. }

There are no real new instructions but I will explain some of the more

important instructions here.

Line 10 unsigned int rotate;

This simply creates a 16-bit register that will store the value that creates

the variable pulse width. It needs to be a 16-bit number since it will store

values greater than 255.

Line 16 rotate = 1000 +(round (((ADRESH << 2) + (ADRESL >>6)) *

0.95));

Chapter 5 DC Motors

220

This instruction is part of the subroutine changeAngle. In this

subroutine, you use the ADC to convert the variable voltage applied to Bit0

of PORTA into a 10-bit binary number. The PIC uses two 8-bit registers to

store this 10-bit result since the PIC18f4525 only uses 8-bit registers. The

two registers are called ADRESH and ADRESL. The letters ADRES stand

for analog digital result, the H stands for high byte, and the L stands for low

byte. This is because a 16-bit number, termed a word, can be split into two

8-bit numbers, termed a byte, which are termed the high byte for the upper

8 bits and the low byte for the lower 8 bits.

You are using left justification, which means the upper 8 bits of the

ADC results are stored in the ADRESH register and the two remaining

lower bits are stored in Bit7 and Bit6 of the ADRESL register, respectively.

You could use just the ADRESH register to obtain the value for the

variable rotate, but this would reduce the resolution to 3.9μs or 0.7O for a

180O swing. However, if you used all 10 bits of the ADC result, you could

achieve a resolution of 1μs or 0.18703O for a 180O swing.

To use all 10 bits, you must move a copy of both the ADRESH and the

ADRESL into a 16-bit variable. The variable you will use is the rotate

variable you created in line 10. However, this means that Bit7 of the

ADRESH must be moved to Bit9 of the rotate variable. This is so that

you can leave Bit0 and Bit1 of this 16-bit variable rotate for the two least

significant bits of the result of the ADC conversion. This actually means

that when you create the copy of the ADRESH in the variable rotate, you

must first shift all the bits of the ADRESH two places to the left. This is

done by including the C instruction << 2, as you do in line 16.

Now you need to add the 8 bits that have been stored in the ADRESL

register. However, the two LSB bits of the ADC result were stored in Bits 7

and 6 of the ADRESL register. In those two positions, the bits will represent

a value of 192, if they were both logic 1s, instead of 3, which is what they

should represent because they would be Bits 1 and 0 of the ADC result.

Chapter 5 DC Motors

221

This means you must move the two bits from Bit7 and Bit6 to Bit1 and Bit0

before you add them to the variable rotate. This is what the instruction >>6

does. It shifts the bits six places to the right.

In this way you make sure that the variable rotate has the actual 10-bit

binary number that is the full result of the ADC conversion in the correct

position in the variable rotate.

However, there is still one issue to deal with. It is the issue that the 10-

bit result can go to a maximum of 1023, not the 1000 that you want. This is

because 10 bits have a value of 210 = 1024. Therefore, to reduce this value,

and also to make sure you don’t create an increase in the pulse width

greater than 1ms, you multiply the result of the addition by 0.95 before

storing the result in the variable rotate. Note the use of brackets to split

the instruction up into its different parts.

I know this is a very wordy description of how this instruction works,

but it is quite a complex instruction. If you read through it a couple of

times, I hope you will be able to follow it.

Line 17 if (rotate > 1999) rotate = 1999;

With this instruction you are trying to be super safe in making sure the

value in rotate does not produce a pulse width that is greater than 2ms.

With this instruction, if the value in the variable rotate exceeds 1999, then

it will be changed to 1999.

Line 35 T0CON = 0b10000000;

This configures the Timer0 as follows:

• Setting Bit7 to a logic 1 turns the timer on.

• Setting Bit6 to a logic 0 makes it a 16-bit register.

• Setting Bit3 to a logic 0 allocates the prescaler, the

divide rate to Timer0.

Chapter 5 DC Motors

222

• Setting Bits 2, 1, and 0 to a logic 0 gives a divide rate of 2.

• Bits 5 and 4 are not really relevant here.

Line 41 while (TMR0 < 2000) if (TMR0 >= rotate) servoOut = 0;

This instruction controls when the signal to the servo goes low. The if

test asks if the value in timer0 is greater than or equal to the value stored

in the variable rotate. You cannot simply ask, is timer equal to rotate?

This will only be true for one instant in time, and the test might miss that

instant.

If the test is true, the micro will set the output on Bit0 of PORTB to a

logic 0. Note the term servoOut means Bit0 of PORTB as defined in line 8.

The while (TMR0 < 2000) (i.e. is timer0 less than 2000?) is needed to

trap the micro at this line until the value in Timer0 becomes greater than

2000. In this way, the micro will continually test if timer0 >= rotate until

the test becomes true. If you didn’t have this while part to line 41, then the

micro would only carry out the if test once and then move on. Not what

you want.

Line 42 while (TMR0 < 18500) changeAngle ();

This traps the micro at this point in the program until the value in

timer0 becomes greater than 18500. The value of 18500 in timer0 equates

to 18500 x 1ms i.e. 18.5ms,

All the micro is asked to do while it is trapped here is call the

subroutine changeAngle. In doing this, the micro will get the up-to-date

position that the servo motor needs to take up. The call to the subroutine

is at this point in the program because the micro is doing nothing while it

waits for the 18.5ms period to complete.

It is important that the micro is not carrying out the instructions of

the changeAngle subroutine when the 20ms time period comes to an end.

This is important because if the micro was carrying out the changeAngle

subroutine at this 20ms time period, then you might go over the 20ms period

Chapter 5 DC Motors

223

and so reduce the frequency of the pulse train. That is why the value for

timer0 stipulated in the while test is 18500 not 20000. This is to ensure that

the micro is not stuck inside the changeAngle subroutine during the last

1.5ms of the 20ms time period. You should appreciate that it will take at least

2.5μs for an ADC conversion to complete and there are other instructions in

the changeAngle subroutine**.

It is not as easy as it was when writing programs in assembler to know

exactly how long a C program instruction takes; therefore leave some

leeway in your timing operations.

Line 42 while (TMR0 < 20000);

This makes the micro do nothing until the final 1.5ms has finished.

This then is the end of the full 20ms period of the 50Hz pulse train. At

the end of this period, the micro is forced to go back to the start of the

sequence, at line 39, using the label begin as stated on line 43.

I downloaded the program using my prototype board to a practical

servo motor. The movement of the motor was very smooth and the

frequency of the pulse train was very stable at 50Hz. The pulse width did

vary smoothly from 1ms to 2ms. Therefore I am much happier with this

improved program than the first program that used the CCP module.

** To understand more of the ADC conversion routine, please read my

first book, C Programming for PIC Microcontrollers.

 Summary
In this chapter, you learned how to control two very useful types of motors,

the stepper motor and the servo motor.

You also studied how the CCP module and the basic timer module can

be used to control a servo motor.

You looked at how you can use some basic math tools in C programs

and how to manipulate the bits of data in 8-bit registers to correctly align

them in a 16-bit register.

Chapter 5 DC Motors

224

Servo motors are widely used in industries with robotics, actuators, etc.

and with hobbyist in remote cars, boats, and airplanes.

I hope this chapter has given you a fundamental appreciation of the two

motors and the basis on which to use them in your own exciting projects.

In the next chapter, you will look at using a very exciting and useful

aspect of all microcontrollers: the use of interrupts. You will also look at

using the compare and capture aspect of the CCP module.

 Solution to the Exercise
Exercise 5-1: The instruction T0CON = 0XC6; will load the SPF register

T0CON with the following binary value:

11000110

This means Bit7 is a logic 1, which simply turns timer 0 on.

Also, Bit6 is a logic 1, which means the timer is an 8-bit timer.

Bit3 is a logic 0, which means the prescaler or divider is applied to timer0.

The last three bits are 110, which means that a divide rate of 128 is

applied to the timer. This means the following:

• Osc = 8Mhz as set by the OSCCON register.

• The clock runs at a quarter of the oscillator, therefore it

runs at 2Mhz.

• Time0 divides this by 128, therefore timer1 runs at

15.625kHz, so one count takes 64μS.

Loading the variable speed with 75 makes the micro wait until Timer0

has counted to a value of 75. As it takes Timer0 64μs to count once, it will

take 75x64E-6 i.e. 4.8ms. This means the delay between switching the coils

will be around 4.8ms. It will take some time for the micro to complete the

instructions in the delay and this will add a bit more to the delay but this

would be very small, in the order of a couple of microseconds.

Chapter 5 DC Motors

225© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_6

CHAPTER 6

Interrupts
In this chapter, you are going to look at interrupts. You will look at the

importance of the fetch and execute cycle and the program counter.

Also, as stated in Chapter 4, you will use the compare aspect of the CCP

module to create a square wave.

After reading this chapter, you will know what the program counter

(PC) is and its importance. You will also learn what interrupts are, what

they can be used for, and how to use them. You will appreciate what the

compare aspect of the CCP module can do.

 What Are Interrupts?
Interrupts are a very useful aspect of a microcontroller. Consider the

situation where a microcontroller is monitoring a fire alarm system and

other everyday tasks such as word processing or email. Hopefully the fire

alarm will not go off. However, if it does, the microcontroller will stop your

word processing and turn on the fire alarms and maybe some sprinklers

and send out a call to the local fire station.

One way of making sure this will happen is for the program to

examine the fire alarm switch to see if it has been pressed. The question

is how often should it examine the switch: once every five minutes, once

a minute, every second? This type of monitoring is termed “software

polling.” However, 99% of the time it is a waste of effort, as hopefully,

https://doi.org/10.1007/978-1-4842-6068-5_6#DOI

226

in this case, the fire alarm has not gone off. Also, there may be a delay

in realizing the fire alarm switch was pressed because it was pressed

between the polling of the switch. It’s not a very efficient method.

This is where interrupts can be used. This is a process whereby

the microcontroller simply lets you carry on with mundane tasks but

if an emergency happens, such as the fire alarm being pressed, the

microcontroller will automatically interrupt the normal sequence of your

program and force the controller to carry out the required action of the

emergency. The monitoring of the fire alarm itself does not need any

program instructions. What to do if the fire alarm goes off is written as a

special type of subroutine called an interrupt service routine, or ISR.

This seems ideal since there is no wasted time polling the switch

and there is no possibility of missing the emergency call. In reality, it is

really a very efficient method of software polling, but, apart from writing

to some SFRs, you don’t have to write it into your program; it happens

automatically. Also, there is no chance of you missing a call.

To appreciate how this concept works, you need to take a brief look at

the fetch and execute cycle of the microcontroller.

 The Fetch and Execute Cycle
All microprocessor systems have to go through this type of cycle every time

they carry out an instruction. The actual approach may vary but in essence

it has to be something along these lines.

 The Program Counter
You have to appreciate that all of the instructions for any program the

micro is doing must be stored in the memory of the system, and the micro

has to know where to go to in this memory to find the next instruction.

Chapter 6 Interrupts

227

For the PIC to run a program, the micro must go to its program

memory area to find the instructions of the program. All the memory

locations in the PIC’s memory have their own address. How then does

the micro know which address in memory it needs to go to so that it

can get the instructions? A special register called the program counter

(PC) does this job. With respect to the PIC18F4525, the PC is a 21-bit

register that is made up of three 8-bit registers. When the PIC is first

turned on, the housekeeping firmware loads the PC with the address

of the first instruction in the program. This relates to the main loop

that all C programs must have. From then on the PC is automatically

incremented in the fetch and execute cycle, so that it is always pointing

to the location in memory where the micro can get the next instruction

in the program.

The fetch and execute cycle goes along following lines:

 1. The micro examines the program counter to find out

where it has to go to in the memory to find the next

instruction. At the start of the program, this is the first

instruction. The micro will then go to that address

and get the instruction. This is the fetch part.

 2. The next step, BEFORE the micro even looks at

the instruction, is to increment the contents of

the PC so that it is always pointing to the memory

location of the next instruction. Note that because

the instruction might be in two parts called the

opcode and the operand, the information in the

next memory location may not be an opcode; it may

be the operand. However, this concept is not too

important for this analysis.

Chapter 6 Interrupts

228

 3. This next step is the important step, and it may

occur as I will describe it now or with some micros it

may occur later in the cycle. However, it must occur

in the fetch and execute cycle. The step is that the

micro will check the interrupt flag. This is a flag that

will be set if an event has occurred that demands the

micro stops what it is doing, whatever it is, and deal

with the emergency that triggered the interrupt flag.

If this interrupt flag is set, the micro goes through

the following steps:

 a. It stores the contents of the PC onto an area in

memory called the stack.

 b. It then goes to a special memory location called

the interrupt vector to find out where it has to go

to carry out the sequence of events to deal with

the emergency that triggered the interrupt flag.

 c. It must then carryout the instructions of the ISR

(the interrupt service routine).

 d. Then, on returning from the ISR, it will reload

the PC with the memory address it stored on

the stack when it started the response to the

interrupt in Step a.

 e. The micro can then complete the fetch and

execute cycle.

 4. If the flag is not set, the micro moves onto Step 5.

Chapter 6 Interrupts

229

 5. The next step in the cycle is to examine the

instruction it has just retrieved from memory. If

the micro needs more info before it can carry out

the instruction, it looks at the contents of the PC

to find out where in memory it must go and goes

there to get the info. This means the cycle goes

back to Step 1 and the micro goes through Steps

2 and 3 as before. This means it must check the

interrupt flag again.

 6. If the instruction does not need any more info, then

the micro can carry out the instruction. This is the

execute part of the cycle. Then the cycle starts back

again at Step 1.

I am not guaranteeing that this is an exact description of the cycle.

Indeed, the whole sequence is a complex procedure and it is not my

intention to explain it in this book. However, it is correct in the essence

of what must happen every time the micro gets an instruction or data

from memory. It is important to realize that the micro must check this

interrupt flag.

In this way, it is a kind of software polling except that the programmer

does not have to write any program instruction to make this happen. It is

done by what is known as the firmware of the PIC.

The benefit of using this approach is that you can never miss an

interrupt call and you don’t have to waste time, and instructions,

continually asking if an interrupt has occurred.

However, what you do have to understand is how to make the PIC

make use of this interrupt flag. I will explain this in the next section.

Chapter 6 Interrupts

230

 The Sources of Interrupts
The PIC18F4525 has a number of different sources that can be used to

trigger this interrupt flag.

• There are external interrupt sources and the

PIC18F4525 has three, which are

• INT0 on Bit0 of PORTB

• INT1 on Bit1 of PORTB

• INT2 on Bit2 of PORTB

• There is also the use of change on PORTB as an

external interrupt; this uses Bits 7, 6, 5, and 4 of PORTB.

• There is a wide range of internal interrupts, known

as peripheral interrupts, which come from a range

of peripheral devices, such as timers, the ADC, the

UART, etc.

In general, there are three bits for each of the different interrupt

sources that are used to control their operation. They are

 1. The enable bit that simply enables the source to

cause an interrupt.

 2. The interrupt flag for that source. This is used to

identify which source caused the interrupt.

 3. The interrupt priority bit. This is used to signify if

this interrupt can interrupt other interrupts that are

already running.

There are 10 registers that are associated with interrupts and you will

look at them as you go through an interrupt exercise.

Chapter 6 Interrupts

231

 The Process for a Simple Interrupt with
No Priorities
The PIC18F4525 can apply two levels of interrupt priorities, which are

simply high or low priorities. To start, you will look at using interrupts

with no priorities. This implies that there is a way of enabling or disabling

the priority interrupts. Indeed, there is and it is Bit7 of the RCON register.

This is called the IPEN (interrupt priority enable) bit. If you reset this bit

to a logic 0, you will have disabled the interrupt priority function of the

PIC. This is what you will do now. You will look at using interrupt priorities

later in this chapter.

The process of an interrupt is as follows:

• A source will set the interrupt flag that is checked in the

fetch and execute cycle.

• The current contents of the PC are stored on the stack.

This is so the micro can find out where it needs to go

back to in the main program when the interrupt service

routine has been completed.

• The PC is then loaded with the address 0X0008 if the

high-priority interrupts are being used or address

0X0018 if there are no high-priority interrupts being

used. These two addresses are termed “interrupt vector

addresses.” In this case, since you are not using priority

interrupts, the PC is loaded with 0X0018.

• The micro then goes to the interrupt vector address

where it loads the PC with the address that is stored

there. This will be the address of the ISR, which, in the

download operation, the housekeeping firmware stores

in that vector.

Chapter 6 Interrupts

232

• The micro can now go to this ISR where it polls the

interrupt flags of the sources that are being used to

determine which source caused the interrupt.

• The micro then carries out the instructions of that

particular interrupt after which it returns back from the

interrupt.

• In doing so, the PC is reloaded with the address from

the stack and the micro can then carry on with the fetch

and execute cycle.

To help explain how this works, let’s write a program that will use two

of the external interrupt sources, those of INT0 on Bit0 of PORTB and INT2

on Bit2 of PORTB, to cause an interrupt.

It will also use a peripheral interrupt source that associated with

timer 2, TMR2.

 Setting Up the PIC to Respond to the Interrupts
Now you can now go about setting up the PIC to respond to the two

external interrupts: INT0, which is the external interrupt connected

to PORTB Bit0, and INT2, which is the external interrupt connected to

PORTB Bit2 and the TMR2 peripheral interrupt.

The first control register you will look at is the INTCON register.

The names of the individual bits of the INTCON are detailed in Table 6-1.

Table 6-1. The INTCON Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF1

Chapter 6 Interrupts

233

The operation of the bits is described as follows:

Bit7, GIE/GIEH (global interrupt enable/global interrupt enable
priority high)

This bit has two uses. The uses for this bit depend upon the setting

of the IPEN bit, which is Bit7 of the RCON register. Don’t worry; it’s not

as confusing as it looks. The IPEN bit is simply the interrupt priority

enable bit. This is a function that can allow an interrupt to be interrupted

by another interrupt that has been given a higher priority than the one

currently running. The programmer can allow this to happen by enabling

the function. This is done by setting this bit, the IPEN bit, to a logic 1. If,

as you will be doing, you set this bit to a logic 0, you won’t enable any

interrupts to have a higher priority.

When the IPEN bit is a logic 0, the action for Bit7 is

• A logic 1 will enable all unmasked interrupts

• A logic 0 will disable all interrupts.

When the IPEN bit is a logic 1, the action for bit 7 is

• A logic 1 will enable all high-priority interrupts.

• A logic 0 will disable all interrupts.

This means that if you are to use any interrupts, external or peripheral,

no priority or use priority, this bit must be set to a logic 1. The term “global”

means it can enable or disable external and or peripheral interrupts.

Bit6, PEIE/GIEL (peripheral interrupt enable/global interrupt low
priority enable)

This bit also has two sets of actions which depend on the setting of the

IPEN bit in the RCON register.

When the IPEN bit is a logic 0, the action for Bit6 is

• A logic 1 will enable all unmasked peripheral

interrupts.

• A logic 0 will disable all peripheral interrupts.

Chapter 6 Interrupts

234

When the IPEN bit is a logic 1, the action for Bit6 is

• A logic 1 will enable all low priority interrupts.

• A logic 0 will disable all the low priority peripheral

interrupts.

Since this program is going to use one of the peripheral interrupts, this

bit must set to a logic 1.

Bit 5, TMR0IE (timer0 overflow interrupt enable bit)
There is an interrupt flag associated with timer0. When timer0 gets to

its maximum value, a further increment will cause it to roll over back to 0;

this is termed “roll over.” When this happens, the TMR0IF, timer0 interrupt

flag, will be set to tell the micro this has happened. To allow this action to

instigate an interrupt, you have to set this Bit5 of the INTCON register.

A logic 1 in Bit5 of the INTCON register will enable this interrupt.

A logic 0 in Bit5 of the INTCON register will disable this interrupt.

However, even though the interrupt action is disabled, the TMR0IF, Bit

2 of this INTCON register, will be set the first time timer0 rolls over. But this

action will not set the interrupt flag, which is checked within the fetch and

execute cycle.

You will not be using this interrupt, so you set this to logic 0.

Bit 4, INT0IE (external INT0 enable bit)
A logic 1 will enable the INT0 interrupt.

A logic 0 will disable the INT0 interrupt.

Therefore, as you are using INT0, this bit must be set to a logic 1.

Bit 3, RBIE (PORTB change interrupt enable bit)
A logic 1 will enable this interrupt.

A logic 0 will disable this interrupt.

Note that this interrupt is activated when one of the inputs on Bit7,

Bit6, Bit5, and Bit4 of PORTB change their logic state.

You will not be using this interrupt, so you set this to logic 0.

Chapter 6 Interrupts

235

Bit 2, TMR0IF (the timer0 interrupt flag)
This is the actual flag that the TMR0 sets when the timer rolls over.

Note this flag has to be cleared or reset (i.e. set back to a logic 0) by the

software program.

A logic 1 indicates that timer0 has rolled over. This bit must be cleared

in software so that the micro can set it again the next time timer0 rolls over.

The programmer can monitor this bit to detect when timer0 rolls

over even if this action is not going to initiate an interrupt. Indeed, the

programmer can monitor most interrupt flags in this fashion.

Bit 1, INT0IF (INT0 external interrupt flag)
This is the actual flag that the INT0 interrupt sets when the INT0

causes an interrupt. In the ISR, you can ask the micro to check this flag to

see if it was INT0 that caused the interrupt.

A logic 1 indicates that an interrupt on INT0 has occurred. This bit

must be cleared in software.

Bit 0, RBIF (PORTB change interrupt flag)
A logic 1 means at least one of Bit7 to Bit4 on PORTB has changed

state. This bit must be cleared in software.

In the ISR, you can ask the micro to check this flag to see if it was a

change of state on PORTB that caused the interrupt.

You should now be able to determine what logic you must write to

each of these bits in the INTCON register.

As you are going to use an interrupt, be it external or peripheral, you

will have to enable all unmasked interrupts and so you must set Bit7 to a

logic 1. Note that the IPEN bit in the RCON register will be set to a logic 0

since you won’t be using any high-priority interrupts.

You will need to enable the peripheral interrupts because you are

using the TMR2 peripheral interrupt. Therefore you must set Bit6 the PEN,

peripheral enable bit, to a logic 1.

You are not using the TMR0 interrupt, so you can set Bit5 to a logic 0.

You are going to use the INT0 interrupt, therefore Bit4 must be set to a

logic 1.

Chapter 6 Interrupts

236

You are not going to the use the change on PORTB interrupt, therefore

Bit3 can be set to a logic 0.

Bits 2, 1, and 0 are actual flags that if they are used, the micro will set.

Therefore at this present time, set them to a logic 0.

This means that the 8-bit number for the INTCON register will be as

shown in Table 6-2.

The instruction to do this is

INTCON = 0b11010000;

This enables all global interrupts and peripheral interrupts. It also

enables the INT0 interrupt.

You now need to enable the other two interrupts, the INT2 and TMR2

match interrupts. The control register that controls the INT2 external

interrupt is INTCON3. INTCON1 and INTCON2 control other interrupts

that you are not using. Therefore, these two control registers can be left at

their default settings of zero.

The names of the bits of the INTCON3 8-bit register are shown in

Table 6-3.

Table 6-3. The TNTCON3 Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

INT2IP INT1IP Not Used INT2IE INT1IE Not Used INT2IF INT1IF

Table 6-2. The Data to Be Written to INTCON Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF1

1 1 0 1 0 0 0 0

Chapter 6 Interrupts

237

As you are not using any interrupt priority, Bits 7 and 6 can be set to

logic 0.

As you are using the external interrupt INT2, Bit4 must be set to a logic

1 since this is INT2IE (interrupt 2 interrupt enable bit).

As you are not using INT1, Bit3 must be set to a logic 0.

Note that Bits 1 and 0 are flags or signals to the program that the

appropriate interrupt has occurred. Therefore, at this point in time, they

will be set to a logic 0.

Therefore, the 8-bit number that has to be written to this control

register is 0b00010000. This is done with the following instruction:

INTCON3 = 0b00010000;

Just as a point of interest, I’ll explain why we use the term “flag.” This is

because in the United States and some other countries, people sometimes

have boxes at their garden gate where they get mail. To signify to the

mailman that there is mail in the box that needs posting, the owner flips

up a flag-shaped lever on the side of the can. This is seen as a logic 1. The

mailman will get the post and flip the flag down, a logic 0. If there is no

outgoing mail, this flag will be left down. Hence we use the term flag to

represent a signal source.

 The PIE1 Register
This is the peripheral interrupt enable 1 register. It is an 8-bit register

that allows us to enable some of the peripheral interrupts; the TMR2

interrupt is one of them. There are so many peripheral interrupts that the

PIC18F4525 has two PIE registers. The names of the bits of the PIE1 are

shown in Table 6-4.

Table 6-4. The PIE1 Register

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PSPIE1 ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

Chapter 6 Interrupts

238

The 8 bits control the PIC in the following manner:

Bit7, PSPIE (parallel slave port read/write interrupt enable bit)
1 = Enables the PSP read/write interrupt

0 = Disables the PSP read/write interrupt

Bit6, ADIE (A/D converter interrupt enable bit)
1 = Enables the A/D interrupt

0 = Disables the A/D interrupt

Bit5, RCIE (EUSART receive interrupt enable bit)
1 = Enables the EUSART receive interrupt

0 = Disables the EUSART receive interrupt

Bit4, TXIE (EUSART transmit interrupt enable bit)
1 = Enables the EUSART transmit interrupt

0 = Disables the EUSART transmit interrupt

Bit3, SSPIE (master synchronous serial port interrupt enable bit)
1 = Enables the MSSP interrupt

0 = Disables the MSSP interrupt

Bit2, CCP1IE (CCP1 interrupt enable bit)
1 = Enables the CCP1 interrupt

0 = Disables the CCP1 interrupt

Bit1, TMR2IE (TMR2 to PR2 match interrupt enable bit)
1 = Enables the TMR2 to PR2 match interrupt

0 = Disables the TMR2 to PR2 match interrupt

Bit0, TMR1IE (TMR1 overflow interrupt enable bit)
1 = Enables the TMR1 overflow interrupt

0 = Disables the TMR1 overflow interrupt

Since you want to use the TMR2 interrupt, you must set Bit1 to a logic 1.

All of the other bits can be set to a logic 0.

Therefore, the data to be written to the PEI1 control register is

0b00000010. This is done with the following instruction:

PEI1 = 0b00000010;

Chapter 6 Interrupts

239

 The Algorithm for the Interrupt Test Program
The main section of the program will either turn off all LEDs on PORTC

if Bit4 of PORTB is momentarily pressed or turn on LEDs 1 and 2 of

PORTC if Bit5 of PORTB is momentarily pressed.

The three interrupts will force the PIC to do the following:

• Light up the first four LEDs connected to Bits 0, 1, 2,

and 3 of PORTC. This will happen if the INT0 external

interrupt is activated. This will happen when Bit0 of

PORTB is momentarily pressed.

• Light up the three LEDs connected to Bits 2, 3, and 5 of

PORTC. This will happen if the INT2 external interrupt

is activated. This will happen when Bit2 of PORTB is

momentarily pressed.

• The LED connected to Bit0 of PORTD will light up the

first time the value in timer2 matches the value in the

PR2 register.

• The next time the value in timer2 matches the value in

the PR2 register, the LED will turn off.

• From then on, the LED will continue to turn on and

turn off when the value in timer 2 matches the value

in the PR2 register. This is the action of the TMR2

match interrupt. Every time the value in timer2

matches the value in the PR2 register, the TMR2

match interrupt will occur.

Chapter 6 Interrupts

240

 Compiler Software Version Issue
There is an issue I have come across when using interrupts. There seems

to be a problem of which compiler version to use with interrupts. I have

noticed that the later versions of the XC8 compiler seem to have a problem

with keyword Interrupt. However, I don’t have this problem when I use

version 1.35. Therefore, to ensure the program compiles correctly, you

should select version 1.35 when asked to select the compiler in the project

creation process. If you have already created your project, you can change

the compiler program by holding the right mouse button on the name

of the project in the project tree. A flyout menu will appear, so select the

properties option that appears at the bottom of the menu. You will see the

window shown in Figure 6-1. You can now change the complier software

to the earlier version 1.35, as I have done. The program will now compile

correctly.

Figure 6-1. The Project Properties window

Chapter 6 Interrupts

241

This is a very strange issue. I have tried to find a solution on the

Internet but I have found nothing that makes sense of this. What is even

stranger is that if you now change the compiler back to the version 2.10,

the program will compile correctly. I think this is another example of

change is not always for the best. I do prefer using the XC8 compiler version

1.35 for my projects.

The complete code for this program that tests the operation of these

three interrupts is shown in Listing 6-1.

Listing 6-1. The Code for the Three Interrupt Sources

 1. /*This is simple program to investigate interrupts

 2. It uses three interrupt sources which are

 3. INT0 and INT2 two external interrupts

 4. TMR2 match interrupt an internal peripheral interrupt

 5. INT0 and INT2 will effect the display on PORTC

 6. The TMR2 match will effect bit0 on PORTD

 7. The program is written for the PIC 18F4525

 8. Written by H H Ward Dated 07/06/15

 9. */

10. #include <xc.h>

11. #include <conFigInternalOscNoWDTNoLVP.h>

12. #include <PICSetUp.h>

13. void interrupt ISR ()

14. {

15. if (INTCONbits.INT0IF == 1)

16. {

17. INTCONbits.INT0IF= 0;

18. PORTC = 0x0F;

19. }

20. else if(INTCON3bits.INT2IF == 1)

21. {

Chapter 6 Interrupts

242

22. INTCON3bits.INT2IF= 0;

23. PORTC = 0x2C;

24. }

25. else if (PIR1bits.TMR2IF == 1)

26. {

27. PIR1bits.TMR2IF = 0;

28. if (PORTDbits.RD0 == 0) PORTDbits.RD0 = 1;

29. else PORTDbits.RD0 = 0;

30. }

31. }

32. main ()

33. {

34. initialise ();

35. TRISBbits.RB0 = 1;

36. TRISBbits.RB2 = 1;

37. TRISBbits.RB4 = 1;

38. TRISBbits.RB5 = 1;

39. TRISD = 0;

40. INTCON = 0b11010000;

41. INTCON2 = 0b0000000;

42. INTCON3 = 0b00010000;

43. PIE1 = 0b00000010;

44. RCONbits.IPEN = 0;

45. OSCCON = 0b00010100;

46. T2CON = 0b00000111;

47. PR2 = 250;

48. PORTC = 0;

49. while (1)

50. {

51. if (PORTBbits.RB4 == 1) PORTC = 0;

Chapter 6 Interrupts

243

52. else if (PORTBbits.RB5 == 1) PORTC = 6;

53. }

54. }

 The Analysis of Listing 6-1
Lines 1 to 9 are simply my comments for this program.

Line 10 #include <xc.h>

This is the main include file.

Line 11 #include <conFigInternalOscNoWDTNoLVP.h>

This is the header file you created before.

Line 12 #include <PICSetUp.h>

This is the header file you created before. However, there are certain

aspects you will have to change. They are changed later in the program.

Line 13 void interrupt ISR ()

This is the first step in creating a special subroutine. It is termed the

interrupt service routine ISR. That is why you have the keyword interrupt

after the keyword void. When the IDE loads the program down to the

PIC, the firmware will load the interrupt vector address 0X0018 with the

memory location of where the first instruction of this ISR can be found in

the PIC’s program memory.

The keyword void means that the ISR will not be sending any data

back to the main program.

Line 14 {

This is simply the opening curly bracket of the ISR.

Line 15 if (INTCONbits.INT0IF == 1)

Chapter 6 Interrupts

244

There are three possible interrupt sources that may have set the

interrupt flag that was checked during the fetch and execute cycle. The first

thing you must do in the ISR is determine which interrupt source caused

the interrupt. You do this by testing each of the interrupt flags that belong

to the sources. This uses the if this, then do that, else do something else test.

In this case, check the next interrupt flag. In line 15, you check to see if the

INT0IF (INT0 interrupt flag, that is Bit1 of the INTCON register) has been

set. If it has, this means that it was the external interrupt INT0 that caused

the interrupt. If it isn’t set, then you must check the other interrupt flags.

Line 16 {

Since there is more than one instruction to carry out with this test, you

have to envelope the instructions inside a set of curly brackets. This is the

opening curly bracket for the instructions associated with INT0.

 Line 17 INTCONbits.INT0IF = 0;

This will turn the INT0 Interrupt Flag off. This must be the first thing

you do or the INT0 interrupt will continue to cause an interrupt even

though Bit0 of PORTB has gone back to a logic 0. Note you would have let

go of the momentary switch connected to Bit0 of PORTB by now.

Line 18 PORTC = 0x0F;

This is what should happen if the INT0 interrupt is made to happen.

The first four bits on PORTC should go to a logic 1 and the remaining bits

go to a logic 0.

Line 19 }

This is the closing curly bracket of the first if, the test for the INT0

interrupt. If it was INT0 that caused the interrupt, then the micro will

ignore all the other instructions in the ISR and return back to the main

program from here.

Line 20 else if (INTCON3bits.INT2IF == 1)

Chapter 6 Interrupts

245

This is the else part of the first if test. If the test on line 15 was untrue,

then the micro will carry out this test. This tests to see if the INT2IF is set.

This would mean that the INT2 caused the interrupt.

Line 21 {

Again, this test is a multiple-line instruction and so the instructions

are enclosed in a set of curly brackets. This is the opening curly bracket

for this test.

Line 22 INTCON3bits.INT2IF = 0;

Again, you must turn off the interrupt flag that caused the interrupt so

that it doesn’t continually cause an interrupt. In this, case it was INT2 that

caused the interrupt so set its flag, IN2IF, to a logic 0.

Line 23 PORTC = 0x2C;

This is what should happen if the INT2 interrupt is made to happen.

Line 24 }

This is the closing curly bracket of the second if, the test for the INT2

interrupt.

Line 25 else if (PIR1bits.TMR2IF == 1)

Here you are checking to see if it was the third source that caused

the interrupt. This is the TMR2 interrupt, which is an internal peripheral

interrupt. This does not require any action from the user of the program.

This interrupt will happen automatically every time the value in timer2

matches the value stored in the PR2 register. This PR2 register is a special

register that is used in conjunction with timer2.

Line 26 {

Chapter 6 Interrupts

246

This is the opening curly bracket for this if test.

Line 27 PIR1bits.TMR2IF = 0;

Again, the first thing you must do is turn off the TMR2 interrupt flag.

Line 28 if (PORTDbits.RD0 == 0) PORTDbits.RD0 = 1;

Here you are creating an if test that tests to see if Bit0 of PORTD is at a

logic 0. If it is a logic 0, then set it to a logic 1. Note that this is a single-line

if test, so you don’t need the curly brackets.

Line 29 else PORTDbits.RD0 = 0;

This is what the PIC must carry out if the test on line 28 was untrue

(i.e. if Bit0 of PORTD was actually at a logic 1, then reset the bit to logic 0).

Note that because you are using the if this, then do this, else do that type

of function with lines 28 and 29, if the test on line 28 was true, the micro

would simply skip this else instruction on line 29. The micro would only

carry out the instruction on line 29 if the test on line 28 was untrue.

This is the difference between this type of instruction and simply

listing a series of if test after if test. With the if test after if test, the micro

must look at each if test whether or not the pervious test was true. This is

a very subtle difference, but an important one.

In this way, lines 28 and 29 will make the logic on Bit0 of PORTD

alternate between logic 1 and logic 0 every time the TMR2 interrupt

happens. In this way, you make an LED connected to this bit flash at a rate

controlled by timer2 and the value stored in the PR2 register.

Line 30 }

This is the closing curly bracket of the third if test.

Line 31 }

Chapter 6 Interrupts

247

This is the closing bracket of the ISR.

Line 32 void main ()

This is the creation of the main loop.

Line 33 {

This is the opening curly bracket of the main loop.

Line 34 initialise ();

This is a subroutine call to force the PIC to go to the subroutine called

initialise. This subroutine is in the file you created in the PICSetup.h

header file and it will set up the PIC as you normally want it.

Line 35 TRISBbits.RB0 = 1;

To understand this line, you must remember that in the PICSetup.h

header file you made all the bits in PORTB outputs. However, in this

program you will need Bits 0, 1, 4, and 5 to be inputs. Therefore, you must

change those bits in the TRISB to a logic 1. This is what this instruction

does to Bit0 in TRISB.

Line 36, 37, and 38 do the same but for Bits 1, 4, and 5.

Line 39 TRISD = 0;

Here you are setting all the bits in TRISD to a logic 0. This makes all the

bits on PORTD outputs. You need this because you will connect at least

one LED to Bit0 of PORTD. Again, you should recall that in the PICSetup.h

header file you set PORTD to all inputs.

Line 40 INTCON = 0b11010000;

This turns on all global and peripheral interrupts and enables the

INT0 interrupt.

Line 41 INTCON2 = 0b00000000;

Chapter 6 Interrupts

248

You are not using any interrupts associated with this control register.

Note that you don’t really need this instruction as it defaults to zero.

Line 42 INTCON3 = 0b00010000;

This enables the INT2 interrupt.

Line 43 PEI1 = 0b00000010;

This enables the TMR2 peripheral interrupt.

Line 44 RCONbits.IPEN = 0;

This disables the interrupt priority facility. You don’t really need this

instruction as the bit defaults to logic 0 at start-up.

Line 45 OSCCON = 0b00010100;

This sets the oscillator frequency to 125kHz and makes it stable.

Line 46 T2CON = 0b00000111;

This turns timer2 on and sets the divide rate at 16. This means timer2

counts at the following frequency:

oscillator = 125kHz

The clock is a quarter of the oscillator (i.e. = 31.25kHz).

timer2 divides this by 16, therefore frequency = 1.953kHz.

This means one tick of timer2 takes 512μs.

Since the PR2 is set to 250, it takes 250x512μs before the LED on

PORTD will come on and a further 250x512μs before it turns off. Therefore,

the LED will flash on for 128ms and off for 128ms.

Note that Bit0 of the T2CON register could be set to a logic 0 and

nothing would change. This is because the T2CON register doesn’t care

what logic is on this bit when selecting the TMR2 Preset to 16. This is

signified by the x on the datasheet.

Line 47 PR2 = 250;

Chapter 6 Interrupts

249

This simply loads 250 into the PR2 register. This is the value timer2

must count up to before it sets the interrupt.

As an exercise, change the value in the PR2 to 125. What do you think

will happen?

Line 48 PORTC = 0;

This simply sets all bits on PORTC to logic 0 and so turns everything

connected to PORTC off.

Line 49 while (1)

This sets up a forever loop to make the micro carry out the instructions

within the curly brackets forever.

Line 50 {

The opening curly bracket for the forever loop.

Line 51 if (PORTBbits.RB4 == 1) PORTC = 0;

This tests to see if the logic on Bit4 of PORTB has gone to a logic 1.

If it has, then it sets all bits on PORTC to logic 0 (i.e. turns everything

connected to PORTC off).

Line 52 else if (PORTBbits.RB5 == 1) PORTC = 6;

If Bit4 of PORTB is not a logic 1, then test to see if Bit5 of PORTB has

gone to a logic 1. If it has, load PORTC with the value 6. This will turn on

Bits 1 and 2 of PORTC. Note, if the test on line 51 is true, then the micro

will skip this instruction on line 52. The micro will only carry out this

instruction if the test on line 51 is untrue.

Line 53 }

This is the closing bracket of the forever loop.

 Line 54 }

Chapter 6 Interrupts

250

This is the closing bracket of the main loop.

When you run this program, you should see that an LED on Bit0 of

PORTD will continually flash at a frequency of 3.9Hz. This frequency is

controlled by the value in the PR2 register. You should appreciate that

there is nothing in the main loop of the program that makes this happen,

apart from loading the PR2 with the value 250. This happens purely

because of the peripheral interrupt of TMR2 match with the PR2.

A simulation of the program is shown in Figure 6-2.

exercise 6.1

If Bit6 of the IntCOn register was set to a logic 0, explain what would
change and why it would change.

explain how you could keep the logic at Bit6 of the IntCOn register a
logic 1, but still achieve the same result.

Figure 6-2. Simulation of the program

Chapter 6 Interrupts

251

 Using the Compare Function of the
CCP Module
This function links into the use of interrupts. You will use it as the

alternative method of producing a square wave, as mentioned in Chapter 4.

In Chapter 4, you created the square wave using the PWM firmware of the

CCP module in the PIC. This was because you were primarily creating

square waves to use the PWM to set the speed of a DC motor. If all you

want to do was produce a square wave, then perhaps this next method will

be more efficient.

The principle behind this operation is that the compare function of the

CCP compares the value of the CCPRX register with either the TMR1 or

TMR3 registers. Note that these three registers can be used as simple 8-bit

registers or 16-bit registers. To make them into 16-bit registers, they use

two 8-bit registers cascaded together.

exercise 6-2

Briefly explain the advantage of cascading two 8-bit registers
together, like this, to make a 16-bit register.

This means that each of the registers has a low byte (the CCPRXL) and

a high byte (the CCPRXH), both of which can be accessed separately.

You use the x because there is CCPR1 and CCPR2. Note that by writing

CCPR1 and CCPR2 you are addressing the complete 16-bit register. Writing

CCPR1L means you are only addressing the low byte 8-bit register.

Chapter 6 Interrupts

252

With the compare operation the CCPRX is compared with either the

TIMR1 of TIMER3. When the values in the two registers are the same, you

can control what happens to the CCPX pin on the PIC. There are three

possible actions that can happen when the comparison finds a match

between the two registers:

• The CCPX can be driven high.

• The CCPX can be driven low.

• The CCPX can toggle; that is if, it is high, it goes low, or

if it is low, it goes high.

It is the third option that can be used to create a square wave on the

CCPX pin (i.e. on the CCP1 or CCP2 pin).

It is Bit6 and Bit3 of the T3CON register, the control register for timer3,

that allow the programmer to decide which timer register is compared

with the value in the CCPRX register. The two bits control this selection, as

shown in Table 6-5.

For this program, you will set both bits to logic 0. This sets timer1 as the

clock source for both the CCP I/O.

To test this concept, the following program will be created.

Table 6-5. The Control of the Clock Sources for the Capture/Compare

Mode of the CCP Modules

Bit 6 Bit 3 Operation

0 0 timer 1 is the capture/compare clock source for the CCp I/O

0 1 timer 1 is the capture/compare clock source CCp1 I/O

timer 3 is the capture/compare clock source CCp2 I/O

1 0 timer 3 is the capture/compare clock source for the CCp I/O

1 1 timer 3 is the capture/compare clock source for the CCp I/O

Chapter 6 Interrupts

253

 The Algorithm for the Compare Function
• The main program will simply make an LED connected

to Bit0 of PORTB flash at 0.5 seconds on and 0.5

seconds off (i.e. flash with a frequency of 1Hz).

• The CCP module will compare the low byte of the

CCPR1 register with the low byte of the timer1 register

and, when they match, it will toggle the output of the

CCP1 bit on PORTC. This will produce a square wave

output on the CCP1 output. The frequency will be

controlled by the value stored in the CCPR1 register.

• The frequency of square wave is controlled as follows:

• The CCP1 output toggles from low to high when the

value in the timer1 register equals the value stored

in the CCPR1 register. At the same time, the value in

timer1 will be reset to 0.

• The CCP1 output will then toggle from high to low

when the value in timer1 next equals the value in

the CCPR1 register.

• The process will repeat and the CCP1 output will

toggle from low to high when the timer1 equals the

CCPR1 register.

• This means the square wave will have a 50/50 duty

cycle and the periodic time will be twice the time taken

for the value in the timer1 register to equal the value in

the CCPR1 register.

• To appreciate how long it will take for this to happen,

you have to understand the setting of the timer1 control

register T1CON.

Chapter 6 Interrupts

254

• This will be loaded with the value 0b00110001 in line

30 of the program. This makes the timer1 register an

8-bit register with a divide rate of 8. (I made it an 8-bit

register simply because my PROTEUS only supports

8-bit registers.)

• Knowing that the clock runs at a quarter of the

oscillator and the oscillator was set to 8Mhz in the

PICSetup.h header file, the clock will run at 2Mhz.

• As you are using a divide rate of 8, then timer1

will count at a frequency of 250khz (i.e. 2,000,000

divided by 8).

• This means one count will take 4μs as this is the

periodic time for a frequency of 250kHz.

• You will load the CCPR1 register with 250 and so the

mark time and the space time will be 250 x 4μs = 1ms.

This means that the periodic time for the square wave

will be 2ms, which gives a frequency of 500Hz.

• The production of this 500Hz square wave is all done

with the use of the CCP1 interrupt. This interrupt

is triggered when the value in the CCPR1 register is

matched by the value in the timer1 or timer3 register.

You are using the timer1 register. This means you need

to enable the CCP1 interrupt.

The program to test this process is shown in Listing 6-2.

Listing 6-2. The CCP1 Interrupt Program

 1. /* File: variableFreqProg.c

 2. Author: H. H. Ward

 3. Using only 8 bit register therefore use TMR1L, CCPR1L

Chapter 6 Interrupts

255

 4. Created on 01 February 2019, 16:36

 5. */

 6. #include <xc.h>

 7. #include <conFigInternalOscNoWDTNoLVP.h>

 8. #include <PICSetUp.h>

 9. unsigned char n;

10. void interrupt ISR ()

11. {

12. PIR1bits.CCP1IF = 0;

13. if (TMR1L >= CCPR1L) TMR1L = 0;

14. }

15. void delay (unsigned char t)

16. {

17. for (n = 0; n < t; n ++)

18. {

19. TMR0 = 0;

20. while (TMR0 < 255);

21. }

22. }

23. void main ()

24. {

25. initialise ();

26. INTCON = 0XC0;

27. PIE1 = 0X04;

28. TRISC = 0x00;

29. PORTC = 0;

30. T1CON = 0b00110001;

31. TMR0 = 0;

32. CCP1CON = 0b00000010;

33. CCPR1L = 250;

34. while (1)

Chapter 6 Interrupts

256

35. {

36. PORTBbits.RB0 =(PORTBbits.RB0 ^ 1);

37. delay (15);

38. }

39. }

 The Analysis Of Listing 6-2
I hope lines 1 to 9 need no analysis because you have used them before.

Line 10 void interrupt ISR ()

This is creating the interrupt service routine for this program.

Line 11 {

Simply the opening curly bracket for the ISR.

Line 12 PIR1bits.CCP1IF = 0;

This clears the CCP1 interrupt flag. You need to do this now to stop the

CCP1 from continually interrupting the program.

Line 13 if (TMR1L >= CCPR1L) TMR1L = 0;

This line checks to see if the value in the TMR1L register is equal to or

greater than the value on the CCPR1L register. If it is, then reset the value

in the timer1 register back to 0.

The important thing to notice about this is that you are only using the

low byte of the timer1 and the CCPR1 registers, hence the reference to

TMR1L and CCPR1L. Also, you know the two registers will be equal to each

other because that occurrence has caused the interrupt in the first place.

However, you cannot ask if the two registers are equal, or use

if (TMR1L = CCPR1L) TMR1L = 0;

This is because by the time the micro gets to this instruction, the value

in timer1 will be greater than the value in the CCPR1L register.

Chapter 6 Interrupts

257

One last thing I should mention is that you have no need to ask this

question at all, because the match must have happened already since the

interrupt has occurred. This means you could replace this instruction with

TMR1L = 0; and not use the if statement.

However, I wanted to show how and why you could use the >= the

greater than or equal instruction. The program would work in just the

same way. Try it and see.

Line 14 }

This is the closing curly bracket of the ISR.

Lines 15 to 22 create your variable delay subroutine from before.

The majority of the remaining lines you have used before. The new

lines are

Line 26 INTCON = 0XC0;

This sets Bit7 and Bit6 of the INTCON register. This is to enable all

of the global and peripheral interrupts. Note that the CCP1 interrupt is a

peripheral interrupt.

Line 27 PIE1 = 0X04;

This sets Bit2 of the peripheral interrupt enable 1 register. This then

enables the CCP1 interrupt.

Line 32 CCP1CON = 0b00000010;

This puts the CCP module into the compare mode. See Table 4-2 in

Chapter 4.

Line 33 CPR1L = 250;

Chapter 6 Interrupts

258

This loads the CCPR1L register with the value 250 in decimal. It is this

value, linked with the frequency of timer1, that controls the mark and

space and so the frequency of the square wave output on the CCP1 pin.

Line 36 PORTBbits.RB0 =(PORTBbits.RB0 ^ 1);

This is a new instruction. What it does is perform a logical EXOR

operation with Bit0 of PORTB and the logic value 1. The ^ symbol simply

stands for the EXOR logic instruction.

The truth table for the logical EXOR (i.e. Exclusive OR) is shown in

Table 6-6.

This shows that the output F will be a logic 1 if A OR B are a logic 1.

When the logic in both inputs are the same, the output F will be a logic

0. This is really a True OR function, as the output F will only be a logic 1

when either input A OR input B is a logic 1. The OR gate sets the output F

to a logic 1 if A OR B is a logic 1, but also if A AND B are a logic 1. This is

why the OR gate is sometimes called, or should be called, the inclusive OR

since it includes the AND function. Note that EXOR stands for exclusive OR

since it excludes the AND function.

Table 6-6. The Truth Table

for the EXOR Function

B A F

0 0 0

0 1 1

1 0 1

1 1 0

Chapter 6 Interrupts

259

What this means is that if Bit0 of PORTB is a logic 0, then when you

EXOR it with a logic 1, the results is that bit0 goes to a logic 1. However, the

next time you EXOR it with a logic 1, the two would be the same and Bit0 of

PORTB is forced back to a logic 0.

This makes the logic at Bit0 of PORTB simply toggle on and off. It is a

very neat way of toggling an output.

Line 37 delay (15);

This simply calls a 0.5 second delay between each EXOR operation.

These two instructions make the LED at Bit0 of PORTB oscillate on and

off at a frequency of 1 Hz.

A simulation of the program to create the 500Hz square wave is shown

in Figure 6-3.

Figure 6-3. The square wave using the compare function of the
CCP module

Chapter 6 Interrupts

260

 Using Priority Enabled Interrupts
Since the PIC can handle a large number of interrupts in one program,

there may be a time when an interrupt is more important than the one that

is running at present. In this case, the more important interrupt should be

able to safely interrupt the current one and make the micro carry out its

instructions of the ISR and then return to complete the instructions of the

interrupt it overrode.

To enable this to happen, you can give interrupts a level of priority

so that the PIC can say one interrupt is more important than another

interrupt. With the PIC 18F4525, there are only two levels of priority: low

priority and high priority. Other PICs may offer more levels of priority;

indeed, the 32-bit PICs offer up to seven levels of priority.

The high-level interrupt can override a low-priority one but a low-

priority interrupt cannot override a high-priority interrupt. Also, an

interrupt cannot override an interrupt of the same priority. The PIC

18f4525 only has two levels of priority, which is not very extensive, but it is

an attempt to provide a useful application.

To show you what you can do with the priority interrupts with the PIC

18F4525 I have written a program that incorporates a high and low level

interrupt. It will use INT1 as the low priority interrupt and INT2 as the

high priority interrupt. To keep the analysis simple, these will be the only

interrupts used.

 The Algorithm for the High/Low Priority Program
• The first change is to set the IPEN bit, which is Bit7 of

the RCON register. This is needed to enable the priority

function of the interrupts.

• Next, you need to set the priority level for the two

interrupts you are going to use.

Chapter 6 Interrupts

261

• INT1 can be set to either low or high priority. This is

controlled by the INT1IP (interrupt1 interrupt priority

bit), which is Bit6 of the INTCON3 register. To set this to

low priority, you simply set this bit to a logic 0.

• INT2 can be set to either low or high priority. This is

controlled by the INT2IP (interrupt2 interrupt priority

bit), which is Bit7 of the INTCON3 register. To set the

INT2 to high priority, this bit must be set to a logic 1.

• You must enable these two interrupts and their

interrupt enable pins are Bit4 for INT2 and Bit3 for

INT1 of the INTCON3 register. These two bits must be

set to a logic 1 to enable the two external interrupts.

• This means that the data to be written to the INTCON3

register is 0b10011000. This is done using the

instruction INTCON3 = 0b10011000;.

• You also need to enable the global high priority

interrupts, which means Bit7 of the INTCON register

must be set to a logic 1.

• As the IPEN bit is set to a logic 1 and you are using low-

priority interrupts, you need to set Bit6 of the INTCON

register, since now Bit6 is used to enable all low-priority

interrupts.

• This means that the data to be written to the INTCON

register is 0b11000000. This is done using the

instruction INTCON = 0b11000000;.

• Since you are using both high- and low-priority

interrupts, you need to write two interrupt service

routines, one for the high priority and one for the low

priority. Note that the PIC has two vector locations in

Chapter 6 Interrupts

262

the program memory area; this is shown in Figure 6- 4.

The high priority vector is at address 0008h and the

low priority vector address is at 0018h. It is at these

two addresses where the housekeeping software of the

PIC stores the address of the two respective interrupt

service routines. When the PIC is called to go to the

ISR, it goes to the respective vector address to find the

address it needs to load into the program counter for

the respective ISR. These vector locations are shown in

the program memory map in Figure 6-4.

Figure 6-4. The user memory map for the PIC18f4525

Chapter 6 Interrupts

263

Again, because of the uncertainty of the keyword interrupt, you

should use the XC8 v1.35 compiler software when creating the project.

I downloaded this program to my prototype board and it worked

perfectly.

The program for the high and low priority interrupts is shown in

Listing 6-3.

Listing 6-3. The Code For the High/Low Priority Interrupts

 1. /*This is simple program to investigate interrupt high an

low priority

 2. It uses two external interrupt sources which are

 3. INT1 and INT2 two external interrupts

 4. INT1 and INT2 will effect the display on PORTB

 5. The main program simply makes an led on PORTD flash

 6. The program is written for the PIC 18F4525

 7. Written by H H Ward Dated 07/06/15

 8. */

 9. //some include files

10. #include <xc.h>

11. #include <conFigInternalOscNoWDTNoLVP.h>

12. //some variables

13. unsigned char n;

14. //some subroutines

15. void delay (unsigned char t)

16. {

17. for (n = 0; n < t; n ++)

18. {

19. TMR0 = 0;

20. while (TMR0 < 255);

21. }

22. }

Chapter 6 Interrupts

264

23. void interrupt HP_int ()

24. {

25. if (INTCON3bits.INT2IF == 1)

26. {

27. INTCON3bits.INT2IF= 0;

28. PORTC = 0x0F;

29. while (!PORTBbits.RB4);

30. PORTC = 0;

31. }

32. }

33. void interrupt low_priority LP_int ()

34. {

35. INTCON3bits.INT1IF = 0;

36. PORTC = 0x2C;

37. while (!PORTBbits.RB5);

38. PORTC = 8;

39. }

40. void main ()

41. {

42. TRISB = 0xFF;

43. TRISC = 0;

44. TRISD = 0;

45. RCON = 0b10000000;

46. INTCON = 0b11000000;

47. INTCON3 = 0b10011000;

48. ADCON1 = 0x0F;

49. OSCCON = 0b01110100;

50. T0CON = 0b11000111;

51. PORTD = 0;

52. PORTC = 0x01;

53. while (1)

Chapter 6 Interrupts

265

54. {

55. PORTDbits.RD0 = 1;

56. delay (30);

57. PORTDbits.RD0 = 0;

58. delay (30);

59. }

60. }

 Analysis of Listing 6-3
Lines 1 to 9 are just some normal comments about the program. Lines 10

and 11 are the two major include files. I did not include the PICSetUp.h

header file because I want to remind you about some important control

registers.

Lines 15 to 22 set up the usual variable delay subroutine that you have

used before.

Line 23 void interrupt HP_int ()

This is how you set up the high-priority interrupt service routine.

Line 24 {

This is the normal opening curly bracket.

Line 25 if (INTCON3bits.INT2IF == 1)

There is no real need for this instruction since there is only one high-

priority interrupt. I am only adding this instruction to show how you would

accommodate the use of more than one high-priority interrupt.

Line 26 {

Chapter 6 Interrupts

266

This is the normal opening curly bracket of the test in line 25. Again,

this is not really needed in this program.

Line 27 INTCON3bits.INT2IF = 0;

This resets the INT2 interrupt flag back to a logic 0. This is very

important here as with priority interrupts the global interrupt enable bit,

Bit7 of the INTCON register, is not temporarily set to a logic 0, which would

temporarily disable all interrupts. This means that if you left the INT2IF

flag at a logic 1, the PIC would constantly trigger the interrupt service

routine. Try commenting this instruction out by putting two forward

slashes (//) in front of it and see what happens.

Line 28 PORTC = 0X0F;

This just lights up the first four bits on PORTC. This is just something

for the PIC to do in this ISR.

Line 29 while (!PORTBbits.RB4);

This makes the PIC wait until the switch connected to Bit4 of PORTB

goes to a logic 1. This is because while the logic on the bit is a logic 0,

signified by the ! (or NOT) symbol, the PIC will do nothing.

This is just so that the PIC is trapped in this ISR, giving you time

to try to interrupt it with INT1. However, since INT1 is a low-priority

interrupt and INT2 is a high-priority one, INT1 should not be able to

interrupt this ISR.

Line 30 PORTC = 0;

This turns everything connected to PORTC off. This is just to signify

that you have completed the last instruction of this ISR for INT2 and

the PIC can return to the main program or to the interrupt it may have

interrupted.

Line 31 }

Chapter 6 Interrupts

267

The closing bracket of the if test on line 25.

Line 32 }

The closing bracket of the ISR.

Line 33 void interrupt low_interrupt LP_int ()

This is how you set up the low-priority ISR.

Line 34 {

This is the opening curly bracket of the low-priority ISR.

Line 35 INTCON3bits.INT1IF = 0;

This resets the INT1F to logic 0 to prevent it continually triggering the

interrupt. Note also that you have not had to test which interrupt triggered

the ISR since there is only one low-priority interrupt.

Line 36 PORTC = 0x2C;

This turns on anything connected to Bits 5, 3, and 2 of PORTC. Just

something for this ISR to do.

Line 37 while (!PORTBbits.RB4);

This gets the PIC to wait until the switch connected to Bit4 is switched

to a logic 1. This is done to trap the PIC here, giving you time to try to

interrupt the ISR with INT2. Since INT2 is of a higher priority than INT1, it

should interrupt the ISR.

Line 38 PORTC = 8;

This will set Bit3 of PORTC to a logic 1. This is to let you know the PIC

has carried out the last instruction of the low-priority ISR.

Line 39 }

Chapter 6 Interrupts

268

The normal closing bracket of the low priority ISR.

Line 40 void main ()

This sets up the important main loop of the program.

Line 41 {

The opening curly bracket of the main loop.

I have now gone through some setup instructions that are really in

the PICSetUp.h header file. I have done this to remind you that these

instructions are needed for every program and that you may have to tailor

them to the specific program.

Line 42 TRISB = 0XFF;

This sets all the bits in the special function register TRISB to a logic 1.

This sets all bits on PORTB to inputs.

Line 43 TRISC = 0;

This simply sets all the bits in TRISC a logic 0. This then sets all the bits

on PORTC as outputs.

Line 44 TRISD = 0;

This does the same but with TRISD and so sets all bits on PORTD as

outputs.

Liane 45 RCON = 0b10000000;

This sets Bit7 of the RCON register to a logic 1. This is the IPEN bit that

turns on the interrupt priority function of the PIC.

Line 46 INTCON = 0b11000000;

Chapter 6 Interrupts

269

This sets Bit7 and Bit6 to a logic 1. As the IPEN bit is a logic 1, this

enables all high and low priority interrupts.

Line 47 INTCON3 = 0b10011000;

This sets INT2 to high priority, Bit7 is a logic 1. It also sets INT1 to

low priority, Bit6 is a logic 0. It also enables INT2 and INT1; Bit4 and Bit3

respectively are set to logic 1.

Line 48 ADCON1 = 0X0F;

This sets Bits 3, 2, 1, and 0 to a logic 1. This then makes all 13 bits that

could be analog set to digital.

This is required because Bits 0, 1, 2, 3, and 4 of PORTB can be used

as analog but you need them to be digital. You could have loaded the

ADCON1 register with 0X07 but since you are not using the ADC you made

them all digital.

Line 49 OSCCON = 0b01110100;

This sets the internal oscillator to produce a stable 8Mhz frequency.

Line 50 T0CON = 0b11000111;

This turns on timer0, sets it to an 8-bit register, and gives it a maximum

divide rate. In this way timer0 counts at a frequency of 7812.5Hz.

Line 51 PORTC = 0X01;

This just sets bit 0 of PORTC to a logic 1.

The remaining lines of the program just set up a forever loop with Bit0

of PORTD simply flashing one second on and one second off.

Chapter 6 Interrupts

270

 Explanation of How the High/Low Priority
Program Works
The main program just makes Bit0 of PORTD flash on and off. If you

momentarily press the switch on Bit1 of PORTB, you will initiate the INT1

interrupt. The PIC will get the address of the low-priority ISR from the low-

priority vector at location 0018h. The PIC will then go to the low-priority

ISR where it will carry out the instruction to reset the INT1 interrupt flag.

If it didn’t do this, the PIC would continually think the INT1 interrupt

had been caused and you could not move on. This is because, unlike

the situation with non-priority interrupts, the PIC does not turn off all

interrupts by temporarily setting Bit7 of the INTCON register to a logic 0

whenever an interrupt is initiated. This is because with priority interrupts

you need all interrupts to be still enabled so that a higher priority interrupt

can override the current interrupt.

The PIC then carries out the instruction PORTC = 0X2C;. Bit0 of PORTD

will stop flashing as long as the PIC is carrying out the instructions of the

ISR for INT1. This is because the PIC will not be looking at the instructions

in the main program.

The PIC then waits for the user to momentarily press the switch on Bit5

of PORTB. This is to give you time to activate INT2. If you do activate INT2,

then, because it has a higher priority than INT1, the PIC will break out of

the low-priority ISR and go to the high-priority ISR.

The first thing it does after resetting the INT2 interrupt flag, neglecting

the test to see if it was the INT2 interrupt, is to carry out the instruction

PORTC = 0X0F. This will overwrite what was in PORTC. This is so that you

know the PIC is now running the high-priority ISR.

Now the PIC waits for you to momentarily press the switch on Bit4

of PORTB. This is to give you time to try to activate the INT1 interrupt.

However, because INT1 is a low-priority interrupt, it cannot override the

INT2 ISR.

Chapter 6 Interrupts

271

Now when you send Bit4 momentarily to a logic 1, the PIC can move

onto the next instruction in the high-priority ISR. This is where it loads

PORTC with the value 0. This will set all of the bits on PORTC to a logic 0.

Now, if the INT2 had interrupted the low-priority interrupt INT1,

the PIC would have gone back to the instruction on line 37 of if

(!PORTBbits.RB5); where it is waiting for you to momentarily press the

switch connected to Bit5. You should be able to appreciate that the PIC has

gone back to this instruction because Bit0 of PORTD is still not flashing. If

you now momentarily press the switch on Bit5 of PORTB, you should see

Bit0 of PORTD start to flash again.

I hope this analysis helps you to understand how the high and low

priority interrupts on the PIC18f4525 work. The principle is the same for

most PICs. There is a simulation of the program shown in Figure 6-5.

RA0/AN0/C1IN-2

RA1/AN1/C2IN-3

RA2/AN2/C2IN+/VREF-/CVREF4

RA3/AN3/C1IN+/VREF+5

RA4/T0CKI/C1OUT6

RA5/AN4/SS/HLVDIN/C2OUT7

RA6/OSC2/CLKO14

RA7/OSC1/CLKI13

RB0/AN12/FLT0/INT033

RB1/AN10/INT134

RB2/AN8/INT235

RB3/AN9/CCP2A36

RB4/KBI0/AN1137

RB5/KBI1/PGM38

RB6/KBI2/PGC39

RB7/KBI3/PGD40

RC0/T1OSO/T13CKI 15

RC1/T1OSI/CCP2B 16

RC2/CCP1/P1A 17

RC3/SCK/SCL 18

RC4/SDI/SDA 23

RC5/SDO 24

RC6/TX/CK 25

RC7/RX/DT 26

RD0/PSP0 19

RD1/PSP1 20

RD2/PSP2 21

RD3/PSP3 22

RD4/PSP4 27

RD5/PSP5/P1B 28

RD6/PSP6/P1C 29

RD7/PSP7/P1D 30

RE0/RD/AN5 8

RE1/WR/AN6 9

RE2/CS/AN7 10

RE3/MCLR/VPP 1

U1

PIC18F4525

RB4

RB5

R1
1k

R2
1k

R3
1k

R4
1k

INT1
INT2

0
0

0
1

0
0

0
0

1

Figure 6-5. The high and low priority interrupts

Chapter 6 Interrupts

272

 Summary
In this chapter, you learned what interrupts within the microcontroller are

and why you have them. You studied how to set them up and use them.

You learned the difference between high and low priority interrupts and

how to set up the priority interrupts and use them.

You had a brief look at the fetch and execute cycle that all micros

must go through when carrying out an instruction. You also looked at the

important special function register called the program counter.

I hope you have found this chapter useful. In the next chapter, you will

look at the capture aspect of the CCP module and the use of the EEPROM

in the PIC.

Chapter 6 Interrupts

273© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5_7

CHAPTER 7

Frequency
Measurement and
the EEPROM
In this chapter, you are going to look at the final function of the CCP

module. This is the capture module. You will learn what it captures and

how to make use of it.

You will also look at the EEPROM function of the PIC. You will learn

what the EEPROM is and how to use in within the PIC 18F4525.

 Using the Capture Function of the CCP
You have already learned that the CCP is actually three modules within

the PIC. The control register that allows you to select the one of the three

modules you want to use is the CCPXCON register. The X is there because

there are two sets of control registers and two outputs that the CCP

module controls. The X is simply replaced with the numbers 1 or 2 for the

respective module.

https://doi.org/10.1007/978-1-4842-6068-5_7#DOI

274

 Setting the CCP to the Capture Mode
To set the respective CCP module, you will use CCP1, and you will write

the control byte to the respective CCPXCON register. In this example, you

will use the CCP1CON register. Note that it is the four least significant

bits (Bits 3, 2, 1, and 0) that control the operation of the CCP module; see

Table 4-3 in Chapter 4. However, there are four different modes for the

capture function of the CCP. To appreciate why there are four modes and

how to decide which mode to use, here’s an overview of what the capture

mode does and what it can be used for.

 What the CCP Captures in the Capture Mode
In this example, you will use the CCP1 module. If you use CCP2, simply

replace the 1 with a 2.

In the capture mode, the CCP uses the register pair CCPR1H and

CCPR1L, the high byte and low byte, respectively, to form a 16-bit register.

This register can be accessed as the 16-bit CCPR1 register. It can be used to

capture, or record, the current value present in the timer registers, TMR1

or TMR3, at the instant a certain event happens at the CCP1 input. There

are four possible events that will trigger this capture:

• Every time the input goes from high to low, termed a

falling edge

• Every time the input goes from low to high, termed a

rising edge

• Every fourth rising edge

• Every sixteenth rising edge

This is why there are four modes for the capture function of the CCP;

see Table 4-3 in Chapter 4.

Chapter 7 FrequenCy MeasureMent and the eeprOM

275

When a capture is made, the CCP1IF flag will be set (i.e. go to a logic 1)

and this can be used to trigger an interrupt or it can be simply monitored

so that it can be used to signal when a capture has occurred and the

program should go through a process. The program you will be using uses

the latter interpretation since you don’t want to use interrupts. Note that

the CCP1IF must be reset to logic 0 after you have responded to it, so that

the it can be set to a logic 1 the next time the desired event at the input

occurs.

The selection of one of the four modes is controlled by Bits 1 and 0 of

the CCP1CON register as long as Bit2 is set to a logic 1; see Table 4-3 in

Chapter 4.

When using the CCP in this capture mode, you must do the following:

 1. Set the respective CCP pin to input. This is done

by setting the relevant bit in the TRISC register.

However, you should remember that the CCP2 pin

can be set to be on PORTC Bit2 or PORTB Bit3. This

is controlled by the configuration words. So be sure

you set the correct pin to input.

 2. Set the respective timer register to 16-bit.

 3. The timer that is to be used, timer1 or timer3, must

be set in either timer mode or synchronized counter

mode.

The use of the capture mode is best explained with an example. In

this example, you will use the CCP module to determine the frequency

of a square wave inputted to CCP1 on the PIC. You will also use the CCP

module, in PWM mode, to create the square wave. In this way, you will

know what the frequency of the square wave should be and thus be able to

check the accuracy of the process.

Chapter 7 FrequenCy MeasureMent and the eeprOM

276

 The Algorithm for the Frequency
Measurement Program

• You will set the CCP1 module to capture mode. And

you will set it to capture the value at every fourth rising

edge. This means the CCP1CON register must be

loaded with 0b00000110; see Table 4-3 in Chapter 4

• You must set bit2 of PORTC to input since this is the

CCP1 pin. This is done using the TRICbits.RC2 = 1;

instruction.

• The concept behind the program is to monitor the

CCP1IF (i.e. the CCP1 interrupt flag).

• When it goes to a logic 1, load a count value with the

data that has been copied from the timer register into

the CCPR1. This will be count 1.

• Note that you don’t need to enable any interrupts.

This flag will automatically go to a logic 1 when a

capture is made even though you are not using it to

cause a real interrupt (i.e. set the interrupt flag that

is examined during the fetch and execute cycle).

• The CCP1IF flag must be reset to a logic 0 so that it can

signal when the next capture occurs.

• At the next capture, the current value of the timer will

be copied as before into a variable, this time called

count2.

• In this way, the count value between the two events can

be calculated as count value = count2 – count 1.

Chapter 7 FrequenCy MeasureMent and the eeprOM

277

• Depending on how the desired event has been set up

using the CCP1CON register, this count value will be

for 1, 4, or 16 cycles of the wave form inputted to the

PIC. This means you must divide this count value by 1,

4, or 16. In your case, you will divide it by 4.

• Knowing the rate at which the timer counts, this

count value can be converted into a time period by

multiplying the count value by the periodic time for the

timer.

• You will use timer1 to count the time slots.

• You will set timer1 to be a 16-bit register with a divide

rate of 8.

• Since you set the crystal to 8Mhz, as normal, the

clock will run at 2MHz. This means timer1 will

count at 250kHz, making one count equal 4μs.

• Putting this together means that an expression to

determine the frequency, using the label Hertz, as

these are the units for frequency, can be put together as

shown in Equation 7-1.

Hertz

count count E
=

-()´ -

4

2 1 4
6

(Equation 7-1)

The 4 in the numerator is because you will set the

compare to happen after every fourth rising edge of

the signal. This means setting the least four bits of

the CCP1CON register to 0110.

The 4E-6 is there because this is the periodic time of

the timer frequency.

Chapter 7 FrequenCy MeasureMent and the eeprOM

278

The count2 – count1 will produce the value

representing the count between the four cycles of

the input signal.

• This equation will then load the variable Hertz with a

binary number that is the actual frequency of the input

signal.

• However, this presents another problem. How do you

display this binary number as a decimal number you

can read on the LCD display?

• If you fully understand the problem, then you

should understand how you can solve the problem.

 Example Frequency Measurement
To help you understand the problem, consider the measurement of a

500Hz square wave at the input.

You need to appreciate how the value of timer1 will respond to this

input signal. Note it does not really matter what value timer1 has at the

beginning as long as the final value of timer1 does not exceed its maximum

value of 65535.

Therefore, simply to prevent this occurrence, ensure that the value of

timer1 is set back to 0. This will be count1.

Knowing that one tick or count with timer1 takes 4μs, and the periodic

time of the square wave input at 500Hz is 2ms, you can determine what the

value of timer1, after one cycle, will be. This is shown in Equation 7-2.

timer E

E
1

2

4
500

3

6
= =

-

- (Equation 7-2)

Chapter 7 FrequenCy MeasureMent and the eeprOM

279

As the program will recorded the value after four cycles, the value

of timer1 will be 2000. This will be stored in count2. These two values

will become the values stored in count1 and count2. Putting all this into

Equation 7-3 you have

Hertz

E
=

-()´
=-

4

2000 0 4
500

6

(Equation 7-3)

This will be stored as a 16-bit binary number, which is

0b0000000111110100 or 0X01F4.

This example might help you see why you use hexadecimal numbers to

represent binary numbers.

However, the problem now is how to use that binary number, for that is

how the PIC will store this value in the variable Hertz, to produce a display

of 00500Hz on the display.

There is an open source function that can convert this binary number

to the correctly formatted ASCII to be displayed on the LCD. However, I

firmly believe that you should understand how the code you use works.

Also, because the open source function has to be much more versatile, you

can make a subroutine that has much less code in it. Therefore, let’s create

a subroutine that will convert the binary number stored in the variable

Hertz and correctly display it on the LCD. I will explain how it works when

I analyses the program instructions.

To help explain the principle of how the program captures the time

period of the input signal, see the diagram shown in Figure 7-1.

Figure 7-1. The input square wave. The times timer1 value is loaded
into count1 and count2

Chapter 7 FrequenCy MeasureMent and the eeprOM

280

Figure 7-1 should help explain the process. The value represented

by count2 – count1 will be the count value for four cycles of the input

waveform.

 The Program to Measure the 500Hz Square
Wave
The actual program to complete this task is shown in Listing 7-1.

Listing 7-1. The Program Using the binToDec Subroutine

 1. /*

 2. * File: captureProg.c

 3. Author: Hubert Ward

 4. *

 5. Created on 21 April 2020, 12:06

 6. */

 7. #include <xc.h>

 8. #include <conFigInternalOscNoWDTNoLVP.h>

 9. #include <4bitLCDPortb.h>

 10. #include <PICSetUp.h>

 11. #include <math.h>

 12. unsigned int freq, bitres, Hertz, p, ucol,

tensp,hunsp,thoup, count1, count2;

 13. unsigned char tthou, thou, huns, tens, units, ttn, tn, hn,

ten, un, dn;

 14. //some subroutines

 15. void binToDec()

 16. {

 17. tthou = Hertz/10000;

 18. for (ttn = 0; ttn < 10; ttn ++)

 19. {

Chapter 7 FrequenCy MeasureMent and the eeprOM

281

 20. if (tthou == ttn)

 21. {

 22. lcdData = (0x30 + ttn);

 23. lcdOut ();

 24. thoup = (Hertz-(ttn*10000));

 25. }

 26. }

 27. thou = thoup/1000;

 28. for (tn = 0; tn < 10; tn ++)

 29. {

 30. if (thou == tn)

 31. {

 32. lcdData = (0x30 + tn);

 33. lcdOut ();

 34. hunsp = (thoup-(tn*1000));

 35. }

 36. }

 37. huns = hunsp/100;

 38. for (hn = 0; hn < 10; hn ++)

 39. {

 40. if (huns == hn)

 41. {

 42. lcdData = (0x30 + hn);

 43. lcdOut ();

 44. tensp = (hunsp-(hn*100));

 45. }

 46. }

 47. tens = tensp/10;

 48. for (ten = 0; ten <10; ten++)

 49. {

 50. if (tens == ten)

 51. {

Chapter 7 FrequenCy MeasureMent and the eeprOM

282

 52. lcdData = (0x30 + ten);

 53. lcdOut ();

 54. units = (tensp-(ten*10));

 55. }

 56. }

 57. for (un = 0; un <10; un++)

 58. {

 59. if (units == un)

 60. {

 61. lcdData = (0x30 + un);

 62. lcdOut ();

 63. }

 64. }

 65. lcdData = 0xA0;

 66. lcdOut ();

 67. lcdData = 0x48;

 68. lcdOut ();

 69. lcdData = 0x7A;

 70. lcdOut ();

 71. }

 72. void main ()

 73. {

 74. initialise ();

 75. CCP1CON = 0b00000110;

 76. T0CON = 0XC7;

 77. T1CON = 0b10110001;

 78. T2CON = 0X06;

 79. T3CON = 0;

 80. PR2 = 249;

 81. CCP2CON = 0b00111100;

 82. CCPR2L = 0X7D;

 83. TRISCbits.RC2 = 1;

Chapter 7 FrequenCy MeasureMent and the eeprOM

283

 84. setUpTheLCD ();

 85. writeString ("The Frequency is");

 86. while (1)

 87. {

 88. line2 ();

 89. PIR1bits.CCP1IF = 0;

 90. CCPR1 = 0;

 91. TMR1 = 0;

 92. while (!PIR1bits.CCP1IF);

 93. count1 = CCPR1;

 94. PIR1bits.CCP1IF = 0;

 95. while (!PIR1bits.CCP1IF);

 96. count2 = CCPR1;

 97. PIR1bits.CCP1IF = 0;

 98. Hertz = (4/((count2-count1)*0.000004));

 99. binToDec ();

100. }

101. }

 Analysis of Listing 7-1
I should point out that in the header file, 4bitLCDPortb.h, I have now

included the subroutine for the writeString. This is because I would

normally use this subroutine with the LCD. This then means that I have

added the following subroutine to the header file that was described in

Chapter 3; the listing for the writeString subroutine is;

void writeString (const char *words)

{

while (*words)

{

lcdData = *words;

Chapter 7 FrequenCy MeasureMent and the eeprOM

284

lcdOut ();

*words ++;

}

}

Of course you could leave it out of the header file if you whished.

However, if you did that you would need to add it to the program listings

in this chapter as the instructions that write a string to the LCD use this

subroutine. The explanation for how this subroutine works has been given

in Chapter 3.

Lines 1 to 11 are the normal comments and includes.

Line 12 creates the various unsigned integers that are required in the

program. You use unsigned integers since you need full 16-bit registers to

store some of the values.

Line 13 creates some unsigned chars since you will need some simple

8-bit registers to control the loops in the program. If you only need an 8-bit

variable, use chars and not ints because this will save memory.

Line 14 is just a way of splitting up the listing into different sections.

Line 15 creates the subroutine to convert 16-bit binary numbers so that

they can be displayed on the LCD.

Line 16 is the opening curly bracket of the subroutine. To help

understand how this subroutine works, you will look at how the LCD

would display 65535 because this is the highest decimal value the 16-bit

variable Hertz can store. This is made up of five columns: a ten thousand,

a thousand, a hundred, a tens, and a units column. Each column can

hold a value from 0 to 9. This means the LCD display must be split into

these five columns, which can each display the values 0 to 9. What the

subroutine does is look at the ten thousand column first to see what value

it has to display in this column. The program then looks to see what digit it

must display in the next column. It repeats this process until it has finished

with the units column. The program then displays a space followed by the

letters Hz.

Chapter 7 FrequenCy MeasureMent and the eeprOM

285

Line 17 tthou = Hertz/10000;

Here’s an unsigned char variable named tthou. The program will store

the actual ASCII value for the digit, from 0 to 9, which represents how

many tens of thousands there are in the number Hertz. In this case, it’s 6

since the value in Hertz is 65535.

In this instruction you are dividing the value in Hertz by 10000; this

would normally produce 6.5535, which would require a float in C to store

it. However, you are trying to store the result in an unsigned char, which

can only store a whole value or integer. This will make the micro discard

any value after the decimal point. Therefore, tthou stores the value of 6,

which is what you want. If you used the round function that is in included

in the header file math.h, the micro would have rounded the result up to 7

and stored 7 in the variable tthou, which is not what you want.

Line 18 for (ttn = 0; ttn < 10; ttn ++)

This sets up a for do loop, which is controlled by the variable ttn.

What this loop does is determine what digit should be sent to the LCD. The

loop starts off by loading the variable ttn with zero. Then in line 20 it ask if

tthou is the same a ttn, which at this point it isn’t since tthou is 6 and ttn

is 0. If it was the same, the program would have gone on to send this to the

LCD. As tthou was loaded with 6, at line 17, then the micro goes through

the for do loop again. After the fifth loop, the ttn will also be loaded with

6, in line 18. Then, when you ask again is tthou = tnn, at line 20, the answer

would be yes. This means that the micro then goes to line 22 via line 21.

Line 22 lcdData = (0x30 + ttn);

This loads the variable lcdData with the sum of 0x30 and what is in

ttn. The number 0x30 will set the high nibble of the variable lcdData to 3.

This puts you in the third column of the ASCII data sheet. In this column, it

is the low byte that can be used to locate the actual ASCII for the character

you want to display. It starts with the low byte = 0000 for the ASCII for 0,

Chapter 7 FrequenCy MeasureMent and the eeprOM

286

which is 0X30 or 0b00110000 in full 8 bits. It then goes on through to 1001

(i.e. 9 in binary). This means that the ASCII for 9 is 0X39 or 0b00111001 in

8-bit binary. The full ASCII for the ten digits to be displayed in each

column is shown in Table 7-1.

As ttn is 6 (00000110 in binary), the value loaded into lcdData is

00110000 + 00000110 = 00110110 or 0X36.

Line 23 lcdOut ();

This calls the subroutine lcdOut to send the ASCII data in lcdData to

the LCD.

Note that lcdData is a variable created in the 4bitLCDPortb.h header

file for the LCD. The subroutine lcdOut is a subroutine in the same header

file for the LCD.

Line 24 thoup = (Hertz-(ttn*10000));

Table 7-1. The ASCII for Digits 0 to 9

Digit High Nibble (Hex) Low Nibble (Hex)

0 0011 (03) 0000 (00)

1 0011 (03) 0001 (01)

2 0011 (03) 0010 (02)

3 0011 (03) 0011 (03)

4 0011 (03) 0100 (04)

5 0011 (03) 0101 (05)

6 0011 (03) 0110 (06)

7 0011 (03) 0111 (07)

8 0011 (03) 1000 (08)

9 0011 (03) 1001 (09)

Chapter 7 FrequenCy MeasureMent and the eeprOM

287

The variable thoup is an unsigned char that will be passed onto

the next section of the subroutine to determine what the digit for the

thousands column will be. What this instruction does is load the variable,

thoup, with a value that is equal to what is in Hertz – ttn*10000. To

appreciate what this does, you will use the example that Hertz = 65535 and

ttn = 6. That means that the value loaded into thoup = 65535 – 6x10000 =

65535 – 60000. Therefore, thoup = 5535.

What this instruction does is decrease the value that is in Hertz by

the ten thousands that is in Hertz. In this way, the variable that is used

in the next section of the subroutine will just have the correct number of

thousand, hundreds, tens, and units, which is what you want for the next

column on the LCD display. That variable is thoup.

Lines 25 and 26 are just the closing brackets for the if and for do

loops opened on lines 19 and 21.

Lines 27 to 36 do the same process but now for the thousands column.

Lines 37 to 46 do the same process but now for the hundreds.

Lines 47 to 64 do the same but for the tens and units.

These loops ensure that the correct ASCII for the correct digit is

displayed in the correct columns on the LCD display. The only thing I

would like to improve is to not display any unnecessary zeros as in 00500

when displaying 500Hz. It would be good to make this subroutine work

for any format of numbers such as decimal numbers. However, for this

program that is not a requirement and so that is for another program.

Line 65 lcdData = 0xA0;

This loads the variable lcdData with the ASCII for a blank or space.

Line 66 lcdOut ();

This calls the subroutine lcdOut to send the character to the display.

Lines 68 to 70 do the same but for the characters H and z. Line 71

is the closing bracket for the binToDec subroutine. This subroutine will

Chapter 7 FrequenCy MeasureMent and the eeprOM

288

take any 16-bit binary integer and convert it to the correct ASCII in the

correct columns ready to be displayed on the LCD. If you want to deal with

decimal numbers and negative numbers, there is a bit more work to do. I

will do it at some point.

Lines 72 to 75 are fairly straightforward.

Line 75 CCP1CON = 0b00000110;

This sets the CCP1 module into capture mode but also where it is

the fourth rising edge of the input signal on CCP1 that will instigate the

capture. At that occurrence, the value in either timer1 or timer3 will be

copied into the CCPR1 16-bit register.

Line 76 is simply setting up timer0 as you normally do.

Line 77 T1CON = 0b10110001;

This turns timer1 on and sets it to a 16-bit register. It also sets it to

divide the clock by 8, making it count at a rate of 250kHz. This makes the

time for one tick = 4μs.

Line 78 T2CON = = 0X06;

This turns timer2 on and sets the timer preset to 4.

Line 79 T3CON = 0;

This turns timer3 off but more importantly it sets Bits 6 and 3 to logic 0.

This makes timer1 the clock for the CCP modules; see Table 6-3 in Chapter 6.

Line 80 PR2 = 249;

This loads the PR2 register with the value 249. This makes the

frequency of the square wave outputted on CCP2 as 500Hz. This is the

signal that will be measured on the input CCP1.

Line 81 CCP2CON = 0b00111100;

Chapter 7 FrequenCy MeasureMent and the eeprOM

289

This loads the control register for the CCP2 module with 0b00111100.

Bits 3 and 2 set it into PWM mode while Bits 5 and 4 hold the two least

significant bits of the mark time number for a 50/50 duty cycle.

Line 82 CCPR2L = 0X7D;

This loads the low byte of the CCPR2 register with the value 0X7D. This

is the most significant bits of the number to create the 50/50 duty cycle.

Line 83 TRISCbits.RC2 = 1;

This makes sure that this bit is an input. This bit is what the input CCP1

is connected.

Line 89 PIR1Bits.CCP1IF = 0;

The PIR1bits are the peripheral interrupt request 1 bits that could

request an interrupt for the PIC. This instruction makes sure that

the CCP1IF is at a logic 0; if it was a logic 1, you would not be able to

distinguish when the next capture has taken place. Now, when the next

capture takes place, the PIC will automatically set this bit and you can test

for that happening.

Lines 90 and 91 just make sure that the two registers are at zero.

Line 92 while (!PIR1bits.CCP1IF);

This tests to see if the CCP1IF, CCP1 interrupt flag, is still a logic 0. If it

is, the PIC will keep on testing this until the test becomes untrue when the

CCP1IF bit goes to a logic 1. This will indicate that a capture has occurred.

This means that the current value in timer1 has been copied into the

register CCPR1.

Line 93 count1 = CCPR1;

Chapter 7 FrequenCy MeasureMent and the eeprOM

290

This copies the value that has just been copied into the CCPR1 from

timer1 into the variable count1.

Line 94 PIR1Bits.CCP1IF = 0;

This resets this flag back to zero so that you can tell when the next

capture has taken place.

Line 95 while (!PIR1bits.CCP1IF);

This makes the PIC wait for the next capture.

Line 96 count2 = CCPR1;

This copies the second value into count2.

Line 97 PIR1Bits.CCP1IF = 0;

This resets this flag back to zero so that you can tell when the next

capture has taken place.

Line 98 Hertz = (4/((count2-count1)*0.000004));

This loads the variable Hertz with the number that represents the

frequency of the signal inputted on CCP1. Note that this is the square wave

that is created with the CCP2 output. If this calculation produced a decimal

result, any digits after the decimal point would be lost since the variable

Hertz is an unsigned int.

Line 99 binToDec ();

This calls the subroutine that converts the binary number in Hertz to

the correct format to display on the LCD.

Line 100 and 101 simply close the respective brackets.

There is quite a bit to this program as it is quite complicated.

However, I hope that I have described the process well and after maybe

a few readings you will find it useful. Certainly the ability to measure the

frequency of signals can be useful. In speed, control is usual to create a

Chapter 7 FrequenCy MeasureMent and the eeprOM

291

pulse chain that is proportional to the speed of the motor. Therefore, if you

had a program that could determine the frequency of that pulse train, you

could determine the speed of the motor. You could then, using PWM, vary

the voltage applied to the motor to either speed it up or slow it down.

One issue is that this program can only measure frequencies up to

65.535kHz. You could use a 32-bit PIC to try to overcome this but that’s

for another book. You could also use a ready-made function that would

simply allow you to display a floating point value on the LCD but I prefer

to explain to you how the code works. The sprintf(str, "%.2f", dp)

function, which is included in the stdio.h header file, is a function that

will take a variable named dp, which is a float, and display it correctly

on the LCD. This would do the job fine but again it would take up a lot

more memory. Also, since it uses floating point numbers and a lot of

programming, I am not going to explain how it works in this book. I have

written the program, shown in Listing 7-2, that uses this approach and

Figure 7-4 shows the program working. It is entirely up to you which

approach you choose to use. Listing 7-2 does look smaller but a lot of code

will be added with the sprinf function when the program compiles.

Listing 7-2. The Frequency Program Using The sprintf Function.

 1. /*

 2. * File: captureProg.c

 3. Author: Hubert Ward

 4. *

 5. Created on 21 April 2020, 12:06

 6. */

 7. #include <xc.h>

 8. #include <conFigInternalOscNoWDTNoLVP.h>

 9. #include <4bitLCDPortb.h>

10. #include <PICSetUp.h>

11. #include <math.h>

12. #include <stdio.h>

Chapter 7 FrequenCy MeasureMent and the eeprOM

292

13. unsigned int freq, bitres, ucol, tensp,hunsp,thoup, count1,

count2;

14. unsigned char tthou, thou, huns, tens, units, ttn, tn, hn,

ten, un, dn;

15. float Hertz;

16. //some subroutines

17. void displayFreq(float dp)

18. {

19. sprintf(str, "%.2f", dp);

20. writeString(str);

21. writeString(" Hz");

22. }

23. void main ()

24. {

25. initialise ();

26. CCP1CON = 0b00000110;

27. T0CON = 0XC7;

28. T1CON = 0b10110001;

29. T2CON = 0X04;

30. T3CON = 0;

31. PR2 = 15;

32. CCP2CON = 0b00001100;

33. CCPR2L = 0X08;

34. TRISD = 0;

35. TRISCbits.RC2 = 1;

36. setUpTheLCD ();

37. writeString ("The Frequency is");

38. while (1)

39. {

40. line2 ();

41. PIR1bits.CCP1IF = 0;

42. CCPR1 = 0;

Chapter 7 FrequenCy MeasureMent and the eeprOM

293

43. TMR1 = 0;

44. while (!PIR1bits.CCP1IF);

45. count1 = CCPR1;

46. PIR1bits.CCP1IF = 0;

47. while (!PIR1bits.CCP1IF);

48. count2 = CCPR1;

49. PIR1bits.CCP1IF = 0;

50. Hertz = (4/((count2-count1)*0.000004));

51. displayFreq(Hertz);

52. }

53. }

The main difference is that the binToDec subroutine has been

removed. However, the sprintf function and the studio.h header file

have to be added; see line 12. Also, the variable Hertz has been changed to

a float; see line 15. The final difference is that line 53 calls the subroutine

displayFreq with the variable Hertz, which is now a float, being passed up

to the subroutine. It is really up to you which approach you use.

Line 19 sprintf (str, "%.2f", dp);

I thought I should explain what the %.2f in this instruction does. It

simply defines how many decimal places are shown in the display. In this

case, the 2 defines that two decimal places are displayed.

Figures 7-2 and 7-3 are a series of pictures showing the PIC to create

and measure the frequency of some square waves using Listing 7-1.

Chapter 7 FrequenCy MeasureMent and the eeprOM

294

Figure 7-3. The display of a 500Hz square wave

Figure 7-2. The display of a 31.25kHz square wave

Chapter 7 FrequenCy MeasureMent and the eeprOM

295

Both figures show the calculated value of the frequency from the

program and the measured signal from the PIC on the oscilloscope. Both

displays show very similar values. This should indicate that the square

wave generation by the PIC and the frequency measurement by the PIC are

fairly accurate.

Figures 7-4 and 7-5 are a series of pictures showing the PIC to create

and measure the frequency of some square waves using Listing 7-2.

Figure 7-4. The 500Hz measurement using the sprintf function

Chapter 7 FrequenCy MeasureMent and the eeprOM

296

Figure 7-5. The 125kHz measurement using the sprintf function

The two examples do work well. One interesting observation is that the

125kHz-generated signal is not much of a square wave on the oscilloscope.

This is because of the time period in generating the square wave. It may be

a problem with the PIC or the rather inexpensive oscilloscope.

 Using the EEPROM Inside the 18f4525
First, it would be useful to explain what the EEPROM is. The phrase

EEPROM, which is really a set of initials, stands for electrically erasable

programmable read-only memory. It has origins in PROM, which stands

for programmable read-only memory. PROM is where computer designers

stored housekeeping programs such as the BIOS. BIOS stands for basic

input/output system. The users could not modify these programs.

Chapter 7 FrequenCy MeasureMent and the eeprOM

297

However, since designers often needed to modify these programs,

they created erasable PROMs (i.e. EPROMs) so that they could change the

programs stored in the PROM. To erase the EPROM they would have to

expose the chip to ultraviolet light. They could then erase the old program

and update the chip with the new housekeeping programs.

However, as the technology advanced, the method of erasing the

EPROM was improved so that they could be erased by applying the correct

electrical voltages. This gave birth to the EEPROM. However, the idea that

it would be read-only is gone since it can be written to as well as read from,

but the name has stuck.

So how does EEPROM differ from ordinary RAM, or random access

memory, which can also be written to and read from? Well, it is the fact

that all along, from PROM, then EPROM, and now EEPROM, the type

of memory used is what is called non-volatile memory, whereas RAM is

volatile. The difference is that volatile memory loses its contents when the

power is removed whereas non-volatile keeps its contents when the power

is removed. This means that any EEPROM memory can be used to store

any important data that a program does not want to lose even if the power

is removed. This is indeed a useful aspect of the EEPROM.

You must not confuse EEPROM with battery-backed RAM. With this

type of RAM, a battery provides power to the RAM if the main power

source is lost for a period of time.

Some microcontrollers can have an EEPROM device externally

connected to the micro using some serial connection. A common way of

communicating with this external EEPROM is via the SPI module.

The 18f4525, like a lot of PIC micros, has an internal area of its memory

that acts like an EEPROM, in that it is non-volatile memory and you can

write to it and read from it. In this chapter, you are going to discover how to

Chapter 7 FrequenCy MeasureMent and the eeprOM

298

write to and read from the internal EEPROM inside the PIC 18F4525. To do

this, you must use the following registers:

• EECON1

• EECON2

• EEDATA

• EEADR

• EEADRH

The EEADRH register is used to store the high byte of the address

in the EEPROM you want to either write to or read from and the EEADR

register is used to store the low byte.

The EECON1 register uses its 8 bits to control the different aspects of

the EEPROM. The important bits are

• Bit7, the EEPGD bit. This is used to set where the data

being used is stored. A logic 1 in this bit means the

data goes to the normal program memory, whereas

a logic 0 means it will go to the EEPROM. Therefore,

before writing data to the EEPROM, this bit must be set

to a logic 0. I feel I should point out that the program

memory area of the PIC is also non-volatile. This is

evident since the program instructions remain on the

PIC even when the power has been removed. However,

the program may use some data memory to store some

variables. This data memory is volatile memory. With

this EEPGD bit you can decide where the information is

to be written to, the EEPROM area or the program area.

Chapter 7 FrequenCy MeasureMent and the eeprOM

299

• Bit6, the CFGS bit. This is used in a similar fashion to

the EEPGD in that a logic 1 in this bit directs the data to

the configuration memory and a logic 0 directs the data

to the flash program memory or the EEPROM memory.

Since you want to access the EEPROM memory, this bit

also needs to be set to a logic 0.

• Bit5 is not used.

• Bit4 is used to enable an erase operation.

• Bit3 is a signal to let the programmer know there has

been an error with the write operation.

• Bit2 must be set to a logic 1 to enable a write operation.

• Bit1 is used to start the write operation by setting it as

logic 1. This will automatically return to a logic 0 when

the write cycle is complete, so you can use this action to

determine that the write operation has completed.

• Bit0 is used to initiate a read operation. This bit must

be set to a logic 1 when you need to read from the

EEPROM. It needs to be set to a logic 0 in software.

The complete list of the bits in the EECON1 register is shown in

Table 7-2.

Chapter 7 FrequenCy MeasureMent and the eeprOM

300

Table 7-2. The Bits of the Control Register EECON1

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

EEPGD CFGS FREE WRERR WREN WR RD

BIt7 eepGd Flash program or data eeprOM Memory select Bit

Logic 1 means access flash program memory

Logic 0 means access data eeprOM memory

Bit6 CFGs flash program/data eeprOM or configuration select bit

Logic 1 means access the configuration registers

Logic 0 means access flash program or data eeprOM memory

Bit5 not used read as 0

Bit4 Free flash row erase enable bit

Logic 1 means erase the program memory row addressed by

tBLptr

Logic 0 means perform write only

Bit3 Wrerr Flash program/data eeprOM error bit

Logic 1 means a write operation is prematurely terminated

Logic 0 means the write operation has completed

Bit2 Wren flash program/data eeprOM write enable bit

Logic 1 allows write cycles to flash program/data eeprOM

Logic 0 inhibits write cycles to flash program/data eeprOM

Bit1 Wr write control bit

Logic 1 means a data eeprOM erase/write or a program erase/

write cycle

Logic 0 means write cycle to the eeprOM is complete

Bit0 rd read control bit

Logic 1 initiates an eeprOM read

Logic 0 does not initiate an eeprOM read

Chapter 7 FrequenCy MeasureMent and the eeprOM

301

The EECON2 register is used to make sure the user does not write

to the EEPROM accidentally. This is because for a write operation to the

EEPROM to be successful, you must write 0X55 to this register followed

by 0XAA every time you want to write to the EEPROM. If this does not

happen, the write operation will not be successful.

To help explain how this can be done, Listing 7-3 contains a program

that gets the main section of the program to write data to the EEPROM. The

program then reads that data back from the EEPROM and displays it on an

LCD connected to the PIC.

Listing 7-3. The Program to Test Writing to and Reading from the

EEPROM

 1. /*

 2. * File: 18FEepromShort.c

 3. Author: hward

 4. *

 5. Created on 19 October 2017, 17:39

 6. */

 7. #include <xc.h>

 8. #include <conFigInternalOscNoWDTNoLVP.h>

 9. #include <PICSetUp.h>

10. #include <4bitLCDPortb.h>

11. //some definitions

12. #define readEEPROM 0b00000011

13. #define writeEEPROM 0b00000010

14. #define wren 0b00000110

15. #define wrdi 0b00000100

16. #define rdsr 0b00000101

17. #define wrsr 0b00000001

18. #define pe 0b01000010

19. #define se 0b11011000

Chapter 7 FrequenCy MeasureMent and the eeprOM

302

20. #define ce 0b11000111

21. #define rdid 0b10101011

22. #define dpd 0b10111001

23. //some variables

24. unsigned char t;

25. char str[80];

26. unsigned char *seg2Pointer;

27. unsigned char ndata [39], ndatapointer;

28. unsigned char seg2 [39] =

29. {

30. 0x41, //ASCII for 'A'

31. 0x6E, //ASCII for 'n'

32. 0x6E, //ASCII for 'n'

33. 0x2C, //ASCII for ','

34. 0x57, //ASCII foe 'W'

35. 0x61, //ASCII for 'a'

36. 0x72, //ASCII for 'r'

37. 0x64, //ASCII for 'd'

38. 0x32, //ASCII for '2'

39. 0x31, //ASCII for '1'

40. };

41. void main ()

42. {

43. initialise ();

44. setUpTheLCD ();

45. seg2Pointer = seg2;

46. writeString ("Using The EEPROM");

47. line2 ();

48. while (1)

49. {

50. EEADRH = 0x00;

51. EEADR = 0x00;

Chapter 7 FrequenCy MeasureMent and the eeprOM

303

52. EECON1bits.EEPGD = 0;

53. EECON1bits.CFGS = 0;

54. EECON1bits.WREN = 1;

55. for (t = 0; t<10; t++)

56. {

57. EEDATA = *seg2Pointer;

58. EECON2 = 0x55;

59. EECON2 = 0x0AA;

60. EECON1bits.WR = 1;

61. while (EECON1bits.WR);

62. EEADR ++;

63. seg2Pointer ++;

64. }

65. EECON1bits.WREN = 0;

66. EEADRH = 0x00;

67. EEADR = 0x00;

68. for (t = 0; t<10; t++)

69. {

70. EECON1bits.RD = 1;

71. while (EECON1bits.RD);

72. ndata[t] = EEDATA;

73. lcdData = ndata [t];

74. lcdOut ();

75. EEADR ++;

76. }

77. EECON1bits.EEPGD = 1;

78. n = 0x22;

79. PORTC = n;

80. wait: goto wait;

81. }

82. }

Chapter 7 FrequenCy MeasureMent and the eeprOM

304

 Analysis of Listing 7-3
Lines 1 to 9 are the standard type comments and the standard include files.

Line10 #include <4bitLCDPortb.h>

This includes the header file created earlier to use the LCD on the first

four bits of PORTB.

Lines 11 to 22 set up some definitions to create some labels that

represent the commands required to use the EEPROM.

Lines 23 to 27 set up the variables, arrays, and pointers used in the

program.

Line 28 unsigned char seg2 [39] =

This is setting up an array that uses 39 memory locations, with the first

10 locations being loaded now with the values listed between the following

curly brackets.

Line 29 {

This is the opening bracket of the list of values to be stored in the first

10 locations of the array.

Lines 30 to 39 are the 10 values to be loaded into the first 10 locations

in the array. The data is actually the ASCII values for each of the characters

listed after the comment’s forward slashes. In this way the 10 locations

spell out the phrase Ann,Ward21. This will be written the EEPROM

memory by the PIC. It will then read back from the EEPROM by the PIC

and displayed on line 2 of the LCD.

Line 40};

This is the closing bracket of the list of values to be stored in the array. Note

also the semicolon. This indicates that lines 28 to 40 are really an instruction

for the PIC. Note also the comma after each ASCII code in the list.

Line 41 void main ()

Chapter 7 FrequenCy MeasureMent and the eeprOM

305

This sets up the main loop of the program.

Line 42 {

The opening curly bracket of the main loop.

Line 43 initialise ();

This calls the subroutine that is written in the PICSetUp.h header file.

This sets up the PIC in the standard way as before.

Line 44 setUpTheLCD ();

This calls the subroutine to set up the LCD. This subroutine is written

in the 4bitLCDPortb.h header file.

Line 45 seg2pointer = seg2;

This loads the pointer seg2pointer with the address of the first

memory location in the array seg2.

Line 46 writestring ("Using The EEPROM");

This calls the subroutine writestring, which is written in the

4bitLCDPortb.h header file. This instruction sends the characters, written

inside the normal brackets between the quotation marks, to the LCD.

Line 47 line2 ();

This calls the subroutine line2, which sends the cursor to the

beginning of the second line on the LCD screen.

Line 48 while (1)

This sets up the forever loop.

Line 49 {

Chapter 7 FrequenCy MeasureMent and the eeprOM

306

This is the opening curly bracket that contains the instructions that the

PIC must now do forever.

Line 50 EEADRH = 0x00;

This sets the 8 bits in the EEADRH register to 0.

Line 51 EEADR = 0x00;

This sets the 8 bits in the EEADR register to 0.

The EEPROM on the PIC18F4525 has 1024 locations. This requires 10

address lines to address each location. The number of memory address

locations that can be addressed by a number of address lines is set by the

following expression:

 memory locations = 2
n

where n is the number of address lines.

If n was 10, then the number of memory locations that can be

addressed is

 memory locations = =2 1024
10

This means that you need 10 address lines to address the 1024

locations in the EEPROM memory area. Each address line can hold one

bit of data. This means that you need a 10-bit binary number to address

1024 memory locations. Since the PIC18F4525 is an 8-bit micro, it will

take two memory locations to store the 10-bit number to address these

1024 memory locations. The EEADRH stores the two MSB bits of this 10-

bit number. They are stored in Bit0 and Bit1 of the EEADRH register. The

remaining six bits (Bits 2, 3, 4, 5, 6, and 7) are left at logic 0 and are not

used.

The eight lower bits of the address are stored in the EEADR 8-bit

register.

Chapter 7 FrequenCy MeasureMent and the eeprOM

307

This means that the instructions on lines 50 and 51 load the two

registers with address of the first memory location in the EEPROM

memory area (i.e. address 0X0000 in hexadecimal format).

Line 52 EECON1bits.EEPGD = 0;

This sets Bit7 of the EECON1 register to a logic 0.

This tells the micro that the following data is to go to the EEPROM

memory area.

Line 53 EECON1bits.CFGS = 0;

This sets Bit6 of the EECON1 register to a logic 0. This is to make sure

the data does not go to the configuration words.

Line 54 EECON1bits.WREN = 1;

This sets Bit2 of the EECON1 register to a logic 1. This is to enable a

write operation. Note that it does not initiate a write operation.

Line 55 for (t = 0; t<10; t++)

This sets up a for do loop to control the number of times the following

instructions are carried out.

Line 56 {

The opening curly bracket for the for do loop.

Line 57 EEDATA = *seg2Pointer;

The EEDATA is the 8-bit register that holds the data waiting to be

written to the EEPROM memory location specified by the EEADRH

and EEDAR register pair. With this instruction you are making a copy of

the data in the memory location in the seg2 array, as pointed to by the

seg2pointer, into the EEDATA register.

Line 58 EECON2 = 0x55;

Line 59 EECON2 = 0XAA;

Chapter 7 FrequenCy MeasureMent and the eeprOM

308

These two instructions write the data to the EECON2 register in the

specific order to ensure that you, as the programmer, intend to write the

data that is in EEDATA register to the EEPROM. It is a type of security

check, and if it is not done in exactly this way, the data will not be written

to the EEPROM memory.

Line 60 EECON1bits.WR = 1;

This is required to initiate a write operation. The PIC will now write

the data stored in the EEDATA register to the EEPROM memory. When the

write operation is complete, the PIC will automatically reset this bit back to

a logic 0.

Line 61 while (EECON1bits.WR);

This makes the PIC do nothing while the logic on this bit is a logic 1.

Therefore, it waits for the write operation to complete.

Line 62 EEADR ++;

This simply increments the value stored in the EEADR register. This is

the low byte of the address that the EEADRH and EEADR register pair are

holding. This means they will be pointing to the next memory location in

the EEPROM memory. Note that if you want to write more than 256 bytes

of data to the EEPROM, you must manipulate the EEADRH register as well.

Line 63 *seg2pointer ++;

This adds one to the value in the seg2pointer. This means that the

pointer will now be pointing to the next address in the seg2 array.

Line 64 }

This is the closing bracket of the for do loop started in line 55. This

loop is carried out 10 times and it will fill the first 10 memory locations in

the EEPROM memory with the 10 ASCII codes stored in the seg2 array.

Line 65 EECON1bits.WREN = 0;

Chapter 7 FrequenCy MeasureMent and the eeprOM

309

This loads this bit in the EECON1 register with a logic 0. It is used to

disable the write to the EEPROM function since you no longer want to

write data to the EEPROM memory.

Line 66 EEADRH = 0x00;

This is not really needed since you have not changed the value in this

register. It is a just an extra measure.

Line 67 EEADR = 0x00;

This resets the value in this register, which by now has gone to 0X0B

(i.e. 11 in decimal) back to 0. These two instructions make sure the address

that the EEADRH and EEADR registers are pointing to is the first address in

the EEPROM memory.

Line 68 for (t = 0; t<10; t++)

This sets up another for do loop that is executed 10 times.

Line 69 {

The opening curly bracket of the for do loop.

Line 70 EECON1bit.RD = 1;

This starts the operation that gets the PIC to read the data stored in the

address that is pointed to by the contents of the register pair EEADRH and

EEADR.

Line 71 while (EECON1bits.RD);

This makes the PIC do nothing while the logic on the pin EECON1bit.

RD is a logic 1. This pin will stay at a logic 1 until the read operation,

started on line 70, has been completed. When the read completes, the PIC

will automatically reset the logic on this PIN to a logic 0. This then will

allow the PIC to move onto the next instruction.

Chapter 7 FrequenCy MeasureMent and the eeprOM

310

The data that is read from the EEPROM during this read operation is

automatically stored in the EEDATA register.

Line 72 ndata[t] = EEDATA;

This loads the memory location in the ndata array with the value

currently stored in the EEDATA register. The actual memory location in

the array ndata is controlled by the value of the variable t, which starts off

at zero. Note the value for the variable t will increase by one every time

the PIC goes through the for do loop. Each time you go through the loop,

you increment the EEADR register so that when the next read operation is

executed, it is the value in the next memory location in the EEPROM that is

written into the EEDATA register.

Line 73 lcdData = ndata [t];

This loads the variable lcdData with the value stored in the first

location in the array ndata.

Line 74 lcdOut ();

This calls the subroutine lcdOut and sends the value in lcdData to the

LCD.

Line 75 EEADR ++;

This simply increments the value stored in the EEADR register ready

to load the value in the next memory location in the EEPROM in the next

read operation.

Line 76 }

The closing bracket of the for do loop.

Line 77 EECON1bits.EEPGD = 1;

Chapter 7 FrequenCy MeasureMent and the eeprOM

311

This sets the logic on this bit back to a logic 1. This is because you have

finished writing to the EEPROM. This may not be required because if you

don’t use the two security bytes and the write control bits, no data will be

written to the EEPROM or the configuration words; therefore, it must go to

the flash program memory. You could check this by commenting out this

instruction by writing the two forward slashes in front of the text on this

line.

Line 78 n = 0x22;

This loads the variable n with the value 0X22 ready to send this data to

PORTC.

Line 79 PORTC = n;

This loads PORTC with the value stored in the variable n. This is just to

check that you are no longer using the EEPROM.

Line 80 wait: goto wait;

This sets up a label termed wait. Then it gets the PIC to goto this label

wait. There the PIC will find the instruction to make the PIC go to the label

wait. In this way, you get the PIC to constantly go around in this trapped

circle, so the program halts at this point in the program.

This program simply writes data to the EEPROM memory area. The

data comes from an array called seg2. The data is the ASCII characters to

write out the following text: Ann,Ward21.

The program will then read the data from the EEPROM memory and

display it on the second line of the LCD display.

The program then writes the value 0X22 into the variable n and loads

PORTC with that value.

Chapter 7 FrequenCy MeasureMent and the eeprOM

312

 Simulation of the EEPROM Program Using
MPLABX
If you choose the simulator in the select tool window, as shown in Figure 7- 6,

when you create the project, you can run a simulation of the program within

MPLABX. This will allow you to look at the EEPROM memory area and

confirm that the specified data is written to the EEPROM. If you have already

created the project, you can change the tool to simulator by right- clicking the

project name in the project tree and selecting the Properties option from the

bottom of the flyout menu that appears.

Having changed the tool to simulator, you can run the simulation of

the program by clicking the Debug Main Project option in the main menu

bar, as shown in Figure 7-7.

Figure 7-6. The Select Tool window

Chapter 7 FrequenCy MeasureMent and the eeprOM

313

When you click this option, the program should build and show as

a user program running in the output window. You can then select the

Windows option from the main menu bar. Then select the Target Memory

Views from the dropdown menu that appears. Finally, select EE Data

Memory from the flyout menu that appears. Figure 7-8 should help explain

what to do.

When you select this option, the EE data memory will be displayed in a

window at the bottom of the MPLABX screen. This is shown in Figure 7-9.

Figure 7-7. The Debug Main Project option

Figure 7-8. Selecting the EE data memory

Chapter 7 FrequenCy MeasureMent and the eeprOM

314

Figure 7-9. The window showing the data in the EE data memory

You should see that the first 10 memory locations have been filled

with the ASCII characters as the program carries out the instructions. You

should also see a window at the side that shows the actual characters that

the data represents.

Unfortunately you can’t see the LCD display but the simulation does

go a long way to confirming that the program works.

 Summary
In this chapter, you concentrated on two very useful aspects of the PIC:

the capture mode of the CCP module and the EEPROM memory of the

PIC. You learned how to use the capture mode to determine the frequency

of an input signal. In this exercise, you learned how to write your own code

to display a 16-bit binary integer correctly on the LCD screen. You then

considered the use of the sprintf function in the stido.h header file to

display a floating point binary number of the LCD screen.

Chapter 7 FrequenCy MeasureMent and the eeprOM

315

You then looked at what EEPROM is and how to use it to store data

and read that data from it. You also looked at using the simulation within

MPLABX to confirm that your programs work.

This is the last chapter in this, my second book on controlling

the PIC micro. I hope you have found it both interesting and useful.

I will be writing a third book in this series of books and it will look at

communication with the PIC18F4525. Thanks again for reading my

book(s) on the PIC microcontroller.

Chapter 7 FrequenCy MeasureMent and the eeprOM

317© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

 APPENDIX 1

Some Useful
Definitions
Here are some useful definitions. This table covers bit operators:

Operator Description

& AND each bit

| OR each bit (inclusive OR)

^ EXOR each bit (exclusive OR)

<<n Shift left n places

>>n Shift right n places

~ One’s compliment (invert each bit)

https://doi.org/10.1007/978-1-4842-6068-5#DOI

318

Example: If ‘x’ = 1111 1111, then

Operation Result

x & 0X0F 0000 1111

x | OXOF 1111 1111

x^0X0F 1111 0000

x = x<<2 1111 1100

x = x>>4 0000 1111

x = ~x 0000 0000

AppENDiX 1 SOmE USEFUl DEFiNitiONS

319© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

APPENDIX 2

 Mathematical
and Logic Operators
Here are some common operators.

Operator Description

+ Leaves the variable as it was

- Creates the negative of the variable

++ Increments the variable by 1

-- Decrements the variable by 1

* Multiplies the two variables, y = a*b

/ Divides y = a/b

% Used to get the remainder of a division of two variables, m = a%b

< Less than, so (y < a) means is y is less than a

<= Less than or equal to, so (y < =a) means is y is less than or equal to a

> Greater than, so (y > a) means is y is greater than a

>= Greater than or equal to, so (y > =a) means is y is greater than or

equal to a

(continued)

https://doi.org/10.1007/978-1-4842-6068-5#DOI

320

Operator Description

= Makes the variable equal to, so y = 3.

After this, y takes on the value of 3.

! This is the NOT operator. For example if (!PORTBbits.RB0) is a test to

see if the logic on bit0 of PORTB is a logic ‘0’. If it is the test is true.

&& Whole register AND

|| Whole register OR

? This is a test operator. For example, y = (a>0) ? a : -1; This is a test to

see if ‘a’ is greater than 0. If it is then y becomes equal to ‘a’. If it is not

then y = -1.

APPeNDIx 2 MATheMATICAL AND LOGIC OPeRATORs

321© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

APPENDIX 3

 Keywords
Here are some common keywords and what they do.

Keyword What It Does

typedef This allows the programmer to define any phrase to represent an

existing type.

#ifndef This checks to see if a label you want to use has not been defined in

any include files you want to use.

If it has, it does not allow you to define it now. If it hasn’t, you are

allowed to define it now

#define You can define what your label means here.

#endif This denotes the end of your definition after the #ifndef code.

Sizeof This returns the size in number of bytes of a variable.

Global variables are variables that, once declared, can be read from or

written to anywhere from within the program.

https://doi.org/10.1007/978-1-4842-6068-5#DOI

323© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

APPENDIX 4

Data Types
This table shows data types.

Type Size Minimum Value Maximum Value

char 8 bits -128 127

unsigned char 8 bits 0 255

int 16 bits -32,768 32,767

unsigned int 16 bits 0 65,535

short 16 bits -32,768 32,767

unsigned short 16 bits 0 65,535

short long 24 bits -8,388,608 8,388,607

unsigned short long 24 bits 0 16,777,215

long 32 bits -2,147,483,648 2,147.483,647

unsigned long 32 bits 0 4,294,967,295

float 32 bits

https://doi.org/10.1007/978-1-4842-6068-5#DOI

324

This table shows floating point numbers.

Type Size Minimum Exponent Maximum

Exponent

Minimum

Normalized

Maximum

Normalized

float 32 -126 128 2-126 2128

double 32 -126 128 2-126 2128

Appendix 4 dAtA types

325© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

APPENDIX 5

 The ASCII Character
Set
This table shows some of the most useful code from the ASCII character set.

High Nibble 0000

CG.Ram Location

0010 0011 0100 0101 0110 0111

Low Nibble

xxxx

0000

1 0 @ P \ p

xxxx

0001

2 ! 1 A Q a q

xxxx

0010

3 “ 2 B R b r

xxxx

0011

4 # 3 C S c s

xxxx

0100

5 $ 4 D T d t

xxxx

0101

6 % 5 E U e u

(continued)

https://doi.org/10.1007/978-1-4842-6068-5#DOI

326

xxxx

0110

7 & 6 F V f v

xxxx

0111

8 ’ 7 G W g w

xxxx

1000

1 < 8 H X h x

xxxx

1001

2 > 9 I Y i y

xxxx

1010

3 * : J Z j z

xxxx

1011

4 + ; K [k {

xxxx

1100

5 ‘ < L l |

xxxx

1101

6 - = M] m }

xxxx

1110

7 . > N ^ n

xxxx

1111

8 / ? O _ o

AppeNdix 5 THe ASCii CHARACTeR SeT

327© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

APPENDIX 6

 Numbering
Systems Within
Microprocessor-Based
Systems
As will become evident in the study to come, microprocessor-based

systems use the binary number system. This is because the binary number

system can only have one of two digits, either a 0 or a 1. These states are

called logic 0 or logic 1, as in electronic devices. Note also that all of the

logic operations such as AND, OR, NAND, NOR, NOT, and EXOR work

using the binary format. The binary format can be used to mimic the logic

states of TRUE or FALSE precisely, and best of all, they can be represented

by voltage(i.e. 0V for logic 0 and +5V for logic 1).

Therefore, it is essential that the modern engineer gains a full

understanding of the binary number system. This appendix is aimed at

teaching you all you need to know about binary numbers.

https://doi.org/10.1007/978-1-4842-6068-5#DOI

328

 Binary Numbers
Binary numbers are a series of 0s and 1s that represent numbers. With

respect to microprocessor-based systems, the numbers they represent

themselves represent code for instructions and data used within

microprocessor-based programs. We, as humans, cannot easily interpret

binary numbers because we use the deanery number system. The deanery

number system uses the base number 10, which means all the columns we

put our digits in to form numbers are based on powers of 10. For example,

the thousand column is based on 103 and the hundreds column is based

on 102. The tens column is based on 101 and the ones column is based on

100. Try putting 100 in your calculator using the xy button and you will find

it equals 1; in fact, any number raised to the power 0 will equal 1.

 Converting Decimal to Binary
Probably the first step to understanding binary numbers is in creating

them (i.e. converting decimal to binary). There are numerous ways of

doing this but I feel the most straightforward is to repeatedly divide the

decimal number by 2, the base number of binary. This is shown here:

Convert 66 to binary.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

329

Simply keep on dividing the number by 2, putting the answer

underneath as shown, with the remainder to the side. You should note

that all the remainders are either 0 or 1. These digits actually make up the

binary number. Note also that the last division always results in an answer

of 1; we stop there so no more dividing.

To create the binary number, we take the top of the remainders, as

shown, and put it into the least significant bit (LSB), or column, for the

binary number. The other remainder digits follow on, thus making up the

complete seven-digit number.

 Converting from Binary to Decimal
It would be useful to determine if the binary number shown does actually

relate to 66 in decimal. This is done by converting the binary number 1 0

0 0 0 1 0 back into decimal. To do this, you must realize that numbers are

displayed in columns. The columns are based on the base number of the

system used. With binary numbers, the base number is 2, therefore the

columns are based on powers of 2. This is shown in this table:

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

330

Base Number 27 26 25 24 23 22 21 20

Decimal equivalent 128 64 32 16 8 4 2 1

Binary number 1 0 0 0 0 1 0

To complete the conversion, you simply sum all the decimal

equivalents where there is a 1 in the binary column.

In this case, the sum is 64+2 = 66.

Now, let’s convert 127 to binary and check the result.

Base Number 27 26 25 24 23 22 21 20

Decimal equivalent 128 64 32 16 8 4 2 1

Binary number 0 1 1 1 1 1 1 1

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

331

To complete the conversion, simply sum all the decimal equivalents

where there is a 1 in the binary column.

In this case, the sum is 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127.

Now you try it. Convert the following numbers to binary and check

your results by converting back to decimal:

99

255

137

 Adding and Subtracting Binary Numbers
Adding and subtracting numbers is perhaps the most basic operation

we can carry out on numbers. Binary numbers follow the same rules as

decimal, but there are only two allowable digits. Also, computers don’t

actually subtract numbers, as the following will show.

Add the following decimal numbers in 8-bit binary notation and check

your answers:

23 + 21, 35 + 123, 125 + 75

Worked example:

Remember binary numbers have only two digits: 0 or 1.

Add 23 to 21 in 8-bit binary.

Method:

Convert to 8-bit binary and add. Remember the following four rules:

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 0 with 1 to carry

23 in 8 bit binary is

0 0 0 1 0 1 1 1 Note that you must state all 8 bits because it is an 8-bit
binary.

By the same process, 21 in binary is 0 0 0 1 0 1 0 1.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

332

Therefore, the sum is 0 0 0 1 0 1 1 1

+ 0 0 0 1 0 1 0 1

─────────────────
0 0 1 0 1 1 0 0

─────────────────
To check your, answer put the result into the look-up table and then

add the decimal equivalent.

Power 27 26 25 24 23 22 21 20

decimal equivalent 128 64 32 16 8 4 2 1

binary number 0 0 1 0 1 1 0 0

The sum is 32 + 8 + 4 = 44.

 Subtracting Binary Numbers
Microprocessor-based systems actually subtract numbers using a method

which is addition. This involves using the 2’s compliment of a number and

it is best explained by the following example.

Subtract the following decimal numbers using the 8-bit binary 2’s

compliment and check your answers:

128 - 28, 79 - 78, 55 - 5, 251 - 151

Worked example:

Convert the two numbers to binary using the method shown in

previously.

128 in 8-bit binary is 10000000. NOTE that you MUST use ALL 8 bits.
28 in 8-bit binary is 00011100.

Take the 2’s compliment of 00011100 since this is the number that you

are subtracting from 128.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

333

Only create the 2’s compliment of the subtrahend, the number you
are subtracting with.

NOTE that you must use a full 8-bit number, putting an extra 0 in

where needed.

To take the 2’s compliment, first take the compliment and then add

binary 1 to the compliment. The compliment of the binary number is found

by simply flipping all the bits, so a 0 becomes a 1 and a 1 becomes a 0.

The compliment of 00011100 is 1 1 1 0 0 0 1 1.

Add binary 1 + 0 0 0 0 0 0 0 1.

─────────────────
1 1 1 0 0 1 0 0

─────────────────
Now add the 2’s compliment to the first binary number as shown:

1 0 0 0 0 0 0 0

+ 1 1 1 0 0 1 0 0

─────────────────
The result is 0 1 1 0 0 1 0 0.

─────────────────
NOTE THAT THE LAST CARRY INTO THE NINTH DIGIT IS

DISCARDED BECAUSE THERE CAN ONLY BE THE SPECIFIED
NUMBER OF DIGITS, EIGHT IN THIS CASE. Don’t forget that you
added 1 so you should give it back.

The binary result converts to 100 in decimal. This is the correct result.

Check your answers in the usual way.

Note that computers subtract in this method because we can only

create an adder circuit in logic.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

334

 The Hexadecimal Number System
A microprocessor-based system can only recognize data that is in the

binary format. In its most basic form, this means that all data inputted

at the keyboard should be in binary format. This is quite a formidable

concept. Just think if every letter of every word must be inputted as a

binary number. It takes at least four binary digits to represent a letter, so

typing words into a computer would be very difficult indeed. Thankfully,

word processing programs use ASCII characters to represent the letters

you press at the keyboard.

With the type of programs we will be writing into microcomputers

we will actually be typing in two characters to represent the code for the

instructions or data of the programs we will write. If we were to type these

in as binary numbers, it would take 8 binary bits to make each code. This

would be very time-consuming and difficult to avoid errors. To make

things easier, we will use the hexadecimal numbering system. This system

has 16 unique digits: 0 1 2 3 4 5 6 7 8 9.

We cannot use 10 because it uses two digits, a 1 and a 0. Therefore, we

must use six more unique digits. To do this, we use the first six letters of the

alphabet. Therefore, the full 16 digits are

0 1 2 3 5 6 7 8 9 A B C D E F.

Remember, we are going to use the hexadecimal number to represent

binary digits and this revolves round the idea that one hexadecimal digit

represents four binary digits as the four binary bits in decimal go from

0 to 15 (i.e. 16 numbers). Therefore, every 8-bit binary number can be

represented by two hexadecimal digits. This makes typing in the code

for programs much quicker and more secure than using the full binary

numbers that computers use. Note that to accommodate the user typing

inputs as hexadecimal digits, there is a program in the micro’s ROM

to convert the hexadecimal to binary for us. However, we will look at

converting binary to hexadecimal.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

335

Convert the following 8-bit binary numbers to hexadecimal:

10011110, 10101010, 11111111, 11110000, 00001111, and 11001101

Worked example

Method: Split the 8 bits into two 4-bit numbers. Convert each 4-bit into

the decimal equivalent and then look up the hexadecimal for the decimal

equivalent in the look-up table. NOTE: Treat each four binary bits as a
separate binary number.

Convert 1 0 0 1 │ 1 1 1 0

Dec 9 │ 14

Hex 9 │ E

Answer 10011110 in Hex is 9E

In this way, 8-bit binary numbers can be converted into two

hexadecimal digits.

Appendix 6 numbering SyStemS Within microproceSSor-bASed SyStemS

337© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

 APPENDIX 7

The musical notes header file:

/*Definitions for most of the musical notes

 Written by Mr. H. H. Ward dated 14/10/13*/

#define B0 PR2 = 253, CCPR1L = 126

#define C1s PR2 = 226, CCPR1L = 113

#define C1 PR2 = 239, CCPR1L = 119

#define D1 PR2 = 213, CCPR1L = 106

#define D1s PR2 = 201, CCPR1L = 100

#define E1 PR2 = 190, CCPR1L = 95

#define F1 PR2 = 179, CCPR1L = 89

#define F1s PR2 = 167, CCPR1L = 85

#define G1 PR2 = 160, CCPR1L = 80

#define G1s PR2 = 150, CCPR1L = 75

#define A1 PR2 = 142, CCPR1L = 71

#define A1s PR2 = 134, CCPR1L = 67

#define B1 PR2 = 127, CCPR1L = 63

#define C2 PR2 = 119, CCPR1L = 60

#define C2s PR2 = 113, CCPR1L = 56

#define D2 PR2 = 106, CCPR1L = 53

#define D2s PR2 = 100, CCPR1L = 50

#define E2 PR2 = 95, CCPR1L = 47

#define F2 PR2 = 89, CCPR1L = 45

#define F2s PR2 = 85, CCPR1L = 42

#define G2 PR2 = 80, CCPR1L = 40

#define G2s PR2 = 75, CCPR1L = 38

#define A2 PR2 = 71, CCPR1L = 36

https://doi.org/10.1007/978-1-4842-6068-5#DOI

338

#define A2s PR2 = 67, CCPR1L = 34

#define B2 PR2 = 63, CCPR1L = 32

#define C3 PR2 = 60, CCPR1L = 30

#define C3s PR2 = 56, CCPR1L = 28

#define D3 PR2 = 53, CCPR1L = 27

#define D3s PR2 = 50, CCPR1L = 25

#define E3 PR2 = 47, CCPR1L = 24

#define F3 PR2 = 45, CCPR1L = 22

#define F3s PR2 = 42, CCPR1L = 21

#define G3 PR2 = 40, CCPR1L = 20

#define G3s PR2 = 38, CCPR1L = 19

#define A3 PR2 = 35, CCPR1L = 18

#define B3 PR2 = 31, CCPR1L = 16

#define C4 PR2 = 29, CCPR1L = 15

#define C4s PR2 = 28, CCPR1L = 14

#define D4 PR2 = 27, CCPR1L = 13

#define D4s PR2 = 25, CCPR1L = 12

#define E4 PR2 = 24, CCPR1L = 12

#define F4 PR2 = 22, CCPR1L = 11

#define F4s PR2 = 21, CCPR1L = 10

#define G4 PR2 = 20, CCPR1L = 10

#define G4s PR2 = 19, CCPR1L = 9

#define A4 PR2 = 18, CCPR1L = 9

#define A4s PR2 = 17, CCPR1L = 8

#define B4 PR2 = 16, CCPR1L = 8

#define C5 PR2 = 15, CCPR1L = 7

#define C5s PR2 = 14, CCPR1L = 7

#define D5 PR2 = 13, CCPR1L = 7

#define D5s PR2 = 12, CCPR1L = 6

#define E5 PR2 = 11, CCPR1L = 6

Appendix 7

339© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

 APPENDIX 8

The Frequency and
Wavelength of the
Main Musical Notes
Here are the frequencies and wavelengths of the main musical notes. The

wavelength of the frequency is the distance the wave travels in one cycle.

The wavelength can be calculated using l =
v
f

 where λ is the wavelength,

v is the speed of sound 343m/s, and f is the frequency in Hertz.

So, for example, the musical note D3# has a frequency of 155.5 Hertz.

Therefore the wavelength is

l = =
343

155 56
2 2049 220 49

.
. .mor cm

Musical Note Frequency, Hertz Wavelength, m

C0 16.35 20.97859

C#
0 or Db

0 17.32 19.8037

D0 18.35 18.6921

D#
0 or Eb

0 19.45 17.63496

(continued)

https://doi.org/10.1007/978-1-4842-6068-5#DOI

340

Musical Note Frequency, Hertz Wavelength, m

E0 20.60 16.65049

F0 21.83 15.71232

F#
0 Gb

0 23.12 14.83564

G0 24.50 14

G#
0 or Ab

0 25.96 13.21263

A0 27.50 12.47273

A#
0 or Bb

0 29.14 11.77076

B0 30.87 11.11111

C1 32.70 10.4893

C#
1 or Db

1 34.65 9.89899

D1 36.71 9.343503

D#
1/Eb

1 38.89 8.819748

E1 41.20 8.325243

F1 43.65 7.857961

F#
1 or Gb

1 46.25 7.416216

G1 49.00 7

G#
1 or Ab

1 51.91 6.60759

A1 55.00 6.236364

A#
1/Bb

1 58.27 5.886391

B1 61.74 5.555556

C2 65.41 5.243847

C#
2 or Db

2 69.30 4.949495

D2 73.42 4.671752

(continued)

AppEnDix 8 ThE FrEquEnCy AnD WAvElEnGTh oF ThE MAin MusiCAl noTEs

341

Musical Note Frequency, Hertz Wavelength, m

D#
2 or Eb

2 77.78 4.409874

E2 82.41 4.162116

F2 87.31 3.928531

F#
2/Gb

2 92.50 3.708108

G2 98.00 3.5

G#
2/Ab

2 103.83 3.303477

A2 110.00 3.118182

A#
2 or Bb

2 116.54 2.943195

B2 123.47 2.778003

C3 130.81 2.622124

C#
3 or Db

3 138.59 2.474926

D3 146.83 2.336035

D#
3 or Eb

3 155.56 2.204937

E3 164.81 2.081184

F3 174.61 1.964378

F#
3/Gb

3 185.00 1.854054

G3 196.00 1.75

G#
3 or Ab

3 207.65 1.651818

A3 220.00 1.559091

A#
3 or Bb

3 233.08 1.471598

B3 246.94 1.389001

C4 261.63 1.311012

C#
4 or Db

4 277.18 1.237463

(continued)

AppEnDix 8 ThE FrEquEnCy AnD WAvElEnGTh oF ThE MAin MusiCAl noTEs

342

Musical Note Frequency, Hertz Wavelength, m

D4 293.66 1.168017

D#
4/Eb

4 311.13 1.102433

E4 329.63 1.040561

F4 349.23 0.982161

F#
4 or Gb

4 369.99 0.927052

G4 392.00 0.875

G#
4/Ab

4 415.30 0.825909

A4 440.00 0.779545

A#
4 or Bb

4 466.16 0.735799

B4 493.88 0.694501

C5 523.25 0.655518

C#
5/Db

5 554.37 0.61872

D5 587.33 0.583999

D#
5 or Eb

5 622.25 0.551225

E5 659.25 0.520288

F5 698.46 0.49108

F#
5/Gb

5 739.99 0.46352

G5 783.99 0.437506

G#
5 or Ab

5 830.61 0.41295

A5 880.00 0.389773

A#
5 or Bb

5 932.33 0.367895

B5 987.77 0.347247

C6 1046.50 0.327759

(continued)

AppEnDix 8 ThE FrEquEnCy AnD WAvElEnGTh oF ThE MAin MusiCAl noTEs

343

Musical Note Frequency, Hertz Wavelength, m

C#
6/Db

6 1108.73 0.309363

D6 1174.66 0.291999

D#
6 or Eb

6 1244.51 0.27561

E6 1318.51 0.260142

F6 1396.91 0.245542

F#
6/Gb

6 1479.98 0.23176

G6 1567.98 0.218753

G#
6 or Ab

6 1661.22 0.206475

A6 1760.00 0.194886

A#
6 or Bb

6 1864.66 0.183948

B6 1975.53 0.173624

C7 2093.00 0.16388

C#
7 or Db

7 2217.46 0.154681

D7 2349.32 0.146

D#
7 or Eb

7 2489.02 0.137805

E7 2637.02 0.130071

F7 2793.83 0.122771

F#
7 or Gb

7 2959.96 0.11588

G7 3135.96 0.109376

G#
7 or Ab

7 3322.44 0.103237

A7 3520.00 0.097443

A#
7 or Bb

7 3729.31 0.091974

B7 3951.07 0.086812

(continued)

AppEnDix 8 ThE FrEquEnCy AnD WAvElEnGTh oF ThE MAin MusiCAl noTEs

344

Musical Note Frequency, Hertz Wavelength, m

C8 4186.01 0.08194

C#
8 or Db

8 4434.92 0.077341

D8 4698.63 0.073

D#
8/Eb

8 4978.03 0.068903

E8 5274.04 0.065036

F8 5587.65 0.061385

F#
8 or Gb

8 5919.91 0.05794

G8 6271.93 0.054688

G#
8 or Ab

8 6644.88 0.051619

A8 7040.00 0.048722

A#
8 or Bb

8 7458.62 0.045987

B8 7902.13 0.043406

AppEnDix 8 ThE FrEquEnCy AnD WAvElEnGTh oF ThE MAin MusiCAl noTEs

345© Hubert Henry Ward 2020
H. H. Ward, Intermediate C Programming for the PIC Microcontroller,
https://doi.org/10.1007/978-1-4842-6068-5

Index

A
Advanced 8-bit MCUs (PIC18), 5
Array, 72
ASCII character set, 325

B
Basic input/output system

(BIOS), 296
Binary numbers, 328

add/subtract, 331
subtract, 332, 333

Binary to Decimal, conversion,
329–331

C
Compare function

algorithm, 253, 254
CCP1 interrupt program,

254, 256
CCP modules, 252
CCPR1/CCPR2, 251
CCPR1L register, 257
ISR, 256
PWM firmware, 251
register, 252

D
Data types, 323
DC motors

ervo (see Servo motor)
stepper (see Stepper motor)

Decimal to Binary, conversion, 328
#define function, 81
#define statement, 196

E
Electrically erasable programmable

read-only memory
(EEPROM)

BIOS, 297
capture mode, 274
CCPXCON register, 273
CFGS bit, 299
control register, 300
EEADRH register, 306
EECON1 register, 298, 307
EEDATA register, 308, 310
frequency measurement

(see Frequency
measurement program)

include files, 304
label wait, 311

https://doi.org/10.1007/978-1-4842-6068-5#DOI

346

MPLABX (see MPLABX)
PIC18F4525, 306
PICSetUp.h header file, 305
PROM, 296
RAM, 297
registers, 298
seg2 array, 308
setting up, CCP module, 274
test writing, 301–303

F
Frequency measurement program

ASCII, 286
binary number, 278
binToDec Subroutine, 280, 281,

283, 293
CCP1CON register, 277
CCP1 pin, 276
for do loop, 285
Hertz variable, 284, 290
input square wave, 279
31.25kHz square wave, 294
label Hertz, 277
lcdData variable, 285, 287
periodic time, 278
peripheral interrupt

request, 289
sprintf function, 291, 295, 296
stdio.h header file, 291
thoup variable, 287

timer1, 288
unsigned char variable, 285

G
Global header file

conFigInternalNoWDTNoLVP, 24
filtered options, 25
include directory, 23
pop-up menu, 24
xc.h file, 26

H
Header file

ADC circuits, 34
ADCON0 Register, 33
ADCON1 Register, 35
analog, 32
Bit4 controls, 36
compiler software, 29
configuration, 2
default radix, 31
ECAD software, 41
empty source file, 21
global, 2
include command, 43
include option, 22
initialise, 28
IntelliSense part, 22
LSB, 30
main.c program file, 19
MPLABX, 3 (see MPLABX)
naming, 20
OSCCON Register, 37–39

Electrically erasable programmable
read-only memory
(EEPROM) (cont.)

INDEX

347

PICSetUp.h header file, 42
PORTA register, 44
series of instructions, 1
seven-segment display, 18, 46
subroutine, 29
T0CON Register, 40
timer modules, 39
TRISA, 30
type statements, 44
xc.h header file, 44

Hertz, 278
Hexadecimal number system, 334

I, J, K
Interrupt priority

enable (IPEN), 231
Interrupts

compare function (see Compare
function)

fetch/execute cycle, 226
fire alarm, 226
ISR, 226
microcontroller, 225
PC, 226–229
software polling, 225
sources (see Sources, interrupt)

Interrupt service routine (ISR), 226

L
LCD, 24-hour clock

4bitLCDPortb.h, 117
clearTheScreen (), 124, 143

closing bracket, 136
daynumber variable, 139
debounce

subroutine, 138
decbutton, 142
#define operation, 133
displayday subroutine, 145, 147
eBit, 122
forever loop, 137
Header file, 117, 119, 120
hourtens variable, 141
types information, 121
lcdData variable, 126, 132
lcdInitialise array, 131
lcdOut (), 135
lcdPort, 121
lcdTempData variable, 125
logical OR operation, 127
lsdOut subroutine, 140
null character, 135
PIC microcontroller, 105
program, 105–108, 110–112,

114, 116, 117
returnhome, 133
rsline variable, 127, 130
sendData subroutine, 129
TMR0 register, 128
writeString subroutine, 123, 135

Least significant
bit (LSB), 30, 329

Liquid crystal display (LCD), 1
Logic operators, 319
Low voltage programming

(LVP), 12

INDEX

348

M
Match interrupt, 239
Microchip, 162
Microprocessor-based

systems, 327, 332
Most significant bit (MSB), 30
MPLABX

comments, 12
compiler window, 7
configuration words, 18
debug main project option, 313
EE data memory, 313, 314
flyout menu, 10
INTIO67, 16
LCD display, 314
main window, 9
microchip, 12
multiple-line comments, 13
new project window, 4
opening screen, 3
oscillator sources, 11
PICkit3 tool, 5
project name/folder window, 8
select device window, 5
select tool window, 6, 312
simulator, 6, 312
single-line comments, 13
source code, 17
WDT, 12
XC8 (V2.10) compiler software, 3

N, O
Newton’s Law of Motion, 93

P, Q, R
Peripheral interrupts, 230
PICSetUp.h Header file

TMR0 timer, 26
XC8_header.h, 26, 27

Pointers, 72–74
Program counter (PC), 226–229
Programmable read-only memory

(PROM), 296
Pulse width modulation (PWM)

DC voltage supply, 156
duty cycle, 158
mark time, 157
periodic time, 157

S, T, U, V, W, X, Y, Z
Servo motor

ADC conversion, 221
ADRESH register, 220
algorithm, 216
CCP module, 210, 211
CCPR1L register, 213, 215
definition, 215
50Hz frequency pulse

train, 209
instruction controls, 222
math.h header file, 214
potentiometer, 214
program to control, 218
pulse width, 209, 215
rotate variable, 220
subroutine changeAngle, 220,

222, 223

INDEX

349

Timer0, 221
variable resistor, 212

Seven-segment display, 48
array, 72
basic method, 57
bouncing voltage, 94
colors, 48
common anode, 49–51
common cathode, 50
control the display, PIC, 52
curly bracket, 69
debounce subroutine, 95, 97
displaynumber [], 96
else statements, 99
for do loops, 101
24-Hour clock, 87–92
hoursTens variable, 102
hoursUnits variable, 102
if statements, 103
improve program, 71
incbutton, 83, 97, 98
initialise subroutine, 96
LCD, 24-hour clock, 104
listing, 59–63
main loop, 67
micro carries, 64
minTens variable, 100
NAND/NOR gates, 95
opening curly bracket, 96
PICSetUp.h header file, 86
pointer, 72–74
PORTA, 85, 98
PORTB, 52
program

algorithm, 53, 54
improved, 74, 76, 78
flowchart, 55
problem, 71

semicolon, 65, 68
setButton, 83, 100
simulation, 104
subroutine, 63
switch/case keywords, 147,

149–151
variables, 82

Software polling, 71, 226, 255
Sources, interrupt

algorithm, 239
compiler software version issue,

240–243
INTCON register, 232–237
operation, 230
PICSetUp.h header file, 247
PIE1 register, 237, 238
priorities, 231
simulation, 250
T2CON register, 248

SPF register T0CON, 224
sprintf function, 314
Square wave

ADC conversion, 184
CCP1CON register, 194
CCP modules, 159, 161
CCPXCON register, 159, 160
circuit simulation, 171
creating, musical note, 186
DC motor, 153, 172, 173
debounce subroutine, 177, 195

INDEX

350

drive, Dc motor, 175, 176
50/50 duty cycle, 185
500Hz, creation, 162, 163
mark time/duty cycle, 164, 165
math.h header file, 181, 182
microchip, 162
middle C note, 187, 188, 190
musical keyboard

creation, 191, 193
music notes, 154, 155
oscilloscope, 169
outputs, 170
PORTCbits.RC1, 162
PR2, 162
PWM, 156–158
speed, Dc motor, 156
75/25 square wave output, 174

T2CON register, 167
three-speed control, 176, 178
variable input voltage, 179, 180
while (test) type, 168

Stepper motor
applications, 209
basic program, 202, 203,

205–207
clockwise direction, 201
counterclockwise

direction, 202
Darlington NPN transistors, 200
driver circuit, 200
5V four-phase five-wire, 199
orange label, 208
PIC program, 199
rotor rotate, 199
time constant, 202

Square wave (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Creating a Header File
	Creating a Header File
	Creating a Project in MPLABX
	Including the Header File
	Creating the Project Source File
	Creating a Global Header File
	The PICSetUp.h Header File
	Analysis of Listing 1-1
	Synopsis
	Answer to Exercise

	Chapter 2: Controlling a Seven-Segment Display
	Controlling a Seven-Segment Display
	Common Anode Seven-Segment Display
	Common Cathode Seven-Segment Display
	Controlling the Display with the PIC
	The Seven-Segment Display Program
	The Algorithm
	The Flowchart

	The Listing for the Seven-Segment Display Program
	The Analysis of Listing 2-1
	Improving the Seven-Segment Display Program
	The Problem with the Program
	Arrays
	Using Pointers
	Analysis of The Pointer Example
	The Improved Program
	Synopsis
	Answers to the Exercises

	Chapter 3: The 24-Hour Clock
	The Seven-Segment Display
	The Algorithm for the 24-Hour Clock Using Seven-Segment Displays
	The Initialization of the PIC
	Analysis of Listing 3-1
	A 24-Hour Clock with the LCD Display
	Analysis of the Header File for the LCD
	The Analysis of Listing 3-2
	Improvements for the 24-Hour Clock LCD Program

	Using Switch and Case Keywords
	Analysis of the New Subroutine
	Synopsis

	Chapter 4: Creating a Square Wave
	Why Create a Square Wave?
	Musical Notes
	The Speed of the Simple DC Motor
	Pulse Width Modulation
	Creating a Square Wave with the PWM Mode
	Creating a 500Hz Square Wave
	The Mark Time or Duty Cycle
	Analysis of Listing 4-1
	Creating Two Square Wave Outputs
	Setting the Speed of a DC Motor
	Driving the Motor
	Creating a Three-Speed DC Motor Program
	Using a Variable Input Voltage to Change the Speed of a DC Motor
	Analysis of Listing 4-5
	Creating a Musical Note
	Creating the Middle C Note
	Creating a Musical Keyboard
	The Analysis Of Listing 4-7
	Summary
	Answers to the Exercises

	Chapter 5: DC Motors
	The Stepper Motor
	The Servo Motor
	Using the CCPM to Produce the Pulse Train Signal
	Controlling the Positions of the Servo Motor with a Variable Resistor
	Improving The Servo Motor Program
	The Algorithm for the Improved Program
	Summary
	Solution to the Exercise

	Chapter 6: Interrupts
	What Are Interrupts?
	The Fetch and Execute Cycle
	The Program Counter
	The Sources of Interrupts
	The Process for a Simple Interrupt with No Priorities
	Setting Up the PIC to Respond to the Interrupts
	The PIE1 Register
	The Algorithm for the Interrupt Test Program
	Compiler Software Version Issue
	The Analysis of Listing 6-1

	Using the Compare Function of the CCP Module
	The Algorithm for the Compare Function
	The Analysis Of Listing 6-2

	Using Priority Enabled Interrupts
	The Algorithm for the High/Low Priority Program
	Analysis of Listing 6-3
	Explanation of How the High/Low Priority Program Works

	Summary

	Chapter 7: Frequency Measurement and the EEPROM
	Using the Capture Function of the CCP
	Setting the CCP to the Capture Mode
	What the CCP Captures in the Capture Mode
	The Algorithm for the Frequency Measurement Program
	Example Frequency Measurement
	The Program to Measure the 500Hz Square Wave
	Analysis of Listing 7-1
	Using the EEPROM Inside the 18f4525
	Analysis of Listing 7-3
	Simulation of the EEPROM Program Using MPLABX
	Summary

	Appendix 1:Some Useful Definitions
	Appendix 2:Mathematical and Logic Operators
	Appendix 3:Keywords
	Appendix 4:Data Types
	Appendix 5:The ASCII Character Set
	Appendix 6:Numbering Systems Within Microprocessor-Based Systems
	Binary Numbers
	Converting Decimal to Binary
	Converting from Binary to Decimal

	Adding and Subtracting Binary Numbers
	Subtracting Binary Numbers

	The Hexadecimal Number System

	Appendix 7
	Appendix 8:The Frequency and Wavelength of the Main Musical Notes
	Index

